1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/MemorySSA.h" 45 #include "llvm/Analysis/MemorySSAUpdater.h" 46 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 47 #include "llvm/Analysis/ScalarEvolution.h" 48 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 49 #include "llvm/Analysis/TargetLibraryInfo.h" 50 #include "llvm/Analysis/TargetTransformInfo.h" 51 #include "llvm/Analysis/ValueTracking.h" 52 #include "llvm/Analysis/VectorUtils.h" 53 #include "llvm/IR/Attributes.h" 54 #include "llvm/IR/BasicBlock.h" 55 #include "llvm/IR/Constant.h" 56 #include "llvm/IR/Constants.h" 57 #include "llvm/IR/DataLayout.h" 58 #include "llvm/IR/DebugLoc.h" 59 #include "llvm/IR/DerivedTypes.h" 60 #include "llvm/IR/Dominators.h" 61 #include "llvm/IR/Function.h" 62 #include "llvm/IR/IRBuilder.h" 63 #include "llvm/IR/InstrTypes.h" 64 #include "llvm/IR/Instruction.h" 65 #include "llvm/IR/Instructions.h" 66 #include "llvm/IR/IntrinsicInst.h" 67 #include "llvm/IR/Intrinsics.h" 68 #include "llvm/IR/Module.h" 69 #include "llvm/IR/Operator.h" 70 #include "llvm/IR/PatternMatch.h" 71 #include "llvm/IR/Type.h" 72 #include "llvm/IR/Use.h" 73 #include "llvm/IR/User.h" 74 #include "llvm/IR/Value.h" 75 #include "llvm/IR/ValueHandle.h" 76 #include "llvm/IR/Verifier.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/DOTGraphTraits.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/GraphWriter.h" 85 #include "llvm/Support/InstructionCost.h" 86 #include "llvm/Support/KnownBits.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 static cl::opt<bool> 168 ViewSLPTree("view-slp-tree", cl::Hidden, 169 cl::desc("Display the SLP trees with Graphviz")); 170 171 static cl::opt<bool> EnableMSSAInSLPVectorizer( 172 "enable-mssa-in-slp-vectorizer", cl::Hidden, cl::init(false), 173 cl::desc("Enable MemorySSA for SLPVectorizer in new pass manager")); 174 175 // Limit the number of alias checks. The limit is chosen so that 176 // it has no negative effect on the llvm benchmarks. 177 static const unsigned AliasedCheckLimit = 10; 178 179 // Another limit for the alias checks: The maximum distance between load/store 180 // instructions where alias checks are done. 181 // This limit is useful for very large basic blocks. 182 static const unsigned MaxMemDepDistance = 160; 183 184 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 185 /// regions to be handled. 186 static const int MinScheduleRegionSize = 16; 187 188 /// Predicate for the element types that the SLP vectorizer supports. 189 /// 190 /// The most important thing to filter here are types which are invalid in LLVM 191 /// vectors. We also filter target specific types which have absolutely no 192 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 193 /// avoids spending time checking the cost model and realizing that they will 194 /// be inevitably scalarized. 195 static bool isValidElementType(Type *Ty) { 196 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 197 !Ty->isPPC_FP128Ty(); 198 } 199 200 /// \returns True if the value is a constant (but not globals/constant 201 /// expressions). 202 static bool isConstant(Value *V) { 203 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 204 } 205 206 /// Checks if \p V is one of vector-like instructions, i.e. undef, 207 /// insertelement/extractelement with constant indices for fixed vector type or 208 /// extractvalue instruction. 209 static bool isVectorLikeInstWithConstOps(Value *V) { 210 if (!isa<InsertElementInst, ExtractElementInst>(V) && 211 !isa<ExtractValueInst, UndefValue>(V)) 212 return false; 213 auto *I = dyn_cast<Instruction>(V); 214 if (!I || isa<ExtractValueInst>(I)) 215 return true; 216 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 217 return false; 218 if (isa<ExtractElementInst>(I)) 219 return isConstant(I->getOperand(1)); 220 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 221 return isConstant(I->getOperand(2)); 222 } 223 224 /// \returns true if all of the instructions in \p VL are in the same block or 225 /// false otherwise. 226 static bool allSameBlock(ArrayRef<Value *> VL) { 227 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 228 if (!I0) 229 return false; 230 if (all_of(VL, isVectorLikeInstWithConstOps)) 231 return true; 232 233 BasicBlock *BB = I0->getParent(); 234 for (int I = 1, E = VL.size(); I < E; I++) { 235 auto *II = dyn_cast<Instruction>(VL[I]); 236 if (!II) 237 return false; 238 239 if (BB != II->getParent()) 240 return false; 241 } 242 return true; 243 } 244 245 /// \returns True if all of the values in \p VL are constants (but not 246 /// globals/constant expressions). 247 static bool allConstant(ArrayRef<Value *> VL) { 248 // Constant expressions and globals can't be vectorized like normal integer/FP 249 // constants. 250 return all_of(VL, isConstant); 251 } 252 253 /// \returns True if all of the values in \p VL are identical or some of them 254 /// are UndefValue. 255 static bool isSplat(ArrayRef<Value *> VL) { 256 Value *FirstNonUndef = nullptr; 257 for (Value *V : VL) { 258 if (isa<UndefValue>(V)) 259 continue; 260 if (!FirstNonUndef) { 261 FirstNonUndef = V; 262 continue; 263 } 264 if (V != FirstNonUndef) 265 return false; 266 } 267 return FirstNonUndef != nullptr; 268 } 269 270 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 271 static bool isCommutative(Instruction *I) { 272 if (auto *Cmp = dyn_cast<CmpInst>(I)) 273 return Cmp->isCommutative(); 274 if (auto *BO = dyn_cast<BinaryOperator>(I)) 275 return BO->isCommutative(); 276 // TODO: This should check for generic Instruction::isCommutative(), but 277 // we need to confirm that the caller code correctly handles Intrinsics 278 // for example (does not have 2 operands). 279 return false; 280 } 281 282 /// Checks if the given value is actually an undefined constant vector. 283 static bool isUndefVector(const Value *V) { 284 if (isa<UndefValue>(V)) 285 return true; 286 auto *C = dyn_cast<Constant>(V); 287 if (!C) 288 return false; 289 if (!C->containsUndefOrPoisonElement()) 290 return false; 291 auto *VecTy = dyn_cast<FixedVectorType>(C->getType()); 292 if (!VecTy) 293 return false; 294 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 295 if (Constant *Elem = C->getAggregateElement(I)) 296 if (!isa<UndefValue>(Elem)) 297 return false; 298 } 299 return true; 300 } 301 302 /// Checks if the vector of instructions can be represented as a shuffle, like: 303 /// %x0 = extractelement <4 x i8> %x, i32 0 304 /// %x3 = extractelement <4 x i8> %x, i32 3 305 /// %y1 = extractelement <4 x i8> %y, i32 1 306 /// %y2 = extractelement <4 x i8> %y, i32 2 307 /// %x0x0 = mul i8 %x0, %x0 308 /// %x3x3 = mul i8 %x3, %x3 309 /// %y1y1 = mul i8 %y1, %y1 310 /// %y2y2 = mul i8 %y2, %y2 311 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 312 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 313 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 314 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 315 /// ret <4 x i8> %ins4 316 /// can be transformed into: 317 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 318 /// i32 6> 319 /// %2 = mul <4 x i8> %1, %1 320 /// ret <4 x i8> %2 321 /// We convert this initially to something like: 322 /// %x0 = extractelement <4 x i8> %x, i32 0 323 /// %x3 = extractelement <4 x i8> %x, i32 3 324 /// %y1 = extractelement <4 x i8> %y, i32 1 325 /// %y2 = extractelement <4 x i8> %y, i32 2 326 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 327 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 328 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 329 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 330 /// %5 = mul <4 x i8> %4, %4 331 /// %6 = extractelement <4 x i8> %5, i32 0 332 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 333 /// %7 = extractelement <4 x i8> %5, i32 1 334 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 335 /// %8 = extractelement <4 x i8> %5, i32 2 336 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 337 /// %9 = extractelement <4 x i8> %5, i32 3 338 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 339 /// ret <4 x i8> %ins4 340 /// InstCombiner transforms this into a shuffle and vector mul 341 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 342 /// TODO: Can we split off and reuse the shuffle mask detection from 343 /// TargetTransformInfo::getInstructionThroughput? 344 static Optional<TargetTransformInfo::ShuffleKind> 345 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 346 const auto *It = 347 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); 348 if (It == VL.end()) 349 return None; 350 auto *EI0 = cast<ExtractElementInst>(*It); 351 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 352 return None; 353 unsigned Size = 354 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 355 Value *Vec1 = nullptr; 356 Value *Vec2 = nullptr; 357 enum ShuffleMode { Unknown, Select, Permute }; 358 ShuffleMode CommonShuffleMode = Unknown; 359 Mask.assign(VL.size(), UndefMaskElem); 360 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 361 // Undef can be represented as an undef element in a vector. 362 if (isa<UndefValue>(VL[I])) 363 continue; 364 auto *EI = cast<ExtractElementInst>(VL[I]); 365 if (isa<ScalableVectorType>(EI->getVectorOperandType())) 366 return None; 367 auto *Vec = EI->getVectorOperand(); 368 // We can extractelement from undef or poison vector. 369 if (isUndefVector(Vec)) 370 continue; 371 // All vector operands must have the same number of vector elements. 372 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 373 return None; 374 if (isa<UndefValue>(EI->getIndexOperand())) 375 continue; 376 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 377 if (!Idx) 378 return None; 379 // Undefined behavior if Idx is negative or >= Size. 380 if (Idx->getValue().uge(Size)) 381 continue; 382 unsigned IntIdx = Idx->getValue().getZExtValue(); 383 Mask[I] = IntIdx; 384 // For correct shuffling we have to have at most 2 different vector operands 385 // in all extractelement instructions. 386 if (!Vec1 || Vec1 == Vec) { 387 Vec1 = Vec; 388 } else if (!Vec2 || Vec2 == Vec) { 389 Vec2 = Vec; 390 Mask[I] += Size; 391 } else { 392 return None; 393 } 394 if (CommonShuffleMode == Permute) 395 continue; 396 // If the extract index is not the same as the operation number, it is a 397 // permutation. 398 if (IntIdx != I) { 399 CommonShuffleMode = Permute; 400 continue; 401 } 402 CommonShuffleMode = Select; 403 } 404 // If we're not crossing lanes in different vectors, consider it as blending. 405 if (CommonShuffleMode == Select && Vec2) 406 return TargetTransformInfo::SK_Select; 407 // If Vec2 was never used, we have a permutation of a single vector, otherwise 408 // we have permutation of 2 vectors. 409 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 410 : TargetTransformInfo::SK_PermuteSingleSrc; 411 } 412 413 namespace { 414 415 /// Main data required for vectorization of instructions. 416 struct InstructionsState { 417 /// The very first instruction in the list with the main opcode. 418 Value *OpValue = nullptr; 419 420 /// The main/alternate instruction. 421 Instruction *MainOp = nullptr; 422 Instruction *AltOp = nullptr; 423 424 /// The main/alternate opcodes for the list of instructions. 425 unsigned getOpcode() const { 426 return MainOp ? MainOp->getOpcode() : 0; 427 } 428 429 unsigned getAltOpcode() const { 430 return AltOp ? AltOp->getOpcode() : 0; 431 } 432 433 /// Some of the instructions in the list have alternate opcodes. 434 bool isAltShuffle() const { return AltOp != MainOp; } 435 436 bool isOpcodeOrAlt(Instruction *I) const { 437 unsigned CheckedOpcode = I->getOpcode(); 438 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 439 } 440 441 InstructionsState() = delete; 442 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 443 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 444 }; 445 446 } // end anonymous namespace 447 448 /// Chooses the correct key for scheduling data. If \p Op has the same (or 449 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 450 /// OpValue. 451 static Value *isOneOf(const InstructionsState &S, Value *Op) { 452 auto *I = dyn_cast<Instruction>(Op); 453 if (I && S.isOpcodeOrAlt(I)) 454 return Op; 455 return S.OpValue; 456 } 457 458 /// \returns true if \p Opcode is allowed as part of of the main/alternate 459 /// instruction for SLP vectorization. 460 /// 461 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 462 /// "shuffled out" lane would result in division by zero. 463 static bool isValidForAlternation(unsigned Opcode) { 464 if (Instruction::isIntDivRem(Opcode)) 465 return false; 466 467 return true; 468 } 469 470 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 471 unsigned BaseIndex = 0); 472 473 /// Checks if the provided operands of 2 cmp instructions are compatible, i.e. 474 /// compatible instructions or constants, or just some other regular values. 475 static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0, 476 Value *Op1) { 477 return (isConstant(BaseOp0) && isConstant(Op0)) || 478 (isConstant(BaseOp1) && isConstant(Op1)) || 479 (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) && 480 !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) || 481 getSameOpcode({BaseOp0, Op0}).getOpcode() || 482 getSameOpcode({BaseOp1, Op1}).getOpcode(); 483 } 484 485 /// \returns analysis of the Instructions in \p VL described in 486 /// InstructionsState, the Opcode that we suppose the whole list 487 /// could be vectorized even if its structure is diverse. 488 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 489 unsigned BaseIndex) { 490 // Make sure these are all Instructions. 491 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 492 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 493 494 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 495 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 496 bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]); 497 CmpInst::Predicate BasePred = 498 IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate() 499 : CmpInst::BAD_ICMP_PREDICATE; 500 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 501 unsigned AltOpcode = Opcode; 502 unsigned AltIndex = BaseIndex; 503 504 // Check for one alternate opcode from another BinaryOperator. 505 // TODO - generalize to support all operators (types, calls etc.). 506 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 507 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 508 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 509 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 510 continue; 511 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 512 isValidForAlternation(Opcode)) { 513 AltOpcode = InstOpcode; 514 AltIndex = Cnt; 515 continue; 516 } 517 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 518 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 519 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 520 if (Ty0 == Ty1) { 521 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 522 continue; 523 if (Opcode == AltOpcode) { 524 assert(isValidForAlternation(Opcode) && 525 isValidForAlternation(InstOpcode) && 526 "Cast isn't safe for alternation, logic needs to be updated!"); 527 AltOpcode = InstOpcode; 528 AltIndex = Cnt; 529 continue; 530 } 531 } 532 } else if (IsCmpOp && isa<CmpInst>(VL[Cnt])) { 533 auto *BaseInst = cast<Instruction>(VL[BaseIndex]); 534 auto *Inst = cast<Instruction>(VL[Cnt]); 535 Type *Ty0 = BaseInst->getOperand(0)->getType(); 536 Type *Ty1 = Inst->getOperand(0)->getType(); 537 if (Ty0 == Ty1) { 538 Value *BaseOp0 = BaseInst->getOperand(0); 539 Value *BaseOp1 = BaseInst->getOperand(1); 540 Value *Op0 = Inst->getOperand(0); 541 Value *Op1 = Inst->getOperand(1); 542 CmpInst::Predicate CurrentPred = 543 cast<CmpInst>(VL[Cnt])->getPredicate(); 544 CmpInst::Predicate SwappedCurrentPred = 545 CmpInst::getSwappedPredicate(CurrentPred); 546 // Check for compatible operands. If the corresponding operands are not 547 // compatible - need to perform alternate vectorization. 548 if (InstOpcode == Opcode) { 549 if (BasePred == CurrentPred && 550 areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1)) 551 continue; 552 if (BasePred == SwappedCurrentPred && 553 areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0)) 554 continue; 555 if (E == 2 && 556 (BasePred == CurrentPred || BasePred == SwappedCurrentPred)) 557 continue; 558 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 559 CmpInst::Predicate AltPred = AltInst->getPredicate(); 560 Value *AltOp0 = AltInst->getOperand(0); 561 Value *AltOp1 = AltInst->getOperand(1); 562 // Check if operands are compatible with alternate operands. 563 if (AltPred == CurrentPred && 564 areCompatibleCmpOps(AltOp0, AltOp1, Op0, Op1)) 565 continue; 566 if (AltPred == SwappedCurrentPred && 567 areCompatibleCmpOps(AltOp0, AltOp1, Op1, Op0)) 568 continue; 569 } 570 if (BaseIndex == AltIndex && BasePred != CurrentPred) { 571 assert(isValidForAlternation(Opcode) && 572 isValidForAlternation(InstOpcode) && 573 "Cast isn't safe for alternation, logic needs to be updated!"); 574 AltIndex = Cnt; 575 continue; 576 } 577 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 578 CmpInst::Predicate AltPred = AltInst->getPredicate(); 579 if (BasePred == CurrentPred || BasePred == SwappedCurrentPred || 580 AltPred == CurrentPred || AltPred == SwappedCurrentPred) 581 continue; 582 } 583 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 584 continue; 585 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 586 } 587 588 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 589 cast<Instruction>(VL[AltIndex])); 590 } 591 592 /// \returns true if all of the values in \p VL have the same type or false 593 /// otherwise. 594 static bool allSameType(ArrayRef<Value *> VL) { 595 Type *Ty = VL[0]->getType(); 596 for (int i = 1, e = VL.size(); i < e; i++) 597 if (VL[i]->getType() != Ty) 598 return false; 599 600 return true; 601 } 602 603 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 604 static Optional<unsigned> getExtractIndex(Instruction *E) { 605 unsigned Opcode = E->getOpcode(); 606 assert((Opcode == Instruction::ExtractElement || 607 Opcode == Instruction::ExtractValue) && 608 "Expected extractelement or extractvalue instruction."); 609 if (Opcode == Instruction::ExtractElement) { 610 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 611 if (!CI) 612 return None; 613 return CI->getZExtValue(); 614 } 615 ExtractValueInst *EI = cast<ExtractValueInst>(E); 616 if (EI->getNumIndices() != 1) 617 return None; 618 return *EI->idx_begin(); 619 } 620 621 /// \returns True if in-tree use also needs extract. This refers to 622 /// possible scalar operand in vectorized instruction. 623 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 624 TargetLibraryInfo *TLI) { 625 unsigned Opcode = UserInst->getOpcode(); 626 switch (Opcode) { 627 case Instruction::Load: { 628 LoadInst *LI = cast<LoadInst>(UserInst); 629 return (LI->getPointerOperand() == Scalar); 630 } 631 case Instruction::Store: { 632 StoreInst *SI = cast<StoreInst>(UserInst); 633 return (SI->getPointerOperand() == Scalar); 634 } 635 case Instruction::Call: { 636 CallInst *CI = cast<CallInst>(UserInst); 637 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 638 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 639 if (hasVectorInstrinsicScalarOpd(ID, i)) 640 return (CI->getArgOperand(i) == Scalar); 641 } 642 LLVM_FALLTHROUGH; 643 } 644 default: 645 return false; 646 } 647 } 648 649 /// \returns the AA location that is being access by the instruction. 650 static MemoryLocation getLocation(Instruction *I) { 651 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 652 return MemoryLocation::get(SI); 653 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 654 return MemoryLocation::get(LI); 655 return MemoryLocation(); 656 } 657 658 /// \returns True if the instruction is not a volatile or atomic load/store. 659 static bool isSimple(Instruction *I) { 660 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 661 return LI->isSimple(); 662 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 663 return SI->isSimple(); 664 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 665 return !MI->isVolatile(); 666 return true; 667 } 668 669 /// Shuffles \p Mask in accordance with the given \p SubMask. 670 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 671 if (SubMask.empty()) 672 return; 673 if (Mask.empty()) { 674 Mask.append(SubMask.begin(), SubMask.end()); 675 return; 676 } 677 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 678 int TermValue = std::min(Mask.size(), SubMask.size()); 679 for (int I = 0, E = SubMask.size(); I < E; ++I) { 680 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 681 Mask[SubMask[I]] >= TermValue) 682 continue; 683 NewMask[I] = Mask[SubMask[I]]; 684 } 685 Mask.swap(NewMask); 686 } 687 688 /// Order may have elements assigned special value (size) which is out of 689 /// bounds. Such indices only appear on places which correspond to undef values 690 /// (see canReuseExtract for details) and used in order to avoid undef values 691 /// have effect on operands ordering. 692 /// The first loop below simply finds all unused indices and then the next loop 693 /// nest assigns these indices for undef values positions. 694 /// As an example below Order has two undef positions and they have assigned 695 /// values 3 and 7 respectively: 696 /// before: 6 9 5 4 9 2 1 0 697 /// after: 6 3 5 4 7 2 1 0 698 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 699 const unsigned Sz = Order.size(); 700 SmallBitVector UnusedIndices(Sz, /*t=*/true); 701 SmallBitVector MaskedIndices(Sz); 702 for (unsigned I = 0; I < Sz; ++I) { 703 if (Order[I] < Sz) 704 UnusedIndices.reset(Order[I]); 705 else 706 MaskedIndices.set(I); 707 } 708 if (MaskedIndices.none()) 709 return; 710 assert(UnusedIndices.count() == MaskedIndices.count() && 711 "Non-synced masked/available indices."); 712 int Idx = UnusedIndices.find_first(); 713 int MIdx = MaskedIndices.find_first(); 714 while (MIdx >= 0) { 715 assert(Idx >= 0 && "Indices must be synced."); 716 Order[MIdx] = Idx; 717 Idx = UnusedIndices.find_next(Idx); 718 MIdx = MaskedIndices.find_next(MIdx); 719 } 720 } 721 722 namespace llvm { 723 724 static void inversePermutation(ArrayRef<unsigned> Indices, 725 SmallVectorImpl<int> &Mask) { 726 Mask.clear(); 727 const unsigned E = Indices.size(); 728 Mask.resize(E, UndefMaskElem); 729 for (unsigned I = 0; I < E; ++I) 730 Mask[Indices[I]] = I; 731 } 732 733 /// \returns inserting index of InsertElement or InsertValue instruction, 734 /// using Offset as base offset for index. 735 static Optional<unsigned> getInsertIndex(Value *InsertInst, 736 unsigned Offset = 0) { 737 int Index = Offset; 738 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 739 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 740 auto *VT = cast<FixedVectorType>(IE->getType()); 741 if (CI->getValue().uge(VT->getNumElements())) 742 return None; 743 Index *= VT->getNumElements(); 744 Index += CI->getZExtValue(); 745 return Index; 746 } 747 return None; 748 } 749 750 auto *IV = cast<InsertValueInst>(InsertInst); 751 Type *CurrentType = IV->getType(); 752 for (unsigned I : IV->indices()) { 753 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 754 Index *= ST->getNumElements(); 755 CurrentType = ST->getElementType(I); 756 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 757 Index *= AT->getNumElements(); 758 CurrentType = AT->getElementType(); 759 } else { 760 return None; 761 } 762 Index += I; 763 } 764 return Index; 765 } 766 767 /// Reorders the list of scalars in accordance with the given \p Mask. 768 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 769 ArrayRef<int> Mask) { 770 assert(!Mask.empty() && "Expected non-empty mask."); 771 SmallVector<Value *> Prev(Scalars.size(), 772 UndefValue::get(Scalars.front()->getType())); 773 Prev.swap(Scalars); 774 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 775 if (Mask[I] != UndefMaskElem) 776 Scalars[Mask[I]] = Prev[I]; 777 } 778 779 /// Checks if the provided value does not require scheduling. It does not 780 /// require scheduling if this is not an instruction or it is an instruction 781 /// that does not read/write memory and all operands are either not instructions 782 /// or phi nodes or instructions from different blocks. 783 static bool areAllOperandsNonInsts(Value *V) { 784 auto *I = dyn_cast<Instruction>(V); 785 if (!I) 786 return true; 787 return !I->mayReadOrWriteMemory() && all_of(I->operands(), [I](Value *V) { 788 auto *IO = dyn_cast<Instruction>(V); 789 if (!IO) 790 return true; 791 return isa<PHINode>(IO) || IO->getParent() != I->getParent(); 792 }); 793 } 794 795 /// Checks if the provided value does not require scheduling. It does not 796 /// require scheduling if this is not an instruction or it is an instruction 797 /// that does not read/write memory and all users are phi nodes or instructions 798 /// from the different blocks. 799 static bool isUsedOutsideBlock(Value *V) { 800 auto *I = dyn_cast<Instruction>(V); 801 if (!I) 802 return true; 803 // Limits the number of uses to save compile time. 804 constexpr int UsesLimit = 8; 805 return !I->mayReadOrWriteMemory() && !I->hasNUsesOrMore(UsesLimit) && 806 all_of(I->users(), [I](User *U) { 807 auto *IU = dyn_cast<Instruction>(U); 808 if (!IU) 809 return true; 810 return IU->getParent() != I->getParent() || isa<PHINode>(IU); 811 }); 812 } 813 814 /// Checks if the specified value does not require scheduling. It does not 815 /// require scheduling if all operands and all users do not need to be scheduled 816 /// in the current basic block. 817 static bool doesNotNeedToBeScheduled(Value *V) { 818 return areAllOperandsNonInsts(V) && isUsedOutsideBlock(V); 819 } 820 821 /// Checks if the specified array of instructions does not require scheduling. 822 /// It is so if all either instructions have operands that do not require 823 /// scheduling or their users do not require scheduling since they are phis or 824 /// in other basic blocks. 825 static bool doesNotNeedToSchedule(ArrayRef<Value *> VL) { 826 return !VL.empty() && 827 (all_of(VL, isUsedOutsideBlock) || all_of(VL, areAllOperandsNonInsts)); 828 } 829 830 namespace slpvectorizer { 831 832 /// Bottom Up SLP Vectorizer. 833 class BoUpSLP { 834 struct TreeEntry; 835 struct ScheduleData; 836 837 public: 838 using ValueList = SmallVector<Value *, 8>; 839 using InstrList = SmallVector<Instruction *, 16>; 840 using ValueSet = SmallPtrSet<Value *, 16>; 841 using StoreList = SmallVector<StoreInst *, 8>; 842 using ExtraValueToDebugLocsMap = 843 MapVector<Value *, SmallVector<Instruction *, 2>>; 844 using OrdersType = SmallVector<unsigned, 4>; 845 846 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 847 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 848 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 849 MemorySSA *MSSA, const DataLayout *DL, OptimizationRemarkEmitter *ORE) 850 : BatchAA(*Aa), F(Func), SE(Se), TTI(Tti), TLI(TLi), LI(Li), 851 DT(Dt), AC(AC), DB(DB), MSSA(MSSA), DL(DL), ORE(ORE), 852 Builder(Se->getContext()) { 853 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 854 // Use the vector register size specified by the target unless overridden 855 // by a command-line option. 856 // TODO: It would be better to limit the vectorization factor based on 857 // data type rather than just register size. For example, x86 AVX has 858 // 256-bit registers, but it does not support integer operations 859 // at that width (that requires AVX2). 860 if (MaxVectorRegSizeOption.getNumOccurrences()) 861 MaxVecRegSize = MaxVectorRegSizeOption; 862 else 863 MaxVecRegSize = 864 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 865 .getFixedSize(); 866 867 if (MinVectorRegSizeOption.getNumOccurrences()) 868 MinVecRegSize = MinVectorRegSizeOption; 869 else 870 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 871 } 872 873 /// Vectorize the tree that starts with the elements in \p VL. 874 /// Returns the vectorized root. 875 Value *vectorizeTree(); 876 877 /// Vectorize the tree but with the list of externally used values \p 878 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 879 /// generated extractvalue instructions. 880 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 881 882 /// \returns the cost incurred by unwanted spills and fills, caused by 883 /// holding live values over call sites. 884 InstructionCost getSpillCost() const; 885 886 /// \returns the vectorization cost of the subtree that starts at \p VL. 887 /// A negative number means that this is profitable. 888 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 889 890 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 891 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 892 void buildTree(ArrayRef<Value *> Roots, 893 ArrayRef<Value *> UserIgnoreLst = None); 894 895 /// Builds external uses of the vectorized scalars, i.e. the list of 896 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 897 /// ExternallyUsedValues contains additional list of external uses to handle 898 /// vectorization of reductions. 899 void 900 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 901 902 /// Clear the internal data structures that are created by 'buildTree'. 903 void deleteTree() { 904 VectorizableTree.clear(); 905 ScalarToTreeEntry.clear(); 906 MustGather.clear(); 907 ExternalUses.clear(); 908 for (auto &Iter : BlocksSchedules) { 909 BlockScheduling *BS = Iter.second.get(); 910 BS->clear(); 911 } 912 MinBWs.clear(); 913 InstrElementSize.clear(); 914 } 915 916 unsigned getTreeSize() const { return VectorizableTree.size(); } 917 918 /// Perform LICM and CSE on the newly generated gather sequences. 919 void optimizeGatherSequence(); 920 921 /// Checks if the specified gather tree entry \p TE can be represented as a 922 /// shuffled vector entry + (possibly) permutation with other gathers. It 923 /// implements the checks only for possibly ordered scalars (Loads, 924 /// ExtractElement, ExtractValue), which can be part of the graph. 925 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 926 927 /// Gets reordering data for the given tree entry. If the entry is vectorized 928 /// - just return ReorderIndices, otherwise check if the scalars can be 929 /// reordered and return the most optimal order. 930 /// \param TopToBottom If true, include the order of vectorized stores and 931 /// insertelement nodes, otherwise skip them. 932 Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom); 933 934 /// Reorders the current graph to the most profitable order starting from the 935 /// root node to the leaf nodes. The best order is chosen only from the nodes 936 /// of the same size (vectorization factor). Smaller nodes are considered 937 /// parts of subgraph with smaller VF and they are reordered independently. We 938 /// can make it because we still need to extend smaller nodes to the wider VF 939 /// and we can merge reordering shuffles with the widening shuffles. 940 void reorderTopToBottom(); 941 942 /// Reorders the current graph to the most profitable order starting from 943 /// leaves to the root. It allows to rotate small subgraphs and reduce the 944 /// number of reshuffles if the leaf nodes use the same order. In this case we 945 /// can merge the orders and just shuffle user node instead of shuffling its 946 /// operands. Plus, even the leaf nodes have different orders, it allows to 947 /// sink reordering in the graph closer to the root node and merge it later 948 /// during analysis. 949 void reorderBottomToTop(bool IgnoreReorder = false); 950 951 /// \return The vector element size in bits to use when vectorizing the 952 /// expression tree ending at \p V. If V is a store, the size is the width of 953 /// the stored value. Otherwise, the size is the width of the largest loaded 954 /// value reaching V. This method is used by the vectorizer to calculate 955 /// vectorization factors. 956 unsigned getVectorElementSize(Value *V); 957 958 /// Compute the minimum type sizes required to represent the entries in a 959 /// vectorizable tree. 960 void computeMinimumValueSizes(); 961 962 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 963 unsigned getMaxVecRegSize() const { 964 return MaxVecRegSize; 965 } 966 967 // \returns minimum vector register size as set by cl::opt. 968 unsigned getMinVecRegSize() const { 969 return MinVecRegSize; 970 } 971 972 unsigned getMinVF(unsigned Sz) const { 973 return std::max(2U, getMinVecRegSize() / Sz); 974 } 975 976 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 977 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 978 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 979 return MaxVF ? MaxVF : UINT_MAX; 980 } 981 982 /// Check if homogeneous aggregate is isomorphic to some VectorType. 983 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 984 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 985 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 986 /// 987 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 988 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 989 990 /// \returns True if the VectorizableTree is both tiny and not fully 991 /// vectorizable. We do not vectorize such trees. 992 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 993 994 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 995 /// can be load combined in the backend. Load combining may not be allowed in 996 /// the IR optimizer, so we do not want to alter the pattern. For example, 997 /// partially transforming a scalar bswap() pattern into vector code is 998 /// effectively impossible for the backend to undo. 999 /// TODO: If load combining is allowed in the IR optimizer, this analysis 1000 /// may not be necessary. 1001 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 1002 1003 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 1004 /// can be load combined in the backend. Load combining may not be allowed in 1005 /// the IR optimizer, so we do not want to alter the pattern. For example, 1006 /// partially transforming a scalar bswap() pattern into vector code is 1007 /// effectively impossible for the backend to undo. 1008 /// TODO: If load combining is allowed in the IR optimizer, this analysis 1009 /// may not be necessary. 1010 bool isLoadCombineCandidate() const; 1011 1012 OptimizationRemarkEmitter *getORE() { return ORE; } 1013 1014 /// This structure holds any data we need about the edges being traversed 1015 /// during buildTree_rec(). We keep track of: 1016 /// (i) the user TreeEntry index, and 1017 /// (ii) the index of the edge. 1018 struct EdgeInfo { 1019 EdgeInfo() = default; 1020 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 1021 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 1022 /// The user TreeEntry. 1023 TreeEntry *UserTE = nullptr; 1024 /// The operand index of the use. 1025 unsigned EdgeIdx = UINT_MAX; 1026 #ifndef NDEBUG 1027 friend inline raw_ostream &operator<<(raw_ostream &OS, 1028 const BoUpSLP::EdgeInfo &EI) { 1029 EI.dump(OS); 1030 return OS; 1031 } 1032 /// Debug print. 1033 void dump(raw_ostream &OS) const { 1034 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 1035 << " EdgeIdx:" << EdgeIdx << "}"; 1036 } 1037 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 1038 #endif 1039 }; 1040 1041 /// A helper data structure to hold the operands of a vector of instructions. 1042 /// This supports a fixed vector length for all operand vectors. 1043 class VLOperands { 1044 /// For each operand we need (i) the value, and (ii) the opcode that it 1045 /// would be attached to if the expression was in a left-linearized form. 1046 /// This is required to avoid illegal operand reordering. 1047 /// For example: 1048 /// \verbatim 1049 /// 0 Op1 1050 /// |/ 1051 /// Op1 Op2 Linearized + Op2 1052 /// \ / ----------> |/ 1053 /// - - 1054 /// 1055 /// Op1 - Op2 (0 + Op1) - Op2 1056 /// \endverbatim 1057 /// 1058 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 1059 /// 1060 /// Another way to think of this is to track all the operations across the 1061 /// path from the operand all the way to the root of the tree and to 1062 /// calculate the operation that corresponds to this path. For example, the 1063 /// path from Op2 to the root crosses the RHS of the '-', therefore the 1064 /// corresponding operation is a '-' (which matches the one in the 1065 /// linearized tree, as shown above). 1066 /// 1067 /// For lack of a better term, we refer to this operation as Accumulated 1068 /// Path Operation (APO). 1069 struct OperandData { 1070 OperandData() = default; 1071 OperandData(Value *V, bool APO, bool IsUsed) 1072 : V(V), APO(APO), IsUsed(IsUsed) {} 1073 /// The operand value. 1074 Value *V = nullptr; 1075 /// TreeEntries only allow a single opcode, or an alternate sequence of 1076 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 1077 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 1078 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 1079 /// (e.g., Add/Mul) 1080 bool APO = false; 1081 /// Helper data for the reordering function. 1082 bool IsUsed = false; 1083 }; 1084 1085 /// During operand reordering, we are trying to select the operand at lane 1086 /// that matches best with the operand at the neighboring lane. Our 1087 /// selection is based on the type of value we are looking for. For example, 1088 /// if the neighboring lane has a load, we need to look for a load that is 1089 /// accessing a consecutive address. These strategies are summarized in the 1090 /// 'ReorderingMode' enumerator. 1091 enum class ReorderingMode { 1092 Load, ///< Matching loads to consecutive memory addresses 1093 Opcode, ///< Matching instructions based on opcode (same or alternate) 1094 Constant, ///< Matching constants 1095 Splat, ///< Matching the same instruction multiple times (broadcast) 1096 Failed, ///< We failed to create a vectorizable group 1097 }; 1098 1099 using OperandDataVec = SmallVector<OperandData, 2>; 1100 1101 /// A vector of operand vectors. 1102 SmallVector<OperandDataVec, 4> OpsVec; 1103 1104 const DataLayout &DL; 1105 ScalarEvolution &SE; 1106 const BoUpSLP &R; 1107 1108 /// \returns the operand data at \p OpIdx and \p Lane. 1109 OperandData &getData(unsigned OpIdx, unsigned Lane) { 1110 return OpsVec[OpIdx][Lane]; 1111 } 1112 1113 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 1114 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 1115 return OpsVec[OpIdx][Lane]; 1116 } 1117 1118 /// Clears the used flag for all entries. 1119 void clearUsed() { 1120 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 1121 OpIdx != NumOperands; ++OpIdx) 1122 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1123 ++Lane) 1124 OpsVec[OpIdx][Lane].IsUsed = false; 1125 } 1126 1127 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 1128 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 1129 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 1130 } 1131 1132 // The hard-coded scores listed here are not very important, though it shall 1133 // be higher for better matches to improve the resulting cost. When 1134 // computing the scores of matching one sub-tree with another, we are 1135 // basically counting the number of values that are matching. So even if all 1136 // scores are set to 1, we would still get a decent matching result. 1137 // However, sometimes we have to break ties. For example we may have to 1138 // choose between matching loads vs matching opcodes. This is what these 1139 // scores are helping us with: they provide the order of preference. Also, 1140 // this is important if the scalar is externally used or used in another 1141 // tree entry node in the different lane. 1142 1143 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 1144 static const int ScoreConsecutiveLoads = 4; 1145 /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]). 1146 static const int ScoreReversedLoads = 3; 1147 /// ExtractElementInst from same vector and consecutive indexes. 1148 static const int ScoreConsecutiveExtracts = 4; 1149 /// ExtractElementInst from same vector and reversed indices. 1150 static const int ScoreReversedExtracts = 3; 1151 /// Constants. 1152 static const int ScoreConstants = 2; 1153 /// Instructions with the same opcode. 1154 static const int ScoreSameOpcode = 2; 1155 /// Instructions with alt opcodes (e.g, add + sub). 1156 static const int ScoreAltOpcodes = 1; 1157 /// Identical instructions (a.k.a. splat or broadcast). 1158 static const int ScoreSplat = 1; 1159 /// Matching with an undef is preferable to failing. 1160 static const int ScoreUndef = 1; 1161 /// Score for failing to find a decent match. 1162 static const int ScoreFail = 0; 1163 /// Score if all users are vectorized. 1164 static const int ScoreAllUserVectorized = 1; 1165 1166 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1167 /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p 1168 /// MainAltOps. 1169 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 1170 ScalarEvolution &SE, int NumLanes, 1171 ArrayRef<Value *> MainAltOps) { 1172 if (V1 == V2) 1173 return VLOperands::ScoreSplat; 1174 1175 auto *LI1 = dyn_cast<LoadInst>(V1); 1176 auto *LI2 = dyn_cast<LoadInst>(V2); 1177 if (LI1 && LI2) { 1178 if (LI1->getParent() != LI2->getParent()) 1179 return VLOperands::ScoreFail; 1180 1181 Optional<int> Dist = getPointersDiff( 1182 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1183 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1184 if (!Dist || *Dist == 0) 1185 return VLOperands::ScoreFail; 1186 // The distance is too large - still may be profitable to use masked 1187 // loads/gathers. 1188 if (std::abs(*Dist) > NumLanes / 2) 1189 return VLOperands::ScoreAltOpcodes; 1190 // This still will detect consecutive loads, but we might have "holes" 1191 // in some cases. It is ok for non-power-2 vectorization and may produce 1192 // better results. It should not affect current vectorization. 1193 return (*Dist > 0) ? VLOperands::ScoreConsecutiveLoads 1194 : VLOperands::ScoreReversedLoads; 1195 } 1196 1197 auto *C1 = dyn_cast<Constant>(V1); 1198 auto *C2 = dyn_cast<Constant>(V2); 1199 if (C1 && C2) 1200 return VLOperands::ScoreConstants; 1201 1202 // Extracts from consecutive indexes of the same vector better score as 1203 // the extracts could be optimized away. 1204 Value *EV1; 1205 ConstantInt *Ex1Idx; 1206 if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) { 1207 // Undefs are always profitable for extractelements. 1208 if (isa<UndefValue>(V2)) 1209 return VLOperands::ScoreConsecutiveExtracts; 1210 Value *EV2 = nullptr; 1211 ConstantInt *Ex2Idx = nullptr; 1212 if (match(V2, 1213 m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx), 1214 m_Undef())))) { 1215 // Undefs are always profitable for extractelements. 1216 if (!Ex2Idx) 1217 return VLOperands::ScoreConsecutiveExtracts; 1218 if (isUndefVector(EV2) && EV2->getType() == EV1->getType()) 1219 return VLOperands::ScoreConsecutiveExtracts; 1220 if (EV2 == EV1) { 1221 int Idx1 = Ex1Idx->getZExtValue(); 1222 int Idx2 = Ex2Idx->getZExtValue(); 1223 int Dist = Idx2 - Idx1; 1224 // The distance is too large - still may be profitable to use 1225 // shuffles. 1226 if (std::abs(Dist) == 0) 1227 return VLOperands::ScoreSplat; 1228 if (std::abs(Dist) > NumLanes / 2) 1229 return VLOperands::ScoreSameOpcode; 1230 return (Dist > 0) ? VLOperands::ScoreConsecutiveExtracts 1231 : VLOperands::ScoreReversedExtracts; 1232 } 1233 return VLOperands::ScoreAltOpcodes; 1234 } 1235 return VLOperands::ScoreFail; 1236 } 1237 1238 auto *I1 = dyn_cast<Instruction>(V1); 1239 auto *I2 = dyn_cast<Instruction>(V2); 1240 if (I1 && I2) { 1241 if (I1->getParent() != I2->getParent()) 1242 return VLOperands::ScoreFail; 1243 SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end()); 1244 Ops.push_back(I1); 1245 Ops.push_back(I2); 1246 InstructionsState S = getSameOpcode(Ops); 1247 // Note: Only consider instructions with <= 2 operands to avoid 1248 // complexity explosion. 1249 if (S.getOpcode() && 1250 (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() || 1251 !S.isAltShuffle()) && 1252 all_of(Ops, [&S](Value *V) { 1253 return cast<Instruction>(V)->getNumOperands() == 1254 S.MainOp->getNumOperands(); 1255 })) 1256 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 1257 : VLOperands::ScoreSameOpcode; 1258 } 1259 1260 if (isa<UndefValue>(V2)) 1261 return VLOperands::ScoreUndef; 1262 1263 return VLOperands::ScoreFail; 1264 } 1265 1266 /// \param Lane lane of the operands under analysis. 1267 /// \param OpIdx operand index in \p Lane lane we're looking the best 1268 /// candidate for. 1269 /// \param Idx operand index of the current candidate value. 1270 /// \returns The additional score due to possible broadcasting of the 1271 /// elements in the lane. It is more profitable to have power-of-2 unique 1272 /// elements in the lane, it will be vectorized with higher probability 1273 /// after removing duplicates. Currently the SLP vectorizer supports only 1274 /// vectorization of the power-of-2 number of unique scalars. 1275 int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1276 Value *IdxLaneV = getData(Idx, Lane).V; 1277 if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V) 1278 return 0; 1279 SmallPtrSet<Value *, 4> Uniques; 1280 for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) { 1281 if (Ln == Lane) 1282 continue; 1283 Value *OpIdxLnV = getData(OpIdx, Ln).V; 1284 if (!isa<Instruction>(OpIdxLnV)) 1285 return 0; 1286 Uniques.insert(OpIdxLnV); 1287 } 1288 int UniquesCount = Uniques.size(); 1289 int UniquesCntWithIdxLaneV = 1290 Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1; 1291 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1292 int UniquesCntWithOpIdxLaneV = 1293 Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1; 1294 if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV) 1295 return 0; 1296 return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) - 1297 UniquesCntWithOpIdxLaneV) - 1298 (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV); 1299 } 1300 1301 /// \param Lane lane of the operands under analysis. 1302 /// \param OpIdx operand index in \p Lane lane we're looking the best 1303 /// candidate for. 1304 /// \param Idx operand index of the current candidate value. 1305 /// \returns The additional score for the scalar which users are all 1306 /// vectorized. 1307 int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1308 Value *IdxLaneV = getData(Idx, Lane).V; 1309 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1310 // Do not care about number of uses for vector-like instructions 1311 // (extractelement/extractvalue with constant indices), they are extracts 1312 // themselves and already externally used. Vectorization of such 1313 // instructions does not add extra extractelement instruction, just may 1314 // remove it. 1315 if (isVectorLikeInstWithConstOps(IdxLaneV) && 1316 isVectorLikeInstWithConstOps(OpIdxLaneV)) 1317 return VLOperands::ScoreAllUserVectorized; 1318 auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV); 1319 if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV)) 1320 return 0; 1321 return R.areAllUsersVectorized(IdxLaneI, None) 1322 ? VLOperands::ScoreAllUserVectorized 1323 : 0; 1324 } 1325 1326 /// Go through the operands of \p LHS and \p RHS recursively until \p 1327 /// MaxLevel, and return the cummulative score. For example: 1328 /// \verbatim 1329 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1330 /// \ / \ / \ / \ / 1331 /// + + + + 1332 /// G1 G2 G3 G4 1333 /// \endverbatim 1334 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1335 /// each level recursively, accumulating the score. It starts from matching 1336 /// the additions at level 0, then moves on to the loads (level 1). The 1337 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1338 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1339 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1340 /// Please note that the order of the operands does not matter, as we 1341 /// evaluate the score of all profitable combinations of operands. In 1342 /// other words the score of G1 and G4 is the same as G1 and G2. This 1343 /// heuristic is based on ideas described in: 1344 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1345 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1346 /// Luís F. W. Góes 1347 int getScoreAtLevelRec(Value *LHS, Value *RHS, int CurrLevel, int MaxLevel, 1348 ArrayRef<Value *> MainAltOps) { 1349 1350 // Get the shallow score of V1 and V2. 1351 int ShallowScoreAtThisLevel = 1352 getShallowScore(LHS, RHS, DL, SE, getNumLanes(), MainAltOps); 1353 1354 // If reached MaxLevel, 1355 // or if V1 and V2 are not instructions, 1356 // or if they are SPLAT, 1357 // or if they are not consecutive, 1358 // or if profitable to vectorize loads or extractelements, early return 1359 // the current cost. 1360 auto *I1 = dyn_cast<Instruction>(LHS); 1361 auto *I2 = dyn_cast<Instruction>(RHS); 1362 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1363 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1364 (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) || 1365 (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) || 1366 (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) && 1367 ShallowScoreAtThisLevel)) 1368 return ShallowScoreAtThisLevel; 1369 assert(I1 && I2 && "Should have early exited."); 1370 1371 // Contains the I2 operand indexes that got matched with I1 operands. 1372 SmallSet<unsigned, 4> Op2Used; 1373 1374 // Recursion towards the operands of I1 and I2. We are trying all possible 1375 // operand pairs, and keeping track of the best score. 1376 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1377 OpIdx1 != NumOperands1; ++OpIdx1) { 1378 // Try to pair op1I with the best operand of I2. 1379 int MaxTmpScore = 0; 1380 unsigned MaxOpIdx2 = 0; 1381 bool FoundBest = false; 1382 // If I2 is commutative try all combinations. 1383 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1384 unsigned ToIdx = isCommutative(I2) 1385 ? I2->getNumOperands() 1386 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1387 assert(FromIdx <= ToIdx && "Bad index"); 1388 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1389 // Skip operands already paired with OpIdx1. 1390 if (Op2Used.count(OpIdx2)) 1391 continue; 1392 // Recursively calculate the cost at each level 1393 int TmpScore = 1394 getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2), 1395 CurrLevel + 1, MaxLevel, None); 1396 // Look for the best score. 1397 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1398 MaxTmpScore = TmpScore; 1399 MaxOpIdx2 = OpIdx2; 1400 FoundBest = true; 1401 } 1402 } 1403 if (FoundBest) { 1404 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1405 Op2Used.insert(MaxOpIdx2); 1406 ShallowScoreAtThisLevel += MaxTmpScore; 1407 } 1408 } 1409 return ShallowScoreAtThisLevel; 1410 } 1411 1412 /// Score scaling factor for fully compatible instructions but with 1413 /// different number of external uses. Allows better selection of the 1414 /// instructions with less external uses. 1415 static const int ScoreScaleFactor = 10; 1416 1417 /// \Returns the look-ahead score, which tells us how much the sub-trees 1418 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1419 /// score. This helps break ties in an informed way when we cannot decide on 1420 /// the order of the operands by just considering the immediate 1421 /// predecessors. 1422 int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps, 1423 int Lane, unsigned OpIdx, unsigned Idx, 1424 bool &IsUsed) { 1425 int Score = 1426 getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth, MainAltOps); 1427 if (Score) { 1428 int SplatScore = getSplatScore(Lane, OpIdx, Idx); 1429 if (Score <= -SplatScore) { 1430 // Set the minimum score for splat-like sequence to avoid setting 1431 // failed state. 1432 Score = 1; 1433 } else { 1434 Score += SplatScore; 1435 // Scale score to see the difference between different operands 1436 // and similar operands but all vectorized/not all vectorized 1437 // uses. It does not affect actual selection of the best 1438 // compatible operand in general, just allows to select the 1439 // operand with all vectorized uses. 1440 Score *= ScoreScaleFactor; 1441 Score += getExternalUseScore(Lane, OpIdx, Idx); 1442 IsUsed = true; 1443 } 1444 } 1445 return Score; 1446 } 1447 1448 /// Best defined scores per lanes between the passes. Used to choose the 1449 /// best operand (with the highest score) between the passes. 1450 /// The key - {Operand Index, Lane}. 1451 /// The value - the best score between the passes for the lane and the 1452 /// operand. 1453 SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8> 1454 BestScoresPerLanes; 1455 1456 // Search all operands in Ops[*][Lane] for the one that matches best 1457 // Ops[OpIdx][LastLane] and return its opreand index. 1458 // If no good match can be found, return None. 1459 Optional<unsigned> getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1460 ArrayRef<ReorderingMode> ReorderingModes, 1461 ArrayRef<Value *> MainAltOps) { 1462 unsigned NumOperands = getNumOperands(); 1463 1464 // The operand of the previous lane at OpIdx. 1465 Value *OpLastLane = getData(OpIdx, LastLane).V; 1466 1467 // Our strategy mode for OpIdx. 1468 ReorderingMode RMode = ReorderingModes[OpIdx]; 1469 if (RMode == ReorderingMode::Failed) 1470 return None; 1471 1472 // The linearized opcode of the operand at OpIdx, Lane. 1473 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1474 1475 // The best operand index and its score. 1476 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1477 // are using the score to differentiate between the two. 1478 struct BestOpData { 1479 Optional<unsigned> Idx = None; 1480 unsigned Score = 0; 1481 } BestOp; 1482 BestOp.Score = 1483 BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0) 1484 .first->second; 1485 1486 // Track if the operand must be marked as used. If the operand is set to 1487 // Score 1 explicitly (because of non power-of-2 unique scalars, we may 1488 // want to reestimate the operands again on the following iterations). 1489 bool IsUsed = 1490 RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant; 1491 // Iterate through all unused operands and look for the best. 1492 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1493 // Get the operand at Idx and Lane. 1494 OperandData &OpData = getData(Idx, Lane); 1495 Value *Op = OpData.V; 1496 bool OpAPO = OpData.APO; 1497 1498 // Skip already selected operands. 1499 if (OpData.IsUsed) 1500 continue; 1501 1502 // Skip if we are trying to move the operand to a position with a 1503 // different opcode in the linearized tree form. This would break the 1504 // semantics. 1505 if (OpAPO != OpIdxAPO) 1506 continue; 1507 1508 // Look for an operand that matches the current mode. 1509 switch (RMode) { 1510 case ReorderingMode::Load: 1511 case ReorderingMode::Constant: 1512 case ReorderingMode::Opcode: { 1513 bool LeftToRight = Lane > LastLane; 1514 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1515 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1516 int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane, 1517 OpIdx, Idx, IsUsed); 1518 if (Score > static_cast<int>(BestOp.Score)) { 1519 BestOp.Idx = Idx; 1520 BestOp.Score = Score; 1521 BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score; 1522 } 1523 break; 1524 } 1525 case ReorderingMode::Splat: 1526 if (Op == OpLastLane) 1527 BestOp.Idx = Idx; 1528 break; 1529 case ReorderingMode::Failed: 1530 llvm_unreachable("Not expected Failed reordering mode."); 1531 } 1532 } 1533 1534 if (BestOp.Idx) { 1535 getData(BestOp.Idx.getValue(), Lane).IsUsed = IsUsed; 1536 return BestOp.Idx; 1537 } 1538 // If we could not find a good match return None. 1539 return None; 1540 } 1541 1542 /// Helper for reorderOperandVecs. 1543 /// \returns the lane that we should start reordering from. This is the one 1544 /// which has the least number of operands that can freely move about or 1545 /// less profitable because it already has the most optimal set of operands. 1546 unsigned getBestLaneToStartReordering() const { 1547 unsigned Min = UINT_MAX; 1548 unsigned SameOpNumber = 0; 1549 // std::pair<unsigned, unsigned> is used to implement a simple voting 1550 // algorithm and choose the lane with the least number of operands that 1551 // can freely move about or less profitable because it already has the 1552 // most optimal set of operands. The first unsigned is a counter for 1553 // voting, the second unsigned is the counter of lanes with instructions 1554 // with same/alternate opcodes and same parent basic block. 1555 MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap; 1556 // Try to be closer to the original results, if we have multiple lanes 1557 // with same cost. If 2 lanes have the same cost, use the one with the 1558 // lowest index. 1559 for (int I = getNumLanes(); I > 0; --I) { 1560 unsigned Lane = I - 1; 1561 OperandsOrderData NumFreeOpsHash = 1562 getMaxNumOperandsThatCanBeReordered(Lane); 1563 // Compare the number of operands that can move and choose the one with 1564 // the least number. 1565 if (NumFreeOpsHash.NumOfAPOs < Min) { 1566 Min = NumFreeOpsHash.NumOfAPOs; 1567 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1568 HashMap.clear(); 1569 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1570 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1571 NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) { 1572 // Select the most optimal lane in terms of number of operands that 1573 // should be moved around. 1574 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1575 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1576 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1577 NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) { 1578 auto It = HashMap.find(NumFreeOpsHash.Hash); 1579 if (It == HashMap.end()) 1580 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1581 else 1582 ++It->second.first; 1583 } 1584 } 1585 // Select the lane with the minimum counter. 1586 unsigned BestLane = 0; 1587 unsigned CntMin = UINT_MAX; 1588 for (const auto &Data : reverse(HashMap)) { 1589 if (Data.second.first < CntMin) { 1590 CntMin = Data.second.first; 1591 BestLane = Data.second.second; 1592 } 1593 } 1594 return BestLane; 1595 } 1596 1597 /// Data structure that helps to reorder operands. 1598 struct OperandsOrderData { 1599 /// The best number of operands with the same APOs, which can be 1600 /// reordered. 1601 unsigned NumOfAPOs = UINT_MAX; 1602 /// Number of operands with the same/alternate instruction opcode and 1603 /// parent. 1604 unsigned NumOpsWithSameOpcodeParent = 0; 1605 /// Hash for the actual operands ordering. 1606 /// Used to count operands, actually their position id and opcode 1607 /// value. It is used in the voting mechanism to find the lane with the 1608 /// least number of operands that can freely move about or less profitable 1609 /// because it already has the most optimal set of operands. Can be 1610 /// replaced with SmallVector<unsigned> instead but hash code is faster 1611 /// and requires less memory. 1612 unsigned Hash = 0; 1613 }; 1614 /// \returns the maximum number of operands that are allowed to be reordered 1615 /// for \p Lane and the number of compatible instructions(with the same 1616 /// parent/opcode). This is used as a heuristic for selecting the first lane 1617 /// to start operand reordering. 1618 OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1619 unsigned CntTrue = 0; 1620 unsigned NumOperands = getNumOperands(); 1621 // Operands with the same APO can be reordered. We therefore need to count 1622 // how many of them we have for each APO, like this: Cnt[APO] = x. 1623 // Since we only have two APOs, namely true and false, we can avoid using 1624 // a map. Instead we can simply count the number of operands that 1625 // correspond to one of them (in this case the 'true' APO), and calculate 1626 // the other by subtracting it from the total number of operands. 1627 // Operands with the same instruction opcode and parent are more 1628 // profitable since we don't need to move them in many cases, with a high 1629 // probability such lane already can be vectorized effectively. 1630 bool AllUndefs = true; 1631 unsigned NumOpsWithSameOpcodeParent = 0; 1632 Instruction *OpcodeI = nullptr; 1633 BasicBlock *Parent = nullptr; 1634 unsigned Hash = 0; 1635 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1636 const OperandData &OpData = getData(OpIdx, Lane); 1637 if (OpData.APO) 1638 ++CntTrue; 1639 // Use Boyer-Moore majority voting for finding the majority opcode and 1640 // the number of times it occurs. 1641 if (auto *I = dyn_cast<Instruction>(OpData.V)) { 1642 if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() || 1643 I->getParent() != Parent) { 1644 if (NumOpsWithSameOpcodeParent == 0) { 1645 NumOpsWithSameOpcodeParent = 1; 1646 OpcodeI = I; 1647 Parent = I->getParent(); 1648 } else { 1649 --NumOpsWithSameOpcodeParent; 1650 } 1651 } else { 1652 ++NumOpsWithSameOpcodeParent; 1653 } 1654 } 1655 Hash = hash_combine( 1656 Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1))); 1657 AllUndefs = AllUndefs && isa<UndefValue>(OpData.V); 1658 } 1659 if (AllUndefs) 1660 return {}; 1661 OperandsOrderData Data; 1662 Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue); 1663 Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent; 1664 Data.Hash = Hash; 1665 return Data; 1666 } 1667 1668 /// Go through the instructions in VL and append their operands. 1669 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1670 assert(!VL.empty() && "Bad VL"); 1671 assert((empty() || VL.size() == getNumLanes()) && 1672 "Expected same number of lanes"); 1673 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1674 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1675 OpsVec.resize(NumOperands); 1676 unsigned NumLanes = VL.size(); 1677 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1678 OpsVec[OpIdx].resize(NumLanes); 1679 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1680 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1681 // Our tree has just 3 nodes: the root and two operands. 1682 // It is therefore trivial to get the APO. We only need to check the 1683 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1684 // RHS operand. The LHS operand of both add and sub is never attached 1685 // to an inversese operation in the linearized form, therefore its APO 1686 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1687 1688 // Since operand reordering is performed on groups of commutative 1689 // operations or alternating sequences (e.g., +, -), we can safely 1690 // tell the inverse operations by checking commutativity. 1691 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1692 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1693 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1694 APO, false}; 1695 } 1696 } 1697 } 1698 1699 /// \returns the number of operands. 1700 unsigned getNumOperands() const { return OpsVec.size(); } 1701 1702 /// \returns the number of lanes. 1703 unsigned getNumLanes() const { return OpsVec[0].size(); } 1704 1705 /// \returns the operand value at \p OpIdx and \p Lane. 1706 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1707 return getData(OpIdx, Lane).V; 1708 } 1709 1710 /// \returns true if the data structure is empty. 1711 bool empty() const { return OpsVec.empty(); } 1712 1713 /// Clears the data. 1714 void clear() { OpsVec.clear(); } 1715 1716 /// \Returns true if there are enough operands identical to \p Op to fill 1717 /// the whole vector. 1718 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1719 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1720 bool OpAPO = getData(OpIdx, Lane).APO; 1721 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1722 if (Ln == Lane) 1723 continue; 1724 // This is set to true if we found a candidate for broadcast at Lane. 1725 bool FoundCandidate = false; 1726 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1727 OperandData &Data = getData(OpI, Ln); 1728 if (Data.APO != OpAPO || Data.IsUsed) 1729 continue; 1730 if (Data.V == Op) { 1731 FoundCandidate = true; 1732 Data.IsUsed = true; 1733 break; 1734 } 1735 } 1736 if (!FoundCandidate) 1737 return false; 1738 } 1739 return true; 1740 } 1741 1742 public: 1743 /// Initialize with all the operands of the instruction vector \p RootVL. 1744 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1745 ScalarEvolution &SE, const BoUpSLP &R) 1746 : DL(DL), SE(SE), R(R) { 1747 // Append all the operands of RootVL. 1748 appendOperandsOfVL(RootVL); 1749 } 1750 1751 /// \Returns a value vector with the operands across all lanes for the 1752 /// opearnd at \p OpIdx. 1753 ValueList getVL(unsigned OpIdx) const { 1754 ValueList OpVL(OpsVec[OpIdx].size()); 1755 assert(OpsVec[OpIdx].size() == getNumLanes() && 1756 "Expected same num of lanes across all operands"); 1757 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1758 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1759 return OpVL; 1760 } 1761 1762 // Performs operand reordering for 2 or more operands. 1763 // The original operands are in OrigOps[OpIdx][Lane]. 1764 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1765 void reorder() { 1766 unsigned NumOperands = getNumOperands(); 1767 unsigned NumLanes = getNumLanes(); 1768 // Each operand has its own mode. We are using this mode to help us select 1769 // the instructions for each lane, so that they match best with the ones 1770 // we have selected so far. 1771 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1772 1773 // This is a greedy single-pass algorithm. We are going over each lane 1774 // once and deciding on the best order right away with no back-tracking. 1775 // However, in order to increase its effectiveness, we start with the lane 1776 // that has operands that can move the least. For example, given the 1777 // following lanes: 1778 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1779 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1780 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1781 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1782 // we will start at Lane 1, since the operands of the subtraction cannot 1783 // be reordered. Then we will visit the rest of the lanes in a circular 1784 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1785 1786 // Find the first lane that we will start our search from. 1787 unsigned FirstLane = getBestLaneToStartReordering(); 1788 1789 // Initialize the modes. 1790 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1791 Value *OpLane0 = getValue(OpIdx, FirstLane); 1792 // Keep track if we have instructions with all the same opcode on one 1793 // side. 1794 if (isa<LoadInst>(OpLane0)) 1795 ReorderingModes[OpIdx] = ReorderingMode::Load; 1796 else if (isa<Instruction>(OpLane0)) { 1797 // Check if OpLane0 should be broadcast. 1798 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1799 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1800 else 1801 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1802 } 1803 else if (isa<Constant>(OpLane0)) 1804 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1805 else if (isa<Argument>(OpLane0)) 1806 // Our best hope is a Splat. It may save some cost in some cases. 1807 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1808 else 1809 // NOTE: This should be unreachable. 1810 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1811 } 1812 1813 // Check that we don't have same operands. No need to reorder if operands 1814 // are just perfect diamond or shuffled diamond match. Do not do it only 1815 // for possible broadcasts or non-power of 2 number of scalars (just for 1816 // now). 1817 auto &&SkipReordering = [this]() { 1818 SmallPtrSet<Value *, 4> UniqueValues; 1819 ArrayRef<OperandData> Op0 = OpsVec.front(); 1820 for (const OperandData &Data : Op0) 1821 UniqueValues.insert(Data.V); 1822 for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) { 1823 if (any_of(Op, [&UniqueValues](const OperandData &Data) { 1824 return !UniqueValues.contains(Data.V); 1825 })) 1826 return false; 1827 } 1828 // TODO: Check if we can remove a check for non-power-2 number of 1829 // scalars after full support of non-power-2 vectorization. 1830 return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size()); 1831 }; 1832 1833 // If the initial strategy fails for any of the operand indexes, then we 1834 // perform reordering again in a second pass. This helps avoid assigning 1835 // high priority to the failed strategy, and should improve reordering for 1836 // the non-failed operand indexes. 1837 for (int Pass = 0; Pass != 2; ++Pass) { 1838 // Check if no need to reorder operands since they're are perfect or 1839 // shuffled diamond match. 1840 // Need to to do it to avoid extra external use cost counting for 1841 // shuffled matches, which may cause regressions. 1842 if (SkipReordering()) 1843 break; 1844 // Skip the second pass if the first pass did not fail. 1845 bool StrategyFailed = false; 1846 // Mark all operand data as free to use. 1847 clearUsed(); 1848 // We keep the original operand order for the FirstLane, so reorder the 1849 // rest of the lanes. We are visiting the nodes in a circular fashion, 1850 // using FirstLane as the center point and increasing the radius 1851 // distance. 1852 SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands); 1853 for (unsigned I = 0; I < NumOperands; ++I) 1854 MainAltOps[I].push_back(getData(I, FirstLane).V); 1855 1856 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1857 // Visit the lane on the right and then the lane on the left. 1858 for (int Direction : {+1, -1}) { 1859 int Lane = FirstLane + Direction * Distance; 1860 if (Lane < 0 || Lane >= (int)NumLanes) 1861 continue; 1862 int LastLane = Lane - Direction; 1863 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1864 "Out of bounds"); 1865 // Look for a good match for each operand. 1866 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1867 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1868 Optional<unsigned> BestIdx = getBestOperand( 1869 OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]); 1870 // By not selecting a value, we allow the operands that follow to 1871 // select a better matching value. We will get a non-null value in 1872 // the next run of getBestOperand(). 1873 if (BestIdx) { 1874 // Swap the current operand with the one returned by 1875 // getBestOperand(). 1876 swap(OpIdx, BestIdx.getValue(), Lane); 1877 } else { 1878 // We failed to find a best operand, set mode to 'Failed'. 1879 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1880 // Enable the second pass. 1881 StrategyFailed = true; 1882 } 1883 // Try to get the alternate opcode and follow it during analysis. 1884 if (MainAltOps[OpIdx].size() != 2) { 1885 OperandData &AltOp = getData(OpIdx, Lane); 1886 InstructionsState OpS = 1887 getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V}); 1888 if (OpS.getOpcode() && OpS.isAltShuffle()) 1889 MainAltOps[OpIdx].push_back(AltOp.V); 1890 } 1891 } 1892 } 1893 } 1894 // Skip second pass if the strategy did not fail. 1895 if (!StrategyFailed) 1896 break; 1897 } 1898 } 1899 1900 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1901 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1902 switch (RMode) { 1903 case ReorderingMode::Load: 1904 return "Load"; 1905 case ReorderingMode::Opcode: 1906 return "Opcode"; 1907 case ReorderingMode::Constant: 1908 return "Constant"; 1909 case ReorderingMode::Splat: 1910 return "Splat"; 1911 case ReorderingMode::Failed: 1912 return "Failed"; 1913 } 1914 llvm_unreachable("Unimplemented Reordering Type"); 1915 } 1916 1917 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1918 raw_ostream &OS) { 1919 return OS << getModeStr(RMode); 1920 } 1921 1922 /// Debug print. 1923 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1924 printMode(RMode, dbgs()); 1925 } 1926 1927 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1928 return printMode(RMode, OS); 1929 } 1930 1931 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1932 const unsigned Indent = 2; 1933 unsigned Cnt = 0; 1934 for (const OperandDataVec &OpDataVec : OpsVec) { 1935 OS << "Operand " << Cnt++ << "\n"; 1936 for (const OperandData &OpData : OpDataVec) { 1937 OS.indent(Indent) << "{"; 1938 if (Value *V = OpData.V) 1939 OS << *V; 1940 else 1941 OS << "null"; 1942 OS << ", APO:" << OpData.APO << "}\n"; 1943 } 1944 OS << "\n"; 1945 } 1946 return OS; 1947 } 1948 1949 /// Debug print. 1950 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1951 #endif 1952 }; 1953 1954 /// Checks if the instruction is marked for deletion. 1955 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1956 1957 /// Marks values operands for later deletion by replacing them with Undefs. 1958 void eraseInstructions(ArrayRef<Value *> AV); 1959 1960 ~BoUpSLP(); 1961 1962 private: 1963 /// Check if the operands on the edges \p Edges of the \p UserTE allows 1964 /// reordering (i.e. the operands can be reordered because they have only one 1965 /// user and reordarable). 1966 /// \param NonVectorized List of all gather nodes that require reordering 1967 /// (e.g., gather of extractlements or partially vectorizable loads). 1968 /// \param GatherOps List of gather operand nodes for \p UserTE that require 1969 /// reordering, subset of \p NonVectorized. 1970 bool 1971 canReorderOperands(TreeEntry *UserTE, 1972 SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 1973 ArrayRef<TreeEntry *> ReorderableGathers, 1974 SmallVectorImpl<TreeEntry *> &GatherOps); 1975 1976 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 1977 /// if any. If it is not vectorized (gather node), returns nullptr. 1978 TreeEntry *getVectorizedOperand(TreeEntry *UserTE, unsigned OpIdx) { 1979 ArrayRef<Value *> VL = UserTE->getOperand(OpIdx); 1980 TreeEntry *TE = nullptr; 1981 const auto *It = find_if(VL, [this, &TE](Value *V) { 1982 TE = getTreeEntry(V); 1983 return TE; 1984 }); 1985 if (It != VL.end() && TE->isSame(VL)) 1986 return TE; 1987 return nullptr; 1988 } 1989 1990 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 1991 /// if any. If it is not vectorized (gather node), returns nullptr. 1992 const TreeEntry *getVectorizedOperand(const TreeEntry *UserTE, 1993 unsigned OpIdx) const { 1994 return const_cast<BoUpSLP *>(this)->getVectorizedOperand( 1995 const_cast<TreeEntry *>(UserTE), OpIdx); 1996 } 1997 1998 /// Checks if all users of \p I are the part of the vectorization tree. 1999 bool areAllUsersVectorized(Instruction *I, 2000 ArrayRef<Value *> VectorizedVals) const; 2001 2002 /// \returns the cost of the vectorizable entry. 2003 InstructionCost getEntryCost(const TreeEntry *E, 2004 ArrayRef<Value *> VectorizedVals); 2005 2006 /// This is the recursive part of buildTree. 2007 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 2008 const EdgeInfo &EI); 2009 2010 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 2011 /// be vectorized to use the original vector (or aggregate "bitcast" to a 2012 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 2013 /// returns false, setting \p CurrentOrder to either an empty vector or a 2014 /// non-identity permutation that allows to reuse extract instructions. 2015 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 2016 SmallVectorImpl<unsigned> &CurrentOrder) const; 2017 2018 /// Vectorize a single entry in the tree. 2019 Value *vectorizeTree(TreeEntry *E); 2020 2021 /// Vectorize a single entry in the tree, starting in \p VL. 2022 Value *vectorizeTree(ArrayRef<Value *> VL); 2023 2024 /// Create a new vector from a list of scalar values. Produces a sequence 2025 /// which exploits values reused across lanes, and arranges the inserts 2026 /// for ease of later optimization. 2027 Value *createBuildVector(ArrayRef<Value *> VL); 2028 2029 /// \returns the scalarization cost for this type. Scalarization in this 2030 /// context means the creation of vectors from a group of scalars. If \p 2031 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 2032 /// vector elements. 2033 InstructionCost getGatherCost(FixedVectorType *Ty, 2034 const APInt &ShuffledIndices, 2035 bool NeedToShuffle) const; 2036 2037 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 2038 /// tree entries. 2039 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 2040 /// previous tree entries. \p Mask is filled with the shuffle mask. 2041 Optional<TargetTransformInfo::ShuffleKind> 2042 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 2043 SmallVectorImpl<const TreeEntry *> &Entries); 2044 2045 /// \returns the scalarization cost for this list of values. Assuming that 2046 /// this subtree gets vectorized, we may need to extract the values from the 2047 /// roots. This method calculates the cost of extracting the values. 2048 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 2049 2050 /// Set the Builder insert point to one after the last instruction in 2051 /// the bundle 2052 void setInsertPointAfterBundle(const TreeEntry *E); 2053 2054 /// \returns a vector from a collection of scalars in \p VL. 2055 Value *gather(ArrayRef<Value *> VL); 2056 2057 /// \returns whether the VectorizableTree is fully vectorizable and will 2058 /// be beneficial even the tree height is tiny. 2059 bool isFullyVectorizableTinyTree(bool ForReduction) const; 2060 2061 /// Reorder commutative or alt operands to get better probability of 2062 /// generating vectorized code. 2063 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 2064 SmallVectorImpl<Value *> &Left, 2065 SmallVectorImpl<Value *> &Right, 2066 const DataLayout &DL, 2067 ScalarEvolution &SE, 2068 const BoUpSLP &R); 2069 struct TreeEntry { 2070 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 2071 TreeEntry(VecTreeTy &Container) : Container(Container) {} 2072 2073 /// \returns true if the scalars in VL are equal to this entry. 2074 bool isSame(ArrayRef<Value *> VL) const { 2075 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 2076 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 2077 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 2078 return VL.size() == Mask.size() && 2079 std::equal(VL.begin(), VL.end(), Mask.begin(), 2080 [Scalars](Value *V, int Idx) { 2081 return (isa<UndefValue>(V) && 2082 Idx == UndefMaskElem) || 2083 (Idx != UndefMaskElem && V == Scalars[Idx]); 2084 }); 2085 }; 2086 if (!ReorderIndices.empty()) { 2087 // TODO: implement matching if the nodes are just reordered, still can 2088 // treat the vector as the same if the list of scalars matches VL 2089 // directly, without reordering. 2090 SmallVector<int> Mask; 2091 inversePermutation(ReorderIndices, Mask); 2092 if (VL.size() == Scalars.size()) 2093 return IsSame(Scalars, Mask); 2094 if (VL.size() == ReuseShuffleIndices.size()) { 2095 ::addMask(Mask, ReuseShuffleIndices); 2096 return IsSame(Scalars, Mask); 2097 } 2098 return false; 2099 } 2100 return IsSame(Scalars, ReuseShuffleIndices); 2101 } 2102 2103 /// \returns true if current entry has same operands as \p TE. 2104 bool hasEqualOperands(const TreeEntry &TE) const { 2105 if (TE.getNumOperands() != getNumOperands()) 2106 return false; 2107 SmallBitVector Used(getNumOperands()); 2108 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 2109 unsigned PrevCount = Used.count(); 2110 for (unsigned K = 0; K < E; ++K) { 2111 if (Used.test(K)) 2112 continue; 2113 if (getOperand(K) == TE.getOperand(I)) { 2114 Used.set(K); 2115 break; 2116 } 2117 } 2118 // Check if we actually found the matching operand. 2119 if (PrevCount == Used.count()) 2120 return false; 2121 } 2122 return true; 2123 } 2124 2125 /// \return Final vectorization factor for the node. Defined by the total 2126 /// number of vectorized scalars, including those, used several times in the 2127 /// entry and counted in the \a ReuseShuffleIndices, if any. 2128 unsigned getVectorFactor() const { 2129 if (!ReuseShuffleIndices.empty()) 2130 return ReuseShuffleIndices.size(); 2131 return Scalars.size(); 2132 }; 2133 2134 /// A vector of scalars. 2135 ValueList Scalars; 2136 2137 /// The Scalars are vectorized into this value. It is initialized to Null. 2138 Value *VectorizedValue = nullptr; 2139 2140 /// Do we need to gather this sequence or vectorize it 2141 /// (either with vector instruction or with scatter/gather 2142 /// intrinsics for store/load)? 2143 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 2144 EntryState State; 2145 2146 /// Does this sequence require some shuffling? 2147 SmallVector<int, 4> ReuseShuffleIndices; 2148 2149 /// Does this entry require reordering? 2150 SmallVector<unsigned, 4> ReorderIndices; 2151 2152 /// Points back to the VectorizableTree. 2153 /// 2154 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 2155 /// to be a pointer and needs to be able to initialize the child iterator. 2156 /// Thus we need a reference back to the container to translate the indices 2157 /// to entries. 2158 VecTreeTy &Container; 2159 2160 /// The TreeEntry index containing the user of this entry. We can actually 2161 /// have multiple users so the data structure is not truly a tree. 2162 SmallVector<EdgeInfo, 1> UserTreeIndices; 2163 2164 /// The index of this treeEntry in VectorizableTree. 2165 int Idx = -1; 2166 2167 private: 2168 /// The operands of each instruction in each lane Operands[op_index][lane]. 2169 /// Note: This helps avoid the replication of the code that performs the 2170 /// reordering of operands during buildTree_rec() and vectorizeTree(). 2171 SmallVector<ValueList, 2> Operands; 2172 2173 /// The main/alternate instruction. 2174 Instruction *MainOp = nullptr; 2175 Instruction *AltOp = nullptr; 2176 2177 public: 2178 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 2179 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 2180 if (Operands.size() < OpIdx + 1) 2181 Operands.resize(OpIdx + 1); 2182 assert(Operands[OpIdx].empty() && "Already resized?"); 2183 assert(OpVL.size() <= Scalars.size() && 2184 "Number of operands is greater than the number of scalars."); 2185 Operands[OpIdx].resize(OpVL.size()); 2186 copy(OpVL, Operands[OpIdx].begin()); 2187 } 2188 2189 /// Set the operands of this bundle in their original order. 2190 void setOperandsInOrder() { 2191 assert(Operands.empty() && "Already initialized?"); 2192 auto *I0 = cast<Instruction>(Scalars[0]); 2193 Operands.resize(I0->getNumOperands()); 2194 unsigned NumLanes = Scalars.size(); 2195 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 2196 OpIdx != NumOperands; ++OpIdx) { 2197 Operands[OpIdx].resize(NumLanes); 2198 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 2199 auto *I = cast<Instruction>(Scalars[Lane]); 2200 assert(I->getNumOperands() == NumOperands && 2201 "Expected same number of operands"); 2202 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 2203 } 2204 } 2205 } 2206 2207 /// Reorders operands of the node to the given mask \p Mask. 2208 void reorderOperands(ArrayRef<int> Mask) { 2209 for (ValueList &Operand : Operands) 2210 reorderScalars(Operand, Mask); 2211 } 2212 2213 /// \returns the \p OpIdx operand of this TreeEntry. 2214 ValueList &getOperand(unsigned OpIdx) { 2215 assert(OpIdx < Operands.size() && "Off bounds"); 2216 return Operands[OpIdx]; 2217 } 2218 2219 /// \returns the \p OpIdx operand of this TreeEntry. 2220 ArrayRef<Value *> getOperand(unsigned OpIdx) const { 2221 assert(OpIdx < Operands.size() && "Off bounds"); 2222 return Operands[OpIdx]; 2223 } 2224 2225 /// \returns the number of operands. 2226 unsigned getNumOperands() const { return Operands.size(); } 2227 2228 /// \return the single \p OpIdx operand. 2229 Value *getSingleOperand(unsigned OpIdx) const { 2230 assert(OpIdx < Operands.size() && "Off bounds"); 2231 assert(!Operands[OpIdx].empty() && "No operand available"); 2232 return Operands[OpIdx][0]; 2233 } 2234 2235 /// Some of the instructions in the list have alternate opcodes. 2236 bool isAltShuffle() const { return MainOp != AltOp; } 2237 2238 bool isOpcodeOrAlt(Instruction *I) const { 2239 unsigned CheckedOpcode = I->getOpcode(); 2240 return (getOpcode() == CheckedOpcode || 2241 getAltOpcode() == CheckedOpcode); 2242 } 2243 2244 /// Chooses the correct key for scheduling data. If \p Op has the same (or 2245 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 2246 /// \p OpValue. 2247 Value *isOneOf(Value *Op) const { 2248 auto *I = dyn_cast<Instruction>(Op); 2249 if (I && isOpcodeOrAlt(I)) 2250 return Op; 2251 return MainOp; 2252 } 2253 2254 void setOperations(const InstructionsState &S) { 2255 MainOp = S.MainOp; 2256 AltOp = S.AltOp; 2257 } 2258 2259 Instruction *getMainOp() const { 2260 return MainOp; 2261 } 2262 2263 Instruction *getAltOp() const { 2264 return AltOp; 2265 } 2266 2267 /// The main/alternate opcodes for the list of instructions. 2268 unsigned getOpcode() const { 2269 return MainOp ? MainOp->getOpcode() : 0; 2270 } 2271 2272 unsigned getAltOpcode() const { 2273 return AltOp ? AltOp->getOpcode() : 0; 2274 } 2275 2276 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 2277 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 2278 int findLaneForValue(Value *V) const { 2279 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2280 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2281 if (!ReorderIndices.empty()) 2282 FoundLane = ReorderIndices[FoundLane]; 2283 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2284 if (!ReuseShuffleIndices.empty()) { 2285 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2286 find(ReuseShuffleIndices, FoundLane)); 2287 } 2288 return FoundLane; 2289 } 2290 2291 #ifndef NDEBUG 2292 /// Debug printer. 2293 LLVM_DUMP_METHOD void dump() const { 2294 dbgs() << Idx << ".\n"; 2295 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 2296 dbgs() << "Operand " << OpI << ":\n"; 2297 for (const Value *V : Operands[OpI]) 2298 dbgs().indent(2) << *V << "\n"; 2299 } 2300 dbgs() << "Scalars: \n"; 2301 for (Value *V : Scalars) 2302 dbgs().indent(2) << *V << "\n"; 2303 dbgs() << "State: "; 2304 switch (State) { 2305 case Vectorize: 2306 dbgs() << "Vectorize\n"; 2307 break; 2308 case ScatterVectorize: 2309 dbgs() << "ScatterVectorize\n"; 2310 break; 2311 case NeedToGather: 2312 dbgs() << "NeedToGather\n"; 2313 break; 2314 } 2315 dbgs() << "MainOp: "; 2316 if (MainOp) 2317 dbgs() << *MainOp << "\n"; 2318 else 2319 dbgs() << "NULL\n"; 2320 dbgs() << "AltOp: "; 2321 if (AltOp) 2322 dbgs() << *AltOp << "\n"; 2323 else 2324 dbgs() << "NULL\n"; 2325 dbgs() << "VectorizedValue: "; 2326 if (VectorizedValue) 2327 dbgs() << *VectorizedValue << "\n"; 2328 else 2329 dbgs() << "NULL\n"; 2330 dbgs() << "ReuseShuffleIndices: "; 2331 if (ReuseShuffleIndices.empty()) 2332 dbgs() << "Empty"; 2333 else 2334 for (int ReuseIdx : ReuseShuffleIndices) 2335 dbgs() << ReuseIdx << ", "; 2336 dbgs() << "\n"; 2337 dbgs() << "ReorderIndices: "; 2338 for (unsigned ReorderIdx : ReorderIndices) 2339 dbgs() << ReorderIdx << ", "; 2340 dbgs() << "\n"; 2341 dbgs() << "UserTreeIndices: "; 2342 for (const auto &EInfo : UserTreeIndices) 2343 dbgs() << EInfo << ", "; 2344 dbgs() << "\n"; 2345 } 2346 #endif 2347 }; 2348 2349 #ifndef NDEBUG 2350 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 2351 InstructionCost VecCost, 2352 InstructionCost ScalarCost) const { 2353 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 2354 dbgs() << "SLP: Costs:\n"; 2355 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 2356 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 2357 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 2358 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 2359 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 2360 } 2361 #endif 2362 2363 /// Create a new VectorizableTree entry. 2364 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 2365 const InstructionsState &S, 2366 const EdgeInfo &UserTreeIdx, 2367 ArrayRef<int> ReuseShuffleIndices = None, 2368 ArrayRef<unsigned> ReorderIndices = None) { 2369 TreeEntry::EntryState EntryState = 2370 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 2371 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 2372 ReuseShuffleIndices, ReorderIndices); 2373 } 2374 2375 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 2376 TreeEntry::EntryState EntryState, 2377 Optional<ScheduleData *> Bundle, 2378 const InstructionsState &S, 2379 const EdgeInfo &UserTreeIdx, 2380 ArrayRef<int> ReuseShuffleIndices = None, 2381 ArrayRef<unsigned> ReorderIndices = None) { 2382 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 2383 (Bundle && EntryState != TreeEntry::NeedToGather)) && 2384 "Need to vectorize gather entry?"); 2385 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 2386 TreeEntry *Last = VectorizableTree.back().get(); 2387 Last->Idx = VectorizableTree.size() - 1; 2388 Last->State = EntryState; 2389 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 2390 ReuseShuffleIndices.end()); 2391 if (ReorderIndices.empty()) { 2392 Last->Scalars.assign(VL.begin(), VL.end()); 2393 Last->setOperations(S); 2394 } else { 2395 // Reorder scalars and build final mask. 2396 Last->Scalars.assign(VL.size(), nullptr); 2397 transform(ReorderIndices, Last->Scalars.begin(), 2398 [VL](unsigned Idx) -> Value * { 2399 if (Idx >= VL.size()) 2400 return UndefValue::get(VL.front()->getType()); 2401 return VL[Idx]; 2402 }); 2403 InstructionsState S = getSameOpcode(Last->Scalars); 2404 Last->setOperations(S); 2405 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 2406 } 2407 if (Last->State != TreeEntry::NeedToGather) { 2408 for (Value *V : VL) { 2409 assert(!getTreeEntry(V) && "Scalar already in tree!"); 2410 ScalarToTreeEntry[V] = Last; 2411 } 2412 // Update the scheduler bundle to point to this TreeEntry. 2413 ScheduleData *BundleMember = Bundle.getValue(); 2414 assert((BundleMember || isa<PHINode>(S.MainOp) || 2415 isVectorLikeInstWithConstOps(S.MainOp) || 2416 doesNotNeedToSchedule(VL)) && 2417 "Bundle and VL out of sync"); 2418 if (BundleMember) { 2419 for (Value *V : VL) { 2420 if (doesNotNeedToBeScheduled(V)) 2421 continue; 2422 assert(BundleMember && "Unexpected end of bundle."); 2423 BundleMember->TE = Last; 2424 BundleMember = BundleMember->NextInBundle; 2425 } 2426 } 2427 assert(!BundleMember && "Bundle and VL out of sync"); 2428 } else { 2429 MustGather.insert(VL.begin(), VL.end()); 2430 } 2431 2432 if (UserTreeIdx.UserTE) 2433 Last->UserTreeIndices.push_back(UserTreeIdx); 2434 2435 return Last; 2436 } 2437 2438 /// -- Vectorization State -- 2439 /// Holds all of the tree entries. 2440 TreeEntry::VecTreeTy VectorizableTree; 2441 2442 #ifndef NDEBUG 2443 /// Debug printer. 2444 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 2445 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 2446 VectorizableTree[Id]->dump(); 2447 dbgs() << "\n"; 2448 } 2449 } 2450 #endif 2451 2452 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2453 2454 const TreeEntry *getTreeEntry(Value *V) const { 2455 return ScalarToTreeEntry.lookup(V); 2456 } 2457 2458 /// Maps a specific scalar to its tree entry. 2459 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2460 2461 /// Maps a value to the proposed vectorizable size. 2462 SmallDenseMap<Value *, unsigned> InstrElementSize; 2463 2464 /// A list of scalars that we found that we need to keep as scalars. 2465 ValueSet MustGather; 2466 2467 /// This POD struct describes one external user in the vectorized tree. 2468 struct ExternalUser { 2469 ExternalUser(Value *S, llvm::User *U, int L) 2470 : Scalar(S), User(U), Lane(L) {} 2471 2472 // Which scalar in our function. 2473 Value *Scalar; 2474 2475 // Which user that uses the scalar. 2476 llvm::User *User; 2477 2478 // Which lane does the scalar belong to. 2479 int Lane; 2480 }; 2481 using UserList = SmallVector<ExternalUser, 16>; 2482 2483 /// Checks if two instructions may access the same memory. 2484 /// 2485 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2486 /// is invariant in the calling loop. 2487 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2488 Instruction *Inst2) { 2489 // First check if the result is already in the cache. 2490 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2491 Optional<bool> &result = AliasCache[key]; 2492 if (result.hasValue()) { 2493 return result.getValue(); 2494 } 2495 bool aliased = true; 2496 if (Loc1.Ptr && isSimple(Inst1)) 2497 aliased = isModOrRefSet(BatchAA.getModRefInfo(Inst2, Loc1)); 2498 // Store the result in the cache. 2499 result = aliased; 2500 return aliased; 2501 } 2502 2503 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2504 2505 /// Cache for alias results. 2506 /// TODO: consider moving this to the AliasAnalysis itself. 2507 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2508 2509 // Cache for pointerMayBeCaptured calls inside AA. This is preserved 2510 // globally through SLP because we don't perform any action which 2511 // invalidates capture results. 2512 BatchAAResults BatchAA; 2513 2514 /// Removes an instruction from its block and eventually deletes it. 2515 /// It's like Instruction::eraseFromParent() except that the actual deletion 2516 /// is delayed until BoUpSLP is destructed. 2517 /// This is required to ensure that there are no incorrect collisions in the 2518 /// AliasCache, which can happen if a new instruction is allocated at the 2519 /// same address as a previously deleted instruction. 2520 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 2521 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 2522 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 2523 } 2524 2525 /// Temporary store for deleted instructions. Instructions will be deleted 2526 /// eventually when the BoUpSLP is destructed. 2527 DenseMap<Instruction *, bool> DeletedInstructions; 2528 2529 /// A list of values that need to extracted out of the tree. 2530 /// This list holds pairs of (Internal Scalar : External User). External User 2531 /// can be nullptr, it means that this Internal Scalar will be used later, 2532 /// after vectorization. 2533 UserList ExternalUses; 2534 2535 /// Values used only by @llvm.assume calls. 2536 SmallPtrSet<const Value *, 32> EphValues; 2537 2538 /// Holds all of the instructions that we gathered. 2539 SetVector<Instruction *> GatherShuffleSeq; 2540 2541 /// A list of blocks that we are going to CSE. 2542 SetVector<BasicBlock *> CSEBlocks; 2543 2544 /// Contains all scheduling relevant data for an instruction. 2545 /// A ScheduleData either represents a single instruction or a member of an 2546 /// instruction bundle (= a group of instructions which is combined into a 2547 /// vector instruction). 2548 struct ScheduleData { 2549 // The initial value for the dependency counters. It means that the 2550 // dependencies are not calculated yet. 2551 enum { InvalidDeps = -1 }; 2552 2553 ScheduleData() = default; 2554 2555 void init(int BlockSchedulingRegionID, Value *OpVal) { 2556 FirstInBundle = this; 2557 NextInBundle = nullptr; 2558 NextLoadStore = nullptr; 2559 IsScheduled = false; 2560 SchedulingRegionID = BlockSchedulingRegionID; 2561 clearDependencies(); 2562 OpValue = OpVal; 2563 TE = nullptr; 2564 } 2565 2566 /// Verify basic self consistency properties 2567 void verify() { 2568 if (hasValidDependencies()) { 2569 assert(UnscheduledDeps <= Dependencies && "invariant"); 2570 } else { 2571 assert(UnscheduledDeps == Dependencies && "invariant"); 2572 } 2573 2574 if (IsScheduled) { 2575 assert(isSchedulingEntity() && 2576 "unexpected scheduled state"); 2577 for (const ScheduleData *BundleMember = this; BundleMember; 2578 BundleMember = BundleMember->NextInBundle) { 2579 assert(BundleMember->hasValidDependencies() && 2580 BundleMember->UnscheduledDeps == 0 && 2581 "unexpected scheduled state"); 2582 assert((BundleMember == this || !BundleMember->IsScheduled) && 2583 "only bundle is marked scheduled"); 2584 } 2585 } 2586 2587 assert(Inst->getParent() == FirstInBundle->Inst->getParent() && 2588 "all bundle members must be in same basic block"); 2589 } 2590 2591 /// Returns true if the dependency information has been calculated. 2592 /// Note that depenendency validity can vary between instructions within 2593 /// a single bundle. 2594 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2595 2596 /// Returns true for single instructions and for bundle representatives 2597 /// (= the head of a bundle). 2598 bool isSchedulingEntity() const { return FirstInBundle == this; } 2599 2600 /// Returns true if it represents an instruction bundle and not only a 2601 /// single instruction. 2602 bool isPartOfBundle() const { 2603 return NextInBundle != nullptr || FirstInBundle != this || TE; 2604 } 2605 2606 /// Returns true if it is ready for scheduling, i.e. it has no more 2607 /// unscheduled depending instructions/bundles. 2608 bool isReady() const { 2609 assert(isSchedulingEntity() && 2610 "can't consider non-scheduling entity for ready list"); 2611 return unscheduledDepsInBundle() == 0 && !IsScheduled; 2612 } 2613 2614 /// Modifies the number of unscheduled dependencies for this instruction, 2615 /// and returns the number of remaining dependencies for the containing 2616 /// bundle. 2617 int incrementUnscheduledDeps(int Incr) { 2618 assert(hasValidDependencies() && 2619 "increment of unscheduled deps would be meaningless"); 2620 UnscheduledDeps += Incr; 2621 return FirstInBundle->unscheduledDepsInBundle(); 2622 } 2623 2624 /// Sets the number of unscheduled dependencies to the number of 2625 /// dependencies. 2626 void resetUnscheduledDeps() { 2627 UnscheduledDeps = Dependencies; 2628 } 2629 2630 /// Clears all dependency information. 2631 void clearDependencies() { 2632 Dependencies = InvalidDeps; 2633 resetUnscheduledDeps(); 2634 MemoryDependencies.clear(); 2635 } 2636 2637 int unscheduledDepsInBundle() const { 2638 assert(isSchedulingEntity() && "only meaningful on the bundle"); 2639 int Sum = 0; 2640 for (const ScheduleData *BundleMember = this; BundleMember; 2641 BundleMember = BundleMember->NextInBundle) { 2642 if (BundleMember->UnscheduledDeps == InvalidDeps) 2643 return InvalidDeps; 2644 Sum += BundleMember->UnscheduledDeps; 2645 } 2646 return Sum; 2647 } 2648 2649 void dump(raw_ostream &os) const { 2650 if (!isSchedulingEntity()) { 2651 os << "/ " << *Inst; 2652 } else if (NextInBundle) { 2653 os << '[' << *Inst; 2654 ScheduleData *SD = NextInBundle; 2655 while (SD) { 2656 os << ';' << *SD->Inst; 2657 SD = SD->NextInBundle; 2658 } 2659 os << ']'; 2660 } else { 2661 os << *Inst; 2662 } 2663 } 2664 2665 Instruction *Inst = nullptr; 2666 2667 /// Opcode of the current instruction in the schedule data. 2668 Value *OpValue = nullptr; 2669 2670 /// The TreeEntry that this instruction corresponds to. 2671 TreeEntry *TE = nullptr; 2672 2673 /// Points to the head in an instruction bundle (and always to this for 2674 /// single instructions). 2675 ScheduleData *FirstInBundle = nullptr; 2676 2677 /// Single linked list of all instructions in a bundle. Null if it is a 2678 /// single instruction. 2679 ScheduleData *NextInBundle = nullptr; 2680 2681 /// Single linked list of all memory instructions (e.g. load, store, call) 2682 /// in the block - until the end of the scheduling region. 2683 ScheduleData *NextLoadStore = nullptr; 2684 2685 /// The dependent memory instructions. 2686 /// This list is derived on demand in calculateDependencies(). 2687 SmallVector<ScheduleData *, 4> MemoryDependencies; 2688 2689 /// This ScheduleData is in the current scheduling region if this matches 2690 /// the current SchedulingRegionID of BlockScheduling. 2691 int SchedulingRegionID = 0; 2692 2693 /// Used for getting a "good" final ordering of instructions. 2694 int SchedulingPriority = 0; 2695 2696 /// The number of dependencies. Constitutes of the number of users of the 2697 /// instruction plus the number of dependent memory instructions (if any). 2698 /// This value is calculated on demand. 2699 /// If InvalidDeps, the number of dependencies is not calculated yet. 2700 int Dependencies = InvalidDeps; 2701 2702 /// The number of dependencies minus the number of dependencies of scheduled 2703 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2704 /// for scheduling. 2705 /// Note that this is negative as long as Dependencies is not calculated. 2706 int UnscheduledDeps = InvalidDeps; 2707 2708 /// True if this instruction is scheduled (or considered as scheduled in the 2709 /// dry-run). 2710 bool IsScheduled = false; 2711 }; 2712 2713 #ifndef NDEBUG 2714 friend inline raw_ostream &operator<<(raw_ostream &os, 2715 const BoUpSLP::ScheduleData &SD) { 2716 SD.dump(os); 2717 return os; 2718 } 2719 #endif 2720 2721 friend struct GraphTraits<BoUpSLP *>; 2722 friend struct DOTGraphTraits<BoUpSLP *>; 2723 2724 /// Contains all scheduling data for a basic block. 2725 /// It does not schedules instructions, which are not memory read/write 2726 /// instructions and their operands are either constants, or arguments, or 2727 /// phis, or instructions from others blocks, or their users are phis or from 2728 /// the other blocks. The resulting vector instructions can be placed at the 2729 /// beginning of the basic block without scheduling (if operands does not need 2730 /// to be scheduled) or at the end of the block (if users are outside of the 2731 /// block). It allows to save some compile time and memory used by the 2732 /// compiler. 2733 /// ScheduleData is assigned for each instruction in between the boundaries of 2734 /// the tree entry, even for those, which are not part of the graph. It is 2735 /// required to correctly follow the dependencies between the instructions and 2736 /// their correct scheduling. The ScheduleData is not allocated for the 2737 /// instructions, which do not require scheduling, like phis, nodes with 2738 /// extractelements/insertelements only or nodes with instructions, with 2739 /// uses/operands outside of the block. 2740 struct BlockScheduling { 2741 BlockScheduling(BasicBlock *BB) 2742 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2743 2744 void clear() { 2745 ReadyInsts.clear(); 2746 ScheduleStart = nullptr; 2747 ScheduleEnd = nullptr; 2748 FirstLoadStoreInRegion = nullptr; 2749 LastLoadStoreInRegion = nullptr; 2750 2751 // Reduce the maximum schedule region size by the size of the 2752 // previous scheduling run. 2753 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2754 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2755 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2756 ScheduleRegionSize = 0; 2757 2758 // Make a new scheduling region, i.e. all existing ScheduleData is not 2759 // in the new region yet. 2760 ++SchedulingRegionID; 2761 } 2762 2763 ScheduleData *getScheduleData(Instruction *I) { 2764 if (BB != I->getParent()) 2765 // Avoid lookup if can't possibly be in map. 2766 return nullptr; 2767 ScheduleData *SD = ScheduleDataMap.lookup(I); 2768 if (SD && isInSchedulingRegion(SD)) 2769 return SD; 2770 return nullptr; 2771 } 2772 2773 ScheduleData *getScheduleData(Value *V) { 2774 if (auto *I = dyn_cast<Instruction>(V)) 2775 return getScheduleData(I); 2776 return nullptr; 2777 } 2778 2779 ScheduleData *getScheduleData(Value *V, Value *Key) { 2780 if (V == Key) 2781 return getScheduleData(V); 2782 auto I = ExtraScheduleDataMap.find(V); 2783 if (I != ExtraScheduleDataMap.end()) { 2784 ScheduleData *SD = I->second.lookup(Key); 2785 if (SD && isInSchedulingRegion(SD)) 2786 return SD; 2787 } 2788 return nullptr; 2789 } 2790 2791 bool isInSchedulingRegion(ScheduleData *SD) const { 2792 return SD->SchedulingRegionID == SchedulingRegionID; 2793 } 2794 2795 /// Marks an instruction as scheduled and puts all dependent ready 2796 /// instructions into the ready-list. 2797 template <typename ReadyListType> 2798 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2799 SD->IsScheduled = true; 2800 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2801 2802 for (ScheduleData *BundleMember = SD; BundleMember; 2803 BundleMember = BundleMember->NextInBundle) { 2804 if (BundleMember->Inst != BundleMember->OpValue) 2805 continue; 2806 2807 // Handle the def-use chain dependencies. 2808 2809 // Decrement the unscheduled counter and insert to ready list if ready. 2810 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2811 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2812 if (OpDef && OpDef->hasValidDependencies() && 2813 OpDef->incrementUnscheduledDeps(-1) == 0) { 2814 // There are no more unscheduled dependencies after 2815 // decrementing, so we can put the dependent instruction 2816 // into the ready list. 2817 ScheduleData *DepBundle = OpDef->FirstInBundle; 2818 assert(!DepBundle->IsScheduled && 2819 "already scheduled bundle gets ready"); 2820 ReadyList.insert(DepBundle); 2821 LLVM_DEBUG(dbgs() 2822 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2823 } 2824 }); 2825 }; 2826 2827 // If BundleMember is a vector bundle, its operands may have been 2828 // reordered during buildTree(). We therefore need to get its operands 2829 // through the TreeEntry. 2830 if (TreeEntry *TE = BundleMember->TE) { 2831 // Need to search for the lane since the tree entry can be reordered. 2832 int Lane = std::distance(TE->Scalars.begin(), 2833 find(TE->Scalars, BundleMember->Inst)); 2834 assert(Lane >= 0 && "Lane not set"); 2835 2836 // Since vectorization tree is being built recursively this assertion 2837 // ensures that the tree entry has all operands set before reaching 2838 // this code. Couple of exceptions known at the moment are extracts 2839 // where their second (immediate) operand is not added. Since 2840 // immediates do not affect scheduler behavior this is considered 2841 // okay. 2842 auto *In = BundleMember->Inst; 2843 assert(In && 2844 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2845 In->getNumOperands() == TE->getNumOperands()) && 2846 "Missed TreeEntry operands?"); 2847 (void)In; // fake use to avoid build failure when assertions disabled 2848 2849 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2850 OpIdx != NumOperands; ++OpIdx) 2851 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2852 DecrUnsched(I); 2853 } else { 2854 // If BundleMember is a stand-alone instruction, no operand reordering 2855 // has taken place, so we directly access its operands. 2856 for (Use &U : BundleMember->Inst->operands()) 2857 if (auto *I = dyn_cast<Instruction>(U.get())) 2858 DecrUnsched(I); 2859 } 2860 // Handle the memory dependencies. 2861 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2862 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2863 // There are no more unscheduled dependencies after decrementing, 2864 // so we can put the dependent instruction into the ready list. 2865 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2866 assert(!DepBundle->IsScheduled && 2867 "already scheduled bundle gets ready"); 2868 ReadyList.insert(DepBundle); 2869 LLVM_DEBUG(dbgs() 2870 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2871 } 2872 } 2873 } 2874 } 2875 2876 /// Verify basic self consistency properties of the data structure. 2877 void verify() { 2878 if (!ScheduleStart) 2879 return; 2880 2881 assert(ScheduleStart->getParent() == ScheduleEnd->getParent() && 2882 ScheduleStart->comesBefore(ScheduleEnd) && 2883 "Not a valid scheduling region?"); 2884 2885 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2886 auto *SD = getScheduleData(I); 2887 if (!SD) 2888 continue; 2889 assert(isInSchedulingRegion(SD) && 2890 "primary schedule data not in window?"); 2891 assert(isInSchedulingRegion(SD->FirstInBundle) && 2892 "entire bundle in window!"); 2893 (void)SD; 2894 doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); }); 2895 } 2896 2897 for (auto *SD : ReadyInsts) { 2898 assert(SD->isSchedulingEntity() && SD->isReady() && 2899 "item in ready list not ready?"); 2900 (void)SD; 2901 } 2902 } 2903 2904 void doForAllOpcodes(Value *V, 2905 function_ref<void(ScheduleData *SD)> Action) { 2906 if (ScheduleData *SD = getScheduleData(V)) 2907 Action(SD); 2908 auto I = ExtraScheduleDataMap.find(V); 2909 if (I != ExtraScheduleDataMap.end()) 2910 for (auto &P : I->second) 2911 if (isInSchedulingRegion(P.second)) 2912 Action(P.second); 2913 } 2914 2915 /// Put all instructions into the ReadyList which are ready for scheduling. 2916 template <typename ReadyListType> 2917 void initialFillReadyList(ReadyListType &ReadyList) { 2918 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2919 doForAllOpcodes(I, [&](ScheduleData *SD) { 2920 if (SD->isSchedulingEntity() && SD->isReady()) { 2921 ReadyList.insert(SD); 2922 LLVM_DEBUG(dbgs() 2923 << "SLP: initially in ready list: " << *SD << "\n"); 2924 } 2925 }); 2926 } 2927 } 2928 2929 /// Build a bundle from the ScheduleData nodes corresponding to the 2930 /// scalar instruction for each lane. 2931 ScheduleData *buildBundle(ArrayRef<Value *> VL); 2932 2933 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2934 /// cyclic dependencies. This is only a dry-run, no instructions are 2935 /// actually moved at this stage. 2936 /// \returns the scheduling bundle. The returned Optional value is non-None 2937 /// if \p VL is allowed to be scheduled. 2938 Optional<ScheduleData *> 2939 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2940 const InstructionsState &S); 2941 2942 /// Un-bundles a group of instructions. 2943 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2944 2945 /// Allocates schedule data chunk. 2946 ScheduleData *allocateScheduleDataChunks(); 2947 2948 /// Extends the scheduling region so that V is inside the region. 2949 /// \returns true if the region size is within the limit. 2950 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2951 2952 /// Initialize the ScheduleData structures for new instructions in the 2953 /// scheduling region. 2954 void initScheduleData(Instruction *FromI, Instruction *ToI, 2955 ScheduleData *PrevLoadStore, 2956 ScheduleData *NextLoadStore); 2957 2958 /// Updates the dependency information of a bundle and of all instructions/ 2959 /// bundles which depend on the original bundle. 2960 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2961 BoUpSLP *SLP); 2962 2963 /// Sets all instruction in the scheduling region to un-scheduled. 2964 void resetSchedule(); 2965 2966 BasicBlock *BB; 2967 2968 /// Simple memory allocation for ScheduleData. 2969 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2970 2971 /// The size of a ScheduleData array in ScheduleDataChunks. 2972 int ChunkSize; 2973 2974 /// The allocator position in the current chunk, which is the last entry 2975 /// of ScheduleDataChunks. 2976 int ChunkPos; 2977 2978 /// Attaches ScheduleData to Instruction. 2979 /// Note that the mapping survives during all vectorization iterations, i.e. 2980 /// ScheduleData structures are recycled. 2981 DenseMap<Instruction *, ScheduleData *> ScheduleDataMap; 2982 2983 /// Attaches ScheduleData to Instruction with the leading key. 2984 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2985 ExtraScheduleDataMap; 2986 2987 /// The ready-list for scheduling (only used for the dry-run). 2988 SetVector<ScheduleData *> ReadyInsts; 2989 2990 /// The first instruction of the scheduling region. 2991 Instruction *ScheduleStart = nullptr; 2992 2993 /// The first instruction _after_ the scheduling region. 2994 Instruction *ScheduleEnd = nullptr; 2995 2996 /// The first memory accessing instruction in the scheduling region 2997 /// (can be null). 2998 ScheduleData *FirstLoadStoreInRegion = nullptr; 2999 3000 /// The last memory accessing instruction in the scheduling region 3001 /// (can be null). 3002 ScheduleData *LastLoadStoreInRegion = nullptr; 3003 3004 /// The current size of the scheduling region. 3005 int ScheduleRegionSize = 0; 3006 3007 /// The maximum size allowed for the scheduling region. 3008 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 3009 3010 /// The ID of the scheduling region. For a new vectorization iteration this 3011 /// is incremented which "removes" all ScheduleData from the region. 3012 /// Make sure that the initial SchedulingRegionID is greater than the 3013 /// initial SchedulingRegionID in ScheduleData (which is 0). 3014 int SchedulingRegionID = 1; 3015 }; 3016 3017 /// Attaches the BlockScheduling structures to basic blocks. 3018 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 3019 3020 /// Performs the "real" scheduling. Done before vectorization is actually 3021 /// performed in a basic block. 3022 void scheduleBlock(BlockScheduling *BS); 3023 3024 /// List of users to ignore during scheduling and that don't need extracting. 3025 ArrayRef<Value *> UserIgnoreList; 3026 3027 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 3028 /// sorted SmallVectors of unsigned. 3029 struct OrdersTypeDenseMapInfo { 3030 static OrdersType getEmptyKey() { 3031 OrdersType V; 3032 V.push_back(~1U); 3033 return V; 3034 } 3035 3036 static OrdersType getTombstoneKey() { 3037 OrdersType V; 3038 V.push_back(~2U); 3039 return V; 3040 } 3041 3042 static unsigned getHashValue(const OrdersType &V) { 3043 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 3044 } 3045 3046 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 3047 return LHS == RHS; 3048 } 3049 }; 3050 3051 // Analysis and block reference. 3052 Function *F; 3053 ScalarEvolution *SE; 3054 TargetTransformInfo *TTI; 3055 TargetLibraryInfo *TLI; 3056 LoopInfo *LI; 3057 DominatorTree *DT; 3058 AssumptionCache *AC; 3059 DemandedBits *DB; 3060 MemorySSA *MSSA; 3061 const DataLayout *DL; 3062 OptimizationRemarkEmitter *ORE; 3063 3064 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 3065 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 3066 3067 /// Instruction builder to construct the vectorized tree. 3068 IRBuilder<> Builder; 3069 3070 /// A map of scalar integer values to the smallest bit width with which they 3071 /// can legally be represented. The values map to (width, signed) pairs, 3072 /// where "width" indicates the minimum bit width and "signed" is True if the 3073 /// value must be signed-extended, rather than zero-extended, back to its 3074 /// original width. 3075 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 3076 }; 3077 3078 } // end namespace slpvectorizer 3079 3080 template <> struct GraphTraits<BoUpSLP *> { 3081 using TreeEntry = BoUpSLP::TreeEntry; 3082 3083 /// NodeRef has to be a pointer per the GraphWriter. 3084 using NodeRef = TreeEntry *; 3085 3086 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 3087 3088 /// Add the VectorizableTree to the index iterator to be able to return 3089 /// TreeEntry pointers. 3090 struct ChildIteratorType 3091 : public iterator_adaptor_base< 3092 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 3093 ContainerTy &VectorizableTree; 3094 3095 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 3096 ContainerTy &VT) 3097 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 3098 3099 NodeRef operator*() { return I->UserTE; } 3100 }; 3101 3102 static NodeRef getEntryNode(BoUpSLP &R) { 3103 return R.VectorizableTree[0].get(); 3104 } 3105 3106 static ChildIteratorType child_begin(NodeRef N) { 3107 return {N->UserTreeIndices.begin(), N->Container}; 3108 } 3109 3110 static ChildIteratorType child_end(NodeRef N) { 3111 return {N->UserTreeIndices.end(), N->Container}; 3112 } 3113 3114 /// For the node iterator we just need to turn the TreeEntry iterator into a 3115 /// TreeEntry* iterator so that it dereferences to NodeRef. 3116 class nodes_iterator { 3117 using ItTy = ContainerTy::iterator; 3118 ItTy It; 3119 3120 public: 3121 nodes_iterator(const ItTy &It2) : It(It2) {} 3122 NodeRef operator*() { return It->get(); } 3123 nodes_iterator operator++() { 3124 ++It; 3125 return *this; 3126 } 3127 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 3128 }; 3129 3130 static nodes_iterator nodes_begin(BoUpSLP *R) { 3131 return nodes_iterator(R->VectorizableTree.begin()); 3132 } 3133 3134 static nodes_iterator nodes_end(BoUpSLP *R) { 3135 return nodes_iterator(R->VectorizableTree.end()); 3136 } 3137 3138 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 3139 }; 3140 3141 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 3142 using TreeEntry = BoUpSLP::TreeEntry; 3143 3144 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3145 3146 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 3147 std::string Str; 3148 raw_string_ostream OS(Str); 3149 if (isSplat(Entry->Scalars)) 3150 OS << "<splat> "; 3151 for (auto V : Entry->Scalars) { 3152 OS << *V; 3153 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 3154 return EU.Scalar == V; 3155 })) 3156 OS << " <extract>"; 3157 OS << "\n"; 3158 } 3159 return Str; 3160 } 3161 3162 static std::string getNodeAttributes(const TreeEntry *Entry, 3163 const BoUpSLP *) { 3164 if (Entry->State == TreeEntry::NeedToGather) 3165 return "color=red"; 3166 return ""; 3167 } 3168 }; 3169 3170 } // end namespace llvm 3171 3172 BoUpSLP::~BoUpSLP() { 3173 if (MSSA) { 3174 MemorySSAUpdater MSSAU(MSSA); 3175 for (const auto &Pair : DeletedInstructions) { 3176 if (auto *Access = MSSA->getMemoryAccess(Pair.first)) 3177 MSSAU.removeMemoryAccess(Access); 3178 } 3179 } 3180 for (const auto &Pair : DeletedInstructions) { 3181 // Replace operands of ignored instructions with Undefs in case if they were 3182 // marked for deletion. 3183 if (Pair.getSecond()) { 3184 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 3185 Pair.getFirst()->replaceAllUsesWith(Undef); 3186 } 3187 Pair.getFirst()->dropAllReferences(); 3188 } 3189 for (const auto &Pair : DeletedInstructions) { 3190 assert(Pair.getFirst()->use_empty() && 3191 "trying to erase instruction with users."); 3192 Pair.getFirst()->eraseFromParent(); 3193 } 3194 #ifdef EXPENSIVE_CHECKS 3195 // If we could guarantee that this call is not extremely slow, we could 3196 // remove the ifdef limitation (see PR47712). 3197 assert(!verifyFunction(*F, &dbgs())); 3198 #endif 3199 } 3200 3201 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 3202 for (auto *V : AV) { 3203 if (auto *I = dyn_cast<Instruction>(V)) 3204 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 3205 }; 3206 } 3207 3208 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 3209 /// contains original mask for the scalars reused in the node. Procedure 3210 /// transform this mask in accordance with the given \p Mask. 3211 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 3212 assert(!Mask.empty() && Reuses.size() == Mask.size() && 3213 "Expected non-empty mask."); 3214 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 3215 Prev.swap(Reuses); 3216 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 3217 if (Mask[I] != UndefMaskElem) 3218 Reuses[Mask[I]] = Prev[I]; 3219 } 3220 3221 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 3222 /// the original order of the scalars. Procedure transforms the provided order 3223 /// in accordance with the given \p Mask. If the resulting \p Order is just an 3224 /// identity order, \p Order is cleared. 3225 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 3226 assert(!Mask.empty() && "Expected non-empty mask."); 3227 SmallVector<int> MaskOrder; 3228 if (Order.empty()) { 3229 MaskOrder.resize(Mask.size()); 3230 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 3231 } else { 3232 inversePermutation(Order, MaskOrder); 3233 } 3234 reorderReuses(MaskOrder, Mask); 3235 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 3236 Order.clear(); 3237 return; 3238 } 3239 Order.assign(Mask.size(), Mask.size()); 3240 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 3241 if (MaskOrder[I] != UndefMaskElem) 3242 Order[MaskOrder[I]] = I; 3243 fixupOrderingIndices(Order); 3244 } 3245 3246 Optional<BoUpSLP::OrdersType> 3247 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 3248 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 3249 unsigned NumScalars = TE.Scalars.size(); 3250 OrdersType CurrentOrder(NumScalars, NumScalars); 3251 SmallVector<int> Positions; 3252 SmallBitVector UsedPositions(NumScalars); 3253 const TreeEntry *STE = nullptr; 3254 // Try to find all gathered scalars that are gets vectorized in other 3255 // vectorize node. Here we can have only one single tree vector node to 3256 // correctly identify order of the gathered scalars. 3257 for (unsigned I = 0; I < NumScalars; ++I) { 3258 Value *V = TE.Scalars[I]; 3259 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 3260 continue; 3261 if (const auto *LocalSTE = getTreeEntry(V)) { 3262 if (!STE) 3263 STE = LocalSTE; 3264 else if (STE != LocalSTE) 3265 // Take the order only from the single vector node. 3266 return None; 3267 unsigned Lane = 3268 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 3269 if (Lane >= NumScalars) 3270 return None; 3271 if (CurrentOrder[Lane] != NumScalars) { 3272 if (Lane != I) 3273 continue; 3274 UsedPositions.reset(CurrentOrder[Lane]); 3275 } 3276 // The partial identity (where only some elements of the gather node are 3277 // in the identity order) is good. 3278 CurrentOrder[Lane] = I; 3279 UsedPositions.set(I); 3280 } 3281 } 3282 // Need to keep the order if we have a vector entry and at least 2 scalars or 3283 // the vectorized entry has just 2 scalars. 3284 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 3285 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 3286 for (unsigned I = 0; I < NumScalars; ++I) 3287 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 3288 return false; 3289 return true; 3290 }; 3291 if (IsIdentityOrder(CurrentOrder)) { 3292 CurrentOrder.clear(); 3293 return CurrentOrder; 3294 } 3295 auto *It = CurrentOrder.begin(); 3296 for (unsigned I = 0; I < NumScalars;) { 3297 if (UsedPositions.test(I)) { 3298 ++I; 3299 continue; 3300 } 3301 if (*It == NumScalars) { 3302 *It = I; 3303 ++I; 3304 } 3305 ++It; 3306 } 3307 return CurrentOrder; 3308 } 3309 return None; 3310 } 3311 3312 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE, 3313 bool TopToBottom) { 3314 // No need to reorder if need to shuffle reuses, still need to shuffle the 3315 // node. 3316 if (!TE.ReuseShuffleIndices.empty()) 3317 return None; 3318 if (TE.State == TreeEntry::Vectorize && 3319 (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) || 3320 (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) && 3321 !TE.isAltShuffle()) 3322 return TE.ReorderIndices; 3323 if (TE.State == TreeEntry::NeedToGather) { 3324 // TODO: add analysis of other gather nodes with extractelement 3325 // instructions and other values/instructions, not only undefs. 3326 if (((TE.getOpcode() == Instruction::ExtractElement && 3327 !TE.isAltShuffle()) || 3328 (all_of(TE.Scalars, 3329 [](Value *V) { 3330 return isa<UndefValue, ExtractElementInst>(V); 3331 }) && 3332 any_of(TE.Scalars, 3333 [](Value *V) { return isa<ExtractElementInst>(V); }))) && 3334 all_of(TE.Scalars, 3335 [](Value *V) { 3336 auto *EE = dyn_cast<ExtractElementInst>(V); 3337 return !EE || isa<FixedVectorType>(EE->getVectorOperandType()); 3338 }) && 3339 allSameType(TE.Scalars)) { 3340 // Check that gather of extractelements can be represented as 3341 // just a shuffle of a single vector. 3342 OrdersType CurrentOrder; 3343 bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder); 3344 if (Reuse || !CurrentOrder.empty()) { 3345 if (!CurrentOrder.empty()) 3346 fixupOrderingIndices(CurrentOrder); 3347 return CurrentOrder; 3348 } 3349 } 3350 if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE)) 3351 return CurrentOrder; 3352 } 3353 return None; 3354 } 3355 3356 void BoUpSLP::reorderTopToBottom() { 3357 // Maps VF to the graph nodes. 3358 DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries; 3359 // ExtractElement gather nodes which can be vectorized and need to handle 3360 // their ordering. 3361 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3362 // Find all reorderable nodes with the given VF. 3363 // Currently the are vectorized stores,loads,extracts + some gathering of 3364 // extracts. 3365 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 3366 const std::unique_ptr<TreeEntry> &TE) { 3367 if (Optional<OrdersType> CurrentOrder = 3368 getReorderingData(*TE.get(), /*TopToBottom=*/true)) { 3369 // Do not include ordering for nodes used in the alt opcode vectorization, 3370 // better to reorder them during bottom-to-top stage. If follow the order 3371 // here, it causes reordering of the whole graph though actually it is 3372 // profitable just to reorder the subgraph that starts from the alternate 3373 // opcode vectorization node. Such nodes already end-up with the shuffle 3374 // instruction and it is just enough to change this shuffle rather than 3375 // rotate the scalars for the whole graph. 3376 unsigned Cnt = 0; 3377 const TreeEntry *UserTE = TE.get(); 3378 while (UserTE && Cnt < RecursionMaxDepth) { 3379 if (UserTE->UserTreeIndices.size() != 1) 3380 break; 3381 if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) { 3382 return EI.UserTE->State == TreeEntry::Vectorize && 3383 EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0; 3384 })) 3385 return; 3386 if (UserTE->UserTreeIndices.empty()) 3387 UserTE = nullptr; 3388 else 3389 UserTE = UserTE->UserTreeIndices.back().UserTE; 3390 ++Cnt; 3391 } 3392 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3393 if (TE->State != TreeEntry::Vectorize) 3394 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3395 } 3396 }); 3397 3398 // Reorder the graph nodes according to their vectorization factor. 3399 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 3400 VF /= 2) { 3401 auto It = VFToOrderedEntries.find(VF); 3402 if (It == VFToOrderedEntries.end()) 3403 continue; 3404 // Try to find the most profitable order. We just are looking for the most 3405 // used order and reorder scalar elements in the nodes according to this 3406 // mostly used order. 3407 ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef(); 3408 // All operands are reordered and used only in this node - propagate the 3409 // most used order to the user node. 3410 MapVector<OrdersType, unsigned, 3411 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3412 OrdersUses; 3413 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3414 for (const TreeEntry *OpTE : OrderedEntries) { 3415 // No need to reorder this nodes, still need to extend and to use shuffle, 3416 // just need to merge reordering shuffle and the reuse shuffle. 3417 if (!OpTE->ReuseShuffleIndices.empty()) 3418 continue; 3419 // Count number of orders uses. 3420 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3421 if (OpTE->State == TreeEntry::NeedToGather) 3422 return GathersToOrders.find(OpTE)->second; 3423 return OpTE->ReorderIndices; 3424 }(); 3425 // Stores actually store the mask, not the order, need to invert. 3426 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3427 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3428 SmallVector<int> Mask; 3429 inversePermutation(Order, Mask); 3430 unsigned E = Order.size(); 3431 OrdersType CurrentOrder(E, E); 3432 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3433 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3434 }); 3435 fixupOrderingIndices(CurrentOrder); 3436 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3437 } else { 3438 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3439 } 3440 } 3441 // Set order of the user node. 3442 if (OrdersUses.empty()) 3443 continue; 3444 // Choose the most used order. 3445 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3446 unsigned Cnt = OrdersUses.front().second; 3447 for (const auto &Pair : drop_begin(OrdersUses)) { 3448 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3449 BestOrder = Pair.first; 3450 Cnt = Pair.second; 3451 } 3452 } 3453 // Set order of the user node. 3454 if (BestOrder.empty()) 3455 continue; 3456 SmallVector<int> Mask; 3457 inversePermutation(BestOrder, Mask); 3458 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3459 unsigned E = BestOrder.size(); 3460 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3461 return I < E ? static_cast<int>(I) : UndefMaskElem; 3462 }); 3463 // Do an actual reordering, if profitable. 3464 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 3465 // Just do the reordering for the nodes with the given VF. 3466 if (TE->Scalars.size() != VF) { 3467 if (TE->ReuseShuffleIndices.size() == VF) { 3468 // Need to reorder the reuses masks of the operands with smaller VF to 3469 // be able to find the match between the graph nodes and scalar 3470 // operands of the given node during vectorization/cost estimation. 3471 assert(all_of(TE->UserTreeIndices, 3472 [VF, &TE](const EdgeInfo &EI) { 3473 return EI.UserTE->Scalars.size() == VF || 3474 EI.UserTE->Scalars.size() == 3475 TE->Scalars.size(); 3476 }) && 3477 "All users must be of VF size."); 3478 // Update ordering of the operands with the smaller VF than the given 3479 // one. 3480 reorderReuses(TE->ReuseShuffleIndices, Mask); 3481 } 3482 continue; 3483 } 3484 if (TE->State == TreeEntry::Vectorize && 3485 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 3486 InsertElementInst>(TE->getMainOp()) && 3487 !TE->isAltShuffle()) { 3488 // Build correct orders for extract{element,value}, loads and 3489 // stores. 3490 reorderOrder(TE->ReorderIndices, Mask); 3491 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 3492 TE->reorderOperands(Mask); 3493 } else { 3494 // Reorder the node and its operands. 3495 TE->reorderOperands(Mask); 3496 assert(TE->ReorderIndices.empty() && 3497 "Expected empty reorder sequence."); 3498 reorderScalars(TE->Scalars, Mask); 3499 } 3500 if (!TE->ReuseShuffleIndices.empty()) { 3501 // Apply reversed order to keep the original ordering of the reused 3502 // elements to avoid extra reorder indices shuffling. 3503 OrdersType CurrentOrder; 3504 reorderOrder(CurrentOrder, MaskOrder); 3505 SmallVector<int> NewReuses; 3506 inversePermutation(CurrentOrder, NewReuses); 3507 addMask(NewReuses, TE->ReuseShuffleIndices); 3508 TE->ReuseShuffleIndices.swap(NewReuses); 3509 } 3510 } 3511 } 3512 } 3513 3514 bool BoUpSLP::canReorderOperands( 3515 TreeEntry *UserTE, SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 3516 ArrayRef<TreeEntry *> ReorderableGathers, 3517 SmallVectorImpl<TreeEntry *> &GatherOps) { 3518 for (unsigned I = 0, E = UserTE->getNumOperands(); I < E; ++I) { 3519 if (any_of(Edges, [I](const std::pair<unsigned, TreeEntry *> &OpData) { 3520 return OpData.first == I && 3521 OpData.second->State == TreeEntry::Vectorize; 3522 })) 3523 continue; 3524 if (TreeEntry *TE = getVectorizedOperand(UserTE, I)) { 3525 // Do not reorder if operand node is used by many user nodes. 3526 if (any_of(TE->UserTreeIndices, 3527 [UserTE](const EdgeInfo &EI) { return EI.UserTE != UserTE; })) 3528 return false; 3529 // Add the node to the list of the ordered nodes with the identity 3530 // order. 3531 Edges.emplace_back(I, TE); 3532 continue; 3533 } 3534 ArrayRef<Value *> VL = UserTE->getOperand(I); 3535 TreeEntry *Gather = nullptr; 3536 if (count_if(ReorderableGathers, [VL, &Gather](TreeEntry *TE) { 3537 assert(TE->State != TreeEntry::Vectorize && 3538 "Only non-vectorized nodes are expected."); 3539 if (TE->isSame(VL)) { 3540 Gather = TE; 3541 return true; 3542 } 3543 return false; 3544 }) > 1) 3545 return false; 3546 if (Gather) 3547 GatherOps.push_back(Gather); 3548 } 3549 return true; 3550 } 3551 3552 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 3553 SetVector<TreeEntry *> OrderedEntries; 3554 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3555 // Find all reorderable leaf nodes with the given VF. 3556 // Currently the are vectorized loads,extracts without alternate operands + 3557 // some gathering of extracts. 3558 SmallVector<TreeEntry *> NonVectorized; 3559 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 3560 &NonVectorized]( 3561 const std::unique_ptr<TreeEntry> &TE) { 3562 if (TE->State != TreeEntry::Vectorize) 3563 NonVectorized.push_back(TE.get()); 3564 if (Optional<OrdersType> CurrentOrder = 3565 getReorderingData(*TE.get(), /*TopToBottom=*/false)) { 3566 OrderedEntries.insert(TE.get()); 3567 if (TE->State != TreeEntry::Vectorize) 3568 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3569 } 3570 }); 3571 3572 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3573 // I.e., if the node has operands, that are reordered, try to make at least 3574 // one operand order in the natural order and reorder others + reorder the 3575 // user node itself. 3576 SmallPtrSet<const TreeEntry *, 4> Visited; 3577 while (!OrderedEntries.empty()) { 3578 // 1. Filter out only reordered nodes. 3579 // 2. If the entry has multiple uses - skip it and jump to the next node. 3580 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3581 SmallVector<TreeEntry *> Filtered; 3582 for (TreeEntry *TE : OrderedEntries) { 3583 if (!(TE->State == TreeEntry::Vectorize || 3584 (TE->State == TreeEntry::NeedToGather && 3585 GathersToOrders.count(TE))) || 3586 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3587 !all_of(drop_begin(TE->UserTreeIndices), 3588 [TE](const EdgeInfo &EI) { 3589 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3590 }) || 3591 !Visited.insert(TE).second) { 3592 Filtered.push_back(TE); 3593 continue; 3594 } 3595 // Build a map between user nodes and their operands order to speedup 3596 // search. The graph currently does not provide this dependency directly. 3597 for (EdgeInfo &EI : TE->UserTreeIndices) { 3598 TreeEntry *UserTE = EI.UserTE; 3599 auto It = Users.find(UserTE); 3600 if (It == Users.end()) 3601 It = Users.insert({UserTE, {}}).first; 3602 It->second.emplace_back(EI.EdgeIdx, TE); 3603 } 3604 } 3605 // Erase filtered entries. 3606 for_each(Filtered, 3607 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3608 for (auto &Data : Users) { 3609 // Check that operands are used only in the User node. 3610 SmallVector<TreeEntry *> GatherOps; 3611 if (!canReorderOperands(Data.first, Data.second, NonVectorized, 3612 GatherOps)) { 3613 for_each(Data.second, 3614 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3615 OrderedEntries.remove(Op.second); 3616 }); 3617 continue; 3618 } 3619 // All operands are reordered and used only in this node - propagate the 3620 // most used order to the user node. 3621 MapVector<OrdersType, unsigned, 3622 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3623 OrdersUses; 3624 // Do the analysis for each tree entry only once, otherwise the order of 3625 // the same node my be considered several times, though might be not 3626 // profitable. 3627 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3628 SmallPtrSet<const TreeEntry *, 4> VisitedUsers; 3629 for (const auto &Op : Data.second) { 3630 TreeEntry *OpTE = Op.second; 3631 if (!VisitedOps.insert(OpTE).second) 3632 continue; 3633 if (!OpTE->ReuseShuffleIndices.empty() || 3634 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3635 continue; 3636 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3637 if (OpTE->State == TreeEntry::NeedToGather) 3638 return GathersToOrders.find(OpTE)->second; 3639 return OpTE->ReorderIndices; 3640 }(); 3641 unsigned NumOps = count_if( 3642 Data.second, [OpTE](const std::pair<unsigned, TreeEntry *> &P) { 3643 return P.second == OpTE; 3644 }); 3645 // Stores actually store the mask, not the order, need to invert. 3646 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3647 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3648 SmallVector<int> Mask; 3649 inversePermutation(Order, Mask); 3650 unsigned E = Order.size(); 3651 OrdersType CurrentOrder(E, E); 3652 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3653 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3654 }); 3655 fixupOrderingIndices(CurrentOrder); 3656 OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second += 3657 NumOps; 3658 } else { 3659 OrdersUses.insert(std::make_pair(Order, 0)).first->second += NumOps; 3660 } 3661 auto Res = OrdersUses.insert(std::make_pair(OrdersType(), 0)); 3662 const auto &&AllowsReordering = [IgnoreReorder, &GathersToOrders]( 3663 const TreeEntry *TE) { 3664 if (!TE->ReorderIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3665 (TE->State == TreeEntry::Vectorize && TE->isAltShuffle()) || 3666 (IgnoreReorder && TE->Idx == 0)) 3667 return true; 3668 if (TE->State == TreeEntry::NeedToGather) { 3669 auto It = GathersToOrders.find(TE); 3670 if (It != GathersToOrders.end()) 3671 return !It->second.empty(); 3672 return true; 3673 } 3674 return false; 3675 }; 3676 for (const EdgeInfo &EI : OpTE->UserTreeIndices) { 3677 TreeEntry *UserTE = EI.UserTE; 3678 if (!VisitedUsers.insert(UserTE).second) 3679 continue; 3680 // May reorder user node if it requires reordering, has reused 3681 // scalars, is an alternate op vectorize node or its op nodes require 3682 // reordering. 3683 if (AllowsReordering(UserTE)) 3684 continue; 3685 // Check if users allow reordering. 3686 // Currently look up just 1 level of operands to avoid increase of 3687 // the compile time. 3688 // Profitable to reorder if definitely more operands allow 3689 // reordering rather than those with natural order. 3690 ArrayRef<std::pair<unsigned, TreeEntry *>> Ops = Users[UserTE]; 3691 if (static_cast<unsigned>(count_if( 3692 Ops, [UserTE, &AllowsReordering]( 3693 const std::pair<unsigned, TreeEntry *> &Op) { 3694 return AllowsReordering(Op.second) && 3695 all_of(Op.second->UserTreeIndices, 3696 [UserTE](const EdgeInfo &EI) { 3697 return EI.UserTE == UserTE; 3698 }); 3699 })) <= Ops.size() / 2) 3700 ++Res.first->second; 3701 } 3702 } 3703 // If no orders - skip current nodes and jump to the next one, if any. 3704 if (OrdersUses.empty()) { 3705 for_each(Data.second, 3706 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3707 OrderedEntries.remove(Op.second); 3708 }); 3709 continue; 3710 } 3711 // Choose the best order. 3712 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3713 unsigned Cnt = OrdersUses.front().second; 3714 for (const auto &Pair : drop_begin(OrdersUses)) { 3715 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3716 BestOrder = Pair.first; 3717 Cnt = Pair.second; 3718 } 3719 } 3720 // Set order of the user node (reordering of operands and user nodes). 3721 if (BestOrder.empty()) { 3722 for_each(Data.second, 3723 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3724 OrderedEntries.remove(Op.second); 3725 }); 3726 continue; 3727 } 3728 // Erase operands from OrderedEntries list and adjust their orders. 3729 VisitedOps.clear(); 3730 SmallVector<int> Mask; 3731 inversePermutation(BestOrder, Mask); 3732 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3733 unsigned E = BestOrder.size(); 3734 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3735 return I < E ? static_cast<int>(I) : UndefMaskElem; 3736 }); 3737 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 3738 TreeEntry *TE = Op.second; 3739 OrderedEntries.remove(TE); 3740 if (!VisitedOps.insert(TE).second) 3741 continue; 3742 if (TE->ReuseShuffleIndices.size() == BestOrder.size()) { 3743 // Just reorder reuses indices. 3744 reorderReuses(TE->ReuseShuffleIndices, Mask); 3745 continue; 3746 } 3747 // Gathers are processed separately. 3748 if (TE->State != TreeEntry::Vectorize) 3749 continue; 3750 assert((BestOrder.size() == TE->ReorderIndices.size() || 3751 TE->ReorderIndices.empty()) && 3752 "Non-matching sizes of user/operand entries."); 3753 reorderOrder(TE->ReorderIndices, Mask); 3754 } 3755 // For gathers just need to reorder its scalars. 3756 for (TreeEntry *Gather : GatherOps) { 3757 assert(Gather->ReorderIndices.empty() && 3758 "Unexpected reordering of gathers."); 3759 if (!Gather->ReuseShuffleIndices.empty()) { 3760 // Just reorder reuses indices. 3761 reorderReuses(Gather->ReuseShuffleIndices, Mask); 3762 continue; 3763 } 3764 reorderScalars(Gather->Scalars, Mask); 3765 OrderedEntries.remove(Gather); 3766 } 3767 // Reorder operands of the user node and set the ordering for the user 3768 // node itself. 3769 if (Data.first->State != TreeEntry::Vectorize || 3770 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 3771 Data.first->getMainOp()) || 3772 Data.first->isAltShuffle()) 3773 Data.first->reorderOperands(Mask); 3774 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 3775 Data.first->isAltShuffle()) { 3776 reorderScalars(Data.first->Scalars, Mask); 3777 reorderOrder(Data.first->ReorderIndices, MaskOrder); 3778 if (Data.first->ReuseShuffleIndices.empty() && 3779 !Data.first->ReorderIndices.empty() && 3780 !Data.first->isAltShuffle()) { 3781 // Insert user node to the list to try to sink reordering deeper in 3782 // the graph. 3783 OrderedEntries.insert(Data.first); 3784 } 3785 } else { 3786 reorderOrder(Data.first->ReorderIndices, Mask); 3787 } 3788 } 3789 } 3790 // If the reordering is unnecessary, just remove the reorder. 3791 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 3792 VectorizableTree.front()->ReuseShuffleIndices.empty()) 3793 VectorizableTree.front()->ReorderIndices.clear(); 3794 } 3795 3796 void BoUpSLP::buildExternalUses( 3797 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3798 // Collect the values that we need to extract from the tree. 3799 for (auto &TEPtr : VectorizableTree) { 3800 TreeEntry *Entry = TEPtr.get(); 3801 3802 // No need to handle users of gathered values. 3803 if (Entry->State == TreeEntry::NeedToGather) 3804 continue; 3805 3806 // For each lane: 3807 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3808 Value *Scalar = Entry->Scalars[Lane]; 3809 int FoundLane = Entry->findLaneForValue(Scalar); 3810 3811 // Check if the scalar is externally used as an extra arg. 3812 auto ExtI = ExternallyUsedValues.find(Scalar); 3813 if (ExtI != ExternallyUsedValues.end()) { 3814 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 3815 << Lane << " from " << *Scalar << ".\n"); 3816 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 3817 } 3818 for (User *U : Scalar->users()) { 3819 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 3820 3821 Instruction *UserInst = dyn_cast<Instruction>(U); 3822 if (!UserInst) 3823 continue; 3824 3825 if (isDeleted(UserInst)) 3826 continue; 3827 3828 // Skip in-tree scalars that become vectors 3829 if (TreeEntry *UseEntry = getTreeEntry(U)) { 3830 Value *UseScalar = UseEntry->Scalars[0]; 3831 // Some in-tree scalars will remain as scalar in vectorized 3832 // instructions. If that is the case, the one in Lane 0 will 3833 // be used. 3834 if (UseScalar != U || 3835 UseEntry->State == TreeEntry::ScatterVectorize || 3836 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 3837 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 3838 << ".\n"); 3839 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 3840 continue; 3841 } 3842 } 3843 3844 // Ignore users in the user ignore list. 3845 if (is_contained(UserIgnoreList, UserInst)) 3846 continue; 3847 3848 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 3849 << Lane << " from " << *Scalar << ".\n"); 3850 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 3851 } 3852 } 3853 } 3854 } 3855 3856 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 3857 ArrayRef<Value *> UserIgnoreLst) { 3858 deleteTree(); 3859 UserIgnoreList = UserIgnoreLst; 3860 if (!allSameType(Roots)) 3861 return; 3862 buildTree_rec(Roots, 0, EdgeInfo()); 3863 } 3864 3865 namespace { 3866 /// Tracks the state we can represent the loads in the given sequence. 3867 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3868 } // anonymous namespace 3869 3870 /// Checks if the given array of loads can be represented as a vectorized, 3871 /// scatter or just simple gather. 3872 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3873 const TargetTransformInfo &TTI, 3874 const DataLayout &DL, ScalarEvolution &SE, 3875 SmallVectorImpl<unsigned> &Order, 3876 SmallVectorImpl<Value *> &PointerOps) { 3877 // Check that a vectorized load would load the same memory as a scalar 3878 // load. For example, we don't want to vectorize loads that are smaller 3879 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3880 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3881 // from such a struct, we read/write packed bits disagreeing with the 3882 // unvectorized version. 3883 Type *ScalarTy = VL0->getType(); 3884 3885 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3886 return LoadsState::Gather; 3887 3888 // Make sure all loads in the bundle are simple - we can't vectorize 3889 // atomic or volatile loads. 3890 PointerOps.clear(); 3891 PointerOps.resize(VL.size()); 3892 auto *POIter = PointerOps.begin(); 3893 for (Value *V : VL) { 3894 auto *L = cast<LoadInst>(V); 3895 if (!L->isSimple()) 3896 return LoadsState::Gather; 3897 *POIter = L->getPointerOperand(); 3898 ++POIter; 3899 } 3900 3901 Order.clear(); 3902 // Check the order of pointer operands. 3903 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 3904 Value *Ptr0; 3905 Value *PtrN; 3906 if (Order.empty()) { 3907 Ptr0 = PointerOps.front(); 3908 PtrN = PointerOps.back(); 3909 } else { 3910 Ptr0 = PointerOps[Order.front()]; 3911 PtrN = PointerOps[Order.back()]; 3912 } 3913 Optional<int> Diff = 3914 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3915 // Check that the sorted loads are consecutive. 3916 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3917 return LoadsState::Vectorize; 3918 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3919 for (Value *V : VL) 3920 CommonAlignment = 3921 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3922 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 3923 CommonAlignment)) 3924 return LoadsState::ScatterVectorize; 3925 } 3926 3927 return LoadsState::Gather; 3928 } 3929 3930 /// \return true if the specified list of values has only one instruction that 3931 /// requires scheduling, false otherwise. 3932 static bool needToScheduleSingleInstruction(ArrayRef<Value *> VL) { 3933 Value *NeedsScheduling = nullptr; 3934 for (Value *V : VL) { 3935 if (doesNotNeedToBeScheduled(V)) 3936 continue; 3937 if (!NeedsScheduling) { 3938 NeedsScheduling = V; 3939 continue; 3940 } 3941 return false; 3942 } 3943 return NeedsScheduling; 3944 } 3945 3946 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 3947 const EdgeInfo &UserTreeIdx) { 3948 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 3949 3950 SmallVector<int> ReuseShuffleIndicies; 3951 SmallVector<Value *> UniqueValues; 3952 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 3953 &UserTreeIdx, 3954 this](const InstructionsState &S) { 3955 // Check that every instruction appears once in this bundle. 3956 DenseMap<Value *, unsigned> UniquePositions; 3957 for (Value *V : VL) { 3958 if (isConstant(V)) { 3959 ReuseShuffleIndicies.emplace_back( 3960 isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size()); 3961 UniqueValues.emplace_back(V); 3962 continue; 3963 } 3964 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3965 ReuseShuffleIndicies.emplace_back(Res.first->second); 3966 if (Res.second) 3967 UniqueValues.emplace_back(V); 3968 } 3969 size_t NumUniqueScalarValues = UniqueValues.size(); 3970 if (NumUniqueScalarValues == VL.size()) { 3971 ReuseShuffleIndicies.clear(); 3972 } else { 3973 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 3974 if (NumUniqueScalarValues <= 1 || 3975 (UniquePositions.size() == 1 && all_of(UniqueValues, 3976 [](Value *V) { 3977 return isa<UndefValue>(V) || 3978 !isConstant(V); 3979 })) || 3980 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 3981 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 3982 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3983 return false; 3984 } 3985 VL = UniqueValues; 3986 } 3987 return true; 3988 }; 3989 3990 InstructionsState S = getSameOpcode(VL); 3991 if (Depth == RecursionMaxDepth) { 3992 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 3993 if (TryToFindDuplicates(S)) 3994 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3995 ReuseShuffleIndicies); 3996 return; 3997 } 3998 3999 // Don't handle scalable vectors 4000 if (S.getOpcode() == Instruction::ExtractElement && 4001 isa<ScalableVectorType>( 4002 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 4003 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 4004 if (TryToFindDuplicates(S)) 4005 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4006 ReuseShuffleIndicies); 4007 return; 4008 } 4009 4010 // Don't handle vectors. 4011 if (S.OpValue->getType()->isVectorTy() && 4012 !isa<InsertElementInst>(S.OpValue)) { 4013 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 4014 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4015 return; 4016 } 4017 4018 // Avoid attempting to schedule allocas; there are unmodeled dependencies 4019 // for "static" alloca status and for reordering with stacksave calls. 4020 for (Value *V : VL) { 4021 if (isa<AllocaInst>(V)) { 4022 LLVM_DEBUG(dbgs() << "SLP: Gathering due to alloca.\n"); 4023 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4024 return; 4025 } 4026 } 4027 4028 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 4029 if (SI->getValueOperand()->getType()->isVectorTy()) { 4030 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 4031 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4032 return; 4033 } 4034 4035 // If all of the operands are identical or constant we have a simple solution. 4036 // If we deal with insert/extract instructions, they all must have constant 4037 // indices, otherwise we should gather them, not try to vectorize. 4038 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 4039 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 4040 !all_of(VL, isVectorLikeInstWithConstOps))) { 4041 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 4042 if (TryToFindDuplicates(S)) 4043 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4044 ReuseShuffleIndicies); 4045 return; 4046 } 4047 4048 // We now know that this is a vector of instructions of the same type from 4049 // the same block. 4050 4051 // Don't vectorize ephemeral values. 4052 for (Value *V : VL) { 4053 if (EphValues.count(V)) { 4054 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 4055 << ") is ephemeral.\n"); 4056 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4057 return; 4058 } 4059 } 4060 4061 // Check if this is a duplicate of another entry. 4062 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4063 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 4064 if (!E->isSame(VL)) { 4065 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 4066 if (TryToFindDuplicates(S)) 4067 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4068 ReuseShuffleIndicies); 4069 return; 4070 } 4071 // Record the reuse of the tree node. FIXME, currently this is only used to 4072 // properly draw the graph rather than for the actual vectorization. 4073 E->UserTreeIndices.push_back(UserTreeIdx); 4074 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 4075 << ".\n"); 4076 return; 4077 } 4078 4079 // Check that none of the instructions in the bundle are already in the tree. 4080 for (Value *V : VL) { 4081 auto *I = dyn_cast<Instruction>(V); 4082 if (!I) 4083 continue; 4084 if (getTreeEntry(I)) { 4085 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 4086 << ") is already in tree.\n"); 4087 if (TryToFindDuplicates(S)) 4088 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4089 ReuseShuffleIndicies); 4090 return; 4091 } 4092 } 4093 4094 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 4095 for (Value *V : VL) { 4096 if (is_contained(UserIgnoreList, V)) { 4097 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 4098 if (TryToFindDuplicates(S)) 4099 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4100 ReuseShuffleIndicies); 4101 return; 4102 } 4103 } 4104 4105 // Check that all of the users of the scalars that we want to vectorize are 4106 // schedulable. 4107 auto *VL0 = cast<Instruction>(S.OpValue); 4108 BasicBlock *BB = VL0->getParent(); 4109 4110 if (!DT->isReachableFromEntry(BB)) { 4111 // Don't go into unreachable blocks. They may contain instructions with 4112 // dependency cycles which confuse the final scheduling. 4113 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 4114 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4115 return; 4116 } 4117 4118 // Check that every instruction appears once in this bundle. 4119 if (!TryToFindDuplicates(S)) 4120 return; 4121 4122 auto &BSRef = BlocksSchedules[BB]; 4123 if (!BSRef) 4124 BSRef = std::make_unique<BlockScheduling>(BB); 4125 4126 BlockScheduling &BS = *BSRef.get(); 4127 4128 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 4129 #ifdef EXPENSIVE_CHECKS 4130 // Make sure we didn't break any internal invariants 4131 BS.verify(); 4132 #endif 4133 if (!Bundle) { 4134 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 4135 assert((!BS.getScheduleData(VL0) || 4136 !BS.getScheduleData(VL0)->isPartOfBundle()) && 4137 "tryScheduleBundle should cancelScheduling on failure"); 4138 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4139 ReuseShuffleIndicies); 4140 return; 4141 } 4142 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 4143 4144 unsigned ShuffleOrOp = S.isAltShuffle() ? 4145 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 4146 switch (ShuffleOrOp) { 4147 case Instruction::PHI: { 4148 auto *PH = cast<PHINode>(VL0); 4149 4150 // Check for terminator values (e.g. invoke). 4151 for (Value *V : VL) 4152 for (Value *Incoming : cast<PHINode>(V)->incoming_values()) { 4153 Instruction *Term = dyn_cast<Instruction>(Incoming); 4154 if (Term && Term->isTerminator()) { 4155 LLVM_DEBUG(dbgs() 4156 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 4157 BS.cancelScheduling(VL, VL0); 4158 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4159 ReuseShuffleIndicies); 4160 return; 4161 } 4162 } 4163 4164 TreeEntry *TE = 4165 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 4166 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 4167 4168 // Keeps the reordered operands to avoid code duplication. 4169 SmallVector<ValueList, 2> OperandsVec; 4170 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 4171 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 4172 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 4173 TE->setOperand(I, Operands); 4174 OperandsVec.push_back(Operands); 4175 continue; 4176 } 4177 ValueList Operands; 4178 // Prepare the operand vector. 4179 for (Value *V : VL) 4180 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 4181 PH->getIncomingBlock(I))); 4182 TE->setOperand(I, Operands); 4183 OperandsVec.push_back(Operands); 4184 } 4185 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 4186 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 4187 return; 4188 } 4189 case Instruction::ExtractValue: 4190 case Instruction::ExtractElement: { 4191 OrdersType CurrentOrder; 4192 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 4193 if (Reuse) { 4194 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 4195 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4196 ReuseShuffleIndicies); 4197 // This is a special case, as it does not gather, but at the same time 4198 // we are not extending buildTree_rec() towards the operands. 4199 ValueList Op0; 4200 Op0.assign(VL.size(), VL0->getOperand(0)); 4201 VectorizableTree.back()->setOperand(0, Op0); 4202 return; 4203 } 4204 if (!CurrentOrder.empty()) { 4205 LLVM_DEBUG({ 4206 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 4207 "with order"; 4208 for (unsigned Idx : CurrentOrder) 4209 dbgs() << " " << Idx; 4210 dbgs() << "\n"; 4211 }); 4212 fixupOrderingIndices(CurrentOrder); 4213 // Insert new order with initial value 0, if it does not exist, 4214 // otherwise return the iterator to the existing one. 4215 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4216 ReuseShuffleIndicies, CurrentOrder); 4217 // This is a special case, as it does not gather, but at the same time 4218 // we are not extending buildTree_rec() towards the operands. 4219 ValueList Op0; 4220 Op0.assign(VL.size(), VL0->getOperand(0)); 4221 VectorizableTree.back()->setOperand(0, Op0); 4222 return; 4223 } 4224 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 4225 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4226 ReuseShuffleIndicies); 4227 BS.cancelScheduling(VL, VL0); 4228 return; 4229 } 4230 case Instruction::InsertElement: { 4231 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 4232 4233 // Check that we have a buildvector and not a shuffle of 2 or more 4234 // different vectors. 4235 ValueSet SourceVectors; 4236 for (Value *V : VL) { 4237 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 4238 assert(getInsertIndex(V) != None && "Non-constant or undef index?"); 4239 } 4240 4241 if (count_if(VL, [&SourceVectors](Value *V) { 4242 return !SourceVectors.contains(V); 4243 }) >= 2) { 4244 // Found 2nd source vector - cancel. 4245 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 4246 "different source vectors.\n"); 4247 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4248 BS.cancelScheduling(VL, VL0); 4249 return; 4250 } 4251 4252 auto OrdCompare = [](const std::pair<int, int> &P1, 4253 const std::pair<int, int> &P2) { 4254 return P1.first > P2.first; 4255 }; 4256 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 4257 decltype(OrdCompare)> 4258 Indices(OrdCompare); 4259 for (int I = 0, E = VL.size(); I < E; ++I) { 4260 unsigned Idx = *getInsertIndex(VL[I]); 4261 Indices.emplace(Idx, I); 4262 } 4263 OrdersType CurrentOrder(VL.size(), VL.size()); 4264 bool IsIdentity = true; 4265 for (int I = 0, E = VL.size(); I < E; ++I) { 4266 CurrentOrder[Indices.top().second] = I; 4267 IsIdentity &= Indices.top().second == I; 4268 Indices.pop(); 4269 } 4270 if (IsIdentity) 4271 CurrentOrder.clear(); 4272 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4273 None, CurrentOrder); 4274 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 4275 4276 constexpr int NumOps = 2; 4277 ValueList VectorOperands[NumOps]; 4278 for (int I = 0; I < NumOps; ++I) { 4279 for (Value *V : VL) 4280 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 4281 4282 TE->setOperand(I, VectorOperands[I]); 4283 } 4284 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 4285 return; 4286 } 4287 case Instruction::Load: { 4288 // Check that a vectorized load would load the same memory as a scalar 4289 // load. For example, we don't want to vectorize loads that are smaller 4290 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 4291 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 4292 // from such a struct, we read/write packed bits disagreeing with the 4293 // unvectorized version. 4294 SmallVector<Value *> PointerOps; 4295 OrdersType CurrentOrder; 4296 TreeEntry *TE = nullptr; 4297 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 4298 PointerOps)) { 4299 case LoadsState::Vectorize: 4300 if (CurrentOrder.empty()) { 4301 // Original loads are consecutive and does not require reordering. 4302 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4303 ReuseShuffleIndicies); 4304 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 4305 } else { 4306 fixupOrderingIndices(CurrentOrder); 4307 // Need to reorder. 4308 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4309 ReuseShuffleIndicies, CurrentOrder); 4310 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 4311 } 4312 TE->setOperandsInOrder(); 4313 break; 4314 case LoadsState::ScatterVectorize: 4315 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 4316 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 4317 UserTreeIdx, ReuseShuffleIndicies); 4318 TE->setOperandsInOrder(); 4319 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 4320 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 4321 break; 4322 case LoadsState::Gather: 4323 BS.cancelScheduling(VL, VL0); 4324 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4325 ReuseShuffleIndicies); 4326 #ifndef NDEBUG 4327 Type *ScalarTy = VL0->getType(); 4328 if (DL->getTypeSizeInBits(ScalarTy) != 4329 DL->getTypeAllocSizeInBits(ScalarTy)) 4330 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 4331 else if (any_of(VL, [](Value *V) { 4332 return !cast<LoadInst>(V)->isSimple(); 4333 })) 4334 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 4335 else 4336 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 4337 #endif // NDEBUG 4338 break; 4339 } 4340 return; 4341 } 4342 case Instruction::ZExt: 4343 case Instruction::SExt: 4344 case Instruction::FPToUI: 4345 case Instruction::FPToSI: 4346 case Instruction::FPExt: 4347 case Instruction::PtrToInt: 4348 case Instruction::IntToPtr: 4349 case Instruction::SIToFP: 4350 case Instruction::UIToFP: 4351 case Instruction::Trunc: 4352 case Instruction::FPTrunc: 4353 case Instruction::BitCast: { 4354 Type *SrcTy = VL0->getOperand(0)->getType(); 4355 for (Value *V : VL) { 4356 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 4357 if (Ty != SrcTy || !isValidElementType(Ty)) { 4358 BS.cancelScheduling(VL, VL0); 4359 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4360 ReuseShuffleIndicies); 4361 LLVM_DEBUG(dbgs() 4362 << "SLP: Gathering casts with different src types.\n"); 4363 return; 4364 } 4365 } 4366 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4367 ReuseShuffleIndicies); 4368 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 4369 4370 TE->setOperandsInOrder(); 4371 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4372 ValueList Operands; 4373 // Prepare the operand vector. 4374 for (Value *V : VL) 4375 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4376 4377 buildTree_rec(Operands, Depth + 1, {TE, i}); 4378 } 4379 return; 4380 } 4381 case Instruction::ICmp: 4382 case Instruction::FCmp: { 4383 // Check that all of the compares have the same predicate. 4384 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4385 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 4386 Type *ComparedTy = VL0->getOperand(0)->getType(); 4387 for (Value *V : VL) { 4388 CmpInst *Cmp = cast<CmpInst>(V); 4389 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 4390 Cmp->getOperand(0)->getType() != ComparedTy) { 4391 BS.cancelScheduling(VL, VL0); 4392 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4393 ReuseShuffleIndicies); 4394 LLVM_DEBUG(dbgs() 4395 << "SLP: Gathering cmp with different predicate.\n"); 4396 return; 4397 } 4398 } 4399 4400 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4401 ReuseShuffleIndicies); 4402 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 4403 4404 ValueList Left, Right; 4405 if (cast<CmpInst>(VL0)->isCommutative()) { 4406 // Commutative predicate - collect + sort operands of the instructions 4407 // so that each side is more likely to have the same opcode. 4408 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 4409 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4410 } else { 4411 // Collect operands - commute if it uses the swapped predicate. 4412 for (Value *V : VL) { 4413 auto *Cmp = cast<CmpInst>(V); 4414 Value *LHS = Cmp->getOperand(0); 4415 Value *RHS = Cmp->getOperand(1); 4416 if (Cmp->getPredicate() != P0) 4417 std::swap(LHS, RHS); 4418 Left.push_back(LHS); 4419 Right.push_back(RHS); 4420 } 4421 } 4422 TE->setOperand(0, Left); 4423 TE->setOperand(1, Right); 4424 buildTree_rec(Left, Depth + 1, {TE, 0}); 4425 buildTree_rec(Right, Depth + 1, {TE, 1}); 4426 return; 4427 } 4428 case Instruction::Select: 4429 case Instruction::FNeg: 4430 case Instruction::Add: 4431 case Instruction::FAdd: 4432 case Instruction::Sub: 4433 case Instruction::FSub: 4434 case Instruction::Mul: 4435 case Instruction::FMul: 4436 case Instruction::UDiv: 4437 case Instruction::SDiv: 4438 case Instruction::FDiv: 4439 case Instruction::URem: 4440 case Instruction::SRem: 4441 case Instruction::FRem: 4442 case Instruction::Shl: 4443 case Instruction::LShr: 4444 case Instruction::AShr: 4445 case Instruction::And: 4446 case Instruction::Or: 4447 case Instruction::Xor: { 4448 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4449 ReuseShuffleIndicies); 4450 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 4451 4452 // Sort operands of the instructions so that each side is more likely to 4453 // have the same opcode. 4454 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 4455 ValueList Left, Right; 4456 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4457 TE->setOperand(0, Left); 4458 TE->setOperand(1, Right); 4459 buildTree_rec(Left, Depth + 1, {TE, 0}); 4460 buildTree_rec(Right, Depth + 1, {TE, 1}); 4461 return; 4462 } 4463 4464 TE->setOperandsInOrder(); 4465 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4466 ValueList Operands; 4467 // Prepare the operand vector. 4468 for (Value *V : VL) 4469 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4470 4471 buildTree_rec(Operands, Depth + 1, {TE, i}); 4472 } 4473 return; 4474 } 4475 case Instruction::GetElementPtr: { 4476 // We don't combine GEPs with complicated (nested) indexing. 4477 for (Value *V : VL) { 4478 if (cast<Instruction>(V)->getNumOperands() != 2) { 4479 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 4480 BS.cancelScheduling(VL, VL0); 4481 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4482 ReuseShuffleIndicies); 4483 return; 4484 } 4485 } 4486 4487 // We can't combine several GEPs into one vector if they operate on 4488 // different types. 4489 Type *Ty0 = cast<GEPOperator>(VL0)->getSourceElementType(); 4490 for (Value *V : VL) { 4491 Type *CurTy = cast<GEPOperator>(V)->getSourceElementType(); 4492 if (Ty0 != CurTy) { 4493 LLVM_DEBUG(dbgs() 4494 << "SLP: not-vectorizable GEP (different types).\n"); 4495 BS.cancelScheduling(VL, VL0); 4496 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4497 ReuseShuffleIndicies); 4498 return; 4499 } 4500 } 4501 4502 // We don't combine GEPs with non-constant indexes. 4503 Type *Ty1 = VL0->getOperand(1)->getType(); 4504 for (Value *V : VL) { 4505 auto Op = cast<Instruction>(V)->getOperand(1); 4506 if (!isa<ConstantInt>(Op) || 4507 (Op->getType() != Ty1 && 4508 Op->getType()->getScalarSizeInBits() > 4509 DL->getIndexSizeInBits( 4510 V->getType()->getPointerAddressSpace()))) { 4511 LLVM_DEBUG(dbgs() 4512 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 4513 BS.cancelScheduling(VL, VL0); 4514 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4515 ReuseShuffleIndicies); 4516 return; 4517 } 4518 } 4519 4520 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4521 ReuseShuffleIndicies); 4522 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 4523 SmallVector<ValueList, 2> Operands(2); 4524 // Prepare the operand vector for pointer operands. 4525 for (Value *V : VL) 4526 Operands.front().push_back( 4527 cast<GetElementPtrInst>(V)->getPointerOperand()); 4528 TE->setOperand(0, Operands.front()); 4529 // Need to cast all indices to the same type before vectorization to 4530 // avoid crash. 4531 // Required to be able to find correct matches between different gather 4532 // nodes and reuse the vectorized values rather than trying to gather them 4533 // again. 4534 int IndexIdx = 1; 4535 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 4536 Type *Ty = all_of(VL, 4537 [VL0Ty, IndexIdx](Value *V) { 4538 return VL0Ty == cast<GetElementPtrInst>(V) 4539 ->getOperand(IndexIdx) 4540 ->getType(); 4541 }) 4542 ? VL0Ty 4543 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4544 ->getPointerOperandType() 4545 ->getScalarType()); 4546 // Prepare the operand vector. 4547 for (Value *V : VL) { 4548 auto *Op = cast<Instruction>(V)->getOperand(IndexIdx); 4549 auto *CI = cast<ConstantInt>(Op); 4550 Operands.back().push_back(ConstantExpr::getIntegerCast( 4551 CI, Ty, CI->getValue().isSignBitSet())); 4552 } 4553 TE->setOperand(IndexIdx, Operands.back()); 4554 4555 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 4556 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 4557 return; 4558 } 4559 case Instruction::Store: { 4560 // Check if the stores are consecutive or if we need to swizzle them. 4561 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 4562 // Avoid types that are padded when being allocated as scalars, while 4563 // being packed together in a vector (such as i1). 4564 if (DL->getTypeSizeInBits(ScalarTy) != 4565 DL->getTypeAllocSizeInBits(ScalarTy)) { 4566 BS.cancelScheduling(VL, VL0); 4567 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4568 ReuseShuffleIndicies); 4569 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 4570 return; 4571 } 4572 // Make sure all stores in the bundle are simple - we can't vectorize 4573 // atomic or volatile stores. 4574 SmallVector<Value *, 4> PointerOps(VL.size()); 4575 ValueList Operands(VL.size()); 4576 auto POIter = PointerOps.begin(); 4577 auto OIter = Operands.begin(); 4578 for (Value *V : VL) { 4579 auto *SI = cast<StoreInst>(V); 4580 if (!SI->isSimple()) { 4581 BS.cancelScheduling(VL, VL0); 4582 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4583 ReuseShuffleIndicies); 4584 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 4585 return; 4586 } 4587 *POIter = SI->getPointerOperand(); 4588 *OIter = SI->getValueOperand(); 4589 ++POIter; 4590 ++OIter; 4591 } 4592 4593 OrdersType CurrentOrder; 4594 // Check the order of pointer operands. 4595 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 4596 Value *Ptr0; 4597 Value *PtrN; 4598 if (CurrentOrder.empty()) { 4599 Ptr0 = PointerOps.front(); 4600 PtrN = PointerOps.back(); 4601 } else { 4602 Ptr0 = PointerOps[CurrentOrder.front()]; 4603 PtrN = PointerOps[CurrentOrder.back()]; 4604 } 4605 Optional<int> Dist = 4606 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 4607 // Check that the sorted pointer operands are consecutive. 4608 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 4609 if (CurrentOrder.empty()) { 4610 // Original stores are consecutive and does not require reordering. 4611 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 4612 UserTreeIdx, ReuseShuffleIndicies); 4613 TE->setOperandsInOrder(); 4614 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4615 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 4616 } else { 4617 fixupOrderingIndices(CurrentOrder); 4618 TreeEntry *TE = 4619 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4620 ReuseShuffleIndicies, CurrentOrder); 4621 TE->setOperandsInOrder(); 4622 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4623 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 4624 } 4625 return; 4626 } 4627 } 4628 4629 BS.cancelScheduling(VL, VL0); 4630 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4631 ReuseShuffleIndicies); 4632 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 4633 return; 4634 } 4635 case Instruction::Call: { 4636 // Check if the calls are all to the same vectorizable intrinsic or 4637 // library function. 4638 CallInst *CI = cast<CallInst>(VL0); 4639 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4640 4641 VFShape Shape = VFShape::get( 4642 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 4643 false /*HasGlobalPred*/); 4644 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4645 4646 if (!VecFunc && !isTriviallyVectorizable(ID)) { 4647 BS.cancelScheduling(VL, VL0); 4648 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4649 ReuseShuffleIndicies); 4650 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 4651 return; 4652 } 4653 Function *F = CI->getCalledFunction(); 4654 unsigned NumArgs = CI->arg_size(); 4655 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 4656 for (unsigned j = 0; j != NumArgs; ++j) 4657 if (hasVectorInstrinsicScalarOpd(ID, j)) 4658 ScalarArgs[j] = CI->getArgOperand(j); 4659 for (Value *V : VL) { 4660 CallInst *CI2 = dyn_cast<CallInst>(V); 4661 if (!CI2 || CI2->getCalledFunction() != F || 4662 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 4663 (VecFunc && 4664 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 4665 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 4666 BS.cancelScheduling(VL, VL0); 4667 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4668 ReuseShuffleIndicies); 4669 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 4670 << "\n"); 4671 return; 4672 } 4673 // Some intrinsics have scalar arguments and should be same in order for 4674 // them to be vectorized. 4675 for (unsigned j = 0; j != NumArgs; ++j) { 4676 if (hasVectorInstrinsicScalarOpd(ID, j)) { 4677 Value *A1J = CI2->getArgOperand(j); 4678 if (ScalarArgs[j] != A1J) { 4679 BS.cancelScheduling(VL, VL0); 4680 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4681 ReuseShuffleIndicies); 4682 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 4683 << " argument " << ScalarArgs[j] << "!=" << A1J 4684 << "\n"); 4685 return; 4686 } 4687 } 4688 } 4689 // Verify that the bundle operands are identical between the two calls. 4690 if (CI->hasOperandBundles() && 4691 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 4692 CI->op_begin() + CI->getBundleOperandsEndIndex(), 4693 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 4694 BS.cancelScheduling(VL, VL0); 4695 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4696 ReuseShuffleIndicies); 4697 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 4698 << *CI << "!=" << *V << '\n'); 4699 return; 4700 } 4701 } 4702 4703 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4704 ReuseShuffleIndicies); 4705 TE->setOperandsInOrder(); 4706 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 4707 // For scalar operands no need to to create an entry since no need to 4708 // vectorize it. 4709 if (hasVectorInstrinsicScalarOpd(ID, i)) 4710 continue; 4711 ValueList Operands; 4712 // Prepare the operand vector. 4713 for (Value *V : VL) { 4714 auto *CI2 = cast<CallInst>(V); 4715 Operands.push_back(CI2->getArgOperand(i)); 4716 } 4717 buildTree_rec(Operands, Depth + 1, {TE, i}); 4718 } 4719 return; 4720 } 4721 case Instruction::ShuffleVector: { 4722 // If this is not an alternate sequence of opcode like add-sub 4723 // then do not vectorize this instruction. 4724 if (!S.isAltShuffle()) { 4725 BS.cancelScheduling(VL, VL0); 4726 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4727 ReuseShuffleIndicies); 4728 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 4729 return; 4730 } 4731 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4732 ReuseShuffleIndicies); 4733 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 4734 4735 // Reorder operands if reordering would enable vectorization. 4736 auto *CI = dyn_cast<CmpInst>(VL0); 4737 if (isa<BinaryOperator>(VL0) || CI) { 4738 ValueList Left, Right; 4739 if (!CI || all_of(VL, [](Value *V) { 4740 return cast<CmpInst>(V)->isCommutative(); 4741 })) { 4742 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4743 } else { 4744 CmpInst::Predicate P0 = CI->getPredicate(); 4745 CmpInst::Predicate AltP0 = cast<CmpInst>(S.AltOp)->getPredicate(); 4746 assert(P0 != AltP0 && 4747 "Expected different main/alternate predicates."); 4748 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 4749 Value *BaseOp0 = VL0->getOperand(0); 4750 Value *BaseOp1 = VL0->getOperand(1); 4751 // Collect operands - commute if it uses the swapped predicate or 4752 // alternate operation. 4753 for (Value *V : VL) { 4754 auto *Cmp = cast<CmpInst>(V); 4755 Value *LHS = Cmp->getOperand(0); 4756 Value *RHS = Cmp->getOperand(1); 4757 CmpInst::Predicate CurrentPred = Cmp->getPredicate(); 4758 if (P0 == AltP0Swapped) { 4759 if (CI != Cmp && S.AltOp != Cmp && 4760 ((P0 == CurrentPred && 4761 !areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)) || 4762 (AltP0 == CurrentPred && 4763 areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)))) 4764 std::swap(LHS, RHS); 4765 } else if (P0 != CurrentPred && AltP0 != CurrentPred) { 4766 std::swap(LHS, RHS); 4767 } 4768 Left.push_back(LHS); 4769 Right.push_back(RHS); 4770 } 4771 } 4772 TE->setOperand(0, Left); 4773 TE->setOperand(1, Right); 4774 buildTree_rec(Left, Depth + 1, {TE, 0}); 4775 buildTree_rec(Right, Depth + 1, {TE, 1}); 4776 return; 4777 } 4778 4779 TE->setOperandsInOrder(); 4780 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4781 ValueList Operands; 4782 // Prepare the operand vector. 4783 for (Value *V : VL) 4784 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4785 4786 buildTree_rec(Operands, Depth + 1, {TE, i}); 4787 } 4788 return; 4789 } 4790 default: 4791 BS.cancelScheduling(VL, VL0); 4792 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4793 ReuseShuffleIndicies); 4794 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 4795 return; 4796 } 4797 } 4798 4799 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 4800 unsigned N = 1; 4801 Type *EltTy = T; 4802 4803 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 4804 isa<VectorType>(EltTy)) { 4805 if (auto *ST = dyn_cast<StructType>(EltTy)) { 4806 // Check that struct is homogeneous. 4807 for (const auto *Ty : ST->elements()) 4808 if (Ty != *ST->element_begin()) 4809 return 0; 4810 N *= ST->getNumElements(); 4811 EltTy = *ST->element_begin(); 4812 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 4813 N *= AT->getNumElements(); 4814 EltTy = AT->getElementType(); 4815 } else { 4816 auto *VT = cast<FixedVectorType>(EltTy); 4817 N *= VT->getNumElements(); 4818 EltTy = VT->getElementType(); 4819 } 4820 } 4821 4822 if (!isValidElementType(EltTy)) 4823 return 0; 4824 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 4825 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 4826 return 0; 4827 return N; 4828 } 4829 4830 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 4831 SmallVectorImpl<unsigned> &CurrentOrder) const { 4832 const auto *It = find_if(VL, [](Value *V) { 4833 return isa<ExtractElementInst, ExtractValueInst>(V); 4834 }); 4835 assert(It != VL.end() && "Expected at least one extract instruction."); 4836 auto *E0 = cast<Instruction>(*It); 4837 assert(all_of(VL, 4838 [](Value *V) { 4839 return isa<UndefValue, ExtractElementInst, ExtractValueInst>( 4840 V); 4841 }) && 4842 "Invalid opcode"); 4843 // Check if all of the extracts come from the same vector and from the 4844 // correct offset. 4845 Value *Vec = E0->getOperand(0); 4846 4847 CurrentOrder.clear(); 4848 4849 // We have to extract from a vector/aggregate with the same number of elements. 4850 unsigned NElts; 4851 if (E0->getOpcode() == Instruction::ExtractValue) { 4852 const DataLayout &DL = E0->getModule()->getDataLayout(); 4853 NElts = canMapToVector(Vec->getType(), DL); 4854 if (!NElts) 4855 return false; 4856 // Check if load can be rewritten as load of vector. 4857 LoadInst *LI = dyn_cast<LoadInst>(Vec); 4858 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 4859 return false; 4860 } else { 4861 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 4862 } 4863 4864 if (NElts != VL.size()) 4865 return false; 4866 4867 // Check that all of the indices extract from the correct offset. 4868 bool ShouldKeepOrder = true; 4869 unsigned E = VL.size(); 4870 // Assign to all items the initial value E + 1 so we can check if the extract 4871 // instruction index was used already. 4872 // Also, later we can check that all the indices are used and we have a 4873 // consecutive access in the extract instructions, by checking that no 4874 // element of CurrentOrder still has value E + 1. 4875 CurrentOrder.assign(E, E); 4876 unsigned I = 0; 4877 for (; I < E; ++I) { 4878 auto *Inst = dyn_cast<Instruction>(VL[I]); 4879 if (!Inst) 4880 continue; 4881 if (Inst->getOperand(0) != Vec) 4882 break; 4883 if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) 4884 if (isa<UndefValue>(EE->getIndexOperand())) 4885 continue; 4886 Optional<unsigned> Idx = getExtractIndex(Inst); 4887 if (!Idx) 4888 break; 4889 const unsigned ExtIdx = *Idx; 4890 if (ExtIdx != I) { 4891 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E) 4892 break; 4893 ShouldKeepOrder = false; 4894 CurrentOrder[ExtIdx] = I; 4895 } else { 4896 if (CurrentOrder[I] != E) 4897 break; 4898 CurrentOrder[I] = I; 4899 } 4900 } 4901 if (I < E) { 4902 CurrentOrder.clear(); 4903 return false; 4904 } 4905 if (ShouldKeepOrder) 4906 CurrentOrder.clear(); 4907 4908 return ShouldKeepOrder; 4909 } 4910 4911 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 4912 ArrayRef<Value *> VectorizedVals) const { 4913 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 4914 all_of(I->users(), [this](User *U) { 4915 return ScalarToTreeEntry.count(U) > 0 || 4916 isVectorLikeInstWithConstOps(U) || 4917 (isa<ExtractElementInst>(U) && MustGather.contains(U)); 4918 }); 4919 } 4920 4921 static std::pair<InstructionCost, InstructionCost> 4922 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 4923 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 4924 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4925 4926 // Calculate the cost of the scalar and vector calls. 4927 SmallVector<Type *, 4> VecTys; 4928 for (Use &Arg : CI->args()) 4929 VecTys.push_back( 4930 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 4931 FastMathFlags FMF; 4932 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 4933 FMF = FPCI->getFastMathFlags(); 4934 SmallVector<const Value *> Arguments(CI->args()); 4935 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 4936 dyn_cast<IntrinsicInst>(CI)); 4937 auto IntrinsicCost = 4938 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 4939 4940 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4941 VecTy->getNumElements())), 4942 false /*HasGlobalPred*/); 4943 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4944 auto LibCost = IntrinsicCost; 4945 if (!CI->isNoBuiltin() && VecFunc) { 4946 // Calculate the cost of the vector library call. 4947 // If the corresponding vector call is cheaper, return its cost. 4948 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 4949 TTI::TCK_RecipThroughput); 4950 } 4951 return {IntrinsicCost, LibCost}; 4952 } 4953 4954 /// Compute the cost of creating a vector of type \p VecTy containing the 4955 /// extracted values from \p VL. 4956 static InstructionCost 4957 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 4958 TargetTransformInfo::ShuffleKind ShuffleKind, 4959 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 4960 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 4961 4962 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 4963 VecTy->getNumElements() < NumOfParts) 4964 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 4965 4966 bool AllConsecutive = true; 4967 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 4968 unsigned Idx = -1; 4969 InstructionCost Cost = 0; 4970 4971 // Process extracts in blocks of EltsPerVector to check if the source vector 4972 // operand can be re-used directly. If not, add the cost of creating a shuffle 4973 // to extract the values into a vector register. 4974 for (auto *V : VL) { 4975 ++Idx; 4976 4977 // Need to exclude undefs from analysis. 4978 if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem) 4979 continue; 4980 4981 // Reached the start of a new vector registers. 4982 if (Idx % EltsPerVector == 0) { 4983 AllConsecutive = true; 4984 continue; 4985 } 4986 4987 // Check all extracts for a vector register on the target directly 4988 // extract values in order. 4989 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 4990 if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) { 4991 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 4992 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 4993 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 4994 } 4995 4996 if (AllConsecutive) 4997 continue; 4998 4999 // Skip all indices, except for the last index per vector block. 5000 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 5001 continue; 5002 5003 // If we have a series of extracts which are not consecutive and hence 5004 // cannot re-use the source vector register directly, compute the shuffle 5005 // cost to extract the a vector with EltsPerVector elements. 5006 Cost += TTI.getShuffleCost( 5007 TargetTransformInfo::SK_PermuteSingleSrc, 5008 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 5009 } 5010 return Cost; 5011 } 5012 5013 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 5014 /// operations operands. 5015 static void 5016 buildShuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 5017 ArrayRef<int> ReusesIndices, 5018 const function_ref<bool(Instruction *)> IsAltOp, 5019 SmallVectorImpl<int> &Mask, 5020 SmallVectorImpl<Value *> *OpScalars = nullptr, 5021 SmallVectorImpl<Value *> *AltScalars = nullptr) { 5022 unsigned Sz = VL.size(); 5023 Mask.assign(Sz, UndefMaskElem); 5024 SmallVector<int> OrderMask; 5025 if (!ReorderIndices.empty()) 5026 inversePermutation(ReorderIndices, OrderMask); 5027 for (unsigned I = 0; I < Sz; ++I) { 5028 unsigned Idx = I; 5029 if (!ReorderIndices.empty()) 5030 Idx = OrderMask[I]; 5031 auto *OpInst = cast<Instruction>(VL[Idx]); 5032 if (IsAltOp(OpInst)) { 5033 Mask[I] = Sz + Idx; 5034 if (AltScalars) 5035 AltScalars->push_back(OpInst); 5036 } else { 5037 Mask[I] = Idx; 5038 if (OpScalars) 5039 OpScalars->push_back(OpInst); 5040 } 5041 } 5042 if (!ReusesIndices.empty()) { 5043 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 5044 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 5045 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 5046 }); 5047 Mask.swap(NewMask); 5048 } 5049 } 5050 5051 /// Checks if the specified instruction \p I is an alternate operation for the 5052 /// given \p MainOp and \p AltOp instructions. 5053 static bool isAlternateInstruction(const Instruction *I, 5054 const Instruction *MainOp, 5055 const Instruction *AltOp) { 5056 if (auto *CI0 = dyn_cast<CmpInst>(MainOp)) { 5057 auto *AltCI0 = cast<CmpInst>(AltOp); 5058 auto *CI = cast<CmpInst>(I); 5059 CmpInst::Predicate P0 = CI0->getPredicate(); 5060 CmpInst::Predicate AltP0 = AltCI0->getPredicate(); 5061 assert(P0 != AltP0 && "Expected different main/alternate predicates."); 5062 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 5063 CmpInst::Predicate CurrentPred = CI->getPredicate(); 5064 if (P0 == AltP0Swapped) 5065 return I == AltCI0 || 5066 (I != MainOp && 5067 !areCompatibleCmpOps(CI0->getOperand(0), CI0->getOperand(1), 5068 CI->getOperand(0), CI->getOperand(1))); 5069 return AltP0 == CurrentPred || AltP0Swapped == CurrentPred; 5070 } 5071 return I->getOpcode() == AltOp->getOpcode(); 5072 } 5073 5074 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 5075 ArrayRef<Value *> VectorizedVals) { 5076 ArrayRef<Value*> VL = E->Scalars; 5077 5078 Type *ScalarTy = VL[0]->getType(); 5079 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 5080 ScalarTy = SI->getValueOperand()->getType(); 5081 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 5082 ScalarTy = CI->getOperand(0)->getType(); 5083 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 5084 ScalarTy = IE->getOperand(1)->getType(); 5085 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 5086 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 5087 5088 // If we have computed a smaller type for the expression, update VecTy so 5089 // that the costs will be accurate. 5090 if (MinBWs.count(VL[0])) 5091 VecTy = FixedVectorType::get( 5092 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 5093 unsigned EntryVF = E->getVectorFactor(); 5094 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 5095 5096 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 5097 // FIXME: it tries to fix a problem with MSVC buildbots. 5098 TargetTransformInfo &TTIRef = *TTI; 5099 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 5100 VectorizedVals, E](InstructionCost &Cost) { 5101 DenseMap<Value *, int> ExtractVectorsTys; 5102 SmallPtrSet<Value *, 4> CheckedExtracts; 5103 for (auto *V : VL) { 5104 if (isa<UndefValue>(V)) 5105 continue; 5106 // If all users of instruction are going to be vectorized and this 5107 // instruction itself is not going to be vectorized, consider this 5108 // instruction as dead and remove its cost from the final cost of the 5109 // vectorized tree. 5110 // Also, avoid adjusting the cost for extractelements with multiple uses 5111 // in different graph entries. 5112 const TreeEntry *VE = getTreeEntry(V); 5113 if (!CheckedExtracts.insert(V).second || 5114 !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 5115 (VE && VE != E)) 5116 continue; 5117 auto *EE = cast<ExtractElementInst>(V); 5118 Optional<unsigned> EEIdx = getExtractIndex(EE); 5119 if (!EEIdx) 5120 continue; 5121 unsigned Idx = *EEIdx; 5122 if (TTIRef.getNumberOfParts(VecTy) != 5123 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 5124 auto It = 5125 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 5126 It->getSecond() = std::min<int>(It->second, Idx); 5127 } 5128 // Take credit for instruction that will become dead. 5129 if (EE->hasOneUse()) { 5130 Instruction *Ext = EE->user_back(); 5131 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5132 all_of(Ext->users(), 5133 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5134 // Use getExtractWithExtendCost() to calculate the cost of 5135 // extractelement/ext pair. 5136 Cost -= 5137 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 5138 EE->getVectorOperandType(), Idx); 5139 // Add back the cost of s|zext which is subtracted separately. 5140 Cost += TTIRef.getCastInstrCost( 5141 Ext->getOpcode(), Ext->getType(), EE->getType(), 5142 TTI::getCastContextHint(Ext), CostKind, Ext); 5143 continue; 5144 } 5145 } 5146 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 5147 EE->getVectorOperandType(), Idx); 5148 } 5149 // Add a cost for subvector extracts/inserts if required. 5150 for (const auto &Data : ExtractVectorsTys) { 5151 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 5152 unsigned NumElts = VecTy->getNumElements(); 5153 if (Data.second % NumElts == 0) 5154 continue; 5155 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 5156 unsigned Idx = (Data.second / NumElts) * NumElts; 5157 unsigned EENumElts = EEVTy->getNumElements(); 5158 if (Idx + NumElts <= EENumElts) { 5159 Cost += 5160 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5161 EEVTy, None, Idx, VecTy); 5162 } else { 5163 // Need to round up the subvector type vectorization factor to avoid a 5164 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 5165 // <= EENumElts. 5166 auto *SubVT = 5167 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 5168 Cost += 5169 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5170 EEVTy, None, Idx, SubVT); 5171 } 5172 } else { 5173 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 5174 VecTy, None, 0, EEVTy); 5175 } 5176 } 5177 }; 5178 if (E->State == TreeEntry::NeedToGather) { 5179 if (allConstant(VL)) 5180 return 0; 5181 if (isa<InsertElementInst>(VL[0])) 5182 return InstructionCost::getInvalid(); 5183 SmallVector<int> Mask; 5184 SmallVector<const TreeEntry *> Entries; 5185 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 5186 isGatherShuffledEntry(E, Mask, Entries); 5187 if (Shuffle.hasValue()) { 5188 InstructionCost GatherCost = 0; 5189 if (ShuffleVectorInst::isIdentityMask(Mask)) { 5190 // Perfect match in the graph, will reuse the previously vectorized 5191 // node. Cost is 0. 5192 LLVM_DEBUG( 5193 dbgs() 5194 << "SLP: perfect diamond match for gather bundle that starts with " 5195 << *VL.front() << ".\n"); 5196 if (NeedToShuffleReuses) 5197 GatherCost = 5198 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5199 FinalVecTy, E->ReuseShuffleIndices); 5200 } else { 5201 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 5202 << " entries for bundle that starts with " 5203 << *VL.front() << ".\n"); 5204 // Detected that instead of gather we can emit a shuffle of single/two 5205 // previously vectorized nodes. Add the cost of the permutation rather 5206 // than gather. 5207 ::addMask(Mask, E->ReuseShuffleIndices); 5208 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 5209 } 5210 return GatherCost; 5211 } 5212 if ((E->getOpcode() == Instruction::ExtractElement || 5213 all_of(E->Scalars, 5214 [](Value *V) { 5215 return isa<ExtractElementInst, UndefValue>(V); 5216 })) && 5217 allSameType(VL)) { 5218 // Check that gather of extractelements can be represented as just a 5219 // shuffle of a single/two vectors the scalars are extracted from. 5220 SmallVector<int> Mask; 5221 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 5222 isFixedVectorShuffle(VL, Mask); 5223 if (ShuffleKind.hasValue()) { 5224 // Found the bunch of extractelement instructions that must be gathered 5225 // into a vector and can be represented as a permutation elements in a 5226 // single input vector or of 2 input vectors. 5227 InstructionCost Cost = 5228 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 5229 AdjustExtractsCost(Cost); 5230 if (NeedToShuffleReuses) 5231 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5232 FinalVecTy, E->ReuseShuffleIndices); 5233 return Cost; 5234 } 5235 } 5236 if (isSplat(VL)) { 5237 // Found the broadcasting of the single scalar, calculate the cost as the 5238 // broadcast. 5239 assert(VecTy == FinalVecTy && 5240 "No reused scalars expected for broadcast."); 5241 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy); 5242 } 5243 InstructionCost ReuseShuffleCost = 0; 5244 if (NeedToShuffleReuses) 5245 ReuseShuffleCost = TTI->getShuffleCost( 5246 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 5247 // Improve gather cost for gather of loads, if we can group some of the 5248 // loads into vector loads. 5249 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 5250 !E->isAltShuffle()) { 5251 BoUpSLP::ValueSet VectorizedLoads; 5252 unsigned StartIdx = 0; 5253 unsigned VF = VL.size() / 2; 5254 unsigned VectorizedCnt = 0; 5255 unsigned ScatterVectorizeCnt = 0; 5256 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 5257 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 5258 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 5259 Cnt += VF) { 5260 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 5261 if (!VectorizedLoads.count(Slice.front()) && 5262 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 5263 SmallVector<Value *> PointerOps; 5264 OrdersType CurrentOrder; 5265 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 5266 *SE, CurrentOrder, PointerOps); 5267 switch (LS) { 5268 case LoadsState::Vectorize: 5269 case LoadsState::ScatterVectorize: 5270 // Mark the vectorized loads so that we don't vectorize them 5271 // again. 5272 if (LS == LoadsState::Vectorize) 5273 ++VectorizedCnt; 5274 else 5275 ++ScatterVectorizeCnt; 5276 VectorizedLoads.insert(Slice.begin(), Slice.end()); 5277 // If we vectorized initial block, no need to try to vectorize it 5278 // again. 5279 if (Cnt == StartIdx) 5280 StartIdx += VF; 5281 break; 5282 case LoadsState::Gather: 5283 break; 5284 } 5285 } 5286 } 5287 // Check if the whole array was vectorized already - exit. 5288 if (StartIdx >= VL.size()) 5289 break; 5290 // Found vectorizable parts - exit. 5291 if (!VectorizedLoads.empty()) 5292 break; 5293 } 5294 if (!VectorizedLoads.empty()) { 5295 InstructionCost GatherCost = 0; 5296 unsigned NumParts = TTI->getNumberOfParts(VecTy); 5297 bool NeedInsertSubvectorAnalysis = 5298 !NumParts || (VL.size() / VF) > NumParts; 5299 // Get the cost for gathered loads. 5300 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 5301 if (VectorizedLoads.contains(VL[I])) 5302 continue; 5303 GatherCost += getGatherCost(VL.slice(I, VF)); 5304 } 5305 // The cost for vectorized loads. 5306 InstructionCost ScalarsCost = 0; 5307 for (Value *V : VectorizedLoads) { 5308 auto *LI = cast<LoadInst>(V); 5309 ScalarsCost += TTI->getMemoryOpCost( 5310 Instruction::Load, LI->getType(), LI->getAlign(), 5311 LI->getPointerAddressSpace(), CostKind, LI); 5312 } 5313 auto *LI = cast<LoadInst>(E->getMainOp()); 5314 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 5315 Align Alignment = LI->getAlign(); 5316 GatherCost += 5317 VectorizedCnt * 5318 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 5319 LI->getPointerAddressSpace(), CostKind, LI); 5320 GatherCost += ScatterVectorizeCnt * 5321 TTI->getGatherScatterOpCost( 5322 Instruction::Load, LoadTy, LI->getPointerOperand(), 5323 /*VariableMask=*/false, Alignment, CostKind, LI); 5324 if (NeedInsertSubvectorAnalysis) { 5325 // Add the cost for the subvectors insert. 5326 for (int I = VF, E = VL.size(); I < E; I += VF) 5327 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 5328 None, I, LoadTy); 5329 } 5330 return ReuseShuffleCost + GatherCost - ScalarsCost; 5331 } 5332 } 5333 return ReuseShuffleCost + getGatherCost(VL); 5334 } 5335 InstructionCost CommonCost = 0; 5336 SmallVector<int> Mask; 5337 if (!E->ReorderIndices.empty()) { 5338 SmallVector<int> NewMask; 5339 if (E->getOpcode() == Instruction::Store) { 5340 // For stores the order is actually a mask. 5341 NewMask.resize(E->ReorderIndices.size()); 5342 copy(E->ReorderIndices, NewMask.begin()); 5343 } else { 5344 inversePermutation(E->ReorderIndices, NewMask); 5345 } 5346 ::addMask(Mask, NewMask); 5347 } 5348 if (NeedToShuffleReuses) 5349 ::addMask(Mask, E->ReuseShuffleIndices); 5350 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 5351 CommonCost = 5352 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 5353 assert((E->State == TreeEntry::Vectorize || 5354 E->State == TreeEntry::ScatterVectorize) && 5355 "Unhandled state"); 5356 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 5357 Instruction *VL0 = E->getMainOp(); 5358 unsigned ShuffleOrOp = 5359 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 5360 switch (ShuffleOrOp) { 5361 case Instruction::PHI: 5362 return 0; 5363 5364 case Instruction::ExtractValue: 5365 case Instruction::ExtractElement: { 5366 // The common cost of removal ExtractElement/ExtractValue instructions + 5367 // the cost of shuffles, if required to resuffle the original vector. 5368 if (NeedToShuffleReuses) { 5369 unsigned Idx = 0; 5370 for (unsigned I : E->ReuseShuffleIndices) { 5371 if (ShuffleOrOp == Instruction::ExtractElement) { 5372 auto *EE = cast<ExtractElementInst>(VL[I]); 5373 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5374 EE->getVectorOperandType(), 5375 *getExtractIndex(EE)); 5376 } else { 5377 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5378 VecTy, Idx); 5379 ++Idx; 5380 } 5381 } 5382 Idx = EntryVF; 5383 for (Value *V : VL) { 5384 if (ShuffleOrOp == Instruction::ExtractElement) { 5385 auto *EE = cast<ExtractElementInst>(V); 5386 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5387 EE->getVectorOperandType(), 5388 *getExtractIndex(EE)); 5389 } else { 5390 --Idx; 5391 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5392 VecTy, Idx); 5393 } 5394 } 5395 } 5396 if (ShuffleOrOp == Instruction::ExtractValue) { 5397 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 5398 auto *EI = cast<Instruction>(VL[I]); 5399 // Take credit for instruction that will become dead. 5400 if (EI->hasOneUse()) { 5401 Instruction *Ext = EI->user_back(); 5402 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5403 all_of(Ext->users(), 5404 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5405 // Use getExtractWithExtendCost() to calculate the cost of 5406 // extractelement/ext pair. 5407 CommonCost -= TTI->getExtractWithExtendCost( 5408 Ext->getOpcode(), Ext->getType(), VecTy, I); 5409 // Add back the cost of s|zext which is subtracted separately. 5410 CommonCost += TTI->getCastInstrCost( 5411 Ext->getOpcode(), Ext->getType(), EI->getType(), 5412 TTI::getCastContextHint(Ext), CostKind, Ext); 5413 continue; 5414 } 5415 } 5416 CommonCost -= 5417 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 5418 } 5419 } else { 5420 AdjustExtractsCost(CommonCost); 5421 } 5422 return CommonCost; 5423 } 5424 case Instruction::InsertElement: { 5425 assert(E->ReuseShuffleIndices.empty() && 5426 "Unique insertelements only are expected."); 5427 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 5428 5429 unsigned const NumElts = SrcVecTy->getNumElements(); 5430 unsigned const NumScalars = VL.size(); 5431 APInt DemandedElts = APInt::getZero(NumElts); 5432 // TODO: Add support for Instruction::InsertValue. 5433 SmallVector<int> Mask; 5434 if (!E->ReorderIndices.empty()) { 5435 inversePermutation(E->ReorderIndices, Mask); 5436 Mask.append(NumElts - NumScalars, UndefMaskElem); 5437 } else { 5438 Mask.assign(NumElts, UndefMaskElem); 5439 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 5440 } 5441 unsigned Offset = *getInsertIndex(VL0); 5442 bool IsIdentity = true; 5443 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 5444 Mask.swap(PrevMask); 5445 for (unsigned I = 0; I < NumScalars; ++I) { 5446 unsigned InsertIdx = *getInsertIndex(VL[PrevMask[I]]); 5447 DemandedElts.setBit(InsertIdx); 5448 IsIdentity &= InsertIdx - Offset == I; 5449 Mask[InsertIdx - Offset] = I; 5450 } 5451 assert(Offset < NumElts && "Failed to find vector index offset"); 5452 5453 InstructionCost Cost = 0; 5454 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 5455 /*Insert*/ true, /*Extract*/ false); 5456 5457 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 5458 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 5459 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 5460 Cost += TTI->getShuffleCost( 5461 TargetTransformInfo::SK_PermuteSingleSrc, 5462 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 5463 } else if (!IsIdentity) { 5464 auto *FirstInsert = 5465 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 5466 return !is_contained(E->Scalars, 5467 cast<Instruction>(V)->getOperand(0)); 5468 })); 5469 if (isUndefVector(FirstInsert->getOperand(0))) { 5470 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 5471 } else { 5472 SmallVector<int> InsertMask(NumElts); 5473 std::iota(InsertMask.begin(), InsertMask.end(), 0); 5474 for (unsigned I = 0; I < NumElts; I++) { 5475 if (Mask[I] != UndefMaskElem) 5476 InsertMask[Offset + I] = NumElts + I; 5477 } 5478 Cost += 5479 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 5480 } 5481 } 5482 5483 return Cost; 5484 } 5485 case Instruction::ZExt: 5486 case Instruction::SExt: 5487 case Instruction::FPToUI: 5488 case Instruction::FPToSI: 5489 case Instruction::FPExt: 5490 case Instruction::PtrToInt: 5491 case Instruction::IntToPtr: 5492 case Instruction::SIToFP: 5493 case Instruction::UIToFP: 5494 case Instruction::Trunc: 5495 case Instruction::FPTrunc: 5496 case Instruction::BitCast: { 5497 Type *SrcTy = VL0->getOperand(0)->getType(); 5498 InstructionCost ScalarEltCost = 5499 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 5500 TTI::getCastContextHint(VL0), CostKind, VL0); 5501 if (NeedToShuffleReuses) { 5502 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5503 } 5504 5505 // Calculate the cost of this instruction. 5506 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 5507 5508 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 5509 InstructionCost VecCost = 0; 5510 // Check if the values are candidates to demote. 5511 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 5512 VecCost = CommonCost + TTI->getCastInstrCost( 5513 E->getOpcode(), VecTy, SrcVecTy, 5514 TTI::getCastContextHint(VL0), CostKind, VL0); 5515 } 5516 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5517 return VecCost - ScalarCost; 5518 } 5519 case Instruction::FCmp: 5520 case Instruction::ICmp: 5521 case Instruction::Select: { 5522 // Calculate the cost of this instruction. 5523 InstructionCost ScalarEltCost = 5524 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5525 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 5526 if (NeedToShuffleReuses) { 5527 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5528 } 5529 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 5530 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5531 5532 // Check if all entries in VL are either compares or selects with compares 5533 // as condition that have the same predicates. 5534 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 5535 bool First = true; 5536 for (auto *V : VL) { 5537 CmpInst::Predicate CurrentPred; 5538 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 5539 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 5540 !match(V, MatchCmp)) || 5541 (!First && VecPred != CurrentPred)) { 5542 VecPred = CmpInst::BAD_ICMP_PREDICATE; 5543 break; 5544 } 5545 First = false; 5546 VecPred = CurrentPred; 5547 } 5548 5549 InstructionCost VecCost = TTI->getCmpSelInstrCost( 5550 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 5551 // Check if it is possible and profitable to use min/max for selects in 5552 // VL. 5553 // 5554 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 5555 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 5556 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 5557 {VecTy, VecTy}); 5558 InstructionCost IntrinsicCost = 5559 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5560 // If the selects are the only uses of the compares, they will be dead 5561 // and we can adjust the cost by removing their cost. 5562 if (IntrinsicAndUse.second) 5563 IntrinsicCost -= TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, 5564 MaskTy, VecPred, CostKind); 5565 VecCost = std::min(VecCost, IntrinsicCost); 5566 } 5567 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5568 return CommonCost + VecCost - ScalarCost; 5569 } 5570 case Instruction::FNeg: 5571 case Instruction::Add: 5572 case Instruction::FAdd: 5573 case Instruction::Sub: 5574 case Instruction::FSub: 5575 case Instruction::Mul: 5576 case Instruction::FMul: 5577 case Instruction::UDiv: 5578 case Instruction::SDiv: 5579 case Instruction::FDiv: 5580 case Instruction::URem: 5581 case Instruction::SRem: 5582 case Instruction::FRem: 5583 case Instruction::Shl: 5584 case Instruction::LShr: 5585 case Instruction::AShr: 5586 case Instruction::And: 5587 case Instruction::Or: 5588 case Instruction::Xor: { 5589 // Certain instructions can be cheaper to vectorize if they have a 5590 // constant second vector operand. 5591 TargetTransformInfo::OperandValueKind Op1VK = 5592 TargetTransformInfo::OK_AnyValue; 5593 TargetTransformInfo::OperandValueKind Op2VK = 5594 TargetTransformInfo::OK_UniformConstantValue; 5595 TargetTransformInfo::OperandValueProperties Op1VP = 5596 TargetTransformInfo::OP_None; 5597 TargetTransformInfo::OperandValueProperties Op2VP = 5598 TargetTransformInfo::OP_PowerOf2; 5599 5600 // If all operands are exactly the same ConstantInt then set the 5601 // operand kind to OK_UniformConstantValue. 5602 // If instead not all operands are constants, then set the operand kind 5603 // to OK_AnyValue. If all operands are constants but not the same, 5604 // then set the operand kind to OK_NonUniformConstantValue. 5605 ConstantInt *CInt0 = nullptr; 5606 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 5607 const Instruction *I = cast<Instruction>(VL[i]); 5608 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 5609 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 5610 if (!CInt) { 5611 Op2VK = TargetTransformInfo::OK_AnyValue; 5612 Op2VP = TargetTransformInfo::OP_None; 5613 break; 5614 } 5615 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 5616 !CInt->getValue().isPowerOf2()) 5617 Op2VP = TargetTransformInfo::OP_None; 5618 if (i == 0) { 5619 CInt0 = CInt; 5620 continue; 5621 } 5622 if (CInt0 != CInt) 5623 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5624 } 5625 5626 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 5627 InstructionCost ScalarEltCost = 5628 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 5629 Op2VK, Op1VP, Op2VP, Operands, VL0); 5630 if (NeedToShuffleReuses) { 5631 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5632 } 5633 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5634 InstructionCost VecCost = 5635 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 5636 Op2VK, Op1VP, Op2VP, Operands, VL0); 5637 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5638 return CommonCost + VecCost - ScalarCost; 5639 } 5640 case Instruction::GetElementPtr: { 5641 TargetTransformInfo::OperandValueKind Op1VK = 5642 TargetTransformInfo::OK_AnyValue; 5643 TargetTransformInfo::OperandValueKind Op2VK = 5644 TargetTransformInfo::OK_UniformConstantValue; 5645 5646 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 5647 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 5648 if (NeedToShuffleReuses) { 5649 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5650 } 5651 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5652 InstructionCost VecCost = TTI->getArithmeticInstrCost( 5653 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 5654 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5655 return CommonCost + VecCost - ScalarCost; 5656 } 5657 case Instruction::Load: { 5658 // Cost of wide load - cost of scalar loads. 5659 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 5660 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5661 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 5662 if (NeedToShuffleReuses) { 5663 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5664 } 5665 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 5666 InstructionCost VecLdCost; 5667 if (E->State == TreeEntry::Vectorize) { 5668 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 5669 CostKind, VL0); 5670 } else { 5671 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 5672 Align CommonAlignment = Alignment; 5673 for (Value *V : VL) 5674 CommonAlignment = 5675 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 5676 VecLdCost = TTI->getGatherScatterOpCost( 5677 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 5678 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 5679 } 5680 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 5681 return CommonCost + VecLdCost - ScalarLdCost; 5682 } 5683 case Instruction::Store: { 5684 // We know that we can merge the stores. Calculate the cost. 5685 bool IsReorder = !E->ReorderIndices.empty(); 5686 auto *SI = 5687 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 5688 Align Alignment = SI->getAlign(); 5689 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5690 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 5691 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 5692 InstructionCost VecStCost = TTI->getMemoryOpCost( 5693 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 5694 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 5695 return CommonCost + VecStCost - ScalarStCost; 5696 } 5697 case Instruction::Call: { 5698 CallInst *CI = cast<CallInst>(VL0); 5699 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5700 5701 // Calculate the cost of the scalar and vector calls. 5702 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 5703 InstructionCost ScalarEltCost = 5704 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5705 if (NeedToShuffleReuses) { 5706 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5707 } 5708 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 5709 5710 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 5711 InstructionCost VecCallCost = 5712 std::min(VecCallCosts.first, VecCallCosts.second); 5713 5714 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 5715 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 5716 << " for " << *CI << "\n"); 5717 5718 return CommonCost + VecCallCost - ScalarCallCost; 5719 } 5720 case Instruction::ShuffleVector: { 5721 assert(E->isAltShuffle() && 5722 ((Instruction::isBinaryOp(E->getOpcode()) && 5723 Instruction::isBinaryOp(E->getAltOpcode())) || 5724 (Instruction::isCast(E->getOpcode()) && 5725 Instruction::isCast(E->getAltOpcode())) || 5726 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 5727 "Invalid Shuffle Vector Operand"); 5728 InstructionCost ScalarCost = 0; 5729 if (NeedToShuffleReuses) { 5730 for (unsigned Idx : E->ReuseShuffleIndices) { 5731 Instruction *I = cast<Instruction>(VL[Idx]); 5732 CommonCost -= TTI->getInstructionCost(I, CostKind); 5733 } 5734 for (Value *V : VL) { 5735 Instruction *I = cast<Instruction>(V); 5736 CommonCost += TTI->getInstructionCost(I, CostKind); 5737 } 5738 } 5739 for (Value *V : VL) { 5740 Instruction *I = cast<Instruction>(V); 5741 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5742 ScalarCost += TTI->getInstructionCost(I, CostKind); 5743 } 5744 // VecCost is equal to sum of the cost of creating 2 vectors 5745 // and the cost of creating shuffle. 5746 InstructionCost VecCost = 0; 5747 // Try to find the previous shuffle node with the same operands and same 5748 // main/alternate ops. 5749 auto &&TryFindNodeWithEqualOperands = [this, E]() { 5750 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 5751 if (TE.get() == E) 5752 break; 5753 if (TE->isAltShuffle() && 5754 ((TE->getOpcode() == E->getOpcode() && 5755 TE->getAltOpcode() == E->getAltOpcode()) || 5756 (TE->getOpcode() == E->getAltOpcode() && 5757 TE->getAltOpcode() == E->getOpcode())) && 5758 TE->hasEqualOperands(*E)) 5759 return true; 5760 } 5761 return false; 5762 }; 5763 if (TryFindNodeWithEqualOperands()) { 5764 LLVM_DEBUG({ 5765 dbgs() << "SLP: diamond match for alternate node found.\n"; 5766 E->dump(); 5767 }); 5768 // No need to add new vector costs here since we're going to reuse 5769 // same main/alternate vector ops, just do different shuffling. 5770 } else if (Instruction::isBinaryOp(E->getOpcode())) { 5771 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 5772 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 5773 CostKind); 5774 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 5775 VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 5776 Builder.getInt1Ty(), 5777 CI0->getPredicate(), CostKind, VL0); 5778 VecCost += TTI->getCmpSelInstrCost( 5779 E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5780 cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind, 5781 E->getAltOp()); 5782 } else { 5783 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 5784 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 5785 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 5786 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 5787 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 5788 TTI::CastContextHint::None, CostKind); 5789 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 5790 TTI::CastContextHint::None, CostKind); 5791 } 5792 5793 SmallVector<int> Mask; 5794 buildShuffleEntryMask( 5795 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 5796 [E](Instruction *I) { 5797 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5798 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 5799 }, 5800 Mask); 5801 CommonCost = 5802 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask); 5803 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5804 return CommonCost + VecCost - ScalarCost; 5805 } 5806 default: 5807 llvm_unreachable("Unknown instruction"); 5808 } 5809 } 5810 5811 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 5812 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 5813 << VectorizableTree.size() << " is fully vectorizable .\n"); 5814 5815 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 5816 SmallVector<int> Mask; 5817 return TE->State == TreeEntry::NeedToGather && 5818 !any_of(TE->Scalars, 5819 [this](Value *V) { return EphValues.contains(V); }) && 5820 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 5821 TE->Scalars.size() < Limit || 5822 ((TE->getOpcode() == Instruction::ExtractElement || 5823 all_of(TE->Scalars, 5824 [](Value *V) { 5825 return isa<ExtractElementInst, UndefValue>(V); 5826 })) && 5827 isFixedVectorShuffle(TE->Scalars, Mask)) || 5828 (TE->State == TreeEntry::NeedToGather && 5829 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 5830 }; 5831 5832 // We only handle trees of heights 1 and 2. 5833 if (VectorizableTree.size() == 1 && 5834 (VectorizableTree[0]->State == TreeEntry::Vectorize || 5835 (ForReduction && 5836 AreVectorizableGathers(VectorizableTree[0].get(), 5837 VectorizableTree[0]->Scalars.size()) && 5838 VectorizableTree[0]->getVectorFactor() > 2))) 5839 return true; 5840 5841 if (VectorizableTree.size() != 2) 5842 return false; 5843 5844 // Handle splat and all-constants stores. Also try to vectorize tiny trees 5845 // with the second gather nodes if they have less scalar operands rather than 5846 // the initial tree element (may be profitable to shuffle the second gather) 5847 // or they are extractelements, which form shuffle. 5848 SmallVector<int> Mask; 5849 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 5850 AreVectorizableGathers(VectorizableTree[1].get(), 5851 VectorizableTree[0]->Scalars.size())) 5852 return true; 5853 5854 // Gathering cost would be too much for tiny trees. 5855 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 5856 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 5857 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 5858 return false; 5859 5860 return true; 5861 } 5862 5863 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 5864 TargetTransformInfo *TTI, 5865 bool MustMatchOrInst) { 5866 // Look past the root to find a source value. Arbitrarily follow the 5867 // path through operand 0 of any 'or'. Also, peek through optional 5868 // shift-left-by-multiple-of-8-bits. 5869 Value *ZextLoad = Root; 5870 const APInt *ShAmtC; 5871 bool FoundOr = false; 5872 while (!isa<ConstantExpr>(ZextLoad) && 5873 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 5874 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 5875 ShAmtC->urem(8) == 0))) { 5876 auto *BinOp = cast<BinaryOperator>(ZextLoad); 5877 ZextLoad = BinOp->getOperand(0); 5878 if (BinOp->getOpcode() == Instruction::Or) 5879 FoundOr = true; 5880 } 5881 // Check if the input is an extended load of the required or/shift expression. 5882 Value *Load; 5883 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 5884 !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load)) 5885 return false; 5886 5887 // Require that the total load bit width is a legal integer type. 5888 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 5889 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 5890 Type *SrcTy = Load->getType(); 5891 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 5892 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 5893 return false; 5894 5895 // Everything matched - assume that we can fold the whole sequence using 5896 // load combining. 5897 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 5898 << *(cast<Instruction>(Root)) << "\n"); 5899 5900 return true; 5901 } 5902 5903 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 5904 if (RdxKind != RecurKind::Or) 5905 return false; 5906 5907 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5908 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 5909 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 5910 /* MatchOr */ false); 5911 } 5912 5913 bool BoUpSLP::isLoadCombineCandidate() const { 5914 // Peek through a final sequence of stores and check if all operations are 5915 // likely to be load-combined. 5916 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5917 for (Value *Scalar : VectorizableTree[0]->Scalars) { 5918 Value *X; 5919 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 5920 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 5921 return false; 5922 } 5923 return true; 5924 } 5925 5926 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 5927 // No need to vectorize inserts of gathered values. 5928 if (VectorizableTree.size() == 2 && 5929 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 5930 VectorizableTree[1]->State == TreeEntry::NeedToGather) 5931 return true; 5932 5933 // We can vectorize the tree if its size is greater than or equal to the 5934 // minimum size specified by the MinTreeSize command line option. 5935 if (VectorizableTree.size() >= MinTreeSize) 5936 return false; 5937 5938 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 5939 // can vectorize it if we can prove it fully vectorizable. 5940 if (isFullyVectorizableTinyTree(ForReduction)) 5941 return false; 5942 5943 assert(VectorizableTree.empty() 5944 ? ExternalUses.empty() 5945 : true && "We shouldn't have any external users"); 5946 5947 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 5948 // vectorizable. 5949 return true; 5950 } 5951 5952 InstructionCost BoUpSLP::getSpillCost() const { 5953 // Walk from the bottom of the tree to the top, tracking which values are 5954 // live. When we see a call instruction that is not part of our tree, 5955 // query TTI to see if there is a cost to keeping values live over it 5956 // (for example, if spills and fills are required). 5957 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 5958 InstructionCost Cost = 0; 5959 5960 SmallPtrSet<Instruction*, 4> LiveValues; 5961 Instruction *PrevInst = nullptr; 5962 5963 // The entries in VectorizableTree are not necessarily ordered by their 5964 // position in basic blocks. Collect them and order them by dominance so later 5965 // instructions are guaranteed to be visited first. For instructions in 5966 // different basic blocks, we only scan to the beginning of the block, so 5967 // their order does not matter, as long as all instructions in a basic block 5968 // are grouped together. Using dominance ensures a deterministic order. 5969 SmallVector<Instruction *, 16> OrderedScalars; 5970 for (const auto &TEPtr : VectorizableTree) { 5971 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 5972 if (!Inst) 5973 continue; 5974 OrderedScalars.push_back(Inst); 5975 } 5976 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 5977 auto *NodeA = DT->getNode(A->getParent()); 5978 auto *NodeB = DT->getNode(B->getParent()); 5979 assert(NodeA && "Should only process reachable instructions"); 5980 assert(NodeB && "Should only process reachable instructions"); 5981 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 5982 "Different nodes should have different DFS numbers"); 5983 if (NodeA != NodeB) 5984 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 5985 return B->comesBefore(A); 5986 }); 5987 5988 for (Instruction *Inst : OrderedScalars) { 5989 if (!PrevInst) { 5990 PrevInst = Inst; 5991 continue; 5992 } 5993 5994 // Update LiveValues. 5995 LiveValues.erase(PrevInst); 5996 for (auto &J : PrevInst->operands()) { 5997 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 5998 LiveValues.insert(cast<Instruction>(&*J)); 5999 } 6000 6001 LLVM_DEBUG({ 6002 dbgs() << "SLP: #LV: " << LiveValues.size(); 6003 for (auto *X : LiveValues) 6004 dbgs() << " " << X->getName(); 6005 dbgs() << ", Looking at "; 6006 Inst->dump(); 6007 }); 6008 6009 // Now find the sequence of instructions between PrevInst and Inst. 6010 unsigned NumCalls = 0; 6011 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 6012 PrevInstIt = 6013 PrevInst->getIterator().getReverse(); 6014 while (InstIt != PrevInstIt) { 6015 if (PrevInstIt == PrevInst->getParent()->rend()) { 6016 PrevInstIt = Inst->getParent()->rbegin(); 6017 continue; 6018 } 6019 6020 // Debug information does not impact spill cost. 6021 if ((isa<CallInst>(&*PrevInstIt) && 6022 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 6023 &*PrevInstIt != PrevInst) 6024 NumCalls++; 6025 6026 ++PrevInstIt; 6027 } 6028 6029 if (NumCalls) { 6030 SmallVector<Type*, 4> V; 6031 for (auto *II : LiveValues) { 6032 auto *ScalarTy = II->getType(); 6033 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 6034 ScalarTy = VectorTy->getElementType(); 6035 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 6036 } 6037 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 6038 } 6039 6040 PrevInst = Inst; 6041 } 6042 6043 return Cost; 6044 } 6045 6046 /// Check if two insertelement instructions are from the same buildvector. 6047 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU, 6048 InsertElementInst *V) { 6049 // Instructions must be from the same basic blocks. 6050 if (VU->getParent() != V->getParent()) 6051 return false; 6052 // Checks if 2 insertelements are from the same buildvector. 6053 if (VU->getType() != V->getType()) 6054 return false; 6055 // Multiple used inserts are separate nodes. 6056 if (!VU->hasOneUse() && !V->hasOneUse()) 6057 return false; 6058 auto *IE1 = VU; 6059 auto *IE2 = V; 6060 // Go through the vector operand of insertelement instructions trying to find 6061 // either VU as the original vector for IE2 or V as the original vector for 6062 // IE1. 6063 do { 6064 if (IE2 == VU || IE1 == V) 6065 return true; 6066 if (IE1) { 6067 if (IE1 != VU && !IE1->hasOneUse()) 6068 IE1 = nullptr; 6069 else 6070 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 6071 } 6072 if (IE2) { 6073 if (IE2 != V && !IE2->hasOneUse()) 6074 IE2 = nullptr; 6075 else 6076 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 6077 } 6078 } while (IE1 || IE2); 6079 return false; 6080 } 6081 6082 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 6083 InstructionCost Cost = 0; 6084 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 6085 << VectorizableTree.size() << ".\n"); 6086 6087 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 6088 6089 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 6090 TreeEntry &TE = *VectorizableTree[I].get(); 6091 6092 InstructionCost C = getEntryCost(&TE, VectorizedVals); 6093 Cost += C; 6094 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6095 << " for bundle that starts with " << *TE.Scalars[0] 6096 << ".\n" 6097 << "SLP: Current total cost = " << Cost << "\n"); 6098 } 6099 6100 SmallPtrSet<Value *, 16> ExtractCostCalculated; 6101 InstructionCost ExtractCost = 0; 6102 SmallVector<unsigned> VF; 6103 SmallVector<SmallVector<int>> ShuffleMask; 6104 SmallVector<Value *> FirstUsers; 6105 SmallVector<APInt> DemandedElts; 6106 for (ExternalUser &EU : ExternalUses) { 6107 // We only add extract cost once for the same scalar. 6108 if (!isa_and_nonnull<InsertElementInst>(EU.User) && 6109 !ExtractCostCalculated.insert(EU.Scalar).second) 6110 continue; 6111 6112 // Uses by ephemeral values are free (because the ephemeral value will be 6113 // removed prior to code generation, and so the extraction will be 6114 // removed as well). 6115 if (EphValues.count(EU.User)) 6116 continue; 6117 6118 // No extract cost for vector "scalar" 6119 if (isa<FixedVectorType>(EU.Scalar->getType())) 6120 continue; 6121 6122 // Already counted the cost for external uses when tried to adjust the cost 6123 // for extractelements, no need to add it again. 6124 if (isa<ExtractElementInst>(EU.Scalar)) 6125 continue; 6126 6127 // If found user is an insertelement, do not calculate extract cost but try 6128 // to detect it as a final shuffled/identity match. 6129 if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) { 6130 if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) { 6131 Optional<unsigned> InsertIdx = getInsertIndex(VU); 6132 if (InsertIdx) { 6133 auto *It = find_if(FirstUsers, [VU](Value *V) { 6134 return areTwoInsertFromSameBuildVector(VU, 6135 cast<InsertElementInst>(V)); 6136 }); 6137 int VecId = -1; 6138 if (It == FirstUsers.end()) { 6139 VF.push_back(FTy->getNumElements()); 6140 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 6141 // Find the insertvector, vectorized in tree, if any. 6142 Value *Base = VU; 6143 while (isa<InsertElementInst>(Base)) { 6144 // Build the mask for the vectorized insertelement instructions. 6145 if (const TreeEntry *E = getTreeEntry(Base)) { 6146 VU = cast<InsertElementInst>(Base); 6147 do { 6148 int Idx = E->findLaneForValue(Base); 6149 ShuffleMask.back()[Idx] = Idx; 6150 Base = cast<InsertElementInst>(Base)->getOperand(0); 6151 } while (E == getTreeEntry(Base)); 6152 break; 6153 } 6154 Base = cast<InsertElementInst>(Base)->getOperand(0); 6155 } 6156 FirstUsers.push_back(VU); 6157 DemandedElts.push_back(APInt::getZero(VF.back())); 6158 VecId = FirstUsers.size() - 1; 6159 } else { 6160 VecId = std::distance(FirstUsers.begin(), It); 6161 } 6162 ShuffleMask[VecId][*InsertIdx] = EU.Lane; 6163 DemandedElts[VecId].setBit(*InsertIdx); 6164 continue; 6165 } 6166 } 6167 } 6168 6169 // If we plan to rewrite the tree in a smaller type, we will need to sign 6170 // extend the extracted value back to the original type. Here, we account 6171 // for the extract and the added cost of the sign extend if needed. 6172 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 6173 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 6174 if (MinBWs.count(ScalarRoot)) { 6175 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 6176 auto Extend = 6177 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 6178 VecTy = FixedVectorType::get(MinTy, BundleWidth); 6179 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 6180 VecTy, EU.Lane); 6181 } else { 6182 ExtractCost += 6183 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 6184 } 6185 } 6186 6187 InstructionCost SpillCost = getSpillCost(); 6188 Cost += SpillCost + ExtractCost; 6189 if (FirstUsers.size() == 1) { 6190 int Limit = ShuffleMask.front().size() * 2; 6191 if (all_of(ShuffleMask.front(), [Limit](int Idx) { return Idx < Limit; }) && 6192 !ShuffleVectorInst::isIdentityMask(ShuffleMask.front())) { 6193 InstructionCost C = TTI->getShuffleCost( 6194 TTI::SK_PermuteSingleSrc, 6195 cast<FixedVectorType>(FirstUsers.front()->getType()), 6196 ShuffleMask.front()); 6197 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6198 << " for final shuffle of insertelement external users " 6199 << *VectorizableTree.front()->Scalars.front() << ".\n" 6200 << "SLP: Current total cost = " << Cost << "\n"); 6201 Cost += C; 6202 } 6203 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6204 cast<FixedVectorType>(FirstUsers.front()->getType()), 6205 DemandedElts.front(), /*Insert*/ true, /*Extract*/ false); 6206 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6207 << " for insertelements gather.\n" 6208 << "SLP: Current total cost = " << Cost << "\n"); 6209 Cost -= InsertCost; 6210 } else if (FirstUsers.size() >= 2) { 6211 unsigned MaxVF = *std::max_element(VF.begin(), VF.end()); 6212 // Combined masks of the first 2 vectors. 6213 SmallVector<int> CombinedMask(MaxVF, UndefMaskElem); 6214 copy(ShuffleMask.front(), CombinedMask.begin()); 6215 APInt CombinedDemandedElts = DemandedElts.front().zextOrSelf(MaxVF); 6216 auto *VecTy = FixedVectorType::get( 6217 cast<VectorType>(FirstUsers.front()->getType())->getElementType(), 6218 MaxVF); 6219 for (int I = 0, E = ShuffleMask[1].size(); I < E; ++I) { 6220 if (ShuffleMask[1][I] != UndefMaskElem) { 6221 CombinedMask[I] = ShuffleMask[1][I] + MaxVF; 6222 CombinedDemandedElts.setBit(I); 6223 } 6224 } 6225 InstructionCost C = 6226 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6227 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6228 << " for final shuffle of vector node and external " 6229 "insertelement users " 6230 << *VectorizableTree.front()->Scalars.front() << ".\n" 6231 << "SLP: Current total cost = " << Cost << "\n"); 6232 Cost += C; 6233 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6234 VecTy, CombinedDemandedElts, /*Insert*/ true, /*Extract*/ false); 6235 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6236 << " for insertelements gather.\n" 6237 << "SLP: Current total cost = " << Cost << "\n"); 6238 Cost -= InsertCost; 6239 for (int I = 2, E = FirstUsers.size(); I < E; ++I) { 6240 // Other elements - permutation of 2 vectors (the initial one and the 6241 // next Ith incoming vector). 6242 unsigned VF = ShuffleMask[I].size(); 6243 for (unsigned Idx = 0; Idx < VF; ++Idx) { 6244 int Mask = ShuffleMask[I][Idx]; 6245 if (Mask != UndefMaskElem) 6246 CombinedMask[Idx] = MaxVF + Mask; 6247 else if (CombinedMask[Idx] != UndefMaskElem) 6248 CombinedMask[Idx] = Idx; 6249 } 6250 for (unsigned Idx = VF; Idx < MaxVF; ++Idx) 6251 if (CombinedMask[Idx] != UndefMaskElem) 6252 CombinedMask[Idx] = Idx; 6253 InstructionCost C = 6254 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6255 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6256 << " for final shuffle of vector node and external " 6257 "insertelement users " 6258 << *VectorizableTree.front()->Scalars.front() << ".\n" 6259 << "SLP: Current total cost = " << Cost << "\n"); 6260 Cost += C; 6261 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6262 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 6263 /*Insert*/ true, /*Extract*/ false); 6264 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6265 << " for insertelements gather.\n" 6266 << "SLP: Current total cost = " << Cost << "\n"); 6267 Cost -= InsertCost; 6268 } 6269 } 6270 6271 #ifndef NDEBUG 6272 SmallString<256> Str; 6273 { 6274 raw_svector_ostream OS(Str); 6275 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 6276 << "SLP: Extract Cost = " << ExtractCost << ".\n" 6277 << "SLP: Total Cost = " << Cost << ".\n"; 6278 } 6279 LLVM_DEBUG(dbgs() << Str); 6280 if (ViewSLPTree) 6281 ViewGraph(this, "SLP" + F->getName(), false, Str); 6282 #endif 6283 6284 return Cost; 6285 } 6286 6287 Optional<TargetTransformInfo::ShuffleKind> 6288 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 6289 SmallVectorImpl<const TreeEntry *> &Entries) { 6290 // TODO: currently checking only for Scalars in the tree entry, need to count 6291 // reused elements too for better cost estimation. 6292 Mask.assign(TE->Scalars.size(), UndefMaskElem); 6293 Entries.clear(); 6294 // Build a lists of values to tree entries. 6295 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 6296 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 6297 if (EntryPtr.get() == TE) 6298 break; 6299 if (EntryPtr->State != TreeEntry::NeedToGather) 6300 continue; 6301 for (Value *V : EntryPtr->Scalars) 6302 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 6303 } 6304 // Find all tree entries used by the gathered values. If no common entries 6305 // found - not a shuffle. 6306 // Here we build a set of tree nodes for each gathered value and trying to 6307 // find the intersection between these sets. If we have at least one common 6308 // tree node for each gathered value - we have just a permutation of the 6309 // single vector. If we have 2 different sets, we're in situation where we 6310 // have a permutation of 2 input vectors. 6311 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 6312 DenseMap<Value *, int> UsedValuesEntry; 6313 for (Value *V : TE->Scalars) { 6314 if (isa<UndefValue>(V)) 6315 continue; 6316 // Build a list of tree entries where V is used. 6317 SmallPtrSet<const TreeEntry *, 4> VToTEs; 6318 auto It = ValueToTEs.find(V); 6319 if (It != ValueToTEs.end()) 6320 VToTEs = It->second; 6321 if (const TreeEntry *VTE = getTreeEntry(V)) 6322 VToTEs.insert(VTE); 6323 if (VToTEs.empty()) 6324 return None; 6325 if (UsedTEs.empty()) { 6326 // The first iteration, just insert the list of nodes to vector. 6327 UsedTEs.push_back(VToTEs); 6328 } else { 6329 // Need to check if there are any previously used tree nodes which use V. 6330 // If there are no such nodes, consider that we have another one input 6331 // vector. 6332 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 6333 unsigned Idx = 0; 6334 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 6335 // Do we have a non-empty intersection of previously listed tree entries 6336 // and tree entries using current V? 6337 set_intersect(VToTEs, Set); 6338 if (!VToTEs.empty()) { 6339 // Yes, write the new subset and continue analysis for the next 6340 // scalar. 6341 Set.swap(VToTEs); 6342 break; 6343 } 6344 VToTEs = SavedVToTEs; 6345 ++Idx; 6346 } 6347 // No non-empty intersection found - need to add a second set of possible 6348 // source vectors. 6349 if (Idx == UsedTEs.size()) { 6350 // If the number of input vectors is greater than 2 - not a permutation, 6351 // fallback to the regular gather. 6352 if (UsedTEs.size() == 2) 6353 return None; 6354 UsedTEs.push_back(SavedVToTEs); 6355 Idx = UsedTEs.size() - 1; 6356 } 6357 UsedValuesEntry.try_emplace(V, Idx); 6358 } 6359 } 6360 6361 unsigned VF = 0; 6362 if (UsedTEs.size() == 1) { 6363 // Try to find the perfect match in another gather node at first. 6364 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 6365 return EntryPtr->isSame(TE->Scalars); 6366 }); 6367 if (It != UsedTEs.front().end()) { 6368 Entries.push_back(*It); 6369 std::iota(Mask.begin(), Mask.end(), 0); 6370 return TargetTransformInfo::SK_PermuteSingleSrc; 6371 } 6372 // No perfect match, just shuffle, so choose the first tree node. 6373 Entries.push_back(*UsedTEs.front().begin()); 6374 } else { 6375 // Try to find nodes with the same vector factor. 6376 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 6377 DenseMap<int, const TreeEntry *> VFToTE; 6378 for (const TreeEntry *TE : UsedTEs.front()) 6379 VFToTE.try_emplace(TE->getVectorFactor(), TE); 6380 for (const TreeEntry *TE : UsedTEs.back()) { 6381 auto It = VFToTE.find(TE->getVectorFactor()); 6382 if (It != VFToTE.end()) { 6383 VF = It->first; 6384 Entries.push_back(It->second); 6385 Entries.push_back(TE); 6386 break; 6387 } 6388 } 6389 // No 2 source vectors with the same vector factor - give up and do regular 6390 // gather. 6391 if (Entries.empty()) 6392 return None; 6393 } 6394 6395 // Build a shuffle mask for better cost estimation and vector emission. 6396 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 6397 Value *V = TE->Scalars[I]; 6398 if (isa<UndefValue>(V)) 6399 continue; 6400 unsigned Idx = UsedValuesEntry.lookup(V); 6401 const TreeEntry *VTE = Entries[Idx]; 6402 int FoundLane = VTE->findLaneForValue(V); 6403 Mask[I] = Idx * VF + FoundLane; 6404 // Extra check required by isSingleSourceMaskImpl function (called by 6405 // ShuffleVectorInst::isSingleSourceMask). 6406 if (Mask[I] >= 2 * E) 6407 return None; 6408 } 6409 switch (Entries.size()) { 6410 case 1: 6411 return TargetTransformInfo::SK_PermuteSingleSrc; 6412 case 2: 6413 return TargetTransformInfo::SK_PermuteTwoSrc; 6414 default: 6415 break; 6416 } 6417 return None; 6418 } 6419 6420 InstructionCost BoUpSLP::getGatherCost(FixedVectorType *Ty, 6421 const APInt &ShuffledIndices, 6422 bool NeedToShuffle) const { 6423 InstructionCost Cost = 6424 TTI->getScalarizationOverhead(Ty, ~ShuffledIndices, /*Insert*/ true, 6425 /*Extract*/ false); 6426 if (NeedToShuffle) 6427 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 6428 return Cost; 6429 } 6430 6431 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 6432 // Find the type of the operands in VL. 6433 Type *ScalarTy = VL[0]->getType(); 6434 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 6435 ScalarTy = SI->getValueOperand()->getType(); 6436 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 6437 bool DuplicateNonConst = false; 6438 // Find the cost of inserting/extracting values from the vector. 6439 // Check if the same elements are inserted several times and count them as 6440 // shuffle candidates. 6441 APInt ShuffledElements = APInt::getZero(VL.size()); 6442 DenseSet<Value *> UniqueElements; 6443 // Iterate in reverse order to consider insert elements with the high cost. 6444 for (unsigned I = VL.size(); I > 0; --I) { 6445 unsigned Idx = I - 1; 6446 // No need to shuffle duplicates for constants. 6447 if (isConstant(VL[Idx])) { 6448 ShuffledElements.setBit(Idx); 6449 continue; 6450 } 6451 if (!UniqueElements.insert(VL[Idx]).second) { 6452 DuplicateNonConst = true; 6453 ShuffledElements.setBit(Idx); 6454 } 6455 } 6456 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 6457 } 6458 6459 // Perform operand reordering on the instructions in VL and return the reordered 6460 // operands in Left and Right. 6461 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 6462 SmallVectorImpl<Value *> &Left, 6463 SmallVectorImpl<Value *> &Right, 6464 const DataLayout &DL, 6465 ScalarEvolution &SE, 6466 const BoUpSLP &R) { 6467 if (VL.empty()) 6468 return; 6469 VLOperands Ops(VL, DL, SE, R); 6470 // Reorder the operands in place. 6471 Ops.reorder(); 6472 Left = Ops.getVL(0); 6473 Right = Ops.getVL(1); 6474 } 6475 6476 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 6477 // Get the basic block this bundle is in. All instructions in the bundle 6478 // should be in this block. 6479 auto *Front = E->getMainOp(); 6480 auto *BB = Front->getParent(); 6481 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 6482 auto *I = cast<Instruction>(V); 6483 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 6484 })); 6485 6486 auto &&FindLastInst = [E, Front]() { 6487 Instruction *LastInst = Front; 6488 for (Value *V : E->Scalars) { 6489 auto *I = dyn_cast<Instruction>(V); 6490 if (!I) 6491 continue; 6492 if (LastInst->comesBefore(I)) 6493 LastInst = I; 6494 } 6495 return LastInst; 6496 }; 6497 6498 auto &&FindFirstInst = [E, Front]() { 6499 Instruction *FirstInst = Front; 6500 for (Value *V : E->Scalars) { 6501 auto *I = dyn_cast<Instruction>(V); 6502 if (!I) 6503 continue; 6504 if (I->comesBefore(FirstInst)) 6505 FirstInst = I; 6506 } 6507 return FirstInst; 6508 }; 6509 6510 // Set the insert point to the beginning of the basic block if the entry 6511 // should not be scheduled. 6512 if (E->State != TreeEntry::NeedToGather && 6513 doesNotNeedToSchedule(E->Scalars)) { 6514 BasicBlock::iterator InsertPt; 6515 if (all_of(E->Scalars, isUsedOutsideBlock)) 6516 InsertPt = FindLastInst()->getIterator(); 6517 else 6518 InsertPt = FindFirstInst()->getIterator(); 6519 Builder.SetInsertPoint(BB, InsertPt); 6520 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6521 return; 6522 } 6523 6524 // The last instruction in the bundle in program order. 6525 Instruction *LastInst = nullptr; 6526 6527 // Find the last instruction. The common case should be that BB has been 6528 // scheduled, and the last instruction is VL.back(). So we start with 6529 // VL.back() and iterate over schedule data until we reach the end of the 6530 // bundle. The end of the bundle is marked by null ScheduleData. 6531 if (BlocksSchedules.count(BB)) { 6532 Value *V = E->isOneOf(E->Scalars.back()); 6533 if (doesNotNeedToBeScheduled(V)) 6534 V = *find_if_not(E->Scalars, doesNotNeedToBeScheduled); 6535 auto *Bundle = BlocksSchedules[BB]->getScheduleData(V); 6536 if (Bundle && Bundle->isPartOfBundle()) 6537 for (; Bundle; Bundle = Bundle->NextInBundle) 6538 if (Bundle->OpValue == Bundle->Inst) 6539 LastInst = Bundle->Inst; 6540 } 6541 6542 // LastInst can still be null at this point if there's either not an entry 6543 // for BB in BlocksSchedules or there's no ScheduleData available for 6544 // VL.back(). This can be the case if buildTree_rec aborts for various 6545 // reasons (e.g., the maximum recursion depth is reached, the maximum region 6546 // size is reached, etc.). ScheduleData is initialized in the scheduling 6547 // "dry-run". 6548 // 6549 // If this happens, we can still find the last instruction by brute force. We 6550 // iterate forwards from Front (inclusive) until we either see all 6551 // instructions in the bundle or reach the end of the block. If Front is the 6552 // last instruction in program order, LastInst will be set to Front, and we 6553 // will visit all the remaining instructions in the block. 6554 // 6555 // One of the reasons we exit early from buildTree_rec is to place an upper 6556 // bound on compile-time. Thus, taking an additional compile-time hit here is 6557 // not ideal. However, this should be exceedingly rare since it requires that 6558 // we both exit early from buildTree_rec and that the bundle be out-of-order 6559 // (causing us to iterate all the way to the end of the block). 6560 if (!LastInst) 6561 LastInst = FindLastInst(); 6562 assert(LastInst && "Failed to find last instruction in bundle"); 6563 6564 // Set the insertion point after the last instruction in the bundle. Set the 6565 // debug location to Front. 6566 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 6567 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6568 } 6569 6570 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 6571 // List of instructions/lanes from current block and/or the blocks which are 6572 // part of the current loop. These instructions will be inserted at the end to 6573 // make it possible to optimize loops and hoist invariant instructions out of 6574 // the loops body with better chances for success. 6575 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 6576 SmallSet<int, 4> PostponedIndices; 6577 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 6578 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 6579 SmallPtrSet<BasicBlock *, 4> Visited; 6580 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 6581 InsertBB = InsertBB->getSinglePredecessor(); 6582 return InsertBB && InsertBB == InstBB; 6583 }; 6584 for (int I = 0, E = VL.size(); I < E; ++I) { 6585 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 6586 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 6587 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 6588 PostponedIndices.insert(I).second) 6589 PostponedInsts.emplace_back(Inst, I); 6590 } 6591 6592 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 6593 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 6594 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 6595 if (!InsElt) 6596 return Vec; 6597 GatherShuffleSeq.insert(InsElt); 6598 CSEBlocks.insert(InsElt->getParent()); 6599 // Add to our 'need-to-extract' list. 6600 if (TreeEntry *Entry = getTreeEntry(V)) { 6601 // Find which lane we need to extract. 6602 unsigned FoundLane = Entry->findLaneForValue(V); 6603 ExternalUses.emplace_back(V, InsElt, FoundLane); 6604 } 6605 return Vec; 6606 }; 6607 Value *Val0 = 6608 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 6609 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 6610 Value *Vec = PoisonValue::get(VecTy); 6611 SmallVector<int> NonConsts; 6612 // Insert constant values at first. 6613 for (int I = 0, E = VL.size(); I < E; ++I) { 6614 if (PostponedIndices.contains(I)) 6615 continue; 6616 if (!isConstant(VL[I])) { 6617 NonConsts.push_back(I); 6618 continue; 6619 } 6620 Vec = CreateInsertElement(Vec, VL[I], I); 6621 } 6622 // Insert non-constant values. 6623 for (int I : NonConsts) 6624 Vec = CreateInsertElement(Vec, VL[I], I); 6625 // Append instructions, which are/may be part of the loop, in the end to make 6626 // it possible to hoist non-loop-based instructions. 6627 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 6628 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 6629 6630 return Vec; 6631 } 6632 6633 namespace { 6634 /// Merges shuffle masks and emits final shuffle instruction, if required. 6635 class ShuffleInstructionBuilder { 6636 IRBuilderBase &Builder; 6637 const unsigned VF = 0; 6638 bool IsFinalized = false; 6639 SmallVector<int, 4> Mask; 6640 /// Holds all of the instructions that we gathered. 6641 SetVector<Instruction *> &GatherShuffleSeq; 6642 /// A list of blocks that we are going to CSE. 6643 SetVector<BasicBlock *> &CSEBlocks; 6644 6645 public: 6646 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF, 6647 SetVector<Instruction *> &GatherShuffleSeq, 6648 SetVector<BasicBlock *> &CSEBlocks) 6649 : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq), 6650 CSEBlocks(CSEBlocks) {} 6651 6652 /// Adds a mask, inverting it before applying. 6653 void addInversedMask(ArrayRef<unsigned> SubMask) { 6654 if (SubMask.empty()) 6655 return; 6656 SmallVector<int, 4> NewMask; 6657 inversePermutation(SubMask, NewMask); 6658 addMask(NewMask); 6659 } 6660 6661 /// Functions adds masks, merging them into single one. 6662 void addMask(ArrayRef<unsigned> SubMask) { 6663 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 6664 addMask(NewMask); 6665 } 6666 6667 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 6668 6669 Value *finalize(Value *V) { 6670 IsFinalized = true; 6671 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 6672 if (VF == ValueVF && Mask.empty()) 6673 return V; 6674 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 6675 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 6676 addMask(NormalizedMask); 6677 6678 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 6679 return V; 6680 Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle"); 6681 if (auto *I = dyn_cast<Instruction>(Vec)) { 6682 GatherShuffleSeq.insert(I); 6683 CSEBlocks.insert(I->getParent()); 6684 } 6685 return Vec; 6686 } 6687 6688 ~ShuffleInstructionBuilder() { 6689 assert((IsFinalized || Mask.empty()) && 6690 "Shuffle construction must be finalized."); 6691 } 6692 }; 6693 } // namespace 6694 6695 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 6696 const unsigned VF = VL.size(); 6697 InstructionsState S = getSameOpcode(VL); 6698 if (S.getOpcode()) { 6699 if (TreeEntry *E = getTreeEntry(S.OpValue)) 6700 if (E->isSame(VL)) { 6701 Value *V = vectorizeTree(E); 6702 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 6703 if (!E->ReuseShuffleIndices.empty()) { 6704 // Reshuffle to get only unique values. 6705 // If some of the scalars are duplicated in the vectorization tree 6706 // entry, we do not vectorize them but instead generate a mask for 6707 // the reuses. But if there are several users of the same entry, 6708 // they may have different vectorization factors. This is especially 6709 // important for PHI nodes. In this case, we need to adapt the 6710 // resulting instruction for the user vectorization factor and have 6711 // to reshuffle it again to take only unique elements of the vector. 6712 // Without this code the function incorrectly returns reduced vector 6713 // instruction with the same elements, not with the unique ones. 6714 6715 // block: 6716 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 6717 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 6718 // ... (use %2) 6719 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 6720 // br %block 6721 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 6722 SmallSet<int, 4> UsedIdxs; 6723 int Pos = 0; 6724 int Sz = VL.size(); 6725 for (int Idx : E->ReuseShuffleIndices) { 6726 if (Idx != Sz && Idx != UndefMaskElem && 6727 UsedIdxs.insert(Idx).second) 6728 UniqueIdxs[Idx] = Pos; 6729 ++Pos; 6730 } 6731 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 6732 "less than original vector size."); 6733 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 6734 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 6735 } else { 6736 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 6737 "Expected vectorization factor less " 6738 "than original vector size."); 6739 SmallVector<int> UniformMask(VF, 0); 6740 std::iota(UniformMask.begin(), UniformMask.end(), 0); 6741 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 6742 } 6743 if (auto *I = dyn_cast<Instruction>(V)) { 6744 GatherShuffleSeq.insert(I); 6745 CSEBlocks.insert(I->getParent()); 6746 } 6747 } 6748 return V; 6749 } 6750 } 6751 6752 // Can't vectorize this, so simply build a new vector with each lane 6753 // corresponding to the requested value. 6754 return createBuildVector(VL); 6755 } 6756 Value *BoUpSLP::createBuildVector(ArrayRef<Value *> VL) { 6757 unsigned VF = VL.size(); 6758 // Exploit possible reuse of values across lanes. 6759 SmallVector<int> ReuseShuffleIndicies; 6760 SmallVector<Value *> UniqueValues; 6761 if (VL.size() > 2) { 6762 DenseMap<Value *, unsigned> UniquePositions; 6763 unsigned NumValues = 6764 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 6765 return !isa<UndefValue>(V); 6766 }).base()); 6767 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 6768 int UniqueVals = 0; 6769 for (Value *V : VL.drop_back(VL.size() - VF)) { 6770 if (isa<UndefValue>(V)) { 6771 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 6772 continue; 6773 } 6774 if (isConstant(V)) { 6775 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 6776 UniqueValues.emplace_back(V); 6777 continue; 6778 } 6779 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 6780 ReuseShuffleIndicies.emplace_back(Res.first->second); 6781 if (Res.second) { 6782 UniqueValues.emplace_back(V); 6783 ++UniqueVals; 6784 } 6785 } 6786 if (UniqueVals == 1 && UniqueValues.size() == 1) { 6787 // Emit pure splat vector. 6788 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 6789 UndefMaskElem); 6790 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 6791 ReuseShuffleIndicies.clear(); 6792 UniqueValues.clear(); 6793 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 6794 } 6795 UniqueValues.append(VF - UniqueValues.size(), 6796 PoisonValue::get(VL[0]->getType())); 6797 VL = UniqueValues; 6798 } 6799 6800 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6801 CSEBlocks); 6802 Value *Vec = gather(VL); 6803 if (!ReuseShuffleIndicies.empty()) { 6804 ShuffleBuilder.addMask(ReuseShuffleIndicies); 6805 Vec = ShuffleBuilder.finalize(Vec); 6806 } 6807 return Vec; 6808 } 6809 6810 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 6811 IRBuilder<>::InsertPointGuard Guard(Builder); 6812 6813 if (E->VectorizedValue) { 6814 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 6815 return E->VectorizedValue; 6816 } 6817 6818 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 6819 unsigned VF = E->getVectorFactor(); 6820 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6821 CSEBlocks); 6822 if (E->State == TreeEntry::NeedToGather) { 6823 if (E->getMainOp()) 6824 setInsertPointAfterBundle(E); 6825 Value *Vec; 6826 SmallVector<int> Mask; 6827 SmallVector<const TreeEntry *> Entries; 6828 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 6829 isGatherShuffledEntry(E, Mask, Entries); 6830 if (Shuffle.hasValue()) { 6831 assert((Entries.size() == 1 || Entries.size() == 2) && 6832 "Expected shuffle of 1 or 2 entries."); 6833 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 6834 Entries.back()->VectorizedValue, Mask); 6835 if (auto *I = dyn_cast<Instruction>(Vec)) { 6836 GatherShuffleSeq.insert(I); 6837 CSEBlocks.insert(I->getParent()); 6838 } 6839 } else { 6840 Vec = gather(E->Scalars); 6841 } 6842 if (NeedToShuffleReuses) { 6843 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6844 Vec = ShuffleBuilder.finalize(Vec); 6845 } 6846 E->VectorizedValue = Vec; 6847 return Vec; 6848 } 6849 6850 assert((E->State == TreeEntry::Vectorize || 6851 E->State == TreeEntry::ScatterVectorize) && 6852 "Unhandled state"); 6853 unsigned ShuffleOrOp = 6854 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 6855 Instruction *VL0 = E->getMainOp(); 6856 Type *ScalarTy = VL0->getType(); 6857 if (auto *Store = dyn_cast<StoreInst>(VL0)) 6858 ScalarTy = Store->getValueOperand()->getType(); 6859 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 6860 ScalarTy = IE->getOperand(1)->getType(); 6861 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 6862 switch (ShuffleOrOp) { 6863 case Instruction::PHI: { 6864 assert( 6865 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 6866 "PHI reordering is free."); 6867 auto *PH = cast<PHINode>(VL0); 6868 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 6869 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6870 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 6871 Value *V = NewPhi; 6872 6873 // Adjust insertion point once all PHI's have been generated. 6874 Builder.SetInsertPoint(&*PH->getParent()->getFirstInsertionPt()); 6875 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6876 6877 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6878 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6879 V = ShuffleBuilder.finalize(V); 6880 6881 E->VectorizedValue = V; 6882 6883 // PHINodes may have multiple entries from the same block. We want to 6884 // visit every block once. 6885 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 6886 6887 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 6888 ValueList Operands; 6889 BasicBlock *IBB = PH->getIncomingBlock(i); 6890 6891 if (!VisitedBBs.insert(IBB).second) { 6892 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 6893 continue; 6894 } 6895 6896 Builder.SetInsertPoint(IBB->getTerminator()); 6897 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6898 Value *Vec = vectorizeTree(E->getOperand(i)); 6899 NewPhi->addIncoming(Vec, IBB); 6900 } 6901 6902 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 6903 "Invalid number of incoming values"); 6904 return V; 6905 } 6906 6907 case Instruction::ExtractElement: { 6908 Value *V = E->getSingleOperand(0); 6909 Builder.SetInsertPoint(VL0); 6910 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6911 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6912 V = ShuffleBuilder.finalize(V); 6913 E->VectorizedValue = V; 6914 return V; 6915 } 6916 case Instruction::ExtractValue: { 6917 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 6918 Builder.SetInsertPoint(LI); 6919 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 6920 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 6921 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 6922 if (MSSA) { 6923 MemorySSAUpdater MSSAU(MSSA); 6924 auto *Access = MSSA->getMemoryAccess(LI); 6925 assert(Access); 6926 MemoryUseOrDef *NewAccess = 6927 MSSAU.createMemoryAccessBefore(V, Access->getDefiningAccess(), 6928 Access); 6929 MSSAU.insertUse(cast<MemoryUse>(NewAccess), true); 6930 } 6931 Value *NewV = propagateMetadata(V, E->Scalars); 6932 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6933 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6934 NewV = ShuffleBuilder.finalize(NewV); 6935 E->VectorizedValue = NewV; 6936 return NewV; 6937 } 6938 case Instruction::InsertElement: { 6939 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 6940 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 6941 Value *V = vectorizeTree(E->getOperand(1)); 6942 6943 // Create InsertVector shuffle if necessary 6944 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 6945 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 6946 })); 6947 const unsigned NumElts = 6948 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 6949 const unsigned NumScalars = E->Scalars.size(); 6950 6951 unsigned Offset = *getInsertIndex(VL0); 6952 assert(Offset < NumElts && "Failed to find vector index offset"); 6953 6954 // Create shuffle to resize vector 6955 SmallVector<int> Mask; 6956 if (!E->ReorderIndices.empty()) { 6957 inversePermutation(E->ReorderIndices, Mask); 6958 Mask.append(NumElts - NumScalars, UndefMaskElem); 6959 } else { 6960 Mask.assign(NumElts, UndefMaskElem); 6961 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 6962 } 6963 // Create InsertVector shuffle if necessary 6964 bool IsIdentity = true; 6965 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 6966 Mask.swap(PrevMask); 6967 for (unsigned I = 0; I < NumScalars; ++I) { 6968 Value *Scalar = E->Scalars[PrevMask[I]]; 6969 unsigned InsertIdx = *getInsertIndex(Scalar); 6970 IsIdentity &= InsertIdx - Offset == I; 6971 Mask[InsertIdx - Offset] = I; 6972 } 6973 if (!IsIdentity || NumElts != NumScalars) { 6974 V = Builder.CreateShuffleVector(V, Mask); 6975 if (auto *I = dyn_cast<Instruction>(V)) { 6976 GatherShuffleSeq.insert(I); 6977 CSEBlocks.insert(I->getParent()); 6978 } 6979 } 6980 6981 if ((!IsIdentity || Offset != 0 || 6982 !isUndefVector(FirstInsert->getOperand(0))) && 6983 NumElts != NumScalars) { 6984 SmallVector<int> InsertMask(NumElts); 6985 std::iota(InsertMask.begin(), InsertMask.end(), 0); 6986 for (unsigned I = 0; I < NumElts; I++) { 6987 if (Mask[I] != UndefMaskElem) 6988 InsertMask[Offset + I] = NumElts + I; 6989 } 6990 6991 V = Builder.CreateShuffleVector( 6992 FirstInsert->getOperand(0), V, InsertMask, 6993 cast<Instruction>(E->Scalars.back())->getName()); 6994 if (auto *I = dyn_cast<Instruction>(V)) { 6995 GatherShuffleSeq.insert(I); 6996 CSEBlocks.insert(I->getParent()); 6997 } 6998 } 6999 7000 ++NumVectorInstructions; 7001 E->VectorizedValue = V; 7002 return V; 7003 } 7004 case Instruction::ZExt: 7005 case Instruction::SExt: 7006 case Instruction::FPToUI: 7007 case Instruction::FPToSI: 7008 case Instruction::FPExt: 7009 case Instruction::PtrToInt: 7010 case Instruction::IntToPtr: 7011 case Instruction::SIToFP: 7012 case Instruction::UIToFP: 7013 case Instruction::Trunc: 7014 case Instruction::FPTrunc: 7015 case Instruction::BitCast: { 7016 setInsertPointAfterBundle(E); 7017 7018 Value *InVec = vectorizeTree(E->getOperand(0)); 7019 7020 if (E->VectorizedValue) { 7021 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7022 return E->VectorizedValue; 7023 } 7024 7025 auto *CI = cast<CastInst>(VL0); 7026 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 7027 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7028 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7029 V = ShuffleBuilder.finalize(V); 7030 7031 E->VectorizedValue = V; 7032 ++NumVectorInstructions; 7033 return V; 7034 } 7035 case Instruction::FCmp: 7036 case Instruction::ICmp: { 7037 setInsertPointAfterBundle(E); 7038 7039 Value *L = vectorizeTree(E->getOperand(0)); 7040 Value *R = vectorizeTree(E->getOperand(1)); 7041 7042 if (E->VectorizedValue) { 7043 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7044 return E->VectorizedValue; 7045 } 7046 7047 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 7048 Value *V = Builder.CreateCmp(P0, L, R); 7049 propagateIRFlags(V, E->Scalars, VL0); 7050 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7051 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7052 V = ShuffleBuilder.finalize(V); 7053 7054 E->VectorizedValue = V; 7055 ++NumVectorInstructions; 7056 return V; 7057 } 7058 case Instruction::Select: { 7059 setInsertPointAfterBundle(E); 7060 7061 Value *Cond = vectorizeTree(E->getOperand(0)); 7062 Value *True = vectorizeTree(E->getOperand(1)); 7063 Value *False = vectorizeTree(E->getOperand(2)); 7064 7065 if (E->VectorizedValue) { 7066 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7067 return E->VectorizedValue; 7068 } 7069 7070 Value *V = Builder.CreateSelect(Cond, True, False); 7071 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7072 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7073 V = ShuffleBuilder.finalize(V); 7074 7075 E->VectorizedValue = V; 7076 ++NumVectorInstructions; 7077 return V; 7078 } 7079 case Instruction::FNeg: { 7080 setInsertPointAfterBundle(E); 7081 7082 Value *Op = vectorizeTree(E->getOperand(0)); 7083 7084 if (E->VectorizedValue) { 7085 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7086 return E->VectorizedValue; 7087 } 7088 7089 Value *V = Builder.CreateUnOp( 7090 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 7091 propagateIRFlags(V, E->Scalars, VL0); 7092 if (auto *I = dyn_cast<Instruction>(V)) 7093 V = propagateMetadata(I, E->Scalars); 7094 7095 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7096 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7097 V = ShuffleBuilder.finalize(V); 7098 7099 E->VectorizedValue = V; 7100 ++NumVectorInstructions; 7101 7102 return V; 7103 } 7104 case Instruction::Add: 7105 case Instruction::FAdd: 7106 case Instruction::Sub: 7107 case Instruction::FSub: 7108 case Instruction::Mul: 7109 case Instruction::FMul: 7110 case Instruction::UDiv: 7111 case Instruction::SDiv: 7112 case Instruction::FDiv: 7113 case Instruction::URem: 7114 case Instruction::SRem: 7115 case Instruction::FRem: 7116 case Instruction::Shl: 7117 case Instruction::LShr: 7118 case Instruction::AShr: 7119 case Instruction::And: 7120 case Instruction::Or: 7121 case Instruction::Xor: { 7122 setInsertPointAfterBundle(E); 7123 7124 Value *LHS = vectorizeTree(E->getOperand(0)); 7125 Value *RHS = vectorizeTree(E->getOperand(1)); 7126 7127 if (E->VectorizedValue) { 7128 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7129 return E->VectorizedValue; 7130 } 7131 7132 Value *V = Builder.CreateBinOp( 7133 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 7134 RHS); 7135 propagateIRFlags(V, E->Scalars, VL0); 7136 if (auto *I = dyn_cast<Instruction>(V)) 7137 V = propagateMetadata(I, E->Scalars); 7138 7139 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7140 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7141 V = ShuffleBuilder.finalize(V); 7142 7143 E->VectorizedValue = V; 7144 ++NumVectorInstructions; 7145 7146 return V; 7147 } 7148 case Instruction::Load: { 7149 // Loads are inserted at the head of the tree because we don't want to 7150 // sink them all the way down past store instructions. 7151 setInsertPointAfterBundle(E); 7152 7153 LoadInst *LI = cast<LoadInst>(VL0); 7154 Instruction *NewLI; 7155 unsigned AS = LI->getPointerAddressSpace(); 7156 Value *PO = LI->getPointerOperand(); 7157 if (E->State == TreeEntry::Vectorize) { 7158 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 7159 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 7160 7161 // The pointer operand uses an in-tree scalar so we add the new BitCast 7162 // or LoadInst to ExternalUses list to make sure that an extract will 7163 // be generated in the future. 7164 if (TreeEntry *Entry = getTreeEntry(PO)) { 7165 // Find which lane we need to extract. 7166 unsigned FoundLane = Entry->findLaneForValue(PO); 7167 ExternalUses.emplace_back( 7168 PO, PO != VecPtr ? cast<User>(VecPtr) : NewLI, FoundLane); 7169 } 7170 } else { 7171 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 7172 Value *VecPtr = vectorizeTree(E->getOperand(0)); 7173 // Use the minimum alignment of the gathered loads. 7174 Align CommonAlignment = LI->getAlign(); 7175 for (Value *V : E->Scalars) 7176 CommonAlignment = 7177 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 7178 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 7179 } 7180 7181 if (MSSA) { 7182 MemorySSAUpdater MSSAU(MSSA); 7183 auto *Access = MSSA->getMemoryAccess(LI); 7184 assert(Access); 7185 MemoryUseOrDef *NewAccess = 7186 MSSAU.createMemoryAccessAfter(NewLI, Access->getDefiningAccess(), 7187 Access); 7188 MSSAU.insertUse(cast<MemoryUse>(NewAccess), true); 7189 } 7190 7191 Value *V = propagateMetadata(NewLI, E->Scalars); 7192 7193 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7194 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7195 V = ShuffleBuilder.finalize(V); 7196 E->VectorizedValue = V; 7197 ++NumVectorInstructions; 7198 return V; 7199 } 7200 case Instruction::Store: { 7201 auto *SI = cast<StoreInst>(VL0); 7202 unsigned AS = SI->getPointerAddressSpace(); 7203 7204 setInsertPointAfterBundle(E); 7205 7206 Value *VecValue = vectorizeTree(E->getOperand(0)); 7207 ShuffleBuilder.addMask(E->ReorderIndices); 7208 VecValue = ShuffleBuilder.finalize(VecValue); 7209 7210 Value *ScalarPtr = SI->getPointerOperand(); 7211 Value *VecPtr = Builder.CreateBitCast( 7212 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 7213 StoreInst *ST = 7214 Builder.CreateAlignedStore(VecValue, VecPtr, SI->getAlign()); 7215 7216 if (MSSA) { 7217 MemorySSAUpdater MSSAU(MSSA); 7218 auto *Access = MSSA->getMemoryAccess(SI); 7219 assert(Access); 7220 MemoryUseOrDef *NewAccess = 7221 MSSAU.createMemoryAccessAfter(ST, Access->getDefiningAccess(), 7222 Access); 7223 MSSAU.insertDef(cast<MemoryDef>(NewAccess), true); 7224 } 7225 7226 // The pointer operand uses an in-tree scalar, so add the new BitCast or 7227 // StoreInst to ExternalUses to make sure that an extract will be 7228 // generated in the future. 7229 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 7230 // Find which lane we need to extract. 7231 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 7232 ExternalUses.push_back(ExternalUser( 7233 ScalarPtr, ScalarPtr != VecPtr ? cast<User>(VecPtr) : ST, 7234 FoundLane)); 7235 } 7236 7237 Value *V = propagateMetadata(ST, E->Scalars); 7238 7239 E->VectorizedValue = V; 7240 ++NumVectorInstructions; 7241 return V; 7242 } 7243 case Instruction::GetElementPtr: { 7244 auto *GEP0 = cast<GetElementPtrInst>(VL0); 7245 setInsertPointAfterBundle(E); 7246 7247 Value *Op0 = vectorizeTree(E->getOperand(0)); 7248 7249 SmallVector<Value *> OpVecs; 7250 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 7251 Value *OpVec = vectorizeTree(E->getOperand(J)); 7252 OpVecs.push_back(OpVec); 7253 } 7254 7255 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 7256 if (Instruction *I = dyn_cast<Instruction>(V)) 7257 V = propagateMetadata(I, E->Scalars); 7258 7259 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7260 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7261 V = ShuffleBuilder.finalize(V); 7262 7263 E->VectorizedValue = V; 7264 ++NumVectorInstructions; 7265 7266 return V; 7267 } 7268 case Instruction::Call: { 7269 CallInst *CI = cast<CallInst>(VL0); 7270 setInsertPointAfterBundle(E); 7271 7272 Intrinsic::ID IID = Intrinsic::not_intrinsic; 7273 if (Function *FI = CI->getCalledFunction()) 7274 IID = FI->getIntrinsicID(); 7275 7276 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7277 7278 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 7279 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 7280 VecCallCosts.first <= VecCallCosts.second; 7281 7282 Value *ScalarArg = nullptr; 7283 std::vector<Value *> OpVecs; 7284 SmallVector<Type *, 2> TysForDecl = 7285 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 7286 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 7287 ValueList OpVL; 7288 // Some intrinsics have scalar arguments. This argument should not be 7289 // vectorized. 7290 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 7291 CallInst *CEI = cast<CallInst>(VL0); 7292 ScalarArg = CEI->getArgOperand(j); 7293 OpVecs.push_back(CEI->getArgOperand(j)); 7294 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j)) 7295 TysForDecl.push_back(ScalarArg->getType()); 7296 continue; 7297 } 7298 7299 Value *OpVec = vectorizeTree(E->getOperand(j)); 7300 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 7301 OpVecs.push_back(OpVec); 7302 } 7303 7304 Function *CF; 7305 if (!UseIntrinsic) { 7306 VFShape Shape = 7307 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 7308 VecTy->getNumElements())), 7309 false /*HasGlobalPred*/); 7310 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 7311 } else { 7312 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 7313 } 7314 7315 SmallVector<OperandBundleDef, 1> OpBundles; 7316 CI->getOperandBundlesAsDefs(OpBundles); 7317 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 7318 7319 // The scalar argument uses an in-tree scalar so we add the new vectorized 7320 // call to ExternalUses list to make sure that an extract will be 7321 // generated in the future. 7322 if (ScalarArg) { 7323 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 7324 // Find which lane we need to extract. 7325 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 7326 ExternalUses.push_back( 7327 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 7328 } 7329 } 7330 7331 propagateIRFlags(V, E->Scalars, VL0); 7332 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7333 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7334 V = ShuffleBuilder.finalize(V); 7335 7336 E->VectorizedValue = V; 7337 ++NumVectorInstructions; 7338 return V; 7339 } 7340 case Instruction::ShuffleVector: { 7341 assert(E->isAltShuffle() && 7342 ((Instruction::isBinaryOp(E->getOpcode()) && 7343 Instruction::isBinaryOp(E->getAltOpcode())) || 7344 (Instruction::isCast(E->getOpcode()) && 7345 Instruction::isCast(E->getAltOpcode())) || 7346 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 7347 "Invalid Shuffle Vector Operand"); 7348 7349 Value *LHS = nullptr, *RHS = nullptr; 7350 if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) { 7351 setInsertPointAfterBundle(E); 7352 LHS = vectorizeTree(E->getOperand(0)); 7353 RHS = vectorizeTree(E->getOperand(1)); 7354 } else { 7355 setInsertPointAfterBundle(E); 7356 LHS = vectorizeTree(E->getOperand(0)); 7357 } 7358 7359 if (E->VectorizedValue) { 7360 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7361 return E->VectorizedValue; 7362 } 7363 7364 Value *V0, *V1; 7365 if (Instruction::isBinaryOp(E->getOpcode())) { 7366 V0 = Builder.CreateBinOp( 7367 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 7368 V1 = Builder.CreateBinOp( 7369 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 7370 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 7371 V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS); 7372 auto *AltCI = cast<CmpInst>(E->getAltOp()); 7373 CmpInst::Predicate AltPred = AltCI->getPredicate(); 7374 V1 = Builder.CreateCmp(AltPred, LHS, RHS); 7375 } else { 7376 V0 = Builder.CreateCast( 7377 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 7378 V1 = Builder.CreateCast( 7379 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 7380 } 7381 // Add V0 and V1 to later analysis to try to find and remove matching 7382 // instruction, if any. 7383 for (Value *V : {V0, V1}) { 7384 if (auto *I = dyn_cast<Instruction>(V)) { 7385 GatherShuffleSeq.insert(I); 7386 CSEBlocks.insert(I->getParent()); 7387 } 7388 } 7389 7390 // Create shuffle to take alternate operations from the vector. 7391 // Also, gather up main and alt scalar ops to propagate IR flags to 7392 // each vector operation. 7393 ValueList OpScalars, AltScalars; 7394 SmallVector<int> Mask; 7395 buildShuffleEntryMask( 7396 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 7397 [E](Instruction *I) { 7398 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 7399 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 7400 }, 7401 Mask, &OpScalars, &AltScalars); 7402 7403 propagateIRFlags(V0, OpScalars); 7404 propagateIRFlags(V1, AltScalars); 7405 7406 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 7407 if (auto *I = dyn_cast<Instruction>(V)) { 7408 V = propagateMetadata(I, E->Scalars); 7409 GatherShuffleSeq.insert(I); 7410 CSEBlocks.insert(I->getParent()); 7411 } 7412 V = ShuffleBuilder.finalize(V); 7413 7414 E->VectorizedValue = V; 7415 ++NumVectorInstructions; 7416 7417 return V; 7418 } 7419 default: 7420 llvm_unreachable("unknown inst"); 7421 } 7422 return nullptr; 7423 } 7424 7425 Value *BoUpSLP::vectorizeTree() { 7426 ExtraValueToDebugLocsMap ExternallyUsedValues; 7427 return vectorizeTree(ExternallyUsedValues); 7428 } 7429 7430 Value * 7431 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 7432 // All blocks must be scheduled before any instructions are inserted. 7433 for (auto &BSIter : BlocksSchedules) { 7434 scheduleBlock(BSIter.second.get()); 7435 } 7436 7437 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7438 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 7439 7440 // If the vectorized tree can be rewritten in a smaller type, we truncate the 7441 // vectorized root. InstCombine will then rewrite the entire expression. We 7442 // sign extend the extracted values below. 7443 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 7444 if (MinBWs.count(ScalarRoot)) { 7445 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 7446 // If current instr is a phi and not the last phi, insert it after the 7447 // last phi node. 7448 if (isa<PHINode>(I)) 7449 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 7450 else 7451 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 7452 } 7453 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 7454 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 7455 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 7456 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 7457 VectorizableTree[0]->VectorizedValue = Trunc; 7458 } 7459 7460 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 7461 << " values .\n"); 7462 7463 // Extract all of the elements with the external uses. 7464 for (const auto &ExternalUse : ExternalUses) { 7465 Value *Scalar = ExternalUse.Scalar; 7466 llvm::User *User = ExternalUse.User; 7467 7468 // Skip users that we already RAUW. This happens when one instruction 7469 // has multiple uses of the same value. 7470 if (User && !is_contained(Scalar->users(), User)) 7471 continue; 7472 TreeEntry *E = getTreeEntry(Scalar); 7473 assert(E && "Invalid scalar"); 7474 assert(E->State != TreeEntry::NeedToGather && 7475 "Extracting from a gather list"); 7476 7477 Value *Vec = E->VectorizedValue; 7478 assert(Vec && "Can't find vectorizable value"); 7479 7480 Value *Lane = Builder.getInt32(ExternalUse.Lane); 7481 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 7482 if (Scalar->getType() != Vec->getType()) { 7483 Value *Ex; 7484 // "Reuse" the existing extract to improve final codegen. 7485 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 7486 Ex = Builder.CreateExtractElement(ES->getOperand(0), 7487 ES->getOperand(1)); 7488 } else { 7489 Ex = Builder.CreateExtractElement(Vec, Lane); 7490 } 7491 // If necessary, sign-extend or zero-extend ScalarRoot 7492 // to the larger type. 7493 if (!MinBWs.count(ScalarRoot)) 7494 return Ex; 7495 if (MinBWs[ScalarRoot].second) 7496 return Builder.CreateSExt(Ex, Scalar->getType()); 7497 return Builder.CreateZExt(Ex, Scalar->getType()); 7498 } 7499 assert(isa<FixedVectorType>(Scalar->getType()) && 7500 isa<InsertElementInst>(Scalar) && 7501 "In-tree scalar of vector type is not insertelement?"); 7502 return Vec; 7503 }; 7504 // If User == nullptr, the Scalar is used as extra arg. Generate 7505 // ExtractElement instruction and update the record for this scalar in 7506 // ExternallyUsedValues. 7507 if (!User) { 7508 assert(ExternallyUsedValues.count(Scalar) && 7509 "Scalar with nullptr as an external user must be registered in " 7510 "ExternallyUsedValues map"); 7511 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7512 Builder.SetInsertPoint(VecI->getParent(), 7513 std::next(VecI->getIterator())); 7514 } else { 7515 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7516 } 7517 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7518 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 7519 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 7520 auto It = ExternallyUsedValues.find(Scalar); 7521 assert(It != ExternallyUsedValues.end() && 7522 "Externally used scalar is not found in ExternallyUsedValues"); 7523 NewInstLocs.append(It->second); 7524 ExternallyUsedValues.erase(Scalar); 7525 // Required to update internally referenced instructions. 7526 Scalar->replaceAllUsesWith(NewInst); 7527 continue; 7528 } 7529 7530 // Generate extracts for out-of-tree users. 7531 // Find the insertion point for the extractelement lane. 7532 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7533 if (PHINode *PH = dyn_cast<PHINode>(User)) { 7534 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 7535 if (PH->getIncomingValue(i) == Scalar) { 7536 Instruction *IncomingTerminator = 7537 PH->getIncomingBlock(i)->getTerminator(); 7538 if (isa<CatchSwitchInst>(IncomingTerminator)) { 7539 Builder.SetInsertPoint(VecI->getParent(), 7540 std::next(VecI->getIterator())); 7541 } else { 7542 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 7543 } 7544 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7545 CSEBlocks.insert(PH->getIncomingBlock(i)); 7546 PH->setOperand(i, NewInst); 7547 } 7548 } 7549 } else { 7550 Builder.SetInsertPoint(cast<Instruction>(User)); 7551 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7552 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 7553 User->replaceUsesOfWith(Scalar, NewInst); 7554 } 7555 } else { 7556 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7557 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7558 CSEBlocks.insert(&F->getEntryBlock()); 7559 User->replaceUsesOfWith(Scalar, NewInst); 7560 } 7561 7562 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 7563 } 7564 7565 // For each vectorized value: 7566 for (auto &TEPtr : VectorizableTree) { 7567 TreeEntry *Entry = TEPtr.get(); 7568 7569 // No need to handle users of gathered values. 7570 if (Entry->State == TreeEntry::NeedToGather) 7571 continue; 7572 7573 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 7574 7575 // For each lane: 7576 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 7577 Value *Scalar = Entry->Scalars[Lane]; 7578 7579 #ifndef NDEBUG 7580 Type *Ty = Scalar->getType(); 7581 if (!Ty->isVoidTy()) { 7582 for (User *U : Scalar->users()) { 7583 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 7584 7585 // It is legal to delete users in the ignorelist. 7586 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 7587 (isa_and_nonnull<Instruction>(U) && 7588 isDeleted(cast<Instruction>(U)))) && 7589 "Deleting out-of-tree value"); 7590 } 7591 } 7592 #endif 7593 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 7594 eraseInstruction(cast<Instruction>(Scalar)); 7595 } 7596 } 7597 7598 Builder.ClearInsertionPoint(); 7599 InstrElementSize.clear(); 7600 7601 return VectorizableTree[0]->VectorizedValue; 7602 } 7603 7604 void BoUpSLP::optimizeGatherSequence() { 7605 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size() 7606 << " gather sequences instructions.\n"); 7607 // LICM InsertElementInst sequences. 7608 for (Instruction *I : GatherShuffleSeq) { 7609 if (isDeleted(I)) 7610 continue; 7611 7612 // Check if this block is inside a loop. 7613 Loop *L = LI->getLoopFor(I->getParent()); 7614 if (!L) 7615 continue; 7616 7617 // Check if it has a preheader. 7618 BasicBlock *PreHeader = L->getLoopPreheader(); 7619 if (!PreHeader) 7620 continue; 7621 7622 // If the vector or the element that we insert into it are 7623 // instructions that are defined in this basic block then we can't 7624 // hoist this instruction. 7625 if (any_of(I->operands(), [L](Value *V) { 7626 auto *OpI = dyn_cast<Instruction>(V); 7627 return OpI && L->contains(OpI); 7628 })) 7629 continue; 7630 7631 // We can hoist this instruction. Move it to the pre-header. 7632 I->moveBefore(PreHeader->getTerminator()); 7633 } 7634 7635 // Make a list of all reachable blocks in our CSE queue. 7636 SmallVector<const DomTreeNode *, 8> CSEWorkList; 7637 CSEWorkList.reserve(CSEBlocks.size()); 7638 for (BasicBlock *BB : CSEBlocks) 7639 if (DomTreeNode *N = DT->getNode(BB)) { 7640 assert(DT->isReachableFromEntry(N)); 7641 CSEWorkList.push_back(N); 7642 } 7643 7644 // Sort blocks by domination. This ensures we visit a block after all blocks 7645 // dominating it are visited. 7646 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 7647 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 7648 "Different nodes should have different DFS numbers"); 7649 return A->getDFSNumIn() < B->getDFSNumIn(); 7650 }); 7651 7652 // Less defined shuffles can be replaced by the more defined copies. 7653 // Between two shuffles one is less defined if it has the same vector operands 7654 // and its mask indeces are the same as in the first one or undefs. E.g. 7655 // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0, 7656 // poison, <0, 0, 0, 0>. 7657 auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2, 7658 SmallVectorImpl<int> &NewMask) { 7659 if (I1->getType() != I2->getType()) 7660 return false; 7661 auto *SI1 = dyn_cast<ShuffleVectorInst>(I1); 7662 auto *SI2 = dyn_cast<ShuffleVectorInst>(I2); 7663 if (!SI1 || !SI2) 7664 return I1->isIdenticalTo(I2); 7665 if (SI1->isIdenticalTo(SI2)) 7666 return true; 7667 for (int I = 0, E = SI1->getNumOperands(); I < E; ++I) 7668 if (SI1->getOperand(I) != SI2->getOperand(I)) 7669 return false; 7670 // Check if the second instruction is more defined than the first one. 7671 NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end()); 7672 ArrayRef<int> SM1 = SI1->getShuffleMask(); 7673 // Count trailing undefs in the mask to check the final number of used 7674 // registers. 7675 unsigned LastUndefsCnt = 0; 7676 for (int I = 0, E = NewMask.size(); I < E; ++I) { 7677 if (SM1[I] == UndefMaskElem) 7678 ++LastUndefsCnt; 7679 else 7680 LastUndefsCnt = 0; 7681 if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem && 7682 NewMask[I] != SM1[I]) 7683 return false; 7684 if (NewMask[I] == UndefMaskElem) 7685 NewMask[I] = SM1[I]; 7686 } 7687 // Check if the last undefs actually change the final number of used vector 7688 // registers. 7689 return SM1.size() - LastUndefsCnt > 1 && 7690 TTI->getNumberOfParts(SI1->getType()) == 7691 TTI->getNumberOfParts( 7692 FixedVectorType::get(SI1->getType()->getElementType(), 7693 SM1.size() - LastUndefsCnt)); 7694 }; 7695 // Perform O(N^2) search over the gather/shuffle sequences and merge identical 7696 // instructions. TODO: We can further optimize this scan if we split the 7697 // instructions into different buckets based on the insert lane. 7698 SmallVector<Instruction *, 16> Visited; 7699 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 7700 assert(*I && 7701 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 7702 "Worklist not sorted properly!"); 7703 BasicBlock *BB = (*I)->getBlock(); 7704 // For all instructions in blocks containing gather sequences: 7705 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 7706 if (isDeleted(&In)) 7707 continue; 7708 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 7709 !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In)) 7710 continue; 7711 7712 // Check if we can replace this instruction with any of the 7713 // visited instructions. 7714 bool Replaced = false; 7715 for (Instruction *&V : Visited) { 7716 SmallVector<int> NewMask; 7717 if (IsIdenticalOrLessDefined(&In, V, NewMask) && 7718 DT->dominates(V->getParent(), In.getParent())) { 7719 In.replaceAllUsesWith(V); 7720 eraseInstruction(&In); 7721 if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) 7722 if (!NewMask.empty()) 7723 SI->setShuffleMask(NewMask); 7724 Replaced = true; 7725 break; 7726 } 7727 if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) && 7728 GatherShuffleSeq.contains(V) && 7729 IsIdenticalOrLessDefined(V, &In, NewMask) && 7730 DT->dominates(In.getParent(), V->getParent())) { 7731 In.moveAfter(V); 7732 V->replaceAllUsesWith(&In); 7733 eraseInstruction(V); 7734 if (auto *SI = dyn_cast<ShuffleVectorInst>(&In)) 7735 if (!NewMask.empty()) 7736 SI->setShuffleMask(NewMask); 7737 V = &In; 7738 Replaced = true; 7739 break; 7740 } 7741 } 7742 if (!Replaced) { 7743 assert(!is_contained(Visited, &In)); 7744 Visited.push_back(&In); 7745 } 7746 } 7747 } 7748 CSEBlocks.clear(); 7749 GatherShuffleSeq.clear(); 7750 } 7751 7752 BoUpSLP::ScheduleData * 7753 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) { 7754 ScheduleData *Bundle = nullptr; 7755 ScheduleData *PrevInBundle = nullptr; 7756 for (Value *V : VL) { 7757 if (doesNotNeedToBeScheduled(V)) 7758 continue; 7759 ScheduleData *BundleMember = getScheduleData(V); 7760 assert(BundleMember && 7761 "no ScheduleData for bundle member " 7762 "(maybe not in same basic block)"); 7763 assert(BundleMember->isSchedulingEntity() && 7764 "bundle member already part of other bundle"); 7765 if (PrevInBundle) { 7766 PrevInBundle->NextInBundle = BundleMember; 7767 } else { 7768 Bundle = BundleMember; 7769 } 7770 7771 // Group the instructions to a bundle. 7772 BundleMember->FirstInBundle = Bundle; 7773 PrevInBundle = BundleMember; 7774 } 7775 assert(Bundle && "Failed to find schedule bundle"); 7776 return Bundle; 7777 } 7778 7779 // Groups the instructions to a bundle (which is then a single scheduling entity) 7780 // and schedules instructions until the bundle gets ready. 7781 Optional<BoUpSLP::ScheduleData *> 7782 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 7783 const InstructionsState &S) { 7784 // No need to schedule PHIs, insertelement, extractelement and extractvalue 7785 // instructions. 7786 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue) || 7787 doesNotNeedToSchedule(VL)) 7788 return nullptr; 7789 7790 // Initialize the instruction bundle. 7791 Instruction *OldScheduleEnd = ScheduleEnd; 7792 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 7793 7794 auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule, 7795 ScheduleData *Bundle) { 7796 // The scheduling region got new instructions at the lower end (or it is a 7797 // new region for the first bundle). This makes it necessary to 7798 // recalculate all dependencies. 7799 // It is seldom that this needs to be done a second time after adding the 7800 // initial bundle to the region. 7801 if (ScheduleEnd != OldScheduleEnd) { 7802 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 7803 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 7804 ReSchedule = true; 7805 } 7806 if (Bundle) { 7807 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 7808 << " in block " << BB->getName() << "\n"); 7809 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 7810 } 7811 7812 if (ReSchedule) { 7813 resetSchedule(); 7814 initialFillReadyList(ReadyInsts); 7815 } 7816 7817 // Now try to schedule the new bundle or (if no bundle) just calculate 7818 // dependencies. As soon as the bundle is "ready" it means that there are no 7819 // cyclic dependencies and we can schedule it. Note that's important that we 7820 // don't "schedule" the bundle yet (see cancelScheduling). 7821 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 7822 !ReadyInsts.empty()) { 7823 ScheduleData *Picked = ReadyInsts.pop_back_val(); 7824 assert(Picked->isSchedulingEntity() && Picked->isReady() && 7825 "must be ready to schedule"); 7826 schedule(Picked, ReadyInsts); 7827 } 7828 }; 7829 7830 // Make sure that the scheduling region contains all 7831 // instructions of the bundle. 7832 for (Value *V : VL) { 7833 if (doesNotNeedToBeScheduled(V)) 7834 continue; 7835 if (!extendSchedulingRegion(V, S)) { 7836 // If the scheduling region got new instructions at the lower end (or it 7837 // is a new region for the first bundle). This makes it necessary to 7838 // recalculate all dependencies. 7839 // Otherwise the compiler may crash trying to incorrectly calculate 7840 // dependencies and emit instruction in the wrong order at the actual 7841 // scheduling. 7842 TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr); 7843 return None; 7844 } 7845 } 7846 7847 bool ReSchedule = false; 7848 for (Value *V : VL) { 7849 if (doesNotNeedToBeScheduled(V)) 7850 continue; 7851 ScheduleData *BundleMember = getScheduleData(V); 7852 assert(BundleMember && 7853 "no ScheduleData for bundle member (maybe not in same basic block)"); 7854 7855 // Make sure we don't leave the pieces of the bundle in the ready list when 7856 // whole bundle might not be ready. 7857 ReadyInsts.remove(BundleMember); 7858 7859 if (!BundleMember->IsScheduled) 7860 continue; 7861 // A bundle member was scheduled as single instruction before and now 7862 // needs to be scheduled as part of the bundle. We just get rid of the 7863 // existing schedule. 7864 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 7865 << " was already scheduled\n"); 7866 ReSchedule = true; 7867 } 7868 7869 auto *Bundle = buildBundle(VL); 7870 TryScheduleBundleImpl(ReSchedule, Bundle); 7871 if (!Bundle->isReady()) { 7872 cancelScheduling(VL, S.OpValue); 7873 return None; 7874 } 7875 return Bundle; 7876 } 7877 7878 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 7879 Value *OpValue) { 7880 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue) || 7881 doesNotNeedToSchedule(VL)) 7882 return; 7883 7884 if (doesNotNeedToBeScheduled(OpValue)) 7885 OpValue = *find_if_not(VL, doesNotNeedToBeScheduled); 7886 ScheduleData *Bundle = getScheduleData(OpValue); 7887 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 7888 assert(!Bundle->IsScheduled && 7889 "Can't cancel bundle which is already scheduled"); 7890 assert(Bundle->isSchedulingEntity() && 7891 (Bundle->isPartOfBundle() || needToScheduleSingleInstruction(VL)) && 7892 "tried to unbundle something which is not a bundle"); 7893 7894 // Remove the bundle from the ready list. 7895 if (Bundle->isReady()) 7896 ReadyInsts.remove(Bundle); 7897 7898 // Un-bundle: make single instructions out of the bundle. 7899 ScheduleData *BundleMember = Bundle; 7900 while (BundleMember) { 7901 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 7902 BundleMember->FirstInBundle = BundleMember; 7903 ScheduleData *Next = BundleMember->NextInBundle; 7904 BundleMember->NextInBundle = nullptr; 7905 BundleMember->TE = nullptr; 7906 if (BundleMember->unscheduledDepsInBundle() == 0) { 7907 ReadyInsts.insert(BundleMember); 7908 } 7909 BundleMember = Next; 7910 } 7911 } 7912 7913 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 7914 // Allocate a new ScheduleData for the instruction. 7915 if (ChunkPos >= ChunkSize) { 7916 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 7917 ChunkPos = 0; 7918 } 7919 return &(ScheduleDataChunks.back()[ChunkPos++]); 7920 } 7921 7922 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 7923 const InstructionsState &S) { 7924 if (getScheduleData(V, isOneOf(S, V))) 7925 return true; 7926 Instruction *I = dyn_cast<Instruction>(V); 7927 assert(I && "bundle member must be an instruction"); 7928 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 7929 !doesNotNeedToBeScheduled(I) && 7930 "phi nodes/insertelements/extractelements/extractvalues don't need to " 7931 "be scheduled"); 7932 auto &&CheckScheduleForI = [this, &S](Instruction *I) -> bool { 7933 ScheduleData *ISD = getScheduleData(I); 7934 if (!ISD) 7935 return false; 7936 assert(isInSchedulingRegion(ISD) && 7937 "ScheduleData not in scheduling region"); 7938 ScheduleData *SD = allocateScheduleDataChunks(); 7939 SD->Inst = I; 7940 SD->init(SchedulingRegionID, S.OpValue); 7941 ExtraScheduleDataMap[I][S.OpValue] = SD; 7942 return true; 7943 }; 7944 if (CheckScheduleForI(I)) 7945 return true; 7946 if (!ScheduleStart) { 7947 // It's the first instruction in the new region. 7948 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 7949 ScheduleStart = I; 7950 ScheduleEnd = I->getNextNode(); 7951 if (isOneOf(S, I) != I) 7952 CheckScheduleForI(I); 7953 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7954 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 7955 return true; 7956 } 7957 // Search up and down at the same time, because we don't know if the new 7958 // instruction is above or below the existing scheduling region. 7959 BasicBlock::reverse_iterator UpIter = 7960 ++ScheduleStart->getIterator().getReverse(); 7961 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 7962 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 7963 BasicBlock::iterator LowerEnd = BB->end(); 7964 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 7965 &*DownIter != I) { 7966 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 7967 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 7968 return false; 7969 } 7970 7971 ++UpIter; 7972 ++DownIter; 7973 } 7974 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 7975 assert(I->getParent() == ScheduleStart->getParent() && 7976 "Instruction is in wrong basic block."); 7977 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 7978 ScheduleStart = I; 7979 if (isOneOf(S, I) != I) 7980 CheckScheduleForI(I); 7981 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 7982 << "\n"); 7983 return true; 7984 } 7985 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 7986 "Expected to reach top of the basic block or instruction down the " 7987 "lower end."); 7988 assert(I->getParent() == ScheduleEnd->getParent() && 7989 "Instruction is in wrong basic block."); 7990 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 7991 nullptr); 7992 ScheduleEnd = I->getNextNode(); 7993 if (isOneOf(S, I) != I) 7994 CheckScheduleForI(I); 7995 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7996 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 7997 return true; 7998 } 7999 8000 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 8001 Instruction *ToI, 8002 ScheduleData *PrevLoadStore, 8003 ScheduleData *NextLoadStore) { 8004 ScheduleData *CurrentLoadStore = PrevLoadStore; 8005 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 8006 // No need to allocate data for non-schedulable instructions. 8007 if (doesNotNeedToBeScheduled(I)) 8008 continue; 8009 ScheduleData *SD = ScheduleDataMap.lookup(I); 8010 if (!SD) { 8011 SD = allocateScheduleDataChunks(); 8012 ScheduleDataMap[I] = SD; 8013 SD->Inst = I; 8014 } 8015 assert(!isInSchedulingRegion(SD) && 8016 "new ScheduleData already in scheduling region"); 8017 SD->init(SchedulingRegionID, I); 8018 8019 if (I->mayReadOrWriteMemory() && 8020 (!isa<IntrinsicInst>(I) || 8021 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 8022 cast<IntrinsicInst>(I)->getIntrinsicID() != 8023 Intrinsic::pseudoprobe))) { 8024 // Update the linked list of memory accessing instructions. 8025 if (CurrentLoadStore) { 8026 CurrentLoadStore->NextLoadStore = SD; 8027 } else { 8028 FirstLoadStoreInRegion = SD; 8029 } 8030 CurrentLoadStore = SD; 8031 } 8032 } 8033 if (NextLoadStore) { 8034 if (CurrentLoadStore) 8035 CurrentLoadStore->NextLoadStore = NextLoadStore; 8036 } else { 8037 LastLoadStoreInRegion = CurrentLoadStore; 8038 } 8039 } 8040 8041 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 8042 bool InsertInReadyList, 8043 BoUpSLP *SLP) { 8044 assert(SD->isSchedulingEntity()); 8045 8046 SmallVector<ScheduleData *, 10> WorkList; 8047 WorkList.push_back(SD); 8048 8049 while (!WorkList.empty()) { 8050 ScheduleData *SD = WorkList.pop_back_val(); 8051 for (ScheduleData *BundleMember = SD; BundleMember; 8052 BundleMember = BundleMember->NextInBundle) { 8053 assert(isInSchedulingRegion(BundleMember)); 8054 if (BundleMember->hasValidDependencies()) 8055 continue; 8056 8057 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 8058 << "\n"); 8059 BundleMember->Dependencies = 0; 8060 BundleMember->resetUnscheduledDeps(); 8061 8062 // Handle def-use chain dependencies. 8063 if (BundleMember->OpValue != BundleMember->Inst) { 8064 if (ScheduleData *UseSD = getScheduleData(BundleMember->Inst)) { 8065 BundleMember->Dependencies++; 8066 ScheduleData *DestBundle = UseSD->FirstInBundle; 8067 if (!DestBundle->IsScheduled) 8068 BundleMember->incrementUnscheduledDeps(1); 8069 if (!DestBundle->hasValidDependencies()) 8070 WorkList.push_back(DestBundle); 8071 } 8072 } else { 8073 for (User *U : BundleMember->Inst->users()) { 8074 if (ScheduleData *UseSD = getScheduleData(cast<Instruction>(U))) { 8075 BundleMember->Dependencies++; 8076 ScheduleData *DestBundle = UseSD->FirstInBundle; 8077 if (!DestBundle->IsScheduled) 8078 BundleMember->incrementUnscheduledDeps(1); 8079 if (!DestBundle->hasValidDependencies()) 8080 WorkList.push_back(DestBundle); 8081 } 8082 } 8083 } 8084 8085 // Handle the memory dependencies (if any). 8086 ScheduleData *DepDest = BundleMember->NextLoadStore; 8087 if (!DepDest) 8088 continue; 8089 Instruction *SrcInst = BundleMember->Inst; 8090 assert(SrcInst->mayReadOrWriteMemory() && 8091 "NextLoadStore list for non memory effecting bundle?"); 8092 MemoryLocation SrcLoc = getLocation(SrcInst); 8093 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 8094 unsigned numAliased = 0; 8095 unsigned DistToSrc = 1; 8096 8097 for ( ; DepDest; DepDest = DepDest->NextLoadStore) { 8098 assert(isInSchedulingRegion(DepDest)); 8099 8100 // We have two limits to reduce the complexity: 8101 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 8102 // SLP->isAliased (which is the expensive part in this loop). 8103 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 8104 // the whole loop (even if the loop is fast, it's quadratic). 8105 // It's important for the loop break condition (see below) to 8106 // check this limit even between two read-only instructions. 8107 if (DistToSrc >= MaxMemDepDistance || 8108 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 8109 (numAliased >= AliasedCheckLimit || 8110 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 8111 8112 // We increment the counter only if the locations are aliased 8113 // (instead of counting all alias checks). This gives a better 8114 // balance between reduced runtime and accurate dependencies. 8115 numAliased++; 8116 8117 DepDest->MemoryDependencies.push_back(BundleMember); 8118 BundleMember->Dependencies++; 8119 ScheduleData *DestBundle = DepDest->FirstInBundle; 8120 if (!DestBundle->IsScheduled) { 8121 BundleMember->incrementUnscheduledDeps(1); 8122 } 8123 if (!DestBundle->hasValidDependencies()) { 8124 WorkList.push_back(DestBundle); 8125 } 8126 } 8127 8128 // Example, explaining the loop break condition: Let's assume our 8129 // starting instruction is i0 and MaxMemDepDistance = 3. 8130 // 8131 // +--------v--v--v 8132 // i0,i1,i2,i3,i4,i5,i6,i7,i8 8133 // +--------^--^--^ 8134 // 8135 // MaxMemDepDistance let us stop alias-checking at i3 and we add 8136 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 8137 // Previously we already added dependencies from i3 to i6,i7,i8 8138 // (because of MaxMemDepDistance). As we added a dependency from 8139 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 8140 // and we can abort this loop at i6. 8141 if (DistToSrc >= 2 * MaxMemDepDistance) 8142 break; 8143 DistToSrc++; 8144 } 8145 } 8146 if (InsertInReadyList && SD->isReady()) { 8147 ReadyInsts.insert(SD); 8148 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 8149 << "\n"); 8150 } 8151 } 8152 } 8153 8154 void BoUpSLP::BlockScheduling::resetSchedule() { 8155 assert(ScheduleStart && 8156 "tried to reset schedule on block which has not been scheduled"); 8157 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 8158 doForAllOpcodes(I, [&](ScheduleData *SD) { 8159 assert(isInSchedulingRegion(SD) && 8160 "ScheduleData not in scheduling region"); 8161 SD->IsScheduled = false; 8162 SD->resetUnscheduledDeps(); 8163 }); 8164 } 8165 ReadyInsts.clear(); 8166 } 8167 8168 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 8169 if (!BS->ScheduleStart) 8170 return; 8171 8172 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 8173 8174 BS->resetSchedule(); 8175 8176 // For the real scheduling we use a more sophisticated ready-list: it is 8177 // sorted by the original instruction location. This lets the final schedule 8178 // be as close as possible to the original instruction order. 8179 struct ScheduleDataCompare { 8180 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 8181 return SD2->SchedulingPriority < SD1->SchedulingPriority; 8182 } 8183 }; 8184 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 8185 8186 // Ensure that all dependency data is updated and fill the ready-list with 8187 // initial instructions. 8188 int Idx = 0; 8189 int NumToSchedule = 0; 8190 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 8191 I = I->getNextNode()) { 8192 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 8193 TreeEntry *SDTE = getTreeEntry(SD->Inst); 8194 assert((isVectorLikeInstWithConstOps(SD->Inst) || 8195 SD->isPartOfBundle() == 8196 (SDTE && !doesNotNeedToSchedule(SDTE->Scalars))) && 8197 "scheduler and vectorizer bundle mismatch"); 8198 SD->FirstInBundle->SchedulingPriority = Idx++; 8199 if (SD->isSchedulingEntity()) { 8200 BS->calculateDependencies(SD, false, this); 8201 NumToSchedule++; 8202 } 8203 }); 8204 } 8205 BS->initialFillReadyList(ReadyInsts); 8206 8207 Instruction *LastScheduledInst = BS->ScheduleEnd; 8208 MemoryAccess *MemInsertPt = nullptr; 8209 if (MSSA) { 8210 for (auto I = LastScheduledInst->getIterator(); I != BS->BB->end(); I++) { 8211 if (auto *Access = MSSA->getMemoryAccess(&*I)) { 8212 MemInsertPt = Access; 8213 break; 8214 } 8215 } 8216 } 8217 8218 // Do the "real" scheduling. 8219 while (!ReadyInsts.empty()) { 8220 ScheduleData *picked = *ReadyInsts.begin(); 8221 ReadyInsts.erase(ReadyInsts.begin()); 8222 8223 // Move the scheduled instruction(s) to their dedicated places, if not 8224 // there yet. 8225 for (ScheduleData *BundleMember = picked; BundleMember; 8226 BundleMember = BundleMember->NextInBundle) { 8227 Instruction *pickedInst = BundleMember->Inst; 8228 if (pickedInst->getNextNode() != LastScheduledInst) { 8229 pickedInst->moveBefore(LastScheduledInst); 8230 if (MSSA) { 8231 MemorySSAUpdater MSSAU(MSSA); 8232 if (auto *Access = MSSA->getMemoryAccess(pickedInst)) { 8233 if (MemInsertPt) 8234 MSSAU.moveBefore(Access, cast<MemoryUseOrDef>(MemInsertPt)); 8235 else 8236 MSSAU.moveToPlace(Access, BS->BB, 8237 MemorySSA::InsertionPlace::End); 8238 } 8239 } 8240 } 8241 8242 LastScheduledInst = pickedInst; 8243 if (MSSA) 8244 if (auto *Access = MSSA->getMemoryAccess(LastScheduledInst)) 8245 MemInsertPt = Access; 8246 } 8247 8248 BS->schedule(picked, ReadyInsts); 8249 NumToSchedule--; 8250 } 8251 assert(NumToSchedule == 0 && "could not schedule all instructions"); 8252 8253 // Check that we didn't break any of our invariants. 8254 #ifdef EXPENSIVE_CHECKS 8255 BS->verify(); 8256 #endif 8257 8258 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) 8259 // Check that all schedulable entities got scheduled 8260 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) { 8261 BS->doForAllOpcodes(I, [&](ScheduleData *SD) { 8262 if (SD->isSchedulingEntity() && SD->hasValidDependencies()) { 8263 assert(SD->IsScheduled && "must be scheduled at this point"); 8264 } 8265 }); 8266 } 8267 #endif 8268 8269 // Avoid duplicate scheduling of the block. 8270 BS->ScheduleStart = nullptr; 8271 } 8272 8273 unsigned BoUpSLP::getVectorElementSize(Value *V) { 8274 // If V is a store, just return the width of the stored value (or value 8275 // truncated just before storing) without traversing the expression tree. 8276 // This is the common case. 8277 if (auto *Store = dyn_cast<StoreInst>(V)) { 8278 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 8279 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 8280 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 8281 } 8282 8283 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 8284 return getVectorElementSize(IEI->getOperand(1)); 8285 8286 auto E = InstrElementSize.find(V); 8287 if (E != InstrElementSize.end()) 8288 return E->second; 8289 8290 // If V is not a store, we can traverse the expression tree to find loads 8291 // that feed it. The type of the loaded value may indicate a more suitable 8292 // width than V's type. We want to base the vector element size on the width 8293 // of memory operations where possible. 8294 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 8295 SmallPtrSet<Instruction *, 16> Visited; 8296 if (auto *I = dyn_cast<Instruction>(V)) { 8297 Worklist.emplace_back(I, I->getParent()); 8298 Visited.insert(I); 8299 } 8300 8301 // Traverse the expression tree in bottom-up order looking for loads. If we 8302 // encounter an instruction we don't yet handle, we give up. 8303 auto Width = 0u; 8304 while (!Worklist.empty()) { 8305 Instruction *I; 8306 BasicBlock *Parent; 8307 std::tie(I, Parent) = Worklist.pop_back_val(); 8308 8309 // We should only be looking at scalar instructions here. If the current 8310 // instruction has a vector type, skip. 8311 auto *Ty = I->getType(); 8312 if (isa<VectorType>(Ty)) 8313 continue; 8314 8315 // If the current instruction is a load, update MaxWidth to reflect the 8316 // width of the loaded value. 8317 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 8318 isa<ExtractValueInst>(I)) 8319 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 8320 8321 // Otherwise, we need to visit the operands of the instruction. We only 8322 // handle the interesting cases from buildTree here. If an operand is an 8323 // instruction we haven't yet visited and from the same basic block as the 8324 // user or the use is a PHI node, we add it to the worklist. 8325 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8326 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 8327 isa<UnaryOperator>(I)) { 8328 for (Use &U : I->operands()) 8329 if (auto *J = dyn_cast<Instruction>(U.get())) 8330 if (Visited.insert(J).second && 8331 (isa<PHINode>(I) || J->getParent() == Parent)) 8332 Worklist.emplace_back(J, J->getParent()); 8333 } else { 8334 break; 8335 } 8336 } 8337 8338 // If we didn't encounter a memory access in the expression tree, or if we 8339 // gave up for some reason, just return the width of V. Otherwise, return the 8340 // maximum width we found. 8341 if (!Width) { 8342 if (auto *CI = dyn_cast<CmpInst>(V)) 8343 V = CI->getOperand(0); 8344 Width = DL->getTypeSizeInBits(V->getType()); 8345 } 8346 8347 for (Instruction *I : Visited) 8348 InstrElementSize[I] = Width; 8349 8350 return Width; 8351 } 8352 8353 // Determine if a value V in a vectorizable expression Expr can be demoted to a 8354 // smaller type with a truncation. We collect the values that will be demoted 8355 // in ToDemote and additional roots that require investigating in Roots. 8356 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 8357 SmallVectorImpl<Value *> &ToDemote, 8358 SmallVectorImpl<Value *> &Roots) { 8359 // We can always demote constants. 8360 if (isa<Constant>(V)) { 8361 ToDemote.push_back(V); 8362 return true; 8363 } 8364 8365 // If the value is not an instruction in the expression with only one use, it 8366 // cannot be demoted. 8367 auto *I = dyn_cast<Instruction>(V); 8368 if (!I || !I->hasOneUse() || !Expr.count(I)) 8369 return false; 8370 8371 switch (I->getOpcode()) { 8372 8373 // We can always demote truncations and extensions. Since truncations can 8374 // seed additional demotion, we save the truncated value. 8375 case Instruction::Trunc: 8376 Roots.push_back(I->getOperand(0)); 8377 break; 8378 case Instruction::ZExt: 8379 case Instruction::SExt: 8380 if (isa<ExtractElementInst>(I->getOperand(0)) || 8381 isa<InsertElementInst>(I->getOperand(0))) 8382 return false; 8383 break; 8384 8385 // We can demote certain binary operations if we can demote both of their 8386 // operands. 8387 case Instruction::Add: 8388 case Instruction::Sub: 8389 case Instruction::Mul: 8390 case Instruction::And: 8391 case Instruction::Or: 8392 case Instruction::Xor: 8393 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 8394 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 8395 return false; 8396 break; 8397 8398 // We can demote selects if we can demote their true and false values. 8399 case Instruction::Select: { 8400 SelectInst *SI = cast<SelectInst>(I); 8401 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 8402 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 8403 return false; 8404 break; 8405 } 8406 8407 // We can demote phis if we can demote all their incoming operands. Note that 8408 // we don't need to worry about cycles since we ensure single use above. 8409 case Instruction::PHI: { 8410 PHINode *PN = cast<PHINode>(I); 8411 for (Value *IncValue : PN->incoming_values()) 8412 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 8413 return false; 8414 break; 8415 } 8416 8417 // Otherwise, conservatively give up. 8418 default: 8419 return false; 8420 } 8421 8422 // Record the value that we can demote. 8423 ToDemote.push_back(V); 8424 return true; 8425 } 8426 8427 void BoUpSLP::computeMinimumValueSizes() { 8428 // If there are no external uses, the expression tree must be rooted by a 8429 // store. We can't demote in-memory values, so there is nothing to do here. 8430 if (ExternalUses.empty()) 8431 return; 8432 8433 // We only attempt to truncate integer expressions. 8434 auto &TreeRoot = VectorizableTree[0]->Scalars; 8435 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 8436 if (!TreeRootIT) 8437 return; 8438 8439 // If the expression is not rooted by a store, these roots should have 8440 // external uses. We will rely on InstCombine to rewrite the expression in 8441 // the narrower type. However, InstCombine only rewrites single-use values. 8442 // This means that if a tree entry other than a root is used externally, it 8443 // must have multiple uses and InstCombine will not rewrite it. The code 8444 // below ensures that only the roots are used externally. 8445 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 8446 for (auto &EU : ExternalUses) 8447 if (!Expr.erase(EU.Scalar)) 8448 return; 8449 if (!Expr.empty()) 8450 return; 8451 8452 // Collect the scalar values of the vectorizable expression. We will use this 8453 // context to determine which values can be demoted. If we see a truncation, 8454 // we mark it as seeding another demotion. 8455 for (auto &EntryPtr : VectorizableTree) 8456 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 8457 8458 // Ensure the roots of the vectorizable tree don't form a cycle. They must 8459 // have a single external user that is not in the vectorizable tree. 8460 for (auto *Root : TreeRoot) 8461 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 8462 return; 8463 8464 // Conservatively determine if we can actually truncate the roots of the 8465 // expression. Collect the values that can be demoted in ToDemote and 8466 // additional roots that require investigating in Roots. 8467 SmallVector<Value *, 32> ToDemote; 8468 SmallVector<Value *, 4> Roots; 8469 for (auto *Root : TreeRoot) 8470 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 8471 return; 8472 8473 // The maximum bit width required to represent all the values that can be 8474 // demoted without loss of precision. It would be safe to truncate the roots 8475 // of the expression to this width. 8476 auto MaxBitWidth = 8u; 8477 8478 // We first check if all the bits of the roots are demanded. If they're not, 8479 // we can truncate the roots to this narrower type. 8480 for (auto *Root : TreeRoot) { 8481 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 8482 MaxBitWidth = std::max<unsigned>( 8483 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 8484 } 8485 8486 // True if the roots can be zero-extended back to their original type, rather 8487 // than sign-extended. We know that if the leading bits are not demanded, we 8488 // can safely zero-extend. So we initialize IsKnownPositive to True. 8489 bool IsKnownPositive = true; 8490 8491 // If all the bits of the roots are demanded, we can try a little harder to 8492 // compute a narrower type. This can happen, for example, if the roots are 8493 // getelementptr indices. InstCombine promotes these indices to the pointer 8494 // width. Thus, all their bits are technically demanded even though the 8495 // address computation might be vectorized in a smaller type. 8496 // 8497 // We start by looking at each entry that can be demoted. We compute the 8498 // maximum bit width required to store the scalar by using ValueTracking to 8499 // compute the number of high-order bits we can truncate. 8500 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 8501 llvm::all_of(TreeRoot, [](Value *R) { 8502 assert(R->hasOneUse() && "Root should have only one use!"); 8503 return isa<GetElementPtrInst>(R->user_back()); 8504 })) { 8505 MaxBitWidth = 8u; 8506 8507 // Determine if the sign bit of all the roots is known to be zero. If not, 8508 // IsKnownPositive is set to False. 8509 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 8510 KnownBits Known = computeKnownBits(R, *DL); 8511 return Known.isNonNegative(); 8512 }); 8513 8514 // Determine the maximum number of bits required to store the scalar 8515 // values. 8516 for (auto *Scalar : ToDemote) { 8517 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 8518 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 8519 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 8520 } 8521 8522 // If we can't prove that the sign bit is zero, we must add one to the 8523 // maximum bit width to account for the unknown sign bit. This preserves 8524 // the existing sign bit so we can safely sign-extend the root back to the 8525 // original type. Otherwise, if we know the sign bit is zero, we will 8526 // zero-extend the root instead. 8527 // 8528 // FIXME: This is somewhat suboptimal, as there will be cases where adding 8529 // one to the maximum bit width will yield a larger-than-necessary 8530 // type. In general, we need to add an extra bit only if we can't 8531 // prove that the upper bit of the original type is equal to the 8532 // upper bit of the proposed smaller type. If these two bits are the 8533 // same (either zero or one) we know that sign-extending from the 8534 // smaller type will result in the same value. Here, since we can't 8535 // yet prove this, we are just making the proposed smaller type 8536 // larger to ensure correctness. 8537 if (!IsKnownPositive) 8538 ++MaxBitWidth; 8539 } 8540 8541 // Round MaxBitWidth up to the next power-of-two. 8542 if (!isPowerOf2_64(MaxBitWidth)) 8543 MaxBitWidth = NextPowerOf2(MaxBitWidth); 8544 8545 // If the maximum bit width we compute is less than the with of the roots' 8546 // type, we can proceed with the narrowing. Otherwise, do nothing. 8547 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 8548 return; 8549 8550 // If we can truncate the root, we must collect additional values that might 8551 // be demoted as a result. That is, those seeded by truncations we will 8552 // modify. 8553 while (!Roots.empty()) 8554 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 8555 8556 // Finally, map the values we can demote to the maximum bit with we computed. 8557 for (auto *Scalar : ToDemote) 8558 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 8559 } 8560 8561 namespace { 8562 8563 /// The SLPVectorizer Pass. 8564 struct SLPVectorizer : public FunctionPass { 8565 SLPVectorizerPass Impl; 8566 8567 /// Pass identification, replacement for typeid 8568 static char ID; 8569 8570 explicit SLPVectorizer() : FunctionPass(ID) { 8571 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 8572 } 8573 8574 bool doInitialization(Module &M) override { return false; } 8575 8576 bool runOnFunction(Function &F) override { 8577 if (skipFunction(F)) 8578 return false; 8579 8580 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 8581 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 8582 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 8583 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 8584 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 8585 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 8586 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 8587 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 8588 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 8589 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 8590 8591 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, /*MSSA*/nullptr, ORE); 8592 } 8593 8594 void getAnalysisUsage(AnalysisUsage &AU) const override { 8595 FunctionPass::getAnalysisUsage(AU); 8596 AU.addRequired<AssumptionCacheTracker>(); 8597 AU.addRequired<ScalarEvolutionWrapperPass>(); 8598 AU.addRequired<AAResultsWrapperPass>(); 8599 AU.addRequired<TargetTransformInfoWrapperPass>(); 8600 AU.addRequired<LoopInfoWrapperPass>(); 8601 AU.addRequired<DominatorTreeWrapperPass>(); 8602 AU.addRequired<DemandedBitsWrapperPass>(); 8603 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 8604 AU.addRequired<InjectTLIMappingsLegacy>(); 8605 AU.addPreserved<LoopInfoWrapperPass>(); 8606 AU.addPreserved<DominatorTreeWrapperPass>(); 8607 AU.addPreserved<AAResultsWrapperPass>(); 8608 AU.addPreserved<GlobalsAAWrapperPass>(); 8609 AU.setPreservesCFG(); 8610 } 8611 }; 8612 8613 } // end anonymous namespace 8614 8615 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 8616 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 8617 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 8618 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 8619 auto *AA = &AM.getResult<AAManager>(F); 8620 auto *LI = &AM.getResult<LoopAnalysis>(F); 8621 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 8622 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 8623 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 8624 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8625 auto *MSSA = EnableMSSAInSLPVectorizer ? 8626 &AM.getResult<MemorySSAAnalysis>(F).getMSSA() : (MemorySSA*)nullptr; 8627 8628 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, MSSA, ORE); 8629 if (!Changed) 8630 return PreservedAnalyses::all(); 8631 8632 PreservedAnalyses PA; 8633 PA.preserveSet<CFGAnalyses>(); 8634 if (MSSA) { 8635 #ifdef EXPENSIVE_CHECKS 8636 MSSA->verifyMemorySSA(); 8637 #endif 8638 PA.preserve<MemorySSAAnalysis>(); 8639 } 8640 return PA; 8641 } 8642 8643 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 8644 TargetTransformInfo *TTI_, 8645 TargetLibraryInfo *TLI_, AAResults *AA_, 8646 LoopInfo *LI_, DominatorTree *DT_, 8647 AssumptionCache *AC_, DemandedBits *DB_, 8648 MemorySSA *MSSA, 8649 OptimizationRemarkEmitter *ORE_) { 8650 if (!RunSLPVectorization) 8651 return false; 8652 SE = SE_; 8653 TTI = TTI_; 8654 TLI = TLI_; 8655 AA = AA_; 8656 LI = LI_; 8657 DT = DT_; 8658 AC = AC_; 8659 DB = DB_; 8660 DL = &F.getParent()->getDataLayout(); 8661 8662 Stores.clear(); 8663 GEPs.clear(); 8664 bool Changed = false; 8665 8666 // If the target claims to have no vector registers don't attempt 8667 // vectorization. 8668 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) { 8669 LLVM_DEBUG( 8670 dbgs() << "SLP: Didn't find any vector registers for target, abort.\n"); 8671 return false; 8672 } 8673 8674 // Don't vectorize when the attribute NoImplicitFloat is used. 8675 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 8676 return false; 8677 8678 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 8679 8680 // Use the bottom up slp vectorizer to construct chains that start with 8681 // store instructions. 8682 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, MSSA, DL, ORE_); 8683 8684 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 8685 // delete instructions. 8686 8687 // Update DFS numbers now so that we can use them for ordering. 8688 DT->updateDFSNumbers(); 8689 8690 // Scan the blocks in the function in post order. 8691 for (auto BB : post_order(&F.getEntryBlock())) { 8692 collectSeedInstructions(BB); 8693 8694 // Vectorize trees that end at stores. 8695 if (!Stores.empty()) { 8696 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 8697 << " underlying objects.\n"); 8698 Changed |= vectorizeStoreChains(R); 8699 } 8700 8701 // Vectorize trees that end at reductions. 8702 Changed |= vectorizeChainsInBlock(BB, R); 8703 8704 // Vectorize the index computations of getelementptr instructions. This 8705 // is primarily intended to catch gather-like idioms ending at 8706 // non-consecutive loads. 8707 if (!GEPs.empty()) { 8708 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 8709 << " underlying objects.\n"); 8710 Changed |= vectorizeGEPIndices(BB, R); 8711 } 8712 } 8713 8714 if (Changed) { 8715 R.optimizeGatherSequence(); 8716 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 8717 } 8718 return Changed; 8719 } 8720 8721 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 8722 unsigned Idx) { 8723 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 8724 << "\n"); 8725 const unsigned Sz = R.getVectorElementSize(Chain[0]); 8726 const unsigned MinVF = R.getMinVecRegSize() / Sz; 8727 unsigned VF = Chain.size(); 8728 8729 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 8730 return false; 8731 8732 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 8733 << "\n"); 8734 8735 R.buildTree(Chain); 8736 if (R.isTreeTinyAndNotFullyVectorizable()) 8737 return false; 8738 if (R.isLoadCombineCandidate()) 8739 return false; 8740 R.reorderTopToBottom(); 8741 R.reorderBottomToTop(); 8742 R.buildExternalUses(); 8743 8744 R.computeMinimumValueSizes(); 8745 8746 InstructionCost Cost = R.getTreeCost(); 8747 8748 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 8749 if (Cost < -SLPCostThreshold) { 8750 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 8751 8752 using namespace ore; 8753 8754 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 8755 cast<StoreInst>(Chain[0])) 8756 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 8757 << " and with tree size " 8758 << NV("TreeSize", R.getTreeSize())); 8759 8760 R.vectorizeTree(); 8761 return true; 8762 } 8763 8764 return false; 8765 } 8766 8767 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 8768 BoUpSLP &R) { 8769 // We may run into multiple chains that merge into a single chain. We mark the 8770 // stores that we vectorized so that we don't visit the same store twice. 8771 BoUpSLP::ValueSet VectorizedStores; 8772 bool Changed = false; 8773 8774 int E = Stores.size(); 8775 SmallBitVector Tails(E, false); 8776 int MaxIter = MaxStoreLookup.getValue(); 8777 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 8778 E, std::make_pair(E, INT_MAX)); 8779 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 8780 int IterCnt; 8781 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 8782 &CheckedPairs, 8783 &ConsecutiveChain](int K, int Idx) { 8784 if (IterCnt >= MaxIter) 8785 return true; 8786 if (CheckedPairs[Idx].test(K)) 8787 return ConsecutiveChain[K].second == 1 && 8788 ConsecutiveChain[K].first == Idx; 8789 ++IterCnt; 8790 CheckedPairs[Idx].set(K); 8791 CheckedPairs[K].set(Idx); 8792 Optional<int> Diff = getPointersDiff( 8793 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 8794 Stores[Idx]->getValueOperand()->getType(), 8795 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 8796 if (!Diff || *Diff == 0) 8797 return false; 8798 int Val = *Diff; 8799 if (Val < 0) { 8800 if (ConsecutiveChain[Idx].second > -Val) { 8801 Tails.set(K); 8802 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 8803 } 8804 return false; 8805 } 8806 if (ConsecutiveChain[K].second <= Val) 8807 return false; 8808 8809 Tails.set(Idx); 8810 ConsecutiveChain[K] = std::make_pair(Idx, Val); 8811 return Val == 1; 8812 }; 8813 // Do a quadratic search on all of the given stores in reverse order and find 8814 // all of the pairs of stores that follow each other. 8815 for (int Idx = E - 1; Idx >= 0; --Idx) { 8816 // If a store has multiple consecutive store candidates, search according 8817 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 8818 // This is because usually pairing with immediate succeeding or preceding 8819 // candidate create the best chance to find slp vectorization opportunity. 8820 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 8821 IterCnt = 0; 8822 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 8823 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 8824 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 8825 break; 8826 } 8827 8828 // Tracks if we tried to vectorize stores starting from the given tail 8829 // already. 8830 SmallBitVector TriedTails(E, false); 8831 // For stores that start but don't end a link in the chain: 8832 for (int Cnt = E; Cnt > 0; --Cnt) { 8833 int I = Cnt - 1; 8834 if (ConsecutiveChain[I].first == E || Tails.test(I)) 8835 continue; 8836 // We found a store instr that starts a chain. Now follow the chain and try 8837 // to vectorize it. 8838 BoUpSLP::ValueList Operands; 8839 // Collect the chain into a list. 8840 while (I != E && !VectorizedStores.count(Stores[I])) { 8841 Operands.push_back(Stores[I]); 8842 Tails.set(I); 8843 if (ConsecutiveChain[I].second != 1) { 8844 // Mark the new end in the chain and go back, if required. It might be 8845 // required if the original stores come in reversed order, for example. 8846 if (ConsecutiveChain[I].first != E && 8847 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 8848 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 8849 TriedTails.set(I); 8850 Tails.reset(ConsecutiveChain[I].first); 8851 if (Cnt < ConsecutiveChain[I].first + 2) 8852 Cnt = ConsecutiveChain[I].first + 2; 8853 } 8854 break; 8855 } 8856 // Move to the next value in the chain. 8857 I = ConsecutiveChain[I].first; 8858 } 8859 assert(!Operands.empty() && "Expected non-empty list of stores."); 8860 8861 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 8862 unsigned EltSize = R.getVectorElementSize(Operands[0]); 8863 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 8864 8865 unsigned MinVF = R.getMinVF(EltSize); 8866 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 8867 MaxElts); 8868 8869 // FIXME: Is division-by-2 the correct step? Should we assert that the 8870 // register size is a power-of-2? 8871 unsigned StartIdx = 0; 8872 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 8873 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 8874 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 8875 if (!VectorizedStores.count(Slice.front()) && 8876 !VectorizedStores.count(Slice.back()) && 8877 vectorizeStoreChain(Slice, R, Cnt)) { 8878 // Mark the vectorized stores so that we don't vectorize them again. 8879 VectorizedStores.insert(Slice.begin(), Slice.end()); 8880 Changed = true; 8881 // If we vectorized initial block, no need to try to vectorize it 8882 // again. 8883 if (Cnt == StartIdx) 8884 StartIdx += Size; 8885 Cnt += Size; 8886 continue; 8887 } 8888 ++Cnt; 8889 } 8890 // Check if the whole array was vectorized already - exit. 8891 if (StartIdx >= Operands.size()) 8892 break; 8893 } 8894 } 8895 8896 return Changed; 8897 } 8898 8899 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 8900 // Initialize the collections. We will make a single pass over the block. 8901 Stores.clear(); 8902 GEPs.clear(); 8903 8904 // Visit the store and getelementptr instructions in BB and organize them in 8905 // Stores and GEPs according to the underlying objects of their pointer 8906 // operands. 8907 for (Instruction &I : *BB) { 8908 // Ignore store instructions that are volatile or have a pointer operand 8909 // that doesn't point to a scalar type. 8910 if (auto *SI = dyn_cast<StoreInst>(&I)) { 8911 if (!SI->isSimple()) 8912 continue; 8913 if (!isValidElementType(SI->getValueOperand()->getType())) 8914 continue; 8915 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 8916 } 8917 8918 // Ignore getelementptr instructions that have more than one index, a 8919 // constant index, or a pointer operand that doesn't point to a scalar 8920 // type. 8921 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 8922 auto Idx = GEP->idx_begin()->get(); 8923 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 8924 continue; 8925 if (!isValidElementType(Idx->getType())) 8926 continue; 8927 if (GEP->getType()->isVectorTy()) 8928 continue; 8929 GEPs[GEP->getPointerOperand()].push_back(GEP); 8930 } 8931 } 8932 } 8933 8934 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 8935 if (!A || !B) 8936 return false; 8937 if (isa<InsertElementInst>(A) || isa<InsertElementInst>(B)) 8938 return false; 8939 Value *VL[] = {A, B}; 8940 return tryToVectorizeList(VL, R); 8941 } 8942 8943 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 8944 bool LimitForRegisterSize) { 8945 if (VL.size() < 2) 8946 return false; 8947 8948 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 8949 << VL.size() << ".\n"); 8950 8951 // Check that all of the parts are instructions of the same type, 8952 // we permit an alternate opcode via InstructionsState. 8953 InstructionsState S = getSameOpcode(VL); 8954 if (!S.getOpcode()) 8955 return false; 8956 8957 Instruction *I0 = cast<Instruction>(S.OpValue); 8958 // Make sure invalid types (including vector type) are rejected before 8959 // determining vectorization factor for scalar instructions. 8960 for (Value *V : VL) { 8961 Type *Ty = V->getType(); 8962 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 8963 // NOTE: the following will give user internal llvm type name, which may 8964 // not be useful. 8965 R.getORE()->emit([&]() { 8966 std::string type_str; 8967 llvm::raw_string_ostream rso(type_str); 8968 Ty->print(rso); 8969 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 8970 << "Cannot SLP vectorize list: type " 8971 << rso.str() + " is unsupported by vectorizer"; 8972 }); 8973 return false; 8974 } 8975 } 8976 8977 unsigned Sz = R.getVectorElementSize(I0); 8978 unsigned MinVF = R.getMinVF(Sz); 8979 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 8980 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 8981 if (MaxVF < 2) { 8982 R.getORE()->emit([&]() { 8983 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 8984 << "Cannot SLP vectorize list: vectorization factor " 8985 << "less than 2 is not supported"; 8986 }); 8987 return false; 8988 } 8989 8990 bool Changed = false; 8991 bool CandidateFound = false; 8992 InstructionCost MinCost = SLPCostThreshold.getValue(); 8993 Type *ScalarTy = VL[0]->getType(); 8994 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 8995 ScalarTy = IE->getOperand(1)->getType(); 8996 8997 unsigned NextInst = 0, MaxInst = VL.size(); 8998 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 8999 // No actual vectorization should happen, if number of parts is the same as 9000 // provided vectorization factor (i.e. the scalar type is used for vector 9001 // code during codegen). 9002 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 9003 if (TTI->getNumberOfParts(VecTy) == VF) 9004 continue; 9005 for (unsigned I = NextInst; I < MaxInst; ++I) { 9006 unsigned OpsWidth = 0; 9007 9008 if (I + VF > MaxInst) 9009 OpsWidth = MaxInst - I; 9010 else 9011 OpsWidth = VF; 9012 9013 if (!isPowerOf2_32(OpsWidth)) 9014 continue; 9015 9016 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 9017 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 9018 break; 9019 9020 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 9021 // Check that a previous iteration of this loop did not delete the Value. 9022 if (llvm::any_of(Ops, [&R](Value *V) { 9023 auto *I = dyn_cast<Instruction>(V); 9024 return I && R.isDeleted(I); 9025 })) 9026 continue; 9027 9028 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 9029 << "\n"); 9030 9031 R.buildTree(Ops); 9032 if (R.isTreeTinyAndNotFullyVectorizable()) 9033 continue; 9034 R.reorderTopToBottom(); 9035 R.reorderBottomToTop(!isa<InsertElementInst>(Ops.front())); 9036 R.buildExternalUses(); 9037 9038 R.computeMinimumValueSizes(); 9039 InstructionCost Cost = R.getTreeCost(); 9040 CandidateFound = true; 9041 MinCost = std::min(MinCost, Cost); 9042 9043 if (Cost < -SLPCostThreshold) { 9044 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 9045 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 9046 cast<Instruction>(Ops[0])) 9047 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 9048 << " and with tree size " 9049 << ore::NV("TreeSize", R.getTreeSize())); 9050 9051 R.vectorizeTree(); 9052 // Move to the next bundle. 9053 I += VF - 1; 9054 NextInst = I + 1; 9055 Changed = true; 9056 } 9057 } 9058 } 9059 9060 if (!Changed && CandidateFound) { 9061 R.getORE()->emit([&]() { 9062 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 9063 << "List vectorization was possible but not beneficial with cost " 9064 << ore::NV("Cost", MinCost) << " >= " 9065 << ore::NV("Treshold", -SLPCostThreshold); 9066 }); 9067 } else if (!Changed) { 9068 R.getORE()->emit([&]() { 9069 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 9070 << "Cannot SLP vectorize list: vectorization was impossible" 9071 << " with available vectorization factors"; 9072 }); 9073 } 9074 return Changed; 9075 } 9076 9077 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 9078 if (!I) 9079 return false; 9080 9081 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 9082 return false; 9083 9084 Value *P = I->getParent(); 9085 9086 // Vectorize in current basic block only. 9087 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 9088 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 9089 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 9090 return false; 9091 9092 // Try to vectorize V. 9093 if (tryToVectorizePair(Op0, Op1, R)) 9094 return true; 9095 9096 auto *A = dyn_cast<BinaryOperator>(Op0); 9097 auto *B = dyn_cast<BinaryOperator>(Op1); 9098 // Try to skip B. 9099 if (B && B->hasOneUse()) { 9100 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 9101 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 9102 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 9103 return true; 9104 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 9105 return true; 9106 } 9107 9108 // Try to skip A. 9109 if (A && A->hasOneUse()) { 9110 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 9111 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 9112 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 9113 return true; 9114 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 9115 return true; 9116 } 9117 return false; 9118 } 9119 9120 namespace { 9121 9122 /// Model horizontal reductions. 9123 /// 9124 /// A horizontal reduction is a tree of reduction instructions that has values 9125 /// that can be put into a vector as its leaves. For example: 9126 /// 9127 /// mul mul mul mul 9128 /// \ / \ / 9129 /// + + 9130 /// \ / 9131 /// + 9132 /// This tree has "mul" as its leaf values and "+" as its reduction 9133 /// instructions. A reduction can feed into a store or a binary operation 9134 /// feeding a phi. 9135 /// ... 9136 /// \ / 9137 /// + 9138 /// | 9139 /// phi += 9140 /// 9141 /// Or: 9142 /// ... 9143 /// \ / 9144 /// + 9145 /// | 9146 /// *p = 9147 /// 9148 class HorizontalReduction { 9149 using ReductionOpsType = SmallVector<Value *, 16>; 9150 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 9151 ReductionOpsListType ReductionOps; 9152 SmallVector<Value *, 32> ReducedVals; 9153 // Use map vector to make stable output. 9154 MapVector<Instruction *, Value *> ExtraArgs; 9155 WeakTrackingVH ReductionRoot; 9156 /// The type of reduction operation. 9157 RecurKind RdxKind; 9158 9159 const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max(); 9160 9161 static bool isCmpSelMinMax(Instruction *I) { 9162 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 9163 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 9164 } 9165 9166 // And/or are potentially poison-safe logical patterns like: 9167 // select x, y, false 9168 // select x, true, y 9169 static bool isBoolLogicOp(Instruction *I) { 9170 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 9171 match(I, m_LogicalOr(m_Value(), m_Value())); 9172 } 9173 9174 /// Checks if instruction is associative and can be vectorized. 9175 static bool isVectorizable(RecurKind Kind, Instruction *I) { 9176 if (Kind == RecurKind::None) 9177 return false; 9178 9179 // Integer ops that map to select instructions or intrinsics are fine. 9180 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 9181 isBoolLogicOp(I)) 9182 return true; 9183 9184 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 9185 // FP min/max are associative except for NaN and -0.0. We do not 9186 // have to rule out -0.0 here because the intrinsic semantics do not 9187 // specify a fixed result for it. 9188 return I->getFastMathFlags().noNaNs(); 9189 } 9190 9191 return I->isAssociative(); 9192 } 9193 9194 static Value *getRdxOperand(Instruction *I, unsigned Index) { 9195 // Poison-safe 'or' takes the form: select X, true, Y 9196 // To make that work with the normal operand processing, we skip the 9197 // true value operand. 9198 // TODO: Change the code and data structures to handle this without a hack. 9199 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 9200 return I->getOperand(2); 9201 return I->getOperand(Index); 9202 } 9203 9204 /// Checks if the ParentStackElem.first should be marked as a reduction 9205 /// operation with an extra argument or as extra argument itself. 9206 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 9207 Value *ExtraArg) { 9208 if (ExtraArgs.count(ParentStackElem.first)) { 9209 ExtraArgs[ParentStackElem.first] = nullptr; 9210 // We ran into something like: 9211 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 9212 // The whole ParentStackElem.first should be considered as an extra value 9213 // in this case. 9214 // Do not perform analysis of remaining operands of ParentStackElem.first 9215 // instruction, this whole instruction is an extra argument. 9216 ParentStackElem.second = INVALID_OPERAND_INDEX; 9217 } else { 9218 // We ran into something like: 9219 // ParentStackElem.first += ... + ExtraArg + ... 9220 ExtraArgs[ParentStackElem.first] = ExtraArg; 9221 } 9222 } 9223 9224 /// Creates reduction operation with the current opcode. 9225 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 9226 Value *RHS, const Twine &Name, bool UseSelect) { 9227 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 9228 switch (Kind) { 9229 case RecurKind::Or: 9230 if (UseSelect && 9231 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 9232 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 9233 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9234 Name); 9235 case RecurKind::And: 9236 if (UseSelect && 9237 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 9238 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 9239 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9240 Name); 9241 case RecurKind::Add: 9242 case RecurKind::Mul: 9243 case RecurKind::Xor: 9244 case RecurKind::FAdd: 9245 case RecurKind::FMul: 9246 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9247 Name); 9248 case RecurKind::FMax: 9249 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 9250 case RecurKind::FMin: 9251 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 9252 case RecurKind::SMax: 9253 if (UseSelect) { 9254 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 9255 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9256 } 9257 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 9258 case RecurKind::SMin: 9259 if (UseSelect) { 9260 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 9261 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9262 } 9263 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 9264 case RecurKind::UMax: 9265 if (UseSelect) { 9266 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 9267 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9268 } 9269 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 9270 case RecurKind::UMin: 9271 if (UseSelect) { 9272 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 9273 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9274 } 9275 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 9276 default: 9277 llvm_unreachable("Unknown reduction operation."); 9278 } 9279 } 9280 9281 /// Creates reduction operation with the current opcode with the IR flags 9282 /// from \p ReductionOps. 9283 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9284 Value *RHS, const Twine &Name, 9285 const ReductionOpsListType &ReductionOps) { 9286 bool UseSelect = ReductionOps.size() == 2 || 9287 // Logical or/and. 9288 (ReductionOps.size() == 1 && 9289 isa<SelectInst>(ReductionOps.front().front())); 9290 assert((!UseSelect || ReductionOps.size() != 2 || 9291 isa<SelectInst>(ReductionOps[1][0])) && 9292 "Expected cmp + select pairs for reduction"); 9293 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 9294 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9295 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 9296 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 9297 propagateIRFlags(Op, ReductionOps[1]); 9298 return Op; 9299 } 9300 } 9301 propagateIRFlags(Op, ReductionOps[0]); 9302 return Op; 9303 } 9304 9305 /// Creates reduction operation with the current opcode with the IR flags 9306 /// from \p I. 9307 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9308 Value *RHS, const Twine &Name, Instruction *I) { 9309 auto *SelI = dyn_cast<SelectInst>(I); 9310 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 9311 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9312 if (auto *Sel = dyn_cast<SelectInst>(Op)) 9313 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 9314 } 9315 propagateIRFlags(Op, I); 9316 return Op; 9317 } 9318 9319 static RecurKind getRdxKind(Instruction *I) { 9320 assert(I && "Expected instruction for reduction matching"); 9321 if (match(I, m_Add(m_Value(), m_Value()))) 9322 return RecurKind::Add; 9323 if (match(I, m_Mul(m_Value(), m_Value()))) 9324 return RecurKind::Mul; 9325 if (match(I, m_And(m_Value(), m_Value())) || 9326 match(I, m_LogicalAnd(m_Value(), m_Value()))) 9327 return RecurKind::And; 9328 if (match(I, m_Or(m_Value(), m_Value())) || 9329 match(I, m_LogicalOr(m_Value(), m_Value()))) 9330 return RecurKind::Or; 9331 if (match(I, m_Xor(m_Value(), m_Value()))) 9332 return RecurKind::Xor; 9333 if (match(I, m_FAdd(m_Value(), m_Value()))) 9334 return RecurKind::FAdd; 9335 if (match(I, m_FMul(m_Value(), m_Value()))) 9336 return RecurKind::FMul; 9337 9338 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 9339 return RecurKind::FMax; 9340 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 9341 return RecurKind::FMin; 9342 9343 // This matches either cmp+select or intrinsics. SLP is expected to handle 9344 // either form. 9345 // TODO: If we are canonicalizing to intrinsics, we can remove several 9346 // special-case paths that deal with selects. 9347 if (match(I, m_SMax(m_Value(), m_Value()))) 9348 return RecurKind::SMax; 9349 if (match(I, m_SMin(m_Value(), m_Value()))) 9350 return RecurKind::SMin; 9351 if (match(I, m_UMax(m_Value(), m_Value()))) 9352 return RecurKind::UMax; 9353 if (match(I, m_UMin(m_Value(), m_Value()))) 9354 return RecurKind::UMin; 9355 9356 if (auto *Select = dyn_cast<SelectInst>(I)) { 9357 // Try harder: look for min/max pattern based on instructions producing 9358 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 9359 // During the intermediate stages of SLP, it's very common to have 9360 // pattern like this (since optimizeGatherSequence is run only once 9361 // at the end): 9362 // %1 = extractelement <2 x i32> %a, i32 0 9363 // %2 = extractelement <2 x i32> %a, i32 1 9364 // %cond = icmp sgt i32 %1, %2 9365 // %3 = extractelement <2 x i32> %a, i32 0 9366 // %4 = extractelement <2 x i32> %a, i32 1 9367 // %select = select i1 %cond, i32 %3, i32 %4 9368 CmpInst::Predicate Pred; 9369 Instruction *L1; 9370 Instruction *L2; 9371 9372 Value *LHS = Select->getTrueValue(); 9373 Value *RHS = Select->getFalseValue(); 9374 Value *Cond = Select->getCondition(); 9375 9376 // TODO: Support inverse predicates. 9377 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 9378 if (!isa<ExtractElementInst>(RHS) || 9379 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9380 return RecurKind::None; 9381 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 9382 if (!isa<ExtractElementInst>(LHS) || 9383 !L1->isIdenticalTo(cast<Instruction>(LHS))) 9384 return RecurKind::None; 9385 } else { 9386 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 9387 return RecurKind::None; 9388 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 9389 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 9390 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9391 return RecurKind::None; 9392 } 9393 9394 switch (Pred) { 9395 default: 9396 return RecurKind::None; 9397 case CmpInst::ICMP_SGT: 9398 case CmpInst::ICMP_SGE: 9399 return RecurKind::SMax; 9400 case CmpInst::ICMP_SLT: 9401 case CmpInst::ICMP_SLE: 9402 return RecurKind::SMin; 9403 case CmpInst::ICMP_UGT: 9404 case CmpInst::ICMP_UGE: 9405 return RecurKind::UMax; 9406 case CmpInst::ICMP_ULT: 9407 case CmpInst::ICMP_ULE: 9408 return RecurKind::UMin; 9409 } 9410 } 9411 return RecurKind::None; 9412 } 9413 9414 /// Get the index of the first operand. 9415 static unsigned getFirstOperandIndex(Instruction *I) { 9416 return isCmpSelMinMax(I) ? 1 : 0; 9417 } 9418 9419 /// Total number of operands in the reduction operation. 9420 static unsigned getNumberOfOperands(Instruction *I) { 9421 return isCmpSelMinMax(I) ? 3 : 2; 9422 } 9423 9424 /// Checks if the instruction is in basic block \p BB. 9425 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 9426 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 9427 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 9428 auto *Sel = cast<SelectInst>(I); 9429 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 9430 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 9431 } 9432 return I->getParent() == BB; 9433 } 9434 9435 /// Expected number of uses for reduction operations/reduced values. 9436 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 9437 if (IsCmpSelMinMax) { 9438 // SelectInst must be used twice while the condition op must have single 9439 // use only. 9440 if (auto *Sel = dyn_cast<SelectInst>(I)) 9441 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 9442 return I->hasNUses(2); 9443 } 9444 9445 // Arithmetic reduction operation must be used once only. 9446 return I->hasOneUse(); 9447 } 9448 9449 /// Initializes the list of reduction operations. 9450 void initReductionOps(Instruction *I) { 9451 if (isCmpSelMinMax(I)) 9452 ReductionOps.assign(2, ReductionOpsType()); 9453 else 9454 ReductionOps.assign(1, ReductionOpsType()); 9455 } 9456 9457 /// Add all reduction operations for the reduction instruction \p I. 9458 void addReductionOps(Instruction *I) { 9459 if (isCmpSelMinMax(I)) { 9460 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 9461 ReductionOps[1].emplace_back(I); 9462 } else { 9463 ReductionOps[0].emplace_back(I); 9464 } 9465 } 9466 9467 static Value *getLHS(RecurKind Kind, Instruction *I) { 9468 if (Kind == RecurKind::None) 9469 return nullptr; 9470 return I->getOperand(getFirstOperandIndex(I)); 9471 } 9472 static Value *getRHS(RecurKind Kind, Instruction *I) { 9473 if (Kind == RecurKind::None) 9474 return nullptr; 9475 return I->getOperand(getFirstOperandIndex(I) + 1); 9476 } 9477 9478 public: 9479 HorizontalReduction() = default; 9480 9481 /// Try to find a reduction tree. 9482 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) { 9483 assert((!Phi || is_contained(Phi->operands(), Inst)) && 9484 "Phi needs to use the binary operator"); 9485 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 9486 isa<IntrinsicInst>(Inst)) && 9487 "Expected binop, select, or intrinsic for reduction matching"); 9488 RdxKind = getRdxKind(Inst); 9489 9490 // We could have a initial reductions that is not an add. 9491 // r *= v1 + v2 + v3 + v4 9492 // In such a case start looking for a tree rooted in the first '+'. 9493 if (Phi) { 9494 if (getLHS(RdxKind, Inst) == Phi) { 9495 Phi = nullptr; 9496 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 9497 if (!Inst) 9498 return false; 9499 RdxKind = getRdxKind(Inst); 9500 } else if (getRHS(RdxKind, Inst) == Phi) { 9501 Phi = nullptr; 9502 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 9503 if (!Inst) 9504 return false; 9505 RdxKind = getRdxKind(Inst); 9506 } 9507 } 9508 9509 if (!isVectorizable(RdxKind, Inst)) 9510 return false; 9511 9512 // Analyze "regular" integer/FP types for reductions - no target-specific 9513 // types or pointers. 9514 Type *Ty = Inst->getType(); 9515 if (!isValidElementType(Ty) || Ty->isPointerTy()) 9516 return false; 9517 9518 // Though the ultimate reduction may have multiple uses, its condition must 9519 // have only single use. 9520 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 9521 if (!Sel->getCondition()->hasOneUse()) 9522 return false; 9523 9524 ReductionRoot = Inst; 9525 9526 // The opcode for leaf values that we perform a reduction on. 9527 // For example: load(x) + load(y) + load(z) + fptoui(w) 9528 // The leaf opcode for 'w' does not match, so we don't include it as a 9529 // potential candidate for the reduction. 9530 unsigned LeafOpcode = 0; 9531 9532 // Post-order traverse the reduction tree starting at Inst. We only handle 9533 // true trees containing binary operators or selects. 9534 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 9535 Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst))); 9536 initReductionOps(Inst); 9537 while (!Stack.empty()) { 9538 Instruction *TreeN = Stack.back().first; 9539 unsigned EdgeToVisit = Stack.back().second++; 9540 const RecurKind TreeRdxKind = getRdxKind(TreeN); 9541 bool IsReducedValue = TreeRdxKind != RdxKind; 9542 9543 // Postorder visit. 9544 if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) { 9545 if (IsReducedValue) 9546 ReducedVals.push_back(TreeN); 9547 else { 9548 auto ExtraArgsIter = ExtraArgs.find(TreeN); 9549 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 9550 // Check if TreeN is an extra argument of its parent operation. 9551 if (Stack.size() <= 1) { 9552 // TreeN can't be an extra argument as it is a root reduction 9553 // operation. 9554 return false; 9555 } 9556 // Yes, TreeN is an extra argument, do not add it to a list of 9557 // reduction operations. 9558 // Stack[Stack.size() - 2] always points to the parent operation. 9559 markExtraArg(Stack[Stack.size() - 2], TreeN); 9560 ExtraArgs.erase(TreeN); 9561 } else 9562 addReductionOps(TreeN); 9563 } 9564 // Retract. 9565 Stack.pop_back(); 9566 continue; 9567 } 9568 9569 // Visit operands. 9570 Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit); 9571 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 9572 if (!EdgeInst) { 9573 // Edge value is not a reduction instruction or a leaf instruction. 9574 // (It may be a constant, function argument, or something else.) 9575 markExtraArg(Stack.back(), EdgeVal); 9576 continue; 9577 } 9578 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 9579 // Continue analysis if the next operand is a reduction operation or 9580 // (possibly) a leaf value. If the leaf value opcode is not set, 9581 // the first met operation != reduction operation is considered as the 9582 // leaf opcode. 9583 // Only handle trees in the current basic block. 9584 // Each tree node needs to have minimal number of users except for the 9585 // ultimate reduction. 9586 const bool IsRdxInst = EdgeRdxKind == RdxKind; 9587 if (EdgeInst != Phi && EdgeInst != Inst && 9588 hasSameParent(EdgeInst, Inst->getParent()) && 9589 hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) && 9590 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 9591 if (IsRdxInst) { 9592 // We need to be able to reassociate the reduction operations. 9593 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 9594 // I is an extra argument for TreeN (its parent operation). 9595 markExtraArg(Stack.back(), EdgeInst); 9596 continue; 9597 } 9598 } else if (!LeafOpcode) { 9599 LeafOpcode = EdgeInst->getOpcode(); 9600 } 9601 Stack.push_back( 9602 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 9603 continue; 9604 } 9605 // I is an extra argument for TreeN (its parent operation). 9606 markExtraArg(Stack.back(), EdgeInst); 9607 } 9608 return true; 9609 } 9610 9611 /// Attempt to vectorize the tree found by matchAssociativeReduction. 9612 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 9613 // If there are a sufficient number of reduction values, reduce 9614 // to a nearby power-of-2. We can safely generate oversized 9615 // vectors and rely on the backend to split them to legal sizes. 9616 unsigned NumReducedVals = ReducedVals.size(); 9617 if (NumReducedVals < 4) 9618 return nullptr; 9619 9620 // Intersect the fast-math-flags from all reduction operations. 9621 FastMathFlags RdxFMF; 9622 RdxFMF.set(); 9623 for (ReductionOpsType &RdxOp : ReductionOps) { 9624 for (Value *RdxVal : RdxOp) { 9625 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 9626 RdxFMF &= FPMO->getFastMathFlags(); 9627 } 9628 } 9629 9630 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 9631 Builder.setFastMathFlags(RdxFMF); 9632 9633 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 9634 // The same extra argument may be used several times, so log each attempt 9635 // to use it. 9636 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 9637 assert(Pair.first && "DebugLoc must be set."); 9638 ExternallyUsedValues[Pair.second].push_back(Pair.first); 9639 } 9640 9641 // The compare instruction of a min/max is the insertion point for new 9642 // instructions and may be replaced with a new compare instruction. 9643 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 9644 assert(isa<SelectInst>(RdxRootInst) && 9645 "Expected min/max reduction to have select root instruction"); 9646 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 9647 assert(isa<Instruction>(ScalarCond) && 9648 "Expected min/max reduction to have compare condition"); 9649 return cast<Instruction>(ScalarCond); 9650 }; 9651 9652 // The reduction root is used as the insertion point for new instructions, 9653 // so set it as externally used to prevent it from being deleted. 9654 ExternallyUsedValues[ReductionRoot]; 9655 SmallVector<Value *, 16> IgnoreList; 9656 for (ReductionOpsType &RdxOp : ReductionOps) 9657 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 9658 9659 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 9660 if (NumReducedVals > ReduxWidth) { 9661 // In the loop below, we are building a tree based on a window of 9662 // 'ReduxWidth' values. 9663 // If the operands of those values have common traits (compare predicate, 9664 // constant operand, etc), then we want to group those together to 9665 // minimize the cost of the reduction. 9666 9667 // TODO: This should be extended to count common operands for 9668 // compares and binops. 9669 9670 // Step 1: Count the number of times each compare predicate occurs. 9671 SmallDenseMap<unsigned, unsigned> PredCountMap; 9672 for (Value *RdxVal : ReducedVals) { 9673 CmpInst::Predicate Pred; 9674 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 9675 ++PredCountMap[Pred]; 9676 } 9677 // Step 2: Sort the values so the most common predicates come first. 9678 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 9679 CmpInst::Predicate PredA, PredB; 9680 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 9681 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 9682 return PredCountMap[PredA] > PredCountMap[PredB]; 9683 } 9684 return false; 9685 }); 9686 } 9687 9688 Value *VectorizedTree = nullptr; 9689 unsigned i = 0; 9690 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 9691 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 9692 V.buildTree(VL, IgnoreList); 9693 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) 9694 break; 9695 if (V.isLoadCombineReductionCandidate(RdxKind)) 9696 break; 9697 V.reorderTopToBottom(); 9698 V.reorderBottomToTop(/*IgnoreReorder=*/true); 9699 V.buildExternalUses(ExternallyUsedValues); 9700 9701 // For a poison-safe boolean logic reduction, do not replace select 9702 // instructions with logic ops. All reduced values will be frozen (see 9703 // below) to prevent leaking poison. 9704 if (isa<SelectInst>(ReductionRoot) && 9705 isBoolLogicOp(cast<Instruction>(ReductionRoot)) && 9706 NumReducedVals != ReduxWidth) 9707 break; 9708 9709 V.computeMinimumValueSizes(); 9710 9711 // Estimate cost. 9712 InstructionCost TreeCost = 9713 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth)); 9714 InstructionCost ReductionCost = 9715 getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF); 9716 InstructionCost Cost = TreeCost + ReductionCost; 9717 if (!Cost.isValid()) { 9718 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 9719 return nullptr; 9720 } 9721 if (Cost >= -SLPCostThreshold) { 9722 V.getORE()->emit([&]() { 9723 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 9724 cast<Instruction>(VL[0])) 9725 << "Vectorizing horizontal reduction is possible" 9726 << "but not beneficial with cost " << ore::NV("Cost", Cost) 9727 << " and threshold " 9728 << ore::NV("Threshold", -SLPCostThreshold); 9729 }); 9730 break; 9731 } 9732 9733 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 9734 << Cost << ". (HorRdx)\n"); 9735 V.getORE()->emit([&]() { 9736 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 9737 cast<Instruction>(VL[0])) 9738 << "Vectorized horizontal reduction with cost " 9739 << ore::NV("Cost", Cost) << " and with tree size " 9740 << ore::NV("TreeSize", V.getTreeSize()); 9741 }); 9742 9743 // Vectorize a tree. 9744 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 9745 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 9746 9747 // Emit a reduction. If the root is a select (min/max idiom), the insert 9748 // point is the compare condition of that select. 9749 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 9750 if (isCmpSelMinMax(RdxRootInst)) 9751 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 9752 else 9753 Builder.SetInsertPoint(RdxRootInst); 9754 9755 // To prevent poison from leaking across what used to be sequential, safe, 9756 // scalar boolean logic operations, the reduction operand must be frozen. 9757 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 9758 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 9759 9760 Value *ReducedSubTree = 9761 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 9762 9763 if (!VectorizedTree) { 9764 // Initialize the final value in the reduction. 9765 VectorizedTree = ReducedSubTree; 9766 } else { 9767 // Update the final value in the reduction. 9768 Builder.SetCurrentDebugLocation(Loc); 9769 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9770 ReducedSubTree, "op.rdx", ReductionOps); 9771 } 9772 i += ReduxWidth; 9773 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 9774 } 9775 9776 if (VectorizedTree) { 9777 // Finish the reduction. 9778 for (; i < NumReducedVals; ++i) { 9779 auto *I = cast<Instruction>(ReducedVals[i]); 9780 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9781 VectorizedTree = 9782 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 9783 } 9784 for (auto &Pair : ExternallyUsedValues) { 9785 // Add each externally used value to the final reduction. 9786 for (auto *I : Pair.second) { 9787 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9788 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9789 Pair.first, "op.extra", I); 9790 } 9791 } 9792 9793 ReductionRoot->replaceAllUsesWith(VectorizedTree); 9794 9795 // Mark all scalar reduction ops for deletion, they are replaced by the 9796 // vector reductions. 9797 V.eraseInstructions(IgnoreList); 9798 } 9799 return VectorizedTree; 9800 } 9801 9802 unsigned numReductionValues() const { return ReducedVals.size(); } 9803 9804 private: 9805 /// Calculate the cost of a reduction. 9806 InstructionCost getReductionCost(TargetTransformInfo *TTI, 9807 Value *FirstReducedVal, unsigned ReduxWidth, 9808 FastMathFlags FMF) { 9809 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 9810 Type *ScalarTy = FirstReducedVal->getType(); 9811 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 9812 InstructionCost VectorCost, ScalarCost; 9813 switch (RdxKind) { 9814 case RecurKind::Add: 9815 case RecurKind::Mul: 9816 case RecurKind::Or: 9817 case RecurKind::And: 9818 case RecurKind::Xor: 9819 case RecurKind::FAdd: 9820 case RecurKind::FMul: { 9821 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 9822 VectorCost = 9823 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 9824 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 9825 break; 9826 } 9827 case RecurKind::FMax: 9828 case RecurKind::FMin: { 9829 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9830 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9831 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 9832 /*IsUnsigned=*/false, CostKind); 9833 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9834 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 9835 SclCondTy, RdxPred, CostKind) + 9836 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9837 SclCondTy, RdxPred, CostKind); 9838 break; 9839 } 9840 case RecurKind::SMax: 9841 case RecurKind::SMin: 9842 case RecurKind::UMax: 9843 case RecurKind::UMin: { 9844 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9845 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9846 bool IsUnsigned = 9847 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 9848 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned, 9849 CostKind); 9850 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9851 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 9852 SclCondTy, RdxPred, CostKind) + 9853 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9854 SclCondTy, RdxPred, CostKind); 9855 break; 9856 } 9857 default: 9858 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 9859 } 9860 9861 // Scalar cost is repeated for N-1 elements. 9862 ScalarCost *= (ReduxWidth - 1); 9863 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 9864 << " for reduction that starts with " << *FirstReducedVal 9865 << " (It is a splitting reduction)\n"); 9866 return VectorCost - ScalarCost; 9867 } 9868 9869 /// Emit a horizontal reduction of the vectorized value. 9870 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 9871 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 9872 assert(VectorizedValue && "Need to have a vectorized tree node"); 9873 assert(isPowerOf2_32(ReduxWidth) && 9874 "We only handle power-of-two reductions for now"); 9875 assert(RdxKind != RecurKind::FMulAdd && 9876 "A call to the llvm.fmuladd intrinsic is not handled yet"); 9877 9878 ++NumVectorInstructions; 9879 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind); 9880 } 9881 }; 9882 9883 } // end anonymous namespace 9884 9885 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 9886 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 9887 return cast<FixedVectorType>(IE->getType())->getNumElements(); 9888 9889 unsigned AggregateSize = 1; 9890 auto *IV = cast<InsertValueInst>(InsertInst); 9891 Type *CurrentType = IV->getType(); 9892 do { 9893 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 9894 for (auto *Elt : ST->elements()) 9895 if (Elt != ST->getElementType(0)) // check homogeneity 9896 return None; 9897 AggregateSize *= ST->getNumElements(); 9898 CurrentType = ST->getElementType(0); 9899 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 9900 AggregateSize *= AT->getNumElements(); 9901 CurrentType = AT->getElementType(); 9902 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 9903 AggregateSize *= VT->getNumElements(); 9904 return AggregateSize; 9905 } else if (CurrentType->isSingleValueType()) { 9906 return AggregateSize; 9907 } else { 9908 return None; 9909 } 9910 } while (true); 9911 } 9912 9913 static void findBuildAggregate_rec(Instruction *LastInsertInst, 9914 TargetTransformInfo *TTI, 9915 SmallVectorImpl<Value *> &BuildVectorOpds, 9916 SmallVectorImpl<Value *> &InsertElts, 9917 unsigned OperandOffset) { 9918 do { 9919 Value *InsertedOperand = LastInsertInst->getOperand(1); 9920 Optional<unsigned> OperandIndex = 9921 getInsertIndex(LastInsertInst, OperandOffset); 9922 if (!OperandIndex) 9923 return; 9924 if (isa<InsertElementInst>(InsertedOperand) || 9925 isa<InsertValueInst>(InsertedOperand)) { 9926 findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 9927 BuildVectorOpds, InsertElts, *OperandIndex); 9928 9929 } else { 9930 BuildVectorOpds[*OperandIndex] = InsertedOperand; 9931 InsertElts[*OperandIndex] = LastInsertInst; 9932 } 9933 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 9934 } while (LastInsertInst != nullptr && 9935 (isa<InsertValueInst>(LastInsertInst) || 9936 isa<InsertElementInst>(LastInsertInst)) && 9937 LastInsertInst->hasOneUse()); 9938 } 9939 9940 /// Recognize construction of vectors like 9941 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 9942 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 9943 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 9944 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 9945 /// starting from the last insertelement or insertvalue instruction. 9946 /// 9947 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 9948 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 9949 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 9950 /// 9951 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 9952 /// 9953 /// \return true if it matches. 9954 static bool findBuildAggregate(Instruction *LastInsertInst, 9955 TargetTransformInfo *TTI, 9956 SmallVectorImpl<Value *> &BuildVectorOpds, 9957 SmallVectorImpl<Value *> &InsertElts) { 9958 9959 assert((isa<InsertElementInst>(LastInsertInst) || 9960 isa<InsertValueInst>(LastInsertInst)) && 9961 "Expected insertelement or insertvalue instruction!"); 9962 9963 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 9964 "Expected empty result vectors!"); 9965 9966 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 9967 if (!AggregateSize) 9968 return false; 9969 BuildVectorOpds.resize(*AggregateSize); 9970 InsertElts.resize(*AggregateSize); 9971 9972 findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 0); 9973 llvm::erase_value(BuildVectorOpds, nullptr); 9974 llvm::erase_value(InsertElts, nullptr); 9975 if (BuildVectorOpds.size() >= 2) 9976 return true; 9977 9978 return false; 9979 } 9980 9981 /// Try and get a reduction value from a phi node. 9982 /// 9983 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 9984 /// if they come from either \p ParentBB or a containing loop latch. 9985 /// 9986 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 9987 /// if not possible. 9988 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 9989 BasicBlock *ParentBB, LoopInfo *LI) { 9990 // There are situations where the reduction value is not dominated by the 9991 // reduction phi. Vectorizing such cases has been reported to cause 9992 // miscompiles. See PR25787. 9993 auto DominatedReduxValue = [&](Value *R) { 9994 return isa<Instruction>(R) && 9995 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 9996 }; 9997 9998 Value *Rdx = nullptr; 9999 10000 // Return the incoming value if it comes from the same BB as the phi node. 10001 if (P->getIncomingBlock(0) == ParentBB) { 10002 Rdx = P->getIncomingValue(0); 10003 } else if (P->getIncomingBlock(1) == ParentBB) { 10004 Rdx = P->getIncomingValue(1); 10005 } 10006 10007 if (Rdx && DominatedReduxValue(Rdx)) 10008 return Rdx; 10009 10010 // Otherwise, check whether we have a loop latch to look at. 10011 Loop *BBL = LI->getLoopFor(ParentBB); 10012 if (!BBL) 10013 return nullptr; 10014 BasicBlock *BBLatch = BBL->getLoopLatch(); 10015 if (!BBLatch) 10016 return nullptr; 10017 10018 // There is a loop latch, return the incoming value if it comes from 10019 // that. This reduction pattern occasionally turns up. 10020 if (P->getIncomingBlock(0) == BBLatch) { 10021 Rdx = P->getIncomingValue(0); 10022 } else if (P->getIncomingBlock(1) == BBLatch) { 10023 Rdx = P->getIncomingValue(1); 10024 } 10025 10026 if (Rdx && DominatedReduxValue(Rdx)) 10027 return Rdx; 10028 10029 return nullptr; 10030 } 10031 10032 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 10033 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 10034 return true; 10035 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 10036 return true; 10037 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 10038 return true; 10039 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 10040 return true; 10041 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 10042 return true; 10043 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 10044 return true; 10045 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 10046 return true; 10047 return false; 10048 } 10049 10050 /// Attempt to reduce a horizontal reduction. 10051 /// If it is legal to match a horizontal reduction feeding the phi node \a P 10052 /// with reduction operators \a Root (or one of its operands) in a basic block 10053 /// \a BB, then check if it can be done. If horizontal reduction is not found 10054 /// and root instruction is a binary operation, vectorization of the operands is 10055 /// attempted. 10056 /// \returns true if a horizontal reduction was matched and reduced or operands 10057 /// of one of the binary instruction were vectorized. 10058 /// \returns false if a horizontal reduction was not matched (or not possible) 10059 /// or no vectorization of any binary operation feeding \a Root instruction was 10060 /// performed. 10061 static bool tryToVectorizeHorReductionOrInstOperands( 10062 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 10063 TargetTransformInfo *TTI, 10064 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 10065 if (!ShouldVectorizeHor) 10066 return false; 10067 10068 if (!Root) 10069 return false; 10070 10071 if (Root->getParent() != BB || isa<PHINode>(Root)) 10072 return false; 10073 // Start analysis starting from Root instruction. If horizontal reduction is 10074 // found, try to vectorize it. If it is not a horizontal reduction or 10075 // vectorization is not possible or not effective, and currently analyzed 10076 // instruction is a binary operation, try to vectorize the operands, using 10077 // pre-order DFS traversal order. If the operands were not vectorized, repeat 10078 // the same procedure considering each operand as a possible root of the 10079 // horizontal reduction. 10080 // Interrupt the process if the Root instruction itself was vectorized or all 10081 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 10082 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 10083 // CmpInsts so we can skip extra attempts in 10084 // tryToVectorizeHorReductionOrInstOperands and save compile time. 10085 std::queue<std::pair<Instruction *, unsigned>> Stack; 10086 Stack.emplace(Root, 0); 10087 SmallPtrSet<Value *, 8> VisitedInstrs; 10088 SmallVector<WeakTrackingVH> PostponedInsts; 10089 bool Res = false; 10090 auto &&TryToReduce = [TTI, &P, &R](Instruction *Inst, Value *&B0, 10091 Value *&B1) -> Value * { 10092 bool IsBinop = matchRdxBop(Inst, B0, B1); 10093 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 10094 if (IsBinop || IsSelect) { 10095 HorizontalReduction HorRdx; 10096 if (HorRdx.matchAssociativeReduction(P, Inst)) 10097 return HorRdx.tryToReduce(R, TTI); 10098 } 10099 return nullptr; 10100 }; 10101 while (!Stack.empty()) { 10102 Instruction *Inst; 10103 unsigned Level; 10104 std::tie(Inst, Level) = Stack.front(); 10105 Stack.pop(); 10106 // Do not try to analyze instruction that has already been vectorized. 10107 // This may happen when we vectorize instruction operands on a previous 10108 // iteration while stack was populated before that happened. 10109 if (R.isDeleted(Inst)) 10110 continue; 10111 Value *B0 = nullptr, *B1 = nullptr; 10112 if (Value *V = TryToReduce(Inst, B0, B1)) { 10113 Res = true; 10114 // Set P to nullptr to avoid re-analysis of phi node in 10115 // matchAssociativeReduction function unless this is the root node. 10116 P = nullptr; 10117 if (auto *I = dyn_cast<Instruction>(V)) { 10118 // Try to find another reduction. 10119 Stack.emplace(I, Level); 10120 continue; 10121 } 10122 } else { 10123 bool IsBinop = B0 && B1; 10124 if (P && IsBinop) { 10125 Inst = dyn_cast<Instruction>(B0); 10126 if (Inst == P) 10127 Inst = dyn_cast<Instruction>(B1); 10128 if (!Inst) { 10129 // Set P to nullptr to avoid re-analysis of phi node in 10130 // matchAssociativeReduction function unless this is the root node. 10131 P = nullptr; 10132 continue; 10133 } 10134 } 10135 // Set P to nullptr to avoid re-analysis of phi node in 10136 // matchAssociativeReduction function unless this is the root node. 10137 P = nullptr; 10138 // Do not try to vectorize CmpInst operands, this is done separately. 10139 // Final attempt for binop args vectorization should happen after the loop 10140 // to try to find reductions. 10141 if (!isa<CmpInst>(Inst)) 10142 PostponedInsts.push_back(Inst); 10143 } 10144 10145 // Try to vectorize operands. 10146 // Continue analysis for the instruction from the same basic block only to 10147 // save compile time. 10148 if (++Level < RecursionMaxDepth) 10149 for (auto *Op : Inst->operand_values()) 10150 if (VisitedInstrs.insert(Op).second) 10151 if (auto *I = dyn_cast<Instruction>(Op)) 10152 // Do not try to vectorize CmpInst operands, this is done 10153 // separately. 10154 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 10155 I->getParent() == BB) 10156 Stack.emplace(I, Level); 10157 } 10158 // Try to vectorized binops where reductions were not found. 10159 for (Value *V : PostponedInsts) 10160 if (auto *Inst = dyn_cast<Instruction>(V)) 10161 if (!R.isDeleted(Inst)) 10162 Res |= Vectorize(Inst, R); 10163 return Res; 10164 } 10165 10166 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 10167 BasicBlock *BB, BoUpSLP &R, 10168 TargetTransformInfo *TTI) { 10169 auto *I = dyn_cast_or_null<Instruction>(V); 10170 if (!I) 10171 return false; 10172 10173 if (!isa<BinaryOperator>(I)) 10174 P = nullptr; 10175 // Try to match and vectorize a horizontal reduction. 10176 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 10177 return tryToVectorize(I, R); 10178 }; 10179 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 10180 ExtraVectorization); 10181 } 10182 10183 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 10184 BasicBlock *BB, BoUpSLP &R) { 10185 const DataLayout &DL = BB->getModule()->getDataLayout(); 10186 if (!R.canMapToVector(IVI->getType(), DL)) 10187 return false; 10188 10189 SmallVector<Value *, 16> BuildVectorOpds; 10190 SmallVector<Value *, 16> BuildVectorInsts; 10191 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 10192 return false; 10193 10194 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 10195 // Aggregate value is unlikely to be processed in vector register. 10196 return tryToVectorizeList(BuildVectorOpds, R); 10197 } 10198 10199 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 10200 BasicBlock *BB, BoUpSLP &R) { 10201 SmallVector<Value *, 16> BuildVectorInsts; 10202 SmallVector<Value *, 16> BuildVectorOpds; 10203 SmallVector<int> Mask; 10204 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 10205 (llvm::all_of( 10206 BuildVectorOpds, 10207 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) && 10208 isFixedVectorShuffle(BuildVectorOpds, Mask))) 10209 return false; 10210 10211 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 10212 return tryToVectorizeList(BuildVectorInsts, R); 10213 } 10214 10215 template <typename T> 10216 static bool 10217 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 10218 function_ref<unsigned(T *)> Limit, 10219 function_ref<bool(T *, T *)> Comparator, 10220 function_ref<bool(T *, T *)> AreCompatible, 10221 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper, 10222 bool LimitForRegisterSize) { 10223 bool Changed = false; 10224 // Sort by type, parent, operands. 10225 stable_sort(Incoming, Comparator); 10226 10227 // Try to vectorize elements base on their type. 10228 SmallVector<T *> Candidates; 10229 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 10230 // Look for the next elements with the same type, parent and operand 10231 // kinds. 10232 auto *SameTypeIt = IncIt; 10233 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 10234 ++SameTypeIt; 10235 10236 // Try to vectorize them. 10237 unsigned NumElts = (SameTypeIt - IncIt); 10238 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 10239 << NumElts << ")\n"); 10240 // The vectorization is a 3-state attempt: 10241 // 1. Try to vectorize instructions with the same/alternate opcodes with the 10242 // size of maximal register at first. 10243 // 2. Try to vectorize remaining instructions with the same type, if 10244 // possible. This may result in the better vectorization results rather than 10245 // if we try just to vectorize instructions with the same/alternate opcodes. 10246 // 3. Final attempt to try to vectorize all instructions with the 10247 // same/alternate ops only, this may result in some extra final 10248 // vectorization. 10249 if (NumElts > 1 && 10250 TryToVectorizeHelper(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 10251 // Success start over because instructions might have been changed. 10252 Changed = true; 10253 } else if (NumElts < Limit(*IncIt) && 10254 (Candidates.empty() || 10255 Candidates.front()->getType() == (*IncIt)->getType())) { 10256 Candidates.append(IncIt, std::next(IncIt, NumElts)); 10257 } 10258 // Final attempt to vectorize instructions with the same types. 10259 if (Candidates.size() > 1 && 10260 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 10261 if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) { 10262 // Success start over because instructions might have been changed. 10263 Changed = true; 10264 } else if (LimitForRegisterSize) { 10265 // Try to vectorize using small vectors. 10266 for (auto *It = Candidates.begin(), *End = Candidates.end(); 10267 It != End;) { 10268 auto *SameTypeIt = It; 10269 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 10270 ++SameTypeIt; 10271 unsigned NumElts = (SameTypeIt - It); 10272 if (NumElts > 1 && TryToVectorizeHelper(makeArrayRef(It, NumElts), 10273 /*LimitForRegisterSize=*/false)) 10274 Changed = true; 10275 It = SameTypeIt; 10276 } 10277 } 10278 Candidates.clear(); 10279 } 10280 10281 // Start over at the next instruction of a different type (or the end). 10282 IncIt = SameTypeIt; 10283 } 10284 return Changed; 10285 } 10286 10287 /// Compare two cmp instructions. If IsCompatibility is true, function returns 10288 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding 10289 /// operands. If IsCompatibility is false, function implements strict weak 10290 /// ordering relation between two cmp instructions, returning true if the first 10291 /// instruction is "less" than the second, i.e. its predicate is less than the 10292 /// predicate of the second or the operands IDs are less than the operands IDs 10293 /// of the second cmp instruction. 10294 template <bool IsCompatibility> 10295 static bool compareCmp(Value *V, Value *V2, 10296 function_ref<bool(Instruction *)> IsDeleted) { 10297 auto *CI1 = cast<CmpInst>(V); 10298 auto *CI2 = cast<CmpInst>(V2); 10299 if (IsDeleted(CI2) || !isValidElementType(CI2->getType())) 10300 return false; 10301 if (CI1->getOperand(0)->getType()->getTypeID() < 10302 CI2->getOperand(0)->getType()->getTypeID()) 10303 return !IsCompatibility; 10304 if (CI1->getOperand(0)->getType()->getTypeID() > 10305 CI2->getOperand(0)->getType()->getTypeID()) 10306 return false; 10307 CmpInst::Predicate Pred1 = CI1->getPredicate(); 10308 CmpInst::Predicate Pred2 = CI2->getPredicate(); 10309 CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1); 10310 CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2); 10311 CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1); 10312 CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2); 10313 if (BasePred1 < BasePred2) 10314 return !IsCompatibility; 10315 if (BasePred1 > BasePred2) 10316 return false; 10317 // Compare operands. 10318 bool LEPreds = Pred1 <= Pred2; 10319 bool GEPreds = Pred1 >= Pred2; 10320 for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) { 10321 auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1); 10322 auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1); 10323 if (Op1->getValueID() < Op2->getValueID()) 10324 return !IsCompatibility; 10325 if (Op1->getValueID() > Op2->getValueID()) 10326 return false; 10327 if (auto *I1 = dyn_cast<Instruction>(Op1)) 10328 if (auto *I2 = dyn_cast<Instruction>(Op2)) { 10329 if (I1->getParent() != I2->getParent()) 10330 return false; 10331 InstructionsState S = getSameOpcode({I1, I2}); 10332 if (S.getOpcode()) 10333 continue; 10334 return false; 10335 } 10336 } 10337 return IsCompatibility; 10338 } 10339 10340 bool SLPVectorizerPass::vectorizeSimpleInstructions( 10341 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 10342 bool AtTerminator) { 10343 bool OpsChanged = false; 10344 SmallVector<Instruction *, 4> PostponedCmps; 10345 for (auto *I : reverse(Instructions)) { 10346 if (R.isDeleted(I)) 10347 continue; 10348 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 10349 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 10350 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 10351 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 10352 else if (isa<CmpInst>(I)) 10353 PostponedCmps.push_back(I); 10354 } 10355 if (AtTerminator) { 10356 // Try to find reductions first. 10357 for (Instruction *I : PostponedCmps) { 10358 if (R.isDeleted(I)) 10359 continue; 10360 for (Value *Op : I->operands()) 10361 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 10362 } 10363 // Try to vectorize operands as vector bundles. 10364 for (Instruction *I : PostponedCmps) { 10365 if (R.isDeleted(I)) 10366 continue; 10367 OpsChanged |= tryToVectorize(I, R); 10368 } 10369 // Try to vectorize list of compares. 10370 // Sort by type, compare predicate, etc. 10371 auto &&CompareSorter = [&R](Value *V, Value *V2) { 10372 return compareCmp<false>(V, V2, 10373 [&R](Instruction *I) { return R.isDeleted(I); }); 10374 }; 10375 10376 auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) { 10377 if (V1 == V2) 10378 return true; 10379 return compareCmp<true>(V1, V2, 10380 [&R](Instruction *I) { return R.isDeleted(I); }); 10381 }; 10382 auto Limit = [&R](Value *V) { 10383 unsigned EltSize = R.getVectorElementSize(V); 10384 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10385 }; 10386 10387 SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end()); 10388 OpsChanged |= tryToVectorizeSequence<Value>( 10389 Vals, Limit, CompareSorter, AreCompatibleCompares, 10390 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10391 // Exclude possible reductions from other blocks. 10392 bool ArePossiblyReducedInOtherBlock = 10393 any_of(Candidates, [](Value *V) { 10394 return any_of(V->users(), [V](User *U) { 10395 return isa<SelectInst>(U) && 10396 cast<SelectInst>(U)->getParent() != 10397 cast<Instruction>(V)->getParent(); 10398 }); 10399 }); 10400 if (ArePossiblyReducedInOtherBlock) 10401 return false; 10402 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10403 }, 10404 /*LimitForRegisterSize=*/true); 10405 Instructions.clear(); 10406 } else { 10407 // Insert in reverse order since the PostponedCmps vector was filled in 10408 // reverse order. 10409 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 10410 } 10411 return OpsChanged; 10412 } 10413 10414 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 10415 bool Changed = false; 10416 SmallVector<Value *, 4> Incoming; 10417 SmallPtrSet<Value *, 16> VisitedInstrs; 10418 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 10419 // node. Allows better to identify the chains that can be vectorized in the 10420 // better way. 10421 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 10422 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 10423 assert(isValidElementType(V1->getType()) && 10424 isValidElementType(V2->getType()) && 10425 "Expected vectorizable types only."); 10426 // It is fine to compare type IDs here, since we expect only vectorizable 10427 // types, like ints, floats and pointers, we don't care about other type. 10428 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 10429 return true; 10430 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 10431 return false; 10432 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10433 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10434 if (Opcodes1.size() < Opcodes2.size()) 10435 return true; 10436 if (Opcodes1.size() > Opcodes2.size()) 10437 return false; 10438 Optional<bool> ConstOrder; 10439 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10440 // Undefs are compatible with any other value. 10441 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) { 10442 if (!ConstOrder) 10443 ConstOrder = 10444 !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]); 10445 continue; 10446 } 10447 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10448 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10449 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 10450 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 10451 if (!NodeI1) 10452 return NodeI2 != nullptr; 10453 if (!NodeI2) 10454 return false; 10455 assert((NodeI1 == NodeI2) == 10456 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10457 "Different nodes should have different DFS numbers"); 10458 if (NodeI1 != NodeI2) 10459 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10460 InstructionsState S = getSameOpcode({I1, I2}); 10461 if (S.getOpcode()) 10462 continue; 10463 return I1->getOpcode() < I2->getOpcode(); 10464 } 10465 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) { 10466 if (!ConstOrder) 10467 ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID(); 10468 continue; 10469 } 10470 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 10471 return true; 10472 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 10473 return false; 10474 } 10475 return ConstOrder && *ConstOrder; 10476 }; 10477 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 10478 if (V1 == V2) 10479 return true; 10480 if (V1->getType() != V2->getType()) 10481 return false; 10482 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10483 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10484 if (Opcodes1.size() != Opcodes2.size()) 10485 return false; 10486 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10487 // Undefs are compatible with any other value. 10488 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 10489 continue; 10490 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10491 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10492 if (I1->getParent() != I2->getParent()) 10493 return false; 10494 InstructionsState S = getSameOpcode({I1, I2}); 10495 if (S.getOpcode()) 10496 continue; 10497 return false; 10498 } 10499 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 10500 continue; 10501 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 10502 return false; 10503 } 10504 return true; 10505 }; 10506 auto Limit = [&R](Value *V) { 10507 unsigned EltSize = R.getVectorElementSize(V); 10508 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10509 }; 10510 10511 bool HaveVectorizedPhiNodes = false; 10512 do { 10513 // Collect the incoming values from the PHIs. 10514 Incoming.clear(); 10515 for (Instruction &I : *BB) { 10516 PHINode *P = dyn_cast<PHINode>(&I); 10517 if (!P) 10518 break; 10519 10520 // No need to analyze deleted, vectorized and non-vectorizable 10521 // instructions. 10522 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 10523 isValidElementType(P->getType())) 10524 Incoming.push_back(P); 10525 } 10526 10527 // Find the corresponding non-phi nodes for better matching when trying to 10528 // build the tree. 10529 for (Value *V : Incoming) { 10530 SmallVectorImpl<Value *> &Opcodes = 10531 PHIToOpcodes.try_emplace(V).first->getSecond(); 10532 if (!Opcodes.empty()) 10533 continue; 10534 SmallVector<Value *, 4> Nodes(1, V); 10535 SmallPtrSet<Value *, 4> Visited; 10536 while (!Nodes.empty()) { 10537 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 10538 if (!Visited.insert(PHI).second) 10539 continue; 10540 for (Value *V : PHI->incoming_values()) { 10541 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 10542 Nodes.push_back(PHI1); 10543 continue; 10544 } 10545 Opcodes.emplace_back(V); 10546 } 10547 } 10548 } 10549 10550 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 10551 Incoming, Limit, PHICompare, AreCompatiblePHIs, 10552 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10553 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10554 }, 10555 /*LimitForRegisterSize=*/true); 10556 Changed |= HaveVectorizedPhiNodes; 10557 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 10558 } while (HaveVectorizedPhiNodes); 10559 10560 VisitedInstrs.clear(); 10561 10562 SmallVector<Instruction *, 8> PostProcessInstructions; 10563 SmallDenseSet<Instruction *, 4> KeyNodes; 10564 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 10565 // Skip instructions with scalable type. The num of elements is unknown at 10566 // compile-time for scalable type. 10567 if (isa<ScalableVectorType>(it->getType())) 10568 continue; 10569 10570 // Skip instructions marked for the deletion. 10571 if (R.isDeleted(&*it)) 10572 continue; 10573 // We may go through BB multiple times so skip the one we have checked. 10574 if (!VisitedInstrs.insert(&*it).second) { 10575 if (it->use_empty() && KeyNodes.contains(&*it) && 10576 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10577 it->isTerminator())) { 10578 // We would like to start over since some instructions are deleted 10579 // and the iterator may become invalid value. 10580 Changed = true; 10581 it = BB->begin(); 10582 e = BB->end(); 10583 } 10584 continue; 10585 } 10586 10587 if (isa<DbgInfoIntrinsic>(it)) 10588 continue; 10589 10590 // Try to vectorize reductions that use PHINodes. 10591 if (PHINode *P = dyn_cast<PHINode>(it)) { 10592 // Check that the PHI is a reduction PHI. 10593 if (P->getNumIncomingValues() == 2) { 10594 // Try to match and vectorize a horizontal reduction. 10595 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 10596 TTI)) { 10597 Changed = true; 10598 it = BB->begin(); 10599 e = BB->end(); 10600 continue; 10601 } 10602 } 10603 // Try to vectorize the incoming values of the PHI, to catch reductions 10604 // that feed into PHIs. 10605 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 10606 // Skip if the incoming block is the current BB for now. Also, bypass 10607 // unreachable IR for efficiency and to avoid crashing. 10608 // TODO: Collect the skipped incoming values and try to vectorize them 10609 // after processing BB. 10610 if (BB == P->getIncomingBlock(I) || 10611 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 10612 continue; 10613 10614 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 10615 P->getIncomingBlock(I), R, TTI); 10616 } 10617 continue; 10618 } 10619 10620 // Ran into an instruction without users, like terminator, or function call 10621 // with ignored return value, store. Ignore unused instructions (basing on 10622 // instruction type, except for CallInst and InvokeInst). 10623 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 10624 isa<InvokeInst>(it))) { 10625 KeyNodes.insert(&*it); 10626 bool OpsChanged = false; 10627 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 10628 for (auto *V : it->operand_values()) { 10629 // Try to match and vectorize a horizontal reduction. 10630 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 10631 } 10632 } 10633 // Start vectorization of post-process list of instructions from the 10634 // top-tree instructions to try to vectorize as many instructions as 10635 // possible. 10636 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10637 it->isTerminator()); 10638 if (OpsChanged) { 10639 // We would like to start over since some instructions are deleted 10640 // and the iterator may become invalid value. 10641 Changed = true; 10642 it = BB->begin(); 10643 e = BB->end(); 10644 continue; 10645 } 10646 } 10647 10648 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 10649 isa<InsertValueInst>(it)) 10650 PostProcessInstructions.push_back(&*it); 10651 } 10652 10653 return Changed; 10654 } 10655 10656 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 10657 auto Changed = false; 10658 for (auto &Entry : GEPs) { 10659 // If the getelementptr list has fewer than two elements, there's nothing 10660 // to do. 10661 if (Entry.second.size() < 2) 10662 continue; 10663 10664 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 10665 << Entry.second.size() << ".\n"); 10666 10667 // Process the GEP list in chunks suitable for the target's supported 10668 // vector size. If a vector register can't hold 1 element, we are done. We 10669 // are trying to vectorize the index computations, so the maximum number of 10670 // elements is based on the size of the index expression, rather than the 10671 // size of the GEP itself (the target's pointer size). 10672 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 10673 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 10674 if (MaxVecRegSize < EltSize) 10675 continue; 10676 10677 unsigned MaxElts = MaxVecRegSize / EltSize; 10678 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 10679 auto Len = std::min<unsigned>(BE - BI, MaxElts); 10680 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 10681 10682 // Initialize a set a candidate getelementptrs. Note that we use a 10683 // SetVector here to preserve program order. If the index computations 10684 // are vectorizable and begin with loads, we want to minimize the chance 10685 // of having to reorder them later. 10686 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 10687 10688 // Some of the candidates may have already been vectorized after we 10689 // initially collected them. If so, they are marked as deleted, so remove 10690 // them from the set of candidates. 10691 Candidates.remove_if( 10692 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 10693 10694 // Remove from the set of candidates all pairs of getelementptrs with 10695 // constant differences. Such getelementptrs are likely not good 10696 // candidates for vectorization in a bottom-up phase since one can be 10697 // computed from the other. We also ensure all candidate getelementptr 10698 // indices are unique. 10699 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 10700 auto *GEPI = GEPList[I]; 10701 if (!Candidates.count(GEPI)) 10702 continue; 10703 auto *SCEVI = SE->getSCEV(GEPList[I]); 10704 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 10705 auto *GEPJ = GEPList[J]; 10706 auto *SCEVJ = SE->getSCEV(GEPList[J]); 10707 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 10708 Candidates.remove(GEPI); 10709 Candidates.remove(GEPJ); 10710 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 10711 Candidates.remove(GEPJ); 10712 } 10713 } 10714 } 10715 10716 // We break out of the above computation as soon as we know there are 10717 // fewer than two candidates remaining. 10718 if (Candidates.size() < 2) 10719 continue; 10720 10721 // Add the single, non-constant index of each candidate to the bundle. We 10722 // ensured the indices met these constraints when we originally collected 10723 // the getelementptrs. 10724 SmallVector<Value *, 16> Bundle(Candidates.size()); 10725 auto BundleIndex = 0u; 10726 for (auto *V : Candidates) { 10727 auto *GEP = cast<GetElementPtrInst>(V); 10728 auto *GEPIdx = GEP->idx_begin()->get(); 10729 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 10730 Bundle[BundleIndex++] = GEPIdx; 10731 } 10732 10733 // Try and vectorize the indices. We are currently only interested in 10734 // gather-like cases of the form: 10735 // 10736 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 10737 // 10738 // where the loads of "a", the loads of "b", and the subtractions can be 10739 // performed in parallel. It's likely that detecting this pattern in a 10740 // bottom-up phase will be simpler and less costly than building a 10741 // full-blown top-down phase beginning at the consecutive loads. 10742 Changed |= tryToVectorizeList(Bundle, R); 10743 } 10744 } 10745 return Changed; 10746 } 10747 10748 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 10749 bool Changed = false; 10750 // Sort by type, base pointers and values operand. Value operands must be 10751 // compatible (have the same opcode, same parent), otherwise it is 10752 // definitely not profitable to try to vectorize them. 10753 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 10754 if (V->getPointerOperandType()->getTypeID() < 10755 V2->getPointerOperandType()->getTypeID()) 10756 return true; 10757 if (V->getPointerOperandType()->getTypeID() > 10758 V2->getPointerOperandType()->getTypeID()) 10759 return false; 10760 // UndefValues are compatible with all other values. 10761 if (isa<UndefValue>(V->getValueOperand()) || 10762 isa<UndefValue>(V2->getValueOperand())) 10763 return false; 10764 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 10765 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10766 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 10767 DT->getNode(I1->getParent()); 10768 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 10769 DT->getNode(I2->getParent()); 10770 assert(NodeI1 && "Should only process reachable instructions"); 10771 assert(NodeI1 && "Should only process reachable instructions"); 10772 assert((NodeI1 == NodeI2) == 10773 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10774 "Different nodes should have different DFS numbers"); 10775 if (NodeI1 != NodeI2) 10776 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10777 InstructionsState S = getSameOpcode({I1, I2}); 10778 if (S.getOpcode()) 10779 return false; 10780 return I1->getOpcode() < I2->getOpcode(); 10781 } 10782 if (isa<Constant>(V->getValueOperand()) && 10783 isa<Constant>(V2->getValueOperand())) 10784 return false; 10785 return V->getValueOperand()->getValueID() < 10786 V2->getValueOperand()->getValueID(); 10787 }; 10788 10789 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 10790 if (V1 == V2) 10791 return true; 10792 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 10793 return false; 10794 // Undefs are compatible with any other value. 10795 if (isa<UndefValue>(V1->getValueOperand()) || 10796 isa<UndefValue>(V2->getValueOperand())) 10797 return true; 10798 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 10799 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10800 if (I1->getParent() != I2->getParent()) 10801 return false; 10802 InstructionsState S = getSameOpcode({I1, I2}); 10803 return S.getOpcode() > 0; 10804 } 10805 if (isa<Constant>(V1->getValueOperand()) && 10806 isa<Constant>(V2->getValueOperand())) 10807 return true; 10808 return V1->getValueOperand()->getValueID() == 10809 V2->getValueOperand()->getValueID(); 10810 }; 10811 auto Limit = [&R, this](StoreInst *SI) { 10812 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 10813 return R.getMinVF(EltSize); 10814 }; 10815 10816 // Attempt to sort and vectorize each of the store-groups. 10817 for (auto &Pair : Stores) { 10818 if (Pair.second.size() < 2) 10819 continue; 10820 10821 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 10822 << Pair.second.size() << ".\n"); 10823 10824 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 10825 continue; 10826 10827 Changed |= tryToVectorizeSequence<StoreInst>( 10828 Pair.second, Limit, StoreSorter, AreCompatibleStores, 10829 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 10830 return vectorizeStores(Candidates, R); 10831 }, 10832 /*LimitForRegisterSize=*/false); 10833 } 10834 return Changed; 10835 } 10836 10837 char SLPVectorizer::ID = 0; 10838 10839 static const char lv_name[] = "SLP Vectorizer"; 10840 10841 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 10842 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 10843 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 10844 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 10845 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 10846 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 10847 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 10848 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 10849 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 10850 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 10851 10852 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 10853