1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/DenseSet.h" 23 #include "llvm/ADT/MapVector.h" 24 #include "llvm/ADT/None.h" 25 #include "llvm/ADT/Optional.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SetVector.h" 29 #include "llvm/ADT/SmallBitVector.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/ADT/iterator.h" 35 #include "llvm/ADT/iterator_range.h" 36 #include "llvm/Analysis/AliasAnalysis.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/LoopAccessAnalysis.h" 41 #include "llvm/Analysis/LoopInfo.h" 42 #include "llvm/Analysis/MemoryLocation.h" 43 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 44 #include "llvm/Analysis/ScalarEvolution.h" 45 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 46 #include "llvm/Analysis/TargetLibraryInfo.h" 47 #include "llvm/Analysis/TargetTransformInfo.h" 48 #include "llvm/Analysis/ValueTracking.h" 49 #include "llvm/Analysis/VectorUtils.h" 50 #include "llvm/IR/Attributes.h" 51 #include "llvm/IR/BasicBlock.h" 52 #include "llvm/IR/Constant.h" 53 #include "llvm/IR/Constants.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/DebugLoc.h" 56 #include "llvm/IR/DerivedTypes.h" 57 #include "llvm/IR/Dominators.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/IRBuilder.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/NoFolder.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PassManager.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/Verifier.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/DOTGraphTraits.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/GraphWriter.h" 85 #include "llvm/Support/KnownBits.h" 86 #include "llvm/Support/MathExtras.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Transforms/Utils/LoopUtils.h" 89 #include "llvm/Transforms/Vectorize.h" 90 #include <algorithm> 91 #include <cassert> 92 #include <cstdint> 93 #include <iterator> 94 #include <memory> 95 #include <set> 96 #include <string> 97 #include <tuple> 98 #include <utility> 99 #include <vector> 100 101 using namespace llvm; 102 using namespace llvm::PatternMatch; 103 using namespace slpvectorizer; 104 105 #define SV_NAME "slp-vectorizer" 106 #define DEBUG_TYPE "SLP" 107 108 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 109 110 cl::opt<bool> 111 llvm::RunSLPVectorization("vectorize-slp", cl::init(false), cl::Hidden, 112 cl::desc("Run the SLP vectorization passes")); 113 114 static cl::opt<int> 115 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 116 cl::desc("Only vectorize if you gain more than this " 117 "number ")); 118 119 static cl::opt<bool> 120 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 121 cl::desc("Attempt to vectorize horizontal reductions")); 122 123 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 124 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 125 cl::desc( 126 "Attempt to vectorize horizontal reductions feeding into a store")); 127 128 static cl::opt<int> 129 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 130 cl::desc("Attempt to vectorize for this register size in bits")); 131 132 static cl::opt<int> 133 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 134 cl::desc("Maximum depth of the lookup for consecutive stores.")); 135 136 /// Limits the size of scheduling regions in a block. 137 /// It avoid long compile times for _very_ large blocks where vector 138 /// instructions are spread over a wide range. 139 /// This limit is way higher than needed by real-world functions. 140 static cl::opt<int> 141 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 142 cl::desc("Limit the size of the SLP scheduling region per block")); 143 144 static cl::opt<int> MinVectorRegSizeOption( 145 "slp-min-reg-size", cl::init(128), cl::Hidden, 146 cl::desc("Attempt to vectorize for this register size in bits")); 147 148 static cl::opt<unsigned> RecursionMaxDepth( 149 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 150 cl::desc("Limit the recursion depth when building a vectorizable tree")); 151 152 static cl::opt<unsigned> MinTreeSize( 153 "slp-min-tree-size", cl::init(3), cl::Hidden, 154 cl::desc("Only vectorize small trees if they are fully vectorizable")); 155 156 // The maximum depth that the look-ahead score heuristic will explore. 157 // The higher this value, the higher the compilation time overhead. 158 static cl::opt<int> LookAheadMaxDepth( 159 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 160 cl::desc("The maximum look-ahead depth for operand reordering scores")); 161 162 // The Look-ahead heuristic goes through the users of the bundle to calculate 163 // the users cost in getExternalUsesCost(). To avoid compilation time increase 164 // we limit the number of users visited to this value. 165 static cl::opt<unsigned> LookAheadUsersBudget( 166 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 167 cl::desc("The maximum number of users to visit while visiting the " 168 "predecessors. This prevents compilation time increase.")); 169 170 static cl::opt<bool> 171 ViewSLPTree("view-slp-tree", cl::Hidden, 172 cl::desc("Display the SLP trees with Graphviz")); 173 174 // Limit the number of alias checks. The limit is chosen so that 175 // it has no negative effect on the llvm benchmarks. 176 static const unsigned AliasedCheckLimit = 10; 177 178 // Another limit for the alias checks: The maximum distance between load/store 179 // instructions where alias checks are done. 180 // This limit is useful for very large basic blocks. 181 static const unsigned MaxMemDepDistance = 160; 182 183 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 184 /// regions to be handled. 185 static const int MinScheduleRegionSize = 16; 186 187 /// Predicate for the element types that the SLP vectorizer supports. 188 /// 189 /// The most important thing to filter here are types which are invalid in LLVM 190 /// vectors. We also filter target specific types which have absolutely no 191 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 192 /// avoids spending time checking the cost model and realizing that they will 193 /// be inevitably scalarized. 194 static bool isValidElementType(Type *Ty) { 195 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 196 !Ty->isPPC_FP128Ty(); 197 } 198 199 /// \returns true if all of the instructions in \p VL are in the same block or 200 /// false otherwise. 201 static bool allSameBlock(ArrayRef<Value *> VL) { 202 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 203 if (!I0) 204 return false; 205 BasicBlock *BB = I0->getParent(); 206 for (int i = 1, e = VL.size(); i < e; i++) { 207 Instruction *I = dyn_cast<Instruction>(VL[i]); 208 if (!I) 209 return false; 210 211 if (BB != I->getParent()) 212 return false; 213 } 214 return true; 215 } 216 217 /// \returns True if all of the values in \p VL are constants (but not 218 /// globals/constant expressions). 219 static bool allConstant(ArrayRef<Value *> VL) { 220 // Constant expressions and globals can't be vectorized like normal integer/FP 221 // constants. 222 for (Value *i : VL) 223 if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i)) 224 return false; 225 return true; 226 } 227 228 /// \returns True if all of the values in \p VL are identical. 229 static bool isSplat(ArrayRef<Value *> VL) { 230 for (unsigned i = 1, e = VL.size(); i < e; ++i) 231 if (VL[i] != VL[0]) 232 return false; 233 return true; 234 } 235 236 /// \returns True if \p I is commutative, handles CmpInst as well as Instruction. 237 static bool isCommutative(Instruction *I) { 238 if (auto *IC = dyn_cast<CmpInst>(I)) 239 return IC->isCommutative(); 240 return I->isCommutative(); 241 } 242 243 /// Checks if the vector of instructions can be represented as a shuffle, like: 244 /// %x0 = extractelement <4 x i8> %x, i32 0 245 /// %x3 = extractelement <4 x i8> %x, i32 3 246 /// %y1 = extractelement <4 x i8> %y, i32 1 247 /// %y2 = extractelement <4 x i8> %y, i32 2 248 /// %x0x0 = mul i8 %x0, %x0 249 /// %x3x3 = mul i8 %x3, %x3 250 /// %y1y1 = mul i8 %y1, %y1 251 /// %y2y2 = mul i8 %y2, %y2 252 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 253 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 254 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 255 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 256 /// ret <4 x i8> %ins4 257 /// can be transformed into: 258 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 259 /// i32 6> 260 /// %2 = mul <4 x i8> %1, %1 261 /// ret <4 x i8> %2 262 /// We convert this initially to something like: 263 /// %x0 = extractelement <4 x i8> %x, i32 0 264 /// %x3 = extractelement <4 x i8> %x, i32 3 265 /// %y1 = extractelement <4 x i8> %y, i32 1 266 /// %y2 = extractelement <4 x i8> %y, i32 2 267 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 268 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 269 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 270 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 271 /// %5 = mul <4 x i8> %4, %4 272 /// %6 = extractelement <4 x i8> %5, i32 0 273 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 274 /// %7 = extractelement <4 x i8> %5, i32 1 275 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 276 /// %8 = extractelement <4 x i8> %5, i32 2 277 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 278 /// %9 = extractelement <4 x i8> %5, i32 3 279 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 280 /// ret <4 x i8> %ins4 281 /// InstCombiner transforms this into a shuffle and vector mul 282 /// TODO: Can we split off and reuse the shuffle mask detection from 283 /// TargetTransformInfo::getInstructionThroughput? 284 static Optional<TargetTransformInfo::ShuffleKind> 285 isShuffle(ArrayRef<Value *> VL) { 286 auto *EI0 = cast<ExtractElementInst>(VL[0]); 287 unsigned Size = EI0->getVectorOperandType()->getVectorNumElements(); 288 Value *Vec1 = nullptr; 289 Value *Vec2 = nullptr; 290 enum ShuffleMode { Unknown, Select, Permute }; 291 ShuffleMode CommonShuffleMode = Unknown; 292 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 293 auto *EI = cast<ExtractElementInst>(VL[I]); 294 auto *Vec = EI->getVectorOperand(); 295 // All vector operands must have the same number of vector elements. 296 if (Vec->getType()->getVectorNumElements() != Size) 297 return None; 298 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 299 if (!Idx) 300 return None; 301 // Undefined behavior if Idx is negative or >= Size. 302 if (Idx->getValue().uge(Size)) 303 continue; 304 unsigned IntIdx = Idx->getValue().getZExtValue(); 305 // We can extractelement from undef vector. 306 if (isa<UndefValue>(Vec)) 307 continue; 308 // For correct shuffling we have to have at most 2 different vector operands 309 // in all extractelement instructions. 310 if (!Vec1 || Vec1 == Vec) 311 Vec1 = Vec; 312 else if (!Vec2 || Vec2 == Vec) 313 Vec2 = Vec; 314 else 315 return None; 316 if (CommonShuffleMode == Permute) 317 continue; 318 // If the extract index is not the same as the operation number, it is a 319 // permutation. 320 if (IntIdx != I) { 321 CommonShuffleMode = Permute; 322 continue; 323 } 324 CommonShuffleMode = Select; 325 } 326 // If we're not crossing lanes in different vectors, consider it as blending. 327 if (CommonShuffleMode == Select && Vec2) 328 return TargetTransformInfo::SK_Select; 329 // If Vec2 was never used, we have a permutation of a single vector, otherwise 330 // we have permutation of 2 vectors. 331 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 332 : TargetTransformInfo::SK_PermuteSingleSrc; 333 } 334 335 namespace { 336 337 /// Main data required for vectorization of instructions. 338 struct InstructionsState { 339 /// The very first instruction in the list with the main opcode. 340 Value *OpValue = nullptr; 341 342 /// The main/alternate instruction. 343 Instruction *MainOp = nullptr; 344 Instruction *AltOp = nullptr; 345 346 /// The main/alternate opcodes for the list of instructions. 347 unsigned getOpcode() const { 348 return MainOp ? MainOp->getOpcode() : 0; 349 } 350 351 unsigned getAltOpcode() const { 352 return AltOp ? AltOp->getOpcode() : 0; 353 } 354 355 /// Some of the instructions in the list have alternate opcodes. 356 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 357 358 bool isOpcodeOrAlt(Instruction *I) const { 359 unsigned CheckedOpcode = I->getOpcode(); 360 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 361 } 362 363 InstructionsState() = delete; 364 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 365 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 366 }; 367 368 } // end anonymous namespace 369 370 /// Chooses the correct key for scheduling data. If \p Op has the same (or 371 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 372 /// OpValue. 373 static Value *isOneOf(const InstructionsState &S, Value *Op) { 374 auto *I = dyn_cast<Instruction>(Op); 375 if (I && S.isOpcodeOrAlt(I)) 376 return Op; 377 return S.OpValue; 378 } 379 380 /// \returns analysis of the Instructions in \p VL described in 381 /// InstructionsState, the Opcode that we suppose the whole list 382 /// could be vectorized even if its structure is diverse. 383 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 384 unsigned BaseIndex = 0) { 385 // Make sure these are all Instructions. 386 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 387 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 388 389 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 390 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 391 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 392 unsigned AltOpcode = Opcode; 393 unsigned AltIndex = BaseIndex; 394 395 // Check for one alternate opcode from another BinaryOperator. 396 // TODO - generalize to support all operators (types, calls etc.). 397 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 398 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 399 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 400 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 401 continue; 402 if (Opcode == AltOpcode) { 403 AltOpcode = InstOpcode; 404 AltIndex = Cnt; 405 continue; 406 } 407 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 408 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 409 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 410 if (Ty0 == Ty1) { 411 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 412 continue; 413 if (Opcode == AltOpcode) { 414 AltOpcode = InstOpcode; 415 AltIndex = Cnt; 416 continue; 417 } 418 } 419 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 420 continue; 421 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 422 } 423 424 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 425 cast<Instruction>(VL[AltIndex])); 426 } 427 428 /// \returns true if all of the values in \p VL have the same type or false 429 /// otherwise. 430 static bool allSameType(ArrayRef<Value *> VL) { 431 Type *Ty = VL[0]->getType(); 432 for (int i = 1, e = VL.size(); i < e; i++) 433 if (VL[i]->getType() != Ty) 434 return false; 435 436 return true; 437 } 438 439 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 440 static Optional<unsigned> getExtractIndex(Instruction *E) { 441 unsigned Opcode = E->getOpcode(); 442 assert((Opcode == Instruction::ExtractElement || 443 Opcode == Instruction::ExtractValue) && 444 "Expected extractelement or extractvalue instruction."); 445 if (Opcode == Instruction::ExtractElement) { 446 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 447 if (!CI) 448 return None; 449 return CI->getZExtValue(); 450 } 451 ExtractValueInst *EI = cast<ExtractValueInst>(E); 452 if (EI->getNumIndices() != 1) 453 return None; 454 return *EI->idx_begin(); 455 } 456 457 /// \returns True if in-tree use also needs extract. This refers to 458 /// possible scalar operand in vectorized instruction. 459 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 460 TargetLibraryInfo *TLI) { 461 unsigned Opcode = UserInst->getOpcode(); 462 switch (Opcode) { 463 case Instruction::Load: { 464 LoadInst *LI = cast<LoadInst>(UserInst); 465 return (LI->getPointerOperand() == Scalar); 466 } 467 case Instruction::Store: { 468 StoreInst *SI = cast<StoreInst>(UserInst); 469 return (SI->getPointerOperand() == Scalar); 470 } 471 case Instruction::Call: { 472 CallInst *CI = cast<CallInst>(UserInst); 473 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 474 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 475 if (hasVectorInstrinsicScalarOpd(ID, i)) 476 return (CI->getArgOperand(i) == Scalar); 477 } 478 LLVM_FALLTHROUGH; 479 } 480 default: 481 return false; 482 } 483 } 484 485 /// \returns the AA location that is being access by the instruction. 486 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 487 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 488 return MemoryLocation::get(SI); 489 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 490 return MemoryLocation::get(LI); 491 return MemoryLocation(); 492 } 493 494 /// \returns True if the instruction is not a volatile or atomic load/store. 495 static bool isSimple(Instruction *I) { 496 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 497 return LI->isSimple(); 498 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 499 return SI->isSimple(); 500 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 501 return !MI->isVolatile(); 502 return true; 503 } 504 505 namespace llvm { 506 507 namespace slpvectorizer { 508 509 /// Bottom Up SLP Vectorizer. 510 class BoUpSLP { 511 struct TreeEntry; 512 struct ScheduleData; 513 514 public: 515 using ValueList = SmallVector<Value *, 8>; 516 using InstrList = SmallVector<Instruction *, 16>; 517 using ValueSet = SmallPtrSet<Value *, 16>; 518 using StoreList = SmallVector<StoreInst *, 8>; 519 using ExtraValueToDebugLocsMap = 520 MapVector<Value *, SmallVector<Instruction *, 2>>; 521 522 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 523 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 524 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 525 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 526 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 527 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 528 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 529 // Use the vector register size specified by the target unless overridden 530 // by a command-line option. 531 // TODO: It would be better to limit the vectorization factor based on 532 // data type rather than just register size. For example, x86 AVX has 533 // 256-bit registers, but it does not support integer operations 534 // at that width (that requires AVX2). 535 if (MaxVectorRegSizeOption.getNumOccurrences()) 536 MaxVecRegSize = MaxVectorRegSizeOption; 537 else 538 MaxVecRegSize = TTI->getRegisterBitWidth(true); 539 540 if (MinVectorRegSizeOption.getNumOccurrences()) 541 MinVecRegSize = MinVectorRegSizeOption; 542 else 543 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 544 } 545 546 /// Vectorize the tree that starts with the elements in \p VL. 547 /// Returns the vectorized root. 548 Value *vectorizeTree(); 549 550 /// Vectorize the tree but with the list of externally used values \p 551 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 552 /// generated extractvalue instructions. 553 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 554 555 /// \returns the cost incurred by unwanted spills and fills, caused by 556 /// holding live values over call sites. 557 int getSpillCost() const; 558 559 /// \returns the vectorization cost of the subtree that starts at \p VL. 560 /// A negative number means that this is profitable. 561 int getTreeCost(); 562 563 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 564 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 565 void buildTree(ArrayRef<Value *> Roots, 566 ArrayRef<Value *> UserIgnoreLst = None); 567 568 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 569 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 570 /// into account (and updating it, if required) list of externally used 571 /// values stored in \p ExternallyUsedValues. 572 void buildTree(ArrayRef<Value *> Roots, 573 ExtraValueToDebugLocsMap &ExternallyUsedValues, 574 ArrayRef<Value *> UserIgnoreLst = None); 575 576 /// Clear the internal data structures that are created by 'buildTree'. 577 void deleteTree() { 578 VectorizableTree.clear(); 579 ScalarToTreeEntry.clear(); 580 MustGather.clear(); 581 ExternalUses.clear(); 582 NumOpsWantToKeepOrder.clear(); 583 NumOpsWantToKeepOriginalOrder = 0; 584 for (auto &Iter : BlocksSchedules) { 585 BlockScheduling *BS = Iter.second.get(); 586 BS->clear(); 587 } 588 MinBWs.clear(); 589 } 590 591 unsigned getTreeSize() const { return VectorizableTree.size(); } 592 593 /// Perform LICM and CSE on the newly generated gather sequences. 594 void optimizeGatherSequence(); 595 596 /// \returns The best order of instructions for vectorization. 597 Optional<ArrayRef<unsigned>> bestOrder() const { 598 auto I = std::max_element( 599 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 600 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 601 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 602 return D1.second < D2.second; 603 }); 604 if (I == NumOpsWantToKeepOrder.end() || 605 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 606 return None; 607 608 return makeArrayRef(I->getFirst()); 609 } 610 611 /// \return The vector element size in bits to use when vectorizing the 612 /// expression tree ending at \p V. If V is a store, the size is the width of 613 /// the stored value. Otherwise, the size is the width of the largest loaded 614 /// value reaching V. This method is used by the vectorizer to calculate 615 /// vectorization factors. 616 unsigned getVectorElementSize(Value *V) const; 617 618 /// Compute the minimum type sizes required to represent the entries in a 619 /// vectorizable tree. 620 void computeMinimumValueSizes(); 621 622 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 623 unsigned getMaxVecRegSize() const { 624 return MaxVecRegSize; 625 } 626 627 // \returns minimum vector register size as set by cl::opt. 628 unsigned getMinVecRegSize() const { 629 return MinVecRegSize; 630 } 631 632 /// Check if homogeneous aggregate is isomorphic to some VectorType. 633 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 634 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 635 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 636 /// 637 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 638 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 639 640 /// \returns True if the VectorizableTree is both tiny and not fully 641 /// vectorizable. We do not vectorize such trees. 642 bool isTreeTinyAndNotFullyVectorizable() const; 643 644 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 645 /// can be load combined in the backend. Load combining may not be allowed in 646 /// the IR optimizer, so we do not want to alter the pattern. For example, 647 /// partially transforming a scalar bswap() pattern into vector code is 648 /// effectively impossible for the backend to undo. 649 /// TODO: If load combining is allowed in the IR optimizer, this analysis 650 /// may not be necessary. 651 bool isLoadCombineReductionCandidate(unsigned ReductionOpcode) const; 652 653 OptimizationRemarkEmitter *getORE() { return ORE; } 654 655 /// This structure holds any data we need about the edges being traversed 656 /// during buildTree_rec(). We keep track of: 657 /// (i) the user TreeEntry index, and 658 /// (ii) the index of the edge. 659 struct EdgeInfo { 660 EdgeInfo() = default; 661 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 662 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 663 /// The user TreeEntry. 664 TreeEntry *UserTE = nullptr; 665 /// The operand index of the use. 666 unsigned EdgeIdx = UINT_MAX; 667 #ifndef NDEBUG 668 friend inline raw_ostream &operator<<(raw_ostream &OS, 669 const BoUpSLP::EdgeInfo &EI) { 670 EI.dump(OS); 671 return OS; 672 } 673 /// Debug print. 674 void dump(raw_ostream &OS) const { 675 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 676 << " EdgeIdx:" << EdgeIdx << "}"; 677 } 678 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 679 #endif 680 }; 681 682 /// A helper data structure to hold the operands of a vector of instructions. 683 /// This supports a fixed vector length for all operand vectors. 684 class VLOperands { 685 /// For each operand we need (i) the value, and (ii) the opcode that it 686 /// would be attached to if the expression was in a left-linearized form. 687 /// This is required to avoid illegal operand reordering. 688 /// For example: 689 /// \verbatim 690 /// 0 Op1 691 /// |/ 692 /// Op1 Op2 Linearized + Op2 693 /// \ / ----------> |/ 694 /// - - 695 /// 696 /// Op1 - Op2 (0 + Op1) - Op2 697 /// \endverbatim 698 /// 699 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 700 /// 701 /// Another way to think of this is to track all the operations across the 702 /// path from the operand all the way to the root of the tree and to 703 /// calculate the operation that corresponds to this path. For example, the 704 /// path from Op2 to the root crosses the RHS of the '-', therefore the 705 /// corresponding operation is a '-' (which matches the one in the 706 /// linearized tree, as shown above). 707 /// 708 /// For lack of a better term, we refer to this operation as Accumulated 709 /// Path Operation (APO). 710 struct OperandData { 711 OperandData() = default; 712 OperandData(Value *V, bool APO, bool IsUsed) 713 : V(V), APO(APO), IsUsed(IsUsed) {} 714 /// The operand value. 715 Value *V = nullptr; 716 /// TreeEntries only allow a single opcode, or an alternate sequence of 717 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 718 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 719 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 720 /// (e.g., Add/Mul) 721 bool APO = false; 722 /// Helper data for the reordering function. 723 bool IsUsed = false; 724 }; 725 726 /// During operand reordering, we are trying to select the operand at lane 727 /// that matches best with the operand at the neighboring lane. Our 728 /// selection is based on the type of value we are looking for. For example, 729 /// if the neighboring lane has a load, we need to look for a load that is 730 /// accessing a consecutive address. These strategies are summarized in the 731 /// 'ReorderingMode' enumerator. 732 enum class ReorderingMode { 733 Load, ///< Matching loads to consecutive memory addresses 734 Opcode, ///< Matching instructions based on opcode (same or alternate) 735 Constant, ///< Matching constants 736 Splat, ///< Matching the same instruction multiple times (broadcast) 737 Failed, ///< We failed to create a vectorizable group 738 }; 739 740 using OperandDataVec = SmallVector<OperandData, 2>; 741 742 /// A vector of operand vectors. 743 SmallVector<OperandDataVec, 4> OpsVec; 744 745 const DataLayout &DL; 746 ScalarEvolution &SE; 747 const BoUpSLP &R; 748 749 /// \returns the operand data at \p OpIdx and \p Lane. 750 OperandData &getData(unsigned OpIdx, unsigned Lane) { 751 return OpsVec[OpIdx][Lane]; 752 } 753 754 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 755 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 756 return OpsVec[OpIdx][Lane]; 757 } 758 759 /// Clears the used flag for all entries. 760 void clearUsed() { 761 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 762 OpIdx != NumOperands; ++OpIdx) 763 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 764 ++Lane) 765 OpsVec[OpIdx][Lane].IsUsed = false; 766 } 767 768 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 769 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 770 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 771 } 772 773 // The hard-coded scores listed here are not very important. When computing 774 // the scores of matching one sub-tree with another, we are basically 775 // counting the number of values that are matching. So even if all scores 776 // are set to 1, we would still get a decent matching result. 777 // However, sometimes we have to break ties. For example we may have to 778 // choose between matching loads vs matching opcodes. This is what these 779 // scores are helping us with: they provide the order of preference. 780 781 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 782 static const int ScoreConsecutiveLoads = 3; 783 /// ExtractElementInst from same vector and consecutive indexes. 784 static const int ScoreConsecutiveExtracts = 3; 785 /// Constants. 786 static const int ScoreConstants = 2; 787 /// Instructions with the same opcode. 788 static const int ScoreSameOpcode = 2; 789 /// Instructions with alt opcodes (e.g, add + sub). 790 static const int ScoreAltOpcodes = 1; 791 /// Identical instructions (a.k.a. splat or broadcast). 792 static const int ScoreSplat = 1; 793 /// Matching with an undef is preferable to failing. 794 static const int ScoreUndef = 1; 795 /// Score for failing to find a decent match. 796 static const int ScoreFail = 0; 797 /// User exteranl to the vectorized code. 798 static const int ExternalUseCost = 1; 799 /// The user is internal but in a different lane. 800 static const int UserInDiffLaneCost = ExternalUseCost; 801 802 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 803 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 804 ScalarEvolution &SE) { 805 auto *LI1 = dyn_cast<LoadInst>(V1); 806 auto *LI2 = dyn_cast<LoadInst>(V2); 807 if (LI1 && LI2) 808 return isConsecutiveAccess(LI1, LI2, DL, SE) 809 ? VLOperands::ScoreConsecutiveLoads 810 : VLOperands::ScoreFail; 811 812 auto *C1 = dyn_cast<Constant>(V1); 813 auto *C2 = dyn_cast<Constant>(V2); 814 if (C1 && C2) 815 return VLOperands::ScoreConstants; 816 817 // Extracts from consecutive indexes of the same vector better score as 818 // the extracts could be optimized away. 819 auto *Ex1 = dyn_cast<ExtractElementInst>(V1); 820 auto *Ex2 = dyn_cast<ExtractElementInst>(V2); 821 if (Ex1 && Ex2 && Ex1->getVectorOperand() == Ex2->getVectorOperand() && 822 cast<ConstantInt>(Ex1->getIndexOperand())->getZExtValue() + 1 == 823 cast<ConstantInt>(Ex2->getIndexOperand())->getZExtValue()) { 824 return VLOperands::ScoreConsecutiveExtracts; 825 } 826 827 auto *I1 = dyn_cast<Instruction>(V1); 828 auto *I2 = dyn_cast<Instruction>(V2); 829 if (I1 && I2) { 830 if (I1 == I2) 831 return VLOperands::ScoreSplat; 832 InstructionsState S = getSameOpcode({I1, I2}); 833 // Note: Only consider instructions with <= 2 operands to avoid 834 // complexity explosion. 835 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 836 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 837 : VLOperands::ScoreSameOpcode; 838 } 839 840 if (isa<UndefValue>(V2)) 841 return VLOperands::ScoreUndef; 842 843 return VLOperands::ScoreFail; 844 } 845 846 /// Holds the values and their lane that are taking part in the look-ahead 847 /// score calculation. This is used in the external uses cost calculation. 848 SmallDenseMap<Value *, int> InLookAheadValues; 849 850 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are 851 /// either external to the vectorized code, or require shuffling. 852 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 853 const std::pair<Value *, int> &RHS) { 854 int Cost = 0; 855 SmallVector<std::pair<Value *, int>, 2> Values = {LHS, RHS}; 856 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 857 Value *V = Values[Idx].first; 858 // Calculate the absolute lane, using the minimum relative lane of LHS 859 // and RHS as base and Idx as the offset. 860 int Ln = std::min(LHS.second, RHS.second) + Idx; 861 assert(Ln >= 0 && "Bad lane calculation"); 862 unsigned UsersBudget = LookAheadUsersBudget; 863 for (User *U : V->users()) { 864 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 865 // The user is in the VectorizableTree. Check if we need to insert. 866 auto It = llvm::find(UserTE->Scalars, U); 867 assert(It != UserTE->Scalars.end() && "U is in UserTE"); 868 int UserLn = std::distance(UserTE->Scalars.begin(), It); 869 assert(UserLn >= 0 && "Bad lane"); 870 if (UserLn != Ln) 871 Cost += UserInDiffLaneCost; 872 } else { 873 // Check if the user is in the look-ahead code. 874 auto It2 = InLookAheadValues.find(U); 875 if (It2 != InLookAheadValues.end()) { 876 // The user is in the look-ahead code. Check the lane. 877 if (It2->second != Ln) 878 Cost += UserInDiffLaneCost; 879 } else { 880 // The user is neither in SLP tree nor in the look-ahead code. 881 Cost += ExternalUseCost; 882 } 883 } 884 // Limit the number of visited uses to cap compilation time. 885 if (--UsersBudget == 0) 886 break; 887 } 888 } 889 return Cost; 890 } 891 892 /// Go through the operands of \p LHS and \p RHS recursively until \p 893 /// MaxLevel, and return the cummulative score. For example: 894 /// \verbatim 895 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 896 /// \ / \ / \ / \ / 897 /// + + + + 898 /// G1 G2 G3 G4 899 /// \endverbatim 900 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 901 /// each level recursively, accumulating the score. It starts from matching 902 /// the additions at level 0, then moves on to the loads (level 1). The 903 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 904 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 905 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 906 /// Please note that the order of the operands does not matter, as we 907 /// evaluate the score of all profitable combinations of operands. In 908 /// other words the score of G1 and G4 is the same as G1 and G2. This 909 /// heuristic is based on ideas described in: 910 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 911 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 912 /// Luís F. W. Góes 913 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 914 const std::pair<Value *, int> &RHS, int CurrLevel, 915 int MaxLevel) { 916 917 Value *V1 = LHS.first; 918 Value *V2 = RHS.first; 919 // Get the shallow score of V1 and V2. 920 int ShallowScoreAtThisLevel = 921 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) - 922 getExternalUsesCost(LHS, RHS)); 923 int Lane1 = LHS.second; 924 int Lane2 = RHS.second; 925 926 // If reached MaxLevel, 927 // or if V1 and V2 are not instructions, 928 // or if they are SPLAT, 929 // or if they are not consecutive, early return the current cost. 930 auto *I1 = dyn_cast<Instruction>(V1); 931 auto *I2 = dyn_cast<Instruction>(V2); 932 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 933 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 934 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel)) 935 return ShallowScoreAtThisLevel; 936 assert(I1 && I2 && "Should have early exited."); 937 938 // Keep track of in-tree values for determining the external-use cost. 939 InLookAheadValues[V1] = Lane1; 940 InLookAheadValues[V2] = Lane2; 941 942 // Contains the I2 operand indexes that got matched with I1 operands. 943 SmallSet<unsigned, 4> Op2Used; 944 945 // Recursion towards the operands of I1 and I2. We are trying all possbile 946 // operand pairs, and keeping track of the best score. 947 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 948 OpIdx1 != NumOperands1; ++OpIdx1) { 949 // Try to pair op1I with the best operand of I2. 950 int MaxTmpScore = 0; 951 unsigned MaxOpIdx2 = 0; 952 bool FoundBest = false; 953 // If I2 is commutative try all combinations. 954 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 955 unsigned ToIdx = isCommutative(I2) 956 ? I2->getNumOperands() 957 : std::min(I2->getNumOperands(), OpIdx1 + 1); 958 assert(FromIdx <= ToIdx && "Bad index"); 959 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 960 // Skip operands already paired with OpIdx1. 961 if (Op2Used.count(OpIdx2)) 962 continue; 963 // Recursively calculate the cost at each level 964 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 965 {I2->getOperand(OpIdx2), Lane2}, 966 CurrLevel + 1, MaxLevel); 967 // Look for the best score. 968 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 969 MaxTmpScore = TmpScore; 970 MaxOpIdx2 = OpIdx2; 971 FoundBest = true; 972 } 973 } 974 if (FoundBest) { 975 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 976 Op2Used.insert(MaxOpIdx2); 977 ShallowScoreAtThisLevel += MaxTmpScore; 978 } 979 } 980 return ShallowScoreAtThisLevel; 981 } 982 983 /// \Returns the look-ahead score, which tells us how much the sub-trees 984 /// rooted at \p LHS and \p RHS match, the more they match the higher the 985 /// score. This helps break ties in an informed way when we cannot decide on 986 /// the order of the operands by just considering the immediate 987 /// predecessors. 988 int getLookAheadScore(const std::pair<Value *, int> &LHS, 989 const std::pair<Value *, int> &RHS) { 990 InLookAheadValues.clear(); 991 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 992 } 993 994 // Search all operands in Ops[*][Lane] for the one that matches best 995 // Ops[OpIdx][LastLane] and return its opreand index. 996 // If no good match can be found, return None. 997 Optional<unsigned> 998 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 999 ArrayRef<ReorderingMode> ReorderingModes) { 1000 unsigned NumOperands = getNumOperands(); 1001 1002 // The operand of the previous lane at OpIdx. 1003 Value *OpLastLane = getData(OpIdx, LastLane).V; 1004 1005 // Our strategy mode for OpIdx. 1006 ReorderingMode RMode = ReorderingModes[OpIdx]; 1007 1008 // The linearized opcode of the operand at OpIdx, Lane. 1009 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1010 1011 // The best operand index and its score. 1012 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1013 // are using the score to differentiate between the two. 1014 struct BestOpData { 1015 Optional<unsigned> Idx = None; 1016 unsigned Score = 0; 1017 } BestOp; 1018 1019 // Iterate through all unused operands and look for the best. 1020 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1021 // Get the operand at Idx and Lane. 1022 OperandData &OpData = getData(Idx, Lane); 1023 Value *Op = OpData.V; 1024 bool OpAPO = OpData.APO; 1025 1026 // Skip already selected operands. 1027 if (OpData.IsUsed) 1028 continue; 1029 1030 // Skip if we are trying to move the operand to a position with a 1031 // different opcode in the linearized tree form. This would break the 1032 // semantics. 1033 if (OpAPO != OpIdxAPO) 1034 continue; 1035 1036 // Look for an operand that matches the current mode. 1037 switch (RMode) { 1038 case ReorderingMode::Load: 1039 case ReorderingMode::Constant: 1040 case ReorderingMode::Opcode: { 1041 bool LeftToRight = Lane > LastLane; 1042 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1043 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1044 unsigned Score = 1045 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1046 if (Score > BestOp.Score) { 1047 BestOp.Idx = Idx; 1048 BestOp.Score = Score; 1049 } 1050 break; 1051 } 1052 case ReorderingMode::Splat: 1053 if (Op == OpLastLane) 1054 BestOp.Idx = Idx; 1055 break; 1056 case ReorderingMode::Failed: 1057 return None; 1058 } 1059 } 1060 1061 if (BestOp.Idx) { 1062 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1063 return BestOp.Idx; 1064 } 1065 // If we could not find a good match return None. 1066 return None; 1067 } 1068 1069 /// Helper for reorderOperandVecs. \Returns the lane that we should start 1070 /// reordering from. This is the one which has the least number of operands 1071 /// that can freely move about. 1072 unsigned getBestLaneToStartReordering() const { 1073 unsigned BestLane = 0; 1074 unsigned Min = UINT_MAX; 1075 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1076 ++Lane) { 1077 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 1078 if (NumFreeOps < Min) { 1079 Min = NumFreeOps; 1080 BestLane = Lane; 1081 } 1082 } 1083 return BestLane; 1084 } 1085 1086 /// \Returns the maximum number of operands that are allowed to be reordered 1087 /// for \p Lane. This is used as a heuristic for selecting the first lane to 1088 /// start operand reordering. 1089 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1090 unsigned CntTrue = 0; 1091 unsigned NumOperands = getNumOperands(); 1092 // Operands with the same APO can be reordered. We therefore need to count 1093 // how many of them we have for each APO, like this: Cnt[APO] = x. 1094 // Since we only have two APOs, namely true and false, we can avoid using 1095 // a map. Instead we can simply count the number of operands that 1096 // correspond to one of them (in this case the 'true' APO), and calculate 1097 // the other by subtracting it from the total number of operands. 1098 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 1099 if (getData(OpIdx, Lane).APO) 1100 ++CntTrue; 1101 unsigned CntFalse = NumOperands - CntTrue; 1102 return std::max(CntTrue, CntFalse); 1103 } 1104 1105 /// Go through the instructions in VL and append their operands. 1106 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1107 assert(!VL.empty() && "Bad VL"); 1108 assert((empty() || VL.size() == getNumLanes()) && 1109 "Expected same number of lanes"); 1110 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1111 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1112 OpsVec.resize(NumOperands); 1113 unsigned NumLanes = VL.size(); 1114 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1115 OpsVec[OpIdx].resize(NumLanes); 1116 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1117 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1118 // Our tree has just 3 nodes: the root and two operands. 1119 // It is therefore trivial to get the APO. We only need to check the 1120 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1121 // RHS operand. The LHS operand of both add and sub is never attached 1122 // to an inversese operation in the linearized form, therefore its APO 1123 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1124 1125 // Since operand reordering is performed on groups of commutative 1126 // operations or alternating sequences (e.g., +, -), we can safely 1127 // tell the inverse operations by checking commutativity. 1128 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1129 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1130 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1131 APO, false}; 1132 } 1133 } 1134 } 1135 1136 /// \returns the number of operands. 1137 unsigned getNumOperands() const { return OpsVec.size(); } 1138 1139 /// \returns the number of lanes. 1140 unsigned getNumLanes() const { return OpsVec[0].size(); } 1141 1142 /// \returns the operand value at \p OpIdx and \p Lane. 1143 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1144 return getData(OpIdx, Lane).V; 1145 } 1146 1147 /// \returns true if the data structure is empty. 1148 bool empty() const { return OpsVec.empty(); } 1149 1150 /// Clears the data. 1151 void clear() { OpsVec.clear(); } 1152 1153 /// \Returns true if there are enough operands identical to \p Op to fill 1154 /// the whole vector. 1155 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1156 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1157 bool OpAPO = getData(OpIdx, Lane).APO; 1158 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1159 if (Ln == Lane) 1160 continue; 1161 // This is set to true if we found a candidate for broadcast at Lane. 1162 bool FoundCandidate = false; 1163 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1164 OperandData &Data = getData(OpI, Ln); 1165 if (Data.APO != OpAPO || Data.IsUsed) 1166 continue; 1167 if (Data.V == Op) { 1168 FoundCandidate = true; 1169 Data.IsUsed = true; 1170 break; 1171 } 1172 } 1173 if (!FoundCandidate) 1174 return false; 1175 } 1176 return true; 1177 } 1178 1179 public: 1180 /// Initialize with all the operands of the instruction vector \p RootVL. 1181 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1182 ScalarEvolution &SE, const BoUpSLP &R) 1183 : DL(DL), SE(SE), R(R) { 1184 // Append all the operands of RootVL. 1185 appendOperandsOfVL(RootVL); 1186 } 1187 1188 /// \Returns a value vector with the operands across all lanes for the 1189 /// opearnd at \p OpIdx. 1190 ValueList getVL(unsigned OpIdx) const { 1191 ValueList OpVL(OpsVec[OpIdx].size()); 1192 assert(OpsVec[OpIdx].size() == getNumLanes() && 1193 "Expected same num of lanes across all operands"); 1194 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1195 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1196 return OpVL; 1197 } 1198 1199 // Performs operand reordering for 2 or more operands. 1200 // The original operands are in OrigOps[OpIdx][Lane]. 1201 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1202 void reorder() { 1203 unsigned NumOperands = getNumOperands(); 1204 unsigned NumLanes = getNumLanes(); 1205 // Each operand has its own mode. We are using this mode to help us select 1206 // the instructions for each lane, so that they match best with the ones 1207 // we have selected so far. 1208 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1209 1210 // This is a greedy single-pass algorithm. We are going over each lane 1211 // once and deciding on the best order right away with no back-tracking. 1212 // However, in order to increase its effectiveness, we start with the lane 1213 // that has operands that can move the least. For example, given the 1214 // following lanes: 1215 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1216 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1217 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1218 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1219 // we will start at Lane 1, since the operands of the subtraction cannot 1220 // be reordered. Then we will visit the rest of the lanes in a circular 1221 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1222 1223 // Find the first lane that we will start our search from. 1224 unsigned FirstLane = getBestLaneToStartReordering(); 1225 1226 // Initialize the modes. 1227 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1228 Value *OpLane0 = getValue(OpIdx, FirstLane); 1229 // Keep track if we have instructions with all the same opcode on one 1230 // side. 1231 if (isa<LoadInst>(OpLane0)) 1232 ReorderingModes[OpIdx] = ReorderingMode::Load; 1233 else if (isa<Instruction>(OpLane0)) { 1234 // Check if OpLane0 should be broadcast. 1235 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1236 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1237 else 1238 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1239 } 1240 else if (isa<Constant>(OpLane0)) 1241 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1242 else if (isa<Argument>(OpLane0)) 1243 // Our best hope is a Splat. It may save some cost in some cases. 1244 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1245 else 1246 // NOTE: This should be unreachable. 1247 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1248 } 1249 1250 // If the initial strategy fails for any of the operand indexes, then we 1251 // perform reordering again in a second pass. This helps avoid assigning 1252 // high priority to the failed strategy, and should improve reordering for 1253 // the non-failed operand indexes. 1254 for (int Pass = 0; Pass != 2; ++Pass) { 1255 // Skip the second pass if the first pass did not fail. 1256 bool StrategyFailed = false; 1257 // Mark all operand data as free to use. 1258 clearUsed(); 1259 // We keep the original operand order for the FirstLane, so reorder the 1260 // rest of the lanes. We are visiting the nodes in a circular fashion, 1261 // using FirstLane as the center point and increasing the radius 1262 // distance. 1263 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1264 // Visit the lane on the right and then the lane on the left. 1265 for (int Direction : {+1, -1}) { 1266 int Lane = FirstLane + Direction * Distance; 1267 if (Lane < 0 || Lane >= (int)NumLanes) 1268 continue; 1269 int LastLane = Lane - Direction; 1270 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1271 "Out of bounds"); 1272 // Look for a good match for each operand. 1273 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1274 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1275 Optional<unsigned> BestIdx = 1276 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1277 // By not selecting a value, we allow the operands that follow to 1278 // select a better matching value. We will get a non-null value in 1279 // the next run of getBestOperand(). 1280 if (BestIdx) { 1281 // Swap the current operand with the one returned by 1282 // getBestOperand(). 1283 swap(OpIdx, BestIdx.getValue(), Lane); 1284 } else { 1285 // We failed to find a best operand, set mode to 'Failed'. 1286 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1287 // Enable the second pass. 1288 StrategyFailed = true; 1289 } 1290 } 1291 } 1292 } 1293 // Skip second pass if the strategy did not fail. 1294 if (!StrategyFailed) 1295 break; 1296 } 1297 } 1298 1299 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1300 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1301 switch (RMode) { 1302 case ReorderingMode::Load: 1303 return "Load"; 1304 case ReorderingMode::Opcode: 1305 return "Opcode"; 1306 case ReorderingMode::Constant: 1307 return "Constant"; 1308 case ReorderingMode::Splat: 1309 return "Splat"; 1310 case ReorderingMode::Failed: 1311 return "Failed"; 1312 } 1313 llvm_unreachable("Unimplemented Reordering Type"); 1314 } 1315 1316 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1317 raw_ostream &OS) { 1318 return OS << getModeStr(RMode); 1319 } 1320 1321 /// Debug print. 1322 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1323 printMode(RMode, dbgs()); 1324 } 1325 1326 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1327 return printMode(RMode, OS); 1328 } 1329 1330 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1331 const unsigned Indent = 2; 1332 unsigned Cnt = 0; 1333 for (const OperandDataVec &OpDataVec : OpsVec) { 1334 OS << "Operand " << Cnt++ << "\n"; 1335 for (const OperandData &OpData : OpDataVec) { 1336 OS.indent(Indent) << "{"; 1337 if (Value *V = OpData.V) 1338 OS << *V; 1339 else 1340 OS << "null"; 1341 OS << ", APO:" << OpData.APO << "}\n"; 1342 } 1343 OS << "\n"; 1344 } 1345 return OS; 1346 } 1347 1348 /// Debug print. 1349 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1350 #endif 1351 }; 1352 1353 /// Checks if the instruction is marked for deletion. 1354 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1355 1356 /// Marks values operands for later deletion by replacing them with Undefs. 1357 void eraseInstructions(ArrayRef<Value *> AV); 1358 1359 ~BoUpSLP(); 1360 1361 private: 1362 /// Checks if all users of \p I are the part of the vectorization tree. 1363 bool areAllUsersVectorized(Instruction *I) const; 1364 1365 /// \returns the cost of the vectorizable entry. 1366 int getEntryCost(TreeEntry *E); 1367 1368 /// This is the recursive part of buildTree. 1369 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1370 const EdgeInfo &EI); 1371 1372 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1373 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1374 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1375 /// returns false, setting \p CurrentOrder to either an empty vector or a 1376 /// non-identity permutation that allows to reuse extract instructions. 1377 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1378 SmallVectorImpl<unsigned> &CurrentOrder) const; 1379 1380 /// Vectorize a single entry in the tree. 1381 Value *vectorizeTree(TreeEntry *E); 1382 1383 /// Vectorize a single entry in the tree, starting in \p VL. 1384 Value *vectorizeTree(ArrayRef<Value *> VL); 1385 1386 /// \returns the scalarization cost for this type. Scalarization in this 1387 /// context means the creation of vectors from a group of scalars. 1388 int getGatherCost(Type *Ty, const DenseSet<unsigned> &ShuffledIndices) const; 1389 1390 /// \returns the scalarization cost for this list of values. Assuming that 1391 /// this subtree gets vectorized, we may need to extract the values from the 1392 /// roots. This method calculates the cost of extracting the values. 1393 int getGatherCost(ArrayRef<Value *> VL) const; 1394 1395 /// Set the Builder insert point to one after the last instruction in 1396 /// the bundle 1397 void setInsertPointAfterBundle(TreeEntry *E); 1398 1399 /// \returns a vector from a collection of scalars in \p VL. 1400 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 1401 1402 /// \returns whether the VectorizableTree is fully vectorizable and will 1403 /// be beneficial even the tree height is tiny. 1404 bool isFullyVectorizableTinyTree() const; 1405 1406 /// Reorder commutative or alt operands to get better probability of 1407 /// generating vectorized code. 1408 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1409 SmallVectorImpl<Value *> &Left, 1410 SmallVectorImpl<Value *> &Right, 1411 const DataLayout &DL, 1412 ScalarEvolution &SE, 1413 const BoUpSLP &R); 1414 struct TreeEntry { 1415 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1416 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1417 1418 /// \returns true if the scalars in VL are equal to this entry. 1419 bool isSame(ArrayRef<Value *> VL) const { 1420 if (VL.size() == Scalars.size()) 1421 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1422 return VL.size() == ReuseShuffleIndices.size() && 1423 std::equal( 1424 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 1425 [this](Value *V, unsigned Idx) { return V == Scalars[Idx]; }); 1426 } 1427 1428 /// A vector of scalars. 1429 ValueList Scalars; 1430 1431 /// The Scalars are vectorized into this value. It is initialized to Null. 1432 Value *VectorizedValue = nullptr; 1433 1434 /// Do we need to gather this sequence ? 1435 enum EntryState { Vectorize, NeedToGather }; 1436 EntryState State; 1437 1438 /// Does this sequence require some shuffling? 1439 SmallVector<unsigned, 4> ReuseShuffleIndices; 1440 1441 /// Does this entry require reordering? 1442 ArrayRef<unsigned> ReorderIndices; 1443 1444 /// Points back to the VectorizableTree. 1445 /// 1446 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1447 /// to be a pointer and needs to be able to initialize the child iterator. 1448 /// Thus we need a reference back to the container to translate the indices 1449 /// to entries. 1450 VecTreeTy &Container; 1451 1452 /// The TreeEntry index containing the user of this entry. We can actually 1453 /// have multiple users so the data structure is not truly a tree. 1454 SmallVector<EdgeInfo, 1> UserTreeIndices; 1455 1456 /// The index of this treeEntry in VectorizableTree. 1457 int Idx = -1; 1458 1459 private: 1460 /// The operands of each instruction in each lane Operands[op_index][lane]. 1461 /// Note: This helps avoid the replication of the code that performs the 1462 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1463 SmallVector<ValueList, 2> Operands; 1464 1465 /// The main/alternate instruction. 1466 Instruction *MainOp = nullptr; 1467 Instruction *AltOp = nullptr; 1468 1469 public: 1470 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1471 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1472 if (Operands.size() < OpIdx + 1) 1473 Operands.resize(OpIdx + 1); 1474 assert(Operands[OpIdx].size() == 0 && "Already resized?"); 1475 Operands[OpIdx].resize(Scalars.size()); 1476 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1477 Operands[OpIdx][Lane] = OpVL[Lane]; 1478 } 1479 1480 /// Set the operands of this bundle in their original order. 1481 void setOperandsInOrder() { 1482 assert(Operands.empty() && "Already initialized?"); 1483 auto *I0 = cast<Instruction>(Scalars[0]); 1484 Operands.resize(I0->getNumOperands()); 1485 unsigned NumLanes = Scalars.size(); 1486 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1487 OpIdx != NumOperands; ++OpIdx) { 1488 Operands[OpIdx].resize(NumLanes); 1489 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1490 auto *I = cast<Instruction>(Scalars[Lane]); 1491 assert(I->getNumOperands() == NumOperands && 1492 "Expected same number of operands"); 1493 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1494 } 1495 } 1496 } 1497 1498 /// \returns the \p OpIdx operand of this TreeEntry. 1499 ValueList &getOperand(unsigned OpIdx) { 1500 assert(OpIdx < Operands.size() && "Off bounds"); 1501 return Operands[OpIdx]; 1502 } 1503 1504 /// \returns the number of operands. 1505 unsigned getNumOperands() const { return Operands.size(); } 1506 1507 /// \return the single \p OpIdx operand. 1508 Value *getSingleOperand(unsigned OpIdx) const { 1509 assert(OpIdx < Operands.size() && "Off bounds"); 1510 assert(!Operands[OpIdx].empty() && "No operand available"); 1511 return Operands[OpIdx][0]; 1512 } 1513 1514 /// Some of the instructions in the list have alternate opcodes. 1515 bool isAltShuffle() const { 1516 return getOpcode() != getAltOpcode(); 1517 } 1518 1519 bool isOpcodeOrAlt(Instruction *I) const { 1520 unsigned CheckedOpcode = I->getOpcode(); 1521 return (getOpcode() == CheckedOpcode || 1522 getAltOpcode() == CheckedOpcode); 1523 } 1524 1525 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1526 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1527 /// \p OpValue. 1528 Value *isOneOf(Value *Op) const { 1529 auto *I = dyn_cast<Instruction>(Op); 1530 if (I && isOpcodeOrAlt(I)) 1531 return Op; 1532 return MainOp; 1533 } 1534 1535 void setOperations(const InstructionsState &S) { 1536 MainOp = S.MainOp; 1537 AltOp = S.AltOp; 1538 } 1539 1540 Instruction *getMainOp() const { 1541 return MainOp; 1542 } 1543 1544 Instruction *getAltOp() const { 1545 return AltOp; 1546 } 1547 1548 /// The main/alternate opcodes for the list of instructions. 1549 unsigned getOpcode() const { 1550 return MainOp ? MainOp->getOpcode() : 0; 1551 } 1552 1553 unsigned getAltOpcode() const { 1554 return AltOp ? AltOp->getOpcode() : 0; 1555 } 1556 1557 /// Update operations state of this entry if reorder occurred. 1558 bool updateStateIfReorder() { 1559 if (ReorderIndices.empty()) 1560 return false; 1561 InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front()); 1562 setOperations(S); 1563 return true; 1564 } 1565 1566 #ifndef NDEBUG 1567 /// Debug printer. 1568 LLVM_DUMP_METHOD void dump() const { 1569 dbgs() << Idx << ".\n"; 1570 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1571 dbgs() << "Operand " << OpI << ":\n"; 1572 for (const Value *V : Operands[OpI]) 1573 dbgs().indent(2) << *V << "\n"; 1574 } 1575 dbgs() << "Scalars: \n"; 1576 for (Value *V : Scalars) 1577 dbgs().indent(2) << *V << "\n"; 1578 dbgs() << "State: "; 1579 switch (State) { 1580 case Vectorize: 1581 dbgs() << "Vectorize\n"; 1582 break; 1583 case NeedToGather: 1584 dbgs() << "NeedToGather\n"; 1585 break; 1586 } 1587 dbgs() << "MainOp: "; 1588 if (MainOp) 1589 dbgs() << *MainOp << "\n"; 1590 else 1591 dbgs() << "NULL\n"; 1592 dbgs() << "AltOp: "; 1593 if (AltOp) 1594 dbgs() << *AltOp << "\n"; 1595 else 1596 dbgs() << "NULL\n"; 1597 dbgs() << "VectorizedValue: "; 1598 if (VectorizedValue) 1599 dbgs() << *VectorizedValue << "\n"; 1600 else 1601 dbgs() << "NULL\n"; 1602 dbgs() << "ReuseShuffleIndices: "; 1603 if (ReuseShuffleIndices.empty()) 1604 dbgs() << "Emtpy"; 1605 else 1606 for (unsigned ReuseIdx : ReuseShuffleIndices) 1607 dbgs() << ReuseIdx << ", "; 1608 dbgs() << "\n"; 1609 dbgs() << "ReorderIndices: "; 1610 for (unsigned ReorderIdx : ReorderIndices) 1611 dbgs() << ReorderIdx << ", "; 1612 dbgs() << "\n"; 1613 dbgs() << "UserTreeIndices: "; 1614 for (const auto &EInfo : UserTreeIndices) 1615 dbgs() << EInfo << ", "; 1616 dbgs() << "\n"; 1617 } 1618 #endif 1619 }; 1620 1621 /// Create a new VectorizableTree entry. 1622 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1623 const InstructionsState &S, 1624 const EdgeInfo &UserTreeIdx, 1625 ArrayRef<unsigned> ReuseShuffleIndices = None, 1626 ArrayRef<unsigned> ReorderIndices = None) { 1627 bool Vectorized = (bool)Bundle; 1628 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1629 TreeEntry *Last = VectorizableTree.back().get(); 1630 Last->Idx = VectorizableTree.size() - 1; 1631 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 1632 Last->State = Vectorized ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 1633 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1634 ReuseShuffleIndices.end()); 1635 Last->ReorderIndices = ReorderIndices; 1636 Last->setOperations(S); 1637 if (Vectorized) { 1638 for (int i = 0, e = VL.size(); i != e; ++i) { 1639 assert(!getTreeEntry(VL[i]) && "Scalar already in tree!"); 1640 ScalarToTreeEntry[VL[i]] = Last; 1641 } 1642 // Update the scheduler bundle to point to this TreeEntry. 1643 unsigned Lane = 0; 1644 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 1645 BundleMember = BundleMember->NextInBundle) { 1646 BundleMember->TE = Last; 1647 BundleMember->Lane = Lane; 1648 ++Lane; 1649 } 1650 assert((!Bundle.getValue() || Lane == VL.size()) && 1651 "Bundle and VL out of sync"); 1652 } else { 1653 MustGather.insert(VL.begin(), VL.end()); 1654 } 1655 1656 if (UserTreeIdx.UserTE) 1657 Last->UserTreeIndices.push_back(UserTreeIdx); 1658 1659 return Last; 1660 } 1661 1662 /// -- Vectorization State -- 1663 /// Holds all of the tree entries. 1664 TreeEntry::VecTreeTy VectorizableTree; 1665 1666 #ifndef NDEBUG 1667 /// Debug printer. 1668 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1669 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1670 VectorizableTree[Id]->dump(); 1671 dbgs() << "\n"; 1672 } 1673 } 1674 #endif 1675 1676 TreeEntry *getTreeEntry(Value *V) { 1677 auto I = ScalarToTreeEntry.find(V); 1678 if (I != ScalarToTreeEntry.end()) 1679 return I->second; 1680 return nullptr; 1681 } 1682 1683 const TreeEntry *getTreeEntry(Value *V) const { 1684 auto I = ScalarToTreeEntry.find(V); 1685 if (I != ScalarToTreeEntry.end()) 1686 return I->second; 1687 return nullptr; 1688 } 1689 1690 /// Maps a specific scalar to its tree entry. 1691 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 1692 1693 /// A list of scalars that we found that we need to keep as scalars. 1694 ValueSet MustGather; 1695 1696 /// This POD struct describes one external user in the vectorized tree. 1697 struct ExternalUser { 1698 ExternalUser(Value *S, llvm::User *U, int L) 1699 : Scalar(S), User(U), Lane(L) {} 1700 1701 // Which scalar in our function. 1702 Value *Scalar; 1703 1704 // Which user that uses the scalar. 1705 llvm::User *User; 1706 1707 // Which lane does the scalar belong to. 1708 int Lane; 1709 }; 1710 using UserList = SmallVector<ExternalUser, 16>; 1711 1712 /// Checks if two instructions may access the same memory. 1713 /// 1714 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 1715 /// is invariant in the calling loop. 1716 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 1717 Instruction *Inst2) { 1718 // First check if the result is already in the cache. 1719 AliasCacheKey key = std::make_pair(Inst1, Inst2); 1720 Optional<bool> &result = AliasCache[key]; 1721 if (result.hasValue()) { 1722 return result.getValue(); 1723 } 1724 MemoryLocation Loc2 = getLocation(Inst2, AA); 1725 bool aliased = true; 1726 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 1727 // Do the alias check. 1728 aliased = AA->alias(Loc1, Loc2); 1729 } 1730 // Store the result in the cache. 1731 result = aliased; 1732 return aliased; 1733 } 1734 1735 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 1736 1737 /// Cache for alias results. 1738 /// TODO: consider moving this to the AliasAnalysis itself. 1739 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 1740 1741 /// Removes an instruction from its block and eventually deletes it. 1742 /// It's like Instruction::eraseFromParent() except that the actual deletion 1743 /// is delayed until BoUpSLP is destructed. 1744 /// This is required to ensure that there are no incorrect collisions in the 1745 /// AliasCache, which can happen if a new instruction is allocated at the 1746 /// same address as a previously deleted instruction. 1747 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 1748 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 1749 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 1750 } 1751 1752 /// Temporary store for deleted instructions. Instructions will be deleted 1753 /// eventually when the BoUpSLP is destructed. 1754 DenseMap<Instruction *, bool> DeletedInstructions; 1755 1756 /// A list of values that need to extracted out of the tree. 1757 /// This list holds pairs of (Internal Scalar : External User). External User 1758 /// can be nullptr, it means that this Internal Scalar will be used later, 1759 /// after vectorization. 1760 UserList ExternalUses; 1761 1762 /// Values used only by @llvm.assume calls. 1763 SmallPtrSet<const Value *, 32> EphValues; 1764 1765 /// Holds all of the instructions that we gathered. 1766 SetVector<Instruction *> GatherSeq; 1767 1768 /// A list of blocks that we are going to CSE. 1769 SetVector<BasicBlock *> CSEBlocks; 1770 1771 /// Contains all scheduling relevant data for an instruction. 1772 /// A ScheduleData either represents a single instruction or a member of an 1773 /// instruction bundle (= a group of instructions which is combined into a 1774 /// vector instruction). 1775 struct ScheduleData { 1776 // The initial value for the dependency counters. It means that the 1777 // dependencies are not calculated yet. 1778 enum { InvalidDeps = -1 }; 1779 1780 ScheduleData() = default; 1781 1782 void init(int BlockSchedulingRegionID, Value *OpVal) { 1783 FirstInBundle = this; 1784 NextInBundle = nullptr; 1785 NextLoadStore = nullptr; 1786 IsScheduled = false; 1787 SchedulingRegionID = BlockSchedulingRegionID; 1788 UnscheduledDepsInBundle = UnscheduledDeps; 1789 clearDependencies(); 1790 OpValue = OpVal; 1791 TE = nullptr; 1792 Lane = -1; 1793 } 1794 1795 /// Returns true if the dependency information has been calculated. 1796 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 1797 1798 /// Returns true for single instructions and for bundle representatives 1799 /// (= the head of a bundle). 1800 bool isSchedulingEntity() const { return FirstInBundle == this; } 1801 1802 /// Returns true if it represents an instruction bundle and not only a 1803 /// single instruction. 1804 bool isPartOfBundle() const { 1805 return NextInBundle != nullptr || FirstInBundle != this; 1806 } 1807 1808 /// Returns true if it is ready for scheduling, i.e. it has no more 1809 /// unscheduled depending instructions/bundles. 1810 bool isReady() const { 1811 assert(isSchedulingEntity() && 1812 "can't consider non-scheduling entity for ready list"); 1813 return UnscheduledDepsInBundle == 0 && !IsScheduled; 1814 } 1815 1816 /// Modifies the number of unscheduled dependencies, also updating it for 1817 /// the whole bundle. 1818 int incrementUnscheduledDeps(int Incr) { 1819 UnscheduledDeps += Incr; 1820 return FirstInBundle->UnscheduledDepsInBundle += Incr; 1821 } 1822 1823 /// Sets the number of unscheduled dependencies to the number of 1824 /// dependencies. 1825 void resetUnscheduledDeps() { 1826 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 1827 } 1828 1829 /// Clears all dependency information. 1830 void clearDependencies() { 1831 Dependencies = InvalidDeps; 1832 resetUnscheduledDeps(); 1833 MemoryDependencies.clear(); 1834 } 1835 1836 void dump(raw_ostream &os) const { 1837 if (!isSchedulingEntity()) { 1838 os << "/ " << *Inst; 1839 } else if (NextInBundle) { 1840 os << '[' << *Inst; 1841 ScheduleData *SD = NextInBundle; 1842 while (SD) { 1843 os << ';' << *SD->Inst; 1844 SD = SD->NextInBundle; 1845 } 1846 os << ']'; 1847 } else { 1848 os << *Inst; 1849 } 1850 } 1851 1852 Instruction *Inst = nullptr; 1853 1854 /// Points to the head in an instruction bundle (and always to this for 1855 /// single instructions). 1856 ScheduleData *FirstInBundle = nullptr; 1857 1858 /// Single linked list of all instructions in a bundle. Null if it is a 1859 /// single instruction. 1860 ScheduleData *NextInBundle = nullptr; 1861 1862 /// Single linked list of all memory instructions (e.g. load, store, call) 1863 /// in the block - until the end of the scheduling region. 1864 ScheduleData *NextLoadStore = nullptr; 1865 1866 /// The dependent memory instructions. 1867 /// This list is derived on demand in calculateDependencies(). 1868 SmallVector<ScheduleData *, 4> MemoryDependencies; 1869 1870 /// This ScheduleData is in the current scheduling region if this matches 1871 /// the current SchedulingRegionID of BlockScheduling. 1872 int SchedulingRegionID = 0; 1873 1874 /// Used for getting a "good" final ordering of instructions. 1875 int SchedulingPriority = 0; 1876 1877 /// The number of dependencies. Constitutes of the number of users of the 1878 /// instruction plus the number of dependent memory instructions (if any). 1879 /// This value is calculated on demand. 1880 /// If InvalidDeps, the number of dependencies is not calculated yet. 1881 int Dependencies = InvalidDeps; 1882 1883 /// The number of dependencies minus the number of dependencies of scheduled 1884 /// instructions. As soon as this is zero, the instruction/bundle gets ready 1885 /// for scheduling. 1886 /// Note that this is negative as long as Dependencies is not calculated. 1887 int UnscheduledDeps = InvalidDeps; 1888 1889 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 1890 /// single instructions. 1891 int UnscheduledDepsInBundle = InvalidDeps; 1892 1893 /// True if this instruction is scheduled (or considered as scheduled in the 1894 /// dry-run). 1895 bool IsScheduled = false; 1896 1897 /// Opcode of the current instruction in the schedule data. 1898 Value *OpValue = nullptr; 1899 1900 /// The TreeEntry that this instruction corresponds to. 1901 TreeEntry *TE = nullptr; 1902 1903 /// The lane of this node in the TreeEntry. 1904 int Lane = -1; 1905 }; 1906 1907 #ifndef NDEBUG 1908 friend inline raw_ostream &operator<<(raw_ostream &os, 1909 const BoUpSLP::ScheduleData &SD) { 1910 SD.dump(os); 1911 return os; 1912 } 1913 #endif 1914 1915 friend struct GraphTraits<BoUpSLP *>; 1916 friend struct DOTGraphTraits<BoUpSLP *>; 1917 1918 /// Contains all scheduling data for a basic block. 1919 struct BlockScheduling { 1920 BlockScheduling(BasicBlock *BB) 1921 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 1922 1923 void clear() { 1924 ReadyInsts.clear(); 1925 ScheduleStart = nullptr; 1926 ScheduleEnd = nullptr; 1927 FirstLoadStoreInRegion = nullptr; 1928 LastLoadStoreInRegion = nullptr; 1929 1930 // Reduce the maximum schedule region size by the size of the 1931 // previous scheduling run. 1932 ScheduleRegionSizeLimit -= ScheduleRegionSize; 1933 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 1934 ScheduleRegionSizeLimit = MinScheduleRegionSize; 1935 ScheduleRegionSize = 0; 1936 1937 // Make a new scheduling region, i.e. all existing ScheduleData is not 1938 // in the new region yet. 1939 ++SchedulingRegionID; 1940 } 1941 1942 ScheduleData *getScheduleData(Value *V) { 1943 ScheduleData *SD = ScheduleDataMap[V]; 1944 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1945 return SD; 1946 return nullptr; 1947 } 1948 1949 ScheduleData *getScheduleData(Value *V, Value *Key) { 1950 if (V == Key) 1951 return getScheduleData(V); 1952 auto I = ExtraScheduleDataMap.find(V); 1953 if (I != ExtraScheduleDataMap.end()) { 1954 ScheduleData *SD = I->second[Key]; 1955 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1956 return SD; 1957 } 1958 return nullptr; 1959 } 1960 1961 bool isInSchedulingRegion(ScheduleData *SD) const { 1962 return SD->SchedulingRegionID == SchedulingRegionID; 1963 } 1964 1965 /// Marks an instruction as scheduled and puts all dependent ready 1966 /// instructions into the ready-list. 1967 template <typename ReadyListType> 1968 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 1969 SD->IsScheduled = true; 1970 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 1971 1972 ScheduleData *BundleMember = SD; 1973 while (BundleMember) { 1974 if (BundleMember->Inst != BundleMember->OpValue) { 1975 BundleMember = BundleMember->NextInBundle; 1976 continue; 1977 } 1978 // Handle the def-use chain dependencies. 1979 1980 // Decrement the unscheduled counter and insert to ready list if ready. 1981 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 1982 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 1983 if (OpDef && OpDef->hasValidDependencies() && 1984 OpDef->incrementUnscheduledDeps(-1) == 0) { 1985 // There are no more unscheduled dependencies after 1986 // decrementing, so we can put the dependent instruction 1987 // into the ready list. 1988 ScheduleData *DepBundle = OpDef->FirstInBundle; 1989 assert(!DepBundle->IsScheduled && 1990 "already scheduled bundle gets ready"); 1991 ReadyList.insert(DepBundle); 1992 LLVM_DEBUG(dbgs() 1993 << "SLP: gets ready (def): " << *DepBundle << "\n"); 1994 } 1995 }); 1996 }; 1997 1998 // If BundleMember is a vector bundle, its operands may have been 1999 // reordered duiring buildTree(). We therefore need to get its operands 2000 // through the TreeEntry. 2001 if (TreeEntry *TE = BundleMember->TE) { 2002 int Lane = BundleMember->Lane; 2003 assert(Lane >= 0 && "Lane not set"); 2004 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2005 OpIdx != NumOperands; ++OpIdx) 2006 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2007 DecrUnsched(I); 2008 } else { 2009 // If BundleMember is a stand-alone instruction, no operand reordering 2010 // has taken place, so we directly access its operands. 2011 for (Use &U : BundleMember->Inst->operands()) 2012 if (auto *I = dyn_cast<Instruction>(U.get())) 2013 DecrUnsched(I); 2014 } 2015 // Handle the memory dependencies. 2016 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2017 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2018 // There are no more unscheduled dependencies after decrementing, 2019 // so we can put the dependent instruction into the ready list. 2020 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2021 assert(!DepBundle->IsScheduled && 2022 "already scheduled bundle gets ready"); 2023 ReadyList.insert(DepBundle); 2024 LLVM_DEBUG(dbgs() 2025 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2026 } 2027 } 2028 BundleMember = BundleMember->NextInBundle; 2029 } 2030 } 2031 2032 void doForAllOpcodes(Value *V, 2033 function_ref<void(ScheduleData *SD)> Action) { 2034 if (ScheduleData *SD = getScheduleData(V)) 2035 Action(SD); 2036 auto I = ExtraScheduleDataMap.find(V); 2037 if (I != ExtraScheduleDataMap.end()) 2038 for (auto &P : I->second) 2039 if (P.second->SchedulingRegionID == SchedulingRegionID) 2040 Action(P.second); 2041 } 2042 2043 /// Put all instructions into the ReadyList which are ready for scheduling. 2044 template <typename ReadyListType> 2045 void initialFillReadyList(ReadyListType &ReadyList) { 2046 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2047 doForAllOpcodes(I, [&](ScheduleData *SD) { 2048 if (SD->isSchedulingEntity() && SD->isReady()) { 2049 ReadyList.insert(SD); 2050 LLVM_DEBUG(dbgs() 2051 << "SLP: initially in ready list: " << *I << "\n"); 2052 } 2053 }); 2054 } 2055 } 2056 2057 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2058 /// cyclic dependencies. This is only a dry-run, no instructions are 2059 /// actually moved at this stage. 2060 /// \returns the scheduling bundle. The returned Optional value is non-None 2061 /// if \p VL is allowed to be scheduled. 2062 Optional<ScheduleData *> 2063 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2064 const InstructionsState &S); 2065 2066 /// Un-bundles a group of instructions. 2067 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2068 2069 /// Allocates schedule data chunk. 2070 ScheduleData *allocateScheduleDataChunks(); 2071 2072 /// Extends the scheduling region so that V is inside the region. 2073 /// \returns true if the region size is within the limit. 2074 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2075 2076 /// Initialize the ScheduleData structures for new instructions in the 2077 /// scheduling region. 2078 void initScheduleData(Instruction *FromI, Instruction *ToI, 2079 ScheduleData *PrevLoadStore, 2080 ScheduleData *NextLoadStore); 2081 2082 /// Updates the dependency information of a bundle and of all instructions/ 2083 /// bundles which depend on the original bundle. 2084 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2085 BoUpSLP *SLP); 2086 2087 /// Sets all instruction in the scheduling region to un-scheduled. 2088 void resetSchedule(); 2089 2090 BasicBlock *BB; 2091 2092 /// Simple memory allocation for ScheduleData. 2093 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2094 2095 /// The size of a ScheduleData array in ScheduleDataChunks. 2096 int ChunkSize; 2097 2098 /// The allocator position in the current chunk, which is the last entry 2099 /// of ScheduleDataChunks. 2100 int ChunkPos; 2101 2102 /// Attaches ScheduleData to Instruction. 2103 /// Note that the mapping survives during all vectorization iterations, i.e. 2104 /// ScheduleData structures are recycled. 2105 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2106 2107 /// Attaches ScheduleData to Instruction with the leading key. 2108 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2109 ExtraScheduleDataMap; 2110 2111 struct ReadyList : SmallVector<ScheduleData *, 8> { 2112 void insert(ScheduleData *SD) { push_back(SD); } 2113 }; 2114 2115 /// The ready-list for scheduling (only used for the dry-run). 2116 ReadyList ReadyInsts; 2117 2118 /// The first instruction of the scheduling region. 2119 Instruction *ScheduleStart = nullptr; 2120 2121 /// The first instruction _after_ the scheduling region. 2122 Instruction *ScheduleEnd = nullptr; 2123 2124 /// The first memory accessing instruction in the scheduling region 2125 /// (can be null). 2126 ScheduleData *FirstLoadStoreInRegion = nullptr; 2127 2128 /// The last memory accessing instruction in the scheduling region 2129 /// (can be null). 2130 ScheduleData *LastLoadStoreInRegion = nullptr; 2131 2132 /// The current size of the scheduling region. 2133 int ScheduleRegionSize = 0; 2134 2135 /// The maximum size allowed for the scheduling region. 2136 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2137 2138 /// The ID of the scheduling region. For a new vectorization iteration this 2139 /// is incremented which "removes" all ScheduleData from the region. 2140 // Make sure that the initial SchedulingRegionID is greater than the 2141 // initial SchedulingRegionID in ScheduleData (which is 0). 2142 int SchedulingRegionID = 1; 2143 }; 2144 2145 /// Attaches the BlockScheduling structures to basic blocks. 2146 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2147 2148 /// Performs the "real" scheduling. Done before vectorization is actually 2149 /// performed in a basic block. 2150 void scheduleBlock(BlockScheduling *BS); 2151 2152 /// List of users to ignore during scheduling and that don't need extracting. 2153 ArrayRef<Value *> UserIgnoreList; 2154 2155 using OrdersType = SmallVector<unsigned, 4>; 2156 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2157 /// sorted SmallVectors of unsigned. 2158 struct OrdersTypeDenseMapInfo { 2159 static OrdersType getEmptyKey() { 2160 OrdersType V; 2161 V.push_back(~1U); 2162 return V; 2163 } 2164 2165 static OrdersType getTombstoneKey() { 2166 OrdersType V; 2167 V.push_back(~2U); 2168 return V; 2169 } 2170 2171 static unsigned getHashValue(const OrdersType &V) { 2172 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2173 } 2174 2175 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2176 return LHS == RHS; 2177 } 2178 }; 2179 2180 /// Contains orders of operations along with the number of bundles that have 2181 /// operations in this order. It stores only those orders that require 2182 /// reordering, if reordering is not required it is counted using \a 2183 /// NumOpsWantToKeepOriginalOrder. 2184 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 2185 /// Number of bundles that do not require reordering. 2186 unsigned NumOpsWantToKeepOriginalOrder = 0; 2187 2188 // Analysis and block reference. 2189 Function *F; 2190 ScalarEvolution *SE; 2191 TargetTransformInfo *TTI; 2192 TargetLibraryInfo *TLI; 2193 AliasAnalysis *AA; 2194 LoopInfo *LI; 2195 DominatorTree *DT; 2196 AssumptionCache *AC; 2197 DemandedBits *DB; 2198 const DataLayout *DL; 2199 OptimizationRemarkEmitter *ORE; 2200 2201 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2202 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2203 2204 /// Instruction builder to construct the vectorized tree. 2205 IRBuilder<> Builder; 2206 2207 /// A map of scalar integer values to the smallest bit width with which they 2208 /// can legally be represented. The values map to (width, signed) pairs, 2209 /// where "width" indicates the minimum bit width and "signed" is True if the 2210 /// value must be signed-extended, rather than zero-extended, back to its 2211 /// original width. 2212 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2213 }; 2214 2215 } // end namespace slpvectorizer 2216 2217 template <> struct GraphTraits<BoUpSLP *> { 2218 using TreeEntry = BoUpSLP::TreeEntry; 2219 2220 /// NodeRef has to be a pointer per the GraphWriter. 2221 using NodeRef = TreeEntry *; 2222 2223 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2224 2225 /// Add the VectorizableTree to the index iterator to be able to return 2226 /// TreeEntry pointers. 2227 struct ChildIteratorType 2228 : public iterator_adaptor_base< 2229 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2230 ContainerTy &VectorizableTree; 2231 2232 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2233 ContainerTy &VT) 2234 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2235 2236 NodeRef operator*() { return I->UserTE; } 2237 }; 2238 2239 static NodeRef getEntryNode(BoUpSLP &R) { 2240 return R.VectorizableTree[0].get(); 2241 } 2242 2243 static ChildIteratorType child_begin(NodeRef N) { 2244 return {N->UserTreeIndices.begin(), N->Container}; 2245 } 2246 2247 static ChildIteratorType child_end(NodeRef N) { 2248 return {N->UserTreeIndices.end(), N->Container}; 2249 } 2250 2251 /// For the node iterator we just need to turn the TreeEntry iterator into a 2252 /// TreeEntry* iterator so that it dereferences to NodeRef. 2253 class nodes_iterator { 2254 using ItTy = ContainerTy::iterator; 2255 ItTy It; 2256 2257 public: 2258 nodes_iterator(const ItTy &It2) : It(It2) {} 2259 NodeRef operator*() { return It->get(); } 2260 nodes_iterator operator++() { 2261 ++It; 2262 return *this; 2263 } 2264 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2265 }; 2266 2267 static nodes_iterator nodes_begin(BoUpSLP *R) { 2268 return nodes_iterator(R->VectorizableTree.begin()); 2269 } 2270 2271 static nodes_iterator nodes_end(BoUpSLP *R) { 2272 return nodes_iterator(R->VectorizableTree.end()); 2273 } 2274 2275 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2276 }; 2277 2278 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2279 using TreeEntry = BoUpSLP::TreeEntry; 2280 2281 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2282 2283 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2284 std::string Str; 2285 raw_string_ostream OS(Str); 2286 if (isSplat(Entry->Scalars)) { 2287 OS << "<splat> " << *Entry->Scalars[0]; 2288 return Str; 2289 } 2290 for (auto V : Entry->Scalars) { 2291 OS << *V; 2292 if (std::any_of( 2293 R->ExternalUses.begin(), R->ExternalUses.end(), 2294 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 2295 OS << " <extract>"; 2296 OS << "\n"; 2297 } 2298 return Str; 2299 } 2300 2301 static std::string getNodeAttributes(const TreeEntry *Entry, 2302 const BoUpSLP *) { 2303 if (Entry->State == TreeEntry::NeedToGather) 2304 return "color=red"; 2305 return ""; 2306 } 2307 }; 2308 2309 } // end namespace llvm 2310 2311 BoUpSLP::~BoUpSLP() { 2312 for (const auto &Pair : DeletedInstructions) { 2313 // Replace operands of ignored instructions with Undefs in case if they were 2314 // marked for deletion. 2315 if (Pair.getSecond()) { 2316 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2317 Pair.getFirst()->replaceAllUsesWith(Undef); 2318 } 2319 Pair.getFirst()->dropAllReferences(); 2320 } 2321 for (const auto &Pair : DeletedInstructions) { 2322 assert(Pair.getFirst()->use_empty() && 2323 "trying to erase instruction with users."); 2324 Pair.getFirst()->eraseFromParent(); 2325 } 2326 } 2327 2328 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2329 for (auto *V : AV) { 2330 if (auto *I = dyn_cast<Instruction>(V)) 2331 eraseInstruction(I, /*ReplaceWithUndef=*/true); 2332 }; 2333 } 2334 2335 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2336 ArrayRef<Value *> UserIgnoreLst) { 2337 ExtraValueToDebugLocsMap ExternallyUsedValues; 2338 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 2339 } 2340 2341 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2342 ExtraValueToDebugLocsMap &ExternallyUsedValues, 2343 ArrayRef<Value *> UserIgnoreLst) { 2344 deleteTree(); 2345 UserIgnoreList = UserIgnoreLst; 2346 if (!allSameType(Roots)) 2347 return; 2348 buildTree_rec(Roots, 0, EdgeInfo()); 2349 2350 // Collect the values that we need to extract from the tree. 2351 for (auto &TEPtr : VectorizableTree) { 2352 TreeEntry *Entry = TEPtr.get(); 2353 2354 // No need to handle users of gathered values. 2355 if (Entry->State == TreeEntry::NeedToGather) 2356 continue; 2357 2358 // For each lane: 2359 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2360 Value *Scalar = Entry->Scalars[Lane]; 2361 int FoundLane = Lane; 2362 if (!Entry->ReuseShuffleIndices.empty()) { 2363 FoundLane = 2364 std::distance(Entry->ReuseShuffleIndices.begin(), 2365 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 2366 } 2367 2368 // Check if the scalar is externally used as an extra arg. 2369 auto ExtI = ExternallyUsedValues.find(Scalar); 2370 if (ExtI != ExternallyUsedValues.end()) { 2371 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 2372 << Lane << " from " << *Scalar << ".\n"); 2373 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 2374 } 2375 for (User *U : Scalar->users()) { 2376 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 2377 2378 Instruction *UserInst = dyn_cast<Instruction>(U); 2379 if (!UserInst) 2380 continue; 2381 2382 // Skip in-tree scalars that become vectors 2383 if (TreeEntry *UseEntry = getTreeEntry(U)) { 2384 Value *UseScalar = UseEntry->Scalars[0]; 2385 // Some in-tree scalars will remain as scalar in vectorized 2386 // instructions. If that is the case, the one in Lane 0 will 2387 // be used. 2388 if (UseScalar != U || 2389 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 2390 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 2391 << ".\n"); 2392 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 2393 continue; 2394 } 2395 } 2396 2397 // Ignore users in the user ignore list. 2398 if (is_contained(UserIgnoreList, UserInst)) 2399 continue; 2400 2401 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 2402 << Lane << " from " << *Scalar << ".\n"); 2403 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 2404 } 2405 } 2406 } 2407 } 2408 2409 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 2410 const EdgeInfo &UserTreeIdx) { 2411 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 2412 2413 InstructionsState S = getSameOpcode(VL); 2414 if (Depth == RecursionMaxDepth) { 2415 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 2416 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2417 return; 2418 } 2419 2420 // Don't handle vectors. 2421 if (S.OpValue->getType()->isVectorTy()) { 2422 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 2423 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2424 return; 2425 } 2426 2427 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2428 if (SI->getValueOperand()->getType()->isVectorTy()) { 2429 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 2430 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2431 return; 2432 } 2433 2434 // If all of the operands are identical or constant we have a simple solution. 2435 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 2436 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 2437 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2438 return; 2439 } 2440 2441 // We now know that this is a vector of instructions of the same type from 2442 // the same block. 2443 2444 // Don't vectorize ephemeral values. 2445 for (Value *V : VL) { 2446 if (EphValues.count(V)) { 2447 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2448 << ") is ephemeral.\n"); 2449 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2450 return; 2451 } 2452 } 2453 2454 // Check if this is a duplicate of another entry. 2455 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2456 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 2457 if (!E->isSame(VL)) { 2458 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 2459 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2460 return; 2461 } 2462 // Record the reuse of the tree node. FIXME, currently this is only used to 2463 // properly draw the graph rather than for the actual vectorization. 2464 E->UserTreeIndices.push_back(UserTreeIdx); 2465 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 2466 << ".\n"); 2467 return; 2468 } 2469 2470 // Check that none of the instructions in the bundle are already in the tree. 2471 for (Value *V : VL) { 2472 auto *I = dyn_cast<Instruction>(V); 2473 if (!I) 2474 continue; 2475 if (getTreeEntry(I)) { 2476 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2477 << ") is already in tree.\n"); 2478 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2479 return; 2480 } 2481 } 2482 2483 // If any of the scalars is marked as a value that needs to stay scalar, then 2484 // we need to gather the scalars. 2485 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 2486 for (Value *V : VL) { 2487 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 2488 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 2489 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2490 return; 2491 } 2492 } 2493 2494 // Check that all of the users of the scalars that we want to vectorize are 2495 // schedulable. 2496 auto *VL0 = cast<Instruction>(S.OpValue); 2497 BasicBlock *BB = VL0->getParent(); 2498 2499 if (!DT->isReachableFromEntry(BB)) { 2500 // Don't go into unreachable blocks. They may contain instructions with 2501 // dependency cycles which confuse the final scheduling. 2502 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 2503 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2504 return; 2505 } 2506 2507 // Check that every instruction appears once in this bundle. 2508 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2509 SmallVector<Value *, 4> UniqueValues; 2510 DenseMap<Value *, unsigned> UniquePositions; 2511 for (Value *V : VL) { 2512 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2513 ReuseShuffleIndicies.emplace_back(Res.first->second); 2514 if (Res.second) 2515 UniqueValues.emplace_back(V); 2516 } 2517 size_t NumUniqueScalarValues = UniqueValues.size(); 2518 if (NumUniqueScalarValues == VL.size()) { 2519 ReuseShuffleIndicies.clear(); 2520 } else { 2521 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 2522 if (NumUniqueScalarValues <= 1 || 2523 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 2524 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 2525 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2526 return; 2527 } 2528 VL = UniqueValues; 2529 } 2530 2531 auto &BSRef = BlocksSchedules[BB]; 2532 if (!BSRef) 2533 BSRef = std::make_unique<BlockScheduling>(BB); 2534 2535 BlockScheduling &BS = *BSRef.get(); 2536 2537 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 2538 if (!Bundle) { 2539 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 2540 assert((!BS.getScheduleData(VL0) || 2541 !BS.getScheduleData(VL0)->isPartOfBundle()) && 2542 "tryScheduleBundle should cancelScheduling on failure"); 2543 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2544 ReuseShuffleIndicies); 2545 return; 2546 } 2547 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 2548 2549 unsigned ShuffleOrOp = S.isAltShuffle() ? 2550 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2551 switch (ShuffleOrOp) { 2552 case Instruction::PHI: { 2553 auto *PH = cast<PHINode>(VL0); 2554 2555 // Check for terminator values (e.g. invoke). 2556 for (unsigned j = 0; j < VL.size(); ++j) 2557 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2558 Instruction *Term = dyn_cast<Instruction>( 2559 cast<PHINode>(VL[j])->getIncomingValueForBlock( 2560 PH->getIncomingBlock(i))); 2561 if (Term && Term->isTerminator()) { 2562 LLVM_DEBUG(dbgs() 2563 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 2564 BS.cancelScheduling(VL, VL0); 2565 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2566 ReuseShuffleIndicies); 2567 return; 2568 } 2569 } 2570 2571 TreeEntry *TE = 2572 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 2573 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 2574 2575 // Keeps the reordered operands to avoid code duplication. 2576 SmallVector<ValueList, 2> OperandsVec; 2577 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2578 ValueList Operands; 2579 // Prepare the operand vector. 2580 for (Value *j : VL) 2581 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 2582 PH->getIncomingBlock(i))); 2583 TE->setOperand(i, Operands); 2584 OperandsVec.push_back(Operands); 2585 } 2586 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 2587 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 2588 return; 2589 } 2590 case Instruction::ExtractValue: 2591 case Instruction::ExtractElement: { 2592 OrdersType CurrentOrder; 2593 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 2594 if (Reuse) { 2595 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 2596 ++NumOpsWantToKeepOriginalOrder; 2597 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2598 ReuseShuffleIndicies); 2599 // This is a special case, as it does not gather, but at the same time 2600 // we are not extending buildTree_rec() towards the operands. 2601 ValueList Op0; 2602 Op0.assign(VL.size(), VL0->getOperand(0)); 2603 VectorizableTree.back()->setOperand(0, Op0); 2604 return; 2605 } 2606 if (!CurrentOrder.empty()) { 2607 LLVM_DEBUG({ 2608 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 2609 "with order"; 2610 for (unsigned Idx : CurrentOrder) 2611 dbgs() << " " << Idx; 2612 dbgs() << "\n"; 2613 }); 2614 // Insert new order with initial value 0, if it does not exist, 2615 // otherwise return the iterator to the existing one. 2616 auto StoredCurrentOrderAndNum = 2617 NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 2618 ++StoredCurrentOrderAndNum->getSecond(); 2619 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2620 ReuseShuffleIndicies, 2621 StoredCurrentOrderAndNum->getFirst()); 2622 // This is a special case, as it does not gather, but at the same time 2623 // we are not extending buildTree_rec() towards the operands. 2624 ValueList Op0; 2625 Op0.assign(VL.size(), VL0->getOperand(0)); 2626 VectorizableTree.back()->setOperand(0, Op0); 2627 return; 2628 } 2629 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 2630 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2631 ReuseShuffleIndicies); 2632 BS.cancelScheduling(VL, VL0); 2633 return; 2634 } 2635 case Instruction::Load: { 2636 // Check that a vectorized load would load the same memory as a scalar 2637 // load. For example, we don't want to vectorize loads that are smaller 2638 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 2639 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 2640 // from such a struct, we read/write packed bits disagreeing with the 2641 // unvectorized version. 2642 Type *ScalarTy = VL0->getType(); 2643 2644 if (DL->getTypeSizeInBits(ScalarTy) != 2645 DL->getTypeAllocSizeInBits(ScalarTy)) { 2646 BS.cancelScheduling(VL, VL0); 2647 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2648 ReuseShuffleIndicies); 2649 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 2650 return; 2651 } 2652 2653 // Make sure all loads in the bundle are simple - we can't vectorize 2654 // atomic or volatile loads. 2655 SmallVector<Value *, 4> PointerOps(VL.size()); 2656 auto POIter = PointerOps.begin(); 2657 for (Value *V : VL) { 2658 auto *L = cast<LoadInst>(V); 2659 if (!L->isSimple()) { 2660 BS.cancelScheduling(VL, VL0); 2661 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2662 ReuseShuffleIndicies); 2663 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 2664 return; 2665 } 2666 *POIter = L->getPointerOperand(); 2667 ++POIter; 2668 } 2669 2670 OrdersType CurrentOrder; 2671 // Check the order of pointer operands. 2672 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2673 Value *Ptr0; 2674 Value *PtrN; 2675 if (CurrentOrder.empty()) { 2676 Ptr0 = PointerOps.front(); 2677 PtrN = PointerOps.back(); 2678 } else { 2679 Ptr0 = PointerOps[CurrentOrder.front()]; 2680 PtrN = PointerOps[CurrentOrder.back()]; 2681 } 2682 const SCEV *Scev0 = SE->getSCEV(Ptr0); 2683 const SCEV *ScevN = SE->getSCEV(PtrN); 2684 const auto *Diff = 2685 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 2686 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 2687 // Check that the sorted loads are consecutive. 2688 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 2689 if (CurrentOrder.empty()) { 2690 // Original loads are consecutive and does not require reordering. 2691 ++NumOpsWantToKeepOriginalOrder; 2692 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 2693 UserTreeIdx, ReuseShuffleIndicies); 2694 TE->setOperandsInOrder(); 2695 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 2696 } else { 2697 // Need to reorder. 2698 auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 2699 ++I->getSecond(); 2700 TreeEntry *TE = 2701 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2702 ReuseShuffleIndicies, I->getFirst()); 2703 TE->setOperandsInOrder(); 2704 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 2705 } 2706 return; 2707 } 2708 } 2709 2710 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 2711 BS.cancelScheduling(VL, VL0); 2712 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2713 ReuseShuffleIndicies); 2714 return; 2715 } 2716 case Instruction::ZExt: 2717 case Instruction::SExt: 2718 case Instruction::FPToUI: 2719 case Instruction::FPToSI: 2720 case Instruction::FPExt: 2721 case Instruction::PtrToInt: 2722 case Instruction::IntToPtr: 2723 case Instruction::SIToFP: 2724 case Instruction::UIToFP: 2725 case Instruction::Trunc: 2726 case Instruction::FPTrunc: 2727 case Instruction::BitCast: { 2728 Type *SrcTy = VL0->getOperand(0)->getType(); 2729 for (Value *V : VL) { 2730 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 2731 if (Ty != SrcTy || !isValidElementType(Ty)) { 2732 BS.cancelScheduling(VL, VL0); 2733 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2734 ReuseShuffleIndicies); 2735 LLVM_DEBUG(dbgs() 2736 << "SLP: Gathering casts with different src types.\n"); 2737 return; 2738 } 2739 } 2740 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2741 ReuseShuffleIndicies); 2742 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 2743 2744 TE->setOperandsInOrder(); 2745 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2746 ValueList Operands; 2747 // Prepare the operand vector. 2748 for (Value *V : VL) 2749 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2750 2751 buildTree_rec(Operands, Depth + 1, {TE, i}); 2752 } 2753 return; 2754 } 2755 case Instruction::ICmp: 2756 case Instruction::FCmp: { 2757 // Check that all of the compares have the same predicate. 2758 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2759 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 2760 Type *ComparedTy = VL0->getOperand(0)->getType(); 2761 for (Value *V : VL) { 2762 CmpInst *Cmp = cast<CmpInst>(V); 2763 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 2764 Cmp->getOperand(0)->getType() != ComparedTy) { 2765 BS.cancelScheduling(VL, VL0); 2766 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2767 ReuseShuffleIndicies); 2768 LLVM_DEBUG(dbgs() 2769 << "SLP: Gathering cmp with different predicate.\n"); 2770 return; 2771 } 2772 } 2773 2774 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2775 ReuseShuffleIndicies); 2776 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 2777 2778 ValueList Left, Right; 2779 if (cast<CmpInst>(VL0)->isCommutative()) { 2780 // Commutative predicate - collect + sort operands of the instructions 2781 // so that each side is more likely to have the same opcode. 2782 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 2783 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 2784 } else { 2785 // Collect operands - commute if it uses the swapped predicate. 2786 for (Value *V : VL) { 2787 auto *Cmp = cast<CmpInst>(V); 2788 Value *LHS = Cmp->getOperand(0); 2789 Value *RHS = Cmp->getOperand(1); 2790 if (Cmp->getPredicate() != P0) 2791 std::swap(LHS, RHS); 2792 Left.push_back(LHS); 2793 Right.push_back(RHS); 2794 } 2795 } 2796 TE->setOperand(0, Left); 2797 TE->setOperand(1, Right); 2798 buildTree_rec(Left, Depth + 1, {TE, 0}); 2799 buildTree_rec(Right, Depth + 1, {TE, 1}); 2800 return; 2801 } 2802 case Instruction::Select: 2803 case Instruction::FNeg: 2804 case Instruction::Add: 2805 case Instruction::FAdd: 2806 case Instruction::Sub: 2807 case Instruction::FSub: 2808 case Instruction::Mul: 2809 case Instruction::FMul: 2810 case Instruction::UDiv: 2811 case Instruction::SDiv: 2812 case Instruction::FDiv: 2813 case Instruction::URem: 2814 case Instruction::SRem: 2815 case Instruction::FRem: 2816 case Instruction::Shl: 2817 case Instruction::LShr: 2818 case Instruction::AShr: 2819 case Instruction::And: 2820 case Instruction::Or: 2821 case Instruction::Xor: { 2822 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2823 ReuseShuffleIndicies); 2824 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 2825 2826 // Sort operands of the instructions so that each side is more likely to 2827 // have the same opcode. 2828 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 2829 ValueList Left, Right; 2830 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 2831 TE->setOperand(0, Left); 2832 TE->setOperand(1, Right); 2833 buildTree_rec(Left, Depth + 1, {TE, 0}); 2834 buildTree_rec(Right, Depth + 1, {TE, 1}); 2835 return; 2836 } 2837 2838 TE->setOperandsInOrder(); 2839 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2840 ValueList Operands; 2841 // Prepare the operand vector. 2842 for (Value *j : VL) 2843 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 2844 2845 buildTree_rec(Operands, Depth + 1, {TE, i}); 2846 } 2847 return; 2848 } 2849 case Instruction::GetElementPtr: { 2850 // We don't combine GEPs with complicated (nested) indexing. 2851 for (Value *V : VL) { 2852 if (cast<Instruction>(V)->getNumOperands() != 2) { 2853 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 2854 BS.cancelScheduling(VL, VL0); 2855 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2856 ReuseShuffleIndicies); 2857 return; 2858 } 2859 } 2860 2861 // We can't combine several GEPs into one vector if they operate on 2862 // different types. 2863 Type *Ty0 = VL0->getOperand(0)->getType(); 2864 for (Value *V : VL) { 2865 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 2866 if (Ty0 != CurTy) { 2867 LLVM_DEBUG(dbgs() 2868 << "SLP: not-vectorizable GEP (different types).\n"); 2869 BS.cancelScheduling(VL, VL0); 2870 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2871 ReuseShuffleIndicies); 2872 return; 2873 } 2874 } 2875 2876 // We don't combine GEPs with non-constant indexes. 2877 Type *Ty1 = VL0->getOperand(1)->getType(); 2878 for (Value *V : VL) { 2879 auto Op = cast<Instruction>(V)->getOperand(1); 2880 if (!isa<ConstantInt>(Op) || 2881 (Op->getType() != Ty1 && 2882 Op->getType()->getScalarSizeInBits() > 2883 DL->getIndexSizeInBits( 2884 V->getType()->getPointerAddressSpace()))) { 2885 LLVM_DEBUG(dbgs() 2886 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 2887 BS.cancelScheduling(VL, VL0); 2888 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2889 ReuseShuffleIndicies); 2890 return; 2891 } 2892 } 2893 2894 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2895 ReuseShuffleIndicies); 2896 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 2897 TE->setOperandsInOrder(); 2898 for (unsigned i = 0, e = 2; i < e; ++i) { 2899 ValueList Operands; 2900 // Prepare the operand vector. 2901 for (Value *V : VL) 2902 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2903 2904 buildTree_rec(Operands, Depth + 1, {TE, i}); 2905 } 2906 return; 2907 } 2908 case Instruction::Store: { 2909 // Check if the stores are consecutive or if we need to swizzle them. 2910 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 2911 // Make sure all stores in the bundle are simple - we can't vectorize 2912 // atomic or volatile stores. 2913 SmallVector<Value *, 4> PointerOps(VL.size()); 2914 ValueList Operands(VL.size()); 2915 auto POIter = PointerOps.begin(); 2916 auto OIter = Operands.begin(); 2917 for (Value *V : VL) { 2918 auto *SI = cast<StoreInst>(V); 2919 if (!SI->isSimple()) { 2920 BS.cancelScheduling(VL, VL0); 2921 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2922 ReuseShuffleIndicies); 2923 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 2924 return; 2925 } 2926 *POIter = SI->getPointerOperand(); 2927 *OIter = SI->getValueOperand(); 2928 ++POIter; 2929 ++OIter; 2930 } 2931 2932 OrdersType CurrentOrder; 2933 // Check the order of pointer operands. 2934 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2935 Value *Ptr0; 2936 Value *PtrN; 2937 if (CurrentOrder.empty()) { 2938 Ptr0 = PointerOps.front(); 2939 PtrN = PointerOps.back(); 2940 } else { 2941 Ptr0 = PointerOps[CurrentOrder.front()]; 2942 PtrN = PointerOps[CurrentOrder.back()]; 2943 } 2944 const SCEV *Scev0 = SE->getSCEV(Ptr0); 2945 const SCEV *ScevN = SE->getSCEV(PtrN); 2946 const auto *Diff = 2947 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 2948 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 2949 // Check that the sorted pointer operands are consecutive. 2950 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 2951 if (CurrentOrder.empty()) { 2952 // Original stores are consecutive and does not require reordering. 2953 ++NumOpsWantToKeepOriginalOrder; 2954 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 2955 UserTreeIdx, ReuseShuffleIndicies); 2956 TE->setOperandsInOrder(); 2957 buildTree_rec(Operands, Depth + 1, {TE, 0}); 2958 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 2959 } else { 2960 // Need to reorder. 2961 auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 2962 ++(I->getSecond()); 2963 TreeEntry *TE = 2964 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2965 ReuseShuffleIndicies, I->getFirst()); 2966 TE->setOperandsInOrder(); 2967 buildTree_rec(Operands, Depth + 1, {TE, 0}); 2968 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 2969 } 2970 return; 2971 } 2972 } 2973 2974 BS.cancelScheduling(VL, VL0); 2975 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2976 ReuseShuffleIndicies); 2977 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 2978 return; 2979 } 2980 case Instruction::Call: { 2981 // Check if the calls are all to the same vectorizable intrinsic. 2982 CallInst *CI = cast<CallInst>(VL0); 2983 // Check if this is an Intrinsic call or something that can be 2984 // represented by an intrinsic call 2985 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2986 if (!isTriviallyVectorizable(ID)) { 2987 BS.cancelScheduling(VL, VL0); 2988 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2989 ReuseShuffleIndicies); 2990 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 2991 return; 2992 } 2993 Function *Int = CI->getCalledFunction(); 2994 unsigned NumArgs = CI->getNumArgOperands(); 2995 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 2996 for (unsigned j = 0; j != NumArgs; ++j) 2997 if (hasVectorInstrinsicScalarOpd(ID, j)) 2998 ScalarArgs[j] = CI->getArgOperand(j); 2999 for (Value *V : VL) { 3000 CallInst *CI2 = dyn_cast<CallInst>(V); 3001 if (!CI2 || CI2->getCalledFunction() != Int || 3002 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 3003 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 3004 BS.cancelScheduling(VL, VL0); 3005 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3006 ReuseShuffleIndicies); 3007 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 3008 << "\n"); 3009 return; 3010 } 3011 // Some intrinsics have scalar arguments and should be same in order for 3012 // them to be vectorized. 3013 for (unsigned j = 0; j != NumArgs; ++j) { 3014 if (hasVectorInstrinsicScalarOpd(ID, j)) { 3015 Value *A1J = CI2->getArgOperand(j); 3016 if (ScalarArgs[j] != A1J) { 3017 BS.cancelScheduling(VL, VL0); 3018 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3019 ReuseShuffleIndicies); 3020 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 3021 << " argument " << ScalarArgs[j] << "!=" << A1J 3022 << "\n"); 3023 return; 3024 } 3025 } 3026 } 3027 // Verify that the bundle operands are identical between the two calls. 3028 if (CI->hasOperandBundles() && 3029 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 3030 CI->op_begin() + CI->getBundleOperandsEndIndex(), 3031 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 3032 BS.cancelScheduling(VL, VL0); 3033 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3034 ReuseShuffleIndicies); 3035 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 3036 << *CI << "!=" << *V << '\n'); 3037 return; 3038 } 3039 } 3040 3041 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3042 ReuseShuffleIndicies); 3043 TE->setOperandsInOrder(); 3044 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 3045 ValueList Operands; 3046 // Prepare the operand vector. 3047 for (Value *V : VL) { 3048 auto *CI2 = cast<CallInst>(V); 3049 Operands.push_back(CI2->getArgOperand(i)); 3050 } 3051 buildTree_rec(Operands, Depth + 1, {TE, i}); 3052 } 3053 return; 3054 } 3055 case Instruction::ShuffleVector: { 3056 // If this is not an alternate sequence of opcode like add-sub 3057 // then do not vectorize this instruction. 3058 if (!S.isAltShuffle()) { 3059 BS.cancelScheduling(VL, VL0); 3060 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3061 ReuseShuffleIndicies); 3062 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 3063 return; 3064 } 3065 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3066 ReuseShuffleIndicies); 3067 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 3068 3069 // Reorder operands if reordering would enable vectorization. 3070 if (isa<BinaryOperator>(VL0)) { 3071 ValueList Left, Right; 3072 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3073 TE->setOperand(0, Left); 3074 TE->setOperand(1, Right); 3075 buildTree_rec(Left, Depth + 1, {TE, 0}); 3076 buildTree_rec(Right, Depth + 1, {TE, 1}); 3077 return; 3078 } 3079 3080 TE->setOperandsInOrder(); 3081 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3082 ValueList Operands; 3083 // Prepare the operand vector. 3084 for (Value *V : VL) 3085 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3086 3087 buildTree_rec(Operands, Depth + 1, {TE, i}); 3088 } 3089 return; 3090 } 3091 default: 3092 BS.cancelScheduling(VL, VL0); 3093 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3094 ReuseShuffleIndicies); 3095 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 3096 return; 3097 } 3098 } 3099 3100 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 3101 unsigned N = 1; 3102 Type *EltTy = T; 3103 3104 while (isa<CompositeType>(EltTy)) { 3105 if (auto *ST = dyn_cast<StructType>(EltTy)) { 3106 // Check that struct is homogeneous. 3107 for (const auto *Ty : ST->elements()) 3108 if (Ty != *ST->element_begin()) 3109 return 0; 3110 N *= ST->getNumElements(); 3111 EltTy = *ST->element_begin(); 3112 } else { 3113 auto *SeqT = cast<SequentialType>(EltTy); 3114 N *= SeqT->getNumElements(); 3115 EltTy = SeqT->getElementType(); 3116 } 3117 } 3118 3119 if (!isValidElementType(EltTy)) 3120 return 0; 3121 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 3122 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 3123 return 0; 3124 return N; 3125 } 3126 3127 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 3128 SmallVectorImpl<unsigned> &CurrentOrder) const { 3129 Instruction *E0 = cast<Instruction>(OpValue); 3130 assert(E0->getOpcode() == Instruction::ExtractElement || 3131 E0->getOpcode() == Instruction::ExtractValue); 3132 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 3133 // Check if all of the extracts come from the same vector and from the 3134 // correct offset. 3135 Value *Vec = E0->getOperand(0); 3136 3137 CurrentOrder.clear(); 3138 3139 // We have to extract from a vector/aggregate with the same number of elements. 3140 unsigned NElts; 3141 if (E0->getOpcode() == Instruction::ExtractValue) { 3142 const DataLayout &DL = E0->getModule()->getDataLayout(); 3143 NElts = canMapToVector(Vec->getType(), DL); 3144 if (!NElts) 3145 return false; 3146 // Check if load can be rewritten as load of vector. 3147 LoadInst *LI = dyn_cast<LoadInst>(Vec); 3148 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 3149 return false; 3150 } else { 3151 NElts = Vec->getType()->getVectorNumElements(); 3152 } 3153 3154 if (NElts != VL.size()) 3155 return false; 3156 3157 // Check that all of the indices extract from the correct offset. 3158 bool ShouldKeepOrder = true; 3159 unsigned E = VL.size(); 3160 // Assign to all items the initial value E + 1 so we can check if the extract 3161 // instruction index was used already. 3162 // Also, later we can check that all the indices are used and we have a 3163 // consecutive access in the extract instructions, by checking that no 3164 // element of CurrentOrder still has value E + 1. 3165 CurrentOrder.assign(E, E + 1); 3166 unsigned I = 0; 3167 for (; I < E; ++I) { 3168 auto *Inst = cast<Instruction>(VL[I]); 3169 if (Inst->getOperand(0) != Vec) 3170 break; 3171 Optional<unsigned> Idx = getExtractIndex(Inst); 3172 if (!Idx) 3173 break; 3174 const unsigned ExtIdx = *Idx; 3175 if (ExtIdx != I) { 3176 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 3177 break; 3178 ShouldKeepOrder = false; 3179 CurrentOrder[ExtIdx] = I; 3180 } else { 3181 if (CurrentOrder[I] != E + 1) 3182 break; 3183 CurrentOrder[I] = I; 3184 } 3185 } 3186 if (I < E) { 3187 CurrentOrder.clear(); 3188 return false; 3189 } 3190 3191 return ShouldKeepOrder; 3192 } 3193 3194 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 3195 return I->hasOneUse() || 3196 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 3197 return ScalarToTreeEntry.count(U) > 0; 3198 }); 3199 } 3200 3201 int BoUpSLP::getEntryCost(TreeEntry *E) { 3202 ArrayRef<Value*> VL = E->Scalars; 3203 3204 Type *ScalarTy = VL[0]->getType(); 3205 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3206 ScalarTy = SI->getValueOperand()->getType(); 3207 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 3208 ScalarTy = CI->getOperand(0)->getType(); 3209 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 3210 3211 // If we have computed a smaller type for the expression, update VecTy so 3212 // that the costs will be accurate. 3213 if (MinBWs.count(VL[0])) 3214 VecTy = VectorType::get( 3215 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 3216 3217 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 3218 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3219 int ReuseShuffleCost = 0; 3220 if (NeedToShuffleReuses) { 3221 ReuseShuffleCost = 3222 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3223 } 3224 if (E->State == TreeEntry::NeedToGather) { 3225 if (allConstant(VL)) 3226 return 0; 3227 if (isSplat(VL)) { 3228 return ReuseShuffleCost + 3229 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 3230 } 3231 if (E->getOpcode() == Instruction::ExtractElement && 3232 allSameType(VL) && allSameBlock(VL)) { 3233 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 3234 if (ShuffleKind.hasValue()) { 3235 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 3236 for (auto *V : VL) { 3237 // If all users of instruction are going to be vectorized and this 3238 // instruction itself is not going to be vectorized, consider this 3239 // instruction as dead and remove its cost from the final cost of the 3240 // vectorized tree. 3241 if (areAllUsersVectorized(cast<Instruction>(V)) && 3242 !ScalarToTreeEntry.count(V)) { 3243 auto *IO = cast<ConstantInt>( 3244 cast<ExtractElementInst>(V)->getIndexOperand()); 3245 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 3246 IO->getZExtValue()); 3247 } 3248 } 3249 return ReuseShuffleCost + Cost; 3250 } 3251 } 3252 return ReuseShuffleCost + getGatherCost(VL); 3253 } 3254 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 3255 Instruction *VL0 = E->getMainOp(); 3256 unsigned ShuffleOrOp = 3257 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 3258 switch (ShuffleOrOp) { 3259 case Instruction::PHI: 3260 return 0; 3261 3262 case Instruction::ExtractValue: 3263 case Instruction::ExtractElement: 3264 if (NeedToShuffleReuses) { 3265 unsigned Idx = 0; 3266 for (unsigned I : E->ReuseShuffleIndices) { 3267 if (ShuffleOrOp == Instruction::ExtractElement) { 3268 auto *IO = cast<ConstantInt>( 3269 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 3270 Idx = IO->getZExtValue(); 3271 ReuseShuffleCost -= TTI->getVectorInstrCost( 3272 Instruction::ExtractElement, VecTy, Idx); 3273 } else { 3274 ReuseShuffleCost -= TTI->getVectorInstrCost( 3275 Instruction::ExtractElement, VecTy, Idx); 3276 ++Idx; 3277 } 3278 } 3279 Idx = ReuseShuffleNumbers; 3280 for (Value *V : VL) { 3281 if (ShuffleOrOp == Instruction::ExtractElement) { 3282 auto *IO = cast<ConstantInt>( 3283 cast<ExtractElementInst>(V)->getIndexOperand()); 3284 Idx = IO->getZExtValue(); 3285 } else { 3286 --Idx; 3287 } 3288 ReuseShuffleCost += 3289 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 3290 } 3291 } 3292 if (E->State == TreeEntry::Vectorize) { 3293 int DeadCost = ReuseShuffleCost; 3294 if (!E->ReorderIndices.empty()) { 3295 // TODO: Merge this shuffle with the ReuseShuffleCost. 3296 DeadCost += TTI->getShuffleCost( 3297 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3298 } 3299 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3300 Instruction *E = cast<Instruction>(VL[i]); 3301 // If all users are going to be vectorized, instruction can be 3302 // considered as dead. 3303 // The same, if have only one user, it will be vectorized for sure. 3304 if (areAllUsersVectorized(E)) { 3305 // Take credit for instruction that will become dead. 3306 if (E->hasOneUse()) { 3307 Instruction *Ext = E->user_back(); 3308 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3309 all_of(Ext->users(), 3310 [](User *U) { return isa<GetElementPtrInst>(U); })) { 3311 // Use getExtractWithExtendCost() to calculate the cost of 3312 // extractelement/ext pair. 3313 DeadCost -= TTI->getExtractWithExtendCost( 3314 Ext->getOpcode(), Ext->getType(), VecTy, i); 3315 // Add back the cost of s|zext which is subtracted separately. 3316 DeadCost += TTI->getCastInstrCost( 3317 Ext->getOpcode(), Ext->getType(), E->getType(), Ext); 3318 continue; 3319 } 3320 } 3321 DeadCost -= 3322 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 3323 } 3324 } 3325 return DeadCost; 3326 } 3327 return ReuseShuffleCost + getGatherCost(VL); 3328 3329 case Instruction::ZExt: 3330 case Instruction::SExt: 3331 case Instruction::FPToUI: 3332 case Instruction::FPToSI: 3333 case Instruction::FPExt: 3334 case Instruction::PtrToInt: 3335 case Instruction::IntToPtr: 3336 case Instruction::SIToFP: 3337 case Instruction::UIToFP: 3338 case Instruction::Trunc: 3339 case Instruction::FPTrunc: 3340 case Instruction::BitCast: { 3341 Type *SrcTy = VL0->getOperand(0)->getType(); 3342 int ScalarEltCost = 3343 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, VL0); 3344 if (NeedToShuffleReuses) { 3345 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3346 } 3347 3348 // Calculate the cost of this instruction. 3349 int ScalarCost = VL.size() * ScalarEltCost; 3350 3351 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 3352 int VecCost = 0; 3353 // Check if the values are candidates to demote. 3354 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 3355 VecCost = ReuseShuffleCost + 3356 TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, VL0); 3357 } 3358 return VecCost - ScalarCost; 3359 } 3360 case Instruction::FCmp: 3361 case Instruction::ICmp: 3362 case Instruction::Select: { 3363 // Calculate the cost of this instruction. 3364 int ScalarEltCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 3365 Builder.getInt1Ty(), VL0); 3366 if (NeedToShuffleReuses) { 3367 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3368 } 3369 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 3370 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3371 int VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), VecTy, MaskTy, VL0); 3372 return ReuseShuffleCost + VecCost - ScalarCost; 3373 } 3374 case Instruction::FNeg: 3375 case Instruction::Add: 3376 case Instruction::FAdd: 3377 case Instruction::Sub: 3378 case Instruction::FSub: 3379 case Instruction::Mul: 3380 case Instruction::FMul: 3381 case Instruction::UDiv: 3382 case Instruction::SDiv: 3383 case Instruction::FDiv: 3384 case Instruction::URem: 3385 case Instruction::SRem: 3386 case Instruction::FRem: 3387 case Instruction::Shl: 3388 case Instruction::LShr: 3389 case Instruction::AShr: 3390 case Instruction::And: 3391 case Instruction::Or: 3392 case Instruction::Xor: { 3393 // Certain instructions can be cheaper to vectorize if they have a 3394 // constant second vector operand. 3395 TargetTransformInfo::OperandValueKind Op1VK = 3396 TargetTransformInfo::OK_AnyValue; 3397 TargetTransformInfo::OperandValueKind Op2VK = 3398 TargetTransformInfo::OK_UniformConstantValue; 3399 TargetTransformInfo::OperandValueProperties Op1VP = 3400 TargetTransformInfo::OP_None; 3401 TargetTransformInfo::OperandValueProperties Op2VP = 3402 TargetTransformInfo::OP_PowerOf2; 3403 3404 // If all operands are exactly the same ConstantInt then set the 3405 // operand kind to OK_UniformConstantValue. 3406 // If instead not all operands are constants, then set the operand kind 3407 // to OK_AnyValue. If all operands are constants but not the same, 3408 // then set the operand kind to OK_NonUniformConstantValue. 3409 ConstantInt *CInt0 = nullptr; 3410 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3411 const Instruction *I = cast<Instruction>(VL[i]); 3412 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 3413 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 3414 if (!CInt) { 3415 Op2VK = TargetTransformInfo::OK_AnyValue; 3416 Op2VP = TargetTransformInfo::OP_None; 3417 break; 3418 } 3419 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 3420 !CInt->getValue().isPowerOf2()) 3421 Op2VP = TargetTransformInfo::OP_None; 3422 if (i == 0) { 3423 CInt0 = CInt; 3424 continue; 3425 } 3426 if (CInt0 != CInt) 3427 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 3428 } 3429 3430 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 3431 int ScalarEltCost = TTI->getArithmeticInstrCost( 3432 E->getOpcode(), ScalarTy, Op1VK, Op2VK, Op1VP, Op2VP, Operands, VL0); 3433 if (NeedToShuffleReuses) { 3434 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3435 } 3436 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3437 int VecCost = TTI->getArithmeticInstrCost( 3438 E->getOpcode(), VecTy, Op1VK, Op2VK, Op1VP, Op2VP, Operands, VL0); 3439 return ReuseShuffleCost + VecCost - ScalarCost; 3440 } 3441 case Instruction::GetElementPtr: { 3442 TargetTransformInfo::OperandValueKind Op1VK = 3443 TargetTransformInfo::OK_AnyValue; 3444 TargetTransformInfo::OperandValueKind Op2VK = 3445 TargetTransformInfo::OK_UniformConstantValue; 3446 3447 int ScalarEltCost = 3448 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 3449 if (NeedToShuffleReuses) { 3450 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3451 } 3452 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3453 int VecCost = 3454 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 3455 return ReuseShuffleCost + VecCost - ScalarCost; 3456 } 3457 case Instruction::Load: { 3458 // Cost of wide load - cost of scalar loads. 3459 MaybeAlign alignment(cast<LoadInst>(VL0)->getAlignment()); 3460 int ScalarEltCost = 3461 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0); 3462 if (NeedToShuffleReuses) { 3463 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3464 } 3465 int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 3466 int VecLdCost = 3467 TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, VL0); 3468 if (!E->ReorderIndices.empty()) { 3469 // TODO: Merge this shuffle with the ReuseShuffleCost. 3470 VecLdCost += TTI->getShuffleCost( 3471 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3472 } 3473 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 3474 } 3475 case Instruction::Store: { 3476 // We know that we can merge the stores. Calculate the cost. 3477 bool IsReorder = !E->ReorderIndices.empty(); 3478 auto *SI = 3479 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 3480 MaybeAlign Alignment(SI->getAlignment()); 3481 int ScalarEltCost = 3482 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, Alignment, 0, VL0); 3483 if (NeedToShuffleReuses) 3484 ReuseShuffleCost = -(ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3485 int ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 3486 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, 3487 VecTy, Alignment, 0, VL0); 3488 if (IsReorder) { 3489 // TODO: Merge this shuffle with the ReuseShuffleCost. 3490 VecStCost += TTI->getShuffleCost( 3491 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3492 } 3493 return ReuseShuffleCost + VecStCost - ScalarStCost; 3494 } 3495 case Instruction::Call: { 3496 CallInst *CI = cast<CallInst>(VL0); 3497 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3498 3499 // Calculate the cost of the scalar and vector calls. 3500 SmallVector<Type *, 4> ScalarTys; 3501 for (unsigned op = 0, opc = CI->getNumArgOperands(); op != opc; ++op) 3502 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 3503 3504 FastMathFlags FMF; 3505 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3506 FMF = FPMO->getFastMathFlags(); 3507 3508 int ScalarEltCost = 3509 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 3510 if (NeedToShuffleReuses) { 3511 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3512 } 3513 int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 3514 3515 SmallVector<Value *, 4> Args(CI->arg_operands()); 3516 int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF, 3517 VecTy->getNumElements()); 3518 3519 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 3520 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 3521 << " for " << *CI << "\n"); 3522 3523 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 3524 } 3525 case Instruction::ShuffleVector: { 3526 assert(E->isAltShuffle() && 3527 ((Instruction::isBinaryOp(E->getOpcode()) && 3528 Instruction::isBinaryOp(E->getAltOpcode())) || 3529 (Instruction::isCast(E->getOpcode()) && 3530 Instruction::isCast(E->getAltOpcode()))) && 3531 "Invalid Shuffle Vector Operand"); 3532 int ScalarCost = 0; 3533 if (NeedToShuffleReuses) { 3534 for (unsigned Idx : E->ReuseShuffleIndices) { 3535 Instruction *I = cast<Instruction>(VL[Idx]); 3536 ReuseShuffleCost -= TTI->getInstructionCost( 3537 I, TargetTransformInfo::TCK_RecipThroughput); 3538 } 3539 for (Value *V : VL) { 3540 Instruction *I = cast<Instruction>(V); 3541 ReuseShuffleCost += TTI->getInstructionCost( 3542 I, TargetTransformInfo::TCK_RecipThroughput); 3543 } 3544 } 3545 for (Value *V : VL) { 3546 Instruction *I = cast<Instruction>(V); 3547 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 3548 ScalarCost += TTI->getInstructionCost( 3549 I, TargetTransformInfo::TCK_RecipThroughput); 3550 } 3551 // VecCost is equal to sum of the cost of creating 2 vectors 3552 // and the cost of creating shuffle. 3553 int VecCost = 0; 3554 if (Instruction::isBinaryOp(E->getOpcode())) { 3555 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy); 3556 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy); 3557 } else { 3558 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 3559 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 3560 VectorType *Src0Ty = VectorType::get(Src0SclTy, VL.size()); 3561 VectorType *Src1Ty = VectorType::get(Src1SclTy, VL.size()); 3562 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty); 3563 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty); 3564 } 3565 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0); 3566 return ReuseShuffleCost + VecCost - ScalarCost; 3567 } 3568 default: 3569 llvm_unreachable("Unknown instruction"); 3570 } 3571 } 3572 3573 bool BoUpSLP::isFullyVectorizableTinyTree() const { 3574 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 3575 << VectorizableTree.size() << " is fully vectorizable .\n"); 3576 3577 // We only handle trees of heights 1 and 2. 3578 if (VectorizableTree.size() == 1 && 3579 VectorizableTree[0]->State == TreeEntry::Vectorize) 3580 return true; 3581 3582 if (VectorizableTree.size() != 2) 3583 return false; 3584 3585 // Handle splat and all-constants stores. 3586 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 3587 (allConstant(VectorizableTree[1]->Scalars) || 3588 isSplat(VectorizableTree[1]->Scalars))) 3589 return true; 3590 3591 // Gathering cost would be too much for tiny trees. 3592 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 3593 VectorizableTree[1]->State == TreeEntry::NeedToGather) 3594 return false; 3595 3596 return true; 3597 } 3598 3599 bool BoUpSLP::isLoadCombineReductionCandidate(unsigned RdxOpcode) const { 3600 if (RdxOpcode != Instruction::Or) 3601 return false; 3602 3603 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3604 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 3605 3606 // Look past the reduction to find a source value. Arbitrarily follow the 3607 // path through operand 0 of any 'or'. Also, peek through optional 3608 // shift-left-by-constant. 3609 Value *ZextLoad = FirstReduced; 3610 while (match(ZextLoad, m_Or(m_Value(), m_Value())) || 3611 match(ZextLoad, m_Shl(m_Value(), m_Constant()))) 3612 ZextLoad = cast<BinaryOperator>(ZextLoad)->getOperand(0); 3613 3614 // Check if the input to the reduction is an extended load. 3615 Value *LoadPtr; 3616 if (!match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr))))) 3617 return false; 3618 3619 // Require that the total load bit width is a legal integer type. 3620 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 3621 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 3622 Type *SrcTy = LoadPtr->getType()->getPointerElementType(); 3623 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 3624 LLVMContext &Context = FirstReduced->getContext(); 3625 if (!TTI->isTypeLegal(IntegerType::get(Context, LoadBitWidth))) 3626 return false; 3627 3628 // Everything matched - assume that we can fold the whole sequence using 3629 // load combining. 3630 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for scalar reduction of " 3631 << *(cast<Instruction>(FirstReduced)) << "\n"); 3632 3633 return true; 3634 } 3635 3636 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 3637 // We can vectorize the tree if its size is greater than or equal to the 3638 // minimum size specified by the MinTreeSize command line option. 3639 if (VectorizableTree.size() >= MinTreeSize) 3640 return false; 3641 3642 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 3643 // can vectorize it if we can prove it fully vectorizable. 3644 if (isFullyVectorizableTinyTree()) 3645 return false; 3646 3647 assert(VectorizableTree.empty() 3648 ? ExternalUses.empty() 3649 : true && "We shouldn't have any external users"); 3650 3651 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 3652 // vectorizable. 3653 return true; 3654 } 3655 3656 int BoUpSLP::getSpillCost() const { 3657 // Walk from the bottom of the tree to the top, tracking which values are 3658 // live. When we see a call instruction that is not part of our tree, 3659 // query TTI to see if there is a cost to keeping values live over it 3660 // (for example, if spills and fills are required). 3661 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 3662 int Cost = 0; 3663 3664 SmallPtrSet<Instruction*, 4> LiveValues; 3665 Instruction *PrevInst = nullptr; 3666 3667 for (const auto &TEPtr : VectorizableTree) { 3668 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 3669 if (!Inst) 3670 continue; 3671 3672 if (!PrevInst) { 3673 PrevInst = Inst; 3674 continue; 3675 } 3676 3677 // Update LiveValues. 3678 LiveValues.erase(PrevInst); 3679 for (auto &J : PrevInst->operands()) { 3680 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 3681 LiveValues.insert(cast<Instruction>(&*J)); 3682 } 3683 3684 LLVM_DEBUG({ 3685 dbgs() << "SLP: #LV: " << LiveValues.size(); 3686 for (auto *X : LiveValues) 3687 dbgs() << " " << X->getName(); 3688 dbgs() << ", Looking at "; 3689 Inst->dump(); 3690 }); 3691 3692 // Now find the sequence of instructions between PrevInst and Inst. 3693 unsigned NumCalls = 0; 3694 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 3695 PrevInstIt = 3696 PrevInst->getIterator().getReverse(); 3697 while (InstIt != PrevInstIt) { 3698 if (PrevInstIt == PrevInst->getParent()->rend()) { 3699 PrevInstIt = Inst->getParent()->rbegin(); 3700 continue; 3701 } 3702 3703 // Debug information does not impact spill cost. 3704 if ((isa<CallInst>(&*PrevInstIt) && 3705 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 3706 &*PrevInstIt != PrevInst) 3707 NumCalls++; 3708 3709 ++PrevInstIt; 3710 } 3711 3712 if (NumCalls) { 3713 SmallVector<Type*, 4> V; 3714 for (auto *II : LiveValues) 3715 V.push_back(VectorType::get(II->getType(), BundleWidth)); 3716 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 3717 } 3718 3719 PrevInst = Inst; 3720 } 3721 3722 return Cost; 3723 } 3724 3725 int BoUpSLP::getTreeCost() { 3726 int Cost = 0; 3727 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 3728 << VectorizableTree.size() << ".\n"); 3729 3730 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 3731 3732 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 3733 TreeEntry &TE = *VectorizableTree[I].get(); 3734 3735 // We create duplicate tree entries for gather sequences that have multiple 3736 // uses. However, we should not compute the cost of duplicate sequences. 3737 // For example, if we have a build vector (i.e., insertelement sequence) 3738 // that is used by more than one vector instruction, we only need to 3739 // compute the cost of the insertelement instructions once. The redundant 3740 // instructions will be eliminated by CSE. 3741 // 3742 // We should consider not creating duplicate tree entries for gather 3743 // sequences, and instead add additional edges to the tree representing 3744 // their uses. Since such an approach results in fewer total entries, 3745 // existing heuristics based on tree size may yield different results. 3746 // 3747 if (TE.State == TreeEntry::NeedToGather && 3748 std::any_of(std::next(VectorizableTree.begin(), I + 1), 3749 VectorizableTree.end(), 3750 [TE](const std::unique_ptr<TreeEntry> &EntryPtr) { 3751 return EntryPtr->State == TreeEntry::NeedToGather && 3752 EntryPtr->isSame(TE.Scalars); 3753 })) 3754 continue; 3755 3756 int C = getEntryCost(&TE); 3757 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 3758 << " for bundle that starts with " << *TE.Scalars[0] 3759 << ".\n"); 3760 Cost += C; 3761 } 3762 3763 SmallPtrSet<Value *, 16> ExtractCostCalculated; 3764 int ExtractCost = 0; 3765 for (ExternalUser &EU : ExternalUses) { 3766 // We only add extract cost once for the same scalar. 3767 if (!ExtractCostCalculated.insert(EU.Scalar).second) 3768 continue; 3769 3770 // Uses by ephemeral values are free (because the ephemeral value will be 3771 // removed prior to code generation, and so the extraction will be 3772 // removed as well). 3773 if (EphValues.count(EU.User)) 3774 continue; 3775 3776 // If we plan to rewrite the tree in a smaller type, we will need to sign 3777 // extend the extracted value back to the original type. Here, we account 3778 // for the extract and the added cost of the sign extend if needed. 3779 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 3780 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 3781 if (MinBWs.count(ScalarRoot)) { 3782 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 3783 auto Extend = 3784 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 3785 VecTy = VectorType::get(MinTy, BundleWidth); 3786 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 3787 VecTy, EU.Lane); 3788 } else { 3789 ExtractCost += 3790 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 3791 } 3792 } 3793 3794 int SpillCost = getSpillCost(); 3795 Cost += SpillCost + ExtractCost; 3796 3797 std::string Str; 3798 { 3799 raw_string_ostream OS(Str); 3800 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 3801 << "SLP: Extract Cost = " << ExtractCost << ".\n" 3802 << "SLP: Total Cost = " << Cost << ".\n"; 3803 } 3804 LLVM_DEBUG(dbgs() << Str); 3805 3806 if (ViewSLPTree) 3807 ViewGraph(this, "SLP" + F->getName(), false, Str); 3808 3809 return Cost; 3810 } 3811 3812 int BoUpSLP::getGatherCost(Type *Ty, 3813 const DenseSet<unsigned> &ShuffledIndices) const { 3814 int Cost = 0; 3815 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 3816 if (!ShuffledIndices.count(i)) 3817 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 3818 if (!ShuffledIndices.empty()) 3819 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 3820 return Cost; 3821 } 3822 3823 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 3824 // Find the type of the operands in VL. 3825 Type *ScalarTy = VL[0]->getType(); 3826 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3827 ScalarTy = SI->getValueOperand()->getType(); 3828 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 3829 // Find the cost of inserting/extracting values from the vector. 3830 // Check if the same elements are inserted several times and count them as 3831 // shuffle candidates. 3832 DenseSet<unsigned> ShuffledElements; 3833 DenseSet<Value *> UniqueElements; 3834 // Iterate in reverse order to consider insert elements with the high cost. 3835 for (unsigned I = VL.size(); I > 0; --I) { 3836 unsigned Idx = I - 1; 3837 if (!UniqueElements.insert(VL[Idx]).second) 3838 ShuffledElements.insert(Idx); 3839 } 3840 return getGatherCost(VecTy, ShuffledElements); 3841 } 3842 3843 // Perform operand reordering on the instructions in VL and return the reordered 3844 // operands in Left and Right. 3845 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 3846 SmallVectorImpl<Value *> &Left, 3847 SmallVectorImpl<Value *> &Right, 3848 const DataLayout &DL, 3849 ScalarEvolution &SE, 3850 const BoUpSLP &R) { 3851 if (VL.empty()) 3852 return; 3853 VLOperands Ops(VL, DL, SE, R); 3854 // Reorder the operands in place. 3855 Ops.reorder(); 3856 Left = Ops.getVL(0); 3857 Right = Ops.getVL(1); 3858 } 3859 3860 void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) { 3861 // Get the basic block this bundle is in. All instructions in the bundle 3862 // should be in this block. 3863 auto *Front = E->getMainOp(); 3864 auto *BB = Front->getParent(); 3865 assert(llvm::all_of(make_range(E->Scalars.begin(), E->Scalars.end()), 3866 [=](Value *V) -> bool { 3867 auto *I = cast<Instruction>(V); 3868 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 3869 })); 3870 3871 // The last instruction in the bundle in program order. 3872 Instruction *LastInst = nullptr; 3873 3874 // Find the last instruction. The common case should be that BB has been 3875 // scheduled, and the last instruction is VL.back(). So we start with 3876 // VL.back() and iterate over schedule data until we reach the end of the 3877 // bundle. The end of the bundle is marked by null ScheduleData. 3878 if (BlocksSchedules.count(BB)) { 3879 auto *Bundle = 3880 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 3881 if (Bundle && Bundle->isPartOfBundle()) 3882 for (; Bundle; Bundle = Bundle->NextInBundle) 3883 if (Bundle->OpValue == Bundle->Inst) 3884 LastInst = Bundle->Inst; 3885 } 3886 3887 // LastInst can still be null at this point if there's either not an entry 3888 // for BB in BlocksSchedules or there's no ScheduleData available for 3889 // VL.back(). This can be the case if buildTree_rec aborts for various 3890 // reasons (e.g., the maximum recursion depth is reached, the maximum region 3891 // size is reached, etc.). ScheduleData is initialized in the scheduling 3892 // "dry-run". 3893 // 3894 // If this happens, we can still find the last instruction by brute force. We 3895 // iterate forwards from Front (inclusive) until we either see all 3896 // instructions in the bundle or reach the end of the block. If Front is the 3897 // last instruction in program order, LastInst will be set to Front, and we 3898 // will visit all the remaining instructions in the block. 3899 // 3900 // One of the reasons we exit early from buildTree_rec is to place an upper 3901 // bound on compile-time. Thus, taking an additional compile-time hit here is 3902 // not ideal. However, this should be exceedingly rare since it requires that 3903 // we both exit early from buildTree_rec and that the bundle be out-of-order 3904 // (causing us to iterate all the way to the end of the block). 3905 if (!LastInst) { 3906 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 3907 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 3908 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 3909 LastInst = &I; 3910 if (Bundle.empty()) 3911 break; 3912 } 3913 } 3914 assert(LastInst && "Failed to find last instruction in bundle"); 3915 3916 // Set the insertion point after the last instruction in the bundle. Set the 3917 // debug location to Front. 3918 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 3919 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 3920 } 3921 3922 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 3923 Value *Vec = UndefValue::get(Ty); 3924 // Generate the 'InsertElement' instruction. 3925 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 3926 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 3927 if (auto *Insrt = dyn_cast<InsertElementInst>(Vec)) { 3928 GatherSeq.insert(Insrt); 3929 CSEBlocks.insert(Insrt->getParent()); 3930 3931 // Add to our 'need-to-extract' list. 3932 if (TreeEntry *E = getTreeEntry(VL[i])) { 3933 // Find which lane we need to extract. 3934 int FoundLane = -1; 3935 for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) { 3936 // Is this the lane of the scalar that we are looking for ? 3937 if (E->Scalars[Lane] == VL[i]) { 3938 FoundLane = Lane; 3939 break; 3940 } 3941 } 3942 assert(FoundLane >= 0 && "Could not find the correct lane"); 3943 if (!E->ReuseShuffleIndices.empty()) { 3944 FoundLane = 3945 std::distance(E->ReuseShuffleIndices.begin(), 3946 llvm::find(E->ReuseShuffleIndices, FoundLane)); 3947 } 3948 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 3949 } 3950 } 3951 } 3952 3953 return Vec; 3954 } 3955 3956 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 3957 InstructionsState S = getSameOpcode(VL); 3958 if (S.getOpcode()) { 3959 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3960 if (E->isSame(VL)) { 3961 Value *V = vectorizeTree(E); 3962 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 3963 // We need to get the vectorized value but without shuffle. 3964 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 3965 V = SV->getOperand(0); 3966 } else { 3967 // Reshuffle to get only unique values. 3968 SmallVector<unsigned, 4> UniqueIdxs; 3969 SmallSet<unsigned, 4> UsedIdxs; 3970 for(unsigned Idx : E->ReuseShuffleIndices) 3971 if (UsedIdxs.insert(Idx).second) 3972 UniqueIdxs.emplace_back(Idx); 3973 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 3974 UniqueIdxs); 3975 } 3976 } 3977 return V; 3978 } 3979 } 3980 } 3981 3982 Type *ScalarTy = S.OpValue->getType(); 3983 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3984 ScalarTy = SI->getValueOperand()->getType(); 3985 3986 // Check that every instruction appears once in this bundle. 3987 SmallVector<unsigned, 4> ReuseShuffleIndicies; 3988 SmallVector<Value *, 4> UniqueValues; 3989 if (VL.size() > 2) { 3990 DenseMap<Value *, unsigned> UniquePositions; 3991 for (Value *V : VL) { 3992 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3993 ReuseShuffleIndicies.emplace_back(Res.first->second); 3994 if (Res.second || isa<Constant>(V)) 3995 UniqueValues.emplace_back(V); 3996 } 3997 // Do not shuffle single element or if number of unique values is not power 3998 // of 2. 3999 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 4000 !llvm::isPowerOf2_32(UniqueValues.size())) 4001 ReuseShuffleIndicies.clear(); 4002 else 4003 VL = UniqueValues; 4004 } 4005 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 4006 4007 Value *V = Gather(VL, VecTy); 4008 if (!ReuseShuffleIndicies.empty()) { 4009 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4010 ReuseShuffleIndicies, "shuffle"); 4011 if (auto *I = dyn_cast<Instruction>(V)) { 4012 GatherSeq.insert(I); 4013 CSEBlocks.insert(I->getParent()); 4014 } 4015 } 4016 return V; 4017 } 4018 4019 static void inversePermutation(ArrayRef<unsigned> Indices, 4020 SmallVectorImpl<unsigned> &Mask) { 4021 Mask.clear(); 4022 const unsigned E = Indices.size(); 4023 Mask.resize(E); 4024 for (unsigned I = 0; I < E; ++I) 4025 Mask[Indices[I]] = I; 4026 } 4027 4028 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 4029 IRBuilder<>::InsertPointGuard Guard(Builder); 4030 4031 if (E->VectorizedValue) { 4032 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 4033 return E->VectorizedValue; 4034 } 4035 4036 Instruction *VL0 = E->getMainOp(); 4037 Type *ScalarTy = VL0->getType(); 4038 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 4039 ScalarTy = SI->getValueOperand()->getType(); 4040 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 4041 4042 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4043 4044 if (E->State == TreeEntry::NeedToGather) { 4045 setInsertPointAfterBundle(E); 4046 auto *V = Gather(E->Scalars, VecTy); 4047 if (NeedToShuffleReuses) { 4048 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4049 E->ReuseShuffleIndices, "shuffle"); 4050 if (auto *I = dyn_cast<Instruction>(V)) { 4051 GatherSeq.insert(I); 4052 CSEBlocks.insert(I->getParent()); 4053 } 4054 } 4055 E->VectorizedValue = V; 4056 return V; 4057 } 4058 4059 unsigned ShuffleOrOp = 4060 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 4061 switch (ShuffleOrOp) { 4062 case Instruction::PHI: { 4063 auto *PH = cast<PHINode>(VL0); 4064 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 4065 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4066 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 4067 Value *V = NewPhi; 4068 if (NeedToShuffleReuses) { 4069 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4070 E->ReuseShuffleIndices, "shuffle"); 4071 } 4072 E->VectorizedValue = V; 4073 4074 // PHINodes may have multiple entries from the same block. We want to 4075 // visit every block once. 4076 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 4077 4078 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 4079 ValueList Operands; 4080 BasicBlock *IBB = PH->getIncomingBlock(i); 4081 4082 if (!VisitedBBs.insert(IBB).second) { 4083 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 4084 continue; 4085 } 4086 4087 Builder.SetInsertPoint(IBB->getTerminator()); 4088 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4089 Value *Vec = vectorizeTree(E->getOperand(i)); 4090 NewPhi->addIncoming(Vec, IBB); 4091 } 4092 4093 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 4094 "Invalid number of incoming values"); 4095 return V; 4096 } 4097 4098 case Instruction::ExtractElement: { 4099 if (E->State == TreeEntry::Vectorize) { 4100 Value *V = E->getSingleOperand(0); 4101 if (!E->ReorderIndices.empty()) { 4102 OrdersType Mask; 4103 inversePermutation(E->ReorderIndices, Mask); 4104 Builder.SetInsertPoint(VL0); 4105 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), Mask, 4106 "reorder_shuffle"); 4107 } 4108 if (NeedToShuffleReuses) { 4109 // TODO: Merge this shuffle with the ReorderShuffleMask. 4110 if (E->ReorderIndices.empty()) 4111 Builder.SetInsertPoint(VL0); 4112 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4113 E->ReuseShuffleIndices, "shuffle"); 4114 } 4115 E->VectorizedValue = V; 4116 return V; 4117 } 4118 setInsertPointAfterBundle(E); 4119 auto *V = Gather(E->Scalars, VecTy); 4120 if (NeedToShuffleReuses) { 4121 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4122 E->ReuseShuffleIndices, "shuffle"); 4123 if (auto *I = dyn_cast<Instruction>(V)) { 4124 GatherSeq.insert(I); 4125 CSEBlocks.insert(I->getParent()); 4126 } 4127 } 4128 E->VectorizedValue = V; 4129 return V; 4130 } 4131 case Instruction::ExtractValue: { 4132 if (E->State == TreeEntry::Vectorize) { 4133 LoadInst *LI = cast<LoadInst>(E->getSingleOperand(0)); 4134 Builder.SetInsertPoint(LI); 4135 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 4136 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 4137 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlignment()); 4138 Value *NewV = propagateMetadata(V, E->Scalars); 4139 if (!E->ReorderIndices.empty()) { 4140 OrdersType Mask; 4141 inversePermutation(E->ReorderIndices, Mask); 4142 NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), Mask, 4143 "reorder_shuffle"); 4144 } 4145 if (NeedToShuffleReuses) { 4146 // TODO: Merge this shuffle with the ReorderShuffleMask. 4147 NewV = Builder.CreateShuffleVector( 4148 NewV, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle"); 4149 } 4150 E->VectorizedValue = NewV; 4151 return NewV; 4152 } 4153 setInsertPointAfterBundle(E); 4154 auto *V = Gather(E->Scalars, VecTy); 4155 if (NeedToShuffleReuses) { 4156 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4157 E->ReuseShuffleIndices, "shuffle"); 4158 if (auto *I = dyn_cast<Instruction>(V)) { 4159 GatherSeq.insert(I); 4160 CSEBlocks.insert(I->getParent()); 4161 } 4162 } 4163 E->VectorizedValue = V; 4164 return V; 4165 } 4166 case Instruction::ZExt: 4167 case Instruction::SExt: 4168 case Instruction::FPToUI: 4169 case Instruction::FPToSI: 4170 case Instruction::FPExt: 4171 case Instruction::PtrToInt: 4172 case Instruction::IntToPtr: 4173 case Instruction::SIToFP: 4174 case Instruction::UIToFP: 4175 case Instruction::Trunc: 4176 case Instruction::FPTrunc: 4177 case Instruction::BitCast: { 4178 setInsertPointAfterBundle(E); 4179 4180 Value *InVec = vectorizeTree(E->getOperand(0)); 4181 4182 if (E->VectorizedValue) { 4183 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4184 return E->VectorizedValue; 4185 } 4186 4187 auto *CI = cast<CastInst>(VL0); 4188 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 4189 if (NeedToShuffleReuses) { 4190 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4191 E->ReuseShuffleIndices, "shuffle"); 4192 } 4193 E->VectorizedValue = V; 4194 ++NumVectorInstructions; 4195 return V; 4196 } 4197 case Instruction::FCmp: 4198 case Instruction::ICmp: { 4199 setInsertPointAfterBundle(E); 4200 4201 Value *L = vectorizeTree(E->getOperand(0)); 4202 Value *R = vectorizeTree(E->getOperand(1)); 4203 4204 if (E->VectorizedValue) { 4205 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4206 return E->VectorizedValue; 4207 } 4208 4209 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4210 Value *V; 4211 if (E->getOpcode() == Instruction::FCmp) 4212 V = Builder.CreateFCmp(P0, L, R); 4213 else 4214 V = Builder.CreateICmp(P0, L, R); 4215 4216 propagateIRFlags(V, E->Scalars, VL0); 4217 if (NeedToShuffleReuses) { 4218 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4219 E->ReuseShuffleIndices, "shuffle"); 4220 } 4221 E->VectorizedValue = V; 4222 ++NumVectorInstructions; 4223 return V; 4224 } 4225 case Instruction::Select: { 4226 setInsertPointAfterBundle(E); 4227 4228 Value *Cond = vectorizeTree(E->getOperand(0)); 4229 Value *True = vectorizeTree(E->getOperand(1)); 4230 Value *False = vectorizeTree(E->getOperand(2)); 4231 4232 if (E->VectorizedValue) { 4233 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4234 return E->VectorizedValue; 4235 } 4236 4237 Value *V = Builder.CreateSelect(Cond, True, False); 4238 if (NeedToShuffleReuses) { 4239 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4240 E->ReuseShuffleIndices, "shuffle"); 4241 } 4242 E->VectorizedValue = V; 4243 ++NumVectorInstructions; 4244 return V; 4245 } 4246 case Instruction::FNeg: { 4247 setInsertPointAfterBundle(E); 4248 4249 Value *Op = vectorizeTree(E->getOperand(0)); 4250 4251 if (E->VectorizedValue) { 4252 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4253 return E->VectorizedValue; 4254 } 4255 4256 Value *V = Builder.CreateUnOp( 4257 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 4258 propagateIRFlags(V, E->Scalars, VL0); 4259 if (auto *I = dyn_cast<Instruction>(V)) 4260 V = propagateMetadata(I, E->Scalars); 4261 4262 if (NeedToShuffleReuses) { 4263 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4264 E->ReuseShuffleIndices, "shuffle"); 4265 } 4266 E->VectorizedValue = V; 4267 ++NumVectorInstructions; 4268 4269 return V; 4270 } 4271 case Instruction::Add: 4272 case Instruction::FAdd: 4273 case Instruction::Sub: 4274 case Instruction::FSub: 4275 case Instruction::Mul: 4276 case Instruction::FMul: 4277 case Instruction::UDiv: 4278 case Instruction::SDiv: 4279 case Instruction::FDiv: 4280 case Instruction::URem: 4281 case Instruction::SRem: 4282 case Instruction::FRem: 4283 case Instruction::Shl: 4284 case Instruction::LShr: 4285 case Instruction::AShr: 4286 case Instruction::And: 4287 case Instruction::Or: 4288 case Instruction::Xor: { 4289 setInsertPointAfterBundle(E); 4290 4291 Value *LHS = vectorizeTree(E->getOperand(0)); 4292 Value *RHS = vectorizeTree(E->getOperand(1)); 4293 4294 if (E->VectorizedValue) { 4295 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4296 return E->VectorizedValue; 4297 } 4298 4299 Value *V = Builder.CreateBinOp( 4300 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 4301 RHS); 4302 propagateIRFlags(V, E->Scalars, VL0); 4303 if (auto *I = dyn_cast<Instruction>(V)) 4304 V = propagateMetadata(I, E->Scalars); 4305 4306 if (NeedToShuffleReuses) { 4307 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4308 E->ReuseShuffleIndices, "shuffle"); 4309 } 4310 E->VectorizedValue = V; 4311 ++NumVectorInstructions; 4312 4313 return V; 4314 } 4315 case Instruction::Load: { 4316 // Loads are inserted at the head of the tree because we don't want to 4317 // sink them all the way down past store instructions. 4318 bool IsReorder = E->updateStateIfReorder(); 4319 if (IsReorder) 4320 VL0 = E->getMainOp(); 4321 setInsertPointAfterBundle(E); 4322 4323 LoadInst *LI = cast<LoadInst>(VL0); 4324 Type *ScalarLoadTy = LI->getType(); 4325 unsigned AS = LI->getPointerAddressSpace(); 4326 4327 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 4328 VecTy->getPointerTo(AS)); 4329 4330 // The pointer operand uses an in-tree scalar so we add the new BitCast to 4331 // ExternalUses list to make sure that an extract will be generated in the 4332 // future. 4333 Value *PO = LI->getPointerOperand(); 4334 if (getTreeEntry(PO)) 4335 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0)); 4336 4337 MaybeAlign Alignment = MaybeAlign(LI->getAlignment()); 4338 LI = Builder.CreateLoad(VecTy, VecPtr); 4339 if (!Alignment) 4340 Alignment = MaybeAlign(DL->getABITypeAlignment(ScalarLoadTy)); 4341 LI->setAlignment(Alignment); 4342 Value *V = propagateMetadata(LI, E->Scalars); 4343 if (IsReorder) { 4344 OrdersType Mask; 4345 inversePermutation(E->ReorderIndices, Mask); 4346 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 4347 Mask, "reorder_shuffle"); 4348 } 4349 if (NeedToShuffleReuses) { 4350 // TODO: Merge this shuffle with the ReorderShuffleMask. 4351 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4352 E->ReuseShuffleIndices, "shuffle"); 4353 } 4354 E->VectorizedValue = V; 4355 ++NumVectorInstructions; 4356 return V; 4357 } 4358 case Instruction::Store: { 4359 bool IsReorder = !E->ReorderIndices.empty(); 4360 auto *SI = cast<StoreInst>( 4361 IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0); 4362 unsigned Alignment = SI->getAlignment(); 4363 unsigned AS = SI->getPointerAddressSpace(); 4364 4365 setInsertPointAfterBundle(E); 4366 4367 Value *VecValue = vectorizeTree(E->getOperand(0)); 4368 if (IsReorder) { 4369 OrdersType Mask; 4370 inversePermutation(E->ReorderIndices, Mask); 4371 VecValue = Builder.CreateShuffleVector( 4372 VecValue, UndefValue::get(VecValue->getType()), E->ReorderIndices, 4373 "reorder_shuffle"); 4374 } 4375 Value *ScalarPtr = SI->getPointerOperand(); 4376 Value *VecPtr = Builder.CreateBitCast( 4377 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 4378 StoreInst *ST = Builder.CreateStore(VecValue, VecPtr); 4379 4380 // The pointer operand uses an in-tree scalar, so add the new BitCast to 4381 // ExternalUses to make sure that an extract will be generated in the 4382 // future. 4383 if (getTreeEntry(ScalarPtr)) 4384 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 4385 4386 if (!Alignment) 4387 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 4388 4389 ST->setAlignment(Align(Alignment)); 4390 Value *V = propagateMetadata(ST, E->Scalars); 4391 if (NeedToShuffleReuses) { 4392 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4393 E->ReuseShuffleIndices, "shuffle"); 4394 } 4395 E->VectorizedValue = V; 4396 ++NumVectorInstructions; 4397 return V; 4398 } 4399 case Instruction::GetElementPtr: { 4400 setInsertPointAfterBundle(E); 4401 4402 Value *Op0 = vectorizeTree(E->getOperand(0)); 4403 4404 std::vector<Value *> OpVecs; 4405 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 4406 ++j) { 4407 ValueList &VL = E->getOperand(j); 4408 // Need to cast all elements to the same type before vectorization to 4409 // avoid crash. 4410 Type *VL0Ty = VL0->getOperand(j)->getType(); 4411 Type *Ty = llvm::all_of( 4412 VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); }) 4413 ? VL0Ty 4414 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4415 ->getPointerOperandType() 4416 ->getScalarType()); 4417 for (Value *&V : VL) { 4418 auto *CI = cast<ConstantInt>(V); 4419 V = ConstantExpr::getIntegerCast(CI, Ty, 4420 CI->getValue().isSignBitSet()); 4421 } 4422 Value *OpVec = vectorizeTree(VL); 4423 OpVecs.push_back(OpVec); 4424 } 4425 4426 Value *V = Builder.CreateGEP( 4427 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 4428 if (Instruction *I = dyn_cast<Instruction>(V)) 4429 V = propagateMetadata(I, E->Scalars); 4430 4431 if (NeedToShuffleReuses) { 4432 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4433 E->ReuseShuffleIndices, "shuffle"); 4434 } 4435 E->VectorizedValue = V; 4436 ++NumVectorInstructions; 4437 4438 return V; 4439 } 4440 case Instruction::Call: { 4441 CallInst *CI = cast<CallInst>(VL0); 4442 setInsertPointAfterBundle(E); 4443 4444 Intrinsic::ID IID = Intrinsic::not_intrinsic; 4445 if (Function *FI = CI->getCalledFunction()) 4446 IID = FI->getIntrinsicID(); 4447 4448 Value *ScalarArg = nullptr; 4449 std::vector<Value *> OpVecs; 4450 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 4451 ValueList OpVL; 4452 // Some intrinsics have scalar arguments. This argument should not be 4453 // vectorized. 4454 if (hasVectorInstrinsicScalarOpd(IID, j)) { 4455 CallInst *CEI = cast<CallInst>(VL0); 4456 ScalarArg = CEI->getArgOperand(j); 4457 OpVecs.push_back(CEI->getArgOperand(j)); 4458 continue; 4459 } 4460 4461 Value *OpVec = vectorizeTree(E->getOperand(j)); 4462 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 4463 OpVecs.push_back(OpVec); 4464 } 4465 4466 Module *M = F->getParent(); 4467 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4468 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 4469 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 4470 SmallVector<OperandBundleDef, 1> OpBundles; 4471 CI->getOperandBundlesAsDefs(OpBundles); 4472 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 4473 4474 // The scalar argument uses an in-tree scalar so we add the new vectorized 4475 // call to ExternalUses list to make sure that an extract will be 4476 // generated in the future. 4477 if (ScalarArg && getTreeEntry(ScalarArg)) 4478 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 4479 4480 propagateIRFlags(V, E->Scalars, VL0); 4481 if (NeedToShuffleReuses) { 4482 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4483 E->ReuseShuffleIndices, "shuffle"); 4484 } 4485 E->VectorizedValue = V; 4486 ++NumVectorInstructions; 4487 return V; 4488 } 4489 case Instruction::ShuffleVector: { 4490 assert(E->isAltShuffle() && 4491 ((Instruction::isBinaryOp(E->getOpcode()) && 4492 Instruction::isBinaryOp(E->getAltOpcode())) || 4493 (Instruction::isCast(E->getOpcode()) && 4494 Instruction::isCast(E->getAltOpcode()))) && 4495 "Invalid Shuffle Vector Operand"); 4496 4497 Value *LHS = nullptr, *RHS = nullptr; 4498 if (Instruction::isBinaryOp(E->getOpcode())) { 4499 setInsertPointAfterBundle(E); 4500 LHS = vectorizeTree(E->getOperand(0)); 4501 RHS = vectorizeTree(E->getOperand(1)); 4502 } else { 4503 setInsertPointAfterBundle(E); 4504 LHS = vectorizeTree(E->getOperand(0)); 4505 } 4506 4507 if (E->VectorizedValue) { 4508 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4509 return E->VectorizedValue; 4510 } 4511 4512 Value *V0, *V1; 4513 if (Instruction::isBinaryOp(E->getOpcode())) { 4514 V0 = Builder.CreateBinOp( 4515 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 4516 V1 = Builder.CreateBinOp( 4517 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 4518 } else { 4519 V0 = Builder.CreateCast( 4520 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 4521 V1 = Builder.CreateCast( 4522 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 4523 } 4524 4525 // Create shuffle to take alternate operations from the vector. 4526 // Also, gather up main and alt scalar ops to propagate IR flags to 4527 // each vector operation. 4528 ValueList OpScalars, AltScalars; 4529 unsigned e = E->Scalars.size(); 4530 SmallVector<Constant *, 8> Mask(e); 4531 for (unsigned i = 0; i < e; ++i) { 4532 auto *OpInst = cast<Instruction>(E->Scalars[i]); 4533 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 4534 if (OpInst->getOpcode() == E->getAltOpcode()) { 4535 Mask[i] = Builder.getInt32(e + i); 4536 AltScalars.push_back(E->Scalars[i]); 4537 } else { 4538 Mask[i] = Builder.getInt32(i); 4539 OpScalars.push_back(E->Scalars[i]); 4540 } 4541 } 4542 4543 Value *ShuffleMask = ConstantVector::get(Mask); 4544 propagateIRFlags(V0, OpScalars); 4545 propagateIRFlags(V1, AltScalars); 4546 4547 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 4548 if (Instruction *I = dyn_cast<Instruction>(V)) 4549 V = propagateMetadata(I, E->Scalars); 4550 if (NeedToShuffleReuses) { 4551 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4552 E->ReuseShuffleIndices, "shuffle"); 4553 } 4554 E->VectorizedValue = V; 4555 ++NumVectorInstructions; 4556 4557 return V; 4558 } 4559 default: 4560 llvm_unreachable("unknown inst"); 4561 } 4562 return nullptr; 4563 } 4564 4565 Value *BoUpSLP::vectorizeTree() { 4566 ExtraValueToDebugLocsMap ExternallyUsedValues; 4567 return vectorizeTree(ExternallyUsedValues); 4568 } 4569 4570 Value * 4571 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 4572 // All blocks must be scheduled before any instructions are inserted. 4573 for (auto &BSIter : BlocksSchedules) { 4574 scheduleBlock(BSIter.second.get()); 4575 } 4576 4577 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4578 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 4579 4580 // If the vectorized tree can be rewritten in a smaller type, we truncate the 4581 // vectorized root. InstCombine will then rewrite the entire expression. We 4582 // sign extend the extracted values below. 4583 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4584 if (MinBWs.count(ScalarRoot)) { 4585 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 4586 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 4587 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 4588 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4589 auto *VecTy = VectorType::get(MinTy, BundleWidth); 4590 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 4591 VectorizableTree[0]->VectorizedValue = Trunc; 4592 } 4593 4594 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 4595 << " values .\n"); 4596 4597 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 4598 // specified by ScalarType. 4599 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 4600 if (!MinBWs.count(ScalarRoot)) 4601 return Ex; 4602 if (MinBWs[ScalarRoot].second) 4603 return Builder.CreateSExt(Ex, ScalarType); 4604 return Builder.CreateZExt(Ex, ScalarType); 4605 }; 4606 4607 // Extract all of the elements with the external uses. 4608 for (const auto &ExternalUse : ExternalUses) { 4609 Value *Scalar = ExternalUse.Scalar; 4610 llvm::User *User = ExternalUse.User; 4611 4612 // Skip users that we already RAUW. This happens when one instruction 4613 // has multiple uses of the same value. 4614 if (User && !is_contained(Scalar->users(), User)) 4615 continue; 4616 TreeEntry *E = getTreeEntry(Scalar); 4617 assert(E && "Invalid scalar"); 4618 assert(E->State == TreeEntry::Vectorize && "Extracting from a gather list"); 4619 4620 Value *Vec = E->VectorizedValue; 4621 assert(Vec && "Can't find vectorizable value"); 4622 4623 Value *Lane = Builder.getInt32(ExternalUse.Lane); 4624 // If User == nullptr, the Scalar is used as extra arg. Generate 4625 // ExtractElement instruction and update the record for this scalar in 4626 // ExternallyUsedValues. 4627 if (!User) { 4628 assert(ExternallyUsedValues.count(Scalar) && 4629 "Scalar with nullptr as an external user must be registered in " 4630 "ExternallyUsedValues map"); 4631 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4632 Builder.SetInsertPoint(VecI->getParent(), 4633 std::next(VecI->getIterator())); 4634 } else { 4635 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4636 } 4637 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4638 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4639 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 4640 auto &Locs = ExternallyUsedValues[Scalar]; 4641 ExternallyUsedValues.insert({Ex, Locs}); 4642 ExternallyUsedValues.erase(Scalar); 4643 // Required to update internally referenced instructions. 4644 Scalar->replaceAllUsesWith(Ex); 4645 continue; 4646 } 4647 4648 // Generate extracts for out-of-tree users. 4649 // Find the insertion point for the extractelement lane. 4650 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4651 if (PHINode *PH = dyn_cast<PHINode>(User)) { 4652 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 4653 if (PH->getIncomingValue(i) == Scalar) { 4654 Instruction *IncomingTerminator = 4655 PH->getIncomingBlock(i)->getTerminator(); 4656 if (isa<CatchSwitchInst>(IncomingTerminator)) { 4657 Builder.SetInsertPoint(VecI->getParent(), 4658 std::next(VecI->getIterator())); 4659 } else { 4660 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 4661 } 4662 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4663 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4664 CSEBlocks.insert(PH->getIncomingBlock(i)); 4665 PH->setOperand(i, Ex); 4666 } 4667 } 4668 } else { 4669 Builder.SetInsertPoint(cast<Instruction>(User)); 4670 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4671 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4672 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 4673 User->replaceUsesOfWith(Scalar, Ex); 4674 } 4675 } else { 4676 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4677 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4678 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4679 CSEBlocks.insert(&F->getEntryBlock()); 4680 User->replaceUsesOfWith(Scalar, Ex); 4681 } 4682 4683 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 4684 } 4685 4686 // For each vectorized value: 4687 for (auto &TEPtr : VectorizableTree) { 4688 TreeEntry *Entry = TEPtr.get(); 4689 4690 // No need to handle users of gathered values. 4691 if (Entry->State == TreeEntry::NeedToGather) 4692 continue; 4693 4694 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 4695 4696 // For each lane: 4697 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 4698 Value *Scalar = Entry->Scalars[Lane]; 4699 4700 #ifndef NDEBUG 4701 Type *Ty = Scalar->getType(); 4702 if (!Ty->isVoidTy()) { 4703 for (User *U : Scalar->users()) { 4704 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 4705 4706 // It is legal to delete users in the ignorelist. 4707 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 4708 "Deleting out-of-tree value"); 4709 } 4710 } 4711 #endif 4712 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 4713 eraseInstruction(cast<Instruction>(Scalar)); 4714 } 4715 } 4716 4717 Builder.ClearInsertionPoint(); 4718 4719 return VectorizableTree[0]->VectorizedValue; 4720 } 4721 4722 void BoUpSLP::optimizeGatherSequence() { 4723 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 4724 << " gather sequences instructions.\n"); 4725 // LICM InsertElementInst sequences. 4726 for (Instruction *I : GatherSeq) { 4727 if (isDeleted(I)) 4728 continue; 4729 4730 // Check if this block is inside a loop. 4731 Loop *L = LI->getLoopFor(I->getParent()); 4732 if (!L) 4733 continue; 4734 4735 // Check if it has a preheader. 4736 BasicBlock *PreHeader = L->getLoopPreheader(); 4737 if (!PreHeader) 4738 continue; 4739 4740 // If the vector or the element that we insert into it are 4741 // instructions that are defined in this basic block then we can't 4742 // hoist this instruction. 4743 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 4744 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 4745 if (Op0 && L->contains(Op0)) 4746 continue; 4747 if (Op1 && L->contains(Op1)) 4748 continue; 4749 4750 // We can hoist this instruction. Move it to the pre-header. 4751 I->moveBefore(PreHeader->getTerminator()); 4752 } 4753 4754 // Make a list of all reachable blocks in our CSE queue. 4755 SmallVector<const DomTreeNode *, 8> CSEWorkList; 4756 CSEWorkList.reserve(CSEBlocks.size()); 4757 for (BasicBlock *BB : CSEBlocks) 4758 if (DomTreeNode *N = DT->getNode(BB)) { 4759 assert(DT->isReachableFromEntry(N)); 4760 CSEWorkList.push_back(N); 4761 } 4762 4763 // Sort blocks by domination. This ensures we visit a block after all blocks 4764 // dominating it are visited. 4765 llvm::stable_sort(CSEWorkList, 4766 [this](const DomTreeNode *A, const DomTreeNode *B) { 4767 return DT->properlyDominates(A, B); 4768 }); 4769 4770 // Perform O(N^2) search over the gather sequences and merge identical 4771 // instructions. TODO: We can further optimize this scan if we split the 4772 // instructions into different buckets based on the insert lane. 4773 SmallVector<Instruction *, 16> Visited; 4774 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 4775 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 4776 "Worklist not sorted properly!"); 4777 BasicBlock *BB = (*I)->getBlock(); 4778 // For all instructions in blocks containing gather sequences: 4779 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 4780 Instruction *In = &*it++; 4781 if (isDeleted(In)) 4782 continue; 4783 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 4784 continue; 4785 4786 // Check if we can replace this instruction with any of the 4787 // visited instructions. 4788 for (Instruction *v : Visited) { 4789 if (In->isIdenticalTo(v) && 4790 DT->dominates(v->getParent(), In->getParent())) { 4791 In->replaceAllUsesWith(v); 4792 eraseInstruction(In); 4793 In = nullptr; 4794 break; 4795 } 4796 } 4797 if (In) { 4798 assert(!is_contained(Visited, In)); 4799 Visited.push_back(In); 4800 } 4801 } 4802 } 4803 CSEBlocks.clear(); 4804 GatherSeq.clear(); 4805 } 4806 4807 // Groups the instructions to a bundle (which is then a single scheduling entity) 4808 // and schedules instructions until the bundle gets ready. 4809 Optional<BoUpSLP::ScheduleData *> 4810 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 4811 const InstructionsState &S) { 4812 if (isa<PHINode>(S.OpValue)) 4813 return nullptr; 4814 4815 // Initialize the instruction bundle. 4816 Instruction *OldScheduleEnd = ScheduleEnd; 4817 ScheduleData *PrevInBundle = nullptr; 4818 ScheduleData *Bundle = nullptr; 4819 bool ReSchedule = false; 4820 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 4821 4822 // Make sure that the scheduling region contains all 4823 // instructions of the bundle. 4824 for (Value *V : VL) { 4825 if (!extendSchedulingRegion(V, S)) 4826 return None; 4827 } 4828 4829 for (Value *V : VL) { 4830 ScheduleData *BundleMember = getScheduleData(V); 4831 assert(BundleMember && 4832 "no ScheduleData for bundle member (maybe not in same basic block)"); 4833 if (BundleMember->IsScheduled) { 4834 // A bundle member was scheduled as single instruction before and now 4835 // needs to be scheduled as part of the bundle. We just get rid of the 4836 // existing schedule. 4837 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 4838 << " was already scheduled\n"); 4839 ReSchedule = true; 4840 } 4841 assert(BundleMember->isSchedulingEntity() && 4842 "bundle member already part of other bundle"); 4843 if (PrevInBundle) { 4844 PrevInBundle->NextInBundle = BundleMember; 4845 } else { 4846 Bundle = BundleMember; 4847 } 4848 BundleMember->UnscheduledDepsInBundle = 0; 4849 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 4850 4851 // Group the instructions to a bundle. 4852 BundleMember->FirstInBundle = Bundle; 4853 PrevInBundle = BundleMember; 4854 } 4855 if (ScheduleEnd != OldScheduleEnd) { 4856 // The scheduling region got new instructions at the lower end (or it is a 4857 // new region for the first bundle). This makes it necessary to 4858 // recalculate all dependencies. 4859 // It is seldom that this needs to be done a second time after adding the 4860 // initial bundle to the region. 4861 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 4862 doForAllOpcodes(I, [](ScheduleData *SD) { 4863 SD->clearDependencies(); 4864 }); 4865 } 4866 ReSchedule = true; 4867 } 4868 if (ReSchedule) { 4869 resetSchedule(); 4870 initialFillReadyList(ReadyInsts); 4871 } 4872 assert(Bundle && "Failed to find schedule bundle"); 4873 4874 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 4875 << BB->getName() << "\n"); 4876 4877 calculateDependencies(Bundle, true, SLP); 4878 4879 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 4880 // means that there are no cyclic dependencies and we can schedule it. 4881 // Note that's important that we don't "schedule" the bundle yet (see 4882 // cancelScheduling). 4883 while (!Bundle->isReady() && !ReadyInsts.empty()) { 4884 4885 ScheduleData *pickedSD = ReadyInsts.back(); 4886 ReadyInsts.pop_back(); 4887 4888 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 4889 schedule(pickedSD, ReadyInsts); 4890 } 4891 } 4892 if (!Bundle->isReady()) { 4893 cancelScheduling(VL, S.OpValue); 4894 return None; 4895 } 4896 return Bundle; 4897 } 4898 4899 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 4900 Value *OpValue) { 4901 if (isa<PHINode>(OpValue)) 4902 return; 4903 4904 ScheduleData *Bundle = getScheduleData(OpValue); 4905 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 4906 assert(!Bundle->IsScheduled && 4907 "Can't cancel bundle which is already scheduled"); 4908 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 4909 "tried to unbundle something which is not a bundle"); 4910 4911 // Un-bundle: make single instructions out of the bundle. 4912 ScheduleData *BundleMember = Bundle; 4913 while (BundleMember) { 4914 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 4915 BundleMember->FirstInBundle = BundleMember; 4916 ScheduleData *Next = BundleMember->NextInBundle; 4917 BundleMember->NextInBundle = nullptr; 4918 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 4919 if (BundleMember->UnscheduledDepsInBundle == 0) { 4920 ReadyInsts.insert(BundleMember); 4921 } 4922 BundleMember = Next; 4923 } 4924 } 4925 4926 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 4927 // Allocate a new ScheduleData for the instruction. 4928 if (ChunkPos >= ChunkSize) { 4929 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 4930 ChunkPos = 0; 4931 } 4932 return &(ScheduleDataChunks.back()[ChunkPos++]); 4933 } 4934 4935 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 4936 const InstructionsState &S) { 4937 if (getScheduleData(V, isOneOf(S, V))) 4938 return true; 4939 Instruction *I = dyn_cast<Instruction>(V); 4940 assert(I && "bundle member must be an instruction"); 4941 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 4942 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 4943 ScheduleData *ISD = getScheduleData(I); 4944 if (!ISD) 4945 return false; 4946 assert(isInSchedulingRegion(ISD) && 4947 "ScheduleData not in scheduling region"); 4948 ScheduleData *SD = allocateScheduleDataChunks(); 4949 SD->Inst = I; 4950 SD->init(SchedulingRegionID, S.OpValue); 4951 ExtraScheduleDataMap[I][S.OpValue] = SD; 4952 return true; 4953 }; 4954 if (CheckSheduleForI(I)) 4955 return true; 4956 if (!ScheduleStart) { 4957 // It's the first instruction in the new region. 4958 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 4959 ScheduleStart = I; 4960 ScheduleEnd = I->getNextNode(); 4961 if (isOneOf(S, I) != I) 4962 CheckSheduleForI(I); 4963 assert(ScheduleEnd && "tried to vectorize a terminator?"); 4964 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 4965 return true; 4966 } 4967 // Search up and down at the same time, because we don't know if the new 4968 // instruction is above or below the existing scheduling region. 4969 BasicBlock::reverse_iterator UpIter = 4970 ++ScheduleStart->getIterator().getReverse(); 4971 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 4972 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 4973 BasicBlock::iterator LowerEnd = BB->end(); 4974 while (true) { 4975 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 4976 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 4977 return false; 4978 } 4979 4980 if (UpIter != UpperEnd) { 4981 if (&*UpIter == I) { 4982 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 4983 ScheduleStart = I; 4984 if (isOneOf(S, I) != I) 4985 CheckSheduleForI(I); 4986 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 4987 << "\n"); 4988 return true; 4989 } 4990 ++UpIter; 4991 } 4992 if (DownIter != LowerEnd) { 4993 if (&*DownIter == I) { 4994 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 4995 nullptr); 4996 ScheduleEnd = I->getNextNode(); 4997 if (isOneOf(S, I) != I) 4998 CheckSheduleForI(I); 4999 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5000 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I 5001 << "\n"); 5002 return true; 5003 } 5004 ++DownIter; 5005 } 5006 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 5007 "instruction not found in block"); 5008 } 5009 return true; 5010 } 5011 5012 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 5013 Instruction *ToI, 5014 ScheduleData *PrevLoadStore, 5015 ScheduleData *NextLoadStore) { 5016 ScheduleData *CurrentLoadStore = PrevLoadStore; 5017 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 5018 ScheduleData *SD = ScheduleDataMap[I]; 5019 if (!SD) { 5020 SD = allocateScheduleDataChunks(); 5021 ScheduleDataMap[I] = SD; 5022 SD->Inst = I; 5023 } 5024 assert(!isInSchedulingRegion(SD) && 5025 "new ScheduleData already in scheduling region"); 5026 SD->init(SchedulingRegionID, I); 5027 5028 if (I->mayReadOrWriteMemory() && 5029 (!isa<IntrinsicInst>(I) || 5030 cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) { 5031 // Update the linked list of memory accessing instructions. 5032 if (CurrentLoadStore) { 5033 CurrentLoadStore->NextLoadStore = SD; 5034 } else { 5035 FirstLoadStoreInRegion = SD; 5036 } 5037 CurrentLoadStore = SD; 5038 } 5039 } 5040 if (NextLoadStore) { 5041 if (CurrentLoadStore) 5042 CurrentLoadStore->NextLoadStore = NextLoadStore; 5043 } else { 5044 LastLoadStoreInRegion = CurrentLoadStore; 5045 } 5046 } 5047 5048 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 5049 bool InsertInReadyList, 5050 BoUpSLP *SLP) { 5051 assert(SD->isSchedulingEntity()); 5052 5053 SmallVector<ScheduleData *, 10> WorkList; 5054 WorkList.push_back(SD); 5055 5056 while (!WorkList.empty()) { 5057 ScheduleData *SD = WorkList.back(); 5058 WorkList.pop_back(); 5059 5060 ScheduleData *BundleMember = SD; 5061 while (BundleMember) { 5062 assert(isInSchedulingRegion(BundleMember)); 5063 if (!BundleMember->hasValidDependencies()) { 5064 5065 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 5066 << "\n"); 5067 BundleMember->Dependencies = 0; 5068 BundleMember->resetUnscheduledDeps(); 5069 5070 // Handle def-use chain dependencies. 5071 if (BundleMember->OpValue != BundleMember->Inst) { 5072 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 5073 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5074 BundleMember->Dependencies++; 5075 ScheduleData *DestBundle = UseSD->FirstInBundle; 5076 if (!DestBundle->IsScheduled) 5077 BundleMember->incrementUnscheduledDeps(1); 5078 if (!DestBundle->hasValidDependencies()) 5079 WorkList.push_back(DestBundle); 5080 } 5081 } else { 5082 for (User *U : BundleMember->Inst->users()) { 5083 if (isa<Instruction>(U)) { 5084 ScheduleData *UseSD = getScheduleData(U); 5085 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5086 BundleMember->Dependencies++; 5087 ScheduleData *DestBundle = UseSD->FirstInBundle; 5088 if (!DestBundle->IsScheduled) 5089 BundleMember->incrementUnscheduledDeps(1); 5090 if (!DestBundle->hasValidDependencies()) 5091 WorkList.push_back(DestBundle); 5092 } 5093 } else { 5094 // I'm not sure if this can ever happen. But we need to be safe. 5095 // This lets the instruction/bundle never be scheduled and 5096 // eventually disable vectorization. 5097 BundleMember->Dependencies++; 5098 BundleMember->incrementUnscheduledDeps(1); 5099 } 5100 } 5101 } 5102 5103 // Handle the memory dependencies. 5104 ScheduleData *DepDest = BundleMember->NextLoadStore; 5105 if (DepDest) { 5106 Instruction *SrcInst = BundleMember->Inst; 5107 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 5108 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 5109 unsigned numAliased = 0; 5110 unsigned DistToSrc = 1; 5111 5112 while (DepDest) { 5113 assert(isInSchedulingRegion(DepDest)); 5114 5115 // We have two limits to reduce the complexity: 5116 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 5117 // SLP->isAliased (which is the expensive part in this loop). 5118 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 5119 // the whole loop (even if the loop is fast, it's quadratic). 5120 // It's important for the loop break condition (see below) to 5121 // check this limit even between two read-only instructions. 5122 if (DistToSrc >= MaxMemDepDistance || 5123 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 5124 (numAliased >= AliasedCheckLimit || 5125 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 5126 5127 // We increment the counter only if the locations are aliased 5128 // (instead of counting all alias checks). This gives a better 5129 // balance between reduced runtime and accurate dependencies. 5130 numAliased++; 5131 5132 DepDest->MemoryDependencies.push_back(BundleMember); 5133 BundleMember->Dependencies++; 5134 ScheduleData *DestBundle = DepDest->FirstInBundle; 5135 if (!DestBundle->IsScheduled) { 5136 BundleMember->incrementUnscheduledDeps(1); 5137 } 5138 if (!DestBundle->hasValidDependencies()) { 5139 WorkList.push_back(DestBundle); 5140 } 5141 } 5142 DepDest = DepDest->NextLoadStore; 5143 5144 // Example, explaining the loop break condition: Let's assume our 5145 // starting instruction is i0 and MaxMemDepDistance = 3. 5146 // 5147 // +--------v--v--v 5148 // i0,i1,i2,i3,i4,i5,i6,i7,i8 5149 // +--------^--^--^ 5150 // 5151 // MaxMemDepDistance let us stop alias-checking at i3 and we add 5152 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 5153 // Previously we already added dependencies from i3 to i6,i7,i8 5154 // (because of MaxMemDepDistance). As we added a dependency from 5155 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 5156 // and we can abort this loop at i6. 5157 if (DistToSrc >= 2 * MaxMemDepDistance) 5158 break; 5159 DistToSrc++; 5160 } 5161 } 5162 } 5163 BundleMember = BundleMember->NextInBundle; 5164 } 5165 if (InsertInReadyList && SD->isReady()) { 5166 ReadyInsts.push_back(SD); 5167 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 5168 << "\n"); 5169 } 5170 } 5171 } 5172 5173 void BoUpSLP::BlockScheduling::resetSchedule() { 5174 assert(ScheduleStart && 5175 "tried to reset schedule on block which has not been scheduled"); 5176 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 5177 doForAllOpcodes(I, [&](ScheduleData *SD) { 5178 assert(isInSchedulingRegion(SD) && 5179 "ScheduleData not in scheduling region"); 5180 SD->IsScheduled = false; 5181 SD->resetUnscheduledDeps(); 5182 }); 5183 } 5184 ReadyInsts.clear(); 5185 } 5186 5187 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 5188 if (!BS->ScheduleStart) 5189 return; 5190 5191 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 5192 5193 BS->resetSchedule(); 5194 5195 // For the real scheduling we use a more sophisticated ready-list: it is 5196 // sorted by the original instruction location. This lets the final schedule 5197 // be as close as possible to the original instruction order. 5198 struct ScheduleDataCompare { 5199 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 5200 return SD2->SchedulingPriority < SD1->SchedulingPriority; 5201 } 5202 }; 5203 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 5204 5205 // Ensure that all dependency data is updated and fill the ready-list with 5206 // initial instructions. 5207 int Idx = 0; 5208 int NumToSchedule = 0; 5209 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 5210 I = I->getNextNode()) { 5211 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 5212 assert(SD->isPartOfBundle() == 5213 (getTreeEntry(SD->Inst) != nullptr) && 5214 "scheduler and vectorizer bundle mismatch"); 5215 SD->FirstInBundle->SchedulingPriority = Idx++; 5216 if (SD->isSchedulingEntity()) { 5217 BS->calculateDependencies(SD, false, this); 5218 NumToSchedule++; 5219 } 5220 }); 5221 } 5222 BS->initialFillReadyList(ReadyInsts); 5223 5224 Instruction *LastScheduledInst = BS->ScheduleEnd; 5225 5226 // Do the "real" scheduling. 5227 while (!ReadyInsts.empty()) { 5228 ScheduleData *picked = *ReadyInsts.begin(); 5229 ReadyInsts.erase(ReadyInsts.begin()); 5230 5231 // Move the scheduled instruction(s) to their dedicated places, if not 5232 // there yet. 5233 ScheduleData *BundleMember = picked; 5234 while (BundleMember) { 5235 Instruction *pickedInst = BundleMember->Inst; 5236 if (LastScheduledInst->getNextNode() != pickedInst) { 5237 BS->BB->getInstList().remove(pickedInst); 5238 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 5239 pickedInst); 5240 } 5241 LastScheduledInst = pickedInst; 5242 BundleMember = BundleMember->NextInBundle; 5243 } 5244 5245 BS->schedule(picked, ReadyInsts); 5246 NumToSchedule--; 5247 } 5248 assert(NumToSchedule == 0 && "could not schedule all instructions"); 5249 5250 // Avoid duplicate scheduling of the block. 5251 BS->ScheduleStart = nullptr; 5252 } 5253 5254 unsigned BoUpSLP::getVectorElementSize(Value *V) const { 5255 // If V is a store, just return the width of the stored value without 5256 // traversing the expression tree. This is the common case. 5257 if (auto *Store = dyn_cast<StoreInst>(V)) 5258 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 5259 5260 // If V is not a store, we can traverse the expression tree to find loads 5261 // that feed it. The type of the loaded value may indicate a more suitable 5262 // width than V's type. We want to base the vector element size on the width 5263 // of memory operations where possible. 5264 SmallVector<Instruction *, 16> Worklist; 5265 SmallPtrSet<Instruction *, 16> Visited; 5266 if (auto *I = dyn_cast<Instruction>(V)) 5267 Worklist.push_back(I); 5268 5269 // Traverse the expression tree in bottom-up order looking for loads. If we 5270 // encounter an instruction we don't yet handle, we give up. 5271 auto MaxWidth = 0u; 5272 auto FoundUnknownInst = false; 5273 while (!Worklist.empty() && !FoundUnknownInst) { 5274 auto *I = Worklist.pop_back_val(); 5275 Visited.insert(I); 5276 5277 // We should only be looking at scalar instructions here. If the current 5278 // instruction has a vector type, give up. 5279 auto *Ty = I->getType(); 5280 if (isa<VectorType>(Ty)) 5281 FoundUnknownInst = true; 5282 5283 // If the current instruction is a load, update MaxWidth to reflect the 5284 // width of the loaded value. 5285 else if (isa<LoadInst>(I)) 5286 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 5287 5288 // Otherwise, we need to visit the operands of the instruction. We only 5289 // handle the interesting cases from buildTree here. If an operand is an 5290 // instruction we haven't yet visited, we add it to the worklist. 5291 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5292 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 5293 for (Use &U : I->operands()) 5294 if (auto *J = dyn_cast<Instruction>(U.get())) 5295 if (!Visited.count(J)) 5296 Worklist.push_back(J); 5297 } 5298 5299 // If we don't yet handle the instruction, give up. 5300 else 5301 FoundUnknownInst = true; 5302 } 5303 5304 // If we didn't encounter a memory access in the expression tree, or if we 5305 // gave up for some reason, just return the width of V. 5306 if (!MaxWidth || FoundUnknownInst) 5307 return DL->getTypeSizeInBits(V->getType()); 5308 5309 // Otherwise, return the maximum width we found. 5310 return MaxWidth; 5311 } 5312 5313 // Determine if a value V in a vectorizable expression Expr can be demoted to a 5314 // smaller type with a truncation. We collect the values that will be demoted 5315 // in ToDemote and additional roots that require investigating in Roots. 5316 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 5317 SmallVectorImpl<Value *> &ToDemote, 5318 SmallVectorImpl<Value *> &Roots) { 5319 // We can always demote constants. 5320 if (isa<Constant>(V)) { 5321 ToDemote.push_back(V); 5322 return true; 5323 } 5324 5325 // If the value is not an instruction in the expression with only one use, it 5326 // cannot be demoted. 5327 auto *I = dyn_cast<Instruction>(V); 5328 if (!I || !I->hasOneUse() || !Expr.count(I)) 5329 return false; 5330 5331 switch (I->getOpcode()) { 5332 5333 // We can always demote truncations and extensions. Since truncations can 5334 // seed additional demotion, we save the truncated value. 5335 case Instruction::Trunc: 5336 Roots.push_back(I->getOperand(0)); 5337 break; 5338 case Instruction::ZExt: 5339 case Instruction::SExt: 5340 break; 5341 5342 // We can demote certain binary operations if we can demote both of their 5343 // operands. 5344 case Instruction::Add: 5345 case Instruction::Sub: 5346 case Instruction::Mul: 5347 case Instruction::And: 5348 case Instruction::Or: 5349 case Instruction::Xor: 5350 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 5351 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 5352 return false; 5353 break; 5354 5355 // We can demote selects if we can demote their true and false values. 5356 case Instruction::Select: { 5357 SelectInst *SI = cast<SelectInst>(I); 5358 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 5359 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 5360 return false; 5361 break; 5362 } 5363 5364 // We can demote phis if we can demote all their incoming operands. Note that 5365 // we don't need to worry about cycles since we ensure single use above. 5366 case Instruction::PHI: { 5367 PHINode *PN = cast<PHINode>(I); 5368 for (Value *IncValue : PN->incoming_values()) 5369 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 5370 return false; 5371 break; 5372 } 5373 5374 // Otherwise, conservatively give up. 5375 default: 5376 return false; 5377 } 5378 5379 // Record the value that we can demote. 5380 ToDemote.push_back(V); 5381 return true; 5382 } 5383 5384 void BoUpSLP::computeMinimumValueSizes() { 5385 // If there are no external uses, the expression tree must be rooted by a 5386 // store. We can't demote in-memory values, so there is nothing to do here. 5387 if (ExternalUses.empty()) 5388 return; 5389 5390 // We only attempt to truncate integer expressions. 5391 auto &TreeRoot = VectorizableTree[0]->Scalars; 5392 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 5393 if (!TreeRootIT) 5394 return; 5395 5396 // If the expression is not rooted by a store, these roots should have 5397 // external uses. We will rely on InstCombine to rewrite the expression in 5398 // the narrower type. However, InstCombine only rewrites single-use values. 5399 // This means that if a tree entry other than a root is used externally, it 5400 // must have multiple uses and InstCombine will not rewrite it. The code 5401 // below ensures that only the roots are used externally. 5402 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 5403 for (auto &EU : ExternalUses) 5404 if (!Expr.erase(EU.Scalar)) 5405 return; 5406 if (!Expr.empty()) 5407 return; 5408 5409 // Collect the scalar values of the vectorizable expression. We will use this 5410 // context to determine which values can be demoted. If we see a truncation, 5411 // we mark it as seeding another demotion. 5412 for (auto &EntryPtr : VectorizableTree) 5413 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 5414 5415 // Ensure the roots of the vectorizable tree don't form a cycle. They must 5416 // have a single external user that is not in the vectorizable tree. 5417 for (auto *Root : TreeRoot) 5418 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 5419 return; 5420 5421 // Conservatively determine if we can actually truncate the roots of the 5422 // expression. Collect the values that can be demoted in ToDemote and 5423 // additional roots that require investigating in Roots. 5424 SmallVector<Value *, 32> ToDemote; 5425 SmallVector<Value *, 4> Roots; 5426 for (auto *Root : TreeRoot) 5427 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 5428 return; 5429 5430 // The maximum bit width required to represent all the values that can be 5431 // demoted without loss of precision. It would be safe to truncate the roots 5432 // of the expression to this width. 5433 auto MaxBitWidth = 8u; 5434 5435 // We first check if all the bits of the roots are demanded. If they're not, 5436 // we can truncate the roots to this narrower type. 5437 for (auto *Root : TreeRoot) { 5438 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 5439 MaxBitWidth = std::max<unsigned>( 5440 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 5441 } 5442 5443 // True if the roots can be zero-extended back to their original type, rather 5444 // than sign-extended. We know that if the leading bits are not demanded, we 5445 // can safely zero-extend. So we initialize IsKnownPositive to True. 5446 bool IsKnownPositive = true; 5447 5448 // If all the bits of the roots are demanded, we can try a little harder to 5449 // compute a narrower type. This can happen, for example, if the roots are 5450 // getelementptr indices. InstCombine promotes these indices to the pointer 5451 // width. Thus, all their bits are technically demanded even though the 5452 // address computation might be vectorized in a smaller type. 5453 // 5454 // We start by looking at each entry that can be demoted. We compute the 5455 // maximum bit width required to store the scalar by using ValueTracking to 5456 // compute the number of high-order bits we can truncate. 5457 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 5458 llvm::all_of(TreeRoot, [](Value *R) { 5459 assert(R->hasOneUse() && "Root should have only one use!"); 5460 return isa<GetElementPtrInst>(R->user_back()); 5461 })) { 5462 MaxBitWidth = 8u; 5463 5464 // Determine if the sign bit of all the roots is known to be zero. If not, 5465 // IsKnownPositive is set to False. 5466 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 5467 KnownBits Known = computeKnownBits(R, *DL); 5468 return Known.isNonNegative(); 5469 }); 5470 5471 // Determine the maximum number of bits required to store the scalar 5472 // values. 5473 for (auto *Scalar : ToDemote) { 5474 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 5475 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 5476 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 5477 } 5478 5479 // If we can't prove that the sign bit is zero, we must add one to the 5480 // maximum bit width to account for the unknown sign bit. This preserves 5481 // the existing sign bit so we can safely sign-extend the root back to the 5482 // original type. Otherwise, if we know the sign bit is zero, we will 5483 // zero-extend the root instead. 5484 // 5485 // FIXME: This is somewhat suboptimal, as there will be cases where adding 5486 // one to the maximum bit width will yield a larger-than-necessary 5487 // type. In general, we need to add an extra bit only if we can't 5488 // prove that the upper bit of the original type is equal to the 5489 // upper bit of the proposed smaller type. If these two bits are the 5490 // same (either zero or one) we know that sign-extending from the 5491 // smaller type will result in the same value. Here, since we can't 5492 // yet prove this, we are just making the proposed smaller type 5493 // larger to ensure correctness. 5494 if (!IsKnownPositive) 5495 ++MaxBitWidth; 5496 } 5497 5498 // Round MaxBitWidth up to the next power-of-two. 5499 if (!isPowerOf2_64(MaxBitWidth)) 5500 MaxBitWidth = NextPowerOf2(MaxBitWidth); 5501 5502 // If the maximum bit width we compute is less than the with of the roots' 5503 // type, we can proceed with the narrowing. Otherwise, do nothing. 5504 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 5505 return; 5506 5507 // If we can truncate the root, we must collect additional values that might 5508 // be demoted as a result. That is, those seeded by truncations we will 5509 // modify. 5510 while (!Roots.empty()) 5511 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 5512 5513 // Finally, map the values we can demote to the maximum bit with we computed. 5514 for (auto *Scalar : ToDemote) 5515 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 5516 } 5517 5518 namespace { 5519 5520 /// The SLPVectorizer Pass. 5521 struct SLPVectorizer : public FunctionPass { 5522 SLPVectorizerPass Impl; 5523 5524 /// Pass identification, replacement for typeid 5525 static char ID; 5526 5527 explicit SLPVectorizer() : FunctionPass(ID) { 5528 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 5529 } 5530 5531 bool doInitialization(Module &M) override { 5532 return false; 5533 } 5534 5535 bool runOnFunction(Function &F) override { 5536 if (skipFunction(F)) 5537 return false; 5538 5539 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5540 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 5541 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 5542 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 5543 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 5544 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5545 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5546 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 5547 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 5548 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 5549 5550 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5551 } 5552 5553 void getAnalysisUsage(AnalysisUsage &AU) const override { 5554 FunctionPass::getAnalysisUsage(AU); 5555 AU.addRequired<AssumptionCacheTracker>(); 5556 AU.addRequired<ScalarEvolutionWrapperPass>(); 5557 AU.addRequired<AAResultsWrapperPass>(); 5558 AU.addRequired<TargetTransformInfoWrapperPass>(); 5559 AU.addRequired<LoopInfoWrapperPass>(); 5560 AU.addRequired<DominatorTreeWrapperPass>(); 5561 AU.addRequired<DemandedBitsWrapperPass>(); 5562 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 5563 AU.addPreserved<LoopInfoWrapperPass>(); 5564 AU.addPreserved<DominatorTreeWrapperPass>(); 5565 AU.addPreserved<AAResultsWrapperPass>(); 5566 AU.addPreserved<GlobalsAAWrapperPass>(); 5567 AU.setPreservesCFG(); 5568 } 5569 }; 5570 5571 } // end anonymous namespace 5572 5573 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 5574 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 5575 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 5576 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 5577 auto *AA = &AM.getResult<AAManager>(F); 5578 auto *LI = &AM.getResult<LoopAnalysis>(F); 5579 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 5580 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 5581 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 5582 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 5583 5584 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5585 if (!Changed) 5586 return PreservedAnalyses::all(); 5587 5588 PreservedAnalyses PA; 5589 PA.preserveSet<CFGAnalyses>(); 5590 PA.preserve<AAManager>(); 5591 PA.preserve<GlobalsAA>(); 5592 return PA; 5593 } 5594 5595 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 5596 TargetTransformInfo *TTI_, 5597 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 5598 LoopInfo *LI_, DominatorTree *DT_, 5599 AssumptionCache *AC_, DemandedBits *DB_, 5600 OptimizationRemarkEmitter *ORE_) { 5601 SE = SE_; 5602 TTI = TTI_; 5603 TLI = TLI_; 5604 AA = AA_; 5605 LI = LI_; 5606 DT = DT_; 5607 AC = AC_; 5608 DB = DB_; 5609 DL = &F.getParent()->getDataLayout(); 5610 5611 Stores.clear(); 5612 GEPs.clear(); 5613 bool Changed = false; 5614 5615 // If the target claims to have no vector registers don't attempt 5616 // vectorization. 5617 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 5618 return false; 5619 5620 // Don't vectorize when the attribute NoImplicitFloat is used. 5621 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 5622 return false; 5623 5624 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 5625 5626 // Use the bottom up slp vectorizer to construct chains that start with 5627 // store instructions. 5628 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 5629 5630 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 5631 // delete instructions. 5632 5633 // Scan the blocks in the function in post order. 5634 for (auto BB : post_order(&F.getEntryBlock())) { 5635 collectSeedInstructions(BB); 5636 5637 // Vectorize trees that end at stores. 5638 if (!Stores.empty()) { 5639 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 5640 << " underlying objects.\n"); 5641 Changed |= vectorizeStoreChains(R); 5642 } 5643 5644 // Vectorize trees that end at reductions. 5645 Changed |= vectorizeChainsInBlock(BB, R); 5646 5647 // Vectorize the index computations of getelementptr instructions. This 5648 // is primarily intended to catch gather-like idioms ending at 5649 // non-consecutive loads. 5650 if (!GEPs.empty()) { 5651 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 5652 << " underlying objects.\n"); 5653 Changed |= vectorizeGEPIndices(BB, R); 5654 } 5655 } 5656 5657 if (Changed) { 5658 R.optimizeGatherSequence(); 5659 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 5660 LLVM_DEBUG(verifyFunction(F)); 5661 } 5662 return Changed; 5663 } 5664 5665 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 5666 unsigned Idx) { 5667 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 5668 << "\n"); 5669 const unsigned Sz = R.getVectorElementSize(Chain[0]); 5670 const unsigned MinVF = R.getMinVecRegSize() / Sz; 5671 unsigned VF = Chain.size(); 5672 5673 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 5674 return false; 5675 5676 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 5677 << "\n"); 5678 5679 R.buildTree(Chain); 5680 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 5681 // TODO: Handle orders of size less than number of elements in the vector. 5682 if (Order && Order->size() == Chain.size()) { 5683 // TODO: reorder tree nodes without tree rebuilding. 5684 SmallVector<Value *, 4> ReorderedOps(Chain.rbegin(), Chain.rend()); 5685 llvm::transform(*Order, ReorderedOps.begin(), 5686 [Chain](const unsigned Idx) { return Chain[Idx]; }); 5687 R.buildTree(ReorderedOps); 5688 } 5689 if (R.isTreeTinyAndNotFullyVectorizable()) 5690 return false; 5691 5692 R.computeMinimumValueSizes(); 5693 5694 int Cost = R.getTreeCost(); 5695 5696 LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); 5697 if (Cost < -SLPCostThreshold) { 5698 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 5699 5700 using namespace ore; 5701 5702 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 5703 cast<StoreInst>(Chain[0])) 5704 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 5705 << " and with tree size " 5706 << NV("TreeSize", R.getTreeSize())); 5707 5708 R.vectorizeTree(); 5709 return true; 5710 } 5711 5712 return false; 5713 } 5714 5715 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 5716 BoUpSLP &R) { 5717 // We may run into multiple chains that merge into a single chain. We mark the 5718 // stores that we vectorized so that we don't visit the same store twice. 5719 BoUpSLP::ValueSet VectorizedStores; 5720 bool Changed = false; 5721 5722 int E = Stores.size(); 5723 SmallBitVector Tails(E, false); 5724 SmallVector<int, 16> ConsecutiveChain(E, E + 1); 5725 int MaxIter = MaxStoreLookup.getValue(); 5726 int IterCnt; 5727 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 5728 &ConsecutiveChain](int K, int Idx) { 5729 if (IterCnt >= MaxIter) 5730 return true; 5731 ++IterCnt; 5732 if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) 5733 return false; 5734 5735 Tails.set(Idx); 5736 ConsecutiveChain[K] = Idx; 5737 return true; 5738 }; 5739 // Do a quadratic search on all of the given stores in reverse order and find 5740 // all of the pairs of stores that follow each other. 5741 for (int Idx = E - 1; Idx >= 0; --Idx) { 5742 // If a store has multiple consecutive store candidates, search according 5743 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 5744 // This is because usually pairing with immediate succeeding or preceding 5745 // candidate create the best chance to find slp vectorization opportunity. 5746 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 5747 IterCnt = 0; 5748 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 5749 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 5750 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 5751 break; 5752 } 5753 5754 // For stores that start but don't end a link in the chain: 5755 for (int Cnt = E; Cnt > 0; --Cnt) { 5756 int I = Cnt - 1; 5757 if (ConsecutiveChain[I] == E + 1 || Tails.test(I)) 5758 continue; 5759 // We found a store instr that starts a chain. Now follow the chain and try 5760 // to vectorize it. 5761 BoUpSLP::ValueList Operands; 5762 // Collect the chain into a list. 5763 while (I != E + 1 && !VectorizedStores.count(Stores[I])) { 5764 Operands.push_back(Stores[I]); 5765 // Move to the next value in the chain. 5766 I = ConsecutiveChain[I]; 5767 } 5768 5769 // If a vector register can't hold 1 element, we are done. 5770 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 5771 unsigned EltSize = R.getVectorElementSize(Stores[0]); 5772 if (MaxVecRegSize % EltSize != 0) 5773 continue; 5774 5775 unsigned MaxElts = MaxVecRegSize / EltSize; 5776 // FIXME: Is division-by-2 the correct step? Should we assert that the 5777 // register size is a power-of-2? 5778 unsigned StartIdx = 0; 5779 for (unsigned Size = llvm::PowerOf2Ceil(MaxElts); Size >= 2; Size /= 2) { 5780 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 5781 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 5782 if (!VectorizedStores.count(Slice.front()) && 5783 !VectorizedStores.count(Slice.back()) && 5784 vectorizeStoreChain(Slice, R, Cnt)) { 5785 // Mark the vectorized stores so that we don't vectorize them again. 5786 VectorizedStores.insert(Slice.begin(), Slice.end()); 5787 Changed = true; 5788 // If we vectorized initial block, no need to try to vectorize it 5789 // again. 5790 if (Cnt == StartIdx) 5791 StartIdx += Size; 5792 Cnt += Size; 5793 continue; 5794 } 5795 ++Cnt; 5796 } 5797 // Check if the whole array was vectorized already - exit. 5798 if (StartIdx >= Operands.size()) 5799 break; 5800 } 5801 } 5802 5803 return Changed; 5804 } 5805 5806 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 5807 // Initialize the collections. We will make a single pass over the block. 5808 Stores.clear(); 5809 GEPs.clear(); 5810 5811 // Visit the store and getelementptr instructions in BB and organize them in 5812 // Stores and GEPs according to the underlying objects of their pointer 5813 // operands. 5814 for (Instruction &I : *BB) { 5815 // Ignore store instructions that are volatile or have a pointer operand 5816 // that doesn't point to a scalar type. 5817 if (auto *SI = dyn_cast<StoreInst>(&I)) { 5818 if (!SI->isSimple()) 5819 continue; 5820 if (!isValidElementType(SI->getValueOperand()->getType())) 5821 continue; 5822 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 5823 } 5824 5825 // Ignore getelementptr instructions that have more than one index, a 5826 // constant index, or a pointer operand that doesn't point to a scalar 5827 // type. 5828 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 5829 auto Idx = GEP->idx_begin()->get(); 5830 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 5831 continue; 5832 if (!isValidElementType(Idx->getType())) 5833 continue; 5834 if (GEP->getType()->isVectorTy()) 5835 continue; 5836 GEPs[GEP->getPointerOperand()].push_back(GEP); 5837 } 5838 } 5839 } 5840 5841 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 5842 if (!A || !B) 5843 return false; 5844 Value *VL[] = { A, B }; 5845 return tryToVectorizeList(VL, R, /*UserCost=*/0, true); 5846 } 5847 5848 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 5849 int UserCost, bool AllowReorder) { 5850 if (VL.size() < 2) 5851 return false; 5852 5853 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 5854 << VL.size() << ".\n"); 5855 5856 // Check that all of the parts are scalar instructions of the same type, 5857 // we permit an alternate opcode via InstructionsState. 5858 InstructionsState S = getSameOpcode(VL); 5859 if (!S.getOpcode()) 5860 return false; 5861 5862 Instruction *I0 = cast<Instruction>(S.OpValue); 5863 unsigned Sz = R.getVectorElementSize(I0); 5864 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 5865 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 5866 if (MaxVF < 2) { 5867 R.getORE()->emit([&]() { 5868 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 5869 << "Cannot SLP vectorize list: vectorization factor " 5870 << "less than 2 is not supported"; 5871 }); 5872 return false; 5873 } 5874 5875 for (Value *V : VL) { 5876 Type *Ty = V->getType(); 5877 if (!isValidElementType(Ty)) { 5878 // NOTE: the following will give user internal llvm type name, which may 5879 // not be useful. 5880 R.getORE()->emit([&]() { 5881 std::string type_str; 5882 llvm::raw_string_ostream rso(type_str); 5883 Ty->print(rso); 5884 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 5885 << "Cannot SLP vectorize list: type " 5886 << rso.str() + " is unsupported by vectorizer"; 5887 }); 5888 return false; 5889 } 5890 } 5891 5892 bool Changed = false; 5893 bool CandidateFound = false; 5894 int MinCost = SLPCostThreshold; 5895 5896 unsigned NextInst = 0, MaxInst = VL.size(); 5897 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 5898 // No actual vectorization should happen, if number of parts is the same as 5899 // provided vectorization factor (i.e. the scalar type is used for vector 5900 // code during codegen). 5901 auto *VecTy = VectorType::get(VL[0]->getType(), VF); 5902 if (TTI->getNumberOfParts(VecTy) == VF) 5903 continue; 5904 for (unsigned I = NextInst; I < MaxInst; ++I) { 5905 unsigned OpsWidth = 0; 5906 5907 if (I + VF > MaxInst) 5908 OpsWidth = MaxInst - I; 5909 else 5910 OpsWidth = VF; 5911 5912 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 5913 break; 5914 5915 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 5916 // Check that a previous iteration of this loop did not delete the Value. 5917 if (llvm::any_of(Ops, [&R](Value *V) { 5918 auto *I = dyn_cast<Instruction>(V); 5919 return I && R.isDeleted(I); 5920 })) 5921 continue; 5922 5923 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 5924 << "\n"); 5925 5926 R.buildTree(Ops); 5927 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 5928 // TODO: check if we can allow reordering for more cases. 5929 if (AllowReorder && Order) { 5930 // TODO: reorder tree nodes without tree rebuilding. 5931 // Conceptually, there is nothing actually preventing us from trying to 5932 // reorder a larger list. In fact, we do exactly this when vectorizing 5933 // reductions. However, at this point, we only expect to get here when 5934 // there are exactly two operations. 5935 assert(Ops.size() == 2); 5936 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 5937 R.buildTree(ReorderedOps, None); 5938 } 5939 if (R.isTreeTinyAndNotFullyVectorizable()) 5940 continue; 5941 5942 R.computeMinimumValueSizes(); 5943 int Cost = R.getTreeCost() - UserCost; 5944 CandidateFound = true; 5945 MinCost = std::min(MinCost, Cost); 5946 5947 if (Cost < -SLPCostThreshold) { 5948 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 5949 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 5950 cast<Instruction>(Ops[0])) 5951 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 5952 << " and with tree size " 5953 << ore::NV("TreeSize", R.getTreeSize())); 5954 5955 R.vectorizeTree(); 5956 // Move to the next bundle. 5957 I += VF - 1; 5958 NextInst = I + 1; 5959 Changed = true; 5960 } 5961 } 5962 } 5963 5964 if (!Changed && CandidateFound) { 5965 R.getORE()->emit([&]() { 5966 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 5967 << "List vectorization was possible but not beneficial with cost " 5968 << ore::NV("Cost", MinCost) << " >= " 5969 << ore::NV("Treshold", -SLPCostThreshold); 5970 }); 5971 } else if (!Changed) { 5972 R.getORE()->emit([&]() { 5973 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 5974 << "Cannot SLP vectorize list: vectorization was impossible" 5975 << " with available vectorization factors"; 5976 }); 5977 } 5978 return Changed; 5979 } 5980 5981 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 5982 if (!I) 5983 return false; 5984 5985 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 5986 return false; 5987 5988 Value *P = I->getParent(); 5989 5990 // Vectorize in current basic block only. 5991 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 5992 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 5993 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 5994 return false; 5995 5996 // Try to vectorize V. 5997 if (tryToVectorizePair(Op0, Op1, R)) 5998 return true; 5999 6000 auto *A = dyn_cast<BinaryOperator>(Op0); 6001 auto *B = dyn_cast<BinaryOperator>(Op1); 6002 // Try to skip B. 6003 if (B && B->hasOneUse()) { 6004 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 6005 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 6006 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 6007 return true; 6008 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 6009 return true; 6010 } 6011 6012 // Try to skip A. 6013 if (A && A->hasOneUse()) { 6014 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 6015 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 6016 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 6017 return true; 6018 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 6019 return true; 6020 } 6021 return false; 6022 } 6023 6024 /// Generate a shuffle mask to be used in a reduction tree. 6025 /// 6026 /// \param VecLen The length of the vector to be reduced. 6027 /// \param NumEltsToRdx The number of elements that should be reduced in the 6028 /// vector. 6029 /// \param IsPairwise Whether the reduction is a pairwise or splitting 6030 /// reduction. A pairwise reduction will generate a mask of 6031 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 6032 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 6033 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 6034 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 6035 bool IsPairwise, bool IsLeft, 6036 IRBuilder<> &Builder) { 6037 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 6038 6039 SmallVector<Constant *, 32> ShuffleMask( 6040 VecLen, UndefValue::get(Builder.getInt32Ty())); 6041 6042 if (IsPairwise) 6043 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 6044 for (unsigned i = 0; i != NumEltsToRdx; ++i) 6045 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 6046 else 6047 // Move the upper half of the vector to the lower half. 6048 for (unsigned i = 0; i != NumEltsToRdx; ++i) 6049 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 6050 6051 return ConstantVector::get(ShuffleMask); 6052 } 6053 6054 namespace { 6055 6056 /// Model horizontal reductions. 6057 /// 6058 /// A horizontal reduction is a tree of reduction operations (currently add and 6059 /// fadd) that has operations that can be put into a vector as its leaf. 6060 /// For example, this tree: 6061 /// 6062 /// mul mul mul mul 6063 /// \ / \ / 6064 /// + + 6065 /// \ / 6066 /// + 6067 /// This tree has "mul" as its reduced values and "+" as its reduction 6068 /// operations. A reduction might be feeding into a store or a binary operation 6069 /// feeding a phi. 6070 /// ... 6071 /// \ / 6072 /// + 6073 /// | 6074 /// phi += 6075 /// 6076 /// Or: 6077 /// ... 6078 /// \ / 6079 /// + 6080 /// | 6081 /// *p = 6082 /// 6083 class HorizontalReduction { 6084 using ReductionOpsType = SmallVector<Value *, 16>; 6085 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 6086 ReductionOpsListType ReductionOps; 6087 SmallVector<Value *, 32> ReducedVals; 6088 // Use map vector to make stable output. 6089 MapVector<Instruction *, Value *> ExtraArgs; 6090 6091 /// Kind of the reduction data. 6092 enum ReductionKind { 6093 RK_None, /// Not a reduction. 6094 RK_Arithmetic, /// Binary reduction data. 6095 RK_Min, /// Minimum reduction data. 6096 RK_UMin, /// Unsigned minimum reduction data. 6097 RK_Max, /// Maximum reduction data. 6098 RK_UMax, /// Unsigned maximum reduction data. 6099 }; 6100 6101 /// Contains info about operation, like its opcode, left and right operands. 6102 class OperationData { 6103 /// Opcode of the instruction. 6104 unsigned Opcode = 0; 6105 6106 /// Left operand of the reduction operation. 6107 Value *LHS = nullptr; 6108 6109 /// Right operand of the reduction operation. 6110 Value *RHS = nullptr; 6111 6112 /// Kind of the reduction operation. 6113 ReductionKind Kind = RK_None; 6114 6115 /// True if float point min/max reduction has no NaNs. 6116 bool NoNaN = false; 6117 6118 /// Checks if the reduction operation can be vectorized. 6119 bool isVectorizable() const { 6120 return LHS && RHS && 6121 // We currently only support add/mul/logical && min/max reductions. 6122 ((Kind == RK_Arithmetic && 6123 (Opcode == Instruction::Add || Opcode == Instruction::FAdd || 6124 Opcode == Instruction::Mul || Opcode == Instruction::FMul || 6125 Opcode == Instruction::And || Opcode == Instruction::Or || 6126 Opcode == Instruction::Xor)) || 6127 ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 6128 (Kind == RK_Min || Kind == RK_Max)) || 6129 (Opcode == Instruction::ICmp && 6130 (Kind == RK_UMin || Kind == RK_UMax))); 6131 } 6132 6133 /// Creates reduction operation with the current opcode. 6134 Value *createOp(IRBuilder<> &Builder, const Twine &Name) const { 6135 assert(isVectorizable() && 6136 "Expected add|fadd or min/max reduction operation."); 6137 Value *Cmp = nullptr; 6138 switch (Kind) { 6139 case RK_Arithmetic: 6140 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 6141 Name); 6142 case RK_Min: 6143 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS) 6144 : Builder.CreateFCmpOLT(LHS, RHS); 6145 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6146 case RK_Max: 6147 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS) 6148 : Builder.CreateFCmpOGT(LHS, RHS); 6149 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6150 case RK_UMin: 6151 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6152 Cmp = Builder.CreateICmpULT(LHS, RHS); 6153 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6154 case RK_UMax: 6155 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6156 Cmp = Builder.CreateICmpUGT(LHS, RHS); 6157 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6158 case RK_None: 6159 break; 6160 } 6161 llvm_unreachable("Unknown reduction operation."); 6162 } 6163 6164 public: 6165 explicit OperationData() = default; 6166 6167 /// Construction for reduced values. They are identified by opcode only and 6168 /// don't have associated LHS/RHS values. 6169 explicit OperationData(Value *V) { 6170 if (auto *I = dyn_cast<Instruction>(V)) 6171 Opcode = I->getOpcode(); 6172 } 6173 6174 /// Constructor for reduction operations with opcode and its left and 6175 /// right operands. 6176 OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind, 6177 bool NoNaN = false) 6178 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) { 6179 assert(Kind != RK_None && "One of the reduction operations is expected."); 6180 } 6181 6182 explicit operator bool() const { return Opcode; } 6183 6184 /// Return true if this operation is any kind of minimum or maximum. 6185 bool isMinMax() const { 6186 switch (Kind) { 6187 case RK_Arithmetic: 6188 return false; 6189 case RK_Min: 6190 case RK_Max: 6191 case RK_UMin: 6192 case RK_UMax: 6193 return true; 6194 case RK_None: 6195 break; 6196 } 6197 llvm_unreachable("Reduction kind is not set"); 6198 } 6199 6200 /// Get the index of the first operand. 6201 unsigned getFirstOperandIndex() const { 6202 assert(!!*this && "The opcode is not set."); 6203 // We allow calling this before 'Kind' is set, so handle that specially. 6204 if (Kind == RK_None) 6205 return 0; 6206 return isMinMax() ? 1 : 0; 6207 } 6208 6209 /// Total number of operands in the reduction operation. 6210 unsigned getNumberOfOperands() const { 6211 assert(Kind != RK_None && !!*this && LHS && RHS && 6212 "Expected reduction operation."); 6213 return isMinMax() ? 3 : 2; 6214 } 6215 6216 /// Checks if the operation has the same parent as \p P. 6217 bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const { 6218 assert(Kind != RK_None && !!*this && LHS && RHS && 6219 "Expected reduction operation."); 6220 if (!IsRedOp) 6221 return I->getParent() == P; 6222 if (isMinMax()) { 6223 // SelectInst must be used twice while the condition op must have single 6224 // use only. 6225 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 6226 return I->getParent() == P && Cmp && Cmp->getParent() == P; 6227 } 6228 // Arithmetic reduction operation must be used once only. 6229 return I->getParent() == P; 6230 } 6231 6232 /// Expected number of uses for reduction operations/reduced values. 6233 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { 6234 assert(Kind != RK_None && !!*this && LHS && RHS && 6235 "Expected reduction operation."); 6236 if (isMinMax()) 6237 return I->hasNUses(2) && 6238 (!IsReductionOp || 6239 cast<SelectInst>(I)->getCondition()->hasOneUse()); 6240 return I->hasOneUse(); 6241 } 6242 6243 /// Initializes the list of reduction operations. 6244 void initReductionOps(ReductionOpsListType &ReductionOps) { 6245 assert(Kind != RK_None && !!*this && LHS && RHS && 6246 "Expected reduction operation."); 6247 if (isMinMax()) 6248 ReductionOps.assign(2, ReductionOpsType()); 6249 else 6250 ReductionOps.assign(1, ReductionOpsType()); 6251 } 6252 6253 /// Add all reduction operations for the reduction instruction \p I. 6254 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { 6255 assert(Kind != RK_None && !!*this && LHS && RHS && 6256 "Expected reduction operation."); 6257 if (isMinMax()) { 6258 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 6259 ReductionOps[1].emplace_back(I); 6260 } else { 6261 ReductionOps[0].emplace_back(I); 6262 } 6263 } 6264 6265 /// Checks if instruction is associative and can be vectorized. 6266 bool isAssociative(Instruction *I) const { 6267 assert(Kind != RK_None && *this && LHS && RHS && 6268 "Expected reduction operation."); 6269 switch (Kind) { 6270 case RK_Arithmetic: 6271 return I->isAssociative(); 6272 case RK_Min: 6273 case RK_Max: 6274 return Opcode == Instruction::ICmp || 6275 cast<Instruction>(I->getOperand(0))->isFast(); 6276 case RK_UMin: 6277 case RK_UMax: 6278 assert(Opcode == Instruction::ICmp && 6279 "Only integer compare operation is expected."); 6280 return true; 6281 case RK_None: 6282 break; 6283 } 6284 llvm_unreachable("Reduction kind is not set"); 6285 } 6286 6287 /// Checks if the reduction operation can be vectorized. 6288 bool isVectorizable(Instruction *I) const { 6289 return isVectorizable() && isAssociative(I); 6290 } 6291 6292 /// Checks if two operation data are both a reduction op or both a reduced 6293 /// value. 6294 bool operator==(const OperationData &OD) const { 6295 assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) && 6296 "One of the comparing operations is incorrect."); 6297 return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode); 6298 } 6299 bool operator!=(const OperationData &OD) const { return !(*this == OD); } 6300 void clear() { 6301 Opcode = 0; 6302 LHS = nullptr; 6303 RHS = nullptr; 6304 Kind = RK_None; 6305 NoNaN = false; 6306 } 6307 6308 /// Get the opcode of the reduction operation. 6309 unsigned getOpcode() const { 6310 assert(isVectorizable() && "Expected vectorizable operation."); 6311 return Opcode; 6312 } 6313 6314 /// Get kind of reduction data. 6315 ReductionKind getKind() const { return Kind; } 6316 Value *getLHS() const { return LHS; } 6317 Value *getRHS() const { return RHS; } 6318 Type *getConditionType() const { 6319 return isMinMax() ? CmpInst::makeCmpResultType(LHS->getType()) : nullptr; 6320 } 6321 6322 /// Creates reduction operation with the current opcode with the IR flags 6323 /// from \p ReductionOps. 6324 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 6325 const ReductionOpsListType &ReductionOps) const { 6326 assert(isVectorizable() && 6327 "Expected add|fadd or min/max reduction operation."); 6328 auto *Op = createOp(Builder, Name); 6329 switch (Kind) { 6330 case RK_Arithmetic: 6331 propagateIRFlags(Op, ReductionOps[0]); 6332 return Op; 6333 case RK_Min: 6334 case RK_Max: 6335 case RK_UMin: 6336 case RK_UMax: 6337 if (auto *SI = dyn_cast<SelectInst>(Op)) 6338 propagateIRFlags(SI->getCondition(), ReductionOps[0]); 6339 propagateIRFlags(Op, ReductionOps[1]); 6340 return Op; 6341 case RK_None: 6342 break; 6343 } 6344 llvm_unreachable("Unknown reduction operation."); 6345 } 6346 /// Creates reduction operation with the current opcode with the IR flags 6347 /// from \p I. 6348 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 6349 Instruction *I) const { 6350 assert(isVectorizable() && 6351 "Expected add|fadd or min/max reduction operation."); 6352 auto *Op = createOp(Builder, Name); 6353 switch (Kind) { 6354 case RK_Arithmetic: 6355 propagateIRFlags(Op, I); 6356 return Op; 6357 case RK_Min: 6358 case RK_Max: 6359 case RK_UMin: 6360 case RK_UMax: 6361 if (auto *SI = dyn_cast<SelectInst>(Op)) { 6362 propagateIRFlags(SI->getCondition(), 6363 cast<SelectInst>(I)->getCondition()); 6364 } 6365 propagateIRFlags(Op, I); 6366 return Op; 6367 case RK_None: 6368 break; 6369 } 6370 llvm_unreachable("Unknown reduction operation."); 6371 } 6372 6373 TargetTransformInfo::ReductionFlags getFlags() const { 6374 TargetTransformInfo::ReductionFlags Flags; 6375 Flags.NoNaN = NoNaN; 6376 switch (Kind) { 6377 case RK_Arithmetic: 6378 break; 6379 case RK_Min: 6380 Flags.IsSigned = Opcode == Instruction::ICmp; 6381 Flags.IsMaxOp = false; 6382 break; 6383 case RK_Max: 6384 Flags.IsSigned = Opcode == Instruction::ICmp; 6385 Flags.IsMaxOp = true; 6386 break; 6387 case RK_UMin: 6388 Flags.IsSigned = false; 6389 Flags.IsMaxOp = false; 6390 break; 6391 case RK_UMax: 6392 Flags.IsSigned = false; 6393 Flags.IsMaxOp = true; 6394 break; 6395 case RK_None: 6396 llvm_unreachable("Reduction kind is not set"); 6397 } 6398 return Flags; 6399 } 6400 }; 6401 6402 WeakTrackingVH ReductionRoot; 6403 6404 /// The operation data of the reduction operation. 6405 OperationData ReductionData; 6406 6407 /// The operation data of the values we perform a reduction on. 6408 OperationData ReducedValueData; 6409 6410 /// Should we model this reduction as a pairwise reduction tree or a tree that 6411 /// splits the vector in halves and adds those halves. 6412 bool IsPairwiseReduction = false; 6413 6414 /// Checks if the ParentStackElem.first should be marked as a reduction 6415 /// operation with an extra argument or as extra argument itself. 6416 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 6417 Value *ExtraArg) { 6418 if (ExtraArgs.count(ParentStackElem.first)) { 6419 ExtraArgs[ParentStackElem.first] = nullptr; 6420 // We ran into something like: 6421 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 6422 // The whole ParentStackElem.first should be considered as an extra value 6423 // in this case. 6424 // Do not perform analysis of remaining operands of ParentStackElem.first 6425 // instruction, this whole instruction is an extra argument. 6426 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 6427 } else { 6428 // We ran into something like: 6429 // ParentStackElem.first += ... + ExtraArg + ... 6430 ExtraArgs[ParentStackElem.first] = ExtraArg; 6431 } 6432 } 6433 6434 static OperationData getOperationData(Value *V) { 6435 if (!V) 6436 return OperationData(); 6437 6438 Value *LHS; 6439 Value *RHS; 6440 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) { 6441 return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS, 6442 RK_Arithmetic); 6443 } 6444 if (auto *Select = dyn_cast<SelectInst>(V)) { 6445 // Look for a min/max pattern. 6446 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6447 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 6448 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6449 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 6450 } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) || 6451 m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6452 return OperationData( 6453 Instruction::FCmp, LHS, RHS, RK_Min, 6454 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 6455 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6456 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 6457 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6458 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 6459 } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) || 6460 m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6461 return OperationData( 6462 Instruction::FCmp, LHS, RHS, RK_Max, 6463 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 6464 } else { 6465 // Try harder: look for min/max pattern based on instructions producing 6466 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 6467 // During the intermediate stages of SLP, it's very common to have 6468 // pattern like this (since optimizeGatherSequence is run only once 6469 // at the end): 6470 // %1 = extractelement <2 x i32> %a, i32 0 6471 // %2 = extractelement <2 x i32> %a, i32 1 6472 // %cond = icmp sgt i32 %1, %2 6473 // %3 = extractelement <2 x i32> %a, i32 0 6474 // %4 = extractelement <2 x i32> %a, i32 1 6475 // %select = select i1 %cond, i32 %3, i32 %4 6476 CmpInst::Predicate Pred; 6477 Instruction *L1; 6478 Instruction *L2; 6479 6480 LHS = Select->getTrueValue(); 6481 RHS = Select->getFalseValue(); 6482 Value *Cond = Select->getCondition(); 6483 6484 // TODO: Support inverse predicates. 6485 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 6486 if (!isa<ExtractElementInst>(RHS) || 6487 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6488 return OperationData(V); 6489 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 6490 if (!isa<ExtractElementInst>(LHS) || 6491 !L1->isIdenticalTo(cast<Instruction>(LHS))) 6492 return OperationData(V); 6493 } else { 6494 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 6495 return OperationData(V); 6496 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 6497 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 6498 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6499 return OperationData(V); 6500 } 6501 switch (Pred) { 6502 default: 6503 return OperationData(V); 6504 6505 case CmpInst::ICMP_ULT: 6506 case CmpInst::ICMP_ULE: 6507 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 6508 6509 case CmpInst::ICMP_SLT: 6510 case CmpInst::ICMP_SLE: 6511 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 6512 6513 case CmpInst::FCMP_OLT: 6514 case CmpInst::FCMP_OLE: 6515 case CmpInst::FCMP_ULT: 6516 case CmpInst::FCMP_ULE: 6517 return OperationData(Instruction::FCmp, LHS, RHS, RK_Min, 6518 cast<Instruction>(Cond)->hasNoNaNs()); 6519 6520 case CmpInst::ICMP_UGT: 6521 case CmpInst::ICMP_UGE: 6522 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 6523 6524 case CmpInst::ICMP_SGT: 6525 case CmpInst::ICMP_SGE: 6526 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 6527 6528 case CmpInst::FCMP_OGT: 6529 case CmpInst::FCMP_OGE: 6530 case CmpInst::FCMP_UGT: 6531 case CmpInst::FCMP_UGE: 6532 return OperationData(Instruction::FCmp, LHS, RHS, RK_Max, 6533 cast<Instruction>(Cond)->hasNoNaNs()); 6534 } 6535 } 6536 } 6537 return OperationData(V); 6538 } 6539 6540 public: 6541 HorizontalReduction() = default; 6542 6543 /// Try to find a reduction tree. 6544 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 6545 assert((!Phi || is_contained(Phi->operands(), B)) && 6546 "Thi phi needs to use the binary operator"); 6547 6548 ReductionData = getOperationData(B); 6549 6550 // We could have a initial reductions that is not an add. 6551 // r *= v1 + v2 + v3 + v4 6552 // In such a case start looking for a tree rooted in the first '+'. 6553 if (Phi) { 6554 if (ReductionData.getLHS() == Phi) { 6555 Phi = nullptr; 6556 B = dyn_cast<Instruction>(ReductionData.getRHS()); 6557 ReductionData = getOperationData(B); 6558 } else if (ReductionData.getRHS() == Phi) { 6559 Phi = nullptr; 6560 B = dyn_cast<Instruction>(ReductionData.getLHS()); 6561 ReductionData = getOperationData(B); 6562 } 6563 } 6564 6565 if (!ReductionData.isVectorizable(B)) 6566 return false; 6567 6568 Type *Ty = B->getType(); 6569 if (!isValidElementType(Ty)) 6570 return false; 6571 if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy()) 6572 return false; 6573 6574 ReducedValueData.clear(); 6575 ReductionRoot = B; 6576 6577 // Post order traverse the reduction tree starting at B. We only handle true 6578 // trees containing only binary operators. 6579 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 6580 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); 6581 ReductionData.initReductionOps(ReductionOps); 6582 while (!Stack.empty()) { 6583 Instruction *TreeN = Stack.back().first; 6584 unsigned EdgeToVist = Stack.back().second++; 6585 OperationData OpData = getOperationData(TreeN); 6586 bool IsReducedValue = OpData != ReductionData; 6587 6588 // Postorder vist. 6589 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { 6590 if (IsReducedValue) 6591 ReducedVals.push_back(TreeN); 6592 else { 6593 auto I = ExtraArgs.find(TreeN); 6594 if (I != ExtraArgs.end() && !I->second) { 6595 // Check if TreeN is an extra argument of its parent operation. 6596 if (Stack.size() <= 1) { 6597 // TreeN can't be an extra argument as it is a root reduction 6598 // operation. 6599 return false; 6600 } 6601 // Yes, TreeN is an extra argument, do not add it to a list of 6602 // reduction operations. 6603 // Stack[Stack.size() - 2] always points to the parent operation. 6604 markExtraArg(Stack[Stack.size() - 2], TreeN); 6605 ExtraArgs.erase(TreeN); 6606 } else 6607 ReductionData.addReductionOps(TreeN, ReductionOps); 6608 } 6609 // Retract. 6610 Stack.pop_back(); 6611 continue; 6612 } 6613 6614 // Visit left or right. 6615 Value *NextV = TreeN->getOperand(EdgeToVist); 6616 if (NextV != Phi) { 6617 auto *I = dyn_cast<Instruction>(NextV); 6618 OpData = getOperationData(I); 6619 // Continue analysis if the next operand is a reduction operation or 6620 // (possibly) a reduced value. If the reduced value opcode is not set, 6621 // the first met operation != reduction operation is considered as the 6622 // reduced value class. 6623 if (I && (!ReducedValueData || OpData == ReducedValueData || 6624 OpData == ReductionData)) { 6625 const bool IsReductionOperation = OpData == ReductionData; 6626 // Only handle trees in the current basic block. 6627 if (!ReductionData.hasSameParent(I, B->getParent(), 6628 IsReductionOperation)) { 6629 // I is an extra argument for TreeN (its parent operation). 6630 markExtraArg(Stack.back(), I); 6631 continue; 6632 } 6633 6634 // Each tree node needs to have minimal number of users except for the 6635 // ultimate reduction. 6636 if (!ReductionData.hasRequiredNumberOfUses(I, 6637 OpData == ReductionData) && 6638 I != B) { 6639 // I is an extra argument for TreeN (its parent operation). 6640 markExtraArg(Stack.back(), I); 6641 continue; 6642 } 6643 6644 if (IsReductionOperation) { 6645 // We need to be able to reassociate the reduction operations. 6646 if (!OpData.isAssociative(I)) { 6647 // I is an extra argument for TreeN (its parent operation). 6648 markExtraArg(Stack.back(), I); 6649 continue; 6650 } 6651 } else if (ReducedValueData && 6652 ReducedValueData != OpData) { 6653 // Make sure that the opcodes of the operations that we are going to 6654 // reduce match. 6655 // I is an extra argument for TreeN (its parent operation). 6656 markExtraArg(Stack.back(), I); 6657 continue; 6658 } else if (!ReducedValueData) 6659 ReducedValueData = OpData; 6660 6661 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 6662 continue; 6663 } 6664 } 6665 // NextV is an extra argument for TreeN (its parent operation). 6666 markExtraArg(Stack.back(), NextV); 6667 } 6668 return true; 6669 } 6670 6671 /// Attempt to vectorize the tree found by 6672 /// matchAssociativeReduction. 6673 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 6674 if (ReducedVals.empty()) 6675 return false; 6676 6677 // If there is a sufficient number of reduction values, reduce 6678 // to a nearby power-of-2. Can safely generate oversized 6679 // vectors and rely on the backend to split them to legal sizes. 6680 unsigned NumReducedVals = ReducedVals.size(); 6681 if (NumReducedVals < 4) 6682 return false; 6683 6684 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 6685 6686 Value *VectorizedTree = nullptr; 6687 6688 // FIXME: Fast-math-flags should be set based on the instructions in the 6689 // reduction (not all of 'fast' are required). 6690 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 6691 FastMathFlags Unsafe; 6692 Unsafe.setFast(); 6693 Builder.setFastMathFlags(Unsafe); 6694 unsigned i = 0; 6695 6696 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 6697 // The same extra argument may be used several time, so log each attempt 6698 // to use it. 6699 for (auto &Pair : ExtraArgs) { 6700 assert(Pair.first && "DebugLoc must be set."); 6701 ExternallyUsedValues[Pair.second].push_back(Pair.first); 6702 } 6703 6704 // The compare instruction of a min/max is the insertion point for new 6705 // instructions and may be replaced with a new compare instruction. 6706 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 6707 assert(isa<SelectInst>(RdxRootInst) && 6708 "Expected min/max reduction to have select root instruction"); 6709 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 6710 assert(isa<Instruction>(ScalarCond) && 6711 "Expected min/max reduction to have compare condition"); 6712 return cast<Instruction>(ScalarCond); 6713 }; 6714 6715 // The reduction root is used as the insertion point for new instructions, 6716 // so set it as externally used to prevent it from being deleted. 6717 ExternallyUsedValues[ReductionRoot]; 6718 SmallVector<Value *, 16> IgnoreList; 6719 for (auto &V : ReductionOps) 6720 IgnoreList.append(V.begin(), V.end()); 6721 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 6722 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 6723 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 6724 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 6725 // TODO: Handle orders of size less than number of elements in the vector. 6726 if (Order && Order->size() == VL.size()) { 6727 // TODO: reorder tree nodes without tree rebuilding. 6728 SmallVector<Value *, 4> ReorderedOps(VL.size()); 6729 llvm::transform(*Order, ReorderedOps.begin(), 6730 [VL](const unsigned Idx) { return VL[Idx]; }); 6731 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 6732 } 6733 if (V.isTreeTinyAndNotFullyVectorizable()) 6734 break; 6735 if (V.isLoadCombineReductionCandidate(ReductionData.getOpcode())) 6736 break; 6737 6738 V.computeMinimumValueSizes(); 6739 6740 // Estimate cost. 6741 int TreeCost = V.getTreeCost(); 6742 int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth); 6743 int Cost = TreeCost + ReductionCost; 6744 if (Cost >= -SLPCostThreshold) { 6745 V.getORE()->emit([&]() { 6746 return OptimizationRemarkMissed( 6747 SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0])) 6748 << "Vectorizing horizontal reduction is possible" 6749 << "but not beneficial with cost " 6750 << ore::NV("Cost", Cost) << " and threshold " 6751 << ore::NV("Threshold", -SLPCostThreshold); 6752 }); 6753 break; 6754 } 6755 6756 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 6757 << Cost << ". (HorRdx)\n"); 6758 V.getORE()->emit([&]() { 6759 return OptimizationRemark( 6760 SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0])) 6761 << "Vectorized horizontal reduction with cost " 6762 << ore::NV("Cost", Cost) << " and with tree size " 6763 << ore::NV("TreeSize", V.getTreeSize()); 6764 }); 6765 6766 // Vectorize a tree. 6767 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 6768 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 6769 6770 // Emit a reduction. For min/max, the root is a select, but the insertion 6771 // point is the compare condition of that select. 6772 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 6773 if (ReductionData.isMinMax()) 6774 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 6775 else 6776 Builder.SetInsertPoint(RdxRootInst); 6777 6778 Value *ReducedSubTree = 6779 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 6780 if (VectorizedTree) { 6781 Builder.SetCurrentDebugLocation(Loc); 6782 OperationData VectReductionData(ReductionData.getOpcode(), 6783 VectorizedTree, ReducedSubTree, 6784 ReductionData.getKind()); 6785 VectorizedTree = 6786 VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 6787 } else 6788 VectorizedTree = ReducedSubTree; 6789 i += ReduxWidth; 6790 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 6791 } 6792 6793 if (VectorizedTree) { 6794 // Finish the reduction. 6795 for (; i < NumReducedVals; ++i) { 6796 auto *I = cast<Instruction>(ReducedVals[i]); 6797 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 6798 OperationData VectReductionData(ReductionData.getOpcode(), 6799 VectorizedTree, I, 6800 ReductionData.getKind()); 6801 VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps); 6802 } 6803 for (auto &Pair : ExternallyUsedValues) { 6804 // Add each externally used value to the final reduction. 6805 for (auto *I : Pair.second) { 6806 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 6807 OperationData VectReductionData(ReductionData.getOpcode(), 6808 VectorizedTree, Pair.first, 6809 ReductionData.getKind()); 6810 VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I); 6811 } 6812 } 6813 6814 // Update users. For a min/max reduction that ends with a compare and 6815 // select, we also have to RAUW for the compare instruction feeding the 6816 // reduction root. That's because the original compare may have extra uses 6817 // besides the final select of the reduction. 6818 if (ReductionData.isMinMax()) { 6819 if (auto *VecSelect = dyn_cast<SelectInst>(VectorizedTree)) { 6820 Instruction *ScalarCmp = 6821 getCmpForMinMaxReduction(cast<Instruction>(ReductionRoot)); 6822 ScalarCmp->replaceAllUsesWith(VecSelect->getCondition()); 6823 } 6824 } 6825 ReductionRoot->replaceAllUsesWith(VectorizedTree); 6826 6827 // Mark all scalar reduction ops for deletion, they are replaced by the 6828 // vector reductions. 6829 V.eraseInstructions(IgnoreList); 6830 } 6831 return VectorizedTree != nullptr; 6832 } 6833 6834 unsigned numReductionValues() const { 6835 return ReducedVals.size(); 6836 } 6837 6838 private: 6839 /// Calculate the cost of a reduction. 6840 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 6841 unsigned ReduxWidth) { 6842 Type *ScalarTy = FirstReducedVal->getType(); 6843 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 6844 6845 int PairwiseRdxCost; 6846 int SplittingRdxCost; 6847 switch (ReductionData.getKind()) { 6848 case RK_Arithmetic: 6849 PairwiseRdxCost = 6850 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 6851 /*IsPairwiseForm=*/true); 6852 SplittingRdxCost = 6853 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 6854 /*IsPairwiseForm=*/false); 6855 break; 6856 case RK_Min: 6857 case RK_Max: 6858 case RK_UMin: 6859 case RK_UMax: { 6860 Type *VecCondTy = CmpInst::makeCmpResultType(VecTy); 6861 bool IsUnsigned = ReductionData.getKind() == RK_UMin || 6862 ReductionData.getKind() == RK_UMax; 6863 PairwiseRdxCost = 6864 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 6865 /*IsPairwiseForm=*/true, IsUnsigned); 6866 SplittingRdxCost = 6867 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 6868 /*IsPairwiseForm=*/false, IsUnsigned); 6869 break; 6870 } 6871 case RK_None: 6872 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 6873 } 6874 6875 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 6876 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 6877 6878 int ScalarReduxCost = 0; 6879 switch (ReductionData.getKind()) { 6880 case RK_Arithmetic: 6881 ScalarReduxCost = 6882 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); 6883 break; 6884 case RK_Min: 6885 case RK_Max: 6886 case RK_UMin: 6887 case RK_UMax: 6888 ScalarReduxCost = 6889 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) + 6890 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 6891 CmpInst::makeCmpResultType(ScalarTy)); 6892 break; 6893 case RK_None: 6894 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 6895 } 6896 ScalarReduxCost *= (ReduxWidth - 1); 6897 6898 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 6899 << " for reduction that starts with " << *FirstReducedVal 6900 << " (It is a " 6901 << (IsPairwiseReduction ? "pairwise" : "splitting") 6902 << " reduction)\n"); 6903 6904 return VecReduxCost - ScalarReduxCost; 6905 } 6906 6907 /// Emit a horizontal reduction of the vectorized value. 6908 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 6909 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 6910 assert(VectorizedValue && "Need to have a vectorized tree node"); 6911 assert(isPowerOf2_32(ReduxWidth) && 6912 "We only handle power-of-two reductions for now"); 6913 6914 if (!IsPairwiseReduction) { 6915 // FIXME: The builder should use an FMF guard. It should not be hard-coded 6916 // to 'fast'. 6917 assert(Builder.getFastMathFlags().isFast() && "Expected 'fast' FMF"); 6918 return createSimpleTargetReduction( 6919 Builder, TTI, ReductionData.getOpcode(), VectorizedValue, 6920 ReductionData.getFlags(), ReductionOps.back()); 6921 } 6922 6923 Value *TmpVec = VectorizedValue; 6924 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 6925 Value *LeftMask = 6926 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 6927 Value *RightMask = 6928 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 6929 6930 Value *LeftShuf = Builder.CreateShuffleVector( 6931 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 6932 Value *RightShuf = Builder.CreateShuffleVector( 6933 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 6934 "rdx.shuf.r"); 6935 OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf, 6936 RightShuf, ReductionData.getKind()); 6937 TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 6938 } 6939 6940 // The result is in the first element of the vector. 6941 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 6942 } 6943 }; 6944 6945 } // end anonymous namespace 6946 6947 /// Recognize construction of vectors like 6948 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 6949 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 6950 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 6951 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 6952 /// starting from the last insertelement or insertvalue instruction. 6953 /// 6954 /// Also recognize aggregates like {<2 x float>, <2 x float>}, 6955 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 6956 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 6957 /// 6958 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 6959 /// 6960 /// \return true if it matches. 6961 static bool findBuildAggregate(Value *LastInsertInst, TargetTransformInfo *TTI, 6962 SmallVectorImpl<Value *> &BuildVectorOpds, 6963 int &UserCost) { 6964 assert((isa<InsertElementInst>(LastInsertInst) || 6965 isa<InsertValueInst>(LastInsertInst)) && 6966 "Expected insertelement or insertvalue instruction!"); 6967 UserCost = 0; 6968 do { 6969 Value *InsertedOperand; 6970 if (auto *IE = dyn_cast<InsertElementInst>(LastInsertInst)) { 6971 InsertedOperand = IE->getOperand(1); 6972 LastInsertInst = IE->getOperand(0); 6973 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 6974 UserCost += TTI->getVectorInstrCost(Instruction::InsertElement, 6975 IE->getType(), CI->getZExtValue()); 6976 } 6977 } else { 6978 auto *IV = cast<InsertValueInst>(LastInsertInst); 6979 InsertedOperand = IV->getInsertedValueOperand(); 6980 LastInsertInst = IV->getAggregateOperand(); 6981 } 6982 if (isa<InsertElementInst>(InsertedOperand) || 6983 isa<InsertValueInst>(InsertedOperand)) { 6984 int TmpUserCost; 6985 SmallVector<Value *, 8> TmpBuildVectorOpds; 6986 if (!findBuildAggregate(InsertedOperand, TTI, TmpBuildVectorOpds, 6987 TmpUserCost)) 6988 return false; 6989 BuildVectorOpds.append(TmpBuildVectorOpds.rbegin(), 6990 TmpBuildVectorOpds.rend()); 6991 UserCost += TmpUserCost; 6992 } else { 6993 BuildVectorOpds.push_back(InsertedOperand); 6994 } 6995 if (isa<UndefValue>(LastInsertInst)) 6996 break; 6997 if ((!isa<InsertValueInst>(LastInsertInst) && 6998 !isa<InsertElementInst>(LastInsertInst)) || 6999 !LastInsertInst->hasOneUse()) 7000 return false; 7001 } while (true); 7002 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 7003 return true; 7004 } 7005 7006 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 7007 return V->getType() < V2->getType(); 7008 } 7009 7010 /// Try and get a reduction value from a phi node. 7011 /// 7012 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 7013 /// if they come from either \p ParentBB or a containing loop latch. 7014 /// 7015 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 7016 /// if not possible. 7017 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 7018 BasicBlock *ParentBB, LoopInfo *LI) { 7019 // There are situations where the reduction value is not dominated by the 7020 // reduction phi. Vectorizing such cases has been reported to cause 7021 // miscompiles. See PR25787. 7022 auto DominatedReduxValue = [&](Value *R) { 7023 return isa<Instruction>(R) && 7024 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 7025 }; 7026 7027 Value *Rdx = nullptr; 7028 7029 // Return the incoming value if it comes from the same BB as the phi node. 7030 if (P->getIncomingBlock(0) == ParentBB) { 7031 Rdx = P->getIncomingValue(0); 7032 } else if (P->getIncomingBlock(1) == ParentBB) { 7033 Rdx = P->getIncomingValue(1); 7034 } 7035 7036 if (Rdx && DominatedReduxValue(Rdx)) 7037 return Rdx; 7038 7039 // Otherwise, check whether we have a loop latch to look at. 7040 Loop *BBL = LI->getLoopFor(ParentBB); 7041 if (!BBL) 7042 return nullptr; 7043 BasicBlock *BBLatch = BBL->getLoopLatch(); 7044 if (!BBLatch) 7045 return nullptr; 7046 7047 // There is a loop latch, return the incoming value if it comes from 7048 // that. This reduction pattern occasionally turns up. 7049 if (P->getIncomingBlock(0) == BBLatch) { 7050 Rdx = P->getIncomingValue(0); 7051 } else if (P->getIncomingBlock(1) == BBLatch) { 7052 Rdx = P->getIncomingValue(1); 7053 } 7054 7055 if (Rdx && DominatedReduxValue(Rdx)) 7056 return Rdx; 7057 7058 return nullptr; 7059 } 7060 7061 /// Attempt to reduce a horizontal reduction. 7062 /// If it is legal to match a horizontal reduction feeding the phi node \a P 7063 /// with reduction operators \a Root (or one of its operands) in a basic block 7064 /// \a BB, then check if it can be done. If horizontal reduction is not found 7065 /// and root instruction is a binary operation, vectorization of the operands is 7066 /// attempted. 7067 /// \returns true if a horizontal reduction was matched and reduced or operands 7068 /// of one of the binary instruction were vectorized. 7069 /// \returns false if a horizontal reduction was not matched (or not possible) 7070 /// or no vectorization of any binary operation feeding \a Root instruction was 7071 /// performed. 7072 static bool tryToVectorizeHorReductionOrInstOperands( 7073 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 7074 TargetTransformInfo *TTI, 7075 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 7076 if (!ShouldVectorizeHor) 7077 return false; 7078 7079 if (!Root) 7080 return false; 7081 7082 if (Root->getParent() != BB || isa<PHINode>(Root)) 7083 return false; 7084 // Start analysis starting from Root instruction. If horizontal reduction is 7085 // found, try to vectorize it. If it is not a horizontal reduction or 7086 // vectorization is not possible or not effective, and currently analyzed 7087 // instruction is a binary operation, try to vectorize the operands, using 7088 // pre-order DFS traversal order. If the operands were not vectorized, repeat 7089 // the same procedure considering each operand as a possible root of the 7090 // horizontal reduction. 7091 // Interrupt the process if the Root instruction itself was vectorized or all 7092 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 7093 SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0}); 7094 SmallPtrSet<Value *, 8> VisitedInstrs; 7095 bool Res = false; 7096 while (!Stack.empty()) { 7097 Instruction *Inst; 7098 unsigned Level; 7099 std::tie(Inst, Level) = Stack.pop_back_val(); 7100 auto *BI = dyn_cast<BinaryOperator>(Inst); 7101 auto *SI = dyn_cast<SelectInst>(Inst); 7102 if (BI || SI) { 7103 HorizontalReduction HorRdx; 7104 if (HorRdx.matchAssociativeReduction(P, Inst)) { 7105 if (HorRdx.tryToReduce(R, TTI)) { 7106 Res = true; 7107 // Set P to nullptr to avoid re-analysis of phi node in 7108 // matchAssociativeReduction function unless this is the root node. 7109 P = nullptr; 7110 continue; 7111 } 7112 } 7113 if (P && BI) { 7114 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 7115 if (Inst == P) 7116 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 7117 if (!Inst) { 7118 // Set P to nullptr to avoid re-analysis of phi node in 7119 // matchAssociativeReduction function unless this is the root node. 7120 P = nullptr; 7121 continue; 7122 } 7123 } 7124 } 7125 // Set P to nullptr to avoid re-analysis of phi node in 7126 // matchAssociativeReduction function unless this is the root node. 7127 P = nullptr; 7128 if (Vectorize(Inst, R)) { 7129 Res = true; 7130 continue; 7131 } 7132 7133 // Try to vectorize operands. 7134 // Continue analysis for the instruction from the same basic block only to 7135 // save compile time. 7136 if (++Level < RecursionMaxDepth) 7137 for (auto *Op : Inst->operand_values()) 7138 if (VisitedInstrs.insert(Op).second) 7139 if (auto *I = dyn_cast<Instruction>(Op)) 7140 if (!isa<PHINode>(I) && !R.isDeleted(I) && I->getParent() == BB) 7141 Stack.emplace_back(I, Level); 7142 } 7143 return Res; 7144 } 7145 7146 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 7147 BasicBlock *BB, BoUpSLP &R, 7148 TargetTransformInfo *TTI) { 7149 if (!V) 7150 return false; 7151 auto *I = dyn_cast<Instruction>(V); 7152 if (!I) 7153 return false; 7154 7155 if (!isa<BinaryOperator>(I)) 7156 P = nullptr; 7157 // Try to match and vectorize a horizontal reduction. 7158 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 7159 return tryToVectorize(I, R); 7160 }; 7161 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 7162 ExtraVectorization); 7163 } 7164 7165 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 7166 BasicBlock *BB, BoUpSLP &R) { 7167 int UserCost = 0; 7168 const DataLayout &DL = BB->getModule()->getDataLayout(); 7169 if (!R.canMapToVector(IVI->getType(), DL)) 7170 return false; 7171 7172 SmallVector<Value *, 16> BuildVectorOpds; 7173 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, UserCost)) 7174 return false; 7175 7176 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 7177 // Aggregate value is unlikely to be processed in vector register, we need to 7178 // extract scalars into scalar registers, so NeedExtraction is set true. 7179 return tryToVectorizeList(BuildVectorOpds, R, UserCost); 7180 } 7181 7182 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 7183 BasicBlock *BB, BoUpSLP &R) { 7184 int UserCost; 7185 SmallVector<Value *, 16> BuildVectorOpds; 7186 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, UserCost) || 7187 (llvm::all_of(BuildVectorOpds, 7188 [](Value *V) { return isa<ExtractElementInst>(V); }) && 7189 isShuffle(BuildVectorOpds))) 7190 return false; 7191 7192 // Vectorize starting with the build vector operands ignoring the BuildVector 7193 // instructions for the purpose of scheduling and user extraction. 7194 return tryToVectorizeList(BuildVectorOpds, R, UserCost); 7195 } 7196 7197 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 7198 BoUpSLP &R) { 7199 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 7200 return true; 7201 7202 bool OpsChanged = false; 7203 for (int Idx = 0; Idx < 2; ++Idx) { 7204 OpsChanged |= 7205 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 7206 } 7207 return OpsChanged; 7208 } 7209 7210 bool SLPVectorizerPass::vectorizeSimpleInstructions( 7211 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R) { 7212 bool OpsChanged = false; 7213 for (auto *I : reverse(Instructions)) { 7214 if (R.isDeleted(I)) 7215 continue; 7216 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 7217 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 7218 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 7219 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 7220 else if (auto *CI = dyn_cast<CmpInst>(I)) 7221 OpsChanged |= vectorizeCmpInst(CI, BB, R); 7222 } 7223 Instructions.clear(); 7224 return OpsChanged; 7225 } 7226 7227 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 7228 bool Changed = false; 7229 SmallVector<Value *, 4> Incoming; 7230 SmallPtrSet<Value *, 16> VisitedInstrs; 7231 7232 bool HaveVectorizedPhiNodes = true; 7233 while (HaveVectorizedPhiNodes) { 7234 HaveVectorizedPhiNodes = false; 7235 7236 // Collect the incoming values from the PHIs. 7237 Incoming.clear(); 7238 for (Instruction &I : *BB) { 7239 PHINode *P = dyn_cast<PHINode>(&I); 7240 if (!P) 7241 break; 7242 7243 if (!VisitedInstrs.count(P) && !R.isDeleted(P)) 7244 Incoming.push_back(P); 7245 } 7246 7247 // Sort by type. 7248 llvm::stable_sort(Incoming, PhiTypeSorterFunc); 7249 7250 // Try to vectorize elements base on their type. 7251 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 7252 E = Incoming.end(); 7253 IncIt != E;) { 7254 7255 // Look for the next elements with the same type. 7256 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 7257 while (SameTypeIt != E && 7258 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 7259 VisitedInstrs.insert(*SameTypeIt); 7260 ++SameTypeIt; 7261 } 7262 7263 // Try to vectorize them. 7264 unsigned NumElts = (SameTypeIt - IncIt); 7265 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 7266 << NumElts << ")\n"); 7267 // The order in which the phi nodes appear in the program does not matter. 7268 // So allow tryToVectorizeList to reorder them if it is beneficial. This 7269 // is done when there are exactly two elements since tryToVectorizeList 7270 // asserts that there are only two values when AllowReorder is true. 7271 bool AllowReorder = NumElts == 2; 7272 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, 7273 /*UserCost=*/0, AllowReorder)) { 7274 // Success start over because instructions might have been changed. 7275 HaveVectorizedPhiNodes = true; 7276 Changed = true; 7277 break; 7278 } 7279 7280 // Start over at the next instruction of a different type (or the end). 7281 IncIt = SameTypeIt; 7282 } 7283 } 7284 7285 VisitedInstrs.clear(); 7286 7287 SmallVector<Instruction *, 8> PostProcessInstructions; 7288 SmallDenseSet<Instruction *, 4> KeyNodes; 7289 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 7290 // Skip instructions marked for the deletion. 7291 if (R.isDeleted(&*it)) 7292 continue; 7293 // We may go through BB multiple times so skip the one we have checked. 7294 if (!VisitedInstrs.insert(&*it).second) { 7295 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 7296 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 7297 // We would like to start over since some instructions are deleted 7298 // and the iterator may become invalid value. 7299 Changed = true; 7300 it = BB->begin(); 7301 e = BB->end(); 7302 } 7303 continue; 7304 } 7305 7306 if (isa<DbgInfoIntrinsic>(it)) 7307 continue; 7308 7309 // Try to vectorize reductions that use PHINodes. 7310 if (PHINode *P = dyn_cast<PHINode>(it)) { 7311 // Check that the PHI is a reduction PHI. 7312 if (P->getNumIncomingValues() != 2) 7313 return Changed; 7314 7315 // Try to match and vectorize a horizontal reduction. 7316 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 7317 TTI)) { 7318 Changed = true; 7319 it = BB->begin(); 7320 e = BB->end(); 7321 continue; 7322 } 7323 continue; 7324 } 7325 7326 // Ran into an instruction without users, like terminator, or function call 7327 // with ignored return value, store. Ignore unused instructions (basing on 7328 // instruction type, except for CallInst and InvokeInst). 7329 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 7330 isa<InvokeInst>(it))) { 7331 KeyNodes.insert(&*it); 7332 bool OpsChanged = false; 7333 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 7334 for (auto *V : it->operand_values()) { 7335 // Try to match and vectorize a horizontal reduction. 7336 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 7337 } 7338 } 7339 // Start vectorization of post-process list of instructions from the 7340 // top-tree instructions to try to vectorize as many instructions as 7341 // possible. 7342 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 7343 if (OpsChanged) { 7344 // We would like to start over since some instructions are deleted 7345 // and the iterator may become invalid value. 7346 Changed = true; 7347 it = BB->begin(); 7348 e = BB->end(); 7349 continue; 7350 } 7351 } 7352 7353 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 7354 isa<InsertValueInst>(it)) 7355 PostProcessInstructions.push_back(&*it); 7356 } 7357 7358 return Changed; 7359 } 7360 7361 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 7362 auto Changed = false; 7363 for (auto &Entry : GEPs) { 7364 // If the getelementptr list has fewer than two elements, there's nothing 7365 // to do. 7366 if (Entry.second.size() < 2) 7367 continue; 7368 7369 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 7370 << Entry.second.size() << ".\n"); 7371 7372 // Process the GEP list in chunks suitable for the target's supported 7373 // vector size. If a vector register can't hold 1 element, we are done. 7374 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7375 unsigned EltSize = R.getVectorElementSize(Entry.second[0]); 7376 if (MaxVecRegSize < EltSize) 7377 continue; 7378 7379 unsigned MaxElts = MaxVecRegSize / EltSize; 7380 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 7381 auto Len = std::min<unsigned>(BE - BI, MaxElts); 7382 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 7383 7384 // Initialize a set a candidate getelementptrs. Note that we use a 7385 // SetVector here to preserve program order. If the index computations 7386 // are vectorizable and begin with loads, we want to minimize the chance 7387 // of having to reorder them later. 7388 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 7389 7390 // Some of the candidates may have already been vectorized after we 7391 // initially collected them. If so, they are marked as deleted, so remove 7392 // them from the set of candidates. 7393 Candidates.remove_if( 7394 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 7395 7396 // Remove from the set of candidates all pairs of getelementptrs with 7397 // constant differences. Such getelementptrs are likely not good 7398 // candidates for vectorization in a bottom-up phase since one can be 7399 // computed from the other. We also ensure all candidate getelementptr 7400 // indices are unique. 7401 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 7402 auto *GEPI = GEPList[I]; 7403 if (!Candidates.count(GEPI)) 7404 continue; 7405 auto *SCEVI = SE->getSCEV(GEPList[I]); 7406 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 7407 auto *GEPJ = GEPList[J]; 7408 auto *SCEVJ = SE->getSCEV(GEPList[J]); 7409 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 7410 Candidates.remove(GEPI); 7411 Candidates.remove(GEPJ); 7412 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 7413 Candidates.remove(GEPJ); 7414 } 7415 } 7416 } 7417 7418 // We break out of the above computation as soon as we know there are 7419 // fewer than two candidates remaining. 7420 if (Candidates.size() < 2) 7421 continue; 7422 7423 // Add the single, non-constant index of each candidate to the bundle. We 7424 // ensured the indices met these constraints when we originally collected 7425 // the getelementptrs. 7426 SmallVector<Value *, 16> Bundle(Candidates.size()); 7427 auto BundleIndex = 0u; 7428 for (auto *V : Candidates) { 7429 auto *GEP = cast<GetElementPtrInst>(V); 7430 auto *GEPIdx = GEP->idx_begin()->get(); 7431 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 7432 Bundle[BundleIndex++] = GEPIdx; 7433 } 7434 7435 // Try and vectorize the indices. We are currently only interested in 7436 // gather-like cases of the form: 7437 // 7438 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 7439 // 7440 // where the loads of "a", the loads of "b", and the subtractions can be 7441 // performed in parallel. It's likely that detecting this pattern in a 7442 // bottom-up phase will be simpler and less costly than building a 7443 // full-blown top-down phase beginning at the consecutive loads. 7444 Changed |= tryToVectorizeList(Bundle, R); 7445 } 7446 } 7447 return Changed; 7448 } 7449 7450 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 7451 bool Changed = false; 7452 // Attempt to sort and vectorize each of the store-groups. 7453 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 7454 ++it) { 7455 if (it->second.size() < 2) 7456 continue; 7457 7458 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 7459 << it->second.size() << ".\n"); 7460 7461 Changed |= vectorizeStores(it->second, R); 7462 } 7463 return Changed; 7464 } 7465 7466 char SLPVectorizer::ID = 0; 7467 7468 static const char lv_name[] = "SLP Vectorizer"; 7469 7470 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 7471 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7472 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7473 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7474 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7475 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 7476 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7477 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7478 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 7479 7480 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 7481