1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/DenseSet.h" 23 #include "llvm/ADT/MapVector.h" 24 #include "llvm/ADT/None.h" 25 #include "llvm/ADT/Optional.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SetVector.h" 29 #include "llvm/ADT/SmallBitVector.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/ADT/iterator.h" 35 #include "llvm/ADT/iterator_range.h" 36 #include "llvm/Analysis/AliasAnalysis.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/LoopAccessAnalysis.h" 41 #include "llvm/Analysis/LoopInfo.h" 42 #include "llvm/Analysis/MemoryLocation.h" 43 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 44 #include "llvm/Analysis/ScalarEvolution.h" 45 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 46 #include "llvm/Analysis/TargetLibraryInfo.h" 47 #include "llvm/Analysis/TargetTransformInfo.h" 48 #include "llvm/Analysis/ValueTracking.h" 49 #include "llvm/Analysis/VectorUtils.h" 50 #include "llvm/IR/Attributes.h" 51 #include "llvm/IR/BasicBlock.h" 52 #include "llvm/IR/Constant.h" 53 #include "llvm/IR/Constants.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/DebugLoc.h" 56 #include "llvm/IR/DerivedTypes.h" 57 #include "llvm/IR/Dominators.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/IRBuilder.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/NoFolder.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PassManager.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/Verifier.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/DOTGraphTraits.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/GraphWriter.h" 85 #include "llvm/Support/KnownBits.h" 86 #include "llvm/Support/MathExtras.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Transforms/Utils/LoopUtils.h" 89 #include "llvm/Transforms/Vectorize.h" 90 #include <algorithm> 91 #include <cassert> 92 #include <cstdint> 93 #include <iterator> 94 #include <memory> 95 #include <set> 96 #include <string> 97 #include <tuple> 98 #include <utility> 99 #include <vector> 100 101 using namespace llvm; 102 using namespace llvm::PatternMatch; 103 using namespace slpvectorizer; 104 105 #define SV_NAME "slp-vectorizer" 106 #define DEBUG_TYPE "SLP" 107 108 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 109 110 cl::opt<bool> 111 llvm::RunSLPVectorization("vectorize-slp", cl::init(false), cl::Hidden, 112 cl::desc("Run the SLP vectorization passes")); 113 114 static cl::opt<int> 115 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 116 cl::desc("Only vectorize if you gain more than this " 117 "number ")); 118 119 static cl::opt<bool> 120 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 121 cl::desc("Attempt to vectorize horizontal reductions")); 122 123 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 124 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 125 cl::desc( 126 "Attempt to vectorize horizontal reductions feeding into a store")); 127 128 static cl::opt<int> 129 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 130 cl::desc("Attempt to vectorize for this register size in bits")); 131 132 static cl::opt<int> 133 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 134 cl::desc("Maximum depth of the lookup for consecutive stores.")); 135 136 /// Limits the size of scheduling regions in a block. 137 /// It avoid long compile times for _very_ large blocks where vector 138 /// instructions are spread over a wide range. 139 /// This limit is way higher than needed by real-world functions. 140 static cl::opt<int> 141 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 142 cl::desc("Limit the size of the SLP scheduling region per block")); 143 144 static cl::opt<int> MinVectorRegSizeOption( 145 "slp-min-reg-size", cl::init(128), cl::Hidden, 146 cl::desc("Attempt to vectorize for this register size in bits")); 147 148 static cl::opt<unsigned> RecursionMaxDepth( 149 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 150 cl::desc("Limit the recursion depth when building a vectorizable tree")); 151 152 static cl::opt<unsigned> MinTreeSize( 153 "slp-min-tree-size", cl::init(3), cl::Hidden, 154 cl::desc("Only vectorize small trees if they are fully vectorizable")); 155 156 // The maximum depth that the look-ahead score heuristic will explore. 157 // The higher this value, the higher the compilation time overhead. 158 static cl::opt<int> LookAheadMaxDepth( 159 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 160 cl::desc("The maximum look-ahead depth for operand reordering scores")); 161 162 // The Look-ahead heuristic goes through the users of the bundle to calculate 163 // the users cost in getExternalUsesCost(). To avoid compilation time increase 164 // we limit the number of users visited to this value. 165 static cl::opt<unsigned> LookAheadUsersBudget( 166 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 167 cl::desc("The maximum number of users to visit while visiting the " 168 "predecessors. This prevents compilation time increase.")); 169 170 static cl::opt<bool> 171 ViewSLPTree("view-slp-tree", cl::Hidden, 172 cl::desc("Display the SLP trees with Graphviz")); 173 174 // Limit the number of alias checks. The limit is chosen so that 175 // it has no negative effect on the llvm benchmarks. 176 static const unsigned AliasedCheckLimit = 10; 177 178 // Another limit for the alias checks: The maximum distance between load/store 179 // instructions where alias checks are done. 180 // This limit is useful for very large basic blocks. 181 static const unsigned MaxMemDepDistance = 160; 182 183 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 184 /// regions to be handled. 185 static const int MinScheduleRegionSize = 16; 186 187 /// Predicate for the element types that the SLP vectorizer supports. 188 /// 189 /// The most important thing to filter here are types which are invalid in LLVM 190 /// vectors. We also filter target specific types which have absolutely no 191 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 192 /// avoids spending time checking the cost model and realizing that they will 193 /// be inevitably scalarized. 194 static bool isValidElementType(Type *Ty) { 195 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 196 !Ty->isPPC_FP128Ty(); 197 } 198 199 /// \returns true if all of the instructions in \p VL are in the same block or 200 /// false otherwise. 201 static bool allSameBlock(ArrayRef<Value *> VL) { 202 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 203 if (!I0) 204 return false; 205 BasicBlock *BB = I0->getParent(); 206 for (int i = 1, e = VL.size(); i < e; i++) { 207 Instruction *I = dyn_cast<Instruction>(VL[i]); 208 if (!I) 209 return false; 210 211 if (BB != I->getParent()) 212 return false; 213 } 214 return true; 215 } 216 217 /// \returns True if all of the values in \p VL are constants (but not 218 /// globals/constant expressions). 219 static bool allConstant(ArrayRef<Value *> VL) { 220 // Constant expressions and globals can't be vectorized like normal integer/FP 221 // constants. 222 for (Value *i : VL) 223 if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i)) 224 return false; 225 return true; 226 } 227 228 /// \returns True if all of the values in \p VL are identical. 229 static bool isSplat(ArrayRef<Value *> VL) { 230 for (unsigned i = 1, e = VL.size(); i < e; ++i) 231 if (VL[i] != VL[0]) 232 return false; 233 return true; 234 } 235 236 /// \returns True if \p I is commutative, handles CmpInst as well as Instruction. 237 static bool isCommutative(Instruction *I) { 238 if (auto *IC = dyn_cast<CmpInst>(I)) 239 return IC->isCommutative(); 240 return I->isCommutative(); 241 } 242 243 /// Checks if the vector of instructions can be represented as a shuffle, like: 244 /// %x0 = extractelement <4 x i8> %x, i32 0 245 /// %x3 = extractelement <4 x i8> %x, i32 3 246 /// %y1 = extractelement <4 x i8> %y, i32 1 247 /// %y2 = extractelement <4 x i8> %y, i32 2 248 /// %x0x0 = mul i8 %x0, %x0 249 /// %x3x3 = mul i8 %x3, %x3 250 /// %y1y1 = mul i8 %y1, %y1 251 /// %y2y2 = mul i8 %y2, %y2 252 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 253 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 254 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 255 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 256 /// ret <4 x i8> %ins4 257 /// can be transformed into: 258 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 259 /// i32 6> 260 /// %2 = mul <4 x i8> %1, %1 261 /// ret <4 x i8> %2 262 /// We convert this initially to something like: 263 /// %x0 = extractelement <4 x i8> %x, i32 0 264 /// %x3 = extractelement <4 x i8> %x, i32 3 265 /// %y1 = extractelement <4 x i8> %y, i32 1 266 /// %y2 = extractelement <4 x i8> %y, i32 2 267 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 268 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 269 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 270 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 271 /// %5 = mul <4 x i8> %4, %4 272 /// %6 = extractelement <4 x i8> %5, i32 0 273 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 274 /// %7 = extractelement <4 x i8> %5, i32 1 275 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 276 /// %8 = extractelement <4 x i8> %5, i32 2 277 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 278 /// %9 = extractelement <4 x i8> %5, i32 3 279 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 280 /// ret <4 x i8> %ins4 281 /// InstCombiner transforms this into a shuffle and vector mul 282 /// TODO: Can we split off and reuse the shuffle mask detection from 283 /// TargetTransformInfo::getInstructionThroughput? 284 static Optional<TargetTransformInfo::ShuffleKind> 285 isShuffle(ArrayRef<Value *> VL) { 286 auto *EI0 = cast<ExtractElementInst>(VL[0]); 287 unsigned Size = EI0->getVectorOperandType()->getVectorNumElements(); 288 Value *Vec1 = nullptr; 289 Value *Vec2 = nullptr; 290 enum ShuffleMode { Unknown, Select, Permute }; 291 ShuffleMode CommonShuffleMode = Unknown; 292 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 293 auto *EI = cast<ExtractElementInst>(VL[I]); 294 auto *Vec = EI->getVectorOperand(); 295 // All vector operands must have the same number of vector elements. 296 if (Vec->getType()->getVectorNumElements() != Size) 297 return None; 298 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 299 if (!Idx) 300 return None; 301 // Undefined behavior if Idx is negative or >= Size. 302 if (Idx->getValue().uge(Size)) 303 continue; 304 unsigned IntIdx = Idx->getValue().getZExtValue(); 305 // We can extractelement from undef vector. 306 if (isa<UndefValue>(Vec)) 307 continue; 308 // For correct shuffling we have to have at most 2 different vector operands 309 // in all extractelement instructions. 310 if (!Vec1 || Vec1 == Vec) 311 Vec1 = Vec; 312 else if (!Vec2 || Vec2 == Vec) 313 Vec2 = Vec; 314 else 315 return None; 316 if (CommonShuffleMode == Permute) 317 continue; 318 // If the extract index is not the same as the operation number, it is a 319 // permutation. 320 if (IntIdx != I) { 321 CommonShuffleMode = Permute; 322 continue; 323 } 324 CommonShuffleMode = Select; 325 } 326 // If we're not crossing lanes in different vectors, consider it as blending. 327 if (CommonShuffleMode == Select && Vec2) 328 return TargetTransformInfo::SK_Select; 329 // If Vec2 was never used, we have a permutation of a single vector, otherwise 330 // we have permutation of 2 vectors. 331 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 332 : TargetTransformInfo::SK_PermuteSingleSrc; 333 } 334 335 namespace { 336 337 /// Main data required for vectorization of instructions. 338 struct InstructionsState { 339 /// The very first instruction in the list with the main opcode. 340 Value *OpValue = nullptr; 341 342 /// The main/alternate instruction. 343 Instruction *MainOp = nullptr; 344 Instruction *AltOp = nullptr; 345 346 /// The main/alternate opcodes for the list of instructions. 347 unsigned getOpcode() const { 348 return MainOp ? MainOp->getOpcode() : 0; 349 } 350 351 unsigned getAltOpcode() const { 352 return AltOp ? AltOp->getOpcode() : 0; 353 } 354 355 /// Some of the instructions in the list have alternate opcodes. 356 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 357 358 bool isOpcodeOrAlt(Instruction *I) const { 359 unsigned CheckedOpcode = I->getOpcode(); 360 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 361 } 362 363 InstructionsState() = delete; 364 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 365 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 366 }; 367 368 } // end anonymous namespace 369 370 /// Chooses the correct key for scheduling data. If \p Op has the same (or 371 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 372 /// OpValue. 373 static Value *isOneOf(const InstructionsState &S, Value *Op) { 374 auto *I = dyn_cast<Instruction>(Op); 375 if (I && S.isOpcodeOrAlt(I)) 376 return Op; 377 return S.OpValue; 378 } 379 380 /// \returns analysis of the Instructions in \p VL described in 381 /// InstructionsState, the Opcode that we suppose the whole list 382 /// could be vectorized even if its structure is diverse. 383 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 384 unsigned BaseIndex = 0) { 385 // Make sure these are all Instructions. 386 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 387 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 388 389 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 390 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 391 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 392 unsigned AltOpcode = Opcode; 393 unsigned AltIndex = BaseIndex; 394 395 // Check for one alternate opcode from another BinaryOperator. 396 // TODO - generalize to support all operators (types, calls etc.). 397 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 398 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 399 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 400 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 401 continue; 402 if (Opcode == AltOpcode) { 403 AltOpcode = InstOpcode; 404 AltIndex = Cnt; 405 continue; 406 } 407 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 408 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 409 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 410 if (Ty0 == Ty1) { 411 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 412 continue; 413 if (Opcode == AltOpcode) { 414 AltOpcode = InstOpcode; 415 AltIndex = Cnt; 416 continue; 417 } 418 } 419 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 420 continue; 421 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 422 } 423 424 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 425 cast<Instruction>(VL[AltIndex])); 426 } 427 428 /// \returns true if all of the values in \p VL have the same type or false 429 /// otherwise. 430 static bool allSameType(ArrayRef<Value *> VL) { 431 Type *Ty = VL[0]->getType(); 432 for (int i = 1, e = VL.size(); i < e; i++) 433 if (VL[i]->getType() != Ty) 434 return false; 435 436 return true; 437 } 438 439 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 440 static Optional<unsigned> getExtractIndex(Instruction *E) { 441 unsigned Opcode = E->getOpcode(); 442 assert((Opcode == Instruction::ExtractElement || 443 Opcode == Instruction::ExtractValue) && 444 "Expected extractelement or extractvalue instruction."); 445 if (Opcode == Instruction::ExtractElement) { 446 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 447 if (!CI) 448 return None; 449 return CI->getZExtValue(); 450 } 451 ExtractValueInst *EI = cast<ExtractValueInst>(E); 452 if (EI->getNumIndices() != 1) 453 return None; 454 return *EI->idx_begin(); 455 } 456 457 /// \returns True if in-tree use also needs extract. This refers to 458 /// possible scalar operand in vectorized instruction. 459 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 460 TargetLibraryInfo *TLI) { 461 unsigned Opcode = UserInst->getOpcode(); 462 switch (Opcode) { 463 case Instruction::Load: { 464 LoadInst *LI = cast<LoadInst>(UserInst); 465 return (LI->getPointerOperand() == Scalar); 466 } 467 case Instruction::Store: { 468 StoreInst *SI = cast<StoreInst>(UserInst); 469 return (SI->getPointerOperand() == Scalar); 470 } 471 case Instruction::Call: { 472 CallInst *CI = cast<CallInst>(UserInst); 473 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 474 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 475 if (hasVectorInstrinsicScalarOpd(ID, i)) 476 return (CI->getArgOperand(i) == Scalar); 477 } 478 LLVM_FALLTHROUGH; 479 } 480 default: 481 return false; 482 } 483 } 484 485 /// \returns the AA location that is being access by the instruction. 486 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 487 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 488 return MemoryLocation::get(SI); 489 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 490 return MemoryLocation::get(LI); 491 return MemoryLocation(); 492 } 493 494 /// \returns True if the instruction is not a volatile or atomic load/store. 495 static bool isSimple(Instruction *I) { 496 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 497 return LI->isSimple(); 498 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 499 return SI->isSimple(); 500 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 501 return !MI->isVolatile(); 502 return true; 503 } 504 505 namespace llvm { 506 507 namespace slpvectorizer { 508 509 /// Bottom Up SLP Vectorizer. 510 class BoUpSLP { 511 struct TreeEntry; 512 struct ScheduleData; 513 514 public: 515 using ValueList = SmallVector<Value *, 8>; 516 using InstrList = SmallVector<Instruction *, 16>; 517 using ValueSet = SmallPtrSet<Value *, 16>; 518 using StoreList = SmallVector<StoreInst *, 8>; 519 using ExtraValueToDebugLocsMap = 520 MapVector<Value *, SmallVector<Instruction *, 2>>; 521 522 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 523 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 524 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 525 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 526 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 527 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 528 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 529 // Use the vector register size specified by the target unless overridden 530 // by a command-line option. 531 // TODO: It would be better to limit the vectorization factor based on 532 // data type rather than just register size. For example, x86 AVX has 533 // 256-bit registers, but it does not support integer operations 534 // at that width (that requires AVX2). 535 if (MaxVectorRegSizeOption.getNumOccurrences()) 536 MaxVecRegSize = MaxVectorRegSizeOption; 537 else 538 MaxVecRegSize = TTI->getRegisterBitWidth(true); 539 540 if (MinVectorRegSizeOption.getNumOccurrences()) 541 MinVecRegSize = MinVectorRegSizeOption; 542 else 543 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 544 } 545 546 /// Vectorize the tree that starts with the elements in \p VL. 547 /// Returns the vectorized root. 548 Value *vectorizeTree(); 549 550 /// Vectorize the tree but with the list of externally used values \p 551 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 552 /// generated extractvalue instructions. 553 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 554 555 /// \returns the cost incurred by unwanted spills and fills, caused by 556 /// holding live values over call sites. 557 int getSpillCost() const; 558 559 /// \returns the vectorization cost of the subtree that starts at \p VL. 560 /// A negative number means that this is profitable. 561 int getTreeCost(); 562 563 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 564 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 565 void buildTree(ArrayRef<Value *> Roots, 566 ArrayRef<Value *> UserIgnoreLst = None); 567 568 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 569 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 570 /// into account (and updating it, if required) list of externally used 571 /// values stored in \p ExternallyUsedValues. 572 void buildTree(ArrayRef<Value *> Roots, 573 ExtraValueToDebugLocsMap &ExternallyUsedValues, 574 ArrayRef<Value *> UserIgnoreLst = None); 575 576 /// Clear the internal data structures that are created by 'buildTree'. 577 void deleteTree() { 578 VectorizableTree.clear(); 579 ScalarToTreeEntry.clear(); 580 MustGather.clear(); 581 ExternalUses.clear(); 582 NumOpsWantToKeepOrder.clear(); 583 NumOpsWantToKeepOriginalOrder = 0; 584 for (auto &Iter : BlocksSchedules) { 585 BlockScheduling *BS = Iter.second.get(); 586 BS->clear(); 587 } 588 MinBWs.clear(); 589 } 590 591 unsigned getTreeSize() const { return VectorizableTree.size(); } 592 593 /// Perform LICM and CSE on the newly generated gather sequences. 594 void optimizeGatherSequence(); 595 596 /// \returns The best order of instructions for vectorization. 597 Optional<ArrayRef<unsigned>> bestOrder() const { 598 auto I = std::max_element( 599 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 600 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 601 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 602 return D1.second < D2.second; 603 }); 604 if (I == NumOpsWantToKeepOrder.end() || 605 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 606 return None; 607 608 return makeArrayRef(I->getFirst()); 609 } 610 611 /// \return The vector element size in bits to use when vectorizing the 612 /// expression tree ending at \p V. If V is a store, the size is the width of 613 /// the stored value. Otherwise, the size is the width of the largest loaded 614 /// value reaching V. This method is used by the vectorizer to calculate 615 /// vectorization factors. 616 unsigned getVectorElementSize(Value *V) const; 617 618 /// Compute the minimum type sizes required to represent the entries in a 619 /// vectorizable tree. 620 void computeMinimumValueSizes(); 621 622 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 623 unsigned getMaxVecRegSize() const { 624 return MaxVecRegSize; 625 } 626 627 // \returns minimum vector register size as set by cl::opt. 628 unsigned getMinVecRegSize() const { 629 return MinVecRegSize; 630 } 631 632 /// Check if ArrayType or StructType is isomorphic to some VectorType. 633 /// 634 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 635 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 636 637 /// \returns True if the VectorizableTree is both tiny and not fully 638 /// vectorizable. We do not vectorize such trees. 639 bool isTreeTinyAndNotFullyVectorizable() const; 640 641 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 642 /// can be load combined in the backend. Load combining may not be allowed in 643 /// the IR optimizer, so we do not want to alter the pattern. For example, 644 /// partially transforming a scalar bswap() pattern into vector code is 645 /// effectively impossible for the backend to undo. 646 /// TODO: If load combining is allowed in the IR optimizer, this analysis 647 /// may not be necessary. 648 bool isLoadCombineReductionCandidate(unsigned ReductionOpcode) const; 649 650 OptimizationRemarkEmitter *getORE() { return ORE; } 651 652 /// This structure holds any data we need about the edges being traversed 653 /// during buildTree_rec(). We keep track of: 654 /// (i) the user TreeEntry index, and 655 /// (ii) the index of the edge. 656 struct EdgeInfo { 657 EdgeInfo() = default; 658 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 659 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 660 /// The user TreeEntry. 661 TreeEntry *UserTE = nullptr; 662 /// The operand index of the use. 663 unsigned EdgeIdx = UINT_MAX; 664 #ifndef NDEBUG 665 friend inline raw_ostream &operator<<(raw_ostream &OS, 666 const BoUpSLP::EdgeInfo &EI) { 667 EI.dump(OS); 668 return OS; 669 } 670 /// Debug print. 671 void dump(raw_ostream &OS) const { 672 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 673 << " EdgeIdx:" << EdgeIdx << "}"; 674 } 675 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 676 #endif 677 }; 678 679 /// A helper data structure to hold the operands of a vector of instructions. 680 /// This supports a fixed vector length for all operand vectors. 681 class VLOperands { 682 /// For each operand we need (i) the value, and (ii) the opcode that it 683 /// would be attached to if the expression was in a left-linearized form. 684 /// This is required to avoid illegal operand reordering. 685 /// For example: 686 /// \verbatim 687 /// 0 Op1 688 /// |/ 689 /// Op1 Op2 Linearized + Op2 690 /// \ / ----------> |/ 691 /// - - 692 /// 693 /// Op1 - Op2 (0 + Op1) - Op2 694 /// \endverbatim 695 /// 696 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 697 /// 698 /// Another way to think of this is to track all the operations across the 699 /// path from the operand all the way to the root of the tree and to 700 /// calculate the operation that corresponds to this path. For example, the 701 /// path from Op2 to the root crosses the RHS of the '-', therefore the 702 /// corresponding operation is a '-' (which matches the one in the 703 /// linearized tree, as shown above). 704 /// 705 /// For lack of a better term, we refer to this operation as Accumulated 706 /// Path Operation (APO). 707 struct OperandData { 708 OperandData() = default; 709 OperandData(Value *V, bool APO, bool IsUsed) 710 : V(V), APO(APO), IsUsed(IsUsed) {} 711 /// The operand value. 712 Value *V = nullptr; 713 /// TreeEntries only allow a single opcode, or an alternate sequence of 714 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 715 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 716 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 717 /// (e.g., Add/Mul) 718 bool APO = false; 719 /// Helper data for the reordering function. 720 bool IsUsed = false; 721 }; 722 723 /// During operand reordering, we are trying to select the operand at lane 724 /// that matches best with the operand at the neighboring lane. Our 725 /// selection is based on the type of value we are looking for. For example, 726 /// if the neighboring lane has a load, we need to look for a load that is 727 /// accessing a consecutive address. These strategies are summarized in the 728 /// 'ReorderingMode' enumerator. 729 enum class ReorderingMode { 730 Load, ///< Matching loads to consecutive memory addresses 731 Opcode, ///< Matching instructions based on opcode (same or alternate) 732 Constant, ///< Matching constants 733 Splat, ///< Matching the same instruction multiple times (broadcast) 734 Failed, ///< We failed to create a vectorizable group 735 }; 736 737 using OperandDataVec = SmallVector<OperandData, 2>; 738 739 /// A vector of operand vectors. 740 SmallVector<OperandDataVec, 4> OpsVec; 741 742 const DataLayout &DL; 743 ScalarEvolution &SE; 744 const BoUpSLP &R; 745 746 /// \returns the operand data at \p OpIdx and \p Lane. 747 OperandData &getData(unsigned OpIdx, unsigned Lane) { 748 return OpsVec[OpIdx][Lane]; 749 } 750 751 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 752 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 753 return OpsVec[OpIdx][Lane]; 754 } 755 756 /// Clears the used flag for all entries. 757 void clearUsed() { 758 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 759 OpIdx != NumOperands; ++OpIdx) 760 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 761 ++Lane) 762 OpsVec[OpIdx][Lane].IsUsed = false; 763 } 764 765 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 766 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 767 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 768 } 769 770 // The hard-coded scores listed here are not very important. When computing 771 // the scores of matching one sub-tree with another, we are basically 772 // counting the number of values that are matching. So even if all scores 773 // are set to 1, we would still get a decent matching result. 774 // However, sometimes we have to break ties. For example we may have to 775 // choose between matching loads vs matching opcodes. This is what these 776 // scores are helping us with: they provide the order of preference. 777 778 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 779 static const int ScoreConsecutiveLoads = 3; 780 /// ExtractElementInst from same vector and consecutive indexes. 781 static const int ScoreConsecutiveExtracts = 3; 782 /// Constants. 783 static const int ScoreConstants = 2; 784 /// Instructions with the same opcode. 785 static const int ScoreSameOpcode = 2; 786 /// Instructions with alt opcodes (e.g, add + sub). 787 static const int ScoreAltOpcodes = 1; 788 /// Identical instructions (a.k.a. splat or broadcast). 789 static const int ScoreSplat = 1; 790 /// Matching with an undef is preferable to failing. 791 static const int ScoreUndef = 1; 792 /// Score for failing to find a decent match. 793 static const int ScoreFail = 0; 794 /// User exteranl to the vectorized code. 795 static const int ExternalUseCost = 1; 796 /// The user is internal but in a different lane. 797 static const int UserInDiffLaneCost = ExternalUseCost; 798 799 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 800 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 801 ScalarEvolution &SE) { 802 auto *LI1 = dyn_cast<LoadInst>(V1); 803 auto *LI2 = dyn_cast<LoadInst>(V2); 804 if (LI1 && LI2) 805 return isConsecutiveAccess(LI1, LI2, DL, SE) 806 ? VLOperands::ScoreConsecutiveLoads 807 : VLOperands::ScoreFail; 808 809 auto *C1 = dyn_cast<Constant>(V1); 810 auto *C2 = dyn_cast<Constant>(V2); 811 if (C1 && C2) 812 return VLOperands::ScoreConstants; 813 814 // Extracts from consecutive indexes of the same vector better score as 815 // the extracts could be optimized away. 816 auto *Ex1 = dyn_cast<ExtractElementInst>(V1); 817 auto *Ex2 = dyn_cast<ExtractElementInst>(V2); 818 if (Ex1 && Ex2 && Ex1->getVectorOperand() == Ex2->getVectorOperand() && 819 cast<ConstantInt>(Ex1->getIndexOperand())->getZExtValue() + 1 == 820 cast<ConstantInt>(Ex2->getIndexOperand())->getZExtValue()) { 821 return VLOperands::ScoreConsecutiveExtracts; 822 } 823 824 auto *I1 = dyn_cast<Instruction>(V1); 825 auto *I2 = dyn_cast<Instruction>(V2); 826 if (I1 && I2) { 827 if (I1 == I2) 828 return VLOperands::ScoreSplat; 829 InstructionsState S = getSameOpcode({I1, I2}); 830 // Note: Only consider instructions with <= 2 operands to avoid 831 // complexity explosion. 832 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 833 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 834 : VLOperands::ScoreSameOpcode; 835 } 836 837 if (isa<UndefValue>(V2)) 838 return VLOperands::ScoreUndef; 839 840 return VLOperands::ScoreFail; 841 } 842 843 /// Holds the values and their lane that are taking part in the look-ahead 844 /// score calculation. This is used in the external uses cost calculation. 845 SmallDenseMap<Value *, int> InLookAheadValues; 846 847 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are 848 /// either external to the vectorized code, or require shuffling. 849 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 850 const std::pair<Value *, int> &RHS) { 851 int Cost = 0; 852 SmallVector<std::pair<Value *, int>, 2> Values = {LHS, RHS}; 853 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 854 Value *V = Values[Idx].first; 855 // Calculate the absolute lane, using the minimum relative lane of LHS 856 // and RHS as base and Idx as the offset. 857 int Ln = std::min(LHS.second, RHS.second) + Idx; 858 assert(Ln >= 0 && "Bad lane calculation"); 859 unsigned UsersBudget = LookAheadUsersBudget; 860 for (User *U : V->users()) { 861 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 862 // The user is in the VectorizableTree. Check if we need to insert. 863 auto It = llvm::find(UserTE->Scalars, U); 864 assert(It != UserTE->Scalars.end() && "U is in UserTE"); 865 int UserLn = std::distance(UserTE->Scalars.begin(), It); 866 assert(UserLn >= 0 && "Bad lane"); 867 if (UserLn != Ln) 868 Cost += UserInDiffLaneCost; 869 } else { 870 // Check if the user is in the look-ahead code. 871 auto It2 = InLookAheadValues.find(U); 872 if (It2 != InLookAheadValues.end()) { 873 // The user is in the look-ahead code. Check the lane. 874 if (It2->second != Ln) 875 Cost += UserInDiffLaneCost; 876 } else { 877 // The user is neither in SLP tree nor in the look-ahead code. 878 Cost += ExternalUseCost; 879 } 880 } 881 // Limit the number of visited uses to cap compilation time. 882 if (--UsersBudget == 0) 883 break; 884 } 885 } 886 return Cost; 887 } 888 889 /// Go through the operands of \p LHS and \p RHS recursively until \p 890 /// MaxLevel, and return the cummulative score. For example: 891 /// \verbatim 892 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 893 /// \ / \ / \ / \ / 894 /// + + + + 895 /// G1 G2 G3 G4 896 /// \endverbatim 897 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 898 /// each level recursively, accumulating the score. It starts from matching 899 /// the additions at level 0, then moves on to the loads (level 1). The 900 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 901 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 902 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 903 /// Please note that the order of the operands does not matter, as we 904 /// evaluate the score of all profitable combinations of operands. In 905 /// other words the score of G1 and G4 is the same as G1 and G2. This 906 /// heuristic is based on ideas described in: 907 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 908 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 909 /// Luís F. W. Góes 910 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 911 const std::pair<Value *, int> &RHS, int CurrLevel, 912 int MaxLevel) { 913 914 Value *V1 = LHS.first; 915 Value *V2 = RHS.first; 916 // Get the shallow score of V1 and V2. 917 int ShallowScoreAtThisLevel = 918 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) - 919 getExternalUsesCost(LHS, RHS)); 920 int Lane1 = LHS.second; 921 int Lane2 = RHS.second; 922 923 // If reached MaxLevel, 924 // or if V1 and V2 are not instructions, 925 // or if they are SPLAT, 926 // or if they are not consecutive, early return the current cost. 927 auto *I1 = dyn_cast<Instruction>(V1); 928 auto *I2 = dyn_cast<Instruction>(V2); 929 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 930 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 931 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel)) 932 return ShallowScoreAtThisLevel; 933 assert(I1 && I2 && "Should have early exited."); 934 935 // Keep track of in-tree values for determining the external-use cost. 936 InLookAheadValues[V1] = Lane1; 937 InLookAheadValues[V2] = Lane2; 938 939 // Contains the I2 operand indexes that got matched with I1 operands. 940 SmallSet<unsigned, 4> Op2Used; 941 942 // Recursion towards the operands of I1 and I2. We are trying all possbile 943 // operand pairs, and keeping track of the best score. 944 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 945 OpIdx1 != NumOperands1; ++OpIdx1) { 946 // Try to pair op1I with the best operand of I2. 947 int MaxTmpScore = 0; 948 unsigned MaxOpIdx2 = 0; 949 bool FoundBest = false; 950 // If I2 is commutative try all combinations. 951 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 952 unsigned ToIdx = isCommutative(I2) 953 ? I2->getNumOperands() 954 : std::min(I2->getNumOperands(), OpIdx1 + 1); 955 assert(FromIdx <= ToIdx && "Bad index"); 956 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 957 // Skip operands already paired with OpIdx1. 958 if (Op2Used.count(OpIdx2)) 959 continue; 960 // Recursively calculate the cost at each level 961 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 962 {I2->getOperand(OpIdx2), Lane2}, 963 CurrLevel + 1, MaxLevel); 964 // Look for the best score. 965 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 966 MaxTmpScore = TmpScore; 967 MaxOpIdx2 = OpIdx2; 968 FoundBest = true; 969 } 970 } 971 if (FoundBest) { 972 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 973 Op2Used.insert(MaxOpIdx2); 974 ShallowScoreAtThisLevel += MaxTmpScore; 975 } 976 } 977 return ShallowScoreAtThisLevel; 978 } 979 980 /// \Returns the look-ahead score, which tells us how much the sub-trees 981 /// rooted at \p LHS and \p RHS match, the more they match the higher the 982 /// score. This helps break ties in an informed way when we cannot decide on 983 /// the order of the operands by just considering the immediate 984 /// predecessors. 985 int getLookAheadScore(const std::pair<Value *, int> &LHS, 986 const std::pair<Value *, int> &RHS) { 987 InLookAheadValues.clear(); 988 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 989 } 990 991 // Search all operands in Ops[*][Lane] for the one that matches best 992 // Ops[OpIdx][LastLane] and return its opreand index. 993 // If no good match can be found, return None. 994 Optional<unsigned> 995 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 996 ArrayRef<ReorderingMode> ReorderingModes) { 997 unsigned NumOperands = getNumOperands(); 998 999 // The operand of the previous lane at OpIdx. 1000 Value *OpLastLane = getData(OpIdx, LastLane).V; 1001 1002 // Our strategy mode for OpIdx. 1003 ReorderingMode RMode = ReorderingModes[OpIdx]; 1004 1005 // The linearized opcode of the operand at OpIdx, Lane. 1006 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1007 1008 // The best operand index and its score. 1009 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1010 // are using the score to differentiate between the two. 1011 struct BestOpData { 1012 Optional<unsigned> Idx = None; 1013 unsigned Score = 0; 1014 } BestOp; 1015 1016 // Iterate through all unused operands and look for the best. 1017 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1018 // Get the operand at Idx and Lane. 1019 OperandData &OpData = getData(Idx, Lane); 1020 Value *Op = OpData.V; 1021 bool OpAPO = OpData.APO; 1022 1023 // Skip already selected operands. 1024 if (OpData.IsUsed) 1025 continue; 1026 1027 // Skip if we are trying to move the operand to a position with a 1028 // different opcode in the linearized tree form. This would break the 1029 // semantics. 1030 if (OpAPO != OpIdxAPO) 1031 continue; 1032 1033 // Look for an operand that matches the current mode. 1034 switch (RMode) { 1035 case ReorderingMode::Load: 1036 case ReorderingMode::Constant: 1037 case ReorderingMode::Opcode: { 1038 bool LeftToRight = Lane > LastLane; 1039 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1040 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1041 unsigned Score = 1042 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1043 if (Score > BestOp.Score) { 1044 BestOp.Idx = Idx; 1045 BestOp.Score = Score; 1046 } 1047 break; 1048 } 1049 case ReorderingMode::Splat: 1050 if (Op == OpLastLane) 1051 BestOp.Idx = Idx; 1052 break; 1053 case ReorderingMode::Failed: 1054 return None; 1055 } 1056 } 1057 1058 if (BestOp.Idx) { 1059 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1060 return BestOp.Idx; 1061 } 1062 // If we could not find a good match return None. 1063 return None; 1064 } 1065 1066 /// Helper for reorderOperandVecs. \Returns the lane that we should start 1067 /// reordering from. This is the one which has the least number of operands 1068 /// that can freely move about. 1069 unsigned getBestLaneToStartReordering() const { 1070 unsigned BestLane = 0; 1071 unsigned Min = UINT_MAX; 1072 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1073 ++Lane) { 1074 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 1075 if (NumFreeOps < Min) { 1076 Min = NumFreeOps; 1077 BestLane = Lane; 1078 } 1079 } 1080 return BestLane; 1081 } 1082 1083 /// \Returns the maximum number of operands that are allowed to be reordered 1084 /// for \p Lane. This is used as a heuristic for selecting the first lane to 1085 /// start operand reordering. 1086 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1087 unsigned CntTrue = 0; 1088 unsigned NumOperands = getNumOperands(); 1089 // Operands with the same APO can be reordered. We therefore need to count 1090 // how many of them we have for each APO, like this: Cnt[APO] = x. 1091 // Since we only have two APOs, namely true and false, we can avoid using 1092 // a map. Instead we can simply count the number of operands that 1093 // correspond to one of them (in this case the 'true' APO), and calculate 1094 // the other by subtracting it from the total number of operands. 1095 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 1096 if (getData(OpIdx, Lane).APO) 1097 ++CntTrue; 1098 unsigned CntFalse = NumOperands - CntTrue; 1099 return std::max(CntTrue, CntFalse); 1100 } 1101 1102 /// Go through the instructions in VL and append their operands. 1103 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1104 assert(!VL.empty() && "Bad VL"); 1105 assert((empty() || VL.size() == getNumLanes()) && 1106 "Expected same number of lanes"); 1107 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1108 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1109 OpsVec.resize(NumOperands); 1110 unsigned NumLanes = VL.size(); 1111 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1112 OpsVec[OpIdx].resize(NumLanes); 1113 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1114 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1115 // Our tree has just 3 nodes: the root and two operands. 1116 // It is therefore trivial to get the APO. We only need to check the 1117 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1118 // RHS operand. The LHS operand of both add and sub is never attached 1119 // to an inversese operation in the linearized form, therefore its APO 1120 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1121 1122 // Since operand reordering is performed on groups of commutative 1123 // operations or alternating sequences (e.g., +, -), we can safely 1124 // tell the inverse operations by checking commutativity. 1125 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1126 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1127 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1128 APO, false}; 1129 } 1130 } 1131 } 1132 1133 /// \returns the number of operands. 1134 unsigned getNumOperands() const { return OpsVec.size(); } 1135 1136 /// \returns the number of lanes. 1137 unsigned getNumLanes() const { return OpsVec[0].size(); } 1138 1139 /// \returns the operand value at \p OpIdx and \p Lane. 1140 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1141 return getData(OpIdx, Lane).V; 1142 } 1143 1144 /// \returns true if the data structure is empty. 1145 bool empty() const { return OpsVec.empty(); } 1146 1147 /// Clears the data. 1148 void clear() { OpsVec.clear(); } 1149 1150 /// \Returns true if there are enough operands identical to \p Op to fill 1151 /// the whole vector. 1152 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1153 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1154 bool OpAPO = getData(OpIdx, Lane).APO; 1155 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1156 if (Ln == Lane) 1157 continue; 1158 // This is set to true if we found a candidate for broadcast at Lane. 1159 bool FoundCandidate = false; 1160 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1161 OperandData &Data = getData(OpI, Ln); 1162 if (Data.APO != OpAPO || Data.IsUsed) 1163 continue; 1164 if (Data.V == Op) { 1165 FoundCandidate = true; 1166 Data.IsUsed = true; 1167 break; 1168 } 1169 } 1170 if (!FoundCandidate) 1171 return false; 1172 } 1173 return true; 1174 } 1175 1176 public: 1177 /// Initialize with all the operands of the instruction vector \p RootVL. 1178 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1179 ScalarEvolution &SE, const BoUpSLP &R) 1180 : DL(DL), SE(SE), R(R) { 1181 // Append all the operands of RootVL. 1182 appendOperandsOfVL(RootVL); 1183 } 1184 1185 /// \Returns a value vector with the operands across all lanes for the 1186 /// opearnd at \p OpIdx. 1187 ValueList getVL(unsigned OpIdx) const { 1188 ValueList OpVL(OpsVec[OpIdx].size()); 1189 assert(OpsVec[OpIdx].size() == getNumLanes() && 1190 "Expected same num of lanes across all operands"); 1191 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1192 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1193 return OpVL; 1194 } 1195 1196 // Performs operand reordering for 2 or more operands. 1197 // The original operands are in OrigOps[OpIdx][Lane]. 1198 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1199 void reorder() { 1200 unsigned NumOperands = getNumOperands(); 1201 unsigned NumLanes = getNumLanes(); 1202 // Each operand has its own mode. We are using this mode to help us select 1203 // the instructions for each lane, so that they match best with the ones 1204 // we have selected so far. 1205 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1206 1207 // This is a greedy single-pass algorithm. We are going over each lane 1208 // once and deciding on the best order right away with no back-tracking. 1209 // However, in order to increase its effectiveness, we start with the lane 1210 // that has operands that can move the least. For example, given the 1211 // following lanes: 1212 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1213 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1214 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1215 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1216 // we will start at Lane 1, since the operands of the subtraction cannot 1217 // be reordered. Then we will visit the rest of the lanes in a circular 1218 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1219 1220 // Find the first lane that we will start our search from. 1221 unsigned FirstLane = getBestLaneToStartReordering(); 1222 1223 // Initialize the modes. 1224 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1225 Value *OpLane0 = getValue(OpIdx, FirstLane); 1226 // Keep track if we have instructions with all the same opcode on one 1227 // side. 1228 if (isa<LoadInst>(OpLane0)) 1229 ReorderingModes[OpIdx] = ReorderingMode::Load; 1230 else if (isa<Instruction>(OpLane0)) { 1231 // Check if OpLane0 should be broadcast. 1232 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1233 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1234 else 1235 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1236 } 1237 else if (isa<Constant>(OpLane0)) 1238 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1239 else if (isa<Argument>(OpLane0)) 1240 // Our best hope is a Splat. It may save some cost in some cases. 1241 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1242 else 1243 // NOTE: This should be unreachable. 1244 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1245 } 1246 1247 // If the initial strategy fails for any of the operand indexes, then we 1248 // perform reordering again in a second pass. This helps avoid assigning 1249 // high priority to the failed strategy, and should improve reordering for 1250 // the non-failed operand indexes. 1251 for (int Pass = 0; Pass != 2; ++Pass) { 1252 // Skip the second pass if the first pass did not fail. 1253 bool StrategyFailed = false; 1254 // Mark all operand data as free to use. 1255 clearUsed(); 1256 // We keep the original operand order for the FirstLane, so reorder the 1257 // rest of the lanes. We are visiting the nodes in a circular fashion, 1258 // using FirstLane as the center point and increasing the radius 1259 // distance. 1260 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1261 // Visit the lane on the right and then the lane on the left. 1262 for (int Direction : {+1, -1}) { 1263 int Lane = FirstLane + Direction * Distance; 1264 if (Lane < 0 || Lane >= (int)NumLanes) 1265 continue; 1266 int LastLane = Lane - Direction; 1267 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1268 "Out of bounds"); 1269 // Look for a good match for each operand. 1270 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1271 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1272 Optional<unsigned> BestIdx = 1273 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1274 // By not selecting a value, we allow the operands that follow to 1275 // select a better matching value. We will get a non-null value in 1276 // the next run of getBestOperand(). 1277 if (BestIdx) { 1278 // Swap the current operand with the one returned by 1279 // getBestOperand(). 1280 swap(OpIdx, BestIdx.getValue(), Lane); 1281 } else { 1282 // We failed to find a best operand, set mode to 'Failed'. 1283 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1284 // Enable the second pass. 1285 StrategyFailed = true; 1286 } 1287 } 1288 } 1289 } 1290 // Skip second pass if the strategy did not fail. 1291 if (!StrategyFailed) 1292 break; 1293 } 1294 } 1295 1296 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1297 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1298 switch (RMode) { 1299 case ReorderingMode::Load: 1300 return "Load"; 1301 case ReorderingMode::Opcode: 1302 return "Opcode"; 1303 case ReorderingMode::Constant: 1304 return "Constant"; 1305 case ReorderingMode::Splat: 1306 return "Splat"; 1307 case ReorderingMode::Failed: 1308 return "Failed"; 1309 } 1310 llvm_unreachable("Unimplemented Reordering Type"); 1311 } 1312 1313 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1314 raw_ostream &OS) { 1315 return OS << getModeStr(RMode); 1316 } 1317 1318 /// Debug print. 1319 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1320 printMode(RMode, dbgs()); 1321 } 1322 1323 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1324 return printMode(RMode, OS); 1325 } 1326 1327 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1328 const unsigned Indent = 2; 1329 unsigned Cnt = 0; 1330 for (const OperandDataVec &OpDataVec : OpsVec) { 1331 OS << "Operand " << Cnt++ << "\n"; 1332 for (const OperandData &OpData : OpDataVec) { 1333 OS.indent(Indent) << "{"; 1334 if (Value *V = OpData.V) 1335 OS << *V; 1336 else 1337 OS << "null"; 1338 OS << ", APO:" << OpData.APO << "}\n"; 1339 } 1340 OS << "\n"; 1341 } 1342 return OS; 1343 } 1344 1345 /// Debug print. 1346 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1347 #endif 1348 }; 1349 1350 /// Checks if the instruction is marked for deletion. 1351 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1352 1353 /// Marks values operands for later deletion by replacing them with Undefs. 1354 void eraseInstructions(ArrayRef<Value *> AV); 1355 1356 ~BoUpSLP(); 1357 1358 private: 1359 /// Checks if all users of \p I are the part of the vectorization tree. 1360 bool areAllUsersVectorized(Instruction *I) const; 1361 1362 /// \returns the cost of the vectorizable entry. 1363 int getEntryCost(TreeEntry *E); 1364 1365 /// This is the recursive part of buildTree. 1366 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1367 const EdgeInfo &EI); 1368 1369 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1370 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1371 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1372 /// returns false, setting \p CurrentOrder to either an empty vector or a 1373 /// non-identity permutation that allows to reuse extract instructions. 1374 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1375 SmallVectorImpl<unsigned> &CurrentOrder) const; 1376 1377 /// Vectorize a single entry in the tree. 1378 Value *vectorizeTree(TreeEntry *E); 1379 1380 /// Vectorize a single entry in the tree, starting in \p VL. 1381 Value *vectorizeTree(ArrayRef<Value *> VL); 1382 1383 /// \returns the scalarization cost for this type. Scalarization in this 1384 /// context means the creation of vectors from a group of scalars. 1385 int getGatherCost(Type *Ty, const DenseSet<unsigned> &ShuffledIndices) const; 1386 1387 /// \returns the scalarization cost for this list of values. Assuming that 1388 /// this subtree gets vectorized, we may need to extract the values from the 1389 /// roots. This method calculates the cost of extracting the values. 1390 int getGatherCost(ArrayRef<Value *> VL) const; 1391 1392 /// Set the Builder insert point to one after the last instruction in 1393 /// the bundle 1394 void setInsertPointAfterBundle(TreeEntry *E); 1395 1396 /// \returns a vector from a collection of scalars in \p VL. 1397 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 1398 1399 /// \returns whether the VectorizableTree is fully vectorizable and will 1400 /// be beneficial even the tree height is tiny. 1401 bool isFullyVectorizableTinyTree() const; 1402 1403 /// Reorder commutative or alt operands to get better probability of 1404 /// generating vectorized code. 1405 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1406 SmallVectorImpl<Value *> &Left, 1407 SmallVectorImpl<Value *> &Right, 1408 const DataLayout &DL, 1409 ScalarEvolution &SE, 1410 const BoUpSLP &R); 1411 struct TreeEntry { 1412 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1413 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1414 1415 /// \returns true if the scalars in VL are equal to this entry. 1416 bool isSame(ArrayRef<Value *> VL) const { 1417 if (VL.size() == Scalars.size()) 1418 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1419 return VL.size() == ReuseShuffleIndices.size() && 1420 std::equal( 1421 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 1422 [this](Value *V, unsigned Idx) { return V == Scalars[Idx]; }); 1423 } 1424 1425 /// A vector of scalars. 1426 ValueList Scalars; 1427 1428 /// The Scalars are vectorized into this value. It is initialized to Null. 1429 Value *VectorizedValue = nullptr; 1430 1431 /// Do we need to gather this sequence ? 1432 bool NeedToGather = false; 1433 1434 /// Does this sequence require some shuffling? 1435 SmallVector<unsigned, 4> ReuseShuffleIndices; 1436 1437 /// Does this entry require reordering? 1438 ArrayRef<unsigned> ReorderIndices; 1439 1440 /// Points back to the VectorizableTree. 1441 /// 1442 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1443 /// to be a pointer and needs to be able to initialize the child iterator. 1444 /// Thus we need a reference back to the container to translate the indices 1445 /// to entries. 1446 VecTreeTy &Container; 1447 1448 /// The TreeEntry index containing the user of this entry. We can actually 1449 /// have multiple users so the data structure is not truly a tree. 1450 SmallVector<EdgeInfo, 1> UserTreeIndices; 1451 1452 /// The index of this treeEntry in VectorizableTree. 1453 int Idx = -1; 1454 1455 private: 1456 /// The operands of each instruction in each lane Operands[op_index][lane]. 1457 /// Note: This helps avoid the replication of the code that performs the 1458 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1459 SmallVector<ValueList, 2> Operands; 1460 1461 /// The main/alternate instruction. 1462 Instruction *MainOp = nullptr; 1463 Instruction *AltOp = nullptr; 1464 1465 public: 1466 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1467 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1468 if (Operands.size() < OpIdx + 1) 1469 Operands.resize(OpIdx + 1); 1470 assert(Operands[OpIdx].size() == 0 && "Already resized?"); 1471 Operands[OpIdx].resize(Scalars.size()); 1472 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1473 Operands[OpIdx][Lane] = OpVL[Lane]; 1474 } 1475 1476 /// Set the operands of this bundle in their original order. 1477 void setOperandsInOrder() { 1478 assert(Operands.empty() && "Already initialized?"); 1479 auto *I0 = cast<Instruction>(Scalars[0]); 1480 Operands.resize(I0->getNumOperands()); 1481 unsigned NumLanes = Scalars.size(); 1482 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1483 OpIdx != NumOperands; ++OpIdx) { 1484 Operands[OpIdx].resize(NumLanes); 1485 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1486 auto *I = cast<Instruction>(Scalars[Lane]); 1487 assert(I->getNumOperands() == NumOperands && 1488 "Expected same number of operands"); 1489 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1490 } 1491 } 1492 } 1493 1494 /// \returns the \p OpIdx operand of this TreeEntry. 1495 ValueList &getOperand(unsigned OpIdx) { 1496 assert(OpIdx < Operands.size() && "Off bounds"); 1497 return Operands[OpIdx]; 1498 } 1499 1500 /// \returns the number of operands. 1501 unsigned getNumOperands() const { return Operands.size(); } 1502 1503 /// \return the single \p OpIdx operand. 1504 Value *getSingleOperand(unsigned OpIdx) const { 1505 assert(OpIdx < Operands.size() && "Off bounds"); 1506 assert(!Operands[OpIdx].empty() && "No operand available"); 1507 return Operands[OpIdx][0]; 1508 } 1509 1510 /// Some of the instructions in the list have alternate opcodes. 1511 bool isAltShuffle() const { 1512 return getOpcode() != getAltOpcode(); 1513 } 1514 1515 bool isOpcodeOrAlt(Instruction *I) const { 1516 unsigned CheckedOpcode = I->getOpcode(); 1517 return (getOpcode() == CheckedOpcode || 1518 getAltOpcode() == CheckedOpcode); 1519 } 1520 1521 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1522 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1523 /// \p OpValue. 1524 Value *isOneOf(Value *Op) const { 1525 auto *I = dyn_cast<Instruction>(Op); 1526 if (I && isOpcodeOrAlt(I)) 1527 return Op; 1528 return MainOp; 1529 } 1530 1531 void setOperations(const InstructionsState &S) { 1532 MainOp = S.MainOp; 1533 AltOp = S.AltOp; 1534 } 1535 1536 Instruction *getMainOp() const { 1537 return MainOp; 1538 } 1539 1540 Instruction *getAltOp() const { 1541 return AltOp; 1542 } 1543 1544 /// The main/alternate opcodes for the list of instructions. 1545 unsigned getOpcode() const { 1546 return MainOp ? MainOp->getOpcode() : 0; 1547 } 1548 1549 unsigned getAltOpcode() const { 1550 return AltOp ? AltOp->getOpcode() : 0; 1551 } 1552 1553 /// Update operations state of this entry if reorder occurred. 1554 bool updateStateIfReorder() { 1555 if (ReorderIndices.empty()) 1556 return false; 1557 InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front()); 1558 setOperations(S); 1559 return true; 1560 } 1561 1562 #ifndef NDEBUG 1563 /// Debug printer. 1564 LLVM_DUMP_METHOD void dump() const { 1565 dbgs() << Idx << ".\n"; 1566 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1567 dbgs() << "Operand " << OpI << ":\n"; 1568 for (const Value *V : Operands[OpI]) 1569 dbgs().indent(2) << *V << "\n"; 1570 } 1571 dbgs() << "Scalars: \n"; 1572 for (Value *V : Scalars) 1573 dbgs().indent(2) << *V << "\n"; 1574 dbgs() << "NeedToGather: " << NeedToGather << "\n"; 1575 dbgs() << "MainOp: "; 1576 if (MainOp) 1577 dbgs() << *MainOp << "\n"; 1578 else 1579 dbgs() << "NULL\n"; 1580 dbgs() << "AltOp: "; 1581 if (AltOp) 1582 dbgs() << *AltOp << "\n"; 1583 else 1584 dbgs() << "NULL\n"; 1585 dbgs() << "VectorizedValue: "; 1586 if (VectorizedValue) 1587 dbgs() << *VectorizedValue << "\n"; 1588 else 1589 dbgs() << "NULL\n"; 1590 dbgs() << "ReuseShuffleIndices: "; 1591 if (ReuseShuffleIndices.empty()) 1592 dbgs() << "Emtpy"; 1593 else 1594 for (unsigned ReuseIdx : ReuseShuffleIndices) 1595 dbgs() << ReuseIdx << ", "; 1596 dbgs() << "\n"; 1597 dbgs() << "ReorderIndices: "; 1598 for (unsigned ReorderIdx : ReorderIndices) 1599 dbgs() << ReorderIdx << ", "; 1600 dbgs() << "\n"; 1601 dbgs() << "UserTreeIndices: "; 1602 for (const auto &EInfo : UserTreeIndices) 1603 dbgs() << EInfo << ", "; 1604 dbgs() << "\n"; 1605 } 1606 #endif 1607 }; 1608 1609 /// Create a new VectorizableTree entry. 1610 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1611 const InstructionsState &S, 1612 const EdgeInfo &UserTreeIdx, 1613 ArrayRef<unsigned> ReuseShuffleIndices = None, 1614 ArrayRef<unsigned> ReorderIndices = None) { 1615 bool Vectorized = (bool)Bundle; 1616 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1617 TreeEntry *Last = VectorizableTree.back().get(); 1618 Last->Idx = VectorizableTree.size() - 1; 1619 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 1620 Last->NeedToGather = !Vectorized; 1621 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1622 ReuseShuffleIndices.end()); 1623 Last->ReorderIndices = ReorderIndices; 1624 Last->setOperations(S); 1625 if (Vectorized) { 1626 for (int i = 0, e = VL.size(); i != e; ++i) { 1627 assert(!getTreeEntry(VL[i]) && "Scalar already in tree!"); 1628 ScalarToTreeEntry[VL[i]] = Last; 1629 } 1630 // Update the scheduler bundle to point to this TreeEntry. 1631 unsigned Lane = 0; 1632 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 1633 BundleMember = BundleMember->NextInBundle) { 1634 BundleMember->TE = Last; 1635 BundleMember->Lane = Lane; 1636 ++Lane; 1637 } 1638 assert((!Bundle.getValue() || Lane == VL.size()) && 1639 "Bundle and VL out of sync"); 1640 } else { 1641 MustGather.insert(VL.begin(), VL.end()); 1642 } 1643 1644 if (UserTreeIdx.UserTE) 1645 Last->UserTreeIndices.push_back(UserTreeIdx); 1646 1647 return Last; 1648 } 1649 1650 /// -- Vectorization State -- 1651 /// Holds all of the tree entries. 1652 TreeEntry::VecTreeTy VectorizableTree; 1653 1654 #ifndef NDEBUG 1655 /// Debug printer. 1656 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1657 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1658 VectorizableTree[Id]->dump(); 1659 dbgs() << "\n"; 1660 } 1661 } 1662 #endif 1663 1664 TreeEntry *getTreeEntry(Value *V) { 1665 auto I = ScalarToTreeEntry.find(V); 1666 if (I != ScalarToTreeEntry.end()) 1667 return I->second; 1668 return nullptr; 1669 } 1670 1671 const TreeEntry *getTreeEntry(Value *V) const { 1672 auto I = ScalarToTreeEntry.find(V); 1673 if (I != ScalarToTreeEntry.end()) 1674 return I->second; 1675 return nullptr; 1676 } 1677 1678 /// Maps a specific scalar to its tree entry. 1679 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 1680 1681 /// A list of scalars that we found that we need to keep as scalars. 1682 ValueSet MustGather; 1683 1684 /// This POD struct describes one external user in the vectorized tree. 1685 struct ExternalUser { 1686 ExternalUser(Value *S, llvm::User *U, int L) 1687 : Scalar(S), User(U), Lane(L) {} 1688 1689 // Which scalar in our function. 1690 Value *Scalar; 1691 1692 // Which user that uses the scalar. 1693 llvm::User *User; 1694 1695 // Which lane does the scalar belong to. 1696 int Lane; 1697 }; 1698 using UserList = SmallVector<ExternalUser, 16>; 1699 1700 /// Checks if two instructions may access the same memory. 1701 /// 1702 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 1703 /// is invariant in the calling loop. 1704 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 1705 Instruction *Inst2) { 1706 // First check if the result is already in the cache. 1707 AliasCacheKey key = std::make_pair(Inst1, Inst2); 1708 Optional<bool> &result = AliasCache[key]; 1709 if (result.hasValue()) { 1710 return result.getValue(); 1711 } 1712 MemoryLocation Loc2 = getLocation(Inst2, AA); 1713 bool aliased = true; 1714 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 1715 // Do the alias check. 1716 aliased = AA->alias(Loc1, Loc2); 1717 } 1718 // Store the result in the cache. 1719 result = aliased; 1720 return aliased; 1721 } 1722 1723 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 1724 1725 /// Cache for alias results. 1726 /// TODO: consider moving this to the AliasAnalysis itself. 1727 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 1728 1729 /// Removes an instruction from its block and eventually deletes it. 1730 /// It's like Instruction::eraseFromParent() except that the actual deletion 1731 /// is delayed until BoUpSLP is destructed. 1732 /// This is required to ensure that there are no incorrect collisions in the 1733 /// AliasCache, which can happen if a new instruction is allocated at the 1734 /// same address as a previously deleted instruction. 1735 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 1736 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 1737 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 1738 } 1739 1740 /// Temporary store for deleted instructions. Instructions will be deleted 1741 /// eventually when the BoUpSLP is destructed. 1742 DenseMap<Instruction *, bool> DeletedInstructions; 1743 1744 /// A list of values that need to extracted out of the tree. 1745 /// This list holds pairs of (Internal Scalar : External User). External User 1746 /// can be nullptr, it means that this Internal Scalar will be used later, 1747 /// after vectorization. 1748 UserList ExternalUses; 1749 1750 /// Values used only by @llvm.assume calls. 1751 SmallPtrSet<const Value *, 32> EphValues; 1752 1753 /// Holds all of the instructions that we gathered. 1754 SetVector<Instruction *> GatherSeq; 1755 1756 /// A list of blocks that we are going to CSE. 1757 SetVector<BasicBlock *> CSEBlocks; 1758 1759 /// Contains all scheduling relevant data for an instruction. 1760 /// A ScheduleData either represents a single instruction or a member of an 1761 /// instruction bundle (= a group of instructions which is combined into a 1762 /// vector instruction). 1763 struct ScheduleData { 1764 // The initial value for the dependency counters. It means that the 1765 // dependencies are not calculated yet. 1766 enum { InvalidDeps = -1 }; 1767 1768 ScheduleData() = default; 1769 1770 void init(int BlockSchedulingRegionID, Value *OpVal) { 1771 FirstInBundle = this; 1772 NextInBundle = nullptr; 1773 NextLoadStore = nullptr; 1774 IsScheduled = false; 1775 SchedulingRegionID = BlockSchedulingRegionID; 1776 UnscheduledDepsInBundle = UnscheduledDeps; 1777 clearDependencies(); 1778 OpValue = OpVal; 1779 TE = nullptr; 1780 Lane = -1; 1781 } 1782 1783 /// Returns true if the dependency information has been calculated. 1784 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 1785 1786 /// Returns true for single instructions and for bundle representatives 1787 /// (= the head of a bundle). 1788 bool isSchedulingEntity() const { return FirstInBundle == this; } 1789 1790 /// Returns true if it represents an instruction bundle and not only a 1791 /// single instruction. 1792 bool isPartOfBundle() const { 1793 return NextInBundle != nullptr || FirstInBundle != this; 1794 } 1795 1796 /// Returns true if it is ready for scheduling, i.e. it has no more 1797 /// unscheduled depending instructions/bundles. 1798 bool isReady() const { 1799 assert(isSchedulingEntity() && 1800 "can't consider non-scheduling entity for ready list"); 1801 return UnscheduledDepsInBundle == 0 && !IsScheduled; 1802 } 1803 1804 /// Modifies the number of unscheduled dependencies, also updating it for 1805 /// the whole bundle. 1806 int incrementUnscheduledDeps(int Incr) { 1807 UnscheduledDeps += Incr; 1808 return FirstInBundle->UnscheduledDepsInBundle += Incr; 1809 } 1810 1811 /// Sets the number of unscheduled dependencies to the number of 1812 /// dependencies. 1813 void resetUnscheduledDeps() { 1814 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 1815 } 1816 1817 /// Clears all dependency information. 1818 void clearDependencies() { 1819 Dependencies = InvalidDeps; 1820 resetUnscheduledDeps(); 1821 MemoryDependencies.clear(); 1822 } 1823 1824 void dump(raw_ostream &os) const { 1825 if (!isSchedulingEntity()) { 1826 os << "/ " << *Inst; 1827 } else if (NextInBundle) { 1828 os << '[' << *Inst; 1829 ScheduleData *SD = NextInBundle; 1830 while (SD) { 1831 os << ';' << *SD->Inst; 1832 SD = SD->NextInBundle; 1833 } 1834 os << ']'; 1835 } else { 1836 os << *Inst; 1837 } 1838 } 1839 1840 Instruction *Inst = nullptr; 1841 1842 /// Points to the head in an instruction bundle (and always to this for 1843 /// single instructions). 1844 ScheduleData *FirstInBundle = nullptr; 1845 1846 /// Single linked list of all instructions in a bundle. Null if it is a 1847 /// single instruction. 1848 ScheduleData *NextInBundle = nullptr; 1849 1850 /// Single linked list of all memory instructions (e.g. load, store, call) 1851 /// in the block - until the end of the scheduling region. 1852 ScheduleData *NextLoadStore = nullptr; 1853 1854 /// The dependent memory instructions. 1855 /// This list is derived on demand in calculateDependencies(). 1856 SmallVector<ScheduleData *, 4> MemoryDependencies; 1857 1858 /// This ScheduleData is in the current scheduling region if this matches 1859 /// the current SchedulingRegionID of BlockScheduling. 1860 int SchedulingRegionID = 0; 1861 1862 /// Used for getting a "good" final ordering of instructions. 1863 int SchedulingPriority = 0; 1864 1865 /// The number of dependencies. Constitutes of the number of users of the 1866 /// instruction plus the number of dependent memory instructions (if any). 1867 /// This value is calculated on demand. 1868 /// If InvalidDeps, the number of dependencies is not calculated yet. 1869 int Dependencies = InvalidDeps; 1870 1871 /// The number of dependencies minus the number of dependencies of scheduled 1872 /// instructions. As soon as this is zero, the instruction/bundle gets ready 1873 /// for scheduling. 1874 /// Note that this is negative as long as Dependencies is not calculated. 1875 int UnscheduledDeps = InvalidDeps; 1876 1877 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 1878 /// single instructions. 1879 int UnscheduledDepsInBundle = InvalidDeps; 1880 1881 /// True if this instruction is scheduled (or considered as scheduled in the 1882 /// dry-run). 1883 bool IsScheduled = false; 1884 1885 /// Opcode of the current instruction in the schedule data. 1886 Value *OpValue = nullptr; 1887 1888 /// The TreeEntry that this instruction corresponds to. 1889 TreeEntry *TE = nullptr; 1890 1891 /// The lane of this node in the TreeEntry. 1892 int Lane = -1; 1893 }; 1894 1895 #ifndef NDEBUG 1896 friend inline raw_ostream &operator<<(raw_ostream &os, 1897 const BoUpSLP::ScheduleData &SD) { 1898 SD.dump(os); 1899 return os; 1900 } 1901 #endif 1902 1903 friend struct GraphTraits<BoUpSLP *>; 1904 friend struct DOTGraphTraits<BoUpSLP *>; 1905 1906 /// Contains all scheduling data for a basic block. 1907 struct BlockScheduling { 1908 BlockScheduling(BasicBlock *BB) 1909 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 1910 1911 void clear() { 1912 ReadyInsts.clear(); 1913 ScheduleStart = nullptr; 1914 ScheduleEnd = nullptr; 1915 FirstLoadStoreInRegion = nullptr; 1916 LastLoadStoreInRegion = nullptr; 1917 1918 // Reduce the maximum schedule region size by the size of the 1919 // previous scheduling run. 1920 ScheduleRegionSizeLimit -= ScheduleRegionSize; 1921 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 1922 ScheduleRegionSizeLimit = MinScheduleRegionSize; 1923 ScheduleRegionSize = 0; 1924 1925 // Make a new scheduling region, i.e. all existing ScheduleData is not 1926 // in the new region yet. 1927 ++SchedulingRegionID; 1928 } 1929 1930 ScheduleData *getScheduleData(Value *V) { 1931 ScheduleData *SD = ScheduleDataMap[V]; 1932 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1933 return SD; 1934 return nullptr; 1935 } 1936 1937 ScheduleData *getScheduleData(Value *V, Value *Key) { 1938 if (V == Key) 1939 return getScheduleData(V); 1940 auto I = ExtraScheduleDataMap.find(V); 1941 if (I != ExtraScheduleDataMap.end()) { 1942 ScheduleData *SD = I->second[Key]; 1943 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1944 return SD; 1945 } 1946 return nullptr; 1947 } 1948 1949 bool isInSchedulingRegion(ScheduleData *SD) const { 1950 return SD->SchedulingRegionID == SchedulingRegionID; 1951 } 1952 1953 /// Marks an instruction as scheduled and puts all dependent ready 1954 /// instructions into the ready-list. 1955 template <typename ReadyListType> 1956 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 1957 SD->IsScheduled = true; 1958 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 1959 1960 ScheduleData *BundleMember = SD; 1961 while (BundleMember) { 1962 if (BundleMember->Inst != BundleMember->OpValue) { 1963 BundleMember = BundleMember->NextInBundle; 1964 continue; 1965 } 1966 // Handle the def-use chain dependencies. 1967 1968 // Decrement the unscheduled counter and insert to ready list if ready. 1969 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 1970 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 1971 if (OpDef && OpDef->hasValidDependencies() && 1972 OpDef->incrementUnscheduledDeps(-1) == 0) { 1973 // There are no more unscheduled dependencies after 1974 // decrementing, so we can put the dependent instruction 1975 // into the ready list. 1976 ScheduleData *DepBundle = OpDef->FirstInBundle; 1977 assert(!DepBundle->IsScheduled && 1978 "already scheduled bundle gets ready"); 1979 ReadyList.insert(DepBundle); 1980 LLVM_DEBUG(dbgs() 1981 << "SLP: gets ready (def): " << *DepBundle << "\n"); 1982 } 1983 }); 1984 }; 1985 1986 // If BundleMember is a vector bundle, its operands may have been 1987 // reordered duiring buildTree(). We therefore need to get its operands 1988 // through the TreeEntry. 1989 if (TreeEntry *TE = BundleMember->TE) { 1990 int Lane = BundleMember->Lane; 1991 assert(Lane >= 0 && "Lane not set"); 1992 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 1993 OpIdx != NumOperands; ++OpIdx) 1994 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 1995 DecrUnsched(I); 1996 } else { 1997 // If BundleMember is a stand-alone instruction, no operand reordering 1998 // has taken place, so we directly access its operands. 1999 for (Use &U : BundleMember->Inst->operands()) 2000 if (auto *I = dyn_cast<Instruction>(U.get())) 2001 DecrUnsched(I); 2002 } 2003 // Handle the memory dependencies. 2004 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2005 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2006 // There are no more unscheduled dependencies after decrementing, 2007 // so we can put the dependent instruction into the ready list. 2008 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2009 assert(!DepBundle->IsScheduled && 2010 "already scheduled bundle gets ready"); 2011 ReadyList.insert(DepBundle); 2012 LLVM_DEBUG(dbgs() 2013 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2014 } 2015 } 2016 BundleMember = BundleMember->NextInBundle; 2017 } 2018 } 2019 2020 void doForAllOpcodes(Value *V, 2021 function_ref<void(ScheduleData *SD)> Action) { 2022 if (ScheduleData *SD = getScheduleData(V)) 2023 Action(SD); 2024 auto I = ExtraScheduleDataMap.find(V); 2025 if (I != ExtraScheduleDataMap.end()) 2026 for (auto &P : I->second) 2027 if (P.second->SchedulingRegionID == SchedulingRegionID) 2028 Action(P.second); 2029 } 2030 2031 /// Put all instructions into the ReadyList which are ready for scheduling. 2032 template <typename ReadyListType> 2033 void initialFillReadyList(ReadyListType &ReadyList) { 2034 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2035 doForAllOpcodes(I, [&](ScheduleData *SD) { 2036 if (SD->isSchedulingEntity() && SD->isReady()) { 2037 ReadyList.insert(SD); 2038 LLVM_DEBUG(dbgs() 2039 << "SLP: initially in ready list: " << *I << "\n"); 2040 } 2041 }); 2042 } 2043 } 2044 2045 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2046 /// cyclic dependencies. This is only a dry-run, no instructions are 2047 /// actually moved at this stage. 2048 /// \returns the scheduling bundle. The returned Optional value is non-None 2049 /// if \p VL is allowed to be scheduled. 2050 Optional<ScheduleData *> 2051 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2052 const InstructionsState &S); 2053 2054 /// Un-bundles a group of instructions. 2055 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2056 2057 /// Allocates schedule data chunk. 2058 ScheduleData *allocateScheduleDataChunks(); 2059 2060 /// Extends the scheduling region so that V is inside the region. 2061 /// \returns true if the region size is within the limit. 2062 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2063 2064 /// Initialize the ScheduleData structures for new instructions in the 2065 /// scheduling region. 2066 void initScheduleData(Instruction *FromI, Instruction *ToI, 2067 ScheduleData *PrevLoadStore, 2068 ScheduleData *NextLoadStore); 2069 2070 /// Updates the dependency information of a bundle and of all instructions/ 2071 /// bundles which depend on the original bundle. 2072 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2073 BoUpSLP *SLP); 2074 2075 /// Sets all instruction in the scheduling region to un-scheduled. 2076 void resetSchedule(); 2077 2078 BasicBlock *BB; 2079 2080 /// Simple memory allocation for ScheduleData. 2081 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2082 2083 /// The size of a ScheduleData array in ScheduleDataChunks. 2084 int ChunkSize; 2085 2086 /// The allocator position in the current chunk, which is the last entry 2087 /// of ScheduleDataChunks. 2088 int ChunkPos; 2089 2090 /// Attaches ScheduleData to Instruction. 2091 /// Note that the mapping survives during all vectorization iterations, i.e. 2092 /// ScheduleData structures are recycled. 2093 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2094 2095 /// Attaches ScheduleData to Instruction with the leading key. 2096 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2097 ExtraScheduleDataMap; 2098 2099 struct ReadyList : SmallVector<ScheduleData *, 8> { 2100 void insert(ScheduleData *SD) { push_back(SD); } 2101 }; 2102 2103 /// The ready-list for scheduling (only used for the dry-run). 2104 ReadyList ReadyInsts; 2105 2106 /// The first instruction of the scheduling region. 2107 Instruction *ScheduleStart = nullptr; 2108 2109 /// The first instruction _after_ the scheduling region. 2110 Instruction *ScheduleEnd = nullptr; 2111 2112 /// The first memory accessing instruction in the scheduling region 2113 /// (can be null). 2114 ScheduleData *FirstLoadStoreInRegion = nullptr; 2115 2116 /// The last memory accessing instruction in the scheduling region 2117 /// (can be null). 2118 ScheduleData *LastLoadStoreInRegion = nullptr; 2119 2120 /// The current size of the scheduling region. 2121 int ScheduleRegionSize = 0; 2122 2123 /// The maximum size allowed for the scheduling region. 2124 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2125 2126 /// The ID of the scheduling region. For a new vectorization iteration this 2127 /// is incremented which "removes" all ScheduleData from the region. 2128 // Make sure that the initial SchedulingRegionID is greater than the 2129 // initial SchedulingRegionID in ScheduleData (which is 0). 2130 int SchedulingRegionID = 1; 2131 }; 2132 2133 /// Attaches the BlockScheduling structures to basic blocks. 2134 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2135 2136 /// Performs the "real" scheduling. Done before vectorization is actually 2137 /// performed in a basic block. 2138 void scheduleBlock(BlockScheduling *BS); 2139 2140 /// List of users to ignore during scheduling and that don't need extracting. 2141 ArrayRef<Value *> UserIgnoreList; 2142 2143 using OrdersType = SmallVector<unsigned, 4>; 2144 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2145 /// sorted SmallVectors of unsigned. 2146 struct OrdersTypeDenseMapInfo { 2147 static OrdersType getEmptyKey() { 2148 OrdersType V; 2149 V.push_back(~1U); 2150 return V; 2151 } 2152 2153 static OrdersType getTombstoneKey() { 2154 OrdersType V; 2155 V.push_back(~2U); 2156 return V; 2157 } 2158 2159 static unsigned getHashValue(const OrdersType &V) { 2160 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2161 } 2162 2163 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2164 return LHS == RHS; 2165 } 2166 }; 2167 2168 /// Contains orders of operations along with the number of bundles that have 2169 /// operations in this order. It stores only those orders that require 2170 /// reordering, if reordering is not required it is counted using \a 2171 /// NumOpsWantToKeepOriginalOrder. 2172 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 2173 /// Number of bundles that do not require reordering. 2174 unsigned NumOpsWantToKeepOriginalOrder = 0; 2175 2176 // Analysis and block reference. 2177 Function *F; 2178 ScalarEvolution *SE; 2179 TargetTransformInfo *TTI; 2180 TargetLibraryInfo *TLI; 2181 AliasAnalysis *AA; 2182 LoopInfo *LI; 2183 DominatorTree *DT; 2184 AssumptionCache *AC; 2185 DemandedBits *DB; 2186 const DataLayout *DL; 2187 OptimizationRemarkEmitter *ORE; 2188 2189 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2190 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2191 2192 /// Instruction builder to construct the vectorized tree. 2193 IRBuilder<> Builder; 2194 2195 /// A map of scalar integer values to the smallest bit width with which they 2196 /// can legally be represented. The values map to (width, signed) pairs, 2197 /// where "width" indicates the minimum bit width and "signed" is True if the 2198 /// value must be signed-extended, rather than zero-extended, back to its 2199 /// original width. 2200 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2201 }; 2202 2203 } // end namespace slpvectorizer 2204 2205 template <> struct GraphTraits<BoUpSLP *> { 2206 using TreeEntry = BoUpSLP::TreeEntry; 2207 2208 /// NodeRef has to be a pointer per the GraphWriter. 2209 using NodeRef = TreeEntry *; 2210 2211 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2212 2213 /// Add the VectorizableTree to the index iterator to be able to return 2214 /// TreeEntry pointers. 2215 struct ChildIteratorType 2216 : public iterator_adaptor_base< 2217 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2218 ContainerTy &VectorizableTree; 2219 2220 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2221 ContainerTy &VT) 2222 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2223 2224 NodeRef operator*() { return I->UserTE; } 2225 }; 2226 2227 static NodeRef getEntryNode(BoUpSLP &R) { 2228 return R.VectorizableTree[0].get(); 2229 } 2230 2231 static ChildIteratorType child_begin(NodeRef N) { 2232 return {N->UserTreeIndices.begin(), N->Container}; 2233 } 2234 2235 static ChildIteratorType child_end(NodeRef N) { 2236 return {N->UserTreeIndices.end(), N->Container}; 2237 } 2238 2239 /// For the node iterator we just need to turn the TreeEntry iterator into a 2240 /// TreeEntry* iterator so that it dereferences to NodeRef. 2241 class nodes_iterator { 2242 using ItTy = ContainerTy::iterator; 2243 ItTy It; 2244 2245 public: 2246 nodes_iterator(const ItTy &It2) : It(It2) {} 2247 NodeRef operator*() { return It->get(); } 2248 nodes_iterator operator++() { 2249 ++It; 2250 return *this; 2251 } 2252 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2253 }; 2254 2255 static nodes_iterator nodes_begin(BoUpSLP *R) { 2256 return nodes_iterator(R->VectorizableTree.begin()); 2257 } 2258 2259 static nodes_iterator nodes_end(BoUpSLP *R) { 2260 return nodes_iterator(R->VectorizableTree.end()); 2261 } 2262 2263 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2264 }; 2265 2266 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2267 using TreeEntry = BoUpSLP::TreeEntry; 2268 2269 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2270 2271 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2272 std::string Str; 2273 raw_string_ostream OS(Str); 2274 if (isSplat(Entry->Scalars)) { 2275 OS << "<splat> " << *Entry->Scalars[0]; 2276 return Str; 2277 } 2278 for (auto V : Entry->Scalars) { 2279 OS << *V; 2280 if (std::any_of( 2281 R->ExternalUses.begin(), R->ExternalUses.end(), 2282 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 2283 OS << " <extract>"; 2284 OS << "\n"; 2285 } 2286 return Str; 2287 } 2288 2289 static std::string getNodeAttributes(const TreeEntry *Entry, 2290 const BoUpSLP *) { 2291 if (Entry->NeedToGather) 2292 return "color=red"; 2293 return ""; 2294 } 2295 }; 2296 2297 } // end namespace llvm 2298 2299 BoUpSLP::~BoUpSLP() { 2300 for (const auto &Pair : DeletedInstructions) { 2301 // Replace operands of ignored instructions with Undefs in case if they were 2302 // marked for deletion. 2303 if (Pair.getSecond()) { 2304 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2305 Pair.getFirst()->replaceAllUsesWith(Undef); 2306 } 2307 Pair.getFirst()->dropAllReferences(); 2308 } 2309 for (const auto &Pair : DeletedInstructions) { 2310 assert(Pair.getFirst()->use_empty() && 2311 "trying to erase instruction with users."); 2312 Pair.getFirst()->eraseFromParent(); 2313 } 2314 } 2315 2316 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2317 for (auto *V : AV) { 2318 if (auto *I = dyn_cast<Instruction>(V)) 2319 eraseInstruction(I, /*ReplaceWithUndef=*/true); 2320 }; 2321 } 2322 2323 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2324 ArrayRef<Value *> UserIgnoreLst) { 2325 ExtraValueToDebugLocsMap ExternallyUsedValues; 2326 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 2327 } 2328 2329 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2330 ExtraValueToDebugLocsMap &ExternallyUsedValues, 2331 ArrayRef<Value *> UserIgnoreLst) { 2332 deleteTree(); 2333 UserIgnoreList = UserIgnoreLst; 2334 if (!allSameType(Roots)) 2335 return; 2336 buildTree_rec(Roots, 0, EdgeInfo()); 2337 2338 // Collect the values that we need to extract from the tree. 2339 for (auto &TEPtr : VectorizableTree) { 2340 TreeEntry *Entry = TEPtr.get(); 2341 2342 // No need to handle users of gathered values. 2343 if (Entry->NeedToGather) 2344 continue; 2345 2346 // For each lane: 2347 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2348 Value *Scalar = Entry->Scalars[Lane]; 2349 int FoundLane = Lane; 2350 if (!Entry->ReuseShuffleIndices.empty()) { 2351 FoundLane = 2352 std::distance(Entry->ReuseShuffleIndices.begin(), 2353 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 2354 } 2355 2356 // Check if the scalar is externally used as an extra arg. 2357 auto ExtI = ExternallyUsedValues.find(Scalar); 2358 if (ExtI != ExternallyUsedValues.end()) { 2359 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 2360 << Lane << " from " << *Scalar << ".\n"); 2361 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 2362 } 2363 for (User *U : Scalar->users()) { 2364 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 2365 2366 Instruction *UserInst = dyn_cast<Instruction>(U); 2367 if (!UserInst) 2368 continue; 2369 2370 // Skip in-tree scalars that become vectors 2371 if (TreeEntry *UseEntry = getTreeEntry(U)) { 2372 Value *UseScalar = UseEntry->Scalars[0]; 2373 // Some in-tree scalars will remain as scalar in vectorized 2374 // instructions. If that is the case, the one in Lane 0 will 2375 // be used. 2376 if (UseScalar != U || 2377 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 2378 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 2379 << ".\n"); 2380 assert(!UseEntry->NeedToGather && "Bad state"); 2381 continue; 2382 } 2383 } 2384 2385 // Ignore users in the user ignore list. 2386 if (is_contained(UserIgnoreList, UserInst)) 2387 continue; 2388 2389 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 2390 << Lane << " from " << *Scalar << ".\n"); 2391 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 2392 } 2393 } 2394 } 2395 } 2396 2397 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 2398 const EdgeInfo &UserTreeIdx) { 2399 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 2400 2401 InstructionsState S = getSameOpcode(VL); 2402 if (Depth == RecursionMaxDepth) { 2403 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 2404 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2405 return; 2406 } 2407 2408 // Don't handle vectors. 2409 if (S.OpValue->getType()->isVectorTy()) { 2410 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 2411 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2412 return; 2413 } 2414 2415 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2416 if (SI->getValueOperand()->getType()->isVectorTy()) { 2417 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 2418 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2419 return; 2420 } 2421 2422 // If all of the operands are identical or constant we have a simple solution. 2423 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 2424 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 2425 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2426 return; 2427 } 2428 2429 // We now know that this is a vector of instructions of the same type from 2430 // the same block. 2431 2432 // Don't vectorize ephemeral values. 2433 for (Value *V : VL) { 2434 if (EphValues.count(V)) { 2435 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2436 << ") is ephemeral.\n"); 2437 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2438 return; 2439 } 2440 } 2441 2442 // Check if this is a duplicate of another entry. 2443 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2444 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 2445 if (!E->isSame(VL)) { 2446 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 2447 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2448 return; 2449 } 2450 // Record the reuse of the tree node. FIXME, currently this is only used to 2451 // properly draw the graph rather than for the actual vectorization. 2452 E->UserTreeIndices.push_back(UserTreeIdx); 2453 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 2454 << ".\n"); 2455 return; 2456 } 2457 2458 // Check that none of the instructions in the bundle are already in the tree. 2459 for (Value *V : VL) { 2460 auto *I = dyn_cast<Instruction>(V); 2461 if (!I) 2462 continue; 2463 if (getTreeEntry(I)) { 2464 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2465 << ") is already in tree.\n"); 2466 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2467 return; 2468 } 2469 } 2470 2471 // If any of the scalars is marked as a value that needs to stay scalar, then 2472 // we need to gather the scalars. 2473 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 2474 for (Value *V : VL) { 2475 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 2476 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 2477 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2478 return; 2479 } 2480 } 2481 2482 // Check that all of the users of the scalars that we want to vectorize are 2483 // schedulable. 2484 auto *VL0 = cast<Instruction>(S.OpValue); 2485 BasicBlock *BB = VL0->getParent(); 2486 2487 if (!DT->isReachableFromEntry(BB)) { 2488 // Don't go into unreachable blocks. They may contain instructions with 2489 // dependency cycles which confuse the final scheduling. 2490 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 2491 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2492 return; 2493 } 2494 2495 // Check that every instruction appears once in this bundle. 2496 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2497 SmallVector<Value *, 4> UniqueValues; 2498 DenseMap<Value *, unsigned> UniquePositions; 2499 for (Value *V : VL) { 2500 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2501 ReuseShuffleIndicies.emplace_back(Res.first->second); 2502 if (Res.second) 2503 UniqueValues.emplace_back(V); 2504 } 2505 size_t NumUniqueScalarValues = UniqueValues.size(); 2506 if (NumUniqueScalarValues == VL.size()) { 2507 ReuseShuffleIndicies.clear(); 2508 } else { 2509 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 2510 if (NumUniqueScalarValues <= 1 || 2511 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 2512 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 2513 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2514 return; 2515 } 2516 VL = UniqueValues; 2517 } 2518 2519 auto &BSRef = BlocksSchedules[BB]; 2520 if (!BSRef) 2521 BSRef = std::make_unique<BlockScheduling>(BB); 2522 2523 BlockScheduling &BS = *BSRef.get(); 2524 2525 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 2526 if (!Bundle) { 2527 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 2528 assert((!BS.getScheduleData(VL0) || 2529 !BS.getScheduleData(VL0)->isPartOfBundle()) && 2530 "tryScheduleBundle should cancelScheduling on failure"); 2531 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2532 ReuseShuffleIndicies); 2533 return; 2534 } 2535 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 2536 2537 unsigned ShuffleOrOp = S.isAltShuffle() ? 2538 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2539 switch (ShuffleOrOp) { 2540 case Instruction::PHI: { 2541 auto *PH = cast<PHINode>(VL0); 2542 2543 // Check for terminator values (e.g. invoke). 2544 for (unsigned j = 0; j < VL.size(); ++j) 2545 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2546 Instruction *Term = dyn_cast<Instruction>( 2547 cast<PHINode>(VL[j])->getIncomingValueForBlock( 2548 PH->getIncomingBlock(i))); 2549 if (Term && Term->isTerminator()) { 2550 LLVM_DEBUG(dbgs() 2551 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 2552 BS.cancelScheduling(VL, VL0); 2553 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2554 ReuseShuffleIndicies); 2555 return; 2556 } 2557 } 2558 2559 TreeEntry *TE = 2560 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 2561 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 2562 2563 // Keeps the reordered operands to avoid code duplication. 2564 SmallVector<ValueList, 2> OperandsVec; 2565 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2566 ValueList Operands; 2567 // Prepare the operand vector. 2568 for (Value *j : VL) 2569 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 2570 PH->getIncomingBlock(i))); 2571 TE->setOperand(i, Operands); 2572 OperandsVec.push_back(Operands); 2573 } 2574 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 2575 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 2576 return; 2577 } 2578 case Instruction::ExtractValue: 2579 case Instruction::ExtractElement: { 2580 OrdersType CurrentOrder; 2581 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 2582 if (Reuse) { 2583 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 2584 ++NumOpsWantToKeepOriginalOrder; 2585 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2586 ReuseShuffleIndicies); 2587 // This is a special case, as it does not gather, but at the same time 2588 // we are not extending buildTree_rec() towards the operands. 2589 ValueList Op0; 2590 Op0.assign(VL.size(), VL0->getOperand(0)); 2591 VectorizableTree.back()->setOperand(0, Op0); 2592 return; 2593 } 2594 if (!CurrentOrder.empty()) { 2595 LLVM_DEBUG({ 2596 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 2597 "with order"; 2598 for (unsigned Idx : CurrentOrder) 2599 dbgs() << " " << Idx; 2600 dbgs() << "\n"; 2601 }); 2602 // Insert new order with initial value 0, if it does not exist, 2603 // otherwise return the iterator to the existing one. 2604 auto StoredCurrentOrderAndNum = 2605 NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 2606 ++StoredCurrentOrderAndNum->getSecond(); 2607 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2608 ReuseShuffleIndicies, 2609 StoredCurrentOrderAndNum->getFirst()); 2610 // This is a special case, as it does not gather, but at the same time 2611 // we are not extending buildTree_rec() towards the operands. 2612 ValueList Op0; 2613 Op0.assign(VL.size(), VL0->getOperand(0)); 2614 VectorizableTree.back()->setOperand(0, Op0); 2615 return; 2616 } 2617 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 2618 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2619 ReuseShuffleIndicies); 2620 BS.cancelScheduling(VL, VL0); 2621 return; 2622 } 2623 case Instruction::Load: { 2624 // Check that a vectorized load would load the same memory as a scalar 2625 // load. For example, we don't want to vectorize loads that are smaller 2626 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 2627 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 2628 // from such a struct, we read/write packed bits disagreeing with the 2629 // unvectorized version. 2630 Type *ScalarTy = VL0->getType(); 2631 2632 if (DL->getTypeSizeInBits(ScalarTy) != 2633 DL->getTypeAllocSizeInBits(ScalarTy)) { 2634 BS.cancelScheduling(VL, VL0); 2635 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2636 ReuseShuffleIndicies); 2637 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 2638 return; 2639 } 2640 2641 // Make sure all loads in the bundle are simple - we can't vectorize 2642 // atomic or volatile loads. 2643 SmallVector<Value *, 4> PointerOps(VL.size()); 2644 auto POIter = PointerOps.begin(); 2645 for (Value *V : VL) { 2646 auto *L = cast<LoadInst>(V); 2647 if (!L->isSimple()) { 2648 BS.cancelScheduling(VL, VL0); 2649 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2650 ReuseShuffleIndicies); 2651 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 2652 return; 2653 } 2654 *POIter = L->getPointerOperand(); 2655 ++POIter; 2656 } 2657 2658 OrdersType CurrentOrder; 2659 // Check the order of pointer operands. 2660 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2661 Value *Ptr0; 2662 Value *PtrN; 2663 if (CurrentOrder.empty()) { 2664 Ptr0 = PointerOps.front(); 2665 PtrN = PointerOps.back(); 2666 } else { 2667 Ptr0 = PointerOps[CurrentOrder.front()]; 2668 PtrN = PointerOps[CurrentOrder.back()]; 2669 } 2670 const SCEV *Scev0 = SE->getSCEV(Ptr0); 2671 const SCEV *ScevN = SE->getSCEV(PtrN); 2672 const auto *Diff = 2673 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 2674 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 2675 // Check that the sorted loads are consecutive. 2676 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 2677 if (CurrentOrder.empty()) { 2678 // Original loads are consecutive and does not require reordering. 2679 ++NumOpsWantToKeepOriginalOrder; 2680 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 2681 UserTreeIdx, ReuseShuffleIndicies); 2682 TE->setOperandsInOrder(); 2683 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 2684 } else { 2685 // Need to reorder. 2686 auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 2687 ++I->getSecond(); 2688 TreeEntry *TE = 2689 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2690 ReuseShuffleIndicies, I->getFirst()); 2691 TE->setOperandsInOrder(); 2692 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 2693 } 2694 return; 2695 } 2696 } 2697 2698 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 2699 BS.cancelScheduling(VL, VL0); 2700 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2701 ReuseShuffleIndicies); 2702 return; 2703 } 2704 case Instruction::ZExt: 2705 case Instruction::SExt: 2706 case Instruction::FPToUI: 2707 case Instruction::FPToSI: 2708 case Instruction::FPExt: 2709 case Instruction::PtrToInt: 2710 case Instruction::IntToPtr: 2711 case Instruction::SIToFP: 2712 case Instruction::UIToFP: 2713 case Instruction::Trunc: 2714 case Instruction::FPTrunc: 2715 case Instruction::BitCast: { 2716 Type *SrcTy = VL0->getOperand(0)->getType(); 2717 for (Value *V : VL) { 2718 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 2719 if (Ty != SrcTy || !isValidElementType(Ty)) { 2720 BS.cancelScheduling(VL, VL0); 2721 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2722 ReuseShuffleIndicies); 2723 LLVM_DEBUG(dbgs() 2724 << "SLP: Gathering casts with different src types.\n"); 2725 return; 2726 } 2727 } 2728 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2729 ReuseShuffleIndicies); 2730 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 2731 2732 TE->setOperandsInOrder(); 2733 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2734 ValueList Operands; 2735 // Prepare the operand vector. 2736 for (Value *V : VL) 2737 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2738 2739 buildTree_rec(Operands, Depth + 1, {TE, i}); 2740 } 2741 return; 2742 } 2743 case Instruction::ICmp: 2744 case Instruction::FCmp: { 2745 // Check that all of the compares have the same predicate. 2746 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2747 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 2748 Type *ComparedTy = VL0->getOperand(0)->getType(); 2749 for (Value *V : VL) { 2750 CmpInst *Cmp = cast<CmpInst>(V); 2751 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 2752 Cmp->getOperand(0)->getType() != ComparedTy) { 2753 BS.cancelScheduling(VL, VL0); 2754 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2755 ReuseShuffleIndicies); 2756 LLVM_DEBUG(dbgs() 2757 << "SLP: Gathering cmp with different predicate.\n"); 2758 return; 2759 } 2760 } 2761 2762 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2763 ReuseShuffleIndicies); 2764 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 2765 2766 ValueList Left, Right; 2767 if (cast<CmpInst>(VL0)->isCommutative()) { 2768 // Commutative predicate - collect + sort operands of the instructions 2769 // so that each side is more likely to have the same opcode. 2770 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 2771 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 2772 } else { 2773 // Collect operands - commute if it uses the swapped predicate. 2774 for (Value *V : VL) { 2775 auto *Cmp = cast<CmpInst>(V); 2776 Value *LHS = Cmp->getOperand(0); 2777 Value *RHS = Cmp->getOperand(1); 2778 if (Cmp->getPredicate() != P0) 2779 std::swap(LHS, RHS); 2780 Left.push_back(LHS); 2781 Right.push_back(RHS); 2782 } 2783 } 2784 TE->setOperand(0, Left); 2785 TE->setOperand(1, Right); 2786 buildTree_rec(Left, Depth + 1, {TE, 0}); 2787 buildTree_rec(Right, Depth + 1, {TE, 1}); 2788 return; 2789 } 2790 case Instruction::Select: 2791 case Instruction::FNeg: 2792 case Instruction::Add: 2793 case Instruction::FAdd: 2794 case Instruction::Sub: 2795 case Instruction::FSub: 2796 case Instruction::Mul: 2797 case Instruction::FMul: 2798 case Instruction::UDiv: 2799 case Instruction::SDiv: 2800 case Instruction::FDiv: 2801 case Instruction::URem: 2802 case Instruction::SRem: 2803 case Instruction::FRem: 2804 case Instruction::Shl: 2805 case Instruction::LShr: 2806 case Instruction::AShr: 2807 case Instruction::And: 2808 case Instruction::Or: 2809 case Instruction::Xor: { 2810 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2811 ReuseShuffleIndicies); 2812 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 2813 2814 // Sort operands of the instructions so that each side is more likely to 2815 // have the same opcode. 2816 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 2817 ValueList Left, Right; 2818 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 2819 TE->setOperand(0, Left); 2820 TE->setOperand(1, Right); 2821 buildTree_rec(Left, Depth + 1, {TE, 0}); 2822 buildTree_rec(Right, Depth + 1, {TE, 1}); 2823 return; 2824 } 2825 2826 TE->setOperandsInOrder(); 2827 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2828 ValueList Operands; 2829 // Prepare the operand vector. 2830 for (Value *j : VL) 2831 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 2832 2833 buildTree_rec(Operands, Depth + 1, {TE, i}); 2834 } 2835 return; 2836 } 2837 case Instruction::GetElementPtr: { 2838 // We don't combine GEPs with complicated (nested) indexing. 2839 for (Value *V : VL) { 2840 if (cast<Instruction>(V)->getNumOperands() != 2) { 2841 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 2842 BS.cancelScheduling(VL, VL0); 2843 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2844 ReuseShuffleIndicies); 2845 return; 2846 } 2847 } 2848 2849 // We can't combine several GEPs into one vector if they operate on 2850 // different types. 2851 Type *Ty0 = VL0->getOperand(0)->getType(); 2852 for (Value *V : VL) { 2853 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 2854 if (Ty0 != CurTy) { 2855 LLVM_DEBUG(dbgs() 2856 << "SLP: not-vectorizable GEP (different types).\n"); 2857 BS.cancelScheduling(VL, VL0); 2858 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2859 ReuseShuffleIndicies); 2860 return; 2861 } 2862 } 2863 2864 // We don't combine GEPs with non-constant indexes. 2865 Type *Ty1 = VL0->getOperand(1)->getType(); 2866 for (Value *V : VL) { 2867 auto Op = cast<Instruction>(V)->getOperand(1); 2868 if (!isa<ConstantInt>(Op) || 2869 (Op->getType() != Ty1 && 2870 Op->getType()->getScalarSizeInBits() > 2871 DL->getIndexSizeInBits( 2872 V->getType()->getPointerAddressSpace()))) { 2873 LLVM_DEBUG(dbgs() 2874 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 2875 BS.cancelScheduling(VL, VL0); 2876 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2877 ReuseShuffleIndicies); 2878 return; 2879 } 2880 } 2881 2882 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2883 ReuseShuffleIndicies); 2884 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 2885 TE->setOperandsInOrder(); 2886 for (unsigned i = 0, e = 2; i < e; ++i) { 2887 ValueList Operands; 2888 // Prepare the operand vector. 2889 for (Value *V : VL) 2890 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2891 2892 buildTree_rec(Operands, Depth + 1, {TE, i}); 2893 } 2894 return; 2895 } 2896 case Instruction::Store: { 2897 // Check if the stores are consecutive or if we need to swizzle them. 2898 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 2899 // Make sure all stores in the bundle are simple - we can't vectorize 2900 // atomic or volatile stores. 2901 SmallVector<Value *, 4> PointerOps(VL.size()); 2902 ValueList Operands(VL.size()); 2903 auto POIter = PointerOps.begin(); 2904 auto OIter = Operands.begin(); 2905 for (Value *V : VL) { 2906 auto *SI = cast<StoreInst>(V); 2907 if (!SI->isSimple()) { 2908 BS.cancelScheduling(VL, VL0); 2909 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2910 ReuseShuffleIndicies); 2911 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 2912 return; 2913 } 2914 *POIter = SI->getPointerOperand(); 2915 *OIter = SI->getValueOperand(); 2916 ++POIter; 2917 ++OIter; 2918 } 2919 2920 OrdersType CurrentOrder; 2921 // Check the order of pointer operands. 2922 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2923 Value *Ptr0; 2924 Value *PtrN; 2925 if (CurrentOrder.empty()) { 2926 Ptr0 = PointerOps.front(); 2927 PtrN = PointerOps.back(); 2928 } else { 2929 Ptr0 = PointerOps[CurrentOrder.front()]; 2930 PtrN = PointerOps[CurrentOrder.back()]; 2931 } 2932 const SCEV *Scev0 = SE->getSCEV(Ptr0); 2933 const SCEV *ScevN = SE->getSCEV(PtrN); 2934 const auto *Diff = 2935 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 2936 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 2937 // Check that the sorted pointer operands are consecutive. 2938 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 2939 if (CurrentOrder.empty()) { 2940 // Original stores are consecutive and does not require reordering. 2941 ++NumOpsWantToKeepOriginalOrder; 2942 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 2943 UserTreeIdx, ReuseShuffleIndicies); 2944 TE->setOperandsInOrder(); 2945 buildTree_rec(Operands, Depth + 1, {TE, 0}); 2946 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 2947 } else { 2948 // Need to reorder. 2949 auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 2950 ++(I->getSecond()); 2951 TreeEntry *TE = 2952 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2953 ReuseShuffleIndicies, I->getFirst()); 2954 TE->setOperandsInOrder(); 2955 buildTree_rec(Operands, Depth + 1, {TE, 0}); 2956 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 2957 } 2958 return; 2959 } 2960 } 2961 2962 BS.cancelScheduling(VL, VL0); 2963 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2964 ReuseShuffleIndicies); 2965 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 2966 return; 2967 } 2968 case Instruction::Call: { 2969 // Check if the calls are all to the same vectorizable intrinsic. 2970 CallInst *CI = cast<CallInst>(VL0); 2971 // Check if this is an Intrinsic call or something that can be 2972 // represented by an intrinsic call 2973 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2974 if (!isTriviallyVectorizable(ID)) { 2975 BS.cancelScheduling(VL, VL0); 2976 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2977 ReuseShuffleIndicies); 2978 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 2979 return; 2980 } 2981 Function *Int = CI->getCalledFunction(); 2982 unsigned NumArgs = CI->getNumArgOperands(); 2983 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 2984 for (unsigned j = 0; j != NumArgs; ++j) 2985 if (hasVectorInstrinsicScalarOpd(ID, j)) 2986 ScalarArgs[j] = CI->getArgOperand(j); 2987 for (Value *V : VL) { 2988 CallInst *CI2 = dyn_cast<CallInst>(V); 2989 if (!CI2 || CI2->getCalledFunction() != Int || 2990 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 2991 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 2992 BS.cancelScheduling(VL, VL0); 2993 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2994 ReuseShuffleIndicies); 2995 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 2996 << "\n"); 2997 return; 2998 } 2999 // Some intrinsics have scalar arguments and should be same in order for 3000 // them to be vectorized. 3001 for (unsigned j = 0; j != NumArgs; ++j) { 3002 if (hasVectorInstrinsicScalarOpd(ID, j)) { 3003 Value *A1J = CI2->getArgOperand(j); 3004 if (ScalarArgs[j] != A1J) { 3005 BS.cancelScheduling(VL, VL0); 3006 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3007 ReuseShuffleIndicies); 3008 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 3009 << " argument " << ScalarArgs[j] << "!=" << A1J 3010 << "\n"); 3011 return; 3012 } 3013 } 3014 } 3015 // Verify that the bundle operands are identical between the two calls. 3016 if (CI->hasOperandBundles() && 3017 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 3018 CI->op_begin() + CI->getBundleOperandsEndIndex(), 3019 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 3020 BS.cancelScheduling(VL, VL0); 3021 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3022 ReuseShuffleIndicies); 3023 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 3024 << *CI << "!=" << *V << '\n'); 3025 return; 3026 } 3027 } 3028 3029 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3030 ReuseShuffleIndicies); 3031 TE->setOperandsInOrder(); 3032 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 3033 ValueList Operands; 3034 // Prepare the operand vector. 3035 for (Value *V : VL) { 3036 auto *CI2 = cast<CallInst>(V); 3037 Operands.push_back(CI2->getArgOperand(i)); 3038 } 3039 buildTree_rec(Operands, Depth + 1, {TE, i}); 3040 } 3041 return; 3042 } 3043 case Instruction::ShuffleVector: { 3044 // If this is not an alternate sequence of opcode like add-sub 3045 // then do not vectorize this instruction. 3046 if (!S.isAltShuffle()) { 3047 BS.cancelScheduling(VL, VL0); 3048 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3049 ReuseShuffleIndicies); 3050 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 3051 return; 3052 } 3053 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3054 ReuseShuffleIndicies); 3055 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 3056 3057 // Reorder operands if reordering would enable vectorization. 3058 if (isa<BinaryOperator>(VL0)) { 3059 ValueList Left, Right; 3060 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3061 TE->setOperand(0, Left); 3062 TE->setOperand(1, Right); 3063 buildTree_rec(Left, Depth + 1, {TE, 0}); 3064 buildTree_rec(Right, Depth + 1, {TE, 1}); 3065 return; 3066 } 3067 3068 TE->setOperandsInOrder(); 3069 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3070 ValueList Operands; 3071 // Prepare the operand vector. 3072 for (Value *V : VL) 3073 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3074 3075 buildTree_rec(Operands, Depth + 1, {TE, i}); 3076 } 3077 return; 3078 } 3079 default: 3080 BS.cancelScheduling(VL, VL0); 3081 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3082 ReuseShuffleIndicies); 3083 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 3084 return; 3085 } 3086 } 3087 3088 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 3089 unsigned N; 3090 Type *EltTy; 3091 auto *ST = dyn_cast<StructType>(T); 3092 if (ST) { 3093 N = ST->getNumElements(); 3094 EltTy = *ST->element_begin(); 3095 } else { 3096 N = cast<ArrayType>(T)->getNumElements(); 3097 EltTy = cast<ArrayType>(T)->getElementType(); 3098 } 3099 if (!isValidElementType(EltTy)) 3100 return 0; 3101 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 3102 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 3103 return 0; 3104 if (ST) { 3105 // Check that struct is homogeneous. 3106 for (const auto *Ty : ST->elements()) 3107 if (Ty != EltTy) 3108 return 0; 3109 } 3110 return N; 3111 } 3112 3113 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 3114 SmallVectorImpl<unsigned> &CurrentOrder) const { 3115 Instruction *E0 = cast<Instruction>(OpValue); 3116 assert(E0->getOpcode() == Instruction::ExtractElement || 3117 E0->getOpcode() == Instruction::ExtractValue); 3118 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 3119 // Check if all of the extracts come from the same vector and from the 3120 // correct offset. 3121 Value *Vec = E0->getOperand(0); 3122 3123 CurrentOrder.clear(); 3124 3125 // We have to extract from a vector/aggregate with the same number of elements. 3126 unsigned NElts; 3127 if (E0->getOpcode() == Instruction::ExtractValue) { 3128 const DataLayout &DL = E0->getModule()->getDataLayout(); 3129 NElts = canMapToVector(Vec->getType(), DL); 3130 if (!NElts) 3131 return false; 3132 // Check if load can be rewritten as load of vector. 3133 LoadInst *LI = dyn_cast<LoadInst>(Vec); 3134 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 3135 return false; 3136 } else { 3137 NElts = Vec->getType()->getVectorNumElements(); 3138 } 3139 3140 if (NElts != VL.size()) 3141 return false; 3142 3143 // Check that all of the indices extract from the correct offset. 3144 bool ShouldKeepOrder = true; 3145 unsigned E = VL.size(); 3146 // Assign to all items the initial value E + 1 so we can check if the extract 3147 // instruction index was used already. 3148 // Also, later we can check that all the indices are used and we have a 3149 // consecutive access in the extract instructions, by checking that no 3150 // element of CurrentOrder still has value E + 1. 3151 CurrentOrder.assign(E, E + 1); 3152 unsigned I = 0; 3153 for (; I < E; ++I) { 3154 auto *Inst = cast<Instruction>(VL[I]); 3155 if (Inst->getOperand(0) != Vec) 3156 break; 3157 Optional<unsigned> Idx = getExtractIndex(Inst); 3158 if (!Idx) 3159 break; 3160 const unsigned ExtIdx = *Idx; 3161 if (ExtIdx != I) { 3162 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 3163 break; 3164 ShouldKeepOrder = false; 3165 CurrentOrder[ExtIdx] = I; 3166 } else { 3167 if (CurrentOrder[I] != E + 1) 3168 break; 3169 CurrentOrder[I] = I; 3170 } 3171 } 3172 if (I < E) { 3173 CurrentOrder.clear(); 3174 return false; 3175 } 3176 3177 return ShouldKeepOrder; 3178 } 3179 3180 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 3181 return I->hasOneUse() || 3182 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 3183 return ScalarToTreeEntry.count(U) > 0; 3184 }); 3185 } 3186 3187 int BoUpSLP::getEntryCost(TreeEntry *E) { 3188 ArrayRef<Value*> VL = E->Scalars; 3189 3190 Type *ScalarTy = VL[0]->getType(); 3191 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3192 ScalarTy = SI->getValueOperand()->getType(); 3193 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 3194 ScalarTy = CI->getOperand(0)->getType(); 3195 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 3196 3197 // If we have computed a smaller type for the expression, update VecTy so 3198 // that the costs will be accurate. 3199 if (MinBWs.count(VL[0])) 3200 VecTy = VectorType::get( 3201 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 3202 3203 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 3204 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3205 int ReuseShuffleCost = 0; 3206 if (NeedToShuffleReuses) { 3207 ReuseShuffleCost = 3208 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3209 } 3210 if (E->NeedToGather) { 3211 if (allConstant(VL)) 3212 return 0; 3213 if (isSplat(VL)) { 3214 return ReuseShuffleCost + 3215 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 3216 } 3217 if (E->getOpcode() == Instruction::ExtractElement && 3218 allSameType(VL) && allSameBlock(VL)) { 3219 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 3220 if (ShuffleKind.hasValue()) { 3221 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 3222 for (auto *V : VL) { 3223 // If all users of instruction are going to be vectorized and this 3224 // instruction itself is not going to be vectorized, consider this 3225 // instruction as dead and remove its cost from the final cost of the 3226 // vectorized tree. 3227 if (areAllUsersVectorized(cast<Instruction>(V)) && 3228 !ScalarToTreeEntry.count(V)) { 3229 auto *IO = cast<ConstantInt>( 3230 cast<ExtractElementInst>(V)->getIndexOperand()); 3231 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 3232 IO->getZExtValue()); 3233 } 3234 } 3235 return ReuseShuffleCost + Cost; 3236 } 3237 } 3238 return ReuseShuffleCost + getGatherCost(VL); 3239 } 3240 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 3241 Instruction *VL0 = E->getMainOp(); 3242 unsigned ShuffleOrOp = 3243 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 3244 switch (ShuffleOrOp) { 3245 case Instruction::PHI: 3246 return 0; 3247 3248 case Instruction::ExtractValue: 3249 case Instruction::ExtractElement: 3250 if (NeedToShuffleReuses) { 3251 unsigned Idx = 0; 3252 for (unsigned I : E->ReuseShuffleIndices) { 3253 if (ShuffleOrOp == Instruction::ExtractElement) { 3254 auto *IO = cast<ConstantInt>( 3255 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 3256 Idx = IO->getZExtValue(); 3257 ReuseShuffleCost -= TTI->getVectorInstrCost( 3258 Instruction::ExtractElement, VecTy, Idx); 3259 } else { 3260 ReuseShuffleCost -= TTI->getVectorInstrCost( 3261 Instruction::ExtractElement, VecTy, Idx); 3262 ++Idx; 3263 } 3264 } 3265 Idx = ReuseShuffleNumbers; 3266 for (Value *V : VL) { 3267 if (ShuffleOrOp == Instruction::ExtractElement) { 3268 auto *IO = cast<ConstantInt>( 3269 cast<ExtractElementInst>(V)->getIndexOperand()); 3270 Idx = IO->getZExtValue(); 3271 } else { 3272 --Idx; 3273 } 3274 ReuseShuffleCost += 3275 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 3276 } 3277 } 3278 if (!E->NeedToGather) { 3279 int DeadCost = ReuseShuffleCost; 3280 if (!E->ReorderIndices.empty()) { 3281 // TODO: Merge this shuffle with the ReuseShuffleCost. 3282 DeadCost += TTI->getShuffleCost( 3283 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3284 } 3285 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3286 Instruction *E = cast<Instruction>(VL[i]); 3287 // If all users are going to be vectorized, instruction can be 3288 // considered as dead. 3289 // The same, if have only one user, it will be vectorized for sure. 3290 if (areAllUsersVectorized(E)) { 3291 // Take credit for instruction that will become dead. 3292 if (E->hasOneUse()) { 3293 Instruction *Ext = E->user_back(); 3294 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3295 all_of(Ext->users(), 3296 [](User *U) { return isa<GetElementPtrInst>(U); })) { 3297 // Use getExtractWithExtendCost() to calculate the cost of 3298 // extractelement/ext pair. 3299 DeadCost -= TTI->getExtractWithExtendCost( 3300 Ext->getOpcode(), Ext->getType(), VecTy, i); 3301 // Add back the cost of s|zext which is subtracted separately. 3302 DeadCost += TTI->getCastInstrCost( 3303 Ext->getOpcode(), Ext->getType(), E->getType(), Ext); 3304 continue; 3305 } 3306 } 3307 DeadCost -= 3308 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 3309 } 3310 } 3311 return DeadCost; 3312 } 3313 return ReuseShuffleCost + getGatherCost(VL); 3314 3315 case Instruction::ZExt: 3316 case Instruction::SExt: 3317 case Instruction::FPToUI: 3318 case Instruction::FPToSI: 3319 case Instruction::FPExt: 3320 case Instruction::PtrToInt: 3321 case Instruction::IntToPtr: 3322 case Instruction::SIToFP: 3323 case Instruction::UIToFP: 3324 case Instruction::Trunc: 3325 case Instruction::FPTrunc: 3326 case Instruction::BitCast: { 3327 Type *SrcTy = VL0->getOperand(0)->getType(); 3328 int ScalarEltCost = 3329 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, VL0); 3330 if (NeedToShuffleReuses) { 3331 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3332 } 3333 3334 // Calculate the cost of this instruction. 3335 int ScalarCost = VL.size() * ScalarEltCost; 3336 3337 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 3338 int VecCost = 0; 3339 // Check if the values are candidates to demote. 3340 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 3341 VecCost = ReuseShuffleCost + 3342 TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, VL0); 3343 } 3344 return VecCost - ScalarCost; 3345 } 3346 case Instruction::FCmp: 3347 case Instruction::ICmp: 3348 case Instruction::Select: { 3349 // Calculate the cost of this instruction. 3350 int ScalarEltCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 3351 Builder.getInt1Ty(), VL0); 3352 if (NeedToShuffleReuses) { 3353 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3354 } 3355 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 3356 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3357 int VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), VecTy, MaskTy, VL0); 3358 return ReuseShuffleCost + VecCost - ScalarCost; 3359 } 3360 case Instruction::FNeg: 3361 case Instruction::Add: 3362 case Instruction::FAdd: 3363 case Instruction::Sub: 3364 case Instruction::FSub: 3365 case Instruction::Mul: 3366 case Instruction::FMul: 3367 case Instruction::UDiv: 3368 case Instruction::SDiv: 3369 case Instruction::FDiv: 3370 case Instruction::URem: 3371 case Instruction::SRem: 3372 case Instruction::FRem: 3373 case Instruction::Shl: 3374 case Instruction::LShr: 3375 case Instruction::AShr: 3376 case Instruction::And: 3377 case Instruction::Or: 3378 case Instruction::Xor: { 3379 // Certain instructions can be cheaper to vectorize if they have a 3380 // constant second vector operand. 3381 TargetTransformInfo::OperandValueKind Op1VK = 3382 TargetTransformInfo::OK_AnyValue; 3383 TargetTransformInfo::OperandValueKind Op2VK = 3384 TargetTransformInfo::OK_UniformConstantValue; 3385 TargetTransformInfo::OperandValueProperties Op1VP = 3386 TargetTransformInfo::OP_None; 3387 TargetTransformInfo::OperandValueProperties Op2VP = 3388 TargetTransformInfo::OP_PowerOf2; 3389 3390 // If all operands are exactly the same ConstantInt then set the 3391 // operand kind to OK_UniformConstantValue. 3392 // If instead not all operands are constants, then set the operand kind 3393 // to OK_AnyValue. If all operands are constants but not the same, 3394 // then set the operand kind to OK_NonUniformConstantValue. 3395 ConstantInt *CInt0 = nullptr; 3396 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3397 const Instruction *I = cast<Instruction>(VL[i]); 3398 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 3399 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 3400 if (!CInt) { 3401 Op2VK = TargetTransformInfo::OK_AnyValue; 3402 Op2VP = TargetTransformInfo::OP_None; 3403 break; 3404 } 3405 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 3406 !CInt->getValue().isPowerOf2()) 3407 Op2VP = TargetTransformInfo::OP_None; 3408 if (i == 0) { 3409 CInt0 = CInt; 3410 continue; 3411 } 3412 if (CInt0 != CInt) 3413 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 3414 } 3415 3416 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 3417 int ScalarEltCost = TTI->getArithmeticInstrCost( 3418 E->getOpcode(), ScalarTy, Op1VK, Op2VK, Op1VP, Op2VP, Operands); 3419 if (NeedToShuffleReuses) { 3420 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3421 } 3422 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3423 int VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, Op1VK, 3424 Op2VK, Op1VP, Op2VP, Operands); 3425 return ReuseShuffleCost + VecCost - ScalarCost; 3426 } 3427 case Instruction::GetElementPtr: { 3428 TargetTransformInfo::OperandValueKind Op1VK = 3429 TargetTransformInfo::OK_AnyValue; 3430 TargetTransformInfo::OperandValueKind Op2VK = 3431 TargetTransformInfo::OK_UniformConstantValue; 3432 3433 int ScalarEltCost = 3434 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 3435 if (NeedToShuffleReuses) { 3436 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3437 } 3438 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3439 int VecCost = 3440 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 3441 return ReuseShuffleCost + VecCost - ScalarCost; 3442 } 3443 case Instruction::Load: { 3444 // Cost of wide load - cost of scalar loads. 3445 MaybeAlign alignment(cast<LoadInst>(VL0)->getAlignment()); 3446 int ScalarEltCost = 3447 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0); 3448 if (NeedToShuffleReuses) { 3449 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3450 } 3451 int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 3452 int VecLdCost = 3453 TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, VL0); 3454 if (!E->ReorderIndices.empty()) { 3455 // TODO: Merge this shuffle with the ReuseShuffleCost. 3456 VecLdCost += TTI->getShuffleCost( 3457 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3458 } 3459 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 3460 } 3461 case Instruction::Store: { 3462 // We know that we can merge the stores. Calculate the cost. 3463 bool IsReorder = !E->ReorderIndices.empty(); 3464 auto *SI = 3465 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 3466 MaybeAlign Alignment(SI->getAlignment()); 3467 int ScalarEltCost = 3468 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, Alignment, 0, VL0); 3469 if (NeedToShuffleReuses) 3470 ReuseShuffleCost = -(ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3471 int ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 3472 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, 3473 VecTy, Alignment, 0, VL0); 3474 if (IsReorder) { 3475 // TODO: Merge this shuffle with the ReuseShuffleCost. 3476 VecStCost += TTI->getShuffleCost( 3477 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3478 } 3479 return ReuseShuffleCost + VecStCost - ScalarStCost; 3480 } 3481 case Instruction::Call: { 3482 CallInst *CI = cast<CallInst>(VL0); 3483 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3484 3485 // Calculate the cost of the scalar and vector calls. 3486 SmallVector<Type *, 4> ScalarTys; 3487 for (unsigned op = 0, opc = CI->getNumArgOperands(); op != opc; ++op) 3488 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 3489 3490 FastMathFlags FMF; 3491 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3492 FMF = FPMO->getFastMathFlags(); 3493 3494 int ScalarEltCost = 3495 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 3496 if (NeedToShuffleReuses) { 3497 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3498 } 3499 int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 3500 3501 SmallVector<Value *, 4> Args(CI->arg_operands()); 3502 int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF, 3503 VecTy->getNumElements()); 3504 3505 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 3506 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 3507 << " for " << *CI << "\n"); 3508 3509 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 3510 } 3511 case Instruction::ShuffleVector: { 3512 assert(E->isAltShuffle() && 3513 ((Instruction::isBinaryOp(E->getOpcode()) && 3514 Instruction::isBinaryOp(E->getAltOpcode())) || 3515 (Instruction::isCast(E->getOpcode()) && 3516 Instruction::isCast(E->getAltOpcode()))) && 3517 "Invalid Shuffle Vector Operand"); 3518 int ScalarCost = 0; 3519 if (NeedToShuffleReuses) { 3520 for (unsigned Idx : E->ReuseShuffleIndices) { 3521 Instruction *I = cast<Instruction>(VL[Idx]); 3522 ReuseShuffleCost -= TTI->getInstructionCost( 3523 I, TargetTransformInfo::TCK_RecipThroughput); 3524 } 3525 for (Value *V : VL) { 3526 Instruction *I = cast<Instruction>(V); 3527 ReuseShuffleCost += TTI->getInstructionCost( 3528 I, TargetTransformInfo::TCK_RecipThroughput); 3529 } 3530 } 3531 for (Value *V : VL) { 3532 Instruction *I = cast<Instruction>(V); 3533 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 3534 ScalarCost += TTI->getInstructionCost( 3535 I, TargetTransformInfo::TCK_RecipThroughput); 3536 } 3537 // VecCost is equal to sum of the cost of creating 2 vectors 3538 // and the cost of creating shuffle. 3539 int VecCost = 0; 3540 if (Instruction::isBinaryOp(E->getOpcode())) { 3541 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy); 3542 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy); 3543 } else { 3544 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 3545 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 3546 VectorType *Src0Ty = VectorType::get(Src0SclTy, VL.size()); 3547 VectorType *Src1Ty = VectorType::get(Src1SclTy, VL.size()); 3548 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty); 3549 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty); 3550 } 3551 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0); 3552 return ReuseShuffleCost + VecCost - ScalarCost; 3553 } 3554 default: 3555 llvm_unreachable("Unknown instruction"); 3556 } 3557 } 3558 3559 bool BoUpSLP::isFullyVectorizableTinyTree() const { 3560 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 3561 << VectorizableTree.size() << " is fully vectorizable .\n"); 3562 3563 // We only handle trees of heights 1 and 2. 3564 if (VectorizableTree.size() == 1 && !VectorizableTree[0]->NeedToGather) 3565 return true; 3566 3567 if (VectorizableTree.size() != 2) 3568 return false; 3569 3570 // Handle splat and all-constants stores. 3571 if (!VectorizableTree[0]->NeedToGather && 3572 (allConstant(VectorizableTree[1]->Scalars) || 3573 isSplat(VectorizableTree[1]->Scalars))) 3574 return true; 3575 3576 // Gathering cost would be too much for tiny trees. 3577 if (VectorizableTree[0]->NeedToGather || VectorizableTree[1]->NeedToGather) 3578 return false; 3579 3580 return true; 3581 } 3582 3583 bool BoUpSLP::isLoadCombineReductionCandidate(unsigned RdxOpcode) const { 3584 if (RdxOpcode != Instruction::Or) 3585 return false; 3586 3587 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3588 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 3589 3590 // Look past the reduction to find a source value. Arbitrarily follow the 3591 // path through operand 0 of any 'or'. Also, peek through optional 3592 // shift-left-by-constant. 3593 Value *ZextLoad = FirstReduced; 3594 while (match(ZextLoad, m_Or(m_Value(), m_Value())) || 3595 match(ZextLoad, m_Shl(m_Value(), m_Constant()))) 3596 ZextLoad = cast<BinaryOperator>(ZextLoad)->getOperand(0); 3597 3598 // Check if the input to the reduction is an extended load. 3599 Value *LoadPtr; 3600 if (!match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr))))) 3601 return false; 3602 3603 // Require that the total load bit width is a legal integer type. 3604 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 3605 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 3606 Type *SrcTy = LoadPtr->getType()->getPointerElementType(); 3607 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 3608 LLVMContext &Context = FirstReduced->getContext(); 3609 if (!TTI->isTypeLegal(IntegerType::get(Context, LoadBitWidth))) 3610 return false; 3611 3612 // Everything matched - assume that we can fold the whole sequence using 3613 // load combining. 3614 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for scalar reduction of " 3615 << *(cast<Instruction>(FirstReduced)) << "\n"); 3616 3617 return true; 3618 } 3619 3620 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 3621 // We can vectorize the tree if its size is greater than or equal to the 3622 // minimum size specified by the MinTreeSize command line option. 3623 if (VectorizableTree.size() >= MinTreeSize) 3624 return false; 3625 3626 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 3627 // can vectorize it if we can prove it fully vectorizable. 3628 if (isFullyVectorizableTinyTree()) 3629 return false; 3630 3631 assert(VectorizableTree.empty() 3632 ? ExternalUses.empty() 3633 : true && "We shouldn't have any external users"); 3634 3635 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 3636 // vectorizable. 3637 return true; 3638 } 3639 3640 int BoUpSLP::getSpillCost() const { 3641 // Walk from the bottom of the tree to the top, tracking which values are 3642 // live. When we see a call instruction that is not part of our tree, 3643 // query TTI to see if there is a cost to keeping values live over it 3644 // (for example, if spills and fills are required). 3645 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 3646 int Cost = 0; 3647 3648 SmallPtrSet<Instruction*, 4> LiveValues; 3649 Instruction *PrevInst = nullptr; 3650 3651 for (const auto &TEPtr : VectorizableTree) { 3652 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 3653 if (!Inst) 3654 continue; 3655 3656 if (!PrevInst) { 3657 PrevInst = Inst; 3658 continue; 3659 } 3660 3661 // Update LiveValues. 3662 LiveValues.erase(PrevInst); 3663 for (auto &J : PrevInst->operands()) { 3664 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 3665 LiveValues.insert(cast<Instruction>(&*J)); 3666 } 3667 3668 LLVM_DEBUG({ 3669 dbgs() << "SLP: #LV: " << LiveValues.size(); 3670 for (auto *X : LiveValues) 3671 dbgs() << " " << X->getName(); 3672 dbgs() << ", Looking at "; 3673 Inst->dump(); 3674 }); 3675 3676 // Now find the sequence of instructions between PrevInst and Inst. 3677 unsigned NumCalls = 0; 3678 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 3679 PrevInstIt = 3680 PrevInst->getIterator().getReverse(); 3681 while (InstIt != PrevInstIt) { 3682 if (PrevInstIt == PrevInst->getParent()->rend()) { 3683 PrevInstIt = Inst->getParent()->rbegin(); 3684 continue; 3685 } 3686 3687 // Debug information does not impact spill cost. 3688 if ((isa<CallInst>(&*PrevInstIt) && 3689 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 3690 &*PrevInstIt != PrevInst) 3691 NumCalls++; 3692 3693 ++PrevInstIt; 3694 } 3695 3696 if (NumCalls) { 3697 SmallVector<Type*, 4> V; 3698 for (auto *II : LiveValues) 3699 V.push_back(VectorType::get(II->getType(), BundleWidth)); 3700 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 3701 } 3702 3703 PrevInst = Inst; 3704 } 3705 3706 return Cost; 3707 } 3708 3709 int BoUpSLP::getTreeCost() { 3710 int Cost = 0; 3711 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 3712 << VectorizableTree.size() << ".\n"); 3713 3714 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 3715 3716 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 3717 TreeEntry &TE = *VectorizableTree[I].get(); 3718 3719 // We create duplicate tree entries for gather sequences that have multiple 3720 // uses. However, we should not compute the cost of duplicate sequences. 3721 // For example, if we have a build vector (i.e., insertelement sequence) 3722 // that is used by more than one vector instruction, we only need to 3723 // compute the cost of the insertelement instructions once. The redundant 3724 // instructions will be eliminated by CSE. 3725 // 3726 // We should consider not creating duplicate tree entries for gather 3727 // sequences, and instead add additional edges to the tree representing 3728 // their uses. Since such an approach results in fewer total entries, 3729 // existing heuristics based on tree size may yield different results. 3730 // 3731 if (TE.NeedToGather && 3732 std::any_of( 3733 std::next(VectorizableTree.begin(), I + 1), VectorizableTree.end(), 3734 [TE](const std::unique_ptr<TreeEntry> &EntryPtr) { 3735 return EntryPtr->NeedToGather && EntryPtr->isSame(TE.Scalars); 3736 })) 3737 continue; 3738 3739 int C = getEntryCost(&TE); 3740 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 3741 << " for bundle that starts with " << *TE.Scalars[0] 3742 << ".\n"); 3743 Cost += C; 3744 } 3745 3746 SmallPtrSet<Value *, 16> ExtractCostCalculated; 3747 int ExtractCost = 0; 3748 for (ExternalUser &EU : ExternalUses) { 3749 // We only add extract cost once for the same scalar. 3750 if (!ExtractCostCalculated.insert(EU.Scalar).second) 3751 continue; 3752 3753 // Uses by ephemeral values are free (because the ephemeral value will be 3754 // removed prior to code generation, and so the extraction will be 3755 // removed as well). 3756 if (EphValues.count(EU.User)) 3757 continue; 3758 3759 // If we plan to rewrite the tree in a smaller type, we will need to sign 3760 // extend the extracted value back to the original type. Here, we account 3761 // for the extract and the added cost of the sign extend if needed. 3762 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 3763 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 3764 if (MinBWs.count(ScalarRoot)) { 3765 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 3766 auto Extend = 3767 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 3768 VecTy = VectorType::get(MinTy, BundleWidth); 3769 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 3770 VecTy, EU.Lane); 3771 } else { 3772 ExtractCost += 3773 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 3774 } 3775 } 3776 3777 int SpillCost = getSpillCost(); 3778 Cost += SpillCost + ExtractCost; 3779 3780 std::string Str; 3781 { 3782 raw_string_ostream OS(Str); 3783 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 3784 << "SLP: Extract Cost = " << ExtractCost << ".\n" 3785 << "SLP: Total Cost = " << Cost << ".\n"; 3786 } 3787 LLVM_DEBUG(dbgs() << Str); 3788 3789 if (ViewSLPTree) 3790 ViewGraph(this, "SLP" + F->getName(), false, Str); 3791 3792 return Cost; 3793 } 3794 3795 int BoUpSLP::getGatherCost(Type *Ty, 3796 const DenseSet<unsigned> &ShuffledIndices) const { 3797 int Cost = 0; 3798 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 3799 if (!ShuffledIndices.count(i)) 3800 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 3801 if (!ShuffledIndices.empty()) 3802 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 3803 return Cost; 3804 } 3805 3806 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 3807 // Find the type of the operands in VL. 3808 Type *ScalarTy = VL[0]->getType(); 3809 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3810 ScalarTy = SI->getValueOperand()->getType(); 3811 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 3812 // Find the cost of inserting/extracting values from the vector. 3813 // Check if the same elements are inserted several times and count them as 3814 // shuffle candidates. 3815 DenseSet<unsigned> ShuffledElements; 3816 DenseSet<Value *> UniqueElements; 3817 // Iterate in reverse order to consider insert elements with the high cost. 3818 for (unsigned I = VL.size(); I > 0; --I) { 3819 unsigned Idx = I - 1; 3820 if (!UniqueElements.insert(VL[Idx]).second) 3821 ShuffledElements.insert(Idx); 3822 } 3823 return getGatherCost(VecTy, ShuffledElements); 3824 } 3825 3826 // Perform operand reordering on the instructions in VL and return the reordered 3827 // operands in Left and Right. 3828 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 3829 SmallVectorImpl<Value *> &Left, 3830 SmallVectorImpl<Value *> &Right, 3831 const DataLayout &DL, 3832 ScalarEvolution &SE, 3833 const BoUpSLP &R) { 3834 if (VL.empty()) 3835 return; 3836 VLOperands Ops(VL, DL, SE, R); 3837 // Reorder the operands in place. 3838 Ops.reorder(); 3839 Left = Ops.getVL(0); 3840 Right = Ops.getVL(1); 3841 } 3842 3843 void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) { 3844 // Get the basic block this bundle is in. All instructions in the bundle 3845 // should be in this block. 3846 auto *Front = E->getMainOp(); 3847 auto *BB = Front->getParent(); 3848 assert(llvm::all_of(make_range(E->Scalars.begin(), E->Scalars.end()), 3849 [=](Value *V) -> bool { 3850 auto *I = cast<Instruction>(V); 3851 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 3852 })); 3853 3854 // The last instruction in the bundle in program order. 3855 Instruction *LastInst = nullptr; 3856 3857 // Find the last instruction. The common case should be that BB has been 3858 // scheduled, and the last instruction is VL.back(). So we start with 3859 // VL.back() and iterate over schedule data until we reach the end of the 3860 // bundle. The end of the bundle is marked by null ScheduleData. 3861 if (BlocksSchedules.count(BB)) { 3862 auto *Bundle = 3863 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 3864 if (Bundle && Bundle->isPartOfBundle()) 3865 for (; Bundle; Bundle = Bundle->NextInBundle) 3866 if (Bundle->OpValue == Bundle->Inst) 3867 LastInst = Bundle->Inst; 3868 } 3869 3870 // LastInst can still be null at this point if there's either not an entry 3871 // for BB in BlocksSchedules or there's no ScheduleData available for 3872 // VL.back(). This can be the case if buildTree_rec aborts for various 3873 // reasons (e.g., the maximum recursion depth is reached, the maximum region 3874 // size is reached, etc.). ScheduleData is initialized in the scheduling 3875 // "dry-run". 3876 // 3877 // If this happens, we can still find the last instruction by brute force. We 3878 // iterate forwards from Front (inclusive) until we either see all 3879 // instructions in the bundle or reach the end of the block. If Front is the 3880 // last instruction in program order, LastInst will be set to Front, and we 3881 // will visit all the remaining instructions in the block. 3882 // 3883 // One of the reasons we exit early from buildTree_rec is to place an upper 3884 // bound on compile-time. Thus, taking an additional compile-time hit here is 3885 // not ideal. However, this should be exceedingly rare since it requires that 3886 // we both exit early from buildTree_rec and that the bundle be out-of-order 3887 // (causing us to iterate all the way to the end of the block). 3888 if (!LastInst) { 3889 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 3890 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 3891 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 3892 LastInst = &I; 3893 if (Bundle.empty()) 3894 break; 3895 } 3896 } 3897 assert(LastInst && "Failed to find last instruction in bundle"); 3898 3899 // Set the insertion point after the last instruction in the bundle. Set the 3900 // debug location to Front. 3901 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 3902 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 3903 } 3904 3905 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 3906 Value *Vec = UndefValue::get(Ty); 3907 // Generate the 'InsertElement' instruction. 3908 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 3909 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 3910 if (auto *Insrt = dyn_cast<InsertElementInst>(Vec)) { 3911 GatherSeq.insert(Insrt); 3912 CSEBlocks.insert(Insrt->getParent()); 3913 3914 // Add to our 'need-to-extract' list. 3915 if (TreeEntry *E = getTreeEntry(VL[i])) { 3916 // Find which lane we need to extract. 3917 int FoundLane = -1; 3918 for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) { 3919 // Is this the lane of the scalar that we are looking for ? 3920 if (E->Scalars[Lane] == VL[i]) { 3921 FoundLane = Lane; 3922 break; 3923 } 3924 } 3925 assert(FoundLane >= 0 && "Could not find the correct lane"); 3926 if (!E->ReuseShuffleIndices.empty()) { 3927 FoundLane = 3928 std::distance(E->ReuseShuffleIndices.begin(), 3929 llvm::find(E->ReuseShuffleIndices, FoundLane)); 3930 } 3931 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 3932 } 3933 } 3934 } 3935 3936 return Vec; 3937 } 3938 3939 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 3940 InstructionsState S = getSameOpcode(VL); 3941 if (S.getOpcode()) { 3942 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3943 if (E->isSame(VL)) { 3944 Value *V = vectorizeTree(E); 3945 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 3946 // We need to get the vectorized value but without shuffle. 3947 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 3948 V = SV->getOperand(0); 3949 } else { 3950 // Reshuffle to get only unique values. 3951 SmallVector<unsigned, 4> UniqueIdxs; 3952 SmallSet<unsigned, 4> UsedIdxs; 3953 for(unsigned Idx : E->ReuseShuffleIndices) 3954 if (UsedIdxs.insert(Idx).second) 3955 UniqueIdxs.emplace_back(Idx); 3956 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 3957 UniqueIdxs); 3958 } 3959 } 3960 return V; 3961 } 3962 } 3963 } 3964 3965 Type *ScalarTy = S.OpValue->getType(); 3966 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3967 ScalarTy = SI->getValueOperand()->getType(); 3968 3969 // Check that every instruction appears once in this bundle. 3970 SmallVector<unsigned, 4> ReuseShuffleIndicies; 3971 SmallVector<Value *, 4> UniqueValues; 3972 if (VL.size() > 2) { 3973 DenseMap<Value *, unsigned> UniquePositions; 3974 for (Value *V : VL) { 3975 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3976 ReuseShuffleIndicies.emplace_back(Res.first->second); 3977 if (Res.second || isa<Constant>(V)) 3978 UniqueValues.emplace_back(V); 3979 } 3980 // Do not shuffle single element or if number of unique values is not power 3981 // of 2. 3982 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 3983 !llvm::isPowerOf2_32(UniqueValues.size())) 3984 ReuseShuffleIndicies.clear(); 3985 else 3986 VL = UniqueValues; 3987 } 3988 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 3989 3990 Value *V = Gather(VL, VecTy); 3991 if (!ReuseShuffleIndicies.empty()) { 3992 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3993 ReuseShuffleIndicies, "shuffle"); 3994 if (auto *I = dyn_cast<Instruction>(V)) { 3995 GatherSeq.insert(I); 3996 CSEBlocks.insert(I->getParent()); 3997 } 3998 } 3999 return V; 4000 } 4001 4002 static void inversePermutation(ArrayRef<unsigned> Indices, 4003 SmallVectorImpl<unsigned> &Mask) { 4004 Mask.clear(); 4005 const unsigned E = Indices.size(); 4006 Mask.resize(E); 4007 for (unsigned I = 0; I < E; ++I) 4008 Mask[Indices[I]] = I; 4009 } 4010 4011 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 4012 IRBuilder<>::InsertPointGuard Guard(Builder); 4013 4014 if (E->VectorizedValue) { 4015 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 4016 return E->VectorizedValue; 4017 } 4018 4019 Instruction *VL0 = E->getMainOp(); 4020 Type *ScalarTy = VL0->getType(); 4021 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 4022 ScalarTy = SI->getValueOperand()->getType(); 4023 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 4024 4025 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4026 4027 if (E->NeedToGather) { 4028 setInsertPointAfterBundle(E); 4029 auto *V = Gather(E->Scalars, VecTy); 4030 if (NeedToShuffleReuses) { 4031 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4032 E->ReuseShuffleIndices, "shuffle"); 4033 if (auto *I = dyn_cast<Instruction>(V)) { 4034 GatherSeq.insert(I); 4035 CSEBlocks.insert(I->getParent()); 4036 } 4037 } 4038 E->VectorizedValue = V; 4039 return V; 4040 } 4041 4042 unsigned ShuffleOrOp = 4043 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 4044 switch (ShuffleOrOp) { 4045 case Instruction::PHI: { 4046 auto *PH = cast<PHINode>(VL0); 4047 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 4048 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4049 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 4050 Value *V = NewPhi; 4051 if (NeedToShuffleReuses) { 4052 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4053 E->ReuseShuffleIndices, "shuffle"); 4054 } 4055 E->VectorizedValue = V; 4056 4057 // PHINodes may have multiple entries from the same block. We want to 4058 // visit every block once. 4059 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 4060 4061 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 4062 ValueList Operands; 4063 BasicBlock *IBB = PH->getIncomingBlock(i); 4064 4065 if (!VisitedBBs.insert(IBB).second) { 4066 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 4067 continue; 4068 } 4069 4070 Builder.SetInsertPoint(IBB->getTerminator()); 4071 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4072 Value *Vec = vectorizeTree(E->getOperand(i)); 4073 NewPhi->addIncoming(Vec, IBB); 4074 } 4075 4076 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 4077 "Invalid number of incoming values"); 4078 return V; 4079 } 4080 4081 case Instruction::ExtractElement: { 4082 if (!E->NeedToGather) { 4083 Value *V = E->getSingleOperand(0); 4084 if (!E->ReorderIndices.empty()) { 4085 OrdersType Mask; 4086 inversePermutation(E->ReorderIndices, Mask); 4087 Builder.SetInsertPoint(VL0); 4088 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), Mask, 4089 "reorder_shuffle"); 4090 } 4091 if (NeedToShuffleReuses) { 4092 // TODO: Merge this shuffle with the ReorderShuffleMask. 4093 if (E->ReorderIndices.empty()) 4094 Builder.SetInsertPoint(VL0); 4095 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4096 E->ReuseShuffleIndices, "shuffle"); 4097 } 4098 E->VectorizedValue = V; 4099 return V; 4100 } 4101 setInsertPointAfterBundle(E); 4102 auto *V = Gather(E->Scalars, VecTy); 4103 if (NeedToShuffleReuses) { 4104 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4105 E->ReuseShuffleIndices, "shuffle"); 4106 if (auto *I = dyn_cast<Instruction>(V)) { 4107 GatherSeq.insert(I); 4108 CSEBlocks.insert(I->getParent()); 4109 } 4110 } 4111 E->VectorizedValue = V; 4112 return V; 4113 } 4114 case Instruction::ExtractValue: { 4115 if (!E->NeedToGather) { 4116 LoadInst *LI = cast<LoadInst>(E->getSingleOperand(0)); 4117 Builder.SetInsertPoint(LI); 4118 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 4119 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 4120 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlignment()); 4121 Value *NewV = propagateMetadata(V, E->Scalars); 4122 if (!E->ReorderIndices.empty()) { 4123 OrdersType Mask; 4124 inversePermutation(E->ReorderIndices, Mask); 4125 NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), Mask, 4126 "reorder_shuffle"); 4127 } 4128 if (NeedToShuffleReuses) { 4129 // TODO: Merge this shuffle with the ReorderShuffleMask. 4130 NewV = Builder.CreateShuffleVector( 4131 NewV, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle"); 4132 } 4133 E->VectorizedValue = NewV; 4134 return NewV; 4135 } 4136 setInsertPointAfterBundle(E); 4137 auto *V = Gather(E->Scalars, VecTy); 4138 if (NeedToShuffleReuses) { 4139 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4140 E->ReuseShuffleIndices, "shuffle"); 4141 if (auto *I = dyn_cast<Instruction>(V)) { 4142 GatherSeq.insert(I); 4143 CSEBlocks.insert(I->getParent()); 4144 } 4145 } 4146 E->VectorizedValue = V; 4147 return V; 4148 } 4149 case Instruction::ZExt: 4150 case Instruction::SExt: 4151 case Instruction::FPToUI: 4152 case Instruction::FPToSI: 4153 case Instruction::FPExt: 4154 case Instruction::PtrToInt: 4155 case Instruction::IntToPtr: 4156 case Instruction::SIToFP: 4157 case Instruction::UIToFP: 4158 case Instruction::Trunc: 4159 case Instruction::FPTrunc: 4160 case Instruction::BitCast: { 4161 setInsertPointAfterBundle(E); 4162 4163 Value *InVec = vectorizeTree(E->getOperand(0)); 4164 4165 if (E->VectorizedValue) { 4166 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4167 return E->VectorizedValue; 4168 } 4169 4170 auto *CI = cast<CastInst>(VL0); 4171 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 4172 if (NeedToShuffleReuses) { 4173 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4174 E->ReuseShuffleIndices, "shuffle"); 4175 } 4176 E->VectorizedValue = V; 4177 ++NumVectorInstructions; 4178 return V; 4179 } 4180 case Instruction::FCmp: 4181 case Instruction::ICmp: { 4182 setInsertPointAfterBundle(E); 4183 4184 Value *L = vectorizeTree(E->getOperand(0)); 4185 Value *R = vectorizeTree(E->getOperand(1)); 4186 4187 if (E->VectorizedValue) { 4188 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4189 return E->VectorizedValue; 4190 } 4191 4192 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4193 Value *V; 4194 if (E->getOpcode() == Instruction::FCmp) 4195 V = Builder.CreateFCmp(P0, L, R); 4196 else 4197 V = Builder.CreateICmp(P0, L, R); 4198 4199 propagateIRFlags(V, E->Scalars, VL0); 4200 if (NeedToShuffleReuses) { 4201 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4202 E->ReuseShuffleIndices, "shuffle"); 4203 } 4204 E->VectorizedValue = V; 4205 ++NumVectorInstructions; 4206 return V; 4207 } 4208 case Instruction::Select: { 4209 setInsertPointAfterBundle(E); 4210 4211 Value *Cond = vectorizeTree(E->getOperand(0)); 4212 Value *True = vectorizeTree(E->getOperand(1)); 4213 Value *False = vectorizeTree(E->getOperand(2)); 4214 4215 if (E->VectorizedValue) { 4216 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4217 return E->VectorizedValue; 4218 } 4219 4220 Value *V = Builder.CreateSelect(Cond, True, False); 4221 if (NeedToShuffleReuses) { 4222 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4223 E->ReuseShuffleIndices, "shuffle"); 4224 } 4225 E->VectorizedValue = V; 4226 ++NumVectorInstructions; 4227 return V; 4228 } 4229 case Instruction::FNeg: { 4230 setInsertPointAfterBundle(E); 4231 4232 Value *Op = vectorizeTree(E->getOperand(0)); 4233 4234 if (E->VectorizedValue) { 4235 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4236 return E->VectorizedValue; 4237 } 4238 4239 Value *V = Builder.CreateUnOp( 4240 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 4241 propagateIRFlags(V, E->Scalars, VL0); 4242 if (auto *I = dyn_cast<Instruction>(V)) 4243 V = propagateMetadata(I, E->Scalars); 4244 4245 if (NeedToShuffleReuses) { 4246 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4247 E->ReuseShuffleIndices, "shuffle"); 4248 } 4249 E->VectorizedValue = V; 4250 ++NumVectorInstructions; 4251 4252 return V; 4253 } 4254 case Instruction::Add: 4255 case Instruction::FAdd: 4256 case Instruction::Sub: 4257 case Instruction::FSub: 4258 case Instruction::Mul: 4259 case Instruction::FMul: 4260 case Instruction::UDiv: 4261 case Instruction::SDiv: 4262 case Instruction::FDiv: 4263 case Instruction::URem: 4264 case Instruction::SRem: 4265 case Instruction::FRem: 4266 case Instruction::Shl: 4267 case Instruction::LShr: 4268 case Instruction::AShr: 4269 case Instruction::And: 4270 case Instruction::Or: 4271 case Instruction::Xor: { 4272 setInsertPointAfterBundle(E); 4273 4274 Value *LHS = vectorizeTree(E->getOperand(0)); 4275 Value *RHS = vectorizeTree(E->getOperand(1)); 4276 4277 if (E->VectorizedValue) { 4278 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4279 return E->VectorizedValue; 4280 } 4281 4282 Value *V = Builder.CreateBinOp( 4283 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 4284 RHS); 4285 propagateIRFlags(V, E->Scalars, VL0); 4286 if (auto *I = dyn_cast<Instruction>(V)) 4287 V = propagateMetadata(I, E->Scalars); 4288 4289 if (NeedToShuffleReuses) { 4290 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4291 E->ReuseShuffleIndices, "shuffle"); 4292 } 4293 E->VectorizedValue = V; 4294 ++NumVectorInstructions; 4295 4296 return V; 4297 } 4298 case Instruction::Load: { 4299 // Loads are inserted at the head of the tree because we don't want to 4300 // sink them all the way down past store instructions. 4301 bool IsReorder = E->updateStateIfReorder(); 4302 if (IsReorder) 4303 VL0 = E->getMainOp(); 4304 setInsertPointAfterBundle(E); 4305 4306 LoadInst *LI = cast<LoadInst>(VL0); 4307 Type *ScalarLoadTy = LI->getType(); 4308 unsigned AS = LI->getPointerAddressSpace(); 4309 4310 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 4311 VecTy->getPointerTo(AS)); 4312 4313 // The pointer operand uses an in-tree scalar so we add the new BitCast to 4314 // ExternalUses list to make sure that an extract will be generated in the 4315 // future. 4316 Value *PO = LI->getPointerOperand(); 4317 if (getTreeEntry(PO)) 4318 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0)); 4319 4320 MaybeAlign Alignment = MaybeAlign(LI->getAlignment()); 4321 LI = Builder.CreateLoad(VecTy, VecPtr); 4322 if (!Alignment) 4323 Alignment = MaybeAlign(DL->getABITypeAlignment(ScalarLoadTy)); 4324 LI->setAlignment(Alignment); 4325 Value *V = propagateMetadata(LI, E->Scalars); 4326 if (IsReorder) { 4327 OrdersType Mask; 4328 inversePermutation(E->ReorderIndices, Mask); 4329 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 4330 Mask, "reorder_shuffle"); 4331 } 4332 if (NeedToShuffleReuses) { 4333 // TODO: Merge this shuffle with the ReorderShuffleMask. 4334 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4335 E->ReuseShuffleIndices, "shuffle"); 4336 } 4337 E->VectorizedValue = V; 4338 ++NumVectorInstructions; 4339 return V; 4340 } 4341 case Instruction::Store: { 4342 bool IsReorder = !E->ReorderIndices.empty(); 4343 auto *SI = cast<StoreInst>( 4344 IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0); 4345 unsigned Alignment = SI->getAlignment(); 4346 unsigned AS = SI->getPointerAddressSpace(); 4347 4348 setInsertPointAfterBundle(E); 4349 4350 Value *VecValue = vectorizeTree(E->getOperand(0)); 4351 if (IsReorder) { 4352 OrdersType Mask; 4353 inversePermutation(E->ReorderIndices, Mask); 4354 VecValue = Builder.CreateShuffleVector( 4355 VecValue, UndefValue::get(VecValue->getType()), E->ReorderIndices, 4356 "reorder_shuffle"); 4357 } 4358 Value *ScalarPtr = SI->getPointerOperand(); 4359 Value *VecPtr = Builder.CreateBitCast( 4360 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 4361 StoreInst *ST = Builder.CreateStore(VecValue, VecPtr); 4362 4363 // The pointer operand uses an in-tree scalar, so add the new BitCast to 4364 // ExternalUses to make sure that an extract will be generated in the 4365 // future. 4366 if (getTreeEntry(ScalarPtr)) 4367 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 4368 4369 if (!Alignment) 4370 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 4371 4372 ST->setAlignment(Align(Alignment)); 4373 Value *V = propagateMetadata(ST, E->Scalars); 4374 if (NeedToShuffleReuses) { 4375 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4376 E->ReuseShuffleIndices, "shuffle"); 4377 } 4378 E->VectorizedValue = V; 4379 ++NumVectorInstructions; 4380 return V; 4381 } 4382 case Instruction::GetElementPtr: { 4383 setInsertPointAfterBundle(E); 4384 4385 Value *Op0 = vectorizeTree(E->getOperand(0)); 4386 4387 std::vector<Value *> OpVecs; 4388 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 4389 ++j) { 4390 ValueList &VL = E->getOperand(j); 4391 // Need to cast all elements to the same type before vectorization to 4392 // avoid crash. 4393 Type *VL0Ty = VL0->getOperand(j)->getType(); 4394 Type *Ty = llvm::all_of( 4395 VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); }) 4396 ? VL0Ty 4397 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4398 ->getPointerOperandType() 4399 ->getScalarType()); 4400 for (Value *&V : VL) { 4401 auto *CI = cast<ConstantInt>(V); 4402 V = ConstantExpr::getIntegerCast(CI, Ty, 4403 CI->getValue().isSignBitSet()); 4404 } 4405 Value *OpVec = vectorizeTree(VL); 4406 OpVecs.push_back(OpVec); 4407 } 4408 4409 Value *V = Builder.CreateGEP( 4410 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 4411 if (Instruction *I = dyn_cast<Instruction>(V)) 4412 V = propagateMetadata(I, E->Scalars); 4413 4414 if (NeedToShuffleReuses) { 4415 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4416 E->ReuseShuffleIndices, "shuffle"); 4417 } 4418 E->VectorizedValue = V; 4419 ++NumVectorInstructions; 4420 4421 return V; 4422 } 4423 case Instruction::Call: { 4424 CallInst *CI = cast<CallInst>(VL0); 4425 setInsertPointAfterBundle(E); 4426 4427 Intrinsic::ID IID = Intrinsic::not_intrinsic; 4428 if (Function *FI = CI->getCalledFunction()) 4429 IID = FI->getIntrinsicID(); 4430 4431 Value *ScalarArg = nullptr; 4432 std::vector<Value *> OpVecs; 4433 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 4434 ValueList OpVL; 4435 // Some intrinsics have scalar arguments. This argument should not be 4436 // vectorized. 4437 if (hasVectorInstrinsicScalarOpd(IID, j)) { 4438 CallInst *CEI = cast<CallInst>(VL0); 4439 ScalarArg = CEI->getArgOperand(j); 4440 OpVecs.push_back(CEI->getArgOperand(j)); 4441 continue; 4442 } 4443 4444 Value *OpVec = vectorizeTree(E->getOperand(j)); 4445 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 4446 OpVecs.push_back(OpVec); 4447 } 4448 4449 Module *M = F->getParent(); 4450 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4451 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 4452 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 4453 SmallVector<OperandBundleDef, 1> OpBundles; 4454 CI->getOperandBundlesAsDefs(OpBundles); 4455 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 4456 4457 // The scalar argument uses an in-tree scalar so we add the new vectorized 4458 // call to ExternalUses list to make sure that an extract will be 4459 // generated in the future. 4460 if (ScalarArg && getTreeEntry(ScalarArg)) 4461 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 4462 4463 propagateIRFlags(V, E->Scalars, VL0); 4464 if (NeedToShuffleReuses) { 4465 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4466 E->ReuseShuffleIndices, "shuffle"); 4467 } 4468 E->VectorizedValue = V; 4469 ++NumVectorInstructions; 4470 return V; 4471 } 4472 case Instruction::ShuffleVector: { 4473 assert(E->isAltShuffle() && 4474 ((Instruction::isBinaryOp(E->getOpcode()) && 4475 Instruction::isBinaryOp(E->getAltOpcode())) || 4476 (Instruction::isCast(E->getOpcode()) && 4477 Instruction::isCast(E->getAltOpcode()))) && 4478 "Invalid Shuffle Vector Operand"); 4479 4480 Value *LHS = nullptr, *RHS = nullptr; 4481 if (Instruction::isBinaryOp(E->getOpcode())) { 4482 setInsertPointAfterBundle(E); 4483 LHS = vectorizeTree(E->getOperand(0)); 4484 RHS = vectorizeTree(E->getOperand(1)); 4485 } else { 4486 setInsertPointAfterBundle(E); 4487 LHS = vectorizeTree(E->getOperand(0)); 4488 } 4489 4490 if (E->VectorizedValue) { 4491 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4492 return E->VectorizedValue; 4493 } 4494 4495 Value *V0, *V1; 4496 if (Instruction::isBinaryOp(E->getOpcode())) { 4497 V0 = Builder.CreateBinOp( 4498 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 4499 V1 = Builder.CreateBinOp( 4500 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 4501 } else { 4502 V0 = Builder.CreateCast( 4503 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 4504 V1 = Builder.CreateCast( 4505 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 4506 } 4507 4508 // Create shuffle to take alternate operations from the vector. 4509 // Also, gather up main and alt scalar ops to propagate IR flags to 4510 // each vector operation. 4511 ValueList OpScalars, AltScalars; 4512 unsigned e = E->Scalars.size(); 4513 SmallVector<Constant *, 8> Mask(e); 4514 for (unsigned i = 0; i < e; ++i) { 4515 auto *OpInst = cast<Instruction>(E->Scalars[i]); 4516 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 4517 if (OpInst->getOpcode() == E->getAltOpcode()) { 4518 Mask[i] = Builder.getInt32(e + i); 4519 AltScalars.push_back(E->Scalars[i]); 4520 } else { 4521 Mask[i] = Builder.getInt32(i); 4522 OpScalars.push_back(E->Scalars[i]); 4523 } 4524 } 4525 4526 Value *ShuffleMask = ConstantVector::get(Mask); 4527 propagateIRFlags(V0, OpScalars); 4528 propagateIRFlags(V1, AltScalars); 4529 4530 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 4531 if (Instruction *I = dyn_cast<Instruction>(V)) 4532 V = propagateMetadata(I, E->Scalars); 4533 if (NeedToShuffleReuses) { 4534 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4535 E->ReuseShuffleIndices, "shuffle"); 4536 } 4537 E->VectorizedValue = V; 4538 ++NumVectorInstructions; 4539 4540 return V; 4541 } 4542 default: 4543 llvm_unreachable("unknown inst"); 4544 } 4545 return nullptr; 4546 } 4547 4548 Value *BoUpSLP::vectorizeTree() { 4549 ExtraValueToDebugLocsMap ExternallyUsedValues; 4550 return vectorizeTree(ExternallyUsedValues); 4551 } 4552 4553 Value * 4554 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 4555 // All blocks must be scheduled before any instructions are inserted. 4556 for (auto &BSIter : BlocksSchedules) { 4557 scheduleBlock(BSIter.second.get()); 4558 } 4559 4560 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4561 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 4562 4563 // If the vectorized tree can be rewritten in a smaller type, we truncate the 4564 // vectorized root. InstCombine will then rewrite the entire expression. We 4565 // sign extend the extracted values below. 4566 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4567 if (MinBWs.count(ScalarRoot)) { 4568 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 4569 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 4570 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 4571 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4572 auto *VecTy = VectorType::get(MinTy, BundleWidth); 4573 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 4574 VectorizableTree[0]->VectorizedValue = Trunc; 4575 } 4576 4577 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 4578 << " values .\n"); 4579 4580 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 4581 // specified by ScalarType. 4582 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 4583 if (!MinBWs.count(ScalarRoot)) 4584 return Ex; 4585 if (MinBWs[ScalarRoot].second) 4586 return Builder.CreateSExt(Ex, ScalarType); 4587 return Builder.CreateZExt(Ex, ScalarType); 4588 }; 4589 4590 // Extract all of the elements with the external uses. 4591 for (const auto &ExternalUse : ExternalUses) { 4592 Value *Scalar = ExternalUse.Scalar; 4593 llvm::User *User = ExternalUse.User; 4594 4595 // Skip users that we already RAUW. This happens when one instruction 4596 // has multiple uses of the same value. 4597 if (User && !is_contained(Scalar->users(), User)) 4598 continue; 4599 TreeEntry *E = getTreeEntry(Scalar); 4600 assert(E && "Invalid scalar"); 4601 assert(!E->NeedToGather && "Extracting from a gather list"); 4602 4603 Value *Vec = E->VectorizedValue; 4604 assert(Vec && "Can't find vectorizable value"); 4605 4606 Value *Lane = Builder.getInt32(ExternalUse.Lane); 4607 // If User == nullptr, the Scalar is used as extra arg. Generate 4608 // ExtractElement instruction and update the record for this scalar in 4609 // ExternallyUsedValues. 4610 if (!User) { 4611 assert(ExternallyUsedValues.count(Scalar) && 4612 "Scalar with nullptr as an external user must be registered in " 4613 "ExternallyUsedValues map"); 4614 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4615 Builder.SetInsertPoint(VecI->getParent(), 4616 std::next(VecI->getIterator())); 4617 } else { 4618 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4619 } 4620 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4621 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4622 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 4623 auto &Locs = ExternallyUsedValues[Scalar]; 4624 ExternallyUsedValues.insert({Ex, Locs}); 4625 ExternallyUsedValues.erase(Scalar); 4626 // Required to update internally referenced instructions. 4627 Scalar->replaceAllUsesWith(Ex); 4628 continue; 4629 } 4630 4631 // Generate extracts for out-of-tree users. 4632 // Find the insertion point for the extractelement lane. 4633 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4634 if (PHINode *PH = dyn_cast<PHINode>(User)) { 4635 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 4636 if (PH->getIncomingValue(i) == Scalar) { 4637 Instruction *IncomingTerminator = 4638 PH->getIncomingBlock(i)->getTerminator(); 4639 if (isa<CatchSwitchInst>(IncomingTerminator)) { 4640 Builder.SetInsertPoint(VecI->getParent(), 4641 std::next(VecI->getIterator())); 4642 } else { 4643 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 4644 } 4645 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4646 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4647 CSEBlocks.insert(PH->getIncomingBlock(i)); 4648 PH->setOperand(i, Ex); 4649 } 4650 } 4651 } else { 4652 Builder.SetInsertPoint(cast<Instruction>(User)); 4653 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4654 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4655 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 4656 User->replaceUsesOfWith(Scalar, Ex); 4657 } 4658 } else { 4659 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4660 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4661 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4662 CSEBlocks.insert(&F->getEntryBlock()); 4663 User->replaceUsesOfWith(Scalar, Ex); 4664 } 4665 4666 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 4667 } 4668 4669 // For each vectorized value: 4670 for (auto &TEPtr : VectorizableTree) { 4671 TreeEntry *Entry = TEPtr.get(); 4672 4673 // No need to handle users of gathered values. 4674 if (Entry->NeedToGather) 4675 continue; 4676 4677 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 4678 4679 // For each lane: 4680 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 4681 Value *Scalar = Entry->Scalars[Lane]; 4682 4683 #ifndef NDEBUG 4684 Type *Ty = Scalar->getType(); 4685 if (!Ty->isVoidTy()) { 4686 for (User *U : Scalar->users()) { 4687 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 4688 4689 // It is legal to delete users in the ignorelist. 4690 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 4691 "Deleting out-of-tree value"); 4692 } 4693 } 4694 #endif 4695 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 4696 eraseInstruction(cast<Instruction>(Scalar)); 4697 } 4698 } 4699 4700 Builder.ClearInsertionPoint(); 4701 4702 return VectorizableTree[0]->VectorizedValue; 4703 } 4704 4705 void BoUpSLP::optimizeGatherSequence() { 4706 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 4707 << " gather sequences instructions.\n"); 4708 // LICM InsertElementInst sequences. 4709 for (Instruction *I : GatherSeq) { 4710 if (isDeleted(I)) 4711 continue; 4712 4713 // Check if this block is inside a loop. 4714 Loop *L = LI->getLoopFor(I->getParent()); 4715 if (!L) 4716 continue; 4717 4718 // Check if it has a preheader. 4719 BasicBlock *PreHeader = L->getLoopPreheader(); 4720 if (!PreHeader) 4721 continue; 4722 4723 // If the vector or the element that we insert into it are 4724 // instructions that are defined in this basic block then we can't 4725 // hoist this instruction. 4726 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 4727 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 4728 if (Op0 && L->contains(Op0)) 4729 continue; 4730 if (Op1 && L->contains(Op1)) 4731 continue; 4732 4733 // We can hoist this instruction. Move it to the pre-header. 4734 I->moveBefore(PreHeader->getTerminator()); 4735 } 4736 4737 // Make a list of all reachable blocks in our CSE queue. 4738 SmallVector<const DomTreeNode *, 8> CSEWorkList; 4739 CSEWorkList.reserve(CSEBlocks.size()); 4740 for (BasicBlock *BB : CSEBlocks) 4741 if (DomTreeNode *N = DT->getNode(BB)) { 4742 assert(DT->isReachableFromEntry(N)); 4743 CSEWorkList.push_back(N); 4744 } 4745 4746 // Sort blocks by domination. This ensures we visit a block after all blocks 4747 // dominating it are visited. 4748 llvm::stable_sort(CSEWorkList, 4749 [this](const DomTreeNode *A, const DomTreeNode *B) { 4750 return DT->properlyDominates(A, B); 4751 }); 4752 4753 // Perform O(N^2) search over the gather sequences and merge identical 4754 // instructions. TODO: We can further optimize this scan if we split the 4755 // instructions into different buckets based on the insert lane. 4756 SmallVector<Instruction *, 16> Visited; 4757 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 4758 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 4759 "Worklist not sorted properly!"); 4760 BasicBlock *BB = (*I)->getBlock(); 4761 // For all instructions in blocks containing gather sequences: 4762 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 4763 Instruction *In = &*it++; 4764 if (isDeleted(In)) 4765 continue; 4766 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 4767 continue; 4768 4769 // Check if we can replace this instruction with any of the 4770 // visited instructions. 4771 for (Instruction *v : Visited) { 4772 if (In->isIdenticalTo(v) && 4773 DT->dominates(v->getParent(), In->getParent())) { 4774 In->replaceAllUsesWith(v); 4775 eraseInstruction(In); 4776 In = nullptr; 4777 break; 4778 } 4779 } 4780 if (In) { 4781 assert(!is_contained(Visited, In)); 4782 Visited.push_back(In); 4783 } 4784 } 4785 } 4786 CSEBlocks.clear(); 4787 GatherSeq.clear(); 4788 } 4789 4790 // Groups the instructions to a bundle (which is then a single scheduling entity) 4791 // and schedules instructions until the bundle gets ready. 4792 Optional<BoUpSLP::ScheduleData *> 4793 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 4794 const InstructionsState &S) { 4795 if (isa<PHINode>(S.OpValue)) 4796 return nullptr; 4797 4798 // Initialize the instruction bundle. 4799 Instruction *OldScheduleEnd = ScheduleEnd; 4800 ScheduleData *PrevInBundle = nullptr; 4801 ScheduleData *Bundle = nullptr; 4802 bool ReSchedule = false; 4803 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 4804 4805 // Make sure that the scheduling region contains all 4806 // instructions of the bundle. 4807 for (Value *V : VL) { 4808 if (!extendSchedulingRegion(V, S)) 4809 return None; 4810 } 4811 4812 for (Value *V : VL) { 4813 ScheduleData *BundleMember = getScheduleData(V); 4814 assert(BundleMember && 4815 "no ScheduleData for bundle member (maybe not in same basic block)"); 4816 if (BundleMember->IsScheduled) { 4817 // A bundle member was scheduled as single instruction before and now 4818 // needs to be scheduled as part of the bundle. We just get rid of the 4819 // existing schedule. 4820 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 4821 << " was already scheduled\n"); 4822 ReSchedule = true; 4823 } 4824 assert(BundleMember->isSchedulingEntity() && 4825 "bundle member already part of other bundle"); 4826 if (PrevInBundle) { 4827 PrevInBundle->NextInBundle = BundleMember; 4828 } else { 4829 Bundle = BundleMember; 4830 } 4831 BundleMember->UnscheduledDepsInBundle = 0; 4832 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 4833 4834 // Group the instructions to a bundle. 4835 BundleMember->FirstInBundle = Bundle; 4836 PrevInBundle = BundleMember; 4837 } 4838 if (ScheduleEnd != OldScheduleEnd) { 4839 // The scheduling region got new instructions at the lower end (or it is a 4840 // new region for the first bundle). This makes it necessary to 4841 // recalculate all dependencies. 4842 // It is seldom that this needs to be done a second time after adding the 4843 // initial bundle to the region. 4844 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 4845 doForAllOpcodes(I, [](ScheduleData *SD) { 4846 SD->clearDependencies(); 4847 }); 4848 } 4849 ReSchedule = true; 4850 } 4851 if (ReSchedule) { 4852 resetSchedule(); 4853 initialFillReadyList(ReadyInsts); 4854 } 4855 assert(Bundle && "Failed to find schedule bundle"); 4856 4857 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 4858 << BB->getName() << "\n"); 4859 4860 calculateDependencies(Bundle, true, SLP); 4861 4862 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 4863 // means that there are no cyclic dependencies and we can schedule it. 4864 // Note that's important that we don't "schedule" the bundle yet (see 4865 // cancelScheduling). 4866 while (!Bundle->isReady() && !ReadyInsts.empty()) { 4867 4868 ScheduleData *pickedSD = ReadyInsts.back(); 4869 ReadyInsts.pop_back(); 4870 4871 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 4872 schedule(pickedSD, ReadyInsts); 4873 } 4874 } 4875 if (!Bundle->isReady()) { 4876 cancelScheduling(VL, S.OpValue); 4877 return None; 4878 } 4879 return Bundle; 4880 } 4881 4882 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 4883 Value *OpValue) { 4884 if (isa<PHINode>(OpValue)) 4885 return; 4886 4887 ScheduleData *Bundle = getScheduleData(OpValue); 4888 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 4889 assert(!Bundle->IsScheduled && 4890 "Can't cancel bundle which is already scheduled"); 4891 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 4892 "tried to unbundle something which is not a bundle"); 4893 4894 // Un-bundle: make single instructions out of the bundle. 4895 ScheduleData *BundleMember = Bundle; 4896 while (BundleMember) { 4897 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 4898 BundleMember->FirstInBundle = BundleMember; 4899 ScheduleData *Next = BundleMember->NextInBundle; 4900 BundleMember->NextInBundle = nullptr; 4901 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 4902 if (BundleMember->UnscheduledDepsInBundle == 0) { 4903 ReadyInsts.insert(BundleMember); 4904 } 4905 BundleMember = Next; 4906 } 4907 } 4908 4909 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 4910 // Allocate a new ScheduleData for the instruction. 4911 if (ChunkPos >= ChunkSize) { 4912 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 4913 ChunkPos = 0; 4914 } 4915 return &(ScheduleDataChunks.back()[ChunkPos++]); 4916 } 4917 4918 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 4919 const InstructionsState &S) { 4920 if (getScheduleData(V, isOneOf(S, V))) 4921 return true; 4922 Instruction *I = dyn_cast<Instruction>(V); 4923 assert(I && "bundle member must be an instruction"); 4924 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 4925 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 4926 ScheduleData *ISD = getScheduleData(I); 4927 if (!ISD) 4928 return false; 4929 assert(isInSchedulingRegion(ISD) && 4930 "ScheduleData not in scheduling region"); 4931 ScheduleData *SD = allocateScheduleDataChunks(); 4932 SD->Inst = I; 4933 SD->init(SchedulingRegionID, S.OpValue); 4934 ExtraScheduleDataMap[I][S.OpValue] = SD; 4935 return true; 4936 }; 4937 if (CheckSheduleForI(I)) 4938 return true; 4939 if (!ScheduleStart) { 4940 // It's the first instruction in the new region. 4941 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 4942 ScheduleStart = I; 4943 ScheduleEnd = I->getNextNode(); 4944 if (isOneOf(S, I) != I) 4945 CheckSheduleForI(I); 4946 assert(ScheduleEnd && "tried to vectorize a terminator?"); 4947 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 4948 return true; 4949 } 4950 // Search up and down at the same time, because we don't know if the new 4951 // instruction is above or below the existing scheduling region. 4952 BasicBlock::reverse_iterator UpIter = 4953 ++ScheduleStart->getIterator().getReverse(); 4954 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 4955 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 4956 BasicBlock::iterator LowerEnd = BB->end(); 4957 while (true) { 4958 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 4959 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 4960 return false; 4961 } 4962 4963 if (UpIter != UpperEnd) { 4964 if (&*UpIter == I) { 4965 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 4966 ScheduleStart = I; 4967 if (isOneOf(S, I) != I) 4968 CheckSheduleForI(I); 4969 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 4970 << "\n"); 4971 return true; 4972 } 4973 ++UpIter; 4974 } 4975 if (DownIter != LowerEnd) { 4976 if (&*DownIter == I) { 4977 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 4978 nullptr); 4979 ScheduleEnd = I->getNextNode(); 4980 if (isOneOf(S, I) != I) 4981 CheckSheduleForI(I); 4982 assert(ScheduleEnd && "tried to vectorize a terminator?"); 4983 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I 4984 << "\n"); 4985 return true; 4986 } 4987 ++DownIter; 4988 } 4989 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 4990 "instruction not found in block"); 4991 } 4992 return true; 4993 } 4994 4995 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 4996 Instruction *ToI, 4997 ScheduleData *PrevLoadStore, 4998 ScheduleData *NextLoadStore) { 4999 ScheduleData *CurrentLoadStore = PrevLoadStore; 5000 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 5001 ScheduleData *SD = ScheduleDataMap[I]; 5002 if (!SD) { 5003 SD = allocateScheduleDataChunks(); 5004 ScheduleDataMap[I] = SD; 5005 SD->Inst = I; 5006 } 5007 assert(!isInSchedulingRegion(SD) && 5008 "new ScheduleData already in scheduling region"); 5009 SD->init(SchedulingRegionID, I); 5010 5011 if (I->mayReadOrWriteMemory() && 5012 (!isa<IntrinsicInst>(I) || 5013 cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) { 5014 // Update the linked list of memory accessing instructions. 5015 if (CurrentLoadStore) { 5016 CurrentLoadStore->NextLoadStore = SD; 5017 } else { 5018 FirstLoadStoreInRegion = SD; 5019 } 5020 CurrentLoadStore = SD; 5021 } 5022 } 5023 if (NextLoadStore) { 5024 if (CurrentLoadStore) 5025 CurrentLoadStore->NextLoadStore = NextLoadStore; 5026 } else { 5027 LastLoadStoreInRegion = CurrentLoadStore; 5028 } 5029 } 5030 5031 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 5032 bool InsertInReadyList, 5033 BoUpSLP *SLP) { 5034 assert(SD->isSchedulingEntity()); 5035 5036 SmallVector<ScheduleData *, 10> WorkList; 5037 WorkList.push_back(SD); 5038 5039 while (!WorkList.empty()) { 5040 ScheduleData *SD = WorkList.back(); 5041 WorkList.pop_back(); 5042 5043 ScheduleData *BundleMember = SD; 5044 while (BundleMember) { 5045 assert(isInSchedulingRegion(BundleMember)); 5046 if (!BundleMember->hasValidDependencies()) { 5047 5048 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 5049 << "\n"); 5050 BundleMember->Dependencies = 0; 5051 BundleMember->resetUnscheduledDeps(); 5052 5053 // Handle def-use chain dependencies. 5054 if (BundleMember->OpValue != BundleMember->Inst) { 5055 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 5056 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5057 BundleMember->Dependencies++; 5058 ScheduleData *DestBundle = UseSD->FirstInBundle; 5059 if (!DestBundle->IsScheduled) 5060 BundleMember->incrementUnscheduledDeps(1); 5061 if (!DestBundle->hasValidDependencies()) 5062 WorkList.push_back(DestBundle); 5063 } 5064 } else { 5065 for (User *U : BundleMember->Inst->users()) { 5066 if (isa<Instruction>(U)) { 5067 ScheduleData *UseSD = getScheduleData(U); 5068 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5069 BundleMember->Dependencies++; 5070 ScheduleData *DestBundle = UseSD->FirstInBundle; 5071 if (!DestBundle->IsScheduled) 5072 BundleMember->incrementUnscheduledDeps(1); 5073 if (!DestBundle->hasValidDependencies()) 5074 WorkList.push_back(DestBundle); 5075 } 5076 } else { 5077 // I'm not sure if this can ever happen. But we need to be safe. 5078 // This lets the instruction/bundle never be scheduled and 5079 // eventually disable vectorization. 5080 BundleMember->Dependencies++; 5081 BundleMember->incrementUnscheduledDeps(1); 5082 } 5083 } 5084 } 5085 5086 // Handle the memory dependencies. 5087 ScheduleData *DepDest = BundleMember->NextLoadStore; 5088 if (DepDest) { 5089 Instruction *SrcInst = BundleMember->Inst; 5090 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 5091 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 5092 unsigned numAliased = 0; 5093 unsigned DistToSrc = 1; 5094 5095 while (DepDest) { 5096 assert(isInSchedulingRegion(DepDest)); 5097 5098 // We have two limits to reduce the complexity: 5099 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 5100 // SLP->isAliased (which is the expensive part in this loop). 5101 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 5102 // the whole loop (even if the loop is fast, it's quadratic). 5103 // It's important for the loop break condition (see below) to 5104 // check this limit even between two read-only instructions. 5105 if (DistToSrc >= MaxMemDepDistance || 5106 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 5107 (numAliased >= AliasedCheckLimit || 5108 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 5109 5110 // We increment the counter only if the locations are aliased 5111 // (instead of counting all alias checks). This gives a better 5112 // balance between reduced runtime and accurate dependencies. 5113 numAliased++; 5114 5115 DepDest->MemoryDependencies.push_back(BundleMember); 5116 BundleMember->Dependencies++; 5117 ScheduleData *DestBundle = DepDest->FirstInBundle; 5118 if (!DestBundle->IsScheduled) { 5119 BundleMember->incrementUnscheduledDeps(1); 5120 } 5121 if (!DestBundle->hasValidDependencies()) { 5122 WorkList.push_back(DestBundle); 5123 } 5124 } 5125 DepDest = DepDest->NextLoadStore; 5126 5127 // Example, explaining the loop break condition: Let's assume our 5128 // starting instruction is i0 and MaxMemDepDistance = 3. 5129 // 5130 // +--------v--v--v 5131 // i0,i1,i2,i3,i4,i5,i6,i7,i8 5132 // +--------^--^--^ 5133 // 5134 // MaxMemDepDistance let us stop alias-checking at i3 and we add 5135 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 5136 // Previously we already added dependencies from i3 to i6,i7,i8 5137 // (because of MaxMemDepDistance). As we added a dependency from 5138 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 5139 // and we can abort this loop at i6. 5140 if (DistToSrc >= 2 * MaxMemDepDistance) 5141 break; 5142 DistToSrc++; 5143 } 5144 } 5145 } 5146 BundleMember = BundleMember->NextInBundle; 5147 } 5148 if (InsertInReadyList && SD->isReady()) { 5149 ReadyInsts.push_back(SD); 5150 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 5151 << "\n"); 5152 } 5153 } 5154 } 5155 5156 void BoUpSLP::BlockScheduling::resetSchedule() { 5157 assert(ScheduleStart && 5158 "tried to reset schedule on block which has not been scheduled"); 5159 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 5160 doForAllOpcodes(I, [&](ScheduleData *SD) { 5161 assert(isInSchedulingRegion(SD) && 5162 "ScheduleData not in scheduling region"); 5163 SD->IsScheduled = false; 5164 SD->resetUnscheduledDeps(); 5165 }); 5166 } 5167 ReadyInsts.clear(); 5168 } 5169 5170 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 5171 if (!BS->ScheduleStart) 5172 return; 5173 5174 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 5175 5176 BS->resetSchedule(); 5177 5178 // For the real scheduling we use a more sophisticated ready-list: it is 5179 // sorted by the original instruction location. This lets the final schedule 5180 // be as close as possible to the original instruction order. 5181 struct ScheduleDataCompare { 5182 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 5183 return SD2->SchedulingPriority < SD1->SchedulingPriority; 5184 } 5185 }; 5186 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 5187 5188 // Ensure that all dependency data is updated and fill the ready-list with 5189 // initial instructions. 5190 int Idx = 0; 5191 int NumToSchedule = 0; 5192 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 5193 I = I->getNextNode()) { 5194 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 5195 assert(SD->isPartOfBundle() == 5196 (getTreeEntry(SD->Inst) != nullptr) && 5197 "scheduler and vectorizer bundle mismatch"); 5198 SD->FirstInBundle->SchedulingPriority = Idx++; 5199 if (SD->isSchedulingEntity()) { 5200 BS->calculateDependencies(SD, false, this); 5201 NumToSchedule++; 5202 } 5203 }); 5204 } 5205 BS->initialFillReadyList(ReadyInsts); 5206 5207 Instruction *LastScheduledInst = BS->ScheduleEnd; 5208 5209 // Do the "real" scheduling. 5210 while (!ReadyInsts.empty()) { 5211 ScheduleData *picked = *ReadyInsts.begin(); 5212 ReadyInsts.erase(ReadyInsts.begin()); 5213 5214 // Move the scheduled instruction(s) to their dedicated places, if not 5215 // there yet. 5216 ScheduleData *BundleMember = picked; 5217 while (BundleMember) { 5218 Instruction *pickedInst = BundleMember->Inst; 5219 if (LastScheduledInst->getNextNode() != pickedInst) { 5220 BS->BB->getInstList().remove(pickedInst); 5221 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 5222 pickedInst); 5223 } 5224 LastScheduledInst = pickedInst; 5225 BundleMember = BundleMember->NextInBundle; 5226 } 5227 5228 BS->schedule(picked, ReadyInsts); 5229 NumToSchedule--; 5230 } 5231 assert(NumToSchedule == 0 && "could not schedule all instructions"); 5232 5233 // Avoid duplicate scheduling of the block. 5234 BS->ScheduleStart = nullptr; 5235 } 5236 5237 unsigned BoUpSLP::getVectorElementSize(Value *V) const { 5238 // If V is a store, just return the width of the stored value without 5239 // traversing the expression tree. This is the common case. 5240 if (auto *Store = dyn_cast<StoreInst>(V)) 5241 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 5242 5243 // If V is not a store, we can traverse the expression tree to find loads 5244 // that feed it. The type of the loaded value may indicate a more suitable 5245 // width than V's type. We want to base the vector element size on the width 5246 // of memory operations where possible. 5247 SmallVector<Instruction *, 16> Worklist; 5248 SmallPtrSet<Instruction *, 16> Visited; 5249 if (auto *I = dyn_cast<Instruction>(V)) 5250 Worklist.push_back(I); 5251 5252 // Traverse the expression tree in bottom-up order looking for loads. If we 5253 // encounter an instruction we don't yet handle, we give up. 5254 auto MaxWidth = 0u; 5255 auto FoundUnknownInst = false; 5256 while (!Worklist.empty() && !FoundUnknownInst) { 5257 auto *I = Worklist.pop_back_val(); 5258 Visited.insert(I); 5259 5260 // We should only be looking at scalar instructions here. If the current 5261 // instruction has a vector type, give up. 5262 auto *Ty = I->getType(); 5263 if (isa<VectorType>(Ty)) 5264 FoundUnknownInst = true; 5265 5266 // If the current instruction is a load, update MaxWidth to reflect the 5267 // width of the loaded value. 5268 else if (isa<LoadInst>(I)) 5269 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 5270 5271 // Otherwise, we need to visit the operands of the instruction. We only 5272 // handle the interesting cases from buildTree here. If an operand is an 5273 // instruction we haven't yet visited, we add it to the worklist. 5274 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5275 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 5276 for (Use &U : I->operands()) 5277 if (auto *J = dyn_cast<Instruction>(U.get())) 5278 if (!Visited.count(J)) 5279 Worklist.push_back(J); 5280 } 5281 5282 // If we don't yet handle the instruction, give up. 5283 else 5284 FoundUnknownInst = true; 5285 } 5286 5287 // If we didn't encounter a memory access in the expression tree, or if we 5288 // gave up for some reason, just return the width of V. 5289 if (!MaxWidth || FoundUnknownInst) 5290 return DL->getTypeSizeInBits(V->getType()); 5291 5292 // Otherwise, return the maximum width we found. 5293 return MaxWidth; 5294 } 5295 5296 // Determine if a value V in a vectorizable expression Expr can be demoted to a 5297 // smaller type with a truncation. We collect the values that will be demoted 5298 // in ToDemote and additional roots that require investigating in Roots. 5299 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 5300 SmallVectorImpl<Value *> &ToDemote, 5301 SmallVectorImpl<Value *> &Roots) { 5302 // We can always demote constants. 5303 if (isa<Constant>(V)) { 5304 ToDemote.push_back(V); 5305 return true; 5306 } 5307 5308 // If the value is not an instruction in the expression with only one use, it 5309 // cannot be demoted. 5310 auto *I = dyn_cast<Instruction>(V); 5311 if (!I || !I->hasOneUse() || !Expr.count(I)) 5312 return false; 5313 5314 switch (I->getOpcode()) { 5315 5316 // We can always demote truncations and extensions. Since truncations can 5317 // seed additional demotion, we save the truncated value. 5318 case Instruction::Trunc: 5319 Roots.push_back(I->getOperand(0)); 5320 break; 5321 case Instruction::ZExt: 5322 case Instruction::SExt: 5323 break; 5324 5325 // We can demote certain binary operations if we can demote both of their 5326 // operands. 5327 case Instruction::Add: 5328 case Instruction::Sub: 5329 case Instruction::Mul: 5330 case Instruction::And: 5331 case Instruction::Or: 5332 case Instruction::Xor: 5333 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 5334 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 5335 return false; 5336 break; 5337 5338 // We can demote selects if we can demote their true and false values. 5339 case Instruction::Select: { 5340 SelectInst *SI = cast<SelectInst>(I); 5341 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 5342 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 5343 return false; 5344 break; 5345 } 5346 5347 // We can demote phis if we can demote all their incoming operands. Note that 5348 // we don't need to worry about cycles since we ensure single use above. 5349 case Instruction::PHI: { 5350 PHINode *PN = cast<PHINode>(I); 5351 for (Value *IncValue : PN->incoming_values()) 5352 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 5353 return false; 5354 break; 5355 } 5356 5357 // Otherwise, conservatively give up. 5358 default: 5359 return false; 5360 } 5361 5362 // Record the value that we can demote. 5363 ToDemote.push_back(V); 5364 return true; 5365 } 5366 5367 void BoUpSLP::computeMinimumValueSizes() { 5368 // If there are no external uses, the expression tree must be rooted by a 5369 // store. We can't demote in-memory values, so there is nothing to do here. 5370 if (ExternalUses.empty()) 5371 return; 5372 5373 // We only attempt to truncate integer expressions. 5374 auto &TreeRoot = VectorizableTree[0]->Scalars; 5375 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 5376 if (!TreeRootIT) 5377 return; 5378 5379 // If the expression is not rooted by a store, these roots should have 5380 // external uses. We will rely on InstCombine to rewrite the expression in 5381 // the narrower type. However, InstCombine only rewrites single-use values. 5382 // This means that if a tree entry other than a root is used externally, it 5383 // must have multiple uses and InstCombine will not rewrite it. The code 5384 // below ensures that only the roots are used externally. 5385 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 5386 for (auto &EU : ExternalUses) 5387 if (!Expr.erase(EU.Scalar)) 5388 return; 5389 if (!Expr.empty()) 5390 return; 5391 5392 // Collect the scalar values of the vectorizable expression. We will use this 5393 // context to determine which values can be demoted. If we see a truncation, 5394 // we mark it as seeding another demotion. 5395 for (auto &EntryPtr : VectorizableTree) 5396 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 5397 5398 // Ensure the roots of the vectorizable tree don't form a cycle. They must 5399 // have a single external user that is not in the vectorizable tree. 5400 for (auto *Root : TreeRoot) 5401 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 5402 return; 5403 5404 // Conservatively determine if we can actually truncate the roots of the 5405 // expression. Collect the values that can be demoted in ToDemote and 5406 // additional roots that require investigating in Roots. 5407 SmallVector<Value *, 32> ToDemote; 5408 SmallVector<Value *, 4> Roots; 5409 for (auto *Root : TreeRoot) 5410 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 5411 return; 5412 5413 // The maximum bit width required to represent all the values that can be 5414 // demoted without loss of precision. It would be safe to truncate the roots 5415 // of the expression to this width. 5416 auto MaxBitWidth = 8u; 5417 5418 // We first check if all the bits of the roots are demanded. If they're not, 5419 // we can truncate the roots to this narrower type. 5420 for (auto *Root : TreeRoot) { 5421 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 5422 MaxBitWidth = std::max<unsigned>( 5423 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 5424 } 5425 5426 // True if the roots can be zero-extended back to their original type, rather 5427 // than sign-extended. We know that if the leading bits are not demanded, we 5428 // can safely zero-extend. So we initialize IsKnownPositive to True. 5429 bool IsKnownPositive = true; 5430 5431 // If all the bits of the roots are demanded, we can try a little harder to 5432 // compute a narrower type. This can happen, for example, if the roots are 5433 // getelementptr indices. InstCombine promotes these indices to the pointer 5434 // width. Thus, all their bits are technically demanded even though the 5435 // address computation might be vectorized in a smaller type. 5436 // 5437 // We start by looking at each entry that can be demoted. We compute the 5438 // maximum bit width required to store the scalar by using ValueTracking to 5439 // compute the number of high-order bits we can truncate. 5440 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 5441 llvm::all_of(TreeRoot, [](Value *R) { 5442 assert(R->hasOneUse() && "Root should have only one use!"); 5443 return isa<GetElementPtrInst>(R->user_back()); 5444 })) { 5445 MaxBitWidth = 8u; 5446 5447 // Determine if the sign bit of all the roots is known to be zero. If not, 5448 // IsKnownPositive is set to False. 5449 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 5450 KnownBits Known = computeKnownBits(R, *DL); 5451 return Known.isNonNegative(); 5452 }); 5453 5454 // Determine the maximum number of bits required to store the scalar 5455 // values. 5456 for (auto *Scalar : ToDemote) { 5457 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 5458 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 5459 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 5460 } 5461 5462 // If we can't prove that the sign bit is zero, we must add one to the 5463 // maximum bit width to account for the unknown sign bit. This preserves 5464 // the existing sign bit so we can safely sign-extend the root back to the 5465 // original type. Otherwise, if we know the sign bit is zero, we will 5466 // zero-extend the root instead. 5467 // 5468 // FIXME: This is somewhat suboptimal, as there will be cases where adding 5469 // one to the maximum bit width will yield a larger-than-necessary 5470 // type. In general, we need to add an extra bit only if we can't 5471 // prove that the upper bit of the original type is equal to the 5472 // upper bit of the proposed smaller type. If these two bits are the 5473 // same (either zero or one) we know that sign-extending from the 5474 // smaller type will result in the same value. Here, since we can't 5475 // yet prove this, we are just making the proposed smaller type 5476 // larger to ensure correctness. 5477 if (!IsKnownPositive) 5478 ++MaxBitWidth; 5479 } 5480 5481 // Round MaxBitWidth up to the next power-of-two. 5482 if (!isPowerOf2_64(MaxBitWidth)) 5483 MaxBitWidth = NextPowerOf2(MaxBitWidth); 5484 5485 // If the maximum bit width we compute is less than the with of the roots' 5486 // type, we can proceed with the narrowing. Otherwise, do nothing. 5487 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 5488 return; 5489 5490 // If we can truncate the root, we must collect additional values that might 5491 // be demoted as a result. That is, those seeded by truncations we will 5492 // modify. 5493 while (!Roots.empty()) 5494 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 5495 5496 // Finally, map the values we can demote to the maximum bit with we computed. 5497 for (auto *Scalar : ToDemote) 5498 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 5499 } 5500 5501 namespace { 5502 5503 /// The SLPVectorizer Pass. 5504 struct SLPVectorizer : public FunctionPass { 5505 SLPVectorizerPass Impl; 5506 5507 /// Pass identification, replacement for typeid 5508 static char ID; 5509 5510 explicit SLPVectorizer() : FunctionPass(ID) { 5511 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 5512 } 5513 5514 bool doInitialization(Module &M) override { 5515 return false; 5516 } 5517 5518 bool runOnFunction(Function &F) override { 5519 if (skipFunction(F)) 5520 return false; 5521 5522 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5523 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 5524 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 5525 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 5526 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 5527 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5528 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5529 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 5530 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 5531 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 5532 5533 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5534 } 5535 5536 void getAnalysisUsage(AnalysisUsage &AU) const override { 5537 FunctionPass::getAnalysisUsage(AU); 5538 AU.addRequired<AssumptionCacheTracker>(); 5539 AU.addRequired<ScalarEvolutionWrapperPass>(); 5540 AU.addRequired<AAResultsWrapperPass>(); 5541 AU.addRequired<TargetTransformInfoWrapperPass>(); 5542 AU.addRequired<LoopInfoWrapperPass>(); 5543 AU.addRequired<DominatorTreeWrapperPass>(); 5544 AU.addRequired<DemandedBitsWrapperPass>(); 5545 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 5546 AU.addPreserved<LoopInfoWrapperPass>(); 5547 AU.addPreserved<DominatorTreeWrapperPass>(); 5548 AU.addPreserved<AAResultsWrapperPass>(); 5549 AU.addPreserved<GlobalsAAWrapperPass>(); 5550 AU.setPreservesCFG(); 5551 } 5552 }; 5553 5554 } // end anonymous namespace 5555 5556 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 5557 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 5558 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 5559 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 5560 auto *AA = &AM.getResult<AAManager>(F); 5561 auto *LI = &AM.getResult<LoopAnalysis>(F); 5562 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 5563 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 5564 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 5565 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 5566 5567 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5568 if (!Changed) 5569 return PreservedAnalyses::all(); 5570 5571 PreservedAnalyses PA; 5572 PA.preserveSet<CFGAnalyses>(); 5573 PA.preserve<AAManager>(); 5574 PA.preserve<GlobalsAA>(); 5575 return PA; 5576 } 5577 5578 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 5579 TargetTransformInfo *TTI_, 5580 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 5581 LoopInfo *LI_, DominatorTree *DT_, 5582 AssumptionCache *AC_, DemandedBits *DB_, 5583 OptimizationRemarkEmitter *ORE_) { 5584 SE = SE_; 5585 TTI = TTI_; 5586 TLI = TLI_; 5587 AA = AA_; 5588 LI = LI_; 5589 DT = DT_; 5590 AC = AC_; 5591 DB = DB_; 5592 DL = &F.getParent()->getDataLayout(); 5593 5594 Stores.clear(); 5595 GEPs.clear(); 5596 bool Changed = false; 5597 5598 // If the target claims to have no vector registers don't attempt 5599 // vectorization. 5600 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 5601 return false; 5602 5603 // Don't vectorize when the attribute NoImplicitFloat is used. 5604 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 5605 return false; 5606 5607 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 5608 5609 // Use the bottom up slp vectorizer to construct chains that start with 5610 // store instructions. 5611 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 5612 5613 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 5614 // delete instructions. 5615 5616 // Scan the blocks in the function in post order. 5617 for (auto BB : post_order(&F.getEntryBlock())) { 5618 collectSeedInstructions(BB); 5619 5620 // Vectorize trees that end at stores. 5621 if (!Stores.empty()) { 5622 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 5623 << " underlying objects.\n"); 5624 Changed |= vectorizeStoreChains(R); 5625 } 5626 5627 // Vectorize trees that end at reductions. 5628 Changed |= vectorizeChainsInBlock(BB, R); 5629 5630 // Vectorize the index computations of getelementptr instructions. This 5631 // is primarily intended to catch gather-like idioms ending at 5632 // non-consecutive loads. 5633 if (!GEPs.empty()) { 5634 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 5635 << " underlying objects.\n"); 5636 Changed |= vectorizeGEPIndices(BB, R); 5637 } 5638 } 5639 5640 if (Changed) { 5641 R.optimizeGatherSequence(); 5642 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 5643 LLVM_DEBUG(verifyFunction(F)); 5644 } 5645 return Changed; 5646 } 5647 5648 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 5649 unsigned Idx) { 5650 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 5651 << "\n"); 5652 const unsigned Sz = R.getVectorElementSize(Chain[0]); 5653 const unsigned MinVF = R.getMinVecRegSize() / Sz; 5654 unsigned VF = Chain.size(); 5655 5656 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 5657 return false; 5658 5659 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 5660 << "\n"); 5661 5662 R.buildTree(Chain); 5663 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 5664 // TODO: Handle orders of size less than number of elements in the vector. 5665 if (Order && Order->size() == Chain.size()) { 5666 // TODO: reorder tree nodes without tree rebuilding. 5667 SmallVector<Value *, 4> ReorderedOps(Chain.rbegin(), Chain.rend()); 5668 llvm::transform(*Order, ReorderedOps.begin(), 5669 [Chain](const unsigned Idx) { return Chain[Idx]; }); 5670 R.buildTree(ReorderedOps); 5671 } 5672 if (R.isTreeTinyAndNotFullyVectorizable()) 5673 return false; 5674 5675 R.computeMinimumValueSizes(); 5676 5677 int Cost = R.getTreeCost(); 5678 5679 LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); 5680 if (Cost < -SLPCostThreshold) { 5681 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 5682 5683 using namespace ore; 5684 5685 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 5686 cast<StoreInst>(Chain[0])) 5687 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 5688 << " and with tree size " 5689 << NV("TreeSize", R.getTreeSize())); 5690 5691 R.vectorizeTree(); 5692 return true; 5693 } 5694 5695 return false; 5696 } 5697 5698 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 5699 BoUpSLP &R) { 5700 // We may run into multiple chains that merge into a single chain. We mark the 5701 // stores that we vectorized so that we don't visit the same store twice. 5702 BoUpSLP::ValueSet VectorizedStores; 5703 bool Changed = false; 5704 5705 int E = Stores.size(); 5706 SmallBitVector Tails(E, false); 5707 SmallVector<int, 16> ConsecutiveChain(E, E + 1); 5708 int MaxIter = MaxStoreLookup.getValue(); 5709 int IterCnt; 5710 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 5711 &ConsecutiveChain](int K, int Idx) { 5712 if (IterCnt >= MaxIter) 5713 return true; 5714 ++IterCnt; 5715 if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) 5716 return false; 5717 5718 Tails.set(Idx); 5719 ConsecutiveChain[K] = Idx; 5720 return true; 5721 }; 5722 // Do a quadratic search on all of the given stores in reverse order and find 5723 // all of the pairs of stores that follow each other. 5724 for (int Idx = E - 1; Idx >= 0; --Idx) { 5725 // If a store has multiple consecutive store candidates, search according 5726 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 5727 // This is because usually pairing with immediate succeeding or preceding 5728 // candidate create the best chance to find slp vectorization opportunity. 5729 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 5730 IterCnt = 0; 5731 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 5732 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 5733 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 5734 break; 5735 } 5736 5737 // For stores that start but don't end a link in the chain: 5738 for (int Cnt = E; Cnt > 0; --Cnt) { 5739 int I = Cnt - 1; 5740 if (ConsecutiveChain[I] == E + 1 || Tails.test(I)) 5741 continue; 5742 // We found a store instr that starts a chain. Now follow the chain and try 5743 // to vectorize it. 5744 BoUpSLP::ValueList Operands; 5745 // Collect the chain into a list. 5746 while (I != E + 1 && !VectorizedStores.count(Stores[I])) { 5747 Operands.push_back(Stores[I]); 5748 // Move to the next value in the chain. 5749 I = ConsecutiveChain[I]; 5750 } 5751 5752 // If a vector register can't hold 1 element, we are done. 5753 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 5754 unsigned EltSize = R.getVectorElementSize(Stores[0]); 5755 if (MaxVecRegSize % EltSize != 0) 5756 continue; 5757 5758 unsigned MaxElts = MaxVecRegSize / EltSize; 5759 // FIXME: Is division-by-2 the correct step? Should we assert that the 5760 // register size is a power-of-2? 5761 unsigned StartIdx = 0; 5762 for (unsigned Size = llvm::PowerOf2Ceil(MaxElts); Size >= 2; Size /= 2) { 5763 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 5764 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 5765 if (!VectorizedStores.count(Slice.front()) && 5766 !VectorizedStores.count(Slice.back()) && 5767 vectorizeStoreChain(Slice, R, Cnt)) { 5768 // Mark the vectorized stores so that we don't vectorize them again. 5769 VectorizedStores.insert(Slice.begin(), Slice.end()); 5770 Changed = true; 5771 // If we vectorized initial block, no need to try to vectorize it 5772 // again. 5773 if (Cnt == StartIdx) 5774 StartIdx += Size; 5775 Cnt += Size; 5776 continue; 5777 } 5778 ++Cnt; 5779 } 5780 // Check if the whole array was vectorized already - exit. 5781 if (StartIdx >= Operands.size()) 5782 break; 5783 } 5784 } 5785 5786 return Changed; 5787 } 5788 5789 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 5790 // Initialize the collections. We will make a single pass over the block. 5791 Stores.clear(); 5792 GEPs.clear(); 5793 5794 // Visit the store and getelementptr instructions in BB and organize them in 5795 // Stores and GEPs according to the underlying objects of their pointer 5796 // operands. 5797 for (Instruction &I : *BB) { 5798 // Ignore store instructions that are volatile or have a pointer operand 5799 // that doesn't point to a scalar type. 5800 if (auto *SI = dyn_cast<StoreInst>(&I)) { 5801 if (!SI->isSimple()) 5802 continue; 5803 if (!isValidElementType(SI->getValueOperand()->getType())) 5804 continue; 5805 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 5806 } 5807 5808 // Ignore getelementptr instructions that have more than one index, a 5809 // constant index, or a pointer operand that doesn't point to a scalar 5810 // type. 5811 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 5812 auto Idx = GEP->idx_begin()->get(); 5813 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 5814 continue; 5815 if (!isValidElementType(Idx->getType())) 5816 continue; 5817 if (GEP->getType()->isVectorTy()) 5818 continue; 5819 GEPs[GEP->getPointerOperand()].push_back(GEP); 5820 } 5821 } 5822 } 5823 5824 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 5825 if (!A || !B) 5826 return false; 5827 Value *VL[] = { A, B }; 5828 return tryToVectorizeList(VL, R, /*UserCost=*/0, true); 5829 } 5830 5831 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 5832 int UserCost, bool AllowReorder) { 5833 if (VL.size() < 2) 5834 return false; 5835 5836 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 5837 << VL.size() << ".\n"); 5838 5839 // Check that all of the parts are scalar instructions of the same type, 5840 // we permit an alternate opcode via InstructionsState. 5841 InstructionsState S = getSameOpcode(VL); 5842 if (!S.getOpcode()) 5843 return false; 5844 5845 Instruction *I0 = cast<Instruction>(S.OpValue); 5846 unsigned Sz = R.getVectorElementSize(I0); 5847 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 5848 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 5849 if (MaxVF < 2) { 5850 R.getORE()->emit([&]() { 5851 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 5852 << "Cannot SLP vectorize list: vectorization factor " 5853 << "less than 2 is not supported"; 5854 }); 5855 return false; 5856 } 5857 5858 for (Value *V : VL) { 5859 Type *Ty = V->getType(); 5860 if (!isValidElementType(Ty)) { 5861 // NOTE: the following will give user internal llvm type name, which may 5862 // not be useful. 5863 R.getORE()->emit([&]() { 5864 std::string type_str; 5865 llvm::raw_string_ostream rso(type_str); 5866 Ty->print(rso); 5867 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 5868 << "Cannot SLP vectorize list: type " 5869 << rso.str() + " is unsupported by vectorizer"; 5870 }); 5871 return false; 5872 } 5873 } 5874 5875 bool Changed = false; 5876 bool CandidateFound = false; 5877 int MinCost = SLPCostThreshold; 5878 5879 unsigned NextInst = 0, MaxInst = VL.size(); 5880 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 5881 // No actual vectorization should happen, if number of parts is the same as 5882 // provided vectorization factor (i.e. the scalar type is used for vector 5883 // code during codegen). 5884 auto *VecTy = VectorType::get(VL[0]->getType(), VF); 5885 if (TTI->getNumberOfParts(VecTy) == VF) 5886 continue; 5887 for (unsigned I = NextInst; I < MaxInst; ++I) { 5888 unsigned OpsWidth = 0; 5889 5890 if (I + VF > MaxInst) 5891 OpsWidth = MaxInst - I; 5892 else 5893 OpsWidth = VF; 5894 5895 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 5896 break; 5897 5898 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 5899 // Check that a previous iteration of this loop did not delete the Value. 5900 if (llvm::any_of(Ops, [&R](Value *V) { 5901 auto *I = dyn_cast<Instruction>(V); 5902 return I && R.isDeleted(I); 5903 })) 5904 continue; 5905 5906 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 5907 << "\n"); 5908 5909 R.buildTree(Ops); 5910 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 5911 // TODO: check if we can allow reordering for more cases. 5912 if (AllowReorder && Order) { 5913 // TODO: reorder tree nodes without tree rebuilding. 5914 // Conceptually, there is nothing actually preventing us from trying to 5915 // reorder a larger list. In fact, we do exactly this when vectorizing 5916 // reductions. However, at this point, we only expect to get here when 5917 // there are exactly two operations. 5918 assert(Ops.size() == 2); 5919 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 5920 R.buildTree(ReorderedOps, None); 5921 } 5922 if (R.isTreeTinyAndNotFullyVectorizable()) 5923 continue; 5924 5925 R.computeMinimumValueSizes(); 5926 int Cost = R.getTreeCost() - UserCost; 5927 CandidateFound = true; 5928 MinCost = std::min(MinCost, Cost); 5929 5930 if (Cost < -SLPCostThreshold) { 5931 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 5932 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 5933 cast<Instruction>(Ops[0])) 5934 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 5935 << " and with tree size " 5936 << ore::NV("TreeSize", R.getTreeSize())); 5937 5938 R.vectorizeTree(); 5939 // Move to the next bundle. 5940 I += VF - 1; 5941 NextInst = I + 1; 5942 Changed = true; 5943 } 5944 } 5945 } 5946 5947 if (!Changed && CandidateFound) { 5948 R.getORE()->emit([&]() { 5949 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 5950 << "List vectorization was possible but not beneficial with cost " 5951 << ore::NV("Cost", MinCost) << " >= " 5952 << ore::NV("Treshold", -SLPCostThreshold); 5953 }); 5954 } else if (!Changed) { 5955 R.getORE()->emit([&]() { 5956 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 5957 << "Cannot SLP vectorize list: vectorization was impossible" 5958 << " with available vectorization factors"; 5959 }); 5960 } 5961 return Changed; 5962 } 5963 5964 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 5965 if (!I) 5966 return false; 5967 5968 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 5969 return false; 5970 5971 Value *P = I->getParent(); 5972 5973 // Vectorize in current basic block only. 5974 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 5975 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 5976 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 5977 return false; 5978 5979 // Try to vectorize V. 5980 if (tryToVectorizePair(Op0, Op1, R)) 5981 return true; 5982 5983 auto *A = dyn_cast<BinaryOperator>(Op0); 5984 auto *B = dyn_cast<BinaryOperator>(Op1); 5985 // Try to skip B. 5986 if (B && B->hasOneUse()) { 5987 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 5988 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 5989 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 5990 return true; 5991 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 5992 return true; 5993 } 5994 5995 // Try to skip A. 5996 if (A && A->hasOneUse()) { 5997 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 5998 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 5999 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 6000 return true; 6001 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 6002 return true; 6003 } 6004 return false; 6005 } 6006 6007 /// Generate a shuffle mask to be used in a reduction tree. 6008 /// 6009 /// \param VecLen The length of the vector to be reduced. 6010 /// \param NumEltsToRdx The number of elements that should be reduced in the 6011 /// vector. 6012 /// \param IsPairwise Whether the reduction is a pairwise or splitting 6013 /// reduction. A pairwise reduction will generate a mask of 6014 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 6015 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 6016 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 6017 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 6018 bool IsPairwise, bool IsLeft, 6019 IRBuilder<> &Builder) { 6020 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 6021 6022 SmallVector<Constant *, 32> ShuffleMask( 6023 VecLen, UndefValue::get(Builder.getInt32Ty())); 6024 6025 if (IsPairwise) 6026 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 6027 for (unsigned i = 0; i != NumEltsToRdx; ++i) 6028 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 6029 else 6030 // Move the upper half of the vector to the lower half. 6031 for (unsigned i = 0; i != NumEltsToRdx; ++i) 6032 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 6033 6034 return ConstantVector::get(ShuffleMask); 6035 } 6036 6037 namespace { 6038 6039 /// Model horizontal reductions. 6040 /// 6041 /// A horizontal reduction is a tree of reduction operations (currently add and 6042 /// fadd) that has operations that can be put into a vector as its leaf. 6043 /// For example, this tree: 6044 /// 6045 /// mul mul mul mul 6046 /// \ / \ / 6047 /// + + 6048 /// \ / 6049 /// + 6050 /// This tree has "mul" as its reduced values and "+" as its reduction 6051 /// operations. A reduction might be feeding into a store or a binary operation 6052 /// feeding a phi. 6053 /// ... 6054 /// \ / 6055 /// + 6056 /// | 6057 /// phi += 6058 /// 6059 /// Or: 6060 /// ... 6061 /// \ / 6062 /// + 6063 /// | 6064 /// *p = 6065 /// 6066 class HorizontalReduction { 6067 using ReductionOpsType = SmallVector<Value *, 16>; 6068 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 6069 ReductionOpsListType ReductionOps; 6070 SmallVector<Value *, 32> ReducedVals; 6071 // Use map vector to make stable output. 6072 MapVector<Instruction *, Value *> ExtraArgs; 6073 6074 /// Kind of the reduction data. 6075 enum ReductionKind { 6076 RK_None, /// Not a reduction. 6077 RK_Arithmetic, /// Binary reduction data. 6078 RK_Min, /// Minimum reduction data. 6079 RK_UMin, /// Unsigned minimum reduction data. 6080 RK_Max, /// Maximum reduction data. 6081 RK_UMax, /// Unsigned maximum reduction data. 6082 }; 6083 6084 /// Contains info about operation, like its opcode, left and right operands. 6085 class OperationData { 6086 /// Opcode of the instruction. 6087 unsigned Opcode = 0; 6088 6089 /// Left operand of the reduction operation. 6090 Value *LHS = nullptr; 6091 6092 /// Right operand of the reduction operation. 6093 Value *RHS = nullptr; 6094 6095 /// Kind of the reduction operation. 6096 ReductionKind Kind = RK_None; 6097 6098 /// True if float point min/max reduction has no NaNs. 6099 bool NoNaN = false; 6100 6101 /// Checks if the reduction operation can be vectorized. 6102 bool isVectorizable() const { 6103 return LHS && RHS && 6104 // We currently only support add/mul/logical && min/max reductions. 6105 ((Kind == RK_Arithmetic && 6106 (Opcode == Instruction::Add || Opcode == Instruction::FAdd || 6107 Opcode == Instruction::Mul || Opcode == Instruction::FMul || 6108 Opcode == Instruction::And || Opcode == Instruction::Or || 6109 Opcode == Instruction::Xor)) || 6110 ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 6111 (Kind == RK_Min || Kind == RK_Max)) || 6112 (Opcode == Instruction::ICmp && 6113 (Kind == RK_UMin || Kind == RK_UMax))); 6114 } 6115 6116 /// Creates reduction operation with the current opcode. 6117 Value *createOp(IRBuilder<> &Builder, const Twine &Name) const { 6118 assert(isVectorizable() && 6119 "Expected add|fadd or min/max reduction operation."); 6120 Value *Cmp = nullptr; 6121 switch (Kind) { 6122 case RK_Arithmetic: 6123 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 6124 Name); 6125 case RK_Min: 6126 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS) 6127 : Builder.CreateFCmpOLT(LHS, RHS); 6128 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6129 case RK_Max: 6130 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS) 6131 : Builder.CreateFCmpOGT(LHS, RHS); 6132 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6133 case RK_UMin: 6134 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6135 Cmp = Builder.CreateICmpULT(LHS, RHS); 6136 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6137 case RK_UMax: 6138 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6139 Cmp = Builder.CreateICmpUGT(LHS, RHS); 6140 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6141 case RK_None: 6142 break; 6143 } 6144 llvm_unreachable("Unknown reduction operation."); 6145 } 6146 6147 public: 6148 explicit OperationData() = default; 6149 6150 /// Construction for reduced values. They are identified by opcode only and 6151 /// don't have associated LHS/RHS values. 6152 explicit OperationData(Value *V) { 6153 if (auto *I = dyn_cast<Instruction>(V)) 6154 Opcode = I->getOpcode(); 6155 } 6156 6157 /// Constructor for reduction operations with opcode and its left and 6158 /// right operands. 6159 OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind, 6160 bool NoNaN = false) 6161 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) { 6162 assert(Kind != RK_None && "One of the reduction operations is expected."); 6163 } 6164 6165 explicit operator bool() const { return Opcode; } 6166 6167 /// Return true if this operation is any kind of minimum or maximum. 6168 bool isMinMax() const { 6169 switch (Kind) { 6170 case RK_Arithmetic: 6171 return false; 6172 case RK_Min: 6173 case RK_Max: 6174 case RK_UMin: 6175 case RK_UMax: 6176 return true; 6177 case RK_None: 6178 break; 6179 } 6180 llvm_unreachable("Reduction kind is not set"); 6181 } 6182 6183 /// Get the index of the first operand. 6184 unsigned getFirstOperandIndex() const { 6185 assert(!!*this && "The opcode is not set."); 6186 // We allow calling this before 'Kind' is set, so handle that specially. 6187 if (Kind == RK_None) 6188 return 0; 6189 return isMinMax() ? 1 : 0; 6190 } 6191 6192 /// Total number of operands in the reduction operation. 6193 unsigned getNumberOfOperands() const { 6194 assert(Kind != RK_None && !!*this && LHS && RHS && 6195 "Expected reduction operation."); 6196 return isMinMax() ? 3 : 2; 6197 } 6198 6199 /// Checks if the operation has the same parent as \p P. 6200 bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const { 6201 assert(Kind != RK_None && !!*this && LHS && RHS && 6202 "Expected reduction operation."); 6203 if (!IsRedOp) 6204 return I->getParent() == P; 6205 if (isMinMax()) { 6206 // SelectInst must be used twice while the condition op must have single 6207 // use only. 6208 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 6209 return I->getParent() == P && Cmp && Cmp->getParent() == P; 6210 } 6211 // Arithmetic reduction operation must be used once only. 6212 return I->getParent() == P; 6213 } 6214 6215 /// Expected number of uses for reduction operations/reduced values. 6216 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { 6217 assert(Kind != RK_None && !!*this && LHS && RHS && 6218 "Expected reduction operation."); 6219 if (isMinMax()) 6220 return I->hasNUses(2) && 6221 (!IsReductionOp || 6222 cast<SelectInst>(I)->getCondition()->hasOneUse()); 6223 return I->hasOneUse(); 6224 } 6225 6226 /// Initializes the list of reduction operations. 6227 void initReductionOps(ReductionOpsListType &ReductionOps) { 6228 assert(Kind != RK_None && !!*this && LHS && RHS && 6229 "Expected reduction operation."); 6230 if (isMinMax()) 6231 ReductionOps.assign(2, ReductionOpsType()); 6232 else 6233 ReductionOps.assign(1, ReductionOpsType()); 6234 } 6235 6236 /// Add all reduction operations for the reduction instruction \p I. 6237 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { 6238 assert(Kind != RK_None && !!*this && LHS && RHS && 6239 "Expected reduction operation."); 6240 if (isMinMax()) { 6241 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 6242 ReductionOps[1].emplace_back(I); 6243 } else { 6244 ReductionOps[0].emplace_back(I); 6245 } 6246 } 6247 6248 /// Checks if instruction is associative and can be vectorized. 6249 bool isAssociative(Instruction *I) const { 6250 assert(Kind != RK_None && *this && LHS && RHS && 6251 "Expected reduction operation."); 6252 switch (Kind) { 6253 case RK_Arithmetic: 6254 return I->isAssociative(); 6255 case RK_Min: 6256 case RK_Max: 6257 return Opcode == Instruction::ICmp || 6258 cast<Instruction>(I->getOperand(0))->isFast(); 6259 case RK_UMin: 6260 case RK_UMax: 6261 assert(Opcode == Instruction::ICmp && 6262 "Only integer compare operation is expected."); 6263 return true; 6264 case RK_None: 6265 break; 6266 } 6267 llvm_unreachable("Reduction kind is not set"); 6268 } 6269 6270 /// Checks if the reduction operation can be vectorized. 6271 bool isVectorizable(Instruction *I) const { 6272 return isVectorizable() && isAssociative(I); 6273 } 6274 6275 /// Checks if two operation data are both a reduction op or both a reduced 6276 /// value. 6277 bool operator==(const OperationData &OD) const { 6278 assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) && 6279 "One of the comparing operations is incorrect."); 6280 return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode); 6281 } 6282 bool operator!=(const OperationData &OD) const { return !(*this == OD); } 6283 void clear() { 6284 Opcode = 0; 6285 LHS = nullptr; 6286 RHS = nullptr; 6287 Kind = RK_None; 6288 NoNaN = false; 6289 } 6290 6291 /// Get the opcode of the reduction operation. 6292 unsigned getOpcode() const { 6293 assert(isVectorizable() && "Expected vectorizable operation."); 6294 return Opcode; 6295 } 6296 6297 /// Get kind of reduction data. 6298 ReductionKind getKind() const { return Kind; } 6299 Value *getLHS() const { return LHS; } 6300 Value *getRHS() const { return RHS; } 6301 Type *getConditionType() const { 6302 return isMinMax() ? CmpInst::makeCmpResultType(LHS->getType()) : nullptr; 6303 } 6304 6305 /// Creates reduction operation with the current opcode with the IR flags 6306 /// from \p ReductionOps. 6307 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 6308 const ReductionOpsListType &ReductionOps) const { 6309 assert(isVectorizable() && 6310 "Expected add|fadd or min/max reduction operation."); 6311 auto *Op = createOp(Builder, Name); 6312 switch (Kind) { 6313 case RK_Arithmetic: 6314 propagateIRFlags(Op, ReductionOps[0]); 6315 return Op; 6316 case RK_Min: 6317 case RK_Max: 6318 case RK_UMin: 6319 case RK_UMax: 6320 if (auto *SI = dyn_cast<SelectInst>(Op)) 6321 propagateIRFlags(SI->getCondition(), ReductionOps[0]); 6322 propagateIRFlags(Op, ReductionOps[1]); 6323 return Op; 6324 case RK_None: 6325 break; 6326 } 6327 llvm_unreachable("Unknown reduction operation."); 6328 } 6329 /// Creates reduction operation with the current opcode with the IR flags 6330 /// from \p I. 6331 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 6332 Instruction *I) const { 6333 assert(isVectorizable() && 6334 "Expected add|fadd or min/max reduction operation."); 6335 auto *Op = createOp(Builder, Name); 6336 switch (Kind) { 6337 case RK_Arithmetic: 6338 propagateIRFlags(Op, I); 6339 return Op; 6340 case RK_Min: 6341 case RK_Max: 6342 case RK_UMin: 6343 case RK_UMax: 6344 if (auto *SI = dyn_cast<SelectInst>(Op)) { 6345 propagateIRFlags(SI->getCondition(), 6346 cast<SelectInst>(I)->getCondition()); 6347 } 6348 propagateIRFlags(Op, I); 6349 return Op; 6350 case RK_None: 6351 break; 6352 } 6353 llvm_unreachable("Unknown reduction operation."); 6354 } 6355 6356 TargetTransformInfo::ReductionFlags getFlags() const { 6357 TargetTransformInfo::ReductionFlags Flags; 6358 Flags.NoNaN = NoNaN; 6359 switch (Kind) { 6360 case RK_Arithmetic: 6361 break; 6362 case RK_Min: 6363 Flags.IsSigned = Opcode == Instruction::ICmp; 6364 Flags.IsMaxOp = false; 6365 break; 6366 case RK_Max: 6367 Flags.IsSigned = Opcode == Instruction::ICmp; 6368 Flags.IsMaxOp = true; 6369 break; 6370 case RK_UMin: 6371 Flags.IsSigned = false; 6372 Flags.IsMaxOp = false; 6373 break; 6374 case RK_UMax: 6375 Flags.IsSigned = false; 6376 Flags.IsMaxOp = true; 6377 break; 6378 case RK_None: 6379 llvm_unreachable("Reduction kind is not set"); 6380 } 6381 return Flags; 6382 } 6383 }; 6384 6385 WeakTrackingVH ReductionRoot; 6386 6387 /// The operation data of the reduction operation. 6388 OperationData ReductionData; 6389 6390 /// The operation data of the values we perform a reduction on. 6391 OperationData ReducedValueData; 6392 6393 /// Should we model this reduction as a pairwise reduction tree or a tree that 6394 /// splits the vector in halves and adds those halves. 6395 bool IsPairwiseReduction = false; 6396 6397 /// Checks if the ParentStackElem.first should be marked as a reduction 6398 /// operation with an extra argument or as extra argument itself. 6399 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 6400 Value *ExtraArg) { 6401 if (ExtraArgs.count(ParentStackElem.first)) { 6402 ExtraArgs[ParentStackElem.first] = nullptr; 6403 // We ran into something like: 6404 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 6405 // The whole ParentStackElem.first should be considered as an extra value 6406 // in this case. 6407 // Do not perform analysis of remaining operands of ParentStackElem.first 6408 // instruction, this whole instruction is an extra argument. 6409 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 6410 } else { 6411 // We ran into something like: 6412 // ParentStackElem.first += ... + ExtraArg + ... 6413 ExtraArgs[ParentStackElem.first] = ExtraArg; 6414 } 6415 } 6416 6417 static OperationData getOperationData(Value *V) { 6418 if (!V) 6419 return OperationData(); 6420 6421 Value *LHS; 6422 Value *RHS; 6423 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) { 6424 return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS, 6425 RK_Arithmetic); 6426 } 6427 if (auto *Select = dyn_cast<SelectInst>(V)) { 6428 // Look for a min/max pattern. 6429 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6430 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 6431 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6432 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 6433 } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) || 6434 m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6435 return OperationData( 6436 Instruction::FCmp, LHS, RHS, RK_Min, 6437 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 6438 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6439 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 6440 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6441 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 6442 } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) || 6443 m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6444 return OperationData( 6445 Instruction::FCmp, LHS, RHS, RK_Max, 6446 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 6447 } else { 6448 // Try harder: look for min/max pattern based on instructions producing 6449 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 6450 // During the intermediate stages of SLP, it's very common to have 6451 // pattern like this (since optimizeGatherSequence is run only once 6452 // at the end): 6453 // %1 = extractelement <2 x i32> %a, i32 0 6454 // %2 = extractelement <2 x i32> %a, i32 1 6455 // %cond = icmp sgt i32 %1, %2 6456 // %3 = extractelement <2 x i32> %a, i32 0 6457 // %4 = extractelement <2 x i32> %a, i32 1 6458 // %select = select i1 %cond, i32 %3, i32 %4 6459 CmpInst::Predicate Pred; 6460 Instruction *L1; 6461 Instruction *L2; 6462 6463 LHS = Select->getTrueValue(); 6464 RHS = Select->getFalseValue(); 6465 Value *Cond = Select->getCondition(); 6466 6467 // TODO: Support inverse predicates. 6468 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 6469 if (!isa<ExtractElementInst>(RHS) || 6470 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6471 return OperationData(V); 6472 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 6473 if (!isa<ExtractElementInst>(LHS) || 6474 !L1->isIdenticalTo(cast<Instruction>(LHS))) 6475 return OperationData(V); 6476 } else { 6477 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 6478 return OperationData(V); 6479 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 6480 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 6481 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6482 return OperationData(V); 6483 } 6484 switch (Pred) { 6485 default: 6486 return OperationData(V); 6487 6488 case CmpInst::ICMP_ULT: 6489 case CmpInst::ICMP_ULE: 6490 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 6491 6492 case CmpInst::ICMP_SLT: 6493 case CmpInst::ICMP_SLE: 6494 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 6495 6496 case CmpInst::FCMP_OLT: 6497 case CmpInst::FCMP_OLE: 6498 case CmpInst::FCMP_ULT: 6499 case CmpInst::FCMP_ULE: 6500 return OperationData(Instruction::FCmp, LHS, RHS, RK_Min, 6501 cast<Instruction>(Cond)->hasNoNaNs()); 6502 6503 case CmpInst::ICMP_UGT: 6504 case CmpInst::ICMP_UGE: 6505 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 6506 6507 case CmpInst::ICMP_SGT: 6508 case CmpInst::ICMP_SGE: 6509 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 6510 6511 case CmpInst::FCMP_OGT: 6512 case CmpInst::FCMP_OGE: 6513 case CmpInst::FCMP_UGT: 6514 case CmpInst::FCMP_UGE: 6515 return OperationData(Instruction::FCmp, LHS, RHS, RK_Max, 6516 cast<Instruction>(Cond)->hasNoNaNs()); 6517 } 6518 } 6519 } 6520 return OperationData(V); 6521 } 6522 6523 public: 6524 HorizontalReduction() = default; 6525 6526 /// Try to find a reduction tree. 6527 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 6528 assert((!Phi || is_contained(Phi->operands(), B)) && 6529 "Thi phi needs to use the binary operator"); 6530 6531 ReductionData = getOperationData(B); 6532 6533 // We could have a initial reductions that is not an add. 6534 // r *= v1 + v2 + v3 + v4 6535 // In such a case start looking for a tree rooted in the first '+'. 6536 if (Phi) { 6537 if (ReductionData.getLHS() == Phi) { 6538 Phi = nullptr; 6539 B = dyn_cast<Instruction>(ReductionData.getRHS()); 6540 ReductionData = getOperationData(B); 6541 } else if (ReductionData.getRHS() == Phi) { 6542 Phi = nullptr; 6543 B = dyn_cast<Instruction>(ReductionData.getLHS()); 6544 ReductionData = getOperationData(B); 6545 } 6546 } 6547 6548 if (!ReductionData.isVectorizable(B)) 6549 return false; 6550 6551 Type *Ty = B->getType(); 6552 if (!isValidElementType(Ty)) 6553 return false; 6554 if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy()) 6555 return false; 6556 6557 ReducedValueData.clear(); 6558 ReductionRoot = B; 6559 6560 // Post order traverse the reduction tree starting at B. We only handle true 6561 // trees containing only binary operators. 6562 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 6563 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); 6564 ReductionData.initReductionOps(ReductionOps); 6565 while (!Stack.empty()) { 6566 Instruction *TreeN = Stack.back().first; 6567 unsigned EdgeToVist = Stack.back().second++; 6568 OperationData OpData = getOperationData(TreeN); 6569 bool IsReducedValue = OpData != ReductionData; 6570 6571 // Postorder vist. 6572 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { 6573 if (IsReducedValue) 6574 ReducedVals.push_back(TreeN); 6575 else { 6576 auto I = ExtraArgs.find(TreeN); 6577 if (I != ExtraArgs.end() && !I->second) { 6578 // Check if TreeN is an extra argument of its parent operation. 6579 if (Stack.size() <= 1) { 6580 // TreeN can't be an extra argument as it is a root reduction 6581 // operation. 6582 return false; 6583 } 6584 // Yes, TreeN is an extra argument, do not add it to a list of 6585 // reduction operations. 6586 // Stack[Stack.size() - 2] always points to the parent operation. 6587 markExtraArg(Stack[Stack.size() - 2], TreeN); 6588 ExtraArgs.erase(TreeN); 6589 } else 6590 ReductionData.addReductionOps(TreeN, ReductionOps); 6591 } 6592 // Retract. 6593 Stack.pop_back(); 6594 continue; 6595 } 6596 6597 // Visit left or right. 6598 Value *NextV = TreeN->getOperand(EdgeToVist); 6599 if (NextV != Phi) { 6600 auto *I = dyn_cast<Instruction>(NextV); 6601 OpData = getOperationData(I); 6602 // Continue analysis if the next operand is a reduction operation or 6603 // (possibly) a reduced value. If the reduced value opcode is not set, 6604 // the first met operation != reduction operation is considered as the 6605 // reduced value class. 6606 if (I && (!ReducedValueData || OpData == ReducedValueData || 6607 OpData == ReductionData)) { 6608 const bool IsReductionOperation = OpData == ReductionData; 6609 // Only handle trees in the current basic block. 6610 if (!ReductionData.hasSameParent(I, B->getParent(), 6611 IsReductionOperation)) { 6612 // I is an extra argument for TreeN (its parent operation). 6613 markExtraArg(Stack.back(), I); 6614 continue; 6615 } 6616 6617 // Each tree node needs to have minimal number of users except for the 6618 // ultimate reduction. 6619 if (!ReductionData.hasRequiredNumberOfUses(I, 6620 OpData == ReductionData) && 6621 I != B) { 6622 // I is an extra argument for TreeN (its parent operation). 6623 markExtraArg(Stack.back(), I); 6624 continue; 6625 } 6626 6627 if (IsReductionOperation) { 6628 // We need to be able to reassociate the reduction operations. 6629 if (!OpData.isAssociative(I)) { 6630 // I is an extra argument for TreeN (its parent operation). 6631 markExtraArg(Stack.back(), I); 6632 continue; 6633 } 6634 } else if (ReducedValueData && 6635 ReducedValueData != OpData) { 6636 // Make sure that the opcodes of the operations that we are going to 6637 // reduce match. 6638 // I is an extra argument for TreeN (its parent operation). 6639 markExtraArg(Stack.back(), I); 6640 continue; 6641 } else if (!ReducedValueData) 6642 ReducedValueData = OpData; 6643 6644 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 6645 continue; 6646 } 6647 } 6648 // NextV is an extra argument for TreeN (its parent operation). 6649 markExtraArg(Stack.back(), NextV); 6650 } 6651 return true; 6652 } 6653 6654 /// Attempt to vectorize the tree found by 6655 /// matchAssociativeReduction. 6656 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI, bool Try2WayRdx) { 6657 if (ReducedVals.empty()) 6658 return false; 6659 6660 // If there is a sufficient number of reduction values, reduce 6661 // to a nearby power-of-2. Can safely generate oversized 6662 // vectors and rely on the backend to split them to legal sizes. 6663 unsigned NumReducedVals = ReducedVals.size(); 6664 if (Try2WayRdx && NumReducedVals != 2) 6665 return false; 6666 unsigned MinRdxVals = Try2WayRdx ? 2 : 4; 6667 if (NumReducedVals < MinRdxVals) 6668 return false; 6669 6670 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 6671 unsigned MinRdxWidth = Log2_32(MinRdxVals); 6672 Value *VectorizedTree = nullptr; 6673 6674 // FIXME: Fast-math-flags should be set based on the instructions in the 6675 // reduction (not all of 'fast' are required). 6676 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 6677 FastMathFlags Unsafe; 6678 Unsafe.setFast(); 6679 Builder.setFastMathFlags(Unsafe); 6680 unsigned i = 0; 6681 6682 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 6683 // The same extra argument may be used several time, so log each attempt 6684 // to use it. 6685 for (auto &Pair : ExtraArgs) { 6686 assert(Pair.first && "DebugLoc must be set."); 6687 ExternallyUsedValues[Pair.second].push_back(Pair.first); 6688 } 6689 6690 // The compare instruction of a min/max is the insertion point for new 6691 // instructions and may be replaced with a new compare instruction. 6692 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 6693 assert(isa<SelectInst>(RdxRootInst) && 6694 "Expected min/max reduction to have select root instruction"); 6695 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 6696 assert(isa<Instruction>(ScalarCond) && 6697 "Expected min/max reduction to have compare condition"); 6698 return cast<Instruction>(ScalarCond); 6699 }; 6700 6701 // The reduction root is used as the insertion point for new instructions, 6702 // so set it as externally used to prevent it from being deleted. 6703 ExternallyUsedValues[ReductionRoot]; 6704 SmallVector<Value *, 16> IgnoreList; 6705 for (auto &V : ReductionOps) 6706 IgnoreList.append(V.begin(), V.end()); 6707 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > MinRdxWidth) { 6708 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 6709 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 6710 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 6711 // TODO: Handle orders of size less than number of elements in the vector. 6712 if (Order && Order->size() == VL.size()) { 6713 // TODO: reorder tree nodes without tree rebuilding. 6714 SmallVector<Value *, 4> ReorderedOps(VL.size()); 6715 llvm::transform(*Order, ReorderedOps.begin(), 6716 [VL](const unsigned Idx) { return VL[Idx]; }); 6717 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 6718 } 6719 if (V.isTreeTinyAndNotFullyVectorizable()) 6720 break; 6721 if (V.isLoadCombineReductionCandidate(ReductionData.getOpcode())) 6722 break; 6723 6724 V.computeMinimumValueSizes(); 6725 6726 // Estimate cost. 6727 int TreeCost = V.getTreeCost(); 6728 int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth); 6729 int Cost = TreeCost + ReductionCost; 6730 if (Cost >= -SLPCostThreshold) { 6731 V.getORE()->emit([&]() { 6732 return OptimizationRemarkMissed( 6733 SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0])) 6734 << "Vectorizing horizontal reduction is possible" 6735 << "but not beneficial with cost " 6736 << ore::NV("Cost", Cost) << " and threshold " 6737 << ore::NV("Threshold", -SLPCostThreshold); 6738 }); 6739 break; 6740 } 6741 6742 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 6743 << Cost << ". (HorRdx)\n"); 6744 V.getORE()->emit([&]() { 6745 return OptimizationRemark( 6746 SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0])) 6747 << "Vectorized horizontal reduction with cost " 6748 << ore::NV("Cost", Cost) << " and with tree size " 6749 << ore::NV("TreeSize", V.getTreeSize()); 6750 }); 6751 6752 // Vectorize a tree. 6753 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 6754 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 6755 6756 // Emit a reduction. For min/max, the root is a select, but the insertion 6757 // point is the compare condition of that select. 6758 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 6759 if (ReductionData.isMinMax()) 6760 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 6761 else 6762 Builder.SetInsertPoint(RdxRootInst); 6763 6764 Value *ReducedSubTree = 6765 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 6766 if (VectorizedTree) { 6767 Builder.SetCurrentDebugLocation(Loc); 6768 OperationData VectReductionData(ReductionData.getOpcode(), 6769 VectorizedTree, ReducedSubTree, 6770 ReductionData.getKind()); 6771 VectorizedTree = 6772 VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 6773 } else 6774 VectorizedTree = ReducedSubTree; 6775 i += ReduxWidth; 6776 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 6777 } 6778 6779 if (VectorizedTree) { 6780 // Finish the reduction. 6781 for (; i < NumReducedVals; ++i) { 6782 auto *I = cast<Instruction>(ReducedVals[i]); 6783 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 6784 OperationData VectReductionData(ReductionData.getOpcode(), 6785 VectorizedTree, I, 6786 ReductionData.getKind()); 6787 VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps); 6788 } 6789 for (auto &Pair : ExternallyUsedValues) { 6790 // Add each externally used value to the final reduction. 6791 for (auto *I : Pair.second) { 6792 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 6793 OperationData VectReductionData(ReductionData.getOpcode(), 6794 VectorizedTree, Pair.first, 6795 ReductionData.getKind()); 6796 VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I); 6797 } 6798 } 6799 6800 // Update users. For a min/max reduction that ends with a compare and 6801 // select, we also have to RAUW for the compare instruction feeding the 6802 // reduction root. That's because the original compare may have extra uses 6803 // besides the final select of the reduction. 6804 if (ReductionData.isMinMax()) { 6805 if (auto *VecSelect = dyn_cast<SelectInst>(VectorizedTree)) { 6806 Instruction *ScalarCmp = 6807 getCmpForMinMaxReduction(cast<Instruction>(ReductionRoot)); 6808 ScalarCmp->replaceAllUsesWith(VecSelect->getCondition()); 6809 } 6810 } 6811 ReductionRoot->replaceAllUsesWith(VectorizedTree); 6812 6813 // Mark all scalar reduction ops for deletion, they are replaced by the 6814 // vector reductions. 6815 V.eraseInstructions(IgnoreList); 6816 } 6817 return VectorizedTree != nullptr; 6818 } 6819 6820 unsigned numReductionValues() const { 6821 return ReducedVals.size(); 6822 } 6823 6824 private: 6825 /// Calculate the cost of a reduction. 6826 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 6827 unsigned ReduxWidth) { 6828 Type *ScalarTy = FirstReducedVal->getType(); 6829 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 6830 6831 int PairwiseRdxCost; 6832 int SplittingRdxCost; 6833 switch (ReductionData.getKind()) { 6834 case RK_Arithmetic: 6835 PairwiseRdxCost = 6836 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 6837 /*IsPairwiseForm=*/true); 6838 SplittingRdxCost = 6839 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 6840 /*IsPairwiseForm=*/false); 6841 break; 6842 case RK_Min: 6843 case RK_Max: 6844 case RK_UMin: 6845 case RK_UMax: { 6846 Type *VecCondTy = CmpInst::makeCmpResultType(VecTy); 6847 bool IsUnsigned = ReductionData.getKind() == RK_UMin || 6848 ReductionData.getKind() == RK_UMax; 6849 PairwiseRdxCost = 6850 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 6851 /*IsPairwiseForm=*/true, IsUnsigned); 6852 SplittingRdxCost = 6853 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 6854 /*IsPairwiseForm=*/false, IsUnsigned); 6855 break; 6856 } 6857 case RK_None: 6858 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 6859 } 6860 6861 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 6862 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 6863 6864 int ScalarReduxCost = 0; 6865 switch (ReductionData.getKind()) { 6866 case RK_Arithmetic: 6867 ScalarReduxCost = 6868 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); 6869 break; 6870 case RK_Min: 6871 case RK_Max: 6872 case RK_UMin: 6873 case RK_UMax: 6874 ScalarReduxCost = 6875 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) + 6876 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 6877 CmpInst::makeCmpResultType(ScalarTy)); 6878 break; 6879 case RK_None: 6880 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 6881 } 6882 ScalarReduxCost *= (ReduxWidth - 1); 6883 6884 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 6885 << " for reduction that starts with " << *FirstReducedVal 6886 << " (It is a " 6887 << (IsPairwiseReduction ? "pairwise" : "splitting") 6888 << " reduction)\n"); 6889 6890 return VecReduxCost - ScalarReduxCost; 6891 } 6892 6893 /// Emit a horizontal reduction of the vectorized value. 6894 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 6895 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 6896 assert(VectorizedValue && "Need to have a vectorized tree node"); 6897 assert(isPowerOf2_32(ReduxWidth) && 6898 "We only handle power-of-two reductions for now"); 6899 6900 if (!IsPairwiseReduction) { 6901 // FIXME: The builder should use an FMF guard. It should not be hard-coded 6902 // to 'fast'. 6903 assert(Builder.getFastMathFlags().isFast() && "Expected 'fast' FMF"); 6904 return createSimpleTargetReduction( 6905 Builder, TTI, ReductionData.getOpcode(), VectorizedValue, 6906 ReductionData.getFlags(), ReductionOps.back()); 6907 } 6908 6909 Value *TmpVec = VectorizedValue; 6910 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 6911 Value *LeftMask = 6912 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 6913 Value *RightMask = 6914 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 6915 6916 Value *LeftShuf = Builder.CreateShuffleVector( 6917 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 6918 Value *RightShuf = Builder.CreateShuffleVector( 6919 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 6920 "rdx.shuf.r"); 6921 OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf, 6922 RightShuf, ReductionData.getKind()); 6923 TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 6924 } 6925 6926 // The result is in the first element of the vector. 6927 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 6928 } 6929 }; 6930 6931 } // end anonymous namespace 6932 6933 /// Recognize construction of vectors like 6934 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 6935 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 6936 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 6937 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 6938 /// starting from the last insertelement instruction. 6939 /// 6940 /// Returns true if it matches 6941 static bool findBuildVector(InsertElementInst *LastInsertElem, 6942 TargetTransformInfo *TTI, 6943 SmallVectorImpl<Value *> &BuildVectorOpds, 6944 int &UserCost) { 6945 UserCost = 0; 6946 Value *V = nullptr; 6947 do { 6948 if (auto *CI = dyn_cast<ConstantInt>(LastInsertElem->getOperand(2))) { 6949 UserCost += TTI->getVectorInstrCost(Instruction::InsertElement, 6950 LastInsertElem->getType(), 6951 CI->getZExtValue()); 6952 } 6953 BuildVectorOpds.push_back(LastInsertElem->getOperand(1)); 6954 V = LastInsertElem->getOperand(0); 6955 if (isa<UndefValue>(V)) 6956 break; 6957 LastInsertElem = dyn_cast<InsertElementInst>(V); 6958 if (!LastInsertElem || !LastInsertElem->hasOneUse()) 6959 return false; 6960 } while (true); 6961 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 6962 return true; 6963 } 6964 6965 /// Like findBuildVector, but looks for construction of aggregate. 6966 /// 6967 /// \return true if it matches. 6968 static bool findBuildAggregate(InsertValueInst *IV, 6969 SmallVectorImpl<Value *> &BuildVectorOpds) { 6970 do { 6971 BuildVectorOpds.push_back(IV->getInsertedValueOperand()); 6972 Value *V = IV->getAggregateOperand(); 6973 if (isa<UndefValue>(V)) 6974 break; 6975 IV = dyn_cast<InsertValueInst>(V); 6976 if (!IV || !IV->hasOneUse()) 6977 return false; 6978 } while (true); 6979 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 6980 return true; 6981 } 6982 6983 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 6984 return V->getType() < V2->getType(); 6985 } 6986 6987 /// Try and get a reduction value from a phi node. 6988 /// 6989 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 6990 /// if they come from either \p ParentBB or a containing loop latch. 6991 /// 6992 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 6993 /// if not possible. 6994 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 6995 BasicBlock *ParentBB, LoopInfo *LI) { 6996 // There are situations where the reduction value is not dominated by the 6997 // reduction phi. Vectorizing such cases has been reported to cause 6998 // miscompiles. See PR25787. 6999 auto DominatedReduxValue = [&](Value *R) { 7000 return isa<Instruction>(R) && 7001 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 7002 }; 7003 7004 Value *Rdx = nullptr; 7005 7006 // Return the incoming value if it comes from the same BB as the phi node. 7007 if (P->getIncomingBlock(0) == ParentBB) { 7008 Rdx = P->getIncomingValue(0); 7009 } else if (P->getIncomingBlock(1) == ParentBB) { 7010 Rdx = P->getIncomingValue(1); 7011 } 7012 7013 if (Rdx && DominatedReduxValue(Rdx)) 7014 return Rdx; 7015 7016 // Otherwise, check whether we have a loop latch to look at. 7017 Loop *BBL = LI->getLoopFor(ParentBB); 7018 if (!BBL) 7019 return nullptr; 7020 BasicBlock *BBLatch = BBL->getLoopLatch(); 7021 if (!BBLatch) 7022 return nullptr; 7023 7024 // There is a loop latch, return the incoming value if it comes from 7025 // that. This reduction pattern occasionally turns up. 7026 if (P->getIncomingBlock(0) == BBLatch) { 7027 Rdx = P->getIncomingValue(0); 7028 } else if (P->getIncomingBlock(1) == BBLatch) { 7029 Rdx = P->getIncomingValue(1); 7030 } 7031 7032 if (Rdx && DominatedReduxValue(Rdx)) 7033 return Rdx; 7034 7035 return nullptr; 7036 } 7037 7038 /// Attempt to reduce a horizontal reduction. 7039 /// If it is legal to match a horizontal reduction feeding the phi node \a P 7040 /// with reduction operators \a Root (or one of its operands) in a basic block 7041 /// \a BB, then check if it can be done. If horizontal reduction is not found 7042 /// and root instruction is a binary operation, vectorization of the operands is 7043 /// attempted. 7044 /// \returns true if a horizontal reduction was matched and reduced or operands 7045 /// of one of the binary instruction were vectorized. 7046 /// \returns false if a horizontal reduction was not matched (or not possible) 7047 /// or no vectorization of any binary operation feeding \a Root instruction was 7048 /// performed. 7049 static bool tryToVectorizeHorReductionOrInstOperands( 7050 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 7051 TargetTransformInfo *TTI, bool Try2WayRdx, 7052 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 7053 if (!ShouldVectorizeHor) 7054 return false; 7055 7056 if (!Root) 7057 return false; 7058 7059 if (Root->getParent() != BB || isa<PHINode>(Root)) 7060 return false; 7061 // Start analysis starting from Root instruction. If horizontal reduction is 7062 // found, try to vectorize it. If it is not a horizontal reduction or 7063 // vectorization is not possible or not effective, and currently analyzed 7064 // instruction is a binary operation, try to vectorize the operands, using 7065 // pre-order DFS traversal order. If the operands were not vectorized, repeat 7066 // the same procedure considering each operand as a possible root of the 7067 // horizontal reduction. 7068 // Interrupt the process if the Root instruction itself was vectorized or all 7069 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 7070 SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0}); 7071 SmallPtrSet<Value *, 8> VisitedInstrs; 7072 bool Res = false; 7073 while (!Stack.empty()) { 7074 Instruction *Inst; 7075 unsigned Level; 7076 std::tie(Inst, Level) = Stack.pop_back_val(); 7077 auto *BI = dyn_cast<BinaryOperator>(Inst); 7078 auto *SI = dyn_cast<SelectInst>(Inst); 7079 if (BI || SI) { 7080 HorizontalReduction HorRdx; 7081 if (HorRdx.matchAssociativeReduction(P, Inst)) { 7082 if (HorRdx.tryToReduce(R, TTI, Try2WayRdx)) { 7083 Res = true; 7084 // Set P to nullptr to avoid re-analysis of phi node in 7085 // matchAssociativeReduction function unless this is the root node. 7086 P = nullptr; 7087 continue; 7088 } 7089 } 7090 if (P && BI) { 7091 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 7092 if (Inst == P) 7093 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 7094 if (!Inst) { 7095 // Set P to nullptr to avoid re-analysis of phi node in 7096 // matchAssociativeReduction function unless this is the root node. 7097 P = nullptr; 7098 continue; 7099 } 7100 } 7101 } 7102 // Set P to nullptr to avoid re-analysis of phi node in 7103 // matchAssociativeReduction function unless this is the root node. 7104 P = nullptr; 7105 if (Vectorize(Inst, R)) { 7106 Res = true; 7107 continue; 7108 } 7109 7110 // Try to vectorize operands. 7111 // Continue analysis for the instruction from the same basic block only to 7112 // save compile time. 7113 if (++Level < RecursionMaxDepth) 7114 for (auto *Op : Inst->operand_values()) 7115 if (VisitedInstrs.insert(Op).second) 7116 if (auto *I = dyn_cast<Instruction>(Op)) 7117 if (!isa<PHINode>(I) && !R.isDeleted(I) && I->getParent() == BB) 7118 Stack.emplace_back(I, Level); 7119 } 7120 return Res; 7121 } 7122 7123 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 7124 BasicBlock *BB, BoUpSLP &R, 7125 TargetTransformInfo *TTI, 7126 bool Try2WayRdx) { 7127 if (!V) 7128 return false; 7129 auto *I = dyn_cast<Instruction>(V); 7130 if (!I) 7131 return false; 7132 7133 if (!isa<BinaryOperator>(I)) 7134 P = nullptr; 7135 // Try to match and vectorize a horizontal reduction. 7136 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 7137 return tryToVectorize(I, R); 7138 }; 7139 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, Try2WayRdx, 7140 ExtraVectorization); 7141 } 7142 7143 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 7144 BasicBlock *BB, BoUpSLP &R) { 7145 const DataLayout &DL = BB->getModule()->getDataLayout(); 7146 if (!R.canMapToVector(IVI->getType(), DL)) 7147 return false; 7148 7149 SmallVector<Value *, 16> BuildVectorOpds; 7150 if (!findBuildAggregate(IVI, BuildVectorOpds)) 7151 return false; 7152 7153 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 7154 // Aggregate value is unlikely to be processed in vector register, we need to 7155 // extract scalars into scalar registers, so NeedExtraction is set true. 7156 return tryToVectorizeList(BuildVectorOpds, R); 7157 } 7158 7159 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 7160 BasicBlock *BB, BoUpSLP &R) { 7161 int UserCost; 7162 SmallVector<Value *, 16> BuildVectorOpds; 7163 if (!findBuildVector(IEI, TTI, BuildVectorOpds, UserCost) || 7164 (llvm::all_of(BuildVectorOpds, 7165 [](Value *V) { return isa<ExtractElementInst>(V); }) && 7166 isShuffle(BuildVectorOpds))) 7167 return false; 7168 7169 // Vectorize starting with the build vector operands ignoring the BuildVector 7170 // instructions for the purpose of scheduling and user extraction. 7171 return tryToVectorizeList(BuildVectorOpds, R, UserCost); 7172 } 7173 7174 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 7175 BoUpSLP &R) { 7176 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 7177 return true; 7178 7179 bool OpsChanged = false; 7180 for (int Idx = 0; Idx < 2; ++Idx) { 7181 OpsChanged |= 7182 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 7183 } 7184 return OpsChanged; 7185 } 7186 7187 bool SLPVectorizerPass::vectorizeSimpleInstructions( 7188 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R) { 7189 bool OpsChanged = false; 7190 for (auto *I : reverse(Instructions)) { 7191 if (R.isDeleted(I)) 7192 continue; 7193 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 7194 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 7195 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 7196 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 7197 else if (auto *CI = dyn_cast<CmpInst>(I)) 7198 OpsChanged |= vectorizeCmpInst(CI, BB, R); 7199 } 7200 Instructions.clear(); 7201 return OpsChanged; 7202 } 7203 7204 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 7205 bool Changed = false; 7206 SmallVector<Value *, 4> Incoming; 7207 SmallPtrSet<Value *, 16> VisitedInstrs; 7208 7209 bool HaveVectorizedPhiNodes = true; 7210 while (HaveVectorizedPhiNodes) { 7211 HaveVectorizedPhiNodes = false; 7212 7213 // Collect the incoming values from the PHIs. 7214 Incoming.clear(); 7215 for (Instruction &I : *BB) { 7216 PHINode *P = dyn_cast<PHINode>(&I); 7217 if (!P) 7218 break; 7219 7220 if (!VisitedInstrs.count(P) && !R.isDeleted(P)) 7221 Incoming.push_back(P); 7222 } 7223 7224 // Sort by type. 7225 llvm::stable_sort(Incoming, PhiTypeSorterFunc); 7226 7227 // Try to vectorize elements base on their type. 7228 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 7229 E = Incoming.end(); 7230 IncIt != E;) { 7231 7232 // Look for the next elements with the same type. 7233 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 7234 while (SameTypeIt != E && 7235 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 7236 VisitedInstrs.insert(*SameTypeIt); 7237 ++SameTypeIt; 7238 } 7239 7240 // Try to vectorize them. 7241 unsigned NumElts = (SameTypeIt - IncIt); 7242 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 7243 << NumElts << ")\n"); 7244 // The order in which the phi nodes appear in the program does not matter. 7245 // So allow tryToVectorizeList to reorder them if it is beneficial. This 7246 // is done when there are exactly two elements since tryToVectorizeList 7247 // asserts that there are only two values when AllowReorder is true. 7248 bool AllowReorder = NumElts == 2; 7249 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, 7250 /*UserCost=*/0, AllowReorder)) { 7251 // Success start over because instructions might have been changed. 7252 HaveVectorizedPhiNodes = true; 7253 Changed = true; 7254 break; 7255 } 7256 7257 // Start over at the next instruction of a different type (or the end). 7258 IncIt = SameTypeIt; 7259 } 7260 } 7261 7262 VisitedInstrs.clear(); 7263 7264 SmallVector<Instruction *, 8> PostProcessInstructions; 7265 SmallDenseSet<Instruction *, 4> KeyNodes; 7266 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 7267 // Skip instructions marked for the deletion. 7268 if (R.isDeleted(&*it)) 7269 continue; 7270 // We may go through BB multiple times so skip the one we have checked. 7271 if (!VisitedInstrs.insert(&*it).second) { 7272 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 7273 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 7274 // We would like to start over since some instructions are deleted 7275 // and the iterator may become invalid value. 7276 Changed = true; 7277 it = BB->begin(); 7278 e = BB->end(); 7279 } 7280 continue; 7281 } 7282 7283 if (isa<DbgInfoIntrinsic>(it)) 7284 continue; 7285 7286 // Try to vectorize reductions that use PHINodes. 7287 if (PHINode *P = dyn_cast<PHINode>(it)) { 7288 // Check that the PHI is a reduction PHI. 7289 if (P->getNumIncomingValues() != 2) 7290 return Changed; 7291 7292 // Try to match and vectorize a horizontal reduction. 7293 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 7294 TTI)) { 7295 Changed = true; 7296 it = BB->begin(); 7297 e = BB->end(); 7298 continue; 7299 } 7300 continue; 7301 } 7302 7303 // Ran into an instruction without users, like terminator, or function call 7304 // with ignored return value, store. Ignore unused instructions (basing on 7305 // instruction type, except for CallInst and InvokeInst). 7306 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 7307 isa<InvokeInst>(it))) { 7308 KeyNodes.insert(&*it); 7309 bool OpsChanged = false; 7310 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 7311 for (auto *V : it->operand_values()) { 7312 // Try to match and vectorize a horizontal reduction. 7313 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 7314 } 7315 } 7316 // Start vectorization of post-process list of instructions from the 7317 // top-tree instructions to try to vectorize as many instructions as 7318 // possible. 7319 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 7320 if (OpsChanged) { 7321 // We would like to start over since some instructions are deleted 7322 // and the iterator may become invalid value. 7323 Changed = true; 7324 it = BB->begin(); 7325 e = BB->end(); 7326 continue; 7327 } 7328 } 7329 7330 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 7331 isa<InsertValueInst>(it)) 7332 PostProcessInstructions.push_back(&*it); 7333 } 7334 7335 // Make a final attempt to match a 2-way reduction if nothing else worked. 7336 // We do not try this above because it may interfere with other vectorization 7337 // attempts. 7338 // TODO: The constraints are copied from the above call to 7339 // vectorizeRootInstruction(), but that might be too restrictive? 7340 BasicBlock::iterator LastInst = --BB->end(); 7341 if (!Changed && LastInst->use_empty() && 7342 (LastInst->getType()->isVoidTy() || isa<CallInst>(LastInst) || 7343 isa<InvokeInst>(LastInst))) { 7344 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(LastInst)) { 7345 for (auto *V : LastInst->operand_values()) { 7346 Changed |= vectorizeRootInstruction(nullptr, V, BB, R, TTI, 7347 /* Try2WayRdx */ true); 7348 } 7349 } 7350 } 7351 7352 return Changed; 7353 } 7354 7355 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 7356 auto Changed = false; 7357 for (auto &Entry : GEPs) { 7358 // If the getelementptr list has fewer than two elements, there's nothing 7359 // to do. 7360 if (Entry.second.size() < 2) 7361 continue; 7362 7363 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 7364 << Entry.second.size() << ".\n"); 7365 7366 // Process the GEP list in chunks suitable for the target's supported 7367 // vector size. If a vector register can't hold 1 element, we are done. 7368 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7369 unsigned EltSize = R.getVectorElementSize(Entry.second[0]); 7370 if (MaxVecRegSize < EltSize) 7371 continue; 7372 7373 unsigned MaxElts = MaxVecRegSize / EltSize; 7374 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 7375 auto Len = std::min<unsigned>(BE - BI, MaxElts); 7376 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 7377 7378 // Initialize a set a candidate getelementptrs. Note that we use a 7379 // SetVector here to preserve program order. If the index computations 7380 // are vectorizable and begin with loads, we want to minimize the chance 7381 // of having to reorder them later. 7382 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 7383 7384 // Some of the candidates may have already been vectorized after we 7385 // initially collected them. If so, they are marked as deleted, so remove 7386 // them from the set of candidates. 7387 Candidates.remove_if( 7388 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 7389 7390 // Remove from the set of candidates all pairs of getelementptrs with 7391 // constant differences. Such getelementptrs are likely not good 7392 // candidates for vectorization in a bottom-up phase since one can be 7393 // computed from the other. We also ensure all candidate getelementptr 7394 // indices are unique. 7395 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 7396 auto *GEPI = GEPList[I]; 7397 if (!Candidates.count(GEPI)) 7398 continue; 7399 auto *SCEVI = SE->getSCEV(GEPList[I]); 7400 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 7401 auto *GEPJ = GEPList[J]; 7402 auto *SCEVJ = SE->getSCEV(GEPList[J]); 7403 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 7404 Candidates.remove(GEPI); 7405 Candidates.remove(GEPJ); 7406 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 7407 Candidates.remove(GEPJ); 7408 } 7409 } 7410 } 7411 7412 // We break out of the above computation as soon as we know there are 7413 // fewer than two candidates remaining. 7414 if (Candidates.size() < 2) 7415 continue; 7416 7417 // Add the single, non-constant index of each candidate to the bundle. We 7418 // ensured the indices met these constraints when we originally collected 7419 // the getelementptrs. 7420 SmallVector<Value *, 16> Bundle(Candidates.size()); 7421 auto BundleIndex = 0u; 7422 for (auto *V : Candidates) { 7423 auto *GEP = cast<GetElementPtrInst>(V); 7424 auto *GEPIdx = GEP->idx_begin()->get(); 7425 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 7426 Bundle[BundleIndex++] = GEPIdx; 7427 } 7428 7429 // Try and vectorize the indices. We are currently only interested in 7430 // gather-like cases of the form: 7431 // 7432 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 7433 // 7434 // where the loads of "a", the loads of "b", and the subtractions can be 7435 // performed in parallel. It's likely that detecting this pattern in a 7436 // bottom-up phase will be simpler and less costly than building a 7437 // full-blown top-down phase beginning at the consecutive loads. 7438 Changed |= tryToVectorizeList(Bundle, R); 7439 } 7440 } 7441 return Changed; 7442 } 7443 7444 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 7445 bool Changed = false; 7446 // Attempt to sort and vectorize each of the store-groups. 7447 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 7448 ++it) { 7449 if (it->second.size() < 2) 7450 continue; 7451 7452 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 7453 << it->second.size() << ".\n"); 7454 7455 Changed |= vectorizeStores(it->second, R); 7456 } 7457 return Changed; 7458 } 7459 7460 char SLPVectorizer::ID = 0; 7461 7462 static const char lv_name[] = "SLP Vectorizer"; 7463 7464 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 7465 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7466 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7467 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7468 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7469 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 7470 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7471 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7472 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 7473 7474 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 7475