1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/ADT/SmallBitVector.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/ADT/SmallString.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/ADT/iterator.h" 32 #include "llvm/ADT/iterator_range.h" 33 #include "llvm/Analysis/AliasAnalysis.h" 34 #include "llvm/Analysis/AssumptionCache.h" 35 #include "llvm/Analysis/CodeMetrics.h" 36 #include "llvm/Analysis/DemandedBits.h" 37 #include "llvm/Analysis/GlobalsModRef.h" 38 #include "llvm/Analysis/IVDescriptors.h" 39 #include "llvm/Analysis/LoopAccessAnalysis.h" 40 #include "llvm/Analysis/LoopInfo.h" 41 #include "llvm/Analysis/MemoryLocation.h" 42 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 43 #include "llvm/Analysis/ScalarEvolution.h" 44 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 45 #include "llvm/Analysis/TargetLibraryInfo.h" 46 #include "llvm/Analysis/TargetTransformInfo.h" 47 #include "llvm/Analysis/ValueTracking.h" 48 #include "llvm/Analysis/VectorUtils.h" 49 #include "llvm/IR/Attributes.h" 50 #include "llvm/IR/BasicBlock.h" 51 #include "llvm/IR/Constant.h" 52 #include "llvm/IR/Constants.h" 53 #include "llvm/IR/DataLayout.h" 54 #include "llvm/IR/DebugLoc.h" 55 #include "llvm/IR/DerivedTypes.h" 56 #include "llvm/IR/Dominators.h" 57 #include "llvm/IR/Function.h" 58 #include "llvm/IR/IRBuilder.h" 59 #include "llvm/IR/InstrTypes.h" 60 #include "llvm/IR/Instruction.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/IR/IntrinsicInst.h" 63 #include "llvm/IR/Intrinsics.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/NoFolder.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/IR/Verifier.h" 74 #include "llvm/InitializePasses.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/Casting.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/Compiler.h" 79 #include "llvm/Support/DOTGraphTraits.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/GraphWriter.h" 83 #include "llvm/Support/InstructionCost.h" 84 #include "llvm/Support/KnownBits.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 88 #include "llvm/Transforms/Utils/LoopUtils.h" 89 #include "llvm/Transforms/Vectorize.h" 90 #include <algorithm> 91 #include <cassert> 92 #include <cstdint> 93 #include <iterator> 94 #include <memory> 95 #include <set> 96 #include <string> 97 #include <tuple> 98 #include <utility> 99 #include <vector> 100 101 using namespace llvm; 102 using namespace llvm::PatternMatch; 103 using namespace slpvectorizer; 104 105 #define SV_NAME "slp-vectorizer" 106 #define DEBUG_TYPE "SLP" 107 108 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 109 110 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 111 cl::desc("Run the SLP vectorization passes")); 112 113 static cl::opt<int> 114 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 115 cl::desc("Only vectorize if you gain more than this " 116 "number ")); 117 118 static cl::opt<bool> 119 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 120 cl::desc("Attempt to vectorize horizontal reductions")); 121 122 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 123 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 124 cl::desc( 125 "Attempt to vectorize horizontal reductions feeding into a store")); 126 127 static cl::opt<int> 128 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 129 cl::desc("Attempt to vectorize for this register size in bits")); 130 131 static cl::opt<unsigned> 132 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 133 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 134 135 static cl::opt<int> 136 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 137 cl::desc("Maximum depth of the lookup for consecutive stores.")); 138 139 /// Limits the size of scheduling regions in a block. 140 /// It avoid long compile times for _very_ large blocks where vector 141 /// instructions are spread over a wide range. 142 /// This limit is way higher than needed by real-world functions. 143 static cl::opt<int> 144 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 145 cl::desc("Limit the size of the SLP scheduling region per block")); 146 147 static cl::opt<int> MinVectorRegSizeOption( 148 "slp-min-reg-size", cl::init(128), cl::Hidden, 149 cl::desc("Attempt to vectorize for this register size in bits")); 150 151 static cl::opt<unsigned> RecursionMaxDepth( 152 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 153 cl::desc("Limit the recursion depth when building a vectorizable tree")); 154 155 static cl::opt<unsigned> MinTreeSize( 156 "slp-min-tree-size", cl::init(3), cl::Hidden, 157 cl::desc("Only vectorize small trees if they are fully vectorizable")); 158 159 // The maximum depth that the look-ahead score heuristic will explore. 160 // The higher this value, the higher the compilation time overhead. 161 static cl::opt<int> LookAheadMaxDepth( 162 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 163 cl::desc("The maximum look-ahead depth for operand reordering scores")); 164 165 // The Look-ahead heuristic goes through the users of the bundle to calculate 166 // the users cost in getExternalUsesCost(). To avoid compilation time increase 167 // we limit the number of users visited to this value. 168 static cl::opt<unsigned> LookAheadUsersBudget( 169 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 170 cl::desc("The maximum number of users to visit while visiting the " 171 "predecessors. This prevents compilation time increase.")); 172 173 static cl::opt<bool> 174 ViewSLPTree("view-slp-tree", cl::Hidden, 175 cl::desc("Display the SLP trees with Graphviz")); 176 177 // Limit the number of alias checks. The limit is chosen so that 178 // it has no negative effect on the llvm benchmarks. 179 static const unsigned AliasedCheckLimit = 10; 180 181 // Another limit for the alias checks: The maximum distance between load/store 182 // instructions where alias checks are done. 183 // This limit is useful for very large basic blocks. 184 static const unsigned MaxMemDepDistance = 160; 185 186 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 187 /// regions to be handled. 188 static const int MinScheduleRegionSize = 16; 189 190 /// Predicate for the element types that the SLP vectorizer supports. 191 /// 192 /// The most important thing to filter here are types which are invalid in LLVM 193 /// vectors. We also filter target specific types which have absolutely no 194 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 195 /// avoids spending time checking the cost model and realizing that they will 196 /// be inevitably scalarized. 197 static bool isValidElementType(Type *Ty) { 198 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 199 !Ty->isPPC_FP128Ty(); 200 } 201 202 /// \returns true if all of the instructions in \p VL are in the same block or 203 /// false otherwise. 204 static bool allSameBlock(ArrayRef<Value *> VL) { 205 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 206 if (!I0) 207 return false; 208 BasicBlock *BB = I0->getParent(); 209 for (int I = 1, E = VL.size(); I < E; I++) { 210 auto *II = dyn_cast<Instruction>(VL[I]); 211 if (!II) 212 return false; 213 214 if (BB != II->getParent()) 215 return false; 216 } 217 return true; 218 } 219 220 /// \returns True if all of the values in \p VL are constants (but not 221 /// globals/constant expressions). 222 static bool allConstant(ArrayRef<Value *> VL) { 223 // Constant expressions and globals can't be vectorized like normal integer/FP 224 // constants. 225 for (Value *i : VL) 226 if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i)) 227 return false; 228 return true; 229 } 230 231 /// \returns True if all of the values in \p VL are identical. 232 static bool isSplat(ArrayRef<Value *> VL) { 233 for (unsigned i = 1, e = VL.size(); i < e; ++i) 234 if (VL[i] != VL[0]) 235 return false; 236 return true; 237 } 238 239 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 240 static bool isCommutative(Instruction *I) { 241 if (auto *Cmp = dyn_cast<CmpInst>(I)) 242 return Cmp->isCommutative(); 243 if (auto *BO = dyn_cast<BinaryOperator>(I)) 244 return BO->isCommutative(); 245 // TODO: This should check for generic Instruction::isCommutative(), but 246 // we need to confirm that the caller code correctly handles Intrinsics 247 // for example (does not have 2 operands). 248 return false; 249 } 250 251 /// Checks if the vector of instructions can be represented as a shuffle, like: 252 /// %x0 = extractelement <4 x i8> %x, i32 0 253 /// %x3 = extractelement <4 x i8> %x, i32 3 254 /// %y1 = extractelement <4 x i8> %y, i32 1 255 /// %y2 = extractelement <4 x i8> %y, i32 2 256 /// %x0x0 = mul i8 %x0, %x0 257 /// %x3x3 = mul i8 %x3, %x3 258 /// %y1y1 = mul i8 %y1, %y1 259 /// %y2y2 = mul i8 %y2, %y2 260 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 261 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 262 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 263 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 264 /// ret <4 x i8> %ins4 265 /// can be transformed into: 266 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 267 /// i32 6> 268 /// %2 = mul <4 x i8> %1, %1 269 /// ret <4 x i8> %2 270 /// We convert this initially to something like: 271 /// %x0 = extractelement <4 x i8> %x, i32 0 272 /// %x3 = extractelement <4 x i8> %x, i32 3 273 /// %y1 = extractelement <4 x i8> %y, i32 1 274 /// %y2 = extractelement <4 x i8> %y, i32 2 275 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 276 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 277 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 278 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 279 /// %5 = mul <4 x i8> %4, %4 280 /// %6 = extractelement <4 x i8> %5, i32 0 281 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 282 /// %7 = extractelement <4 x i8> %5, i32 1 283 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 284 /// %8 = extractelement <4 x i8> %5, i32 2 285 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 286 /// %9 = extractelement <4 x i8> %5, i32 3 287 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 288 /// ret <4 x i8> %ins4 289 /// InstCombiner transforms this into a shuffle and vector mul 290 /// TODO: Can we split off and reuse the shuffle mask detection from 291 /// TargetTransformInfo::getInstructionThroughput? 292 static Optional<TargetTransformInfo::ShuffleKind> 293 isShuffle(ArrayRef<Value *> VL) { 294 auto *EI0 = cast<ExtractElementInst>(VL[0]); 295 unsigned Size = 296 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 297 Value *Vec1 = nullptr; 298 Value *Vec2 = nullptr; 299 enum ShuffleMode { Unknown, Select, Permute }; 300 ShuffleMode CommonShuffleMode = Unknown; 301 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 302 auto *EI = cast<ExtractElementInst>(VL[I]); 303 auto *Vec = EI->getVectorOperand(); 304 // All vector operands must have the same number of vector elements. 305 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 306 return None; 307 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 308 if (!Idx) 309 return None; 310 // Undefined behavior if Idx is negative or >= Size. 311 if (Idx->getValue().uge(Size)) 312 continue; 313 unsigned IntIdx = Idx->getValue().getZExtValue(); 314 // We can extractelement from undef or poison vector. 315 if (isa<UndefValue>(Vec)) 316 continue; 317 // For correct shuffling we have to have at most 2 different vector operands 318 // in all extractelement instructions. 319 if (!Vec1 || Vec1 == Vec) 320 Vec1 = Vec; 321 else if (!Vec2 || Vec2 == Vec) 322 Vec2 = Vec; 323 else 324 return None; 325 if (CommonShuffleMode == Permute) 326 continue; 327 // If the extract index is not the same as the operation number, it is a 328 // permutation. 329 if (IntIdx != I) { 330 CommonShuffleMode = Permute; 331 continue; 332 } 333 CommonShuffleMode = Select; 334 } 335 // If we're not crossing lanes in different vectors, consider it as blending. 336 if (CommonShuffleMode == Select && Vec2) 337 return TargetTransformInfo::SK_Select; 338 // If Vec2 was never used, we have a permutation of a single vector, otherwise 339 // we have permutation of 2 vectors. 340 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 341 : TargetTransformInfo::SK_PermuteSingleSrc; 342 } 343 344 namespace { 345 346 /// Main data required for vectorization of instructions. 347 struct InstructionsState { 348 /// The very first instruction in the list with the main opcode. 349 Value *OpValue = nullptr; 350 351 /// The main/alternate instruction. 352 Instruction *MainOp = nullptr; 353 Instruction *AltOp = nullptr; 354 355 /// The main/alternate opcodes for the list of instructions. 356 unsigned getOpcode() const { 357 return MainOp ? MainOp->getOpcode() : 0; 358 } 359 360 unsigned getAltOpcode() const { 361 return AltOp ? AltOp->getOpcode() : 0; 362 } 363 364 /// Some of the instructions in the list have alternate opcodes. 365 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 366 367 bool isOpcodeOrAlt(Instruction *I) const { 368 unsigned CheckedOpcode = I->getOpcode(); 369 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 370 } 371 372 InstructionsState() = delete; 373 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 374 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 375 }; 376 377 } // end anonymous namespace 378 379 /// Chooses the correct key for scheduling data. If \p Op has the same (or 380 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 381 /// OpValue. 382 static Value *isOneOf(const InstructionsState &S, Value *Op) { 383 auto *I = dyn_cast<Instruction>(Op); 384 if (I && S.isOpcodeOrAlt(I)) 385 return Op; 386 return S.OpValue; 387 } 388 389 /// \returns true if \p Opcode is allowed as part of of the main/alternate 390 /// instruction for SLP vectorization. 391 /// 392 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 393 /// "shuffled out" lane would result in division by zero. 394 static bool isValidForAlternation(unsigned Opcode) { 395 if (Instruction::isIntDivRem(Opcode)) 396 return false; 397 398 return true; 399 } 400 401 /// \returns analysis of the Instructions in \p VL described in 402 /// InstructionsState, the Opcode that we suppose the whole list 403 /// could be vectorized even if its structure is diverse. 404 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 405 unsigned BaseIndex = 0) { 406 // Make sure these are all Instructions. 407 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 408 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 409 410 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 411 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 412 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 413 unsigned AltOpcode = Opcode; 414 unsigned AltIndex = BaseIndex; 415 416 // Check for one alternate opcode from another BinaryOperator. 417 // TODO - generalize to support all operators (types, calls etc.). 418 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 419 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 420 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 421 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 422 continue; 423 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 424 isValidForAlternation(Opcode)) { 425 AltOpcode = InstOpcode; 426 AltIndex = Cnt; 427 continue; 428 } 429 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 430 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 431 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 432 if (Ty0 == Ty1) { 433 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 434 continue; 435 if (Opcode == AltOpcode) { 436 assert(isValidForAlternation(Opcode) && 437 isValidForAlternation(InstOpcode) && 438 "Cast isn't safe for alternation, logic needs to be updated!"); 439 AltOpcode = InstOpcode; 440 AltIndex = Cnt; 441 continue; 442 } 443 } 444 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 445 continue; 446 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 447 } 448 449 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 450 cast<Instruction>(VL[AltIndex])); 451 } 452 453 /// \returns true if all of the values in \p VL have the same type or false 454 /// otherwise. 455 static bool allSameType(ArrayRef<Value *> VL) { 456 Type *Ty = VL[0]->getType(); 457 for (int i = 1, e = VL.size(); i < e; i++) 458 if (VL[i]->getType() != Ty) 459 return false; 460 461 return true; 462 } 463 464 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 465 static Optional<unsigned> getExtractIndex(Instruction *E) { 466 unsigned Opcode = E->getOpcode(); 467 assert((Opcode == Instruction::ExtractElement || 468 Opcode == Instruction::ExtractValue) && 469 "Expected extractelement or extractvalue instruction."); 470 if (Opcode == Instruction::ExtractElement) { 471 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 472 if (!CI) 473 return None; 474 return CI->getZExtValue(); 475 } 476 ExtractValueInst *EI = cast<ExtractValueInst>(E); 477 if (EI->getNumIndices() != 1) 478 return None; 479 return *EI->idx_begin(); 480 } 481 482 /// \returns True if in-tree use also needs extract. This refers to 483 /// possible scalar operand in vectorized instruction. 484 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 485 TargetLibraryInfo *TLI) { 486 unsigned Opcode = UserInst->getOpcode(); 487 switch (Opcode) { 488 case Instruction::Load: { 489 LoadInst *LI = cast<LoadInst>(UserInst); 490 return (LI->getPointerOperand() == Scalar); 491 } 492 case Instruction::Store: { 493 StoreInst *SI = cast<StoreInst>(UserInst); 494 return (SI->getPointerOperand() == Scalar); 495 } 496 case Instruction::Call: { 497 CallInst *CI = cast<CallInst>(UserInst); 498 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 499 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 500 if (hasVectorInstrinsicScalarOpd(ID, i)) 501 return (CI->getArgOperand(i) == Scalar); 502 } 503 LLVM_FALLTHROUGH; 504 } 505 default: 506 return false; 507 } 508 } 509 510 /// \returns the AA location that is being access by the instruction. 511 static MemoryLocation getLocation(Instruction *I, AAResults *AA) { 512 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 513 return MemoryLocation::get(SI); 514 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 515 return MemoryLocation::get(LI); 516 return MemoryLocation(); 517 } 518 519 /// \returns True if the instruction is not a volatile or atomic load/store. 520 static bool isSimple(Instruction *I) { 521 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 522 return LI->isSimple(); 523 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 524 return SI->isSimple(); 525 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 526 return !MI->isVolatile(); 527 return true; 528 } 529 530 namespace llvm { 531 532 static void inversePermutation(ArrayRef<unsigned> Indices, 533 SmallVectorImpl<int> &Mask) { 534 Mask.clear(); 535 const unsigned E = Indices.size(); 536 Mask.resize(E, E + 1); 537 for (unsigned I = 0; I < E; ++I) 538 Mask[Indices[I]] = I; 539 } 540 541 namespace slpvectorizer { 542 543 /// Bottom Up SLP Vectorizer. 544 class BoUpSLP { 545 struct TreeEntry; 546 struct ScheduleData; 547 548 public: 549 using ValueList = SmallVector<Value *, 8>; 550 using InstrList = SmallVector<Instruction *, 16>; 551 using ValueSet = SmallPtrSet<Value *, 16>; 552 using StoreList = SmallVector<StoreInst *, 8>; 553 using ExtraValueToDebugLocsMap = 554 MapVector<Value *, SmallVector<Instruction *, 2>>; 555 using OrdersType = SmallVector<unsigned, 4>; 556 557 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 558 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 559 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 560 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 561 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 562 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 563 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 564 // Use the vector register size specified by the target unless overridden 565 // by a command-line option. 566 // TODO: It would be better to limit the vectorization factor based on 567 // data type rather than just register size. For example, x86 AVX has 568 // 256-bit registers, but it does not support integer operations 569 // at that width (that requires AVX2). 570 if (MaxVectorRegSizeOption.getNumOccurrences()) 571 MaxVecRegSize = MaxVectorRegSizeOption; 572 else 573 MaxVecRegSize = TTI->getRegisterBitWidth(true); 574 575 if (MinVectorRegSizeOption.getNumOccurrences()) 576 MinVecRegSize = MinVectorRegSizeOption; 577 else 578 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 579 } 580 581 /// Vectorize the tree that starts with the elements in \p VL. 582 /// Returns the vectorized root. 583 Value *vectorizeTree(); 584 585 /// Vectorize the tree but with the list of externally used values \p 586 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 587 /// generated extractvalue instructions. 588 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 589 590 /// \returns the cost incurred by unwanted spills and fills, caused by 591 /// holding live values over call sites. 592 InstructionCost getSpillCost() const; 593 594 /// \returns the vectorization cost of the subtree that starts at \p VL. 595 /// A negative number means that this is profitable. 596 InstructionCost getTreeCost(); 597 598 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 599 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 600 void buildTree(ArrayRef<Value *> Roots, 601 ArrayRef<Value *> UserIgnoreLst = None); 602 603 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 604 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 605 /// into account (and updating it, if required) list of externally used 606 /// values stored in \p ExternallyUsedValues. 607 void buildTree(ArrayRef<Value *> Roots, 608 ExtraValueToDebugLocsMap &ExternallyUsedValues, 609 ArrayRef<Value *> UserIgnoreLst = None); 610 611 /// Clear the internal data structures that are created by 'buildTree'. 612 void deleteTree() { 613 VectorizableTree.clear(); 614 ScalarToTreeEntry.clear(); 615 MustGather.clear(); 616 ExternalUses.clear(); 617 NumOpsWantToKeepOrder.clear(); 618 NumOpsWantToKeepOriginalOrder = 0; 619 for (auto &Iter : BlocksSchedules) { 620 BlockScheduling *BS = Iter.second.get(); 621 BS->clear(); 622 } 623 MinBWs.clear(); 624 } 625 626 unsigned getTreeSize() const { return VectorizableTree.size(); } 627 628 /// Perform LICM and CSE on the newly generated gather sequences. 629 void optimizeGatherSequence(); 630 631 /// \returns The best order of instructions for vectorization. 632 Optional<ArrayRef<unsigned>> bestOrder() const { 633 assert(llvm::all_of( 634 NumOpsWantToKeepOrder, 635 [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { 636 return D.getFirst().size() == 637 VectorizableTree[0]->Scalars.size(); 638 }) && 639 "All orders must have the same size as number of instructions in " 640 "tree node."); 641 auto I = std::max_element( 642 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 643 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 644 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 645 return D1.second < D2.second; 646 }); 647 if (I == NumOpsWantToKeepOrder.end() || 648 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 649 return None; 650 651 return makeArrayRef(I->getFirst()); 652 } 653 654 /// Builds the correct order for root instructions. 655 /// If some leaves have the same instructions to be vectorized, we may 656 /// incorrectly evaluate the best order for the root node (it is built for the 657 /// vector of instructions without repeated instructions and, thus, has less 658 /// elements than the root node). This function builds the correct order for 659 /// the root node. 660 /// For example, if the root node is \<a+b, a+c, a+d, f+e\>, then the leaves 661 /// are \<a, a, a, f\> and \<b, c, d, e\>. When we try to vectorize the first 662 /// leaf, it will be shrink to \<a, b\>. If instructions in this leaf should 663 /// be reordered, the best order will be \<1, 0\>. We need to extend this 664 /// order for the root node. For the root node this order should look like 665 /// \<3, 0, 1, 2\>. This function extends the order for the reused 666 /// instructions. 667 void findRootOrder(OrdersType &Order) { 668 // If the leaf has the same number of instructions to vectorize as the root 669 // - order must be set already. 670 unsigned RootSize = VectorizableTree[0]->Scalars.size(); 671 if (Order.size() == RootSize) 672 return; 673 SmallVector<unsigned, 4> RealOrder(Order.size()); 674 std::swap(Order, RealOrder); 675 SmallVector<int, 4> Mask; 676 inversePermutation(RealOrder, Mask); 677 Order.assign(Mask.begin(), Mask.end()); 678 // The leaf has less number of instructions - need to find the true order of 679 // the root. 680 // Scan the nodes starting from the leaf back to the root. 681 const TreeEntry *PNode = VectorizableTree.back().get(); 682 SmallVector<const TreeEntry *, 4> Nodes(1, PNode); 683 SmallPtrSet<const TreeEntry *, 4> Visited; 684 while (!Nodes.empty() && Order.size() != RootSize) { 685 const TreeEntry *PNode = Nodes.pop_back_val(); 686 if (!Visited.insert(PNode).second) 687 continue; 688 const TreeEntry &Node = *PNode; 689 for (const EdgeInfo &EI : Node.UserTreeIndices) 690 if (EI.UserTE) 691 Nodes.push_back(EI.UserTE); 692 if (Node.ReuseShuffleIndices.empty()) 693 continue; 694 // Build the order for the parent node. 695 OrdersType NewOrder(Node.ReuseShuffleIndices.size(), RootSize); 696 SmallVector<unsigned, 4> OrderCounter(Order.size(), 0); 697 // The algorithm of the order extension is: 698 // 1. Calculate the number of the same instructions for the order. 699 // 2. Calculate the index of the new order: total number of instructions 700 // with order less than the order of the current instruction + reuse 701 // number of the current instruction. 702 // 3. The new order is just the index of the instruction in the original 703 // vector of the instructions. 704 for (unsigned I : Node.ReuseShuffleIndices) 705 ++OrderCounter[Order[I]]; 706 SmallVector<unsigned, 4> CurrentCounter(Order.size(), 0); 707 for (unsigned I = 0, E = Node.ReuseShuffleIndices.size(); I < E; ++I) { 708 unsigned ReusedIdx = Node.ReuseShuffleIndices[I]; 709 unsigned OrderIdx = Order[ReusedIdx]; 710 unsigned NewIdx = 0; 711 for (unsigned J = 0; J < OrderIdx; ++J) 712 NewIdx += OrderCounter[J]; 713 NewIdx += CurrentCounter[OrderIdx]; 714 ++CurrentCounter[OrderIdx]; 715 assert(NewOrder[NewIdx] == RootSize && 716 "The order index should not be written already."); 717 NewOrder[NewIdx] = I; 718 } 719 std::swap(Order, NewOrder); 720 } 721 assert(Order.size() == RootSize && 722 "Root node is expected or the size of the order must be the same as " 723 "the number of elements in the root node."); 724 assert(llvm::all_of(Order, 725 [RootSize](unsigned Val) { return Val != RootSize; }) && 726 "All indices must be initialized"); 727 } 728 729 /// \return The vector element size in bits to use when vectorizing the 730 /// expression tree ending at \p V. If V is a store, the size is the width of 731 /// the stored value. Otherwise, the size is the width of the largest loaded 732 /// value reaching V. This method is used by the vectorizer to calculate 733 /// vectorization factors. 734 unsigned getVectorElementSize(Value *V); 735 736 /// Compute the minimum type sizes required to represent the entries in a 737 /// vectorizable tree. 738 void computeMinimumValueSizes(); 739 740 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 741 unsigned getMaxVecRegSize() const { 742 return MaxVecRegSize; 743 } 744 745 // \returns minimum vector register size as set by cl::opt. 746 unsigned getMinVecRegSize() const { 747 return MinVecRegSize; 748 } 749 750 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 751 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 752 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 753 return MaxVF ? MaxVF : UINT_MAX; 754 } 755 756 /// Check if homogeneous aggregate is isomorphic to some VectorType. 757 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 758 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 759 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 760 /// 761 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 762 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 763 764 /// \returns True if the VectorizableTree is both tiny and not fully 765 /// vectorizable. We do not vectorize such trees. 766 bool isTreeTinyAndNotFullyVectorizable() const; 767 768 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 769 /// can be load combined in the backend. Load combining may not be allowed in 770 /// the IR optimizer, so we do not want to alter the pattern. For example, 771 /// partially transforming a scalar bswap() pattern into vector code is 772 /// effectively impossible for the backend to undo. 773 /// TODO: If load combining is allowed in the IR optimizer, this analysis 774 /// may not be necessary. 775 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 776 777 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 778 /// can be load combined in the backend. Load combining may not be allowed in 779 /// the IR optimizer, so we do not want to alter the pattern. For example, 780 /// partially transforming a scalar bswap() pattern into vector code is 781 /// effectively impossible for the backend to undo. 782 /// TODO: If load combining is allowed in the IR optimizer, this analysis 783 /// may not be necessary. 784 bool isLoadCombineCandidate() const; 785 786 OptimizationRemarkEmitter *getORE() { return ORE; } 787 788 /// This structure holds any data we need about the edges being traversed 789 /// during buildTree_rec(). We keep track of: 790 /// (i) the user TreeEntry index, and 791 /// (ii) the index of the edge. 792 struct EdgeInfo { 793 EdgeInfo() = default; 794 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 795 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 796 /// The user TreeEntry. 797 TreeEntry *UserTE = nullptr; 798 /// The operand index of the use. 799 unsigned EdgeIdx = UINT_MAX; 800 #ifndef NDEBUG 801 friend inline raw_ostream &operator<<(raw_ostream &OS, 802 const BoUpSLP::EdgeInfo &EI) { 803 EI.dump(OS); 804 return OS; 805 } 806 /// Debug print. 807 void dump(raw_ostream &OS) const { 808 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 809 << " EdgeIdx:" << EdgeIdx << "}"; 810 } 811 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 812 #endif 813 }; 814 815 /// A helper data structure to hold the operands of a vector of instructions. 816 /// This supports a fixed vector length for all operand vectors. 817 class VLOperands { 818 /// For each operand we need (i) the value, and (ii) the opcode that it 819 /// would be attached to if the expression was in a left-linearized form. 820 /// This is required to avoid illegal operand reordering. 821 /// For example: 822 /// \verbatim 823 /// 0 Op1 824 /// |/ 825 /// Op1 Op2 Linearized + Op2 826 /// \ / ----------> |/ 827 /// - - 828 /// 829 /// Op1 - Op2 (0 + Op1) - Op2 830 /// \endverbatim 831 /// 832 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 833 /// 834 /// Another way to think of this is to track all the operations across the 835 /// path from the operand all the way to the root of the tree and to 836 /// calculate the operation that corresponds to this path. For example, the 837 /// path from Op2 to the root crosses the RHS of the '-', therefore the 838 /// corresponding operation is a '-' (which matches the one in the 839 /// linearized tree, as shown above). 840 /// 841 /// For lack of a better term, we refer to this operation as Accumulated 842 /// Path Operation (APO). 843 struct OperandData { 844 OperandData() = default; 845 OperandData(Value *V, bool APO, bool IsUsed) 846 : V(V), APO(APO), IsUsed(IsUsed) {} 847 /// The operand value. 848 Value *V = nullptr; 849 /// TreeEntries only allow a single opcode, or an alternate sequence of 850 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 851 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 852 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 853 /// (e.g., Add/Mul) 854 bool APO = false; 855 /// Helper data for the reordering function. 856 bool IsUsed = false; 857 }; 858 859 /// During operand reordering, we are trying to select the operand at lane 860 /// that matches best with the operand at the neighboring lane. Our 861 /// selection is based on the type of value we are looking for. For example, 862 /// if the neighboring lane has a load, we need to look for a load that is 863 /// accessing a consecutive address. These strategies are summarized in the 864 /// 'ReorderingMode' enumerator. 865 enum class ReorderingMode { 866 Load, ///< Matching loads to consecutive memory addresses 867 Opcode, ///< Matching instructions based on opcode (same or alternate) 868 Constant, ///< Matching constants 869 Splat, ///< Matching the same instruction multiple times (broadcast) 870 Failed, ///< We failed to create a vectorizable group 871 }; 872 873 using OperandDataVec = SmallVector<OperandData, 2>; 874 875 /// A vector of operand vectors. 876 SmallVector<OperandDataVec, 4> OpsVec; 877 878 const DataLayout &DL; 879 ScalarEvolution &SE; 880 const BoUpSLP &R; 881 882 /// \returns the operand data at \p OpIdx and \p Lane. 883 OperandData &getData(unsigned OpIdx, unsigned Lane) { 884 return OpsVec[OpIdx][Lane]; 885 } 886 887 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 888 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 889 return OpsVec[OpIdx][Lane]; 890 } 891 892 /// Clears the used flag for all entries. 893 void clearUsed() { 894 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 895 OpIdx != NumOperands; ++OpIdx) 896 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 897 ++Lane) 898 OpsVec[OpIdx][Lane].IsUsed = false; 899 } 900 901 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 902 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 903 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 904 } 905 906 // The hard-coded scores listed here are not very important. When computing 907 // the scores of matching one sub-tree with another, we are basically 908 // counting the number of values that are matching. So even if all scores 909 // are set to 1, we would still get a decent matching result. 910 // However, sometimes we have to break ties. For example we may have to 911 // choose between matching loads vs matching opcodes. This is what these 912 // scores are helping us with: they provide the order of preference. 913 914 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 915 static const int ScoreConsecutiveLoads = 3; 916 /// ExtractElementInst from same vector and consecutive indexes. 917 static const int ScoreConsecutiveExtracts = 3; 918 /// Constants. 919 static const int ScoreConstants = 2; 920 /// Instructions with the same opcode. 921 static const int ScoreSameOpcode = 2; 922 /// Instructions with alt opcodes (e.g, add + sub). 923 static const int ScoreAltOpcodes = 1; 924 /// Identical instructions (a.k.a. splat or broadcast). 925 static const int ScoreSplat = 1; 926 /// Matching with an undef is preferable to failing. 927 static const int ScoreUndef = 1; 928 /// Score for failing to find a decent match. 929 static const int ScoreFail = 0; 930 /// User exteranl to the vectorized code. 931 static const int ExternalUseCost = 1; 932 /// The user is internal but in a different lane. 933 static const int UserInDiffLaneCost = ExternalUseCost; 934 935 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 936 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 937 ScalarEvolution &SE) { 938 auto *LI1 = dyn_cast<LoadInst>(V1); 939 auto *LI2 = dyn_cast<LoadInst>(V2); 940 if (LI1 && LI2) 941 return isConsecutiveAccess(LI1, LI2, DL, SE) 942 ? VLOperands::ScoreConsecutiveLoads 943 : VLOperands::ScoreFail; 944 945 auto *C1 = dyn_cast<Constant>(V1); 946 auto *C2 = dyn_cast<Constant>(V2); 947 if (C1 && C2) 948 return VLOperands::ScoreConstants; 949 950 // Extracts from consecutive indexes of the same vector better score as 951 // the extracts could be optimized away. 952 Value *EV; 953 ConstantInt *Ex1Idx, *Ex2Idx; 954 if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) && 955 match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) && 956 Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue()) 957 return VLOperands::ScoreConsecutiveExtracts; 958 959 auto *I1 = dyn_cast<Instruction>(V1); 960 auto *I2 = dyn_cast<Instruction>(V2); 961 if (I1 && I2) { 962 if (I1 == I2) 963 return VLOperands::ScoreSplat; 964 InstructionsState S = getSameOpcode({I1, I2}); 965 // Note: Only consider instructions with <= 2 operands to avoid 966 // complexity explosion. 967 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 968 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 969 : VLOperands::ScoreSameOpcode; 970 } 971 972 if (isa<UndefValue>(V2)) 973 return VLOperands::ScoreUndef; 974 975 return VLOperands::ScoreFail; 976 } 977 978 /// Holds the values and their lane that are taking part in the look-ahead 979 /// score calculation. This is used in the external uses cost calculation. 980 SmallDenseMap<Value *, int> InLookAheadValues; 981 982 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are 983 /// either external to the vectorized code, or require shuffling. 984 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 985 const std::pair<Value *, int> &RHS) { 986 int Cost = 0; 987 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 988 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 989 Value *V = Values[Idx].first; 990 if (isa<Constant>(V)) { 991 // Since this is a function pass, it doesn't make semantic sense to 992 // walk the users of a subclass of Constant. The users could be in 993 // another function, or even another module that happens to be in 994 // the same LLVMContext. 995 continue; 996 } 997 998 // Calculate the absolute lane, using the minimum relative lane of LHS 999 // and RHS as base and Idx as the offset. 1000 int Ln = std::min(LHS.second, RHS.second) + Idx; 1001 assert(Ln >= 0 && "Bad lane calculation"); 1002 unsigned UsersBudget = LookAheadUsersBudget; 1003 for (User *U : V->users()) { 1004 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 1005 // The user is in the VectorizableTree. Check if we need to insert. 1006 auto It = llvm::find(UserTE->Scalars, U); 1007 assert(It != UserTE->Scalars.end() && "U is in UserTE"); 1008 int UserLn = std::distance(UserTE->Scalars.begin(), It); 1009 assert(UserLn >= 0 && "Bad lane"); 1010 if (UserLn != Ln) 1011 Cost += UserInDiffLaneCost; 1012 } else { 1013 // Check if the user is in the look-ahead code. 1014 auto It2 = InLookAheadValues.find(U); 1015 if (It2 != InLookAheadValues.end()) { 1016 // The user is in the look-ahead code. Check the lane. 1017 if (It2->second != Ln) 1018 Cost += UserInDiffLaneCost; 1019 } else { 1020 // The user is neither in SLP tree nor in the look-ahead code. 1021 Cost += ExternalUseCost; 1022 } 1023 } 1024 // Limit the number of visited uses to cap compilation time. 1025 if (--UsersBudget == 0) 1026 break; 1027 } 1028 } 1029 return Cost; 1030 } 1031 1032 /// Go through the operands of \p LHS and \p RHS recursively until \p 1033 /// MaxLevel, and return the cummulative score. For example: 1034 /// \verbatim 1035 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1036 /// \ / \ / \ / \ / 1037 /// + + + + 1038 /// G1 G2 G3 G4 1039 /// \endverbatim 1040 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1041 /// each level recursively, accumulating the score. It starts from matching 1042 /// the additions at level 0, then moves on to the loads (level 1). The 1043 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1044 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1045 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1046 /// Please note that the order of the operands does not matter, as we 1047 /// evaluate the score of all profitable combinations of operands. In 1048 /// other words the score of G1 and G4 is the same as G1 and G2. This 1049 /// heuristic is based on ideas described in: 1050 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1051 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1052 /// Luís F. W. Góes 1053 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 1054 const std::pair<Value *, int> &RHS, int CurrLevel, 1055 int MaxLevel) { 1056 1057 Value *V1 = LHS.first; 1058 Value *V2 = RHS.first; 1059 // Get the shallow score of V1 and V2. 1060 int ShallowScoreAtThisLevel = 1061 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) - 1062 getExternalUsesCost(LHS, RHS)); 1063 int Lane1 = LHS.second; 1064 int Lane2 = RHS.second; 1065 1066 // If reached MaxLevel, 1067 // or if V1 and V2 are not instructions, 1068 // or if they are SPLAT, 1069 // or if they are not consecutive, early return the current cost. 1070 auto *I1 = dyn_cast<Instruction>(V1); 1071 auto *I2 = dyn_cast<Instruction>(V2); 1072 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1073 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1074 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel)) 1075 return ShallowScoreAtThisLevel; 1076 assert(I1 && I2 && "Should have early exited."); 1077 1078 // Keep track of in-tree values for determining the external-use cost. 1079 InLookAheadValues[V1] = Lane1; 1080 InLookAheadValues[V2] = Lane2; 1081 1082 // Contains the I2 operand indexes that got matched with I1 operands. 1083 SmallSet<unsigned, 4> Op2Used; 1084 1085 // Recursion towards the operands of I1 and I2. We are trying all possbile 1086 // operand pairs, and keeping track of the best score. 1087 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1088 OpIdx1 != NumOperands1; ++OpIdx1) { 1089 // Try to pair op1I with the best operand of I2. 1090 int MaxTmpScore = 0; 1091 unsigned MaxOpIdx2 = 0; 1092 bool FoundBest = false; 1093 // If I2 is commutative try all combinations. 1094 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1095 unsigned ToIdx = isCommutative(I2) 1096 ? I2->getNumOperands() 1097 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1098 assert(FromIdx <= ToIdx && "Bad index"); 1099 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1100 // Skip operands already paired with OpIdx1. 1101 if (Op2Used.count(OpIdx2)) 1102 continue; 1103 // Recursively calculate the cost at each level 1104 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 1105 {I2->getOperand(OpIdx2), Lane2}, 1106 CurrLevel + 1, MaxLevel); 1107 // Look for the best score. 1108 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1109 MaxTmpScore = TmpScore; 1110 MaxOpIdx2 = OpIdx2; 1111 FoundBest = true; 1112 } 1113 } 1114 if (FoundBest) { 1115 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1116 Op2Used.insert(MaxOpIdx2); 1117 ShallowScoreAtThisLevel += MaxTmpScore; 1118 } 1119 } 1120 return ShallowScoreAtThisLevel; 1121 } 1122 1123 /// \Returns the look-ahead score, which tells us how much the sub-trees 1124 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1125 /// score. This helps break ties in an informed way when we cannot decide on 1126 /// the order of the operands by just considering the immediate 1127 /// predecessors. 1128 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1129 const std::pair<Value *, int> &RHS) { 1130 InLookAheadValues.clear(); 1131 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1132 } 1133 1134 // Search all operands in Ops[*][Lane] for the one that matches best 1135 // Ops[OpIdx][LastLane] and return its opreand index. 1136 // If no good match can be found, return None. 1137 Optional<unsigned> 1138 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1139 ArrayRef<ReorderingMode> ReorderingModes) { 1140 unsigned NumOperands = getNumOperands(); 1141 1142 // The operand of the previous lane at OpIdx. 1143 Value *OpLastLane = getData(OpIdx, LastLane).V; 1144 1145 // Our strategy mode for OpIdx. 1146 ReorderingMode RMode = ReorderingModes[OpIdx]; 1147 1148 // The linearized opcode of the operand at OpIdx, Lane. 1149 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1150 1151 // The best operand index and its score. 1152 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1153 // are using the score to differentiate between the two. 1154 struct BestOpData { 1155 Optional<unsigned> Idx = None; 1156 unsigned Score = 0; 1157 } BestOp; 1158 1159 // Iterate through all unused operands and look for the best. 1160 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1161 // Get the operand at Idx and Lane. 1162 OperandData &OpData = getData(Idx, Lane); 1163 Value *Op = OpData.V; 1164 bool OpAPO = OpData.APO; 1165 1166 // Skip already selected operands. 1167 if (OpData.IsUsed) 1168 continue; 1169 1170 // Skip if we are trying to move the operand to a position with a 1171 // different opcode in the linearized tree form. This would break the 1172 // semantics. 1173 if (OpAPO != OpIdxAPO) 1174 continue; 1175 1176 // Look for an operand that matches the current mode. 1177 switch (RMode) { 1178 case ReorderingMode::Load: 1179 case ReorderingMode::Constant: 1180 case ReorderingMode::Opcode: { 1181 bool LeftToRight = Lane > LastLane; 1182 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1183 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1184 unsigned Score = 1185 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1186 if (Score > BestOp.Score) { 1187 BestOp.Idx = Idx; 1188 BestOp.Score = Score; 1189 } 1190 break; 1191 } 1192 case ReorderingMode::Splat: 1193 if (Op == OpLastLane) 1194 BestOp.Idx = Idx; 1195 break; 1196 case ReorderingMode::Failed: 1197 return None; 1198 } 1199 } 1200 1201 if (BestOp.Idx) { 1202 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1203 return BestOp.Idx; 1204 } 1205 // If we could not find a good match return None. 1206 return None; 1207 } 1208 1209 /// Helper for reorderOperandVecs. \Returns the lane that we should start 1210 /// reordering from. This is the one which has the least number of operands 1211 /// that can freely move about. 1212 unsigned getBestLaneToStartReordering() const { 1213 unsigned BestLane = 0; 1214 unsigned Min = UINT_MAX; 1215 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1216 ++Lane) { 1217 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 1218 if (NumFreeOps < Min) { 1219 Min = NumFreeOps; 1220 BestLane = Lane; 1221 } 1222 } 1223 return BestLane; 1224 } 1225 1226 /// \Returns the maximum number of operands that are allowed to be reordered 1227 /// for \p Lane. This is used as a heuristic for selecting the first lane to 1228 /// start operand reordering. 1229 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1230 unsigned CntTrue = 0; 1231 unsigned NumOperands = getNumOperands(); 1232 // Operands with the same APO can be reordered. We therefore need to count 1233 // how many of them we have for each APO, like this: Cnt[APO] = x. 1234 // Since we only have two APOs, namely true and false, we can avoid using 1235 // a map. Instead we can simply count the number of operands that 1236 // correspond to one of them (in this case the 'true' APO), and calculate 1237 // the other by subtracting it from the total number of operands. 1238 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 1239 if (getData(OpIdx, Lane).APO) 1240 ++CntTrue; 1241 unsigned CntFalse = NumOperands - CntTrue; 1242 return std::max(CntTrue, CntFalse); 1243 } 1244 1245 /// Go through the instructions in VL and append their operands. 1246 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1247 assert(!VL.empty() && "Bad VL"); 1248 assert((empty() || VL.size() == getNumLanes()) && 1249 "Expected same number of lanes"); 1250 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1251 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1252 OpsVec.resize(NumOperands); 1253 unsigned NumLanes = VL.size(); 1254 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1255 OpsVec[OpIdx].resize(NumLanes); 1256 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1257 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1258 // Our tree has just 3 nodes: the root and two operands. 1259 // It is therefore trivial to get the APO. We only need to check the 1260 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1261 // RHS operand. The LHS operand of both add and sub is never attached 1262 // to an inversese operation in the linearized form, therefore its APO 1263 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1264 1265 // Since operand reordering is performed on groups of commutative 1266 // operations or alternating sequences (e.g., +, -), we can safely 1267 // tell the inverse operations by checking commutativity. 1268 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1269 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1270 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1271 APO, false}; 1272 } 1273 } 1274 } 1275 1276 /// \returns the number of operands. 1277 unsigned getNumOperands() const { return OpsVec.size(); } 1278 1279 /// \returns the number of lanes. 1280 unsigned getNumLanes() const { return OpsVec[0].size(); } 1281 1282 /// \returns the operand value at \p OpIdx and \p Lane. 1283 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1284 return getData(OpIdx, Lane).V; 1285 } 1286 1287 /// \returns true if the data structure is empty. 1288 bool empty() const { return OpsVec.empty(); } 1289 1290 /// Clears the data. 1291 void clear() { OpsVec.clear(); } 1292 1293 /// \Returns true if there are enough operands identical to \p Op to fill 1294 /// the whole vector. 1295 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1296 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1297 bool OpAPO = getData(OpIdx, Lane).APO; 1298 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1299 if (Ln == Lane) 1300 continue; 1301 // This is set to true if we found a candidate for broadcast at Lane. 1302 bool FoundCandidate = false; 1303 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1304 OperandData &Data = getData(OpI, Ln); 1305 if (Data.APO != OpAPO || Data.IsUsed) 1306 continue; 1307 if (Data.V == Op) { 1308 FoundCandidate = true; 1309 Data.IsUsed = true; 1310 break; 1311 } 1312 } 1313 if (!FoundCandidate) 1314 return false; 1315 } 1316 return true; 1317 } 1318 1319 public: 1320 /// Initialize with all the operands of the instruction vector \p RootVL. 1321 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1322 ScalarEvolution &SE, const BoUpSLP &R) 1323 : DL(DL), SE(SE), R(R) { 1324 // Append all the operands of RootVL. 1325 appendOperandsOfVL(RootVL); 1326 } 1327 1328 /// \Returns a value vector with the operands across all lanes for the 1329 /// opearnd at \p OpIdx. 1330 ValueList getVL(unsigned OpIdx) const { 1331 ValueList OpVL(OpsVec[OpIdx].size()); 1332 assert(OpsVec[OpIdx].size() == getNumLanes() && 1333 "Expected same num of lanes across all operands"); 1334 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1335 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1336 return OpVL; 1337 } 1338 1339 // Performs operand reordering for 2 or more operands. 1340 // The original operands are in OrigOps[OpIdx][Lane]. 1341 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1342 void reorder() { 1343 unsigned NumOperands = getNumOperands(); 1344 unsigned NumLanes = getNumLanes(); 1345 // Each operand has its own mode. We are using this mode to help us select 1346 // the instructions for each lane, so that they match best with the ones 1347 // we have selected so far. 1348 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1349 1350 // This is a greedy single-pass algorithm. We are going over each lane 1351 // once and deciding on the best order right away with no back-tracking. 1352 // However, in order to increase its effectiveness, we start with the lane 1353 // that has operands that can move the least. For example, given the 1354 // following lanes: 1355 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1356 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1357 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1358 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1359 // we will start at Lane 1, since the operands of the subtraction cannot 1360 // be reordered. Then we will visit the rest of the lanes in a circular 1361 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1362 1363 // Find the first lane that we will start our search from. 1364 unsigned FirstLane = getBestLaneToStartReordering(); 1365 1366 // Initialize the modes. 1367 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1368 Value *OpLane0 = getValue(OpIdx, FirstLane); 1369 // Keep track if we have instructions with all the same opcode on one 1370 // side. 1371 if (isa<LoadInst>(OpLane0)) 1372 ReorderingModes[OpIdx] = ReorderingMode::Load; 1373 else if (isa<Instruction>(OpLane0)) { 1374 // Check if OpLane0 should be broadcast. 1375 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1376 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1377 else 1378 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1379 } 1380 else if (isa<Constant>(OpLane0)) 1381 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1382 else if (isa<Argument>(OpLane0)) 1383 // Our best hope is a Splat. It may save some cost in some cases. 1384 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1385 else 1386 // NOTE: This should be unreachable. 1387 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1388 } 1389 1390 // If the initial strategy fails for any of the operand indexes, then we 1391 // perform reordering again in a second pass. This helps avoid assigning 1392 // high priority to the failed strategy, and should improve reordering for 1393 // the non-failed operand indexes. 1394 for (int Pass = 0; Pass != 2; ++Pass) { 1395 // Skip the second pass if the first pass did not fail. 1396 bool StrategyFailed = false; 1397 // Mark all operand data as free to use. 1398 clearUsed(); 1399 // We keep the original operand order for the FirstLane, so reorder the 1400 // rest of the lanes. We are visiting the nodes in a circular fashion, 1401 // using FirstLane as the center point and increasing the radius 1402 // distance. 1403 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1404 // Visit the lane on the right and then the lane on the left. 1405 for (int Direction : {+1, -1}) { 1406 int Lane = FirstLane + Direction * Distance; 1407 if (Lane < 0 || Lane >= (int)NumLanes) 1408 continue; 1409 int LastLane = Lane - Direction; 1410 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1411 "Out of bounds"); 1412 // Look for a good match for each operand. 1413 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1414 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1415 Optional<unsigned> BestIdx = 1416 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1417 // By not selecting a value, we allow the operands that follow to 1418 // select a better matching value. We will get a non-null value in 1419 // the next run of getBestOperand(). 1420 if (BestIdx) { 1421 // Swap the current operand with the one returned by 1422 // getBestOperand(). 1423 swap(OpIdx, BestIdx.getValue(), Lane); 1424 } else { 1425 // We failed to find a best operand, set mode to 'Failed'. 1426 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1427 // Enable the second pass. 1428 StrategyFailed = true; 1429 } 1430 } 1431 } 1432 } 1433 // Skip second pass if the strategy did not fail. 1434 if (!StrategyFailed) 1435 break; 1436 } 1437 } 1438 1439 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1440 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1441 switch (RMode) { 1442 case ReorderingMode::Load: 1443 return "Load"; 1444 case ReorderingMode::Opcode: 1445 return "Opcode"; 1446 case ReorderingMode::Constant: 1447 return "Constant"; 1448 case ReorderingMode::Splat: 1449 return "Splat"; 1450 case ReorderingMode::Failed: 1451 return "Failed"; 1452 } 1453 llvm_unreachable("Unimplemented Reordering Type"); 1454 } 1455 1456 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1457 raw_ostream &OS) { 1458 return OS << getModeStr(RMode); 1459 } 1460 1461 /// Debug print. 1462 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1463 printMode(RMode, dbgs()); 1464 } 1465 1466 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1467 return printMode(RMode, OS); 1468 } 1469 1470 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1471 const unsigned Indent = 2; 1472 unsigned Cnt = 0; 1473 for (const OperandDataVec &OpDataVec : OpsVec) { 1474 OS << "Operand " << Cnt++ << "\n"; 1475 for (const OperandData &OpData : OpDataVec) { 1476 OS.indent(Indent) << "{"; 1477 if (Value *V = OpData.V) 1478 OS << *V; 1479 else 1480 OS << "null"; 1481 OS << ", APO:" << OpData.APO << "}\n"; 1482 } 1483 OS << "\n"; 1484 } 1485 return OS; 1486 } 1487 1488 /// Debug print. 1489 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1490 #endif 1491 }; 1492 1493 /// Checks if the instruction is marked for deletion. 1494 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1495 1496 /// Marks values operands for later deletion by replacing them with Undefs. 1497 void eraseInstructions(ArrayRef<Value *> AV); 1498 1499 ~BoUpSLP(); 1500 1501 private: 1502 /// Checks if all users of \p I are the part of the vectorization tree. 1503 bool areAllUsersVectorized(Instruction *I) const; 1504 1505 /// \returns the cost of the vectorizable entry. 1506 InstructionCost getEntryCost(TreeEntry *E); 1507 1508 /// This is the recursive part of buildTree. 1509 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1510 const EdgeInfo &EI); 1511 1512 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1513 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1514 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1515 /// returns false, setting \p CurrentOrder to either an empty vector or a 1516 /// non-identity permutation that allows to reuse extract instructions. 1517 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1518 SmallVectorImpl<unsigned> &CurrentOrder) const; 1519 1520 /// Vectorize a single entry in the tree. 1521 Value *vectorizeTree(TreeEntry *E); 1522 1523 /// Vectorize a single entry in the tree, starting in \p VL. 1524 Value *vectorizeTree(ArrayRef<Value *> VL); 1525 1526 /// \returns the scalarization cost for this type. Scalarization in this 1527 /// context means the creation of vectors from a group of scalars. 1528 InstructionCost 1529 getGatherCost(FixedVectorType *Ty, 1530 const DenseSet<unsigned> &ShuffledIndices) const; 1531 1532 /// \returns the scalarization cost for this list of values. Assuming that 1533 /// this subtree gets vectorized, we may need to extract the values from the 1534 /// roots. This method calculates the cost of extracting the values. 1535 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1536 1537 /// Set the Builder insert point to one after the last instruction in 1538 /// the bundle 1539 void setInsertPointAfterBundle(TreeEntry *E); 1540 1541 /// \returns a vector from a collection of scalars in \p VL. 1542 Value *gather(ArrayRef<Value *> VL); 1543 1544 /// \returns whether the VectorizableTree is fully vectorizable and will 1545 /// be beneficial even the tree height is tiny. 1546 bool isFullyVectorizableTinyTree() const; 1547 1548 /// Reorder commutative or alt operands to get better probability of 1549 /// generating vectorized code. 1550 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1551 SmallVectorImpl<Value *> &Left, 1552 SmallVectorImpl<Value *> &Right, 1553 const DataLayout &DL, 1554 ScalarEvolution &SE, 1555 const BoUpSLP &R); 1556 struct TreeEntry { 1557 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1558 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1559 1560 /// \returns true if the scalars in VL are equal to this entry. 1561 bool isSame(ArrayRef<Value *> VL) const { 1562 if (VL.size() == Scalars.size()) 1563 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1564 return VL.size() == ReuseShuffleIndices.size() && 1565 std::equal( 1566 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 1567 [this](Value *V, int Idx) { return V == Scalars[Idx]; }); 1568 } 1569 1570 /// A vector of scalars. 1571 ValueList Scalars; 1572 1573 /// The Scalars are vectorized into this value. It is initialized to Null. 1574 Value *VectorizedValue = nullptr; 1575 1576 /// Do we need to gather this sequence or vectorize it 1577 /// (either with vector instruction or with scatter/gather 1578 /// intrinsics for store/load)? 1579 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 1580 EntryState State; 1581 1582 /// Does this sequence require some shuffling? 1583 SmallVector<int, 4> ReuseShuffleIndices; 1584 1585 /// Does this entry require reordering? 1586 SmallVector<unsigned, 4> ReorderIndices; 1587 1588 /// Points back to the VectorizableTree. 1589 /// 1590 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1591 /// to be a pointer and needs to be able to initialize the child iterator. 1592 /// Thus we need a reference back to the container to translate the indices 1593 /// to entries. 1594 VecTreeTy &Container; 1595 1596 /// The TreeEntry index containing the user of this entry. We can actually 1597 /// have multiple users so the data structure is not truly a tree. 1598 SmallVector<EdgeInfo, 1> UserTreeIndices; 1599 1600 /// The index of this treeEntry in VectorizableTree. 1601 int Idx = -1; 1602 1603 private: 1604 /// The operands of each instruction in each lane Operands[op_index][lane]. 1605 /// Note: This helps avoid the replication of the code that performs the 1606 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1607 SmallVector<ValueList, 2> Operands; 1608 1609 /// The main/alternate instruction. 1610 Instruction *MainOp = nullptr; 1611 Instruction *AltOp = nullptr; 1612 1613 public: 1614 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1615 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1616 if (Operands.size() < OpIdx + 1) 1617 Operands.resize(OpIdx + 1); 1618 assert(Operands[OpIdx].size() == 0 && "Already resized?"); 1619 Operands[OpIdx].resize(Scalars.size()); 1620 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1621 Operands[OpIdx][Lane] = OpVL[Lane]; 1622 } 1623 1624 /// Set the operands of this bundle in their original order. 1625 void setOperandsInOrder() { 1626 assert(Operands.empty() && "Already initialized?"); 1627 auto *I0 = cast<Instruction>(Scalars[0]); 1628 Operands.resize(I0->getNumOperands()); 1629 unsigned NumLanes = Scalars.size(); 1630 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1631 OpIdx != NumOperands; ++OpIdx) { 1632 Operands[OpIdx].resize(NumLanes); 1633 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1634 auto *I = cast<Instruction>(Scalars[Lane]); 1635 assert(I->getNumOperands() == NumOperands && 1636 "Expected same number of operands"); 1637 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1638 } 1639 } 1640 } 1641 1642 /// \returns the \p OpIdx operand of this TreeEntry. 1643 ValueList &getOperand(unsigned OpIdx) { 1644 assert(OpIdx < Operands.size() && "Off bounds"); 1645 return Operands[OpIdx]; 1646 } 1647 1648 /// \returns the number of operands. 1649 unsigned getNumOperands() const { return Operands.size(); } 1650 1651 /// \return the single \p OpIdx operand. 1652 Value *getSingleOperand(unsigned OpIdx) const { 1653 assert(OpIdx < Operands.size() && "Off bounds"); 1654 assert(!Operands[OpIdx].empty() && "No operand available"); 1655 return Operands[OpIdx][0]; 1656 } 1657 1658 /// Some of the instructions in the list have alternate opcodes. 1659 bool isAltShuffle() const { 1660 return getOpcode() != getAltOpcode(); 1661 } 1662 1663 bool isOpcodeOrAlt(Instruction *I) const { 1664 unsigned CheckedOpcode = I->getOpcode(); 1665 return (getOpcode() == CheckedOpcode || 1666 getAltOpcode() == CheckedOpcode); 1667 } 1668 1669 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1670 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1671 /// \p OpValue. 1672 Value *isOneOf(Value *Op) const { 1673 auto *I = dyn_cast<Instruction>(Op); 1674 if (I && isOpcodeOrAlt(I)) 1675 return Op; 1676 return MainOp; 1677 } 1678 1679 void setOperations(const InstructionsState &S) { 1680 MainOp = S.MainOp; 1681 AltOp = S.AltOp; 1682 } 1683 1684 Instruction *getMainOp() const { 1685 return MainOp; 1686 } 1687 1688 Instruction *getAltOp() const { 1689 return AltOp; 1690 } 1691 1692 /// The main/alternate opcodes for the list of instructions. 1693 unsigned getOpcode() const { 1694 return MainOp ? MainOp->getOpcode() : 0; 1695 } 1696 1697 unsigned getAltOpcode() const { 1698 return AltOp ? AltOp->getOpcode() : 0; 1699 } 1700 1701 /// Update operations state of this entry if reorder occurred. 1702 bool updateStateIfReorder() { 1703 if (ReorderIndices.empty()) 1704 return false; 1705 InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front()); 1706 setOperations(S); 1707 return true; 1708 } 1709 1710 #ifndef NDEBUG 1711 /// Debug printer. 1712 LLVM_DUMP_METHOD void dump() const { 1713 dbgs() << Idx << ".\n"; 1714 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1715 dbgs() << "Operand " << OpI << ":\n"; 1716 for (const Value *V : Operands[OpI]) 1717 dbgs().indent(2) << *V << "\n"; 1718 } 1719 dbgs() << "Scalars: \n"; 1720 for (Value *V : Scalars) 1721 dbgs().indent(2) << *V << "\n"; 1722 dbgs() << "State: "; 1723 switch (State) { 1724 case Vectorize: 1725 dbgs() << "Vectorize\n"; 1726 break; 1727 case ScatterVectorize: 1728 dbgs() << "ScatterVectorize\n"; 1729 break; 1730 case NeedToGather: 1731 dbgs() << "NeedToGather\n"; 1732 break; 1733 } 1734 dbgs() << "MainOp: "; 1735 if (MainOp) 1736 dbgs() << *MainOp << "\n"; 1737 else 1738 dbgs() << "NULL\n"; 1739 dbgs() << "AltOp: "; 1740 if (AltOp) 1741 dbgs() << *AltOp << "\n"; 1742 else 1743 dbgs() << "NULL\n"; 1744 dbgs() << "VectorizedValue: "; 1745 if (VectorizedValue) 1746 dbgs() << *VectorizedValue << "\n"; 1747 else 1748 dbgs() << "NULL\n"; 1749 dbgs() << "ReuseShuffleIndices: "; 1750 if (ReuseShuffleIndices.empty()) 1751 dbgs() << "Empty"; 1752 else 1753 for (unsigned ReuseIdx : ReuseShuffleIndices) 1754 dbgs() << ReuseIdx << ", "; 1755 dbgs() << "\n"; 1756 dbgs() << "ReorderIndices: "; 1757 for (unsigned ReorderIdx : ReorderIndices) 1758 dbgs() << ReorderIdx << ", "; 1759 dbgs() << "\n"; 1760 dbgs() << "UserTreeIndices: "; 1761 for (const auto &EInfo : UserTreeIndices) 1762 dbgs() << EInfo << ", "; 1763 dbgs() << "\n"; 1764 } 1765 #endif 1766 }; 1767 1768 #ifndef NDEBUG 1769 void dumpTreeCosts(TreeEntry *E, InstructionCost ReuseShuffleCost, 1770 InstructionCost VecCost, 1771 InstructionCost ScalarCost) const { 1772 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 1773 dbgs() << "SLP: Costs:\n"; 1774 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 1775 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 1776 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 1777 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 1778 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 1779 } 1780 #endif 1781 1782 /// Create a new VectorizableTree entry. 1783 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1784 const InstructionsState &S, 1785 const EdgeInfo &UserTreeIdx, 1786 ArrayRef<unsigned> ReuseShuffleIndices = None, 1787 ArrayRef<unsigned> ReorderIndices = None) { 1788 TreeEntry::EntryState EntryState = 1789 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 1790 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 1791 ReuseShuffleIndices, ReorderIndices); 1792 } 1793 1794 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 1795 TreeEntry::EntryState EntryState, 1796 Optional<ScheduleData *> Bundle, 1797 const InstructionsState &S, 1798 const EdgeInfo &UserTreeIdx, 1799 ArrayRef<unsigned> ReuseShuffleIndices = None, 1800 ArrayRef<unsigned> ReorderIndices = None) { 1801 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 1802 (Bundle && EntryState != TreeEntry::NeedToGather)) && 1803 "Need to vectorize gather entry?"); 1804 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1805 TreeEntry *Last = VectorizableTree.back().get(); 1806 Last->Idx = VectorizableTree.size() - 1; 1807 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 1808 Last->State = EntryState; 1809 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1810 ReuseShuffleIndices.end()); 1811 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 1812 Last->setOperations(S); 1813 if (Last->State != TreeEntry::NeedToGather) { 1814 for (Value *V : VL) { 1815 assert(!getTreeEntry(V) && "Scalar already in tree!"); 1816 ScalarToTreeEntry[V] = Last; 1817 } 1818 // Update the scheduler bundle to point to this TreeEntry. 1819 unsigned Lane = 0; 1820 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 1821 BundleMember = BundleMember->NextInBundle) { 1822 BundleMember->TE = Last; 1823 BundleMember->Lane = Lane; 1824 ++Lane; 1825 } 1826 assert((!Bundle.getValue() || Lane == VL.size()) && 1827 "Bundle and VL out of sync"); 1828 } else { 1829 MustGather.insert(VL.begin(), VL.end()); 1830 } 1831 1832 if (UserTreeIdx.UserTE) 1833 Last->UserTreeIndices.push_back(UserTreeIdx); 1834 1835 return Last; 1836 } 1837 1838 /// -- Vectorization State -- 1839 /// Holds all of the tree entries. 1840 TreeEntry::VecTreeTy VectorizableTree; 1841 1842 #ifndef NDEBUG 1843 /// Debug printer. 1844 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1845 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1846 VectorizableTree[Id]->dump(); 1847 dbgs() << "\n"; 1848 } 1849 } 1850 #endif 1851 1852 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 1853 1854 const TreeEntry *getTreeEntry(Value *V) const { 1855 return ScalarToTreeEntry.lookup(V); 1856 } 1857 1858 /// Maps a specific scalar to its tree entry. 1859 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 1860 1861 /// Maps a value to the proposed vectorizable size. 1862 SmallDenseMap<Value *, unsigned> InstrElementSize; 1863 1864 /// A list of scalars that we found that we need to keep as scalars. 1865 ValueSet MustGather; 1866 1867 /// This POD struct describes one external user in the vectorized tree. 1868 struct ExternalUser { 1869 ExternalUser(Value *S, llvm::User *U, int L) 1870 : Scalar(S), User(U), Lane(L) {} 1871 1872 // Which scalar in our function. 1873 Value *Scalar; 1874 1875 // Which user that uses the scalar. 1876 llvm::User *User; 1877 1878 // Which lane does the scalar belong to. 1879 int Lane; 1880 }; 1881 using UserList = SmallVector<ExternalUser, 16>; 1882 1883 /// Checks if two instructions may access the same memory. 1884 /// 1885 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 1886 /// is invariant in the calling loop. 1887 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 1888 Instruction *Inst2) { 1889 // First check if the result is already in the cache. 1890 AliasCacheKey key = std::make_pair(Inst1, Inst2); 1891 Optional<bool> &result = AliasCache[key]; 1892 if (result.hasValue()) { 1893 return result.getValue(); 1894 } 1895 MemoryLocation Loc2 = getLocation(Inst2, AA); 1896 bool aliased = true; 1897 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 1898 // Do the alias check. 1899 aliased = AA->alias(Loc1, Loc2); 1900 } 1901 // Store the result in the cache. 1902 result = aliased; 1903 return aliased; 1904 } 1905 1906 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 1907 1908 /// Cache for alias results. 1909 /// TODO: consider moving this to the AliasAnalysis itself. 1910 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 1911 1912 /// Removes an instruction from its block and eventually deletes it. 1913 /// It's like Instruction::eraseFromParent() except that the actual deletion 1914 /// is delayed until BoUpSLP is destructed. 1915 /// This is required to ensure that there are no incorrect collisions in the 1916 /// AliasCache, which can happen if a new instruction is allocated at the 1917 /// same address as a previously deleted instruction. 1918 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 1919 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 1920 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 1921 } 1922 1923 /// Temporary store for deleted instructions. Instructions will be deleted 1924 /// eventually when the BoUpSLP is destructed. 1925 DenseMap<Instruction *, bool> DeletedInstructions; 1926 1927 /// A list of values that need to extracted out of the tree. 1928 /// This list holds pairs of (Internal Scalar : External User). External User 1929 /// can be nullptr, it means that this Internal Scalar will be used later, 1930 /// after vectorization. 1931 UserList ExternalUses; 1932 1933 /// Values used only by @llvm.assume calls. 1934 SmallPtrSet<const Value *, 32> EphValues; 1935 1936 /// Holds all of the instructions that we gathered. 1937 SetVector<Instruction *> GatherSeq; 1938 1939 /// A list of blocks that we are going to CSE. 1940 SetVector<BasicBlock *> CSEBlocks; 1941 1942 /// Contains all scheduling relevant data for an instruction. 1943 /// A ScheduleData either represents a single instruction or a member of an 1944 /// instruction bundle (= a group of instructions which is combined into a 1945 /// vector instruction). 1946 struct ScheduleData { 1947 // The initial value for the dependency counters. It means that the 1948 // dependencies are not calculated yet. 1949 enum { InvalidDeps = -1 }; 1950 1951 ScheduleData() = default; 1952 1953 void init(int BlockSchedulingRegionID, Value *OpVal) { 1954 FirstInBundle = this; 1955 NextInBundle = nullptr; 1956 NextLoadStore = nullptr; 1957 IsScheduled = false; 1958 SchedulingRegionID = BlockSchedulingRegionID; 1959 UnscheduledDepsInBundle = UnscheduledDeps; 1960 clearDependencies(); 1961 OpValue = OpVal; 1962 TE = nullptr; 1963 Lane = -1; 1964 } 1965 1966 /// Returns true if the dependency information has been calculated. 1967 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 1968 1969 /// Returns true for single instructions and for bundle representatives 1970 /// (= the head of a bundle). 1971 bool isSchedulingEntity() const { return FirstInBundle == this; } 1972 1973 /// Returns true if it represents an instruction bundle and not only a 1974 /// single instruction. 1975 bool isPartOfBundle() const { 1976 return NextInBundle != nullptr || FirstInBundle != this; 1977 } 1978 1979 /// Returns true if it is ready for scheduling, i.e. it has no more 1980 /// unscheduled depending instructions/bundles. 1981 bool isReady() const { 1982 assert(isSchedulingEntity() && 1983 "can't consider non-scheduling entity for ready list"); 1984 return UnscheduledDepsInBundle == 0 && !IsScheduled; 1985 } 1986 1987 /// Modifies the number of unscheduled dependencies, also updating it for 1988 /// the whole bundle. 1989 int incrementUnscheduledDeps(int Incr) { 1990 UnscheduledDeps += Incr; 1991 return FirstInBundle->UnscheduledDepsInBundle += Incr; 1992 } 1993 1994 /// Sets the number of unscheduled dependencies to the number of 1995 /// dependencies. 1996 void resetUnscheduledDeps() { 1997 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 1998 } 1999 2000 /// Clears all dependency information. 2001 void clearDependencies() { 2002 Dependencies = InvalidDeps; 2003 resetUnscheduledDeps(); 2004 MemoryDependencies.clear(); 2005 } 2006 2007 void dump(raw_ostream &os) const { 2008 if (!isSchedulingEntity()) { 2009 os << "/ " << *Inst; 2010 } else if (NextInBundle) { 2011 os << '[' << *Inst; 2012 ScheduleData *SD = NextInBundle; 2013 while (SD) { 2014 os << ';' << *SD->Inst; 2015 SD = SD->NextInBundle; 2016 } 2017 os << ']'; 2018 } else { 2019 os << *Inst; 2020 } 2021 } 2022 2023 Instruction *Inst = nullptr; 2024 2025 /// Points to the head in an instruction bundle (and always to this for 2026 /// single instructions). 2027 ScheduleData *FirstInBundle = nullptr; 2028 2029 /// Single linked list of all instructions in a bundle. Null if it is a 2030 /// single instruction. 2031 ScheduleData *NextInBundle = nullptr; 2032 2033 /// Single linked list of all memory instructions (e.g. load, store, call) 2034 /// in the block - until the end of the scheduling region. 2035 ScheduleData *NextLoadStore = nullptr; 2036 2037 /// The dependent memory instructions. 2038 /// This list is derived on demand in calculateDependencies(). 2039 SmallVector<ScheduleData *, 4> MemoryDependencies; 2040 2041 /// This ScheduleData is in the current scheduling region if this matches 2042 /// the current SchedulingRegionID of BlockScheduling. 2043 int SchedulingRegionID = 0; 2044 2045 /// Used for getting a "good" final ordering of instructions. 2046 int SchedulingPriority = 0; 2047 2048 /// The number of dependencies. Constitutes of the number of users of the 2049 /// instruction plus the number of dependent memory instructions (if any). 2050 /// This value is calculated on demand. 2051 /// If InvalidDeps, the number of dependencies is not calculated yet. 2052 int Dependencies = InvalidDeps; 2053 2054 /// The number of dependencies minus the number of dependencies of scheduled 2055 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2056 /// for scheduling. 2057 /// Note that this is negative as long as Dependencies is not calculated. 2058 int UnscheduledDeps = InvalidDeps; 2059 2060 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 2061 /// single instructions. 2062 int UnscheduledDepsInBundle = InvalidDeps; 2063 2064 /// True if this instruction is scheduled (or considered as scheduled in the 2065 /// dry-run). 2066 bool IsScheduled = false; 2067 2068 /// Opcode of the current instruction in the schedule data. 2069 Value *OpValue = nullptr; 2070 2071 /// The TreeEntry that this instruction corresponds to. 2072 TreeEntry *TE = nullptr; 2073 2074 /// The lane of this node in the TreeEntry. 2075 int Lane = -1; 2076 }; 2077 2078 #ifndef NDEBUG 2079 friend inline raw_ostream &operator<<(raw_ostream &os, 2080 const BoUpSLP::ScheduleData &SD) { 2081 SD.dump(os); 2082 return os; 2083 } 2084 #endif 2085 2086 friend struct GraphTraits<BoUpSLP *>; 2087 friend struct DOTGraphTraits<BoUpSLP *>; 2088 2089 /// Contains all scheduling data for a basic block. 2090 struct BlockScheduling { 2091 BlockScheduling(BasicBlock *BB) 2092 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2093 2094 void clear() { 2095 ReadyInsts.clear(); 2096 ScheduleStart = nullptr; 2097 ScheduleEnd = nullptr; 2098 FirstLoadStoreInRegion = nullptr; 2099 LastLoadStoreInRegion = nullptr; 2100 2101 // Reduce the maximum schedule region size by the size of the 2102 // previous scheduling run. 2103 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2104 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2105 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2106 ScheduleRegionSize = 0; 2107 2108 // Make a new scheduling region, i.e. all existing ScheduleData is not 2109 // in the new region yet. 2110 ++SchedulingRegionID; 2111 } 2112 2113 ScheduleData *getScheduleData(Value *V) { 2114 ScheduleData *SD = ScheduleDataMap[V]; 2115 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2116 return SD; 2117 return nullptr; 2118 } 2119 2120 ScheduleData *getScheduleData(Value *V, Value *Key) { 2121 if (V == Key) 2122 return getScheduleData(V); 2123 auto I = ExtraScheduleDataMap.find(V); 2124 if (I != ExtraScheduleDataMap.end()) { 2125 ScheduleData *SD = I->second[Key]; 2126 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2127 return SD; 2128 } 2129 return nullptr; 2130 } 2131 2132 bool isInSchedulingRegion(ScheduleData *SD) const { 2133 return SD->SchedulingRegionID == SchedulingRegionID; 2134 } 2135 2136 /// Marks an instruction as scheduled and puts all dependent ready 2137 /// instructions into the ready-list. 2138 template <typename ReadyListType> 2139 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2140 SD->IsScheduled = true; 2141 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2142 2143 ScheduleData *BundleMember = SD; 2144 while (BundleMember) { 2145 if (BundleMember->Inst != BundleMember->OpValue) { 2146 BundleMember = BundleMember->NextInBundle; 2147 continue; 2148 } 2149 // Handle the def-use chain dependencies. 2150 2151 // Decrement the unscheduled counter and insert to ready list if ready. 2152 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2153 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2154 if (OpDef && OpDef->hasValidDependencies() && 2155 OpDef->incrementUnscheduledDeps(-1) == 0) { 2156 // There are no more unscheduled dependencies after 2157 // decrementing, so we can put the dependent instruction 2158 // into the ready list. 2159 ScheduleData *DepBundle = OpDef->FirstInBundle; 2160 assert(!DepBundle->IsScheduled && 2161 "already scheduled bundle gets ready"); 2162 ReadyList.insert(DepBundle); 2163 LLVM_DEBUG(dbgs() 2164 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2165 } 2166 }); 2167 }; 2168 2169 // If BundleMember is a vector bundle, its operands may have been 2170 // reordered duiring buildTree(). We therefore need to get its operands 2171 // through the TreeEntry. 2172 if (TreeEntry *TE = BundleMember->TE) { 2173 int Lane = BundleMember->Lane; 2174 assert(Lane >= 0 && "Lane not set"); 2175 2176 // Since vectorization tree is being built recursively this assertion 2177 // ensures that the tree entry has all operands set before reaching 2178 // this code. Couple of exceptions known at the moment are extracts 2179 // where their second (immediate) operand is not added. Since 2180 // immediates do not affect scheduler behavior this is considered 2181 // okay. 2182 auto *In = TE->getMainOp(); 2183 assert(In && 2184 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2185 In->getNumOperands() == TE->getNumOperands()) && 2186 "Missed TreeEntry operands?"); 2187 (void)In; // fake use to avoid build failure when assertions disabled 2188 2189 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2190 OpIdx != NumOperands; ++OpIdx) 2191 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2192 DecrUnsched(I); 2193 } else { 2194 // If BundleMember is a stand-alone instruction, no operand reordering 2195 // has taken place, so we directly access its operands. 2196 for (Use &U : BundleMember->Inst->operands()) 2197 if (auto *I = dyn_cast<Instruction>(U.get())) 2198 DecrUnsched(I); 2199 } 2200 // Handle the memory dependencies. 2201 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2202 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2203 // There are no more unscheduled dependencies after decrementing, 2204 // so we can put the dependent instruction into the ready list. 2205 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2206 assert(!DepBundle->IsScheduled && 2207 "already scheduled bundle gets ready"); 2208 ReadyList.insert(DepBundle); 2209 LLVM_DEBUG(dbgs() 2210 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2211 } 2212 } 2213 BundleMember = BundleMember->NextInBundle; 2214 } 2215 } 2216 2217 void doForAllOpcodes(Value *V, 2218 function_ref<void(ScheduleData *SD)> Action) { 2219 if (ScheduleData *SD = getScheduleData(V)) 2220 Action(SD); 2221 auto I = ExtraScheduleDataMap.find(V); 2222 if (I != ExtraScheduleDataMap.end()) 2223 for (auto &P : I->second) 2224 if (P.second->SchedulingRegionID == SchedulingRegionID) 2225 Action(P.second); 2226 } 2227 2228 /// Put all instructions into the ReadyList which are ready for scheduling. 2229 template <typename ReadyListType> 2230 void initialFillReadyList(ReadyListType &ReadyList) { 2231 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2232 doForAllOpcodes(I, [&](ScheduleData *SD) { 2233 if (SD->isSchedulingEntity() && SD->isReady()) { 2234 ReadyList.insert(SD); 2235 LLVM_DEBUG(dbgs() 2236 << "SLP: initially in ready list: " << *I << "\n"); 2237 } 2238 }); 2239 } 2240 } 2241 2242 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2243 /// cyclic dependencies. This is only a dry-run, no instructions are 2244 /// actually moved at this stage. 2245 /// \returns the scheduling bundle. The returned Optional value is non-None 2246 /// if \p VL is allowed to be scheduled. 2247 Optional<ScheduleData *> 2248 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2249 const InstructionsState &S); 2250 2251 /// Un-bundles a group of instructions. 2252 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2253 2254 /// Allocates schedule data chunk. 2255 ScheduleData *allocateScheduleDataChunks(); 2256 2257 /// Extends the scheduling region so that V is inside the region. 2258 /// \returns true if the region size is within the limit. 2259 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2260 2261 /// Initialize the ScheduleData structures for new instructions in the 2262 /// scheduling region. 2263 void initScheduleData(Instruction *FromI, Instruction *ToI, 2264 ScheduleData *PrevLoadStore, 2265 ScheduleData *NextLoadStore); 2266 2267 /// Updates the dependency information of a bundle and of all instructions/ 2268 /// bundles which depend on the original bundle. 2269 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2270 BoUpSLP *SLP); 2271 2272 /// Sets all instruction in the scheduling region to un-scheduled. 2273 void resetSchedule(); 2274 2275 BasicBlock *BB; 2276 2277 /// Simple memory allocation for ScheduleData. 2278 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2279 2280 /// The size of a ScheduleData array in ScheduleDataChunks. 2281 int ChunkSize; 2282 2283 /// The allocator position in the current chunk, which is the last entry 2284 /// of ScheduleDataChunks. 2285 int ChunkPos; 2286 2287 /// Attaches ScheduleData to Instruction. 2288 /// Note that the mapping survives during all vectorization iterations, i.e. 2289 /// ScheduleData structures are recycled. 2290 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2291 2292 /// Attaches ScheduleData to Instruction with the leading key. 2293 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2294 ExtraScheduleDataMap; 2295 2296 struct ReadyList : SmallVector<ScheduleData *, 8> { 2297 void insert(ScheduleData *SD) { push_back(SD); } 2298 }; 2299 2300 /// The ready-list for scheduling (only used for the dry-run). 2301 ReadyList ReadyInsts; 2302 2303 /// The first instruction of the scheduling region. 2304 Instruction *ScheduleStart = nullptr; 2305 2306 /// The first instruction _after_ the scheduling region. 2307 Instruction *ScheduleEnd = nullptr; 2308 2309 /// The first memory accessing instruction in the scheduling region 2310 /// (can be null). 2311 ScheduleData *FirstLoadStoreInRegion = nullptr; 2312 2313 /// The last memory accessing instruction in the scheduling region 2314 /// (can be null). 2315 ScheduleData *LastLoadStoreInRegion = nullptr; 2316 2317 /// The current size of the scheduling region. 2318 int ScheduleRegionSize = 0; 2319 2320 /// The maximum size allowed for the scheduling region. 2321 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2322 2323 /// The ID of the scheduling region. For a new vectorization iteration this 2324 /// is incremented which "removes" all ScheduleData from the region. 2325 // Make sure that the initial SchedulingRegionID is greater than the 2326 // initial SchedulingRegionID in ScheduleData (which is 0). 2327 int SchedulingRegionID = 1; 2328 }; 2329 2330 /// Attaches the BlockScheduling structures to basic blocks. 2331 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2332 2333 /// Performs the "real" scheduling. Done before vectorization is actually 2334 /// performed in a basic block. 2335 void scheduleBlock(BlockScheduling *BS); 2336 2337 /// List of users to ignore during scheduling and that don't need extracting. 2338 ArrayRef<Value *> UserIgnoreList; 2339 2340 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2341 /// sorted SmallVectors of unsigned. 2342 struct OrdersTypeDenseMapInfo { 2343 static OrdersType getEmptyKey() { 2344 OrdersType V; 2345 V.push_back(~1U); 2346 return V; 2347 } 2348 2349 static OrdersType getTombstoneKey() { 2350 OrdersType V; 2351 V.push_back(~2U); 2352 return V; 2353 } 2354 2355 static unsigned getHashValue(const OrdersType &V) { 2356 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2357 } 2358 2359 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2360 return LHS == RHS; 2361 } 2362 }; 2363 2364 /// Contains orders of operations along with the number of bundles that have 2365 /// operations in this order. It stores only those orders that require 2366 /// reordering, if reordering is not required it is counted using \a 2367 /// NumOpsWantToKeepOriginalOrder. 2368 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 2369 /// Number of bundles that do not require reordering. 2370 unsigned NumOpsWantToKeepOriginalOrder = 0; 2371 2372 // Analysis and block reference. 2373 Function *F; 2374 ScalarEvolution *SE; 2375 TargetTransformInfo *TTI; 2376 TargetLibraryInfo *TLI; 2377 AAResults *AA; 2378 LoopInfo *LI; 2379 DominatorTree *DT; 2380 AssumptionCache *AC; 2381 DemandedBits *DB; 2382 const DataLayout *DL; 2383 OptimizationRemarkEmitter *ORE; 2384 2385 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2386 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2387 2388 /// Instruction builder to construct the vectorized tree. 2389 IRBuilder<> Builder; 2390 2391 /// A map of scalar integer values to the smallest bit width with which they 2392 /// can legally be represented. The values map to (width, signed) pairs, 2393 /// where "width" indicates the minimum bit width and "signed" is True if the 2394 /// value must be signed-extended, rather than zero-extended, back to its 2395 /// original width. 2396 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2397 }; 2398 2399 } // end namespace slpvectorizer 2400 2401 template <> struct GraphTraits<BoUpSLP *> { 2402 using TreeEntry = BoUpSLP::TreeEntry; 2403 2404 /// NodeRef has to be a pointer per the GraphWriter. 2405 using NodeRef = TreeEntry *; 2406 2407 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2408 2409 /// Add the VectorizableTree to the index iterator to be able to return 2410 /// TreeEntry pointers. 2411 struct ChildIteratorType 2412 : public iterator_adaptor_base< 2413 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2414 ContainerTy &VectorizableTree; 2415 2416 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2417 ContainerTy &VT) 2418 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2419 2420 NodeRef operator*() { return I->UserTE; } 2421 }; 2422 2423 static NodeRef getEntryNode(BoUpSLP &R) { 2424 return R.VectorizableTree[0].get(); 2425 } 2426 2427 static ChildIteratorType child_begin(NodeRef N) { 2428 return {N->UserTreeIndices.begin(), N->Container}; 2429 } 2430 2431 static ChildIteratorType child_end(NodeRef N) { 2432 return {N->UserTreeIndices.end(), N->Container}; 2433 } 2434 2435 /// For the node iterator we just need to turn the TreeEntry iterator into a 2436 /// TreeEntry* iterator so that it dereferences to NodeRef. 2437 class nodes_iterator { 2438 using ItTy = ContainerTy::iterator; 2439 ItTy It; 2440 2441 public: 2442 nodes_iterator(const ItTy &It2) : It(It2) {} 2443 NodeRef operator*() { return It->get(); } 2444 nodes_iterator operator++() { 2445 ++It; 2446 return *this; 2447 } 2448 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2449 }; 2450 2451 static nodes_iterator nodes_begin(BoUpSLP *R) { 2452 return nodes_iterator(R->VectorizableTree.begin()); 2453 } 2454 2455 static nodes_iterator nodes_end(BoUpSLP *R) { 2456 return nodes_iterator(R->VectorizableTree.end()); 2457 } 2458 2459 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2460 }; 2461 2462 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2463 using TreeEntry = BoUpSLP::TreeEntry; 2464 2465 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2466 2467 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2468 std::string Str; 2469 raw_string_ostream OS(Str); 2470 if (isSplat(Entry->Scalars)) { 2471 OS << "<splat> " << *Entry->Scalars[0]; 2472 return Str; 2473 } 2474 for (auto V : Entry->Scalars) { 2475 OS << *V; 2476 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 2477 return EU.Scalar == V; 2478 })) 2479 OS << " <extract>"; 2480 OS << "\n"; 2481 } 2482 return Str; 2483 } 2484 2485 static std::string getNodeAttributes(const TreeEntry *Entry, 2486 const BoUpSLP *) { 2487 if (Entry->State == TreeEntry::NeedToGather) 2488 return "color=red"; 2489 return ""; 2490 } 2491 }; 2492 2493 } // end namespace llvm 2494 2495 BoUpSLP::~BoUpSLP() { 2496 for (const auto &Pair : DeletedInstructions) { 2497 // Replace operands of ignored instructions with Undefs in case if they were 2498 // marked for deletion. 2499 if (Pair.getSecond()) { 2500 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2501 Pair.getFirst()->replaceAllUsesWith(Undef); 2502 } 2503 Pair.getFirst()->dropAllReferences(); 2504 } 2505 for (const auto &Pair : DeletedInstructions) { 2506 assert(Pair.getFirst()->use_empty() && 2507 "trying to erase instruction with users."); 2508 Pair.getFirst()->eraseFromParent(); 2509 } 2510 #ifdef EXPENSIVE_CHECKS 2511 // If we could guarantee that this call is not extremely slow, we could 2512 // remove the ifdef limitation (see PR47712). 2513 assert(!verifyFunction(*F, &dbgs())); 2514 #endif 2515 } 2516 2517 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2518 for (auto *V : AV) { 2519 if (auto *I = dyn_cast<Instruction>(V)) 2520 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 2521 }; 2522 } 2523 2524 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2525 ArrayRef<Value *> UserIgnoreLst) { 2526 ExtraValueToDebugLocsMap ExternallyUsedValues; 2527 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 2528 } 2529 2530 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2531 ExtraValueToDebugLocsMap &ExternallyUsedValues, 2532 ArrayRef<Value *> UserIgnoreLst) { 2533 deleteTree(); 2534 UserIgnoreList = UserIgnoreLst; 2535 if (!allSameType(Roots)) 2536 return; 2537 buildTree_rec(Roots, 0, EdgeInfo()); 2538 2539 // Collect the values that we need to extract from the tree. 2540 for (auto &TEPtr : VectorizableTree) { 2541 TreeEntry *Entry = TEPtr.get(); 2542 2543 // No need to handle users of gathered values. 2544 if (Entry->State == TreeEntry::NeedToGather) 2545 continue; 2546 2547 // For each lane: 2548 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2549 Value *Scalar = Entry->Scalars[Lane]; 2550 int FoundLane = Lane; 2551 if (!Entry->ReuseShuffleIndices.empty()) { 2552 FoundLane = 2553 std::distance(Entry->ReuseShuffleIndices.begin(), 2554 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 2555 } 2556 2557 // Check if the scalar is externally used as an extra arg. 2558 auto ExtI = ExternallyUsedValues.find(Scalar); 2559 if (ExtI != ExternallyUsedValues.end()) { 2560 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 2561 << Lane << " from " << *Scalar << ".\n"); 2562 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 2563 } 2564 for (User *U : Scalar->users()) { 2565 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 2566 2567 Instruction *UserInst = dyn_cast<Instruction>(U); 2568 if (!UserInst) 2569 continue; 2570 2571 // Skip in-tree scalars that become vectors 2572 if (TreeEntry *UseEntry = getTreeEntry(U)) { 2573 Value *UseScalar = UseEntry->Scalars[0]; 2574 // Some in-tree scalars will remain as scalar in vectorized 2575 // instructions. If that is the case, the one in Lane 0 will 2576 // be used. 2577 if (UseScalar != U || 2578 UseEntry->State == TreeEntry::ScatterVectorize || 2579 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 2580 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 2581 << ".\n"); 2582 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 2583 continue; 2584 } 2585 } 2586 2587 // Ignore users in the user ignore list. 2588 if (is_contained(UserIgnoreList, UserInst)) 2589 continue; 2590 2591 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 2592 << Lane << " from " << *Scalar << ".\n"); 2593 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 2594 } 2595 } 2596 } 2597 } 2598 2599 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 2600 const EdgeInfo &UserTreeIdx) { 2601 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 2602 2603 InstructionsState S = getSameOpcode(VL); 2604 if (Depth == RecursionMaxDepth) { 2605 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 2606 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2607 return; 2608 } 2609 2610 // Don't handle vectors. 2611 if (S.OpValue->getType()->isVectorTy()) { 2612 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 2613 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2614 return; 2615 } 2616 2617 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2618 if (SI->getValueOperand()->getType()->isVectorTy()) { 2619 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 2620 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2621 return; 2622 } 2623 2624 // If all of the operands are identical or constant we have a simple solution. 2625 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 2626 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 2627 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2628 return; 2629 } 2630 2631 // We now know that this is a vector of instructions of the same type from 2632 // the same block. 2633 2634 // Don't vectorize ephemeral values. 2635 for (Value *V : VL) { 2636 if (EphValues.count(V)) { 2637 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2638 << ") is ephemeral.\n"); 2639 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2640 return; 2641 } 2642 } 2643 2644 // Check if this is a duplicate of another entry. 2645 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2646 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 2647 if (!E->isSame(VL)) { 2648 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 2649 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2650 return; 2651 } 2652 // Record the reuse of the tree node. FIXME, currently this is only used to 2653 // properly draw the graph rather than for the actual vectorization. 2654 E->UserTreeIndices.push_back(UserTreeIdx); 2655 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 2656 << ".\n"); 2657 return; 2658 } 2659 2660 // Check that none of the instructions in the bundle are already in the tree. 2661 for (Value *V : VL) { 2662 auto *I = dyn_cast<Instruction>(V); 2663 if (!I) 2664 continue; 2665 if (getTreeEntry(I)) { 2666 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2667 << ") is already in tree.\n"); 2668 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2669 return; 2670 } 2671 } 2672 2673 // If any of the scalars is marked as a value that needs to stay scalar, then 2674 // we need to gather the scalars. 2675 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 2676 for (Value *V : VL) { 2677 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 2678 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 2679 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2680 return; 2681 } 2682 } 2683 2684 // Check that all of the users of the scalars that we want to vectorize are 2685 // schedulable. 2686 auto *VL0 = cast<Instruction>(S.OpValue); 2687 BasicBlock *BB = VL0->getParent(); 2688 2689 if (!DT->isReachableFromEntry(BB)) { 2690 // Don't go into unreachable blocks. They may contain instructions with 2691 // dependency cycles which confuse the final scheduling. 2692 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 2693 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2694 return; 2695 } 2696 2697 // Check that every instruction appears once in this bundle. 2698 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2699 SmallVector<Value *, 4> UniqueValues; 2700 DenseMap<Value *, unsigned> UniquePositions; 2701 for (Value *V : VL) { 2702 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2703 ReuseShuffleIndicies.emplace_back(Res.first->second); 2704 if (Res.second) 2705 UniqueValues.emplace_back(V); 2706 } 2707 size_t NumUniqueScalarValues = UniqueValues.size(); 2708 if (NumUniqueScalarValues == VL.size()) { 2709 ReuseShuffleIndicies.clear(); 2710 } else { 2711 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 2712 if (NumUniqueScalarValues <= 1 || 2713 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 2714 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 2715 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2716 return; 2717 } 2718 VL = UniqueValues; 2719 } 2720 2721 auto &BSRef = BlocksSchedules[BB]; 2722 if (!BSRef) 2723 BSRef = std::make_unique<BlockScheduling>(BB); 2724 2725 BlockScheduling &BS = *BSRef.get(); 2726 2727 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 2728 if (!Bundle) { 2729 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 2730 assert((!BS.getScheduleData(VL0) || 2731 !BS.getScheduleData(VL0)->isPartOfBundle()) && 2732 "tryScheduleBundle should cancelScheduling on failure"); 2733 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2734 ReuseShuffleIndicies); 2735 return; 2736 } 2737 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 2738 2739 unsigned ShuffleOrOp = S.isAltShuffle() ? 2740 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2741 switch (ShuffleOrOp) { 2742 case Instruction::PHI: { 2743 auto *PH = cast<PHINode>(VL0); 2744 2745 // Check for terminator values (e.g. invoke). 2746 for (Value *V : VL) 2747 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 2748 Instruction *Term = dyn_cast<Instruction>( 2749 cast<PHINode>(V)->getIncomingValueForBlock( 2750 PH->getIncomingBlock(I))); 2751 if (Term && Term->isTerminator()) { 2752 LLVM_DEBUG(dbgs() 2753 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 2754 BS.cancelScheduling(VL, VL0); 2755 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2756 ReuseShuffleIndicies); 2757 return; 2758 } 2759 } 2760 2761 TreeEntry *TE = 2762 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 2763 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 2764 2765 // Keeps the reordered operands to avoid code duplication. 2766 SmallVector<ValueList, 2> OperandsVec; 2767 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 2768 ValueList Operands; 2769 // Prepare the operand vector. 2770 for (Value *V : VL) 2771 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 2772 PH->getIncomingBlock(I))); 2773 TE->setOperand(I, Operands); 2774 OperandsVec.push_back(Operands); 2775 } 2776 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 2777 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 2778 return; 2779 } 2780 case Instruction::ExtractValue: 2781 case Instruction::ExtractElement: { 2782 OrdersType CurrentOrder; 2783 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 2784 if (Reuse) { 2785 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 2786 ++NumOpsWantToKeepOriginalOrder; 2787 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2788 ReuseShuffleIndicies); 2789 // This is a special case, as it does not gather, but at the same time 2790 // we are not extending buildTree_rec() towards the operands. 2791 ValueList Op0; 2792 Op0.assign(VL.size(), VL0->getOperand(0)); 2793 VectorizableTree.back()->setOperand(0, Op0); 2794 return; 2795 } 2796 if (!CurrentOrder.empty()) { 2797 LLVM_DEBUG({ 2798 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 2799 "with order"; 2800 for (unsigned Idx : CurrentOrder) 2801 dbgs() << " " << Idx; 2802 dbgs() << "\n"; 2803 }); 2804 // Insert new order with initial value 0, if it does not exist, 2805 // otherwise return the iterator to the existing one. 2806 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2807 ReuseShuffleIndicies, CurrentOrder); 2808 findRootOrder(CurrentOrder); 2809 ++NumOpsWantToKeepOrder[CurrentOrder]; 2810 // This is a special case, as it does not gather, but at the same time 2811 // we are not extending buildTree_rec() towards the operands. 2812 ValueList Op0; 2813 Op0.assign(VL.size(), VL0->getOperand(0)); 2814 VectorizableTree.back()->setOperand(0, Op0); 2815 return; 2816 } 2817 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 2818 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2819 ReuseShuffleIndicies); 2820 BS.cancelScheduling(VL, VL0); 2821 return; 2822 } 2823 case Instruction::Load: { 2824 // Check that a vectorized load would load the same memory as a scalar 2825 // load. For example, we don't want to vectorize loads that are smaller 2826 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 2827 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 2828 // from such a struct, we read/write packed bits disagreeing with the 2829 // unvectorized version. 2830 Type *ScalarTy = VL0->getType(); 2831 2832 if (DL->getTypeSizeInBits(ScalarTy) != 2833 DL->getTypeAllocSizeInBits(ScalarTy)) { 2834 BS.cancelScheduling(VL, VL0); 2835 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2836 ReuseShuffleIndicies); 2837 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 2838 return; 2839 } 2840 2841 // Make sure all loads in the bundle are simple - we can't vectorize 2842 // atomic or volatile loads. 2843 SmallVector<Value *, 4> PointerOps(VL.size()); 2844 auto POIter = PointerOps.begin(); 2845 for (Value *V : VL) { 2846 auto *L = cast<LoadInst>(V); 2847 if (!L->isSimple()) { 2848 BS.cancelScheduling(VL, VL0); 2849 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2850 ReuseShuffleIndicies); 2851 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 2852 return; 2853 } 2854 *POIter = L->getPointerOperand(); 2855 ++POIter; 2856 } 2857 2858 OrdersType CurrentOrder; 2859 // Check the order of pointer operands. 2860 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2861 Value *Ptr0; 2862 Value *PtrN; 2863 if (CurrentOrder.empty()) { 2864 Ptr0 = PointerOps.front(); 2865 PtrN = PointerOps.back(); 2866 } else { 2867 Ptr0 = PointerOps[CurrentOrder.front()]; 2868 PtrN = PointerOps[CurrentOrder.back()]; 2869 } 2870 const SCEV *Scev0 = SE->getSCEV(Ptr0); 2871 const SCEV *ScevN = SE->getSCEV(PtrN); 2872 const auto *Diff = 2873 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 2874 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 2875 // Check that the sorted loads are consecutive. 2876 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 2877 if (CurrentOrder.empty()) { 2878 // Original loads are consecutive and does not require reordering. 2879 ++NumOpsWantToKeepOriginalOrder; 2880 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 2881 UserTreeIdx, ReuseShuffleIndicies); 2882 TE->setOperandsInOrder(); 2883 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 2884 } else { 2885 // Need to reorder. 2886 TreeEntry *TE = 2887 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2888 ReuseShuffleIndicies, CurrentOrder); 2889 TE->setOperandsInOrder(); 2890 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 2891 findRootOrder(CurrentOrder); 2892 ++NumOpsWantToKeepOrder[CurrentOrder]; 2893 } 2894 return; 2895 } 2896 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 2897 TreeEntry *TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 2898 UserTreeIdx, ReuseShuffleIndicies); 2899 TE->setOperandsInOrder(); 2900 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 2901 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 2902 return; 2903 } 2904 2905 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 2906 BS.cancelScheduling(VL, VL0); 2907 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2908 ReuseShuffleIndicies); 2909 return; 2910 } 2911 case Instruction::ZExt: 2912 case Instruction::SExt: 2913 case Instruction::FPToUI: 2914 case Instruction::FPToSI: 2915 case Instruction::FPExt: 2916 case Instruction::PtrToInt: 2917 case Instruction::IntToPtr: 2918 case Instruction::SIToFP: 2919 case Instruction::UIToFP: 2920 case Instruction::Trunc: 2921 case Instruction::FPTrunc: 2922 case Instruction::BitCast: { 2923 Type *SrcTy = VL0->getOperand(0)->getType(); 2924 for (Value *V : VL) { 2925 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 2926 if (Ty != SrcTy || !isValidElementType(Ty)) { 2927 BS.cancelScheduling(VL, VL0); 2928 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2929 ReuseShuffleIndicies); 2930 LLVM_DEBUG(dbgs() 2931 << "SLP: Gathering casts with different src types.\n"); 2932 return; 2933 } 2934 } 2935 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2936 ReuseShuffleIndicies); 2937 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 2938 2939 TE->setOperandsInOrder(); 2940 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2941 ValueList Operands; 2942 // Prepare the operand vector. 2943 for (Value *V : VL) 2944 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2945 2946 buildTree_rec(Operands, Depth + 1, {TE, i}); 2947 } 2948 return; 2949 } 2950 case Instruction::ICmp: 2951 case Instruction::FCmp: { 2952 // Check that all of the compares have the same predicate. 2953 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2954 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 2955 Type *ComparedTy = VL0->getOperand(0)->getType(); 2956 for (Value *V : VL) { 2957 CmpInst *Cmp = cast<CmpInst>(V); 2958 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 2959 Cmp->getOperand(0)->getType() != ComparedTy) { 2960 BS.cancelScheduling(VL, VL0); 2961 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2962 ReuseShuffleIndicies); 2963 LLVM_DEBUG(dbgs() 2964 << "SLP: Gathering cmp with different predicate.\n"); 2965 return; 2966 } 2967 } 2968 2969 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2970 ReuseShuffleIndicies); 2971 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 2972 2973 ValueList Left, Right; 2974 if (cast<CmpInst>(VL0)->isCommutative()) { 2975 // Commutative predicate - collect + sort operands of the instructions 2976 // so that each side is more likely to have the same opcode. 2977 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 2978 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 2979 } else { 2980 // Collect operands - commute if it uses the swapped predicate. 2981 for (Value *V : VL) { 2982 auto *Cmp = cast<CmpInst>(V); 2983 Value *LHS = Cmp->getOperand(0); 2984 Value *RHS = Cmp->getOperand(1); 2985 if (Cmp->getPredicate() != P0) 2986 std::swap(LHS, RHS); 2987 Left.push_back(LHS); 2988 Right.push_back(RHS); 2989 } 2990 } 2991 TE->setOperand(0, Left); 2992 TE->setOperand(1, Right); 2993 buildTree_rec(Left, Depth + 1, {TE, 0}); 2994 buildTree_rec(Right, Depth + 1, {TE, 1}); 2995 return; 2996 } 2997 case Instruction::Select: 2998 case Instruction::FNeg: 2999 case Instruction::Add: 3000 case Instruction::FAdd: 3001 case Instruction::Sub: 3002 case Instruction::FSub: 3003 case Instruction::Mul: 3004 case Instruction::FMul: 3005 case Instruction::UDiv: 3006 case Instruction::SDiv: 3007 case Instruction::FDiv: 3008 case Instruction::URem: 3009 case Instruction::SRem: 3010 case Instruction::FRem: 3011 case Instruction::Shl: 3012 case Instruction::LShr: 3013 case Instruction::AShr: 3014 case Instruction::And: 3015 case Instruction::Or: 3016 case Instruction::Xor: { 3017 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3018 ReuseShuffleIndicies); 3019 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 3020 3021 // Sort operands of the instructions so that each side is more likely to 3022 // have the same opcode. 3023 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 3024 ValueList Left, Right; 3025 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3026 TE->setOperand(0, Left); 3027 TE->setOperand(1, Right); 3028 buildTree_rec(Left, Depth + 1, {TE, 0}); 3029 buildTree_rec(Right, Depth + 1, {TE, 1}); 3030 return; 3031 } 3032 3033 TE->setOperandsInOrder(); 3034 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3035 ValueList Operands; 3036 // Prepare the operand vector. 3037 for (Value *V : VL) 3038 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3039 3040 buildTree_rec(Operands, Depth + 1, {TE, i}); 3041 } 3042 return; 3043 } 3044 case Instruction::GetElementPtr: { 3045 // We don't combine GEPs with complicated (nested) indexing. 3046 for (Value *V : VL) { 3047 if (cast<Instruction>(V)->getNumOperands() != 2) { 3048 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 3049 BS.cancelScheduling(VL, VL0); 3050 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3051 ReuseShuffleIndicies); 3052 return; 3053 } 3054 } 3055 3056 // We can't combine several GEPs into one vector if they operate on 3057 // different types. 3058 Type *Ty0 = VL0->getOperand(0)->getType(); 3059 for (Value *V : VL) { 3060 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 3061 if (Ty0 != CurTy) { 3062 LLVM_DEBUG(dbgs() 3063 << "SLP: not-vectorizable GEP (different types).\n"); 3064 BS.cancelScheduling(VL, VL0); 3065 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3066 ReuseShuffleIndicies); 3067 return; 3068 } 3069 } 3070 3071 // We don't combine GEPs with non-constant indexes. 3072 Type *Ty1 = VL0->getOperand(1)->getType(); 3073 for (Value *V : VL) { 3074 auto Op = cast<Instruction>(V)->getOperand(1); 3075 if (!isa<ConstantInt>(Op) || 3076 (Op->getType() != Ty1 && 3077 Op->getType()->getScalarSizeInBits() > 3078 DL->getIndexSizeInBits( 3079 V->getType()->getPointerAddressSpace()))) { 3080 LLVM_DEBUG(dbgs() 3081 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 3082 BS.cancelScheduling(VL, VL0); 3083 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3084 ReuseShuffleIndicies); 3085 return; 3086 } 3087 } 3088 3089 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3090 ReuseShuffleIndicies); 3091 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 3092 TE->setOperandsInOrder(); 3093 for (unsigned i = 0, e = 2; i < e; ++i) { 3094 ValueList Operands; 3095 // Prepare the operand vector. 3096 for (Value *V : VL) 3097 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3098 3099 buildTree_rec(Operands, Depth + 1, {TE, i}); 3100 } 3101 return; 3102 } 3103 case Instruction::Store: { 3104 // Check if the stores are consecutive or if we need to swizzle them. 3105 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 3106 // Avoid types that are padded when being allocated as scalars, while 3107 // being packed together in a vector (such as i1). 3108 if (DL->getTypeSizeInBits(ScalarTy) != 3109 DL->getTypeAllocSizeInBits(ScalarTy)) { 3110 BS.cancelScheduling(VL, VL0); 3111 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3112 ReuseShuffleIndicies); 3113 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 3114 return; 3115 } 3116 // Make sure all stores in the bundle are simple - we can't vectorize 3117 // atomic or volatile stores. 3118 SmallVector<Value *, 4> PointerOps(VL.size()); 3119 ValueList Operands(VL.size()); 3120 auto POIter = PointerOps.begin(); 3121 auto OIter = Operands.begin(); 3122 for (Value *V : VL) { 3123 auto *SI = cast<StoreInst>(V); 3124 if (!SI->isSimple()) { 3125 BS.cancelScheduling(VL, VL0); 3126 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3127 ReuseShuffleIndicies); 3128 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 3129 return; 3130 } 3131 *POIter = SI->getPointerOperand(); 3132 *OIter = SI->getValueOperand(); 3133 ++POIter; 3134 ++OIter; 3135 } 3136 3137 OrdersType CurrentOrder; 3138 // Check the order of pointer operands. 3139 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 3140 Value *Ptr0; 3141 Value *PtrN; 3142 if (CurrentOrder.empty()) { 3143 Ptr0 = PointerOps.front(); 3144 PtrN = PointerOps.back(); 3145 } else { 3146 Ptr0 = PointerOps[CurrentOrder.front()]; 3147 PtrN = PointerOps[CurrentOrder.back()]; 3148 } 3149 const SCEV *Scev0 = SE->getSCEV(Ptr0); 3150 const SCEV *ScevN = SE->getSCEV(PtrN); 3151 const auto *Diff = 3152 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 3153 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 3154 // Check that the sorted pointer operands are consecutive. 3155 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 3156 if (CurrentOrder.empty()) { 3157 // Original stores are consecutive and does not require reordering. 3158 ++NumOpsWantToKeepOriginalOrder; 3159 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 3160 UserTreeIdx, ReuseShuffleIndicies); 3161 TE->setOperandsInOrder(); 3162 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3163 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 3164 } else { 3165 TreeEntry *TE = 3166 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3167 ReuseShuffleIndicies, CurrentOrder); 3168 TE->setOperandsInOrder(); 3169 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3170 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 3171 findRootOrder(CurrentOrder); 3172 ++NumOpsWantToKeepOrder[CurrentOrder]; 3173 } 3174 return; 3175 } 3176 } 3177 3178 BS.cancelScheduling(VL, VL0); 3179 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3180 ReuseShuffleIndicies); 3181 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 3182 return; 3183 } 3184 case Instruction::Call: { 3185 // Check if the calls are all to the same vectorizable intrinsic or 3186 // library function. 3187 CallInst *CI = cast<CallInst>(VL0); 3188 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3189 3190 VFShape Shape = VFShape::get( 3191 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 3192 false /*HasGlobalPred*/); 3193 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3194 3195 if (!VecFunc && !isTriviallyVectorizable(ID)) { 3196 BS.cancelScheduling(VL, VL0); 3197 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3198 ReuseShuffleIndicies); 3199 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 3200 return; 3201 } 3202 Function *F = CI->getCalledFunction(); 3203 unsigned NumArgs = CI->getNumArgOperands(); 3204 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 3205 for (unsigned j = 0; j != NumArgs; ++j) 3206 if (hasVectorInstrinsicScalarOpd(ID, j)) 3207 ScalarArgs[j] = CI->getArgOperand(j); 3208 for (Value *V : VL) { 3209 CallInst *CI2 = dyn_cast<CallInst>(V); 3210 if (!CI2 || CI2->getCalledFunction() != F || 3211 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 3212 (VecFunc && 3213 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 3214 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 3215 BS.cancelScheduling(VL, VL0); 3216 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3217 ReuseShuffleIndicies); 3218 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 3219 << "\n"); 3220 return; 3221 } 3222 // Some intrinsics have scalar arguments and should be same in order for 3223 // them to be vectorized. 3224 for (unsigned j = 0; j != NumArgs; ++j) { 3225 if (hasVectorInstrinsicScalarOpd(ID, j)) { 3226 Value *A1J = CI2->getArgOperand(j); 3227 if (ScalarArgs[j] != A1J) { 3228 BS.cancelScheduling(VL, VL0); 3229 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3230 ReuseShuffleIndicies); 3231 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 3232 << " argument " << ScalarArgs[j] << "!=" << A1J 3233 << "\n"); 3234 return; 3235 } 3236 } 3237 } 3238 // Verify that the bundle operands are identical between the two calls. 3239 if (CI->hasOperandBundles() && 3240 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 3241 CI->op_begin() + CI->getBundleOperandsEndIndex(), 3242 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 3243 BS.cancelScheduling(VL, VL0); 3244 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3245 ReuseShuffleIndicies); 3246 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 3247 << *CI << "!=" << *V << '\n'); 3248 return; 3249 } 3250 } 3251 3252 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3253 ReuseShuffleIndicies); 3254 TE->setOperandsInOrder(); 3255 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 3256 ValueList Operands; 3257 // Prepare the operand vector. 3258 for (Value *V : VL) { 3259 auto *CI2 = cast<CallInst>(V); 3260 Operands.push_back(CI2->getArgOperand(i)); 3261 } 3262 buildTree_rec(Operands, Depth + 1, {TE, i}); 3263 } 3264 return; 3265 } 3266 case Instruction::ShuffleVector: { 3267 // If this is not an alternate sequence of opcode like add-sub 3268 // then do not vectorize this instruction. 3269 if (!S.isAltShuffle()) { 3270 BS.cancelScheduling(VL, VL0); 3271 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3272 ReuseShuffleIndicies); 3273 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 3274 return; 3275 } 3276 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3277 ReuseShuffleIndicies); 3278 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 3279 3280 // Reorder operands if reordering would enable vectorization. 3281 if (isa<BinaryOperator>(VL0)) { 3282 ValueList Left, Right; 3283 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3284 TE->setOperand(0, Left); 3285 TE->setOperand(1, Right); 3286 buildTree_rec(Left, Depth + 1, {TE, 0}); 3287 buildTree_rec(Right, Depth + 1, {TE, 1}); 3288 return; 3289 } 3290 3291 TE->setOperandsInOrder(); 3292 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3293 ValueList Operands; 3294 // Prepare the operand vector. 3295 for (Value *V : VL) 3296 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3297 3298 buildTree_rec(Operands, Depth + 1, {TE, i}); 3299 } 3300 return; 3301 } 3302 default: 3303 BS.cancelScheduling(VL, VL0); 3304 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3305 ReuseShuffleIndicies); 3306 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 3307 return; 3308 } 3309 } 3310 3311 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 3312 unsigned N = 1; 3313 Type *EltTy = T; 3314 3315 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 3316 isa<VectorType>(EltTy)) { 3317 if (auto *ST = dyn_cast<StructType>(EltTy)) { 3318 // Check that struct is homogeneous. 3319 for (const auto *Ty : ST->elements()) 3320 if (Ty != *ST->element_begin()) 3321 return 0; 3322 N *= ST->getNumElements(); 3323 EltTy = *ST->element_begin(); 3324 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 3325 N *= AT->getNumElements(); 3326 EltTy = AT->getElementType(); 3327 } else { 3328 auto *VT = cast<FixedVectorType>(EltTy); 3329 N *= VT->getNumElements(); 3330 EltTy = VT->getElementType(); 3331 } 3332 } 3333 3334 if (!isValidElementType(EltTy)) 3335 return 0; 3336 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 3337 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 3338 return 0; 3339 return N; 3340 } 3341 3342 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 3343 SmallVectorImpl<unsigned> &CurrentOrder) const { 3344 Instruction *E0 = cast<Instruction>(OpValue); 3345 assert(E0->getOpcode() == Instruction::ExtractElement || 3346 E0->getOpcode() == Instruction::ExtractValue); 3347 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 3348 // Check if all of the extracts come from the same vector and from the 3349 // correct offset. 3350 Value *Vec = E0->getOperand(0); 3351 3352 CurrentOrder.clear(); 3353 3354 // We have to extract from a vector/aggregate with the same number of elements. 3355 unsigned NElts; 3356 if (E0->getOpcode() == Instruction::ExtractValue) { 3357 const DataLayout &DL = E0->getModule()->getDataLayout(); 3358 NElts = canMapToVector(Vec->getType(), DL); 3359 if (!NElts) 3360 return false; 3361 // Check if load can be rewritten as load of vector. 3362 LoadInst *LI = dyn_cast<LoadInst>(Vec); 3363 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 3364 return false; 3365 } else { 3366 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 3367 } 3368 3369 if (NElts != VL.size()) 3370 return false; 3371 3372 // Check that all of the indices extract from the correct offset. 3373 bool ShouldKeepOrder = true; 3374 unsigned E = VL.size(); 3375 // Assign to all items the initial value E + 1 so we can check if the extract 3376 // instruction index was used already. 3377 // Also, later we can check that all the indices are used and we have a 3378 // consecutive access in the extract instructions, by checking that no 3379 // element of CurrentOrder still has value E + 1. 3380 CurrentOrder.assign(E, E + 1); 3381 unsigned I = 0; 3382 for (; I < E; ++I) { 3383 auto *Inst = cast<Instruction>(VL[I]); 3384 if (Inst->getOperand(0) != Vec) 3385 break; 3386 Optional<unsigned> Idx = getExtractIndex(Inst); 3387 if (!Idx) 3388 break; 3389 const unsigned ExtIdx = *Idx; 3390 if (ExtIdx != I) { 3391 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 3392 break; 3393 ShouldKeepOrder = false; 3394 CurrentOrder[ExtIdx] = I; 3395 } else { 3396 if (CurrentOrder[I] != E + 1) 3397 break; 3398 CurrentOrder[I] = I; 3399 } 3400 } 3401 if (I < E) { 3402 CurrentOrder.clear(); 3403 return false; 3404 } 3405 3406 return ShouldKeepOrder; 3407 } 3408 3409 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 3410 return I->hasOneUse() || llvm::all_of(I->users(), [this](User *U) { 3411 return ScalarToTreeEntry.count(U) > 0; 3412 }); 3413 } 3414 3415 static std::pair<InstructionCost, InstructionCost> 3416 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 3417 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 3418 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3419 3420 // Calculate the cost of the scalar and vector calls. 3421 SmallVector<Type *, 4> VecTys; 3422 for (Use &Arg : CI->args()) 3423 VecTys.push_back( 3424 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 3425 FastMathFlags FMF; 3426 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 3427 FMF = FPCI->getFastMathFlags(); 3428 SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end()); 3429 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 3430 dyn_cast<IntrinsicInst>(CI)); 3431 auto IntrinsicCost = 3432 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 3433 3434 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 3435 VecTy->getNumElements())), 3436 false /*HasGlobalPred*/); 3437 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3438 auto LibCost = IntrinsicCost; 3439 if (!CI->isNoBuiltin() && VecFunc) { 3440 // Calculate the cost of the vector library call. 3441 // If the corresponding vector call is cheaper, return its cost. 3442 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 3443 TTI::TCK_RecipThroughput); 3444 } 3445 return {IntrinsicCost, LibCost}; 3446 } 3447 3448 InstructionCost BoUpSLP::getEntryCost(TreeEntry *E) { 3449 ArrayRef<Value*> VL = E->Scalars; 3450 3451 Type *ScalarTy = VL[0]->getType(); 3452 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3453 ScalarTy = SI->getValueOperand()->getType(); 3454 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 3455 ScalarTy = CI->getOperand(0)->getType(); 3456 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 3457 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 3458 3459 // If we have computed a smaller type for the expression, update VecTy so 3460 // that the costs will be accurate. 3461 if (MinBWs.count(VL[0])) 3462 VecTy = FixedVectorType::get( 3463 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 3464 3465 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 3466 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3467 InstructionCost ReuseShuffleCost = 0; 3468 if (NeedToShuffleReuses) { 3469 ReuseShuffleCost = 3470 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3471 } 3472 if (E->State == TreeEntry::NeedToGather) { 3473 if (allConstant(VL)) 3474 return 0; 3475 if (isSplat(VL)) { 3476 return ReuseShuffleCost + 3477 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 3478 } 3479 if (E->getOpcode() == Instruction::ExtractElement && 3480 allSameType(VL) && allSameBlock(VL)) { 3481 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 3482 if (ShuffleKind.hasValue()) { 3483 InstructionCost Cost = 3484 TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 3485 for (auto *V : VL) { 3486 // If all users of instruction are going to be vectorized and this 3487 // instruction itself is not going to be vectorized, consider this 3488 // instruction as dead and remove its cost from the final cost of the 3489 // vectorized tree. 3490 if (areAllUsersVectorized(cast<Instruction>(V)) && 3491 !ScalarToTreeEntry.count(V)) { 3492 auto *IO = cast<ConstantInt>( 3493 cast<ExtractElementInst>(V)->getIndexOperand()); 3494 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 3495 IO->getZExtValue()); 3496 } 3497 } 3498 return ReuseShuffleCost + Cost; 3499 } 3500 } 3501 return ReuseShuffleCost + getGatherCost(VL); 3502 } 3503 assert((E->State == TreeEntry::Vectorize || 3504 E->State == TreeEntry::ScatterVectorize) && 3505 "Unhandled state"); 3506 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 3507 Instruction *VL0 = E->getMainOp(); 3508 unsigned ShuffleOrOp = 3509 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 3510 switch (ShuffleOrOp) { 3511 case Instruction::PHI: 3512 return 0; 3513 3514 case Instruction::ExtractValue: 3515 case Instruction::ExtractElement: { 3516 // The common cost of removal ExtractElement/ExtractValue instructions + 3517 // the cost of shuffles, if required to resuffle the original vector. 3518 InstructionCost CommonCost = 0; 3519 if (NeedToShuffleReuses) { 3520 unsigned Idx = 0; 3521 for (unsigned I : E->ReuseShuffleIndices) { 3522 if (ShuffleOrOp == Instruction::ExtractElement) { 3523 auto *IO = cast<ConstantInt>( 3524 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 3525 Idx = IO->getZExtValue(); 3526 ReuseShuffleCost -= TTI->getVectorInstrCost( 3527 Instruction::ExtractElement, VecTy, Idx); 3528 } else { 3529 ReuseShuffleCost -= TTI->getVectorInstrCost( 3530 Instruction::ExtractElement, VecTy, Idx); 3531 ++Idx; 3532 } 3533 } 3534 Idx = ReuseShuffleNumbers; 3535 for (Value *V : VL) { 3536 if (ShuffleOrOp == Instruction::ExtractElement) { 3537 auto *IO = cast<ConstantInt>( 3538 cast<ExtractElementInst>(V)->getIndexOperand()); 3539 Idx = IO->getZExtValue(); 3540 } else { 3541 --Idx; 3542 } 3543 ReuseShuffleCost += 3544 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 3545 } 3546 CommonCost = ReuseShuffleCost; 3547 } else if (!E->ReorderIndices.empty()) { 3548 CommonCost = TTI->getShuffleCost( 3549 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3550 } 3551 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 3552 Instruction *EI = cast<Instruction>(VL[I]); 3553 // If all users are going to be vectorized, instruction can be 3554 // considered as dead. 3555 // The same, if have only one user, it will be vectorized for sure. 3556 if (areAllUsersVectorized(EI)) { 3557 // Take credit for instruction that will become dead. 3558 if (EI->hasOneUse()) { 3559 Instruction *Ext = EI->user_back(); 3560 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3561 all_of(Ext->users(), 3562 [](User *U) { return isa<GetElementPtrInst>(U); })) { 3563 // Use getExtractWithExtendCost() to calculate the cost of 3564 // extractelement/ext pair. 3565 CommonCost -= TTI->getExtractWithExtendCost( 3566 Ext->getOpcode(), Ext->getType(), VecTy, I); 3567 // Add back the cost of s|zext which is subtracted separately. 3568 CommonCost += TTI->getCastInstrCost( 3569 Ext->getOpcode(), Ext->getType(), EI->getType(), 3570 TTI::getCastContextHint(Ext), CostKind, Ext); 3571 continue; 3572 } 3573 } 3574 CommonCost -= 3575 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 3576 } 3577 } 3578 return CommonCost; 3579 } 3580 case Instruction::ZExt: 3581 case Instruction::SExt: 3582 case Instruction::FPToUI: 3583 case Instruction::FPToSI: 3584 case Instruction::FPExt: 3585 case Instruction::PtrToInt: 3586 case Instruction::IntToPtr: 3587 case Instruction::SIToFP: 3588 case Instruction::UIToFP: 3589 case Instruction::Trunc: 3590 case Instruction::FPTrunc: 3591 case Instruction::BitCast: { 3592 Type *SrcTy = VL0->getOperand(0)->getType(); 3593 InstructionCost ScalarEltCost = 3594 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 3595 TTI::getCastContextHint(VL0), CostKind, VL0); 3596 if (NeedToShuffleReuses) { 3597 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3598 } 3599 3600 // Calculate the cost of this instruction. 3601 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 3602 3603 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 3604 InstructionCost VecCost = 0; 3605 // Check if the values are candidates to demote. 3606 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 3607 VecCost = 3608 ReuseShuffleCost + 3609 TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, 3610 TTI::getCastContextHint(VL0), CostKind, VL0); 3611 } 3612 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3613 return VecCost - ScalarCost; 3614 } 3615 case Instruction::FCmp: 3616 case Instruction::ICmp: 3617 case Instruction::Select: { 3618 // Calculate the cost of this instruction. 3619 InstructionCost ScalarEltCost = 3620 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 3621 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 3622 if (NeedToShuffleReuses) { 3623 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3624 } 3625 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 3626 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3627 3628 // Check if all entries in VL are either compares or selects with compares 3629 // as condition that have the same predicates. 3630 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 3631 bool First = true; 3632 for (auto *V : VL) { 3633 CmpInst::Predicate CurrentPred; 3634 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 3635 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 3636 !match(V, MatchCmp)) || 3637 (!First && VecPred != CurrentPred)) { 3638 VecPred = CmpInst::BAD_ICMP_PREDICATE; 3639 break; 3640 } 3641 First = false; 3642 VecPred = CurrentPred; 3643 } 3644 3645 InstructionCost VecCost = TTI->getCmpSelInstrCost( 3646 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 3647 // Check if it is possible and profitable to use min/max for selects in 3648 // VL. 3649 // 3650 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 3651 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 3652 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 3653 {VecTy, VecTy}); 3654 InstructionCost IntrinsicCost = 3655 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 3656 // If the selects are the only uses of the compares, they will be dead 3657 // and we can adjust the cost by removing their cost. 3658 if (IntrinsicAndUse.second) 3659 IntrinsicCost -= 3660 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, 3661 CmpInst::BAD_ICMP_PREDICATE, CostKind); 3662 VecCost = std::min(VecCost, IntrinsicCost); 3663 } 3664 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3665 return ReuseShuffleCost + VecCost - ScalarCost; 3666 } 3667 case Instruction::FNeg: 3668 case Instruction::Add: 3669 case Instruction::FAdd: 3670 case Instruction::Sub: 3671 case Instruction::FSub: 3672 case Instruction::Mul: 3673 case Instruction::FMul: 3674 case Instruction::UDiv: 3675 case Instruction::SDiv: 3676 case Instruction::FDiv: 3677 case Instruction::URem: 3678 case Instruction::SRem: 3679 case Instruction::FRem: 3680 case Instruction::Shl: 3681 case Instruction::LShr: 3682 case Instruction::AShr: 3683 case Instruction::And: 3684 case Instruction::Or: 3685 case Instruction::Xor: { 3686 // Certain instructions can be cheaper to vectorize if they have a 3687 // constant second vector operand. 3688 TargetTransformInfo::OperandValueKind Op1VK = 3689 TargetTransformInfo::OK_AnyValue; 3690 TargetTransformInfo::OperandValueKind Op2VK = 3691 TargetTransformInfo::OK_UniformConstantValue; 3692 TargetTransformInfo::OperandValueProperties Op1VP = 3693 TargetTransformInfo::OP_None; 3694 TargetTransformInfo::OperandValueProperties Op2VP = 3695 TargetTransformInfo::OP_PowerOf2; 3696 3697 // If all operands are exactly the same ConstantInt then set the 3698 // operand kind to OK_UniformConstantValue. 3699 // If instead not all operands are constants, then set the operand kind 3700 // to OK_AnyValue. If all operands are constants but not the same, 3701 // then set the operand kind to OK_NonUniformConstantValue. 3702 ConstantInt *CInt0 = nullptr; 3703 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3704 const Instruction *I = cast<Instruction>(VL[i]); 3705 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 3706 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 3707 if (!CInt) { 3708 Op2VK = TargetTransformInfo::OK_AnyValue; 3709 Op2VP = TargetTransformInfo::OP_None; 3710 break; 3711 } 3712 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 3713 !CInt->getValue().isPowerOf2()) 3714 Op2VP = TargetTransformInfo::OP_None; 3715 if (i == 0) { 3716 CInt0 = CInt; 3717 continue; 3718 } 3719 if (CInt0 != CInt) 3720 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 3721 } 3722 3723 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 3724 InstructionCost ScalarEltCost = 3725 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 3726 Op2VK, Op1VP, Op2VP, Operands, VL0); 3727 if (NeedToShuffleReuses) { 3728 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3729 } 3730 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3731 InstructionCost VecCost = 3732 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 3733 Op2VK, Op1VP, Op2VP, Operands, VL0); 3734 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3735 return ReuseShuffleCost + VecCost - ScalarCost; 3736 } 3737 case Instruction::GetElementPtr: { 3738 TargetTransformInfo::OperandValueKind Op1VK = 3739 TargetTransformInfo::OK_AnyValue; 3740 TargetTransformInfo::OperandValueKind Op2VK = 3741 TargetTransformInfo::OK_UniformConstantValue; 3742 3743 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 3744 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 3745 if (NeedToShuffleReuses) { 3746 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3747 } 3748 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3749 InstructionCost VecCost = TTI->getArithmeticInstrCost( 3750 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 3751 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3752 return ReuseShuffleCost + VecCost - ScalarCost; 3753 } 3754 case Instruction::Load: { 3755 // Cost of wide load - cost of scalar loads. 3756 Align alignment = cast<LoadInst>(VL0)->getAlign(); 3757 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 3758 Instruction::Load, ScalarTy, alignment, 0, CostKind, VL0); 3759 if (NeedToShuffleReuses) { 3760 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3761 } 3762 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 3763 InstructionCost VecLdCost; 3764 if (E->State == TreeEntry::Vectorize) { 3765 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, 3766 CostKind, VL0); 3767 } else { 3768 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 3769 VecLdCost = TTI->getGatherScatterOpCost( 3770 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 3771 /*VariableMask=*/false, alignment, CostKind, VL0); 3772 } 3773 if (!NeedToShuffleReuses && !E->ReorderIndices.empty()) 3774 VecLdCost += TTI->getShuffleCost( 3775 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3776 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecLdCost, ScalarLdCost)); 3777 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 3778 } 3779 case Instruction::Store: { 3780 // We know that we can merge the stores. Calculate the cost. 3781 bool IsReorder = !E->ReorderIndices.empty(); 3782 auto *SI = 3783 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 3784 Align Alignment = SI->getAlign(); 3785 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 3786 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 3787 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 3788 InstructionCost VecStCost = TTI->getMemoryOpCost( 3789 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 3790 if (IsReorder) 3791 VecStCost += TTI->getShuffleCost( 3792 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3793 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecStCost, ScalarStCost)); 3794 return VecStCost - ScalarStCost; 3795 } 3796 case Instruction::Call: { 3797 CallInst *CI = cast<CallInst>(VL0); 3798 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3799 3800 // Calculate the cost of the scalar and vector calls. 3801 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 3802 InstructionCost ScalarEltCost = 3803 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 3804 if (NeedToShuffleReuses) { 3805 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3806 } 3807 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 3808 3809 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 3810 InstructionCost VecCallCost = 3811 std::min(VecCallCosts.first, VecCallCosts.second); 3812 3813 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 3814 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 3815 << " for " << *CI << "\n"); 3816 3817 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 3818 } 3819 case Instruction::ShuffleVector: { 3820 assert(E->isAltShuffle() && 3821 ((Instruction::isBinaryOp(E->getOpcode()) && 3822 Instruction::isBinaryOp(E->getAltOpcode())) || 3823 (Instruction::isCast(E->getOpcode()) && 3824 Instruction::isCast(E->getAltOpcode()))) && 3825 "Invalid Shuffle Vector Operand"); 3826 InstructionCost ScalarCost = 0; 3827 if (NeedToShuffleReuses) { 3828 for (unsigned Idx : E->ReuseShuffleIndices) { 3829 Instruction *I = cast<Instruction>(VL[Idx]); 3830 ReuseShuffleCost -= TTI->getInstructionCost(I, CostKind); 3831 } 3832 for (Value *V : VL) { 3833 Instruction *I = cast<Instruction>(V); 3834 ReuseShuffleCost += TTI->getInstructionCost(I, CostKind); 3835 } 3836 } 3837 for (Value *V : VL) { 3838 Instruction *I = cast<Instruction>(V); 3839 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 3840 ScalarCost += TTI->getInstructionCost(I, CostKind); 3841 } 3842 // VecCost is equal to sum of the cost of creating 2 vectors 3843 // and the cost of creating shuffle. 3844 InstructionCost VecCost = 0; 3845 if (Instruction::isBinaryOp(E->getOpcode())) { 3846 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 3847 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 3848 CostKind); 3849 } else { 3850 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 3851 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 3852 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 3853 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 3854 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 3855 TTI::CastContextHint::None, CostKind); 3856 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 3857 TTI::CastContextHint::None, CostKind); 3858 } 3859 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0); 3860 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3861 return ReuseShuffleCost + VecCost - ScalarCost; 3862 } 3863 default: 3864 llvm_unreachable("Unknown instruction"); 3865 } 3866 } 3867 3868 bool BoUpSLP::isFullyVectorizableTinyTree() const { 3869 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 3870 << VectorizableTree.size() << " is fully vectorizable .\n"); 3871 3872 // We only handle trees of heights 1 and 2. 3873 if (VectorizableTree.size() == 1 && 3874 VectorizableTree[0]->State == TreeEntry::Vectorize) 3875 return true; 3876 3877 if (VectorizableTree.size() != 2) 3878 return false; 3879 3880 // Handle splat and all-constants stores. 3881 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 3882 (allConstant(VectorizableTree[1]->Scalars) || 3883 isSplat(VectorizableTree[1]->Scalars))) 3884 return true; 3885 3886 // Gathering cost would be too much for tiny trees. 3887 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 3888 VectorizableTree[1]->State == TreeEntry::NeedToGather) 3889 return false; 3890 3891 return true; 3892 } 3893 3894 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 3895 TargetTransformInfo *TTI) { 3896 // Look past the root to find a source value. Arbitrarily follow the 3897 // path through operand 0 of any 'or'. Also, peek through optional 3898 // shift-left-by-multiple-of-8-bits. 3899 Value *ZextLoad = Root; 3900 const APInt *ShAmtC; 3901 while (!isa<ConstantExpr>(ZextLoad) && 3902 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 3903 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 3904 ShAmtC->urem(8) == 0))) 3905 ZextLoad = cast<BinaryOperator>(ZextLoad)->getOperand(0); 3906 3907 // Check if the input is an extended load of the required or/shift expression. 3908 Value *LoadPtr; 3909 if (ZextLoad == Root || !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr))))) 3910 return false; 3911 3912 // Require that the total load bit width is a legal integer type. 3913 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 3914 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 3915 Type *SrcTy = LoadPtr->getType()->getPointerElementType(); 3916 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 3917 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 3918 return false; 3919 3920 // Everything matched - assume that we can fold the whole sequence using 3921 // load combining. 3922 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 3923 << *(cast<Instruction>(Root)) << "\n"); 3924 3925 return true; 3926 } 3927 3928 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 3929 if (RdxKind != RecurKind::Or) 3930 return false; 3931 3932 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3933 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 3934 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI); 3935 } 3936 3937 bool BoUpSLP::isLoadCombineCandidate() const { 3938 // Peek through a final sequence of stores and check if all operations are 3939 // likely to be load-combined. 3940 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3941 for (Value *Scalar : VectorizableTree[0]->Scalars) { 3942 Value *X; 3943 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 3944 !isLoadCombineCandidateImpl(X, NumElts, TTI)) 3945 return false; 3946 } 3947 return true; 3948 } 3949 3950 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 3951 // We can vectorize the tree if its size is greater than or equal to the 3952 // minimum size specified by the MinTreeSize command line option. 3953 if (VectorizableTree.size() >= MinTreeSize) 3954 return false; 3955 3956 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 3957 // can vectorize it if we can prove it fully vectorizable. 3958 if (isFullyVectorizableTinyTree()) 3959 return false; 3960 3961 assert(VectorizableTree.empty() 3962 ? ExternalUses.empty() 3963 : true && "We shouldn't have any external users"); 3964 3965 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 3966 // vectorizable. 3967 return true; 3968 } 3969 3970 InstructionCost BoUpSLP::getSpillCost() const { 3971 // Walk from the bottom of the tree to the top, tracking which values are 3972 // live. When we see a call instruction that is not part of our tree, 3973 // query TTI to see if there is a cost to keeping values live over it 3974 // (for example, if spills and fills are required). 3975 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 3976 InstructionCost Cost = 0; 3977 3978 SmallPtrSet<Instruction*, 4> LiveValues; 3979 Instruction *PrevInst = nullptr; 3980 3981 // The entries in VectorizableTree are not necessarily ordered by their 3982 // position in basic blocks. Collect them and order them by dominance so later 3983 // instructions are guaranteed to be visited first. For instructions in 3984 // different basic blocks, we only scan to the beginning of the block, so 3985 // their order does not matter, as long as all instructions in a basic block 3986 // are grouped together. Using dominance ensures a deterministic order. 3987 SmallVector<Instruction *, 16> OrderedScalars; 3988 for (const auto &TEPtr : VectorizableTree) { 3989 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 3990 if (!Inst) 3991 continue; 3992 OrderedScalars.push_back(Inst); 3993 } 3994 llvm::stable_sort(OrderedScalars, [this](Instruction *A, Instruction *B) { 3995 return DT->dominates(B, A); 3996 }); 3997 3998 for (Instruction *Inst : OrderedScalars) { 3999 if (!PrevInst) { 4000 PrevInst = Inst; 4001 continue; 4002 } 4003 4004 // Update LiveValues. 4005 LiveValues.erase(PrevInst); 4006 for (auto &J : PrevInst->operands()) { 4007 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 4008 LiveValues.insert(cast<Instruction>(&*J)); 4009 } 4010 4011 LLVM_DEBUG({ 4012 dbgs() << "SLP: #LV: " << LiveValues.size(); 4013 for (auto *X : LiveValues) 4014 dbgs() << " " << X->getName(); 4015 dbgs() << ", Looking at "; 4016 Inst->dump(); 4017 }); 4018 4019 // Now find the sequence of instructions between PrevInst and Inst. 4020 unsigned NumCalls = 0; 4021 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 4022 PrevInstIt = 4023 PrevInst->getIterator().getReverse(); 4024 while (InstIt != PrevInstIt) { 4025 if (PrevInstIt == PrevInst->getParent()->rend()) { 4026 PrevInstIt = Inst->getParent()->rbegin(); 4027 continue; 4028 } 4029 4030 // Debug information does not impact spill cost. 4031 if ((isa<CallInst>(&*PrevInstIt) && 4032 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 4033 &*PrevInstIt != PrevInst) 4034 NumCalls++; 4035 4036 ++PrevInstIt; 4037 } 4038 4039 if (NumCalls) { 4040 SmallVector<Type*, 4> V; 4041 for (auto *II : LiveValues) 4042 V.push_back(FixedVectorType::get(II->getType(), BundleWidth)); 4043 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 4044 } 4045 4046 PrevInst = Inst; 4047 } 4048 4049 return Cost; 4050 } 4051 4052 InstructionCost BoUpSLP::getTreeCost() { 4053 InstructionCost Cost = 0; 4054 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 4055 << VectorizableTree.size() << ".\n"); 4056 4057 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 4058 4059 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 4060 TreeEntry &TE = *VectorizableTree[I].get(); 4061 4062 // We create duplicate tree entries for gather sequences that have multiple 4063 // uses. However, we should not compute the cost of duplicate sequences. 4064 // For example, if we have a build vector (i.e., insertelement sequence) 4065 // that is used by more than one vector instruction, we only need to 4066 // compute the cost of the insertelement instructions once. The redundant 4067 // instructions will be eliminated by CSE. 4068 // 4069 // We should consider not creating duplicate tree entries for gather 4070 // sequences, and instead add additional edges to the tree representing 4071 // their uses. Since such an approach results in fewer total entries, 4072 // existing heuristics based on tree size may yield different results. 4073 // 4074 if (TE.State == TreeEntry::NeedToGather && 4075 std::any_of(std::next(VectorizableTree.begin(), I + 1), 4076 VectorizableTree.end(), 4077 [TE](const std::unique_ptr<TreeEntry> &EntryPtr) { 4078 return EntryPtr->State == TreeEntry::NeedToGather && 4079 EntryPtr->isSame(TE.Scalars); 4080 })) 4081 continue; 4082 4083 InstructionCost C = getEntryCost(&TE); 4084 Cost += C; 4085 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 4086 << " for bundle that starts with " << *TE.Scalars[0] 4087 << ".\n" 4088 << "SLP: Current total cost = " << Cost << "\n"); 4089 } 4090 4091 SmallPtrSet<Value *, 16> ExtractCostCalculated; 4092 InstructionCost ExtractCost = 0; 4093 for (ExternalUser &EU : ExternalUses) { 4094 // We only add extract cost once for the same scalar. 4095 if (!ExtractCostCalculated.insert(EU.Scalar).second) 4096 continue; 4097 4098 // Uses by ephemeral values are free (because the ephemeral value will be 4099 // removed prior to code generation, and so the extraction will be 4100 // removed as well). 4101 if (EphValues.count(EU.User)) 4102 continue; 4103 4104 // If we plan to rewrite the tree in a smaller type, we will need to sign 4105 // extend the extracted value back to the original type. Here, we account 4106 // for the extract and the added cost of the sign extend if needed. 4107 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 4108 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4109 if (MinBWs.count(ScalarRoot)) { 4110 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4111 auto Extend = 4112 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 4113 VecTy = FixedVectorType::get(MinTy, BundleWidth); 4114 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 4115 VecTy, EU.Lane); 4116 } else { 4117 ExtractCost += 4118 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 4119 } 4120 } 4121 4122 InstructionCost SpillCost = getSpillCost(); 4123 Cost += SpillCost + ExtractCost; 4124 4125 #ifndef NDEBUG 4126 SmallString<256> Str; 4127 { 4128 raw_svector_ostream OS(Str); 4129 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 4130 << "SLP: Extract Cost = " << ExtractCost << ".\n" 4131 << "SLP: Total Cost = " << Cost << ".\n"; 4132 } 4133 LLVM_DEBUG(dbgs() << Str); 4134 if (ViewSLPTree) 4135 ViewGraph(this, "SLP" + F->getName(), false, Str); 4136 #endif 4137 4138 return Cost; 4139 } 4140 4141 InstructionCost 4142 BoUpSLP::getGatherCost(FixedVectorType *Ty, 4143 const DenseSet<unsigned> &ShuffledIndices) const { 4144 unsigned NumElts = Ty->getNumElements(); 4145 APInt DemandedElts = APInt::getNullValue(NumElts); 4146 for (unsigned I = 0; I < NumElts; ++I) 4147 if (!ShuffledIndices.count(I)) 4148 DemandedElts.setBit(I); 4149 InstructionCost Cost = 4150 TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 4151 /*Extract*/ false); 4152 if (!ShuffledIndices.empty()) 4153 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 4154 return Cost; 4155 } 4156 4157 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 4158 // Find the type of the operands in VL. 4159 Type *ScalarTy = VL[0]->getType(); 4160 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4161 ScalarTy = SI->getValueOperand()->getType(); 4162 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4163 // Find the cost of inserting/extracting values from the vector. 4164 // Check if the same elements are inserted several times and count them as 4165 // shuffle candidates. 4166 DenseSet<unsigned> ShuffledElements; 4167 DenseSet<Value *> UniqueElements; 4168 // Iterate in reverse order to consider insert elements with the high cost. 4169 for (unsigned I = VL.size(); I > 0; --I) { 4170 unsigned Idx = I - 1; 4171 if (!UniqueElements.insert(VL[Idx]).second) 4172 ShuffledElements.insert(Idx); 4173 } 4174 return getGatherCost(VecTy, ShuffledElements); 4175 } 4176 4177 // Perform operand reordering on the instructions in VL and return the reordered 4178 // operands in Left and Right. 4179 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 4180 SmallVectorImpl<Value *> &Left, 4181 SmallVectorImpl<Value *> &Right, 4182 const DataLayout &DL, 4183 ScalarEvolution &SE, 4184 const BoUpSLP &R) { 4185 if (VL.empty()) 4186 return; 4187 VLOperands Ops(VL, DL, SE, R); 4188 // Reorder the operands in place. 4189 Ops.reorder(); 4190 Left = Ops.getVL(0); 4191 Right = Ops.getVL(1); 4192 } 4193 4194 void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) { 4195 // Get the basic block this bundle is in. All instructions in the bundle 4196 // should be in this block. 4197 auto *Front = E->getMainOp(); 4198 auto *BB = Front->getParent(); 4199 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 4200 auto *I = cast<Instruction>(V); 4201 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 4202 })); 4203 4204 // The last instruction in the bundle in program order. 4205 Instruction *LastInst = nullptr; 4206 4207 // Find the last instruction. The common case should be that BB has been 4208 // scheduled, and the last instruction is VL.back(). So we start with 4209 // VL.back() and iterate over schedule data until we reach the end of the 4210 // bundle. The end of the bundle is marked by null ScheduleData. 4211 if (BlocksSchedules.count(BB)) { 4212 auto *Bundle = 4213 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 4214 if (Bundle && Bundle->isPartOfBundle()) 4215 for (; Bundle; Bundle = Bundle->NextInBundle) 4216 if (Bundle->OpValue == Bundle->Inst) 4217 LastInst = Bundle->Inst; 4218 } 4219 4220 // LastInst can still be null at this point if there's either not an entry 4221 // for BB in BlocksSchedules or there's no ScheduleData available for 4222 // VL.back(). This can be the case if buildTree_rec aborts for various 4223 // reasons (e.g., the maximum recursion depth is reached, the maximum region 4224 // size is reached, etc.). ScheduleData is initialized in the scheduling 4225 // "dry-run". 4226 // 4227 // If this happens, we can still find the last instruction by brute force. We 4228 // iterate forwards from Front (inclusive) until we either see all 4229 // instructions in the bundle or reach the end of the block. If Front is the 4230 // last instruction in program order, LastInst will be set to Front, and we 4231 // will visit all the remaining instructions in the block. 4232 // 4233 // One of the reasons we exit early from buildTree_rec is to place an upper 4234 // bound on compile-time. Thus, taking an additional compile-time hit here is 4235 // not ideal. However, this should be exceedingly rare since it requires that 4236 // we both exit early from buildTree_rec and that the bundle be out-of-order 4237 // (causing us to iterate all the way to the end of the block). 4238 if (!LastInst) { 4239 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 4240 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 4241 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 4242 LastInst = &I; 4243 if (Bundle.empty()) 4244 break; 4245 } 4246 } 4247 assert(LastInst && "Failed to find last instruction in bundle"); 4248 4249 // Set the insertion point after the last instruction in the bundle. Set the 4250 // debug location to Front. 4251 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 4252 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 4253 } 4254 4255 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 4256 Value *Val0 = 4257 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 4258 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 4259 Value *Vec = PoisonValue::get(VecTy); 4260 unsigned InsIndex = 0; 4261 for (Value *Val : VL) { 4262 Vec = Builder.CreateInsertElement(Vec, Val, Builder.getInt32(InsIndex++)); 4263 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 4264 if (!InsElt) 4265 continue; 4266 GatherSeq.insert(InsElt); 4267 CSEBlocks.insert(InsElt->getParent()); 4268 // Add to our 'need-to-extract' list. 4269 if (TreeEntry *Entry = getTreeEntry(Val)) { 4270 // Find which lane we need to extract. 4271 unsigned FoundLane = std::distance(Entry->Scalars.begin(), 4272 find(Entry->Scalars, Val)); 4273 assert(FoundLane < Entry->Scalars.size() && "Couldn't find extract lane"); 4274 if (!Entry->ReuseShuffleIndices.empty()) { 4275 FoundLane = std::distance(Entry->ReuseShuffleIndices.begin(), 4276 find(Entry->ReuseShuffleIndices, FoundLane)); 4277 } 4278 ExternalUses.push_back(ExternalUser(Val, InsElt, FoundLane)); 4279 } 4280 } 4281 4282 return Vec; 4283 } 4284 4285 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 4286 InstructionsState S = getSameOpcode(VL); 4287 if (S.getOpcode()) { 4288 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4289 if (E->isSame(VL)) { 4290 Value *V = vectorizeTree(E); 4291 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 4292 // Reshuffle to get only unique values. 4293 // If some of the scalars are duplicated in the vectorization tree 4294 // entry, we do not vectorize them but instead generate a mask for the 4295 // reuses. But if there are several users of the same entry, they may 4296 // have different vectorization factors. This is especially important 4297 // for PHI nodes. In this case, we need to adapt the resulting 4298 // instruction for the user vectorization factor and have to reshuffle 4299 // it again to take only unique elements of the vector. Without this 4300 // code the function incorrectly returns reduced vector instruction 4301 // with the same elements, not with the unique ones. 4302 // block: 4303 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 4304 // %2 = shuffle <2 x > %phi, %poison, <4 x > <0, 0, 1, 1> 4305 // ... (use %2) 4306 // %shuffle = shuffle <2 x> %2, poison, <2 x> {0, 2} 4307 // br %block 4308 SmallVector<int, 4> UniqueIdxs; 4309 SmallSet<int, 4> UsedIdxs; 4310 int Pos = 0; 4311 for (int Idx : E->ReuseShuffleIndices) { 4312 if (UsedIdxs.insert(Idx).second) 4313 UniqueIdxs.emplace_back(Pos); 4314 ++Pos; 4315 } 4316 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 4317 } 4318 return V; 4319 } 4320 } 4321 } 4322 4323 // Check that every instruction appears once in this bundle. 4324 SmallVector<int, 4> ReuseShuffleIndicies; 4325 SmallVector<Value *, 4> UniqueValues; 4326 if (VL.size() > 2) { 4327 DenseMap<Value *, unsigned> UniquePositions; 4328 for (Value *V : VL) { 4329 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 4330 ReuseShuffleIndicies.emplace_back(Res.first->second); 4331 if (Res.second || isa<Constant>(V)) 4332 UniqueValues.emplace_back(V); 4333 } 4334 // Do not shuffle single element or if number of unique values is not power 4335 // of 2. 4336 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 4337 !llvm::isPowerOf2_32(UniqueValues.size())) 4338 ReuseShuffleIndicies.clear(); 4339 else 4340 VL = UniqueValues; 4341 } 4342 4343 Value *Vec = gather(VL); 4344 if (!ReuseShuffleIndicies.empty()) { 4345 Vec = Builder.CreateShuffleVector(Vec, ReuseShuffleIndicies, "shuffle"); 4346 if (auto *I = dyn_cast<Instruction>(Vec)) { 4347 GatherSeq.insert(I); 4348 CSEBlocks.insert(I->getParent()); 4349 } 4350 } 4351 return Vec; 4352 } 4353 4354 namespace { 4355 /// Merges shuffle masks and emits final shuffle instruction, if required. 4356 class ShuffleInstructionBuilder { 4357 IRBuilderBase &Builder; 4358 bool IsFinalized = false; 4359 SmallVector<int, 4> Mask; 4360 4361 public: 4362 ShuffleInstructionBuilder(IRBuilderBase &Builder) : Builder(Builder) {} 4363 4364 /// Adds a mask, inverting it before applying. 4365 void addInversedMask(ArrayRef<unsigned> SubMask) { 4366 if (SubMask.empty()) 4367 return; 4368 SmallVector<int, 4> NewMask; 4369 inversePermutation(SubMask, NewMask); 4370 addMask(NewMask); 4371 } 4372 4373 /// Functions adds masks, merging them into single one. 4374 void addMask(ArrayRef<unsigned> SubMask) { 4375 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 4376 addMask(NewMask); 4377 } 4378 4379 void addMask(ArrayRef<int> SubMask) { 4380 if (SubMask.empty()) 4381 return; 4382 if (Mask.empty()) { 4383 Mask.append(SubMask.begin(), SubMask.end()); 4384 return; 4385 } 4386 SmallVector<int, 4> NewMask(SubMask.size(), SubMask.size()); 4387 int TermValue = std::min(Mask.size(), SubMask.size()); 4388 for (int I = 0, E = SubMask.size(); I < E; ++I) { 4389 if (SubMask[I] >= TermValue || Mask[SubMask[I]] >= TermValue) { 4390 NewMask[I] = E; 4391 continue; 4392 } 4393 NewMask[I] = Mask[SubMask[I]]; 4394 } 4395 Mask.swap(NewMask); 4396 } 4397 4398 Value *finalize(Value *V) { 4399 IsFinalized = true; 4400 if (Mask.empty()) 4401 return V; 4402 return Builder.CreateShuffleVector(V, Mask, "shuffle"); 4403 } 4404 4405 ~ShuffleInstructionBuilder() { 4406 assert((IsFinalized || Mask.empty()) && 4407 "Shuffle construction must be finalized."); 4408 } 4409 }; 4410 } // namespace 4411 4412 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 4413 IRBuilder<>::InsertPointGuard Guard(Builder); 4414 4415 if (E->VectorizedValue) { 4416 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 4417 return E->VectorizedValue; 4418 } 4419 4420 ShuffleInstructionBuilder ShuffleBuilder(Builder); 4421 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4422 if (E->State == TreeEntry::NeedToGather) { 4423 setInsertPointAfterBundle(E); 4424 Value *Vec = gather(E->Scalars); 4425 if (NeedToShuffleReuses) { 4426 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4427 Vec = ShuffleBuilder.finalize(Vec); 4428 if (auto *I = dyn_cast<Instruction>(Vec)) { 4429 GatherSeq.insert(I); 4430 CSEBlocks.insert(I->getParent()); 4431 } 4432 } 4433 E->VectorizedValue = Vec; 4434 return Vec; 4435 } 4436 4437 assert((E->State == TreeEntry::Vectorize || 4438 E->State == TreeEntry::ScatterVectorize) && 4439 "Unhandled state"); 4440 unsigned ShuffleOrOp = 4441 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 4442 Instruction *VL0 = E->getMainOp(); 4443 Type *ScalarTy = VL0->getType(); 4444 if (auto *Store = dyn_cast<StoreInst>(VL0)) 4445 ScalarTy = Store->getValueOperand()->getType(); 4446 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 4447 switch (ShuffleOrOp) { 4448 case Instruction::PHI: { 4449 auto *PH = cast<PHINode>(VL0); 4450 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 4451 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4452 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 4453 Value *V = NewPhi; 4454 if (NeedToShuffleReuses) 4455 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4456 4457 E->VectorizedValue = V; 4458 4459 // PHINodes may have multiple entries from the same block. We want to 4460 // visit every block once. 4461 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 4462 4463 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 4464 ValueList Operands; 4465 BasicBlock *IBB = PH->getIncomingBlock(i); 4466 4467 if (!VisitedBBs.insert(IBB).second) { 4468 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 4469 continue; 4470 } 4471 4472 Builder.SetInsertPoint(IBB->getTerminator()); 4473 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4474 Value *Vec = vectorizeTree(E->getOperand(i)); 4475 NewPhi->addIncoming(Vec, IBB); 4476 } 4477 4478 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 4479 "Invalid number of incoming values"); 4480 return V; 4481 } 4482 4483 case Instruction::ExtractElement: { 4484 Value *V = E->getSingleOperand(0); 4485 Builder.SetInsertPoint(VL0); 4486 ShuffleBuilder.addInversedMask(E->ReorderIndices); 4487 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4488 V = ShuffleBuilder.finalize(V); 4489 E->VectorizedValue = V; 4490 return V; 4491 } 4492 case Instruction::ExtractValue: { 4493 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 4494 Builder.SetInsertPoint(LI); 4495 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 4496 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 4497 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 4498 Value *NewV = propagateMetadata(V, E->Scalars); 4499 ShuffleBuilder.addInversedMask(E->ReorderIndices); 4500 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4501 NewV = ShuffleBuilder.finalize(NewV); 4502 E->VectorizedValue = NewV; 4503 return NewV; 4504 } 4505 case Instruction::ZExt: 4506 case Instruction::SExt: 4507 case Instruction::FPToUI: 4508 case Instruction::FPToSI: 4509 case Instruction::FPExt: 4510 case Instruction::PtrToInt: 4511 case Instruction::IntToPtr: 4512 case Instruction::SIToFP: 4513 case Instruction::UIToFP: 4514 case Instruction::Trunc: 4515 case Instruction::FPTrunc: 4516 case Instruction::BitCast: { 4517 setInsertPointAfterBundle(E); 4518 4519 Value *InVec = vectorizeTree(E->getOperand(0)); 4520 4521 if (E->VectorizedValue) { 4522 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4523 return E->VectorizedValue; 4524 } 4525 4526 auto *CI = cast<CastInst>(VL0); 4527 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 4528 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4529 V = ShuffleBuilder.finalize(V); 4530 4531 E->VectorizedValue = V; 4532 ++NumVectorInstructions; 4533 return V; 4534 } 4535 case Instruction::FCmp: 4536 case Instruction::ICmp: { 4537 setInsertPointAfterBundle(E); 4538 4539 Value *L = vectorizeTree(E->getOperand(0)); 4540 Value *R = vectorizeTree(E->getOperand(1)); 4541 4542 if (E->VectorizedValue) { 4543 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4544 return E->VectorizedValue; 4545 } 4546 4547 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4548 Value *V = Builder.CreateCmp(P0, L, R); 4549 propagateIRFlags(V, E->Scalars, VL0); 4550 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4551 V = ShuffleBuilder.finalize(V); 4552 4553 E->VectorizedValue = V; 4554 ++NumVectorInstructions; 4555 return V; 4556 } 4557 case Instruction::Select: { 4558 setInsertPointAfterBundle(E); 4559 4560 Value *Cond = vectorizeTree(E->getOperand(0)); 4561 Value *True = vectorizeTree(E->getOperand(1)); 4562 Value *False = vectorizeTree(E->getOperand(2)); 4563 4564 if (E->VectorizedValue) { 4565 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4566 return E->VectorizedValue; 4567 } 4568 4569 Value *V = Builder.CreateSelect(Cond, True, False); 4570 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4571 V = ShuffleBuilder.finalize(V); 4572 4573 E->VectorizedValue = V; 4574 ++NumVectorInstructions; 4575 return V; 4576 } 4577 case Instruction::FNeg: { 4578 setInsertPointAfterBundle(E); 4579 4580 Value *Op = vectorizeTree(E->getOperand(0)); 4581 4582 if (E->VectorizedValue) { 4583 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4584 return E->VectorizedValue; 4585 } 4586 4587 Value *V = Builder.CreateUnOp( 4588 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 4589 propagateIRFlags(V, E->Scalars, VL0); 4590 if (auto *I = dyn_cast<Instruction>(V)) 4591 V = propagateMetadata(I, E->Scalars); 4592 4593 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4594 V = ShuffleBuilder.finalize(V); 4595 4596 E->VectorizedValue = V; 4597 ++NumVectorInstructions; 4598 4599 return V; 4600 } 4601 case Instruction::Add: 4602 case Instruction::FAdd: 4603 case Instruction::Sub: 4604 case Instruction::FSub: 4605 case Instruction::Mul: 4606 case Instruction::FMul: 4607 case Instruction::UDiv: 4608 case Instruction::SDiv: 4609 case Instruction::FDiv: 4610 case Instruction::URem: 4611 case Instruction::SRem: 4612 case Instruction::FRem: 4613 case Instruction::Shl: 4614 case Instruction::LShr: 4615 case Instruction::AShr: 4616 case Instruction::And: 4617 case Instruction::Or: 4618 case Instruction::Xor: { 4619 setInsertPointAfterBundle(E); 4620 4621 Value *LHS = vectorizeTree(E->getOperand(0)); 4622 Value *RHS = vectorizeTree(E->getOperand(1)); 4623 4624 if (E->VectorizedValue) { 4625 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4626 return E->VectorizedValue; 4627 } 4628 4629 Value *V = Builder.CreateBinOp( 4630 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 4631 RHS); 4632 propagateIRFlags(V, E->Scalars, VL0); 4633 if (auto *I = dyn_cast<Instruction>(V)) 4634 V = propagateMetadata(I, E->Scalars); 4635 4636 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4637 V = ShuffleBuilder.finalize(V); 4638 4639 E->VectorizedValue = V; 4640 ++NumVectorInstructions; 4641 4642 return V; 4643 } 4644 case Instruction::Load: { 4645 // Loads are inserted at the head of the tree because we don't want to 4646 // sink them all the way down past store instructions. 4647 bool IsReorder = E->updateStateIfReorder(); 4648 if (IsReorder) 4649 VL0 = E->getMainOp(); 4650 setInsertPointAfterBundle(E); 4651 4652 LoadInst *LI = cast<LoadInst>(VL0); 4653 Instruction *NewLI; 4654 unsigned AS = LI->getPointerAddressSpace(); 4655 Value *PO = LI->getPointerOperand(); 4656 if (E->State == TreeEntry::Vectorize) { 4657 4658 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 4659 4660 // The pointer operand uses an in-tree scalar so we add the new BitCast 4661 // to ExternalUses list to make sure that an extract will be generated 4662 // in the future. 4663 if (getTreeEntry(PO)) 4664 ExternalUses.emplace_back(PO, cast<User>(VecPtr), 0); 4665 4666 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 4667 } else { 4668 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 4669 Value *VecPtr = vectorizeTree(E->getOperand(0)); 4670 // Use the minimum alignment of the gathered loads. 4671 Align CommonAlignment = LI->getAlign(); 4672 for (Value *V : E->Scalars) 4673 CommonAlignment = 4674 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 4675 NewLI = Builder.CreateMaskedGather(VecPtr, CommonAlignment); 4676 } 4677 Value *V = propagateMetadata(NewLI, E->Scalars); 4678 4679 ShuffleBuilder.addInversedMask(E->ReorderIndices); 4680 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4681 V = ShuffleBuilder.finalize(V); 4682 E->VectorizedValue = V; 4683 ++NumVectorInstructions; 4684 return V; 4685 } 4686 case Instruction::Store: { 4687 bool IsReorder = !E->ReorderIndices.empty(); 4688 auto *SI = cast<StoreInst>( 4689 IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0); 4690 unsigned AS = SI->getPointerAddressSpace(); 4691 4692 setInsertPointAfterBundle(E); 4693 4694 Value *VecValue = vectorizeTree(E->getOperand(0)); 4695 ShuffleBuilder.addMask(E->ReorderIndices); 4696 VecValue = ShuffleBuilder.finalize(VecValue); 4697 4698 Value *ScalarPtr = SI->getPointerOperand(); 4699 Value *VecPtr = Builder.CreateBitCast( 4700 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 4701 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 4702 SI->getAlign()); 4703 4704 // The pointer operand uses an in-tree scalar, so add the new BitCast to 4705 // ExternalUses to make sure that an extract will be generated in the 4706 // future. 4707 if (getTreeEntry(ScalarPtr)) 4708 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 4709 4710 Value *V = propagateMetadata(ST, E->Scalars); 4711 4712 E->VectorizedValue = V; 4713 ++NumVectorInstructions; 4714 return V; 4715 } 4716 case Instruction::GetElementPtr: { 4717 setInsertPointAfterBundle(E); 4718 4719 Value *Op0 = vectorizeTree(E->getOperand(0)); 4720 4721 std::vector<Value *> OpVecs; 4722 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 4723 ++j) { 4724 ValueList &VL = E->getOperand(j); 4725 // Need to cast all elements to the same type before vectorization to 4726 // avoid crash. 4727 Type *VL0Ty = VL0->getOperand(j)->getType(); 4728 Type *Ty = llvm::all_of( 4729 VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); }) 4730 ? VL0Ty 4731 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4732 ->getPointerOperandType() 4733 ->getScalarType()); 4734 for (Value *&V : VL) { 4735 auto *CI = cast<ConstantInt>(V); 4736 V = ConstantExpr::getIntegerCast(CI, Ty, 4737 CI->getValue().isSignBitSet()); 4738 } 4739 Value *OpVec = vectorizeTree(VL); 4740 OpVecs.push_back(OpVec); 4741 } 4742 4743 Value *V = Builder.CreateGEP( 4744 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 4745 if (Instruction *I = dyn_cast<Instruction>(V)) 4746 V = propagateMetadata(I, E->Scalars); 4747 4748 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4749 V = ShuffleBuilder.finalize(V); 4750 4751 E->VectorizedValue = V; 4752 ++NumVectorInstructions; 4753 4754 return V; 4755 } 4756 case Instruction::Call: { 4757 CallInst *CI = cast<CallInst>(VL0); 4758 setInsertPointAfterBundle(E); 4759 4760 Intrinsic::ID IID = Intrinsic::not_intrinsic; 4761 if (Function *FI = CI->getCalledFunction()) 4762 IID = FI->getIntrinsicID(); 4763 4764 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4765 4766 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 4767 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 4768 VecCallCosts.first <= VecCallCosts.second; 4769 4770 Value *ScalarArg = nullptr; 4771 std::vector<Value *> OpVecs; 4772 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 4773 ValueList OpVL; 4774 // Some intrinsics have scalar arguments. This argument should not be 4775 // vectorized. 4776 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 4777 CallInst *CEI = cast<CallInst>(VL0); 4778 ScalarArg = CEI->getArgOperand(j); 4779 OpVecs.push_back(CEI->getArgOperand(j)); 4780 continue; 4781 } 4782 4783 Value *OpVec = vectorizeTree(E->getOperand(j)); 4784 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 4785 OpVecs.push_back(OpVec); 4786 } 4787 4788 Function *CF; 4789 if (!UseIntrinsic) { 4790 VFShape Shape = 4791 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4792 VecTy->getNumElements())), 4793 false /*HasGlobalPred*/); 4794 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 4795 } else { 4796 Type *Tys[] = {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 4797 CF = Intrinsic::getDeclaration(F->getParent(), ID, Tys); 4798 } 4799 4800 SmallVector<OperandBundleDef, 1> OpBundles; 4801 CI->getOperandBundlesAsDefs(OpBundles); 4802 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 4803 4804 // The scalar argument uses an in-tree scalar so we add the new vectorized 4805 // call to ExternalUses list to make sure that an extract will be 4806 // generated in the future. 4807 if (ScalarArg && getTreeEntry(ScalarArg)) 4808 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 4809 4810 propagateIRFlags(V, E->Scalars, VL0); 4811 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4812 V = ShuffleBuilder.finalize(V); 4813 4814 E->VectorizedValue = V; 4815 ++NumVectorInstructions; 4816 return V; 4817 } 4818 case Instruction::ShuffleVector: { 4819 assert(E->isAltShuffle() && 4820 ((Instruction::isBinaryOp(E->getOpcode()) && 4821 Instruction::isBinaryOp(E->getAltOpcode())) || 4822 (Instruction::isCast(E->getOpcode()) && 4823 Instruction::isCast(E->getAltOpcode()))) && 4824 "Invalid Shuffle Vector Operand"); 4825 4826 Value *LHS = nullptr, *RHS = nullptr; 4827 if (Instruction::isBinaryOp(E->getOpcode())) { 4828 setInsertPointAfterBundle(E); 4829 LHS = vectorizeTree(E->getOperand(0)); 4830 RHS = vectorizeTree(E->getOperand(1)); 4831 } else { 4832 setInsertPointAfterBundle(E); 4833 LHS = vectorizeTree(E->getOperand(0)); 4834 } 4835 4836 if (E->VectorizedValue) { 4837 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4838 return E->VectorizedValue; 4839 } 4840 4841 Value *V0, *V1; 4842 if (Instruction::isBinaryOp(E->getOpcode())) { 4843 V0 = Builder.CreateBinOp( 4844 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 4845 V1 = Builder.CreateBinOp( 4846 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 4847 } else { 4848 V0 = Builder.CreateCast( 4849 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 4850 V1 = Builder.CreateCast( 4851 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 4852 } 4853 4854 // Create shuffle to take alternate operations from the vector. 4855 // Also, gather up main and alt scalar ops to propagate IR flags to 4856 // each vector operation. 4857 ValueList OpScalars, AltScalars; 4858 unsigned e = E->Scalars.size(); 4859 SmallVector<int, 8> Mask(e); 4860 for (unsigned i = 0; i < e; ++i) { 4861 auto *OpInst = cast<Instruction>(E->Scalars[i]); 4862 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 4863 if (OpInst->getOpcode() == E->getAltOpcode()) { 4864 Mask[i] = e + i; 4865 AltScalars.push_back(E->Scalars[i]); 4866 } else { 4867 Mask[i] = i; 4868 OpScalars.push_back(E->Scalars[i]); 4869 } 4870 } 4871 4872 propagateIRFlags(V0, OpScalars); 4873 propagateIRFlags(V1, AltScalars); 4874 4875 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 4876 if (Instruction *I = dyn_cast<Instruction>(V)) 4877 V = propagateMetadata(I, E->Scalars); 4878 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4879 V = ShuffleBuilder.finalize(V); 4880 4881 E->VectorizedValue = V; 4882 ++NumVectorInstructions; 4883 4884 return V; 4885 } 4886 default: 4887 llvm_unreachable("unknown inst"); 4888 } 4889 return nullptr; 4890 } 4891 4892 Value *BoUpSLP::vectorizeTree() { 4893 ExtraValueToDebugLocsMap ExternallyUsedValues; 4894 return vectorizeTree(ExternallyUsedValues); 4895 } 4896 4897 Value * 4898 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 4899 // All blocks must be scheduled before any instructions are inserted. 4900 for (auto &BSIter : BlocksSchedules) { 4901 scheduleBlock(BSIter.second.get()); 4902 } 4903 4904 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4905 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 4906 4907 // If the vectorized tree can be rewritten in a smaller type, we truncate the 4908 // vectorized root. InstCombine will then rewrite the entire expression. We 4909 // sign extend the extracted values below. 4910 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4911 if (MinBWs.count(ScalarRoot)) { 4912 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 4913 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 4914 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 4915 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4916 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 4917 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 4918 VectorizableTree[0]->VectorizedValue = Trunc; 4919 } 4920 4921 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 4922 << " values .\n"); 4923 4924 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 4925 // specified by ScalarType. 4926 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 4927 if (!MinBWs.count(ScalarRoot)) 4928 return Ex; 4929 if (MinBWs[ScalarRoot].second) 4930 return Builder.CreateSExt(Ex, ScalarType); 4931 return Builder.CreateZExt(Ex, ScalarType); 4932 }; 4933 4934 // Extract all of the elements with the external uses. 4935 for (const auto &ExternalUse : ExternalUses) { 4936 Value *Scalar = ExternalUse.Scalar; 4937 llvm::User *User = ExternalUse.User; 4938 4939 // Skip users that we already RAUW. This happens when one instruction 4940 // has multiple uses of the same value. 4941 if (User && !is_contained(Scalar->users(), User)) 4942 continue; 4943 TreeEntry *E = getTreeEntry(Scalar); 4944 assert(E && "Invalid scalar"); 4945 assert(E->State != TreeEntry::NeedToGather && 4946 "Extracting from a gather list"); 4947 4948 Value *Vec = E->VectorizedValue; 4949 assert(Vec && "Can't find vectorizable value"); 4950 4951 Value *Lane = Builder.getInt32(ExternalUse.Lane); 4952 // If User == nullptr, the Scalar is used as extra arg. Generate 4953 // ExtractElement instruction and update the record for this scalar in 4954 // ExternallyUsedValues. 4955 if (!User) { 4956 assert(ExternallyUsedValues.count(Scalar) && 4957 "Scalar with nullptr as an external user must be registered in " 4958 "ExternallyUsedValues map"); 4959 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4960 Builder.SetInsertPoint(VecI->getParent(), 4961 std::next(VecI->getIterator())); 4962 } else { 4963 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4964 } 4965 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4966 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4967 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 4968 auto &Locs = ExternallyUsedValues[Scalar]; 4969 ExternallyUsedValues.insert({Ex, Locs}); 4970 ExternallyUsedValues.erase(Scalar); 4971 // Required to update internally referenced instructions. 4972 Scalar->replaceAllUsesWith(Ex); 4973 continue; 4974 } 4975 4976 // Generate extracts for out-of-tree users. 4977 // Find the insertion point for the extractelement lane. 4978 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4979 if (PHINode *PH = dyn_cast<PHINode>(User)) { 4980 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 4981 if (PH->getIncomingValue(i) == Scalar) { 4982 Instruction *IncomingTerminator = 4983 PH->getIncomingBlock(i)->getTerminator(); 4984 if (isa<CatchSwitchInst>(IncomingTerminator)) { 4985 Builder.SetInsertPoint(VecI->getParent(), 4986 std::next(VecI->getIterator())); 4987 } else { 4988 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 4989 } 4990 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4991 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4992 CSEBlocks.insert(PH->getIncomingBlock(i)); 4993 PH->setOperand(i, Ex); 4994 } 4995 } 4996 } else { 4997 Builder.SetInsertPoint(cast<Instruction>(User)); 4998 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4999 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 5000 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 5001 User->replaceUsesOfWith(Scalar, Ex); 5002 } 5003 } else { 5004 Builder.SetInsertPoint(&F->getEntryBlock().front()); 5005 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 5006 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 5007 CSEBlocks.insert(&F->getEntryBlock()); 5008 User->replaceUsesOfWith(Scalar, Ex); 5009 } 5010 5011 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 5012 } 5013 5014 // For each vectorized value: 5015 for (auto &TEPtr : VectorizableTree) { 5016 TreeEntry *Entry = TEPtr.get(); 5017 5018 // No need to handle users of gathered values. 5019 if (Entry->State == TreeEntry::NeedToGather) 5020 continue; 5021 5022 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 5023 5024 // For each lane: 5025 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 5026 Value *Scalar = Entry->Scalars[Lane]; 5027 5028 #ifndef NDEBUG 5029 Type *Ty = Scalar->getType(); 5030 if (!Ty->isVoidTy()) { 5031 for (User *U : Scalar->users()) { 5032 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 5033 5034 // It is legal to delete users in the ignorelist. 5035 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 5036 "Deleting out-of-tree value"); 5037 } 5038 } 5039 #endif 5040 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 5041 eraseInstruction(cast<Instruction>(Scalar)); 5042 } 5043 } 5044 5045 Builder.ClearInsertionPoint(); 5046 InstrElementSize.clear(); 5047 5048 return VectorizableTree[0]->VectorizedValue; 5049 } 5050 5051 void BoUpSLP::optimizeGatherSequence() { 5052 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 5053 << " gather sequences instructions.\n"); 5054 // LICM InsertElementInst sequences. 5055 for (Instruction *I : GatherSeq) { 5056 if (isDeleted(I)) 5057 continue; 5058 5059 // Check if this block is inside a loop. 5060 Loop *L = LI->getLoopFor(I->getParent()); 5061 if (!L) 5062 continue; 5063 5064 // Check if it has a preheader. 5065 BasicBlock *PreHeader = L->getLoopPreheader(); 5066 if (!PreHeader) 5067 continue; 5068 5069 // If the vector or the element that we insert into it are 5070 // instructions that are defined in this basic block then we can't 5071 // hoist this instruction. 5072 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 5073 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 5074 if (Op0 && L->contains(Op0)) 5075 continue; 5076 if (Op1 && L->contains(Op1)) 5077 continue; 5078 5079 // We can hoist this instruction. Move it to the pre-header. 5080 I->moveBefore(PreHeader->getTerminator()); 5081 } 5082 5083 // Make a list of all reachable blocks in our CSE queue. 5084 SmallVector<const DomTreeNode *, 8> CSEWorkList; 5085 CSEWorkList.reserve(CSEBlocks.size()); 5086 for (BasicBlock *BB : CSEBlocks) 5087 if (DomTreeNode *N = DT->getNode(BB)) { 5088 assert(DT->isReachableFromEntry(N)); 5089 CSEWorkList.push_back(N); 5090 } 5091 5092 // Sort blocks by domination. This ensures we visit a block after all blocks 5093 // dominating it are visited. 5094 llvm::stable_sort(CSEWorkList, 5095 [this](const DomTreeNode *A, const DomTreeNode *B) { 5096 return DT->properlyDominates(A, B); 5097 }); 5098 5099 // Perform O(N^2) search over the gather sequences and merge identical 5100 // instructions. TODO: We can further optimize this scan if we split the 5101 // instructions into different buckets based on the insert lane. 5102 SmallVector<Instruction *, 16> Visited; 5103 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 5104 assert(*I && 5105 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 5106 "Worklist not sorted properly!"); 5107 BasicBlock *BB = (*I)->getBlock(); 5108 // For all instructions in blocks containing gather sequences: 5109 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 5110 Instruction *In = &*it++; 5111 if (isDeleted(In)) 5112 continue; 5113 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 5114 continue; 5115 5116 // Check if we can replace this instruction with any of the 5117 // visited instructions. 5118 for (Instruction *v : Visited) { 5119 if (In->isIdenticalTo(v) && 5120 DT->dominates(v->getParent(), In->getParent())) { 5121 In->replaceAllUsesWith(v); 5122 eraseInstruction(In); 5123 In = nullptr; 5124 break; 5125 } 5126 } 5127 if (In) { 5128 assert(!is_contained(Visited, In)); 5129 Visited.push_back(In); 5130 } 5131 } 5132 } 5133 CSEBlocks.clear(); 5134 GatherSeq.clear(); 5135 } 5136 5137 // Groups the instructions to a bundle (which is then a single scheduling entity) 5138 // and schedules instructions until the bundle gets ready. 5139 Optional<BoUpSLP::ScheduleData *> 5140 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 5141 const InstructionsState &S) { 5142 if (isa<PHINode>(S.OpValue)) 5143 return nullptr; 5144 5145 // Initialize the instruction bundle. 5146 Instruction *OldScheduleEnd = ScheduleEnd; 5147 ScheduleData *PrevInBundle = nullptr; 5148 ScheduleData *Bundle = nullptr; 5149 bool ReSchedule = false; 5150 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 5151 5152 // Make sure that the scheduling region contains all 5153 // instructions of the bundle. 5154 for (Value *V : VL) { 5155 if (!extendSchedulingRegion(V, S)) 5156 return None; 5157 } 5158 5159 for (Value *V : VL) { 5160 ScheduleData *BundleMember = getScheduleData(V); 5161 assert(BundleMember && 5162 "no ScheduleData for bundle member (maybe not in same basic block)"); 5163 if (BundleMember->IsScheduled) { 5164 // A bundle member was scheduled as single instruction before and now 5165 // needs to be scheduled as part of the bundle. We just get rid of the 5166 // existing schedule. 5167 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 5168 << " was already scheduled\n"); 5169 ReSchedule = true; 5170 } 5171 assert(BundleMember->isSchedulingEntity() && 5172 "bundle member already part of other bundle"); 5173 if (PrevInBundle) { 5174 PrevInBundle->NextInBundle = BundleMember; 5175 } else { 5176 Bundle = BundleMember; 5177 } 5178 BundleMember->UnscheduledDepsInBundle = 0; 5179 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 5180 5181 // Group the instructions to a bundle. 5182 BundleMember->FirstInBundle = Bundle; 5183 PrevInBundle = BundleMember; 5184 } 5185 if (ScheduleEnd != OldScheduleEnd) { 5186 // The scheduling region got new instructions at the lower end (or it is a 5187 // new region for the first bundle). This makes it necessary to 5188 // recalculate all dependencies. 5189 // It is seldom that this needs to be done a second time after adding the 5190 // initial bundle to the region. 5191 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 5192 doForAllOpcodes(I, [](ScheduleData *SD) { 5193 SD->clearDependencies(); 5194 }); 5195 } 5196 ReSchedule = true; 5197 } 5198 if (ReSchedule) { 5199 resetSchedule(); 5200 initialFillReadyList(ReadyInsts); 5201 } 5202 assert(Bundle && "Failed to find schedule bundle"); 5203 5204 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 5205 << BB->getName() << "\n"); 5206 5207 calculateDependencies(Bundle, true, SLP); 5208 5209 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 5210 // means that there are no cyclic dependencies and we can schedule it. 5211 // Note that's important that we don't "schedule" the bundle yet (see 5212 // cancelScheduling). 5213 while (!Bundle->isReady() && !ReadyInsts.empty()) { 5214 5215 ScheduleData *pickedSD = ReadyInsts.pop_back_val(); 5216 5217 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 5218 schedule(pickedSD, ReadyInsts); 5219 } 5220 } 5221 if (!Bundle->isReady()) { 5222 cancelScheduling(VL, S.OpValue); 5223 return None; 5224 } 5225 return Bundle; 5226 } 5227 5228 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 5229 Value *OpValue) { 5230 if (isa<PHINode>(OpValue)) 5231 return; 5232 5233 ScheduleData *Bundle = getScheduleData(OpValue); 5234 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 5235 assert(!Bundle->IsScheduled && 5236 "Can't cancel bundle which is already scheduled"); 5237 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 5238 "tried to unbundle something which is not a bundle"); 5239 5240 // Un-bundle: make single instructions out of the bundle. 5241 ScheduleData *BundleMember = Bundle; 5242 while (BundleMember) { 5243 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 5244 BundleMember->FirstInBundle = BundleMember; 5245 ScheduleData *Next = BundleMember->NextInBundle; 5246 BundleMember->NextInBundle = nullptr; 5247 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 5248 if (BundleMember->UnscheduledDepsInBundle == 0) { 5249 ReadyInsts.insert(BundleMember); 5250 } 5251 BundleMember = Next; 5252 } 5253 } 5254 5255 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 5256 // Allocate a new ScheduleData for the instruction. 5257 if (ChunkPos >= ChunkSize) { 5258 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 5259 ChunkPos = 0; 5260 } 5261 return &(ScheduleDataChunks.back()[ChunkPos++]); 5262 } 5263 5264 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 5265 const InstructionsState &S) { 5266 if (getScheduleData(V, isOneOf(S, V))) 5267 return true; 5268 Instruction *I = dyn_cast<Instruction>(V); 5269 assert(I && "bundle member must be an instruction"); 5270 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 5271 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 5272 ScheduleData *ISD = getScheduleData(I); 5273 if (!ISD) 5274 return false; 5275 assert(isInSchedulingRegion(ISD) && 5276 "ScheduleData not in scheduling region"); 5277 ScheduleData *SD = allocateScheduleDataChunks(); 5278 SD->Inst = I; 5279 SD->init(SchedulingRegionID, S.OpValue); 5280 ExtraScheduleDataMap[I][S.OpValue] = SD; 5281 return true; 5282 }; 5283 if (CheckSheduleForI(I)) 5284 return true; 5285 if (!ScheduleStart) { 5286 // It's the first instruction in the new region. 5287 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 5288 ScheduleStart = I; 5289 ScheduleEnd = I->getNextNode(); 5290 if (isOneOf(S, I) != I) 5291 CheckSheduleForI(I); 5292 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5293 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 5294 return true; 5295 } 5296 // Search up and down at the same time, because we don't know if the new 5297 // instruction is above or below the existing scheduling region. 5298 BasicBlock::reverse_iterator UpIter = 5299 ++ScheduleStart->getIterator().getReverse(); 5300 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 5301 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 5302 BasicBlock::iterator LowerEnd = BB->end(); 5303 while (true) { 5304 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 5305 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 5306 return false; 5307 } 5308 5309 if (UpIter != UpperEnd) { 5310 if (&*UpIter == I) { 5311 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 5312 ScheduleStart = I; 5313 if (isOneOf(S, I) != I) 5314 CheckSheduleForI(I); 5315 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 5316 << "\n"); 5317 return true; 5318 } 5319 ++UpIter; 5320 } 5321 if (DownIter != LowerEnd) { 5322 if (&*DownIter == I) { 5323 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 5324 nullptr); 5325 ScheduleEnd = I->getNextNode(); 5326 if (isOneOf(S, I) != I) 5327 CheckSheduleForI(I); 5328 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5329 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I 5330 << "\n"); 5331 return true; 5332 } 5333 ++DownIter; 5334 } 5335 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 5336 "instruction not found in block"); 5337 } 5338 return true; 5339 } 5340 5341 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 5342 Instruction *ToI, 5343 ScheduleData *PrevLoadStore, 5344 ScheduleData *NextLoadStore) { 5345 ScheduleData *CurrentLoadStore = PrevLoadStore; 5346 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 5347 ScheduleData *SD = ScheduleDataMap[I]; 5348 if (!SD) { 5349 SD = allocateScheduleDataChunks(); 5350 ScheduleDataMap[I] = SD; 5351 SD->Inst = I; 5352 } 5353 assert(!isInSchedulingRegion(SD) && 5354 "new ScheduleData already in scheduling region"); 5355 SD->init(SchedulingRegionID, I); 5356 5357 if (I->mayReadOrWriteMemory() && 5358 (!isa<IntrinsicInst>(I) || 5359 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 5360 cast<IntrinsicInst>(I)->getIntrinsicID() != 5361 Intrinsic::pseudoprobe))) { 5362 // Update the linked list of memory accessing instructions. 5363 if (CurrentLoadStore) { 5364 CurrentLoadStore->NextLoadStore = SD; 5365 } else { 5366 FirstLoadStoreInRegion = SD; 5367 } 5368 CurrentLoadStore = SD; 5369 } 5370 } 5371 if (NextLoadStore) { 5372 if (CurrentLoadStore) 5373 CurrentLoadStore->NextLoadStore = NextLoadStore; 5374 } else { 5375 LastLoadStoreInRegion = CurrentLoadStore; 5376 } 5377 } 5378 5379 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 5380 bool InsertInReadyList, 5381 BoUpSLP *SLP) { 5382 assert(SD->isSchedulingEntity()); 5383 5384 SmallVector<ScheduleData *, 10> WorkList; 5385 WorkList.push_back(SD); 5386 5387 while (!WorkList.empty()) { 5388 ScheduleData *SD = WorkList.pop_back_val(); 5389 5390 ScheduleData *BundleMember = SD; 5391 while (BundleMember) { 5392 assert(isInSchedulingRegion(BundleMember)); 5393 if (!BundleMember->hasValidDependencies()) { 5394 5395 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 5396 << "\n"); 5397 BundleMember->Dependencies = 0; 5398 BundleMember->resetUnscheduledDeps(); 5399 5400 // Handle def-use chain dependencies. 5401 if (BundleMember->OpValue != BundleMember->Inst) { 5402 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 5403 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5404 BundleMember->Dependencies++; 5405 ScheduleData *DestBundle = UseSD->FirstInBundle; 5406 if (!DestBundle->IsScheduled) 5407 BundleMember->incrementUnscheduledDeps(1); 5408 if (!DestBundle->hasValidDependencies()) 5409 WorkList.push_back(DestBundle); 5410 } 5411 } else { 5412 for (User *U : BundleMember->Inst->users()) { 5413 if (isa<Instruction>(U)) { 5414 ScheduleData *UseSD = getScheduleData(U); 5415 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5416 BundleMember->Dependencies++; 5417 ScheduleData *DestBundle = UseSD->FirstInBundle; 5418 if (!DestBundle->IsScheduled) 5419 BundleMember->incrementUnscheduledDeps(1); 5420 if (!DestBundle->hasValidDependencies()) 5421 WorkList.push_back(DestBundle); 5422 } 5423 } else { 5424 // I'm not sure if this can ever happen. But we need to be safe. 5425 // This lets the instruction/bundle never be scheduled and 5426 // eventually disable vectorization. 5427 BundleMember->Dependencies++; 5428 BundleMember->incrementUnscheduledDeps(1); 5429 } 5430 } 5431 } 5432 5433 // Handle the memory dependencies. 5434 ScheduleData *DepDest = BundleMember->NextLoadStore; 5435 if (DepDest) { 5436 Instruction *SrcInst = BundleMember->Inst; 5437 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 5438 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 5439 unsigned numAliased = 0; 5440 unsigned DistToSrc = 1; 5441 5442 while (DepDest) { 5443 assert(isInSchedulingRegion(DepDest)); 5444 5445 // We have two limits to reduce the complexity: 5446 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 5447 // SLP->isAliased (which is the expensive part in this loop). 5448 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 5449 // the whole loop (even if the loop is fast, it's quadratic). 5450 // It's important for the loop break condition (see below) to 5451 // check this limit even between two read-only instructions. 5452 if (DistToSrc >= MaxMemDepDistance || 5453 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 5454 (numAliased >= AliasedCheckLimit || 5455 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 5456 5457 // We increment the counter only if the locations are aliased 5458 // (instead of counting all alias checks). This gives a better 5459 // balance between reduced runtime and accurate dependencies. 5460 numAliased++; 5461 5462 DepDest->MemoryDependencies.push_back(BundleMember); 5463 BundleMember->Dependencies++; 5464 ScheduleData *DestBundle = DepDest->FirstInBundle; 5465 if (!DestBundle->IsScheduled) { 5466 BundleMember->incrementUnscheduledDeps(1); 5467 } 5468 if (!DestBundle->hasValidDependencies()) { 5469 WorkList.push_back(DestBundle); 5470 } 5471 } 5472 DepDest = DepDest->NextLoadStore; 5473 5474 // Example, explaining the loop break condition: Let's assume our 5475 // starting instruction is i0 and MaxMemDepDistance = 3. 5476 // 5477 // +--------v--v--v 5478 // i0,i1,i2,i3,i4,i5,i6,i7,i8 5479 // +--------^--^--^ 5480 // 5481 // MaxMemDepDistance let us stop alias-checking at i3 and we add 5482 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 5483 // Previously we already added dependencies from i3 to i6,i7,i8 5484 // (because of MaxMemDepDistance). As we added a dependency from 5485 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 5486 // and we can abort this loop at i6. 5487 if (DistToSrc >= 2 * MaxMemDepDistance) 5488 break; 5489 DistToSrc++; 5490 } 5491 } 5492 } 5493 BundleMember = BundleMember->NextInBundle; 5494 } 5495 if (InsertInReadyList && SD->isReady()) { 5496 ReadyInsts.push_back(SD); 5497 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 5498 << "\n"); 5499 } 5500 } 5501 } 5502 5503 void BoUpSLP::BlockScheduling::resetSchedule() { 5504 assert(ScheduleStart && 5505 "tried to reset schedule on block which has not been scheduled"); 5506 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 5507 doForAllOpcodes(I, [&](ScheduleData *SD) { 5508 assert(isInSchedulingRegion(SD) && 5509 "ScheduleData not in scheduling region"); 5510 SD->IsScheduled = false; 5511 SD->resetUnscheduledDeps(); 5512 }); 5513 } 5514 ReadyInsts.clear(); 5515 } 5516 5517 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 5518 if (!BS->ScheduleStart) 5519 return; 5520 5521 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 5522 5523 BS->resetSchedule(); 5524 5525 // For the real scheduling we use a more sophisticated ready-list: it is 5526 // sorted by the original instruction location. This lets the final schedule 5527 // be as close as possible to the original instruction order. 5528 struct ScheduleDataCompare { 5529 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 5530 return SD2->SchedulingPriority < SD1->SchedulingPriority; 5531 } 5532 }; 5533 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 5534 5535 // Ensure that all dependency data is updated and fill the ready-list with 5536 // initial instructions. 5537 int Idx = 0; 5538 int NumToSchedule = 0; 5539 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 5540 I = I->getNextNode()) { 5541 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 5542 assert(SD->isPartOfBundle() == 5543 (getTreeEntry(SD->Inst) != nullptr) && 5544 "scheduler and vectorizer bundle mismatch"); 5545 SD->FirstInBundle->SchedulingPriority = Idx++; 5546 if (SD->isSchedulingEntity()) { 5547 BS->calculateDependencies(SD, false, this); 5548 NumToSchedule++; 5549 } 5550 }); 5551 } 5552 BS->initialFillReadyList(ReadyInsts); 5553 5554 Instruction *LastScheduledInst = BS->ScheduleEnd; 5555 5556 // Do the "real" scheduling. 5557 while (!ReadyInsts.empty()) { 5558 ScheduleData *picked = *ReadyInsts.begin(); 5559 ReadyInsts.erase(ReadyInsts.begin()); 5560 5561 // Move the scheduled instruction(s) to their dedicated places, if not 5562 // there yet. 5563 ScheduleData *BundleMember = picked; 5564 while (BundleMember) { 5565 Instruction *pickedInst = BundleMember->Inst; 5566 if (LastScheduledInst->getNextNode() != pickedInst) { 5567 BS->BB->getInstList().remove(pickedInst); 5568 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 5569 pickedInst); 5570 } 5571 LastScheduledInst = pickedInst; 5572 BundleMember = BundleMember->NextInBundle; 5573 } 5574 5575 BS->schedule(picked, ReadyInsts); 5576 NumToSchedule--; 5577 } 5578 assert(NumToSchedule == 0 && "could not schedule all instructions"); 5579 5580 // Avoid duplicate scheduling of the block. 5581 BS->ScheduleStart = nullptr; 5582 } 5583 5584 unsigned BoUpSLP::getVectorElementSize(Value *V) { 5585 // If V is a store, just return the width of the stored value (or value 5586 // truncated just before storing) without traversing the expression tree. 5587 // This is the common case. 5588 if (auto *Store = dyn_cast<StoreInst>(V)) { 5589 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 5590 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 5591 else 5592 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 5593 } 5594 5595 auto E = InstrElementSize.find(V); 5596 if (E != InstrElementSize.end()) 5597 return E->second; 5598 5599 // If V is not a store, we can traverse the expression tree to find loads 5600 // that feed it. The type of the loaded value may indicate a more suitable 5601 // width than V's type. We want to base the vector element size on the width 5602 // of memory operations where possible. 5603 SmallVector<Instruction *, 16> Worklist; 5604 SmallPtrSet<Instruction *, 16> Visited; 5605 if (auto *I = dyn_cast<Instruction>(V)) { 5606 Worklist.push_back(I); 5607 Visited.insert(I); 5608 } 5609 5610 // Traverse the expression tree in bottom-up order looking for loads. If we 5611 // encounter an instruction we don't yet handle, we give up. 5612 auto MaxWidth = 0u; 5613 auto FoundUnknownInst = false; 5614 while (!Worklist.empty() && !FoundUnknownInst) { 5615 auto *I = Worklist.pop_back_val(); 5616 5617 // We should only be looking at scalar instructions here. If the current 5618 // instruction has a vector type, give up. 5619 auto *Ty = I->getType(); 5620 if (isa<VectorType>(Ty)) 5621 FoundUnknownInst = true; 5622 5623 // If the current instruction is a load, update MaxWidth to reflect the 5624 // width of the loaded value. 5625 else if (isa<LoadInst>(I)) 5626 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 5627 5628 // Otherwise, we need to visit the operands of the instruction. We only 5629 // handle the interesting cases from buildTree here. If an operand is an 5630 // instruction we haven't yet visited, we add it to the worklist. 5631 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5632 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 5633 for (Use &U : I->operands()) 5634 if (auto *J = dyn_cast<Instruction>(U.get())) 5635 if (Visited.insert(J).second) 5636 Worklist.push_back(J); 5637 } 5638 5639 // If we don't yet handle the instruction, give up. 5640 else 5641 FoundUnknownInst = true; 5642 } 5643 5644 int Width = MaxWidth; 5645 // If we didn't encounter a memory access in the expression tree, or if we 5646 // gave up for some reason, just return the width of V. Otherwise, return the 5647 // maximum width we found. 5648 if (!MaxWidth || FoundUnknownInst) 5649 Width = DL->getTypeSizeInBits(V->getType()); 5650 5651 for (Instruction *I : Visited) 5652 InstrElementSize[I] = Width; 5653 5654 return Width; 5655 } 5656 5657 // Determine if a value V in a vectorizable expression Expr can be demoted to a 5658 // smaller type with a truncation. We collect the values that will be demoted 5659 // in ToDemote and additional roots that require investigating in Roots. 5660 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 5661 SmallVectorImpl<Value *> &ToDemote, 5662 SmallVectorImpl<Value *> &Roots) { 5663 // We can always demote constants. 5664 if (isa<Constant>(V)) { 5665 ToDemote.push_back(V); 5666 return true; 5667 } 5668 5669 // If the value is not an instruction in the expression with only one use, it 5670 // cannot be demoted. 5671 auto *I = dyn_cast<Instruction>(V); 5672 if (!I || !I->hasOneUse() || !Expr.count(I)) 5673 return false; 5674 5675 switch (I->getOpcode()) { 5676 5677 // We can always demote truncations and extensions. Since truncations can 5678 // seed additional demotion, we save the truncated value. 5679 case Instruction::Trunc: 5680 Roots.push_back(I->getOperand(0)); 5681 break; 5682 case Instruction::ZExt: 5683 case Instruction::SExt: 5684 break; 5685 5686 // We can demote certain binary operations if we can demote both of their 5687 // operands. 5688 case Instruction::Add: 5689 case Instruction::Sub: 5690 case Instruction::Mul: 5691 case Instruction::And: 5692 case Instruction::Or: 5693 case Instruction::Xor: 5694 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 5695 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 5696 return false; 5697 break; 5698 5699 // We can demote selects if we can demote their true and false values. 5700 case Instruction::Select: { 5701 SelectInst *SI = cast<SelectInst>(I); 5702 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 5703 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 5704 return false; 5705 break; 5706 } 5707 5708 // We can demote phis if we can demote all their incoming operands. Note that 5709 // we don't need to worry about cycles since we ensure single use above. 5710 case Instruction::PHI: { 5711 PHINode *PN = cast<PHINode>(I); 5712 for (Value *IncValue : PN->incoming_values()) 5713 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 5714 return false; 5715 break; 5716 } 5717 5718 // Otherwise, conservatively give up. 5719 default: 5720 return false; 5721 } 5722 5723 // Record the value that we can demote. 5724 ToDemote.push_back(V); 5725 return true; 5726 } 5727 5728 void BoUpSLP::computeMinimumValueSizes() { 5729 // If there are no external uses, the expression tree must be rooted by a 5730 // store. We can't demote in-memory values, so there is nothing to do here. 5731 if (ExternalUses.empty()) 5732 return; 5733 5734 // We only attempt to truncate integer expressions. 5735 auto &TreeRoot = VectorizableTree[0]->Scalars; 5736 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 5737 if (!TreeRootIT) 5738 return; 5739 5740 // If the expression is not rooted by a store, these roots should have 5741 // external uses. We will rely on InstCombine to rewrite the expression in 5742 // the narrower type. However, InstCombine only rewrites single-use values. 5743 // This means that if a tree entry other than a root is used externally, it 5744 // must have multiple uses and InstCombine will not rewrite it. The code 5745 // below ensures that only the roots are used externally. 5746 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 5747 for (auto &EU : ExternalUses) 5748 if (!Expr.erase(EU.Scalar)) 5749 return; 5750 if (!Expr.empty()) 5751 return; 5752 5753 // Collect the scalar values of the vectorizable expression. We will use this 5754 // context to determine which values can be demoted. If we see a truncation, 5755 // we mark it as seeding another demotion. 5756 for (auto &EntryPtr : VectorizableTree) 5757 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 5758 5759 // Ensure the roots of the vectorizable tree don't form a cycle. They must 5760 // have a single external user that is not in the vectorizable tree. 5761 for (auto *Root : TreeRoot) 5762 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 5763 return; 5764 5765 // Conservatively determine if we can actually truncate the roots of the 5766 // expression. Collect the values that can be demoted in ToDemote and 5767 // additional roots that require investigating in Roots. 5768 SmallVector<Value *, 32> ToDemote; 5769 SmallVector<Value *, 4> Roots; 5770 for (auto *Root : TreeRoot) 5771 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 5772 return; 5773 5774 // The maximum bit width required to represent all the values that can be 5775 // demoted without loss of precision. It would be safe to truncate the roots 5776 // of the expression to this width. 5777 auto MaxBitWidth = 8u; 5778 5779 // We first check if all the bits of the roots are demanded. If they're not, 5780 // we can truncate the roots to this narrower type. 5781 for (auto *Root : TreeRoot) { 5782 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 5783 MaxBitWidth = std::max<unsigned>( 5784 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 5785 } 5786 5787 // True if the roots can be zero-extended back to their original type, rather 5788 // than sign-extended. We know that if the leading bits are not demanded, we 5789 // can safely zero-extend. So we initialize IsKnownPositive to True. 5790 bool IsKnownPositive = true; 5791 5792 // If all the bits of the roots are demanded, we can try a little harder to 5793 // compute a narrower type. This can happen, for example, if the roots are 5794 // getelementptr indices. InstCombine promotes these indices to the pointer 5795 // width. Thus, all their bits are technically demanded even though the 5796 // address computation might be vectorized in a smaller type. 5797 // 5798 // We start by looking at each entry that can be demoted. We compute the 5799 // maximum bit width required to store the scalar by using ValueTracking to 5800 // compute the number of high-order bits we can truncate. 5801 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 5802 llvm::all_of(TreeRoot, [](Value *R) { 5803 assert(R->hasOneUse() && "Root should have only one use!"); 5804 return isa<GetElementPtrInst>(R->user_back()); 5805 })) { 5806 MaxBitWidth = 8u; 5807 5808 // Determine if the sign bit of all the roots is known to be zero. If not, 5809 // IsKnownPositive is set to False. 5810 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 5811 KnownBits Known = computeKnownBits(R, *DL); 5812 return Known.isNonNegative(); 5813 }); 5814 5815 // Determine the maximum number of bits required to store the scalar 5816 // values. 5817 for (auto *Scalar : ToDemote) { 5818 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 5819 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 5820 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 5821 } 5822 5823 // If we can't prove that the sign bit is zero, we must add one to the 5824 // maximum bit width to account for the unknown sign bit. This preserves 5825 // the existing sign bit so we can safely sign-extend the root back to the 5826 // original type. Otherwise, if we know the sign bit is zero, we will 5827 // zero-extend the root instead. 5828 // 5829 // FIXME: This is somewhat suboptimal, as there will be cases where adding 5830 // one to the maximum bit width will yield a larger-than-necessary 5831 // type. In general, we need to add an extra bit only if we can't 5832 // prove that the upper bit of the original type is equal to the 5833 // upper bit of the proposed smaller type. If these two bits are the 5834 // same (either zero or one) we know that sign-extending from the 5835 // smaller type will result in the same value. Here, since we can't 5836 // yet prove this, we are just making the proposed smaller type 5837 // larger to ensure correctness. 5838 if (!IsKnownPositive) 5839 ++MaxBitWidth; 5840 } 5841 5842 // Round MaxBitWidth up to the next power-of-two. 5843 if (!isPowerOf2_64(MaxBitWidth)) 5844 MaxBitWidth = NextPowerOf2(MaxBitWidth); 5845 5846 // If the maximum bit width we compute is less than the with of the roots' 5847 // type, we can proceed with the narrowing. Otherwise, do nothing. 5848 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 5849 return; 5850 5851 // If we can truncate the root, we must collect additional values that might 5852 // be demoted as a result. That is, those seeded by truncations we will 5853 // modify. 5854 while (!Roots.empty()) 5855 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 5856 5857 // Finally, map the values we can demote to the maximum bit with we computed. 5858 for (auto *Scalar : ToDemote) 5859 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 5860 } 5861 5862 namespace { 5863 5864 /// The SLPVectorizer Pass. 5865 struct SLPVectorizer : public FunctionPass { 5866 SLPVectorizerPass Impl; 5867 5868 /// Pass identification, replacement for typeid 5869 static char ID; 5870 5871 explicit SLPVectorizer() : FunctionPass(ID) { 5872 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 5873 } 5874 5875 bool doInitialization(Module &M) override { 5876 return false; 5877 } 5878 5879 bool runOnFunction(Function &F) override { 5880 if (skipFunction(F)) 5881 return false; 5882 5883 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5884 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 5885 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 5886 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 5887 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 5888 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5889 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5890 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 5891 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 5892 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 5893 5894 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5895 } 5896 5897 void getAnalysisUsage(AnalysisUsage &AU) const override { 5898 FunctionPass::getAnalysisUsage(AU); 5899 AU.addRequired<AssumptionCacheTracker>(); 5900 AU.addRequired<ScalarEvolutionWrapperPass>(); 5901 AU.addRequired<AAResultsWrapperPass>(); 5902 AU.addRequired<TargetTransformInfoWrapperPass>(); 5903 AU.addRequired<LoopInfoWrapperPass>(); 5904 AU.addRequired<DominatorTreeWrapperPass>(); 5905 AU.addRequired<DemandedBitsWrapperPass>(); 5906 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 5907 AU.addRequired<InjectTLIMappingsLegacy>(); 5908 AU.addPreserved<LoopInfoWrapperPass>(); 5909 AU.addPreserved<DominatorTreeWrapperPass>(); 5910 AU.addPreserved<AAResultsWrapperPass>(); 5911 AU.addPreserved<GlobalsAAWrapperPass>(); 5912 AU.setPreservesCFG(); 5913 } 5914 }; 5915 5916 } // end anonymous namespace 5917 5918 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 5919 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 5920 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 5921 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 5922 auto *AA = &AM.getResult<AAManager>(F); 5923 auto *LI = &AM.getResult<LoopAnalysis>(F); 5924 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 5925 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 5926 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 5927 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 5928 5929 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5930 if (!Changed) 5931 return PreservedAnalyses::all(); 5932 5933 PreservedAnalyses PA; 5934 PA.preserveSet<CFGAnalyses>(); 5935 PA.preserve<AAManager>(); 5936 PA.preserve<GlobalsAA>(); 5937 return PA; 5938 } 5939 5940 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 5941 TargetTransformInfo *TTI_, 5942 TargetLibraryInfo *TLI_, AAResults *AA_, 5943 LoopInfo *LI_, DominatorTree *DT_, 5944 AssumptionCache *AC_, DemandedBits *DB_, 5945 OptimizationRemarkEmitter *ORE_) { 5946 if (!RunSLPVectorization) 5947 return false; 5948 SE = SE_; 5949 TTI = TTI_; 5950 TLI = TLI_; 5951 AA = AA_; 5952 LI = LI_; 5953 DT = DT_; 5954 AC = AC_; 5955 DB = DB_; 5956 DL = &F.getParent()->getDataLayout(); 5957 5958 Stores.clear(); 5959 GEPs.clear(); 5960 bool Changed = false; 5961 5962 // If the target claims to have no vector registers don't attempt 5963 // vectorization. 5964 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 5965 return false; 5966 5967 // Don't vectorize when the attribute NoImplicitFloat is used. 5968 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 5969 return false; 5970 5971 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 5972 5973 // Use the bottom up slp vectorizer to construct chains that start with 5974 // store instructions. 5975 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 5976 5977 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 5978 // delete instructions. 5979 5980 // Scan the blocks in the function in post order. 5981 for (auto BB : post_order(&F.getEntryBlock())) { 5982 collectSeedInstructions(BB); 5983 5984 // Vectorize trees that end at stores. 5985 if (!Stores.empty()) { 5986 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 5987 << " underlying objects.\n"); 5988 Changed |= vectorizeStoreChains(R); 5989 } 5990 5991 // Vectorize trees that end at reductions. 5992 Changed |= vectorizeChainsInBlock(BB, R); 5993 5994 // Vectorize the index computations of getelementptr instructions. This 5995 // is primarily intended to catch gather-like idioms ending at 5996 // non-consecutive loads. 5997 if (!GEPs.empty()) { 5998 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 5999 << " underlying objects.\n"); 6000 Changed |= vectorizeGEPIndices(BB, R); 6001 } 6002 } 6003 6004 if (Changed) { 6005 R.optimizeGatherSequence(); 6006 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 6007 } 6008 return Changed; 6009 } 6010 6011 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 6012 unsigned Idx) { 6013 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 6014 << "\n"); 6015 const unsigned Sz = R.getVectorElementSize(Chain[0]); 6016 const unsigned MinVF = R.getMinVecRegSize() / Sz; 6017 unsigned VF = Chain.size(); 6018 6019 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 6020 return false; 6021 6022 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 6023 << "\n"); 6024 6025 R.buildTree(Chain); 6026 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 6027 // TODO: Handle orders of size less than number of elements in the vector. 6028 if (Order && Order->size() == Chain.size()) { 6029 // TODO: reorder tree nodes without tree rebuilding. 6030 SmallVector<Value *, 4> ReorderedOps(Chain.rbegin(), Chain.rend()); 6031 llvm::transform(*Order, ReorderedOps.begin(), 6032 [Chain](const unsigned Idx) { return Chain[Idx]; }); 6033 R.buildTree(ReorderedOps); 6034 } 6035 if (R.isTreeTinyAndNotFullyVectorizable()) 6036 return false; 6037 if (R.isLoadCombineCandidate()) 6038 return false; 6039 6040 R.computeMinimumValueSizes(); 6041 6042 InstructionCost Cost = R.getTreeCost(); 6043 6044 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 6045 if (Cost < -SLPCostThreshold) { 6046 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 6047 6048 using namespace ore; 6049 6050 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 6051 cast<StoreInst>(Chain[0])) 6052 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 6053 << " and with tree size " 6054 << NV("TreeSize", R.getTreeSize())); 6055 6056 R.vectorizeTree(); 6057 return true; 6058 } 6059 6060 return false; 6061 } 6062 6063 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 6064 BoUpSLP &R) { 6065 // We may run into multiple chains that merge into a single chain. We mark the 6066 // stores that we vectorized so that we don't visit the same store twice. 6067 BoUpSLP::ValueSet VectorizedStores; 6068 bool Changed = false; 6069 6070 int E = Stores.size(); 6071 SmallBitVector Tails(E, false); 6072 SmallVector<int, 16> ConsecutiveChain(E, E + 1); 6073 int MaxIter = MaxStoreLookup.getValue(); 6074 int IterCnt; 6075 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 6076 &ConsecutiveChain](int K, int Idx) { 6077 if (IterCnt >= MaxIter) 6078 return true; 6079 ++IterCnt; 6080 if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) 6081 return false; 6082 6083 Tails.set(Idx); 6084 ConsecutiveChain[K] = Idx; 6085 return true; 6086 }; 6087 // Do a quadratic search on all of the given stores in reverse order and find 6088 // all of the pairs of stores that follow each other. 6089 for (int Idx = E - 1; Idx >= 0; --Idx) { 6090 // If a store has multiple consecutive store candidates, search according 6091 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 6092 // This is because usually pairing with immediate succeeding or preceding 6093 // candidate create the best chance to find slp vectorization opportunity. 6094 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 6095 IterCnt = 0; 6096 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 6097 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 6098 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 6099 break; 6100 } 6101 6102 // For stores that start but don't end a link in the chain: 6103 for (int Cnt = E; Cnt > 0; --Cnt) { 6104 int I = Cnt - 1; 6105 if (ConsecutiveChain[I] == E + 1 || Tails.test(I)) 6106 continue; 6107 // We found a store instr that starts a chain. Now follow the chain and try 6108 // to vectorize it. 6109 BoUpSLP::ValueList Operands; 6110 // Collect the chain into a list. 6111 while (I != E + 1 && !VectorizedStores.count(Stores[I])) { 6112 Operands.push_back(Stores[I]); 6113 // Move to the next value in the chain. 6114 I = ConsecutiveChain[I]; 6115 } 6116 6117 // If a vector register can't hold 1 element, we are done. 6118 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 6119 unsigned EltSize = R.getVectorElementSize(Operands[0]); 6120 if (MaxVecRegSize % EltSize != 0) 6121 continue; 6122 6123 unsigned MaxElts = MaxVecRegSize / EltSize; 6124 // FIXME: Is division-by-2 the correct step? Should we assert that the 6125 // register size is a power-of-2? 6126 unsigned StartIdx = 0; 6127 for (unsigned Size = llvm::PowerOf2Ceil(MaxElts); Size >= 2; Size /= 2) { 6128 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 6129 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 6130 if (!VectorizedStores.count(Slice.front()) && 6131 !VectorizedStores.count(Slice.back()) && 6132 vectorizeStoreChain(Slice, R, Cnt)) { 6133 // Mark the vectorized stores so that we don't vectorize them again. 6134 VectorizedStores.insert(Slice.begin(), Slice.end()); 6135 Changed = true; 6136 // If we vectorized initial block, no need to try to vectorize it 6137 // again. 6138 if (Cnt == StartIdx) 6139 StartIdx += Size; 6140 Cnt += Size; 6141 continue; 6142 } 6143 ++Cnt; 6144 } 6145 // Check if the whole array was vectorized already - exit. 6146 if (StartIdx >= Operands.size()) 6147 break; 6148 } 6149 } 6150 6151 return Changed; 6152 } 6153 6154 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 6155 // Initialize the collections. We will make a single pass over the block. 6156 Stores.clear(); 6157 GEPs.clear(); 6158 6159 // Visit the store and getelementptr instructions in BB and organize them in 6160 // Stores and GEPs according to the underlying objects of their pointer 6161 // operands. 6162 for (Instruction &I : *BB) { 6163 // Ignore store instructions that are volatile or have a pointer operand 6164 // that doesn't point to a scalar type. 6165 if (auto *SI = dyn_cast<StoreInst>(&I)) { 6166 if (!SI->isSimple()) 6167 continue; 6168 if (!isValidElementType(SI->getValueOperand()->getType())) 6169 continue; 6170 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 6171 } 6172 6173 // Ignore getelementptr instructions that have more than one index, a 6174 // constant index, or a pointer operand that doesn't point to a scalar 6175 // type. 6176 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 6177 auto Idx = GEP->idx_begin()->get(); 6178 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 6179 continue; 6180 if (!isValidElementType(Idx->getType())) 6181 continue; 6182 if (GEP->getType()->isVectorTy()) 6183 continue; 6184 GEPs[GEP->getPointerOperand()].push_back(GEP); 6185 } 6186 } 6187 } 6188 6189 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 6190 if (!A || !B) 6191 return false; 6192 Value *VL[] = {A, B}; 6193 return tryToVectorizeList(VL, R, /*AllowReorder=*/true); 6194 } 6195 6196 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 6197 bool AllowReorder, 6198 ArrayRef<Value *> InsertUses) { 6199 if (VL.size() < 2) 6200 return false; 6201 6202 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 6203 << VL.size() << ".\n"); 6204 6205 // Check that all of the parts are instructions of the same type, 6206 // we permit an alternate opcode via InstructionsState. 6207 InstructionsState S = getSameOpcode(VL); 6208 if (!S.getOpcode()) 6209 return false; 6210 6211 Instruction *I0 = cast<Instruction>(S.OpValue); 6212 // Make sure invalid types (including vector type) are rejected before 6213 // determining vectorization factor for scalar instructions. 6214 for (Value *V : VL) { 6215 Type *Ty = V->getType(); 6216 if (!isValidElementType(Ty)) { 6217 // NOTE: the following will give user internal llvm type name, which may 6218 // not be useful. 6219 R.getORE()->emit([&]() { 6220 std::string type_str; 6221 llvm::raw_string_ostream rso(type_str); 6222 Ty->print(rso); 6223 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 6224 << "Cannot SLP vectorize list: type " 6225 << rso.str() + " is unsupported by vectorizer"; 6226 }); 6227 return false; 6228 } 6229 } 6230 6231 unsigned Sz = R.getVectorElementSize(I0); 6232 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 6233 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 6234 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 6235 if (MaxVF < 2) { 6236 R.getORE()->emit([&]() { 6237 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 6238 << "Cannot SLP vectorize list: vectorization factor " 6239 << "less than 2 is not supported"; 6240 }); 6241 return false; 6242 } 6243 6244 bool Changed = false; 6245 bool CandidateFound = false; 6246 InstructionCost MinCost = SLPCostThreshold.getValue(); 6247 6248 bool CompensateUseCost = 6249 !InsertUses.empty() && llvm::all_of(InsertUses, [](const Value *V) { 6250 return V && isa<InsertElementInst>(V); 6251 }); 6252 assert((!CompensateUseCost || InsertUses.size() == VL.size()) && 6253 "Each scalar expected to have an associated InsertElement user."); 6254 6255 unsigned NextInst = 0, MaxInst = VL.size(); 6256 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 6257 // No actual vectorization should happen, if number of parts is the same as 6258 // provided vectorization factor (i.e. the scalar type is used for vector 6259 // code during codegen). 6260 auto *VecTy = FixedVectorType::get(VL[0]->getType(), VF); 6261 if (TTI->getNumberOfParts(VecTy) == VF) 6262 continue; 6263 for (unsigned I = NextInst; I < MaxInst; ++I) { 6264 unsigned OpsWidth = 0; 6265 6266 if (I + VF > MaxInst) 6267 OpsWidth = MaxInst - I; 6268 else 6269 OpsWidth = VF; 6270 6271 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 6272 break; 6273 6274 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 6275 // Check that a previous iteration of this loop did not delete the Value. 6276 if (llvm::any_of(Ops, [&R](Value *V) { 6277 auto *I = dyn_cast<Instruction>(V); 6278 return I && R.isDeleted(I); 6279 })) 6280 continue; 6281 6282 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 6283 << "\n"); 6284 6285 R.buildTree(Ops); 6286 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 6287 // TODO: check if we can allow reordering for more cases. 6288 if (AllowReorder && Order) { 6289 // TODO: reorder tree nodes without tree rebuilding. 6290 // Conceptually, there is nothing actually preventing us from trying to 6291 // reorder a larger list. In fact, we do exactly this when vectorizing 6292 // reductions. However, at this point, we only expect to get here when 6293 // there are exactly two operations. 6294 assert(Ops.size() == 2); 6295 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 6296 R.buildTree(ReorderedOps, None); 6297 } 6298 if (R.isTreeTinyAndNotFullyVectorizable()) 6299 continue; 6300 6301 R.computeMinimumValueSizes(); 6302 InstructionCost Cost = R.getTreeCost(); 6303 CandidateFound = true; 6304 if (CompensateUseCost) { 6305 // TODO: Use TTI's getScalarizationOverhead for sequence of inserts 6306 // rather than sum of single inserts as the latter may overestimate 6307 // cost. This work should imply improving cost estimation for extracts 6308 // that added in for external (for vectorization tree) users,i.e. that 6309 // part should also switch to same interface. 6310 // For example, the following case is projected code after SLP: 6311 // %4 = extractelement <4 x i64> %3, i32 0 6312 // %v0 = insertelement <4 x i64> poison, i64 %4, i32 0 6313 // %5 = extractelement <4 x i64> %3, i32 1 6314 // %v1 = insertelement <4 x i64> %v0, i64 %5, i32 1 6315 // %6 = extractelement <4 x i64> %3, i32 2 6316 // %v2 = insertelement <4 x i64> %v1, i64 %6, i32 2 6317 // %7 = extractelement <4 x i64> %3, i32 3 6318 // %v3 = insertelement <4 x i64> %v2, i64 %7, i32 3 6319 // 6320 // Extracts here added by SLP in order to feed users (the inserts) of 6321 // original scalars and contribute to "ExtractCost" at cost evaluation. 6322 // The inserts in turn form sequence to build an aggregate that 6323 // detected by findBuildAggregate routine. 6324 // SLP makes an assumption that such sequence will be optimized away 6325 // later (instcombine) so it tries to compensate ExctractCost with 6326 // cost of insert sequence. 6327 // Current per element cost calculation approach is not quite accurate 6328 // and tends to create bias toward favoring vectorization. 6329 // Switching to the TTI interface might help a bit. 6330 // Alternative solution could be pattern-match to detect a no-op or 6331 // shuffle. 6332 InstructionCost UserCost = 0; 6333 for (unsigned Lane = 0; Lane < OpsWidth; Lane++) { 6334 auto *IE = cast<InsertElementInst>(InsertUses[I + Lane]); 6335 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) 6336 UserCost += TTI->getVectorInstrCost( 6337 Instruction::InsertElement, IE->getType(), CI->getZExtValue()); 6338 } 6339 LLVM_DEBUG(dbgs() << "SLP: Compensate cost of users by: " << UserCost 6340 << ".\n"); 6341 Cost -= UserCost; 6342 } 6343 6344 MinCost = std::min(MinCost, Cost); 6345 6346 if (Cost < -SLPCostThreshold) { 6347 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 6348 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 6349 cast<Instruction>(Ops[0])) 6350 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 6351 << " and with tree size " 6352 << ore::NV("TreeSize", R.getTreeSize())); 6353 6354 R.vectorizeTree(); 6355 // Move to the next bundle. 6356 I += VF - 1; 6357 NextInst = I + 1; 6358 Changed = true; 6359 } 6360 } 6361 } 6362 6363 if (!Changed && CandidateFound) { 6364 R.getORE()->emit([&]() { 6365 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 6366 << "List vectorization was possible but not beneficial with cost " 6367 << ore::NV("Cost", MinCost) << " >= " 6368 << ore::NV("Treshold", -SLPCostThreshold); 6369 }); 6370 } else if (!Changed) { 6371 R.getORE()->emit([&]() { 6372 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 6373 << "Cannot SLP vectorize list: vectorization was impossible" 6374 << " with available vectorization factors"; 6375 }); 6376 } 6377 return Changed; 6378 } 6379 6380 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 6381 if (!I) 6382 return false; 6383 6384 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 6385 return false; 6386 6387 Value *P = I->getParent(); 6388 6389 // Vectorize in current basic block only. 6390 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 6391 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 6392 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 6393 return false; 6394 6395 // Try to vectorize V. 6396 if (tryToVectorizePair(Op0, Op1, R)) 6397 return true; 6398 6399 auto *A = dyn_cast<BinaryOperator>(Op0); 6400 auto *B = dyn_cast<BinaryOperator>(Op1); 6401 // Try to skip B. 6402 if (B && B->hasOneUse()) { 6403 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 6404 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 6405 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 6406 return true; 6407 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 6408 return true; 6409 } 6410 6411 // Try to skip A. 6412 if (A && A->hasOneUse()) { 6413 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 6414 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 6415 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 6416 return true; 6417 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 6418 return true; 6419 } 6420 return false; 6421 } 6422 6423 namespace { 6424 6425 /// Model horizontal reductions. 6426 /// 6427 /// A horizontal reduction is a tree of reduction instructions that has values 6428 /// that can be put into a vector as its leaves. For example: 6429 /// 6430 /// mul mul mul mul 6431 /// \ / \ / 6432 /// + + 6433 /// \ / 6434 /// + 6435 /// This tree has "mul" as its leaf values and "+" as its reduction 6436 /// instructions. A reduction can feed into a store or a binary operation 6437 /// feeding a phi. 6438 /// ... 6439 /// \ / 6440 /// + 6441 /// | 6442 /// phi += 6443 /// 6444 /// Or: 6445 /// ... 6446 /// \ / 6447 /// + 6448 /// | 6449 /// *p = 6450 /// 6451 class HorizontalReduction { 6452 using ReductionOpsType = SmallVector<Value *, 16>; 6453 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 6454 ReductionOpsListType ReductionOps; 6455 SmallVector<Value *, 32> ReducedVals; 6456 // Use map vector to make stable output. 6457 MapVector<Instruction *, Value *> ExtraArgs; 6458 WeakTrackingVH ReductionRoot; 6459 /// The type of reduction operation. 6460 RecurKind RdxKind; 6461 6462 /// Checks if instruction is associative and can be vectorized. 6463 static bool isVectorizable(RecurKind Kind, Instruction *I) { 6464 if (Kind == RecurKind::None) 6465 return false; 6466 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind)) 6467 return true; 6468 6469 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 6470 // FP min/max are associative except for NaN and -0.0. We do not 6471 // have to rule out -0.0 here because the intrinsic semantics do not 6472 // specify a fixed result for it. 6473 return I->getFastMathFlags().noNaNs(); 6474 } 6475 6476 return I->isAssociative(); 6477 } 6478 6479 /// Checks if the ParentStackElem.first should be marked as a reduction 6480 /// operation with an extra argument or as extra argument itself. 6481 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 6482 Value *ExtraArg) { 6483 if (ExtraArgs.count(ParentStackElem.first)) { 6484 ExtraArgs[ParentStackElem.first] = nullptr; 6485 // We ran into something like: 6486 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 6487 // The whole ParentStackElem.first should be considered as an extra value 6488 // in this case. 6489 // Do not perform analysis of remaining operands of ParentStackElem.first 6490 // instruction, this whole instruction is an extra argument. 6491 RecurKind ParentRdxKind = getRdxKind(ParentStackElem.first); 6492 ParentStackElem.second = getNumberOfOperands(ParentRdxKind); 6493 } else { 6494 // We ran into something like: 6495 // ParentStackElem.first += ... + ExtraArg + ... 6496 ExtraArgs[ParentStackElem.first] = ExtraArg; 6497 } 6498 } 6499 6500 /// Creates reduction operation with the current opcode. 6501 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 6502 Value *RHS, const Twine &Name) { 6503 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 6504 switch (Kind) { 6505 case RecurKind::Add: 6506 case RecurKind::Mul: 6507 case RecurKind::Or: 6508 case RecurKind::And: 6509 case RecurKind::Xor: 6510 case RecurKind::FAdd: 6511 case RecurKind::FMul: 6512 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 6513 Name); 6514 case RecurKind::FMax: 6515 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 6516 case RecurKind::FMin: 6517 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 6518 6519 case RecurKind::SMax: { 6520 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 6521 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6522 } 6523 case RecurKind::SMin: { 6524 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 6525 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6526 } 6527 case RecurKind::UMax: { 6528 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 6529 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6530 } 6531 case RecurKind::UMin: { 6532 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 6533 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6534 } 6535 default: 6536 llvm_unreachable("Unknown reduction operation."); 6537 } 6538 } 6539 6540 /// Creates reduction operation with the current opcode with the IR flags 6541 /// from \p ReductionOps. 6542 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 6543 Value *RHS, const Twine &Name, 6544 const ReductionOpsListType &ReductionOps) { 6545 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name); 6546 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 6547 if (auto *Sel = dyn_cast<SelectInst>(Op)) 6548 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 6549 propagateIRFlags(Op, ReductionOps[1]); 6550 return Op; 6551 } 6552 propagateIRFlags(Op, ReductionOps[0]); 6553 return Op; 6554 } 6555 /// Creates reduction operation with the current opcode with the IR flags 6556 /// from \p I. 6557 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 6558 Value *RHS, const Twine &Name, Instruction *I) { 6559 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name); 6560 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 6561 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 6562 propagateIRFlags(Sel->getCondition(), 6563 cast<SelectInst>(I)->getCondition()); 6564 } 6565 } 6566 propagateIRFlags(Op, I); 6567 return Op; 6568 } 6569 6570 static RecurKind getRdxKind(Instruction *I) { 6571 assert(I && "Expected instruction for reduction matching"); 6572 TargetTransformInfo::ReductionFlags RdxFlags; 6573 if (match(I, m_Add(m_Value(), m_Value()))) 6574 return RecurKind::Add; 6575 if (match(I, m_Mul(m_Value(), m_Value()))) 6576 return RecurKind::Mul; 6577 if (match(I, m_And(m_Value(), m_Value()))) 6578 return RecurKind::And; 6579 if (match(I, m_Or(m_Value(), m_Value()))) 6580 return RecurKind::Or; 6581 if (match(I, m_Xor(m_Value(), m_Value()))) 6582 return RecurKind::Xor; 6583 if (match(I, m_FAdd(m_Value(), m_Value()))) 6584 return RecurKind::FAdd; 6585 if (match(I, m_FMul(m_Value(), m_Value()))) 6586 return RecurKind::FMul; 6587 6588 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 6589 return RecurKind::FMax; 6590 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 6591 return RecurKind::FMin; 6592 6593 if (match(I, m_SMax(m_Value(), m_Value()))) 6594 return RecurKind::SMax; 6595 if (match(I, m_SMin(m_Value(), m_Value()))) 6596 return RecurKind::SMin; 6597 if (match(I, m_UMax(m_Value(), m_Value()))) 6598 return RecurKind::UMax; 6599 if (match(I, m_UMin(m_Value(), m_Value()))) 6600 return RecurKind::UMin; 6601 6602 if (auto *Select = dyn_cast<SelectInst>(I)) { 6603 // Try harder: look for min/max pattern based on instructions producing 6604 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 6605 // During the intermediate stages of SLP, it's very common to have 6606 // pattern like this (since optimizeGatherSequence is run only once 6607 // at the end): 6608 // %1 = extractelement <2 x i32> %a, i32 0 6609 // %2 = extractelement <2 x i32> %a, i32 1 6610 // %cond = icmp sgt i32 %1, %2 6611 // %3 = extractelement <2 x i32> %a, i32 0 6612 // %4 = extractelement <2 x i32> %a, i32 1 6613 // %select = select i1 %cond, i32 %3, i32 %4 6614 CmpInst::Predicate Pred; 6615 Instruction *L1; 6616 Instruction *L2; 6617 6618 Value *LHS = Select->getTrueValue(); 6619 Value *RHS = Select->getFalseValue(); 6620 Value *Cond = Select->getCondition(); 6621 6622 // TODO: Support inverse predicates. 6623 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 6624 if (!isa<ExtractElementInst>(RHS) || 6625 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6626 return RecurKind::None; 6627 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 6628 if (!isa<ExtractElementInst>(LHS) || 6629 !L1->isIdenticalTo(cast<Instruction>(LHS))) 6630 return RecurKind::None; 6631 } else { 6632 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 6633 return RecurKind::None; 6634 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 6635 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 6636 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6637 return RecurKind::None; 6638 } 6639 6640 TargetTransformInfo::ReductionFlags RdxFlags; 6641 switch (Pred) { 6642 default: 6643 return RecurKind::None; 6644 case CmpInst::ICMP_SGT: 6645 case CmpInst::ICMP_SGE: 6646 return RecurKind::SMax; 6647 case CmpInst::ICMP_SLT: 6648 case CmpInst::ICMP_SLE: 6649 return RecurKind::SMin; 6650 case CmpInst::ICMP_UGT: 6651 case CmpInst::ICMP_UGE: 6652 return RecurKind::UMax; 6653 case CmpInst::ICMP_ULT: 6654 case CmpInst::ICMP_ULE: 6655 return RecurKind::UMin; 6656 } 6657 } 6658 return RecurKind::None; 6659 } 6660 6661 /// Return true if this operation is a cmp+select idiom. 6662 static bool isCmpSel(RecurKind Kind) { 6663 return RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind); 6664 } 6665 6666 /// Get the index of the first operand. 6667 static unsigned getFirstOperandIndex(RecurKind Kind) { 6668 // We allow calling this before 'Kind' is set, so handle that specially. 6669 if (Kind == RecurKind::None) 6670 return 0; 6671 return isCmpSel(Kind) ? 1 : 0; 6672 } 6673 6674 /// Total number of operands in the reduction operation. 6675 static unsigned getNumberOfOperands(RecurKind Kind) { 6676 return isCmpSel(Kind) ? 3 : 2; 6677 } 6678 6679 /// Checks if the instruction is in basic block \p BB. 6680 /// For a min/max reduction check that both compare and select are in \p BB. 6681 static bool hasSameParent(RecurKind Kind, Instruction *I, BasicBlock *BB, 6682 bool IsRedOp) { 6683 if (IsRedOp && isCmpSel(Kind)) { 6684 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 6685 return I->getParent() == BB && Cmp && Cmp->getParent() == BB; 6686 } 6687 return I->getParent() == BB; 6688 } 6689 6690 /// Expected number of uses for reduction operations/reduced values. 6691 static bool hasRequiredNumberOfUses(RecurKind Kind, Instruction *I, 6692 bool IsReductionOp) { 6693 // SelectInst must be used twice while the condition op must have single 6694 // use only. 6695 if (isCmpSel(Kind)) 6696 return I->hasNUses(2) && 6697 (!IsReductionOp || 6698 cast<SelectInst>(I)->getCondition()->hasOneUse()); 6699 6700 // Arithmetic reduction operation must be used once only. 6701 return I->hasOneUse(); 6702 } 6703 6704 /// Initializes the list of reduction operations. 6705 void initReductionOps(RecurKind Kind) { 6706 if (isCmpSel(Kind)) 6707 ReductionOps.assign(2, ReductionOpsType()); 6708 else 6709 ReductionOps.assign(1, ReductionOpsType()); 6710 } 6711 6712 /// Add all reduction operations for the reduction instruction \p I. 6713 void addReductionOps(RecurKind Kind, Instruction *I) { 6714 assert(Kind != RecurKind::None && "Expected reduction operation."); 6715 if (isCmpSel(Kind)) { 6716 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 6717 ReductionOps[1].emplace_back(I); 6718 } else { 6719 ReductionOps[0].emplace_back(I); 6720 } 6721 } 6722 6723 static Value *getLHS(RecurKind Kind, Instruction *I) { 6724 if (Kind == RecurKind::None) 6725 return nullptr; 6726 return I->getOperand(getFirstOperandIndex(Kind)); 6727 } 6728 static Value *getRHS(RecurKind Kind, Instruction *I) { 6729 if (Kind == RecurKind::None) 6730 return nullptr; 6731 return I->getOperand(getFirstOperandIndex(Kind) + 1); 6732 } 6733 6734 public: 6735 HorizontalReduction() = default; 6736 6737 /// Try to find a reduction tree. 6738 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 6739 assert((!Phi || is_contained(Phi->operands(), B)) && 6740 "Phi needs to use the binary operator"); 6741 6742 RdxKind = getRdxKind(B); 6743 6744 // We could have a initial reductions that is not an add. 6745 // r *= v1 + v2 + v3 + v4 6746 // In such a case start looking for a tree rooted in the first '+'. 6747 if (Phi) { 6748 if (getLHS(RdxKind, B) == Phi) { 6749 Phi = nullptr; 6750 B = dyn_cast<Instruction>(getRHS(RdxKind, B)); 6751 if (!B) 6752 return false; 6753 RdxKind = getRdxKind(B); 6754 } else if (getRHS(RdxKind, B) == Phi) { 6755 Phi = nullptr; 6756 B = dyn_cast<Instruction>(getLHS(RdxKind, B)); 6757 if (!B) 6758 return false; 6759 RdxKind = getRdxKind(B); 6760 } 6761 } 6762 6763 if (!isVectorizable(RdxKind, B)) 6764 return false; 6765 6766 // Analyze "regular" integer/FP types for reductions - no target-specific 6767 // types or pointers. 6768 Type *Ty = B->getType(); 6769 if (!isValidElementType(Ty) || Ty->isPointerTy()) 6770 return false; 6771 6772 ReductionRoot = B; 6773 6774 // The opcode for leaf values that we perform a reduction on. 6775 // For example: load(x) + load(y) + load(z) + fptoui(w) 6776 // The leaf opcode for 'w' does not match, so we don't include it as a 6777 // potential candidate for the reduction. 6778 unsigned LeafOpcode = 0; 6779 6780 // Post order traverse the reduction tree starting at B. We only handle true 6781 // trees containing only binary operators. 6782 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 6783 Stack.push_back(std::make_pair(B, getFirstOperandIndex(RdxKind))); 6784 initReductionOps(RdxKind); 6785 while (!Stack.empty()) { 6786 Instruction *TreeN = Stack.back().first; 6787 unsigned EdgeToVisit = Stack.back().second++; 6788 const RecurKind TreeRdxKind = getRdxKind(TreeN); 6789 bool IsReducedValue = TreeRdxKind != RdxKind; 6790 6791 // Postorder visit. 6792 if (IsReducedValue || EdgeToVisit == getNumberOfOperands(TreeRdxKind)) { 6793 if (IsReducedValue) 6794 ReducedVals.push_back(TreeN); 6795 else { 6796 auto I = ExtraArgs.find(TreeN); 6797 if (I != ExtraArgs.end() && !I->second) { 6798 // Check if TreeN is an extra argument of its parent operation. 6799 if (Stack.size() <= 1) { 6800 // TreeN can't be an extra argument as it is a root reduction 6801 // operation. 6802 return false; 6803 } 6804 // Yes, TreeN is an extra argument, do not add it to a list of 6805 // reduction operations. 6806 // Stack[Stack.size() - 2] always points to the parent operation. 6807 markExtraArg(Stack[Stack.size() - 2], TreeN); 6808 ExtraArgs.erase(TreeN); 6809 } else 6810 addReductionOps(RdxKind, TreeN); 6811 } 6812 // Retract. 6813 Stack.pop_back(); 6814 continue; 6815 } 6816 6817 // Visit left or right. 6818 Value *EdgeVal = TreeN->getOperand(EdgeToVisit); 6819 auto *I = dyn_cast<Instruction>(EdgeVal); 6820 if (!I) { 6821 // Edge value is not a reduction instruction or a leaf instruction. 6822 // (It may be a constant, function argument, or something else.) 6823 markExtraArg(Stack.back(), EdgeVal); 6824 continue; 6825 } 6826 RecurKind EdgeRdxKind = getRdxKind(I); 6827 // Continue analysis if the next operand is a reduction operation or 6828 // (possibly) a leaf value. If the leaf value opcode is not set, 6829 // the first met operation != reduction operation is considered as the 6830 // leaf opcode. 6831 // Only handle trees in the current basic block. 6832 // Each tree node needs to have minimal number of users except for the 6833 // ultimate reduction. 6834 const bool IsRdxInst = EdgeRdxKind == RdxKind; 6835 if (I != Phi && I != B && 6836 hasSameParent(RdxKind, I, B->getParent(), IsRdxInst) && 6837 hasRequiredNumberOfUses(RdxKind, I, IsRdxInst) && 6838 (!LeafOpcode || LeafOpcode == I->getOpcode() || IsRdxInst)) { 6839 if (IsRdxInst) { 6840 // We need to be able to reassociate the reduction operations. 6841 if (!isVectorizable(EdgeRdxKind, I)) { 6842 // I is an extra argument for TreeN (its parent operation). 6843 markExtraArg(Stack.back(), I); 6844 continue; 6845 } 6846 } else if (!LeafOpcode) { 6847 LeafOpcode = I->getOpcode(); 6848 } 6849 Stack.push_back(std::make_pair(I, getFirstOperandIndex(EdgeRdxKind))); 6850 continue; 6851 } 6852 // I is an extra argument for TreeN (its parent operation). 6853 markExtraArg(Stack.back(), I); 6854 } 6855 return true; 6856 } 6857 6858 /// Attempt to vectorize the tree found by matchAssociativeReduction. 6859 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 6860 // If there are a sufficient number of reduction values, reduce 6861 // to a nearby power-of-2. We can safely generate oversized 6862 // vectors and rely on the backend to split them to legal sizes. 6863 unsigned NumReducedVals = ReducedVals.size(); 6864 if (NumReducedVals < 4) 6865 return false; 6866 6867 // Intersect the fast-math-flags from all reduction operations. 6868 FastMathFlags RdxFMF; 6869 RdxFMF.set(); 6870 for (ReductionOpsType &RdxOp : ReductionOps) { 6871 for (Value *RdxVal : RdxOp) { 6872 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 6873 RdxFMF &= FPMO->getFastMathFlags(); 6874 } 6875 } 6876 6877 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 6878 Builder.setFastMathFlags(RdxFMF); 6879 6880 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 6881 // The same extra argument may be used several times, so log each attempt 6882 // to use it. 6883 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 6884 assert(Pair.first && "DebugLoc must be set."); 6885 ExternallyUsedValues[Pair.second].push_back(Pair.first); 6886 } 6887 6888 // The compare instruction of a min/max is the insertion point for new 6889 // instructions and may be replaced with a new compare instruction. 6890 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 6891 assert(isa<SelectInst>(RdxRootInst) && 6892 "Expected min/max reduction to have select root instruction"); 6893 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 6894 assert(isa<Instruction>(ScalarCond) && 6895 "Expected min/max reduction to have compare condition"); 6896 return cast<Instruction>(ScalarCond); 6897 }; 6898 6899 // The reduction root is used as the insertion point for new instructions, 6900 // so set it as externally used to prevent it from being deleted. 6901 ExternallyUsedValues[ReductionRoot]; 6902 SmallVector<Value *, 16> IgnoreList; 6903 for (ReductionOpsType &RdxOp : ReductionOps) 6904 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 6905 6906 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 6907 if (NumReducedVals > ReduxWidth) { 6908 // In the loop below, we are building a tree based on a window of 6909 // 'ReduxWidth' values. 6910 // If the operands of those values have common traits (compare predicate, 6911 // constant operand, etc), then we want to group those together to 6912 // minimize the cost of the reduction. 6913 6914 // TODO: This should be extended to count common operands for 6915 // compares and binops. 6916 6917 // Step 1: Count the number of times each compare predicate occurs. 6918 SmallDenseMap<unsigned, unsigned> PredCountMap; 6919 for (Value *RdxVal : ReducedVals) { 6920 CmpInst::Predicate Pred; 6921 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 6922 ++PredCountMap[Pred]; 6923 } 6924 // Step 2: Sort the values so the most common predicates come first. 6925 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 6926 CmpInst::Predicate PredA, PredB; 6927 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 6928 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 6929 return PredCountMap[PredA] > PredCountMap[PredB]; 6930 } 6931 return false; 6932 }); 6933 } 6934 6935 Value *VectorizedTree = nullptr; 6936 unsigned i = 0; 6937 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 6938 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 6939 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 6940 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 6941 if (Order) { 6942 assert(Order->size() == VL.size() && 6943 "Order size must be the same as number of vectorized " 6944 "instructions."); 6945 // TODO: reorder tree nodes without tree rebuilding. 6946 SmallVector<Value *, 4> ReorderedOps(VL.size()); 6947 llvm::transform(*Order, ReorderedOps.begin(), 6948 [VL](const unsigned Idx) { return VL[Idx]; }); 6949 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 6950 } 6951 if (V.isTreeTinyAndNotFullyVectorizable()) 6952 break; 6953 if (V.isLoadCombineReductionCandidate(RdxKind)) 6954 break; 6955 6956 V.computeMinimumValueSizes(); 6957 6958 // Estimate cost. 6959 InstructionCost TreeCost = V.getTreeCost(); 6960 InstructionCost ReductionCost = 6961 getReductionCost(TTI, ReducedVals[i], ReduxWidth); 6962 InstructionCost Cost = TreeCost + ReductionCost; 6963 if (!Cost.isValid()) { 6964 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 6965 return false; 6966 } 6967 if (Cost >= -SLPCostThreshold) { 6968 V.getORE()->emit([&]() { 6969 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 6970 cast<Instruction>(VL[0])) 6971 << "Vectorizing horizontal reduction is possible" 6972 << "but not beneficial with cost " << ore::NV("Cost", Cost) 6973 << " and threshold " 6974 << ore::NV("Threshold", -SLPCostThreshold); 6975 }); 6976 break; 6977 } 6978 6979 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 6980 << Cost << ". (HorRdx)\n"); 6981 V.getORE()->emit([&]() { 6982 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 6983 cast<Instruction>(VL[0])) 6984 << "Vectorized horizontal reduction with cost " 6985 << ore::NV("Cost", Cost) << " and with tree size " 6986 << ore::NV("TreeSize", V.getTreeSize()); 6987 }); 6988 6989 // Vectorize a tree. 6990 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 6991 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 6992 6993 // Emit a reduction. If the root is a select (min/max idiom), the insert 6994 // point is the compare condition of that select. 6995 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 6996 if (isCmpSel(RdxKind)) 6997 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 6998 else 6999 Builder.SetInsertPoint(RdxRootInst); 7000 7001 Value *ReducedSubTree = 7002 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 7003 7004 if (!VectorizedTree) { 7005 // Initialize the final value in the reduction. 7006 VectorizedTree = ReducedSubTree; 7007 } else { 7008 // Update the final value in the reduction. 7009 Builder.SetCurrentDebugLocation(Loc); 7010 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 7011 ReducedSubTree, "op.rdx", ReductionOps); 7012 } 7013 i += ReduxWidth; 7014 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 7015 } 7016 7017 if (VectorizedTree) { 7018 // Finish the reduction. 7019 for (; i < NumReducedVals; ++i) { 7020 auto *I = cast<Instruction>(ReducedVals[i]); 7021 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 7022 VectorizedTree = 7023 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 7024 } 7025 for (auto &Pair : ExternallyUsedValues) { 7026 // Add each externally used value to the final reduction. 7027 for (auto *I : Pair.second) { 7028 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 7029 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 7030 Pair.first, "op.extra", I); 7031 } 7032 } 7033 7034 // Update users. For a min/max reduction that ends with a compare and 7035 // select, we also have to RAUW for the compare instruction feeding the 7036 // reduction root. That's because the original compare may have extra uses 7037 // besides the final select of the reduction. 7038 if (isCmpSel(RdxKind)) { 7039 if (auto *VecSelect = dyn_cast<SelectInst>(VectorizedTree)) { 7040 Instruction *ScalarCmp = 7041 getCmpForMinMaxReduction(cast<Instruction>(ReductionRoot)); 7042 ScalarCmp->replaceAllUsesWith(VecSelect->getCondition()); 7043 } 7044 } 7045 ReductionRoot->replaceAllUsesWith(VectorizedTree); 7046 7047 // Mark all scalar reduction ops for deletion, they are replaced by the 7048 // vector reductions. 7049 V.eraseInstructions(IgnoreList); 7050 } 7051 return VectorizedTree != nullptr; 7052 } 7053 7054 unsigned numReductionValues() const { return ReducedVals.size(); } 7055 7056 private: 7057 /// Calculate the cost of a reduction. 7058 InstructionCost getReductionCost(TargetTransformInfo *TTI, 7059 Value *FirstReducedVal, 7060 unsigned ReduxWidth) { 7061 Type *ScalarTy = FirstReducedVal->getType(); 7062 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 7063 InstructionCost VectorCost, ScalarCost; 7064 switch (RdxKind) { 7065 case RecurKind::Add: 7066 case RecurKind::Mul: 7067 case RecurKind::Or: 7068 case RecurKind::And: 7069 case RecurKind::Xor: 7070 case RecurKind::FAdd: 7071 case RecurKind::FMul: { 7072 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 7073 VectorCost = TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, 7074 /*IsPairwiseForm=*/false); 7075 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy); 7076 break; 7077 } 7078 case RecurKind::FMax: 7079 case RecurKind::FMin: { 7080 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 7081 VectorCost = 7082 TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 7083 /*pairwise=*/false, /*unsigned=*/false); 7084 ScalarCost = 7085 TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy) + 7086 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 7087 CmpInst::makeCmpResultType(ScalarTy)); 7088 break; 7089 } 7090 case RecurKind::SMax: 7091 case RecurKind::SMin: 7092 case RecurKind::UMax: 7093 case RecurKind::UMin: { 7094 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 7095 bool IsUnsigned = 7096 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 7097 VectorCost = 7098 TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 7099 /*IsPairwiseForm=*/false, IsUnsigned); 7100 ScalarCost = 7101 TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy) + 7102 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 7103 CmpInst::makeCmpResultType(ScalarTy)); 7104 break; 7105 } 7106 default: 7107 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 7108 } 7109 7110 // Scalar cost is repeated for N-1 elements. 7111 ScalarCost *= (ReduxWidth - 1); 7112 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 7113 << " for reduction that starts with " << *FirstReducedVal 7114 << " (It is a splitting reduction)\n"); 7115 return VectorCost - ScalarCost; 7116 } 7117 7118 /// Emit a horizontal reduction of the vectorized value. 7119 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 7120 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 7121 assert(VectorizedValue && "Need to have a vectorized tree node"); 7122 assert(isPowerOf2_32(ReduxWidth) && 7123 "We only handle power-of-two reductions for now"); 7124 7125 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind, 7126 ReductionOps.back()); 7127 } 7128 }; 7129 7130 } // end anonymous namespace 7131 7132 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 7133 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 7134 return cast<FixedVectorType>(IE->getType())->getNumElements(); 7135 7136 unsigned AggregateSize = 1; 7137 auto *IV = cast<InsertValueInst>(InsertInst); 7138 Type *CurrentType = IV->getType(); 7139 do { 7140 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 7141 for (auto *Elt : ST->elements()) 7142 if (Elt != ST->getElementType(0)) // check homogeneity 7143 return None; 7144 AggregateSize *= ST->getNumElements(); 7145 CurrentType = ST->getElementType(0); 7146 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 7147 AggregateSize *= AT->getNumElements(); 7148 CurrentType = AT->getElementType(); 7149 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 7150 AggregateSize *= VT->getNumElements(); 7151 return AggregateSize; 7152 } else if (CurrentType->isSingleValueType()) { 7153 return AggregateSize; 7154 } else { 7155 return None; 7156 } 7157 } while (true); 7158 } 7159 7160 static Optional<unsigned> getOperandIndex(Instruction *InsertInst, 7161 unsigned OperandOffset) { 7162 unsigned OperandIndex = OperandOffset; 7163 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 7164 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 7165 auto *VT = cast<FixedVectorType>(IE->getType()); 7166 OperandIndex *= VT->getNumElements(); 7167 OperandIndex += CI->getZExtValue(); 7168 return OperandIndex; 7169 } 7170 return None; 7171 } 7172 7173 auto *IV = cast<InsertValueInst>(InsertInst); 7174 Type *CurrentType = IV->getType(); 7175 for (unsigned int Index : IV->indices()) { 7176 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 7177 OperandIndex *= ST->getNumElements(); 7178 CurrentType = ST->getElementType(Index); 7179 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 7180 OperandIndex *= AT->getNumElements(); 7181 CurrentType = AT->getElementType(); 7182 } else { 7183 return None; 7184 } 7185 OperandIndex += Index; 7186 } 7187 return OperandIndex; 7188 } 7189 7190 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 7191 TargetTransformInfo *TTI, 7192 SmallVectorImpl<Value *> &BuildVectorOpds, 7193 SmallVectorImpl<Value *> &InsertElts, 7194 unsigned OperandOffset) { 7195 do { 7196 Value *InsertedOperand = LastInsertInst->getOperand(1); 7197 Optional<unsigned> OperandIndex = 7198 getOperandIndex(LastInsertInst, OperandOffset); 7199 if (!OperandIndex) 7200 return false; 7201 if (isa<InsertElementInst>(InsertedOperand) || 7202 isa<InsertValueInst>(InsertedOperand)) { 7203 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 7204 BuildVectorOpds, InsertElts, *OperandIndex)) 7205 return false; 7206 } else { 7207 BuildVectorOpds[*OperandIndex] = InsertedOperand; 7208 InsertElts[*OperandIndex] = LastInsertInst; 7209 } 7210 if (isa<UndefValue>(LastInsertInst->getOperand(0))) 7211 return true; 7212 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 7213 } while (LastInsertInst != nullptr && 7214 (isa<InsertValueInst>(LastInsertInst) || 7215 isa<InsertElementInst>(LastInsertInst)) && 7216 LastInsertInst->hasOneUse()); 7217 return false; 7218 } 7219 7220 /// Recognize construction of vectors like 7221 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 7222 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 7223 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 7224 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 7225 /// starting from the last insertelement or insertvalue instruction. 7226 /// 7227 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 7228 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 7229 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 7230 /// 7231 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 7232 /// 7233 /// \return true if it matches. 7234 static bool findBuildAggregate(Instruction *LastInsertInst, 7235 TargetTransformInfo *TTI, 7236 SmallVectorImpl<Value *> &BuildVectorOpds, 7237 SmallVectorImpl<Value *> &InsertElts) { 7238 7239 assert((isa<InsertElementInst>(LastInsertInst) || 7240 isa<InsertValueInst>(LastInsertInst)) && 7241 "Expected insertelement or insertvalue instruction!"); 7242 7243 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 7244 "Expected empty result vectors!"); 7245 7246 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 7247 if (!AggregateSize) 7248 return false; 7249 BuildVectorOpds.resize(*AggregateSize); 7250 InsertElts.resize(*AggregateSize); 7251 7252 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 7253 0)) { 7254 llvm::erase_value(BuildVectorOpds, nullptr); 7255 llvm::erase_value(InsertElts, nullptr); 7256 if (BuildVectorOpds.size() >= 2) 7257 return true; 7258 } 7259 7260 return false; 7261 } 7262 7263 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 7264 return V->getType() < V2->getType(); 7265 } 7266 7267 /// Try and get a reduction value from a phi node. 7268 /// 7269 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 7270 /// if they come from either \p ParentBB or a containing loop latch. 7271 /// 7272 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 7273 /// if not possible. 7274 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 7275 BasicBlock *ParentBB, LoopInfo *LI) { 7276 // There are situations where the reduction value is not dominated by the 7277 // reduction phi. Vectorizing such cases has been reported to cause 7278 // miscompiles. See PR25787. 7279 auto DominatedReduxValue = [&](Value *R) { 7280 return isa<Instruction>(R) && 7281 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 7282 }; 7283 7284 Value *Rdx = nullptr; 7285 7286 // Return the incoming value if it comes from the same BB as the phi node. 7287 if (P->getIncomingBlock(0) == ParentBB) { 7288 Rdx = P->getIncomingValue(0); 7289 } else if (P->getIncomingBlock(1) == ParentBB) { 7290 Rdx = P->getIncomingValue(1); 7291 } 7292 7293 if (Rdx && DominatedReduxValue(Rdx)) 7294 return Rdx; 7295 7296 // Otherwise, check whether we have a loop latch to look at. 7297 Loop *BBL = LI->getLoopFor(ParentBB); 7298 if (!BBL) 7299 return nullptr; 7300 BasicBlock *BBLatch = BBL->getLoopLatch(); 7301 if (!BBLatch) 7302 return nullptr; 7303 7304 // There is a loop latch, return the incoming value if it comes from 7305 // that. This reduction pattern occasionally turns up. 7306 if (P->getIncomingBlock(0) == BBLatch) { 7307 Rdx = P->getIncomingValue(0); 7308 } else if (P->getIncomingBlock(1) == BBLatch) { 7309 Rdx = P->getIncomingValue(1); 7310 } 7311 7312 if (Rdx && DominatedReduxValue(Rdx)) 7313 return Rdx; 7314 7315 return nullptr; 7316 } 7317 7318 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 7319 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 7320 return true; 7321 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 7322 return true; 7323 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 7324 return true; 7325 return false; 7326 } 7327 7328 /// Attempt to reduce a horizontal reduction. 7329 /// If it is legal to match a horizontal reduction feeding the phi node \a P 7330 /// with reduction operators \a Root (or one of its operands) in a basic block 7331 /// \a BB, then check if it can be done. If horizontal reduction is not found 7332 /// and root instruction is a binary operation, vectorization of the operands is 7333 /// attempted. 7334 /// \returns true if a horizontal reduction was matched and reduced or operands 7335 /// of one of the binary instruction were vectorized. 7336 /// \returns false if a horizontal reduction was not matched (or not possible) 7337 /// or no vectorization of any binary operation feeding \a Root instruction was 7338 /// performed. 7339 static bool tryToVectorizeHorReductionOrInstOperands( 7340 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 7341 TargetTransformInfo *TTI, 7342 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 7343 if (!ShouldVectorizeHor) 7344 return false; 7345 7346 if (!Root) 7347 return false; 7348 7349 if (Root->getParent() != BB || isa<PHINode>(Root)) 7350 return false; 7351 // Start analysis starting from Root instruction. If horizontal reduction is 7352 // found, try to vectorize it. If it is not a horizontal reduction or 7353 // vectorization is not possible or not effective, and currently analyzed 7354 // instruction is a binary operation, try to vectorize the operands, using 7355 // pre-order DFS traversal order. If the operands were not vectorized, repeat 7356 // the same procedure considering each operand as a possible root of the 7357 // horizontal reduction. 7358 // Interrupt the process if the Root instruction itself was vectorized or all 7359 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 7360 SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0}); 7361 SmallPtrSet<Value *, 8> VisitedInstrs; 7362 bool Res = false; 7363 while (!Stack.empty()) { 7364 Instruction *Inst; 7365 unsigned Level; 7366 std::tie(Inst, Level) = Stack.pop_back_val(); 7367 Value *B0, *B1; 7368 bool IsBinop = matchRdxBop(Inst, B0, B1); 7369 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 7370 if (IsBinop || IsSelect) { 7371 HorizontalReduction HorRdx; 7372 if (HorRdx.matchAssociativeReduction(P, Inst)) { 7373 if (HorRdx.tryToReduce(R, TTI)) { 7374 Res = true; 7375 // Set P to nullptr to avoid re-analysis of phi node in 7376 // matchAssociativeReduction function unless this is the root node. 7377 P = nullptr; 7378 continue; 7379 } 7380 } 7381 if (P && IsBinop) { 7382 Inst = dyn_cast<Instruction>(B0); 7383 if (Inst == P) 7384 Inst = dyn_cast<Instruction>(B1); 7385 if (!Inst) { 7386 // Set P to nullptr to avoid re-analysis of phi node in 7387 // matchAssociativeReduction function unless this is the root node. 7388 P = nullptr; 7389 continue; 7390 } 7391 } 7392 } 7393 // Set P to nullptr to avoid re-analysis of phi node in 7394 // matchAssociativeReduction function unless this is the root node. 7395 P = nullptr; 7396 if (Vectorize(Inst, R)) { 7397 Res = true; 7398 continue; 7399 } 7400 7401 // Try to vectorize operands. 7402 // Continue analysis for the instruction from the same basic block only to 7403 // save compile time. 7404 if (++Level < RecursionMaxDepth) 7405 for (auto *Op : Inst->operand_values()) 7406 if (VisitedInstrs.insert(Op).second) 7407 if (auto *I = dyn_cast<Instruction>(Op)) 7408 if (!isa<PHINode>(I) && !R.isDeleted(I) && I->getParent() == BB) 7409 Stack.emplace_back(I, Level); 7410 } 7411 return Res; 7412 } 7413 7414 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 7415 BasicBlock *BB, BoUpSLP &R, 7416 TargetTransformInfo *TTI) { 7417 auto *I = dyn_cast_or_null<Instruction>(V); 7418 if (!I) 7419 return false; 7420 7421 if (!isa<BinaryOperator>(I)) 7422 P = nullptr; 7423 // Try to match and vectorize a horizontal reduction. 7424 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 7425 return tryToVectorize(I, R); 7426 }; 7427 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 7428 ExtraVectorization); 7429 } 7430 7431 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 7432 BasicBlock *BB, BoUpSLP &R) { 7433 const DataLayout &DL = BB->getModule()->getDataLayout(); 7434 if (!R.canMapToVector(IVI->getType(), DL)) 7435 return false; 7436 7437 SmallVector<Value *, 16> BuildVectorOpds; 7438 SmallVector<Value *, 16> BuildVectorInsts; 7439 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 7440 return false; 7441 7442 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 7443 // Aggregate value is unlikely to be processed in vector register, we need to 7444 // extract scalars into scalar registers, so NeedExtraction is set true. 7445 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false, 7446 BuildVectorInsts); 7447 } 7448 7449 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 7450 BasicBlock *BB, BoUpSLP &R) { 7451 SmallVector<Value *, 16> BuildVectorInsts; 7452 SmallVector<Value *, 16> BuildVectorOpds; 7453 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 7454 (llvm::all_of(BuildVectorOpds, 7455 [](Value *V) { return isa<ExtractElementInst>(V); }) && 7456 isShuffle(BuildVectorOpds))) 7457 return false; 7458 7459 // Vectorize starting with the build vector operands ignoring the BuildVector 7460 // instructions for the purpose of scheduling and user extraction. 7461 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false, 7462 BuildVectorInsts); 7463 } 7464 7465 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 7466 BoUpSLP &R) { 7467 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 7468 return true; 7469 7470 bool OpsChanged = false; 7471 for (int Idx = 0; Idx < 2; ++Idx) { 7472 OpsChanged |= 7473 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 7474 } 7475 return OpsChanged; 7476 } 7477 7478 bool SLPVectorizerPass::vectorizeSimpleInstructions( 7479 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R) { 7480 bool OpsChanged = false; 7481 for (auto *I : reverse(Instructions)) { 7482 if (R.isDeleted(I)) 7483 continue; 7484 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 7485 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 7486 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 7487 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 7488 else if (auto *CI = dyn_cast<CmpInst>(I)) 7489 OpsChanged |= vectorizeCmpInst(CI, BB, R); 7490 } 7491 Instructions.clear(); 7492 return OpsChanged; 7493 } 7494 7495 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 7496 bool Changed = false; 7497 SmallVector<Value *, 4> Incoming; 7498 SmallPtrSet<Value *, 16> VisitedInstrs; 7499 7500 bool HaveVectorizedPhiNodes = true; 7501 while (HaveVectorizedPhiNodes) { 7502 HaveVectorizedPhiNodes = false; 7503 7504 // Collect the incoming values from the PHIs. 7505 Incoming.clear(); 7506 for (Instruction &I : *BB) { 7507 PHINode *P = dyn_cast<PHINode>(&I); 7508 if (!P) 7509 break; 7510 7511 if (!VisitedInstrs.count(P) && !R.isDeleted(P)) 7512 Incoming.push_back(P); 7513 } 7514 7515 // Sort by type. 7516 llvm::stable_sort(Incoming, PhiTypeSorterFunc); 7517 7518 // Try to vectorize elements base on their type. 7519 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 7520 E = Incoming.end(); 7521 IncIt != E;) { 7522 7523 // Look for the next elements with the same type. 7524 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 7525 while (SameTypeIt != E && 7526 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 7527 VisitedInstrs.insert(*SameTypeIt); 7528 ++SameTypeIt; 7529 } 7530 7531 // Try to vectorize them. 7532 unsigned NumElts = (SameTypeIt - IncIt); 7533 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 7534 << NumElts << ")\n"); 7535 // The order in which the phi nodes appear in the program does not matter. 7536 // So allow tryToVectorizeList to reorder them if it is beneficial. This 7537 // is done when there are exactly two elements since tryToVectorizeList 7538 // asserts that there are only two values when AllowReorder is true. 7539 bool AllowReorder = NumElts == 2; 7540 if (NumElts > 1 && 7541 tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, AllowReorder)) { 7542 // Success start over because instructions might have been changed. 7543 HaveVectorizedPhiNodes = true; 7544 Changed = true; 7545 break; 7546 } 7547 7548 // Start over at the next instruction of a different type (or the end). 7549 IncIt = SameTypeIt; 7550 } 7551 } 7552 7553 VisitedInstrs.clear(); 7554 7555 SmallVector<Instruction *, 8> PostProcessInstructions; 7556 SmallDenseSet<Instruction *, 4> KeyNodes; 7557 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 7558 // Skip instructions with scalable type. The num of elements is unknown at 7559 // compile-time for scalable type. 7560 if (isa<ScalableVectorType>(it->getType())) 7561 continue; 7562 7563 // Skip instructions marked for the deletion. 7564 if (R.isDeleted(&*it)) 7565 continue; 7566 // We may go through BB multiple times so skip the one we have checked. 7567 if (!VisitedInstrs.insert(&*it).second) { 7568 if (it->use_empty() && KeyNodes.contains(&*it) && 7569 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 7570 // We would like to start over since some instructions are deleted 7571 // and the iterator may become invalid value. 7572 Changed = true; 7573 it = BB->begin(); 7574 e = BB->end(); 7575 } 7576 continue; 7577 } 7578 7579 if (isa<DbgInfoIntrinsic>(it)) 7580 continue; 7581 7582 // Try to vectorize reductions that use PHINodes. 7583 if (PHINode *P = dyn_cast<PHINode>(it)) { 7584 // Check that the PHI is a reduction PHI. 7585 if (P->getNumIncomingValues() == 2) { 7586 // Try to match and vectorize a horizontal reduction. 7587 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 7588 TTI)) { 7589 Changed = true; 7590 it = BB->begin(); 7591 e = BB->end(); 7592 continue; 7593 } 7594 } 7595 // Try to vectorize the incoming values of the PHI, to catch reductions 7596 // that feed into PHIs. 7597 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 7598 // Skip if the incoming block is the current BB for now. Also, bypass 7599 // unreachable IR for efficiency and to avoid crashing. 7600 // TODO: Collect the skipped incoming values and try to vectorize them 7601 // after processing BB. 7602 if (BB == P->getIncomingBlock(I) || 7603 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 7604 continue; 7605 7606 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 7607 P->getIncomingBlock(I), R, TTI); 7608 } 7609 continue; 7610 } 7611 7612 // Ran into an instruction without users, like terminator, or function call 7613 // with ignored return value, store. Ignore unused instructions (basing on 7614 // instruction type, except for CallInst and InvokeInst). 7615 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 7616 isa<InvokeInst>(it))) { 7617 KeyNodes.insert(&*it); 7618 bool OpsChanged = false; 7619 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 7620 for (auto *V : it->operand_values()) { 7621 // Try to match and vectorize a horizontal reduction. 7622 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 7623 } 7624 } 7625 // Start vectorization of post-process list of instructions from the 7626 // top-tree instructions to try to vectorize as many instructions as 7627 // possible. 7628 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 7629 if (OpsChanged) { 7630 // We would like to start over since some instructions are deleted 7631 // and the iterator may become invalid value. 7632 Changed = true; 7633 it = BB->begin(); 7634 e = BB->end(); 7635 continue; 7636 } 7637 } 7638 7639 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 7640 isa<InsertValueInst>(it)) 7641 PostProcessInstructions.push_back(&*it); 7642 } 7643 7644 return Changed; 7645 } 7646 7647 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 7648 auto Changed = false; 7649 for (auto &Entry : GEPs) { 7650 // If the getelementptr list has fewer than two elements, there's nothing 7651 // to do. 7652 if (Entry.second.size() < 2) 7653 continue; 7654 7655 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 7656 << Entry.second.size() << ".\n"); 7657 7658 // Process the GEP list in chunks suitable for the target's supported 7659 // vector size. If a vector register can't hold 1 element, we are done. We 7660 // are trying to vectorize the index computations, so the maximum number of 7661 // elements is based on the size of the index expression, rather than the 7662 // size of the GEP itself (the target's pointer size). 7663 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7664 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 7665 if (MaxVecRegSize < EltSize) 7666 continue; 7667 7668 unsigned MaxElts = MaxVecRegSize / EltSize; 7669 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 7670 auto Len = std::min<unsigned>(BE - BI, MaxElts); 7671 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 7672 7673 // Initialize a set a candidate getelementptrs. Note that we use a 7674 // SetVector here to preserve program order. If the index computations 7675 // are vectorizable and begin with loads, we want to minimize the chance 7676 // of having to reorder them later. 7677 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 7678 7679 // Some of the candidates may have already been vectorized after we 7680 // initially collected them. If so, they are marked as deleted, so remove 7681 // them from the set of candidates. 7682 Candidates.remove_if( 7683 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 7684 7685 // Remove from the set of candidates all pairs of getelementptrs with 7686 // constant differences. Such getelementptrs are likely not good 7687 // candidates for vectorization in a bottom-up phase since one can be 7688 // computed from the other. We also ensure all candidate getelementptr 7689 // indices are unique. 7690 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 7691 auto *GEPI = GEPList[I]; 7692 if (!Candidates.count(GEPI)) 7693 continue; 7694 auto *SCEVI = SE->getSCEV(GEPList[I]); 7695 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 7696 auto *GEPJ = GEPList[J]; 7697 auto *SCEVJ = SE->getSCEV(GEPList[J]); 7698 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 7699 Candidates.remove(GEPI); 7700 Candidates.remove(GEPJ); 7701 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 7702 Candidates.remove(GEPJ); 7703 } 7704 } 7705 } 7706 7707 // We break out of the above computation as soon as we know there are 7708 // fewer than two candidates remaining. 7709 if (Candidates.size() < 2) 7710 continue; 7711 7712 // Add the single, non-constant index of each candidate to the bundle. We 7713 // ensured the indices met these constraints when we originally collected 7714 // the getelementptrs. 7715 SmallVector<Value *, 16> Bundle(Candidates.size()); 7716 auto BundleIndex = 0u; 7717 for (auto *V : Candidates) { 7718 auto *GEP = cast<GetElementPtrInst>(V); 7719 auto *GEPIdx = GEP->idx_begin()->get(); 7720 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 7721 Bundle[BundleIndex++] = GEPIdx; 7722 } 7723 7724 // Try and vectorize the indices. We are currently only interested in 7725 // gather-like cases of the form: 7726 // 7727 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 7728 // 7729 // where the loads of "a", the loads of "b", and the subtractions can be 7730 // performed in parallel. It's likely that detecting this pattern in a 7731 // bottom-up phase will be simpler and less costly than building a 7732 // full-blown top-down phase beginning at the consecutive loads. 7733 Changed |= tryToVectorizeList(Bundle, R); 7734 } 7735 } 7736 return Changed; 7737 } 7738 7739 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 7740 bool Changed = false; 7741 // Attempt to sort and vectorize each of the store-groups. 7742 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 7743 ++it) { 7744 if (it->second.size() < 2) 7745 continue; 7746 7747 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 7748 << it->second.size() << ".\n"); 7749 7750 Changed |= vectorizeStores(it->second, R); 7751 } 7752 return Changed; 7753 } 7754 7755 char SLPVectorizer::ID = 0; 7756 7757 static const char lv_name[] = "SLP Vectorizer"; 7758 7759 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 7760 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7761 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7762 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7763 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7764 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 7765 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7766 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7767 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7768 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 7769 7770 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 7771