1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/ADT/SmallBitVector.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/ADT/SmallString.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/ADT/iterator.h" 32 #include "llvm/ADT/iterator_range.h" 33 #include "llvm/Analysis/AliasAnalysis.h" 34 #include "llvm/Analysis/CodeMetrics.h" 35 #include "llvm/Analysis/DemandedBits.h" 36 #include "llvm/Analysis/GlobalsModRef.h" 37 #include "llvm/Analysis/LoopAccessAnalysis.h" 38 #include "llvm/Analysis/LoopInfo.h" 39 #include "llvm/Analysis/MemoryLocation.h" 40 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 41 #include "llvm/Analysis/ScalarEvolution.h" 42 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 43 #include "llvm/Analysis/TargetLibraryInfo.h" 44 #include "llvm/Analysis/TargetTransformInfo.h" 45 #include "llvm/Analysis/ValueTracking.h" 46 #include "llvm/Analysis/VectorUtils.h" 47 #include "llvm/Analysis/AssumptionCache.h" 48 #include "llvm/IR/Attributes.h" 49 #include "llvm/IR/BasicBlock.h" 50 #include "llvm/IR/Constant.h" 51 #include "llvm/IR/Constants.h" 52 #include "llvm/IR/DataLayout.h" 53 #include "llvm/IR/DebugLoc.h" 54 #include "llvm/IR/DerivedTypes.h" 55 #include "llvm/IR/Dominators.h" 56 #include "llvm/IR/Function.h" 57 #include "llvm/IR/IRBuilder.h" 58 #include "llvm/IR/InstrTypes.h" 59 #include "llvm/IR/Instruction.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/Intrinsics.h" 63 #include "llvm/IR/Module.h" 64 #include "llvm/IR/NoFolder.h" 65 #include "llvm/IR/Operator.h" 66 #include "llvm/IR/PatternMatch.h" 67 #include "llvm/IR/Type.h" 68 #include "llvm/IR/Use.h" 69 #include "llvm/IR/User.h" 70 #include "llvm/IR/Value.h" 71 #include "llvm/IR/ValueHandle.h" 72 #include "llvm/IR/Verifier.h" 73 #include "llvm/InitializePasses.h" 74 #include "llvm/Pass.h" 75 #include "llvm/Support/Casting.h" 76 #include "llvm/Support/CommandLine.h" 77 #include "llvm/Support/Compiler.h" 78 #include "llvm/Support/DOTGraphTraits.h" 79 #include "llvm/Support/Debug.h" 80 #include "llvm/Support/ErrorHandling.h" 81 #include "llvm/Support/GraphWriter.h" 82 #include "llvm/Support/KnownBits.h" 83 #include "llvm/Support/MathExtras.h" 84 #include "llvm/Support/raw_ostream.h" 85 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 86 #include "llvm/Transforms/Utils/LoopUtils.h" 87 #include "llvm/Transforms/Vectorize.h" 88 #include <algorithm> 89 #include <cassert> 90 #include <cstdint> 91 #include <iterator> 92 #include <memory> 93 #include <set> 94 #include <string> 95 #include <tuple> 96 #include <utility> 97 #include <vector> 98 99 using namespace llvm; 100 using namespace llvm::PatternMatch; 101 using namespace slpvectorizer; 102 103 #define SV_NAME "slp-vectorizer" 104 #define DEBUG_TYPE "SLP" 105 106 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 107 108 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 109 cl::desc("Run the SLP vectorization passes")); 110 111 static cl::opt<int> 112 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 113 cl::desc("Only vectorize if you gain more than this " 114 "number ")); 115 116 static cl::opt<bool> 117 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 118 cl::desc("Attempt to vectorize horizontal reductions")); 119 120 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 121 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 122 cl::desc( 123 "Attempt to vectorize horizontal reductions feeding into a store")); 124 125 static cl::opt<int> 126 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 127 cl::desc("Attempt to vectorize for this register size in bits")); 128 129 static cl::opt<int> 130 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 131 cl::desc("Maximum depth of the lookup for consecutive stores.")); 132 133 /// Limits the size of scheduling regions in a block. 134 /// It avoid long compile times for _very_ large blocks where vector 135 /// instructions are spread over a wide range. 136 /// This limit is way higher than needed by real-world functions. 137 static cl::opt<int> 138 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 139 cl::desc("Limit the size of the SLP scheduling region per block")); 140 141 static cl::opt<int> MinVectorRegSizeOption( 142 "slp-min-reg-size", cl::init(128), cl::Hidden, 143 cl::desc("Attempt to vectorize for this register size in bits")); 144 145 static cl::opt<unsigned> RecursionMaxDepth( 146 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 147 cl::desc("Limit the recursion depth when building a vectorizable tree")); 148 149 static cl::opt<unsigned> MinTreeSize( 150 "slp-min-tree-size", cl::init(3), cl::Hidden, 151 cl::desc("Only vectorize small trees if they are fully vectorizable")); 152 153 // The maximum depth that the look-ahead score heuristic will explore. 154 // The higher this value, the higher the compilation time overhead. 155 static cl::opt<int> LookAheadMaxDepth( 156 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 157 cl::desc("The maximum look-ahead depth for operand reordering scores")); 158 159 // The Look-ahead heuristic goes through the users of the bundle to calculate 160 // the users cost in getExternalUsesCost(). To avoid compilation time increase 161 // we limit the number of users visited to this value. 162 static cl::opt<unsigned> LookAheadUsersBudget( 163 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 164 cl::desc("The maximum number of users to visit while visiting the " 165 "predecessors. This prevents compilation time increase.")); 166 167 static cl::opt<bool> 168 ViewSLPTree("view-slp-tree", cl::Hidden, 169 cl::desc("Display the SLP trees with Graphviz")); 170 171 // Limit the number of alias checks. The limit is chosen so that 172 // it has no negative effect on the llvm benchmarks. 173 static const unsigned AliasedCheckLimit = 10; 174 175 // Another limit for the alias checks: The maximum distance between load/store 176 // instructions where alias checks are done. 177 // This limit is useful for very large basic blocks. 178 static const unsigned MaxMemDepDistance = 160; 179 180 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 181 /// regions to be handled. 182 static const int MinScheduleRegionSize = 16; 183 184 /// Predicate for the element types that the SLP vectorizer supports. 185 /// 186 /// The most important thing to filter here are types which are invalid in LLVM 187 /// vectors. We also filter target specific types which have absolutely no 188 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 189 /// avoids spending time checking the cost model and realizing that they will 190 /// be inevitably scalarized. 191 static bool isValidElementType(Type *Ty) { 192 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 193 !Ty->isPPC_FP128Ty(); 194 } 195 196 /// \returns true if all of the instructions in \p VL are in the same block or 197 /// false otherwise. 198 static bool allSameBlock(ArrayRef<Value *> VL) { 199 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 200 if (!I0) 201 return false; 202 BasicBlock *BB = I0->getParent(); 203 for (int i = 1, e = VL.size(); i < e; i++) { 204 Instruction *I = dyn_cast<Instruction>(VL[i]); 205 if (!I) 206 return false; 207 208 if (BB != I->getParent()) 209 return false; 210 } 211 return true; 212 } 213 214 /// \returns True if all of the values in \p VL are constants (but not 215 /// globals/constant expressions). 216 static bool allConstant(ArrayRef<Value *> VL) { 217 // Constant expressions and globals can't be vectorized like normal integer/FP 218 // constants. 219 for (Value *i : VL) 220 if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i)) 221 return false; 222 return true; 223 } 224 225 /// \returns True if all of the values in \p VL are identical. 226 static bool isSplat(ArrayRef<Value *> VL) { 227 for (unsigned i = 1, e = VL.size(); i < e; ++i) 228 if (VL[i] != VL[0]) 229 return false; 230 return true; 231 } 232 233 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 234 static bool isCommutative(Instruction *I) { 235 if (auto *Cmp = dyn_cast<CmpInst>(I)) 236 return Cmp->isCommutative(); 237 if (auto *BO = dyn_cast<BinaryOperator>(I)) 238 return BO->isCommutative(); 239 // TODO: This should check for generic Instruction::isCommutative(), but 240 // we need to confirm that the caller code correctly handles Intrinsics 241 // for example (does not have 2 operands). 242 return false; 243 } 244 245 /// Checks if the vector of instructions can be represented as a shuffle, like: 246 /// %x0 = extractelement <4 x i8> %x, i32 0 247 /// %x3 = extractelement <4 x i8> %x, i32 3 248 /// %y1 = extractelement <4 x i8> %y, i32 1 249 /// %y2 = extractelement <4 x i8> %y, i32 2 250 /// %x0x0 = mul i8 %x0, %x0 251 /// %x3x3 = mul i8 %x3, %x3 252 /// %y1y1 = mul i8 %y1, %y1 253 /// %y2y2 = mul i8 %y2, %y2 254 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 255 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 256 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 257 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 258 /// ret <4 x i8> %ins4 259 /// can be transformed into: 260 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 261 /// i32 6> 262 /// %2 = mul <4 x i8> %1, %1 263 /// ret <4 x i8> %2 264 /// We convert this initially to something like: 265 /// %x0 = extractelement <4 x i8> %x, i32 0 266 /// %x3 = extractelement <4 x i8> %x, i32 3 267 /// %y1 = extractelement <4 x i8> %y, i32 1 268 /// %y2 = extractelement <4 x i8> %y, i32 2 269 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 270 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 271 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 272 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 273 /// %5 = mul <4 x i8> %4, %4 274 /// %6 = extractelement <4 x i8> %5, i32 0 275 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 276 /// %7 = extractelement <4 x i8> %5, i32 1 277 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 278 /// %8 = extractelement <4 x i8> %5, i32 2 279 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 280 /// %9 = extractelement <4 x i8> %5, i32 3 281 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 282 /// ret <4 x i8> %ins4 283 /// InstCombiner transforms this into a shuffle and vector mul 284 /// TODO: Can we split off and reuse the shuffle mask detection from 285 /// TargetTransformInfo::getInstructionThroughput? 286 static Optional<TargetTransformInfo::ShuffleKind> 287 isShuffle(ArrayRef<Value *> VL) { 288 auto *EI0 = cast<ExtractElementInst>(VL[0]); 289 unsigned Size = 290 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 291 Value *Vec1 = nullptr; 292 Value *Vec2 = nullptr; 293 enum ShuffleMode { Unknown, Select, Permute }; 294 ShuffleMode CommonShuffleMode = Unknown; 295 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 296 auto *EI = cast<ExtractElementInst>(VL[I]); 297 auto *Vec = EI->getVectorOperand(); 298 // All vector operands must have the same number of vector elements. 299 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 300 return None; 301 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 302 if (!Idx) 303 return None; 304 // Undefined behavior if Idx is negative or >= Size. 305 if (Idx->getValue().uge(Size)) 306 continue; 307 unsigned IntIdx = Idx->getValue().getZExtValue(); 308 // We can extractelement from undef vector. 309 if (isa<UndefValue>(Vec)) 310 continue; 311 // For correct shuffling we have to have at most 2 different vector operands 312 // in all extractelement instructions. 313 if (!Vec1 || Vec1 == Vec) 314 Vec1 = Vec; 315 else if (!Vec2 || Vec2 == Vec) 316 Vec2 = Vec; 317 else 318 return None; 319 if (CommonShuffleMode == Permute) 320 continue; 321 // If the extract index is not the same as the operation number, it is a 322 // permutation. 323 if (IntIdx != I) { 324 CommonShuffleMode = Permute; 325 continue; 326 } 327 CommonShuffleMode = Select; 328 } 329 // If we're not crossing lanes in different vectors, consider it as blending. 330 if (CommonShuffleMode == Select && Vec2) 331 return TargetTransformInfo::SK_Select; 332 // If Vec2 was never used, we have a permutation of a single vector, otherwise 333 // we have permutation of 2 vectors. 334 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 335 : TargetTransformInfo::SK_PermuteSingleSrc; 336 } 337 338 namespace { 339 340 /// Main data required for vectorization of instructions. 341 struct InstructionsState { 342 /// The very first instruction in the list with the main opcode. 343 Value *OpValue = nullptr; 344 345 /// The main/alternate instruction. 346 Instruction *MainOp = nullptr; 347 Instruction *AltOp = nullptr; 348 349 /// The main/alternate opcodes for the list of instructions. 350 unsigned getOpcode() const { 351 return MainOp ? MainOp->getOpcode() : 0; 352 } 353 354 unsigned getAltOpcode() const { 355 return AltOp ? AltOp->getOpcode() : 0; 356 } 357 358 /// Some of the instructions in the list have alternate opcodes. 359 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 360 361 bool isOpcodeOrAlt(Instruction *I) const { 362 unsigned CheckedOpcode = I->getOpcode(); 363 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 364 } 365 366 InstructionsState() = delete; 367 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 368 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 369 }; 370 371 } // end anonymous namespace 372 373 /// Chooses the correct key for scheduling data. If \p Op has the same (or 374 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 375 /// OpValue. 376 static Value *isOneOf(const InstructionsState &S, Value *Op) { 377 auto *I = dyn_cast<Instruction>(Op); 378 if (I && S.isOpcodeOrAlt(I)) 379 return Op; 380 return S.OpValue; 381 } 382 383 /// \returns true if \p Opcode is allowed as part of of the main/alternate 384 /// instruction for SLP vectorization. 385 /// 386 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 387 /// "shuffled out" lane would result in division by zero. 388 static bool isValidForAlternation(unsigned Opcode) { 389 if (Instruction::isIntDivRem(Opcode)) 390 return false; 391 392 return true; 393 } 394 395 /// \returns analysis of the Instructions in \p VL described in 396 /// InstructionsState, the Opcode that we suppose the whole list 397 /// could be vectorized even if its structure is diverse. 398 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 399 unsigned BaseIndex = 0) { 400 // Make sure these are all Instructions. 401 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 402 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 403 404 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 405 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 406 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 407 unsigned AltOpcode = Opcode; 408 unsigned AltIndex = BaseIndex; 409 410 // Check for one alternate opcode from another BinaryOperator. 411 // TODO - generalize to support all operators (types, calls etc.). 412 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 413 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 414 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 415 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 416 continue; 417 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 418 isValidForAlternation(Opcode)) { 419 AltOpcode = InstOpcode; 420 AltIndex = Cnt; 421 continue; 422 } 423 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 424 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 425 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 426 if (Ty0 == Ty1) { 427 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 428 continue; 429 if (Opcode == AltOpcode) { 430 assert(isValidForAlternation(Opcode) && 431 isValidForAlternation(InstOpcode) && 432 "Cast isn't safe for alternation, logic needs to be updated!"); 433 AltOpcode = InstOpcode; 434 AltIndex = Cnt; 435 continue; 436 } 437 } 438 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 439 continue; 440 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 441 } 442 443 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 444 cast<Instruction>(VL[AltIndex])); 445 } 446 447 /// \returns true if all of the values in \p VL have the same type or false 448 /// otherwise. 449 static bool allSameType(ArrayRef<Value *> VL) { 450 Type *Ty = VL[0]->getType(); 451 for (int i = 1, e = VL.size(); i < e; i++) 452 if (VL[i]->getType() != Ty) 453 return false; 454 455 return true; 456 } 457 458 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 459 static Optional<unsigned> getExtractIndex(Instruction *E) { 460 unsigned Opcode = E->getOpcode(); 461 assert((Opcode == Instruction::ExtractElement || 462 Opcode == Instruction::ExtractValue) && 463 "Expected extractelement or extractvalue instruction."); 464 if (Opcode == Instruction::ExtractElement) { 465 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 466 if (!CI) 467 return None; 468 return CI->getZExtValue(); 469 } 470 ExtractValueInst *EI = cast<ExtractValueInst>(E); 471 if (EI->getNumIndices() != 1) 472 return None; 473 return *EI->idx_begin(); 474 } 475 476 /// \returns True if in-tree use also needs extract. This refers to 477 /// possible scalar operand in vectorized instruction. 478 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 479 TargetLibraryInfo *TLI) { 480 unsigned Opcode = UserInst->getOpcode(); 481 switch (Opcode) { 482 case Instruction::Load: { 483 LoadInst *LI = cast<LoadInst>(UserInst); 484 return (LI->getPointerOperand() == Scalar); 485 } 486 case Instruction::Store: { 487 StoreInst *SI = cast<StoreInst>(UserInst); 488 return (SI->getPointerOperand() == Scalar); 489 } 490 case Instruction::Call: { 491 CallInst *CI = cast<CallInst>(UserInst); 492 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 493 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 494 if (hasVectorInstrinsicScalarOpd(ID, i)) 495 return (CI->getArgOperand(i) == Scalar); 496 } 497 LLVM_FALLTHROUGH; 498 } 499 default: 500 return false; 501 } 502 } 503 504 /// \returns the AA location that is being access by the instruction. 505 static MemoryLocation getLocation(Instruction *I, AAResults *AA) { 506 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 507 return MemoryLocation::get(SI); 508 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 509 return MemoryLocation::get(LI); 510 return MemoryLocation(); 511 } 512 513 /// \returns True if the instruction is not a volatile or atomic load/store. 514 static bool isSimple(Instruction *I) { 515 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 516 return LI->isSimple(); 517 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 518 return SI->isSimple(); 519 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 520 return !MI->isVolatile(); 521 return true; 522 } 523 524 namespace llvm { 525 526 namespace slpvectorizer { 527 528 /// Bottom Up SLP Vectorizer. 529 class BoUpSLP { 530 struct TreeEntry; 531 struct ScheduleData; 532 533 public: 534 using ValueList = SmallVector<Value *, 8>; 535 using InstrList = SmallVector<Instruction *, 16>; 536 using ValueSet = SmallPtrSet<Value *, 16>; 537 using StoreList = SmallVector<StoreInst *, 8>; 538 using ExtraValueToDebugLocsMap = 539 MapVector<Value *, SmallVector<Instruction *, 2>>; 540 541 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 542 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 543 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 544 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 545 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 546 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 547 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 548 // Use the vector register size specified by the target unless overridden 549 // by a command-line option. 550 // TODO: It would be better to limit the vectorization factor based on 551 // data type rather than just register size. For example, x86 AVX has 552 // 256-bit registers, but it does not support integer operations 553 // at that width (that requires AVX2). 554 if (MaxVectorRegSizeOption.getNumOccurrences()) 555 MaxVecRegSize = MaxVectorRegSizeOption; 556 else 557 MaxVecRegSize = TTI->getRegisterBitWidth(true); 558 559 if (MinVectorRegSizeOption.getNumOccurrences()) 560 MinVecRegSize = MinVectorRegSizeOption; 561 else 562 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 563 } 564 565 /// Vectorize the tree that starts with the elements in \p VL. 566 /// Returns the vectorized root. 567 Value *vectorizeTree(); 568 569 /// Vectorize the tree but with the list of externally used values \p 570 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 571 /// generated extractvalue instructions. 572 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 573 574 /// \returns the cost incurred by unwanted spills and fills, caused by 575 /// holding live values over call sites. 576 int getSpillCost() const; 577 578 /// \returns the vectorization cost of the subtree that starts at \p VL. 579 /// A negative number means that this is profitable. 580 int getTreeCost(); 581 582 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 583 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 584 void buildTree(ArrayRef<Value *> Roots, 585 ArrayRef<Value *> UserIgnoreLst = None); 586 587 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 588 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 589 /// into account (and updating it, if required) list of externally used 590 /// values stored in \p ExternallyUsedValues. 591 void buildTree(ArrayRef<Value *> Roots, 592 ExtraValueToDebugLocsMap &ExternallyUsedValues, 593 ArrayRef<Value *> UserIgnoreLst = None); 594 595 /// Clear the internal data structures that are created by 'buildTree'. 596 void deleteTree() { 597 VectorizableTree.clear(); 598 ScalarToTreeEntry.clear(); 599 MustGather.clear(); 600 ExternalUses.clear(); 601 NumOpsWantToKeepOrder.clear(); 602 NumOpsWantToKeepOriginalOrder = 0; 603 for (auto &Iter : BlocksSchedules) { 604 BlockScheduling *BS = Iter.second.get(); 605 BS->clear(); 606 } 607 MinBWs.clear(); 608 } 609 610 unsigned getTreeSize() const { return VectorizableTree.size(); } 611 612 /// Perform LICM and CSE on the newly generated gather sequences. 613 void optimizeGatherSequence(); 614 615 /// \returns The best order of instructions for vectorization. 616 Optional<ArrayRef<unsigned>> bestOrder() const { 617 auto I = std::max_element( 618 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 619 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 620 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 621 return D1.second < D2.second; 622 }); 623 if (I == NumOpsWantToKeepOrder.end() || 624 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 625 return None; 626 627 return makeArrayRef(I->getFirst()); 628 } 629 630 /// \return The vector element size in bits to use when vectorizing the 631 /// expression tree ending at \p V. If V is a store, the size is the width of 632 /// the stored value. Otherwise, the size is the width of the largest loaded 633 /// value reaching V. This method is used by the vectorizer to calculate 634 /// vectorization factors. 635 unsigned getVectorElementSize(Value *V); 636 637 /// Compute the minimum type sizes required to represent the entries in a 638 /// vectorizable tree. 639 void computeMinimumValueSizes(); 640 641 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 642 unsigned getMaxVecRegSize() const { 643 return MaxVecRegSize; 644 } 645 646 // \returns minimum vector register size as set by cl::opt. 647 unsigned getMinVecRegSize() const { 648 return MinVecRegSize; 649 } 650 651 /// Check if homogeneous aggregate is isomorphic to some VectorType. 652 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 653 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 654 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 655 /// 656 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 657 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 658 659 /// \returns True if the VectorizableTree is both tiny and not fully 660 /// vectorizable. We do not vectorize such trees. 661 bool isTreeTinyAndNotFullyVectorizable() const; 662 663 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 664 /// can be load combined in the backend. Load combining may not be allowed in 665 /// the IR optimizer, so we do not want to alter the pattern. For example, 666 /// partially transforming a scalar bswap() pattern into vector code is 667 /// effectively impossible for the backend to undo. 668 /// TODO: If load combining is allowed in the IR optimizer, this analysis 669 /// may not be necessary. 670 bool isLoadCombineReductionCandidate(unsigned ReductionOpcode) const; 671 672 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 673 /// can be load combined in the backend. Load combining may not be allowed in 674 /// the IR optimizer, so we do not want to alter the pattern. For example, 675 /// partially transforming a scalar bswap() pattern into vector code is 676 /// effectively impossible for the backend to undo. 677 /// TODO: If load combining is allowed in the IR optimizer, this analysis 678 /// may not be necessary. 679 bool isLoadCombineCandidate() const; 680 681 OptimizationRemarkEmitter *getORE() { return ORE; } 682 683 /// This structure holds any data we need about the edges being traversed 684 /// during buildTree_rec(). We keep track of: 685 /// (i) the user TreeEntry index, and 686 /// (ii) the index of the edge. 687 struct EdgeInfo { 688 EdgeInfo() = default; 689 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 690 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 691 /// The user TreeEntry. 692 TreeEntry *UserTE = nullptr; 693 /// The operand index of the use. 694 unsigned EdgeIdx = UINT_MAX; 695 #ifndef NDEBUG 696 friend inline raw_ostream &operator<<(raw_ostream &OS, 697 const BoUpSLP::EdgeInfo &EI) { 698 EI.dump(OS); 699 return OS; 700 } 701 /// Debug print. 702 void dump(raw_ostream &OS) const { 703 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 704 << " EdgeIdx:" << EdgeIdx << "}"; 705 } 706 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 707 #endif 708 }; 709 710 /// A helper data structure to hold the operands of a vector of instructions. 711 /// This supports a fixed vector length for all operand vectors. 712 class VLOperands { 713 /// For each operand we need (i) the value, and (ii) the opcode that it 714 /// would be attached to if the expression was in a left-linearized form. 715 /// This is required to avoid illegal operand reordering. 716 /// For example: 717 /// \verbatim 718 /// 0 Op1 719 /// |/ 720 /// Op1 Op2 Linearized + Op2 721 /// \ / ----------> |/ 722 /// - - 723 /// 724 /// Op1 - Op2 (0 + Op1) - Op2 725 /// \endverbatim 726 /// 727 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 728 /// 729 /// Another way to think of this is to track all the operations across the 730 /// path from the operand all the way to the root of the tree and to 731 /// calculate the operation that corresponds to this path. For example, the 732 /// path from Op2 to the root crosses the RHS of the '-', therefore the 733 /// corresponding operation is a '-' (which matches the one in the 734 /// linearized tree, as shown above). 735 /// 736 /// For lack of a better term, we refer to this operation as Accumulated 737 /// Path Operation (APO). 738 struct OperandData { 739 OperandData() = default; 740 OperandData(Value *V, bool APO, bool IsUsed) 741 : V(V), APO(APO), IsUsed(IsUsed) {} 742 /// The operand value. 743 Value *V = nullptr; 744 /// TreeEntries only allow a single opcode, or an alternate sequence of 745 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 746 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 747 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 748 /// (e.g., Add/Mul) 749 bool APO = false; 750 /// Helper data for the reordering function. 751 bool IsUsed = false; 752 }; 753 754 /// During operand reordering, we are trying to select the operand at lane 755 /// that matches best with the operand at the neighboring lane. Our 756 /// selection is based on the type of value we are looking for. For example, 757 /// if the neighboring lane has a load, we need to look for a load that is 758 /// accessing a consecutive address. These strategies are summarized in the 759 /// 'ReorderingMode' enumerator. 760 enum class ReorderingMode { 761 Load, ///< Matching loads to consecutive memory addresses 762 Opcode, ///< Matching instructions based on opcode (same or alternate) 763 Constant, ///< Matching constants 764 Splat, ///< Matching the same instruction multiple times (broadcast) 765 Failed, ///< We failed to create a vectorizable group 766 }; 767 768 using OperandDataVec = SmallVector<OperandData, 2>; 769 770 /// A vector of operand vectors. 771 SmallVector<OperandDataVec, 4> OpsVec; 772 773 const DataLayout &DL; 774 ScalarEvolution &SE; 775 const BoUpSLP &R; 776 777 /// \returns the operand data at \p OpIdx and \p Lane. 778 OperandData &getData(unsigned OpIdx, unsigned Lane) { 779 return OpsVec[OpIdx][Lane]; 780 } 781 782 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 783 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 784 return OpsVec[OpIdx][Lane]; 785 } 786 787 /// Clears the used flag for all entries. 788 void clearUsed() { 789 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 790 OpIdx != NumOperands; ++OpIdx) 791 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 792 ++Lane) 793 OpsVec[OpIdx][Lane].IsUsed = false; 794 } 795 796 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 797 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 798 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 799 } 800 801 // The hard-coded scores listed here are not very important. When computing 802 // the scores of matching one sub-tree with another, we are basically 803 // counting the number of values that are matching. So even if all scores 804 // are set to 1, we would still get a decent matching result. 805 // However, sometimes we have to break ties. For example we may have to 806 // choose between matching loads vs matching opcodes. This is what these 807 // scores are helping us with: they provide the order of preference. 808 809 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 810 static const int ScoreConsecutiveLoads = 3; 811 /// ExtractElementInst from same vector and consecutive indexes. 812 static const int ScoreConsecutiveExtracts = 3; 813 /// Constants. 814 static const int ScoreConstants = 2; 815 /// Instructions with the same opcode. 816 static const int ScoreSameOpcode = 2; 817 /// Instructions with alt opcodes (e.g, add + sub). 818 static const int ScoreAltOpcodes = 1; 819 /// Identical instructions (a.k.a. splat or broadcast). 820 static const int ScoreSplat = 1; 821 /// Matching with an undef is preferable to failing. 822 static const int ScoreUndef = 1; 823 /// Score for failing to find a decent match. 824 static const int ScoreFail = 0; 825 /// User exteranl to the vectorized code. 826 static const int ExternalUseCost = 1; 827 /// The user is internal but in a different lane. 828 static const int UserInDiffLaneCost = ExternalUseCost; 829 830 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 831 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 832 ScalarEvolution &SE) { 833 auto *LI1 = dyn_cast<LoadInst>(V1); 834 auto *LI2 = dyn_cast<LoadInst>(V2); 835 if (LI1 && LI2) 836 return isConsecutiveAccess(LI1, LI2, DL, SE) 837 ? VLOperands::ScoreConsecutiveLoads 838 : VLOperands::ScoreFail; 839 840 auto *C1 = dyn_cast<Constant>(V1); 841 auto *C2 = dyn_cast<Constant>(V2); 842 if (C1 && C2) 843 return VLOperands::ScoreConstants; 844 845 // Extracts from consecutive indexes of the same vector better score as 846 // the extracts could be optimized away. 847 Value *EV; 848 ConstantInt *Ex1Idx, *Ex2Idx; 849 if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) && 850 match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) && 851 Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue()) 852 return VLOperands::ScoreConsecutiveExtracts; 853 854 auto *I1 = dyn_cast<Instruction>(V1); 855 auto *I2 = dyn_cast<Instruction>(V2); 856 if (I1 && I2) { 857 if (I1 == I2) 858 return VLOperands::ScoreSplat; 859 InstructionsState S = getSameOpcode({I1, I2}); 860 // Note: Only consider instructions with <= 2 operands to avoid 861 // complexity explosion. 862 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 863 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 864 : VLOperands::ScoreSameOpcode; 865 } 866 867 if (isa<UndefValue>(V2)) 868 return VLOperands::ScoreUndef; 869 870 return VLOperands::ScoreFail; 871 } 872 873 /// Holds the values and their lane that are taking part in the look-ahead 874 /// score calculation. This is used in the external uses cost calculation. 875 SmallDenseMap<Value *, int> InLookAheadValues; 876 877 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are 878 /// either external to the vectorized code, or require shuffling. 879 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 880 const std::pair<Value *, int> &RHS) { 881 int Cost = 0; 882 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 883 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 884 Value *V = Values[Idx].first; 885 // Calculate the absolute lane, using the minimum relative lane of LHS 886 // and RHS as base and Idx as the offset. 887 int Ln = std::min(LHS.second, RHS.second) + Idx; 888 assert(Ln >= 0 && "Bad lane calculation"); 889 unsigned UsersBudget = LookAheadUsersBudget; 890 for (User *U : V->users()) { 891 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 892 // The user is in the VectorizableTree. Check if we need to insert. 893 auto It = llvm::find(UserTE->Scalars, U); 894 assert(It != UserTE->Scalars.end() && "U is in UserTE"); 895 int UserLn = std::distance(UserTE->Scalars.begin(), It); 896 assert(UserLn >= 0 && "Bad lane"); 897 if (UserLn != Ln) 898 Cost += UserInDiffLaneCost; 899 } else { 900 // Check if the user is in the look-ahead code. 901 auto It2 = InLookAheadValues.find(U); 902 if (It2 != InLookAheadValues.end()) { 903 // The user is in the look-ahead code. Check the lane. 904 if (It2->second != Ln) 905 Cost += UserInDiffLaneCost; 906 } else { 907 // The user is neither in SLP tree nor in the look-ahead code. 908 Cost += ExternalUseCost; 909 } 910 } 911 // Limit the number of visited uses to cap compilation time. 912 if (--UsersBudget == 0) 913 break; 914 } 915 } 916 return Cost; 917 } 918 919 /// Go through the operands of \p LHS and \p RHS recursively until \p 920 /// MaxLevel, and return the cummulative score. For example: 921 /// \verbatim 922 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 923 /// \ / \ / \ / \ / 924 /// + + + + 925 /// G1 G2 G3 G4 926 /// \endverbatim 927 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 928 /// each level recursively, accumulating the score. It starts from matching 929 /// the additions at level 0, then moves on to the loads (level 1). The 930 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 931 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 932 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 933 /// Please note that the order of the operands does not matter, as we 934 /// evaluate the score of all profitable combinations of operands. In 935 /// other words the score of G1 and G4 is the same as G1 and G2. This 936 /// heuristic is based on ideas described in: 937 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 938 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 939 /// Luís F. W. Góes 940 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 941 const std::pair<Value *, int> &RHS, int CurrLevel, 942 int MaxLevel) { 943 944 Value *V1 = LHS.first; 945 Value *V2 = RHS.first; 946 // Get the shallow score of V1 and V2. 947 int ShallowScoreAtThisLevel = 948 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) - 949 getExternalUsesCost(LHS, RHS)); 950 int Lane1 = LHS.second; 951 int Lane2 = RHS.second; 952 953 // If reached MaxLevel, 954 // or if V1 and V2 are not instructions, 955 // or if they are SPLAT, 956 // or if they are not consecutive, early return the current cost. 957 auto *I1 = dyn_cast<Instruction>(V1); 958 auto *I2 = dyn_cast<Instruction>(V2); 959 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 960 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 961 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel)) 962 return ShallowScoreAtThisLevel; 963 assert(I1 && I2 && "Should have early exited."); 964 965 // Keep track of in-tree values for determining the external-use cost. 966 InLookAheadValues[V1] = Lane1; 967 InLookAheadValues[V2] = Lane2; 968 969 // Contains the I2 operand indexes that got matched with I1 operands. 970 SmallSet<unsigned, 4> Op2Used; 971 972 // Recursion towards the operands of I1 and I2. We are trying all possbile 973 // operand pairs, and keeping track of the best score. 974 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 975 OpIdx1 != NumOperands1; ++OpIdx1) { 976 // Try to pair op1I with the best operand of I2. 977 int MaxTmpScore = 0; 978 unsigned MaxOpIdx2 = 0; 979 bool FoundBest = false; 980 // If I2 is commutative try all combinations. 981 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 982 unsigned ToIdx = isCommutative(I2) 983 ? I2->getNumOperands() 984 : std::min(I2->getNumOperands(), OpIdx1 + 1); 985 assert(FromIdx <= ToIdx && "Bad index"); 986 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 987 // Skip operands already paired with OpIdx1. 988 if (Op2Used.count(OpIdx2)) 989 continue; 990 // Recursively calculate the cost at each level 991 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 992 {I2->getOperand(OpIdx2), Lane2}, 993 CurrLevel + 1, MaxLevel); 994 // Look for the best score. 995 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 996 MaxTmpScore = TmpScore; 997 MaxOpIdx2 = OpIdx2; 998 FoundBest = true; 999 } 1000 } 1001 if (FoundBest) { 1002 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1003 Op2Used.insert(MaxOpIdx2); 1004 ShallowScoreAtThisLevel += MaxTmpScore; 1005 } 1006 } 1007 return ShallowScoreAtThisLevel; 1008 } 1009 1010 /// \Returns the look-ahead score, which tells us how much the sub-trees 1011 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1012 /// score. This helps break ties in an informed way when we cannot decide on 1013 /// the order of the operands by just considering the immediate 1014 /// predecessors. 1015 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1016 const std::pair<Value *, int> &RHS) { 1017 InLookAheadValues.clear(); 1018 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1019 } 1020 1021 // Search all operands in Ops[*][Lane] for the one that matches best 1022 // Ops[OpIdx][LastLane] and return its opreand index. 1023 // If no good match can be found, return None. 1024 Optional<unsigned> 1025 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1026 ArrayRef<ReorderingMode> ReorderingModes) { 1027 unsigned NumOperands = getNumOperands(); 1028 1029 // The operand of the previous lane at OpIdx. 1030 Value *OpLastLane = getData(OpIdx, LastLane).V; 1031 1032 // Our strategy mode for OpIdx. 1033 ReorderingMode RMode = ReorderingModes[OpIdx]; 1034 1035 // The linearized opcode of the operand at OpIdx, Lane. 1036 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1037 1038 // The best operand index and its score. 1039 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1040 // are using the score to differentiate between the two. 1041 struct BestOpData { 1042 Optional<unsigned> Idx = None; 1043 unsigned Score = 0; 1044 } BestOp; 1045 1046 // Iterate through all unused operands and look for the best. 1047 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1048 // Get the operand at Idx and Lane. 1049 OperandData &OpData = getData(Idx, Lane); 1050 Value *Op = OpData.V; 1051 bool OpAPO = OpData.APO; 1052 1053 // Skip already selected operands. 1054 if (OpData.IsUsed) 1055 continue; 1056 1057 // Skip if we are trying to move the operand to a position with a 1058 // different opcode in the linearized tree form. This would break the 1059 // semantics. 1060 if (OpAPO != OpIdxAPO) 1061 continue; 1062 1063 // Look for an operand that matches the current mode. 1064 switch (RMode) { 1065 case ReorderingMode::Load: 1066 case ReorderingMode::Constant: 1067 case ReorderingMode::Opcode: { 1068 bool LeftToRight = Lane > LastLane; 1069 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1070 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1071 unsigned Score = 1072 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1073 if (Score > BestOp.Score) { 1074 BestOp.Idx = Idx; 1075 BestOp.Score = Score; 1076 } 1077 break; 1078 } 1079 case ReorderingMode::Splat: 1080 if (Op == OpLastLane) 1081 BestOp.Idx = Idx; 1082 break; 1083 case ReorderingMode::Failed: 1084 return None; 1085 } 1086 } 1087 1088 if (BestOp.Idx) { 1089 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1090 return BestOp.Idx; 1091 } 1092 // If we could not find a good match return None. 1093 return None; 1094 } 1095 1096 /// Helper for reorderOperandVecs. \Returns the lane that we should start 1097 /// reordering from. This is the one which has the least number of operands 1098 /// that can freely move about. 1099 unsigned getBestLaneToStartReordering() const { 1100 unsigned BestLane = 0; 1101 unsigned Min = UINT_MAX; 1102 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1103 ++Lane) { 1104 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 1105 if (NumFreeOps < Min) { 1106 Min = NumFreeOps; 1107 BestLane = Lane; 1108 } 1109 } 1110 return BestLane; 1111 } 1112 1113 /// \Returns the maximum number of operands that are allowed to be reordered 1114 /// for \p Lane. This is used as a heuristic for selecting the first lane to 1115 /// start operand reordering. 1116 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1117 unsigned CntTrue = 0; 1118 unsigned NumOperands = getNumOperands(); 1119 // Operands with the same APO can be reordered. We therefore need to count 1120 // how many of them we have for each APO, like this: Cnt[APO] = x. 1121 // Since we only have two APOs, namely true and false, we can avoid using 1122 // a map. Instead we can simply count the number of operands that 1123 // correspond to one of them (in this case the 'true' APO), and calculate 1124 // the other by subtracting it from the total number of operands. 1125 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 1126 if (getData(OpIdx, Lane).APO) 1127 ++CntTrue; 1128 unsigned CntFalse = NumOperands - CntTrue; 1129 return std::max(CntTrue, CntFalse); 1130 } 1131 1132 /// Go through the instructions in VL and append their operands. 1133 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1134 assert(!VL.empty() && "Bad VL"); 1135 assert((empty() || VL.size() == getNumLanes()) && 1136 "Expected same number of lanes"); 1137 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1138 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1139 OpsVec.resize(NumOperands); 1140 unsigned NumLanes = VL.size(); 1141 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1142 OpsVec[OpIdx].resize(NumLanes); 1143 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1144 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1145 // Our tree has just 3 nodes: the root and two operands. 1146 // It is therefore trivial to get the APO. We only need to check the 1147 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1148 // RHS operand. The LHS operand of both add and sub is never attached 1149 // to an inversese operation in the linearized form, therefore its APO 1150 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1151 1152 // Since operand reordering is performed on groups of commutative 1153 // operations or alternating sequences (e.g., +, -), we can safely 1154 // tell the inverse operations by checking commutativity. 1155 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1156 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1157 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1158 APO, false}; 1159 } 1160 } 1161 } 1162 1163 /// \returns the number of operands. 1164 unsigned getNumOperands() const { return OpsVec.size(); } 1165 1166 /// \returns the number of lanes. 1167 unsigned getNumLanes() const { return OpsVec[0].size(); } 1168 1169 /// \returns the operand value at \p OpIdx and \p Lane. 1170 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1171 return getData(OpIdx, Lane).V; 1172 } 1173 1174 /// \returns true if the data structure is empty. 1175 bool empty() const { return OpsVec.empty(); } 1176 1177 /// Clears the data. 1178 void clear() { OpsVec.clear(); } 1179 1180 /// \Returns true if there are enough operands identical to \p Op to fill 1181 /// the whole vector. 1182 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1183 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1184 bool OpAPO = getData(OpIdx, Lane).APO; 1185 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1186 if (Ln == Lane) 1187 continue; 1188 // This is set to true if we found a candidate for broadcast at Lane. 1189 bool FoundCandidate = false; 1190 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1191 OperandData &Data = getData(OpI, Ln); 1192 if (Data.APO != OpAPO || Data.IsUsed) 1193 continue; 1194 if (Data.V == Op) { 1195 FoundCandidate = true; 1196 Data.IsUsed = true; 1197 break; 1198 } 1199 } 1200 if (!FoundCandidate) 1201 return false; 1202 } 1203 return true; 1204 } 1205 1206 public: 1207 /// Initialize with all the operands of the instruction vector \p RootVL. 1208 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1209 ScalarEvolution &SE, const BoUpSLP &R) 1210 : DL(DL), SE(SE), R(R) { 1211 // Append all the operands of RootVL. 1212 appendOperandsOfVL(RootVL); 1213 } 1214 1215 /// \Returns a value vector with the operands across all lanes for the 1216 /// opearnd at \p OpIdx. 1217 ValueList getVL(unsigned OpIdx) const { 1218 ValueList OpVL(OpsVec[OpIdx].size()); 1219 assert(OpsVec[OpIdx].size() == getNumLanes() && 1220 "Expected same num of lanes across all operands"); 1221 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1222 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1223 return OpVL; 1224 } 1225 1226 // Performs operand reordering for 2 or more operands. 1227 // The original operands are in OrigOps[OpIdx][Lane]. 1228 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1229 void reorder() { 1230 unsigned NumOperands = getNumOperands(); 1231 unsigned NumLanes = getNumLanes(); 1232 // Each operand has its own mode. We are using this mode to help us select 1233 // the instructions for each lane, so that they match best with the ones 1234 // we have selected so far. 1235 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1236 1237 // This is a greedy single-pass algorithm. We are going over each lane 1238 // once and deciding on the best order right away with no back-tracking. 1239 // However, in order to increase its effectiveness, we start with the lane 1240 // that has operands that can move the least. For example, given the 1241 // following lanes: 1242 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1243 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1244 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1245 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1246 // we will start at Lane 1, since the operands of the subtraction cannot 1247 // be reordered. Then we will visit the rest of the lanes in a circular 1248 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1249 1250 // Find the first lane that we will start our search from. 1251 unsigned FirstLane = getBestLaneToStartReordering(); 1252 1253 // Initialize the modes. 1254 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1255 Value *OpLane0 = getValue(OpIdx, FirstLane); 1256 // Keep track if we have instructions with all the same opcode on one 1257 // side. 1258 if (isa<LoadInst>(OpLane0)) 1259 ReorderingModes[OpIdx] = ReorderingMode::Load; 1260 else if (isa<Instruction>(OpLane0)) { 1261 // Check if OpLane0 should be broadcast. 1262 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1263 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1264 else 1265 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1266 } 1267 else if (isa<Constant>(OpLane0)) 1268 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1269 else if (isa<Argument>(OpLane0)) 1270 // Our best hope is a Splat. It may save some cost in some cases. 1271 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1272 else 1273 // NOTE: This should be unreachable. 1274 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1275 } 1276 1277 // If the initial strategy fails for any of the operand indexes, then we 1278 // perform reordering again in a second pass. This helps avoid assigning 1279 // high priority to the failed strategy, and should improve reordering for 1280 // the non-failed operand indexes. 1281 for (int Pass = 0; Pass != 2; ++Pass) { 1282 // Skip the second pass if the first pass did not fail. 1283 bool StrategyFailed = false; 1284 // Mark all operand data as free to use. 1285 clearUsed(); 1286 // We keep the original operand order for the FirstLane, so reorder the 1287 // rest of the lanes. We are visiting the nodes in a circular fashion, 1288 // using FirstLane as the center point and increasing the radius 1289 // distance. 1290 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1291 // Visit the lane on the right and then the lane on the left. 1292 for (int Direction : {+1, -1}) { 1293 int Lane = FirstLane + Direction * Distance; 1294 if (Lane < 0 || Lane >= (int)NumLanes) 1295 continue; 1296 int LastLane = Lane - Direction; 1297 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1298 "Out of bounds"); 1299 // Look for a good match for each operand. 1300 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1301 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1302 Optional<unsigned> BestIdx = 1303 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1304 // By not selecting a value, we allow the operands that follow to 1305 // select a better matching value. We will get a non-null value in 1306 // the next run of getBestOperand(). 1307 if (BestIdx) { 1308 // Swap the current operand with the one returned by 1309 // getBestOperand(). 1310 swap(OpIdx, BestIdx.getValue(), Lane); 1311 } else { 1312 // We failed to find a best operand, set mode to 'Failed'. 1313 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1314 // Enable the second pass. 1315 StrategyFailed = true; 1316 } 1317 } 1318 } 1319 } 1320 // Skip second pass if the strategy did not fail. 1321 if (!StrategyFailed) 1322 break; 1323 } 1324 } 1325 1326 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1327 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1328 switch (RMode) { 1329 case ReorderingMode::Load: 1330 return "Load"; 1331 case ReorderingMode::Opcode: 1332 return "Opcode"; 1333 case ReorderingMode::Constant: 1334 return "Constant"; 1335 case ReorderingMode::Splat: 1336 return "Splat"; 1337 case ReorderingMode::Failed: 1338 return "Failed"; 1339 } 1340 llvm_unreachable("Unimplemented Reordering Type"); 1341 } 1342 1343 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1344 raw_ostream &OS) { 1345 return OS << getModeStr(RMode); 1346 } 1347 1348 /// Debug print. 1349 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1350 printMode(RMode, dbgs()); 1351 } 1352 1353 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1354 return printMode(RMode, OS); 1355 } 1356 1357 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1358 const unsigned Indent = 2; 1359 unsigned Cnt = 0; 1360 for (const OperandDataVec &OpDataVec : OpsVec) { 1361 OS << "Operand " << Cnt++ << "\n"; 1362 for (const OperandData &OpData : OpDataVec) { 1363 OS.indent(Indent) << "{"; 1364 if (Value *V = OpData.V) 1365 OS << *V; 1366 else 1367 OS << "null"; 1368 OS << ", APO:" << OpData.APO << "}\n"; 1369 } 1370 OS << "\n"; 1371 } 1372 return OS; 1373 } 1374 1375 /// Debug print. 1376 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1377 #endif 1378 }; 1379 1380 /// Checks if the instruction is marked for deletion. 1381 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1382 1383 /// Marks values operands for later deletion by replacing them with Undefs. 1384 void eraseInstructions(ArrayRef<Value *> AV); 1385 1386 ~BoUpSLP(); 1387 1388 private: 1389 /// Checks if all users of \p I are the part of the vectorization tree. 1390 bool areAllUsersVectorized(Instruction *I) const; 1391 1392 /// \returns the cost of the vectorizable entry. 1393 int getEntryCost(TreeEntry *E); 1394 1395 /// This is the recursive part of buildTree. 1396 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1397 const EdgeInfo &EI); 1398 1399 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1400 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1401 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1402 /// returns false, setting \p CurrentOrder to either an empty vector or a 1403 /// non-identity permutation that allows to reuse extract instructions. 1404 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1405 SmallVectorImpl<unsigned> &CurrentOrder) const; 1406 1407 /// Vectorize a single entry in the tree. 1408 Value *vectorizeTree(TreeEntry *E); 1409 1410 /// Vectorize a single entry in the tree, starting in \p VL. 1411 Value *vectorizeTree(ArrayRef<Value *> VL); 1412 1413 /// \returns the scalarization cost for this type. Scalarization in this 1414 /// context means the creation of vectors from a group of scalars. 1415 int getGatherCost(FixedVectorType *Ty, 1416 const DenseSet<unsigned> &ShuffledIndices) const; 1417 1418 /// \returns the scalarization cost for this list of values. Assuming that 1419 /// this subtree gets vectorized, we may need to extract the values from the 1420 /// roots. This method calculates the cost of extracting the values. 1421 int getGatherCost(ArrayRef<Value *> VL) const; 1422 1423 /// Set the Builder insert point to one after the last instruction in 1424 /// the bundle 1425 void setInsertPointAfterBundle(TreeEntry *E); 1426 1427 /// \returns a vector from a collection of scalars in \p VL. 1428 Value *Gather(ArrayRef<Value *> VL, FixedVectorType *Ty); 1429 1430 /// \returns whether the VectorizableTree is fully vectorizable and will 1431 /// be beneficial even the tree height is tiny. 1432 bool isFullyVectorizableTinyTree() const; 1433 1434 /// Reorder commutative or alt operands to get better probability of 1435 /// generating vectorized code. 1436 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1437 SmallVectorImpl<Value *> &Left, 1438 SmallVectorImpl<Value *> &Right, 1439 const DataLayout &DL, 1440 ScalarEvolution &SE, 1441 const BoUpSLP &R); 1442 struct TreeEntry { 1443 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1444 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1445 1446 /// \returns true if the scalars in VL are equal to this entry. 1447 bool isSame(ArrayRef<Value *> VL) const { 1448 if (VL.size() == Scalars.size()) 1449 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1450 return VL.size() == ReuseShuffleIndices.size() && 1451 std::equal( 1452 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 1453 [this](Value *V, int Idx) { return V == Scalars[Idx]; }); 1454 } 1455 1456 /// A vector of scalars. 1457 ValueList Scalars; 1458 1459 /// The Scalars are vectorized into this value. It is initialized to Null. 1460 Value *VectorizedValue = nullptr; 1461 1462 /// Do we need to gather this sequence ? 1463 enum EntryState { Vectorize, NeedToGather }; 1464 EntryState State; 1465 1466 /// Does this sequence require some shuffling? 1467 SmallVector<int, 4> ReuseShuffleIndices; 1468 1469 /// Does this entry require reordering? 1470 ArrayRef<unsigned> ReorderIndices; 1471 1472 /// Points back to the VectorizableTree. 1473 /// 1474 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1475 /// to be a pointer and needs to be able to initialize the child iterator. 1476 /// Thus we need a reference back to the container to translate the indices 1477 /// to entries. 1478 VecTreeTy &Container; 1479 1480 /// The TreeEntry index containing the user of this entry. We can actually 1481 /// have multiple users so the data structure is not truly a tree. 1482 SmallVector<EdgeInfo, 1> UserTreeIndices; 1483 1484 /// The index of this treeEntry in VectorizableTree. 1485 int Idx = -1; 1486 1487 private: 1488 /// The operands of each instruction in each lane Operands[op_index][lane]. 1489 /// Note: This helps avoid the replication of the code that performs the 1490 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1491 SmallVector<ValueList, 2> Operands; 1492 1493 /// The main/alternate instruction. 1494 Instruction *MainOp = nullptr; 1495 Instruction *AltOp = nullptr; 1496 1497 public: 1498 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1499 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1500 if (Operands.size() < OpIdx + 1) 1501 Operands.resize(OpIdx + 1); 1502 assert(Operands[OpIdx].size() == 0 && "Already resized?"); 1503 Operands[OpIdx].resize(Scalars.size()); 1504 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1505 Operands[OpIdx][Lane] = OpVL[Lane]; 1506 } 1507 1508 /// Set the operands of this bundle in their original order. 1509 void setOperandsInOrder() { 1510 assert(Operands.empty() && "Already initialized?"); 1511 auto *I0 = cast<Instruction>(Scalars[0]); 1512 Operands.resize(I0->getNumOperands()); 1513 unsigned NumLanes = Scalars.size(); 1514 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1515 OpIdx != NumOperands; ++OpIdx) { 1516 Operands[OpIdx].resize(NumLanes); 1517 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1518 auto *I = cast<Instruction>(Scalars[Lane]); 1519 assert(I->getNumOperands() == NumOperands && 1520 "Expected same number of operands"); 1521 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1522 } 1523 } 1524 } 1525 1526 /// \returns the \p OpIdx operand of this TreeEntry. 1527 ValueList &getOperand(unsigned OpIdx) { 1528 assert(OpIdx < Operands.size() && "Off bounds"); 1529 return Operands[OpIdx]; 1530 } 1531 1532 /// \returns the number of operands. 1533 unsigned getNumOperands() const { return Operands.size(); } 1534 1535 /// \return the single \p OpIdx operand. 1536 Value *getSingleOperand(unsigned OpIdx) const { 1537 assert(OpIdx < Operands.size() && "Off bounds"); 1538 assert(!Operands[OpIdx].empty() && "No operand available"); 1539 return Operands[OpIdx][0]; 1540 } 1541 1542 /// Some of the instructions in the list have alternate opcodes. 1543 bool isAltShuffle() const { 1544 return getOpcode() != getAltOpcode(); 1545 } 1546 1547 bool isOpcodeOrAlt(Instruction *I) const { 1548 unsigned CheckedOpcode = I->getOpcode(); 1549 return (getOpcode() == CheckedOpcode || 1550 getAltOpcode() == CheckedOpcode); 1551 } 1552 1553 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1554 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1555 /// \p OpValue. 1556 Value *isOneOf(Value *Op) const { 1557 auto *I = dyn_cast<Instruction>(Op); 1558 if (I && isOpcodeOrAlt(I)) 1559 return Op; 1560 return MainOp; 1561 } 1562 1563 void setOperations(const InstructionsState &S) { 1564 MainOp = S.MainOp; 1565 AltOp = S.AltOp; 1566 } 1567 1568 Instruction *getMainOp() const { 1569 return MainOp; 1570 } 1571 1572 Instruction *getAltOp() const { 1573 return AltOp; 1574 } 1575 1576 /// The main/alternate opcodes for the list of instructions. 1577 unsigned getOpcode() const { 1578 return MainOp ? MainOp->getOpcode() : 0; 1579 } 1580 1581 unsigned getAltOpcode() const { 1582 return AltOp ? AltOp->getOpcode() : 0; 1583 } 1584 1585 /// Update operations state of this entry if reorder occurred. 1586 bool updateStateIfReorder() { 1587 if (ReorderIndices.empty()) 1588 return false; 1589 InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front()); 1590 setOperations(S); 1591 return true; 1592 } 1593 1594 #ifndef NDEBUG 1595 /// Debug printer. 1596 LLVM_DUMP_METHOD void dump() const { 1597 dbgs() << Idx << ".\n"; 1598 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1599 dbgs() << "Operand " << OpI << ":\n"; 1600 for (const Value *V : Operands[OpI]) 1601 dbgs().indent(2) << *V << "\n"; 1602 } 1603 dbgs() << "Scalars: \n"; 1604 for (Value *V : Scalars) 1605 dbgs().indent(2) << *V << "\n"; 1606 dbgs() << "State: "; 1607 switch (State) { 1608 case Vectorize: 1609 dbgs() << "Vectorize\n"; 1610 break; 1611 case NeedToGather: 1612 dbgs() << "NeedToGather\n"; 1613 break; 1614 } 1615 dbgs() << "MainOp: "; 1616 if (MainOp) 1617 dbgs() << *MainOp << "\n"; 1618 else 1619 dbgs() << "NULL\n"; 1620 dbgs() << "AltOp: "; 1621 if (AltOp) 1622 dbgs() << *AltOp << "\n"; 1623 else 1624 dbgs() << "NULL\n"; 1625 dbgs() << "VectorizedValue: "; 1626 if (VectorizedValue) 1627 dbgs() << *VectorizedValue << "\n"; 1628 else 1629 dbgs() << "NULL\n"; 1630 dbgs() << "ReuseShuffleIndices: "; 1631 if (ReuseShuffleIndices.empty()) 1632 dbgs() << "Emtpy"; 1633 else 1634 for (unsigned ReuseIdx : ReuseShuffleIndices) 1635 dbgs() << ReuseIdx << ", "; 1636 dbgs() << "\n"; 1637 dbgs() << "ReorderIndices: "; 1638 for (unsigned ReorderIdx : ReorderIndices) 1639 dbgs() << ReorderIdx << ", "; 1640 dbgs() << "\n"; 1641 dbgs() << "UserTreeIndices: "; 1642 for (const auto &EInfo : UserTreeIndices) 1643 dbgs() << EInfo << ", "; 1644 dbgs() << "\n"; 1645 } 1646 #endif 1647 }; 1648 1649 /// Create a new VectorizableTree entry. 1650 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1651 const InstructionsState &S, 1652 const EdgeInfo &UserTreeIdx, 1653 ArrayRef<unsigned> ReuseShuffleIndices = None, 1654 ArrayRef<unsigned> ReorderIndices = None) { 1655 bool Vectorized = (bool)Bundle; 1656 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1657 TreeEntry *Last = VectorizableTree.back().get(); 1658 Last->Idx = VectorizableTree.size() - 1; 1659 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 1660 Last->State = Vectorized ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 1661 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1662 ReuseShuffleIndices.end()); 1663 Last->ReorderIndices = ReorderIndices; 1664 Last->setOperations(S); 1665 if (Vectorized) { 1666 for (int i = 0, e = VL.size(); i != e; ++i) { 1667 assert(!getTreeEntry(VL[i]) && "Scalar already in tree!"); 1668 ScalarToTreeEntry[VL[i]] = Last; 1669 } 1670 // Update the scheduler bundle to point to this TreeEntry. 1671 unsigned Lane = 0; 1672 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 1673 BundleMember = BundleMember->NextInBundle) { 1674 BundleMember->TE = Last; 1675 BundleMember->Lane = Lane; 1676 ++Lane; 1677 } 1678 assert((!Bundle.getValue() || Lane == VL.size()) && 1679 "Bundle and VL out of sync"); 1680 } else { 1681 MustGather.insert(VL.begin(), VL.end()); 1682 } 1683 1684 if (UserTreeIdx.UserTE) 1685 Last->UserTreeIndices.push_back(UserTreeIdx); 1686 1687 return Last; 1688 } 1689 1690 /// -- Vectorization State -- 1691 /// Holds all of the tree entries. 1692 TreeEntry::VecTreeTy VectorizableTree; 1693 1694 #ifndef NDEBUG 1695 /// Debug printer. 1696 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1697 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1698 VectorizableTree[Id]->dump(); 1699 dbgs() << "\n"; 1700 } 1701 } 1702 #endif 1703 1704 TreeEntry *getTreeEntry(Value *V) { 1705 auto I = ScalarToTreeEntry.find(V); 1706 if (I != ScalarToTreeEntry.end()) 1707 return I->second; 1708 return nullptr; 1709 } 1710 1711 const TreeEntry *getTreeEntry(Value *V) const { 1712 auto I = ScalarToTreeEntry.find(V); 1713 if (I != ScalarToTreeEntry.end()) 1714 return I->second; 1715 return nullptr; 1716 } 1717 1718 /// Maps a specific scalar to its tree entry. 1719 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 1720 1721 /// Maps a value to the proposed vectorizable size. 1722 SmallDenseMap<Value *, unsigned> InstrElementSize; 1723 1724 /// A list of scalars that we found that we need to keep as scalars. 1725 ValueSet MustGather; 1726 1727 /// This POD struct describes one external user in the vectorized tree. 1728 struct ExternalUser { 1729 ExternalUser(Value *S, llvm::User *U, int L) 1730 : Scalar(S), User(U), Lane(L) {} 1731 1732 // Which scalar in our function. 1733 Value *Scalar; 1734 1735 // Which user that uses the scalar. 1736 llvm::User *User; 1737 1738 // Which lane does the scalar belong to. 1739 int Lane; 1740 }; 1741 using UserList = SmallVector<ExternalUser, 16>; 1742 1743 /// Checks if two instructions may access the same memory. 1744 /// 1745 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 1746 /// is invariant in the calling loop. 1747 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 1748 Instruction *Inst2) { 1749 // First check if the result is already in the cache. 1750 AliasCacheKey key = std::make_pair(Inst1, Inst2); 1751 Optional<bool> &result = AliasCache[key]; 1752 if (result.hasValue()) { 1753 return result.getValue(); 1754 } 1755 MemoryLocation Loc2 = getLocation(Inst2, AA); 1756 bool aliased = true; 1757 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 1758 // Do the alias check. 1759 aliased = AA->alias(Loc1, Loc2); 1760 } 1761 // Store the result in the cache. 1762 result = aliased; 1763 return aliased; 1764 } 1765 1766 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 1767 1768 /// Cache for alias results. 1769 /// TODO: consider moving this to the AliasAnalysis itself. 1770 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 1771 1772 /// Removes an instruction from its block and eventually deletes it. 1773 /// It's like Instruction::eraseFromParent() except that the actual deletion 1774 /// is delayed until BoUpSLP is destructed. 1775 /// This is required to ensure that there are no incorrect collisions in the 1776 /// AliasCache, which can happen if a new instruction is allocated at the 1777 /// same address as a previously deleted instruction. 1778 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 1779 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 1780 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 1781 } 1782 1783 /// Temporary store for deleted instructions. Instructions will be deleted 1784 /// eventually when the BoUpSLP is destructed. 1785 DenseMap<Instruction *, bool> DeletedInstructions; 1786 1787 /// A list of values that need to extracted out of the tree. 1788 /// This list holds pairs of (Internal Scalar : External User). External User 1789 /// can be nullptr, it means that this Internal Scalar will be used later, 1790 /// after vectorization. 1791 UserList ExternalUses; 1792 1793 /// Values used only by @llvm.assume calls. 1794 SmallPtrSet<const Value *, 32> EphValues; 1795 1796 /// Holds all of the instructions that we gathered. 1797 SetVector<Instruction *> GatherSeq; 1798 1799 /// A list of blocks that we are going to CSE. 1800 SetVector<BasicBlock *> CSEBlocks; 1801 1802 /// Contains all scheduling relevant data for an instruction. 1803 /// A ScheduleData either represents a single instruction or a member of an 1804 /// instruction bundle (= a group of instructions which is combined into a 1805 /// vector instruction). 1806 struct ScheduleData { 1807 // The initial value for the dependency counters. It means that the 1808 // dependencies are not calculated yet. 1809 enum { InvalidDeps = -1 }; 1810 1811 ScheduleData() = default; 1812 1813 void init(int BlockSchedulingRegionID, Value *OpVal) { 1814 FirstInBundle = this; 1815 NextInBundle = nullptr; 1816 NextLoadStore = nullptr; 1817 IsScheduled = false; 1818 SchedulingRegionID = BlockSchedulingRegionID; 1819 UnscheduledDepsInBundle = UnscheduledDeps; 1820 clearDependencies(); 1821 OpValue = OpVal; 1822 TE = nullptr; 1823 Lane = -1; 1824 } 1825 1826 /// Returns true if the dependency information has been calculated. 1827 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 1828 1829 /// Returns true for single instructions and for bundle representatives 1830 /// (= the head of a bundle). 1831 bool isSchedulingEntity() const { return FirstInBundle == this; } 1832 1833 /// Returns true if it represents an instruction bundle and not only a 1834 /// single instruction. 1835 bool isPartOfBundle() const { 1836 return NextInBundle != nullptr || FirstInBundle != this; 1837 } 1838 1839 /// Returns true if it is ready for scheduling, i.e. it has no more 1840 /// unscheduled depending instructions/bundles. 1841 bool isReady() const { 1842 assert(isSchedulingEntity() && 1843 "can't consider non-scheduling entity for ready list"); 1844 return UnscheduledDepsInBundle == 0 && !IsScheduled; 1845 } 1846 1847 /// Modifies the number of unscheduled dependencies, also updating it for 1848 /// the whole bundle. 1849 int incrementUnscheduledDeps(int Incr) { 1850 UnscheduledDeps += Incr; 1851 return FirstInBundle->UnscheduledDepsInBundle += Incr; 1852 } 1853 1854 /// Sets the number of unscheduled dependencies to the number of 1855 /// dependencies. 1856 void resetUnscheduledDeps() { 1857 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 1858 } 1859 1860 /// Clears all dependency information. 1861 void clearDependencies() { 1862 Dependencies = InvalidDeps; 1863 resetUnscheduledDeps(); 1864 MemoryDependencies.clear(); 1865 } 1866 1867 void dump(raw_ostream &os) const { 1868 if (!isSchedulingEntity()) { 1869 os << "/ " << *Inst; 1870 } else if (NextInBundle) { 1871 os << '[' << *Inst; 1872 ScheduleData *SD = NextInBundle; 1873 while (SD) { 1874 os << ';' << *SD->Inst; 1875 SD = SD->NextInBundle; 1876 } 1877 os << ']'; 1878 } else { 1879 os << *Inst; 1880 } 1881 } 1882 1883 Instruction *Inst = nullptr; 1884 1885 /// Points to the head in an instruction bundle (and always to this for 1886 /// single instructions). 1887 ScheduleData *FirstInBundle = nullptr; 1888 1889 /// Single linked list of all instructions in a bundle. Null if it is a 1890 /// single instruction. 1891 ScheduleData *NextInBundle = nullptr; 1892 1893 /// Single linked list of all memory instructions (e.g. load, store, call) 1894 /// in the block - until the end of the scheduling region. 1895 ScheduleData *NextLoadStore = nullptr; 1896 1897 /// The dependent memory instructions. 1898 /// This list is derived on demand in calculateDependencies(). 1899 SmallVector<ScheduleData *, 4> MemoryDependencies; 1900 1901 /// This ScheduleData is in the current scheduling region if this matches 1902 /// the current SchedulingRegionID of BlockScheduling. 1903 int SchedulingRegionID = 0; 1904 1905 /// Used for getting a "good" final ordering of instructions. 1906 int SchedulingPriority = 0; 1907 1908 /// The number of dependencies. Constitutes of the number of users of the 1909 /// instruction plus the number of dependent memory instructions (if any). 1910 /// This value is calculated on demand. 1911 /// If InvalidDeps, the number of dependencies is not calculated yet. 1912 int Dependencies = InvalidDeps; 1913 1914 /// The number of dependencies minus the number of dependencies of scheduled 1915 /// instructions. As soon as this is zero, the instruction/bundle gets ready 1916 /// for scheduling. 1917 /// Note that this is negative as long as Dependencies is not calculated. 1918 int UnscheduledDeps = InvalidDeps; 1919 1920 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 1921 /// single instructions. 1922 int UnscheduledDepsInBundle = InvalidDeps; 1923 1924 /// True if this instruction is scheduled (or considered as scheduled in the 1925 /// dry-run). 1926 bool IsScheduled = false; 1927 1928 /// Opcode of the current instruction in the schedule data. 1929 Value *OpValue = nullptr; 1930 1931 /// The TreeEntry that this instruction corresponds to. 1932 TreeEntry *TE = nullptr; 1933 1934 /// The lane of this node in the TreeEntry. 1935 int Lane = -1; 1936 }; 1937 1938 #ifndef NDEBUG 1939 friend inline raw_ostream &operator<<(raw_ostream &os, 1940 const BoUpSLP::ScheduleData &SD) { 1941 SD.dump(os); 1942 return os; 1943 } 1944 #endif 1945 1946 friend struct GraphTraits<BoUpSLP *>; 1947 friend struct DOTGraphTraits<BoUpSLP *>; 1948 1949 /// Contains all scheduling data for a basic block. 1950 struct BlockScheduling { 1951 BlockScheduling(BasicBlock *BB) 1952 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 1953 1954 void clear() { 1955 ReadyInsts.clear(); 1956 ScheduleStart = nullptr; 1957 ScheduleEnd = nullptr; 1958 FirstLoadStoreInRegion = nullptr; 1959 LastLoadStoreInRegion = nullptr; 1960 1961 // Reduce the maximum schedule region size by the size of the 1962 // previous scheduling run. 1963 ScheduleRegionSizeLimit -= ScheduleRegionSize; 1964 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 1965 ScheduleRegionSizeLimit = MinScheduleRegionSize; 1966 ScheduleRegionSize = 0; 1967 1968 // Make a new scheduling region, i.e. all existing ScheduleData is not 1969 // in the new region yet. 1970 ++SchedulingRegionID; 1971 } 1972 1973 ScheduleData *getScheduleData(Value *V) { 1974 ScheduleData *SD = ScheduleDataMap[V]; 1975 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1976 return SD; 1977 return nullptr; 1978 } 1979 1980 ScheduleData *getScheduleData(Value *V, Value *Key) { 1981 if (V == Key) 1982 return getScheduleData(V); 1983 auto I = ExtraScheduleDataMap.find(V); 1984 if (I != ExtraScheduleDataMap.end()) { 1985 ScheduleData *SD = I->second[Key]; 1986 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1987 return SD; 1988 } 1989 return nullptr; 1990 } 1991 1992 bool isInSchedulingRegion(ScheduleData *SD) const { 1993 return SD->SchedulingRegionID == SchedulingRegionID; 1994 } 1995 1996 /// Marks an instruction as scheduled and puts all dependent ready 1997 /// instructions into the ready-list. 1998 template <typename ReadyListType> 1999 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2000 SD->IsScheduled = true; 2001 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2002 2003 ScheduleData *BundleMember = SD; 2004 while (BundleMember) { 2005 if (BundleMember->Inst != BundleMember->OpValue) { 2006 BundleMember = BundleMember->NextInBundle; 2007 continue; 2008 } 2009 // Handle the def-use chain dependencies. 2010 2011 // Decrement the unscheduled counter and insert to ready list if ready. 2012 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2013 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2014 if (OpDef && OpDef->hasValidDependencies() && 2015 OpDef->incrementUnscheduledDeps(-1) == 0) { 2016 // There are no more unscheduled dependencies after 2017 // decrementing, so we can put the dependent instruction 2018 // into the ready list. 2019 ScheduleData *DepBundle = OpDef->FirstInBundle; 2020 assert(!DepBundle->IsScheduled && 2021 "already scheduled bundle gets ready"); 2022 ReadyList.insert(DepBundle); 2023 LLVM_DEBUG(dbgs() 2024 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2025 } 2026 }); 2027 }; 2028 2029 // If BundleMember is a vector bundle, its operands may have been 2030 // reordered duiring buildTree(). We therefore need to get its operands 2031 // through the TreeEntry. 2032 if (TreeEntry *TE = BundleMember->TE) { 2033 int Lane = BundleMember->Lane; 2034 assert(Lane >= 0 && "Lane not set"); 2035 2036 // Since vectorization tree is being built recursively this assertion 2037 // ensures that the tree entry has all operands set before reaching 2038 // this code. Couple of exceptions known at the moment are extracts 2039 // where their second (immediate) operand is not added. Since 2040 // immediates do not affect scheduler behavior this is considered 2041 // okay. 2042 auto *In = TE->getMainOp(); 2043 assert(In && 2044 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2045 In->getNumOperands() == TE->getNumOperands()) && 2046 "Missed TreeEntry operands?"); 2047 (void)In; // fake use to avoid build failure when assertions disabled 2048 2049 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2050 OpIdx != NumOperands; ++OpIdx) 2051 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2052 DecrUnsched(I); 2053 } else { 2054 // If BundleMember is a stand-alone instruction, no operand reordering 2055 // has taken place, so we directly access its operands. 2056 for (Use &U : BundleMember->Inst->operands()) 2057 if (auto *I = dyn_cast<Instruction>(U.get())) 2058 DecrUnsched(I); 2059 } 2060 // Handle the memory dependencies. 2061 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2062 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2063 // There are no more unscheduled dependencies after decrementing, 2064 // so we can put the dependent instruction into the ready list. 2065 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2066 assert(!DepBundle->IsScheduled && 2067 "already scheduled bundle gets ready"); 2068 ReadyList.insert(DepBundle); 2069 LLVM_DEBUG(dbgs() 2070 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2071 } 2072 } 2073 BundleMember = BundleMember->NextInBundle; 2074 } 2075 } 2076 2077 void doForAllOpcodes(Value *V, 2078 function_ref<void(ScheduleData *SD)> Action) { 2079 if (ScheduleData *SD = getScheduleData(V)) 2080 Action(SD); 2081 auto I = ExtraScheduleDataMap.find(V); 2082 if (I != ExtraScheduleDataMap.end()) 2083 for (auto &P : I->second) 2084 if (P.second->SchedulingRegionID == SchedulingRegionID) 2085 Action(P.second); 2086 } 2087 2088 /// Put all instructions into the ReadyList which are ready for scheduling. 2089 template <typename ReadyListType> 2090 void initialFillReadyList(ReadyListType &ReadyList) { 2091 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2092 doForAllOpcodes(I, [&](ScheduleData *SD) { 2093 if (SD->isSchedulingEntity() && SD->isReady()) { 2094 ReadyList.insert(SD); 2095 LLVM_DEBUG(dbgs() 2096 << "SLP: initially in ready list: " << *I << "\n"); 2097 } 2098 }); 2099 } 2100 } 2101 2102 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2103 /// cyclic dependencies. This is only a dry-run, no instructions are 2104 /// actually moved at this stage. 2105 /// \returns the scheduling bundle. The returned Optional value is non-None 2106 /// if \p VL is allowed to be scheduled. 2107 Optional<ScheduleData *> 2108 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2109 const InstructionsState &S); 2110 2111 /// Un-bundles a group of instructions. 2112 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2113 2114 /// Allocates schedule data chunk. 2115 ScheduleData *allocateScheduleDataChunks(); 2116 2117 /// Extends the scheduling region so that V is inside the region. 2118 /// \returns true if the region size is within the limit. 2119 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2120 2121 /// Initialize the ScheduleData structures for new instructions in the 2122 /// scheduling region. 2123 void initScheduleData(Instruction *FromI, Instruction *ToI, 2124 ScheduleData *PrevLoadStore, 2125 ScheduleData *NextLoadStore); 2126 2127 /// Updates the dependency information of a bundle and of all instructions/ 2128 /// bundles which depend on the original bundle. 2129 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2130 BoUpSLP *SLP); 2131 2132 /// Sets all instruction in the scheduling region to un-scheduled. 2133 void resetSchedule(); 2134 2135 BasicBlock *BB; 2136 2137 /// Simple memory allocation for ScheduleData. 2138 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2139 2140 /// The size of a ScheduleData array in ScheduleDataChunks. 2141 int ChunkSize; 2142 2143 /// The allocator position in the current chunk, which is the last entry 2144 /// of ScheduleDataChunks. 2145 int ChunkPos; 2146 2147 /// Attaches ScheduleData to Instruction. 2148 /// Note that the mapping survives during all vectorization iterations, i.e. 2149 /// ScheduleData structures are recycled. 2150 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2151 2152 /// Attaches ScheduleData to Instruction with the leading key. 2153 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2154 ExtraScheduleDataMap; 2155 2156 struct ReadyList : SmallVector<ScheduleData *, 8> { 2157 void insert(ScheduleData *SD) { push_back(SD); } 2158 }; 2159 2160 /// The ready-list for scheduling (only used for the dry-run). 2161 ReadyList ReadyInsts; 2162 2163 /// The first instruction of the scheduling region. 2164 Instruction *ScheduleStart = nullptr; 2165 2166 /// The first instruction _after_ the scheduling region. 2167 Instruction *ScheduleEnd = nullptr; 2168 2169 /// The first memory accessing instruction in the scheduling region 2170 /// (can be null). 2171 ScheduleData *FirstLoadStoreInRegion = nullptr; 2172 2173 /// The last memory accessing instruction in the scheduling region 2174 /// (can be null). 2175 ScheduleData *LastLoadStoreInRegion = nullptr; 2176 2177 /// The current size of the scheduling region. 2178 int ScheduleRegionSize = 0; 2179 2180 /// The maximum size allowed for the scheduling region. 2181 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2182 2183 /// The ID of the scheduling region. For a new vectorization iteration this 2184 /// is incremented which "removes" all ScheduleData from the region. 2185 // Make sure that the initial SchedulingRegionID is greater than the 2186 // initial SchedulingRegionID in ScheduleData (which is 0). 2187 int SchedulingRegionID = 1; 2188 }; 2189 2190 /// Attaches the BlockScheduling structures to basic blocks. 2191 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2192 2193 /// Performs the "real" scheduling. Done before vectorization is actually 2194 /// performed in a basic block. 2195 void scheduleBlock(BlockScheduling *BS); 2196 2197 /// List of users to ignore during scheduling and that don't need extracting. 2198 ArrayRef<Value *> UserIgnoreList; 2199 2200 using OrdersType = SmallVector<unsigned, 4>; 2201 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2202 /// sorted SmallVectors of unsigned. 2203 struct OrdersTypeDenseMapInfo { 2204 static OrdersType getEmptyKey() { 2205 OrdersType V; 2206 V.push_back(~1U); 2207 return V; 2208 } 2209 2210 static OrdersType getTombstoneKey() { 2211 OrdersType V; 2212 V.push_back(~2U); 2213 return V; 2214 } 2215 2216 static unsigned getHashValue(const OrdersType &V) { 2217 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2218 } 2219 2220 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2221 return LHS == RHS; 2222 } 2223 }; 2224 2225 /// Contains orders of operations along with the number of bundles that have 2226 /// operations in this order. It stores only those orders that require 2227 /// reordering, if reordering is not required it is counted using \a 2228 /// NumOpsWantToKeepOriginalOrder. 2229 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 2230 /// Number of bundles that do not require reordering. 2231 unsigned NumOpsWantToKeepOriginalOrder = 0; 2232 2233 // Analysis and block reference. 2234 Function *F; 2235 ScalarEvolution *SE; 2236 TargetTransformInfo *TTI; 2237 TargetLibraryInfo *TLI; 2238 AAResults *AA; 2239 LoopInfo *LI; 2240 DominatorTree *DT; 2241 AssumptionCache *AC; 2242 DemandedBits *DB; 2243 const DataLayout *DL; 2244 OptimizationRemarkEmitter *ORE; 2245 2246 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2247 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2248 2249 /// Instruction builder to construct the vectorized tree. 2250 IRBuilder<> Builder; 2251 2252 /// A map of scalar integer values to the smallest bit width with which they 2253 /// can legally be represented. The values map to (width, signed) pairs, 2254 /// where "width" indicates the minimum bit width and "signed" is True if the 2255 /// value must be signed-extended, rather than zero-extended, back to its 2256 /// original width. 2257 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2258 }; 2259 2260 } // end namespace slpvectorizer 2261 2262 template <> struct GraphTraits<BoUpSLP *> { 2263 using TreeEntry = BoUpSLP::TreeEntry; 2264 2265 /// NodeRef has to be a pointer per the GraphWriter. 2266 using NodeRef = TreeEntry *; 2267 2268 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2269 2270 /// Add the VectorizableTree to the index iterator to be able to return 2271 /// TreeEntry pointers. 2272 struct ChildIteratorType 2273 : public iterator_adaptor_base< 2274 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2275 ContainerTy &VectorizableTree; 2276 2277 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2278 ContainerTy &VT) 2279 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2280 2281 NodeRef operator*() { return I->UserTE; } 2282 }; 2283 2284 static NodeRef getEntryNode(BoUpSLP &R) { 2285 return R.VectorizableTree[0].get(); 2286 } 2287 2288 static ChildIteratorType child_begin(NodeRef N) { 2289 return {N->UserTreeIndices.begin(), N->Container}; 2290 } 2291 2292 static ChildIteratorType child_end(NodeRef N) { 2293 return {N->UserTreeIndices.end(), N->Container}; 2294 } 2295 2296 /// For the node iterator we just need to turn the TreeEntry iterator into a 2297 /// TreeEntry* iterator so that it dereferences to NodeRef. 2298 class nodes_iterator { 2299 using ItTy = ContainerTy::iterator; 2300 ItTy It; 2301 2302 public: 2303 nodes_iterator(const ItTy &It2) : It(It2) {} 2304 NodeRef operator*() { return It->get(); } 2305 nodes_iterator operator++() { 2306 ++It; 2307 return *this; 2308 } 2309 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2310 }; 2311 2312 static nodes_iterator nodes_begin(BoUpSLP *R) { 2313 return nodes_iterator(R->VectorizableTree.begin()); 2314 } 2315 2316 static nodes_iterator nodes_end(BoUpSLP *R) { 2317 return nodes_iterator(R->VectorizableTree.end()); 2318 } 2319 2320 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2321 }; 2322 2323 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2324 using TreeEntry = BoUpSLP::TreeEntry; 2325 2326 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2327 2328 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2329 std::string Str; 2330 raw_string_ostream OS(Str); 2331 if (isSplat(Entry->Scalars)) { 2332 OS << "<splat> " << *Entry->Scalars[0]; 2333 return Str; 2334 } 2335 for (auto V : Entry->Scalars) { 2336 OS << *V; 2337 if (std::any_of( 2338 R->ExternalUses.begin(), R->ExternalUses.end(), 2339 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 2340 OS << " <extract>"; 2341 OS << "\n"; 2342 } 2343 return Str; 2344 } 2345 2346 static std::string getNodeAttributes(const TreeEntry *Entry, 2347 const BoUpSLP *) { 2348 if (Entry->State == TreeEntry::NeedToGather) 2349 return "color=red"; 2350 return ""; 2351 } 2352 }; 2353 2354 } // end namespace llvm 2355 2356 BoUpSLP::~BoUpSLP() { 2357 for (const auto &Pair : DeletedInstructions) { 2358 // Replace operands of ignored instructions with Undefs in case if they were 2359 // marked for deletion. 2360 if (Pair.getSecond()) { 2361 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2362 Pair.getFirst()->replaceAllUsesWith(Undef); 2363 } 2364 Pair.getFirst()->dropAllReferences(); 2365 } 2366 for (const auto &Pair : DeletedInstructions) { 2367 assert(Pair.getFirst()->use_empty() && 2368 "trying to erase instruction with users."); 2369 Pair.getFirst()->eraseFromParent(); 2370 } 2371 assert(!verifyFunction(*F, &dbgs())); 2372 } 2373 2374 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2375 for (auto *V : AV) { 2376 if (auto *I = dyn_cast<Instruction>(V)) 2377 eraseInstruction(I, /*ReplaceWithUndef=*/true); 2378 }; 2379 } 2380 2381 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2382 ArrayRef<Value *> UserIgnoreLst) { 2383 ExtraValueToDebugLocsMap ExternallyUsedValues; 2384 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 2385 } 2386 2387 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2388 ExtraValueToDebugLocsMap &ExternallyUsedValues, 2389 ArrayRef<Value *> UserIgnoreLst) { 2390 deleteTree(); 2391 UserIgnoreList = UserIgnoreLst; 2392 if (!allSameType(Roots)) 2393 return; 2394 buildTree_rec(Roots, 0, EdgeInfo()); 2395 2396 // Collect the values that we need to extract from the tree. 2397 for (auto &TEPtr : VectorizableTree) { 2398 TreeEntry *Entry = TEPtr.get(); 2399 2400 // No need to handle users of gathered values. 2401 if (Entry->State == TreeEntry::NeedToGather) 2402 continue; 2403 2404 // For each lane: 2405 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2406 Value *Scalar = Entry->Scalars[Lane]; 2407 int FoundLane = Lane; 2408 if (!Entry->ReuseShuffleIndices.empty()) { 2409 FoundLane = 2410 std::distance(Entry->ReuseShuffleIndices.begin(), 2411 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 2412 } 2413 2414 // Check if the scalar is externally used as an extra arg. 2415 auto ExtI = ExternallyUsedValues.find(Scalar); 2416 if (ExtI != ExternallyUsedValues.end()) { 2417 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 2418 << Lane << " from " << *Scalar << ".\n"); 2419 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 2420 } 2421 for (User *U : Scalar->users()) { 2422 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 2423 2424 Instruction *UserInst = dyn_cast<Instruction>(U); 2425 if (!UserInst) 2426 continue; 2427 2428 // Skip in-tree scalars that become vectors 2429 if (TreeEntry *UseEntry = getTreeEntry(U)) { 2430 Value *UseScalar = UseEntry->Scalars[0]; 2431 // Some in-tree scalars will remain as scalar in vectorized 2432 // instructions. If that is the case, the one in Lane 0 will 2433 // be used. 2434 if (UseScalar != U || 2435 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 2436 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 2437 << ".\n"); 2438 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 2439 continue; 2440 } 2441 } 2442 2443 // Ignore users in the user ignore list. 2444 if (is_contained(UserIgnoreList, UserInst)) 2445 continue; 2446 2447 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 2448 << Lane << " from " << *Scalar << ".\n"); 2449 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 2450 } 2451 } 2452 } 2453 } 2454 2455 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 2456 const EdgeInfo &UserTreeIdx) { 2457 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 2458 2459 InstructionsState S = getSameOpcode(VL); 2460 if (Depth == RecursionMaxDepth) { 2461 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 2462 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2463 return; 2464 } 2465 2466 // Don't handle vectors. 2467 if (S.OpValue->getType()->isVectorTy()) { 2468 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 2469 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2470 return; 2471 } 2472 2473 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2474 if (SI->getValueOperand()->getType()->isVectorTy()) { 2475 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 2476 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2477 return; 2478 } 2479 2480 // If all of the operands are identical or constant we have a simple solution. 2481 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 2482 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 2483 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2484 return; 2485 } 2486 2487 // We now know that this is a vector of instructions of the same type from 2488 // the same block. 2489 2490 // Don't vectorize ephemeral values. 2491 for (Value *V : VL) { 2492 if (EphValues.count(V)) { 2493 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2494 << ") is ephemeral.\n"); 2495 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2496 return; 2497 } 2498 } 2499 2500 // Check if this is a duplicate of another entry. 2501 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2502 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 2503 if (!E->isSame(VL)) { 2504 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 2505 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2506 return; 2507 } 2508 // Record the reuse of the tree node. FIXME, currently this is only used to 2509 // properly draw the graph rather than for the actual vectorization. 2510 E->UserTreeIndices.push_back(UserTreeIdx); 2511 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 2512 << ".\n"); 2513 return; 2514 } 2515 2516 // Check that none of the instructions in the bundle are already in the tree. 2517 for (Value *V : VL) { 2518 auto *I = dyn_cast<Instruction>(V); 2519 if (!I) 2520 continue; 2521 if (getTreeEntry(I)) { 2522 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2523 << ") is already in tree.\n"); 2524 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2525 return; 2526 } 2527 } 2528 2529 // If any of the scalars is marked as a value that needs to stay scalar, then 2530 // we need to gather the scalars. 2531 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 2532 for (Value *V : VL) { 2533 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 2534 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 2535 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2536 return; 2537 } 2538 } 2539 2540 // Check that all of the users of the scalars that we want to vectorize are 2541 // schedulable. 2542 auto *VL0 = cast<Instruction>(S.OpValue); 2543 BasicBlock *BB = VL0->getParent(); 2544 2545 if (!DT->isReachableFromEntry(BB)) { 2546 // Don't go into unreachable blocks. They may contain instructions with 2547 // dependency cycles which confuse the final scheduling. 2548 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 2549 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2550 return; 2551 } 2552 2553 // Check that every instruction appears once in this bundle. 2554 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2555 SmallVector<Value *, 4> UniqueValues; 2556 DenseMap<Value *, unsigned> UniquePositions; 2557 for (Value *V : VL) { 2558 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2559 ReuseShuffleIndicies.emplace_back(Res.first->second); 2560 if (Res.second) 2561 UniqueValues.emplace_back(V); 2562 } 2563 size_t NumUniqueScalarValues = UniqueValues.size(); 2564 if (NumUniqueScalarValues == VL.size()) { 2565 ReuseShuffleIndicies.clear(); 2566 } else { 2567 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 2568 if (NumUniqueScalarValues <= 1 || 2569 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 2570 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 2571 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2572 return; 2573 } 2574 VL = UniqueValues; 2575 } 2576 2577 auto &BSRef = BlocksSchedules[BB]; 2578 if (!BSRef) 2579 BSRef = std::make_unique<BlockScheduling>(BB); 2580 2581 BlockScheduling &BS = *BSRef.get(); 2582 2583 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 2584 if (!Bundle) { 2585 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 2586 assert((!BS.getScheduleData(VL0) || 2587 !BS.getScheduleData(VL0)->isPartOfBundle()) && 2588 "tryScheduleBundle should cancelScheduling on failure"); 2589 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2590 ReuseShuffleIndicies); 2591 return; 2592 } 2593 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 2594 2595 unsigned ShuffleOrOp = S.isAltShuffle() ? 2596 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2597 switch (ShuffleOrOp) { 2598 case Instruction::PHI: { 2599 auto *PH = cast<PHINode>(VL0); 2600 2601 // Check for terminator values (e.g. invoke). 2602 for (unsigned j = 0; j < VL.size(); ++j) 2603 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2604 Instruction *Term = dyn_cast<Instruction>( 2605 cast<PHINode>(VL[j])->getIncomingValueForBlock( 2606 PH->getIncomingBlock(i))); 2607 if (Term && Term->isTerminator()) { 2608 LLVM_DEBUG(dbgs() 2609 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 2610 BS.cancelScheduling(VL, VL0); 2611 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2612 ReuseShuffleIndicies); 2613 return; 2614 } 2615 } 2616 2617 TreeEntry *TE = 2618 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 2619 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 2620 2621 // Keeps the reordered operands to avoid code duplication. 2622 SmallVector<ValueList, 2> OperandsVec; 2623 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2624 ValueList Operands; 2625 // Prepare the operand vector. 2626 for (Value *j : VL) 2627 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 2628 PH->getIncomingBlock(i))); 2629 TE->setOperand(i, Operands); 2630 OperandsVec.push_back(Operands); 2631 } 2632 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 2633 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 2634 return; 2635 } 2636 case Instruction::ExtractValue: 2637 case Instruction::ExtractElement: { 2638 OrdersType CurrentOrder; 2639 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 2640 if (Reuse) { 2641 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 2642 ++NumOpsWantToKeepOriginalOrder; 2643 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2644 ReuseShuffleIndicies); 2645 // This is a special case, as it does not gather, but at the same time 2646 // we are not extending buildTree_rec() towards the operands. 2647 ValueList Op0; 2648 Op0.assign(VL.size(), VL0->getOperand(0)); 2649 VectorizableTree.back()->setOperand(0, Op0); 2650 return; 2651 } 2652 if (!CurrentOrder.empty()) { 2653 LLVM_DEBUG({ 2654 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 2655 "with order"; 2656 for (unsigned Idx : CurrentOrder) 2657 dbgs() << " " << Idx; 2658 dbgs() << "\n"; 2659 }); 2660 // Insert new order with initial value 0, if it does not exist, 2661 // otherwise return the iterator to the existing one. 2662 auto StoredCurrentOrderAndNum = 2663 NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 2664 ++StoredCurrentOrderAndNum->getSecond(); 2665 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2666 ReuseShuffleIndicies, 2667 StoredCurrentOrderAndNum->getFirst()); 2668 // This is a special case, as it does not gather, but at the same time 2669 // we are not extending buildTree_rec() towards the operands. 2670 ValueList Op0; 2671 Op0.assign(VL.size(), VL0->getOperand(0)); 2672 VectorizableTree.back()->setOperand(0, Op0); 2673 return; 2674 } 2675 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 2676 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2677 ReuseShuffleIndicies); 2678 BS.cancelScheduling(VL, VL0); 2679 return; 2680 } 2681 case Instruction::Load: { 2682 // Check that a vectorized load would load the same memory as a scalar 2683 // load. For example, we don't want to vectorize loads that are smaller 2684 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 2685 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 2686 // from such a struct, we read/write packed bits disagreeing with the 2687 // unvectorized version. 2688 Type *ScalarTy = VL0->getType(); 2689 2690 if (DL->getTypeSizeInBits(ScalarTy) != 2691 DL->getTypeAllocSizeInBits(ScalarTy)) { 2692 BS.cancelScheduling(VL, VL0); 2693 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2694 ReuseShuffleIndicies); 2695 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 2696 return; 2697 } 2698 2699 // Make sure all loads in the bundle are simple - we can't vectorize 2700 // atomic or volatile loads. 2701 SmallVector<Value *, 4> PointerOps(VL.size()); 2702 auto POIter = PointerOps.begin(); 2703 for (Value *V : VL) { 2704 auto *L = cast<LoadInst>(V); 2705 if (!L->isSimple()) { 2706 BS.cancelScheduling(VL, VL0); 2707 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2708 ReuseShuffleIndicies); 2709 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 2710 return; 2711 } 2712 *POIter = L->getPointerOperand(); 2713 ++POIter; 2714 } 2715 2716 OrdersType CurrentOrder; 2717 // Check the order of pointer operands. 2718 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2719 Value *Ptr0; 2720 Value *PtrN; 2721 if (CurrentOrder.empty()) { 2722 Ptr0 = PointerOps.front(); 2723 PtrN = PointerOps.back(); 2724 } else { 2725 Ptr0 = PointerOps[CurrentOrder.front()]; 2726 PtrN = PointerOps[CurrentOrder.back()]; 2727 } 2728 const SCEV *Scev0 = SE->getSCEV(Ptr0); 2729 const SCEV *ScevN = SE->getSCEV(PtrN); 2730 const auto *Diff = 2731 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 2732 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 2733 // Check that the sorted loads are consecutive. 2734 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 2735 if (CurrentOrder.empty()) { 2736 // Original loads are consecutive and does not require reordering. 2737 ++NumOpsWantToKeepOriginalOrder; 2738 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 2739 UserTreeIdx, ReuseShuffleIndicies); 2740 TE->setOperandsInOrder(); 2741 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 2742 } else { 2743 // Need to reorder. 2744 auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 2745 ++I->getSecond(); 2746 TreeEntry *TE = 2747 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2748 ReuseShuffleIndicies, I->getFirst()); 2749 TE->setOperandsInOrder(); 2750 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 2751 } 2752 return; 2753 } 2754 } 2755 2756 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 2757 BS.cancelScheduling(VL, VL0); 2758 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2759 ReuseShuffleIndicies); 2760 return; 2761 } 2762 case Instruction::ZExt: 2763 case Instruction::SExt: 2764 case Instruction::FPToUI: 2765 case Instruction::FPToSI: 2766 case Instruction::FPExt: 2767 case Instruction::PtrToInt: 2768 case Instruction::IntToPtr: 2769 case Instruction::SIToFP: 2770 case Instruction::UIToFP: 2771 case Instruction::Trunc: 2772 case Instruction::FPTrunc: 2773 case Instruction::BitCast: { 2774 Type *SrcTy = VL0->getOperand(0)->getType(); 2775 for (Value *V : VL) { 2776 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 2777 if (Ty != SrcTy || !isValidElementType(Ty)) { 2778 BS.cancelScheduling(VL, VL0); 2779 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2780 ReuseShuffleIndicies); 2781 LLVM_DEBUG(dbgs() 2782 << "SLP: Gathering casts with different src types.\n"); 2783 return; 2784 } 2785 } 2786 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2787 ReuseShuffleIndicies); 2788 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 2789 2790 TE->setOperandsInOrder(); 2791 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2792 ValueList Operands; 2793 // Prepare the operand vector. 2794 for (Value *V : VL) 2795 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2796 2797 buildTree_rec(Operands, Depth + 1, {TE, i}); 2798 } 2799 return; 2800 } 2801 case Instruction::ICmp: 2802 case Instruction::FCmp: { 2803 // Check that all of the compares have the same predicate. 2804 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2805 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 2806 Type *ComparedTy = VL0->getOperand(0)->getType(); 2807 for (Value *V : VL) { 2808 CmpInst *Cmp = cast<CmpInst>(V); 2809 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 2810 Cmp->getOperand(0)->getType() != ComparedTy) { 2811 BS.cancelScheduling(VL, VL0); 2812 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2813 ReuseShuffleIndicies); 2814 LLVM_DEBUG(dbgs() 2815 << "SLP: Gathering cmp with different predicate.\n"); 2816 return; 2817 } 2818 } 2819 2820 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2821 ReuseShuffleIndicies); 2822 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 2823 2824 ValueList Left, Right; 2825 if (cast<CmpInst>(VL0)->isCommutative()) { 2826 // Commutative predicate - collect + sort operands of the instructions 2827 // so that each side is more likely to have the same opcode. 2828 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 2829 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 2830 } else { 2831 // Collect operands - commute if it uses the swapped predicate. 2832 for (Value *V : VL) { 2833 auto *Cmp = cast<CmpInst>(V); 2834 Value *LHS = Cmp->getOperand(0); 2835 Value *RHS = Cmp->getOperand(1); 2836 if (Cmp->getPredicate() != P0) 2837 std::swap(LHS, RHS); 2838 Left.push_back(LHS); 2839 Right.push_back(RHS); 2840 } 2841 } 2842 TE->setOperand(0, Left); 2843 TE->setOperand(1, Right); 2844 buildTree_rec(Left, Depth + 1, {TE, 0}); 2845 buildTree_rec(Right, Depth + 1, {TE, 1}); 2846 return; 2847 } 2848 case Instruction::Select: 2849 case Instruction::FNeg: 2850 case Instruction::Add: 2851 case Instruction::FAdd: 2852 case Instruction::Sub: 2853 case Instruction::FSub: 2854 case Instruction::Mul: 2855 case Instruction::FMul: 2856 case Instruction::UDiv: 2857 case Instruction::SDiv: 2858 case Instruction::FDiv: 2859 case Instruction::URem: 2860 case Instruction::SRem: 2861 case Instruction::FRem: 2862 case Instruction::Shl: 2863 case Instruction::LShr: 2864 case Instruction::AShr: 2865 case Instruction::And: 2866 case Instruction::Or: 2867 case Instruction::Xor: { 2868 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2869 ReuseShuffleIndicies); 2870 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 2871 2872 // Sort operands of the instructions so that each side is more likely to 2873 // have the same opcode. 2874 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 2875 ValueList Left, Right; 2876 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 2877 TE->setOperand(0, Left); 2878 TE->setOperand(1, Right); 2879 buildTree_rec(Left, Depth + 1, {TE, 0}); 2880 buildTree_rec(Right, Depth + 1, {TE, 1}); 2881 return; 2882 } 2883 2884 TE->setOperandsInOrder(); 2885 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2886 ValueList Operands; 2887 // Prepare the operand vector. 2888 for (Value *j : VL) 2889 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 2890 2891 buildTree_rec(Operands, Depth + 1, {TE, i}); 2892 } 2893 return; 2894 } 2895 case Instruction::GetElementPtr: { 2896 // We don't combine GEPs with complicated (nested) indexing. 2897 for (Value *V : VL) { 2898 if (cast<Instruction>(V)->getNumOperands() != 2) { 2899 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 2900 BS.cancelScheduling(VL, VL0); 2901 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2902 ReuseShuffleIndicies); 2903 return; 2904 } 2905 } 2906 2907 // We can't combine several GEPs into one vector if they operate on 2908 // different types. 2909 Type *Ty0 = VL0->getOperand(0)->getType(); 2910 for (Value *V : VL) { 2911 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 2912 if (Ty0 != CurTy) { 2913 LLVM_DEBUG(dbgs() 2914 << "SLP: not-vectorizable GEP (different types).\n"); 2915 BS.cancelScheduling(VL, VL0); 2916 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2917 ReuseShuffleIndicies); 2918 return; 2919 } 2920 } 2921 2922 // We don't combine GEPs with non-constant indexes. 2923 Type *Ty1 = VL0->getOperand(1)->getType(); 2924 for (Value *V : VL) { 2925 auto Op = cast<Instruction>(V)->getOperand(1); 2926 if (!isa<ConstantInt>(Op) || 2927 (Op->getType() != Ty1 && 2928 Op->getType()->getScalarSizeInBits() > 2929 DL->getIndexSizeInBits( 2930 V->getType()->getPointerAddressSpace()))) { 2931 LLVM_DEBUG(dbgs() 2932 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 2933 BS.cancelScheduling(VL, VL0); 2934 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2935 ReuseShuffleIndicies); 2936 return; 2937 } 2938 } 2939 2940 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2941 ReuseShuffleIndicies); 2942 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 2943 TE->setOperandsInOrder(); 2944 for (unsigned i = 0, e = 2; i < e; ++i) { 2945 ValueList Operands; 2946 // Prepare the operand vector. 2947 for (Value *V : VL) 2948 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2949 2950 buildTree_rec(Operands, Depth + 1, {TE, i}); 2951 } 2952 return; 2953 } 2954 case Instruction::Store: { 2955 // Check if the stores are consecutive or if we need to swizzle them. 2956 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 2957 // Make sure all stores in the bundle are simple - we can't vectorize 2958 // atomic or volatile stores. 2959 SmallVector<Value *, 4> PointerOps(VL.size()); 2960 ValueList Operands(VL.size()); 2961 auto POIter = PointerOps.begin(); 2962 auto OIter = Operands.begin(); 2963 for (Value *V : VL) { 2964 auto *SI = cast<StoreInst>(V); 2965 if (!SI->isSimple()) { 2966 BS.cancelScheduling(VL, VL0); 2967 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2968 ReuseShuffleIndicies); 2969 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 2970 return; 2971 } 2972 *POIter = SI->getPointerOperand(); 2973 *OIter = SI->getValueOperand(); 2974 ++POIter; 2975 ++OIter; 2976 } 2977 2978 OrdersType CurrentOrder; 2979 // Check the order of pointer operands. 2980 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2981 Value *Ptr0; 2982 Value *PtrN; 2983 if (CurrentOrder.empty()) { 2984 Ptr0 = PointerOps.front(); 2985 PtrN = PointerOps.back(); 2986 } else { 2987 Ptr0 = PointerOps[CurrentOrder.front()]; 2988 PtrN = PointerOps[CurrentOrder.back()]; 2989 } 2990 const SCEV *Scev0 = SE->getSCEV(Ptr0); 2991 const SCEV *ScevN = SE->getSCEV(PtrN); 2992 const auto *Diff = 2993 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 2994 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 2995 // Check that the sorted pointer operands are consecutive. 2996 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 2997 if (CurrentOrder.empty()) { 2998 // Original stores are consecutive and does not require reordering. 2999 ++NumOpsWantToKeepOriginalOrder; 3000 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 3001 UserTreeIdx, ReuseShuffleIndicies); 3002 TE->setOperandsInOrder(); 3003 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3004 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 3005 } else { 3006 // Need to reorder. 3007 auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 3008 ++(I->getSecond()); 3009 TreeEntry *TE = 3010 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3011 ReuseShuffleIndicies, I->getFirst()); 3012 TE->setOperandsInOrder(); 3013 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3014 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 3015 } 3016 return; 3017 } 3018 } 3019 3020 BS.cancelScheduling(VL, VL0); 3021 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3022 ReuseShuffleIndicies); 3023 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 3024 return; 3025 } 3026 case Instruction::Call: { 3027 // Check if the calls are all to the same vectorizable intrinsic or 3028 // library function. 3029 CallInst *CI = cast<CallInst>(VL0); 3030 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3031 3032 VFShape Shape = VFShape::get( 3033 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 3034 false /*HasGlobalPred*/); 3035 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3036 3037 if (!VecFunc && !isTriviallyVectorizable(ID)) { 3038 BS.cancelScheduling(VL, VL0); 3039 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3040 ReuseShuffleIndicies); 3041 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 3042 return; 3043 } 3044 Function *F = CI->getCalledFunction(); 3045 unsigned NumArgs = CI->getNumArgOperands(); 3046 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 3047 for (unsigned j = 0; j != NumArgs; ++j) 3048 if (hasVectorInstrinsicScalarOpd(ID, j)) 3049 ScalarArgs[j] = CI->getArgOperand(j); 3050 for (Value *V : VL) { 3051 CallInst *CI2 = dyn_cast<CallInst>(V); 3052 if (!CI2 || CI2->getCalledFunction() != F || 3053 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 3054 (VecFunc && 3055 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 3056 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 3057 BS.cancelScheduling(VL, VL0); 3058 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3059 ReuseShuffleIndicies); 3060 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 3061 << "\n"); 3062 return; 3063 } 3064 // Some intrinsics have scalar arguments and should be same in order for 3065 // them to be vectorized. 3066 for (unsigned j = 0; j != NumArgs; ++j) { 3067 if (hasVectorInstrinsicScalarOpd(ID, j)) { 3068 Value *A1J = CI2->getArgOperand(j); 3069 if (ScalarArgs[j] != A1J) { 3070 BS.cancelScheduling(VL, VL0); 3071 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3072 ReuseShuffleIndicies); 3073 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 3074 << " argument " << ScalarArgs[j] << "!=" << A1J 3075 << "\n"); 3076 return; 3077 } 3078 } 3079 } 3080 // Verify that the bundle operands are identical between the two calls. 3081 if (CI->hasOperandBundles() && 3082 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 3083 CI->op_begin() + CI->getBundleOperandsEndIndex(), 3084 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 3085 BS.cancelScheduling(VL, VL0); 3086 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3087 ReuseShuffleIndicies); 3088 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 3089 << *CI << "!=" << *V << '\n'); 3090 return; 3091 } 3092 } 3093 3094 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3095 ReuseShuffleIndicies); 3096 TE->setOperandsInOrder(); 3097 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 3098 ValueList Operands; 3099 // Prepare the operand vector. 3100 for (Value *V : VL) { 3101 auto *CI2 = cast<CallInst>(V); 3102 Operands.push_back(CI2->getArgOperand(i)); 3103 } 3104 buildTree_rec(Operands, Depth + 1, {TE, i}); 3105 } 3106 return; 3107 } 3108 case Instruction::ShuffleVector: { 3109 // If this is not an alternate sequence of opcode like add-sub 3110 // then do not vectorize this instruction. 3111 if (!S.isAltShuffle()) { 3112 BS.cancelScheduling(VL, VL0); 3113 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3114 ReuseShuffleIndicies); 3115 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 3116 return; 3117 } 3118 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3119 ReuseShuffleIndicies); 3120 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 3121 3122 // Reorder operands if reordering would enable vectorization. 3123 if (isa<BinaryOperator>(VL0)) { 3124 ValueList Left, Right; 3125 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3126 TE->setOperand(0, Left); 3127 TE->setOperand(1, Right); 3128 buildTree_rec(Left, Depth + 1, {TE, 0}); 3129 buildTree_rec(Right, Depth + 1, {TE, 1}); 3130 return; 3131 } 3132 3133 TE->setOperandsInOrder(); 3134 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3135 ValueList Operands; 3136 // Prepare the operand vector. 3137 for (Value *V : VL) 3138 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3139 3140 buildTree_rec(Operands, Depth + 1, {TE, i}); 3141 } 3142 return; 3143 } 3144 default: 3145 BS.cancelScheduling(VL, VL0); 3146 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3147 ReuseShuffleIndicies); 3148 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 3149 return; 3150 } 3151 } 3152 3153 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 3154 unsigned N = 1; 3155 Type *EltTy = T; 3156 3157 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 3158 isa<VectorType>(EltTy)) { 3159 if (auto *ST = dyn_cast<StructType>(EltTy)) { 3160 // Check that struct is homogeneous. 3161 for (const auto *Ty : ST->elements()) 3162 if (Ty != *ST->element_begin()) 3163 return 0; 3164 N *= ST->getNumElements(); 3165 EltTy = *ST->element_begin(); 3166 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 3167 N *= AT->getNumElements(); 3168 EltTy = AT->getElementType(); 3169 } else { 3170 auto *VT = cast<FixedVectorType>(EltTy); 3171 N *= VT->getNumElements(); 3172 EltTy = VT->getElementType(); 3173 } 3174 } 3175 3176 if (!isValidElementType(EltTy)) 3177 return 0; 3178 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 3179 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 3180 return 0; 3181 return N; 3182 } 3183 3184 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 3185 SmallVectorImpl<unsigned> &CurrentOrder) const { 3186 Instruction *E0 = cast<Instruction>(OpValue); 3187 assert(E0->getOpcode() == Instruction::ExtractElement || 3188 E0->getOpcode() == Instruction::ExtractValue); 3189 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 3190 // Check if all of the extracts come from the same vector and from the 3191 // correct offset. 3192 Value *Vec = E0->getOperand(0); 3193 3194 CurrentOrder.clear(); 3195 3196 // We have to extract from a vector/aggregate with the same number of elements. 3197 unsigned NElts; 3198 if (E0->getOpcode() == Instruction::ExtractValue) { 3199 const DataLayout &DL = E0->getModule()->getDataLayout(); 3200 NElts = canMapToVector(Vec->getType(), DL); 3201 if (!NElts) 3202 return false; 3203 // Check if load can be rewritten as load of vector. 3204 LoadInst *LI = dyn_cast<LoadInst>(Vec); 3205 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 3206 return false; 3207 } else { 3208 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 3209 } 3210 3211 if (NElts != VL.size()) 3212 return false; 3213 3214 // Check that all of the indices extract from the correct offset. 3215 bool ShouldKeepOrder = true; 3216 unsigned E = VL.size(); 3217 // Assign to all items the initial value E + 1 so we can check if the extract 3218 // instruction index was used already. 3219 // Also, later we can check that all the indices are used and we have a 3220 // consecutive access in the extract instructions, by checking that no 3221 // element of CurrentOrder still has value E + 1. 3222 CurrentOrder.assign(E, E + 1); 3223 unsigned I = 0; 3224 for (; I < E; ++I) { 3225 auto *Inst = cast<Instruction>(VL[I]); 3226 if (Inst->getOperand(0) != Vec) 3227 break; 3228 Optional<unsigned> Idx = getExtractIndex(Inst); 3229 if (!Idx) 3230 break; 3231 const unsigned ExtIdx = *Idx; 3232 if (ExtIdx != I) { 3233 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 3234 break; 3235 ShouldKeepOrder = false; 3236 CurrentOrder[ExtIdx] = I; 3237 } else { 3238 if (CurrentOrder[I] != E + 1) 3239 break; 3240 CurrentOrder[I] = I; 3241 } 3242 } 3243 if (I < E) { 3244 CurrentOrder.clear(); 3245 return false; 3246 } 3247 3248 return ShouldKeepOrder; 3249 } 3250 3251 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 3252 return I->hasOneUse() || 3253 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 3254 return ScalarToTreeEntry.count(U) > 0; 3255 }); 3256 } 3257 3258 static std::pair<unsigned, unsigned> 3259 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 3260 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 3261 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3262 3263 // Calculate the cost of the scalar and vector calls. 3264 IntrinsicCostAttributes CostAttrs(ID, *CI, VecTy->getNumElements()); 3265 int IntrinsicCost = 3266 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 3267 3268 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 3269 VecTy->getNumElements())), 3270 false /*HasGlobalPred*/); 3271 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3272 int LibCost = IntrinsicCost; 3273 if (!CI->isNoBuiltin() && VecFunc) { 3274 // Calculate the cost of the vector library call. 3275 SmallVector<Type *, 4> VecTys; 3276 for (Use &Arg : CI->args()) 3277 VecTys.push_back( 3278 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 3279 3280 // If the corresponding vector call is cheaper, return its cost. 3281 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 3282 TTI::TCK_RecipThroughput); 3283 } 3284 return {IntrinsicCost, LibCost}; 3285 } 3286 3287 int BoUpSLP::getEntryCost(TreeEntry *E) { 3288 ArrayRef<Value*> VL = E->Scalars; 3289 3290 Type *ScalarTy = VL[0]->getType(); 3291 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3292 ScalarTy = SI->getValueOperand()->getType(); 3293 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 3294 ScalarTy = CI->getOperand(0)->getType(); 3295 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 3296 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 3297 3298 // If we have computed a smaller type for the expression, update VecTy so 3299 // that the costs will be accurate. 3300 if (MinBWs.count(VL[0])) 3301 VecTy = FixedVectorType::get( 3302 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 3303 3304 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 3305 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3306 int ReuseShuffleCost = 0; 3307 if (NeedToShuffleReuses) { 3308 ReuseShuffleCost = 3309 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3310 } 3311 if (E->State == TreeEntry::NeedToGather) { 3312 if (allConstant(VL)) 3313 return 0; 3314 if (isSplat(VL)) { 3315 return ReuseShuffleCost + 3316 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 3317 } 3318 if (E->getOpcode() == Instruction::ExtractElement && 3319 allSameType(VL) && allSameBlock(VL)) { 3320 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 3321 if (ShuffleKind.hasValue()) { 3322 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 3323 for (auto *V : VL) { 3324 // If all users of instruction are going to be vectorized and this 3325 // instruction itself is not going to be vectorized, consider this 3326 // instruction as dead and remove its cost from the final cost of the 3327 // vectorized tree. 3328 if (areAllUsersVectorized(cast<Instruction>(V)) && 3329 !ScalarToTreeEntry.count(V)) { 3330 auto *IO = cast<ConstantInt>( 3331 cast<ExtractElementInst>(V)->getIndexOperand()); 3332 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 3333 IO->getZExtValue()); 3334 } 3335 } 3336 return ReuseShuffleCost + Cost; 3337 } 3338 } 3339 return ReuseShuffleCost + getGatherCost(VL); 3340 } 3341 assert(E->State == TreeEntry::Vectorize && "Unhandled state"); 3342 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 3343 Instruction *VL0 = E->getMainOp(); 3344 unsigned ShuffleOrOp = 3345 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 3346 switch (ShuffleOrOp) { 3347 case Instruction::PHI: 3348 return 0; 3349 3350 case Instruction::ExtractValue: 3351 case Instruction::ExtractElement: { 3352 if (NeedToShuffleReuses) { 3353 unsigned Idx = 0; 3354 for (unsigned I : E->ReuseShuffleIndices) { 3355 if (ShuffleOrOp == Instruction::ExtractElement) { 3356 auto *IO = cast<ConstantInt>( 3357 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 3358 Idx = IO->getZExtValue(); 3359 ReuseShuffleCost -= TTI->getVectorInstrCost( 3360 Instruction::ExtractElement, VecTy, Idx); 3361 } else { 3362 ReuseShuffleCost -= TTI->getVectorInstrCost( 3363 Instruction::ExtractElement, VecTy, Idx); 3364 ++Idx; 3365 } 3366 } 3367 Idx = ReuseShuffleNumbers; 3368 for (Value *V : VL) { 3369 if (ShuffleOrOp == Instruction::ExtractElement) { 3370 auto *IO = cast<ConstantInt>( 3371 cast<ExtractElementInst>(V)->getIndexOperand()); 3372 Idx = IO->getZExtValue(); 3373 } else { 3374 --Idx; 3375 } 3376 ReuseShuffleCost += 3377 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 3378 } 3379 } 3380 int DeadCost = ReuseShuffleCost; 3381 if (!E->ReorderIndices.empty()) { 3382 // TODO: Merge this shuffle with the ReuseShuffleCost. 3383 DeadCost += TTI->getShuffleCost( 3384 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3385 } 3386 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3387 Instruction *E = cast<Instruction>(VL[i]); 3388 // If all users are going to be vectorized, instruction can be 3389 // considered as dead. 3390 // The same, if have only one user, it will be vectorized for sure. 3391 if (areAllUsersVectorized(E)) { 3392 // Take credit for instruction that will become dead. 3393 if (E->hasOneUse()) { 3394 Instruction *Ext = E->user_back(); 3395 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3396 all_of(Ext->users(), 3397 [](User *U) { return isa<GetElementPtrInst>(U); })) { 3398 // Use getExtractWithExtendCost() to calculate the cost of 3399 // extractelement/ext pair. 3400 DeadCost -= TTI->getExtractWithExtendCost( 3401 Ext->getOpcode(), Ext->getType(), VecTy, i); 3402 // Add back the cost of s|zext which is subtracted separately. 3403 DeadCost += TTI->getCastInstrCost( 3404 Ext->getOpcode(), Ext->getType(), E->getType(), 3405 TTI::getCastContextHint(Ext), CostKind, Ext); 3406 continue; 3407 } 3408 } 3409 DeadCost -= 3410 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 3411 } 3412 } 3413 return DeadCost; 3414 } 3415 case Instruction::ZExt: 3416 case Instruction::SExt: 3417 case Instruction::FPToUI: 3418 case Instruction::FPToSI: 3419 case Instruction::FPExt: 3420 case Instruction::PtrToInt: 3421 case Instruction::IntToPtr: 3422 case Instruction::SIToFP: 3423 case Instruction::UIToFP: 3424 case Instruction::Trunc: 3425 case Instruction::FPTrunc: 3426 case Instruction::BitCast: { 3427 Type *SrcTy = VL0->getOperand(0)->getType(); 3428 int ScalarEltCost = 3429 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 3430 TTI::getCastContextHint(VL0), CostKind, VL0); 3431 if (NeedToShuffleReuses) { 3432 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3433 } 3434 3435 // Calculate the cost of this instruction. 3436 int ScalarCost = VL.size() * ScalarEltCost; 3437 3438 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 3439 int VecCost = 0; 3440 // Check if the values are candidates to demote. 3441 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 3442 VecCost = 3443 ReuseShuffleCost + 3444 TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, 3445 TTI::getCastContextHint(VL0), CostKind, VL0); 3446 } 3447 return VecCost - ScalarCost; 3448 } 3449 case Instruction::FCmp: 3450 case Instruction::ICmp: 3451 case Instruction::Select: { 3452 // Calculate the cost of this instruction. 3453 int ScalarEltCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 3454 Builder.getInt1Ty(), 3455 CostKind, VL0); 3456 if (NeedToShuffleReuses) { 3457 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3458 } 3459 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 3460 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3461 int VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), VecTy, MaskTy, 3462 CostKind, VL0); 3463 return ReuseShuffleCost + VecCost - ScalarCost; 3464 } 3465 case Instruction::FNeg: 3466 case Instruction::Add: 3467 case Instruction::FAdd: 3468 case Instruction::Sub: 3469 case Instruction::FSub: 3470 case Instruction::Mul: 3471 case Instruction::FMul: 3472 case Instruction::UDiv: 3473 case Instruction::SDiv: 3474 case Instruction::FDiv: 3475 case Instruction::URem: 3476 case Instruction::SRem: 3477 case Instruction::FRem: 3478 case Instruction::Shl: 3479 case Instruction::LShr: 3480 case Instruction::AShr: 3481 case Instruction::And: 3482 case Instruction::Or: 3483 case Instruction::Xor: { 3484 // Certain instructions can be cheaper to vectorize if they have a 3485 // constant second vector operand. 3486 TargetTransformInfo::OperandValueKind Op1VK = 3487 TargetTransformInfo::OK_AnyValue; 3488 TargetTransformInfo::OperandValueKind Op2VK = 3489 TargetTransformInfo::OK_UniformConstantValue; 3490 TargetTransformInfo::OperandValueProperties Op1VP = 3491 TargetTransformInfo::OP_None; 3492 TargetTransformInfo::OperandValueProperties Op2VP = 3493 TargetTransformInfo::OP_PowerOf2; 3494 3495 // If all operands are exactly the same ConstantInt then set the 3496 // operand kind to OK_UniformConstantValue. 3497 // If instead not all operands are constants, then set the operand kind 3498 // to OK_AnyValue. If all operands are constants but not the same, 3499 // then set the operand kind to OK_NonUniformConstantValue. 3500 ConstantInt *CInt0 = nullptr; 3501 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3502 const Instruction *I = cast<Instruction>(VL[i]); 3503 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 3504 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 3505 if (!CInt) { 3506 Op2VK = TargetTransformInfo::OK_AnyValue; 3507 Op2VP = TargetTransformInfo::OP_None; 3508 break; 3509 } 3510 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 3511 !CInt->getValue().isPowerOf2()) 3512 Op2VP = TargetTransformInfo::OP_None; 3513 if (i == 0) { 3514 CInt0 = CInt; 3515 continue; 3516 } 3517 if (CInt0 != CInt) 3518 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 3519 } 3520 3521 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 3522 int ScalarEltCost = TTI->getArithmeticInstrCost( 3523 E->getOpcode(), ScalarTy, CostKind, Op1VK, Op2VK, Op1VP, Op2VP, 3524 Operands, VL0); 3525 if (NeedToShuffleReuses) { 3526 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3527 } 3528 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3529 int VecCost = TTI->getArithmeticInstrCost( 3530 E->getOpcode(), VecTy, CostKind, Op1VK, Op2VK, Op1VP, Op2VP, 3531 Operands, VL0); 3532 return ReuseShuffleCost + VecCost - ScalarCost; 3533 } 3534 case Instruction::GetElementPtr: { 3535 TargetTransformInfo::OperandValueKind Op1VK = 3536 TargetTransformInfo::OK_AnyValue; 3537 TargetTransformInfo::OperandValueKind Op2VK = 3538 TargetTransformInfo::OK_UniformConstantValue; 3539 3540 int ScalarEltCost = 3541 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, CostKind, 3542 Op1VK, Op2VK); 3543 if (NeedToShuffleReuses) { 3544 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3545 } 3546 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3547 int VecCost = 3548 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, CostKind, 3549 Op1VK, Op2VK); 3550 return ReuseShuffleCost + VecCost - ScalarCost; 3551 } 3552 case Instruction::Load: { 3553 // Cost of wide load - cost of scalar loads. 3554 Align alignment = cast<LoadInst>(VL0)->getAlign(); 3555 int ScalarEltCost = 3556 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, 3557 CostKind, VL0); 3558 if (NeedToShuffleReuses) { 3559 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3560 } 3561 int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 3562 int VecLdCost = 3563 TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, 3564 CostKind, VL0); 3565 if (!E->ReorderIndices.empty()) { 3566 // TODO: Merge this shuffle with the ReuseShuffleCost. 3567 VecLdCost += TTI->getShuffleCost( 3568 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3569 } 3570 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 3571 } 3572 case Instruction::Store: { 3573 // We know that we can merge the stores. Calculate the cost. 3574 bool IsReorder = !E->ReorderIndices.empty(); 3575 auto *SI = 3576 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 3577 Align Alignment = SI->getAlign(); 3578 int ScalarEltCost = 3579 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, Alignment, 0, 3580 CostKind, VL0); 3581 if (NeedToShuffleReuses) 3582 ReuseShuffleCost = -(ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3583 int ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 3584 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, 3585 VecTy, Alignment, 0, CostKind, VL0); 3586 if (IsReorder) { 3587 // TODO: Merge this shuffle with the ReuseShuffleCost. 3588 VecStCost += TTI->getShuffleCost( 3589 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3590 } 3591 return ReuseShuffleCost + VecStCost - ScalarStCost; 3592 } 3593 case Instruction::Call: { 3594 CallInst *CI = cast<CallInst>(VL0); 3595 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3596 3597 // Calculate the cost of the scalar and vector calls. 3598 IntrinsicCostAttributes CostAttrs(ID, *CI, 1, 1); 3599 int ScalarEltCost = TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 3600 if (NeedToShuffleReuses) { 3601 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3602 } 3603 int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 3604 3605 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 3606 int VecCallCost = std::min(VecCallCosts.first, VecCallCosts.second); 3607 3608 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 3609 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 3610 << " for " << *CI << "\n"); 3611 3612 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 3613 } 3614 case Instruction::ShuffleVector: { 3615 assert(E->isAltShuffle() && 3616 ((Instruction::isBinaryOp(E->getOpcode()) && 3617 Instruction::isBinaryOp(E->getAltOpcode())) || 3618 (Instruction::isCast(E->getOpcode()) && 3619 Instruction::isCast(E->getAltOpcode()))) && 3620 "Invalid Shuffle Vector Operand"); 3621 int ScalarCost = 0; 3622 if (NeedToShuffleReuses) { 3623 for (unsigned Idx : E->ReuseShuffleIndices) { 3624 Instruction *I = cast<Instruction>(VL[Idx]); 3625 ReuseShuffleCost -= TTI->getInstructionCost(I, CostKind); 3626 } 3627 for (Value *V : VL) { 3628 Instruction *I = cast<Instruction>(V); 3629 ReuseShuffleCost += TTI->getInstructionCost(I, CostKind); 3630 } 3631 } 3632 for (Value *V : VL) { 3633 Instruction *I = cast<Instruction>(V); 3634 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 3635 ScalarCost += TTI->getInstructionCost(I, CostKind); 3636 } 3637 // VecCost is equal to sum of the cost of creating 2 vectors 3638 // and the cost of creating shuffle. 3639 int VecCost = 0; 3640 if (Instruction::isBinaryOp(E->getOpcode())) { 3641 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 3642 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 3643 CostKind); 3644 } else { 3645 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 3646 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 3647 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 3648 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 3649 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 3650 TTI::CastContextHint::None, CostKind); 3651 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 3652 TTI::CastContextHint::None, CostKind); 3653 } 3654 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0); 3655 return ReuseShuffleCost + VecCost - ScalarCost; 3656 } 3657 default: 3658 llvm_unreachable("Unknown instruction"); 3659 } 3660 } 3661 3662 bool BoUpSLP::isFullyVectorizableTinyTree() const { 3663 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 3664 << VectorizableTree.size() << " is fully vectorizable .\n"); 3665 3666 // We only handle trees of heights 1 and 2. 3667 if (VectorizableTree.size() == 1 && 3668 VectorizableTree[0]->State == TreeEntry::Vectorize) 3669 return true; 3670 3671 if (VectorizableTree.size() != 2) 3672 return false; 3673 3674 // Handle splat and all-constants stores. 3675 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 3676 (allConstant(VectorizableTree[1]->Scalars) || 3677 isSplat(VectorizableTree[1]->Scalars))) 3678 return true; 3679 3680 // Gathering cost would be too much for tiny trees. 3681 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 3682 VectorizableTree[1]->State == TreeEntry::NeedToGather) 3683 return false; 3684 3685 return true; 3686 } 3687 3688 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 3689 TargetTransformInfo *TTI) { 3690 // Look past the root to find a source value. Arbitrarily follow the 3691 // path through operand 0 of any 'or'. Also, peek through optional 3692 // shift-left-by-multiple-of-8-bits. 3693 Value *ZextLoad = Root; 3694 const APInt *ShAmtC; 3695 while (!isa<ConstantExpr>(ZextLoad) && 3696 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 3697 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 3698 ShAmtC->urem(8) == 0))) 3699 ZextLoad = cast<BinaryOperator>(ZextLoad)->getOperand(0); 3700 3701 // Check if the input is an extended load of the required or/shift expression. 3702 Value *LoadPtr; 3703 if (ZextLoad == Root || !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr))))) 3704 return false; 3705 3706 // Require that the total load bit width is a legal integer type. 3707 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 3708 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 3709 Type *SrcTy = LoadPtr->getType()->getPointerElementType(); 3710 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 3711 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 3712 return false; 3713 3714 // Everything matched - assume that we can fold the whole sequence using 3715 // load combining. 3716 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 3717 << *(cast<Instruction>(Root)) << "\n"); 3718 3719 return true; 3720 } 3721 3722 bool BoUpSLP::isLoadCombineReductionCandidate(unsigned RdxOpcode) const { 3723 if (RdxOpcode != Instruction::Or) 3724 return false; 3725 3726 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3727 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 3728 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI); 3729 } 3730 3731 bool BoUpSLP::isLoadCombineCandidate() const { 3732 // Peek through a final sequence of stores and check if all operations are 3733 // likely to be load-combined. 3734 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3735 for (Value *Scalar : VectorizableTree[0]->Scalars) { 3736 Value *X; 3737 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 3738 !isLoadCombineCandidateImpl(X, NumElts, TTI)) 3739 return false; 3740 } 3741 return true; 3742 } 3743 3744 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 3745 // We can vectorize the tree if its size is greater than or equal to the 3746 // minimum size specified by the MinTreeSize command line option. 3747 if (VectorizableTree.size() >= MinTreeSize) 3748 return false; 3749 3750 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 3751 // can vectorize it if we can prove it fully vectorizable. 3752 if (isFullyVectorizableTinyTree()) 3753 return false; 3754 3755 assert(VectorizableTree.empty() 3756 ? ExternalUses.empty() 3757 : true && "We shouldn't have any external users"); 3758 3759 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 3760 // vectorizable. 3761 return true; 3762 } 3763 3764 int BoUpSLP::getSpillCost() const { 3765 // Walk from the bottom of the tree to the top, tracking which values are 3766 // live. When we see a call instruction that is not part of our tree, 3767 // query TTI to see if there is a cost to keeping values live over it 3768 // (for example, if spills and fills are required). 3769 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 3770 int Cost = 0; 3771 3772 SmallPtrSet<Instruction*, 4> LiveValues; 3773 Instruction *PrevInst = nullptr; 3774 3775 // The entries in VectorizableTree are not necessarily ordered by their 3776 // position in basic blocks. Collect them and order them by dominance so later 3777 // instructions are guaranteed to be visited first. For instructions in 3778 // different basic blocks, we only scan to the beginning of the block, so 3779 // their order does not matter, as long as all instructions in a basic block 3780 // are grouped together. Using dominance ensures a deterministic order. 3781 SmallVector<Instruction *, 16> OrderedScalars; 3782 for (const auto &TEPtr : VectorizableTree) { 3783 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 3784 if (!Inst) 3785 continue; 3786 OrderedScalars.push_back(Inst); 3787 } 3788 llvm::stable_sort(OrderedScalars, [this](Instruction *A, Instruction *B) { 3789 return DT->dominates(B, A); 3790 }); 3791 3792 for (Instruction *Inst : OrderedScalars) { 3793 if (!PrevInst) { 3794 PrevInst = Inst; 3795 continue; 3796 } 3797 3798 // Update LiveValues. 3799 LiveValues.erase(PrevInst); 3800 for (auto &J : PrevInst->operands()) { 3801 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 3802 LiveValues.insert(cast<Instruction>(&*J)); 3803 } 3804 3805 LLVM_DEBUG({ 3806 dbgs() << "SLP: #LV: " << LiveValues.size(); 3807 for (auto *X : LiveValues) 3808 dbgs() << " " << X->getName(); 3809 dbgs() << ", Looking at "; 3810 Inst->dump(); 3811 }); 3812 3813 // Now find the sequence of instructions between PrevInst and Inst. 3814 unsigned NumCalls = 0; 3815 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 3816 PrevInstIt = 3817 PrevInst->getIterator().getReverse(); 3818 while (InstIt != PrevInstIt) { 3819 if (PrevInstIt == PrevInst->getParent()->rend()) { 3820 PrevInstIt = Inst->getParent()->rbegin(); 3821 continue; 3822 } 3823 3824 // Debug information does not impact spill cost. 3825 if ((isa<CallInst>(&*PrevInstIt) && 3826 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 3827 &*PrevInstIt != PrevInst) 3828 NumCalls++; 3829 3830 ++PrevInstIt; 3831 } 3832 3833 if (NumCalls) { 3834 SmallVector<Type*, 4> V; 3835 for (auto *II : LiveValues) 3836 V.push_back(FixedVectorType::get(II->getType(), BundleWidth)); 3837 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 3838 } 3839 3840 PrevInst = Inst; 3841 } 3842 3843 return Cost; 3844 } 3845 3846 int BoUpSLP::getTreeCost() { 3847 int Cost = 0; 3848 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 3849 << VectorizableTree.size() << ".\n"); 3850 3851 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 3852 3853 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 3854 TreeEntry &TE = *VectorizableTree[I].get(); 3855 3856 // We create duplicate tree entries for gather sequences that have multiple 3857 // uses. However, we should not compute the cost of duplicate sequences. 3858 // For example, if we have a build vector (i.e., insertelement sequence) 3859 // that is used by more than one vector instruction, we only need to 3860 // compute the cost of the insertelement instructions once. The redundant 3861 // instructions will be eliminated by CSE. 3862 // 3863 // We should consider not creating duplicate tree entries for gather 3864 // sequences, and instead add additional edges to the tree representing 3865 // their uses. Since such an approach results in fewer total entries, 3866 // existing heuristics based on tree size may yield different results. 3867 // 3868 if (TE.State == TreeEntry::NeedToGather && 3869 std::any_of(std::next(VectorizableTree.begin(), I + 1), 3870 VectorizableTree.end(), 3871 [TE](const std::unique_ptr<TreeEntry> &EntryPtr) { 3872 return EntryPtr->State == TreeEntry::NeedToGather && 3873 EntryPtr->isSame(TE.Scalars); 3874 })) 3875 continue; 3876 3877 int C = getEntryCost(&TE); 3878 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 3879 << " for bundle that starts with " << *TE.Scalars[0] 3880 << ".\n"); 3881 Cost += C; 3882 } 3883 3884 SmallPtrSet<Value *, 16> ExtractCostCalculated; 3885 int ExtractCost = 0; 3886 for (ExternalUser &EU : ExternalUses) { 3887 // We only add extract cost once for the same scalar. 3888 if (!ExtractCostCalculated.insert(EU.Scalar).second) 3889 continue; 3890 3891 // Uses by ephemeral values are free (because the ephemeral value will be 3892 // removed prior to code generation, and so the extraction will be 3893 // removed as well). 3894 if (EphValues.count(EU.User)) 3895 continue; 3896 3897 // If we plan to rewrite the tree in a smaller type, we will need to sign 3898 // extend the extracted value back to the original type. Here, we account 3899 // for the extract and the added cost of the sign extend if needed. 3900 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 3901 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 3902 if (MinBWs.count(ScalarRoot)) { 3903 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 3904 auto Extend = 3905 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 3906 VecTy = FixedVectorType::get(MinTy, BundleWidth); 3907 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 3908 VecTy, EU.Lane); 3909 } else { 3910 ExtractCost += 3911 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 3912 } 3913 } 3914 3915 int SpillCost = getSpillCost(); 3916 Cost += SpillCost + ExtractCost; 3917 3918 #ifndef NDEBUG 3919 SmallString<256> Str; 3920 { 3921 raw_svector_ostream OS(Str); 3922 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 3923 << "SLP: Extract Cost = " << ExtractCost << ".\n" 3924 << "SLP: Total Cost = " << Cost << ".\n"; 3925 } 3926 LLVM_DEBUG(dbgs() << Str); 3927 if (ViewSLPTree) 3928 ViewGraph(this, "SLP" + F->getName(), false, Str); 3929 #endif 3930 3931 return Cost; 3932 } 3933 3934 int BoUpSLP::getGatherCost(FixedVectorType *Ty, 3935 const DenseSet<unsigned> &ShuffledIndices) const { 3936 unsigned NumElts = Ty->getNumElements(); 3937 APInt DemandedElts = APInt::getNullValue(NumElts); 3938 for (unsigned i = 0; i < NumElts; ++i) 3939 if (!ShuffledIndices.count(i)) 3940 DemandedElts.setBit(i); 3941 int Cost = TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 3942 /*Extract*/ false); 3943 if (!ShuffledIndices.empty()) 3944 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 3945 return Cost; 3946 } 3947 3948 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 3949 // Find the type of the operands in VL. 3950 Type *ScalarTy = VL[0]->getType(); 3951 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3952 ScalarTy = SI->getValueOperand()->getType(); 3953 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 3954 // Find the cost of inserting/extracting values from the vector. 3955 // Check if the same elements are inserted several times and count them as 3956 // shuffle candidates. 3957 DenseSet<unsigned> ShuffledElements; 3958 DenseSet<Value *> UniqueElements; 3959 // Iterate in reverse order to consider insert elements with the high cost. 3960 for (unsigned I = VL.size(); I > 0; --I) { 3961 unsigned Idx = I - 1; 3962 if (!UniqueElements.insert(VL[Idx]).second) 3963 ShuffledElements.insert(Idx); 3964 } 3965 return getGatherCost(VecTy, ShuffledElements); 3966 } 3967 3968 // Perform operand reordering on the instructions in VL and return the reordered 3969 // operands in Left and Right. 3970 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 3971 SmallVectorImpl<Value *> &Left, 3972 SmallVectorImpl<Value *> &Right, 3973 const DataLayout &DL, 3974 ScalarEvolution &SE, 3975 const BoUpSLP &R) { 3976 if (VL.empty()) 3977 return; 3978 VLOperands Ops(VL, DL, SE, R); 3979 // Reorder the operands in place. 3980 Ops.reorder(); 3981 Left = Ops.getVL(0); 3982 Right = Ops.getVL(1); 3983 } 3984 3985 void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) { 3986 // Get the basic block this bundle is in. All instructions in the bundle 3987 // should be in this block. 3988 auto *Front = E->getMainOp(); 3989 auto *BB = Front->getParent(); 3990 assert(llvm::all_of(make_range(E->Scalars.begin(), E->Scalars.end()), 3991 [=](Value *V) -> bool { 3992 auto *I = cast<Instruction>(V); 3993 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 3994 })); 3995 3996 // The last instruction in the bundle in program order. 3997 Instruction *LastInst = nullptr; 3998 3999 // Find the last instruction. The common case should be that BB has been 4000 // scheduled, and the last instruction is VL.back(). So we start with 4001 // VL.back() and iterate over schedule data until we reach the end of the 4002 // bundle. The end of the bundle is marked by null ScheduleData. 4003 if (BlocksSchedules.count(BB)) { 4004 auto *Bundle = 4005 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 4006 if (Bundle && Bundle->isPartOfBundle()) 4007 for (; Bundle; Bundle = Bundle->NextInBundle) 4008 if (Bundle->OpValue == Bundle->Inst) 4009 LastInst = Bundle->Inst; 4010 } 4011 4012 // LastInst can still be null at this point if there's either not an entry 4013 // for BB in BlocksSchedules or there's no ScheduleData available for 4014 // VL.back(). This can be the case if buildTree_rec aborts for various 4015 // reasons (e.g., the maximum recursion depth is reached, the maximum region 4016 // size is reached, etc.). ScheduleData is initialized in the scheduling 4017 // "dry-run". 4018 // 4019 // If this happens, we can still find the last instruction by brute force. We 4020 // iterate forwards from Front (inclusive) until we either see all 4021 // instructions in the bundle or reach the end of the block. If Front is the 4022 // last instruction in program order, LastInst will be set to Front, and we 4023 // will visit all the remaining instructions in the block. 4024 // 4025 // One of the reasons we exit early from buildTree_rec is to place an upper 4026 // bound on compile-time. Thus, taking an additional compile-time hit here is 4027 // not ideal. However, this should be exceedingly rare since it requires that 4028 // we both exit early from buildTree_rec and that the bundle be out-of-order 4029 // (causing us to iterate all the way to the end of the block). 4030 if (!LastInst) { 4031 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 4032 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 4033 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 4034 LastInst = &I; 4035 if (Bundle.empty()) 4036 break; 4037 } 4038 } 4039 assert(LastInst && "Failed to find last instruction in bundle"); 4040 4041 // Set the insertion point after the last instruction in the bundle. Set the 4042 // debug location to Front. 4043 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 4044 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 4045 } 4046 4047 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, FixedVectorType *Ty) { 4048 Value *Vec = UndefValue::get(Ty); 4049 // Generate the 'InsertElement' instruction. 4050 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 4051 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 4052 if (auto *Insrt = dyn_cast<InsertElementInst>(Vec)) { 4053 GatherSeq.insert(Insrt); 4054 CSEBlocks.insert(Insrt->getParent()); 4055 4056 // Add to our 'need-to-extract' list. 4057 if (TreeEntry *E = getTreeEntry(VL[i])) { 4058 // Find which lane we need to extract. 4059 int FoundLane = -1; 4060 for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) { 4061 // Is this the lane of the scalar that we are looking for ? 4062 if (E->Scalars[Lane] == VL[i]) { 4063 FoundLane = Lane; 4064 break; 4065 } 4066 } 4067 assert(FoundLane >= 0 && "Could not find the correct lane"); 4068 if (!E->ReuseShuffleIndices.empty()) { 4069 FoundLane = 4070 std::distance(E->ReuseShuffleIndices.begin(), 4071 llvm::find(E->ReuseShuffleIndices, FoundLane)); 4072 } 4073 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 4074 } 4075 } 4076 } 4077 4078 return Vec; 4079 } 4080 4081 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 4082 InstructionsState S = getSameOpcode(VL); 4083 if (S.getOpcode()) { 4084 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4085 if (E->isSame(VL)) { 4086 Value *V = vectorizeTree(E); 4087 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 4088 // We need to get the vectorized value but without shuffle. 4089 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 4090 V = SV->getOperand(0); 4091 } else { 4092 // Reshuffle to get only unique values. 4093 SmallVector<int, 4> UniqueIdxs; 4094 SmallSet<int, 4> UsedIdxs; 4095 for (int Idx : E->ReuseShuffleIndices) 4096 if (UsedIdxs.insert(Idx).second) 4097 UniqueIdxs.emplace_back(Idx); 4098 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 4099 UniqueIdxs); 4100 } 4101 } 4102 return V; 4103 } 4104 } 4105 } 4106 4107 Type *ScalarTy = S.OpValue->getType(); 4108 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 4109 ScalarTy = SI->getValueOperand()->getType(); 4110 4111 // Check that every instruction appears once in this bundle. 4112 SmallVector<int, 4> ReuseShuffleIndicies; 4113 SmallVector<Value *, 4> UniqueValues; 4114 if (VL.size() > 2) { 4115 DenseMap<Value *, unsigned> UniquePositions; 4116 for (Value *V : VL) { 4117 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 4118 ReuseShuffleIndicies.emplace_back(Res.first->second); 4119 if (Res.second || isa<Constant>(V)) 4120 UniqueValues.emplace_back(V); 4121 } 4122 // Do not shuffle single element or if number of unique values is not power 4123 // of 2. 4124 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 4125 !llvm::isPowerOf2_32(UniqueValues.size())) 4126 ReuseShuffleIndicies.clear(); 4127 else 4128 VL = UniqueValues; 4129 } 4130 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4131 4132 Value *V = Gather(VL, VecTy); 4133 if (!ReuseShuffleIndicies.empty()) { 4134 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4135 ReuseShuffleIndicies, "shuffle"); 4136 if (auto *I = dyn_cast<Instruction>(V)) { 4137 GatherSeq.insert(I); 4138 CSEBlocks.insert(I->getParent()); 4139 } 4140 } 4141 return V; 4142 } 4143 4144 static void inversePermutation(ArrayRef<unsigned> Indices, 4145 SmallVectorImpl<int> &Mask) { 4146 Mask.clear(); 4147 const unsigned E = Indices.size(); 4148 Mask.resize(E); 4149 for (unsigned I = 0; I < E; ++I) 4150 Mask[Indices[I]] = I; 4151 } 4152 4153 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 4154 IRBuilder<>::InsertPointGuard Guard(Builder); 4155 4156 if (E->VectorizedValue) { 4157 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 4158 return E->VectorizedValue; 4159 } 4160 4161 Instruction *VL0 = E->getMainOp(); 4162 Type *ScalarTy = VL0->getType(); 4163 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 4164 ScalarTy = SI->getValueOperand()->getType(); 4165 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 4166 4167 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4168 4169 if (E->State == TreeEntry::NeedToGather) { 4170 setInsertPointAfterBundle(E); 4171 auto *V = Gather(E->Scalars, VecTy); 4172 if (NeedToShuffleReuses) { 4173 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4174 E->ReuseShuffleIndices, "shuffle"); 4175 if (auto *I = dyn_cast<Instruction>(V)) { 4176 GatherSeq.insert(I); 4177 CSEBlocks.insert(I->getParent()); 4178 } 4179 } 4180 E->VectorizedValue = V; 4181 return V; 4182 } 4183 4184 assert(E->State == TreeEntry::Vectorize && "Unhandled state"); 4185 unsigned ShuffleOrOp = 4186 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 4187 switch (ShuffleOrOp) { 4188 case Instruction::PHI: { 4189 auto *PH = cast<PHINode>(VL0); 4190 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 4191 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4192 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 4193 Value *V = NewPhi; 4194 if (NeedToShuffleReuses) { 4195 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4196 E->ReuseShuffleIndices, "shuffle"); 4197 } 4198 E->VectorizedValue = V; 4199 4200 // PHINodes may have multiple entries from the same block. We want to 4201 // visit every block once. 4202 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 4203 4204 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 4205 ValueList Operands; 4206 BasicBlock *IBB = PH->getIncomingBlock(i); 4207 4208 if (!VisitedBBs.insert(IBB).second) { 4209 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 4210 continue; 4211 } 4212 4213 Builder.SetInsertPoint(IBB->getTerminator()); 4214 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4215 Value *Vec = vectorizeTree(E->getOperand(i)); 4216 NewPhi->addIncoming(Vec, IBB); 4217 } 4218 4219 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 4220 "Invalid number of incoming values"); 4221 return V; 4222 } 4223 4224 case Instruction::ExtractElement: { 4225 Value *V = E->getSingleOperand(0); 4226 if (!E->ReorderIndices.empty()) { 4227 SmallVector<int, 4> Mask; 4228 inversePermutation(E->ReorderIndices, Mask); 4229 Builder.SetInsertPoint(VL0); 4230 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), Mask, 4231 "reorder_shuffle"); 4232 } 4233 if (NeedToShuffleReuses) { 4234 // TODO: Merge this shuffle with the ReorderShuffleMask. 4235 if (E->ReorderIndices.empty()) 4236 Builder.SetInsertPoint(VL0); 4237 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4238 E->ReuseShuffleIndices, "shuffle"); 4239 } 4240 E->VectorizedValue = V; 4241 return V; 4242 } 4243 case Instruction::ExtractValue: { 4244 LoadInst *LI = cast<LoadInst>(E->getSingleOperand(0)); 4245 Builder.SetInsertPoint(LI); 4246 PointerType *PtrTy = 4247 PointerType::get(VecTy, LI->getPointerAddressSpace()); 4248 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 4249 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 4250 Value *NewV = propagateMetadata(V, E->Scalars); 4251 if (!E->ReorderIndices.empty()) { 4252 SmallVector<int, 4> Mask; 4253 inversePermutation(E->ReorderIndices, Mask); 4254 NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), Mask, 4255 "reorder_shuffle"); 4256 } 4257 if (NeedToShuffleReuses) { 4258 // TODO: Merge this shuffle with the ReorderShuffleMask. 4259 NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), 4260 E->ReuseShuffleIndices, "shuffle"); 4261 } 4262 E->VectorizedValue = NewV; 4263 return NewV; 4264 } 4265 case Instruction::ZExt: 4266 case Instruction::SExt: 4267 case Instruction::FPToUI: 4268 case Instruction::FPToSI: 4269 case Instruction::FPExt: 4270 case Instruction::PtrToInt: 4271 case Instruction::IntToPtr: 4272 case Instruction::SIToFP: 4273 case Instruction::UIToFP: 4274 case Instruction::Trunc: 4275 case Instruction::FPTrunc: 4276 case Instruction::BitCast: { 4277 setInsertPointAfterBundle(E); 4278 4279 Value *InVec = vectorizeTree(E->getOperand(0)); 4280 4281 if (E->VectorizedValue) { 4282 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4283 return E->VectorizedValue; 4284 } 4285 4286 auto *CI = cast<CastInst>(VL0); 4287 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 4288 if (NeedToShuffleReuses) { 4289 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4290 E->ReuseShuffleIndices, "shuffle"); 4291 } 4292 E->VectorizedValue = V; 4293 ++NumVectorInstructions; 4294 return V; 4295 } 4296 case Instruction::FCmp: 4297 case Instruction::ICmp: { 4298 setInsertPointAfterBundle(E); 4299 4300 Value *L = vectorizeTree(E->getOperand(0)); 4301 Value *R = vectorizeTree(E->getOperand(1)); 4302 4303 if (E->VectorizedValue) { 4304 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4305 return E->VectorizedValue; 4306 } 4307 4308 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4309 Value *V = Builder.CreateCmp(P0, L, R); 4310 propagateIRFlags(V, E->Scalars, VL0); 4311 if (NeedToShuffleReuses) { 4312 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4313 E->ReuseShuffleIndices, "shuffle"); 4314 } 4315 E->VectorizedValue = V; 4316 ++NumVectorInstructions; 4317 return V; 4318 } 4319 case Instruction::Select: { 4320 setInsertPointAfterBundle(E); 4321 4322 Value *Cond = vectorizeTree(E->getOperand(0)); 4323 Value *True = vectorizeTree(E->getOperand(1)); 4324 Value *False = vectorizeTree(E->getOperand(2)); 4325 4326 if (E->VectorizedValue) { 4327 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4328 return E->VectorizedValue; 4329 } 4330 4331 Value *V = Builder.CreateSelect(Cond, True, False); 4332 if (NeedToShuffleReuses) { 4333 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4334 E->ReuseShuffleIndices, "shuffle"); 4335 } 4336 E->VectorizedValue = V; 4337 ++NumVectorInstructions; 4338 return V; 4339 } 4340 case Instruction::FNeg: { 4341 setInsertPointAfterBundle(E); 4342 4343 Value *Op = vectorizeTree(E->getOperand(0)); 4344 4345 if (E->VectorizedValue) { 4346 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4347 return E->VectorizedValue; 4348 } 4349 4350 Value *V = Builder.CreateUnOp( 4351 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 4352 propagateIRFlags(V, E->Scalars, VL0); 4353 if (auto *I = dyn_cast<Instruction>(V)) 4354 V = propagateMetadata(I, E->Scalars); 4355 4356 if (NeedToShuffleReuses) { 4357 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4358 E->ReuseShuffleIndices, "shuffle"); 4359 } 4360 E->VectorizedValue = V; 4361 ++NumVectorInstructions; 4362 4363 return V; 4364 } 4365 case Instruction::Add: 4366 case Instruction::FAdd: 4367 case Instruction::Sub: 4368 case Instruction::FSub: 4369 case Instruction::Mul: 4370 case Instruction::FMul: 4371 case Instruction::UDiv: 4372 case Instruction::SDiv: 4373 case Instruction::FDiv: 4374 case Instruction::URem: 4375 case Instruction::SRem: 4376 case Instruction::FRem: 4377 case Instruction::Shl: 4378 case Instruction::LShr: 4379 case Instruction::AShr: 4380 case Instruction::And: 4381 case Instruction::Or: 4382 case Instruction::Xor: { 4383 setInsertPointAfterBundle(E); 4384 4385 Value *LHS = vectorizeTree(E->getOperand(0)); 4386 Value *RHS = vectorizeTree(E->getOperand(1)); 4387 4388 if (E->VectorizedValue) { 4389 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4390 return E->VectorizedValue; 4391 } 4392 4393 Value *V = Builder.CreateBinOp( 4394 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 4395 RHS); 4396 propagateIRFlags(V, E->Scalars, VL0); 4397 if (auto *I = dyn_cast<Instruction>(V)) 4398 V = propagateMetadata(I, E->Scalars); 4399 4400 if (NeedToShuffleReuses) { 4401 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4402 E->ReuseShuffleIndices, "shuffle"); 4403 } 4404 E->VectorizedValue = V; 4405 ++NumVectorInstructions; 4406 4407 return V; 4408 } 4409 case Instruction::Load: { 4410 // Loads are inserted at the head of the tree because we don't want to 4411 // sink them all the way down past store instructions. 4412 bool IsReorder = E->updateStateIfReorder(); 4413 if (IsReorder) 4414 VL0 = E->getMainOp(); 4415 setInsertPointAfterBundle(E); 4416 4417 LoadInst *LI = cast<LoadInst>(VL0); 4418 unsigned AS = LI->getPointerAddressSpace(); 4419 4420 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 4421 VecTy->getPointerTo(AS)); 4422 4423 // The pointer operand uses an in-tree scalar so we add the new BitCast to 4424 // ExternalUses list to make sure that an extract will be generated in the 4425 // future. 4426 Value *PO = LI->getPointerOperand(); 4427 if (getTreeEntry(PO)) 4428 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0)); 4429 4430 LI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 4431 Value *V = propagateMetadata(LI, E->Scalars); 4432 if (IsReorder) { 4433 SmallVector<int, 4> Mask; 4434 inversePermutation(E->ReorderIndices, Mask); 4435 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 4436 Mask, "reorder_shuffle"); 4437 } 4438 if (NeedToShuffleReuses) { 4439 // TODO: Merge this shuffle with the ReorderShuffleMask. 4440 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4441 E->ReuseShuffleIndices, "shuffle"); 4442 } 4443 E->VectorizedValue = V; 4444 ++NumVectorInstructions; 4445 return V; 4446 } 4447 case Instruction::Store: { 4448 bool IsReorder = !E->ReorderIndices.empty(); 4449 auto *SI = cast<StoreInst>( 4450 IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0); 4451 unsigned AS = SI->getPointerAddressSpace(); 4452 4453 setInsertPointAfterBundle(E); 4454 4455 Value *VecValue = vectorizeTree(E->getOperand(0)); 4456 if (IsReorder) { 4457 SmallVector<int, 4> Mask(E->ReorderIndices.begin(), 4458 E->ReorderIndices.end()); 4459 VecValue = Builder.CreateShuffleVector( 4460 VecValue, UndefValue::get(VecValue->getType()), Mask, 4461 "reorder_shuffle"); 4462 } 4463 Value *ScalarPtr = SI->getPointerOperand(); 4464 Value *VecPtr = Builder.CreateBitCast( 4465 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 4466 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 4467 SI->getAlign()); 4468 4469 // The pointer operand uses an in-tree scalar, so add the new BitCast to 4470 // ExternalUses to make sure that an extract will be generated in the 4471 // future. 4472 if (getTreeEntry(ScalarPtr)) 4473 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 4474 4475 Value *V = propagateMetadata(ST, E->Scalars); 4476 if (NeedToShuffleReuses) { 4477 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4478 E->ReuseShuffleIndices, "shuffle"); 4479 } 4480 E->VectorizedValue = V; 4481 ++NumVectorInstructions; 4482 return V; 4483 } 4484 case Instruction::GetElementPtr: { 4485 setInsertPointAfterBundle(E); 4486 4487 Value *Op0 = vectorizeTree(E->getOperand(0)); 4488 4489 std::vector<Value *> OpVecs; 4490 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 4491 ++j) { 4492 ValueList &VL = E->getOperand(j); 4493 // Need to cast all elements to the same type before vectorization to 4494 // avoid crash. 4495 Type *VL0Ty = VL0->getOperand(j)->getType(); 4496 Type *Ty = llvm::all_of( 4497 VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); }) 4498 ? VL0Ty 4499 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4500 ->getPointerOperandType() 4501 ->getScalarType()); 4502 for (Value *&V : VL) { 4503 auto *CI = cast<ConstantInt>(V); 4504 V = ConstantExpr::getIntegerCast(CI, Ty, 4505 CI->getValue().isSignBitSet()); 4506 } 4507 Value *OpVec = vectorizeTree(VL); 4508 OpVecs.push_back(OpVec); 4509 } 4510 4511 Value *V = Builder.CreateGEP( 4512 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 4513 if (Instruction *I = dyn_cast<Instruction>(V)) 4514 V = propagateMetadata(I, E->Scalars); 4515 4516 if (NeedToShuffleReuses) { 4517 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4518 E->ReuseShuffleIndices, "shuffle"); 4519 } 4520 E->VectorizedValue = V; 4521 ++NumVectorInstructions; 4522 4523 return V; 4524 } 4525 case Instruction::Call: { 4526 CallInst *CI = cast<CallInst>(VL0); 4527 setInsertPointAfterBundle(E); 4528 4529 Intrinsic::ID IID = Intrinsic::not_intrinsic; 4530 if (Function *FI = CI->getCalledFunction()) 4531 IID = FI->getIntrinsicID(); 4532 4533 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4534 4535 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 4536 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 4537 VecCallCosts.first <= VecCallCosts.second; 4538 4539 Value *ScalarArg = nullptr; 4540 std::vector<Value *> OpVecs; 4541 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 4542 ValueList OpVL; 4543 // Some intrinsics have scalar arguments. This argument should not be 4544 // vectorized. 4545 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 4546 CallInst *CEI = cast<CallInst>(VL0); 4547 ScalarArg = CEI->getArgOperand(j); 4548 OpVecs.push_back(CEI->getArgOperand(j)); 4549 continue; 4550 } 4551 4552 Value *OpVec = vectorizeTree(E->getOperand(j)); 4553 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 4554 OpVecs.push_back(OpVec); 4555 } 4556 4557 Function *CF; 4558 if (!UseIntrinsic) { 4559 VFShape Shape = 4560 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4561 VecTy->getNumElements())), 4562 false /*HasGlobalPred*/); 4563 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 4564 } else { 4565 Type *Tys[] = {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 4566 CF = Intrinsic::getDeclaration(F->getParent(), ID, Tys); 4567 } 4568 4569 SmallVector<OperandBundleDef, 1> OpBundles; 4570 CI->getOperandBundlesAsDefs(OpBundles); 4571 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 4572 4573 // The scalar argument uses an in-tree scalar so we add the new vectorized 4574 // call to ExternalUses list to make sure that an extract will be 4575 // generated in the future. 4576 if (ScalarArg && getTreeEntry(ScalarArg)) 4577 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 4578 4579 propagateIRFlags(V, E->Scalars, VL0); 4580 if (NeedToShuffleReuses) { 4581 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4582 E->ReuseShuffleIndices, "shuffle"); 4583 } 4584 E->VectorizedValue = V; 4585 ++NumVectorInstructions; 4586 return V; 4587 } 4588 case Instruction::ShuffleVector: { 4589 assert(E->isAltShuffle() && 4590 ((Instruction::isBinaryOp(E->getOpcode()) && 4591 Instruction::isBinaryOp(E->getAltOpcode())) || 4592 (Instruction::isCast(E->getOpcode()) && 4593 Instruction::isCast(E->getAltOpcode()))) && 4594 "Invalid Shuffle Vector Operand"); 4595 4596 Value *LHS = nullptr, *RHS = nullptr; 4597 if (Instruction::isBinaryOp(E->getOpcode())) { 4598 setInsertPointAfterBundle(E); 4599 LHS = vectorizeTree(E->getOperand(0)); 4600 RHS = vectorizeTree(E->getOperand(1)); 4601 } else { 4602 setInsertPointAfterBundle(E); 4603 LHS = vectorizeTree(E->getOperand(0)); 4604 } 4605 4606 if (E->VectorizedValue) { 4607 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4608 return E->VectorizedValue; 4609 } 4610 4611 Value *V0, *V1; 4612 if (Instruction::isBinaryOp(E->getOpcode())) { 4613 V0 = Builder.CreateBinOp( 4614 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 4615 V1 = Builder.CreateBinOp( 4616 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 4617 } else { 4618 V0 = Builder.CreateCast( 4619 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 4620 V1 = Builder.CreateCast( 4621 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 4622 } 4623 4624 // Create shuffle to take alternate operations from the vector. 4625 // Also, gather up main and alt scalar ops to propagate IR flags to 4626 // each vector operation. 4627 ValueList OpScalars, AltScalars; 4628 unsigned e = E->Scalars.size(); 4629 SmallVector<int, 8> Mask(e); 4630 for (unsigned i = 0; i < e; ++i) { 4631 auto *OpInst = cast<Instruction>(E->Scalars[i]); 4632 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 4633 if (OpInst->getOpcode() == E->getAltOpcode()) { 4634 Mask[i] = e + i; 4635 AltScalars.push_back(E->Scalars[i]); 4636 } else { 4637 Mask[i] = i; 4638 OpScalars.push_back(E->Scalars[i]); 4639 } 4640 } 4641 4642 propagateIRFlags(V0, OpScalars); 4643 propagateIRFlags(V1, AltScalars); 4644 4645 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 4646 if (Instruction *I = dyn_cast<Instruction>(V)) 4647 V = propagateMetadata(I, E->Scalars); 4648 if (NeedToShuffleReuses) { 4649 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4650 E->ReuseShuffleIndices, "shuffle"); 4651 } 4652 E->VectorizedValue = V; 4653 ++NumVectorInstructions; 4654 4655 return V; 4656 } 4657 default: 4658 llvm_unreachable("unknown inst"); 4659 } 4660 return nullptr; 4661 } 4662 4663 Value *BoUpSLP::vectorizeTree() { 4664 ExtraValueToDebugLocsMap ExternallyUsedValues; 4665 return vectorizeTree(ExternallyUsedValues); 4666 } 4667 4668 Value * 4669 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 4670 // All blocks must be scheduled before any instructions are inserted. 4671 for (auto &BSIter : BlocksSchedules) { 4672 scheduleBlock(BSIter.second.get()); 4673 } 4674 4675 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4676 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 4677 4678 // If the vectorized tree can be rewritten in a smaller type, we truncate the 4679 // vectorized root. InstCombine will then rewrite the entire expression. We 4680 // sign extend the extracted values below. 4681 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4682 if (MinBWs.count(ScalarRoot)) { 4683 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 4684 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 4685 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 4686 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4687 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 4688 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 4689 VectorizableTree[0]->VectorizedValue = Trunc; 4690 } 4691 4692 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 4693 << " values .\n"); 4694 4695 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 4696 // specified by ScalarType. 4697 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 4698 if (!MinBWs.count(ScalarRoot)) 4699 return Ex; 4700 if (MinBWs[ScalarRoot].second) 4701 return Builder.CreateSExt(Ex, ScalarType); 4702 return Builder.CreateZExt(Ex, ScalarType); 4703 }; 4704 4705 // Extract all of the elements with the external uses. 4706 for (const auto &ExternalUse : ExternalUses) { 4707 Value *Scalar = ExternalUse.Scalar; 4708 llvm::User *User = ExternalUse.User; 4709 4710 // Skip users that we already RAUW. This happens when one instruction 4711 // has multiple uses of the same value. 4712 if (User && !is_contained(Scalar->users(), User)) 4713 continue; 4714 TreeEntry *E = getTreeEntry(Scalar); 4715 assert(E && "Invalid scalar"); 4716 assert(E->State == TreeEntry::Vectorize && "Extracting from a gather list"); 4717 4718 Value *Vec = E->VectorizedValue; 4719 assert(Vec && "Can't find vectorizable value"); 4720 4721 Value *Lane = Builder.getInt32(ExternalUse.Lane); 4722 // If User == nullptr, the Scalar is used as extra arg. Generate 4723 // ExtractElement instruction and update the record for this scalar in 4724 // ExternallyUsedValues. 4725 if (!User) { 4726 assert(ExternallyUsedValues.count(Scalar) && 4727 "Scalar with nullptr as an external user must be registered in " 4728 "ExternallyUsedValues map"); 4729 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4730 Builder.SetInsertPoint(VecI->getParent(), 4731 std::next(VecI->getIterator())); 4732 } else { 4733 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4734 } 4735 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4736 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4737 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 4738 auto &Locs = ExternallyUsedValues[Scalar]; 4739 ExternallyUsedValues.insert({Ex, Locs}); 4740 ExternallyUsedValues.erase(Scalar); 4741 // Required to update internally referenced instructions. 4742 Scalar->replaceAllUsesWith(Ex); 4743 continue; 4744 } 4745 4746 // Generate extracts for out-of-tree users. 4747 // Find the insertion point for the extractelement lane. 4748 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4749 if (PHINode *PH = dyn_cast<PHINode>(User)) { 4750 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 4751 if (PH->getIncomingValue(i) == Scalar) { 4752 Instruction *IncomingTerminator = 4753 PH->getIncomingBlock(i)->getTerminator(); 4754 if (isa<CatchSwitchInst>(IncomingTerminator)) { 4755 Builder.SetInsertPoint(VecI->getParent(), 4756 std::next(VecI->getIterator())); 4757 } else { 4758 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 4759 } 4760 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4761 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4762 CSEBlocks.insert(PH->getIncomingBlock(i)); 4763 PH->setOperand(i, Ex); 4764 } 4765 } 4766 } else { 4767 Builder.SetInsertPoint(cast<Instruction>(User)); 4768 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4769 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4770 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 4771 User->replaceUsesOfWith(Scalar, Ex); 4772 } 4773 } else { 4774 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4775 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4776 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4777 CSEBlocks.insert(&F->getEntryBlock()); 4778 User->replaceUsesOfWith(Scalar, Ex); 4779 } 4780 4781 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 4782 } 4783 4784 // For each vectorized value: 4785 for (auto &TEPtr : VectorizableTree) { 4786 TreeEntry *Entry = TEPtr.get(); 4787 4788 // No need to handle users of gathered values. 4789 if (Entry->State == TreeEntry::NeedToGather) 4790 continue; 4791 4792 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 4793 4794 // For each lane: 4795 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 4796 Value *Scalar = Entry->Scalars[Lane]; 4797 4798 #ifndef NDEBUG 4799 Type *Ty = Scalar->getType(); 4800 if (!Ty->isVoidTy()) { 4801 for (User *U : Scalar->users()) { 4802 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 4803 4804 // It is legal to delete users in the ignorelist. 4805 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 4806 "Deleting out-of-tree value"); 4807 } 4808 } 4809 #endif 4810 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 4811 eraseInstruction(cast<Instruction>(Scalar)); 4812 } 4813 } 4814 4815 Builder.ClearInsertionPoint(); 4816 InstrElementSize.clear(); 4817 4818 return VectorizableTree[0]->VectorizedValue; 4819 } 4820 4821 void BoUpSLP::optimizeGatherSequence() { 4822 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 4823 << " gather sequences instructions.\n"); 4824 // LICM InsertElementInst sequences. 4825 for (Instruction *I : GatherSeq) { 4826 if (isDeleted(I)) 4827 continue; 4828 4829 // Check if this block is inside a loop. 4830 Loop *L = LI->getLoopFor(I->getParent()); 4831 if (!L) 4832 continue; 4833 4834 // Check if it has a preheader. 4835 BasicBlock *PreHeader = L->getLoopPreheader(); 4836 if (!PreHeader) 4837 continue; 4838 4839 // If the vector or the element that we insert into it are 4840 // instructions that are defined in this basic block then we can't 4841 // hoist this instruction. 4842 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 4843 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 4844 if (Op0 && L->contains(Op0)) 4845 continue; 4846 if (Op1 && L->contains(Op1)) 4847 continue; 4848 4849 // We can hoist this instruction. Move it to the pre-header. 4850 I->moveBefore(PreHeader->getTerminator()); 4851 } 4852 4853 // Make a list of all reachable blocks in our CSE queue. 4854 SmallVector<const DomTreeNode *, 8> CSEWorkList; 4855 CSEWorkList.reserve(CSEBlocks.size()); 4856 for (BasicBlock *BB : CSEBlocks) 4857 if (DomTreeNode *N = DT->getNode(BB)) { 4858 assert(DT->isReachableFromEntry(N)); 4859 CSEWorkList.push_back(N); 4860 } 4861 4862 // Sort blocks by domination. This ensures we visit a block after all blocks 4863 // dominating it are visited. 4864 llvm::stable_sort(CSEWorkList, 4865 [this](const DomTreeNode *A, const DomTreeNode *B) { 4866 return DT->properlyDominates(A, B); 4867 }); 4868 4869 // Perform O(N^2) search over the gather sequences and merge identical 4870 // instructions. TODO: We can further optimize this scan if we split the 4871 // instructions into different buckets based on the insert lane. 4872 SmallVector<Instruction *, 16> Visited; 4873 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 4874 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 4875 "Worklist not sorted properly!"); 4876 BasicBlock *BB = (*I)->getBlock(); 4877 // For all instructions in blocks containing gather sequences: 4878 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 4879 Instruction *In = &*it++; 4880 if (isDeleted(In)) 4881 continue; 4882 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 4883 continue; 4884 4885 // Check if we can replace this instruction with any of the 4886 // visited instructions. 4887 for (Instruction *v : Visited) { 4888 if (In->isIdenticalTo(v) && 4889 DT->dominates(v->getParent(), In->getParent())) { 4890 In->replaceAllUsesWith(v); 4891 eraseInstruction(In); 4892 In = nullptr; 4893 break; 4894 } 4895 } 4896 if (In) { 4897 assert(!is_contained(Visited, In)); 4898 Visited.push_back(In); 4899 } 4900 } 4901 } 4902 CSEBlocks.clear(); 4903 GatherSeq.clear(); 4904 } 4905 4906 // Groups the instructions to a bundle (which is then a single scheduling entity) 4907 // and schedules instructions until the bundle gets ready. 4908 Optional<BoUpSLP::ScheduleData *> 4909 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 4910 const InstructionsState &S) { 4911 if (isa<PHINode>(S.OpValue)) 4912 return nullptr; 4913 4914 // Initialize the instruction bundle. 4915 Instruction *OldScheduleEnd = ScheduleEnd; 4916 ScheduleData *PrevInBundle = nullptr; 4917 ScheduleData *Bundle = nullptr; 4918 bool ReSchedule = false; 4919 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 4920 4921 // Make sure that the scheduling region contains all 4922 // instructions of the bundle. 4923 for (Value *V : VL) { 4924 if (!extendSchedulingRegion(V, S)) 4925 return None; 4926 } 4927 4928 for (Value *V : VL) { 4929 ScheduleData *BundleMember = getScheduleData(V); 4930 assert(BundleMember && 4931 "no ScheduleData for bundle member (maybe not in same basic block)"); 4932 if (BundleMember->IsScheduled) { 4933 // A bundle member was scheduled as single instruction before and now 4934 // needs to be scheduled as part of the bundle. We just get rid of the 4935 // existing schedule. 4936 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 4937 << " was already scheduled\n"); 4938 ReSchedule = true; 4939 } 4940 assert(BundleMember->isSchedulingEntity() && 4941 "bundle member already part of other bundle"); 4942 if (PrevInBundle) { 4943 PrevInBundle->NextInBundle = BundleMember; 4944 } else { 4945 Bundle = BundleMember; 4946 } 4947 BundleMember->UnscheduledDepsInBundle = 0; 4948 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 4949 4950 // Group the instructions to a bundle. 4951 BundleMember->FirstInBundle = Bundle; 4952 PrevInBundle = BundleMember; 4953 } 4954 if (ScheduleEnd != OldScheduleEnd) { 4955 // The scheduling region got new instructions at the lower end (or it is a 4956 // new region for the first bundle). This makes it necessary to 4957 // recalculate all dependencies. 4958 // It is seldom that this needs to be done a second time after adding the 4959 // initial bundle to the region. 4960 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 4961 doForAllOpcodes(I, [](ScheduleData *SD) { 4962 SD->clearDependencies(); 4963 }); 4964 } 4965 ReSchedule = true; 4966 } 4967 if (ReSchedule) { 4968 resetSchedule(); 4969 initialFillReadyList(ReadyInsts); 4970 } 4971 assert(Bundle && "Failed to find schedule bundle"); 4972 4973 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 4974 << BB->getName() << "\n"); 4975 4976 calculateDependencies(Bundle, true, SLP); 4977 4978 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 4979 // means that there are no cyclic dependencies and we can schedule it. 4980 // Note that's important that we don't "schedule" the bundle yet (see 4981 // cancelScheduling). 4982 while (!Bundle->isReady() && !ReadyInsts.empty()) { 4983 4984 ScheduleData *pickedSD = ReadyInsts.back(); 4985 ReadyInsts.pop_back(); 4986 4987 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 4988 schedule(pickedSD, ReadyInsts); 4989 } 4990 } 4991 if (!Bundle->isReady()) { 4992 cancelScheduling(VL, S.OpValue); 4993 return None; 4994 } 4995 return Bundle; 4996 } 4997 4998 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 4999 Value *OpValue) { 5000 if (isa<PHINode>(OpValue)) 5001 return; 5002 5003 ScheduleData *Bundle = getScheduleData(OpValue); 5004 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 5005 assert(!Bundle->IsScheduled && 5006 "Can't cancel bundle which is already scheduled"); 5007 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 5008 "tried to unbundle something which is not a bundle"); 5009 5010 // Un-bundle: make single instructions out of the bundle. 5011 ScheduleData *BundleMember = Bundle; 5012 while (BundleMember) { 5013 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 5014 BundleMember->FirstInBundle = BundleMember; 5015 ScheduleData *Next = BundleMember->NextInBundle; 5016 BundleMember->NextInBundle = nullptr; 5017 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 5018 if (BundleMember->UnscheduledDepsInBundle == 0) { 5019 ReadyInsts.insert(BundleMember); 5020 } 5021 BundleMember = Next; 5022 } 5023 } 5024 5025 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 5026 // Allocate a new ScheduleData for the instruction. 5027 if (ChunkPos >= ChunkSize) { 5028 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 5029 ChunkPos = 0; 5030 } 5031 return &(ScheduleDataChunks.back()[ChunkPos++]); 5032 } 5033 5034 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 5035 const InstructionsState &S) { 5036 if (getScheduleData(V, isOneOf(S, V))) 5037 return true; 5038 Instruction *I = dyn_cast<Instruction>(V); 5039 assert(I && "bundle member must be an instruction"); 5040 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 5041 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 5042 ScheduleData *ISD = getScheduleData(I); 5043 if (!ISD) 5044 return false; 5045 assert(isInSchedulingRegion(ISD) && 5046 "ScheduleData not in scheduling region"); 5047 ScheduleData *SD = allocateScheduleDataChunks(); 5048 SD->Inst = I; 5049 SD->init(SchedulingRegionID, S.OpValue); 5050 ExtraScheduleDataMap[I][S.OpValue] = SD; 5051 return true; 5052 }; 5053 if (CheckSheduleForI(I)) 5054 return true; 5055 if (!ScheduleStart) { 5056 // It's the first instruction in the new region. 5057 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 5058 ScheduleStart = I; 5059 ScheduleEnd = I->getNextNode(); 5060 if (isOneOf(S, I) != I) 5061 CheckSheduleForI(I); 5062 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5063 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 5064 return true; 5065 } 5066 // Search up and down at the same time, because we don't know if the new 5067 // instruction is above or below the existing scheduling region. 5068 BasicBlock::reverse_iterator UpIter = 5069 ++ScheduleStart->getIterator().getReverse(); 5070 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 5071 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 5072 BasicBlock::iterator LowerEnd = BB->end(); 5073 while (true) { 5074 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 5075 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 5076 return false; 5077 } 5078 5079 if (UpIter != UpperEnd) { 5080 if (&*UpIter == I) { 5081 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 5082 ScheduleStart = I; 5083 if (isOneOf(S, I) != I) 5084 CheckSheduleForI(I); 5085 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 5086 << "\n"); 5087 return true; 5088 } 5089 ++UpIter; 5090 } 5091 if (DownIter != LowerEnd) { 5092 if (&*DownIter == I) { 5093 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 5094 nullptr); 5095 ScheduleEnd = I->getNextNode(); 5096 if (isOneOf(S, I) != I) 5097 CheckSheduleForI(I); 5098 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5099 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I 5100 << "\n"); 5101 return true; 5102 } 5103 ++DownIter; 5104 } 5105 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 5106 "instruction not found in block"); 5107 } 5108 return true; 5109 } 5110 5111 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 5112 Instruction *ToI, 5113 ScheduleData *PrevLoadStore, 5114 ScheduleData *NextLoadStore) { 5115 ScheduleData *CurrentLoadStore = PrevLoadStore; 5116 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 5117 ScheduleData *SD = ScheduleDataMap[I]; 5118 if (!SD) { 5119 SD = allocateScheduleDataChunks(); 5120 ScheduleDataMap[I] = SD; 5121 SD->Inst = I; 5122 } 5123 assert(!isInSchedulingRegion(SD) && 5124 "new ScheduleData already in scheduling region"); 5125 SD->init(SchedulingRegionID, I); 5126 5127 if (I->mayReadOrWriteMemory() && 5128 (!isa<IntrinsicInst>(I) || 5129 cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) { 5130 // Update the linked list of memory accessing instructions. 5131 if (CurrentLoadStore) { 5132 CurrentLoadStore->NextLoadStore = SD; 5133 } else { 5134 FirstLoadStoreInRegion = SD; 5135 } 5136 CurrentLoadStore = SD; 5137 } 5138 } 5139 if (NextLoadStore) { 5140 if (CurrentLoadStore) 5141 CurrentLoadStore->NextLoadStore = NextLoadStore; 5142 } else { 5143 LastLoadStoreInRegion = CurrentLoadStore; 5144 } 5145 } 5146 5147 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 5148 bool InsertInReadyList, 5149 BoUpSLP *SLP) { 5150 assert(SD->isSchedulingEntity()); 5151 5152 SmallVector<ScheduleData *, 10> WorkList; 5153 WorkList.push_back(SD); 5154 5155 while (!WorkList.empty()) { 5156 ScheduleData *SD = WorkList.back(); 5157 WorkList.pop_back(); 5158 5159 ScheduleData *BundleMember = SD; 5160 while (BundleMember) { 5161 assert(isInSchedulingRegion(BundleMember)); 5162 if (!BundleMember->hasValidDependencies()) { 5163 5164 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 5165 << "\n"); 5166 BundleMember->Dependencies = 0; 5167 BundleMember->resetUnscheduledDeps(); 5168 5169 // Handle def-use chain dependencies. 5170 if (BundleMember->OpValue != BundleMember->Inst) { 5171 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 5172 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5173 BundleMember->Dependencies++; 5174 ScheduleData *DestBundle = UseSD->FirstInBundle; 5175 if (!DestBundle->IsScheduled) 5176 BundleMember->incrementUnscheduledDeps(1); 5177 if (!DestBundle->hasValidDependencies()) 5178 WorkList.push_back(DestBundle); 5179 } 5180 } else { 5181 for (User *U : BundleMember->Inst->users()) { 5182 if (isa<Instruction>(U)) { 5183 ScheduleData *UseSD = getScheduleData(U); 5184 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5185 BundleMember->Dependencies++; 5186 ScheduleData *DestBundle = UseSD->FirstInBundle; 5187 if (!DestBundle->IsScheduled) 5188 BundleMember->incrementUnscheduledDeps(1); 5189 if (!DestBundle->hasValidDependencies()) 5190 WorkList.push_back(DestBundle); 5191 } 5192 } else { 5193 // I'm not sure if this can ever happen. But we need to be safe. 5194 // This lets the instruction/bundle never be scheduled and 5195 // eventually disable vectorization. 5196 BundleMember->Dependencies++; 5197 BundleMember->incrementUnscheduledDeps(1); 5198 } 5199 } 5200 } 5201 5202 // Handle the memory dependencies. 5203 ScheduleData *DepDest = BundleMember->NextLoadStore; 5204 if (DepDest) { 5205 Instruction *SrcInst = BundleMember->Inst; 5206 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 5207 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 5208 unsigned numAliased = 0; 5209 unsigned DistToSrc = 1; 5210 5211 while (DepDest) { 5212 assert(isInSchedulingRegion(DepDest)); 5213 5214 // We have two limits to reduce the complexity: 5215 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 5216 // SLP->isAliased (which is the expensive part in this loop). 5217 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 5218 // the whole loop (even if the loop is fast, it's quadratic). 5219 // It's important for the loop break condition (see below) to 5220 // check this limit even between two read-only instructions. 5221 if (DistToSrc >= MaxMemDepDistance || 5222 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 5223 (numAliased >= AliasedCheckLimit || 5224 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 5225 5226 // We increment the counter only if the locations are aliased 5227 // (instead of counting all alias checks). This gives a better 5228 // balance between reduced runtime and accurate dependencies. 5229 numAliased++; 5230 5231 DepDest->MemoryDependencies.push_back(BundleMember); 5232 BundleMember->Dependencies++; 5233 ScheduleData *DestBundle = DepDest->FirstInBundle; 5234 if (!DestBundle->IsScheduled) { 5235 BundleMember->incrementUnscheduledDeps(1); 5236 } 5237 if (!DestBundle->hasValidDependencies()) { 5238 WorkList.push_back(DestBundle); 5239 } 5240 } 5241 DepDest = DepDest->NextLoadStore; 5242 5243 // Example, explaining the loop break condition: Let's assume our 5244 // starting instruction is i0 and MaxMemDepDistance = 3. 5245 // 5246 // +--------v--v--v 5247 // i0,i1,i2,i3,i4,i5,i6,i7,i8 5248 // +--------^--^--^ 5249 // 5250 // MaxMemDepDistance let us stop alias-checking at i3 and we add 5251 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 5252 // Previously we already added dependencies from i3 to i6,i7,i8 5253 // (because of MaxMemDepDistance). As we added a dependency from 5254 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 5255 // and we can abort this loop at i6. 5256 if (DistToSrc >= 2 * MaxMemDepDistance) 5257 break; 5258 DistToSrc++; 5259 } 5260 } 5261 } 5262 BundleMember = BundleMember->NextInBundle; 5263 } 5264 if (InsertInReadyList && SD->isReady()) { 5265 ReadyInsts.push_back(SD); 5266 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 5267 << "\n"); 5268 } 5269 } 5270 } 5271 5272 void BoUpSLP::BlockScheduling::resetSchedule() { 5273 assert(ScheduleStart && 5274 "tried to reset schedule on block which has not been scheduled"); 5275 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 5276 doForAllOpcodes(I, [&](ScheduleData *SD) { 5277 assert(isInSchedulingRegion(SD) && 5278 "ScheduleData not in scheduling region"); 5279 SD->IsScheduled = false; 5280 SD->resetUnscheduledDeps(); 5281 }); 5282 } 5283 ReadyInsts.clear(); 5284 } 5285 5286 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 5287 if (!BS->ScheduleStart) 5288 return; 5289 5290 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 5291 5292 BS->resetSchedule(); 5293 5294 // For the real scheduling we use a more sophisticated ready-list: it is 5295 // sorted by the original instruction location. This lets the final schedule 5296 // be as close as possible to the original instruction order. 5297 struct ScheduleDataCompare { 5298 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 5299 return SD2->SchedulingPriority < SD1->SchedulingPriority; 5300 } 5301 }; 5302 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 5303 5304 // Ensure that all dependency data is updated and fill the ready-list with 5305 // initial instructions. 5306 int Idx = 0; 5307 int NumToSchedule = 0; 5308 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 5309 I = I->getNextNode()) { 5310 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 5311 assert(SD->isPartOfBundle() == 5312 (getTreeEntry(SD->Inst) != nullptr) && 5313 "scheduler and vectorizer bundle mismatch"); 5314 SD->FirstInBundle->SchedulingPriority = Idx++; 5315 if (SD->isSchedulingEntity()) { 5316 BS->calculateDependencies(SD, false, this); 5317 NumToSchedule++; 5318 } 5319 }); 5320 } 5321 BS->initialFillReadyList(ReadyInsts); 5322 5323 Instruction *LastScheduledInst = BS->ScheduleEnd; 5324 5325 // Do the "real" scheduling. 5326 while (!ReadyInsts.empty()) { 5327 ScheduleData *picked = *ReadyInsts.begin(); 5328 ReadyInsts.erase(ReadyInsts.begin()); 5329 5330 // Move the scheduled instruction(s) to their dedicated places, if not 5331 // there yet. 5332 ScheduleData *BundleMember = picked; 5333 while (BundleMember) { 5334 Instruction *pickedInst = BundleMember->Inst; 5335 if (LastScheduledInst->getNextNode() != pickedInst) { 5336 BS->BB->getInstList().remove(pickedInst); 5337 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 5338 pickedInst); 5339 } 5340 LastScheduledInst = pickedInst; 5341 BundleMember = BundleMember->NextInBundle; 5342 } 5343 5344 BS->schedule(picked, ReadyInsts); 5345 NumToSchedule--; 5346 } 5347 assert(NumToSchedule == 0 && "could not schedule all instructions"); 5348 5349 // Avoid duplicate scheduling of the block. 5350 BS->ScheduleStart = nullptr; 5351 } 5352 5353 unsigned BoUpSLP::getVectorElementSize(Value *V) { 5354 // If V is a store, just return the width of the stored value without 5355 // traversing the expression tree. This is the common case. 5356 if (auto *Store = dyn_cast<StoreInst>(V)) 5357 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 5358 5359 auto E = InstrElementSize.find(V); 5360 if (E != InstrElementSize.end()) 5361 return E->second; 5362 5363 // If V is not a store, we can traverse the expression tree to find loads 5364 // that feed it. The type of the loaded value may indicate a more suitable 5365 // width than V's type. We want to base the vector element size on the width 5366 // of memory operations where possible. 5367 SmallVector<Instruction *, 16> Worklist; 5368 SmallPtrSet<Instruction *, 16> Visited; 5369 if (auto *I = dyn_cast<Instruction>(V)) { 5370 Worklist.push_back(I); 5371 Visited.insert(I); 5372 } 5373 5374 // Traverse the expression tree in bottom-up order looking for loads. If we 5375 // encounter an instruction we don't yet handle, we give up. 5376 auto MaxWidth = 0u; 5377 auto FoundUnknownInst = false; 5378 while (!Worklist.empty() && !FoundUnknownInst) { 5379 auto *I = Worklist.pop_back_val(); 5380 5381 // We should only be looking at scalar instructions here. If the current 5382 // instruction has a vector type, give up. 5383 auto *Ty = I->getType(); 5384 if (isa<VectorType>(Ty)) 5385 FoundUnknownInst = true; 5386 5387 // If the current instruction is a load, update MaxWidth to reflect the 5388 // width of the loaded value. 5389 else if (isa<LoadInst>(I)) 5390 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 5391 5392 // Otherwise, we need to visit the operands of the instruction. We only 5393 // handle the interesting cases from buildTree here. If an operand is an 5394 // instruction we haven't yet visited, we add it to the worklist. 5395 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5396 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 5397 for (Use &U : I->operands()) 5398 if (auto *J = dyn_cast<Instruction>(U.get())) 5399 if (Visited.insert(J).second) 5400 Worklist.push_back(J); 5401 } 5402 5403 // If we don't yet handle the instruction, give up. 5404 else 5405 FoundUnknownInst = true; 5406 } 5407 5408 int Width = MaxWidth; 5409 // If we didn't encounter a memory access in the expression tree, or if we 5410 // gave up for some reason, just return the width of V. Otherwise, return the 5411 // maximum width we found. 5412 if (!MaxWidth || FoundUnknownInst) 5413 Width = DL->getTypeSizeInBits(V->getType()); 5414 5415 for (Instruction *I : Visited) 5416 InstrElementSize[I] = Width; 5417 5418 return Width; 5419 } 5420 5421 // Determine if a value V in a vectorizable expression Expr can be demoted to a 5422 // smaller type with a truncation. We collect the values that will be demoted 5423 // in ToDemote and additional roots that require investigating in Roots. 5424 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 5425 SmallVectorImpl<Value *> &ToDemote, 5426 SmallVectorImpl<Value *> &Roots) { 5427 // We can always demote constants. 5428 if (isa<Constant>(V)) { 5429 ToDemote.push_back(V); 5430 return true; 5431 } 5432 5433 // If the value is not an instruction in the expression with only one use, it 5434 // cannot be demoted. 5435 auto *I = dyn_cast<Instruction>(V); 5436 if (!I || !I->hasOneUse() || !Expr.count(I)) 5437 return false; 5438 5439 switch (I->getOpcode()) { 5440 5441 // We can always demote truncations and extensions. Since truncations can 5442 // seed additional demotion, we save the truncated value. 5443 case Instruction::Trunc: 5444 Roots.push_back(I->getOperand(0)); 5445 break; 5446 case Instruction::ZExt: 5447 case Instruction::SExt: 5448 break; 5449 5450 // We can demote certain binary operations if we can demote both of their 5451 // operands. 5452 case Instruction::Add: 5453 case Instruction::Sub: 5454 case Instruction::Mul: 5455 case Instruction::And: 5456 case Instruction::Or: 5457 case Instruction::Xor: 5458 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 5459 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 5460 return false; 5461 break; 5462 5463 // We can demote selects if we can demote their true and false values. 5464 case Instruction::Select: { 5465 SelectInst *SI = cast<SelectInst>(I); 5466 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 5467 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 5468 return false; 5469 break; 5470 } 5471 5472 // We can demote phis if we can demote all their incoming operands. Note that 5473 // we don't need to worry about cycles since we ensure single use above. 5474 case Instruction::PHI: { 5475 PHINode *PN = cast<PHINode>(I); 5476 for (Value *IncValue : PN->incoming_values()) 5477 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 5478 return false; 5479 break; 5480 } 5481 5482 // Otherwise, conservatively give up. 5483 default: 5484 return false; 5485 } 5486 5487 // Record the value that we can demote. 5488 ToDemote.push_back(V); 5489 return true; 5490 } 5491 5492 void BoUpSLP::computeMinimumValueSizes() { 5493 // If there are no external uses, the expression tree must be rooted by a 5494 // store. We can't demote in-memory values, so there is nothing to do here. 5495 if (ExternalUses.empty()) 5496 return; 5497 5498 // We only attempt to truncate integer expressions. 5499 auto &TreeRoot = VectorizableTree[0]->Scalars; 5500 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 5501 if (!TreeRootIT) 5502 return; 5503 5504 // If the expression is not rooted by a store, these roots should have 5505 // external uses. We will rely on InstCombine to rewrite the expression in 5506 // the narrower type. However, InstCombine only rewrites single-use values. 5507 // This means that if a tree entry other than a root is used externally, it 5508 // must have multiple uses and InstCombine will not rewrite it. The code 5509 // below ensures that only the roots are used externally. 5510 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 5511 for (auto &EU : ExternalUses) 5512 if (!Expr.erase(EU.Scalar)) 5513 return; 5514 if (!Expr.empty()) 5515 return; 5516 5517 // Collect the scalar values of the vectorizable expression. We will use this 5518 // context to determine which values can be demoted. If we see a truncation, 5519 // we mark it as seeding another demotion. 5520 for (auto &EntryPtr : VectorizableTree) 5521 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 5522 5523 // Ensure the roots of the vectorizable tree don't form a cycle. They must 5524 // have a single external user that is not in the vectorizable tree. 5525 for (auto *Root : TreeRoot) 5526 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 5527 return; 5528 5529 // Conservatively determine if we can actually truncate the roots of the 5530 // expression. Collect the values that can be demoted in ToDemote and 5531 // additional roots that require investigating in Roots. 5532 SmallVector<Value *, 32> ToDemote; 5533 SmallVector<Value *, 4> Roots; 5534 for (auto *Root : TreeRoot) 5535 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 5536 return; 5537 5538 // The maximum bit width required to represent all the values that can be 5539 // demoted without loss of precision. It would be safe to truncate the roots 5540 // of the expression to this width. 5541 auto MaxBitWidth = 8u; 5542 5543 // We first check if all the bits of the roots are demanded. If they're not, 5544 // we can truncate the roots to this narrower type. 5545 for (auto *Root : TreeRoot) { 5546 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 5547 MaxBitWidth = std::max<unsigned>( 5548 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 5549 } 5550 5551 // True if the roots can be zero-extended back to their original type, rather 5552 // than sign-extended. We know that if the leading bits are not demanded, we 5553 // can safely zero-extend. So we initialize IsKnownPositive to True. 5554 bool IsKnownPositive = true; 5555 5556 // If all the bits of the roots are demanded, we can try a little harder to 5557 // compute a narrower type. This can happen, for example, if the roots are 5558 // getelementptr indices. InstCombine promotes these indices to the pointer 5559 // width. Thus, all their bits are technically demanded even though the 5560 // address computation might be vectorized in a smaller type. 5561 // 5562 // We start by looking at each entry that can be demoted. We compute the 5563 // maximum bit width required to store the scalar by using ValueTracking to 5564 // compute the number of high-order bits we can truncate. 5565 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 5566 llvm::all_of(TreeRoot, [](Value *R) { 5567 assert(R->hasOneUse() && "Root should have only one use!"); 5568 return isa<GetElementPtrInst>(R->user_back()); 5569 })) { 5570 MaxBitWidth = 8u; 5571 5572 // Determine if the sign bit of all the roots is known to be zero. If not, 5573 // IsKnownPositive is set to False. 5574 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 5575 KnownBits Known = computeKnownBits(R, *DL); 5576 return Known.isNonNegative(); 5577 }); 5578 5579 // Determine the maximum number of bits required to store the scalar 5580 // values. 5581 for (auto *Scalar : ToDemote) { 5582 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 5583 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 5584 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 5585 } 5586 5587 // If we can't prove that the sign bit is zero, we must add one to the 5588 // maximum bit width to account for the unknown sign bit. This preserves 5589 // the existing sign bit so we can safely sign-extend the root back to the 5590 // original type. Otherwise, if we know the sign bit is zero, we will 5591 // zero-extend the root instead. 5592 // 5593 // FIXME: This is somewhat suboptimal, as there will be cases where adding 5594 // one to the maximum bit width will yield a larger-than-necessary 5595 // type. In general, we need to add an extra bit only if we can't 5596 // prove that the upper bit of the original type is equal to the 5597 // upper bit of the proposed smaller type. If these two bits are the 5598 // same (either zero or one) we know that sign-extending from the 5599 // smaller type will result in the same value. Here, since we can't 5600 // yet prove this, we are just making the proposed smaller type 5601 // larger to ensure correctness. 5602 if (!IsKnownPositive) 5603 ++MaxBitWidth; 5604 } 5605 5606 // Round MaxBitWidth up to the next power-of-two. 5607 if (!isPowerOf2_64(MaxBitWidth)) 5608 MaxBitWidth = NextPowerOf2(MaxBitWidth); 5609 5610 // If the maximum bit width we compute is less than the with of the roots' 5611 // type, we can proceed with the narrowing. Otherwise, do nothing. 5612 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 5613 return; 5614 5615 // If we can truncate the root, we must collect additional values that might 5616 // be demoted as a result. That is, those seeded by truncations we will 5617 // modify. 5618 while (!Roots.empty()) 5619 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 5620 5621 // Finally, map the values we can demote to the maximum bit with we computed. 5622 for (auto *Scalar : ToDemote) 5623 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 5624 } 5625 5626 namespace { 5627 5628 /// The SLPVectorizer Pass. 5629 struct SLPVectorizer : public FunctionPass { 5630 SLPVectorizerPass Impl; 5631 5632 /// Pass identification, replacement for typeid 5633 static char ID; 5634 5635 explicit SLPVectorizer() : FunctionPass(ID) { 5636 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 5637 } 5638 5639 bool doInitialization(Module &M) override { 5640 return false; 5641 } 5642 5643 bool runOnFunction(Function &F) override { 5644 if (skipFunction(F)) 5645 return false; 5646 5647 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5648 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 5649 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 5650 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 5651 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 5652 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5653 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5654 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 5655 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 5656 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 5657 5658 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5659 } 5660 5661 void getAnalysisUsage(AnalysisUsage &AU) const override { 5662 FunctionPass::getAnalysisUsage(AU); 5663 AU.addRequired<AssumptionCacheTracker>(); 5664 AU.addRequired<ScalarEvolutionWrapperPass>(); 5665 AU.addRequired<AAResultsWrapperPass>(); 5666 AU.addRequired<TargetTransformInfoWrapperPass>(); 5667 AU.addRequired<LoopInfoWrapperPass>(); 5668 AU.addRequired<DominatorTreeWrapperPass>(); 5669 AU.addRequired<DemandedBitsWrapperPass>(); 5670 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 5671 AU.addRequired<InjectTLIMappingsLegacy>(); 5672 AU.addPreserved<LoopInfoWrapperPass>(); 5673 AU.addPreserved<DominatorTreeWrapperPass>(); 5674 AU.addPreserved<AAResultsWrapperPass>(); 5675 AU.addPreserved<GlobalsAAWrapperPass>(); 5676 AU.setPreservesCFG(); 5677 } 5678 }; 5679 5680 } // end anonymous namespace 5681 5682 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 5683 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 5684 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 5685 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 5686 auto *AA = &AM.getResult<AAManager>(F); 5687 auto *LI = &AM.getResult<LoopAnalysis>(F); 5688 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 5689 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 5690 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 5691 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 5692 5693 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5694 if (!Changed) 5695 return PreservedAnalyses::all(); 5696 5697 PreservedAnalyses PA; 5698 PA.preserveSet<CFGAnalyses>(); 5699 PA.preserve<AAManager>(); 5700 PA.preserve<GlobalsAA>(); 5701 return PA; 5702 } 5703 5704 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 5705 TargetTransformInfo *TTI_, 5706 TargetLibraryInfo *TLI_, AAResults *AA_, 5707 LoopInfo *LI_, DominatorTree *DT_, 5708 AssumptionCache *AC_, DemandedBits *DB_, 5709 OptimizationRemarkEmitter *ORE_) { 5710 if (!RunSLPVectorization) 5711 return false; 5712 SE = SE_; 5713 TTI = TTI_; 5714 TLI = TLI_; 5715 AA = AA_; 5716 LI = LI_; 5717 DT = DT_; 5718 AC = AC_; 5719 DB = DB_; 5720 DL = &F.getParent()->getDataLayout(); 5721 5722 Stores.clear(); 5723 GEPs.clear(); 5724 bool Changed = false; 5725 5726 // If the target claims to have no vector registers don't attempt 5727 // vectorization. 5728 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 5729 return false; 5730 5731 // Don't vectorize when the attribute NoImplicitFloat is used. 5732 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 5733 return false; 5734 5735 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 5736 5737 // Use the bottom up slp vectorizer to construct chains that start with 5738 // store instructions. 5739 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 5740 5741 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 5742 // delete instructions. 5743 5744 // Scan the blocks in the function in post order. 5745 for (auto BB : post_order(&F.getEntryBlock())) { 5746 collectSeedInstructions(BB); 5747 5748 // Vectorize trees that end at stores. 5749 if (!Stores.empty()) { 5750 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 5751 << " underlying objects.\n"); 5752 Changed |= vectorizeStoreChains(R); 5753 } 5754 5755 // Vectorize trees that end at reductions. 5756 Changed |= vectorizeChainsInBlock(BB, R); 5757 5758 // Vectorize the index computations of getelementptr instructions. This 5759 // is primarily intended to catch gather-like idioms ending at 5760 // non-consecutive loads. 5761 if (!GEPs.empty()) { 5762 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 5763 << " underlying objects.\n"); 5764 Changed |= vectorizeGEPIndices(BB, R); 5765 } 5766 } 5767 5768 if (Changed) { 5769 R.optimizeGatherSequence(); 5770 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 5771 } 5772 return Changed; 5773 } 5774 5775 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 5776 unsigned Idx) { 5777 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 5778 << "\n"); 5779 const unsigned Sz = R.getVectorElementSize(Chain[0]); 5780 const unsigned MinVF = R.getMinVecRegSize() / Sz; 5781 unsigned VF = Chain.size(); 5782 5783 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 5784 return false; 5785 5786 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 5787 << "\n"); 5788 5789 R.buildTree(Chain); 5790 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 5791 // TODO: Handle orders of size less than number of elements in the vector. 5792 if (Order && Order->size() == Chain.size()) { 5793 // TODO: reorder tree nodes without tree rebuilding. 5794 SmallVector<Value *, 4> ReorderedOps(Chain.rbegin(), Chain.rend()); 5795 llvm::transform(*Order, ReorderedOps.begin(), 5796 [Chain](const unsigned Idx) { return Chain[Idx]; }); 5797 R.buildTree(ReorderedOps); 5798 } 5799 if (R.isTreeTinyAndNotFullyVectorizable()) 5800 return false; 5801 if (R.isLoadCombineCandidate()) 5802 return false; 5803 5804 R.computeMinimumValueSizes(); 5805 5806 int Cost = R.getTreeCost(); 5807 5808 LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); 5809 if (Cost < -SLPCostThreshold) { 5810 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 5811 5812 using namespace ore; 5813 5814 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 5815 cast<StoreInst>(Chain[0])) 5816 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 5817 << " and with tree size " 5818 << NV("TreeSize", R.getTreeSize())); 5819 5820 R.vectorizeTree(); 5821 return true; 5822 } 5823 5824 return false; 5825 } 5826 5827 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 5828 BoUpSLP &R) { 5829 // We may run into multiple chains that merge into a single chain. We mark the 5830 // stores that we vectorized so that we don't visit the same store twice. 5831 BoUpSLP::ValueSet VectorizedStores; 5832 bool Changed = false; 5833 5834 int E = Stores.size(); 5835 SmallBitVector Tails(E, false); 5836 SmallVector<int, 16> ConsecutiveChain(E, E + 1); 5837 int MaxIter = MaxStoreLookup.getValue(); 5838 int IterCnt; 5839 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 5840 &ConsecutiveChain](int K, int Idx) { 5841 if (IterCnt >= MaxIter) 5842 return true; 5843 ++IterCnt; 5844 if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) 5845 return false; 5846 5847 Tails.set(Idx); 5848 ConsecutiveChain[K] = Idx; 5849 return true; 5850 }; 5851 // Do a quadratic search on all of the given stores in reverse order and find 5852 // all of the pairs of stores that follow each other. 5853 for (int Idx = E - 1; Idx >= 0; --Idx) { 5854 // If a store has multiple consecutive store candidates, search according 5855 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 5856 // This is because usually pairing with immediate succeeding or preceding 5857 // candidate create the best chance to find slp vectorization opportunity. 5858 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 5859 IterCnt = 0; 5860 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 5861 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 5862 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 5863 break; 5864 } 5865 5866 // For stores that start but don't end a link in the chain: 5867 for (int Cnt = E; Cnt > 0; --Cnt) { 5868 int I = Cnt - 1; 5869 if (ConsecutiveChain[I] == E + 1 || Tails.test(I)) 5870 continue; 5871 // We found a store instr that starts a chain. Now follow the chain and try 5872 // to vectorize it. 5873 BoUpSLP::ValueList Operands; 5874 // Collect the chain into a list. 5875 while (I != E + 1 && !VectorizedStores.count(Stores[I])) { 5876 Operands.push_back(Stores[I]); 5877 // Move to the next value in the chain. 5878 I = ConsecutiveChain[I]; 5879 } 5880 5881 // If a vector register can't hold 1 element, we are done. 5882 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 5883 unsigned EltSize = R.getVectorElementSize(Stores[0]); 5884 if (MaxVecRegSize % EltSize != 0) 5885 continue; 5886 5887 unsigned MaxElts = MaxVecRegSize / EltSize; 5888 // FIXME: Is division-by-2 the correct step? Should we assert that the 5889 // register size is a power-of-2? 5890 unsigned StartIdx = 0; 5891 for (unsigned Size = llvm::PowerOf2Ceil(MaxElts); Size >= 2; Size /= 2) { 5892 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 5893 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 5894 if (!VectorizedStores.count(Slice.front()) && 5895 !VectorizedStores.count(Slice.back()) && 5896 vectorizeStoreChain(Slice, R, Cnt)) { 5897 // Mark the vectorized stores so that we don't vectorize them again. 5898 VectorizedStores.insert(Slice.begin(), Slice.end()); 5899 Changed = true; 5900 // If we vectorized initial block, no need to try to vectorize it 5901 // again. 5902 if (Cnt == StartIdx) 5903 StartIdx += Size; 5904 Cnt += Size; 5905 continue; 5906 } 5907 ++Cnt; 5908 } 5909 // Check if the whole array was vectorized already - exit. 5910 if (StartIdx >= Operands.size()) 5911 break; 5912 } 5913 } 5914 5915 return Changed; 5916 } 5917 5918 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 5919 // Initialize the collections. We will make a single pass over the block. 5920 Stores.clear(); 5921 GEPs.clear(); 5922 5923 // Visit the store and getelementptr instructions in BB and organize them in 5924 // Stores and GEPs according to the underlying objects of their pointer 5925 // operands. 5926 for (Instruction &I : *BB) { 5927 // Ignore store instructions that are volatile or have a pointer operand 5928 // that doesn't point to a scalar type. 5929 if (auto *SI = dyn_cast<StoreInst>(&I)) { 5930 if (!SI->isSimple()) 5931 continue; 5932 if (!isValidElementType(SI->getValueOperand()->getType())) 5933 continue; 5934 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 5935 } 5936 5937 // Ignore getelementptr instructions that have more than one index, a 5938 // constant index, or a pointer operand that doesn't point to a scalar 5939 // type. 5940 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 5941 auto Idx = GEP->idx_begin()->get(); 5942 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 5943 continue; 5944 if (!isValidElementType(Idx->getType())) 5945 continue; 5946 if (GEP->getType()->isVectorTy()) 5947 continue; 5948 GEPs[GEP->getPointerOperand()].push_back(GEP); 5949 } 5950 } 5951 } 5952 5953 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 5954 if (!A || !B) 5955 return false; 5956 Value *VL[] = {A, B}; 5957 return tryToVectorizeList(VL, R, /*AllowReorder=*/true); 5958 } 5959 5960 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 5961 bool AllowReorder, 5962 ArrayRef<Value *> InsertUses) { 5963 if (VL.size() < 2) 5964 return false; 5965 5966 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 5967 << VL.size() << ".\n"); 5968 5969 // Check that all of the parts are instructions of the same type, 5970 // we permit an alternate opcode via InstructionsState. 5971 InstructionsState S = getSameOpcode(VL); 5972 if (!S.getOpcode()) 5973 return false; 5974 5975 Instruction *I0 = cast<Instruction>(S.OpValue); 5976 // Make sure invalid types (including vector type) are rejected before 5977 // determining vectorization factor for scalar instructions. 5978 for (Value *V : VL) { 5979 Type *Ty = V->getType(); 5980 if (!isValidElementType(Ty)) { 5981 // NOTE: the following will give user internal llvm type name, which may 5982 // not be useful. 5983 R.getORE()->emit([&]() { 5984 std::string type_str; 5985 llvm::raw_string_ostream rso(type_str); 5986 Ty->print(rso); 5987 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 5988 << "Cannot SLP vectorize list: type " 5989 << rso.str() + " is unsupported by vectorizer"; 5990 }); 5991 return false; 5992 } 5993 } 5994 5995 unsigned Sz = R.getVectorElementSize(I0); 5996 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 5997 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 5998 if (MaxVF < 2) { 5999 R.getORE()->emit([&]() { 6000 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 6001 << "Cannot SLP vectorize list: vectorization factor " 6002 << "less than 2 is not supported"; 6003 }); 6004 return false; 6005 } 6006 6007 bool Changed = false; 6008 bool CandidateFound = false; 6009 int MinCost = SLPCostThreshold; 6010 6011 bool CompensateUseCost = 6012 !InsertUses.empty() && llvm::all_of(InsertUses, [](const Value *V) { 6013 return V && isa<InsertElementInst>(V); 6014 }); 6015 assert((!CompensateUseCost || InsertUses.size() == VL.size()) && 6016 "Each scalar expected to have an associated InsertElement user."); 6017 6018 unsigned NextInst = 0, MaxInst = VL.size(); 6019 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 6020 // No actual vectorization should happen, if number of parts is the same as 6021 // provided vectorization factor (i.e. the scalar type is used for vector 6022 // code during codegen). 6023 auto *VecTy = FixedVectorType::get(VL[0]->getType(), VF); 6024 if (TTI->getNumberOfParts(VecTy) == VF) 6025 continue; 6026 for (unsigned I = NextInst; I < MaxInst; ++I) { 6027 unsigned OpsWidth = 0; 6028 6029 if (I + VF > MaxInst) 6030 OpsWidth = MaxInst - I; 6031 else 6032 OpsWidth = VF; 6033 6034 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 6035 break; 6036 6037 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 6038 // Check that a previous iteration of this loop did not delete the Value. 6039 if (llvm::any_of(Ops, [&R](Value *V) { 6040 auto *I = dyn_cast<Instruction>(V); 6041 return I && R.isDeleted(I); 6042 })) 6043 continue; 6044 6045 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 6046 << "\n"); 6047 6048 R.buildTree(Ops); 6049 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 6050 // TODO: check if we can allow reordering for more cases. 6051 if (AllowReorder && Order) { 6052 // TODO: reorder tree nodes without tree rebuilding. 6053 // Conceptually, there is nothing actually preventing us from trying to 6054 // reorder a larger list. In fact, we do exactly this when vectorizing 6055 // reductions. However, at this point, we only expect to get here when 6056 // there are exactly two operations. 6057 assert(Ops.size() == 2); 6058 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 6059 R.buildTree(ReorderedOps, None); 6060 } 6061 if (R.isTreeTinyAndNotFullyVectorizable()) 6062 continue; 6063 6064 R.computeMinimumValueSizes(); 6065 int Cost = R.getTreeCost(); 6066 CandidateFound = true; 6067 if (CompensateUseCost) { 6068 // TODO: Use TTI's getScalarizationOverhead for sequence of inserts 6069 // rather than sum of single inserts as the latter may overestimate 6070 // cost. This work should imply improving cost estimation for extracts 6071 // that added in for external (for vectorization tree) users,i.e. that 6072 // part should also switch to same interface. 6073 // For example, the following case is projected code after SLP: 6074 // %4 = extractelement <4 x i64> %3, i32 0 6075 // %v0 = insertelement <4 x i64> undef, i64 %4, i32 0 6076 // %5 = extractelement <4 x i64> %3, i32 1 6077 // %v1 = insertelement <4 x i64> %v0, i64 %5, i32 1 6078 // %6 = extractelement <4 x i64> %3, i32 2 6079 // %v2 = insertelement <4 x i64> %v1, i64 %6, i32 2 6080 // %7 = extractelement <4 x i64> %3, i32 3 6081 // %v3 = insertelement <4 x i64> %v2, i64 %7, i32 3 6082 // 6083 // Extracts here added by SLP in order to feed users (the inserts) of 6084 // original scalars and contribute to "ExtractCost" at cost evaluation. 6085 // The inserts in turn form sequence to build an aggregate that 6086 // detected by findBuildAggregate routine. 6087 // SLP makes an assumption that such sequence will be optimized away 6088 // later (instcombine) so it tries to compensate ExctractCost with 6089 // cost of insert sequence. 6090 // Current per element cost calculation approach is not quite accurate 6091 // and tends to create bias toward favoring vectorization. 6092 // Switching to the TTI interface might help a bit. 6093 // Alternative solution could be pattern-match to detect a no-op or 6094 // shuffle. 6095 unsigned UserCost = 0; 6096 for (unsigned Lane = 0; Lane < OpsWidth; Lane++) { 6097 auto *IE = cast<InsertElementInst>(InsertUses[I + Lane]); 6098 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) 6099 UserCost += TTI->getVectorInstrCost( 6100 Instruction::InsertElement, IE->getType(), CI->getZExtValue()); 6101 } 6102 LLVM_DEBUG(dbgs() << "SLP: Compensate cost of users by: " << UserCost 6103 << ".\n"); 6104 Cost -= UserCost; 6105 } 6106 6107 MinCost = std::min(MinCost, Cost); 6108 6109 if (Cost < -SLPCostThreshold) { 6110 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 6111 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 6112 cast<Instruction>(Ops[0])) 6113 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 6114 << " and with tree size " 6115 << ore::NV("TreeSize", R.getTreeSize())); 6116 6117 R.vectorizeTree(); 6118 // Move to the next bundle. 6119 I += VF - 1; 6120 NextInst = I + 1; 6121 Changed = true; 6122 } 6123 } 6124 } 6125 6126 if (!Changed && CandidateFound) { 6127 R.getORE()->emit([&]() { 6128 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 6129 << "List vectorization was possible but not beneficial with cost " 6130 << ore::NV("Cost", MinCost) << " >= " 6131 << ore::NV("Treshold", -SLPCostThreshold); 6132 }); 6133 } else if (!Changed) { 6134 R.getORE()->emit([&]() { 6135 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 6136 << "Cannot SLP vectorize list: vectorization was impossible" 6137 << " with available vectorization factors"; 6138 }); 6139 } 6140 return Changed; 6141 } 6142 6143 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 6144 if (!I) 6145 return false; 6146 6147 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 6148 return false; 6149 6150 Value *P = I->getParent(); 6151 6152 // Vectorize in current basic block only. 6153 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 6154 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 6155 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 6156 return false; 6157 6158 // Try to vectorize V. 6159 if (tryToVectorizePair(Op0, Op1, R)) 6160 return true; 6161 6162 auto *A = dyn_cast<BinaryOperator>(Op0); 6163 auto *B = dyn_cast<BinaryOperator>(Op1); 6164 // Try to skip B. 6165 if (B && B->hasOneUse()) { 6166 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 6167 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 6168 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 6169 return true; 6170 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 6171 return true; 6172 } 6173 6174 // Try to skip A. 6175 if (A && A->hasOneUse()) { 6176 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 6177 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 6178 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 6179 return true; 6180 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 6181 return true; 6182 } 6183 return false; 6184 } 6185 6186 /// Generate a shuffle mask to be used in a reduction tree. 6187 /// 6188 /// \param VecLen The length of the vector to be reduced. 6189 /// \param NumEltsToRdx The number of elements that should be reduced in the 6190 /// vector. 6191 /// \param IsPairwise Whether the reduction is a pairwise or splitting 6192 /// reduction. A pairwise reduction will generate a mask of 6193 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 6194 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 6195 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 6196 static SmallVector<int, 32> createRdxShuffleMask(unsigned VecLen, 6197 unsigned NumEltsToRdx, 6198 bool IsPairwise, bool IsLeft) { 6199 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 6200 6201 SmallVector<int, 32> ShuffleMask(VecLen, -1); 6202 6203 if (IsPairwise) 6204 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 6205 for (unsigned i = 0; i != NumEltsToRdx; ++i) 6206 ShuffleMask[i] = 2 * i + !IsLeft; 6207 else 6208 // Move the upper half of the vector to the lower half. 6209 for (unsigned i = 0; i != NumEltsToRdx; ++i) 6210 ShuffleMask[i] = NumEltsToRdx + i; 6211 6212 return ShuffleMask; 6213 } 6214 6215 namespace { 6216 6217 /// Model horizontal reductions. 6218 /// 6219 /// A horizontal reduction is a tree of reduction operations (currently add and 6220 /// fadd) that has operations that can be put into a vector as its leaf. 6221 /// For example, this tree: 6222 /// 6223 /// mul mul mul mul 6224 /// \ / \ / 6225 /// + + 6226 /// \ / 6227 /// + 6228 /// This tree has "mul" as its reduced values and "+" as its reduction 6229 /// operations. A reduction might be feeding into a store or a binary operation 6230 /// feeding a phi. 6231 /// ... 6232 /// \ / 6233 /// + 6234 /// | 6235 /// phi += 6236 /// 6237 /// Or: 6238 /// ... 6239 /// \ / 6240 /// + 6241 /// | 6242 /// *p = 6243 /// 6244 class HorizontalReduction { 6245 using ReductionOpsType = SmallVector<Value *, 16>; 6246 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 6247 ReductionOpsListType ReductionOps; 6248 SmallVector<Value *, 32> ReducedVals; 6249 // Use map vector to make stable output. 6250 MapVector<Instruction *, Value *> ExtraArgs; 6251 6252 /// Kind of the reduction data. 6253 enum ReductionKind { 6254 RK_None, /// Not a reduction. 6255 RK_Arithmetic, /// Binary reduction data. 6256 RK_SMin, /// Signed minimum reduction data. 6257 RK_UMin, /// Unsigned minimum reduction data. 6258 RK_SMax, /// Signed maximum reduction data. 6259 RK_UMax, /// Unsigned maximum reduction data. 6260 }; 6261 6262 /// Contains info about operation, like its opcode, left and right operands. 6263 class OperationData { 6264 /// Opcode of the instruction. 6265 unsigned Opcode = 0; 6266 6267 /// Left operand of the reduction operation. 6268 Value *LHS = nullptr; 6269 6270 /// Right operand of the reduction operation. 6271 Value *RHS = nullptr; 6272 6273 /// Kind of the reduction operation. 6274 ReductionKind Kind = RK_None; 6275 6276 /// Checks if the reduction operation can be vectorized. 6277 bool isVectorizable() const { 6278 return LHS && RHS && 6279 // We currently only support add/mul/logical && min/max reductions. 6280 ((Kind == RK_Arithmetic && 6281 (Opcode == Instruction::Add || Opcode == Instruction::FAdd || 6282 Opcode == Instruction::Mul || Opcode == Instruction::FMul || 6283 Opcode == Instruction::And || Opcode == Instruction::Or || 6284 Opcode == Instruction::Xor)) || 6285 (Opcode == Instruction::ICmp && 6286 (Kind == RK_SMin || Kind == RK_SMax || 6287 Kind == RK_UMin || Kind == RK_UMax))); 6288 } 6289 6290 /// Creates reduction operation with the current opcode. 6291 Value *createOp(IRBuilder<> &Builder, const Twine &Name) const { 6292 assert(isVectorizable() && 6293 "Expected add|fadd or min/max reduction operation."); 6294 Value *Cmp = nullptr; 6295 switch (Kind) { 6296 case RK_Arithmetic: 6297 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 6298 Name); 6299 case RK_SMin: 6300 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6301 Cmp = Builder.CreateICmpSLT(LHS, RHS); 6302 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6303 case RK_SMax: 6304 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6305 Cmp = Builder.CreateICmpSGT(LHS, RHS); 6306 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6307 case RK_UMin: 6308 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6309 Cmp = Builder.CreateICmpULT(LHS, RHS); 6310 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6311 case RK_UMax: 6312 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6313 Cmp = Builder.CreateICmpUGT(LHS, RHS); 6314 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6315 case RK_None: 6316 break; 6317 } 6318 llvm_unreachable("Unknown reduction operation."); 6319 } 6320 6321 public: 6322 explicit OperationData() = default; 6323 6324 /// Construction for reduced values. They are identified by opcode only and 6325 /// don't have associated LHS/RHS values. 6326 explicit OperationData(Value *V) { 6327 if (auto *I = dyn_cast<Instruction>(V)) 6328 Opcode = I->getOpcode(); 6329 } 6330 6331 /// Constructor for reduction operations with opcode and its left and 6332 /// right operands. 6333 OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind) 6334 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind) { 6335 assert(Kind != RK_None && "One of the reduction operations is expected."); 6336 } 6337 6338 explicit operator bool() const { return Opcode; } 6339 6340 /// Return true if this operation is any kind of minimum or maximum. 6341 bool isMinMax() const { 6342 switch (Kind) { 6343 case RK_Arithmetic: 6344 return false; 6345 case RK_SMin: 6346 case RK_SMax: 6347 case RK_UMin: 6348 case RK_UMax: 6349 return true; 6350 case RK_None: 6351 break; 6352 } 6353 llvm_unreachable("Reduction kind is not set"); 6354 } 6355 6356 /// Get the index of the first operand. 6357 unsigned getFirstOperandIndex() const { 6358 assert(!!*this && "The opcode is not set."); 6359 // We allow calling this before 'Kind' is set, so handle that specially. 6360 if (Kind == RK_None) 6361 return 0; 6362 return isMinMax() ? 1 : 0; 6363 } 6364 6365 /// Total number of operands in the reduction operation. 6366 unsigned getNumberOfOperands() const { 6367 assert(Kind != RK_None && !!*this && LHS && RHS && 6368 "Expected reduction operation."); 6369 return isMinMax() ? 3 : 2; 6370 } 6371 6372 /// Checks if the operation has the same parent as \p P. 6373 bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const { 6374 assert(Kind != RK_None && !!*this && LHS && RHS && 6375 "Expected reduction operation."); 6376 if (!IsRedOp) 6377 return I->getParent() == P; 6378 if (isMinMax()) { 6379 // SelectInst must be used twice while the condition op must have single 6380 // use only. 6381 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 6382 return I->getParent() == P && Cmp && Cmp->getParent() == P; 6383 } 6384 // Arithmetic reduction operation must be used once only. 6385 return I->getParent() == P; 6386 } 6387 6388 /// Expected number of uses for reduction operations/reduced values. 6389 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { 6390 assert(Kind != RK_None && !!*this && LHS && RHS && 6391 "Expected reduction operation."); 6392 if (isMinMax()) 6393 return I->hasNUses(2) && 6394 (!IsReductionOp || 6395 cast<SelectInst>(I)->getCondition()->hasOneUse()); 6396 return I->hasOneUse(); 6397 } 6398 6399 /// Initializes the list of reduction operations. 6400 void initReductionOps(ReductionOpsListType &ReductionOps) { 6401 assert(Kind != RK_None && !!*this && LHS && RHS && 6402 "Expected reduction operation."); 6403 if (isMinMax()) 6404 ReductionOps.assign(2, ReductionOpsType()); 6405 else 6406 ReductionOps.assign(1, ReductionOpsType()); 6407 } 6408 6409 /// Add all reduction operations for the reduction instruction \p I. 6410 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { 6411 assert(Kind != RK_None && !!*this && LHS && RHS && 6412 "Expected reduction operation."); 6413 if (isMinMax()) { 6414 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 6415 ReductionOps[1].emplace_back(I); 6416 } else { 6417 ReductionOps[0].emplace_back(I); 6418 } 6419 } 6420 6421 /// Checks if instruction is associative and can be vectorized. 6422 bool isAssociative(Instruction *I) const { 6423 assert(Kind != RK_None && *this && LHS && RHS && 6424 "Expected reduction operation."); 6425 switch (Kind) { 6426 case RK_Arithmetic: 6427 return I->isAssociative(); 6428 case RK_SMin: 6429 case RK_SMax: 6430 case RK_UMin: 6431 case RK_UMax: 6432 assert(Opcode == Instruction::ICmp && 6433 "Only integer compare operation is expected."); 6434 return true; 6435 case RK_None: 6436 break; 6437 } 6438 llvm_unreachable("Reduction kind is not set"); 6439 } 6440 6441 /// Checks if the reduction operation can be vectorized. 6442 bool isVectorizable(Instruction *I) const { 6443 return isVectorizable() && isAssociative(I); 6444 } 6445 6446 /// Checks if two operation data are both a reduction op or both a reduced 6447 /// value. 6448 bool operator==(const OperationData &OD) const { 6449 assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) && 6450 "One of the comparing operations is incorrect."); 6451 return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode); 6452 } 6453 bool operator!=(const OperationData &OD) const { return !(*this == OD); } 6454 void clear() { 6455 Opcode = 0; 6456 LHS = nullptr; 6457 RHS = nullptr; 6458 Kind = RK_None; 6459 } 6460 6461 /// Get the opcode of the reduction operation. 6462 unsigned getOpcode() const { 6463 assert(isVectorizable() && "Expected vectorizable operation."); 6464 return Opcode; 6465 } 6466 6467 /// Get kind of reduction data. 6468 ReductionKind getKind() const { return Kind; } 6469 Value *getLHS() const { return LHS; } 6470 Value *getRHS() const { return RHS; } 6471 Type *getConditionType() const { 6472 return isMinMax() ? CmpInst::makeCmpResultType(LHS->getType()) : nullptr; 6473 } 6474 6475 /// Creates reduction operation with the current opcode with the IR flags 6476 /// from \p ReductionOps. 6477 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 6478 const ReductionOpsListType &ReductionOps) const { 6479 assert(isVectorizable() && 6480 "Expected add|fadd or min/max reduction operation."); 6481 auto *Op = createOp(Builder, Name); 6482 switch (Kind) { 6483 case RK_Arithmetic: 6484 propagateIRFlags(Op, ReductionOps[0]); 6485 return Op; 6486 case RK_SMin: 6487 case RK_SMax: 6488 case RK_UMin: 6489 case RK_UMax: 6490 if (auto *SI = dyn_cast<SelectInst>(Op)) 6491 propagateIRFlags(SI->getCondition(), ReductionOps[0]); 6492 propagateIRFlags(Op, ReductionOps[1]); 6493 return Op; 6494 case RK_None: 6495 break; 6496 } 6497 llvm_unreachable("Unknown reduction operation."); 6498 } 6499 /// Creates reduction operation with the current opcode with the IR flags 6500 /// from \p I. 6501 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 6502 Instruction *I) const { 6503 assert(isVectorizable() && 6504 "Expected add|fadd or min/max reduction operation."); 6505 auto *Op = createOp(Builder, Name); 6506 switch (Kind) { 6507 case RK_Arithmetic: 6508 propagateIRFlags(Op, I); 6509 return Op; 6510 case RK_SMin: 6511 case RK_SMax: 6512 case RK_UMin: 6513 case RK_UMax: 6514 if (auto *SI = dyn_cast<SelectInst>(Op)) { 6515 propagateIRFlags(SI->getCondition(), 6516 cast<SelectInst>(I)->getCondition()); 6517 } 6518 propagateIRFlags(Op, I); 6519 return Op; 6520 case RK_None: 6521 break; 6522 } 6523 llvm_unreachable("Unknown reduction operation."); 6524 } 6525 6526 TargetTransformInfo::ReductionFlags getFlags() const { 6527 TargetTransformInfo::ReductionFlags Flags; 6528 switch (Kind) { 6529 case RK_Arithmetic: 6530 break; 6531 case RK_SMin: 6532 Flags.IsSigned = true; 6533 Flags.IsMaxOp = false; 6534 break; 6535 case RK_SMax: 6536 Flags.IsSigned = true; 6537 Flags.IsMaxOp = true; 6538 break; 6539 case RK_UMin: 6540 Flags.IsSigned = false; 6541 Flags.IsMaxOp = false; 6542 break; 6543 case RK_UMax: 6544 Flags.IsSigned = false; 6545 Flags.IsMaxOp = true; 6546 break; 6547 case RK_None: 6548 llvm_unreachable("Reduction kind is not set"); 6549 } 6550 return Flags; 6551 } 6552 }; 6553 6554 WeakTrackingVH ReductionRoot; 6555 6556 /// The operation data of the reduction operation. 6557 OperationData ReductionData; 6558 6559 /// The operation data of the values we perform a reduction on. 6560 OperationData ReducedValueData; 6561 6562 /// Should we model this reduction as a pairwise reduction tree or a tree that 6563 /// splits the vector in halves and adds those halves. 6564 bool IsPairwiseReduction = false; 6565 6566 /// Checks if the ParentStackElem.first should be marked as a reduction 6567 /// operation with an extra argument or as extra argument itself. 6568 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 6569 Value *ExtraArg) { 6570 if (ExtraArgs.count(ParentStackElem.first)) { 6571 ExtraArgs[ParentStackElem.first] = nullptr; 6572 // We ran into something like: 6573 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 6574 // The whole ParentStackElem.first should be considered as an extra value 6575 // in this case. 6576 // Do not perform analysis of remaining operands of ParentStackElem.first 6577 // instruction, this whole instruction is an extra argument. 6578 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 6579 } else { 6580 // We ran into something like: 6581 // ParentStackElem.first += ... + ExtraArg + ... 6582 ExtraArgs[ParentStackElem.first] = ExtraArg; 6583 } 6584 } 6585 6586 static OperationData getOperationData(Value *V) { 6587 if (!V) 6588 return OperationData(); 6589 6590 Value *LHS; 6591 Value *RHS; 6592 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) { 6593 return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS, 6594 RK_Arithmetic); 6595 } 6596 if (auto *Select = dyn_cast<SelectInst>(V)) { 6597 // Look for a min/max pattern. 6598 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6599 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 6600 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6601 return OperationData(Instruction::ICmp, LHS, RHS, RK_SMin); 6602 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6603 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 6604 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6605 return OperationData(Instruction::ICmp, LHS, RHS, RK_SMax); 6606 } else { 6607 // Try harder: look for min/max pattern based on instructions producing 6608 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 6609 // During the intermediate stages of SLP, it's very common to have 6610 // pattern like this (since optimizeGatherSequence is run only once 6611 // at the end): 6612 // %1 = extractelement <2 x i32> %a, i32 0 6613 // %2 = extractelement <2 x i32> %a, i32 1 6614 // %cond = icmp sgt i32 %1, %2 6615 // %3 = extractelement <2 x i32> %a, i32 0 6616 // %4 = extractelement <2 x i32> %a, i32 1 6617 // %select = select i1 %cond, i32 %3, i32 %4 6618 CmpInst::Predicate Pred; 6619 Instruction *L1; 6620 Instruction *L2; 6621 6622 LHS = Select->getTrueValue(); 6623 RHS = Select->getFalseValue(); 6624 Value *Cond = Select->getCondition(); 6625 6626 // TODO: Support inverse predicates. 6627 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 6628 if (!isa<ExtractElementInst>(RHS) || 6629 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6630 return OperationData(V); 6631 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 6632 if (!isa<ExtractElementInst>(LHS) || 6633 !L1->isIdenticalTo(cast<Instruction>(LHS))) 6634 return OperationData(V); 6635 } else { 6636 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 6637 return OperationData(V); 6638 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 6639 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 6640 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6641 return OperationData(V); 6642 } 6643 switch (Pred) { 6644 default: 6645 return OperationData(V); 6646 6647 case CmpInst::ICMP_ULT: 6648 case CmpInst::ICMP_ULE: 6649 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 6650 6651 case CmpInst::ICMP_SLT: 6652 case CmpInst::ICMP_SLE: 6653 return OperationData(Instruction::ICmp, LHS, RHS, RK_SMin); 6654 6655 case CmpInst::ICMP_UGT: 6656 case CmpInst::ICMP_UGE: 6657 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 6658 6659 case CmpInst::ICMP_SGT: 6660 case CmpInst::ICMP_SGE: 6661 return OperationData(Instruction::ICmp, LHS, RHS, RK_SMax); 6662 } 6663 } 6664 } 6665 return OperationData(V); 6666 } 6667 6668 public: 6669 HorizontalReduction() = default; 6670 6671 /// Try to find a reduction tree. 6672 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 6673 assert((!Phi || is_contained(Phi->operands(), B)) && 6674 "Thi phi needs to use the binary operator"); 6675 6676 ReductionData = getOperationData(B); 6677 6678 // We could have a initial reductions that is not an add. 6679 // r *= v1 + v2 + v3 + v4 6680 // In such a case start looking for a tree rooted in the first '+'. 6681 if (Phi) { 6682 if (ReductionData.getLHS() == Phi) { 6683 Phi = nullptr; 6684 B = dyn_cast<Instruction>(ReductionData.getRHS()); 6685 ReductionData = getOperationData(B); 6686 } else if (ReductionData.getRHS() == Phi) { 6687 Phi = nullptr; 6688 B = dyn_cast<Instruction>(ReductionData.getLHS()); 6689 ReductionData = getOperationData(B); 6690 } 6691 } 6692 6693 if (!ReductionData.isVectorizable(B)) 6694 return false; 6695 6696 Type *Ty = B->getType(); 6697 if (!isValidElementType(Ty)) 6698 return false; 6699 if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy()) 6700 return false; 6701 6702 ReducedValueData.clear(); 6703 ReductionRoot = B; 6704 6705 // Post order traverse the reduction tree starting at B. We only handle true 6706 // trees containing only binary operators. 6707 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 6708 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); 6709 ReductionData.initReductionOps(ReductionOps); 6710 while (!Stack.empty()) { 6711 Instruction *TreeN = Stack.back().first; 6712 unsigned EdgeToVist = Stack.back().second++; 6713 OperationData OpData = getOperationData(TreeN); 6714 bool IsReducedValue = OpData != ReductionData; 6715 6716 // Postorder vist. 6717 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { 6718 if (IsReducedValue) 6719 ReducedVals.push_back(TreeN); 6720 else { 6721 auto I = ExtraArgs.find(TreeN); 6722 if (I != ExtraArgs.end() && !I->second) { 6723 // Check if TreeN is an extra argument of its parent operation. 6724 if (Stack.size() <= 1) { 6725 // TreeN can't be an extra argument as it is a root reduction 6726 // operation. 6727 return false; 6728 } 6729 // Yes, TreeN is an extra argument, do not add it to a list of 6730 // reduction operations. 6731 // Stack[Stack.size() - 2] always points to the parent operation. 6732 markExtraArg(Stack[Stack.size() - 2], TreeN); 6733 ExtraArgs.erase(TreeN); 6734 } else 6735 ReductionData.addReductionOps(TreeN, ReductionOps); 6736 } 6737 // Retract. 6738 Stack.pop_back(); 6739 continue; 6740 } 6741 6742 // Visit left or right. 6743 Value *NextV = TreeN->getOperand(EdgeToVist); 6744 if (NextV != Phi) { 6745 auto *I = dyn_cast<Instruction>(NextV); 6746 OpData = getOperationData(I); 6747 // Continue analysis if the next operand is a reduction operation or 6748 // (possibly) a reduced value. If the reduced value opcode is not set, 6749 // the first met operation != reduction operation is considered as the 6750 // reduced value class. 6751 if (I && (!ReducedValueData || OpData == ReducedValueData || 6752 OpData == ReductionData)) { 6753 const bool IsReductionOperation = OpData == ReductionData; 6754 // Only handle trees in the current basic block. 6755 if (!ReductionData.hasSameParent(I, B->getParent(), 6756 IsReductionOperation)) { 6757 // I is an extra argument for TreeN (its parent operation). 6758 markExtraArg(Stack.back(), I); 6759 continue; 6760 } 6761 6762 // Each tree node needs to have minimal number of users except for the 6763 // ultimate reduction. 6764 if (!ReductionData.hasRequiredNumberOfUses(I, 6765 OpData == ReductionData) && 6766 I != B) { 6767 // I is an extra argument for TreeN (its parent operation). 6768 markExtraArg(Stack.back(), I); 6769 continue; 6770 } 6771 6772 if (IsReductionOperation) { 6773 // We need to be able to reassociate the reduction operations. 6774 if (!OpData.isAssociative(I)) { 6775 // I is an extra argument for TreeN (its parent operation). 6776 markExtraArg(Stack.back(), I); 6777 continue; 6778 } 6779 } else if (ReducedValueData && 6780 ReducedValueData != OpData) { 6781 // Make sure that the opcodes of the operations that we are going to 6782 // reduce match. 6783 // I is an extra argument for TreeN (its parent operation). 6784 markExtraArg(Stack.back(), I); 6785 continue; 6786 } else if (!ReducedValueData) 6787 ReducedValueData = OpData; 6788 6789 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 6790 continue; 6791 } 6792 } 6793 // NextV is an extra argument for TreeN (its parent operation). 6794 markExtraArg(Stack.back(), NextV); 6795 } 6796 return true; 6797 } 6798 6799 /// Attempt to vectorize the tree found by matchAssociativeReduction. 6800 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 6801 // If there are a sufficient number of reduction values, reduce 6802 // to a nearby power-of-2. We can safely generate oversized 6803 // vectors and rely on the backend to split them to legal sizes. 6804 unsigned NumReducedVals = ReducedVals.size(); 6805 if (NumReducedVals < 4) 6806 return false; 6807 6808 // FIXME: Fast-math-flags should be set based on the instructions in the 6809 // reduction (not all of 'fast' are required). 6810 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 6811 FastMathFlags Unsafe; 6812 Unsafe.setFast(); 6813 Builder.setFastMathFlags(Unsafe); 6814 6815 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 6816 // The same extra argument may be used several times, so log each attempt 6817 // to use it. 6818 for (std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 6819 assert(Pair.first && "DebugLoc must be set."); 6820 ExternallyUsedValues[Pair.second].push_back(Pair.first); 6821 } 6822 6823 // The compare instruction of a min/max is the insertion point for new 6824 // instructions and may be replaced with a new compare instruction. 6825 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 6826 assert(isa<SelectInst>(RdxRootInst) && 6827 "Expected min/max reduction to have select root instruction"); 6828 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 6829 assert(isa<Instruction>(ScalarCond) && 6830 "Expected min/max reduction to have compare condition"); 6831 return cast<Instruction>(ScalarCond); 6832 }; 6833 6834 // The reduction root is used as the insertion point for new instructions, 6835 // so set it as externally used to prevent it from being deleted. 6836 ExternallyUsedValues[ReductionRoot]; 6837 SmallVector<Value *, 16> IgnoreList; 6838 for (ReductionOpsType &RdxOp : ReductionOps) 6839 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 6840 6841 Value *VectorizedTree = nullptr; 6842 unsigned i = 0; 6843 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 6844 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 6845 ArrayRef<Value *> VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 6846 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 6847 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 6848 // TODO: Handle orders of size less than number of elements in the vector. 6849 if (Order && Order->size() == VL.size()) { 6850 // TODO: reorder tree nodes without tree rebuilding. 6851 SmallVector<Value *, 4> ReorderedOps(VL.size()); 6852 llvm::transform(*Order, ReorderedOps.begin(), 6853 [VL](const unsigned Idx) { return VL[Idx]; }); 6854 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 6855 } 6856 if (V.isTreeTinyAndNotFullyVectorizable()) 6857 break; 6858 if (V.isLoadCombineReductionCandidate(ReductionData.getOpcode())) 6859 break; 6860 6861 V.computeMinimumValueSizes(); 6862 6863 // Estimate cost. 6864 int TreeCost = V.getTreeCost(); 6865 int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth); 6866 int Cost = TreeCost + ReductionCost; 6867 if (Cost >= -SLPCostThreshold) { 6868 V.getORE()->emit([&]() { 6869 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 6870 cast<Instruction>(VL[0])) 6871 << "Vectorizing horizontal reduction is possible" 6872 << "but not beneficial with cost " << ore::NV("Cost", Cost) 6873 << " and threshold " 6874 << ore::NV("Threshold", -SLPCostThreshold); 6875 }); 6876 break; 6877 } 6878 6879 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 6880 << Cost << ". (HorRdx)\n"); 6881 V.getORE()->emit([&]() { 6882 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 6883 cast<Instruction>(VL[0])) 6884 << "Vectorized horizontal reduction with cost " 6885 << ore::NV("Cost", Cost) << " and with tree size " 6886 << ore::NV("TreeSize", V.getTreeSize()); 6887 }); 6888 6889 // Vectorize a tree. 6890 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 6891 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 6892 6893 // Emit a reduction. For min/max, the root is a select, but the insertion 6894 // point is the compare condition of that select. 6895 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 6896 if (ReductionData.isMinMax()) 6897 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 6898 else 6899 Builder.SetInsertPoint(RdxRootInst); 6900 6901 Value *ReducedSubTree = 6902 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 6903 6904 if (!VectorizedTree) { 6905 // Initialize the final value in the reduction. 6906 VectorizedTree = ReducedSubTree; 6907 } else { 6908 // Update the final value in the reduction. 6909 Builder.SetCurrentDebugLocation(Loc); 6910 OperationData VectReductionData(ReductionData.getOpcode(), 6911 VectorizedTree, ReducedSubTree, 6912 ReductionData.getKind()); 6913 VectorizedTree = 6914 VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 6915 } 6916 i += ReduxWidth; 6917 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 6918 } 6919 6920 if (VectorizedTree) { 6921 // Finish the reduction. 6922 for (; i < NumReducedVals; ++i) { 6923 auto *I = cast<Instruction>(ReducedVals[i]); 6924 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 6925 OperationData VectReductionData(ReductionData.getOpcode(), 6926 VectorizedTree, I, 6927 ReductionData.getKind()); 6928 VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps); 6929 } 6930 for (auto &Pair : ExternallyUsedValues) { 6931 // Add each externally used value to the final reduction. 6932 for (auto *I : Pair.second) { 6933 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 6934 OperationData VectReductionData(ReductionData.getOpcode(), 6935 VectorizedTree, Pair.first, 6936 ReductionData.getKind()); 6937 VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I); 6938 } 6939 } 6940 6941 // Update users. For a min/max reduction that ends with a compare and 6942 // select, we also have to RAUW for the compare instruction feeding the 6943 // reduction root. That's because the original compare may have extra uses 6944 // besides the final select of the reduction. 6945 if (ReductionData.isMinMax()) { 6946 if (auto *VecSelect = dyn_cast<SelectInst>(VectorizedTree)) { 6947 Instruction *ScalarCmp = 6948 getCmpForMinMaxReduction(cast<Instruction>(ReductionRoot)); 6949 ScalarCmp->replaceAllUsesWith(VecSelect->getCondition()); 6950 } 6951 } 6952 ReductionRoot->replaceAllUsesWith(VectorizedTree); 6953 6954 // Mark all scalar reduction ops for deletion, they are replaced by the 6955 // vector reductions. 6956 V.eraseInstructions(IgnoreList); 6957 } 6958 return VectorizedTree != nullptr; 6959 } 6960 6961 unsigned numReductionValues() const { 6962 return ReducedVals.size(); 6963 } 6964 6965 private: 6966 /// Calculate the cost of a reduction. 6967 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 6968 unsigned ReduxWidth) { 6969 Type *ScalarTy = FirstReducedVal->getType(); 6970 auto *VecTy = FixedVectorType::get(ScalarTy, ReduxWidth); 6971 6972 int PairwiseRdxCost; 6973 int SplittingRdxCost; 6974 switch (ReductionData.getKind()) { 6975 case RK_Arithmetic: 6976 PairwiseRdxCost = 6977 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 6978 /*IsPairwiseForm=*/true); 6979 SplittingRdxCost = 6980 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 6981 /*IsPairwiseForm=*/false); 6982 break; 6983 case RK_SMin: 6984 case RK_SMax: 6985 case RK_UMin: 6986 case RK_UMax: { 6987 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VecTy)); 6988 bool IsUnsigned = ReductionData.getKind() == RK_UMin || 6989 ReductionData.getKind() == RK_UMax; 6990 PairwiseRdxCost = 6991 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 6992 /*IsPairwiseForm=*/true, IsUnsigned); 6993 SplittingRdxCost = 6994 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 6995 /*IsPairwiseForm=*/false, IsUnsigned); 6996 break; 6997 } 6998 case RK_None: 6999 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 7000 } 7001 7002 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 7003 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 7004 7005 int ScalarReduxCost = 0; 7006 switch (ReductionData.getKind()) { 7007 case RK_Arithmetic: 7008 ScalarReduxCost = 7009 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); 7010 break; 7011 case RK_SMin: 7012 case RK_SMax: 7013 case RK_UMin: 7014 case RK_UMax: 7015 ScalarReduxCost = 7016 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) + 7017 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 7018 CmpInst::makeCmpResultType(ScalarTy)); 7019 break; 7020 case RK_None: 7021 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 7022 } 7023 ScalarReduxCost *= (ReduxWidth - 1); 7024 7025 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 7026 << " for reduction that starts with " << *FirstReducedVal 7027 << " (It is a " 7028 << (IsPairwiseReduction ? "pairwise" : "splitting") 7029 << " reduction)\n"); 7030 7031 return VecReduxCost - ScalarReduxCost; 7032 } 7033 7034 /// Emit a horizontal reduction of the vectorized value. 7035 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 7036 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 7037 assert(VectorizedValue && "Need to have a vectorized tree node"); 7038 assert(isPowerOf2_32(ReduxWidth) && 7039 "We only handle power-of-two reductions for now"); 7040 7041 if (!IsPairwiseReduction) { 7042 // FIXME: The builder should use an FMF guard. It should not be hard-coded 7043 // to 'fast'. 7044 assert(Builder.getFastMathFlags().isFast() && "Expected 'fast' FMF"); 7045 return createSimpleTargetReduction( 7046 Builder, TTI, ReductionData.getOpcode(), VectorizedValue, 7047 ReductionData.getFlags(), ReductionOps.back()); 7048 } 7049 7050 Value *TmpVec = VectorizedValue; 7051 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 7052 auto LeftMask = createRdxShuffleMask(ReduxWidth, i, true, true); 7053 auto RightMask = createRdxShuffleMask(ReduxWidth, i, true, false); 7054 7055 Value *LeftShuf = Builder.CreateShuffleVector( 7056 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 7057 Value *RightShuf = Builder.CreateShuffleVector( 7058 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 7059 "rdx.shuf.r"); 7060 OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf, 7061 RightShuf, ReductionData.getKind()); 7062 TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 7063 } 7064 7065 // The result is in the first element of the vector. 7066 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 7067 } 7068 }; 7069 7070 } // end anonymous namespace 7071 7072 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 7073 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 7074 return cast<FixedVectorType>(IE->getType())->getNumElements(); 7075 7076 unsigned AggregateSize = 1; 7077 auto *IV = cast<InsertValueInst>(InsertInst); 7078 Type *CurrentType = IV->getType(); 7079 do { 7080 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 7081 for (auto *Elt : ST->elements()) 7082 if (Elt != ST->getElementType(0)) // check homogeneity 7083 return None; 7084 AggregateSize *= ST->getNumElements(); 7085 CurrentType = ST->getElementType(0); 7086 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 7087 AggregateSize *= AT->getNumElements(); 7088 CurrentType = AT->getElementType(); 7089 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 7090 AggregateSize *= VT->getNumElements(); 7091 return AggregateSize; 7092 } else if (CurrentType->isSingleValueType()) { 7093 return AggregateSize; 7094 } else { 7095 return None; 7096 } 7097 } while (true); 7098 } 7099 7100 static Optional<unsigned> getOperandIndex(Instruction *InsertInst, 7101 unsigned OperandOffset) { 7102 unsigned OperandIndex = OperandOffset; 7103 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 7104 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 7105 auto *VT = cast<FixedVectorType>(IE->getType()); 7106 OperandIndex *= VT->getNumElements(); 7107 OperandIndex += CI->getZExtValue(); 7108 return OperandIndex; 7109 } 7110 return None; 7111 } 7112 7113 auto *IV = cast<InsertValueInst>(InsertInst); 7114 Type *CurrentType = IV->getType(); 7115 for (unsigned int Index : IV->indices()) { 7116 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 7117 OperandIndex *= ST->getNumElements(); 7118 CurrentType = ST->getElementType(Index); 7119 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 7120 OperandIndex *= AT->getNumElements(); 7121 CurrentType = AT->getElementType(); 7122 } else { 7123 return None; 7124 } 7125 OperandIndex += Index; 7126 } 7127 return OperandIndex; 7128 } 7129 7130 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 7131 TargetTransformInfo *TTI, 7132 SmallVectorImpl<Value *> &BuildVectorOpds, 7133 SmallVectorImpl<Value *> &InsertElts, 7134 unsigned OperandOffset) { 7135 do { 7136 Value *InsertedOperand = LastInsertInst->getOperand(1); 7137 Optional<unsigned> OperandIndex = 7138 getOperandIndex(LastInsertInst, OperandOffset); 7139 if (!OperandIndex) 7140 return false; 7141 if (isa<InsertElementInst>(InsertedOperand) || 7142 isa<InsertValueInst>(InsertedOperand)) { 7143 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 7144 BuildVectorOpds, InsertElts, *OperandIndex)) 7145 return false; 7146 } else { 7147 BuildVectorOpds[*OperandIndex] = InsertedOperand; 7148 InsertElts[*OperandIndex] = LastInsertInst; 7149 } 7150 if (isa<UndefValue>(LastInsertInst->getOperand(0))) 7151 return true; 7152 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 7153 } while (LastInsertInst != nullptr && 7154 (isa<InsertValueInst>(LastInsertInst) || 7155 isa<InsertElementInst>(LastInsertInst)) && 7156 LastInsertInst->hasOneUse()); 7157 return false; 7158 } 7159 7160 /// Recognize construction of vectors like 7161 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 7162 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 7163 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 7164 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 7165 /// starting from the last insertelement or insertvalue instruction. 7166 /// 7167 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 7168 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 7169 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 7170 /// 7171 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 7172 /// 7173 /// \return true if it matches. 7174 static bool findBuildAggregate(Instruction *LastInsertInst, 7175 TargetTransformInfo *TTI, 7176 SmallVectorImpl<Value *> &BuildVectorOpds, 7177 SmallVectorImpl<Value *> &InsertElts) { 7178 7179 assert((isa<InsertElementInst>(LastInsertInst) || 7180 isa<InsertValueInst>(LastInsertInst)) && 7181 "Expected insertelement or insertvalue instruction!"); 7182 7183 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 7184 "Expected empty result vectors!"); 7185 7186 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 7187 if (!AggregateSize) 7188 return false; 7189 BuildVectorOpds.resize(*AggregateSize); 7190 InsertElts.resize(*AggregateSize); 7191 7192 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 7193 0)) { 7194 llvm::erase_if(BuildVectorOpds, 7195 [](const Value *V) { return V == nullptr; }); 7196 llvm::erase_if(InsertElts, [](const Value *V) { return V == nullptr; }); 7197 if (BuildVectorOpds.size() >= 2) 7198 return true; 7199 } 7200 7201 return false; 7202 } 7203 7204 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 7205 return V->getType() < V2->getType(); 7206 } 7207 7208 /// Try and get a reduction value from a phi node. 7209 /// 7210 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 7211 /// if they come from either \p ParentBB or a containing loop latch. 7212 /// 7213 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 7214 /// if not possible. 7215 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 7216 BasicBlock *ParentBB, LoopInfo *LI) { 7217 // There are situations where the reduction value is not dominated by the 7218 // reduction phi. Vectorizing such cases has been reported to cause 7219 // miscompiles. See PR25787. 7220 auto DominatedReduxValue = [&](Value *R) { 7221 return isa<Instruction>(R) && 7222 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 7223 }; 7224 7225 Value *Rdx = nullptr; 7226 7227 // Return the incoming value if it comes from the same BB as the phi node. 7228 if (P->getIncomingBlock(0) == ParentBB) { 7229 Rdx = P->getIncomingValue(0); 7230 } else if (P->getIncomingBlock(1) == ParentBB) { 7231 Rdx = P->getIncomingValue(1); 7232 } 7233 7234 if (Rdx && DominatedReduxValue(Rdx)) 7235 return Rdx; 7236 7237 // Otherwise, check whether we have a loop latch to look at. 7238 Loop *BBL = LI->getLoopFor(ParentBB); 7239 if (!BBL) 7240 return nullptr; 7241 BasicBlock *BBLatch = BBL->getLoopLatch(); 7242 if (!BBLatch) 7243 return nullptr; 7244 7245 // There is a loop latch, return the incoming value if it comes from 7246 // that. This reduction pattern occasionally turns up. 7247 if (P->getIncomingBlock(0) == BBLatch) { 7248 Rdx = P->getIncomingValue(0); 7249 } else if (P->getIncomingBlock(1) == BBLatch) { 7250 Rdx = P->getIncomingValue(1); 7251 } 7252 7253 if (Rdx && DominatedReduxValue(Rdx)) 7254 return Rdx; 7255 7256 return nullptr; 7257 } 7258 7259 /// Attempt to reduce a horizontal reduction. 7260 /// If it is legal to match a horizontal reduction feeding the phi node \a P 7261 /// with reduction operators \a Root (or one of its operands) in a basic block 7262 /// \a BB, then check if it can be done. If horizontal reduction is not found 7263 /// and root instruction is a binary operation, vectorization of the operands is 7264 /// attempted. 7265 /// \returns true if a horizontal reduction was matched and reduced or operands 7266 /// of one of the binary instruction were vectorized. 7267 /// \returns false if a horizontal reduction was not matched (or not possible) 7268 /// or no vectorization of any binary operation feeding \a Root instruction was 7269 /// performed. 7270 static bool tryToVectorizeHorReductionOrInstOperands( 7271 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 7272 TargetTransformInfo *TTI, 7273 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 7274 if (!ShouldVectorizeHor) 7275 return false; 7276 7277 if (!Root) 7278 return false; 7279 7280 if (Root->getParent() != BB || isa<PHINode>(Root)) 7281 return false; 7282 // Start analysis starting from Root instruction. If horizontal reduction is 7283 // found, try to vectorize it. If it is not a horizontal reduction or 7284 // vectorization is not possible or not effective, and currently analyzed 7285 // instruction is a binary operation, try to vectorize the operands, using 7286 // pre-order DFS traversal order. If the operands were not vectorized, repeat 7287 // the same procedure considering each operand as a possible root of the 7288 // horizontal reduction. 7289 // Interrupt the process if the Root instruction itself was vectorized or all 7290 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 7291 SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0}); 7292 SmallPtrSet<Value *, 8> VisitedInstrs; 7293 bool Res = false; 7294 while (!Stack.empty()) { 7295 Instruction *Inst; 7296 unsigned Level; 7297 std::tie(Inst, Level) = Stack.pop_back_val(); 7298 auto *BI = dyn_cast<BinaryOperator>(Inst); 7299 auto *SI = dyn_cast<SelectInst>(Inst); 7300 if (BI || SI) { 7301 HorizontalReduction HorRdx; 7302 if (HorRdx.matchAssociativeReduction(P, Inst)) { 7303 if (HorRdx.tryToReduce(R, TTI)) { 7304 Res = true; 7305 // Set P to nullptr to avoid re-analysis of phi node in 7306 // matchAssociativeReduction function unless this is the root node. 7307 P = nullptr; 7308 continue; 7309 } 7310 } 7311 if (P && BI) { 7312 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 7313 if (Inst == P) 7314 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 7315 if (!Inst) { 7316 // Set P to nullptr to avoid re-analysis of phi node in 7317 // matchAssociativeReduction function unless this is the root node. 7318 P = nullptr; 7319 continue; 7320 } 7321 } 7322 } 7323 // Set P to nullptr to avoid re-analysis of phi node in 7324 // matchAssociativeReduction function unless this is the root node. 7325 P = nullptr; 7326 if (Vectorize(Inst, R)) { 7327 Res = true; 7328 continue; 7329 } 7330 7331 // Try to vectorize operands. 7332 // Continue analysis for the instruction from the same basic block only to 7333 // save compile time. 7334 if (++Level < RecursionMaxDepth) 7335 for (auto *Op : Inst->operand_values()) 7336 if (VisitedInstrs.insert(Op).second) 7337 if (auto *I = dyn_cast<Instruction>(Op)) 7338 if (!isa<PHINode>(I) && !R.isDeleted(I) && I->getParent() == BB) 7339 Stack.emplace_back(I, Level); 7340 } 7341 return Res; 7342 } 7343 7344 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 7345 BasicBlock *BB, BoUpSLP &R, 7346 TargetTransformInfo *TTI) { 7347 if (!V) 7348 return false; 7349 auto *I = dyn_cast<Instruction>(V); 7350 if (!I) 7351 return false; 7352 7353 if (!isa<BinaryOperator>(I)) 7354 P = nullptr; 7355 // Try to match and vectorize a horizontal reduction. 7356 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 7357 return tryToVectorize(I, R); 7358 }; 7359 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 7360 ExtraVectorization); 7361 } 7362 7363 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 7364 BasicBlock *BB, BoUpSLP &R) { 7365 const DataLayout &DL = BB->getModule()->getDataLayout(); 7366 if (!R.canMapToVector(IVI->getType(), DL)) 7367 return false; 7368 7369 SmallVector<Value *, 16> BuildVectorOpds; 7370 SmallVector<Value *, 16> BuildVectorInsts; 7371 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 7372 return false; 7373 7374 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 7375 // Aggregate value is unlikely to be processed in vector register, we need to 7376 // extract scalars into scalar registers, so NeedExtraction is set true. 7377 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false, 7378 BuildVectorInsts); 7379 } 7380 7381 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 7382 BasicBlock *BB, BoUpSLP &R) { 7383 SmallVector<Value *, 16> BuildVectorInsts; 7384 SmallVector<Value *, 16> BuildVectorOpds; 7385 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 7386 (llvm::all_of(BuildVectorOpds, 7387 [](Value *V) { return isa<ExtractElementInst>(V); }) && 7388 isShuffle(BuildVectorOpds))) 7389 return false; 7390 7391 // Vectorize starting with the build vector operands ignoring the BuildVector 7392 // instructions for the purpose of scheduling and user extraction. 7393 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false, 7394 BuildVectorInsts); 7395 } 7396 7397 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 7398 BoUpSLP &R) { 7399 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 7400 return true; 7401 7402 bool OpsChanged = false; 7403 for (int Idx = 0; Idx < 2; ++Idx) { 7404 OpsChanged |= 7405 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 7406 } 7407 return OpsChanged; 7408 } 7409 7410 bool SLPVectorizerPass::vectorizeSimpleInstructions( 7411 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R) { 7412 bool OpsChanged = false; 7413 for (auto *I : reverse(Instructions)) { 7414 if (R.isDeleted(I)) 7415 continue; 7416 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 7417 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 7418 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 7419 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 7420 else if (auto *CI = dyn_cast<CmpInst>(I)) 7421 OpsChanged |= vectorizeCmpInst(CI, BB, R); 7422 } 7423 Instructions.clear(); 7424 return OpsChanged; 7425 } 7426 7427 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 7428 bool Changed = false; 7429 SmallVector<Value *, 4> Incoming; 7430 SmallPtrSet<Value *, 16> VisitedInstrs; 7431 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7432 7433 bool HaveVectorizedPhiNodes = true; 7434 while (HaveVectorizedPhiNodes) { 7435 HaveVectorizedPhiNodes = false; 7436 7437 // Collect the incoming values from the PHIs. 7438 Incoming.clear(); 7439 for (Instruction &I : *BB) { 7440 PHINode *P = dyn_cast<PHINode>(&I); 7441 if (!P) 7442 break; 7443 7444 if (!VisitedInstrs.count(P) && !R.isDeleted(P)) 7445 Incoming.push_back(P); 7446 } 7447 7448 // Sort by type. 7449 llvm::stable_sort(Incoming, PhiTypeSorterFunc); 7450 7451 // Try to vectorize elements base on their type. 7452 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 7453 E = Incoming.end(); 7454 IncIt != E;) { 7455 7456 // Look for the next elements with the same type. 7457 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 7458 Type *EltTy = (*IncIt)->getType(); 7459 7460 assert(EltTy->isSized() && 7461 "Instructions should all be sized at this point"); 7462 TypeSize EltTS = DL->getTypeSizeInBits(EltTy); 7463 if (EltTS.isScalable()) { 7464 // For now, just ignore vectorizing scalable types. 7465 ++IncIt; 7466 continue; 7467 } 7468 7469 unsigned EltSize = EltTS.getFixedSize(); 7470 unsigned MaxNumElts = MaxVecRegSize / EltSize; 7471 if (MaxNumElts < 2) { 7472 ++IncIt; 7473 continue; 7474 } 7475 7476 while (SameTypeIt != E && 7477 (*SameTypeIt)->getType() == EltTy && 7478 static_cast<unsigned>(SameTypeIt - IncIt) < MaxNumElts) { 7479 VisitedInstrs.insert(*SameTypeIt); 7480 ++SameTypeIt; 7481 } 7482 7483 // Try to vectorize them. 7484 unsigned NumElts = (SameTypeIt - IncIt); 7485 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 7486 << NumElts << ")\n"); 7487 // The order in which the phi nodes appear in the program does not matter. 7488 // So allow tryToVectorizeList to reorder them if it is beneficial. This 7489 // is done when there are exactly two elements since tryToVectorizeList 7490 // asserts that there are only two values when AllowReorder is true. 7491 bool AllowReorder = NumElts == 2; 7492 if (NumElts > 1 && 7493 tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, AllowReorder)) { 7494 // Success start over because instructions might have been changed. 7495 HaveVectorizedPhiNodes = true; 7496 Changed = true; 7497 break; 7498 } 7499 7500 // Start over at the next instruction of a different type (or the end). 7501 IncIt = SameTypeIt; 7502 } 7503 } 7504 7505 VisitedInstrs.clear(); 7506 7507 SmallVector<Instruction *, 8> PostProcessInstructions; 7508 SmallDenseSet<Instruction *, 4> KeyNodes; 7509 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 7510 // Skip instructions with scalable type. The num of elements is unknown at 7511 // compile-time for scalable type. 7512 if (isa<ScalableVectorType>(it->getType())) 7513 continue; 7514 7515 // Skip instructions marked for the deletion. 7516 if (R.isDeleted(&*it)) 7517 continue; 7518 // We may go through BB multiple times so skip the one we have checked. 7519 if (!VisitedInstrs.insert(&*it).second) { 7520 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 7521 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 7522 // We would like to start over since some instructions are deleted 7523 // and the iterator may become invalid value. 7524 Changed = true; 7525 it = BB->begin(); 7526 e = BB->end(); 7527 } 7528 continue; 7529 } 7530 7531 if (isa<DbgInfoIntrinsic>(it)) 7532 continue; 7533 7534 // Try to vectorize reductions that use PHINodes. 7535 if (PHINode *P = dyn_cast<PHINode>(it)) { 7536 // Check that the PHI is a reduction PHI. 7537 if (P->getNumIncomingValues() != 2) 7538 return Changed; 7539 7540 // Try to match and vectorize a horizontal reduction. 7541 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 7542 TTI)) { 7543 Changed = true; 7544 it = BB->begin(); 7545 e = BB->end(); 7546 continue; 7547 } 7548 continue; 7549 } 7550 7551 // Ran into an instruction without users, like terminator, or function call 7552 // with ignored return value, store. Ignore unused instructions (basing on 7553 // instruction type, except for CallInst and InvokeInst). 7554 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 7555 isa<InvokeInst>(it))) { 7556 KeyNodes.insert(&*it); 7557 bool OpsChanged = false; 7558 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 7559 for (auto *V : it->operand_values()) { 7560 // Try to match and vectorize a horizontal reduction. 7561 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 7562 } 7563 } 7564 // Start vectorization of post-process list of instructions from the 7565 // top-tree instructions to try to vectorize as many instructions as 7566 // possible. 7567 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 7568 if (OpsChanged) { 7569 // We would like to start over since some instructions are deleted 7570 // and the iterator may become invalid value. 7571 Changed = true; 7572 it = BB->begin(); 7573 e = BB->end(); 7574 continue; 7575 } 7576 } 7577 7578 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 7579 isa<InsertValueInst>(it)) 7580 PostProcessInstructions.push_back(&*it); 7581 } 7582 7583 return Changed; 7584 } 7585 7586 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 7587 auto Changed = false; 7588 for (auto &Entry : GEPs) { 7589 // If the getelementptr list has fewer than two elements, there's nothing 7590 // to do. 7591 if (Entry.second.size() < 2) 7592 continue; 7593 7594 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 7595 << Entry.second.size() << ".\n"); 7596 7597 // Process the GEP list in chunks suitable for the target's supported 7598 // vector size. If a vector register can't hold 1 element, we are done. We 7599 // are trying to vectorize the index computations, so the maximum number of 7600 // elements is based on the size of the index expression, rather than the 7601 // size of the GEP itself (the target's pointer size). 7602 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7603 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 7604 if (MaxVecRegSize < EltSize) 7605 continue; 7606 7607 unsigned MaxElts = MaxVecRegSize / EltSize; 7608 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 7609 auto Len = std::min<unsigned>(BE - BI, MaxElts); 7610 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 7611 7612 // Initialize a set a candidate getelementptrs. Note that we use a 7613 // SetVector here to preserve program order. If the index computations 7614 // are vectorizable and begin with loads, we want to minimize the chance 7615 // of having to reorder them later. 7616 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 7617 7618 // Some of the candidates may have already been vectorized after we 7619 // initially collected them. If so, they are marked as deleted, so remove 7620 // them from the set of candidates. 7621 Candidates.remove_if( 7622 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 7623 7624 // Remove from the set of candidates all pairs of getelementptrs with 7625 // constant differences. Such getelementptrs are likely not good 7626 // candidates for vectorization in a bottom-up phase since one can be 7627 // computed from the other. We also ensure all candidate getelementptr 7628 // indices are unique. 7629 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 7630 auto *GEPI = GEPList[I]; 7631 if (!Candidates.count(GEPI)) 7632 continue; 7633 auto *SCEVI = SE->getSCEV(GEPList[I]); 7634 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 7635 auto *GEPJ = GEPList[J]; 7636 auto *SCEVJ = SE->getSCEV(GEPList[J]); 7637 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 7638 Candidates.remove(GEPI); 7639 Candidates.remove(GEPJ); 7640 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 7641 Candidates.remove(GEPJ); 7642 } 7643 } 7644 } 7645 7646 // We break out of the above computation as soon as we know there are 7647 // fewer than two candidates remaining. 7648 if (Candidates.size() < 2) 7649 continue; 7650 7651 // Add the single, non-constant index of each candidate to the bundle. We 7652 // ensured the indices met these constraints when we originally collected 7653 // the getelementptrs. 7654 SmallVector<Value *, 16> Bundle(Candidates.size()); 7655 auto BundleIndex = 0u; 7656 for (auto *V : Candidates) { 7657 auto *GEP = cast<GetElementPtrInst>(V); 7658 auto *GEPIdx = GEP->idx_begin()->get(); 7659 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 7660 Bundle[BundleIndex++] = GEPIdx; 7661 } 7662 7663 // Try and vectorize the indices. We are currently only interested in 7664 // gather-like cases of the form: 7665 // 7666 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 7667 // 7668 // where the loads of "a", the loads of "b", and the subtractions can be 7669 // performed in parallel. It's likely that detecting this pattern in a 7670 // bottom-up phase will be simpler and less costly than building a 7671 // full-blown top-down phase beginning at the consecutive loads. 7672 Changed |= tryToVectorizeList(Bundle, R); 7673 } 7674 } 7675 return Changed; 7676 } 7677 7678 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 7679 bool Changed = false; 7680 // Attempt to sort and vectorize each of the store-groups. 7681 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 7682 ++it) { 7683 if (it->second.size() < 2) 7684 continue; 7685 7686 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 7687 << it->second.size() << ".\n"); 7688 7689 Changed |= vectorizeStores(it->second, R); 7690 } 7691 return Changed; 7692 } 7693 7694 char SLPVectorizer::ID = 0; 7695 7696 static const char lv_name[] = "SLP Vectorizer"; 7697 7698 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 7699 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7700 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7701 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7702 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7703 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 7704 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7705 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7706 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7707 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 7708 7709 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 7710