1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/ADT/SmallBitVector.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/ADT/SmallString.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/ADT/iterator.h" 32 #include "llvm/ADT/iterator_range.h" 33 #include "llvm/Analysis/AliasAnalysis.h" 34 #include "llvm/Analysis/AssumptionCache.h" 35 #include "llvm/Analysis/CodeMetrics.h" 36 #include "llvm/Analysis/DemandedBits.h" 37 #include "llvm/Analysis/GlobalsModRef.h" 38 #include "llvm/Analysis/LoopAccessAnalysis.h" 39 #include "llvm/Analysis/LoopInfo.h" 40 #include "llvm/Analysis/MemoryLocation.h" 41 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 42 #include "llvm/Analysis/ScalarEvolution.h" 43 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 44 #include "llvm/Analysis/TargetLibraryInfo.h" 45 #include "llvm/Analysis/TargetTransformInfo.h" 46 #include "llvm/Analysis/ValueTracking.h" 47 #include "llvm/Analysis/VectorUtils.h" 48 #include "llvm/IR/Attributes.h" 49 #include "llvm/IR/BasicBlock.h" 50 #include "llvm/IR/Constant.h" 51 #include "llvm/IR/Constants.h" 52 #include "llvm/IR/DataLayout.h" 53 #include "llvm/IR/DebugLoc.h" 54 #include "llvm/IR/DerivedTypes.h" 55 #include "llvm/IR/Dominators.h" 56 #include "llvm/IR/Function.h" 57 #include "llvm/IR/IRBuilder.h" 58 #include "llvm/IR/InstrTypes.h" 59 #include "llvm/IR/Instruction.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/Intrinsics.h" 63 #include "llvm/IR/Module.h" 64 #include "llvm/IR/NoFolder.h" 65 #include "llvm/IR/Operator.h" 66 #include "llvm/IR/PatternMatch.h" 67 #include "llvm/IR/Type.h" 68 #include "llvm/IR/Use.h" 69 #include "llvm/IR/User.h" 70 #include "llvm/IR/Value.h" 71 #include "llvm/IR/ValueHandle.h" 72 #include "llvm/IR/Verifier.h" 73 #include "llvm/InitializePasses.h" 74 #include "llvm/Pass.h" 75 #include "llvm/Support/Casting.h" 76 #include "llvm/Support/CommandLine.h" 77 #include "llvm/Support/Compiler.h" 78 #include "llvm/Support/DOTGraphTraits.h" 79 #include "llvm/Support/Debug.h" 80 #include "llvm/Support/ErrorHandling.h" 81 #include "llvm/Support/GraphWriter.h" 82 #include "llvm/Support/KnownBits.h" 83 #include "llvm/Support/MathExtras.h" 84 #include "llvm/Support/raw_ostream.h" 85 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 86 #include "llvm/Transforms/Utils/LoopUtils.h" 87 #include "llvm/Transforms/Vectorize.h" 88 #include <algorithm> 89 #include <cassert> 90 #include <cstdint> 91 #include <iterator> 92 #include <memory> 93 #include <set> 94 #include <string> 95 #include <tuple> 96 #include <utility> 97 #include <vector> 98 99 using namespace llvm; 100 using namespace llvm::PatternMatch; 101 using namespace slpvectorizer; 102 103 #define SV_NAME "slp-vectorizer" 104 #define DEBUG_TYPE "SLP" 105 106 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 107 108 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 109 cl::desc("Run the SLP vectorization passes")); 110 111 static cl::opt<int> 112 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 113 cl::desc("Only vectorize if you gain more than this " 114 "number ")); 115 116 static cl::opt<bool> 117 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 118 cl::desc("Attempt to vectorize horizontal reductions")); 119 120 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 121 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 122 cl::desc( 123 "Attempt to vectorize horizontal reductions feeding into a store")); 124 125 static cl::opt<int> 126 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 127 cl::desc("Attempt to vectorize for this register size in bits")); 128 129 static cl::opt<int> 130 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 131 cl::desc("Maximum depth of the lookup for consecutive stores.")); 132 133 /// Limits the size of scheduling regions in a block. 134 /// It avoid long compile times for _very_ large blocks where vector 135 /// instructions are spread over a wide range. 136 /// This limit is way higher than needed by real-world functions. 137 static cl::opt<int> 138 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 139 cl::desc("Limit the size of the SLP scheduling region per block")); 140 141 static cl::opt<int> MinVectorRegSizeOption( 142 "slp-min-reg-size", cl::init(128), cl::Hidden, 143 cl::desc("Attempt to vectorize for this register size in bits")); 144 145 static cl::opt<unsigned> RecursionMaxDepth( 146 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 147 cl::desc("Limit the recursion depth when building a vectorizable tree")); 148 149 static cl::opt<unsigned> MinTreeSize( 150 "slp-min-tree-size", cl::init(3), cl::Hidden, 151 cl::desc("Only vectorize small trees if they are fully vectorizable")); 152 153 // The maximum depth that the look-ahead score heuristic will explore. 154 // The higher this value, the higher the compilation time overhead. 155 static cl::opt<int> LookAheadMaxDepth( 156 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 157 cl::desc("The maximum look-ahead depth for operand reordering scores")); 158 159 // The Look-ahead heuristic goes through the users of the bundle to calculate 160 // the users cost in getExternalUsesCost(). To avoid compilation time increase 161 // we limit the number of users visited to this value. 162 static cl::opt<unsigned> LookAheadUsersBudget( 163 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 164 cl::desc("The maximum number of users to visit while visiting the " 165 "predecessors. This prevents compilation time increase.")); 166 167 static cl::opt<bool> 168 ViewSLPTree("view-slp-tree", cl::Hidden, 169 cl::desc("Display the SLP trees with Graphviz")); 170 171 // Limit the number of alias checks. The limit is chosen so that 172 // it has no negative effect on the llvm benchmarks. 173 static const unsigned AliasedCheckLimit = 10; 174 175 // Another limit for the alias checks: The maximum distance between load/store 176 // instructions where alias checks are done. 177 // This limit is useful for very large basic blocks. 178 static const unsigned MaxMemDepDistance = 160; 179 180 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 181 /// regions to be handled. 182 static const int MinScheduleRegionSize = 16; 183 184 /// Predicate for the element types that the SLP vectorizer supports. 185 /// 186 /// The most important thing to filter here are types which are invalid in LLVM 187 /// vectors. We also filter target specific types which have absolutely no 188 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 189 /// avoids spending time checking the cost model and realizing that they will 190 /// be inevitably scalarized. 191 static bool isValidElementType(Type *Ty) { 192 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 193 !Ty->isPPC_FP128Ty(); 194 } 195 196 /// \returns true if all of the instructions in \p VL are in the same block or 197 /// false otherwise. 198 static bool allSameBlock(ArrayRef<Value *> VL) { 199 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 200 if (!I0) 201 return false; 202 BasicBlock *BB = I0->getParent(); 203 for (int I = 1, E = VL.size(); I < E; I++) { 204 auto *II = dyn_cast<Instruction>(VL[I]); 205 if (!II) 206 return false; 207 208 if (BB != II->getParent()) 209 return false; 210 } 211 return true; 212 } 213 214 /// \returns True if all of the values in \p VL are constants (but not 215 /// globals/constant expressions). 216 static bool allConstant(ArrayRef<Value *> VL) { 217 // Constant expressions and globals can't be vectorized like normal integer/FP 218 // constants. 219 for (Value *i : VL) 220 if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i)) 221 return false; 222 return true; 223 } 224 225 /// \returns True if all of the values in \p VL are identical. 226 static bool isSplat(ArrayRef<Value *> VL) { 227 for (unsigned i = 1, e = VL.size(); i < e; ++i) 228 if (VL[i] != VL[0]) 229 return false; 230 return true; 231 } 232 233 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 234 static bool isCommutative(Instruction *I) { 235 if (auto *Cmp = dyn_cast<CmpInst>(I)) 236 return Cmp->isCommutative(); 237 if (auto *BO = dyn_cast<BinaryOperator>(I)) 238 return BO->isCommutative(); 239 // TODO: This should check for generic Instruction::isCommutative(), but 240 // we need to confirm that the caller code correctly handles Intrinsics 241 // for example (does not have 2 operands). 242 return false; 243 } 244 245 /// Checks if the vector of instructions can be represented as a shuffle, like: 246 /// %x0 = extractelement <4 x i8> %x, i32 0 247 /// %x3 = extractelement <4 x i8> %x, i32 3 248 /// %y1 = extractelement <4 x i8> %y, i32 1 249 /// %y2 = extractelement <4 x i8> %y, i32 2 250 /// %x0x0 = mul i8 %x0, %x0 251 /// %x3x3 = mul i8 %x3, %x3 252 /// %y1y1 = mul i8 %y1, %y1 253 /// %y2y2 = mul i8 %y2, %y2 254 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 255 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 256 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 257 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 258 /// ret <4 x i8> %ins4 259 /// can be transformed into: 260 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 261 /// i32 6> 262 /// %2 = mul <4 x i8> %1, %1 263 /// ret <4 x i8> %2 264 /// We convert this initially to something like: 265 /// %x0 = extractelement <4 x i8> %x, i32 0 266 /// %x3 = extractelement <4 x i8> %x, i32 3 267 /// %y1 = extractelement <4 x i8> %y, i32 1 268 /// %y2 = extractelement <4 x i8> %y, i32 2 269 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 270 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 271 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 272 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 273 /// %5 = mul <4 x i8> %4, %4 274 /// %6 = extractelement <4 x i8> %5, i32 0 275 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 276 /// %7 = extractelement <4 x i8> %5, i32 1 277 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 278 /// %8 = extractelement <4 x i8> %5, i32 2 279 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 280 /// %9 = extractelement <4 x i8> %5, i32 3 281 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 282 /// ret <4 x i8> %ins4 283 /// InstCombiner transforms this into a shuffle and vector mul 284 /// TODO: Can we split off and reuse the shuffle mask detection from 285 /// TargetTransformInfo::getInstructionThroughput? 286 static Optional<TargetTransformInfo::ShuffleKind> 287 isShuffle(ArrayRef<Value *> VL) { 288 auto *EI0 = cast<ExtractElementInst>(VL[0]); 289 unsigned Size = 290 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 291 Value *Vec1 = nullptr; 292 Value *Vec2 = nullptr; 293 enum ShuffleMode { Unknown, Select, Permute }; 294 ShuffleMode CommonShuffleMode = Unknown; 295 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 296 auto *EI = cast<ExtractElementInst>(VL[I]); 297 auto *Vec = EI->getVectorOperand(); 298 // All vector operands must have the same number of vector elements. 299 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 300 return None; 301 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 302 if (!Idx) 303 return None; 304 // Undefined behavior if Idx is negative or >= Size. 305 if (Idx->getValue().uge(Size)) 306 continue; 307 unsigned IntIdx = Idx->getValue().getZExtValue(); 308 // We can extractelement from undef vector. 309 if (isa<UndefValue>(Vec)) 310 continue; 311 // For correct shuffling we have to have at most 2 different vector operands 312 // in all extractelement instructions. 313 if (!Vec1 || Vec1 == Vec) 314 Vec1 = Vec; 315 else if (!Vec2 || Vec2 == Vec) 316 Vec2 = Vec; 317 else 318 return None; 319 if (CommonShuffleMode == Permute) 320 continue; 321 // If the extract index is not the same as the operation number, it is a 322 // permutation. 323 if (IntIdx != I) { 324 CommonShuffleMode = Permute; 325 continue; 326 } 327 CommonShuffleMode = Select; 328 } 329 // If we're not crossing lanes in different vectors, consider it as blending. 330 if (CommonShuffleMode == Select && Vec2) 331 return TargetTransformInfo::SK_Select; 332 // If Vec2 was never used, we have a permutation of a single vector, otherwise 333 // we have permutation of 2 vectors. 334 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 335 : TargetTransformInfo::SK_PermuteSingleSrc; 336 } 337 338 namespace { 339 340 /// Main data required for vectorization of instructions. 341 struct InstructionsState { 342 /// The very first instruction in the list with the main opcode. 343 Value *OpValue = nullptr; 344 345 /// The main/alternate instruction. 346 Instruction *MainOp = nullptr; 347 Instruction *AltOp = nullptr; 348 349 /// The main/alternate opcodes for the list of instructions. 350 unsigned getOpcode() const { 351 return MainOp ? MainOp->getOpcode() : 0; 352 } 353 354 unsigned getAltOpcode() const { 355 return AltOp ? AltOp->getOpcode() : 0; 356 } 357 358 /// Some of the instructions in the list have alternate opcodes. 359 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 360 361 bool isOpcodeOrAlt(Instruction *I) const { 362 unsigned CheckedOpcode = I->getOpcode(); 363 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 364 } 365 366 InstructionsState() = delete; 367 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 368 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 369 }; 370 371 } // end anonymous namespace 372 373 /// Chooses the correct key for scheduling data. If \p Op has the same (or 374 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 375 /// OpValue. 376 static Value *isOneOf(const InstructionsState &S, Value *Op) { 377 auto *I = dyn_cast<Instruction>(Op); 378 if (I && S.isOpcodeOrAlt(I)) 379 return Op; 380 return S.OpValue; 381 } 382 383 /// \returns true if \p Opcode is allowed as part of of the main/alternate 384 /// instruction for SLP vectorization. 385 /// 386 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 387 /// "shuffled out" lane would result in division by zero. 388 static bool isValidForAlternation(unsigned Opcode) { 389 if (Instruction::isIntDivRem(Opcode)) 390 return false; 391 392 return true; 393 } 394 395 /// \returns analysis of the Instructions in \p VL described in 396 /// InstructionsState, the Opcode that we suppose the whole list 397 /// could be vectorized even if its structure is diverse. 398 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 399 unsigned BaseIndex = 0) { 400 // Make sure these are all Instructions. 401 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 402 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 403 404 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 405 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 406 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 407 unsigned AltOpcode = Opcode; 408 unsigned AltIndex = BaseIndex; 409 410 // Check for one alternate opcode from another BinaryOperator. 411 // TODO - generalize to support all operators (types, calls etc.). 412 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 413 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 414 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 415 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 416 continue; 417 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 418 isValidForAlternation(Opcode)) { 419 AltOpcode = InstOpcode; 420 AltIndex = Cnt; 421 continue; 422 } 423 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 424 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 425 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 426 if (Ty0 == Ty1) { 427 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 428 continue; 429 if (Opcode == AltOpcode) { 430 assert(isValidForAlternation(Opcode) && 431 isValidForAlternation(InstOpcode) && 432 "Cast isn't safe for alternation, logic needs to be updated!"); 433 AltOpcode = InstOpcode; 434 AltIndex = Cnt; 435 continue; 436 } 437 } 438 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 439 continue; 440 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 441 } 442 443 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 444 cast<Instruction>(VL[AltIndex])); 445 } 446 447 /// \returns true if all of the values in \p VL have the same type or false 448 /// otherwise. 449 static bool allSameType(ArrayRef<Value *> VL) { 450 Type *Ty = VL[0]->getType(); 451 for (int i = 1, e = VL.size(); i < e; i++) 452 if (VL[i]->getType() != Ty) 453 return false; 454 455 return true; 456 } 457 458 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 459 static Optional<unsigned> getExtractIndex(Instruction *E) { 460 unsigned Opcode = E->getOpcode(); 461 assert((Opcode == Instruction::ExtractElement || 462 Opcode == Instruction::ExtractValue) && 463 "Expected extractelement or extractvalue instruction."); 464 if (Opcode == Instruction::ExtractElement) { 465 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 466 if (!CI) 467 return None; 468 return CI->getZExtValue(); 469 } 470 ExtractValueInst *EI = cast<ExtractValueInst>(E); 471 if (EI->getNumIndices() != 1) 472 return None; 473 return *EI->idx_begin(); 474 } 475 476 /// \returns True if in-tree use also needs extract. This refers to 477 /// possible scalar operand in vectorized instruction. 478 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 479 TargetLibraryInfo *TLI) { 480 unsigned Opcode = UserInst->getOpcode(); 481 switch (Opcode) { 482 case Instruction::Load: { 483 LoadInst *LI = cast<LoadInst>(UserInst); 484 return (LI->getPointerOperand() == Scalar); 485 } 486 case Instruction::Store: { 487 StoreInst *SI = cast<StoreInst>(UserInst); 488 return (SI->getPointerOperand() == Scalar); 489 } 490 case Instruction::Call: { 491 CallInst *CI = cast<CallInst>(UserInst); 492 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 493 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 494 if (hasVectorInstrinsicScalarOpd(ID, i)) 495 return (CI->getArgOperand(i) == Scalar); 496 } 497 LLVM_FALLTHROUGH; 498 } 499 default: 500 return false; 501 } 502 } 503 504 /// \returns the AA location that is being access by the instruction. 505 static MemoryLocation getLocation(Instruction *I, AAResults *AA) { 506 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 507 return MemoryLocation::get(SI); 508 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 509 return MemoryLocation::get(LI); 510 return MemoryLocation(); 511 } 512 513 /// \returns True if the instruction is not a volatile or atomic load/store. 514 static bool isSimple(Instruction *I) { 515 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 516 return LI->isSimple(); 517 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 518 return SI->isSimple(); 519 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 520 return !MI->isVolatile(); 521 return true; 522 } 523 524 namespace llvm { 525 526 static void inversePermutation(ArrayRef<unsigned> Indices, 527 SmallVectorImpl<int> &Mask) { 528 Mask.clear(); 529 const unsigned E = Indices.size(); 530 Mask.resize(E, E + 1); 531 for (unsigned I = 0; I < E; ++I) 532 Mask[Indices[I]] = I; 533 } 534 535 namespace slpvectorizer { 536 537 /// Bottom Up SLP Vectorizer. 538 class BoUpSLP { 539 struct TreeEntry; 540 struct ScheduleData; 541 542 public: 543 using ValueList = SmallVector<Value *, 8>; 544 using InstrList = SmallVector<Instruction *, 16>; 545 using ValueSet = SmallPtrSet<Value *, 16>; 546 using StoreList = SmallVector<StoreInst *, 8>; 547 using ExtraValueToDebugLocsMap = 548 MapVector<Value *, SmallVector<Instruction *, 2>>; 549 using OrdersType = SmallVector<unsigned, 4>; 550 551 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 552 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 553 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 554 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 555 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 556 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 557 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 558 // Use the vector register size specified by the target unless overridden 559 // by a command-line option. 560 // TODO: It would be better to limit the vectorization factor based on 561 // data type rather than just register size. For example, x86 AVX has 562 // 256-bit registers, but it does not support integer operations 563 // at that width (that requires AVX2). 564 if (MaxVectorRegSizeOption.getNumOccurrences()) 565 MaxVecRegSize = MaxVectorRegSizeOption; 566 else 567 MaxVecRegSize = TTI->getRegisterBitWidth(true); 568 569 if (MinVectorRegSizeOption.getNumOccurrences()) 570 MinVecRegSize = MinVectorRegSizeOption; 571 else 572 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 573 } 574 575 /// Vectorize the tree that starts with the elements in \p VL. 576 /// Returns the vectorized root. 577 Value *vectorizeTree(); 578 579 /// Vectorize the tree but with the list of externally used values \p 580 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 581 /// generated extractvalue instructions. 582 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 583 584 /// \returns the cost incurred by unwanted spills and fills, caused by 585 /// holding live values over call sites. 586 int getSpillCost() const; 587 588 /// \returns the vectorization cost of the subtree that starts at \p VL. 589 /// A negative number means that this is profitable. 590 int getTreeCost(); 591 592 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 593 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 594 void buildTree(ArrayRef<Value *> Roots, 595 ArrayRef<Value *> UserIgnoreLst = None); 596 597 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 598 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 599 /// into account (and updating it, if required) list of externally used 600 /// values stored in \p ExternallyUsedValues. 601 void buildTree(ArrayRef<Value *> Roots, 602 ExtraValueToDebugLocsMap &ExternallyUsedValues, 603 ArrayRef<Value *> UserIgnoreLst = None); 604 605 /// Clear the internal data structures that are created by 'buildTree'. 606 void deleteTree() { 607 VectorizableTree.clear(); 608 ScalarToTreeEntry.clear(); 609 MustGather.clear(); 610 ExternalUses.clear(); 611 NumOpsWantToKeepOrder.clear(); 612 NumOpsWantToKeepOriginalOrder = 0; 613 for (auto &Iter : BlocksSchedules) { 614 BlockScheduling *BS = Iter.second.get(); 615 BS->clear(); 616 } 617 MinBWs.clear(); 618 } 619 620 unsigned getTreeSize() const { return VectorizableTree.size(); } 621 622 /// Perform LICM and CSE on the newly generated gather sequences. 623 void optimizeGatherSequence(); 624 625 /// \returns The best order of instructions for vectorization. 626 Optional<ArrayRef<unsigned>> bestOrder() const { 627 assert(llvm::all_of( 628 NumOpsWantToKeepOrder, 629 [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { 630 return D.getFirst().size() == 631 VectorizableTree[0]->Scalars.size(); 632 }) && 633 "All orders must have the same size as number of instructions in " 634 "tree node."); 635 auto I = std::max_element( 636 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 637 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 638 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 639 return D1.second < D2.second; 640 }); 641 if (I == NumOpsWantToKeepOrder.end() || 642 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 643 return None; 644 645 return makeArrayRef(I->getFirst()); 646 } 647 648 /// Builds the correct order for root instructions. 649 /// If some leaves have the same instructions to be vectorized, we may 650 /// incorrectly evaluate the best order for the root node (it is built for the 651 /// vector of instructions without repeated instructions and, thus, has less 652 /// elements than the root node). This function builds the correct order for 653 /// the root node. 654 /// For example, if the root node is \<a+b, a+c, a+d, f+e\>, then the leaves 655 /// are \<a, a, a, f\> and \<b, c, d, e\>. When we try to vectorize the first 656 /// leaf, it will be shrink to \<a, b\>. If instructions in this leaf should 657 /// be reordered, the best order will be \<1, 0\>. We need to extend this 658 /// order for the root node. For the root node this order should look like 659 /// \<3, 0, 1, 2\>. This function extends the order for the reused 660 /// instructions. 661 void findRootOrder(OrdersType &Order) { 662 // If the leaf has the same number of instructions to vectorize as the root 663 // - order must be set already. 664 unsigned RootSize = VectorizableTree[0]->Scalars.size(); 665 if (Order.size() == RootSize) 666 return; 667 SmallVector<unsigned, 4> RealOrder(Order.size()); 668 std::swap(Order, RealOrder); 669 SmallVector<int, 4> Mask; 670 inversePermutation(RealOrder, Mask); 671 Order.assign(Mask.begin(), Mask.end()); 672 // The leaf has less number of instructions - need to find the true order of 673 // the root. 674 // Scan the nodes starting from the leaf back to the root. 675 const TreeEntry *PNode = VectorizableTree.back().get(); 676 SmallVector<const TreeEntry *, 4> Nodes(1, PNode); 677 SmallPtrSet<const TreeEntry *, 4> Visited; 678 while (!Nodes.empty() && Order.size() != RootSize) { 679 const TreeEntry *PNode = Nodes.pop_back_val(); 680 if (!Visited.insert(PNode).second) 681 continue; 682 const TreeEntry &Node = *PNode; 683 for (const EdgeInfo &EI : Node.UserTreeIndices) 684 if (EI.UserTE) 685 Nodes.push_back(EI.UserTE); 686 if (Node.ReuseShuffleIndices.empty()) 687 continue; 688 // Build the order for the parent node. 689 OrdersType NewOrder(Node.ReuseShuffleIndices.size(), RootSize); 690 SmallVector<unsigned, 4> OrderCounter(Order.size(), 0); 691 // The algorithm of the order extension is: 692 // 1. Calculate the number of the same instructions for the order. 693 // 2. Calculate the index of the new order: total number of instructions 694 // with order less than the order of the current instruction + reuse 695 // number of the current instruction. 696 // 3. The new order is just the index of the instruction in the original 697 // vector of the instructions. 698 for (unsigned I : Node.ReuseShuffleIndices) 699 ++OrderCounter[Order[I]]; 700 SmallVector<unsigned, 4> CurrentCounter(Order.size(), 0); 701 for (unsigned I = 0, E = Node.ReuseShuffleIndices.size(); I < E; ++I) { 702 unsigned ReusedIdx = Node.ReuseShuffleIndices[I]; 703 unsigned OrderIdx = Order[ReusedIdx]; 704 unsigned NewIdx = 0; 705 for (unsigned J = 0; J < OrderIdx; ++J) 706 NewIdx += OrderCounter[J]; 707 NewIdx += CurrentCounter[OrderIdx]; 708 ++CurrentCounter[OrderIdx]; 709 assert(NewOrder[NewIdx] == RootSize && 710 "The order index should not be written already."); 711 NewOrder[NewIdx] = I; 712 } 713 std::swap(Order, NewOrder); 714 } 715 assert(Order.size() == RootSize && 716 "Root node is expected or the size of the order must be the same as " 717 "the number of elements in the root node."); 718 assert(llvm::all_of(Order, 719 [RootSize](unsigned Val) { return Val != RootSize; }) && 720 "All indices must be initialized"); 721 } 722 723 /// \return The vector element size in bits to use when vectorizing the 724 /// expression tree ending at \p V. If V is a store, the size is the width of 725 /// the stored value. Otherwise, the size is the width of the largest loaded 726 /// value reaching V. This method is used by the vectorizer to calculate 727 /// vectorization factors. 728 unsigned getVectorElementSize(Value *V); 729 730 /// Compute the minimum type sizes required to represent the entries in a 731 /// vectorizable tree. 732 void computeMinimumValueSizes(); 733 734 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 735 unsigned getMaxVecRegSize() const { 736 return MaxVecRegSize; 737 } 738 739 // \returns minimum vector register size as set by cl::opt. 740 unsigned getMinVecRegSize() const { 741 return MinVecRegSize; 742 } 743 744 /// Check if homogeneous aggregate is isomorphic to some VectorType. 745 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 746 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 747 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 748 /// 749 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 750 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 751 752 /// \returns True if the VectorizableTree is both tiny and not fully 753 /// vectorizable. We do not vectorize such trees. 754 bool isTreeTinyAndNotFullyVectorizable() const; 755 756 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 757 /// can be load combined in the backend. Load combining may not be allowed in 758 /// the IR optimizer, so we do not want to alter the pattern. For example, 759 /// partially transforming a scalar bswap() pattern into vector code is 760 /// effectively impossible for the backend to undo. 761 /// TODO: If load combining is allowed in the IR optimizer, this analysis 762 /// may not be necessary. 763 bool isLoadCombineReductionCandidate(unsigned ReductionOpcode) const; 764 765 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 766 /// can be load combined in the backend. Load combining may not be allowed in 767 /// the IR optimizer, so we do not want to alter the pattern. For example, 768 /// partially transforming a scalar bswap() pattern into vector code is 769 /// effectively impossible for the backend to undo. 770 /// TODO: If load combining is allowed in the IR optimizer, this analysis 771 /// may not be necessary. 772 bool isLoadCombineCandidate() const; 773 774 OptimizationRemarkEmitter *getORE() { return ORE; } 775 776 /// This structure holds any data we need about the edges being traversed 777 /// during buildTree_rec(). We keep track of: 778 /// (i) the user TreeEntry index, and 779 /// (ii) the index of the edge. 780 struct EdgeInfo { 781 EdgeInfo() = default; 782 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 783 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 784 /// The user TreeEntry. 785 TreeEntry *UserTE = nullptr; 786 /// The operand index of the use. 787 unsigned EdgeIdx = UINT_MAX; 788 #ifndef NDEBUG 789 friend inline raw_ostream &operator<<(raw_ostream &OS, 790 const BoUpSLP::EdgeInfo &EI) { 791 EI.dump(OS); 792 return OS; 793 } 794 /// Debug print. 795 void dump(raw_ostream &OS) const { 796 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 797 << " EdgeIdx:" << EdgeIdx << "}"; 798 } 799 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 800 #endif 801 }; 802 803 /// A helper data structure to hold the operands of a vector of instructions. 804 /// This supports a fixed vector length for all operand vectors. 805 class VLOperands { 806 /// For each operand we need (i) the value, and (ii) the opcode that it 807 /// would be attached to if the expression was in a left-linearized form. 808 /// This is required to avoid illegal operand reordering. 809 /// For example: 810 /// \verbatim 811 /// 0 Op1 812 /// |/ 813 /// Op1 Op2 Linearized + Op2 814 /// \ / ----------> |/ 815 /// - - 816 /// 817 /// Op1 - Op2 (0 + Op1) - Op2 818 /// \endverbatim 819 /// 820 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 821 /// 822 /// Another way to think of this is to track all the operations across the 823 /// path from the operand all the way to the root of the tree and to 824 /// calculate the operation that corresponds to this path. For example, the 825 /// path from Op2 to the root crosses the RHS of the '-', therefore the 826 /// corresponding operation is a '-' (which matches the one in the 827 /// linearized tree, as shown above). 828 /// 829 /// For lack of a better term, we refer to this operation as Accumulated 830 /// Path Operation (APO). 831 struct OperandData { 832 OperandData() = default; 833 OperandData(Value *V, bool APO, bool IsUsed) 834 : V(V), APO(APO), IsUsed(IsUsed) {} 835 /// The operand value. 836 Value *V = nullptr; 837 /// TreeEntries only allow a single opcode, or an alternate sequence of 838 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 839 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 840 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 841 /// (e.g., Add/Mul) 842 bool APO = false; 843 /// Helper data for the reordering function. 844 bool IsUsed = false; 845 }; 846 847 /// During operand reordering, we are trying to select the operand at lane 848 /// that matches best with the operand at the neighboring lane. Our 849 /// selection is based on the type of value we are looking for. For example, 850 /// if the neighboring lane has a load, we need to look for a load that is 851 /// accessing a consecutive address. These strategies are summarized in the 852 /// 'ReorderingMode' enumerator. 853 enum class ReorderingMode { 854 Load, ///< Matching loads to consecutive memory addresses 855 Opcode, ///< Matching instructions based on opcode (same or alternate) 856 Constant, ///< Matching constants 857 Splat, ///< Matching the same instruction multiple times (broadcast) 858 Failed, ///< We failed to create a vectorizable group 859 }; 860 861 using OperandDataVec = SmallVector<OperandData, 2>; 862 863 /// A vector of operand vectors. 864 SmallVector<OperandDataVec, 4> OpsVec; 865 866 const DataLayout &DL; 867 ScalarEvolution &SE; 868 const BoUpSLP &R; 869 870 /// \returns the operand data at \p OpIdx and \p Lane. 871 OperandData &getData(unsigned OpIdx, unsigned Lane) { 872 return OpsVec[OpIdx][Lane]; 873 } 874 875 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 876 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 877 return OpsVec[OpIdx][Lane]; 878 } 879 880 /// Clears the used flag for all entries. 881 void clearUsed() { 882 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 883 OpIdx != NumOperands; ++OpIdx) 884 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 885 ++Lane) 886 OpsVec[OpIdx][Lane].IsUsed = false; 887 } 888 889 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 890 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 891 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 892 } 893 894 // The hard-coded scores listed here are not very important. When computing 895 // the scores of matching one sub-tree with another, we are basically 896 // counting the number of values that are matching. So even if all scores 897 // are set to 1, we would still get a decent matching result. 898 // However, sometimes we have to break ties. For example we may have to 899 // choose between matching loads vs matching opcodes. This is what these 900 // scores are helping us with: they provide the order of preference. 901 902 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 903 static const int ScoreConsecutiveLoads = 3; 904 /// ExtractElementInst from same vector and consecutive indexes. 905 static const int ScoreConsecutiveExtracts = 3; 906 /// Constants. 907 static const int ScoreConstants = 2; 908 /// Instructions with the same opcode. 909 static const int ScoreSameOpcode = 2; 910 /// Instructions with alt opcodes (e.g, add + sub). 911 static const int ScoreAltOpcodes = 1; 912 /// Identical instructions (a.k.a. splat or broadcast). 913 static const int ScoreSplat = 1; 914 /// Matching with an undef is preferable to failing. 915 static const int ScoreUndef = 1; 916 /// Score for failing to find a decent match. 917 static const int ScoreFail = 0; 918 /// User exteranl to the vectorized code. 919 static const int ExternalUseCost = 1; 920 /// The user is internal but in a different lane. 921 static const int UserInDiffLaneCost = ExternalUseCost; 922 923 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 924 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 925 ScalarEvolution &SE) { 926 auto *LI1 = dyn_cast<LoadInst>(V1); 927 auto *LI2 = dyn_cast<LoadInst>(V2); 928 if (LI1 && LI2) 929 return isConsecutiveAccess(LI1, LI2, DL, SE) 930 ? VLOperands::ScoreConsecutiveLoads 931 : VLOperands::ScoreFail; 932 933 auto *C1 = dyn_cast<Constant>(V1); 934 auto *C2 = dyn_cast<Constant>(V2); 935 if (C1 && C2) 936 return VLOperands::ScoreConstants; 937 938 // Extracts from consecutive indexes of the same vector better score as 939 // the extracts could be optimized away. 940 Value *EV; 941 ConstantInt *Ex1Idx, *Ex2Idx; 942 if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) && 943 match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) && 944 Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue()) 945 return VLOperands::ScoreConsecutiveExtracts; 946 947 auto *I1 = dyn_cast<Instruction>(V1); 948 auto *I2 = dyn_cast<Instruction>(V2); 949 if (I1 && I2) { 950 if (I1 == I2) 951 return VLOperands::ScoreSplat; 952 InstructionsState S = getSameOpcode({I1, I2}); 953 // Note: Only consider instructions with <= 2 operands to avoid 954 // complexity explosion. 955 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 956 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 957 : VLOperands::ScoreSameOpcode; 958 } 959 960 if (isa<UndefValue>(V2)) 961 return VLOperands::ScoreUndef; 962 963 return VLOperands::ScoreFail; 964 } 965 966 /// Holds the values and their lane that are taking part in the look-ahead 967 /// score calculation. This is used in the external uses cost calculation. 968 SmallDenseMap<Value *, int> InLookAheadValues; 969 970 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are 971 /// either external to the vectorized code, or require shuffling. 972 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 973 const std::pair<Value *, int> &RHS) { 974 int Cost = 0; 975 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 976 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 977 Value *V = Values[Idx].first; 978 // Calculate the absolute lane, using the minimum relative lane of LHS 979 // and RHS as base and Idx as the offset. 980 int Ln = std::min(LHS.second, RHS.second) + Idx; 981 assert(Ln >= 0 && "Bad lane calculation"); 982 unsigned UsersBudget = LookAheadUsersBudget; 983 for (User *U : V->users()) { 984 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 985 // The user is in the VectorizableTree. Check if we need to insert. 986 auto It = llvm::find(UserTE->Scalars, U); 987 assert(It != UserTE->Scalars.end() && "U is in UserTE"); 988 int UserLn = std::distance(UserTE->Scalars.begin(), It); 989 assert(UserLn >= 0 && "Bad lane"); 990 if (UserLn != Ln) 991 Cost += UserInDiffLaneCost; 992 } else { 993 // Check if the user is in the look-ahead code. 994 auto It2 = InLookAheadValues.find(U); 995 if (It2 != InLookAheadValues.end()) { 996 // The user is in the look-ahead code. Check the lane. 997 if (It2->second != Ln) 998 Cost += UserInDiffLaneCost; 999 } else { 1000 // The user is neither in SLP tree nor in the look-ahead code. 1001 Cost += ExternalUseCost; 1002 } 1003 } 1004 // Limit the number of visited uses to cap compilation time. 1005 if (--UsersBudget == 0) 1006 break; 1007 } 1008 } 1009 return Cost; 1010 } 1011 1012 /// Go through the operands of \p LHS and \p RHS recursively until \p 1013 /// MaxLevel, and return the cummulative score. For example: 1014 /// \verbatim 1015 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1016 /// \ / \ / \ / \ / 1017 /// + + + + 1018 /// G1 G2 G3 G4 1019 /// \endverbatim 1020 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1021 /// each level recursively, accumulating the score. It starts from matching 1022 /// the additions at level 0, then moves on to the loads (level 1). The 1023 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1024 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1025 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1026 /// Please note that the order of the operands does not matter, as we 1027 /// evaluate the score of all profitable combinations of operands. In 1028 /// other words the score of G1 and G4 is the same as G1 and G2. This 1029 /// heuristic is based on ideas described in: 1030 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1031 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1032 /// Luís F. W. Góes 1033 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 1034 const std::pair<Value *, int> &RHS, int CurrLevel, 1035 int MaxLevel) { 1036 1037 Value *V1 = LHS.first; 1038 Value *V2 = RHS.first; 1039 // Get the shallow score of V1 and V2. 1040 int ShallowScoreAtThisLevel = 1041 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) - 1042 getExternalUsesCost(LHS, RHS)); 1043 int Lane1 = LHS.second; 1044 int Lane2 = RHS.second; 1045 1046 // If reached MaxLevel, 1047 // or if V1 and V2 are not instructions, 1048 // or if they are SPLAT, 1049 // or if they are not consecutive, early return the current cost. 1050 auto *I1 = dyn_cast<Instruction>(V1); 1051 auto *I2 = dyn_cast<Instruction>(V2); 1052 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1053 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1054 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel)) 1055 return ShallowScoreAtThisLevel; 1056 assert(I1 && I2 && "Should have early exited."); 1057 1058 // Keep track of in-tree values for determining the external-use cost. 1059 InLookAheadValues[V1] = Lane1; 1060 InLookAheadValues[V2] = Lane2; 1061 1062 // Contains the I2 operand indexes that got matched with I1 operands. 1063 SmallSet<unsigned, 4> Op2Used; 1064 1065 // Recursion towards the operands of I1 and I2. We are trying all possbile 1066 // operand pairs, and keeping track of the best score. 1067 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1068 OpIdx1 != NumOperands1; ++OpIdx1) { 1069 // Try to pair op1I with the best operand of I2. 1070 int MaxTmpScore = 0; 1071 unsigned MaxOpIdx2 = 0; 1072 bool FoundBest = false; 1073 // If I2 is commutative try all combinations. 1074 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1075 unsigned ToIdx = isCommutative(I2) 1076 ? I2->getNumOperands() 1077 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1078 assert(FromIdx <= ToIdx && "Bad index"); 1079 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1080 // Skip operands already paired with OpIdx1. 1081 if (Op2Used.count(OpIdx2)) 1082 continue; 1083 // Recursively calculate the cost at each level 1084 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 1085 {I2->getOperand(OpIdx2), Lane2}, 1086 CurrLevel + 1, MaxLevel); 1087 // Look for the best score. 1088 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1089 MaxTmpScore = TmpScore; 1090 MaxOpIdx2 = OpIdx2; 1091 FoundBest = true; 1092 } 1093 } 1094 if (FoundBest) { 1095 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1096 Op2Used.insert(MaxOpIdx2); 1097 ShallowScoreAtThisLevel += MaxTmpScore; 1098 } 1099 } 1100 return ShallowScoreAtThisLevel; 1101 } 1102 1103 /// \Returns the look-ahead score, which tells us how much the sub-trees 1104 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1105 /// score. This helps break ties in an informed way when we cannot decide on 1106 /// the order of the operands by just considering the immediate 1107 /// predecessors. 1108 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1109 const std::pair<Value *, int> &RHS) { 1110 InLookAheadValues.clear(); 1111 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1112 } 1113 1114 // Search all operands in Ops[*][Lane] for the one that matches best 1115 // Ops[OpIdx][LastLane] and return its opreand index. 1116 // If no good match can be found, return None. 1117 Optional<unsigned> 1118 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1119 ArrayRef<ReorderingMode> ReorderingModes) { 1120 unsigned NumOperands = getNumOperands(); 1121 1122 // The operand of the previous lane at OpIdx. 1123 Value *OpLastLane = getData(OpIdx, LastLane).V; 1124 1125 // Our strategy mode for OpIdx. 1126 ReorderingMode RMode = ReorderingModes[OpIdx]; 1127 1128 // The linearized opcode of the operand at OpIdx, Lane. 1129 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1130 1131 // The best operand index and its score. 1132 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1133 // are using the score to differentiate between the two. 1134 struct BestOpData { 1135 Optional<unsigned> Idx = None; 1136 unsigned Score = 0; 1137 } BestOp; 1138 1139 // Iterate through all unused operands and look for the best. 1140 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1141 // Get the operand at Idx and Lane. 1142 OperandData &OpData = getData(Idx, Lane); 1143 Value *Op = OpData.V; 1144 bool OpAPO = OpData.APO; 1145 1146 // Skip already selected operands. 1147 if (OpData.IsUsed) 1148 continue; 1149 1150 // Skip if we are trying to move the operand to a position with a 1151 // different opcode in the linearized tree form. This would break the 1152 // semantics. 1153 if (OpAPO != OpIdxAPO) 1154 continue; 1155 1156 // Look for an operand that matches the current mode. 1157 switch (RMode) { 1158 case ReorderingMode::Load: 1159 case ReorderingMode::Constant: 1160 case ReorderingMode::Opcode: { 1161 bool LeftToRight = Lane > LastLane; 1162 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1163 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1164 unsigned Score = 1165 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1166 if (Score > BestOp.Score) { 1167 BestOp.Idx = Idx; 1168 BestOp.Score = Score; 1169 } 1170 break; 1171 } 1172 case ReorderingMode::Splat: 1173 if (Op == OpLastLane) 1174 BestOp.Idx = Idx; 1175 break; 1176 case ReorderingMode::Failed: 1177 return None; 1178 } 1179 } 1180 1181 if (BestOp.Idx) { 1182 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1183 return BestOp.Idx; 1184 } 1185 // If we could not find a good match return None. 1186 return None; 1187 } 1188 1189 /// Helper for reorderOperandVecs. \Returns the lane that we should start 1190 /// reordering from. This is the one which has the least number of operands 1191 /// that can freely move about. 1192 unsigned getBestLaneToStartReordering() const { 1193 unsigned BestLane = 0; 1194 unsigned Min = UINT_MAX; 1195 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1196 ++Lane) { 1197 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 1198 if (NumFreeOps < Min) { 1199 Min = NumFreeOps; 1200 BestLane = Lane; 1201 } 1202 } 1203 return BestLane; 1204 } 1205 1206 /// \Returns the maximum number of operands that are allowed to be reordered 1207 /// for \p Lane. This is used as a heuristic for selecting the first lane to 1208 /// start operand reordering. 1209 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1210 unsigned CntTrue = 0; 1211 unsigned NumOperands = getNumOperands(); 1212 // Operands with the same APO can be reordered. We therefore need to count 1213 // how many of them we have for each APO, like this: Cnt[APO] = x. 1214 // Since we only have two APOs, namely true and false, we can avoid using 1215 // a map. Instead we can simply count the number of operands that 1216 // correspond to one of them (in this case the 'true' APO), and calculate 1217 // the other by subtracting it from the total number of operands. 1218 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 1219 if (getData(OpIdx, Lane).APO) 1220 ++CntTrue; 1221 unsigned CntFalse = NumOperands - CntTrue; 1222 return std::max(CntTrue, CntFalse); 1223 } 1224 1225 /// Go through the instructions in VL and append their operands. 1226 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1227 assert(!VL.empty() && "Bad VL"); 1228 assert((empty() || VL.size() == getNumLanes()) && 1229 "Expected same number of lanes"); 1230 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1231 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1232 OpsVec.resize(NumOperands); 1233 unsigned NumLanes = VL.size(); 1234 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1235 OpsVec[OpIdx].resize(NumLanes); 1236 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1237 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1238 // Our tree has just 3 nodes: the root and two operands. 1239 // It is therefore trivial to get the APO. We only need to check the 1240 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1241 // RHS operand. The LHS operand of both add and sub is never attached 1242 // to an inversese operation in the linearized form, therefore its APO 1243 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1244 1245 // Since operand reordering is performed on groups of commutative 1246 // operations or alternating sequences (e.g., +, -), we can safely 1247 // tell the inverse operations by checking commutativity. 1248 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1249 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1250 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1251 APO, false}; 1252 } 1253 } 1254 } 1255 1256 /// \returns the number of operands. 1257 unsigned getNumOperands() const { return OpsVec.size(); } 1258 1259 /// \returns the number of lanes. 1260 unsigned getNumLanes() const { return OpsVec[0].size(); } 1261 1262 /// \returns the operand value at \p OpIdx and \p Lane. 1263 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1264 return getData(OpIdx, Lane).V; 1265 } 1266 1267 /// \returns true if the data structure is empty. 1268 bool empty() const { return OpsVec.empty(); } 1269 1270 /// Clears the data. 1271 void clear() { OpsVec.clear(); } 1272 1273 /// \Returns true if there are enough operands identical to \p Op to fill 1274 /// the whole vector. 1275 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1276 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1277 bool OpAPO = getData(OpIdx, Lane).APO; 1278 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1279 if (Ln == Lane) 1280 continue; 1281 // This is set to true if we found a candidate for broadcast at Lane. 1282 bool FoundCandidate = false; 1283 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1284 OperandData &Data = getData(OpI, Ln); 1285 if (Data.APO != OpAPO || Data.IsUsed) 1286 continue; 1287 if (Data.V == Op) { 1288 FoundCandidate = true; 1289 Data.IsUsed = true; 1290 break; 1291 } 1292 } 1293 if (!FoundCandidate) 1294 return false; 1295 } 1296 return true; 1297 } 1298 1299 public: 1300 /// Initialize with all the operands of the instruction vector \p RootVL. 1301 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1302 ScalarEvolution &SE, const BoUpSLP &R) 1303 : DL(DL), SE(SE), R(R) { 1304 // Append all the operands of RootVL. 1305 appendOperandsOfVL(RootVL); 1306 } 1307 1308 /// \Returns a value vector with the operands across all lanes for the 1309 /// opearnd at \p OpIdx. 1310 ValueList getVL(unsigned OpIdx) const { 1311 ValueList OpVL(OpsVec[OpIdx].size()); 1312 assert(OpsVec[OpIdx].size() == getNumLanes() && 1313 "Expected same num of lanes across all operands"); 1314 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1315 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1316 return OpVL; 1317 } 1318 1319 // Performs operand reordering for 2 or more operands. 1320 // The original operands are in OrigOps[OpIdx][Lane]. 1321 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1322 void reorder() { 1323 unsigned NumOperands = getNumOperands(); 1324 unsigned NumLanes = getNumLanes(); 1325 // Each operand has its own mode. We are using this mode to help us select 1326 // the instructions for each lane, so that they match best with the ones 1327 // we have selected so far. 1328 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1329 1330 // This is a greedy single-pass algorithm. We are going over each lane 1331 // once and deciding on the best order right away with no back-tracking. 1332 // However, in order to increase its effectiveness, we start with the lane 1333 // that has operands that can move the least. For example, given the 1334 // following lanes: 1335 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1336 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1337 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1338 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1339 // we will start at Lane 1, since the operands of the subtraction cannot 1340 // be reordered. Then we will visit the rest of the lanes in a circular 1341 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1342 1343 // Find the first lane that we will start our search from. 1344 unsigned FirstLane = getBestLaneToStartReordering(); 1345 1346 // Initialize the modes. 1347 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1348 Value *OpLane0 = getValue(OpIdx, FirstLane); 1349 // Keep track if we have instructions with all the same opcode on one 1350 // side. 1351 if (isa<LoadInst>(OpLane0)) 1352 ReorderingModes[OpIdx] = ReorderingMode::Load; 1353 else if (isa<Instruction>(OpLane0)) { 1354 // Check if OpLane0 should be broadcast. 1355 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1356 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1357 else 1358 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1359 } 1360 else if (isa<Constant>(OpLane0)) 1361 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1362 else if (isa<Argument>(OpLane0)) 1363 // Our best hope is a Splat. It may save some cost in some cases. 1364 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1365 else 1366 // NOTE: This should be unreachable. 1367 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1368 } 1369 1370 // If the initial strategy fails for any of the operand indexes, then we 1371 // perform reordering again in a second pass. This helps avoid assigning 1372 // high priority to the failed strategy, and should improve reordering for 1373 // the non-failed operand indexes. 1374 for (int Pass = 0; Pass != 2; ++Pass) { 1375 // Skip the second pass if the first pass did not fail. 1376 bool StrategyFailed = false; 1377 // Mark all operand data as free to use. 1378 clearUsed(); 1379 // We keep the original operand order for the FirstLane, so reorder the 1380 // rest of the lanes. We are visiting the nodes in a circular fashion, 1381 // using FirstLane as the center point and increasing the radius 1382 // distance. 1383 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1384 // Visit the lane on the right and then the lane on the left. 1385 for (int Direction : {+1, -1}) { 1386 int Lane = FirstLane + Direction * Distance; 1387 if (Lane < 0 || Lane >= (int)NumLanes) 1388 continue; 1389 int LastLane = Lane - Direction; 1390 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1391 "Out of bounds"); 1392 // Look for a good match for each operand. 1393 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1394 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1395 Optional<unsigned> BestIdx = 1396 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1397 // By not selecting a value, we allow the operands that follow to 1398 // select a better matching value. We will get a non-null value in 1399 // the next run of getBestOperand(). 1400 if (BestIdx) { 1401 // Swap the current operand with the one returned by 1402 // getBestOperand(). 1403 swap(OpIdx, BestIdx.getValue(), Lane); 1404 } else { 1405 // We failed to find a best operand, set mode to 'Failed'. 1406 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1407 // Enable the second pass. 1408 StrategyFailed = true; 1409 } 1410 } 1411 } 1412 } 1413 // Skip second pass if the strategy did not fail. 1414 if (!StrategyFailed) 1415 break; 1416 } 1417 } 1418 1419 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1420 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1421 switch (RMode) { 1422 case ReorderingMode::Load: 1423 return "Load"; 1424 case ReorderingMode::Opcode: 1425 return "Opcode"; 1426 case ReorderingMode::Constant: 1427 return "Constant"; 1428 case ReorderingMode::Splat: 1429 return "Splat"; 1430 case ReorderingMode::Failed: 1431 return "Failed"; 1432 } 1433 llvm_unreachable("Unimplemented Reordering Type"); 1434 } 1435 1436 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1437 raw_ostream &OS) { 1438 return OS << getModeStr(RMode); 1439 } 1440 1441 /// Debug print. 1442 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1443 printMode(RMode, dbgs()); 1444 } 1445 1446 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1447 return printMode(RMode, OS); 1448 } 1449 1450 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1451 const unsigned Indent = 2; 1452 unsigned Cnt = 0; 1453 for (const OperandDataVec &OpDataVec : OpsVec) { 1454 OS << "Operand " << Cnt++ << "\n"; 1455 for (const OperandData &OpData : OpDataVec) { 1456 OS.indent(Indent) << "{"; 1457 if (Value *V = OpData.V) 1458 OS << *V; 1459 else 1460 OS << "null"; 1461 OS << ", APO:" << OpData.APO << "}\n"; 1462 } 1463 OS << "\n"; 1464 } 1465 return OS; 1466 } 1467 1468 /// Debug print. 1469 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1470 #endif 1471 }; 1472 1473 /// Checks if the instruction is marked for deletion. 1474 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1475 1476 /// Marks values operands for later deletion by replacing them with Undefs. 1477 void eraseInstructions(ArrayRef<Value *> AV); 1478 1479 ~BoUpSLP(); 1480 1481 private: 1482 /// Checks if all users of \p I are the part of the vectorization tree. 1483 bool areAllUsersVectorized(Instruction *I) const; 1484 1485 /// \returns the cost of the vectorizable entry. 1486 int getEntryCost(TreeEntry *E); 1487 1488 /// This is the recursive part of buildTree. 1489 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1490 const EdgeInfo &EI); 1491 1492 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1493 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1494 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1495 /// returns false, setting \p CurrentOrder to either an empty vector or a 1496 /// non-identity permutation that allows to reuse extract instructions. 1497 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1498 SmallVectorImpl<unsigned> &CurrentOrder) const; 1499 1500 /// Vectorize a single entry in the tree. 1501 Value *vectorizeTree(TreeEntry *E); 1502 1503 /// Vectorize a single entry in the tree, starting in \p VL. 1504 Value *vectorizeTree(ArrayRef<Value *> VL); 1505 1506 /// \returns the scalarization cost for this type. Scalarization in this 1507 /// context means the creation of vectors from a group of scalars. 1508 int getGatherCost(FixedVectorType *Ty, 1509 const DenseSet<unsigned> &ShuffledIndices) const; 1510 1511 /// \returns the scalarization cost for this list of values. Assuming that 1512 /// this subtree gets vectorized, we may need to extract the values from the 1513 /// roots. This method calculates the cost of extracting the values. 1514 int getGatherCost(ArrayRef<Value *> VL) const; 1515 1516 /// Set the Builder insert point to one after the last instruction in 1517 /// the bundle 1518 void setInsertPointAfterBundle(TreeEntry *E); 1519 1520 /// \returns a vector from a collection of scalars in \p VL. 1521 Value *gather(ArrayRef<Value *> VL); 1522 1523 /// \returns whether the VectorizableTree is fully vectorizable and will 1524 /// be beneficial even the tree height is tiny. 1525 bool isFullyVectorizableTinyTree() const; 1526 1527 /// Reorder commutative or alt operands to get better probability of 1528 /// generating vectorized code. 1529 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1530 SmallVectorImpl<Value *> &Left, 1531 SmallVectorImpl<Value *> &Right, 1532 const DataLayout &DL, 1533 ScalarEvolution &SE, 1534 const BoUpSLP &R); 1535 struct TreeEntry { 1536 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1537 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1538 1539 /// \returns true if the scalars in VL are equal to this entry. 1540 bool isSame(ArrayRef<Value *> VL) const { 1541 if (VL.size() == Scalars.size()) 1542 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1543 return VL.size() == ReuseShuffleIndices.size() && 1544 std::equal( 1545 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 1546 [this](Value *V, int Idx) { return V == Scalars[Idx]; }); 1547 } 1548 1549 /// A vector of scalars. 1550 ValueList Scalars; 1551 1552 /// The Scalars are vectorized into this value. It is initialized to Null. 1553 Value *VectorizedValue = nullptr; 1554 1555 /// Do we need to gather this sequence or vectorize it 1556 /// (either with vector instruction or with scatter/gather 1557 /// intrinsics for store/load)? 1558 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 1559 EntryState State; 1560 1561 /// Does this sequence require some shuffling? 1562 SmallVector<int, 4> ReuseShuffleIndices; 1563 1564 /// Does this entry require reordering? 1565 SmallVector<unsigned, 4> ReorderIndices; 1566 1567 /// Points back to the VectorizableTree. 1568 /// 1569 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1570 /// to be a pointer and needs to be able to initialize the child iterator. 1571 /// Thus we need a reference back to the container to translate the indices 1572 /// to entries. 1573 VecTreeTy &Container; 1574 1575 /// The TreeEntry index containing the user of this entry. We can actually 1576 /// have multiple users so the data structure is not truly a tree. 1577 SmallVector<EdgeInfo, 1> UserTreeIndices; 1578 1579 /// The index of this treeEntry in VectorizableTree. 1580 int Idx = -1; 1581 1582 private: 1583 /// The operands of each instruction in each lane Operands[op_index][lane]. 1584 /// Note: This helps avoid the replication of the code that performs the 1585 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1586 SmallVector<ValueList, 2> Operands; 1587 1588 /// The main/alternate instruction. 1589 Instruction *MainOp = nullptr; 1590 Instruction *AltOp = nullptr; 1591 1592 public: 1593 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1594 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1595 if (Operands.size() < OpIdx + 1) 1596 Operands.resize(OpIdx + 1); 1597 assert(Operands[OpIdx].size() == 0 && "Already resized?"); 1598 Operands[OpIdx].resize(Scalars.size()); 1599 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1600 Operands[OpIdx][Lane] = OpVL[Lane]; 1601 } 1602 1603 /// Set the operands of this bundle in their original order. 1604 void setOperandsInOrder() { 1605 assert(Operands.empty() && "Already initialized?"); 1606 auto *I0 = cast<Instruction>(Scalars[0]); 1607 Operands.resize(I0->getNumOperands()); 1608 unsigned NumLanes = Scalars.size(); 1609 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1610 OpIdx != NumOperands; ++OpIdx) { 1611 Operands[OpIdx].resize(NumLanes); 1612 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1613 auto *I = cast<Instruction>(Scalars[Lane]); 1614 assert(I->getNumOperands() == NumOperands && 1615 "Expected same number of operands"); 1616 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1617 } 1618 } 1619 } 1620 1621 /// \returns the \p OpIdx operand of this TreeEntry. 1622 ValueList &getOperand(unsigned OpIdx) { 1623 assert(OpIdx < Operands.size() && "Off bounds"); 1624 return Operands[OpIdx]; 1625 } 1626 1627 /// \returns the number of operands. 1628 unsigned getNumOperands() const { return Operands.size(); } 1629 1630 /// \return the single \p OpIdx operand. 1631 Value *getSingleOperand(unsigned OpIdx) const { 1632 assert(OpIdx < Operands.size() && "Off bounds"); 1633 assert(!Operands[OpIdx].empty() && "No operand available"); 1634 return Operands[OpIdx][0]; 1635 } 1636 1637 /// Some of the instructions in the list have alternate opcodes. 1638 bool isAltShuffle() const { 1639 return getOpcode() != getAltOpcode(); 1640 } 1641 1642 bool isOpcodeOrAlt(Instruction *I) const { 1643 unsigned CheckedOpcode = I->getOpcode(); 1644 return (getOpcode() == CheckedOpcode || 1645 getAltOpcode() == CheckedOpcode); 1646 } 1647 1648 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1649 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1650 /// \p OpValue. 1651 Value *isOneOf(Value *Op) const { 1652 auto *I = dyn_cast<Instruction>(Op); 1653 if (I && isOpcodeOrAlt(I)) 1654 return Op; 1655 return MainOp; 1656 } 1657 1658 void setOperations(const InstructionsState &S) { 1659 MainOp = S.MainOp; 1660 AltOp = S.AltOp; 1661 } 1662 1663 Instruction *getMainOp() const { 1664 return MainOp; 1665 } 1666 1667 Instruction *getAltOp() const { 1668 return AltOp; 1669 } 1670 1671 /// The main/alternate opcodes for the list of instructions. 1672 unsigned getOpcode() const { 1673 return MainOp ? MainOp->getOpcode() : 0; 1674 } 1675 1676 unsigned getAltOpcode() const { 1677 return AltOp ? AltOp->getOpcode() : 0; 1678 } 1679 1680 /// Update operations state of this entry if reorder occurred. 1681 bool updateStateIfReorder() { 1682 if (ReorderIndices.empty()) 1683 return false; 1684 InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front()); 1685 setOperations(S); 1686 return true; 1687 } 1688 1689 #ifndef NDEBUG 1690 /// Debug printer. 1691 LLVM_DUMP_METHOD void dump() const { 1692 dbgs() << Idx << ".\n"; 1693 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1694 dbgs() << "Operand " << OpI << ":\n"; 1695 for (const Value *V : Operands[OpI]) 1696 dbgs().indent(2) << *V << "\n"; 1697 } 1698 dbgs() << "Scalars: \n"; 1699 for (Value *V : Scalars) 1700 dbgs().indent(2) << *V << "\n"; 1701 dbgs() << "State: "; 1702 switch (State) { 1703 case Vectorize: 1704 dbgs() << "Vectorize\n"; 1705 break; 1706 case ScatterVectorize: 1707 dbgs() << "ScatterVectorize\n"; 1708 break; 1709 case NeedToGather: 1710 dbgs() << "NeedToGather\n"; 1711 break; 1712 } 1713 dbgs() << "MainOp: "; 1714 if (MainOp) 1715 dbgs() << *MainOp << "\n"; 1716 else 1717 dbgs() << "NULL\n"; 1718 dbgs() << "AltOp: "; 1719 if (AltOp) 1720 dbgs() << *AltOp << "\n"; 1721 else 1722 dbgs() << "NULL\n"; 1723 dbgs() << "VectorizedValue: "; 1724 if (VectorizedValue) 1725 dbgs() << *VectorizedValue << "\n"; 1726 else 1727 dbgs() << "NULL\n"; 1728 dbgs() << "ReuseShuffleIndices: "; 1729 if (ReuseShuffleIndices.empty()) 1730 dbgs() << "Emtpy"; 1731 else 1732 for (unsigned ReuseIdx : ReuseShuffleIndices) 1733 dbgs() << ReuseIdx << ", "; 1734 dbgs() << "\n"; 1735 dbgs() << "ReorderIndices: "; 1736 for (unsigned ReorderIdx : ReorderIndices) 1737 dbgs() << ReorderIdx << ", "; 1738 dbgs() << "\n"; 1739 dbgs() << "UserTreeIndices: "; 1740 for (const auto &EInfo : UserTreeIndices) 1741 dbgs() << EInfo << ", "; 1742 dbgs() << "\n"; 1743 } 1744 #endif 1745 }; 1746 1747 /// Create a new VectorizableTree entry. 1748 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1749 const InstructionsState &S, 1750 const EdgeInfo &UserTreeIdx, 1751 ArrayRef<unsigned> ReuseShuffleIndices = None, 1752 ArrayRef<unsigned> ReorderIndices = None) { 1753 TreeEntry::EntryState EntryState = 1754 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 1755 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 1756 ReuseShuffleIndices, ReorderIndices); 1757 } 1758 1759 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 1760 TreeEntry::EntryState EntryState, 1761 Optional<ScheduleData *> Bundle, 1762 const InstructionsState &S, 1763 const EdgeInfo &UserTreeIdx, 1764 ArrayRef<unsigned> ReuseShuffleIndices = None, 1765 ArrayRef<unsigned> ReorderIndices = None) { 1766 assert(!(Bundle && EntryState == TreeEntry::NeedToGather) && 1767 "Need to gather vectorized entry?"); 1768 assert((Bundle || EntryState == TreeEntry::NeedToGather) && 1769 "Need to vectorize gather entry?"); 1770 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1771 TreeEntry *Last = VectorizableTree.back().get(); 1772 Last->Idx = VectorizableTree.size() - 1; 1773 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 1774 Last->State = EntryState; 1775 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1776 ReuseShuffleIndices.end()); 1777 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 1778 Last->setOperations(S); 1779 if (Last->State != TreeEntry::NeedToGather) { 1780 for (Value *V : VL) { 1781 assert(!getTreeEntry(V) && "Scalar already in tree!"); 1782 ScalarToTreeEntry[V] = Last; 1783 } 1784 // Update the scheduler bundle to point to this TreeEntry. 1785 unsigned Lane = 0; 1786 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 1787 BundleMember = BundleMember->NextInBundle) { 1788 BundleMember->TE = Last; 1789 BundleMember->Lane = Lane; 1790 ++Lane; 1791 } 1792 assert((!Bundle.getValue() || Lane == VL.size()) && 1793 "Bundle and VL out of sync"); 1794 } else { 1795 MustGather.insert(VL.begin(), VL.end()); 1796 } 1797 1798 if (UserTreeIdx.UserTE) 1799 Last->UserTreeIndices.push_back(UserTreeIdx); 1800 1801 return Last; 1802 } 1803 1804 /// -- Vectorization State -- 1805 /// Holds all of the tree entries. 1806 TreeEntry::VecTreeTy VectorizableTree; 1807 1808 #ifndef NDEBUG 1809 /// Debug printer. 1810 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1811 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1812 VectorizableTree[Id]->dump(); 1813 dbgs() << "\n"; 1814 } 1815 } 1816 #endif 1817 1818 TreeEntry *getTreeEntry(Value *V) { 1819 auto I = ScalarToTreeEntry.find(V); 1820 if (I != ScalarToTreeEntry.end()) 1821 return I->second; 1822 return nullptr; 1823 } 1824 1825 const TreeEntry *getTreeEntry(Value *V) const { 1826 auto I = ScalarToTreeEntry.find(V); 1827 if (I != ScalarToTreeEntry.end()) 1828 return I->second; 1829 return nullptr; 1830 } 1831 1832 /// Maps a specific scalar to its tree entry. 1833 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 1834 1835 /// Maps a value to the proposed vectorizable size. 1836 SmallDenseMap<Value *, unsigned> InstrElementSize; 1837 1838 /// A list of scalars that we found that we need to keep as scalars. 1839 ValueSet MustGather; 1840 1841 /// This POD struct describes one external user in the vectorized tree. 1842 struct ExternalUser { 1843 ExternalUser(Value *S, llvm::User *U, int L) 1844 : Scalar(S), User(U), Lane(L) {} 1845 1846 // Which scalar in our function. 1847 Value *Scalar; 1848 1849 // Which user that uses the scalar. 1850 llvm::User *User; 1851 1852 // Which lane does the scalar belong to. 1853 int Lane; 1854 }; 1855 using UserList = SmallVector<ExternalUser, 16>; 1856 1857 /// Checks if two instructions may access the same memory. 1858 /// 1859 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 1860 /// is invariant in the calling loop. 1861 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 1862 Instruction *Inst2) { 1863 // First check if the result is already in the cache. 1864 AliasCacheKey key = std::make_pair(Inst1, Inst2); 1865 Optional<bool> &result = AliasCache[key]; 1866 if (result.hasValue()) { 1867 return result.getValue(); 1868 } 1869 MemoryLocation Loc2 = getLocation(Inst2, AA); 1870 bool aliased = true; 1871 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 1872 // Do the alias check. 1873 aliased = AA->alias(Loc1, Loc2); 1874 } 1875 // Store the result in the cache. 1876 result = aliased; 1877 return aliased; 1878 } 1879 1880 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 1881 1882 /// Cache for alias results. 1883 /// TODO: consider moving this to the AliasAnalysis itself. 1884 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 1885 1886 /// Removes an instruction from its block and eventually deletes it. 1887 /// It's like Instruction::eraseFromParent() except that the actual deletion 1888 /// is delayed until BoUpSLP is destructed. 1889 /// This is required to ensure that there are no incorrect collisions in the 1890 /// AliasCache, which can happen if a new instruction is allocated at the 1891 /// same address as a previously deleted instruction. 1892 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 1893 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 1894 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 1895 } 1896 1897 /// Temporary store for deleted instructions. Instructions will be deleted 1898 /// eventually when the BoUpSLP is destructed. 1899 DenseMap<Instruction *, bool> DeletedInstructions; 1900 1901 /// A list of values that need to extracted out of the tree. 1902 /// This list holds pairs of (Internal Scalar : External User). External User 1903 /// can be nullptr, it means that this Internal Scalar will be used later, 1904 /// after vectorization. 1905 UserList ExternalUses; 1906 1907 /// Values used only by @llvm.assume calls. 1908 SmallPtrSet<const Value *, 32> EphValues; 1909 1910 /// Holds all of the instructions that we gathered. 1911 SetVector<Instruction *> GatherSeq; 1912 1913 /// A list of blocks that we are going to CSE. 1914 SetVector<BasicBlock *> CSEBlocks; 1915 1916 /// Contains all scheduling relevant data for an instruction. 1917 /// A ScheduleData either represents a single instruction or a member of an 1918 /// instruction bundle (= a group of instructions which is combined into a 1919 /// vector instruction). 1920 struct ScheduleData { 1921 // The initial value for the dependency counters. It means that the 1922 // dependencies are not calculated yet. 1923 enum { InvalidDeps = -1 }; 1924 1925 ScheduleData() = default; 1926 1927 void init(int BlockSchedulingRegionID, Value *OpVal) { 1928 FirstInBundle = this; 1929 NextInBundle = nullptr; 1930 NextLoadStore = nullptr; 1931 IsScheduled = false; 1932 SchedulingRegionID = BlockSchedulingRegionID; 1933 UnscheduledDepsInBundle = UnscheduledDeps; 1934 clearDependencies(); 1935 OpValue = OpVal; 1936 TE = nullptr; 1937 Lane = -1; 1938 } 1939 1940 /// Returns true if the dependency information has been calculated. 1941 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 1942 1943 /// Returns true for single instructions and for bundle representatives 1944 /// (= the head of a bundle). 1945 bool isSchedulingEntity() const { return FirstInBundle == this; } 1946 1947 /// Returns true if it represents an instruction bundle and not only a 1948 /// single instruction. 1949 bool isPartOfBundle() const { 1950 return NextInBundle != nullptr || FirstInBundle != this; 1951 } 1952 1953 /// Returns true if it is ready for scheduling, i.e. it has no more 1954 /// unscheduled depending instructions/bundles. 1955 bool isReady() const { 1956 assert(isSchedulingEntity() && 1957 "can't consider non-scheduling entity for ready list"); 1958 return UnscheduledDepsInBundle == 0 && !IsScheduled; 1959 } 1960 1961 /// Modifies the number of unscheduled dependencies, also updating it for 1962 /// the whole bundle. 1963 int incrementUnscheduledDeps(int Incr) { 1964 UnscheduledDeps += Incr; 1965 return FirstInBundle->UnscheduledDepsInBundle += Incr; 1966 } 1967 1968 /// Sets the number of unscheduled dependencies to the number of 1969 /// dependencies. 1970 void resetUnscheduledDeps() { 1971 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 1972 } 1973 1974 /// Clears all dependency information. 1975 void clearDependencies() { 1976 Dependencies = InvalidDeps; 1977 resetUnscheduledDeps(); 1978 MemoryDependencies.clear(); 1979 } 1980 1981 void dump(raw_ostream &os) const { 1982 if (!isSchedulingEntity()) { 1983 os << "/ " << *Inst; 1984 } else if (NextInBundle) { 1985 os << '[' << *Inst; 1986 ScheduleData *SD = NextInBundle; 1987 while (SD) { 1988 os << ';' << *SD->Inst; 1989 SD = SD->NextInBundle; 1990 } 1991 os << ']'; 1992 } else { 1993 os << *Inst; 1994 } 1995 } 1996 1997 Instruction *Inst = nullptr; 1998 1999 /// Points to the head in an instruction bundle (and always to this for 2000 /// single instructions). 2001 ScheduleData *FirstInBundle = nullptr; 2002 2003 /// Single linked list of all instructions in a bundle. Null if it is a 2004 /// single instruction. 2005 ScheduleData *NextInBundle = nullptr; 2006 2007 /// Single linked list of all memory instructions (e.g. load, store, call) 2008 /// in the block - until the end of the scheduling region. 2009 ScheduleData *NextLoadStore = nullptr; 2010 2011 /// The dependent memory instructions. 2012 /// This list is derived on demand in calculateDependencies(). 2013 SmallVector<ScheduleData *, 4> MemoryDependencies; 2014 2015 /// This ScheduleData is in the current scheduling region if this matches 2016 /// the current SchedulingRegionID of BlockScheduling. 2017 int SchedulingRegionID = 0; 2018 2019 /// Used for getting a "good" final ordering of instructions. 2020 int SchedulingPriority = 0; 2021 2022 /// The number of dependencies. Constitutes of the number of users of the 2023 /// instruction plus the number of dependent memory instructions (if any). 2024 /// This value is calculated on demand. 2025 /// If InvalidDeps, the number of dependencies is not calculated yet. 2026 int Dependencies = InvalidDeps; 2027 2028 /// The number of dependencies minus the number of dependencies of scheduled 2029 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2030 /// for scheduling. 2031 /// Note that this is negative as long as Dependencies is not calculated. 2032 int UnscheduledDeps = InvalidDeps; 2033 2034 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 2035 /// single instructions. 2036 int UnscheduledDepsInBundle = InvalidDeps; 2037 2038 /// True if this instruction is scheduled (or considered as scheduled in the 2039 /// dry-run). 2040 bool IsScheduled = false; 2041 2042 /// Opcode of the current instruction in the schedule data. 2043 Value *OpValue = nullptr; 2044 2045 /// The TreeEntry that this instruction corresponds to. 2046 TreeEntry *TE = nullptr; 2047 2048 /// The lane of this node in the TreeEntry. 2049 int Lane = -1; 2050 }; 2051 2052 #ifndef NDEBUG 2053 friend inline raw_ostream &operator<<(raw_ostream &os, 2054 const BoUpSLP::ScheduleData &SD) { 2055 SD.dump(os); 2056 return os; 2057 } 2058 #endif 2059 2060 friend struct GraphTraits<BoUpSLP *>; 2061 friend struct DOTGraphTraits<BoUpSLP *>; 2062 2063 /// Contains all scheduling data for a basic block. 2064 struct BlockScheduling { 2065 BlockScheduling(BasicBlock *BB) 2066 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2067 2068 void clear() { 2069 ReadyInsts.clear(); 2070 ScheduleStart = nullptr; 2071 ScheduleEnd = nullptr; 2072 FirstLoadStoreInRegion = nullptr; 2073 LastLoadStoreInRegion = nullptr; 2074 2075 // Reduce the maximum schedule region size by the size of the 2076 // previous scheduling run. 2077 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2078 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2079 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2080 ScheduleRegionSize = 0; 2081 2082 // Make a new scheduling region, i.e. all existing ScheduleData is not 2083 // in the new region yet. 2084 ++SchedulingRegionID; 2085 } 2086 2087 ScheduleData *getScheduleData(Value *V) { 2088 ScheduleData *SD = ScheduleDataMap[V]; 2089 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2090 return SD; 2091 return nullptr; 2092 } 2093 2094 ScheduleData *getScheduleData(Value *V, Value *Key) { 2095 if (V == Key) 2096 return getScheduleData(V); 2097 auto I = ExtraScheduleDataMap.find(V); 2098 if (I != ExtraScheduleDataMap.end()) { 2099 ScheduleData *SD = I->second[Key]; 2100 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2101 return SD; 2102 } 2103 return nullptr; 2104 } 2105 2106 bool isInSchedulingRegion(ScheduleData *SD) const { 2107 return SD->SchedulingRegionID == SchedulingRegionID; 2108 } 2109 2110 /// Marks an instruction as scheduled and puts all dependent ready 2111 /// instructions into the ready-list. 2112 template <typename ReadyListType> 2113 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2114 SD->IsScheduled = true; 2115 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2116 2117 ScheduleData *BundleMember = SD; 2118 while (BundleMember) { 2119 if (BundleMember->Inst != BundleMember->OpValue) { 2120 BundleMember = BundleMember->NextInBundle; 2121 continue; 2122 } 2123 // Handle the def-use chain dependencies. 2124 2125 // Decrement the unscheduled counter and insert to ready list if ready. 2126 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2127 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2128 if (OpDef && OpDef->hasValidDependencies() && 2129 OpDef->incrementUnscheduledDeps(-1) == 0) { 2130 // There are no more unscheduled dependencies after 2131 // decrementing, so we can put the dependent instruction 2132 // into the ready list. 2133 ScheduleData *DepBundle = OpDef->FirstInBundle; 2134 assert(!DepBundle->IsScheduled && 2135 "already scheduled bundle gets ready"); 2136 ReadyList.insert(DepBundle); 2137 LLVM_DEBUG(dbgs() 2138 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2139 } 2140 }); 2141 }; 2142 2143 // If BundleMember is a vector bundle, its operands may have been 2144 // reordered duiring buildTree(). We therefore need to get its operands 2145 // through the TreeEntry. 2146 if (TreeEntry *TE = BundleMember->TE) { 2147 int Lane = BundleMember->Lane; 2148 assert(Lane >= 0 && "Lane not set"); 2149 2150 // Since vectorization tree is being built recursively this assertion 2151 // ensures that the tree entry has all operands set before reaching 2152 // this code. Couple of exceptions known at the moment are extracts 2153 // where their second (immediate) operand is not added. Since 2154 // immediates do not affect scheduler behavior this is considered 2155 // okay. 2156 auto *In = TE->getMainOp(); 2157 assert(In && 2158 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2159 In->getNumOperands() == TE->getNumOperands()) && 2160 "Missed TreeEntry operands?"); 2161 (void)In; // fake use to avoid build failure when assertions disabled 2162 2163 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2164 OpIdx != NumOperands; ++OpIdx) 2165 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2166 DecrUnsched(I); 2167 } else { 2168 // If BundleMember is a stand-alone instruction, no operand reordering 2169 // has taken place, so we directly access its operands. 2170 for (Use &U : BundleMember->Inst->operands()) 2171 if (auto *I = dyn_cast<Instruction>(U.get())) 2172 DecrUnsched(I); 2173 } 2174 // Handle the memory dependencies. 2175 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2176 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2177 // There are no more unscheduled dependencies after decrementing, 2178 // so we can put the dependent instruction into the ready list. 2179 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2180 assert(!DepBundle->IsScheduled && 2181 "already scheduled bundle gets ready"); 2182 ReadyList.insert(DepBundle); 2183 LLVM_DEBUG(dbgs() 2184 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2185 } 2186 } 2187 BundleMember = BundleMember->NextInBundle; 2188 } 2189 } 2190 2191 void doForAllOpcodes(Value *V, 2192 function_ref<void(ScheduleData *SD)> Action) { 2193 if (ScheduleData *SD = getScheduleData(V)) 2194 Action(SD); 2195 auto I = ExtraScheduleDataMap.find(V); 2196 if (I != ExtraScheduleDataMap.end()) 2197 for (auto &P : I->second) 2198 if (P.second->SchedulingRegionID == SchedulingRegionID) 2199 Action(P.second); 2200 } 2201 2202 /// Put all instructions into the ReadyList which are ready for scheduling. 2203 template <typename ReadyListType> 2204 void initialFillReadyList(ReadyListType &ReadyList) { 2205 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2206 doForAllOpcodes(I, [&](ScheduleData *SD) { 2207 if (SD->isSchedulingEntity() && SD->isReady()) { 2208 ReadyList.insert(SD); 2209 LLVM_DEBUG(dbgs() 2210 << "SLP: initially in ready list: " << *I << "\n"); 2211 } 2212 }); 2213 } 2214 } 2215 2216 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2217 /// cyclic dependencies. This is only a dry-run, no instructions are 2218 /// actually moved at this stage. 2219 /// \returns the scheduling bundle. The returned Optional value is non-None 2220 /// if \p VL is allowed to be scheduled. 2221 Optional<ScheduleData *> 2222 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2223 const InstructionsState &S); 2224 2225 /// Un-bundles a group of instructions. 2226 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2227 2228 /// Allocates schedule data chunk. 2229 ScheduleData *allocateScheduleDataChunks(); 2230 2231 /// Extends the scheduling region so that V is inside the region. 2232 /// \returns true if the region size is within the limit. 2233 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2234 2235 /// Initialize the ScheduleData structures for new instructions in the 2236 /// scheduling region. 2237 void initScheduleData(Instruction *FromI, Instruction *ToI, 2238 ScheduleData *PrevLoadStore, 2239 ScheduleData *NextLoadStore); 2240 2241 /// Updates the dependency information of a bundle and of all instructions/ 2242 /// bundles which depend on the original bundle. 2243 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2244 BoUpSLP *SLP); 2245 2246 /// Sets all instruction in the scheduling region to un-scheduled. 2247 void resetSchedule(); 2248 2249 BasicBlock *BB; 2250 2251 /// Simple memory allocation for ScheduleData. 2252 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2253 2254 /// The size of a ScheduleData array in ScheduleDataChunks. 2255 int ChunkSize; 2256 2257 /// The allocator position in the current chunk, which is the last entry 2258 /// of ScheduleDataChunks. 2259 int ChunkPos; 2260 2261 /// Attaches ScheduleData to Instruction. 2262 /// Note that the mapping survives during all vectorization iterations, i.e. 2263 /// ScheduleData structures are recycled. 2264 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2265 2266 /// Attaches ScheduleData to Instruction with the leading key. 2267 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2268 ExtraScheduleDataMap; 2269 2270 struct ReadyList : SmallVector<ScheduleData *, 8> { 2271 void insert(ScheduleData *SD) { push_back(SD); } 2272 }; 2273 2274 /// The ready-list for scheduling (only used for the dry-run). 2275 ReadyList ReadyInsts; 2276 2277 /// The first instruction of the scheduling region. 2278 Instruction *ScheduleStart = nullptr; 2279 2280 /// The first instruction _after_ the scheduling region. 2281 Instruction *ScheduleEnd = nullptr; 2282 2283 /// The first memory accessing instruction in the scheduling region 2284 /// (can be null). 2285 ScheduleData *FirstLoadStoreInRegion = nullptr; 2286 2287 /// The last memory accessing instruction in the scheduling region 2288 /// (can be null). 2289 ScheduleData *LastLoadStoreInRegion = nullptr; 2290 2291 /// The current size of the scheduling region. 2292 int ScheduleRegionSize = 0; 2293 2294 /// The maximum size allowed for the scheduling region. 2295 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2296 2297 /// The ID of the scheduling region. For a new vectorization iteration this 2298 /// is incremented which "removes" all ScheduleData from the region. 2299 // Make sure that the initial SchedulingRegionID is greater than the 2300 // initial SchedulingRegionID in ScheduleData (which is 0). 2301 int SchedulingRegionID = 1; 2302 }; 2303 2304 /// Attaches the BlockScheduling structures to basic blocks. 2305 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2306 2307 /// Performs the "real" scheduling. Done before vectorization is actually 2308 /// performed in a basic block. 2309 void scheduleBlock(BlockScheduling *BS); 2310 2311 /// List of users to ignore during scheduling and that don't need extracting. 2312 ArrayRef<Value *> UserIgnoreList; 2313 2314 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2315 /// sorted SmallVectors of unsigned. 2316 struct OrdersTypeDenseMapInfo { 2317 static OrdersType getEmptyKey() { 2318 OrdersType V; 2319 V.push_back(~1U); 2320 return V; 2321 } 2322 2323 static OrdersType getTombstoneKey() { 2324 OrdersType V; 2325 V.push_back(~2U); 2326 return V; 2327 } 2328 2329 static unsigned getHashValue(const OrdersType &V) { 2330 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2331 } 2332 2333 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2334 return LHS == RHS; 2335 } 2336 }; 2337 2338 /// Contains orders of operations along with the number of bundles that have 2339 /// operations in this order. It stores only those orders that require 2340 /// reordering, if reordering is not required it is counted using \a 2341 /// NumOpsWantToKeepOriginalOrder. 2342 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 2343 /// Number of bundles that do not require reordering. 2344 unsigned NumOpsWantToKeepOriginalOrder = 0; 2345 2346 // Analysis and block reference. 2347 Function *F; 2348 ScalarEvolution *SE; 2349 TargetTransformInfo *TTI; 2350 TargetLibraryInfo *TLI; 2351 AAResults *AA; 2352 LoopInfo *LI; 2353 DominatorTree *DT; 2354 AssumptionCache *AC; 2355 DemandedBits *DB; 2356 const DataLayout *DL; 2357 OptimizationRemarkEmitter *ORE; 2358 2359 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2360 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2361 2362 /// Instruction builder to construct the vectorized tree. 2363 IRBuilder<> Builder; 2364 2365 /// A map of scalar integer values to the smallest bit width with which they 2366 /// can legally be represented. The values map to (width, signed) pairs, 2367 /// where "width" indicates the minimum bit width and "signed" is True if the 2368 /// value must be signed-extended, rather than zero-extended, back to its 2369 /// original width. 2370 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2371 }; 2372 2373 } // end namespace slpvectorizer 2374 2375 template <> struct GraphTraits<BoUpSLP *> { 2376 using TreeEntry = BoUpSLP::TreeEntry; 2377 2378 /// NodeRef has to be a pointer per the GraphWriter. 2379 using NodeRef = TreeEntry *; 2380 2381 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2382 2383 /// Add the VectorizableTree to the index iterator to be able to return 2384 /// TreeEntry pointers. 2385 struct ChildIteratorType 2386 : public iterator_adaptor_base< 2387 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2388 ContainerTy &VectorizableTree; 2389 2390 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2391 ContainerTy &VT) 2392 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2393 2394 NodeRef operator*() { return I->UserTE; } 2395 }; 2396 2397 static NodeRef getEntryNode(BoUpSLP &R) { 2398 return R.VectorizableTree[0].get(); 2399 } 2400 2401 static ChildIteratorType child_begin(NodeRef N) { 2402 return {N->UserTreeIndices.begin(), N->Container}; 2403 } 2404 2405 static ChildIteratorType child_end(NodeRef N) { 2406 return {N->UserTreeIndices.end(), N->Container}; 2407 } 2408 2409 /// For the node iterator we just need to turn the TreeEntry iterator into a 2410 /// TreeEntry* iterator so that it dereferences to NodeRef. 2411 class nodes_iterator { 2412 using ItTy = ContainerTy::iterator; 2413 ItTy It; 2414 2415 public: 2416 nodes_iterator(const ItTy &It2) : It(It2) {} 2417 NodeRef operator*() { return It->get(); } 2418 nodes_iterator operator++() { 2419 ++It; 2420 return *this; 2421 } 2422 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2423 }; 2424 2425 static nodes_iterator nodes_begin(BoUpSLP *R) { 2426 return nodes_iterator(R->VectorizableTree.begin()); 2427 } 2428 2429 static nodes_iterator nodes_end(BoUpSLP *R) { 2430 return nodes_iterator(R->VectorizableTree.end()); 2431 } 2432 2433 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2434 }; 2435 2436 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2437 using TreeEntry = BoUpSLP::TreeEntry; 2438 2439 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2440 2441 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2442 std::string Str; 2443 raw_string_ostream OS(Str); 2444 if (isSplat(Entry->Scalars)) { 2445 OS << "<splat> " << *Entry->Scalars[0]; 2446 return Str; 2447 } 2448 for (auto V : Entry->Scalars) { 2449 OS << *V; 2450 if (std::any_of( 2451 R->ExternalUses.begin(), R->ExternalUses.end(), 2452 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 2453 OS << " <extract>"; 2454 OS << "\n"; 2455 } 2456 return Str; 2457 } 2458 2459 static std::string getNodeAttributes(const TreeEntry *Entry, 2460 const BoUpSLP *) { 2461 if (Entry->State == TreeEntry::NeedToGather) 2462 return "color=red"; 2463 return ""; 2464 } 2465 }; 2466 2467 } // end namespace llvm 2468 2469 BoUpSLP::~BoUpSLP() { 2470 for (const auto &Pair : DeletedInstructions) { 2471 // Replace operands of ignored instructions with Undefs in case if they were 2472 // marked for deletion. 2473 if (Pair.getSecond()) { 2474 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2475 Pair.getFirst()->replaceAllUsesWith(Undef); 2476 } 2477 Pair.getFirst()->dropAllReferences(); 2478 } 2479 for (const auto &Pair : DeletedInstructions) { 2480 assert(Pair.getFirst()->use_empty() && 2481 "trying to erase instruction with users."); 2482 Pair.getFirst()->eraseFromParent(); 2483 } 2484 assert(!verifyFunction(*F, &dbgs())); 2485 } 2486 2487 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2488 for (auto *V : AV) { 2489 if (auto *I = dyn_cast<Instruction>(V)) 2490 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 2491 }; 2492 } 2493 2494 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2495 ArrayRef<Value *> UserIgnoreLst) { 2496 ExtraValueToDebugLocsMap ExternallyUsedValues; 2497 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 2498 } 2499 2500 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2501 ExtraValueToDebugLocsMap &ExternallyUsedValues, 2502 ArrayRef<Value *> UserIgnoreLst) { 2503 deleteTree(); 2504 UserIgnoreList = UserIgnoreLst; 2505 if (!allSameType(Roots)) 2506 return; 2507 buildTree_rec(Roots, 0, EdgeInfo()); 2508 2509 // Collect the values that we need to extract from the tree. 2510 for (auto &TEPtr : VectorizableTree) { 2511 TreeEntry *Entry = TEPtr.get(); 2512 2513 // No need to handle users of gathered values. 2514 if (Entry->State == TreeEntry::NeedToGather) 2515 continue; 2516 2517 // For each lane: 2518 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2519 Value *Scalar = Entry->Scalars[Lane]; 2520 int FoundLane = Lane; 2521 if (!Entry->ReuseShuffleIndices.empty()) { 2522 FoundLane = 2523 std::distance(Entry->ReuseShuffleIndices.begin(), 2524 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 2525 } 2526 2527 // Check if the scalar is externally used as an extra arg. 2528 auto ExtI = ExternallyUsedValues.find(Scalar); 2529 if (ExtI != ExternallyUsedValues.end()) { 2530 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 2531 << Lane << " from " << *Scalar << ".\n"); 2532 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 2533 } 2534 for (User *U : Scalar->users()) { 2535 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 2536 2537 Instruction *UserInst = dyn_cast<Instruction>(U); 2538 if (!UserInst) 2539 continue; 2540 2541 // Skip in-tree scalars that become vectors 2542 if (TreeEntry *UseEntry = getTreeEntry(U)) { 2543 Value *UseScalar = UseEntry->Scalars[0]; 2544 // Some in-tree scalars will remain as scalar in vectorized 2545 // instructions. If that is the case, the one in Lane 0 will 2546 // be used. 2547 if (UseScalar != U || 2548 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 2549 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 2550 << ".\n"); 2551 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 2552 continue; 2553 } 2554 } 2555 2556 // Ignore users in the user ignore list. 2557 if (is_contained(UserIgnoreList, UserInst)) 2558 continue; 2559 2560 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 2561 << Lane << " from " << *Scalar << ".\n"); 2562 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 2563 } 2564 } 2565 } 2566 } 2567 2568 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 2569 const EdgeInfo &UserTreeIdx) { 2570 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 2571 2572 InstructionsState S = getSameOpcode(VL); 2573 if (Depth == RecursionMaxDepth) { 2574 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 2575 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2576 return; 2577 } 2578 2579 // Don't handle vectors. 2580 if (S.OpValue->getType()->isVectorTy()) { 2581 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 2582 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2583 return; 2584 } 2585 2586 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2587 if (SI->getValueOperand()->getType()->isVectorTy()) { 2588 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 2589 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2590 return; 2591 } 2592 2593 // If all of the operands are identical or constant we have a simple solution. 2594 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 2595 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 2596 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2597 return; 2598 } 2599 2600 // We now know that this is a vector of instructions of the same type from 2601 // the same block. 2602 2603 // Don't vectorize ephemeral values. 2604 for (Value *V : VL) { 2605 if (EphValues.count(V)) { 2606 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2607 << ") is ephemeral.\n"); 2608 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2609 return; 2610 } 2611 } 2612 2613 // Check if this is a duplicate of another entry. 2614 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2615 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 2616 if (!E->isSame(VL)) { 2617 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 2618 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2619 return; 2620 } 2621 // Record the reuse of the tree node. FIXME, currently this is only used to 2622 // properly draw the graph rather than for the actual vectorization. 2623 E->UserTreeIndices.push_back(UserTreeIdx); 2624 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 2625 << ".\n"); 2626 return; 2627 } 2628 2629 // Check that none of the instructions in the bundle are already in the tree. 2630 for (Value *V : VL) { 2631 auto *I = dyn_cast<Instruction>(V); 2632 if (!I) 2633 continue; 2634 if (getTreeEntry(I)) { 2635 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2636 << ") is already in tree.\n"); 2637 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2638 return; 2639 } 2640 } 2641 2642 // If any of the scalars is marked as a value that needs to stay scalar, then 2643 // we need to gather the scalars. 2644 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 2645 for (Value *V : VL) { 2646 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 2647 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 2648 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2649 return; 2650 } 2651 } 2652 2653 // Check that all of the users of the scalars that we want to vectorize are 2654 // schedulable. 2655 auto *VL0 = cast<Instruction>(S.OpValue); 2656 BasicBlock *BB = VL0->getParent(); 2657 2658 if (!DT->isReachableFromEntry(BB)) { 2659 // Don't go into unreachable blocks. They may contain instructions with 2660 // dependency cycles which confuse the final scheduling. 2661 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 2662 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2663 return; 2664 } 2665 2666 // Check that every instruction appears once in this bundle. 2667 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2668 SmallVector<Value *, 4> UniqueValues; 2669 DenseMap<Value *, unsigned> UniquePositions; 2670 for (Value *V : VL) { 2671 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2672 ReuseShuffleIndicies.emplace_back(Res.first->second); 2673 if (Res.second) 2674 UniqueValues.emplace_back(V); 2675 } 2676 size_t NumUniqueScalarValues = UniqueValues.size(); 2677 if (NumUniqueScalarValues == VL.size()) { 2678 ReuseShuffleIndicies.clear(); 2679 } else { 2680 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 2681 if (NumUniqueScalarValues <= 1 || 2682 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 2683 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 2684 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2685 return; 2686 } 2687 VL = UniqueValues; 2688 } 2689 2690 auto &BSRef = BlocksSchedules[BB]; 2691 if (!BSRef) 2692 BSRef = std::make_unique<BlockScheduling>(BB); 2693 2694 BlockScheduling &BS = *BSRef.get(); 2695 2696 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 2697 if (!Bundle) { 2698 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 2699 assert((!BS.getScheduleData(VL0) || 2700 !BS.getScheduleData(VL0)->isPartOfBundle()) && 2701 "tryScheduleBundle should cancelScheduling on failure"); 2702 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2703 ReuseShuffleIndicies); 2704 return; 2705 } 2706 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 2707 2708 unsigned ShuffleOrOp = S.isAltShuffle() ? 2709 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2710 switch (ShuffleOrOp) { 2711 case Instruction::PHI: { 2712 auto *PH = cast<PHINode>(VL0); 2713 2714 // Check for terminator values (e.g. invoke). 2715 for (Value *V : VL) 2716 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 2717 Instruction *Term = dyn_cast<Instruction>( 2718 cast<PHINode>(V)->getIncomingValueForBlock( 2719 PH->getIncomingBlock(I))); 2720 if (Term && Term->isTerminator()) { 2721 LLVM_DEBUG(dbgs() 2722 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 2723 BS.cancelScheduling(VL, VL0); 2724 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2725 ReuseShuffleIndicies); 2726 return; 2727 } 2728 } 2729 2730 TreeEntry *TE = 2731 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 2732 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 2733 2734 // Keeps the reordered operands to avoid code duplication. 2735 SmallVector<ValueList, 2> OperandsVec; 2736 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 2737 ValueList Operands; 2738 // Prepare the operand vector. 2739 for (Value *V : VL) 2740 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 2741 PH->getIncomingBlock(I))); 2742 TE->setOperand(I, Operands); 2743 OperandsVec.push_back(Operands); 2744 } 2745 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 2746 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 2747 return; 2748 } 2749 case Instruction::ExtractValue: 2750 case Instruction::ExtractElement: { 2751 OrdersType CurrentOrder; 2752 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 2753 if (Reuse) { 2754 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 2755 ++NumOpsWantToKeepOriginalOrder; 2756 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2757 ReuseShuffleIndicies); 2758 // This is a special case, as it does not gather, but at the same time 2759 // we are not extending buildTree_rec() towards the operands. 2760 ValueList Op0; 2761 Op0.assign(VL.size(), VL0->getOperand(0)); 2762 VectorizableTree.back()->setOperand(0, Op0); 2763 return; 2764 } 2765 if (!CurrentOrder.empty()) { 2766 LLVM_DEBUG({ 2767 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 2768 "with order"; 2769 for (unsigned Idx : CurrentOrder) 2770 dbgs() << " " << Idx; 2771 dbgs() << "\n"; 2772 }); 2773 // Insert new order with initial value 0, if it does not exist, 2774 // otherwise return the iterator to the existing one. 2775 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2776 ReuseShuffleIndicies, CurrentOrder); 2777 findRootOrder(CurrentOrder); 2778 ++NumOpsWantToKeepOrder[CurrentOrder]; 2779 // This is a special case, as it does not gather, but at the same time 2780 // we are not extending buildTree_rec() towards the operands. 2781 ValueList Op0; 2782 Op0.assign(VL.size(), VL0->getOperand(0)); 2783 VectorizableTree.back()->setOperand(0, Op0); 2784 return; 2785 } 2786 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 2787 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2788 ReuseShuffleIndicies); 2789 BS.cancelScheduling(VL, VL0); 2790 return; 2791 } 2792 case Instruction::Load: { 2793 // Check that a vectorized load would load the same memory as a scalar 2794 // load. For example, we don't want to vectorize loads that are smaller 2795 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 2796 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 2797 // from such a struct, we read/write packed bits disagreeing with the 2798 // unvectorized version. 2799 Type *ScalarTy = VL0->getType(); 2800 2801 if (DL->getTypeSizeInBits(ScalarTy) != 2802 DL->getTypeAllocSizeInBits(ScalarTy)) { 2803 BS.cancelScheduling(VL, VL0); 2804 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2805 ReuseShuffleIndicies); 2806 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 2807 return; 2808 } 2809 2810 // Make sure all loads in the bundle are simple - we can't vectorize 2811 // atomic or volatile loads. 2812 SmallVector<Value *, 4> PointerOps(VL.size()); 2813 auto POIter = PointerOps.begin(); 2814 for (Value *V : VL) { 2815 auto *L = cast<LoadInst>(V); 2816 if (!L->isSimple()) { 2817 BS.cancelScheduling(VL, VL0); 2818 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2819 ReuseShuffleIndicies); 2820 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 2821 return; 2822 } 2823 *POIter = L->getPointerOperand(); 2824 ++POIter; 2825 } 2826 2827 OrdersType CurrentOrder; 2828 // Check the order of pointer operands. 2829 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2830 Value *Ptr0; 2831 Value *PtrN; 2832 if (CurrentOrder.empty()) { 2833 Ptr0 = PointerOps.front(); 2834 PtrN = PointerOps.back(); 2835 } else { 2836 Ptr0 = PointerOps[CurrentOrder.front()]; 2837 PtrN = PointerOps[CurrentOrder.back()]; 2838 } 2839 const SCEV *Scev0 = SE->getSCEV(Ptr0); 2840 const SCEV *ScevN = SE->getSCEV(PtrN); 2841 const auto *Diff = 2842 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 2843 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 2844 // Check that the sorted loads are consecutive. 2845 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 2846 if (CurrentOrder.empty()) { 2847 // Original loads are consecutive and does not require reordering. 2848 ++NumOpsWantToKeepOriginalOrder; 2849 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 2850 UserTreeIdx, ReuseShuffleIndicies); 2851 TE->setOperandsInOrder(); 2852 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 2853 } else { 2854 // Need to reorder. 2855 TreeEntry *TE = 2856 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2857 ReuseShuffleIndicies, CurrentOrder); 2858 TE->setOperandsInOrder(); 2859 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 2860 findRootOrder(CurrentOrder); 2861 ++NumOpsWantToKeepOrder[CurrentOrder]; 2862 } 2863 return; 2864 } 2865 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 2866 TreeEntry *TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 2867 UserTreeIdx, ReuseShuffleIndicies); 2868 TE->setOperandsInOrder(); 2869 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 2870 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 2871 return; 2872 } 2873 2874 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 2875 BS.cancelScheduling(VL, VL0); 2876 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2877 ReuseShuffleIndicies); 2878 return; 2879 } 2880 case Instruction::ZExt: 2881 case Instruction::SExt: 2882 case Instruction::FPToUI: 2883 case Instruction::FPToSI: 2884 case Instruction::FPExt: 2885 case Instruction::PtrToInt: 2886 case Instruction::IntToPtr: 2887 case Instruction::SIToFP: 2888 case Instruction::UIToFP: 2889 case Instruction::Trunc: 2890 case Instruction::FPTrunc: 2891 case Instruction::BitCast: { 2892 Type *SrcTy = VL0->getOperand(0)->getType(); 2893 for (Value *V : VL) { 2894 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 2895 if (Ty != SrcTy || !isValidElementType(Ty)) { 2896 BS.cancelScheduling(VL, VL0); 2897 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2898 ReuseShuffleIndicies); 2899 LLVM_DEBUG(dbgs() 2900 << "SLP: Gathering casts with different src types.\n"); 2901 return; 2902 } 2903 } 2904 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2905 ReuseShuffleIndicies); 2906 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 2907 2908 TE->setOperandsInOrder(); 2909 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2910 ValueList Operands; 2911 // Prepare the operand vector. 2912 for (Value *V : VL) 2913 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2914 2915 buildTree_rec(Operands, Depth + 1, {TE, i}); 2916 } 2917 return; 2918 } 2919 case Instruction::ICmp: 2920 case Instruction::FCmp: { 2921 // Check that all of the compares have the same predicate. 2922 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2923 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 2924 Type *ComparedTy = VL0->getOperand(0)->getType(); 2925 for (Value *V : VL) { 2926 CmpInst *Cmp = cast<CmpInst>(V); 2927 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 2928 Cmp->getOperand(0)->getType() != ComparedTy) { 2929 BS.cancelScheduling(VL, VL0); 2930 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2931 ReuseShuffleIndicies); 2932 LLVM_DEBUG(dbgs() 2933 << "SLP: Gathering cmp with different predicate.\n"); 2934 return; 2935 } 2936 } 2937 2938 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2939 ReuseShuffleIndicies); 2940 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 2941 2942 ValueList Left, Right; 2943 if (cast<CmpInst>(VL0)->isCommutative()) { 2944 // Commutative predicate - collect + sort operands of the instructions 2945 // so that each side is more likely to have the same opcode. 2946 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 2947 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 2948 } else { 2949 // Collect operands - commute if it uses the swapped predicate. 2950 for (Value *V : VL) { 2951 auto *Cmp = cast<CmpInst>(V); 2952 Value *LHS = Cmp->getOperand(0); 2953 Value *RHS = Cmp->getOperand(1); 2954 if (Cmp->getPredicate() != P0) 2955 std::swap(LHS, RHS); 2956 Left.push_back(LHS); 2957 Right.push_back(RHS); 2958 } 2959 } 2960 TE->setOperand(0, Left); 2961 TE->setOperand(1, Right); 2962 buildTree_rec(Left, Depth + 1, {TE, 0}); 2963 buildTree_rec(Right, Depth + 1, {TE, 1}); 2964 return; 2965 } 2966 case Instruction::Select: 2967 case Instruction::FNeg: 2968 case Instruction::Add: 2969 case Instruction::FAdd: 2970 case Instruction::Sub: 2971 case Instruction::FSub: 2972 case Instruction::Mul: 2973 case Instruction::FMul: 2974 case Instruction::UDiv: 2975 case Instruction::SDiv: 2976 case Instruction::FDiv: 2977 case Instruction::URem: 2978 case Instruction::SRem: 2979 case Instruction::FRem: 2980 case Instruction::Shl: 2981 case Instruction::LShr: 2982 case Instruction::AShr: 2983 case Instruction::And: 2984 case Instruction::Or: 2985 case Instruction::Xor: { 2986 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2987 ReuseShuffleIndicies); 2988 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 2989 2990 // Sort operands of the instructions so that each side is more likely to 2991 // have the same opcode. 2992 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 2993 ValueList Left, Right; 2994 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 2995 TE->setOperand(0, Left); 2996 TE->setOperand(1, Right); 2997 buildTree_rec(Left, Depth + 1, {TE, 0}); 2998 buildTree_rec(Right, Depth + 1, {TE, 1}); 2999 return; 3000 } 3001 3002 TE->setOperandsInOrder(); 3003 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3004 ValueList Operands; 3005 // Prepare the operand vector. 3006 for (Value *V : VL) 3007 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3008 3009 buildTree_rec(Operands, Depth + 1, {TE, i}); 3010 } 3011 return; 3012 } 3013 case Instruction::GetElementPtr: { 3014 // We don't combine GEPs with complicated (nested) indexing. 3015 for (Value *V : VL) { 3016 if (cast<Instruction>(V)->getNumOperands() != 2) { 3017 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 3018 BS.cancelScheduling(VL, VL0); 3019 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3020 ReuseShuffleIndicies); 3021 return; 3022 } 3023 } 3024 3025 // We can't combine several GEPs into one vector if they operate on 3026 // different types. 3027 Type *Ty0 = VL0->getOperand(0)->getType(); 3028 for (Value *V : VL) { 3029 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 3030 if (Ty0 != CurTy) { 3031 LLVM_DEBUG(dbgs() 3032 << "SLP: not-vectorizable GEP (different types).\n"); 3033 BS.cancelScheduling(VL, VL0); 3034 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3035 ReuseShuffleIndicies); 3036 return; 3037 } 3038 } 3039 3040 // We don't combine GEPs with non-constant indexes. 3041 Type *Ty1 = VL0->getOperand(1)->getType(); 3042 for (Value *V : VL) { 3043 auto Op = cast<Instruction>(V)->getOperand(1); 3044 if (!isa<ConstantInt>(Op) || 3045 (Op->getType() != Ty1 && 3046 Op->getType()->getScalarSizeInBits() > 3047 DL->getIndexSizeInBits( 3048 V->getType()->getPointerAddressSpace()))) { 3049 LLVM_DEBUG(dbgs() 3050 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 3051 BS.cancelScheduling(VL, VL0); 3052 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3053 ReuseShuffleIndicies); 3054 return; 3055 } 3056 } 3057 3058 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3059 ReuseShuffleIndicies); 3060 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 3061 TE->setOperandsInOrder(); 3062 for (unsigned i = 0, e = 2; i < e; ++i) { 3063 ValueList Operands; 3064 // Prepare the operand vector. 3065 for (Value *V : VL) 3066 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3067 3068 buildTree_rec(Operands, Depth + 1, {TE, i}); 3069 } 3070 return; 3071 } 3072 case Instruction::Store: { 3073 // Check if the stores are consecutive or if we need to swizzle them. 3074 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 3075 // Make sure all stores in the bundle are simple - we can't vectorize 3076 // atomic or volatile stores. 3077 SmallVector<Value *, 4> PointerOps(VL.size()); 3078 ValueList Operands(VL.size()); 3079 auto POIter = PointerOps.begin(); 3080 auto OIter = Operands.begin(); 3081 for (Value *V : VL) { 3082 auto *SI = cast<StoreInst>(V); 3083 if (!SI->isSimple()) { 3084 BS.cancelScheduling(VL, VL0); 3085 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3086 ReuseShuffleIndicies); 3087 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 3088 return; 3089 } 3090 *POIter = SI->getPointerOperand(); 3091 *OIter = SI->getValueOperand(); 3092 ++POIter; 3093 ++OIter; 3094 } 3095 3096 OrdersType CurrentOrder; 3097 // Check the order of pointer operands. 3098 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 3099 Value *Ptr0; 3100 Value *PtrN; 3101 if (CurrentOrder.empty()) { 3102 Ptr0 = PointerOps.front(); 3103 PtrN = PointerOps.back(); 3104 } else { 3105 Ptr0 = PointerOps[CurrentOrder.front()]; 3106 PtrN = PointerOps[CurrentOrder.back()]; 3107 } 3108 const SCEV *Scev0 = SE->getSCEV(Ptr0); 3109 const SCEV *ScevN = SE->getSCEV(PtrN); 3110 const auto *Diff = 3111 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 3112 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 3113 // Check that the sorted pointer operands are consecutive. 3114 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 3115 if (CurrentOrder.empty()) { 3116 // Original stores are consecutive and does not require reordering. 3117 ++NumOpsWantToKeepOriginalOrder; 3118 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 3119 UserTreeIdx, ReuseShuffleIndicies); 3120 TE->setOperandsInOrder(); 3121 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3122 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 3123 } else { 3124 TreeEntry *TE = 3125 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3126 ReuseShuffleIndicies, CurrentOrder); 3127 TE->setOperandsInOrder(); 3128 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3129 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 3130 findRootOrder(CurrentOrder); 3131 ++NumOpsWantToKeepOrder[CurrentOrder]; 3132 } 3133 return; 3134 } 3135 } 3136 3137 BS.cancelScheduling(VL, VL0); 3138 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3139 ReuseShuffleIndicies); 3140 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 3141 return; 3142 } 3143 case Instruction::Call: { 3144 // Check if the calls are all to the same vectorizable intrinsic or 3145 // library function. 3146 CallInst *CI = cast<CallInst>(VL0); 3147 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3148 3149 VFShape Shape = VFShape::get( 3150 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 3151 false /*HasGlobalPred*/); 3152 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3153 3154 if (!VecFunc && !isTriviallyVectorizable(ID)) { 3155 BS.cancelScheduling(VL, VL0); 3156 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3157 ReuseShuffleIndicies); 3158 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 3159 return; 3160 } 3161 Function *F = CI->getCalledFunction(); 3162 unsigned NumArgs = CI->getNumArgOperands(); 3163 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 3164 for (unsigned j = 0; j != NumArgs; ++j) 3165 if (hasVectorInstrinsicScalarOpd(ID, j)) 3166 ScalarArgs[j] = CI->getArgOperand(j); 3167 for (Value *V : VL) { 3168 CallInst *CI2 = dyn_cast<CallInst>(V); 3169 if (!CI2 || CI2->getCalledFunction() != F || 3170 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 3171 (VecFunc && 3172 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 3173 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 3174 BS.cancelScheduling(VL, VL0); 3175 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3176 ReuseShuffleIndicies); 3177 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 3178 << "\n"); 3179 return; 3180 } 3181 // Some intrinsics have scalar arguments and should be same in order for 3182 // them to be vectorized. 3183 for (unsigned j = 0; j != NumArgs; ++j) { 3184 if (hasVectorInstrinsicScalarOpd(ID, j)) { 3185 Value *A1J = CI2->getArgOperand(j); 3186 if (ScalarArgs[j] != A1J) { 3187 BS.cancelScheduling(VL, VL0); 3188 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3189 ReuseShuffleIndicies); 3190 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 3191 << " argument " << ScalarArgs[j] << "!=" << A1J 3192 << "\n"); 3193 return; 3194 } 3195 } 3196 } 3197 // Verify that the bundle operands are identical between the two calls. 3198 if (CI->hasOperandBundles() && 3199 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 3200 CI->op_begin() + CI->getBundleOperandsEndIndex(), 3201 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 3202 BS.cancelScheduling(VL, VL0); 3203 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3204 ReuseShuffleIndicies); 3205 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 3206 << *CI << "!=" << *V << '\n'); 3207 return; 3208 } 3209 } 3210 3211 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3212 ReuseShuffleIndicies); 3213 TE->setOperandsInOrder(); 3214 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 3215 ValueList Operands; 3216 // Prepare the operand vector. 3217 for (Value *V : VL) { 3218 auto *CI2 = cast<CallInst>(V); 3219 Operands.push_back(CI2->getArgOperand(i)); 3220 } 3221 buildTree_rec(Operands, Depth + 1, {TE, i}); 3222 } 3223 return; 3224 } 3225 case Instruction::ShuffleVector: { 3226 // If this is not an alternate sequence of opcode like add-sub 3227 // then do not vectorize this instruction. 3228 if (!S.isAltShuffle()) { 3229 BS.cancelScheduling(VL, VL0); 3230 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3231 ReuseShuffleIndicies); 3232 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 3233 return; 3234 } 3235 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3236 ReuseShuffleIndicies); 3237 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 3238 3239 // Reorder operands if reordering would enable vectorization. 3240 if (isa<BinaryOperator>(VL0)) { 3241 ValueList Left, Right; 3242 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3243 TE->setOperand(0, Left); 3244 TE->setOperand(1, Right); 3245 buildTree_rec(Left, Depth + 1, {TE, 0}); 3246 buildTree_rec(Right, Depth + 1, {TE, 1}); 3247 return; 3248 } 3249 3250 TE->setOperandsInOrder(); 3251 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3252 ValueList Operands; 3253 // Prepare the operand vector. 3254 for (Value *V : VL) 3255 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3256 3257 buildTree_rec(Operands, Depth + 1, {TE, i}); 3258 } 3259 return; 3260 } 3261 default: 3262 BS.cancelScheduling(VL, VL0); 3263 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3264 ReuseShuffleIndicies); 3265 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 3266 return; 3267 } 3268 } 3269 3270 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 3271 unsigned N = 1; 3272 Type *EltTy = T; 3273 3274 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 3275 isa<VectorType>(EltTy)) { 3276 if (auto *ST = dyn_cast<StructType>(EltTy)) { 3277 // Check that struct is homogeneous. 3278 for (const auto *Ty : ST->elements()) 3279 if (Ty != *ST->element_begin()) 3280 return 0; 3281 N *= ST->getNumElements(); 3282 EltTy = *ST->element_begin(); 3283 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 3284 N *= AT->getNumElements(); 3285 EltTy = AT->getElementType(); 3286 } else { 3287 auto *VT = cast<FixedVectorType>(EltTy); 3288 N *= VT->getNumElements(); 3289 EltTy = VT->getElementType(); 3290 } 3291 } 3292 3293 if (!isValidElementType(EltTy)) 3294 return 0; 3295 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 3296 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 3297 return 0; 3298 return N; 3299 } 3300 3301 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 3302 SmallVectorImpl<unsigned> &CurrentOrder) const { 3303 Instruction *E0 = cast<Instruction>(OpValue); 3304 assert(E0->getOpcode() == Instruction::ExtractElement || 3305 E0->getOpcode() == Instruction::ExtractValue); 3306 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 3307 // Check if all of the extracts come from the same vector and from the 3308 // correct offset. 3309 Value *Vec = E0->getOperand(0); 3310 3311 CurrentOrder.clear(); 3312 3313 // We have to extract from a vector/aggregate with the same number of elements. 3314 unsigned NElts; 3315 if (E0->getOpcode() == Instruction::ExtractValue) { 3316 const DataLayout &DL = E0->getModule()->getDataLayout(); 3317 NElts = canMapToVector(Vec->getType(), DL); 3318 if (!NElts) 3319 return false; 3320 // Check if load can be rewritten as load of vector. 3321 LoadInst *LI = dyn_cast<LoadInst>(Vec); 3322 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 3323 return false; 3324 } else { 3325 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 3326 } 3327 3328 if (NElts != VL.size()) 3329 return false; 3330 3331 // Check that all of the indices extract from the correct offset. 3332 bool ShouldKeepOrder = true; 3333 unsigned E = VL.size(); 3334 // Assign to all items the initial value E + 1 so we can check if the extract 3335 // instruction index was used already. 3336 // Also, later we can check that all the indices are used and we have a 3337 // consecutive access in the extract instructions, by checking that no 3338 // element of CurrentOrder still has value E + 1. 3339 CurrentOrder.assign(E, E + 1); 3340 unsigned I = 0; 3341 for (; I < E; ++I) { 3342 auto *Inst = cast<Instruction>(VL[I]); 3343 if (Inst->getOperand(0) != Vec) 3344 break; 3345 Optional<unsigned> Idx = getExtractIndex(Inst); 3346 if (!Idx) 3347 break; 3348 const unsigned ExtIdx = *Idx; 3349 if (ExtIdx != I) { 3350 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 3351 break; 3352 ShouldKeepOrder = false; 3353 CurrentOrder[ExtIdx] = I; 3354 } else { 3355 if (CurrentOrder[I] != E + 1) 3356 break; 3357 CurrentOrder[I] = I; 3358 } 3359 } 3360 if (I < E) { 3361 CurrentOrder.clear(); 3362 return false; 3363 } 3364 3365 return ShouldKeepOrder; 3366 } 3367 3368 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 3369 return I->hasOneUse() || 3370 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 3371 return ScalarToTreeEntry.count(U) > 0; 3372 }); 3373 } 3374 3375 static std::pair<unsigned, unsigned> 3376 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 3377 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 3378 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3379 3380 // Calculate the cost of the scalar and vector calls. 3381 IntrinsicCostAttributes CostAttrs(ID, *CI, VecTy->getNumElements()); 3382 int IntrinsicCost = 3383 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 3384 3385 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 3386 VecTy->getNumElements())), 3387 false /*HasGlobalPred*/); 3388 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3389 int LibCost = IntrinsicCost; 3390 if (!CI->isNoBuiltin() && VecFunc) { 3391 // Calculate the cost of the vector library call. 3392 SmallVector<Type *, 4> VecTys; 3393 for (Use &Arg : CI->args()) 3394 VecTys.push_back( 3395 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 3396 3397 // If the corresponding vector call is cheaper, return its cost. 3398 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 3399 TTI::TCK_RecipThroughput); 3400 } 3401 return {IntrinsicCost, LibCost}; 3402 } 3403 3404 int BoUpSLP::getEntryCost(TreeEntry *E) { 3405 ArrayRef<Value*> VL = E->Scalars; 3406 3407 Type *ScalarTy = VL[0]->getType(); 3408 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3409 ScalarTy = SI->getValueOperand()->getType(); 3410 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 3411 ScalarTy = CI->getOperand(0)->getType(); 3412 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 3413 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 3414 3415 // If we have computed a smaller type for the expression, update VecTy so 3416 // that the costs will be accurate. 3417 if (MinBWs.count(VL[0])) 3418 VecTy = FixedVectorType::get( 3419 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 3420 3421 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 3422 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3423 int ReuseShuffleCost = 0; 3424 if (NeedToShuffleReuses) { 3425 ReuseShuffleCost = 3426 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3427 } 3428 if (E->State == TreeEntry::NeedToGather) { 3429 if (allConstant(VL)) 3430 return 0; 3431 if (isSplat(VL)) { 3432 return ReuseShuffleCost + 3433 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 3434 } 3435 if (E->getOpcode() == Instruction::ExtractElement && 3436 allSameType(VL) && allSameBlock(VL)) { 3437 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 3438 if (ShuffleKind.hasValue()) { 3439 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 3440 for (auto *V : VL) { 3441 // If all users of instruction are going to be vectorized and this 3442 // instruction itself is not going to be vectorized, consider this 3443 // instruction as dead and remove its cost from the final cost of the 3444 // vectorized tree. 3445 if (areAllUsersVectorized(cast<Instruction>(V)) && 3446 !ScalarToTreeEntry.count(V)) { 3447 auto *IO = cast<ConstantInt>( 3448 cast<ExtractElementInst>(V)->getIndexOperand()); 3449 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 3450 IO->getZExtValue()); 3451 } 3452 } 3453 return ReuseShuffleCost + Cost; 3454 } 3455 } 3456 return ReuseShuffleCost + getGatherCost(VL); 3457 } 3458 assert((E->State == TreeEntry::Vectorize || 3459 E->State == TreeEntry::ScatterVectorize) && 3460 "Unhandled state"); 3461 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 3462 Instruction *VL0 = E->getMainOp(); 3463 unsigned ShuffleOrOp = 3464 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 3465 switch (ShuffleOrOp) { 3466 case Instruction::PHI: 3467 return 0; 3468 3469 case Instruction::ExtractValue: 3470 case Instruction::ExtractElement: { 3471 if (NeedToShuffleReuses) { 3472 unsigned Idx = 0; 3473 for (unsigned I : E->ReuseShuffleIndices) { 3474 if (ShuffleOrOp == Instruction::ExtractElement) { 3475 auto *IO = cast<ConstantInt>( 3476 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 3477 Idx = IO->getZExtValue(); 3478 ReuseShuffleCost -= TTI->getVectorInstrCost( 3479 Instruction::ExtractElement, VecTy, Idx); 3480 } else { 3481 ReuseShuffleCost -= TTI->getVectorInstrCost( 3482 Instruction::ExtractElement, VecTy, Idx); 3483 ++Idx; 3484 } 3485 } 3486 Idx = ReuseShuffleNumbers; 3487 for (Value *V : VL) { 3488 if (ShuffleOrOp == Instruction::ExtractElement) { 3489 auto *IO = cast<ConstantInt>( 3490 cast<ExtractElementInst>(V)->getIndexOperand()); 3491 Idx = IO->getZExtValue(); 3492 } else { 3493 --Idx; 3494 } 3495 ReuseShuffleCost += 3496 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 3497 } 3498 } 3499 int DeadCost = ReuseShuffleCost; 3500 if (!E->ReorderIndices.empty()) { 3501 // TODO: Merge this shuffle with the ReuseShuffleCost. 3502 DeadCost += TTI->getShuffleCost( 3503 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3504 } 3505 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 3506 Instruction *EI = cast<Instruction>(VL[I]); 3507 // If all users are going to be vectorized, instruction can be 3508 // considered as dead. 3509 // The same, if have only one user, it will be vectorized for sure. 3510 if (areAllUsersVectorized(EI)) { 3511 // Take credit for instruction that will become dead. 3512 if (EI->hasOneUse()) { 3513 Instruction *Ext = EI->user_back(); 3514 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3515 all_of(Ext->users(), 3516 [](User *U) { return isa<GetElementPtrInst>(U); })) { 3517 // Use getExtractWithExtendCost() to calculate the cost of 3518 // extractelement/ext pair. 3519 DeadCost -= TTI->getExtractWithExtendCost( 3520 Ext->getOpcode(), Ext->getType(), VecTy, I); 3521 // Add back the cost of s|zext which is subtracted separately. 3522 DeadCost += TTI->getCastInstrCost( 3523 Ext->getOpcode(), Ext->getType(), EI->getType(), 3524 TTI::getCastContextHint(Ext), CostKind, Ext); 3525 continue; 3526 } 3527 } 3528 DeadCost -= 3529 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 3530 } 3531 } 3532 return DeadCost; 3533 } 3534 case Instruction::ZExt: 3535 case Instruction::SExt: 3536 case Instruction::FPToUI: 3537 case Instruction::FPToSI: 3538 case Instruction::FPExt: 3539 case Instruction::PtrToInt: 3540 case Instruction::IntToPtr: 3541 case Instruction::SIToFP: 3542 case Instruction::UIToFP: 3543 case Instruction::Trunc: 3544 case Instruction::FPTrunc: 3545 case Instruction::BitCast: { 3546 Type *SrcTy = VL0->getOperand(0)->getType(); 3547 int ScalarEltCost = 3548 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 3549 TTI::getCastContextHint(VL0), CostKind, VL0); 3550 if (NeedToShuffleReuses) { 3551 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3552 } 3553 3554 // Calculate the cost of this instruction. 3555 int ScalarCost = VL.size() * ScalarEltCost; 3556 3557 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 3558 int VecCost = 0; 3559 // Check if the values are candidates to demote. 3560 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 3561 VecCost = 3562 ReuseShuffleCost + 3563 TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, 3564 TTI::getCastContextHint(VL0), CostKind, VL0); 3565 } 3566 return VecCost - ScalarCost; 3567 } 3568 case Instruction::FCmp: 3569 case Instruction::ICmp: 3570 case Instruction::Select: { 3571 // Calculate the cost of this instruction. 3572 int ScalarEltCost = 3573 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 3574 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 3575 if (NeedToShuffleReuses) { 3576 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3577 } 3578 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 3579 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3580 3581 // Check if all entries in VL are either compares or selects with compares 3582 // as condition that have the same predicates. 3583 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 3584 bool First = true; 3585 for (auto *V : VL) { 3586 CmpInst::Predicate CurrentPred; 3587 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 3588 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 3589 !match(V, MatchCmp)) || 3590 (!First && VecPred != CurrentPred)) { 3591 VecPred = CmpInst::BAD_ICMP_PREDICATE; 3592 break; 3593 } 3594 First = false; 3595 VecPred = CurrentPred; 3596 } 3597 3598 int VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), VecTy, MaskTy, 3599 VecPred, CostKind, VL0); 3600 // Check if it is possible and profitable to use min/max for selects in 3601 // VL. 3602 // 3603 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 3604 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 3605 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 3606 {VecTy, VecTy}); 3607 int IntrinsicCost = TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 3608 // If the selects are the only uses of the compares, they will be dead 3609 // and we can adjust the cost by removing their cost. 3610 if (IntrinsicAndUse.second) 3611 IntrinsicCost -= 3612 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, 3613 CmpInst::BAD_ICMP_PREDICATE, CostKind); 3614 VecCost = std::min(VecCost, IntrinsicCost); 3615 } 3616 return ReuseShuffleCost + VecCost - ScalarCost; 3617 } 3618 case Instruction::FNeg: 3619 case Instruction::Add: 3620 case Instruction::FAdd: 3621 case Instruction::Sub: 3622 case Instruction::FSub: 3623 case Instruction::Mul: 3624 case Instruction::FMul: 3625 case Instruction::UDiv: 3626 case Instruction::SDiv: 3627 case Instruction::FDiv: 3628 case Instruction::URem: 3629 case Instruction::SRem: 3630 case Instruction::FRem: 3631 case Instruction::Shl: 3632 case Instruction::LShr: 3633 case Instruction::AShr: 3634 case Instruction::And: 3635 case Instruction::Or: 3636 case Instruction::Xor: { 3637 // Certain instructions can be cheaper to vectorize if they have a 3638 // constant second vector operand. 3639 TargetTransformInfo::OperandValueKind Op1VK = 3640 TargetTransformInfo::OK_AnyValue; 3641 TargetTransformInfo::OperandValueKind Op2VK = 3642 TargetTransformInfo::OK_UniformConstantValue; 3643 TargetTransformInfo::OperandValueProperties Op1VP = 3644 TargetTransformInfo::OP_None; 3645 TargetTransformInfo::OperandValueProperties Op2VP = 3646 TargetTransformInfo::OP_PowerOf2; 3647 3648 // If all operands are exactly the same ConstantInt then set the 3649 // operand kind to OK_UniformConstantValue. 3650 // If instead not all operands are constants, then set the operand kind 3651 // to OK_AnyValue. If all operands are constants but not the same, 3652 // then set the operand kind to OK_NonUniformConstantValue. 3653 ConstantInt *CInt0 = nullptr; 3654 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3655 const Instruction *I = cast<Instruction>(VL[i]); 3656 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 3657 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 3658 if (!CInt) { 3659 Op2VK = TargetTransformInfo::OK_AnyValue; 3660 Op2VP = TargetTransformInfo::OP_None; 3661 break; 3662 } 3663 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 3664 !CInt->getValue().isPowerOf2()) 3665 Op2VP = TargetTransformInfo::OP_None; 3666 if (i == 0) { 3667 CInt0 = CInt; 3668 continue; 3669 } 3670 if (CInt0 != CInt) 3671 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 3672 } 3673 3674 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 3675 int ScalarEltCost = TTI->getArithmeticInstrCost( 3676 E->getOpcode(), ScalarTy, CostKind, Op1VK, Op2VK, Op1VP, Op2VP, 3677 Operands, VL0); 3678 if (NeedToShuffleReuses) { 3679 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3680 } 3681 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3682 int VecCost = TTI->getArithmeticInstrCost( 3683 E->getOpcode(), VecTy, CostKind, Op1VK, Op2VK, Op1VP, Op2VP, 3684 Operands, VL0); 3685 return ReuseShuffleCost + VecCost - ScalarCost; 3686 } 3687 case Instruction::GetElementPtr: { 3688 TargetTransformInfo::OperandValueKind Op1VK = 3689 TargetTransformInfo::OK_AnyValue; 3690 TargetTransformInfo::OperandValueKind Op2VK = 3691 TargetTransformInfo::OK_UniformConstantValue; 3692 3693 int ScalarEltCost = 3694 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, CostKind, 3695 Op1VK, Op2VK); 3696 if (NeedToShuffleReuses) { 3697 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3698 } 3699 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3700 int VecCost = 3701 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, CostKind, 3702 Op1VK, Op2VK); 3703 return ReuseShuffleCost + VecCost - ScalarCost; 3704 } 3705 case Instruction::Load: { 3706 // Cost of wide load - cost of scalar loads. 3707 Align alignment = cast<LoadInst>(VL0)->getAlign(); 3708 int ScalarEltCost = 3709 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, 3710 CostKind, VL0); 3711 if (NeedToShuffleReuses) { 3712 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3713 } 3714 int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 3715 int VecLdCost; 3716 if (E->State == TreeEntry::Vectorize) { 3717 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, 3718 CostKind, VL0); 3719 } else { 3720 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 3721 VecLdCost = TTI->getGatherScatterOpCost( 3722 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 3723 /*VariableMask=*/false, alignment, CostKind, VL0); 3724 } 3725 if (!E->ReorderIndices.empty()) { 3726 // TODO: Merge this shuffle with the ReuseShuffleCost. 3727 VecLdCost += TTI->getShuffleCost( 3728 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3729 } 3730 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 3731 } 3732 case Instruction::Store: { 3733 // We know that we can merge the stores. Calculate the cost. 3734 bool IsReorder = !E->ReorderIndices.empty(); 3735 auto *SI = 3736 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 3737 Align Alignment = SI->getAlign(); 3738 int ScalarEltCost = 3739 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, Alignment, 0, 3740 CostKind, VL0); 3741 if (NeedToShuffleReuses) 3742 ReuseShuffleCost = -(ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3743 int ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 3744 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, 3745 VecTy, Alignment, 0, CostKind, VL0); 3746 if (IsReorder) { 3747 // TODO: Merge this shuffle with the ReuseShuffleCost. 3748 VecStCost += TTI->getShuffleCost( 3749 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3750 } 3751 return ReuseShuffleCost + VecStCost - ScalarStCost; 3752 } 3753 case Instruction::Call: { 3754 CallInst *CI = cast<CallInst>(VL0); 3755 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3756 3757 // Calculate the cost of the scalar and vector calls. 3758 IntrinsicCostAttributes CostAttrs(ID, *CI, 1, 1); 3759 int ScalarEltCost = TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 3760 if (NeedToShuffleReuses) { 3761 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3762 } 3763 int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 3764 3765 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 3766 int VecCallCost = std::min(VecCallCosts.first, VecCallCosts.second); 3767 3768 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 3769 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 3770 << " for " << *CI << "\n"); 3771 3772 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 3773 } 3774 case Instruction::ShuffleVector: { 3775 assert(E->isAltShuffle() && 3776 ((Instruction::isBinaryOp(E->getOpcode()) && 3777 Instruction::isBinaryOp(E->getAltOpcode())) || 3778 (Instruction::isCast(E->getOpcode()) && 3779 Instruction::isCast(E->getAltOpcode()))) && 3780 "Invalid Shuffle Vector Operand"); 3781 int ScalarCost = 0; 3782 if (NeedToShuffleReuses) { 3783 for (unsigned Idx : E->ReuseShuffleIndices) { 3784 Instruction *I = cast<Instruction>(VL[Idx]); 3785 ReuseShuffleCost -= TTI->getInstructionCost(I, CostKind); 3786 } 3787 for (Value *V : VL) { 3788 Instruction *I = cast<Instruction>(V); 3789 ReuseShuffleCost += TTI->getInstructionCost(I, CostKind); 3790 } 3791 } 3792 for (Value *V : VL) { 3793 Instruction *I = cast<Instruction>(V); 3794 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 3795 ScalarCost += TTI->getInstructionCost(I, CostKind); 3796 } 3797 // VecCost is equal to sum of the cost of creating 2 vectors 3798 // and the cost of creating shuffle. 3799 int VecCost = 0; 3800 if (Instruction::isBinaryOp(E->getOpcode())) { 3801 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 3802 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 3803 CostKind); 3804 } else { 3805 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 3806 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 3807 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 3808 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 3809 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 3810 TTI::CastContextHint::None, CostKind); 3811 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 3812 TTI::CastContextHint::None, CostKind); 3813 } 3814 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0); 3815 return ReuseShuffleCost + VecCost - ScalarCost; 3816 } 3817 default: 3818 llvm_unreachable("Unknown instruction"); 3819 } 3820 } 3821 3822 bool BoUpSLP::isFullyVectorizableTinyTree() const { 3823 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 3824 << VectorizableTree.size() << " is fully vectorizable .\n"); 3825 3826 // We only handle trees of heights 1 and 2. 3827 if (VectorizableTree.size() == 1 && 3828 VectorizableTree[0]->State == TreeEntry::Vectorize) 3829 return true; 3830 3831 if (VectorizableTree.size() != 2) 3832 return false; 3833 3834 // Handle splat and all-constants stores. 3835 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 3836 (allConstant(VectorizableTree[1]->Scalars) || 3837 isSplat(VectorizableTree[1]->Scalars))) 3838 return true; 3839 3840 // Gathering cost would be too much for tiny trees. 3841 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 3842 VectorizableTree[1]->State == TreeEntry::NeedToGather) 3843 return false; 3844 3845 return true; 3846 } 3847 3848 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 3849 TargetTransformInfo *TTI) { 3850 // Look past the root to find a source value. Arbitrarily follow the 3851 // path through operand 0 of any 'or'. Also, peek through optional 3852 // shift-left-by-multiple-of-8-bits. 3853 Value *ZextLoad = Root; 3854 const APInt *ShAmtC; 3855 while (!isa<ConstantExpr>(ZextLoad) && 3856 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 3857 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 3858 ShAmtC->urem(8) == 0))) 3859 ZextLoad = cast<BinaryOperator>(ZextLoad)->getOperand(0); 3860 3861 // Check if the input is an extended load of the required or/shift expression. 3862 Value *LoadPtr; 3863 if (ZextLoad == Root || !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr))))) 3864 return false; 3865 3866 // Require that the total load bit width is a legal integer type. 3867 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 3868 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 3869 Type *SrcTy = LoadPtr->getType()->getPointerElementType(); 3870 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 3871 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 3872 return false; 3873 3874 // Everything matched - assume that we can fold the whole sequence using 3875 // load combining. 3876 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 3877 << *(cast<Instruction>(Root)) << "\n"); 3878 3879 return true; 3880 } 3881 3882 bool BoUpSLP::isLoadCombineReductionCandidate(unsigned RdxOpcode) const { 3883 if (RdxOpcode != Instruction::Or) 3884 return false; 3885 3886 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3887 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 3888 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI); 3889 } 3890 3891 bool BoUpSLP::isLoadCombineCandidate() const { 3892 // Peek through a final sequence of stores and check if all operations are 3893 // likely to be load-combined. 3894 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3895 for (Value *Scalar : VectorizableTree[0]->Scalars) { 3896 Value *X; 3897 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 3898 !isLoadCombineCandidateImpl(X, NumElts, TTI)) 3899 return false; 3900 } 3901 return true; 3902 } 3903 3904 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 3905 // We can vectorize the tree if its size is greater than or equal to the 3906 // minimum size specified by the MinTreeSize command line option. 3907 if (VectorizableTree.size() >= MinTreeSize) 3908 return false; 3909 3910 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 3911 // can vectorize it if we can prove it fully vectorizable. 3912 if (isFullyVectorizableTinyTree()) 3913 return false; 3914 3915 assert(VectorizableTree.empty() 3916 ? ExternalUses.empty() 3917 : true && "We shouldn't have any external users"); 3918 3919 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 3920 // vectorizable. 3921 return true; 3922 } 3923 3924 int BoUpSLP::getSpillCost() const { 3925 // Walk from the bottom of the tree to the top, tracking which values are 3926 // live. When we see a call instruction that is not part of our tree, 3927 // query TTI to see if there is a cost to keeping values live over it 3928 // (for example, if spills and fills are required). 3929 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 3930 int Cost = 0; 3931 3932 SmallPtrSet<Instruction*, 4> LiveValues; 3933 Instruction *PrevInst = nullptr; 3934 3935 // The entries in VectorizableTree are not necessarily ordered by their 3936 // position in basic blocks. Collect them and order them by dominance so later 3937 // instructions are guaranteed to be visited first. For instructions in 3938 // different basic blocks, we only scan to the beginning of the block, so 3939 // their order does not matter, as long as all instructions in a basic block 3940 // are grouped together. Using dominance ensures a deterministic order. 3941 SmallVector<Instruction *, 16> OrderedScalars; 3942 for (const auto &TEPtr : VectorizableTree) { 3943 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 3944 if (!Inst) 3945 continue; 3946 OrderedScalars.push_back(Inst); 3947 } 3948 llvm::stable_sort(OrderedScalars, [this](Instruction *A, Instruction *B) { 3949 return DT->dominates(B, A); 3950 }); 3951 3952 for (Instruction *Inst : OrderedScalars) { 3953 if (!PrevInst) { 3954 PrevInst = Inst; 3955 continue; 3956 } 3957 3958 // Update LiveValues. 3959 LiveValues.erase(PrevInst); 3960 for (auto &J : PrevInst->operands()) { 3961 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 3962 LiveValues.insert(cast<Instruction>(&*J)); 3963 } 3964 3965 LLVM_DEBUG({ 3966 dbgs() << "SLP: #LV: " << LiveValues.size(); 3967 for (auto *X : LiveValues) 3968 dbgs() << " " << X->getName(); 3969 dbgs() << ", Looking at "; 3970 Inst->dump(); 3971 }); 3972 3973 // Now find the sequence of instructions between PrevInst and Inst. 3974 unsigned NumCalls = 0; 3975 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 3976 PrevInstIt = 3977 PrevInst->getIterator().getReverse(); 3978 while (InstIt != PrevInstIt) { 3979 if (PrevInstIt == PrevInst->getParent()->rend()) { 3980 PrevInstIt = Inst->getParent()->rbegin(); 3981 continue; 3982 } 3983 3984 // Debug information does not impact spill cost. 3985 if ((isa<CallInst>(&*PrevInstIt) && 3986 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 3987 &*PrevInstIt != PrevInst) 3988 NumCalls++; 3989 3990 ++PrevInstIt; 3991 } 3992 3993 if (NumCalls) { 3994 SmallVector<Type*, 4> V; 3995 for (auto *II : LiveValues) 3996 V.push_back(FixedVectorType::get(II->getType(), BundleWidth)); 3997 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 3998 } 3999 4000 PrevInst = Inst; 4001 } 4002 4003 return Cost; 4004 } 4005 4006 int BoUpSLP::getTreeCost() { 4007 int Cost = 0; 4008 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 4009 << VectorizableTree.size() << ".\n"); 4010 4011 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 4012 4013 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 4014 TreeEntry &TE = *VectorizableTree[I].get(); 4015 4016 // We create duplicate tree entries for gather sequences that have multiple 4017 // uses. However, we should not compute the cost of duplicate sequences. 4018 // For example, if we have a build vector (i.e., insertelement sequence) 4019 // that is used by more than one vector instruction, we only need to 4020 // compute the cost of the insertelement instructions once. The redundant 4021 // instructions will be eliminated by CSE. 4022 // 4023 // We should consider not creating duplicate tree entries for gather 4024 // sequences, and instead add additional edges to the tree representing 4025 // their uses. Since such an approach results in fewer total entries, 4026 // existing heuristics based on tree size may yield different results. 4027 // 4028 if (TE.State == TreeEntry::NeedToGather && 4029 std::any_of(std::next(VectorizableTree.begin(), I + 1), 4030 VectorizableTree.end(), 4031 [TE](const std::unique_ptr<TreeEntry> &EntryPtr) { 4032 return EntryPtr->State == TreeEntry::NeedToGather && 4033 EntryPtr->isSame(TE.Scalars); 4034 })) 4035 continue; 4036 4037 int C = getEntryCost(&TE); 4038 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 4039 << " for bundle that starts with " << *TE.Scalars[0] 4040 << ".\n"); 4041 Cost += C; 4042 } 4043 4044 SmallPtrSet<Value *, 16> ExtractCostCalculated; 4045 int ExtractCost = 0; 4046 for (ExternalUser &EU : ExternalUses) { 4047 // We only add extract cost once for the same scalar. 4048 if (!ExtractCostCalculated.insert(EU.Scalar).second) 4049 continue; 4050 4051 // Uses by ephemeral values are free (because the ephemeral value will be 4052 // removed prior to code generation, and so the extraction will be 4053 // removed as well). 4054 if (EphValues.count(EU.User)) 4055 continue; 4056 4057 // If we plan to rewrite the tree in a smaller type, we will need to sign 4058 // extend the extracted value back to the original type. Here, we account 4059 // for the extract and the added cost of the sign extend if needed. 4060 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 4061 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4062 if (MinBWs.count(ScalarRoot)) { 4063 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4064 auto Extend = 4065 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 4066 VecTy = FixedVectorType::get(MinTy, BundleWidth); 4067 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 4068 VecTy, EU.Lane); 4069 } else { 4070 ExtractCost += 4071 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 4072 } 4073 } 4074 4075 int SpillCost = getSpillCost(); 4076 Cost += SpillCost + ExtractCost; 4077 4078 #ifndef NDEBUG 4079 SmallString<256> Str; 4080 { 4081 raw_svector_ostream OS(Str); 4082 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 4083 << "SLP: Extract Cost = " << ExtractCost << ".\n" 4084 << "SLP: Total Cost = " << Cost << ".\n"; 4085 } 4086 LLVM_DEBUG(dbgs() << Str); 4087 if (ViewSLPTree) 4088 ViewGraph(this, "SLP" + F->getName(), false, Str); 4089 #endif 4090 4091 return Cost; 4092 } 4093 4094 int BoUpSLP::getGatherCost(FixedVectorType *Ty, 4095 const DenseSet<unsigned> &ShuffledIndices) const { 4096 unsigned NumElts = Ty->getNumElements(); 4097 APInt DemandedElts = APInt::getNullValue(NumElts); 4098 for (unsigned I = 0; I < NumElts; ++I) 4099 if (!ShuffledIndices.count(I)) 4100 DemandedElts.setBit(I); 4101 int Cost = TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 4102 /*Extract*/ false); 4103 if (!ShuffledIndices.empty()) 4104 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 4105 return Cost; 4106 } 4107 4108 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 4109 // Find the type of the operands in VL. 4110 Type *ScalarTy = VL[0]->getType(); 4111 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4112 ScalarTy = SI->getValueOperand()->getType(); 4113 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4114 // Find the cost of inserting/extracting values from the vector. 4115 // Check if the same elements are inserted several times and count them as 4116 // shuffle candidates. 4117 DenseSet<unsigned> ShuffledElements; 4118 DenseSet<Value *> UniqueElements; 4119 // Iterate in reverse order to consider insert elements with the high cost. 4120 for (unsigned I = VL.size(); I > 0; --I) { 4121 unsigned Idx = I - 1; 4122 if (!UniqueElements.insert(VL[Idx]).second) 4123 ShuffledElements.insert(Idx); 4124 } 4125 return getGatherCost(VecTy, ShuffledElements); 4126 } 4127 4128 // Perform operand reordering on the instructions in VL and return the reordered 4129 // operands in Left and Right. 4130 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 4131 SmallVectorImpl<Value *> &Left, 4132 SmallVectorImpl<Value *> &Right, 4133 const DataLayout &DL, 4134 ScalarEvolution &SE, 4135 const BoUpSLP &R) { 4136 if (VL.empty()) 4137 return; 4138 VLOperands Ops(VL, DL, SE, R); 4139 // Reorder the operands in place. 4140 Ops.reorder(); 4141 Left = Ops.getVL(0); 4142 Right = Ops.getVL(1); 4143 } 4144 4145 void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) { 4146 // Get the basic block this bundle is in. All instructions in the bundle 4147 // should be in this block. 4148 auto *Front = E->getMainOp(); 4149 auto *BB = Front->getParent(); 4150 assert(llvm::all_of(make_range(E->Scalars.begin(), E->Scalars.end()), 4151 [=](Value *V) -> bool { 4152 auto *I = cast<Instruction>(V); 4153 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 4154 })); 4155 4156 // The last instruction in the bundle in program order. 4157 Instruction *LastInst = nullptr; 4158 4159 // Find the last instruction. The common case should be that BB has been 4160 // scheduled, and the last instruction is VL.back(). So we start with 4161 // VL.back() and iterate over schedule data until we reach the end of the 4162 // bundle. The end of the bundle is marked by null ScheduleData. 4163 if (BlocksSchedules.count(BB)) { 4164 auto *Bundle = 4165 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 4166 if (Bundle && Bundle->isPartOfBundle()) 4167 for (; Bundle; Bundle = Bundle->NextInBundle) 4168 if (Bundle->OpValue == Bundle->Inst) 4169 LastInst = Bundle->Inst; 4170 } 4171 4172 // LastInst can still be null at this point if there's either not an entry 4173 // for BB in BlocksSchedules or there's no ScheduleData available for 4174 // VL.back(). This can be the case if buildTree_rec aborts for various 4175 // reasons (e.g., the maximum recursion depth is reached, the maximum region 4176 // size is reached, etc.). ScheduleData is initialized in the scheduling 4177 // "dry-run". 4178 // 4179 // If this happens, we can still find the last instruction by brute force. We 4180 // iterate forwards from Front (inclusive) until we either see all 4181 // instructions in the bundle or reach the end of the block. If Front is the 4182 // last instruction in program order, LastInst will be set to Front, and we 4183 // will visit all the remaining instructions in the block. 4184 // 4185 // One of the reasons we exit early from buildTree_rec is to place an upper 4186 // bound on compile-time. Thus, taking an additional compile-time hit here is 4187 // not ideal. However, this should be exceedingly rare since it requires that 4188 // we both exit early from buildTree_rec and that the bundle be out-of-order 4189 // (causing us to iterate all the way to the end of the block). 4190 if (!LastInst) { 4191 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 4192 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 4193 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 4194 LastInst = &I; 4195 if (Bundle.empty()) 4196 break; 4197 } 4198 } 4199 assert(LastInst && "Failed to find last instruction in bundle"); 4200 4201 // Set the insertion point after the last instruction in the bundle. Set the 4202 // debug location to Front. 4203 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 4204 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 4205 } 4206 4207 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 4208 Value *Val0 = 4209 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 4210 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 4211 Value *Vec = UndefValue::get(VecTy); 4212 unsigned InsIndex = 0; 4213 for (Value *Val : VL) { 4214 Vec = Builder.CreateInsertElement(Vec, Val, Builder.getInt32(InsIndex++)); 4215 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 4216 if (!InsElt) 4217 continue; 4218 GatherSeq.insert(InsElt); 4219 CSEBlocks.insert(InsElt->getParent()); 4220 // Add to our 'need-to-extract' list. 4221 if (TreeEntry *Entry = getTreeEntry(Val)) { 4222 // Find which lane we need to extract. 4223 unsigned FoundLane = std::distance(Entry->Scalars.begin(), 4224 find(Entry->Scalars, Val)); 4225 assert(FoundLane < Entry->Scalars.size() && "Couldn't find extract lane"); 4226 if (!Entry->ReuseShuffleIndices.empty()) { 4227 FoundLane = std::distance(Entry->ReuseShuffleIndices.begin(), 4228 find(Entry->ReuseShuffleIndices, FoundLane)); 4229 } 4230 ExternalUses.push_back(ExternalUser(Val, InsElt, FoundLane)); 4231 } 4232 } 4233 4234 return Vec; 4235 } 4236 4237 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 4238 InstructionsState S = getSameOpcode(VL); 4239 if (S.getOpcode()) { 4240 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4241 if (E->isSame(VL)) { 4242 Value *V = vectorizeTree(E); 4243 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 4244 // We need to get the vectorized value but without shuffle. 4245 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 4246 V = SV->getOperand(0); 4247 } else { 4248 // Reshuffle to get only unique values. 4249 SmallVector<int, 4> UniqueIdxs; 4250 SmallSet<int, 4> UsedIdxs; 4251 for (int Idx : E->ReuseShuffleIndices) 4252 if (UsedIdxs.insert(Idx).second) 4253 UniqueIdxs.emplace_back(Idx); 4254 V = Builder.CreateShuffleVector(V, UniqueIdxs); 4255 } 4256 } 4257 return V; 4258 } 4259 } 4260 } 4261 4262 // Check that every instruction appears once in this bundle. 4263 SmallVector<int, 4> ReuseShuffleIndicies; 4264 SmallVector<Value *, 4> UniqueValues; 4265 if (VL.size() > 2) { 4266 DenseMap<Value *, unsigned> UniquePositions; 4267 for (Value *V : VL) { 4268 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 4269 ReuseShuffleIndicies.emplace_back(Res.first->second); 4270 if (Res.second || isa<Constant>(V)) 4271 UniqueValues.emplace_back(V); 4272 } 4273 // Do not shuffle single element or if number of unique values is not power 4274 // of 2. 4275 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 4276 !llvm::isPowerOf2_32(UniqueValues.size())) 4277 ReuseShuffleIndicies.clear(); 4278 else 4279 VL = UniqueValues; 4280 } 4281 4282 Value *Vec = gather(VL); 4283 if (!ReuseShuffleIndicies.empty()) { 4284 Vec = Builder.CreateShuffleVector(Vec, ReuseShuffleIndicies, "shuffle"); 4285 if (auto *I = dyn_cast<Instruction>(Vec)) { 4286 GatherSeq.insert(I); 4287 CSEBlocks.insert(I->getParent()); 4288 } 4289 } 4290 return Vec; 4291 } 4292 4293 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 4294 IRBuilder<>::InsertPointGuard Guard(Builder); 4295 4296 if (E->VectorizedValue) { 4297 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 4298 return E->VectorizedValue; 4299 } 4300 4301 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4302 if (E->State == TreeEntry::NeedToGather) { 4303 setInsertPointAfterBundle(E); 4304 Value *Vec = gather(E->Scalars); 4305 if (NeedToShuffleReuses) { 4306 Vec = Builder.CreateShuffleVector(Vec, E->ReuseShuffleIndices, "shuffle"); 4307 if (auto *I = dyn_cast<Instruction>(Vec)) { 4308 GatherSeq.insert(I); 4309 CSEBlocks.insert(I->getParent()); 4310 } 4311 } 4312 E->VectorizedValue = Vec; 4313 return Vec; 4314 } 4315 4316 assert((E->State == TreeEntry::Vectorize || 4317 E->State == TreeEntry::ScatterVectorize) && 4318 "Unhandled state"); 4319 unsigned ShuffleOrOp = 4320 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 4321 Instruction *VL0 = E->getMainOp(); 4322 Type *ScalarTy = VL0->getType(); 4323 if (auto *Store = dyn_cast<StoreInst>(VL0)) 4324 ScalarTy = Store->getValueOperand()->getType(); 4325 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 4326 switch (ShuffleOrOp) { 4327 case Instruction::PHI: { 4328 auto *PH = cast<PHINode>(VL0); 4329 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 4330 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4331 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 4332 Value *V = NewPhi; 4333 if (NeedToShuffleReuses) 4334 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4335 4336 E->VectorizedValue = V; 4337 4338 // PHINodes may have multiple entries from the same block. We want to 4339 // visit every block once. 4340 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 4341 4342 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 4343 ValueList Operands; 4344 BasicBlock *IBB = PH->getIncomingBlock(i); 4345 4346 if (!VisitedBBs.insert(IBB).second) { 4347 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 4348 continue; 4349 } 4350 4351 Builder.SetInsertPoint(IBB->getTerminator()); 4352 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4353 Value *Vec = vectorizeTree(E->getOperand(i)); 4354 NewPhi->addIncoming(Vec, IBB); 4355 } 4356 4357 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 4358 "Invalid number of incoming values"); 4359 return V; 4360 } 4361 4362 case Instruction::ExtractElement: { 4363 Value *V = E->getSingleOperand(0); 4364 if (!E->ReorderIndices.empty()) { 4365 SmallVector<int, 4> Mask; 4366 inversePermutation(E->ReorderIndices, Mask); 4367 Builder.SetInsertPoint(VL0); 4368 V = Builder.CreateShuffleVector(V, Mask, "reorder_shuffle"); 4369 } 4370 if (NeedToShuffleReuses) { 4371 // TODO: Merge this shuffle with the ReorderShuffleMask. 4372 if (E->ReorderIndices.empty()) 4373 Builder.SetInsertPoint(VL0); 4374 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4375 } 4376 E->VectorizedValue = V; 4377 return V; 4378 } 4379 case Instruction::ExtractValue: { 4380 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 4381 Builder.SetInsertPoint(LI); 4382 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 4383 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 4384 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 4385 Value *NewV = propagateMetadata(V, E->Scalars); 4386 if (!E->ReorderIndices.empty()) { 4387 SmallVector<int, 4> Mask; 4388 inversePermutation(E->ReorderIndices, Mask); 4389 NewV = Builder.CreateShuffleVector(NewV, Mask, "reorder_shuffle"); 4390 } 4391 if (NeedToShuffleReuses) { 4392 // TODO: Merge this shuffle with the ReorderShuffleMask. 4393 NewV = Builder.CreateShuffleVector(NewV, E->ReuseShuffleIndices, 4394 "shuffle"); 4395 } 4396 E->VectorizedValue = NewV; 4397 return NewV; 4398 } 4399 case Instruction::ZExt: 4400 case Instruction::SExt: 4401 case Instruction::FPToUI: 4402 case Instruction::FPToSI: 4403 case Instruction::FPExt: 4404 case Instruction::PtrToInt: 4405 case Instruction::IntToPtr: 4406 case Instruction::SIToFP: 4407 case Instruction::UIToFP: 4408 case Instruction::Trunc: 4409 case Instruction::FPTrunc: 4410 case Instruction::BitCast: { 4411 setInsertPointAfterBundle(E); 4412 4413 Value *InVec = vectorizeTree(E->getOperand(0)); 4414 4415 if (E->VectorizedValue) { 4416 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4417 return E->VectorizedValue; 4418 } 4419 4420 auto *CI = cast<CastInst>(VL0); 4421 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 4422 if (NeedToShuffleReuses) 4423 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4424 4425 E->VectorizedValue = V; 4426 ++NumVectorInstructions; 4427 return V; 4428 } 4429 case Instruction::FCmp: 4430 case Instruction::ICmp: { 4431 setInsertPointAfterBundle(E); 4432 4433 Value *L = vectorizeTree(E->getOperand(0)); 4434 Value *R = vectorizeTree(E->getOperand(1)); 4435 4436 if (E->VectorizedValue) { 4437 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4438 return E->VectorizedValue; 4439 } 4440 4441 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4442 Value *V = Builder.CreateCmp(P0, L, R); 4443 propagateIRFlags(V, E->Scalars, VL0); 4444 if (NeedToShuffleReuses) 4445 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4446 4447 E->VectorizedValue = V; 4448 ++NumVectorInstructions; 4449 return V; 4450 } 4451 case Instruction::Select: { 4452 setInsertPointAfterBundle(E); 4453 4454 Value *Cond = vectorizeTree(E->getOperand(0)); 4455 Value *True = vectorizeTree(E->getOperand(1)); 4456 Value *False = vectorizeTree(E->getOperand(2)); 4457 4458 if (E->VectorizedValue) { 4459 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4460 return E->VectorizedValue; 4461 } 4462 4463 Value *V = Builder.CreateSelect(Cond, True, False); 4464 if (NeedToShuffleReuses) 4465 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4466 4467 E->VectorizedValue = V; 4468 ++NumVectorInstructions; 4469 return V; 4470 } 4471 case Instruction::FNeg: { 4472 setInsertPointAfterBundle(E); 4473 4474 Value *Op = vectorizeTree(E->getOperand(0)); 4475 4476 if (E->VectorizedValue) { 4477 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4478 return E->VectorizedValue; 4479 } 4480 4481 Value *V = Builder.CreateUnOp( 4482 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 4483 propagateIRFlags(V, E->Scalars, VL0); 4484 if (auto *I = dyn_cast<Instruction>(V)) 4485 V = propagateMetadata(I, E->Scalars); 4486 4487 if (NeedToShuffleReuses) 4488 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4489 4490 E->VectorizedValue = V; 4491 ++NumVectorInstructions; 4492 4493 return V; 4494 } 4495 case Instruction::Add: 4496 case Instruction::FAdd: 4497 case Instruction::Sub: 4498 case Instruction::FSub: 4499 case Instruction::Mul: 4500 case Instruction::FMul: 4501 case Instruction::UDiv: 4502 case Instruction::SDiv: 4503 case Instruction::FDiv: 4504 case Instruction::URem: 4505 case Instruction::SRem: 4506 case Instruction::FRem: 4507 case Instruction::Shl: 4508 case Instruction::LShr: 4509 case Instruction::AShr: 4510 case Instruction::And: 4511 case Instruction::Or: 4512 case Instruction::Xor: { 4513 setInsertPointAfterBundle(E); 4514 4515 Value *LHS = vectorizeTree(E->getOperand(0)); 4516 Value *RHS = vectorizeTree(E->getOperand(1)); 4517 4518 if (E->VectorizedValue) { 4519 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4520 return E->VectorizedValue; 4521 } 4522 4523 Value *V = Builder.CreateBinOp( 4524 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 4525 RHS); 4526 propagateIRFlags(V, E->Scalars, VL0); 4527 if (auto *I = dyn_cast<Instruction>(V)) 4528 V = propagateMetadata(I, E->Scalars); 4529 4530 if (NeedToShuffleReuses) 4531 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4532 4533 E->VectorizedValue = V; 4534 ++NumVectorInstructions; 4535 4536 return V; 4537 } 4538 case Instruction::Load: { 4539 // Loads are inserted at the head of the tree because we don't want to 4540 // sink them all the way down past store instructions. 4541 bool IsReorder = E->updateStateIfReorder(); 4542 if (IsReorder) 4543 VL0 = E->getMainOp(); 4544 setInsertPointAfterBundle(E); 4545 4546 LoadInst *LI = cast<LoadInst>(VL0); 4547 Instruction *NewLI; 4548 unsigned AS = LI->getPointerAddressSpace(); 4549 Value *PO = LI->getPointerOperand(); 4550 if (E->State == TreeEntry::Vectorize) { 4551 4552 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 4553 4554 // The pointer operand uses an in-tree scalar so we add the new BitCast 4555 // to ExternalUses list to make sure that an extract will be generated 4556 // in the future. 4557 if (getTreeEntry(PO)) 4558 ExternalUses.emplace_back(PO, cast<User>(VecPtr), 0); 4559 4560 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 4561 } else { 4562 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 4563 Value *VecPtr = vectorizeTree(E->getOperand(0)); 4564 // Use the minimum alignment of the gathered loads. 4565 Align CommonAlignment = LI->getAlign(); 4566 for (Value *V : E->Scalars) 4567 CommonAlignment = 4568 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 4569 NewLI = Builder.CreateMaskedGather(VecPtr, CommonAlignment); 4570 } 4571 Value *V = propagateMetadata(NewLI, E->Scalars); 4572 4573 if (IsReorder) { 4574 SmallVector<int, 4> Mask; 4575 inversePermutation(E->ReorderIndices, Mask); 4576 V = Builder.CreateShuffleVector(V, Mask, "reorder_shuffle"); 4577 } 4578 if (NeedToShuffleReuses) { 4579 // TODO: Merge this shuffle with the ReorderShuffleMask. 4580 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4581 } 4582 E->VectorizedValue = V; 4583 ++NumVectorInstructions; 4584 return V; 4585 } 4586 case Instruction::Store: { 4587 bool IsReorder = !E->ReorderIndices.empty(); 4588 auto *SI = cast<StoreInst>( 4589 IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0); 4590 unsigned AS = SI->getPointerAddressSpace(); 4591 4592 setInsertPointAfterBundle(E); 4593 4594 Value *VecValue = vectorizeTree(E->getOperand(0)); 4595 if (IsReorder) { 4596 SmallVector<int, 4> Mask(E->ReorderIndices.begin(), 4597 E->ReorderIndices.end()); 4598 VecValue = Builder.CreateShuffleVector(VecValue, Mask, "reorder_shuf"); 4599 } 4600 Value *ScalarPtr = SI->getPointerOperand(); 4601 Value *VecPtr = Builder.CreateBitCast( 4602 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 4603 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 4604 SI->getAlign()); 4605 4606 // The pointer operand uses an in-tree scalar, so add the new BitCast to 4607 // ExternalUses to make sure that an extract will be generated in the 4608 // future. 4609 if (getTreeEntry(ScalarPtr)) 4610 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 4611 4612 Value *V = propagateMetadata(ST, E->Scalars); 4613 if (NeedToShuffleReuses) 4614 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4615 4616 E->VectorizedValue = V; 4617 ++NumVectorInstructions; 4618 return V; 4619 } 4620 case Instruction::GetElementPtr: { 4621 setInsertPointAfterBundle(E); 4622 4623 Value *Op0 = vectorizeTree(E->getOperand(0)); 4624 4625 std::vector<Value *> OpVecs; 4626 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 4627 ++j) { 4628 ValueList &VL = E->getOperand(j); 4629 // Need to cast all elements to the same type before vectorization to 4630 // avoid crash. 4631 Type *VL0Ty = VL0->getOperand(j)->getType(); 4632 Type *Ty = llvm::all_of( 4633 VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); }) 4634 ? VL0Ty 4635 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4636 ->getPointerOperandType() 4637 ->getScalarType()); 4638 for (Value *&V : VL) { 4639 auto *CI = cast<ConstantInt>(V); 4640 V = ConstantExpr::getIntegerCast(CI, Ty, 4641 CI->getValue().isSignBitSet()); 4642 } 4643 Value *OpVec = vectorizeTree(VL); 4644 OpVecs.push_back(OpVec); 4645 } 4646 4647 Value *V = Builder.CreateGEP( 4648 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 4649 if (Instruction *I = dyn_cast<Instruction>(V)) 4650 V = propagateMetadata(I, E->Scalars); 4651 4652 if (NeedToShuffleReuses) 4653 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4654 4655 E->VectorizedValue = V; 4656 ++NumVectorInstructions; 4657 4658 return V; 4659 } 4660 case Instruction::Call: { 4661 CallInst *CI = cast<CallInst>(VL0); 4662 setInsertPointAfterBundle(E); 4663 4664 Intrinsic::ID IID = Intrinsic::not_intrinsic; 4665 if (Function *FI = CI->getCalledFunction()) 4666 IID = FI->getIntrinsicID(); 4667 4668 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4669 4670 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 4671 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 4672 VecCallCosts.first <= VecCallCosts.second; 4673 4674 Value *ScalarArg = nullptr; 4675 std::vector<Value *> OpVecs; 4676 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 4677 ValueList OpVL; 4678 // Some intrinsics have scalar arguments. This argument should not be 4679 // vectorized. 4680 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 4681 CallInst *CEI = cast<CallInst>(VL0); 4682 ScalarArg = CEI->getArgOperand(j); 4683 OpVecs.push_back(CEI->getArgOperand(j)); 4684 continue; 4685 } 4686 4687 Value *OpVec = vectorizeTree(E->getOperand(j)); 4688 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 4689 OpVecs.push_back(OpVec); 4690 } 4691 4692 Function *CF; 4693 if (!UseIntrinsic) { 4694 VFShape Shape = 4695 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4696 VecTy->getNumElements())), 4697 false /*HasGlobalPred*/); 4698 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 4699 } else { 4700 Type *Tys[] = {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 4701 CF = Intrinsic::getDeclaration(F->getParent(), ID, Tys); 4702 } 4703 4704 SmallVector<OperandBundleDef, 1> OpBundles; 4705 CI->getOperandBundlesAsDefs(OpBundles); 4706 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 4707 4708 // The scalar argument uses an in-tree scalar so we add the new vectorized 4709 // call to ExternalUses list to make sure that an extract will be 4710 // generated in the future. 4711 if (ScalarArg && getTreeEntry(ScalarArg)) 4712 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 4713 4714 propagateIRFlags(V, E->Scalars, VL0); 4715 if (NeedToShuffleReuses) 4716 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4717 4718 E->VectorizedValue = V; 4719 ++NumVectorInstructions; 4720 return V; 4721 } 4722 case Instruction::ShuffleVector: { 4723 assert(E->isAltShuffle() && 4724 ((Instruction::isBinaryOp(E->getOpcode()) && 4725 Instruction::isBinaryOp(E->getAltOpcode())) || 4726 (Instruction::isCast(E->getOpcode()) && 4727 Instruction::isCast(E->getAltOpcode()))) && 4728 "Invalid Shuffle Vector Operand"); 4729 4730 Value *LHS = nullptr, *RHS = nullptr; 4731 if (Instruction::isBinaryOp(E->getOpcode())) { 4732 setInsertPointAfterBundle(E); 4733 LHS = vectorizeTree(E->getOperand(0)); 4734 RHS = vectorizeTree(E->getOperand(1)); 4735 } else { 4736 setInsertPointAfterBundle(E); 4737 LHS = vectorizeTree(E->getOperand(0)); 4738 } 4739 4740 if (E->VectorizedValue) { 4741 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4742 return E->VectorizedValue; 4743 } 4744 4745 Value *V0, *V1; 4746 if (Instruction::isBinaryOp(E->getOpcode())) { 4747 V0 = Builder.CreateBinOp( 4748 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 4749 V1 = Builder.CreateBinOp( 4750 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 4751 } else { 4752 V0 = Builder.CreateCast( 4753 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 4754 V1 = Builder.CreateCast( 4755 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 4756 } 4757 4758 // Create shuffle to take alternate operations from the vector. 4759 // Also, gather up main and alt scalar ops to propagate IR flags to 4760 // each vector operation. 4761 ValueList OpScalars, AltScalars; 4762 unsigned e = E->Scalars.size(); 4763 SmallVector<int, 8> Mask(e); 4764 for (unsigned i = 0; i < e; ++i) { 4765 auto *OpInst = cast<Instruction>(E->Scalars[i]); 4766 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 4767 if (OpInst->getOpcode() == E->getAltOpcode()) { 4768 Mask[i] = e + i; 4769 AltScalars.push_back(E->Scalars[i]); 4770 } else { 4771 Mask[i] = i; 4772 OpScalars.push_back(E->Scalars[i]); 4773 } 4774 } 4775 4776 propagateIRFlags(V0, OpScalars); 4777 propagateIRFlags(V1, AltScalars); 4778 4779 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 4780 if (Instruction *I = dyn_cast<Instruction>(V)) 4781 V = propagateMetadata(I, E->Scalars); 4782 if (NeedToShuffleReuses) 4783 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4784 4785 E->VectorizedValue = V; 4786 ++NumVectorInstructions; 4787 4788 return V; 4789 } 4790 default: 4791 llvm_unreachable("unknown inst"); 4792 } 4793 return nullptr; 4794 } 4795 4796 Value *BoUpSLP::vectorizeTree() { 4797 ExtraValueToDebugLocsMap ExternallyUsedValues; 4798 return vectorizeTree(ExternallyUsedValues); 4799 } 4800 4801 Value * 4802 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 4803 // All blocks must be scheduled before any instructions are inserted. 4804 for (auto &BSIter : BlocksSchedules) { 4805 scheduleBlock(BSIter.second.get()); 4806 } 4807 4808 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4809 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 4810 4811 // If the vectorized tree can be rewritten in a smaller type, we truncate the 4812 // vectorized root. InstCombine will then rewrite the entire expression. We 4813 // sign extend the extracted values below. 4814 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4815 if (MinBWs.count(ScalarRoot)) { 4816 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 4817 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 4818 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 4819 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4820 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 4821 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 4822 VectorizableTree[0]->VectorizedValue = Trunc; 4823 } 4824 4825 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 4826 << " values .\n"); 4827 4828 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 4829 // specified by ScalarType. 4830 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 4831 if (!MinBWs.count(ScalarRoot)) 4832 return Ex; 4833 if (MinBWs[ScalarRoot].second) 4834 return Builder.CreateSExt(Ex, ScalarType); 4835 return Builder.CreateZExt(Ex, ScalarType); 4836 }; 4837 4838 // Extract all of the elements with the external uses. 4839 for (const auto &ExternalUse : ExternalUses) { 4840 Value *Scalar = ExternalUse.Scalar; 4841 llvm::User *User = ExternalUse.User; 4842 4843 // Skip users that we already RAUW. This happens when one instruction 4844 // has multiple uses of the same value. 4845 if (User && !is_contained(Scalar->users(), User)) 4846 continue; 4847 TreeEntry *E = getTreeEntry(Scalar); 4848 assert(E && "Invalid scalar"); 4849 assert(E->State != TreeEntry::NeedToGather && 4850 "Extracting from a gather list"); 4851 4852 Value *Vec = E->VectorizedValue; 4853 assert(Vec && "Can't find vectorizable value"); 4854 4855 Value *Lane = Builder.getInt32(ExternalUse.Lane); 4856 // If User == nullptr, the Scalar is used as extra arg. Generate 4857 // ExtractElement instruction and update the record for this scalar in 4858 // ExternallyUsedValues. 4859 if (!User) { 4860 assert(ExternallyUsedValues.count(Scalar) && 4861 "Scalar with nullptr as an external user must be registered in " 4862 "ExternallyUsedValues map"); 4863 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4864 Builder.SetInsertPoint(VecI->getParent(), 4865 std::next(VecI->getIterator())); 4866 } else { 4867 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4868 } 4869 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4870 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4871 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 4872 auto &Locs = ExternallyUsedValues[Scalar]; 4873 ExternallyUsedValues.insert({Ex, Locs}); 4874 ExternallyUsedValues.erase(Scalar); 4875 // Required to update internally referenced instructions. 4876 Scalar->replaceAllUsesWith(Ex); 4877 continue; 4878 } 4879 4880 // Generate extracts for out-of-tree users. 4881 // Find the insertion point for the extractelement lane. 4882 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4883 if (PHINode *PH = dyn_cast<PHINode>(User)) { 4884 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 4885 if (PH->getIncomingValue(i) == Scalar) { 4886 Instruction *IncomingTerminator = 4887 PH->getIncomingBlock(i)->getTerminator(); 4888 if (isa<CatchSwitchInst>(IncomingTerminator)) { 4889 Builder.SetInsertPoint(VecI->getParent(), 4890 std::next(VecI->getIterator())); 4891 } else { 4892 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 4893 } 4894 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4895 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4896 CSEBlocks.insert(PH->getIncomingBlock(i)); 4897 PH->setOperand(i, Ex); 4898 } 4899 } 4900 } else { 4901 Builder.SetInsertPoint(cast<Instruction>(User)); 4902 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4903 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4904 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 4905 User->replaceUsesOfWith(Scalar, Ex); 4906 } 4907 } else { 4908 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4909 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4910 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4911 CSEBlocks.insert(&F->getEntryBlock()); 4912 User->replaceUsesOfWith(Scalar, Ex); 4913 } 4914 4915 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 4916 } 4917 4918 // For each vectorized value: 4919 for (auto &TEPtr : VectorizableTree) { 4920 TreeEntry *Entry = TEPtr.get(); 4921 4922 // No need to handle users of gathered values. 4923 if (Entry->State == TreeEntry::NeedToGather) 4924 continue; 4925 4926 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 4927 4928 // For each lane: 4929 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 4930 Value *Scalar = Entry->Scalars[Lane]; 4931 4932 #ifndef NDEBUG 4933 Type *Ty = Scalar->getType(); 4934 if (!Ty->isVoidTy()) { 4935 for (User *U : Scalar->users()) { 4936 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 4937 4938 // It is legal to delete users in the ignorelist. 4939 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 4940 "Deleting out-of-tree value"); 4941 } 4942 } 4943 #endif 4944 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 4945 eraseInstruction(cast<Instruction>(Scalar)); 4946 } 4947 } 4948 4949 Builder.ClearInsertionPoint(); 4950 InstrElementSize.clear(); 4951 4952 return VectorizableTree[0]->VectorizedValue; 4953 } 4954 4955 void BoUpSLP::optimizeGatherSequence() { 4956 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 4957 << " gather sequences instructions.\n"); 4958 // LICM InsertElementInst sequences. 4959 for (Instruction *I : GatherSeq) { 4960 if (isDeleted(I)) 4961 continue; 4962 4963 // Check if this block is inside a loop. 4964 Loop *L = LI->getLoopFor(I->getParent()); 4965 if (!L) 4966 continue; 4967 4968 // Check if it has a preheader. 4969 BasicBlock *PreHeader = L->getLoopPreheader(); 4970 if (!PreHeader) 4971 continue; 4972 4973 // If the vector or the element that we insert into it are 4974 // instructions that are defined in this basic block then we can't 4975 // hoist this instruction. 4976 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 4977 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 4978 if (Op0 && L->contains(Op0)) 4979 continue; 4980 if (Op1 && L->contains(Op1)) 4981 continue; 4982 4983 // We can hoist this instruction. Move it to the pre-header. 4984 I->moveBefore(PreHeader->getTerminator()); 4985 } 4986 4987 // Make a list of all reachable blocks in our CSE queue. 4988 SmallVector<const DomTreeNode *, 8> CSEWorkList; 4989 CSEWorkList.reserve(CSEBlocks.size()); 4990 for (BasicBlock *BB : CSEBlocks) 4991 if (DomTreeNode *N = DT->getNode(BB)) { 4992 assert(DT->isReachableFromEntry(N)); 4993 CSEWorkList.push_back(N); 4994 } 4995 4996 // Sort blocks by domination. This ensures we visit a block after all blocks 4997 // dominating it are visited. 4998 llvm::stable_sort(CSEWorkList, 4999 [this](const DomTreeNode *A, const DomTreeNode *B) { 5000 return DT->properlyDominates(A, B); 5001 }); 5002 5003 // Perform O(N^2) search over the gather sequences and merge identical 5004 // instructions. TODO: We can further optimize this scan if we split the 5005 // instructions into different buckets based on the insert lane. 5006 SmallVector<Instruction *, 16> Visited; 5007 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 5008 assert(*I && 5009 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 5010 "Worklist not sorted properly!"); 5011 BasicBlock *BB = (*I)->getBlock(); 5012 // For all instructions in blocks containing gather sequences: 5013 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 5014 Instruction *In = &*it++; 5015 if (isDeleted(In)) 5016 continue; 5017 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 5018 continue; 5019 5020 // Check if we can replace this instruction with any of the 5021 // visited instructions. 5022 for (Instruction *v : Visited) { 5023 if (In->isIdenticalTo(v) && 5024 DT->dominates(v->getParent(), In->getParent())) { 5025 In->replaceAllUsesWith(v); 5026 eraseInstruction(In); 5027 In = nullptr; 5028 break; 5029 } 5030 } 5031 if (In) { 5032 assert(!is_contained(Visited, In)); 5033 Visited.push_back(In); 5034 } 5035 } 5036 } 5037 CSEBlocks.clear(); 5038 GatherSeq.clear(); 5039 } 5040 5041 // Groups the instructions to a bundle (which is then a single scheduling entity) 5042 // and schedules instructions until the bundle gets ready. 5043 Optional<BoUpSLP::ScheduleData *> 5044 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 5045 const InstructionsState &S) { 5046 if (isa<PHINode>(S.OpValue)) 5047 return nullptr; 5048 5049 // Initialize the instruction bundle. 5050 Instruction *OldScheduleEnd = ScheduleEnd; 5051 ScheduleData *PrevInBundle = nullptr; 5052 ScheduleData *Bundle = nullptr; 5053 bool ReSchedule = false; 5054 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 5055 5056 // Make sure that the scheduling region contains all 5057 // instructions of the bundle. 5058 for (Value *V : VL) { 5059 if (!extendSchedulingRegion(V, S)) 5060 return None; 5061 } 5062 5063 for (Value *V : VL) { 5064 ScheduleData *BundleMember = getScheduleData(V); 5065 assert(BundleMember && 5066 "no ScheduleData for bundle member (maybe not in same basic block)"); 5067 if (BundleMember->IsScheduled) { 5068 // A bundle member was scheduled as single instruction before and now 5069 // needs to be scheduled as part of the bundle. We just get rid of the 5070 // existing schedule. 5071 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 5072 << " was already scheduled\n"); 5073 ReSchedule = true; 5074 } 5075 assert(BundleMember->isSchedulingEntity() && 5076 "bundle member already part of other bundle"); 5077 if (PrevInBundle) { 5078 PrevInBundle->NextInBundle = BundleMember; 5079 } else { 5080 Bundle = BundleMember; 5081 } 5082 BundleMember->UnscheduledDepsInBundle = 0; 5083 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 5084 5085 // Group the instructions to a bundle. 5086 BundleMember->FirstInBundle = Bundle; 5087 PrevInBundle = BundleMember; 5088 } 5089 if (ScheduleEnd != OldScheduleEnd) { 5090 // The scheduling region got new instructions at the lower end (or it is a 5091 // new region for the first bundle). This makes it necessary to 5092 // recalculate all dependencies. 5093 // It is seldom that this needs to be done a second time after adding the 5094 // initial bundle to the region. 5095 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 5096 doForAllOpcodes(I, [](ScheduleData *SD) { 5097 SD->clearDependencies(); 5098 }); 5099 } 5100 ReSchedule = true; 5101 } 5102 if (ReSchedule) { 5103 resetSchedule(); 5104 initialFillReadyList(ReadyInsts); 5105 } 5106 assert(Bundle && "Failed to find schedule bundle"); 5107 5108 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 5109 << BB->getName() << "\n"); 5110 5111 calculateDependencies(Bundle, true, SLP); 5112 5113 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 5114 // means that there are no cyclic dependencies and we can schedule it. 5115 // Note that's important that we don't "schedule" the bundle yet (see 5116 // cancelScheduling). 5117 while (!Bundle->isReady() && !ReadyInsts.empty()) { 5118 5119 ScheduleData *pickedSD = ReadyInsts.back(); 5120 ReadyInsts.pop_back(); 5121 5122 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 5123 schedule(pickedSD, ReadyInsts); 5124 } 5125 } 5126 if (!Bundle->isReady()) { 5127 cancelScheduling(VL, S.OpValue); 5128 return None; 5129 } 5130 return Bundle; 5131 } 5132 5133 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 5134 Value *OpValue) { 5135 if (isa<PHINode>(OpValue)) 5136 return; 5137 5138 ScheduleData *Bundle = getScheduleData(OpValue); 5139 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 5140 assert(!Bundle->IsScheduled && 5141 "Can't cancel bundle which is already scheduled"); 5142 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 5143 "tried to unbundle something which is not a bundle"); 5144 5145 // Un-bundle: make single instructions out of the bundle. 5146 ScheduleData *BundleMember = Bundle; 5147 while (BundleMember) { 5148 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 5149 BundleMember->FirstInBundle = BundleMember; 5150 ScheduleData *Next = BundleMember->NextInBundle; 5151 BundleMember->NextInBundle = nullptr; 5152 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 5153 if (BundleMember->UnscheduledDepsInBundle == 0) { 5154 ReadyInsts.insert(BundleMember); 5155 } 5156 BundleMember = Next; 5157 } 5158 } 5159 5160 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 5161 // Allocate a new ScheduleData for the instruction. 5162 if (ChunkPos >= ChunkSize) { 5163 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 5164 ChunkPos = 0; 5165 } 5166 return &(ScheduleDataChunks.back()[ChunkPos++]); 5167 } 5168 5169 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 5170 const InstructionsState &S) { 5171 if (getScheduleData(V, isOneOf(S, V))) 5172 return true; 5173 Instruction *I = dyn_cast<Instruction>(V); 5174 assert(I && "bundle member must be an instruction"); 5175 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 5176 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 5177 ScheduleData *ISD = getScheduleData(I); 5178 if (!ISD) 5179 return false; 5180 assert(isInSchedulingRegion(ISD) && 5181 "ScheduleData not in scheduling region"); 5182 ScheduleData *SD = allocateScheduleDataChunks(); 5183 SD->Inst = I; 5184 SD->init(SchedulingRegionID, S.OpValue); 5185 ExtraScheduleDataMap[I][S.OpValue] = SD; 5186 return true; 5187 }; 5188 if (CheckSheduleForI(I)) 5189 return true; 5190 if (!ScheduleStart) { 5191 // It's the first instruction in the new region. 5192 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 5193 ScheduleStart = I; 5194 ScheduleEnd = I->getNextNode(); 5195 if (isOneOf(S, I) != I) 5196 CheckSheduleForI(I); 5197 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5198 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 5199 return true; 5200 } 5201 // Search up and down at the same time, because we don't know if the new 5202 // instruction is above or below the existing scheduling region. 5203 BasicBlock::reverse_iterator UpIter = 5204 ++ScheduleStart->getIterator().getReverse(); 5205 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 5206 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 5207 BasicBlock::iterator LowerEnd = BB->end(); 5208 while (true) { 5209 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 5210 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 5211 return false; 5212 } 5213 5214 if (UpIter != UpperEnd) { 5215 if (&*UpIter == I) { 5216 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 5217 ScheduleStart = I; 5218 if (isOneOf(S, I) != I) 5219 CheckSheduleForI(I); 5220 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 5221 << "\n"); 5222 return true; 5223 } 5224 ++UpIter; 5225 } 5226 if (DownIter != LowerEnd) { 5227 if (&*DownIter == I) { 5228 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 5229 nullptr); 5230 ScheduleEnd = I->getNextNode(); 5231 if (isOneOf(S, I) != I) 5232 CheckSheduleForI(I); 5233 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5234 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I 5235 << "\n"); 5236 return true; 5237 } 5238 ++DownIter; 5239 } 5240 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 5241 "instruction not found in block"); 5242 } 5243 return true; 5244 } 5245 5246 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 5247 Instruction *ToI, 5248 ScheduleData *PrevLoadStore, 5249 ScheduleData *NextLoadStore) { 5250 ScheduleData *CurrentLoadStore = PrevLoadStore; 5251 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 5252 ScheduleData *SD = ScheduleDataMap[I]; 5253 if (!SD) { 5254 SD = allocateScheduleDataChunks(); 5255 ScheduleDataMap[I] = SD; 5256 SD->Inst = I; 5257 } 5258 assert(!isInSchedulingRegion(SD) && 5259 "new ScheduleData already in scheduling region"); 5260 SD->init(SchedulingRegionID, I); 5261 5262 if (I->mayReadOrWriteMemory() && 5263 (!isa<IntrinsicInst>(I) || 5264 cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) { 5265 // Update the linked list of memory accessing instructions. 5266 if (CurrentLoadStore) { 5267 CurrentLoadStore->NextLoadStore = SD; 5268 } else { 5269 FirstLoadStoreInRegion = SD; 5270 } 5271 CurrentLoadStore = SD; 5272 } 5273 } 5274 if (NextLoadStore) { 5275 if (CurrentLoadStore) 5276 CurrentLoadStore->NextLoadStore = NextLoadStore; 5277 } else { 5278 LastLoadStoreInRegion = CurrentLoadStore; 5279 } 5280 } 5281 5282 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 5283 bool InsertInReadyList, 5284 BoUpSLP *SLP) { 5285 assert(SD->isSchedulingEntity()); 5286 5287 SmallVector<ScheduleData *, 10> WorkList; 5288 WorkList.push_back(SD); 5289 5290 while (!WorkList.empty()) { 5291 ScheduleData *SD = WorkList.back(); 5292 WorkList.pop_back(); 5293 5294 ScheduleData *BundleMember = SD; 5295 while (BundleMember) { 5296 assert(isInSchedulingRegion(BundleMember)); 5297 if (!BundleMember->hasValidDependencies()) { 5298 5299 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 5300 << "\n"); 5301 BundleMember->Dependencies = 0; 5302 BundleMember->resetUnscheduledDeps(); 5303 5304 // Handle def-use chain dependencies. 5305 if (BundleMember->OpValue != BundleMember->Inst) { 5306 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 5307 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5308 BundleMember->Dependencies++; 5309 ScheduleData *DestBundle = UseSD->FirstInBundle; 5310 if (!DestBundle->IsScheduled) 5311 BundleMember->incrementUnscheduledDeps(1); 5312 if (!DestBundle->hasValidDependencies()) 5313 WorkList.push_back(DestBundle); 5314 } 5315 } else { 5316 for (User *U : BundleMember->Inst->users()) { 5317 if (isa<Instruction>(U)) { 5318 ScheduleData *UseSD = getScheduleData(U); 5319 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5320 BundleMember->Dependencies++; 5321 ScheduleData *DestBundle = UseSD->FirstInBundle; 5322 if (!DestBundle->IsScheduled) 5323 BundleMember->incrementUnscheduledDeps(1); 5324 if (!DestBundle->hasValidDependencies()) 5325 WorkList.push_back(DestBundle); 5326 } 5327 } else { 5328 // I'm not sure if this can ever happen. But we need to be safe. 5329 // This lets the instruction/bundle never be scheduled and 5330 // eventually disable vectorization. 5331 BundleMember->Dependencies++; 5332 BundleMember->incrementUnscheduledDeps(1); 5333 } 5334 } 5335 } 5336 5337 // Handle the memory dependencies. 5338 ScheduleData *DepDest = BundleMember->NextLoadStore; 5339 if (DepDest) { 5340 Instruction *SrcInst = BundleMember->Inst; 5341 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 5342 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 5343 unsigned numAliased = 0; 5344 unsigned DistToSrc = 1; 5345 5346 while (DepDest) { 5347 assert(isInSchedulingRegion(DepDest)); 5348 5349 // We have two limits to reduce the complexity: 5350 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 5351 // SLP->isAliased (which is the expensive part in this loop). 5352 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 5353 // the whole loop (even if the loop is fast, it's quadratic). 5354 // It's important for the loop break condition (see below) to 5355 // check this limit even between two read-only instructions. 5356 if (DistToSrc >= MaxMemDepDistance || 5357 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 5358 (numAliased >= AliasedCheckLimit || 5359 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 5360 5361 // We increment the counter only if the locations are aliased 5362 // (instead of counting all alias checks). This gives a better 5363 // balance between reduced runtime and accurate dependencies. 5364 numAliased++; 5365 5366 DepDest->MemoryDependencies.push_back(BundleMember); 5367 BundleMember->Dependencies++; 5368 ScheduleData *DestBundle = DepDest->FirstInBundle; 5369 if (!DestBundle->IsScheduled) { 5370 BundleMember->incrementUnscheduledDeps(1); 5371 } 5372 if (!DestBundle->hasValidDependencies()) { 5373 WorkList.push_back(DestBundle); 5374 } 5375 } 5376 DepDest = DepDest->NextLoadStore; 5377 5378 // Example, explaining the loop break condition: Let's assume our 5379 // starting instruction is i0 and MaxMemDepDistance = 3. 5380 // 5381 // +--------v--v--v 5382 // i0,i1,i2,i3,i4,i5,i6,i7,i8 5383 // +--------^--^--^ 5384 // 5385 // MaxMemDepDistance let us stop alias-checking at i3 and we add 5386 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 5387 // Previously we already added dependencies from i3 to i6,i7,i8 5388 // (because of MaxMemDepDistance). As we added a dependency from 5389 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 5390 // and we can abort this loop at i6. 5391 if (DistToSrc >= 2 * MaxMemDepDistance) 5392 break; 5393 DistToSrc++; 5394 } 5395 } 5396 } 5397 BundleMember = BundleMember->NextInBundle; 5398 } 5399 if (InsertInReadyList && SD->isReady()) { 5400 ReadyInsts.push_back(SD); 5401 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 5402 << "\n"); 5403 } 5404 } 5405 } 5406 5407 void BoUpSLP::BlockScheduling::resetSchedule() { 5408 assert(ScheduleStart && 5409 "tried to reset schedule on block which has not been scheduled"); 5410 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 5411 doForAllOpcodes(I, [&](ScheduleData *SD) { 5412 assert(isInSchedulingRegion(SD) && 5413 "ScheduleData not in scheduling region"); 5414 SD->IsScheduled = false; 5415 SD->resetUnscheduledDeps(); 5416 }); 5417 } 5418 ReadyInsts.clear(); 5419 } 5420 5421 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 5422 if (!BS->ScheduleStart) 5423 return; 5424 5425 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 5426 5427 BS->resetSchedule(); 5428 5429 // For the real scheduling we use a more sophisticated ready-list: it is 5430 // sorted by the original instruction location. This lets the final schedule 5431 // be as close as possible to the original instruction order. 5432 struct ScheduleDataCompare { 5433 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 5434 return SD2->SchedulingPriority < SD1->SchedulingPriority; 5435 } 5436 }; 5437 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 5438 5439 // Ensure that all dependency data is updated and fill the ready-list with 5440 // initial instructions. 5441 int Idx = 0; 5442 int NumToSchedule = 0; 5443 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 5444 I = I->getNextNode()) { 5445 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 5446 assert(SD->isPartOfBundle() == 5447 (getTreeEntry(SD->Inst) != nullptr) && 5448 "scheduler and vectorizer bundle mismatch"); 5449 SD->FirstInBundle->SchedulingPriority = Idx++; 5450 if (SD->isSchedulingEntity()) { 5451 BS->calculateDependencies(SD, false, this); 5452 NumToSchedule++; 5453 } 5454 }); 5455 } 5456 BS->initialFillReadyList(ReadyInsts); 5457 5458 Instruction *LastScheduledInst = BS->ScheduleEnd; 5459 5460 // Do the "real" scheduling. 5461 while (!ReadyInsts.empty()) { 5462 ScheduleData *picked = *ReadyInsts.begin(); 5463 ReadyInsts.erase(ReadyInsts.begin()); 5464 5465 // Move the scheduled instruction(s) to their dedicated places, if not 5466 // there yet. 5467 ScheduleData *BundleMember = picked; 5468 while (BundleMember) { 5469 Instruction *pickedInst = BundleMember->Inst; 5470 if (LastScheduledInst->getNextNode() != pickedInst) { 5471 BS->BB->getInstList().remove(pickedInst); 5472 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 5473 pickedInst); 5474 } 5475 LastScheduledInst = pickedInst; 5476 BundleMember = BundleMember->NextInBundle; 5477 } 5478 5479 BS->schedule(picked, ReadyInsts); 5480 NumToSchedule--; 5481 } 5482 assert(NumToSchedule == 0 && "could not schedule all instructions"); 5483 5484 // Avoid duplicate scheduling of the block. 5485 BS->ScheduleStart = nullptr; 5486 } 5487 5488 unsigned BoUpSLP::getVectorElementSize(Value *V) { 5489 // If V is a store, just return the width of the stored value without 5490 // traversing the expression tree. This is the common case. 5491 if (auto *Store = dyn_cast<StoreInst>(V)) 5492 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 5493 5494 auto E = InstrElementSize.find(V); 5495 if (E != InstrElementSize.end()) 5496 return E->second; 5497 5498 // If V is not a store, we can traverse the expression tree to find loads 5499 // that feed it. The type of the loaded value may indicate a more suitable 5500 // width than V's type. We want to base the vector element size on the width 5501 // of memory operations where possible. 5502 SmallVector<Instruction *, 16> Worklist; 5503 SmallPtrSet<Instruction *, 16> Visited; 5504 if (auto *I = dyn_cast<Instruction>(V)) { 5505 Worklist.push_back(I); 5506 Visited.insert(I); 5507 } 5508 5509 // Traverse the expression tree in bottom-up order looking for loads. If we 5510 // encounter an instruction we don't yet handle, we give up. 5511 auto MaxWidth = 0u; 5512 auto FoundUnknownInst = false; 5513 while (!Worklist.empty() && !FoundUnknownInst) { 5514 auto *I = Worklist.pop_back_val(); 5515 5516 // We should only be looking at scalar instructions here. If the current 5517 // instruction has a vector type, give up. 5518 auto *Ty = I->getType(); 5519 if (isa<VectorType>(Ty)) 5520 FoundUnknownInst = true; 5521 5522 // If the current instruction is a load, update MaxWidth to reflect the 5523 // width of the loaded value. 5524 else if (isa<LoadInst>(I)) 5525 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 5526 5527 // Otherwise, we need to visit the operands of the instruction. We only 5528 // handle the interesting cases from buildTree here. If an operand is an 5529 // instruction we haven't yet visited, we add it to the worklist. 5530 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5531 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 5532 for (Use &U : I->operands()) 5533 if (auto *J = dyn_cast<Instruction>(U.get())) 5534 if (Visited.insert(J).second) 5535 Worklist.push_back(J); 5536 } 5537 5538 // If we don't yet handle the instruction, give up. 5539 else 5540 FoundUnknownInst = true; 5541 } 5542 5543 int Width = MaxWidth; 5544 // If we didn't encounter a memory access in the expression tree, or if we 5545 // gave up for some reason, just return the width of V. Otherwise, return the 5546 // maximum width we found. 5547 if (!MaxWidth || FoundUnknownInst) 5548 Width = DL->getTypeSizeInBits(V->getType()); 5549 5550 for (Instruction *I : Visited) 5551 InstrElementSize[I] = Width; 5552 5553 return Width; 5554 } 5555 5556 // Determine if a value V in a vectorizable expression Expr can be demoted to a 5557 // smaller type with a truncation. We collect the values that will be demoted 5558 // in ToDemote and additional roots that require investigating in Roots. 5559 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 5560 SmallVectorImpl<Value *> &ToDemote, 5561 SmallVectorImpl<Value *> &Roots) { 5562 // We can always demote constants. 5563 if (isa<Constant>(V)) { 5564 ToDemote.push_back(V); 5565 return true; 5566 } 5567 5568 // If the value is not an instruction in the expression with only one use, it 5569 // cannot be demoted. 5570 auto *I = dyn_cast<Instruction>(V); 5571 if (!I || !I->hasOneUse() || !Expr.count(I)) 5572 return false; 5573 5574 switch (I->getOpcode()) { 5575 5576 // We can always demote truncations and extensions. Since truncations can 5577 // seed additional demotion, we save the truncated value. 5578 case Instruction::Trunc: 5579 Roots.push_back(I->getOperand(0)); 5580 break; 5581 case Instruction::ZExt: 5582 case Instruction::SExt: 5583 break; 5584 5585 // We can demote certain binary operations if we can demote both of their 5586 // operands. 5587 case Instruction::Add: 5588 case Instruction::Sub: 5589 case Instruction::Mul: 5590 case Instruction::And: 5591 case Instruction::Or: 5592 case Instruction::Xor: 5593 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 5594 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 5595 return false; 5596 break; 5597 5598 // We can demote selects if we can demote their true and false values. 5599 case Instruction::Select: { 5600 SelectInst *SI = cast<SelectInst>(I); 5601 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 5602 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 5603 return false; 5604 break; 5605 } 5606 5607 // We can demote phis if we can demote all their incoming operands. Note that 5608 // we don't need to worry about cycles since we ensure single use above. 5609 case Instruction::PHI: { 5610 PHINode *PN = cast<PHINode>(I); 5611 for (Value *IncValue : PN->incoming_values()) 5612 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 5613 return false; 5614 break; 5615 } 5616 5617 // Otherwise, conservatively give up. 5618 default: 5619 return false; 5620 } 5621 5622 // Record the value that we can demote. 5623 ToDemote.push_back(V); 5624 return true; 5625 } 5626 5627 void BoUpSLP::computeMinimumValueSizes() { 5628 // If there are no external uses, the expression tree must be rooted by a 5629 // store. We can't demote in-memory values, so there is nothing to do here. 5630 if (ExternalUses.empty()) 5631 return; 5632 5633 // We only attempt to truncate integer expressions. 5634 auto &TreeRoot = VectorizableTree[0]->Scalars; 5635 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 5636 if (!TreeRootIT) 5637 return; 5638 5639 // If the expression is not rooted by a store, these roots should have 5640 // external uses. We will rely on InstCombine to rewrite the expression in 5641 // the narrower type. However, InstCombine only rewrites single-use values. 5642 // This means that if a tree entry other than a root is used externally, it 5643 // must have multiple uses and InstCombine will not rewrite it. The code 5644 // below ensures that only the roots are used externally. 5645 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 5646 for (auto &EU : ExternalUses) 5647 if (!Expr.erase(EU.Scalar)) 5648 return; 5649 if (!Expr.empty()) 5650 return; 5651 5652 // Collect the scalar values of the vectorizable expression. We will use this 5653 // context to determine which values can be demoted. If we see a truncation, 5654 // we mark it as seeding another demotion. 5655 for (auto &EntryPtr : VectorizableTree) 5656 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 5657 5658 // Ensure the roots of the vectorizable tree don't form a cycle. They must 5659 // have a single external user that is not in the vectorizable tree. 5660 for (auto *Root : TreeRoot) 5661 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 5662 return; 5663 5664 // Conservatively determine if we can actually truncate the roots of the 5665 // expression. Collect the values that can be demoted in ToDemote and 5666 // additional roots that require investigating in Roots. 5667 SmallVector<Value *, 32> ToDemote; 5668 SmallVector<Value *, 4> Roots; 5669 for (auto *Root : TreeRoot) 5670 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 5671 return; 5672 5673 // The maximum bit width required to represent all the values that can be 5674 // demoted without loss of precision. It would be safe to truncate the roots 5675 // of the expression to this width. 5676 auto MaxBitWidth = 8u; 5677 5678 // We first check if all the bits of the roots are demanded. If they're not, 5679 // we can truncate the roots to this narrower type. 5680 for (auto *Root : TreeRoot) { 5681 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 5682 MaxBitWidth = std::max<unsigned>( 5683 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 5684 } 5685 5686 // True if the roots can be zero-extended back to their original type, rather 5687 // than sign-extended. We know that if the leading bits are not demanded, we 5688 // can safely zero-extend. So we initialize IsKnownPositive to True. 5689 bool IsKnownPositive = true; 5690 5691 // If all the bits of the roots are demanded, we can try a little harder to 5692 // compute a narrower type. This can happen, for example, if the roots are 5693 // getelementptr indices. InstCombine promotes these indices to the pointer 5694 // width. Thus, all their bits are technically demanded even though the 5695 // address computation might be vectorized in a smaller type. 5696 // 5697 // We start by looking at each entry that can be demoted. We compute the 5698 // maximum bit width required to store the scalar by using ValueTracking to 5699 // compute the number of high-order bits we can truncate. 5700 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 5701 llvm::all_of(TreeRoot, [](Value *R) { 5702 assert(R->hasOneUse() && "Root should have only one use!"); 5703 return isa<GetElementPtrInst>(R->user_back()); 5704 })) { 5705 MaxBitWidth = 8u; 5706 5707 // Determine if the sign bit of all the roots is known to be zero. If not, 5708 // IsKnownPositive is set to False. 5709 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 5710 KnownBits Known = computeKnownBits(R, *DL); 5711 return Known.isNonNegative(); 5712 }); 5713 5714 // Determine the maximum number of bits required to store the scalar 5715 // values. 5716 for (auto *Scalar : ToDemote) { 5717 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 5718 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 5719 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 5720 } 5721 5722 // If we can't prove that the sign bit is zero, we must add one to the 5723 // maximum bit width to account for the unknown sign bit. This preserves 5724 // the existing sign bit so we can safely sign-extend the root back to the 5725 // original type. Otherwise, if we know the sign bit is zero, we will 5726 // zero-extend the root instead. 5727 // 5728 // FIXME: This is somewhat suboptimal, as there will be cases where adding 5729 // one to the maximum bit width will yield a larger-than-necessary 5730 // type. In general, we need to add an extra bit only if we can't 5731 // prove that the upper bit of the original type is equal to the 5732 // upper bit of the proposed smaller type. If these two bits are the 5733 // same (either zero or one) we know that sign-extending from the 5734 // smaller type will result in the same value. Here, since we can't 5735 // yet prove this, we are just making the proposed smaller type 5736 // larger to ensure correctness. 5737 if (!IsKnownPositive) 5738 ++MaxBitWidth; 5739 } 5740 5741 // Round MaxBitWidth up to the next power-of-two. 5742 if (!isPowerOf2_64(MaxBitWidth)) 5743 MaxBitWidth = NextPowerOf2(MaxBitWidth); 5744 5745 // If the maximum bit width we compute is less than the with of the roots' 5746 // type, we can proceed with the narrowing. Otherwise, do nothing. 5747 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 5748 return; 5749 5750 // If we can truncate the root, we must collect additional values that might 5751 // be demoted as a result. That is, those seeded by truncations we will 5752 // modify. 5753 while (!Roots.empty()) 5754 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 5755 5756 // Finally, map the values we can demote to the maximum bit with we computed. 5757 for (auto *Scalar : ToDemote) 5758 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 5759 } 5760 5761 namespace { 5762 5763 /// The SLPVectorizer Pass. 5764 struct SLPVectorizer : public FunctionPass { 5765 SLPVectorizerPass Impl; 5766 5767 /// Pass identification, replacement for typeid 5768 static char ID; 5769 5770 explicit SLPVectorizer() : FunctionPass(ID) { 5771 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 5772 } 5773 5774 bool doInitialization(Module &M) override { 5775 return false; 5776 } 5777 5778 bool runOnFunction(Function &F) override { 5779 if (skipFunction(F)) 5780 return false; 5781 5782 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5783 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 5784 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 5785 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 5786 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 5787 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5788 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5789 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 5790 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 5791 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 5792 5793 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5794 } 5795 5796 void getAnalysisUsage(AnalysisUsage &AU) const override { 5797 FunctionPass::getAnalysisUsage(AU); 5798 AU.addRequired<AssumptionCacheTracker>(); 5799 AU.addRequired<ScalarEvolutionWrapperPass>(); 5800 AU.addRequired<AAResultsWrapperPass>(); 5801 AU.addRequired<TargetTransformInfoWrapperPass>(); 5802 AU.addRequired<LoopInfoWrapperPass>(); 5803 AU.addRequired<DominatorTreeWrapperPass>(); 5804 AU.addRequired<DemandedBitsWrapperPass>(); 5805 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 5806 AU.addRequired<InjectTLIMappingsLegacy>(); 5807 AU.addPreserved<LoopInfoWrapperPass>(); 5808 AU.addPreserved<DominatorTreeWrapperPass>(); 5809 AU.addPreserved<AAResultsWrapperPass>(); 5810 AU.addPreserved<GlobalsAAWrapperPass>(); 5811 AU.setPreservesCFG(); 5812 } 5813 }; 5814 5815 } // end anonymous namespace 5816 5817 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 5818 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 5819 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 5820 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 5821 auto *AA = &AM.getResult<AAManager>(F); 5822 auto *LI = &AM.getResult<LoopAnalysis>(F); 5823 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 5824 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 5825 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 5826 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 5827 5828 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5829 if (!Changed) 5830 return PreservedAnalyses::all(); 5831 5832 PreservedAnalyses PA; 5833 PA.preserveSet<CFGAnalyses>(); 5834 PA.preserve<AAManager>(); 5835 PA.preserve<GlobalsAA>(); 5836 return PA; 5837 } 5838 5839 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 5840 TargetTransformInfo *TTI_, 5841 TargetLibraryInfo *TLI_, AAResults *AA_, 5842 LoopInfo *LI_, DominatorTree *DT_, 5843 AssumptionCache *AC_, DemandedBits *DB_, 5844 OptimizationRemarkEmitter *ORE_) { 5845 if (!RunSLPVectorization) 5846 return false; 5847 SE = SE_; 5848 TTI = TTI_; 5849 TLI = TLI_; 5850 AA = AA_; 5851 LI = LI_; 5852 DT = DT_; 5853 AC = AC_; 5854 DB = DB_; 5855 DL = &F.getParent()->getDataLayout(); 5856 5857 Stores.clear(); 5858 GEPs.clear(); 5859 bool Changed = false; 5860 5861 // If the target claims to have no vector registers don't attempt 5862 // vectorization. 5863 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 5864 return false; 5865 5866 // Don't vectorize when the attribute NoImplicitFloat is used. 5867 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 5868 return false; 5869 5870 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 5871 5872 // Use the bottom up slp vectorizer to construct chains that start with 5873 // store instructions. 5874 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 5875 5876 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 5877 // delete instructions. 5878 5879 // Scan the blocks in the function in post order. 5880 for (auto BB : post_order(&F.getEntryBlock())) { 5881 collectSeedInstructions(BB); 5882 5883 // Vectorize trees that end at stores. 5884 if (!Stores.empty()) { 5885 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 5886 << " underlying objects.\n"); 5887 Changed |= vectorizeStoreChains(R); 5888 } 5889 5890 // Vectorize trees that end at reductions. 5891 Changed |= vectorizeChainsInBlock(BB, R); 5892 5893 // Vectorize the index computations of getelementptr instructions. This 5894 // is primarily intended to catch gather-like idioms ending at 5895 // non-consecutive loads. 5896 if (!GEPs.empty()) { 5897 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 5898 << " underlying objects.\n"); 5899 Changed |= vectorizeGEPIndices(BB, R); 5900 } 5901 } 5902 5903 if (Changed) { 5904 R.optimizeGatherSequence(); 5905 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 5906 } 5907 return Changed; 5908 } 5909 5910 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 5911 unsigned Idx) { 5912 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 5913 << "\n"); 5914 const unsigned Sz = R.getVectorElementSize(Chain[0]); 5915 const unsigned MinVF = R.getMinVecRegSize() / Sz; 5916 unsigned VF = Chain.size(); 5917 5918 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 5919 return false; 5920 5921 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 5922 << "\n"); 5923 5924 R.buildTree(Chain); 5925 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 5926 // TODO: Handle orders of size less than number of elements in the vector. 5927 if (Order && Order->size() == Chain.size()) { 5928 // TODO: reorder tree nodes without tree rebuilding. 5929 SmallVector<Value *, 4> ReorderedOps(Chain.rbegin(), Chain.rend()); 5930 llvm::transform(*Order, ReorderedOps.begin(), 5931 [Chain](const unsigned Idx) { return Chain[Idx]; }); 5932 R.buildTree(ReorderedOps); 5933 } 5934 if (R.isTreeTinyAndNotFullyVectorizable()) 5935 return false; 5936 if (R.isLoadCombineCandidate()) 5937 return false; 5938 5939 R.computeMinimumValueSizes(); 5940 5941 int Cost = R.getTreeCost(); 5942 5943 LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); 5944 if (Cost < -SLPCostThreshold) { 5945 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 5946 5947 using namespace ore; 5948 5949 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 5950 cast<StoreInst>(Chain[0])) 5951 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 5952 << " and with tree size " 5953 << NV("TreeSize", R.getTreeSize())); 5954 5955 R.vectorizeTree(); 5956 return true; 5957 } 5958 5959 return false; 5960 } 5961 5962 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 5963 BoUpSLP &R) { 5964 // We may run into multiple chains that merge into a single chain. We mark the 5965 // stores that we vectorized so that we don't visit the same store twice. 5966 BoUpSLP::ValueSet VectorizedStores; 5967 bool Changed = false; 5968 5969 int E = Stores.size(); 5970 SmallBitVector Tails(E, false); 5971 SmallVector<int, 16> ConsecutiveChain(E, E + 1); 5972 int MaxIter = MaxStoreLookup.getValue(); 5973 int IterCnt; 5974 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 5975 &ConsecutiveChain](int K, int Idx) { 5976 if (IterCnt >= MaxIter) 5977 return true; 5978 ++IterCnt; 5979 if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) 5980 return false; 5981 5982 Tails.set(Idx); 5983 ConsecutiveChain[K] = Idx; 5984 return true; 5985 }; 5986 // Do a quadratic search on all of the given stores in reverse order and find 5987 // all of the pairs of stores that follow each other. 5988 for (int Idx = E - 1; Idx >= 0; --Idx) { 5989 // If a store has multiple consecutive store candidates, search according 5990 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 5991 // This is because usually pairing with immediate succeeding or preceding 5992 // candidate create the best chance to find slp vectorization opportunity. 5993 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 5994 IterCnt = 0; 5995 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 5996 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 5997 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 5998 break; 5999 } 6000 6001 // For stores that start but don't end a link in the chain: 6002 for (int Cnt = E; Cnt > 0; --Cnt) { 6003 int I = Cnt - 1; 6004 if (ConsecutiveChain[I] == E + 1 || Tails.test(I)) 6005 continue; 6006 // We found a store instr that starts a chain. Now follow the chain and try 6007 // to vectorize it. 6008 BoUpSLP::ValueList Operands; 6009 // Collect the chain into a list. 6010 while (I != E + 1 && !VectorizedStores.count(Stores[I])) { 6011 Operands.push_back(Stores[I]); 6012 // Move to the next value in the chain. 6013 I = ConsecutiveChain[I]; 6014 } 6015 6016 // If a vector register can't hold 1 element, we are done. 6017 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 6018 unsigned EltSize = R.getVectorElementSize(Stores[0]); 6019 if (MaxVecRegSize % EltSize != 0) 6020 continue; 6021 6022 unsigned MaxElts = MaxVecRegSize / EltSize; 6023 // FIXME: Is division-by-2 the correct step? Should we assert that the 6024 // register size is a power-of-2? 6025 unsigned StartIdx = 0; 6026 for (unsigned Size = llvm::PowerOf2Ceil(MaxElts); Size >= 2; Size /= 2) { 6027 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 6028 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 6029 if (!VectorizedStores.count(Slice.front()) && 6030 !VectorizedStores.count(Slice.back()) && 6031 vectorizeStoreChain(Slice, R, Cnt)) { 6032 // Mark the vectorized stores so that we don't vectorize them again. 6033 VectorizedStores.insert(Slice.begin(), Slice.end()); 6034 Changed = true; 6035 // If we vectorized initial block, no need to try to vectorize it 6036 // again. 6037 if (Cnt == StartIdx) 6038 StartIdx += Size; 6039 Cnt += Size; 6040 continue; 6041 } 6042 ++Cnt; 6043 } 6044 // Check if the whole array was vectorized already - exit. 6045 if (StartIdx >= Operands.size()) 6046 break; 6047 } 6048 } 6049 6050 return Changed; 6051 } 6052 6053 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 6054 // Initialize the collections. We will make a single pass over the block. 6055 Stores.clear(); 6056 GEPs.clear(); 6057 6058 // Visit the store and getelementptr instructions in BB and organize them in 6059 // Stores and GEPs according to the underlying objects of their pointer 6060 // operands. 6061 for (Instruction &I : *BB) { 6062 // Ignore store instructions that are volatile or have a pointer operand 6063 // that doesn't point to a scalar type. 6064 if (auto *SI = dyn_cast<StoreInst>(&I)) { 6065 if (!SI->isSimple()) 6066 continue; 6067 if (!isValidElementType(SI->getValueOperand()->getType())) 6068 continue; 6069 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 6070 } 6071 6072 // Ignore getelementptr instructions that have more than one index, a 6073 // constant index, or a pointer operand that doesn't point to a scalar 6074 // type. 6075 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 6076 auto Idx = GEP->idx_begin()->get(); 6077 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 6078 continue; 6079 if (!isValidElementType(Idx->getType())) 6080 continue; 6081 if (GEP->getType()->isVectorTy()) 6082 continue; 6083 GEPs[GEP->getPointerOperand()].push_back(GEP); 6084 } 6085 } 6086 } 6087 6088 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 6089 if (!A || !B) 6090 return false; 6091 Value *VL[] = {A, B}; 6092 return tryToVectorizeList(VL, R, /*AllowReorder=*/true); 6093 } 6094 6095 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 6096 bool AllowReorder, 6097 ArrayRef<Value *> InsertUses) { 6098 if (VL.size() < 2) 6099 return false; 6100 6101 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 6102 << VL.size() << ".\n"); 6103 6104 // Check that all of the parts are instructions of the same type, 6105 // we permit an alternate opcode via InstructionsState. 6106 InstructionsState S = getSameOpcode(VL); 6107 if (!S.getOpcode()) 6108 return false; 6109 6110 Instruction *I0 = cast<Instruction>(S.OpValue); 6111 // Make sure invalid types (including vector type) are rejected before 6112 // determining vectorization factor for scalar instructions. 6113 for (Value *V : VL) { 6114 Type *Ty = V->getType(); 6115 if (!isValidElementType(Ty)) { 6116 // NOTE: the following will give user internal llvm type name, which may 6117 // not be useful. 6118 R.getORE()->emit([&]() { 6119 std::string type_str; 6120 llvm::raw_string_ostream rso(type_str); 6121 Ty->print(rso); 6122 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 6123 << "Cannot SLP vectorize list: type " 6124 << rso.str() + " is unsupported by vectorizer"; 6125 }); 6126 return false; 6127 } 6128 } 6129 6130 unsigned Sz = R.getVectorElementSize(I0); 6131 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 6132 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 6133 if (MaxVF < 2) { 6134 R.getORE()->emit([&]() { 6135 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 6136 << "Cannot SLP vectorize list: vectorization factor " 6137 << "less than 2 is not supported"; 6138 }); 6139 return false; 6140 } 6141 6142 bool Changed = false; 6143 bool CandidateFound = false; 6144 int MinCost = SLPCostThreshold; 6145 6146 bool CompensateUseCost = 6147 !InsertUses.empty() && llvm::all_of(InsertUses, [](const Value *V) { 6148 return V && isa<InsertElementInst>(V); 6149 }); 6150 assert((!CompensateUseCost || InsertUses.size() == VL.size()) && 6151 "Each scalar expected to have an associated InsertElement user."); 6152 6153 unsigned NextInst = 0, MaxInst = VL.size(); 6154 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 6155 // No actual vectorization should happen, if number of parts is the same as 6156 // provided vectorization factor (i.e. the scalar type is used for vector 6157 // code during codegen). 6158 auto *VecTy = FixedVectorType::get(VL[0]->getType(), VF); 6159 if (TTI->getNumberOfParts(VecTy) == VF) 6160 continue; 6161 for (unsigned I = NextInst; I < MaxInst; ++I) { 6162 unsigned OpsWidth = 0; 6163 6164 if (I + VF > MaxInst) 6165 OpsWidth = MaxInst - I; 6166 else 6167 OpsWidth = VF; 6168 6169 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 6170 break; 6171 6172 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 6173 // Check that a previous iteration of this loop did not delete the Value. 6174 if (llvm::any_of(Ops, [&R](Value *V) { 6175 auto *I = dyn_cast<Instruction>(V); 6176 return I && R.isDeleted(I); 6177 })) 6178 continue; 6179 6180 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 6181 << "\n"); 6182 6183 R.buildTree(Ops); 6184 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 6185 // TODO: check if we can allow reordering for more cases. 6186 if (AllowReorder && Order) { 6187 // TODO: reorder tree nodes without tree rebuilding. 6188 // Conceptually, there is nothing actually preventing us from trying to 6189 // reorder a larger list. In fact, we do exactly this when vectorizing 6190 // reductions. However, at this point, we only expect to get here when 6191 // there are exactly two operations. 6192 assert(Ops.size() == 2); 6193 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 6194 R.buildTree(ReorderedOps, None); 6195 } 6196 if (R.isTreeTinyAndNotFullyVectorizable()) 6197 continue; 6198 6199 R.computeMinimumValueSizes(); 6200 int Cost = R.getTreeCost(); 6201 CandidateFound = true; 6202 if (CompensateUseCost) { 6203 // TODO: Use TTI's getScalarizationOverhead for sequence of inserts 6204 // rather than sum of single inserts as the latter may overestimate 6205 // cost. This work should imply improving cost estimation for extracts 6206 // that added in for external (for vectorization tree) users,i.e. that 6207 // part should also switch to same interface. 6208 // For example, the following case is projected code after SLP: 6209 // %4 = extractelement <4 x i64> %3, i32 0 6210 // %v0 = insertelement <4 x i64> undef, i64 %4, i32 0 6211 // %5 = extractelement <4 x i64> %3, i32 1 6212 // %v1 = insertelement <4 x i64> %v0, i64 %5, i32 1 6213 // %6 = extractelement <4 x i64> %3, i32 2 6214 // %v2 = insertelement <4 x i64> %v1, i64 %6, i32 2 6215 // %7 = extractelement <4 x i64> %3, i32 3 6216 // %v3 = insertelement <4 x i64> %v2, i64 %7, i32 3 6217 // 6218 // Extracts here added by SLP in order to feed users (the inserts) of 6219 // original scalars and contribute to "ExtractCost" at cost evaluation. 6220 // The inserts in turn form sequence to build an aggregate that 6221 // detected by findBuildAggregate routine. 6222 // SLP makes an assumption that such sequence will be optimized away 6223 // later (instcombine) so it tries to compensate ExctractCost with 6224 // cost of insert sequence. 6225 // Current per element cost calculation approach is not quite accurate 6226 // and tends to create bias toward favoring vectorization. 6227 // Switching to the TTI interface might help a bit. 6228 // Alternative solution could be pattern-match to detect a no-op or 6229 // shuffle. 6230 unsigned UserCost = 0; 6231 for (unsigned Lane = 0; Lane < OpsWidth; Lane++) { 6232 auto *IE = cast<InsertElementInst>(InsertUses[I + Lane]); 6233 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) 6234 UserCost += TTI->getVectorInstrCost( 6235 Instruction::InsertElement, IE->getType(), CI->getZExtValue()); 6236 } 6237 LLVM_DEBUG(dbgs() << "SLP: Compensate cost of users by: " << UserCost 6238 << ".\n"); 6239 Cost -= UserCost; 6240 } 6241 6242 MinCost = std::min(MinCost, Cost); 6243 6244 if (Cost < -SLPCostThreshold) { 6245 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 6246 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 6247 cast<Instruction>(Ops[0])) 6248 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 6249 << " and with tree size " 6250 << ore::NV("TreeSize", R.getTreeSize())); 6251 6252 R.vectorizeTree(); 6253 // Move to the next bundle. 6254 I += VF - 1; 6255 NextInst = I + 1; 6256 Changed = true; 6257 } 6258 } 6259 } 6260 6261 if (!Changed && CandidateFound) { 6262 R.getORE()->emit([&]() { 6263 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 6264 << "List vectorization was possible but not beneficial with cost " 6265 << ore::NV("Cost", MinCost) << " >= " 6266 << ore::NV("Treshold", -SLPCostThreshold); 6267 }); 6268 } else if (!Changed) { 6269 R.getORE()->emit([&]() { 6270 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 6271 << "Cannot SLP vectorize list: vectorization was impossible" 6272 << " with available vectorization factors"; 6273 }); 6274 } 6275 return Changed; 6276 } 6277 6278 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 6279 if (!I) 6280 return false; 6281 6282 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 6283 return false; 6284 6285 Value *P = I->getParent(); 6286 6287 // Vectorize in current basic block only. 6288 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 6289 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 6290 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 6291 return false; 6292 6293 // Try to vectorize V. 6294 if (tryToVectorizePair(Op0, Op1, R)) 6295 return true; 6296 6297 auto *A = dyn_cast<BinaryOperator>(Op0); 6298 auto *B = dyn_cast<BinaryOperator>(Op1); 6299 // Try to skip B. 6300 if (B && B->hasOneUse()) { 6301 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 6302 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 6303 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 6304 return true; 6305 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 6306 return true; 6307 } 6308 6309 // Try to skip A. 6310 if (A && A->hasOneUse()) { 6311 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 6312 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 6313 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 6314 return true; 6315 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 6316 return true; 6317 } 6318 return false; 6319 } 6320 6321 /// Generate a shuffle mask to be used in a reduction tree. 6322 /// 6323 /// \param VecLen The length of the vector to be reduced. 6324 /// \param NumEltsToRdx The number of elements that should be reduced in the 6325 /// vector. 6326 /// \param IsPairwise Whether the reduction is a pairwise or splitting 6327 /// reduction. A pairwise reduction will generate a mask of 6328 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 6329 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 6330 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 6331 static SmallVector<int, 32> createRdxShuffleMask(unsigned VecLen, 6332 unsigned NumEltsToRdx, 6333 bool IsPairwise, bool IsLeft) { 6334 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 6335 6336 SmallVector<int, 32> ShuffleMask(VecLen, -1); 6337 6338 if (IsPairwise) 6339 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 6340 for (unsigned i = 0; i != NumEltsToRdx; ++i) 6341 ShuffleMask[i] = 2 * i + !IsLeft; 6342 else 6343 // Move the upper half of the vector to the lower half. 6344 for (unsigned i = 0; i != NumEltsToRdx; ++i) 6345 ShuffleMask[i] = NumEltsToRdx + i; 6346 6347 return ShuffleMask; 6348 } 6349 6350 namespace { 6351 6352 /// Model horizontal reductions. 6353 /// 6354 /// A horizontal reduction is a tree of reduction operations (currently add and 6355 /// fadd) that has operations that can be put into a vector as its leaf. 6356 /// For example, this tree: 6357 /// 6358 /// mul mul mul mul 6359 /// \ / \ / 6360 /// + + 6361 /// \ / 6362 /// + 6363 /// This tree has "mul" as its reduced values and "+" as its reduction 6364 /// operations. A reduction might be feeding into a store or a binary operation 6365 /// feeding a phi. 6366 /// ... 6367 /// \ / 6368 /// + 6369 /// | 6370 /// phi += 6371 /// 6372 /// Or: 6373 /// ... 6374 /// \ / 6375 /// + 6376 /// | 6377 /// *p = 6378 /// 6379 class HorizontalReduction { 6380 using ReductionOpsType = SmallVector<Value *, 16>; 6381 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 6382 ReductionOpsListType ReductionOps; 6383 SmallVector<Value *, 32> ReducedVals; 6384 // Use map vector to make stable output. 6385 MapVector<Instruction *, Value *> ExtraArgs; 6386 6387 /// Kind of the reduction data. 6388 enum ReductionKind { 6389 RK_None, /// Not a reduction. 6390 RK_Arithmetic, /// Binary reduction data. 6391 RK_SMin, /// Signed minimum reduction data. 6392 RK_UMin, /// Unsigned minimum reduction data. 6393 RK_SMax, /// Signed maximum reduction data. 6394 RK_UMax, /// Unsigned maximum reduction data. 6395 }; 6396 6397 /// Contains info about operation, like its opcode, left and right operands. 6398 class OperationData { 6399 /// Opcode of the instruction. 6400 unsigned Opcode = 0; 6401 6402 /// Kind of the reduction operation. 6403 ReductionKind Kind = RK_None; 6404 6405 /// Checks if the reduction operation can be vectorized. 6406 bool isVectorizable() const { 6407 // We currently only support add/mul/logical && min/max reductions. 6408 return ((Kind == RK_Arithmetic && 6409 (Opcode == Instruction::Add || Opcode == Instruction::FAdd || 6410 Opcode == Instruction::Mul || Opcode == Instruction::FMul || 6411 Opcode == Instruction::And || Opcode == Instruction::Or || 6412 Opcode == Instruction::Xor)) || 6413 (Opcode == Instruction::ICmp && 6414 (Kind == RK_SMin || Kind == RK_SMax || 6415 Kind == RK_UMin || Kind == RK_UMax))); 6416 } 6417 6418 /// Creates reduction operation with the current opcode. 6419 Value *createOp(IRBuilder<> &Builder, Value *LHS, Value *RHS, 6420 const Twine &Name) const { 6421 assert(isVectorizable() && 6422 "Expected add|fadd or min/max reduction operation."); 6423 Value *Cmp = nullptr; 6424 switch (Kind) { 6425 case RK_Arithmetic: 6426 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 6427 Name); 6428 case RK_SMin: 6429 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6430 Cmp = Builder.CreateICmpSLT(LHS, RHS); 6431 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6432 case RK_SMax: 6433 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6434 Cmp = Builder.CreateICmpSGT(LHS, RHS); 6435 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6436 case RK_UMin: 6437 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6438 Cmp = Builder.CreateICmpULT(LHS, RHS); 6439 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6440 case RK_UMax: 6441 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6442 Cmp = Builder.CreateICmpUGT(LHS, RHS); 6443 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6444 case RK_None: 6445 break; 6446 } 6447 llvm_unreachable("Unknown reduction operation."); 6448 } 6449 6450 public: 6451 explicit OperationData() = default; 6452 6453 /// Construction for reduced values. They are identified by opcode only and 6454 /// don't have associated LHS/RHS values. 6455 explicit OperationData(Instruction &I) { 6456 Opcode = I.getOpcode(); 6457 } 6458 6459 /// Constructor for reduction operations with opcode and its left and 6460 /// right operands. 6461 OperationData(unsigned Opcode, ReductionKind Kind) 6462 : Opcode(Opcode), Kind(Kind) { 6463 assert(Kind != RK_None && "One of the reduction operations is expected."); 6464 } 6465 6466 explicit operator bool() const { return Opcode; } 6467 6468 /// Return true if this operation is any kind of minimum or maximum. 6469 bool isMinMax() const { 6470 switch (Kind) { 6471 case RK_Arithmetic: 6472 return false; 6473 case RK_SMin: 6474 case RK_SMax: 6475 case RK_UMin: 6476 case RK_UMax: 6477 return true; 6478 case RK_None: 6479 break; 6480 } 6481 llvm_unreachable("Reduction kind is not set"); 6482 } 6483 6484 /// Get the index of the first operand. 6485 unsigned getFirstOperandIndex() const { 6486 assert(!!*this && "The opcode is not set."); 6487 // We allow calling this before 'Kind' is set, so handle that specially. 6488 if (Kind == RK_None) 6489 return 0; 6490 return isMinMax() ? 1 : 0; 6491 } 6492 6493 /// Total number of operands in the reduction operation. 6494 unsigned getNumberOfOperands() const { 6495 assert(Kind != RK_None && !!*this && "Expected reduction operation."); 6496 return isMinMax() ? 3 : 2; 6497 } 6498 6499 /// Checks if the instruction is in basic block \p BB. 6500 /// For a min/max reduction check that both compare and select are in \p BB. 6501 bool hasSameParent(Instruction *I, BasicBlock *BB, bool IsRedOp) const { 6502 assert(Kind != RK_None && !!*this && "Expected reduction operation."); 6503 if (IsRedOp && isMinMax()) { 6504 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 6505 return I->getParent() == BB && Cmp && Cmp->getParent() == BB; 6506 } 6507 return I->getParent() == BB; 6508 } 6509 6510 /// Expected number of uses for reduction operations/reduced values. 6511 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { 6512 assert(Kind != RK_None && !!*this && "Expected reduction operation."); 6513 // SelectInst must be used twice while the condition op must have single 6514 // use only. 6515 if (isMinMax()) 6516 return I->hasNUses(2) && 6517 (!IsReductionOp || 6518 cast<SelectInst>(I)->getCondition()->hasOneUse()); 6519 6520 // Arithmetic reduction operation must be used once only. 6521 return I->hasOneUse(); 6522 } 6523 6524 /// Initializes the list of reduction operations. 6525 void initReductionOps(ReductionOpsListType &ReductionOps) { 6526 assert(Kind != RK_None && !!*this && "Expected reduction operation."); 6527 if (isMinMax()) 6528 ReductionOps.assign(2, ReductionOpsType()); 6529 else 6530 ReductionOps.assign(1, ReductionOpsType()); 6531 } 6532 6533 /// Add all reduction operations for the reduction instruction \p I. 6534 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { 6535 assert(Kind != RK_None && !!*this && "Expected reduction operation."); 6536 if (isMinMax()) { 6537 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 6538 ReductionOps[1].emplace_back(I); 6539 } else { 6540 ReductionOps[0].emplace_back(I); 6541 } 6542 } 6543 6544 /// Checks if instruction is associative and can be vectorized. 6545 bool isAssociative(Instruction *I) const { 6546 assert(Kind != RK_None && *this && "Expected reduction operation."); 6547 switch (Kind) { 6548 case RK_Arithmetic: 6549 return I->isAssociative(); 6550 case RK_SMin: 6551 case RK_SMax: 6552 case RK_UMin: 6553 case RK_UMax: 6554 assert(Opcode == Instruction::ICmp && 6555 "Only integer compare operation is expected."); 6556 return true; 6557 case RK_None: 6558 break; 6559 } 6560 llvm_unreachable("Reduction kind is not set"); 6561 } 6562 6563 /// Checks if the reduction operation can be vectorized. 6564 bool isVectorizable(Instruction *I) const { 6565 return isVectorizable() && isAssociative(I); 6566 } 6567 6568 /// Checks if two operation data are both a reduction op or both a reduced 6569 /// value. 6570 bool operator==(const OperationData &OD) const { 6571 assert(((Kind != OD.Kind) || (Opcode != 0 && OD.Opcode != 0)) && 6572 "One of the comparing operations is incorrect."); 6573 return Kind == OD.Kind && Opcode == OD.Opcode; 6574 } 6575 bool operator!=(const OperationData &OD) const { return !(*this == OD); } 6576 void clear() { 6577 Opcode = 0; 6578 Kind = RK_None; 6579 } 6580 6581 /// Get the opcode of the reduction operation. 6582 unsigned getOpcode() const { 6583 assert(isVectorizable() && "Expected vectorizable operation."); 6584 return Opcode; 6585 } 6586 6587 /// Get kind of reduction data. 6588 ReductionKind getKind() const { return Kind; } 6589 Value *getLHS(Instruction *I) const { 6590 if (Kind == RK_None) 6591 return nullptr; 6592 return I->getOperand(getFirstOperandIndex()); 6593 } 6594 Value *getRHS(Instruction *I) const { 6595 if (Kind == RK_None) 6596 return nullptr; 6597 return I->getOperand(getFirstOperandIndex() + 1); 6598 } 6599 6600 /// Creates reduction operation with the current opcode with the IR flags 6601 /// from \p ReductionOps. 6602 Value *createOp(IRBuilder<> &Builder, Value *LHS, Value *RHS, 6603 const Twine &Name, 6604 const ReductionOpsListType &ReductionOps) const { 6605 assert(isVectorizable() && 6606 "Expected add|fadd or min/max reduction operation."); 6607 auto *Op = createOp(Builder, LHS, RHS, Name); 6608 switch (Kind) { 6609 case RK_Arithmetic: 6610 propagateIRFlags(Op, ReductionOps[0]); 6611 return Op; 6612 case RK_SMin: 6613 case RK_SMax: 6614 case RK_UMin: 6615 case RK_UMax: 6616 if (auto *SI = dyn_cast<SelectInst>(Op)) 6617 propagateIRFlags(SI->getCondition(), ReductionOps[0]); 6618 propagateIRFlags(Op, ReductionOps[1]); 6619 return Op; 6620 case RK_None: 6621 break; 6622 } 6623 llvm_unreachable("Unknown reduction operation."); 6624 } 6625 /// Creates reduction operation with the current opcode with the IR flags 6626 /// from \p I. 6627 Value *createOp(IRBuilder<> &Builder, Value *LHS, Value *RHS, 6628 const Twine &Name, Instruction *I) const { 6629 assert(isVectorizable() && 6630 "Expected add|fadd or min/max reduction operation."); 6631 auto *Op = createOp(Builder, LHS, RHS, Name); 6632 switch (Kind) { 6633 case RK_Arithmetic: 6634 propagateIRFlags(Op, I); 6635 return Op; 6636 case RK_SMin: 6637 case RK_SMax: 6638 case RK_UMin: 6639 case RK_UMax: 6640 if (auto *SI = dyn_cast<SelectInst>(Op)) { 6641 propagateIRFlags(SI->getCondition(), 6642 cast<SelectInst>(I)->getCondition()); 6643 } 6644 propagateIRFlags(Op, I); 6645 return Op; 6646 case RK_None: 6647 break; 6648 } 6649 llvm_unreachable("Unknown reduction operation."); 6650 } 6651 6652 TargetTransformInfo::ReductionFlags getFlags() const { 6653 TargetTransformInfo::ReductionFlags Flags; 6654 switch (Kind) { 6655 case RK_Arithmetic: 6656 break; 6657 case RK_SMin: 6658 Flags.IsSigned = true; 6659 Flags.IsMaxOp = false; 6660 break; 6661 case RK_SMax: 6662 Flags.IsSigned = true; 6663 Flags.IsMaxOp = true; 6664 break; 6665 case RK_UMin: 6666 Flags.IsSigned = false; 6667 Flags.IsMaxOp = false; 6668 break; 6669 case RK_UMax: 6670 Flags.IsSigned = false; 6671 Flags.IsMaxOp = true; 6672 break; 6673 case RK_None: 6674 llvm_unreachable("Reduction kind is not set"); 6675 } 6676 return Flags; 6677 } 6678 }; 6679 6680 WeakTrackingVH ReductionRoot; 6681 6682 /// The operation data of the reduction operation. 6683 OperationData ReductionData; 6684 6685 /// The operation data of the values we perform a reduction on. 6686 OperationData ReducedValueData; 6687 6688 /// Should we model this reduction as a pairwise reduction tree or a tree that 6689 /// splits the vector in halves and adds those halves. 6690 bool IsPairwiseReduction = false; 6691 6692 /// Checks if the ParentStackElem.first should be marked as a reduction 6693 /// operation with an extra argument or as extra argument itself. 6694 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 6695 Value *ExtraArg) { 6696 if (ExtraArgs.count(ParentStackElem.first)) { 6697 ExtraArgs[ParentStackElem.first] = nullptr; 6698 // We ran into something like: 6699 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 6700 // The whole ParentStackElem.first should be considered as an extra value 6701 // in this case. 6702 // Do not perform analysis of remaining operands of ParentStackElem.first 6703 // instruction, this whole instruction is an extra argument. 6704 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 6705 } else { 6706 // We ran into something like: 6707 // ParentStackElem.first += ... + ExtraArg + ... 6708 ExtraArgs[ParentStackElem.first] = ExtraArg; 6709 } 6710 } 6711 6712 static OperationData getOperationData(Instruction *I) { 6713 if (!I) 6714 return OperationData(); 6715 6716 Value *LHS; 6717 Value *RHS; 6718 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(I)) { 6719 return OperationData(cast<BinaryOperator>(I)->getOpcode(), RK_Arithmetic); 6720 } 6721 if (auto *Select = dyn_cast<SelectInst>(I)) { 6722 // Look for a min/max pattern. 6723 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6724 return OperationData(Instruction::ICmp, RK_UMin); 6725 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6726 return OperationData(Instruction::ICmp, RK_SMin); 6727 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6728 return OperationData(Instruction::ICmp, RK_UMax); 6729 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6730 return OperationData(Instruction::ICmp, RK_SMax); 6731 } else { 6732 // Try harder: look for min/max pattern based on instructions producing 6733 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 6734 // During the intermediate stages of SLP, it's very common to have 6735 // pattern like this (since optimizeGatherSequence is run only once 6736 // at the end): 6737 // %1 = extractelement <2 x i32> %a, i32 0 6738 // %2 = extractelement <2 x i32> %a, i32 1 6739 // %cond = icmp sgt i32 %1, %2 6740 // %3 = extractelement <2 x i32> %a, i32 0 6741 // %4 = extractelement <2 x i32> %a, i32 1 6742 // %select = select i1 %cond, i32 %3, i32 %4 6743 CmpInst::Predicate Pred; 6744 Instruction *L1; 6745 Instruction *L2; 6746 6747 LHS = Select->getTrueValue(); 6748 RHS = Select->getFalseValue(); 6749 Value *Cond = Select->getCondition(); 6750 6751 // TODO: Support inverse predicates. 6752 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 6753 if (!isa<ExtractElementInst>(RHS) || 6754 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6755 return OperationData(*I); 6756 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 6757 if (!isa<ExtractElementInst>(LHS) || 6758 !L1->isIdenticalTo(cast<Instruction>(LHS))) 6759 return OperationData(*I); 6760 } else { 6761 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 6762 return OperationData(*I); 6763 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 6764 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 6765 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6766 return OperationData(*I); 6767 } 6768 switch (Pred) { 6769 default: 6770 return OperationData(*I); 6771 6772 case CmpInst::ICMP_ULT: 6773 case CmpInst::ICMP_ULE: 6774 return OperationData(Instruction::ICmp, RK_UMin); 6775 6776 case CmpInst::ICMP_SLT: 6777 case CmpInst::ICMP_SLE: 6778 return OperationData(Instruction::ICmp, RK_SMin); 6779 6780 case CmpInst::ICMP_UGT: 6781 case CmpInst::ICMP_UGE: 6782 return OperationData(Instruction::ICmp, RK_UMax); 6783 6784 case CmpInst::ICMP_SGT: 6785 case CmpInst::ICMP_SGE: 6786 return OperationData(Instruction::ICmp, RK_SMax); 6787 } 6788 } 6789 } 6790 return OperationData(*I); 6791 } 6792 6793 public: 6794 HorizontalReduction() = default; 6795 6796 /// Try to find a reduction tree. 6797 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 6798 assert((!Phi || is_contained(Phi->operands(), B)) && 6799 "Thi phi needs to use the binary operator"); 6800 6801 ReductionData = getOperationData(B); 6802 6803 // We could have a initial reductions that is not an add. 6804 // r *= v1 + v2 + v3 + v4 6805 // In such a case start looking for a tree rooted in the first '+'. 6806 if (Phi) { 6807 if (ReductionData.getLHS(B) == Phi) { 6808 Phi = nullptr; 6809 B = dyn_cast<Instruction>(ReductionData.getRHS(B)); 6810 ReductionData = getOperationData(B); 6811 } else if (ReductionData.getRHS(B) == Phi) { 6812 Phi = nullptr; 6813 B = dyn_cast<Instruction>(ReductionData.getLHS(B)); 6814 ReductionData = getOperationData(B); 6815 } 6816 } 6817 6818 if (!ReductionData.isVectorizable(B)) 6819 return false; 6820 6821 Type *Ty = B->getType(); 6822 if (!isValidElementType(Ty)) 6823 return false; 6824 if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy()) 6825 return false; 6826 6827 ReducedValueData.clear(); 6828 ReductionRoot = B; 6829 6830 // Post order traverse the reduction tree starting at B. We only handle true 6831 // trees containing only binary operators. 6832 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 6833 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); 6834 ReductionData.initReductionOps(ReductionOps); 6835 while (!Stack.empty()) { 6836 Instruction *TreeN = Stack.back().first; 6837 unsigned EdgeToVist = Stack.back().second++; 6838 OperationData OpData = getOperationData(TreeN); 6839 bool IsReducedValue = OpData != ReductionData; 6840 6841 // Postorder vist. 6842 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { 6843 if (IsReducedValue) 6844 ReducedVals.push_back(TreeN); 6845 else { 6846 auto I = ExtraArgs.find(TreeN); 6847 if (I != ExtraArgs.end() && !I->second) { 6848 // Check if TreeN is an extra argument of its parent operation. 6849 if (Stack.size() <= 1) { 6850 // TreeN can't be an extra argument as it is a root reduction 6851 // operation. 6852 return false; 6853 } 6854 // Yes, TreeN is an extra argument, do not add it to a list of 6855 // reduction operations. 6856 // Stack[Stack.size() - 2] always points to the parent operation. 6857 markExtraArg(Stack[Stack.size() - 2], TreeN); 6858 ExtraArgs.erase(TreeN); 6859 } else 6860 ReductionData.addReductionOps(TreeN, ReductionOps); 6861 } 6862 // Retract. 6863 Stack.pop_back(); 6864 continue; 6865 } 6866 6867 // Visit left or right. 6868 Value *NextV = TreeN->getOperand(EdgeToVist); 6869 if (NextV != Phi) { 6870 auto *I = dyn_cast<Instruction>(NextV); 6871 OpData = getOperationData(I); 6872 // Continue analysis if the next operand is a reduction operation or 6873 // (possibly) a reduced value. If the reduced value opcode is not set, 6874 // the first met operation != reduction operation is considered as the 6875 // reduced value class. 6876 if (I && (!ReducedValueData || OpData == ReducedValueData || 6877 OpData == ReductionData)) { 6878 const bool IsReductionOperation = OpData == ReductionData; 6879 // Only handle trees in the current basic block. 6880 if (!ReductionData.hasSameParent(I, B->getParent(), 6881 IsReductionOperation)) { 6882 // I is an extra argument for TreeN (its parent operation). 6883 markExtraArg(Stack.back(), I); 6884 continue; 6885 } 6886 6887 // Each tree node needs to have minimal number of users except for the 6888 // ultimate reduction. 6889 if (!ReductionData.hasRequiredNumberOfUses(I, 6890 OpData == ReductionData) && 6891 I != B) { 6892 // I is an extra argument for TreeN (its parent operation). 6893 markExtraArg(Stack.back(), I); 6894 continue; 6895 } 6896 6897 if (IsReductionOperation) { 6898 // We need to be able to reassociate the reduction operations. 6899 if (!OpData.isAssociative(I)) { 6900 // I is an extra argument for TreeN (its parent operation). 6901 markExtraArg(Stack.back(), I); 6902 continue; 6903 } 6904 } else if (ReducedValueData && 6905 ReducedValueData != OpData) { 6906 // Make sure that the opcodes of the operations that we are going to 6907 // reduce match. 6908 // I is an extra argument for TreeN (its parent operation). 6909 markExtraArg(Stack.back(), I); 6910 continue; 6911 } else if (!ReducedValueData) 6912 ReducedValueData = OpData; 6913 6914 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 6915 continue; 6916 } 6917 } 6918 // NextV is an extra argument for TreeN (its parent operation). 6919 markExtraArg(Stack.back(), NextV); 6920 } 6921 return true; 6922 } 6923 6924 /// Attempt to vectorize the tree found by matchAssociativeReduction. 6925 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 6926 // If there are a sufficient number of reduction values, reduce 6927 // to a nearby power-of-2. We can safely generate oversized 6928 // vectors and rely on the backend to split them to legal sizes. 6929 unsigned NumReducedVals = ReducedVals.size(); 6930 if (NumReducedVals < 4) 6931 return false; 6932 6933 // FIXME: Fast-math-flags should be set based on the instructions in the 6934 // reduction (not all of 'fast' are required). 6935 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 6936 FastMathFlags Unsafe; 6937 Unsafe.setFast(); 6938 Builder.setFastMathFlags(Unsafe); 6939 6940 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 6941 // The same extra argument may be used several times, so log each attempt 6942 // to use it. 6943 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 6944 assert(Pair.first && "DebugLoc must be set."); 6945 ExternallyUsedValues[Pair.second].push_back(Pair.first); 6946 } 6947 6948 // The compare instruction of a min/max is the insertion point for new 6949 // instructions and may be replaced with a new compare instruction. 6950 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 6951 assert(isa<SelectInst>(RdxRootInst) && 6952 "Expected min/max reduction to have select root instruction"); 6953 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 6954 assert(isa<Instruction>(ScalarCond) && 6955 "Expected min/max reduction to have compare condition"); 6956 return cast<Instruction>(ScalarCond); 6957 }; 6958 6959 // The reduction root is used as the insertion point for new instructions, 6960 // so set it as externally used to prevent it from being deleted. 6961 ExternallyUsedValues[ReductionRoot]; 6962 SmallVector<Value *, 16> IgnoreList; 6963 for (ReductionOpsType &RdxOp : ReductionOps) 6964 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 6965 6966 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 6967 if (NumReducedVals > ReduxWidth) { 6968 // In the loop below, we are building a tree based on a window of 6969 // 'ReduxWidth' values. 6970 // If the operands of those values have common traits (compare predicate, 6971 // constant operand, etc), then we want to group those together to 6972 // minimize the cost of the reduction. 6973 6974 // TODO: This should be extended to count common operands for 6975 // compares and binops. 6976 6977 // Step 1: Count the number of times each compare predicate occurs. 6978 SmallDenseMap<unsigned, unsigned> PredCountMap; 6979 for (Value *RdxVal : ReducedVals) { 6980 CmpInst::Predicate Pred; 6981 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 6982 ++PredCountMap[Pred]; 6983 } 6984 // Step 2: Sort the values so the most common predicates come first. 6985 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 6986 CmpInst::Predicate PredA, PredB; 6987 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 6988 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 6989 return PredCountMap[PredA] > PredCountMap[PredB]; 6990 } 6991 return false; 6992 }); 6993 } 6994 6995 Value *VectorizedTree = nullptr; 6996 unsigned i = 0; 6997 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 6998 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 6999 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 7000 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 7001 if (Order) { 7002 assert(Order->size() == VL.size() && 7003 "Order size must be the same as number of vectorized " 7004 "instructions."); 7005 // TODO: reorder tree nodes without tree rebuilding. 7006 SmallVector<Value *, 4> ReorderedOps(VL.size()); 7007 llvm::transform(*Order, ReorderedOps.begin(), 7008 [VL](const unsigned Idx) { return VL[Idx]; }); 7009 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 7010 } 7011 if (V.isTreeTinyAndNotFullyVectorizable()) 7012 break; 7013 if (V.isLoadCombineReductionCandidate(ReductionData.getOpcode())) 7014 break; 7015 7016 V.computeMinimumValueSizes(); 7017 7018 // Estimate cost. 7019 int TreeCost = V.getTreeCost(); 7020 int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth); 7021 int Cost = TreeCost + ReductionCost; 7022 if (Cost >= -SLPCostThreshold) { 7023 V.getORE()->emit([&]() { 7024 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 7025 cast<Instruction>(VL[0])) 7026 << "Vectorizing horizontal reduction is possible" 7027 << "but not beneficial with cost " << ore::NV("Cost", Cost) 7028 << " and threshold " 7029 << ore::NV("Threshold", -SLPCostThreshold); 7030 }); 7031 break; 7032 } 7033 7034 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 7035 << Cost << ". (HorRdx)\n"); 7036 V.getORE()->emit([&]() { 7037 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 7038 cast<Instruction>(VL[0])) 7039 << "Vectorized horizontal reduction with cost " 7040 << ore::NV("Cost", Cost) << " and with tree size " 7041 << ore::NV("TreeSize", V.getTreeSize()); 7042 }); 7043 7044 // Vectorize a tree. 7045 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 7046 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 7047 7048 // Emit a reduction. For min/max, the root is a select, but the insertion 7049 // point is the compare condition of that select. 7050 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 7051 if (ReductionData.isMinMax()) 7052 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 7053 else 7054 Builder.SetInsertPoint(RdxRootInst); 7055 7056 Value *ReducedSubTree = 7057 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 7058 7059 if (!VectorizedTree) { 7060 // Initialize the final value in the reduction. 7061 VectorizedTree = ReducedSubTree; 7062 } else { 7063 // Update the final value in the reduction. 7064 Builder.SetCurrentDebugLocation(Loc); 7065 VectorizedTree = ReductionData.createOp( 7066 Builder, VectorizedTree, ReducedSubTree, "op.rdx", ReductionOps); 7067 } 7068 i += ReduxWidth; 7069 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 7070 } 7071 7072 if (VectorizedTree) { 7073 // Finish the reduction. 7074 for (; i < NumReducedVals; ++i) { 7075 auto *I = cast<Instruction>(ReducedVals[i]); 7076 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 7077 VectorizedTree = ReductionData.createOp(Builder, VectorizedTree, I, "", 7078 ReductionOps); 7079 } 7080 for (auto &Pair : ExternallyUsedValues) { 7081 // Add each externally used value to the final reduction. 7082 for (auto *I : Pair.second) { 7083 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 7084 VectorizedTree = ReductionData.createOp(Builder, VectorizedTree, 7085 Pair.first, "op.extra", I); 7086 } 7087 } 7088 7089 // Update users. For a min/max reduction that ends with a compare and 7090 // select, we also have to RAUW for the compare instruction feeding the 7091 // reduction root. That's because the original compare may have extra uses 7092 // besides the final select of the reduction. 7093 if (ReductionData.isMinMax()) { 7094 if (auto *VecSelect = dyn_cast<SelectInst>(VectorizedTree)) { 7095 Instruction *ScalarCmp = 7096 getCmpForMinMaxReduction(cast<Instruction>(ReductionRoot)); 7097 ScalarCmp->replaceAllUsesWith(VecSelect->getCondition()); 7098 } 7099 } 7100 ReductionRoot->replaceAllUsesWith(VectorizedTree); 7101 7102 // Mark all scalar reduction ops for deletion, they are replaced by the 7103 // vector reductions. 7104 V.eraseInstructions(IgnoreList); 7105 } 7106 return VectorizedTree != nullptr; 7107 } 7108 7109 unsigned numReductionValues() const { 7110 return ReducedVals.size(); 7111 } 7112 7113 private: 7114 /// Calculate the cost of a reduction. 7115 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 7116 unsigned ReduxWidth) { 7117 Type *ScalarTy = FirstReducedVal->getType(); 7118 auto *VecTy = FixedVectorType::get(ScalarTy, ReduxWidth); 7119 7120 int PairwiseRdxCost; 7121 int SplittingRdxCost; 7122 switch (ReductionData.getKind()) { 7123 case RK_Arithmetic: 7124 PairwiseRdxCost = 7125 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 7126 /*IsPairwiseForm=*/true); 7127 SplittingRdxCost = 7128 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 7129 /*IsPairwiseForm=*/false); 7130 break; 7131 case RK_SMin: 7132 case RK_SMax: 7133 case RK_UMin: 7134 case RK_UMax: { 7135 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VecTy)); 7136 bool IsUnsigned = ReductionData.getKind() == RK_UMin || 7137 ReductionData.getKind() == RK_UMax; 7138 PairwiseRdxCost = 7139 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 7140 /*IsPairwiseForm=*/true, IsUnsigned); 7141 SplittingRdxCost = 7142 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 7143 /*IsPairwiseForm=*/false, IsUnsigned); 7144 break; 7145 } 7146 case RK_None: 7147 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 7148 } 7149 7150 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 7151 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 7152 7153 int ScalarReduxCost = 0; 7154 switch (ReductionData.getKind()) { 7155 case RK_Arithmetic: 7156 ScalarReduxCost = 7157 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); 7158 break; 7159 case RK_SMin: 7160 case RK_SMax: 7161 case RK_UMin: 7162 case RK_UMax: 7163 ScalarReduxCost = 7164 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) + 7165 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 7166 CmpInst::makeCmpResultType(ScalarTy)); 7167 break; 7168 case RK_None: 7169 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 7170 } 7171 ScalarReduxCost *= (ReduxWidth - 1); 7172 7173 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 7174 << " for reduction that starts with " << *FirstReducedVal 7175 << " (It is a " 7176 << (IsPairwiseReduction ? "pairwise" : "splitting") 7177 << " reduction)\n"); 7178 7179 return VecReduxCost - ScalarReduxCost; 7180 } 7181 7182 /// Emit a horizontal reduction of the vectorized value. 7183 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 7184 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 7185 assert(VectorizedValue && "Need to have a vectorized tree node"); 7186 assert(isPowerOf2_32(ReduxWidth) && 7187 "We only handle power-of-two reductions for now"); 7188 7189 if (!IsPairwiseReduction) { 7190 // FIXME: The builder should use an FMF guard. It should not be hard-coded 7191 // to 'fast'. 7192 assert(Builder.getFastMathFlags().isFast() && "Expected 'fast' FMF"); 7193 return createSimpleTargetReduction( 7194 Builder, TTI, ReductionData.getOpcode(), VectorizedValue, 7195 ReductionData.getFlags(), ReductionOps.back()); 7196 } 7197 7198 Value *TmpVec = VectorizedValue; 7199 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 7200 auto LeftMask = createRdxShuffleMask(ReduxWidth, i, true, true); 7201 auto RightMask = createRdxShuffleMask(ReduxWidth, i, true, false); 7202 7203 Value *LeftShuf = 7204 Builder.CreateShuffleVector(TmpVec, LeftMask, "rdx.shuf.l"); 7205 Value *RightShuf = 7206 Builder.CreateShuffleVector(TmpVec, RightMask, "rdx.shuf.r"); 7207 TmpVec = ReductionData.createOp(Builder, LeftShuf, RightShuf, "op.rdx", 7208 ReductionOps); 7209 } 7210 7211 // The result is in the first element of the vector. 7212 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 7213 } 7214 }; 7215 7216 } // end anonymous namespace 7217 7218 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 7219 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 7220 return cast<FixedVectorType>(IE->getType())->getNumElements(); 7221 7222 unsigned AggregateSize = 1; 7223 auto *IV = cast<InsertValueInst>(InsertInst); 7224 Type *CurrentType = IV->getType(); 7225 do { 7226 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 7227 for (auto *Elt : ST->elements()) 7228 if (Elt != ST->getElementType(0)) // check homogeneity 7229 return None; 7230 AggregateSize *= ST->getNumElements(); 7231 CurrentType = ST->getElementType(0); 7232 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 7233 AggregateSize *= AT->getNumElements(); 7234 CurrentType = AT->getElementType(); 7235 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 7236 AggregateSize *= VT->getNumElements(); 7237 return AggregateSize; 7238 } else if (CurrentType->isSingleValueType()) { 7239 return AggregateSize; 7240 } else { 7241 return None; 7242 } 7243 } while (true); 7244 } 7245 7246 static Optional<unsigned> getOperandIndex(Instruction *InsertInst, 7247 unsigned OperandOffset) { 7248 unsigned OperandIndex = OperandOffset; 7249 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 7250 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 7251 auto *VT = cast<FixedVectorType>(IE->getType()); 7252 OperandIndex *= VT->getNumElements(); 7253 OperandIndex += CI->getZExtValue(); 7254 return OperandIndex; 7255 } 7256 return None; 7257 } 7258 7259 auto *IV = cast<InsertValueInst>(InsertInst); 7260 Type *CurrentType = IV->getType(); 7261 for (unsigned int Index : IV->indices()) { 7262 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 7263 OperandIndex *= ST->getNumElements(); 7264 CurrentType = ST->getElementType(Index); 7265 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 7266 OperandIndex *= AT->getNumElements(); 7267 CurrentType = AT->getElementType(); 7268 } else { 7269 return None; 7270 } 7271 OperandIndex += Index; 7272 } 7273 return OperandIndex; 7274 } 7275 7276 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 7277 TargetTransformInfo *TTI, 7278 SmallVectorImpl<Value *> &BuildVectorOpds, 7279 SmallVectorImpl<Value *> &InsertElts, 7280 unsigned OperandOffset) { 7281 do { 7282 Value *InsertedOperand = LastInsertInst->getOperand(1); 7283 Optional<unsigned> OperandIndex = 7284 getOperandIndex(LastInsertInst, OperandOffset); 7285 if (!OperandIndex) 7286 return false; 7287 if (isa<InsertElementInst>(InsertedOperand) || 7288 isa<InsertValueInst>(InsertedOperand)) { 7289 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 7290 BuildVectorOpds, InsertElts, *OperandIndex)) 7291 return false; 7292 } else { 7293 BuildVectorOpds[*OperandIndex] = InsertedOperand; 7294 InsertElts[*OperandIndex] = LastInsertInst; 7295 } 7296 if (isa<UndefValue>(LastInsertInst->getOperand(0))) 7297 return true; 7298 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 7299 } while (LastInsertInst != nullptr && 7300 (isa<InsertValueInst>(LastInsertInst) || 7301 isa<InsertElementInst>(LastInsertInst)) && 7302 LastInsertInst->hasOneUse()); 7303 return false; 7304 } 7305 7306 /// Recognize construction of vectors like 7307 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 7308 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 7309 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 7310 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 7311 /// starting from the last insertelement or insertvalue instruction. 7312 /// 7313 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 7314 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 7315 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 7316 /// 7317 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 7318 /// 7319 /// \return true if it matches. 7320 static bool findBuildAggregate(Instruction *LastInsertInst, 7321 TargetTransformInfo *TTI, 7322 SmallVectorImpl<Value *> &BuildVectorOpds, 7323 SmallVectorImpl<Value *> &InsertElts) { 7324 7325 assert((isa<InsertElementInst>(LastInsertInst) || 7326 isa<InsertValueInst>(LastInsertInst)) && 7327 "Expected insertelement or insertvalue instruction!"); 7328 7329 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 7330 "Expected empty result vectors!"); 7331 7332 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 7333 if (!AggregateSize) 7334 return false; 7335 BuildVectorOpds.resize(*AggregateSize); 7336 InsertElts.resize(*AggregateSize); 7337 7338 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 7339 0)) { 7340 llvm::erase_if(BuildVectorOpds, 7341 [](const Value *V) { return V == nullptr; }); 7342 llvm::erase_if(InsertElts, [](const Value *V) { return V == nullptr; }); 7343 if (BuildVectorOpds.size() >= 2) 7344 return true; 7345 } 7346 7347 return false; 7348 } 7349 7350 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 7351 return V->getType() < V2->getType(); 7352 } 7353 7354 /// Try and get a reduction value from a phi node. 7355 /// 7356 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 7357 /// if they come from either \p ParentBB or a containing loop latch. 7358 /// 7359 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 7360 /// if not possible. 7361 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 7362 BasicBlock *ParentBB, LoopInfo *LI) { 7363 // There are situations where the reduction value is not dominated by the 7364 // reduction phi. Vectorizing such cases has been reported to cause 7365 // miscompiles. See PR25787. 7366 auto DominatedReduxValue = [&](Value *R) { 7367 return isa<Instruction>(R) && 7368 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 7369 }; 7370 7371 Value *Rdx = nullptr; 7372 7373 // Return the incoming value if it comes from the same BB as the phi node. 7374 if (P->getIncomingBlock(0) == ParentBB) { 7375 Rdx = P->getIncomingValue(0); 7376 } else if (P->getIncomingBlock(1) == ParentBB) { 7377 Rdx = P->getIncomingValue(1); 7378 } 7379 7380 if (Rdx && DominatedReduxValue(Rdx)) 7381 return Rdx; 7382 7383 // Otherwise, check whether we have a loop latch to look at. 7384 Loop *BBL = LI->getLoopFor(ParentBB); 7385 if (!BBL) 7386 return nullptr; 7387 BasicBlock *BBLatch = BBL->getLoopLatch(); 7388 if (!BBLatch) 7389 return nullptr; 7390 7391 // There is a loop latch, return the incoming value if it comes from 7392 // that. This reduction pattern occasionally turns up. 7393 if (P->getIncomingBlock(0) == BBLatch) { 7394 Rdx = P->getIncomingValue(0); 7395 } else if (P->getIncomingBlock(1) == BBLatch) { 7396 Rdx = P->getIncomingValue(1); 7397 } 7398 7399 if (Rdx && DominatedReduxValue(Rdx)) 7400 return Rdx; 7401 7402 return nullptr; 7403 } 7404 7405 /// Attempt to reduce a horizontal reduction. 7406 /// If it is legal to match a horizontal reduction feeding the phi node \a P 7407 /// with reduction operators \a Root (or one of its operands) in a basic block 7408 /// \a BB, then check if it can be done. If horizontal reduction is not found 7409 /// and root instruction is a binary operation, vectorization of the operands is 7410 /// attempted. 7411 /// \returns true if a horizontal reduction was matched and reduced or operands 7412 /// of one of the binary instruction were vectorized. 7413 /// \returns false if a horizontal reduction was not matched (or not possible) 7414 /// or no vectorization of any binary operation feeding \a Root instruction was 7415 /// performed. 7416 static bool tryToVectorizeHorReductionOrInstOperands( 7417 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 7418 TargetTransformInfo *TTI, 7419 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 7420 if (!ShouldVectorizeHor) 7421 return false; 7422 7423 if (!Root) 7424 return false; 7425 7426 if (Root->getParent() != BB || isa<PHINode>(Root)) 7427 return false; 7428 // Start analysis starting from Root instruction. If horizontal reduction is 7429 // found, try to vectorize it. If it is not a horizontal reduction or 7430 // vectorization is not possible or not effective, and currently analyzed 7431 // instruction is a binary operation, try to vectorize the operands, using 7432 // pre-order DFS traversal order. If the operands were not vectorized, repeat 7433 // the same procedure considering each operand as a possible root of the 7434 // horizontal reduction. 7435 // Interrupt the process if the Root instruction itself was vectorized or all 7436 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 7437 SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0}); 7438 SmallPtrSet<Value *, 8> VisitedInstrs; 7439 bool Res = false; 7440 while (!Stack.empty()) { 7441 Instruction *Inst; 7442 unsigned Level; 7443 std::tie(Inst, Level) = Stack.pop_back_val(); 7444 auto *BI = dyn_cast<BinaryOperator>(Inst); 7445 auto *SI = dyn_cast<SelectInst>(Inst); 7446 if (BI || SI) { 7447 HorizontalReduction HorRdx; 7448 if (HorRdx.matchAssociativeReduction(P, Inst)) { 7449 if (HorRdx.tryToReduce(R, TTI)) { 7450 Res = true; 7451 // Set P to nullptr to avoid re-analysis of phi node in 7452 // matchAssociativeReduction function unless this is the root node. 7453 P = nullptr; 7454 continue; 7455 } 7456 } 7457 if (P && BI) { 7458 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 7459 if (Inst == P) 7460 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 7461 if (!Inst) { 7462 // Set P to nullptr to avoid re-analysis of phi node in 7463 // matchAssociativeReduction function unless this is the root node. 7464 P = nullptr; 7465 continue; 7466 } 7467 } 7468 } 7469 // Set P to nullptr to avoid re-analysis of phi node in 7470 // matchAssociativeReduction function unless this is the root node. 7471 P = nullptr; 7472 if (Vectorize(Inst, R)) { 7473 Res = true; 7474 continue; 7475 } 7476 7477 // Try to vectorize operands. 7478 // Continue analysis for the instruction from the same basic block only to 7479 // save compile time. 7480 if (++Level < RecursionMaxDepth) 7481 for (auto *Op : Inst->operand_values()) 7482 if (VisitedInstrs.insert(Op).second) 7483 if (auto *I = dyn_cast<Instruction>(Op)) 7484 if (!isa<PHINode>(I) && !R.isDeleted(I) && I->getParent() == BB) 7485 Stack.emplace_back(I, Level); 7486 } 7487 return Res; 7488 } 7489 7490 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 7491 BasicBlock *BB, BoUpSLP &R, 7492 TargetTransformInfo *TTI) { 7493 auto *I = dyn_cast_or_null<Instruction>(V); 7494 if (!I) 7495 return false; 7496 7497 if (!isa<BinaryOperator>(I)) 7498 P = nullptr; 7499 // Try to match and vectorize a horizontal reduction. 7500 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 7501 return tryToVectorize(I, R); 7502 }; 7503 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 7504 ExtraVectorization); 7505 } 7506 7507 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 7508 BasicBlock *BB, BoUpSLP &R) { 7509 const DataLayout &DL = BB->getModule()->getDataLayout(); 7510 if (!R.canMapToVector(IVI->getType(), DL)) 7511 return false; 7512 7513 SmallVector<Value *, 16> BuildVectorOpds; 7514 SmallVector<Value *, 16> BuildVectorInsts; 7515 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 7516 return false; 7517 7518 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 7519 // Aggregate value is unlikely to be processed in vector register, we need to 7520 // extract scalars into scalar registers, so NeedExtraction is set true. 7521 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false, 7522 BuildVectorInsts); 7523 } 7524 7525 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 7526 BasicBlock *BB, BoUpSLP &R) { 7527 SmallVector<Value *, 16> BuildVectorInsts; 7528 SmallVector<Value *, 16> BuildVectorOpds; 7529 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 7530 (llvm::all_of(BuildVectorOpds, 7531 [](Value *V) { return isa<ExtractElementInst>(V); }) && 7532 isShuffle(BuildVectorOpds))) 7533 return false; 7534 7535 // Vectorize starting with the build vector operands ignoring the BuildVector 7536 // instructions for the purpose of scheduling and user extraction. 7537 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false, 7538 BuildVectorInsts); 7539 } 7540 7541 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 7542 BoUpSLP &R) { 7543 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 7544 return true; 7545 7546 bool OpsChanged = false; 7547 for (int Idx = 0; Idx < 2; ++Idx) { 7548 OpsChanged |= 7549 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 7550 } 7551 return OpsChanged; 7552 } 7553 7554 bool SLPVectorizerPass::vectorizeSimpleInstructions( 7555 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R) { 7556 bool OpsChanged = false; 7557 for (auto *I : reverse(Instructions)) { 7558 if (R.isDeleted(I)) 7559 continue; 7560 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 7561 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 7562 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 7563 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 7564 else if (auto *CI = dyn_cast<CmpInst>(I)) 7565 OpsChanged |= vectorizeCmpInst(CI, BB, R); 7566 } 7567 Instructions.clear(); 7568 return OpsChanged; 7569 } 7570 7571 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 7572 bool Changed = false; 7573 SmallVector<Value *, 4> Incoming; 7574 SmallPtrSet<Value *, 16> VisitedInstrs; 7575 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7576 7577 bool HaveVectorizedPhiNodes = true; 7578 while (HaveVectorizedPhiNodes) { 7579 HaveVectorizedPhiNodes = false; 7580 7581 // Collect the incoming values from the PHIs. 7582 Incoming.clear(); 7583 for (Instruction &I : *BB) { 7584 PHINode *P = dyn_cast<PHINode>(&I); 7585 if (!P) 7586 break; 7587 7588 if (!VisitedInstrs.count(P) && !R.isDeleted(P)) 7589 Incoming.push_back(P); 7590 } 7591 7592 // Sort by type. 7593 llvm::stable_sort(Incoming, PhiTypeSorterFunc); 7594 7595 // Try to vectorize elements base on their type. 7596 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 7597 E = Incoming.end(); 7598 IncIt != E;) { 7599 7600 // Look for the next elements with the same type. 7601 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 7602 Type *EltTy = (*IncIt)->getType(); 7603 7604 assert(EltTy->isSized() && 7605 "Instructions should all be sized at this point"); 7606 TypeSize EltTS = DL->getTypeSizeInBits(EltTy); 7607 if (EltTS.isScalable()) { 7608 // For now, just ignore vectorizing scalable types. 7609 ++IncIt; 7610 continue; 7611 } 7612 7613 unsigned EltSize = EltTS.getFixedSize(); 7614 unsigned MaxNumElts = MaxVecRegSize / EltSize; 7615 if (MaxNumElts < 2) { 7616 ++IncIt; 7617 continue; 7618 } 7619 7620 while (SameTypeIt != E && 7621 (*SameTypeIt)->getType() == EltTy && 7622 static_cast<unsigned>(SameTypeIt - IncIt) < MaxNumElts) { 7623 VisitedInstrs.insert(*SameTypeIt); 7624 ++SameTypeIt; 7625 } 7626 7627 // Try to vectorize them. 7628 unsigned NumElts = (SameTypeIt - IncIt); 7629 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 7630 << NumElts << ")\n"); 7631 // The order in which the phi nodes appear in the program does not matter. 7632 // So allow tryToVectorizeList to reorder them if it is beneficial. This 7633 // is done when there are exactly two elements since tryToVectorizeList 7634 // asserts that there are only two values when AllowReorder is true. 7635 bool AllowReorder = NumElts == 2; 7636 if (NumElts > 1 && 7637 tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, AllowReorder)) { 7638 // Success start over because instructions might have been changed. 7639 HaveVectorizedPhiNodes = true; 7640 Changed = true; 7641 break; 7642 } 7643 7644 // Start over at the next instruction of a different type (or the end). 7645 IncIt = SameTypeIt; 7646 } 7647 } 7648 7649 VisitedInstrs.clear(); 7650 7651 SmallVector<Instruction *, 8> PostProcessInstructions; 7652 SmallDenseSet<Instruction *, 4> KeyNodes; 7653 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 7654 // Skip instructions with scalable type. The num of elements is unknown at 7655 // compile-time for scalable type. 7656 if (isa<ScalableVectorType>(it->getType())) 7657 continue; 7658 7659 // Skip instructions marked for the deletion. 7660 if (R.isDeleted(&*it)) 7661 continue; 7662 // We may go through BB multiple times so skip the one we have checked. 7663 if (!VisitedInstrs.insert(&*it).second) { 7664 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 7665 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 7666 // We would like to start over since some instructions are deleted 7667 // and the iterator may become invalid value. 7668 Changed = true; 7669 it = BB->begin(); 7670 e = BB->end(); 7671 } 7672 continue; 7673 } 7674 7675 if (isa<DbgInfoIntrinsic>(it)) 7676 continue; 7677 7678 // Try to vectorize reductions that use PHINodes. 7679 if (PHINode *P = dyn_cast<PHINode>(it)) { 7680 // Check that the PHI is a reduction PHI. 7681 if (P->getNumIncomingValues() == 2) { 7682 // Try to match and vectorize a horizontal reduction. 7683 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 7684 TTI)) { 7685 Changed = true; 7686 it = BB->begin(); 7687 e = BB->end(); 7688 continue; 7689 } 7690 } 7691 // Try to vectorize the incoming values of the PHI, to catch reductions 7692 // that feed into PHIs. 7693 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 7694 // Skip if the incoming block is the current BB for now. Also, bypass 7695 // unreachable IR for efficiency and to avoid crashing. 7696 // TODO: Collect the skipped incoming values and try to vectorize them 7697 // after processing BB. 7698 if (BB == P->getIncomingBlock(I) || 7699 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 7700 continue; 7701 7702 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 7703 P->getIncomingBlock(I), R, TTI); 7704 } 7705 continue; 7706 } 7707 7708 // Ran into an instruction without users, like terminator, or function call 7709 // with ignored return value, store. Ignore unused instructions (basing on 7710 // instruction type, except for CallInst and InvokeInst). 7711 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 7712 isa<InvokeInst>(it))) { 7713 KeyNodes.insert(&*it); 7714 bool OpsChanged = false; 7715 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 7716 for (auto *V : it->operand_values()) { 7717 // Try to match and vectorize a horizontal reduction. 7718 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 7719 } 7720 } 7721 // Start vectorization of post-process list of instructions from the 7722 // top-tree instructions to try to vectorize as many instructions as 7723 // possible. 7724 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 7725 if (OpsChanged) { 7726 // We would like to start over since some instructions are deleted 7727 // and the iterator may become invalid value. 7728 Changed = true; 7729 it = BB->begin(); 7730 e = BB->end(); 7731 continue; 7732 } 7733 } 7734 7735 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 7736 isa<InsertValueInst>(it)) 7737 PostProcessInstructions.push_back(&*it); 7738 } 7739 7740 return Changed; 7741 } 7742 7743 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 7744 auto Changed = false; 7745 for (auto &Entry : GEPs) { 7746 // If the getelementptr list has fewer than two elements, there's nothing 7747 // to do. 7748 if (Entry.second.size() < 2) 7749 continue; 7750 7751 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 7752 << Entry.second.size() << ".\n"); 7753 7754 // Process the GEP list in chunks suitable for the target's supported 7755 // vector size. If a vector register can't hold 1 element, we are done. We 7756 // are trying to vectorize the index computations, so the maximum number of 7757 // elements is based on the size of the index expression, rather than the 7758 // size of the GEP itself (the target's pointer size). 7759 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7760 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 7761 if (MaxVecRegSize < EltSize) 7762 continue; 7763 7764 unsigned MaxElts = MaxVecRegSize / EltSize; 7765 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 7766 auto Len = std::min<unsigned>(BE - BI, MaxElts); 7767 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 7768 7769 // Initialize a set a candidate getelementptrs. Note that we use a 7770 // SetVector here to preserve program order. If the index computations 7771 // are vectorizable and begin with loads, we want to minimize the chance 7772 // of having to reorder them later. 7773 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 7774 7775 // Some of the candidates may have already been vectorized after we 7776 // initially collected them. If so, they are marked as deleted, so remove 7777 // them from the set of candidates. 7778 Candidates.remove_if( 7779 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 7780 7781 // Remove from the set of candidates all pairs of getelementptrs with 7782 // constant differences. Such getelementptrs are likely not good 7783 // candidates for vectorization in a bottom-up phase since one can be 7784 // computed from the other. We also ensure all candidate getelementptr 7785 // indices are unique. 7786 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 7787 auto *GEPI = GEPList[I]; 7788 if (!Candidates.count(GEPI)) 7789 continue; 7790 auto *SCEVI = SE->getSCEV(GEPList[I]); 7791 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 7792 auto *GEPJ = GEPList[J]; 7793 auto *SCEVJ = SE->getSCEV(GEPList[J]); 7794 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 7795 Candidates.remove(GEPI); 7796 Candidates.remove(GEPJ); 7797 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 7798 Candidates.remove(GEPJ); 7799 } 7800 } 7801 } 7802 7803 // We break out of the above computation as soon as we know there are 7804 // fewer than two candidates remaining. 7805 if (Candidates.size() < 2) 7806 continue; 7807 7808 // Add the single, non-constant index of each candidate to the bundle. We 7809 // ensured the indices met these constraints when we originally collected 7810 // the getelementptrs. 7811 SmallVector<Value *, 16> Bundle(Candidates.size()); 7812 auto BundleIndex = 0u; 7813 for (auto *V : Candidates) { 7814 auto *GEP = cast<GetElementPtrInst>(V); 7815 auto *GEPIdx = GEP->idx_begin()->get(); 7816 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 7817 Bundle[BundleIndex++] = GEPIdx; 7818 } 7819 7820 // Try and vectorize the indices. We are currently only interested in 7821 // gather-like cases of the form: 7822 // 7823 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 7824 // 7825 // where the loads of "a", the loads of "b", and the subtractions can be 7826 // performed in parallel. It's likely that detecting this pattern in a 7827 // bottom-up phase will be simpler and less costly than building a 7828 // full-blown top-down phase beginning at the consecutive loads. 7829 Changed |= tryToVectorizeList(Bundle, R); 7830 } 7831 } 7832 return Changed; 7833 } 7834 7835 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 7836 bool Changed = false; 7837 // Attempt to sort and vectorize each of the store-groups. 7838 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 7839 ++it) { 7840 if (it->second.size() < 2) 7841 continue; 7842 7843 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 7844 << it->second.size() << ".\n"); 7845 7846 Changed |= vectorizeStores(it->second, R); 7847 } 7848 return Changed; 7849 } 7850 7851 char SLPVectorizer::ID = 0; 7852 7853 static const char lv_name[] = "SLP Vectorizer"; 7854 7855 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 7856 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7857 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7858 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7859 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7860 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 7861 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7862 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7863 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7864 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 7865 7866 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 7867