1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/ADT/SmallBitVector.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/ADT/SmallString.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/ADT/iterator.h" 32 #include "llvm/ADT/iterator_range.h" 33 #include "llvm/Analysis/AliasAnalysis.h" 34 #include "llvm/Analysis/AssumptionCache.h" 35 #include "llvm/Analysis/CodeMetrics.h" 36 #include "llvm/Analysis/DemandedBits.h" 37 #include "llvm/Analysis/GlobalsModRef.h" 38 #include "llvm/Analysis/LoopAccessAnalysis.h" 39 #include "llvm/Analysis/LoopInfo.h" 40 #include "llvm/Analysis/MemoryLocation.h" 41 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 42 #include "llvm/Analysis/ScalarEvolution.h" 43 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 44 #include "llvm/Analysis/TargetLibraryInfo.h" 45 #include "llvm/Analysis/TargetTransformInfo.h" 46 #include "llvm/Analysis/ValueTracking.h" 47 #include "llvm/Analysis/VectorUtils.h" 48 #include "llvm/IR/Attributes.h" 49 #include "llvm/IR/BasicBlock.h" 50 #include "llvm/IR/Constant.h" 51 #include "llvm/IR/Constants.h" 52 #include "llvm/IR/DataLayout.h" 53 #include "llvm/IR/DebugLoc.h" 54 #include "llvm/IR/DerivedTypes.h" 55 #include "llvm/IR/Dominators.h" 56 #include "llvm/IR/Function.h" 57 #include "llvm/IR/IRBuilder.h" 58 #include "llvm/IR/InstrTypes.h" 59 #include "llvm/IR/Instruction.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/Intrinsics.h" 63 #include "llvm/IR/Module.h" 64 #include "llvm/IR/NoFolder.h" 65 #include "llvm/IR/Operator.h" 66 #include "llvm/IR/PatternMatch.h" 67 #include "llvm/IR/Type.h" 68 #include "llvm/IR/Use.h" 69 #include "llvm/IR/User.h" 70 #include "llvm/IR/Value.h" 71 #include "llvm/IR/ValueHandle.h" 72 #include "llvm/IR/Verifier.h" 73 #include "llvm/InitializePasses.h" 74 #include "llvm/Pass.h" 75 #include "llvm/Support/Casting.h" 76 #include "llvm/Support/CommandLine.h" 77 #include "llvm/Support/Compiler.h" 78 #include "llvm/Support/DOTGraphTraits.h" 79 #include "llvm/Support/Debug.h" 80 #include "llvm/Support/ErrorHandling.h" 81 #include "llvm/Support/GraphWriter.h" 82 #include "llvm/Support/InstructionCost.h" 83 #include "llvm/Support/KnownBits.h" 84 #include "llvm/Support/MathExtras.h" 85 #include "llvm/Support/raw_ostream.h" 86 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 87 #include "llvm/Transforms/Utils/LoopUtils.h" 88 #include "llvm/Transforms/Vectorize.h" 89 #include <algorithm> 90 #include <cassert> 91 #include <cstdint> 92 #include <iterator> 93 #include <memory> 94 #include <set> 95 #include <string> 96 #include <tuple> 97 #include <utility> 98 #include <vector> 99 100 using namespace llvm; 101 using namespace llvm::PatternMatch; 102 using namespace slpvectorizer; 103 104 #define SV_NAME "slp-vectorizer" 105 #define DEBUG_TYPE "SLP" 106 107 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 108 109 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 110 cl::desc("Run the SLP vectorization passes")); 111 112 static cl::opt<int> 113 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 114 cl::desc("Only vectorize if you gain more than this " 115 "number ")); 116 117 static cl::opt<bool> 118 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 119 cl::desc("Attempt to vectorize horizontal reductions")); 120 121 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 122 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 123 cl::desc( 124 "Attempt to vectorize horizontal reductions feeding into a store")); 125 126 static cl::opt<int> 127 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 128 cl::desc("Attempt to vectorize for this register size in bits")); 129 130 static cl::opt<unsigned> 131 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 132 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 133 134 static cl::opt<int> 135 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 136 cl::desc("Maximum depth of the lookup for consecutive stores.")); 137 138 /// Limits the size of scheduling regions in a block. 139 /// It avoid long compile times for _very_ large blocks where vector 140 /// instructions are spread over a wide range. 141 /// This limit is way higher than needed by real-world functions. 142 static cl::opt<int> 143 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 144 cl::desc("Limit the size of the SLP scheduling region per block")); 145 146 static cl::opt<int> MinVectorRegSizeOption( 147 "slp-min-reg-size", cl::init(128), cl::Hidden, 148 cl::desc("Attempt to vectorize for this register size in bits")); 149 150 static cl::opt<unsigned> RecursionMaxDepth( 151 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 152 cl::desc("Limit the recursion depth when building a vectorizable tree")); 153 154 static cl::opt<unsigned> MinTreeSize( 155 "slp-min-tree-size", cl::init(3), cl::Hidden, 156 cl::desc("Only vectorize small trees if they are fully vectorizable")); 157 158 // The maximum depth that the look-ahead score heuristic will explore. 159 // The higher this value, the higher the compilation time overhead. 160 static cl::opt<int> LookAheadMaxDepth( 161 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 162 cl::desc("The maximum look-ahead depth for operand reordering scores")); 163 164 // The Look-ahead heuristic goes through the users of the bundle to calculate 165 // the users cost in getExternalUsesCost(). To avoid compilation time increase 166 // we limit the number of users visited to this value. 167 static cl::opt<unsigned> LookAheadUsersBudget( 168 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 169 cl::desc("The maximum number of users to visit while visiting the " 170 "predecessors. This prevents compilation time increase.")); 171 172 static cl::opt<bool> 173 ViewSLPTree("view-slp-tree", cl::Hidden, 174 cl::desc("Display the SLP trees with Graphviz")); 175 176 // Limit the number of alias checks. The limit is chosen so that 177 // it has no negative effect on the llvm benchmarks. 178 static const unsigned AliasedCheckLimit = 10; 179 180 // Another limit for the alias checks: The maximum distance between load/store 181 // instructions where alias checks are done. 182 // This limit is useful for very large basic blocks. 183 static const unsigned MaxMemDepDistance = 160; 184 185 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 186 /// regions to be handled. 187 static const int MinScheduleRegionSize = 16; 188 189 /// Predicate for the element types that the SLP vectorizer supports. 190 /// 191 /// The most important thing to filter here are types which are invalid in LLVM 192 /// vectors. We also filter target specific types which have absolutely no 193 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 194 /// avoids spending time checking the cost model and realizing that they will 195 /// be inevitably scalarized. 196 static bool isValidElementType(Type *Ty) { 197 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 198 !Ty->isPPC_FP128Ty(); 199 } 200 201 /// \returns true if all of the instructions in \p VL are in the same block or 202 /// false otherwise. 203 static bool allSameBlock(ArrayRef<Value *> VL) { 204 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 205 if (!I0) 206 return false; 207 BasicBlock *BB = I0->getParent(); 208 for (int I = 1, E = VL.size(); I < E; I++) { 209 auto *II = dyn_cast<Instruction>(VL[I]); 210 if (!II) 211 return false; 212 213 if (BB != II->getParent()) 214 return false; 215 } 216 return true; 217 } 218 219 /// \returns True if all of the values in \p VL are constants (but not 220 /// globals/constant expressions). 221 static bool allConstant(ArrayRef<Value *> VL) { 222 // Constant expressions and globals can't be vectorized like normal integer/FP 223 // constants. 224 for (Value *i : VL) 225 if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i)) 226 return false; 227 return true; 228 } 229 230 /// \returns True if all of the values in \p VL are identical. 231 static bool isSplat(ArrayRef<Value *> VL) { 232 for (unsigned i = 1, e = VL.size(); i < e; ++i) 233 if (VL[i] != VL[0]) 234 return false; 235 return true; 236 } 237 238 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 239 static bool isCommutative(Instruction *I) { 240 if (auto *Cmp = dyn_cast<CmpInst>(I)) 241 return Cmp->isCommutative(); 242 if (auto *BO = dyn_cast<BinaryOperator>(I)) 243 return BO->isCommutative(); 244 // TODO: This should check for generic Instruction::isCommutative(), but 245 // we need to confirm that the caller code correctly handles Intrinsics 246 // for example (does not have 2 operands). 247 return false; 248 } 249 250 /// Checks if the vector of instructions can be represented as a shuffle, like: 251 /// %x0 = extractelement <4 x i8> %x, i32 0 252 /// %x3 = extractelement <4 x i8> %x, i32 3 253 /// %y1 = extractelement <4 x i8> %y, i32 1 254 /// %y2 = extractelement <4 x i8> %y, i32 2 255 /// %x0x0 = mul i8 %x0, %x0 256 /// %x3x3 = mul i8 %x3, %x3 257 /// %y1y1 = mul i8 %y1, %y1 258 /// %y2y2 = mul i8 %y2, %y2 259 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 260 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 261 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 262 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 263 /// ret <4 x i8> %ins4 264 /// can be transformed into: 265 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 266 /// i32 6> 267 /// %2 = mul <4 x i8> %1, %1 268 /// ret <4 x i8> %2 269 /// We convert this initially to something like: 270 /// %x0 = extractelement <4 x i8> %x, i32 0 271 /// %x3 = extractelement <4 x i8> %x, i32 3 272 /// %y1 = extractelement <4 x i8> %y, i32 1 273 /// %y2 = extractelement <4 x i8> %y, i32 2 274 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 275 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 276 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 277 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 278 /// %5 = mul <4 x i8> %4, %4 279 /// %6 = extractelement <4 x i8> %5, i32 0 280 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 281 /// %7 = extractelement <4 x i8> %5, i32 1 282 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 283 /// %8 = extractelement <4 x i8> %5, i32 2 284 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 285 /// %9 = extractelement <4 x i8> %5, i32 3 286 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 287 /// ret <4 x i8> %ins4 288 /// InstCombiner transforms this into a shuffle and vector mul 289 /// TODO: Can we split off and reuse the shuffle mask detection from 290 /// TargetTransformInfo::getInstructionThroughput? 291 static Optional<TargetTransformInfo::ShuffleKind> 292 isShuffle(ArrayRef<Value *> VL) { 293 auto *EI0 = cast<ExtractElementInst>(VL[0]); 294 unsigned Size = 295 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 296 Value *Vec1 = nullptr; 297 Value *Vec2 = nullptr; 298 enum ShuffleMode { Unknown, Select, Permute }; 299 ShuffleMode CommonShuffleMode = Unknown; 300 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 301 auto *EI = cast<ExtractElementInst>(VL[I]); 302 auto *Vec = EI->getVectorOperand(); 303 // All vector operands must have the same number of vector elements. 304 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 305 return None; 306 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 307 if (!Idx) 308 return None; 309 // Undefined behavior if Idx is negative or >= Size. 310 if (Idx->getValue().uge(Size)) 311 continue; 312 unsigned IntIdx = Idx->getValue().getZExtValue(); 313 // We can extractelement from undef vector. 314 if (isa<UndefValue>(Vec)) 315 continue; 316 // For correct shuffling we have to have at most 2 different vector operands 317 // in all extractelement instructions. 318 if (!Vec1 || Vec1 == Vec) 319 Vec1 = Vec; 320 else if (!Vec2 || Vec2 == Vec) 321 Vec2 = Vec; 322 else 323 return None; 324 if (CommonShuffleMode == Permute) 325 continue; 326 // If the extract index is not the same as the operation number, it is a 327 // permutation. 328 if (IntIdx != I) { 329 CommonShuffleMode = Permute; 330 continue; 331 } 332 CommonShuffleMode = Select; 333 } 334 // If we're not crossing lanes in different vectors, consider it as blending. 335 if (CommonShuffleMode == Select && Vec2) 336 return TargetTransformInfo::SK_Select; 337 // If Vec2 was never used, we have a permutation of a single vector, otherwise 338 // we have permutation of 2 vectors. 339 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 340 : TargetTransformInfo::SK_PermuteSingleSrc; 341 } 342 343 namespace { 344 345 /// Main data required for vectorization of instructions. 346 struct InstructionsState { 347 /// The very first instruction in the list with the main opcode. 348 Value *OpValue = nullptr; 349 350 /// The main/alternate instruction. 351 Instruction *MainOp = nullptr; 352 Instruction *AltOp = nullptr; 353 354 /// The main/alternate opcodes for the list of instructions. 355 unsigned getOpcode() const { 356 return MainOp ? MainOp->getOpcode() : 0; 357 } 358 359 unsigned getAltOpcode() const { 360 return AltOp ? AltOp->getOpcode() : 0; 361 } 362 363 /// Some of the instructions in the list have alternate opcodes. 364 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 365 366 bool isOpcodeOrAlt(Instruction *I) const { 367 unsigned CheckedOpcode = I->getOpcode(); 368 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 369 } 370 371 InstructionsState() = delete; 372 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 373 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 374 }; 375 376 } // end anonymous namespace 377 378 /// Chooses the correct key for scheduling data. If \p Op has the same (or 379 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 380 /// OpValue. 381 static Value *isOneOf(const InstructionsState &S, Value *Op) { 382 auto *I = dyn_cast<Instruction>(Op); 383 if (I && S.isOpcodeOrAlt(I)) 384 return Op; 385 return S.OpValue; 386 } 387 388 /// \returns true if \p Opcode is allowed as part of of the main/alternate 389 /// instruction for SLP vectorization. 390 /// 391 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 392 /// "shuffled out" lane would result in division by zero. 393 static bool isValidForAlternation(unsigned Opcode) { 394 if (Instruction::isIntDivRem(Opcode)) 395 return false; 396 397 return true; 398 } 399 400 /// \returns analysis of the Instructions in \p VL described in 401 /// InstructionsState, the Opcode that we suppose the whole list 402 /// could be vectorized even if its structure is diverse. 403 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 404 unsigned BaseIndex = 0) { 405 // Make sure these are all Instructions. 406 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 407 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 408 409 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 410 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 411 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 412 unsigned AltOpcode = Opcode; 413 unsigned AltIndex = BaseIndex; 414 415 // Check for one alternate opcode from another BinaryOperator. 416 // TODO - generalize to support all operators (types, calls etc.). 417 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 418 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 419 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 420 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 421 continue; 422 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 423 isValidForAlternation(Opcode)) { 424 AltOpcode = InstOpcode; 425 AltIndex = Cnt; 426 continue; 427 } 428 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 429 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 430 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 431 if (Ty0 == Ty1) { 432 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 433 continue; 434 if (Opcode == AltOpcode) { 435 assert(isValidForAlternation(Opcode) && 436 isValidForAlternation(InstOpcode) && 437 "Cast isn't safe for alternation, logic needs to be updated!"); 438 AltOpcode = InstOpcode; 439 AltIndex = Cnt; 440 continue; 441 } 442 } 443 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 444 continue; 445 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 446 } 447 448 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 449 cast<Instruction>(VL[AltIndex])); 450 } 451 452 /// \returns true if all of the values in \p VL have the same type or false 453 /// otherwise. 454 static bool allSameType(ArrayRef<Value *> VL) { 455 Type *Ty = VL[0]->getType(); 456 for (int i = 1, e = VL.size(); i < e; i++) 457 if (VL[i]->getType() != Ty) 458 return false; 459 460 return true; 461 } 462 463 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 464 static Optional<unsigned> getExtractIndex(Instruction *E) { 465 unsigned Opcode = E->getOpcode(); 466 assert((Opcode == Instruction::ExtractElement || 467 Opcode == Instruction::ExtractValue) && 468 "Expected extractelement or extractvalue instruction."); 469 if (Opcode == Instruction::ExtractElement) { 470 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 471 if (!CI) 472 return None; 473 return CI->getZExtValue(); 474 } 475 ExtractValueInst *EI = cast<ExtractValueInst>(E); 476 if (EI->getNumIndices() != 1) 477 return None; 478 return *EI->idx_begin(); 479 } 480 481 /// \returns True if in-tree use also needs extract. This refers to 482 /// possible scalar operand in vectorized instruction. 483 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 484 TargetLibraryInfo *TLI) { 485 unsigned Opcode = UserInst->getOpcode(); 486 switch (Opcode) { 487 case Instruction::Load: { 488 LoadInst *LI = cast<LoadInst>(UserInst); 489 return (LI->getPointerOperand() == Scalar); 490 } 491 case Instruction::Store: { 492 StoreInst *SI = cast<StoreInst>(UserInst); 493 return (SI->getPointerOperand() == Scalar); 494 } 495 case Instruction::Call: { 496 CallInst *CI = cast<CallInst>(UserInst); 497 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 498 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 499 if (hasVectorInstrinsicScalarOpd(ID, i)) 500 return (CI->getArgOperand(i) == Scalar); 501 } 502 LLVM_FALLTHROUGH; 503 } 504 default: 505 return false; 506 } 507 } 508 509 /// \returns the AA location that is being access by the instruction. 510 static MemoryLocation getLocation(Instruction *I, AAResults *AA) { 511 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 512 return MemoryLocation::get(SI); 513 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 514 return MemoryLocation::get(LI); 515 return MemoryLocation(); 516 } 517 518 /// \returns True if the instruction is not a volatile or atomic load/store. 519 static bool isSimple(Instruction *I) { 520 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 521 return LI->isSimple(); 522 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 523 return SI->isSimple(); 524 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 525 return !MI->isVolatile(); 526 return true; 527 } 528 529 namespace llvm { 530 531 static void inversePermutation(ArrayRef<unsigned> Indices, 532 SmallVectorImpl<int> &Mask) { 533 Mask.clear(); 534 const unsigned E = Indices.size(); 535 Mask.resize(E, E + 1); 536 for (unsigned I = 0; I < E; ++I) 537 Mask[Indices[I]] = I; 538 } 539 540 namespace slpvectorizer { 541 542 /// Bottom Up SLP Vectorizer. 543 class BoUpSLP { 544 struct TreeEntry; 545 struct ScheduleData; 546 547 public: 548 using ValueList = SmallVector<Value *, 8>; 549 using InstrList = SmallVector<Instruction *, 16>; 550 using ValueSet = SmallPtrSet<Value *, 16>; 551 using StoreList = SmallVector<StoreInst *, 8>; 552 using ExtraValueToDebugLocsMap = 553 MapVector<Value *, SmallVector<Instruction *, 2>>; 554 using OrdersType = SmallVector<unsigned, 4>; 555 556 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 557 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 558 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 559 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 560 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 561 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 562 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 563 // Use the vector register size specified by the target unless overridden 564 // by a command-line option. 565 // TODO: It would be better to limit the vectorization factor based on 566 // data type rather than just register size. For example, x86 AVX has 567 // 256-bit registers, but it does not support integer operations 568 // at that width (that requires AVX2). 569 if (MaxVectorRegSizeOption.getNumOccurrences()) 570 MaxVecRegSize = MaxVectorRegSizeOption; 571 else 572 MaxVecRegSize = TTI->getRegisterBitWidth(true); 573 574 if (MinVectorRegSizeOption.getNumOccurrences()) 575 MinVecRegSize = MinVectorRegSizeOption; 576 else 577 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 578 } 579 580 /// Vectorize the tree that starts with the elements in \p VL. 581 /// Returns the vectorized root. 582 Value *vectorizeTree(); 583 584 /// Vectorize the tree but with the list of externally used values \p 585 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 586 /// generated extractvalue instructions. 587 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 588 589 /// \returns the cost incurred by unwanted spills and fills, caused by 590 /// holding live values over call sites. 591 InstructionCost getSpillCost() const; 592 593 /// \returns the vectorization cost of the subtree that starts at \p VL. 594 /// A negative number means that this is profitable. 595 InstructionCost getTreeCost(); 596 597 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 598 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 599 void buildTree(ArrayRef<Value *> Roots, 600 ArrayRef<Value *> UserIgnoreLst = None); 601 602 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 603 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 604 /// into account (and updating it, if required) list of externally used 605 /// values stored in \p ExternallyUsedValues. 606 void buildTree(ArrayRef<Value *> Roots, 607 ExtraValueToDebugLocsMap &ExternallyUsedValues, 608 ArrayRef<Value *> UserIgnoreLst = None); 609 610 /// Clear the internal data structures that are created by 'buildTree'. 611 void deleteTree() { 612 VectorizableTree.clear(); 613 ScalarToTreeEntry.clear(); 614 MustGather.clear(); 615 ExternalUses.clear(); 616 NumOpsWantToKeepOrder.clear(); 617 NumOpsWantToKeepOriginalOrder = 0; 618 for (auto &Iter : BlocksSchedules) { 619 BlockScheduling *BS = Iter.second.get(); 620 BS->clear(); 621 } 622 MinBWs.clear(); 623 } 624 625 unsigned getTreeSize() const { return VectorizableTree.size(); } 626 627 /// Perform LICM and CSE on the newly generated gather sequences. 628 void optimizeGatherSequence(); 629 630 /// \returns The best order of instructions for vectorization. 631 Optional<ArrayRef<unsigned>> bestOrder() const { 632 assert(llvm::all_of( 633 NumOpsWantToKeepOrder, 634 [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { 635 return D.getFirst().size() == 636 VectorizableTree[0]->Scalars.size(); 637 }) && 638 "All orders must have the same size as number of instructions in " 639 "tree node."); 640 auto I = std::max_element( 641 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 642 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 643 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 644 return D1.second < D2.second; 645 }); 646 if (I == NumOpsWantToKeepOrder.end() || 647 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 648 return None; 649 650 return makeArrayRef(I->getFirst()); 651 } 652 653 /// Builds the correct order for root instructions. 654 /// If some leaves have the same instructions to be vectorized, we may 655 /// incorrectly evaluate the best order for the root node (it is built for the 656 /// vector of instructions without repeated instructions and, thus, has less 657 /// elements than the root node). This function builds the correct order for 658 /// the root node. 659 /// For example, if the root node is \<a+b, a+c, a+d, f+e\>, then the leaves 660 /// are \<a, a, a, f\> and \<b, c, d, e\>. When we try to vectorize the first 661 /// leaf, it will be shrink to \<a, b\>. If instructions in this leaf should 662 /// be reordered, the best order will be \<1, 0\>. We need to extend this 663 /// order for the root node. For the root node this order should look like 664 /// \<3, 0, 1, 2\>. This function extends the order for the reused 665 /// instructions. 666 void findRootOrder(OrdersType &Order) { 667 // If the leaf has the same number of instructions to vectorize as the root 668 // - order must be set already. 669 unsigned RootSize = VectorizableTree[0]->Scalars.size(); 670 if (Order.size() == RootSize) 671 return; 672 SmallVector<unsigned, 4> RealOrder(Order.size()); 673 std::swap(Order, RealOrder); 674 SmallVector<int, 4> Mask; 675 inversePermutation(RealOrder, Mask); 676 Order.assign(Mask.begin(), Mask.end()); 677 // The leaf has less number of instructions - need to find the true order of 678 // the root. 679 // Scan the nodes starting from the leaf back to the root. 680 const TreeEntry *PNode = VectorizableTree.back().get(); 681 SmallVector<const TreeEntry *, 4> Nodes(1, PNode); 682 SmallPtrSet<const TreeEntry *, 4> Visited; 683 while (!Nodes.empty() && Order.size() != RootSize) { 684 const TreeEntry *PNode = Nodes.pop_back_val(); 685 if (!Visited.insert(PNode).second) 686 continue; 687 const TreeEntry &Node = *PNode; 688 for (const EdgeInfo &EI : Node.UserTreeIndices) 689 if (EI.UserTE) 690 Nodes.push_back(EI.UserTE); 691 if (Node.ReuseShuffleIndices.empty()) 692 continue; 693 // Build the order for the parent node. 694 OrdersType NewOrder(Node.ReuseShuffleIndices.size(), RootSize); 695 SmallVector<unsigned, 4> OrderCounter(Order.size(), 0); 696 // The algorithm of the order extension is: 697 // 1. Calculate the number of the same instructions for the order. 698 // 2. Calculate the index of the new order: total number of instructions 699 // with order less than the order of the current instruction + reuse 700 // number of the current instruction. 701 // 3. The new order is just the index of the instruction in the original 702 // vector of the instructions. 703 for (unsigned I : Node.ReuseShuffleIndices) 704 ++OrderCounter[Order[I]]; 705 SmallVector<unsigned, 4> CurrentCounter(Order.size(), 0); 706 for (unsigned I = 0, E = Node.ReuseShuffleIndices.size(); I < E; ++I) { 707 unsigned ReusedIdx = Node.ReuseShuffleIndices[I]; 708 unsigned OrderIdx = Order[ReusedIdx]; 709 unsigned NewIdx = 0; 710 for (unsigned J = 0; J < OrderIdx; ++J) 711 NewIdx += OrderCounter[J]; 712 NewIdx += CurrentCounter[OrderIdx]; 713 ++CurrentCounter[OrderIdx]; 714 assert(NewOrder[NewIdx] == RootSize && 715 "The order index should not be written already."); 716 NewOrder[NewIdx] = I; 717 } 718 std::swap(Order, NewOrder); 719 } 720 assert(Order.size() == RootSize && 721 "Root node is expected or the size of the order must be the same as " 722 "the number of elements in the root node."); 723 assert(llvm::all_of(Order, 724 [RootSize](unsigned Val) { return Val != RootSize; }) && 725 "All indices must be initialized"); 726 } 727 728 /// \return The vector element size in bits to use when vectorizing the 729 /// expression tree ending at \p V. If V is a store, the size is the width of 730 /// the stored value. Otherwise, the size is the width of the largest loaded 731 /// value reaching V. This method is used by the vectorizer to calculate 732 /// vectorization factors. 733 unsigned getVectorElementSize(Value *V); 734 735 /// Compute the minimum type sizes required to represent the entries in a 736 /// vectorizable tree. 737 void computeMinimumValueSizes(); 738 739 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 740 unsigned getMaxVecRegSize() const { 741 return MaxVecRegSize; 742 } 743 744 // \returns minimum vector register size as set by cl::opt. 745 unsigned getMinVecRegSize() const { 746 return MinVecRegSize; 747 } 748 749 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 750 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 751 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 752 return MaxVF ? MaxVF : UINT_MAX; 753 } 754 755 /// Check if homogeneous aggregate is isomorphic to some VectorType. 756 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 757 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 758 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 759 /// 760 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 761 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 762 763 /// \returns True if the VectorizableTree is both tiny and not fully 764 /// vectorizable. We do not vectorize such trees. 765 bool isTreeTinyAndNotFullyVectorizable() const; 766 767 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 768 /// can be load combined in the backend. Load combining may not be allowed in 769 /// the IR optimizer, so we do not want to alter the pattern. For example, 770 /// partially transforming a scalar bswap() pattern into vector code is 771 /// effectively impossible for the backend to undo. 772 /// TODO: If load combining is allowed in the IR optimizer, this analysis 773 /// may not be necessary. 774 bool isLoadCombineReductionCandidate(unsigned ReductionOpcode) const; 775 776 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 777 /// can be load combined in the backend. Load combining may not be allowed in 778 /// the IR optimizer, so we do not want to alter the pattern. For example, 779 /// partially transforming a scalar bswap() pattern into vector code is 780 /// effectively impossible for the backend to undo. 781 /// TODO: If load combining is allowed in the IR optimizer, this analysis 782 /// may not be necessary. 783 bool isLoadCombineCandidate() const; 784 785 OptimizationRemarkEmitter *getORE() { return ORE; } 786 787 /// This structure holds any data we need about the edges being traversed 788 /// during buildTree_rec(). We keep track of: 789 /// (i) the user TreeEntry index, and 790 /// (ii) the index of the edge. 791 struct EdgeInfo { 792 EdgeInfo() = default; 793 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 794 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 795 /// The user TreeEntry. 796 TreeEntry *UserTE = nullptr; 797 /// The operand index of the use. 798 unsigned EdgeIdx = UINT_MAX; 799 #ifndef NDEBUG 800 friend inline raw_ostream &operator<<(raw_ostream &OS, 801 const BoUpSLP::EdgeInfo &EI) { 802 EI.dump(OS); 803 return OS; 804 } 805 /// Debug print. 806 void dump(raw_ostream &OS) const { 807 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 808 << " EdgeIdx:" << EdgeIdx << "}"; 809 } 810 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 811 #endif 812 }; 813 814 /// A helper data structure to hold the operands of a vector of instructions. 815 /// This supports a fixed vector length for all operand vectors. 816 class VLOperands { 817 /// For each operand we need (i) the value, and (ii) the opcode that it 818 /// would be attached to if the expression was in a left-linearized form. 819 /// This is required to avoid illegal operand reordering. 820 /// For example: 821 /// \verbatim 822 /// 0 Op1 823 /// |/ 824 /// Op1 Op2 Linearized + Op2 825 /// \ / ----------> |/ 826 /// - - 827 /// 828 /// Op1 - Op2 (0 + Op1) - Op2 829 /// \endverbatim 830 /// 831 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 832 /// 833 /// Another way to think of this is to track all the operations across the 834 /// path from the operand all the way to the root of the tree and to 835 /// calculate the operation that corresponds to this path. For example, the 836 /// path from Op2 to the root crosses the RHS of the '-', therefore the 837 /// corresponding operation is a '-' (which matches the one in the 838 /// linearized tree, as shown above). 839 /// 840 /// For lack of a better term, we refer to this operation as Accumulated 841 /// Path Operation (APO). 842 struct OperandData { 843 OperandData() = default; 844 OperandData(Value *V, bool APO, bool IsUsed) 845 : V(V), APO(APO), IsUsed(IsUsed) {} 846 /// The operand value. 847 Value *V = nullptr; 848 /// TreeEntries only allow a single opcode, or an alternate sequence of 849 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 850 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 851 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 852 /// (e.g., Add/Mul) 853 bool APO = false; 854 /// Helper data for the reordering function. 855 bool IsUsed = false; 856 }; 857 858 /// During operand reordering, we are trying to select the operand at lane 859 /// that matches best with the operand at the neighboring lane. Our 860 /// selection is based on the type of value we are looking for. For example, 861 /// if the neighboring lane has a load, we need to look for a load that is 862 /// accessing a consecutive address. These strategies are summarized in the 863 /// 'ReorderingMode' enumerator. 864 enum class ReorderingMode { 865 Load, ///< Matching loads to consecutive memory addresses 866 Opcode, ///< Matching instructions based on opcode (same or alternate) 867 Constant, ///< Matching constants 868 Splat, ///< Matching the same instruction multiple times (broadcast) 869 Failed, ///< We failed to create a vectorizable group 870 }; 871 872 using OperandDataVec = SmallVector<OperandData, 2>; 873 874 /// A vector of operand vectors. 875 SmallVector<OperandDataVec, 4> OpsVec; 876 877 const DataLayout &DL; 878 ScalarEvolution &SE; 879 const BoUpSLP &R; 880 881 /// \returns the operand data at \p OpIdx and \p Lane. 882 OperandData &getData(unsigned OpIdx, unsigned Lane) { 883 return OpsVec[OpIdx][Lane]; 884 } 885 886 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 887 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 888 return OpsVec[OpIdx][Lane]; 889 } 890 891 /// Clears the used flag for all entries. 892 void clearUsed() { 893 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 894 OpIdx != NumOperands; ++OpIdx) 895 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 896 ++Lane) 897 OpsVec[OpIdx][Lane].IsUsed = false; 898 } 899 900 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 901 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 902 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 903 } 904 905 // The hard-coded scores listed here are not very important. When computing 906 // the scores of matching one sub-tree with another, we are basically 907 // counting the number of values that are matching. So even if all scores 908 // are set to 1, we would still get a decent matching result. 909 // However, sometimes we have to break ties. For example we may have to 910 // choose between matching loads vs matching opcodes. This is what these 911 // scores are helping us with: they provide the order of preference. 912 913 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 914 static const int ScoreConsecutiveLoads = 3; 915 /// ExtractElementInst from same vector and consecutive indexes. 916 static const int ScoreConsecutiveExtracts = 3; 917 /// Constants. 918 static const int ScoreConstants = 2; 919 /// Instructions with the same opcode. 920 static const int ScoreSameOpcode = 2; 921 /// Instructions with alt opcodes (e.g, add + sub). 922 static const int ScoreAltOpcodes = 1; 923 /// Identical instructions (a.k.a. splat or broadcast). 924 static const int ScoreSplat = 1; 925 /// Matching with an undef is preferable to failing. 926 static const int ScoreUndef = 1; 927 /// Score for failing to find a decent match. 928 static const int ScoreFail = 0; 929 /// User exteranl to the vectorized code. 930 static const int ExternalUseCost = 1; 931 /// The user is internal but in a different lane. 932 static const int UserInDiffLaneCost = ExternalUseCost; 933 934 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 935 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 936 ScalarEvolution &SE) { 937 auto *LI1 = dyn_cast<LoadInst>(V1); 938 auto *LI2 = dyn_cast<LoadInst>(V2); 939 if (LI1 && LI2) 940 return isConsecutiveAccess(LI1, LI2, DL, SE) 941 ? VLOperands::ScoreConsecutiveLoads 942 : VLOperands::ScoreFail; 943 944 auto *C1 = dyn_cast<Constant>(V1); 945 auto *C2 = dyn_cast<Constant>(V2); 946 if (C1 && C2) 947 return VLOperands::ScoreConstants; 948 949 // Extracts from consecutive indexes of the same vector better score as 950 // the extracts could be optimized away. 951 Value *EV; 952 ConstantInt *Ex1Idx, *Ex2Idx; 953 if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) && 954 match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) && 955 Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue()) 956 return VLOperands::ScoreConsecutiveExtracts; 957 958 auto *I1 = dyn_cast<Instruction>(V1); 959 auto *I2 = dyn_cast<Instruction>(V2); 960 if (I1 && I2) { 961 if (I1 == I2) 962 return VLOperands::ScoreSplat; 963 InstructionsState S = getSameOpcode({I1, I2}); 964 // Note: Only consider instructions with <= 2 operands to avoid 965 // complexity explosion. 966 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 967 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 968 : VLOperands::ScoreSameOpcode; 969 } 970 971 if (isa<UndefValue>(V2)) 972 return VLOperands::ScoreUndef; 973 974 return VLOperands::ScoreFail; 975 } 976 977 /// Holds the values and their lane that are taking part in the look-ahead 978 /// score calculation. This is used in the external uses cost calculation. 979 SmallDenseMap<Value *, int> InLookAheadValues; 980 981 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are 982 /// either external to the vectorized code, or require shuffling. 983 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 984 const std::pair<Value *, int> &RHS) { 985 int Cost = 0; 986 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 987 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 988 Value *V = Values[Idx].first; 989 // Calculate the absolute lane, using the minimum relative lane of LHS 990 // and RHS as base and Idx as the offset. 991 int Ln = std::min(LHS.second, RHS.second) + Idx; 992 assert(Ln >= 0 && "Bad lane calculation"); 993 unsigned UsersBudget = LookAheadUsersBudget; 994 for (User *U : V->users()) { 995 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 996 // The user is in the VectorizableTree. Check if we need to insert. 997 auto It = llvm::find(UserTE->Scalars, U); 998 assert(It != UserTE->Scalars.end() && "U is in UserTE"); 999 int UserLn = std::distance(UserTE->Scalars.begin(), It); 1000 assert(UserLn >= 0 && "Bad lane"); 1001 if (UserLn != Ln) 1002 Cost += UserInDiffLaneCost; 1003 } else { 1004 // Check if the user is in the look-ahead code. 1005 auto It2 = InLookAheadValues.find(U); 1006 if (It2 != InLookAheadValues.end()) { 1007 // The user is in the look-ahead code. Check the lane. 1008 if (It2->second != Ln) 1009 Cost += UserInDiffLaneCost; 1010 } else { 1011 // The user is neither in SLP tree nor in the look-ahead code. 1012 Cost += ExternalUseCost; 1013 } 1014 } 1015 // Limit the number of visited uses to cap compilation time. 1016 if (--UsersBudget == 0) 1017 break; 1018 } 1019 } 1020 return Cost; 1021 } 1022 1023 /// Go through the operands of \p LHS and \p RHS recursively until \p 1024 /// MaxLevel, and return the cummulative score. For example: 1025 /// \verbatim 1026 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1027 /// \ / \ / \ / \ / 1028 /// + + + + 1029 /// G1 G2 G3 G4 1030 /// \endverbatim 1031 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1032 /// each level recursively, accumulating the score. It starts from matching 1033 /// the additions at level 0, then moves on to the loads (level 1). The 1034 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1035 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1036 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1037 /// Please note that the order of the operands does not matter, as we 1038 /// evaluate the score of all profitable combinations of operands. In 1039 /// other words the score of G1 and G4 is the same as G1 and G2. This 1040 /// heuristic is based on ideas described in: 1041 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1042 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1043 /// Luís F. W. Góes 1044 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 1045 const std::pair<Value *, int> &RHS, int CurrLevel, 1046 int MaxLevel) { 1047 1048 Value *V1 = LHS.first; 1049 Value *V2 = RHS.first; 1050 // Get the shallow score of V1 and V2. 1051 int ShallowScoreAtThisLevel = 1052 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) - 1053 getExternalUsesCost(LHS, RHS)); 1054 int Lane1 = LHS.second; 1055 int Lane2 = RHS.second; 1056 1057 // If reached MaxLevel, 1058 // or if V1 and V2 are not instructions, 1059 // or if they are SPLAT, 1060 // or if they are not consecutive, early return the current cost. 1061 auto *I1 = dyn_cast<Instruction>(V1); 1062 auto *I2 = dyn_cast<Instruction>(V2); 1063 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1064 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1065 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel)) 1066 return ShallowScoreAtThisLevel; 1067 assert(I1 && I2 && "Should have early exited."); 1068 1069 // Keep track of in-tree values for determining the external-use cost. 1070 InLookAheadValues[V1] = Lane1; 1071 InLookAheadValues[V2] = Lane2; 1072 1073 // Contains the I2 operand indexes that got matched with I1 operands. 1074 SmallSet<unsigned, 4> Op2Used; 1075 1076 // Recursion towards the operands of I1 and I2. We are trying all possbile 1077 // operand pairs, and keeping track of the best score. 1078 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1079 OpIdx1 != NumOperands1; ++OpIdx1) { 1080 // Try to pair op1I with the best operand of I2. 1081 int MaxTmpScore = 0; 1082 unsigned MaxOpIdx2 = 0; 1083 bool FoundBest = false; 1084 // If I2 is commutative try all combinations. 1085 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1086 unsigned ToIdx = isCommutative(I2) 1087 ? I2->getNumOperands() 1088 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1089 assert(FromIdx <= ToIdx && "Bad index"); 1090 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1091 // Skip operands already paired with OpIdx1. 1092 if (Op2Used.count(OpIdx2)) 1093 continue; 1094 // Recursively calculate the cost at each level 1095 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 1096 {I2->getOperand(OpIdx2), Lane2}, 1097 CurrLevel + 1, MaxLevel); 1098 // Look for the best score. 1099 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1100 MaxTmpScore = TmpScore; 1101 MaxOpIdx2 = OpIdx2; 1102 FoundBest = true; 1103 } 1104 } 1105 if (FoundBest) { 1106 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1107 Op2Used.insert(MaxOpIdx2); 1108 ShallowScoreAtThisLevel += MaxTmpScore; 1109 } 1110 } 1111 return ShallowScoreAtThisLevel; 1112 } 1113 1114 /// \Returns the look-ahead score, which tells us how much the sub-trees 1115 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1116 /// score. This helps break ties in an informed way when we cannot decide on 1117 /// the order of the operands by just considering the immediate 1118 /// predecessors. 1119 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1120 const std::pair<Value *, int> &RHS) { 1121 InLookAheadValues.clear(); 1122 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1123 } 1124 1125 // Search all operands in Ops[*][Lane] for the one that matches best 1126 // Ops[OpIdx][LastLane] and return its opreand index. 1127 // If no good match can be found, return None. 1128 Optional<unsigned> 1129 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1130 ArrayRef<ReorderingMode> ReorderingModes) { 1131 unsigned NumOperands = getNumOperands(); 1132 1133 // The operand of the previous lane at OpIdx. 1134 Value *OpLastLane = getData(OpIdx, LastLane).V; 1135 1136 // Our strategy mode for OpIdx. 1137 ReorderingMode RMode = ReorderingModes[OpIdx]; 1138 1139 // The linearized opcode of the operand at OpIdx, Lane. 1140 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1141 1142 // The best operand index and its score. 1143 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1144 // are using the score to differentiate between the two. 1145 struct BestOpData { 1146 Optional<unsigned> Idx = None; 1147 unsigned Score = 0; 1148 } BestOp; 1149 1150 // Iterate through all unused operands and look for the best. 1151 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1152 // Get the operand at Idx and Lane. 1153 OperandData &OpData = getData(Idx, Lane); 1154 Value *Op = OpData.V; 1155 bool OpAPO = OpData.APO; 1156 1157 // Skip already selected operands. 1158 if (OpData.IsUsed) 1159 continue; 1160 1161 // Skip if we are trying to move the operand to a position with a 1162 // different opcode in the linearized tree form. This would break the 1163 // semantics. 1164 if (OpAPO != OpIdxAPO) 1165 continue; 1166 1167 // Look for an operand that matches the current mode. 1168 switch (RMode) { 1169 case ReorderingMode::Load: 1170 case ReorderingMode::Constant: 1171 case ReorderingMode::Opcode: { 1172 bool LeftToRight = Lane > LastLane; 1173 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1174 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1175 unsigned Score = 1176 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1177 if (Score > BestOp.Score) { 1178 BestOp.Idx = Idx; 1179 BestOp.Score = Score; 1180 } 1181 break; 1182 } 1183 case ReorderingMode::Splat: 1184 if (Op == OpLastLane) 1185 BestOp.Idx = Idx; 1186 break; 1187 case ReorderingMode::Failed: 1188 return None; 1189 } 1190 } 1191 1192 if (BestOp.Idx) { 1193 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1194 return BestOp.Idx; 1195 } 1196 // If we could not find a good match return None. 1197 return None; 1198 } 1199 1200 /// Helper for reorderOperandVecs. \Returns the lane that we should start 1201 /// reordering from. This is the one which has the least number of operands 1202 /// that can freely move about. 1203 unsigned getBestLaneToStartReordering() const { 1204 unsigned BestLane = 0; 1205 unsigned Min = UINT_MAX; 1206 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1207 ++Lane) { 1208 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 1209 if (NumFreeOps < Min) { 1210 Min = NumFreeOps; 1211 BestLane = Lane; 1212 } 1213 } 1214 return BestLane; 1215 } 1216 1217 /// \Returns the maximum number of operands that are allowed to be reordered 1218 /// for \p Lane. This is used as a heuristic for selecting the first lane to 1219 /// start operand reordering. 1220 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1221 unsigned CntTrue = 0; 1222 unsigned NumOperands = getNumOperands(); 1223 // Operands with the same APO can be reordered. We therefore need to count 1224 // how many of them we have for each APO, like this: Cnt[APO] = x. 1225 // Since we only have two APOs, namely true and false, we can avoid using 1226 // a map. Instead we can simply count the number of operands that 1227 // correspond to one of them (in this case the 'true' APO), and calculate 1228 // the other by subtracting it from the total number of operands. 1229 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 1230 if (getData(OpIdx, Lane).APO) 1231 ++CntTrue; 1232 unsigned CntFalse = NumOperands - CntTrue; 1233 return std::max(CntTrue, CntFalse); 1234 } 1235 1236 /// Go through the instructions in VL and append their operands. 1237 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1238 assert(!VL.empty() && "Bad VL"); 1239 assert((empty() || VL.size() == getNumLanes()) && 1240 "Expected same number of lanes"); 1241 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1242 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1243 OpsVec.resize(NumOperands); 1244 unsigned NumLanes = VL.size(); 1245 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1246 OpsVec[OpIdx].resize(NumLanes); 1247 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1248 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1249 // Our tree has just 3 nodes: the root and two operands. 1250 // It is therefore trivial to get the APO. We only need to check the 1251 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1252 // RHS operand. The LHS operand of both add and sub is never attached 1253 // to an inversese operation in the linearized form, therefore its APO 1254 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1255 1256 // Since operand reordering is performed on groups of commutative 1257 // operations or alternating sequences (e.g., +, -), we can safely 1258 // tell the inverse operations by checking commutativity. 1259 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1260 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1261 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1262 APO, false}; 1263 } 1264 } 1265 } 1266 1267 /// \returns the number of operands. 1268 unsigned getNumOperands() const { return OpsVec.size(); } 1269 1270 /// \returns the number of lanes. 1271 unsigned getNumLanes() const { return OpsVec[0].size(); } 1272 1273 /// \returns the operand value at \p OpIdx and \p Lane. 1274 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1275 return getData(OpIdx, Lane).V; 1276 } 1277 1278 /// \returns true if the data structure is empty. 1279 bool empty() const { return OpsVec.empty(); } 1280 1281 /// Clears the data. 1282 void clear() { OpsVec.clear(); } 1283 1284 /// \Returns true if there are enough operands identical to \p Op to fill 1285 /// the whole vector. 1286 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1287 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1288 bool OpAPO = getData(OpIdx, Lane).APO; 1289 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1290 if (Ln == Lane) 1291 continue; 1292 // This is set to true if we found a candidate for broadcast at Lane. 1293 bool FoundCandidate = false; 1294 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1295 OperandData &Data = getData(OpI, Ln); 1296 if (Data.APO != OpAPO || Data.IsUsed) 1297 continue; 1298 if (Data.V == Op) { 1299 FoundCandidate = true; 1300 Data.IsUsed = true; 1301 break; 1302 } 1303 } 1304 if (!FoundCandidate) 1305 return false; 1306 } 1307 return true; 1308 } 1309 1310 public: 1311 /// Initialize with all the operands of the instruction vector \p RootVL. 1312 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1313 ScalarEvolution &SE, const BoUpSLP &R) 1314 : DL(DL), SE(SE), R(R) { 1315 // Append all the operands of RootVL. 1316 appendOperandsOfVL(RootVL); 1317 } 1318 1319 /// \Returns a value vector with the operands across all lanes for the 1320 /// opearnd at \p OpIdx. 1321 ValueList getVL(unsigned OpIdx) const { 1322 ValueList OpVL(OpsVec[OpIdx].size()); 1323 assert(OpsVec[OpIdx].size() == getNumLanes() && 1324 "Expected same num of lanes across all operands"); 1325 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1326 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1327 return OpVL; 1328 } 1329 1330 // Performs operand reordering for 2 or more operands. 1331 // The original operands are in OrigOps[OpIdx][Lane]. 1332 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1333 void reorder() { 1334 unsigned NumOperands = getNumOperands(); 1335 unsigned NumLanes = getNumLanes(); 1336 // Each operand has its own mode. We are using this mode to help us select 1337 // the instructions for each lane, so that they match best with the ones 1338 // we have selected so far. 1339 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1340 1341 // This is a greedy single-pass algorithm. We are going over each lane 1342 // once and deciding on the best order right away with no back-tracking. 1343 // However, in order to increase its effectiveness, we start with the lane 1344 // that has operands that can move the least. For example, given the 1345 // following lanes: 1346 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1347 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1348 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1349 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1350 // we will start at Lane 1, since the operands of the subtraction cannot 1351 // be reordered. Then we will visit the rest of the lanes in a circular 1352 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1353 1354 // Find the first lane that we will start our search from. 1355 unsigned FirstLane = getBestLaneToStartReordering(); 1356 1357 // Initialize the modes. 1358 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1359 Value *OpLane0 = getValue(OpIdx, FirstLane); 1360 // Keep track if we have instructions with all the same opcode on one 1361 // side. 1362 if (isa<LoadInst>(OpLane0)) 1363 ReorderingModes[OpIdx] = ReorderingMode::Load; 1364 else if (isa<Instruction>(OpLane0)) { 1365 // Check if OpLane0 should be broadcast. 1366 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1367 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1368 else 1369 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1370 } 1371 else if (isa<Constant>(OpLane0)) 1372 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1373 else if (isa<Argument>(OpLane0)) 1374 // Our best hope is a Splat. It may save some cost in some cases. 1375 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1376 else 1377 // NOTE: This should be unreachable. 1378 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1379 } 1380 1381 // If the initial strategy fails for any of the operand indexes, then we 1382 // perform reordering again in a second pass. This helps avoid assigning 1383 // high priority to the failed strategy, and should improve reordering for 1384 // the non-failed operand indexes. 1385 for (int Pass = 0; Pass != 2; ++Pass) { 1386 // Skip the second pass if the first pass did not fail. 1387 bool StrategyFailed = false; 1388 // Mark all operand data as free to use. 1389 clearUsed(); 1390 // We keep the original operand order for the FirstLane, so reorder the 1391 // rest of the lanes. We are visiting the nodes in a circular fashion, 1392 // using FirstLane as the center point and increasing the radius 1393 // distance. 1394 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1395 // Visit the lane on the right and then the lane on the left. 1396 for (int Direction : {+1, -1}) { 1397 int Lane = FirstLane + Direction * Distance; 1398 if (Lane < 0 || Lane >= (int)NumLanes) 1399 continue; 1400 int LastLane = Lane - Direction; 1401 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1402 "Out of bounds"); 1403 // Look for a good match for each operand. 1404 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1405 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1406 Optional<unsigned> BestIdx = 1407 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1408 // By not selecting a value, we allow the operands that follow to 1409 // select a better matching value. We will get a non-null value in 1410 // the next run of getBestOperand(). 1411 if (BestIdx) { 1412 // Swap the current operand with the one returned by 1413 // getBestOperand(). 1414 swap(OpIdx, BestIdx.getValue(), Lane); 1415 } else { 1416 // We failed to find a best operand, set mode to 'Failed'. 1417 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1418 // Enable the second pass. 1419 StrategyFailed = true; 1420 } 1421 } 1422 } 1423 } 1424 // Skip second pass if the strategy did not fail. 1425 if (!StrategyFailed) 1426 break; 1427 } 1428 } 1429 1430 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1431 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1432 switch (RMode) { 1433 case ReorderingMode::Load: 1434 return "Load"; 1435 case ReorderingMode::Opcode: 1436 return "Opcode"; 1437 case ReorderingMode::Constant: 1438 return "Constant"; 1439 case ReorderingMode::Splat: 1440 return "Splat"; 1441 case ReorderingMode::Failed: 1442 return "Failed"; 1443 } 1444 llvm_unreachable("Unimplemented Reordering Type"); 1445 } 1446 1447 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1448 raw_ostream &OS) { 1449 return OS << getModeStr(RMode); 1450 } 1451 1452 /// Debug print. 1453 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1454 printMode(RMode, dbgs()); 1455 } 1456 1457 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1458 return printMode(RMode, OS); 1459 } 1460 1461 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1462 const unsigned Indent = 2; 1463 unsigned Cnt = 0; 1464 for (const OperandDataVec &OpDataVec : OpsVec) { 1465 OS << "Operand " << Cnt++ << "\n"; 1466 for (const OperandData &OpData : OpDataVec) { 1467 OS.indent(Indent) << "{"; 1468 if (Value *V = OpData.V) 1469 OS << *V; 1470 else 1471 OS << "null"; 1472 OS << ", APO:" << OpData.APO << "}\n"; 1473 } 1474 OS << "\n"; 1475 } 1476 return OS; 1477 } 1478 1479 /// Debug print. 1480 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1481 #endif 1482 }; 1483 1484 /// Checks if the instruction is marked for deletion. 1485 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1486 1487 /// Marks values operands for later deletion by replacing them with Undefs. 1488 void eraseInstructions(ArrayRef<Value *> AV); 1489 1490 ~BoUpSLP(); 1491 1492 private: 1493 /// Checks if all users of \p I are the part of the vectorization tree. 1494 bool areAllUsersVectorized(Instruction *I) const; 1495 1496 /// \returns the cost of the vectorizable entry. 1497 InstructionCost getEntryCost(TreeEntry *E); 1498 1499 /// This is the recursive part of buildTree. 1500 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1501 const EdgeInfo &EI); 1502 1503 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1504 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1505 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1506 /// returns false, setting \p CurrentOrder to either an empty vector or a 1507 /// non-identity permutation that allows to reuse extract instructions. 1508 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1509 SmallVectorImpl<unsigned> &CurrentOrder) const; 1510 1511 /// Vectorize a single entry in the tree. 1512 Value *vectorizeTree(TreeEntry *E); 1513 1514 /// Vectorize a single entry in the tree, starting in \p VL. 1515 Value *vectorizeTree(ArrayRef<Value *> VL); 1516 1517 /// \returns the scalarization cost for this type. Scalarization in this 1518 /// context means the creation of vectors from a group of scalars. 1519 InstructionCost 1520 getGatherCost(FixedVectorType *Ty, 1521 const DenseSet<unsigned> &ShuffledIndices) const; 1522 1523 /// \returns the scalarization cost for this list of values. Assuming that 1524 /// this subtree gets vectorized, we may need to extract the values from the 1525 /// roots. This method calculates the cost of extracting the values. 1526 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1527 1528 /// Set the Builder insert point to one after the last instruction in 1529 /// the bundle 1530 void setInsertPointAfterBundle(TreeEntry *E); 1531 1532 /// \returns a vector from a collection of scalars in \p VL. 1533 Value *gather(ArrayRef<Value *> VL); 1534 1535 /// \returns whether the VectorizableTree is fully vectorizable and will 1536 /// be beneficial even the tree height is tiny. 1537 bool isFullyVectorizableTinyTree() const; 1538 1539 /// Reorder commutative or alt operands to get better probability of 1540 /// generating vectorized code. 1541 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1542 SmallVectorImpl<Value *> &Left, 1543 SmallVectorImpl<Value *> &Right, 1544 const DataLayout &DL, 1545 ScalarEvolution &SE, 1546 const BoUpSLP &R); 1547 struct TreeEntry { 1548 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1549 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1550 1551 /// \returns true if the scalars in VL are equal to this entry. 1552 bool isSame(ArrayRef<Value *> VL) const { 1553 if (VL.size() == Scalars.size()) 1554 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1555 return VL.size() == ReuseShuffleIndices.size() && 1556 std::equal( 1557 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 1558 [this](Value *V, int Idx) { return V == Scalars[Idx]; }); 1559 } 1560 1561 /// A vector of scalars. 1562 ValueList Scalars; 1563 1564 /// The Scalars are vectorized into this value. It is initialized to Null. 1565 Value *VectorizedValue = nullptr; 1566 1567 /// Do we need to gather this sequence or vectorize it 1568 /// (either with vector instruction or with scatter/gather 1569 /// intrinsics for store/load)? 1570 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 1571 EntryState State; 1572 1573 /// Does this sequence require some shuffling? 1574 SmallVector<int, 4> ReuseShuffleIndices; 1575 1576 /// Does this entry require reordering? 1577 SmallVector<unsigned, 4> ReorderIndices; 1578 1579 /// Points back to the VectorizableTree. 1580 /// 1581 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1582 /// to be a pointer and needs to be able to initialize the child iterator. 1583 /// Thus we need a reference back to the container to translate the indices 1584 /// to entries. 1585 VecTreeTy &Container; 1586 1587 /// The TreeEntry index containing the user of this entry. We can actually 1588 /// have multiple users so the data structure is not truly a tree. 1589 SmallVector<EdgeInfo, 1> UserTreeIndices; 1590 1591 /// The index of this treeEntry in VectorizableTree. 1592 int Idx = -1; 1593 1594 private: 1595 /// The operands of each instruction in each lane Operands[op_index][lane]. 1596 /// Note: This helps avoid the replication of the code that performs the 1597 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1598 SmallVector<ValueList, 2> Operands; 1599 1600 /// The main/alternate instruction. 1601 Instruction *MainOp = nullptr; 1602 Instruction *AltOp = nullptr; 1603 1604 public: 1605 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1606 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1607 if (Operands.size() < OpIdx + 1) 1608 Operands.resize(OpIdx + 1); 1609 assert(Operands[OpIdx].size() == 0 && "Already resized?"); 1610 Operands[OpIdx].resize(Scalars.size()); 1611 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1612 Operands[OpIdx][Lane] = OpVL[Lane]; 1613 } 1614 1615 /// Set the operands of this bundle in their original order. 1616 void setOperandsInOrder() { 1617 assert(Operands.empty() && "Already initialized?"); 1618 auto *I0 = cast<Instruction>(Scalars[0]); 1619 Operands.resize(I0->getNumOperands()); 1620 unsigned NumLanes = Scalars.size(); 1621 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1622 OpIdx != NumOperands; ++OpIdx) { 1623 Operands[OpIdx].resize(NumLanes); 1624 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1625 auto *I = cast<Instruction>(Scalars[Lane]); 1626 assert(I->getNumOperands() == NumOperands && 1627 "Expected same number of operands"); 1628 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1629 } 1630 } 1631 } 1632 1633 /// \returns the \p OpIdx operand of this TreeEntry. 1634 ValueList &getOperand(unsigned OpIdx) { 1635 assert(OpIdx < Operands.size() && "Off bounds"); 1636 return Operands[OpIdx]; 1637 } 1638 1639 /// \returns the number of operands. 1640 unsigned getNumOperands() const { return Operands.size(); } 1641 1642 /// \return the single \p OpIdx operand. 1643 Value *getSingleOperand(unsigned OpIdx) const { 1644 assert(OpIdx < Operands.size() && "Off bounds"); 1645 assert(!Operands[OpIdx].empty() && "No operand available"); 1646 return Operands[OpIdx][0]; 1647 } 1648 1649 /// Some of the instructions in the list have alternate opcodes. 1650 bool isAltShuffle() const { 1651 return getOpcode() != getAltOpcode(); 1652 } 1653 1654 bool isOpcodeOrAlt(Instruction *I) const { 1655 unsigned CheckedOpcode = I->getOpcode(); 1656 return (getOpcode() == CheckedOpcode || 1657 getAltOpcode() == CheckedOpcode); 1658 } 1659 1660 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1661 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1662 /// \p OpValue. 1663 Value *isOneOf(Value *Op) const { 1664 auto *I = dyn_cast<Instruction>(Op); 1665 if (I && isOpcodeOrAlt(I)) 1666 return Op; 1667 return MainOp; 1668 } 1669 1670 void setOperations(const InstructionsState &S) { 1671 MainOp = S.MainOp; 1672 AltOp = S.AltOp; 1673 } 1674 1675 Instruction *getMainOp() const { 1676 return MainOp; 1677 } 1678 1679 Instruction *getAltOp() const { 1680 return AltOp; 1681 } 1682 1683 /// The main/alternate opcodes for the list of instructions. 1684 unsigned getOpcode() const { 1685 return MainOp ? MainOp->getOpcode() : 0; 1686 } 1687 1688 unsigned getAltOpcode() const { 1689 return AltOp ? AltOp->getOpcode() : 0; 1690 } 1691 1692 /// Update operations state of this entry if reorder occurred. 1693 bool updateStateIfReorder() { 1694 if (ReorderIndices.empty()) 1695 return false; 1696 InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front()); 1697 setOperations(S); 1698 return true; 1699 } 1700 1701 #ifndef NDEBUG 1702 /// Debug printer. 1703 LLVM_DUMP_METHOD void dump() const { 1704 dbgs() << Idx << ".\n"; 1705 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1706 dbgs() << "Operand " << OpI << ":\n"; 1707 for (const Value *V : Operands[OpI]) 1708 dbgs().indent(2) << *V << "\n"; 1709 } 1710 dbgs() << "Scalars: \n"; 1711 for (Value *V : Scalars) 1712 dbgs().indent(2) << *V << "\n"; 1713 dbgs() << "State: "; 1714 switch (State) { 1715 case Vectorize: 1716 dbgs() << "Vectorize\n"; 1717 break; 1718 case ScatterVectorize: 1719 dbgs() << "ScatterVectorize\n"; 1720 break; 1721 case NeedToGather: 1722 dbgs() << "NeedToGather\n"; 1723 break; 1724 } 1725 dbgs() << "MainOp: "; 1726 if (MainOp) 1727 dbgs() << *MainOp << "\n"; 1728 else 1729 dbgs() << "NULL\n"; 1730 dbgs() << "AltOp: "; 1731 if (AltOp) 1732 dbgs() << *AltOp << "\n"; 1733 else 1734 dbgs() << "NULL\n"; 1735 dbgs() << "VectorizedValue: "; 1736 if (VectorizedValue) 1737 dbgs() << *VectorizedValue << "\n"; 1738 else 1739 dbgs() << "NULL\n"; 1740 dbgs() << "ReuseShuffleIndices: "; 1741 if (ReuseShuffleIndices.empty()) 1742 dbgs() << "Empty"; 1743 else 1744 for (unsigned ReuseIdx : ReuseShuffleIndices) 1745 dbgs() << ReuseIdx << ", "; 1746 dbgs() << "\n"; 1747 dbgs() << "ReorderIndices: "; 1748 for (unsigned ReorderIdx : ReorderIndices) 1749 dbgs() << ReorderIdx << ", "; 1750 dbgs() << "\n"; 1751 dbgs() << "UserTreeIndices: "; 1752 for (const auto &EInfo : UserTreeIndices) 1753 dbgs() << EInfo << ", "; 1754 dbgs() << "\n"; 1755 } 1756 #endif 1757 }; 1758 1759 #ifndef NDEBUG 1760 void dumpTreeCosts(TreeEntry *E, InstructionCost ReuseShuffleCost, 1761 InstructionCost VecCost, 1762 InstructionCost ScalarCost) const { 1763 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 1764 dbgs() << "SLP: Costs:\n"; 1765 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 1766 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 1767 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 1768 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 1769 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 1770 } 1771 #endif 1772 1773 /// Create a new VectorizableTree entry. 1774 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1775 const InstructionsState &S, 1776 const EdgeInfo &UserTreeIdx, 1777 ArrayRef<unsigned> ReuseShuffleIndices = None, 1778 ArrayRef<unsigned> ReorderIndices = None) { 1779 TreeEntry::EntryState EntryState = 1780 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 1781 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 1782 ReuseShuffleIndices, ReorderIndices); 1783 } 1784 1785 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 1786 TreeEntry::EntryState EntryState, 1787 Optional<ScheduleData *> Bundle, 1788 const InstructionsState &S, 1789 const EdgeInfo &UserTreeIdx, 1790 ArrayRef<unsigned> ReuseShuffleIndices = None, 1791 ArrayRef<unsigned> ReorderIndices = None) { 1792 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 1793 (Bundle && EntryState != TreeEntry::NeedToGather)) && 1794 "Need to vectorize gather entry?"); 1795 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1796 TreeEntry *Last = VectorizableTree.back().get(); 1797 Last->Idx = VectorizableTree.size() - 1; 1798 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 1799 Last->State = EntryState; 1800 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1801 ReuseShuffleIndices.end()); 1802 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 1803 Last->setOperations(S); 1804 if (Last->State != TreeEntry::NeedToGather) { 1805 for (Value *V : VL) { 1806 assert(!getTreeEntry(V) && "Scalar already in tree!"); 1807 ScalarToTreeEntry[V] = Last; 1808 } 1809 // Update the scheduler bundle to point to this TreeEntry. 1810 unsigned Lane = 0; 1811 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 1812 BundleMember = BundleMember->NextInBundle) { 1813 BundleMember->TE = Last; 1814 BundleMember->Lane = Lane; 1815 ++Lane; 1816 } 1817 assert((!Bundle.getValue() || Lane == VL.size()) && 1818 "Bundle and VL out of sync"); 1819 } else { 1820 MustGather.insert(VL.begin(), VL.end()); 1821 } 1822 1823 if (UserTreeIdx.UserTE) 1824 Last->UserTreeIndices.push_back(UserTreeIdx); 1825 1826 return Last; 1827 } 1828 1829 /// -- Vectorization State -- 1830 /// Holds all of the tree entries. 1831 TreeEntry::VecTreeTy VectorizableTree; 1832 1833 #ifndef NDEBUG 1834 /// Debug printer. 1835 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1836 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1837 VectorizableTree[Id]->dump(); 1838 dbgs() << "\n"; 1839 } 1840 } 1841 #endif 1842 1843 TreeEntry *getTreeEntry(Value *V) { 1844 auto I = ScalarToTreeEntry.find(V); 1845 if (I != ScalarToTreeEntry.end()) 1846 return I->second; 1847 return nullptr; 1848 } 1849 1850 const TreeEntry *getTreeEntry(Value *V) const { 1851 auto I = ScalarToTreeEntry.find(V); 1852 if (I != ScalarToTreeEntry.end()) 1853 return I->second; 1854 return nullptr; 1855 } 1856 1857 /// Maps a specific scalar to its tree entry. 1858 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 1859 1860 /// Maps a value to the proposed vectorizable size. 1861 SmallDenseMap<Value *, unsigned> InstrElementSize; 1862 1863 /// A list of scalars that we found that we need to keep as scalars. 1864 ValueSet MustGather; 1865 1866 /// This POD struct describes one external user in the vectorized tree. 1867 struct ExternalUser { 1868 ExternalUser(Value *S, llvm::User *U, int L) 1869 : Scalar(S), User(U), Lane(L) {} 1870 1871 // Which scalar in our function. 1872 Value *Scalar; 1873 1874 // Which user that uses the scalar. 1875 llvm::User *User; 1876 1877 // Which lane does the scalar belong to. 1878 int Lane; 1879 }; 1880 using UserList = SmallVector<ExternalUser, 16>; 1881 1882 /// Checks if two instructions may access the same memory. 1883 /// 1884 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 1885 /// is invariant in the calling loop. 1886 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 1887 Instruction *Inst2) { 1888 // First check if the result is already in the cache. 1889 AliasCacheKey key = std::make_pair(Inst1, Inst2); 1890 Optional<bool> &result = AliasCache[key]; 1891 if (result.hasValue()) { 1892 return result.getValue(); 1893 } 1894 MemoryLocation Loc2 = getLocation(Inst2, AA); 1895 bool aliased = true; 1896 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 1897 // Do the alias check. 1898 aliased = AA->alias(Loc1, Loc2); 1899 } 1900 // Store the result in the cache. 1901 result = aliased; 1902 return aliased; 1903 } 1904 1905 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 1906 1907 /// Cache for alias results. 1908 /// TODO: consider moving this to the AliasAnalysis itself. 1909 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 1910 1911 /// Removes an instruction from its block and eventually deletes it. 1912 /// It's like Instruction::eraseFromParent() except that the actual deletion 1913 /// is delayed until BoUpSLP is destructed. 1914 /// This is required to ensure that there are no incorrect collisions in the 1915 /// AliasCache, which can happen if a new instruction is allocated at the 1916 /// same address as a previously deleted instruction. 1917 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 1918 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 1919 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 1920 } 1921 1922 /// Temporary store for deleted instructions. Instructions will be deleted 1923 /// eventually when the BoUpSLP is destructed. 1924 DenseMap<Instruction *, bool> DeletedInstructions; 1925 1926 /// A list of values that need to extracted out of the tree. 1927 /// This list holds pairs of (Internal Scalar : External User). External User 1928 /// can be nullptr, it means that this Internal Scalar will be used later, 1929 /// after vectorization. 1930 UserList ExternalUses; 1931 1932 /// Values used only by @llvm.assume calls. 1933 SmallPtrSet<const Value *, 32> EphValues; 1934 1935 /// Holds all of the instructions that we gathered. 1936 SetVector<Instruction *> GatherSeq; 1937 1938 /// A list of blocks that we are going to CSE. 1939 SetVector<BasicBlock *> CSEBlocks; 1940 1941 /// Contains all scheduling relevant data for an instruction. 1942 /// A ScheduleData either represents a single instruction or a member of an 1943 /// instruction bundle (= a group of instructions which is combined into a 1944 /// vector instruction). 1945 struct ScheduleData { 1946 // The initial value for the dependency counters. It means that the 1947 // dependencies are not calculated yet. 1948 enum { InvalidDeps = -1 }; 1949 1950 ScheduleData() = default; 1951 1952 void init(int BlockSchedulingRegionID, Value *OpVal) { 1953 FirstInBundle = this; 1954 NextInBundle = nullptr; 1955 NextLoadStore = nullptr; 1956 IsScheduled = false; 1957 SchedulingRegionID = BlockSchedulingRegionID; 1958 UnscheduledDepsInBundle = UnscheduledDeps; 1959 clearDependencies(); 1960 OpValue = OpVal; 1961 TE = nullptr; 1962 Lane = -1; 1963 } 1964 1965 /// Returns true if the dependency information has been calculated. 1966 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 1967 1968 /// Returns true for single instructions and for bundle representatives 1969 /// (= the head of a bundle). 1970 bool isSchedulingEntity() const { return FirstInBundle == this; } 1971 1972 /// Returns true if it represents an instruction bundle and not only a 1973 /// single instruction. 1974 bool isPartOfBundle() const { 1975 return NextInBundle != nullptr || FirstInBundle != this; 1976 } 1977 1978 /// Returns true if it is ready for scheduling, i.e. it has no more 1979 /// unscheduled depending instructions/bundles. 1980 bool isReady() const { 1981 assert(isSchedulingEntity() && 1982 "can't consider non-scheduling entity for ready list"); 1983 return UnscheduledDepsInBundle == 0 && !IsScheduled; 1984 } 1985 1986 /// Modifies the number of unscheduled dependencies, also updating it for 1987 /// the whole bundle. 1988 int incrementUnscheduledDeps(int Incr) { 1989 UnscheduledDeps += Incr; 1990 return FirstInBundle->UnscheduledDepsInBundle += Incr; 1991 } 1992 1993 /// Sets the number of unscheduled dependencies to the number of 1994 /// dependencies. 1995 void resetUnscheduledDeps() { 1996 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 1997 } 1998 1999 /// Clears all dependency information. 2000 void clearDependencies() { 2001 Dependencies = InvalidDeps; 2002 resetUnscheduledDeps(); 2003 MemoryDependencies.clear(); 2004 } 2005 2006 void dump(raw_ostream &os) const { 2007 if (!isSchedulingEntity()) { 2008 os << "/ " << *Inst; 2009 } else if (NextInBundle) { 2010 os << '[' << *Inst; 2011 ScheduleData *SD = NextInBundle; 2012 while (SD) { 2013 os << ';' << *SD->Inst; 2014 SD = SD->NextInBundle; 2015 } 2016 os << ']'; 2017 } else { 2018 os << *Inst; 2019 } 2020 } 2021 2022 Instruction *Inst = nullptr; 2023 2024 /// Points to the head in an instruction bundle (and always to this for 2025 /// single instructions). 2026 ScheduleData *FirstInBundle = nullptr; 2027 2028 /// Single linked list of all instructions in a bundle. Null if it is a 2029 /// single instruction. 2030 ScheduleData *NextInBundle = nullptr; 2031 2032 /// Single linked list of all memory instructions (e.g. load, store, call) 2033 /// in the block - until the end of the scheduling region. 2034 ScheduleData *NextLoadStore = nullptr; 2035 2036 /// The dependent memory instructions. 2037 /// This list is derived on demand in calculateDependencies(). 2038 SmallVector<ScheduleData *, 4> MemoryDependencies; 2039 2040 /// This ScheduleData is in the current scheduling region if this matches 2041 /// the current SchedulingRegionID of BlockScheduling. 2042 int SchedulingRegionID = 0; 2043 2044 /// Used for getting a "good" final ordering of instructions. 2045 int SchedulingPriority = 0; 2046 2047 /// The number of dependencies. Constitutes of the number of users of the 2048 /// instruction plus the number of dependent memory instructions (if any). 2049 /// This value is calculated on demand. 2050 /// If InvalidDeps, the number of dependencies is not calculated yet. 2051 int Dependencies = InvalidDeps; 2052 2053 /// The number of dependencies minus the number of dependencies of scheduled 2054 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2055 /// for scheduling. 2056 /// Note that this is negative as long as Dependencies is not calculated. 2057 int UnscheduledDeps = InvalidDeps; 2058 2059 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 2060 /// single instructions. 2061 int UnscheduledDepsInBundle = InvalidDeps; 2062 2063 /// True if this instruction is scheduled (or considered as scheduled in the 2064 /// dry-run). 2065 bool IsScheduled = false; 2066 2067 /// Opcode of the current instruction in the schedule data. 2068 Value *OpValue = nullptr; 2069 2070 /// The TreeEntry that this instruction corresponds to. 2071 TreeEntry *TE = nullptr; 2072 2073 /// The lane of this node in the TreeEntry. 2074 int Lane = -1; 2075 }; 2076 2077 #ifndef NDEBUG 2078 friend inline raw_ostream &operator<<(raw_ostream &os, 2079 const BoUpSLP::ScheduleData &SD) { 2080 SD.dump(os); 2081 return os; 2082 } 2083 #endif 2084 2085 friend struct GraphTraits<BoUpSLP *>; 2086 friend struct DOTGraphTraits<BoUpSLP *>; 2087 2088 /// Contains all scheduling data for a basic block. 2089 struct BlockScheduling { 2090 BlockScheduling(BasicBlock *BB) 2091 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2092 2093 void clear() { 2094 ReadyInsts.clear(); 2095 ScheduleStart = nullptr; 2096 ScheduleEnd = nullptr; 2097 FirstLoadStoreInRegion = nullptr; 2098 LastLoadStoreInRegion = nullptr; 2099 2100 // Reduce the maximum schedule region size by the size of the 2101 // previous scheduling run. 2102 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2103 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2104 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2105 ScheduleRegionSize = 0; 2106 2107 // Make a new scheduling region, i.e. all existing ScheduleData is not 2108 // in the new region yet. 2109 ++SchedulingRegionID; 2110 } 2111 2112 ScheduleData *getScheduleData(Value *V) { 2113 ScheduleData *SD = ScheduleDataMap[V]; 2114 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2115 return SD; 2116 return nullptr; 2117 } 2118 2119 ScheduleData *getScheduleData(Value *V, Value *Key) { 2120 if (V == Key) 2121 return getScheduleData(V); 2122 auto I = ExtraScheduleDataMap.find(V); 2123 if (I != ExtraScheduleDataMap.end()) { 2124 ScheduleData *SD = I->second[Key]; 2125 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2126 return SD; 2127 } 2128 return nullptr; 2129 } 2130 2131 bool isInSchedulingRegion(ScheduleData *SD) const { 2132 return SD->SchedulingRegionID == SchedulingRegionID; 2133 } 2134 2135 /// Marks an instruction as scheduled and puts all dependent ready 2136 /// instructions into the ready-list. 2137 template <typename ReadyListType> 2138 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2139 SD->IsScheduled = true; 2140 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2141 2142 ScheduleData *BundleMember = SD; 2143 while (BundleMember) { 2144 if (BundleMember->Inst != BundleMember->OpValue) { 2145 BundleMember = BundleMember->NextInBundle; 2146 continue; 2147 } 2148 // Handle the def-use chain dependencies. 2149 2150 // Decrement the unscheduled counter and insert to ready list if ready. 2151 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2152 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2153 if (OpDef && OpDef->hasValidDependencies() && 2154 OpDef->incrementUnscheduledDeps(-1) == 0) { 2155 // There are no more unscheduled dependencies after 2156 // decrementing, so we can put the dependent instruction 2157 // into the ready list. 2158 ScheduleData *DepBundle = OpDef->FirstInBundle; 2159 assert(!DepBundle->IsScheduled && 2160 "already scheduled bundle gets ready"); 2161 ReadyList.insert(DepBundle); 2162 LLVM_DEBUG(dbgs() 2163 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2164 } 2165 }); 2166 }; 2167 2168 // If BundleMember is a vector bundle, its operands may have been 2169 // reordered duiring buildTree(). We therefore need to get its operands 2170 // through the TreeEntry. 2171 if (TreeEntry *TE = BundleMember->TE) { 2172 int Lane = BundleMember->Lane; 2173 assert(Lane >= 0 && "Lane not set"); 2174 2175 // Since vectorization tree is being built recursively this assertion 2176 // ensures that the tree entry has all operands set before reaching 2177 // this code. Couple of exceptions known at the moment are extracts 2178 // where their second (immediate) operand is not added. Since 2179 // immediates do not affect scheduler behavior this is considered 2180 // okay. 2181 auto *In = TE->getMainOp(); 2182 assert(In && 2183 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2184 In->getNumOperands() == TE->getNumOperands()) && 2185 "Missed TreeEntry operands?"); 2186 (void)In; // fake use to avoid build failure when assertions disabled 2187 2188 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2189 OpIdx != NumOperands; ++OpIdx) 2190 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2191 DecrUnsched(I); 2192 } else { 2193 // If BundleMember is a stand-alone instruction, no operand reordering 2194 // has taken place, so we directly access its operands. 2195 for (Use &U : BundleMember->Inst->operands()) 2196 if (auto *I = dyn_cast<Instruction>(U.get())) 2197 DecrUnsched(I); 2198 } 2199 // Handle the memory dependencies. 2200 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2201 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2202 // There are no more unscheduled dependencies after decrementing, 2203 // so we can put the dependent instruction into the ready list. 2204 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2205 assert(!DepBundle->IsScheduled && 2206 "already scheduled bundle gets ready"); 2207 ReadyList.insert(DepBundle); 2208 LLVM_DEBUG(dbgs() 2209 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2210 } 2211 } 2212 BundleMember = BundleMember->NextInBundle; 2213 } 2214 } 2215 2216 void doForAllOpcodes(Value *V, 2217 function_ref<void(ScheduleData *SD)> Action) { 2218 if (ScheduleData *SD = getScheduleData(V)) 2219 Action(SD); 2220 auto I = ExtraScheduleDataMap.find(V); 2221 if (I != ExtraScheduleDataMap.end()) 2222 for (auto &P : I->second) 2223 if (P.second->SchedulingRegionID == SchedulingRegionID) 2224 Action(P.second); 2225 } 2226 2227 /// Put all instructions into the ReadyList which are ready for scheduling. 2228 template <typename ReadyListType> 2229 void initialFillReadyList(ReadyListType &ReadyList) { 2230 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2231 doForAllOpcodes(I, [&](ScheduleData *SD) { 2232 if (SD->isSchedulingEntity() && SD->isReady()) { 2233 ReadyList.insert(SD); 2234 LLVM_DEBUG(dbgs() 2235 << "SLP: initially in ready list: " << *I << "\n"); 2236 } 2237 }); 2238 } 2239 } 2240 2241 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2242 /// cyclic dependencies. This is only a dry-run, no instructions are 2243 /// actually moved at this stage. 2244 /// \returns the scheduling bundle. The returned Optional value is non-None 2245 /// if \p VL is allowed to be scheduled. 2246 Optional<ScheduleData *> 2247 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2248 const InstructionsState &S); 2249 2250 /// Un-bundles a group of instructions. 2251 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2252 2253 /// Allocates schedule data chunk. 2254 ScheduleData *allocateScheduleDataChunks(); 2255 2256 /// Extends the scheduling region so that V is inside the region. 2257 /// \returns true if the region size is within the limit. 2258 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2259 2260 /// Initialize the ScheduleData structures for new instructions in the 2261 /// scheduling region. 2262 void initScheduleData(Instruction *FromI, Instruction *ToI, 2263 ScheduleData *PrevLoadStore, 2264 ScheduleData *NextLoadStore); 2265 2266 /// Updates the dependency information of a bundle and of all instructions/ 2267 /// bundles which depend on the original bundle. 2268 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2269 BoUpSLP *SLP); 2270 2271 /// Sets all instruction in the scheduling region to un-scheduled. 2272 void resetSchedule(); 2273 2274 BasicBlock *BB; 2275 2276 /// Simple memory allocation for ScheduleData. 2277 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2278 2279 /// The size of a ScheduleData array in ScheduleDataChunks. 2280 int ChunkSize; 2281 2282 /// The allocator position in the current chunk, which is the last entry 2283 /// of ScheduleDataChunks. 2284 int ChunkPos; 2285 2286 /// Attaches ScheduleData to Instruction. 2287 /// Note that the mapping survives during all vectorization iterations, i.e. 2288 /// ScheduleData structures are recycled. 2289 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2290 2291 /// Attaches ScheduleData to Instruction with the leading key. 2292 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2293 ExtraScheduleDataMap; 2294 2295 struct ReadyList : SmallVector<ScheduleData *, 8> { 2296 void insert(ScheduleData *SD) { push_back(SD); } 2297 }; 2298 2299 /// The ready-list for scheduling (only used for the dry-run). 2300 ReadyList ReadyInsts; 2301 2302 /// The first instruction of the scheduling region. 2303 Instruction *ScheduleStart = nullptr; 2304 2305 /// The first instruction _after_ the scheduling region. 2306 Instruction *ScheduleEnd = nullptr; 2307 2308 /// The first memory accessing instruction in the scheduling region 2309 /// (can be null). 2310 ScheduleData *FirstLoadStoreInRegion = nullptr; 2311 2312 /// The last memory accessing instruction in the scheduling region 2313 /// (can be null). 2314 ScheduleData *LastLoadStoreInRegion = nullptr; 2315 2316 /// The current size of the scheduling region. 2317 int ScheduleRegionSize = 0; 2318 2319 /// The maximum size allowed for the scheduling region. 2320 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2321 2322 /// The ID of the scheduling region. For a new vectorization iteration this 2323 /// is incremented which "removes" all ScheduleData from the region. 2324 // Make sure that the initial SchedulingRegionID is greater than the 2325 // initial SchedulingRegionID in ScheduleData (which is 0). 2326 int SchedulingRegionID = 1; 2327 }; 2328 2329 /// Attaches the BlockScheduling structures to basic blocks. 2330 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2331 2332 /// Performs the "real" scheduling. Done before vectorization is actually 2333 /// performed in a basic block. 2334 void scheduleBlock(BlockScheduling *BS); 2335 2336 /// List of users to ignore during scheduling and that don't need extracting. 2337 ArrayRef<Value *> UserIgnoreList; 2338 2339 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2340 /// sorted SmallVectors of unsigned. 2341 struct OrdersTypeDenseMapInfo { 2342 static OrdersType getEmptyKey() { 2343 OrdersType V; 2344 V.push_back(~1U); 2345 return V; 2346 } 2347 2348 static OrdersType getTombstoneKey() { 2349 OrdersType V; 2350 V.push_back(~2U); 2351 return V; 2352 } 2353 2354 static unsigned getHashValue(const OrdersType &V) { 2355 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2356 } 2357 2358 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2359 return LHS == RHS; 2360 } 2361 }; 2362 2363 /// Contains orders of operations along with the number of bundles that have 2364 /// operations in this order. It stores only those orders that require 2365 /// reordering, if reordering is not required it is counted using \a 2366 /// NumOpsWantToKeepOriginalOrder. 2367 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 2368 /// Number of bundles that do not require reordering. 2369 unsigned NumOpsWantToKeepOriginalOrder = 0; 2370 2371 // Analysis and block reference. 2372 Function *F; 2373 ScalarEvolution *SE; 2374 TargetTransformInfo *TTI; 2375 TargetLibraryInfo *TLI; 2376 AAResults *AA; 2377 LoopInfo *LI; 2378 DominatorTree *DT; 2379 AssumptionCache *AC; 2380 DemandedBits *DB; 2381 const DataLayout *DL; 2382 OptimizationRemarkEmitter *ORE; 2383 2384 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2385 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2386 2387 /// Instruction builder to construct the vectorized tree. 2388 IRBuilder<> Builder; 2389 2390 /// A map of scalar integer values to the smallest bit width with which they 2391 /// can legally be represented. The values map to (width, signed) pairs, 2392 /// where "width" indicates the minimum bit width and "signed" is True if the 2393 /// value must be signed-extended, rather than zero-extended, back to its 2394 /// original width. 2395 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2396 }; 2397 2398 } // end namespace slpvectorizer 2399 2400 template <> struct GraphTraits<BoUpSLP *> { 2401 using TreeEntry = BoUpSLP::TreeEntry; 2402 2403 /// NodeRef has to be a pointer per the GraphWriter. 2404 using NodeRef = TreeEntry *; 2405 2406 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2407 2408 /// Add the VectorizableTree to the index iterator to be able to return 2409 /// TreeEntry pointers. 2410 struct ChildIteratorType 2411 : public iterator_adaptor_base< 2412 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2413 ContainerTy &VectorizableTree; 2414 2415 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2416 ContainerTy &VT) 2417 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2418 2419 NodeRef operator*() { return I->UserTE; } 2420 }; 2421 2422 static NodeRef getEntryNode(BoUpSLP &R) { 2423 return R.VectorizableTree[0].get(); 2424 } 2425 2426 static ChildIteratorType child_begin(NodeRef N) { 2427 return {N->UserTreeIndices.begin(), N->Container}; 2428 } 2429 2430 static ChildIteratorType child_end(NodeRef N) { 2431 return {N->UserTreeIndices.end(), N->Container}; 2432 } 2433 2434 /// For the node iterator we just need to turn the TreeEntry iterator into a 2435 /// TreeEntry* iterator so that it dereferences to NodeRef. 2436 class nodes_iterator { 2437 using ItTy = ContainerTy::iterator; 2438 ItTy It; 2439 2440 public: 2441 nodes_iterator(const ItTy &It2) : It(It2) {} 2442 NodeRef operator*() { return It->get(); } 2443 nodes_iterator operator++() { 2444 ++It; 2445 return *this; 2446 } 2447 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2448 }; 2449 2450 static nodes_iterator nodes_begin(BoUpSLP *R) { 2451 return nodes_iterator(R->VectorizableTree.begin()); 2452 } 2453 2454 static nodes_iterator nodes_end(BoUpSLP *R) { 2455 return nodes_iterator(R->VectorizableTree.end()); 2456 } 2457 2458 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2459 }; 2460 2461 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2462 using TreeEntry = BoUpSLP::TreeEntry; 2463 2464 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2465 2466 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2467 std::string Str; 2468 raw_string_ostream OS(Str); 2469 if (isSplat(Entry->Scalars)) { 2470 OS << "<splat> " << *Entry->Scalars[0]; 2471 return Str; 2472 } 2473 for (auto V : Entry->Scalars) { 2474 OS << *V; 2475 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 2476 return EU.Scalar == V; 2477 })) 2478 OS << " <extract>"; 2479 OS << "\n"; 2480 } 2481 return Str; 2482 } 2483 2484 static std::string getNodeAttributes(const TreeEntry *Entry, 2485 const BoUpSLP *) { 2486 if (Entry->State == TreeEntry::NeedToGather) 2487 return "color=red"; 2488 return ""; 2489 } 2490 }; 2491 2492 } // end namespace llvm 2493 2494 BoUpSLP::~BoUpSLP() { 2495 for (const auto &Pair : DeletedInstructions) { 2496 // Replace operands of ignored instructions with Undefs in case if they were 2497 // marked for deletion. 2498 if (Pair.getSecond()) { 2499 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2500 Pair.getFirst()->replaceAllUsesWith(Undef); 2501 } 2502 Pair.getFirst()->dropAllReferences(); 2503 } 2504 for (const auto &Pair : DeletedInstructions) { 2505 assert(Pair.getFirst()->use_empty() && 2506 "trying to erase instruction with users."); 2507 Pair.getFirst()->eraseFromParent(); 2508 } 2509 assert(!verifyFunction(*F, &dbgs())); 2510 } 2511 2512 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2513 for (auto *V : AV) { 2514 if (auto *I = dyn_cast<Instruction>(V)) 2515 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 2516 }; 2517 } 2518 2519 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2520 ArrayRef<Value *> UserIgnoreLst) { 2521 ExtraValueToDebugLocsMap ExternallyUsedValues; 2522 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 2523 } 2524 2525 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2526 ExtraValueToDebugLocsMap &ExternallyUsedValues, 2527 ArrayRef<Value *> UserIgnoreLst) { 2528 deleteTree(); 2529 UserIgnoreList = UserIgnoreLst; 2530 if (!allSameType(Roots)) 2531 return; 2532 buildTree_rec(Roots, 0, EdgeInfo()); 2533 2534 // Collect the values that we need to extract from the tree. 2535 for (auto &TEPtr : VectorizableTree) { 2536 TreeEntry *Entry = TEPtr.get(); 2537 2538 // No need to handle users of gathered values. 2539 if (Entry->State == TreeEntry::NeedToGather) 2540 continue; 2541 2542 // For each lane: 2543 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2544 Value *Scalar = Entry->Scalars[Lane]; 2545 int FoundLane = Lane; 2546 if (!Entry->ReuseShuffleIndices.empty()) { 2547 FoundLane = 2548 std::distance(Entry->ReuseShuffleIndices.begin(), 2549 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 2550 } 2551 2552 // Check if the scalar is externally used as an extra arg. 2553 auto ExtI = ExternallyUsedValues.find(Scalar); 2554 if (ExtI != ExternallyUsedValues.end()) { 2555 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 2556 << Lane << " from " << *Scalar << ".\n"); 2557 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 2558 } 2559 for (User *U : Scalar->users()) { 2560 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 2561 2562 Instruction *UserInst = dyn_cast<Instruction>(U); 2563 if (!UserInst) 2564 continue; 2565 2566 // Skip in-tree scalars that become vectors 2567 if (TreeEntry *UseEntry = getTreeEntry(U)) { 2568 Value *UseScalar = UseEntry->Scalars[0]; 2569 // Some in-tree scalars will remain as scalar in vectorized 2570 // instructions. If that is the case, the one in Lane 0 will 2571 // be used. 2572 if (UseScalar != U || 2573 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 2574 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 2575 << ".\n"); 2576 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 2577 continue; 2578 } 2579 } 2580 2581 // Ignore users in the user ignore list. 2582 if (is_contained(UserIgnoreList, UserInst)) 2583 continue; 2584 2585 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 2586 << Lane << " from " << *Scalar << ".\n"); 2587 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 2588 } 2589 } 2590 } 2591 } 2592 2593 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 2594 const EdgeInfo &UserTreeIdx) { 2595 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 2596 2597 InstructionsState S = getSameOpcode(VL); 2598 if (Depth == RecursionMaxDepth) { 2599 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 2600 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2601 return; 2602 } 2603 2604 // Don't handle vectors. 2605 if (S.OpValue->getType()->isVectorTy()) { 2606 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 2607 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2608 return; 2609 } 2610 2611 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2612 if (SI->getValueOperand()->getType()->isVectorTy()) { 2613 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 2614 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2615 return; 2616 } 2617 2618 // If all of the operands are identical or constant we have a simple solution. 2619 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 2620 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 2621 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2622 return; 2623 } 2624 2625 // We now know that this is a vector of instructions of the same type from 2626 // the same block. 2627 2628 // Don't vectorize ephemeral values. 2629 for (Value *V : VL) { 2630 if (EphValues.count(V)) { 2631 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2632 << ") is ephemeral.\n"); 2633 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2634 return; 2635 } 2636 } 2637 2638 // Check if this is a duplicate of another entry. 2639 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2640 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 2641 if (!E->isSame(VL)) { 2642 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 2643 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2644 return; 2645 } 2646 // Record the reuse of the tree node. FIXME, currently this is only used to 2647 // properly draw the graph rather than for the actual vectorization. 2648 E->UserTreeIndices.push_back(UserTreeIdx); 2649 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 2650 << ".\n"); 2651 return; 2652 } 2653 2654 // Check that none of the instructions in the bundle are already in the tree. 2655 for (Value *V : VL) { 2656 auto *I = dyn_cast<Instruction>(V); 2657 if (!I) 2658 continue; 2659 if (getTreeEntry(I)) { 2660 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2661 << ") is already in tree.\n"); 2662 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2663 return; 2664 } 2665 } 2666 2667 // If any of the scalars is marked as a value that needs to stay scalar, then 2668 // we need to gather the scalars. 2669 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 2670 for (Value *V : VL) { 2671 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 2672 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 2673 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2674 return; 2675 } 2676 } 2677 2678 // Check that all of the users of the scalars that we want to vectorize are 2679 // schedulable. 2680 auto *VL0 = cast<Instruction>(S.OpValue); 2681 BasicBlock *BB = VL0->getParent(); 2682 2683 if (!DT->isReachableFromEntry(BB)) { 2684 // Don't go into unreachable blocks. They may contain instructions with 2685 // dependency cycles which confuse the final scheduling. 2686 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 2687 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2688 return; 2689 } 2690 2691 // Check that every instruction appears once in this bundle. 2692 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2693 SmallVector<Value *, 4> UniqueValues; 2694 DenseMap<Value *, unsigned> UniquePositions; 2695 for (Value *V : VL) { 2696 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2697 ReuseShuffleIndicies.emplace_back(Res.first->second); 2698 if (Res.second) 2699 UniqueValues.emplace_back(V); 2700 } 2701 size_t NumUniqueScalarValues = UniqueValues.size(); 2702 if (NumUniqueScalarValues == VL.size()) { 2703 ReuseShuffleIndicies.clear(); 2704 } else { 2705 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 2706 if (NumUniqueScalarValues <= 1 || 2707 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 2708 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 2709 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2710 return; 2711 } 2712 VL = UniqueValues; 2713 } 2714 2715 auto &BSRef = BlocksSchedules[BB]; 2716 if (!BSRef) 2717 BSRef = std::make_unique<BlockScheduling>(BB); 2718 2719 BlockScheduling &BS = *BSRef.get(); 2720 2721 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 2722 if (!Bundle) { 2723 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 2724 assert((!BS.getScheduleData(VL0) || 2725 !BS.getScheduleData(VL0)->isPartOfBundle()) && 2726 "tryScheduleBundle should cancelScheduling on failure"); 2727 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2728 ReuseShuffleIndicies); 2729 return; 2730 } 2731 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 2732 2733 unsigned ShuffleOrOp = S.isAltShuffle() ? 2734 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2735 switch (ShuffleOrOp) { 2736 case Instruction::PHI: { 2737 auto *PH = cast<PHINode>(VL0); 2738 2739 // Check for terminator values (e.g. invoke). 2740 for (Value *V : VL) 2741 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 2742 Instruction *Term = dyn_cast<Instruction>( 2743 cast<PHINode>(V)->getIncomingValueForBlock( 2744 PH->getIncomingBlock(I))); 2745 if (Term && Term->isTerminator()) { 2746 LLVM_DEBUG(dbgs() 2747 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 2748 BS.cancelScheduling(VL, VL0); 2749 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2750 ReuseShuffleIndicies); 2751 return; 2752 } 2753 } 2754 2755 TreeEntry *TE = 2756 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 2757 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 2758 2759 // Keeps the reordered operands to avoid code duplication. 2760 SmallVector<ValueList, 2> OperandsVec; 2761 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 2762 ValueList Operands; 2763 // Prepare the operand vector. 2764 for (Value *V : VL) 2765 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 2766 PH->getIncomingBlock(I))); 2767 TE->setOperand(I, Operands); 2768 OperandsVec.push_back(Operands); 2769 } 2770 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 2771 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 2772 return; 2773 } 2774 case Instruction::ExtractValue: 2775 case Instruction::ExtractElement: { 2776 OrdersType CurrentOrder; 2777 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 2778 if (Reuse) { 2779 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 2780 ++NumOpsWantToKeepOriginalOrder; 2781 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2782 ReuseShuffleIndicies); 2783 // This is a special case, as it does not gather, but at the same time 2784 // we are not extending buildTree_rec() towards the operands. 2785 ValueList Op0; 2786 Op0.assign(VL.size(), VL0->getOperand(0)); 2787 VectorizableTree.back()->setOperand(0, Op0); 2788 return; 2789 } 2790 if (!CurrentOrder.empty()) { 2791 LLVM_DEBUG({ 2792 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 2793 "with order"; 2794 for (unsigned Idx : CurrentOrder) 2795 dbgs() << " " << Idx; 2796 dbgs() << "\n"; 2797 }); 2798 // Insert new order with initial value 0, if it does not exist, 2799 // otherwise return the iterator to the existing one. 2800 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2801 ReuseShuffleIndicies, CurrentOrder); 2802 findRootOrder(CurrentOrder); 2803 ++NumOpsWantToKeepOrder[CurrentOrder]; 2804 // This is a special case, as it does not gather, but at the same time 2805 // we are not extending buildTree_rec() towards the operands. 2806 ValueList Op0; 2807 Op0.assign(VL.size(), VL0->getOperand(0)); 2808 VectorizableTree.back()->setOperand(0, Op0); 2809 return; 2810 } 2811 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 2812 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2813 ReuseShuffleIndicies); 2814 BS.cancelScheduling(VL, VL0); 2815 return; 2816 } 2817 case Instruction::Load: { 2818 // Check that a vectorized load would load the same memory as a scalar 2819 // load. For example, we don't want to vectorize loads that are smaller 2820 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 2821 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 2822 // from such a struct, we read/write packed bits disagreeing with the 2823 // unvectorized version. 2824 Type *ScalarTy = VL0->getType(); 2825 2826 if (DL->getTypeSizeInBits(ScalarTy) != 2827 DL->getTypeAllocSizeInBits(ScalarTy)) { 2828 BS.cancelScheduling(VL, VL0); 2829 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2830 ReuseShuffleIndicies); 2831 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 2832 return; 2833 } 2834 2835 // Make sure all loads in the bundle are simple - we can't vectorize 2836 // atomic or volatile loads. 2837 SmallVector<Value *, 4> PointerOps(VL.size()); 2838 auto POIter = PointerOps.begin(); 2839 for (Value *V : VL) { 2840 auto *L = cast<LoadInst>(V); 2841 if (!L->isSimple()) { 2842 BS.cancelScheduling(VL, VL0); 2843 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2844 ReuseShuffleIndicies); 2845 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 2846 return; 2847 } 2848 *POIter = L->getPointerOperand(); 2849 ++POIter; 2850 } 2851 2852 OrdersType CurrentOrder; 2853 // Check the order of pointer operands. 2854 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2855 Value *Ptr0; 2856 Value *PtrN; 2857 if (CurrentOrder.empty()) { 2858 Ptr0 = PointerOps.front(); 2859 PtrN = PointerOps.back(); 2860 } else { 2861 Ptr0 = PointerOps[CurrentOrder.front()]; 2862 PtrN = PointerOps[CurrentOrder.back()]; 2863 } 2864 const SCEV *Scev0 = SE->getSCEV(Ptr0); 2865 const SCEV *ScevN = SE->getSCEV(PtrN); 2866 const auto *Diff = 2867 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 2868 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 2869 // Check that the sorted loads are consecutive. 2870 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 2871 if (CurrentOrder.empty()) { 2872 // Original loads are consecutive and does not require reordering. 2873 ++NumOpsWantToKeepOriginalOrder; 2874 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 2875 UserTreeIdx, ReuseShuffleIndicies); 2876 TE->setOperandsInOrder(); 2877 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 2878 } else { 2879 // Need to reorder. 2880 TreeEntry *TE = 2881 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2882 ReuseShuffleIndicies, CurrentOrder); 2883 TE->setOperandsInOrder(); 2884 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 2885 findRootOrder(CurrentOrder); 2886 ++NumOpsWantToKeepOrder[CurrentOrder]; 2887 } 2888 return; 2889 } 2890 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 2891 TreeEntry *TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 2892 UserTreeIdx, ReuseShuffleIndicies); 2893 TE->setOperandsInOrder(); 2894 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 2895 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 2896 return; 2897 } 2898 2899 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 2900 BS.cancelScheduling(VL, VL0); 2901 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2902 ReuseShuffleIndicies); 2903 return; 2904 } 2905 case Instruction::ZExt: 2906 case Instruction::SExt: 2907 case Instruction::FPToUI: 2908 case Instruction::FPToSI: 2909 case Instruction::FPExt: 2910 case Instruction::PtrToInt: 2911 case Instruction::IntToPtr: 2912 case Instruction::SIToFP: 2913 case Instruction::UIToFP: 2914 case Instruction::Trunc: 2915 case Instruction::FPTrunc: 2916 case Instruction::BitCast: { 2917 Type *SrcTy = VL0->getOperand(0)->getType(); 2918 for (Value *V : VL) { 2919 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 2920 if (Ty != SrcTy || !isValidElementType(Ty)) { 2921 BS.cancelScheduling(VL, VL0); 2922 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2923 ReuseShuffleIndicies); 2924 LLVM_DEBUG(dbgs() 2925 << "SLP: Gathering casts with different src types.\n"); 2926 return; 2927 } 2928 } 2929 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2930 ReuseShuffleIndicies); 2931 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 2932 2933 TE->setOperandsInOrder(); 2934 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2935 ValueList Operands; 2936 // Prepare the operand vector. 2937 for (Value *V : VL) 2938 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2939 2940 buildTree_rec(Operands, Depth + 1, {TE, i}); 2941 } 2942 return; 2943 } 2944 case Instruction::ICmp: 2945 case Instruction::FCmp: { 2946 // Check that all of the compares have the same predicate. 2947 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2948 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 2949 Type *ComparedTy = VL0->getOperand(0)->getType(); 2950 for (Value *V : VL) { 2951 CmpInst *Cmp = cast<CmpInst>(V); 2952 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 2953 Cmp->getOperand(0)->getType() != ComparedTy) { 2954 BS.cancelScheduling(VL, VL0); 2955 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2956 ReuseShuffleIndicies); 2957 LLVM_DEBUG(dbgs() 2958 << "SLP: Gathering cmp with different predicate.\n"); 2959 return; 2960 } 2961 } 2962 2963 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2964 ReuseShuffleIndicies); 2965 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 2966 2967 ValueList Left, Right; 2968 if (cast<CmpInst>(VL0)->isCommutative()) { 2969 // Commutative predicate - collect + sort operands of the instructions 2970 // so that each side is more likely to have the same opcode. 2971 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 2972 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 2973 } else { 2974 // Collect operands - commute if it uses the swapped predicate. 2975 for (Value *V : VL) { 2976 auto *Cmp = cast<CmpInst>(V); 2977 Value *LHS = Cmp->getOperand(0); 2978 Value *RHS = Cmp->getOperand(1); 2979 if (Cmp->getPredicate() != P0) 2980 std::swap(LHS, RHS); 2981 Left.push_back(LHS); 2982 Right.push_back(RHS); 2983 } 2984 } 2985 TE->setOperand(0, Left); 2986 TE->setOperand(1, Right); 2987 buildTree_rec(Left, Depth + 1, {TE, 0}); 2988 buildTree_rec(Right, Depth + 1, {TE, 1}); 2989 return; 2990 } 2991 case Instruction::Select: 2992 case Instruction::FNeg: 2993 case Instruction::Add: 2994 case Instruction::FAdd: 2995 case Instruction::Sub: 2996 case Instruction::FSub: 2997 case Instruction::Mul: 2998 case Instruction::FMul: 2999 case Instruction::UDiv: 3000 case Instruction::SDiv: 3001 case Instruction::FDiv: 3002 case Instruction::URem: 3003 case Instruction::SRem: 3004 case Instruction::FRem: 3005 case Instruction::Shl: 3006 case Instruction::LShr: 3007 case Instruction::AShr: 3008 case Instruction::And: 3009 case Instruction::Or: 3010 case Instruction::Xor: { 3011 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3012 ReuseShuffleIndicies); 3013 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 3014 3015 // Sort operands of the instructions so that each side is more likely to 3016 // have the same opcode. 3017 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 3018 ValueList Left, Right; 3019 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3020 TE->setOperand(0, Left); 3021 TE->setOperand(1, Right); 3022 buildTree_rec(Left, Depth + 1, {TE, 0}); 3023 buildTree_rec(Right, Depth + 1, {TE, 1}); 3024 return; 3025 } 3026 3027 TE->setOperandsInOrder(); 3028 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3029 ValueList Operands; 3030 // Prepare the operand vector. 3031 for (Value *V : VL) 3032 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3033 3034 buildTree_rec(Operands, Depth + 1, {TE, i}); 3035 } 3036 return; 3037 } 3038 case Instruction::GetElementPtr: { 3039 // We don't combine GEPs with complicated (nested) indexing. 3040 for (Value *V : VL) { 3041 if (cast<Instruction>(V)->getNumOperands() != 2) { 3042 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 3043 BS.cancelScheduling(VL, VL0); 3044 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3045 ReuseShuffleIndicies); 3046 return; 3047 } 3048 } 3049 3050 // We can't combine several GEPs into one vector if they operate on 3051 // different types. 3052 Type *Ty0 = VL0->getOperand(0)->getType(); 3053 for (Value *V : VL) { 3054 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 3055 if (Ty0 != CurTy) { 3056 LLVM_DEBUG(dbgs() 3057 << "SLP: not-vectorizable GEP (different types).\n"); 3058 BS.cancelScheduling(VL, VL0); 3059 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3060 ReuseShuffleIndicies); 3061 return; 3062 } 3063 } 3064 3065 // We don't combine GEPs with non-constant indexes. 3066 Type *Ty1 = VL0->getOperand(1)->getType(); 3067 for (Value *V : VL) { 3068 auto Op = cast<Instruction>(V)->getOperand(1); 3069 if (!isa<ConstantInt>(Op) || 3070 (Op->getType() != Ty1 && 3071 Op->getType()->getScalarSizeInBits() > 3072 DL->getIndexSizeInBits( 3073 V->getType()->getPointerAddressSpace()))) { 3074 LLVM_DEBUG(dbgs() 3075 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 3076 BS.cancelScheduling(VL, VL0); 3077 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3078 ReuseShuffleIndicies); 3079 return; 3080 } 3081 } 3082 3083 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3084 ReuseShuffleIndicies); 3085 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 3086 TE->setOperandsInOrder(); 3087 for (unsigned i = 0, e = 2; i < e; ++i) { 3088 ValueList Operands; 3089 // Prepare the operand vector. 3090 for (Value *V : VL) 3091 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3092 3093 buildTree_rec(Operands, Depth + 1, {TE, i}); 3094 } 3095 return; 3096 } 3097 case Instruction::Store: { 3098 // Check if the stores are consecutive or if we need to swizzle them. 3099 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 3100 // Make sure all stores in the bundle are simple - we can't vectorize 3101 // atomic or volatile stores. 3102 SmallVector<Value *, 4> PointerOps(VL.size()); 3103 ValueList Operands(VL.size()); 3104 auto POIter = PointerOps.begin(); 3105 auto OIter = Operands.begin(); 3106 for (Value *V : VL) { 3107 auto *SI = cast<StoreInst>(V); 3108 if (!SI->isSimple()) { 3109 BS.cancelScheduling(VL, VL0); 3110 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3111 ReuseShuffleIndicies); 3112 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 3113 return; 3114 } 3115 *POIter = SI->getPointerOperand(); 3116 *OIter = SI->getValueOperand(); 3117 ++POIter; 3118 ++OIter; 3119 } 3120 3121 OrdersType CurrentOrder; 3122 // Check the order of pointer operands. 3123 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 3124 Value *Ptr0; 3125 Value *PtrN; 3126 if (CurrentOrder.empty()) { 3127 Ptr0 = PointerOps.front(); 3128 PtrN = PointerOps.back(); 3129 } else { 3130 Ptr0 = PointerOps[CurrentOrder.front()]; 3131 PtrN = PointerOps[CurrentOrder.back()]; 3132 } 3133 const SCEV *Scev0 = SE->getSCEV(Ptr0); 3134 const SCEV *ScevN = SE->getSCEV(PtrN); 3135 const auto *Diff = 3136 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 3137 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 3138 // Check that the sorted pointer operands are consecutive. 3139 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 3140 if (CurrentOrder.empty()) { 3141 // Original stores are consecutive and does not require reordering. 3142 ++NumOpsWantToKeepOriginalOrder; 3143 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 3144 UserTreeIdx, ReuseShuffleIndicies); 3145 TE->setOperandsInOrder(); 3146 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3147 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 3148 } else { 3149 TreeEntry *TE = 3150 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3151 ReuseShuffleIndicies, CurrentOrder); 3152 TE->setOperandsInOrder(); 3153 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3154 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 3155 findRootOrder(CurrentOrder); 3156 ++NumOpsWantToKeepOrder[CurrentOrder]; 3157 } 3158 return; 3159 } 3160 } 3161 3162 BS.cancelScheduling(VL, VL0); 3163 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3164 ReuseShuffleIndicies); 3165 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 3166 return; 3167 } 3168 case Instruction::Call: { 3169 // Check if the calls are all to the same vectorizable intrinsic or 3170 // library function. 3171 CallInst *CI = cast<CallInst>(VL0); 3172 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3173 3174 VFShape Shape = VFShape::get( 3175 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 3176 false /*HasGlobalPred*/); 3177 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3178 3179 if (!VecFunc && !isTriviallyVectorizable(ID)) { 3180 BS.cancelScheduling(VL, VL0); 3181 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3182 ReuseShuffleIndicies); 3183 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 3184 return; 3185 } 3186 Function *F = CI->getCalledFunction(); 3187 unsigned NumArgs = CI->getNumArgOperands(); 3188 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 3189 for (unsigned j = 0; j != NumArgs; ++j) 3190 if (hasVectorInstrinsicScalarOpd(ID, j)) 3191 ScalarArgs[j] = CI->getArgOperand(j); 3192 for (Value *V : VL) { 3193 CallInst *CI2 = dyn_cast<CallInst>(V); 3194 if (!CI2 || CI2->getCalledFunction() != F || 3195 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 3196 (VecFunc && 3197 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 3198 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 3199 BS.cancelScheduling(VL, VL0); 3200 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3201 ReuseShuffleIndicies); 3202 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 3203 << "\n"); 3204 return; 3205 } 3206 // Some intrinsics have scalar arguments and should be same in order for 3207 // them to be vectorized. 3208 for (unsigned j = 0; j != NumArgs; ++j) { 3209 if (hasVectorInstrinsicScalarOpd(ID, j)) { 3210 Value *A1J = CI2->getArgOperand(j); 3211 if (ScalarArgs[j] != A1J) { 3212 BS.cancelScheduling(VL, VL0); 3213 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3214 ReuseShuffleIndicies); 3215 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 3216 << " argument " << ScalarArgs[j] << "!=" << A1J 3217 << "\n"); 3218 return; 3219 } 3220 } 3221 } 3222 // Verify that the bundle operands are identical between the two calls. 3223 if (CI->hasOperandBundles() && 3224 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 3225 CI->op_begin() + CI->getBundleOperandsEndIndex(), 3226 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 3227 BS.cancelScheduling(VL, VL0); 3228 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3229 ReuseShuffleIndicies); 3230 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 3231 << *CI << "!=" << *V << '\n'); 3232 return; 3233 } 3234 } 3235 3236 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3237 ReuseShuffleIndicies); 3238 TE->setOperandsInOrder(); 3239 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 3240 ValueList Operands; 3241 // Prepare the operand vector. 3242 for (Value *V : VL) { 3243 auto *CI2 = cast<CallInst>(V); 3244 Operands.push_back(CI2->getArgOperand(i)); 3245 } 3246 buildTree_rec(Operands, Depth + 1, {TE, i}); 3247 } 3248 return; 3249 } 3250 case Instruction::ShuffleVector: { 3251 // If this is not an alternate sequence of opcode like add-sub 3252 // then do not vectorize this instruction. 3253 if (!S.isAltShuffle()) { 3254 BS.cancelScheduling(VL, VL0); 3255 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3256 ReuseShuffleIndicies); 3257 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 3258 return; 3259 } 3260 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3261 ReuseShuffleIndicies); 3262 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 3263 3264 // Reorder operands if reordering would enable vectorization. 3265 if (isa<BinaryOperator>(VL0)) { 3266 ValueList Left, Right; 3267 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3268 TE->setOperand(0, Left); 3269 TE->setOperand(1, Right); 3270 buildTree_rec(Left, Depth + 1, {TE, 0}); 3271 buildTree_rec(Right, Depth + 1, {TE, 1}); 3272 return; 3273 } 3274 3275 TE->setOperandsInOrder(); 3276 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3277 ValueList Operands; 3278 // Prepare the operand vector. 3279 for (Value *V : VL) 3280 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3281 3282 buildTree_rec(Operands, Depth + 1, {TE, i}); 3283 } 3284 return; 3285 } 3286 default: 3287 BS.cancelScheduling(VL, VL0); 3288 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3289 ReuseShuffleIndicies); 3290 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 3291 return; 3292 } 3293 } 3294 3295 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 3296 unsigned N = 1; 3297 Type *EltTy = T; 3298 3299 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 3300 isa<VectorType>(EltTy)) { 3301 if (auto *ST = dyn_cast<StructType>(EltTy)) { 3302 // Check that struct is homogeneous. 3303 for (const auto *Ty : ST->elements()) 3304 if (Ty != *ST->element_begin()) 3305 return 0; 3306 N *= ST->getNumElements(); 3307 EltTy = *ST->element_begin(); 3308 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 3309 N *= AT->getNumElements(); 3310 EltTy = AT->getElementType(); 3311 } else { 3312 auto *VT = cast<FixedVectorType>(EltTy); 3313 N *= VT->getNumElements(); 3314 EltTy = VT->getElementType(); 3315 } 3316 } 3317 3318 if (!isValidElementType(EltTy)) 3319 return 0; 3320 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 3321 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 3322 return 0; 3323 return N; 3324 } 3325 3326 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 3327 SmallVectorImpl<unsigned> &CurrentOrder) const { 3328 Instruction *E0 = cast<Instruction>(OpValue); 3329 assert(E0->getOpcode() == Instruction::ExtractElement || 3330 E0->getOpcode() == Instruction::ExtractValue); 3331 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 3332 // Check if all of the extracts come from the same vector and from the 3333 // correct offset. 3334 Value *Vec = E0->getOperand(0); 3335 3336 CurrentOrder.clear(); 3337 3338 // We have to extract from a vector/aggregate with the same number of elements. 3339 unsigned NElts; 3340 if (E0->getOpcode() == Instruction::ExtractValue) { 3341 const DataLayout &DL = E0->getModule()->getDataLayout(); 3342 NElts = canMapToVector(Vec->getType(), DL); 3343 if (!NElts) 3344 return false; 3345 // Check if load can be rewritten as load of vector. 3346 LoadInst *LI = dyn_cast<LoadInst>(Vec); 3347 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 3348 return false; 3349 } else { 3350 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 3351 } 3352 3353 if (NElts != VL.size()) 3354 return false; 3355 3356 // Check that all of the indices extract from the correct offset. 3357 bool ShouldKeepOrder = true; 3358 unsigned E = VL.size(); 3359 // Assign to all items the initial value E + 1 so we can check if the extract 3360 // instruction index was used already. 3361 // Also, later we can check that all the indices are used and we have a 3362 // consecutive access in the extract instructions, by checking that no 3363 // element of CurrentOrder still has value E + 1. 3364 CurrentOrder.assign(E, E + 1); 3365 unsigned I = 0; 3366 for (; I < E; ++I) { 3367 auto *Inst = cast<Instruction>(VL[I]); 3368 if (Inst->getOperand(0) != Vec) 3369 break; 3370 Optional<unsigned> Idx = getExtractIndex(Inst); 3371 if (!Idx) 3372 break; 3373 const unsigned ExtIdx = *Idx; 3374 if (ExtIdx != I) { 3375 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 3376 break; 3377 ShouldKeepOrder = false; 3378 CurrentOrder[ExtIdx] = I; 3379 } else { 3380 if (CurrentOrder[I] != E + 1) 3381 break; 3382 CurrentOrder[I] = I; 3383 } 3384 } 3385 if (I < E) { 3386 CurrentOrder.clear(); 3387 return false; 3388 } 3389 3390 return ShouldKeepOrder; 3391 } 3392 3393 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 3394 return I->hasOneUse() || 3395 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 3396 return ScalarToTreeEntry.count(U) > 0; 3397 }); 3398 } 3399 3400 static std::pair<unsigned, unsigned> 3401 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 3402 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 3403 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3404 3405 // Calculate the cost of the scalar and vector calls. 3406 IntrinsicCostAttributes CostAttrs(ID, *CI, VecTy->getElementCount()); 3407 int IntrinsicCost = 3408 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 3409 3410 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 3411 VecTy->getNumElements())), 3412 false /*HasGlobalPred*/); 3413 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3414 int LibCost = IntrinsicCost; 3415 if (!CI->isNoBuiltin() && VecFunc) { 3416 // Calculate the cost of the vector library call. 3417 SmallVector<Type *, 4> VecTys; 3418 for (Use &Arg : CI->args()) 3419 VecTys.push_back( 3420 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 3421 3422 // If the corresponding vector call is cheaper, return its cost. 3423 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 3424 TTI::TCK_RecipThroughput); 3425 } 3426 return {IntrinsicCost, LibCost}; 3427 } 3428 3429 InstructionCost BoUpSLP::getEntryCost(TreeEntry *E) { 3430 ArrayRef<Value*> VL = E->Scalars; 3431 3432 Type *ScalarTy = VL[0]->getType(); 3433 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3434 ScalarTy = SI->getValueOperand()->getType(); 3435 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 3436 ScalarTy = CI->getOperand(0)->getType(); 3437 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 3438 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 3439 3440 // If we have computed a smaller type for the expression, update VecTy so 3441 // that the costs will be accurate. 3442 if (MinBWs.count(VL[0])) 3443 VecTy = FixedVectorType::get( 3444 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 3445 3446 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 3447 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3448 InstructionCost ReuseShuffleCost = 0; 3449 if (NeedToShuffleReuses) { 3450 ReuseShuffleCost = 3451 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3452 } 3453 if (E->State == TreeEntry::NeedToGather) { 3454 if (allConstant(VL)) 3455 return 0; 3456 if (isSplat(VL)) { 3457 return ReuseShuffleCost + 3458 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 3459 } 3460 if (E->getOpcode() == Instruction::ExtractElement && 3461 allSameType(VL) && allSameBlock(VL)) { 3462 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 3463 if (ShuffleKind.hasValue()) { 3464 InstructionCost Cost = 3465 TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 3466 for (auto *V : VL) { 3467 // If all users of instruction are going to be vectorized and this 3468 // instruction itself is not going to be vectorized, consider this 3469 // instruction as dead and remove its cost from the final cost of the 3470 // vectorized tree. 3471 if (areAllUsersVectorized(cast<Instruction>(V)) && 3472 !ScalarToTreeEntry.count(V)) { 3473 auto *IO = cast<ConstantInt>( 3474 cast<ExtractElementInst>(V)->getIndexOperand()); 3475 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 3476 IO->getZExtValue()); 3477 } 3478 } 3479 return ReuseShuffleCost + Cost; 3480 } 3481 } 3482 return ReuseShuffleCost + getGatherCost(VL); 3483 } 3484 assert((E->State == TreeEntry::Vectorize || 3485 E->State == TreeEntry::ScatterVectorize) && 3486 "Unhandled state"); 3487 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 3488 Instruction *VL0 = E->getMainOp(); 3489 unsigned ShuffleOrOp = 3490 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 3491 switch (ShuffleOrOp) { 3492 case Instruction::PHI: 3493 return 0; 3494 3495 case Instruction::ExtractValue: 3496 case Instruction::ExtractElement: { 3497 InstructionCost DeadCost = 0; 3498 if (NeedToShuffleReuses) { 3499 unsigned Idx = 0; 3500 for (unsigned I : E->ReuseShuffleIndices) { 3501 if (ShuffleOrOp == Instruction::ExtractElement) { 3502 auto *IO = cast<ConstantInt>( 3503 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 3504 Idx = IO->getZExtValue(); 3505 ReuseShuffleCost -= TTI->getVectorInstrCost( 3506 Instruction::ExtractElement, VecTy, Idx); 3507 } else { 3508 ReuseShuffleCost -= TTI->getVectorInstrCost( 3509 Instruction::ExtractElement, VecTy, Idx); 3510 ++Idx; 3511 } 3512 } 3513 Idx = ReuseShuffleNumbers; 3514 for (Value *V : VL) { 3515 if (ShuffleOrOp == Instruction::ExtractElement) { 3516 auto *IO = cast<ConstantInt>( 3517 cast<ExtractElementInst>(V)->getIndexOperand()); 3518 Idx = IO->getZExtValue(); 3519 } else { 3520 --Idx; 3521 } 3522 ReuseShuffleCost += 3523 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 3524 } 3525 DeadCost = ReuseShuffleCost; 3526 } else if (!E->ReorderIndices.empty()) { 3527 DeadCost = TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 3528 VecTy); 3529 } 3530 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 3531 Instruction *EI = cast<Instruction>(VL[I]); 3532 // If all users are going to be vectorized, instruction can be 3533 // considered as dead. 3534 // The same, if have only one user, it will be vectorized for sure. 3535 if (areAllUsersVectorized(EI)) { 3536 // Take credit for instruction that will become dead. 3537 if (EI->hasOneUse()) { 3538 Instruction *Ext = EI->user_back(); 3539 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3540 all_of(Ext->users(), 3541 [](User *U) { return isa<GetElementPtrInst>(U); })) { 3542 // Use getExtractWithExtendCost() to calculate the cost of 3543 // extractelement/ext pair. 3544 DeadCost -= TTI->getExtractWithExtendCost( 3545 Ext->getOpcode(), Ext->getType(), VecTy, I); 3546 // Add back the cost of s|zext which is subtracted separately. 3547 DeadCost += TTI->getCastInstrCost( 3548 Ext->getOpcode(), Ext->getType(), EI->getType(), 3549 TTI::getCastContextHint(Ext), CostKind, Ext); 3550 continue; 3551 } 3552 } 3553 DeadCost -= 3554 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 3555 } 3556 } 3557 return DeadCost; 3558 } 3559 case Instruction::ZExt: 3560 case Instruction::SExt: 3561 case Instruction::FPToUI: 3562 case Instruction::FPToSI: 3563 case Instruction::FPExt: 3564 case Instruction::PtrToInt: 3565 case Instruction::IntToPtr: 3566 case Instruction::SIToFP: 3567 case Instruction::UIToFP: 3568 case Instruction::Trunc: 3569 case Instruction::FPTrunc: 3570 case Instruction::BitCast: { 3571 Type *SrcTy = VL0->getOperand(0)->getType(); 3572 InstructionCost ScalarEltCost = 3573 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 3574 TTI::getCastContextHint(VL0), CostKind, VL0); 3575 if (NeedToShuffleReuses) { 3576 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3577 } 3578 3579 // Calculate the cost of this instruction. 3580 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 3581 3582 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 3583 InstructionCost VecCost = 0; 3584 // Check if the values are candidates to demote. 3585 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 3586 VecCost = 3587 ReuseShuffleCost + 3588 TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, 3589 TTI::getCastContextHint(VL0), CostKind, VL0); 3590 } 3591 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3592 return VecCost - ScalarCost; 3593 } 3594 case Instruction::FCmp: 3595 case Instruction::ICmp: 3596 case Instruction::Select: { 3597 // Calculate the cost of this instruction. 3598 InstructionCost ScalarEltCost = 3599 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 3600 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 3601 if (NeedToShuffleReuses) { 3602 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3603 } 3604 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 3605 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3606 3607 // Check if all entries in VL are either compares or selects with compares 3608 // as condition that have the same predicates. 3609 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 3610 bool First = true; 3611 for (auto *V : VL) { 3612 CmpInst::Predicate CurrentPred; 3613 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 3614 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 3615 !match(V, MatchCmp)) || 3616 (!First && VecPred != CurrentPred)) { 3617 VecPred = CmpInst::BAD_ICMP_PREDICATE; 3618 break; 3619 } 3620 First = false; 3621 VecPred = CurrentPred; 3622 } 3623 3624 InstructionCost VecCost = TTI->getCmpSelInstrCost( 3625 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 3626 // Check if it is possible and profitable to use min/max for selects in 3627 // VL. 3628 // 3629 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 3630 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 3631 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 3632 {VecTy, VecTy}); 3633 InstructionCost IntrinsicCost = 3634 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 3635 // If the selects are the only uses of the compares, they will be dead 3636 // and we can adjust the cost by removing their cost. 3637 if (IntrinsicAndUse.second) 3638 IntrinsicCost -= 3639 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, 3640 CmpInst::BAD_ICMP_PREDICATE, CostKind); 3641 VecCost = std::min(VecCost, IntrinsicCost); 3642 } 3643 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3644 return ReuseShuffleCost + VecCost - ScalarCost; 3645 } 3646 case Instruction::FNeg: 3647 case Instruction::Add: 3648 case Instruction::FAdd: 3649 case Instruction::Sub: 3650 case Instruction::FSub: 3651 case Instruction::Mul: 3652 case Instruction::FMul: 3653 case Instruction::UDiv: 3654 case Instruction::SDiv: 3655 case Instruction::FDiv: 3656 case Instruction::URem: 3657 case Instruction::SRem: 3658 case Instruction::FRem: 3659 case Instruction::Shl: 3660 case Instruction::LShr: 3661 case Instruction::AShr: 3662 case Instruction::And: 3663 case Instruction::Or: 3664 case Instruction::Xor: { 3665 // Certain instructions can be cheaper to vectorize if they have a 3666 // constant second vector operand. 3667 TargetTransformInfo::OperandValueKind Op1VK = 3668 TargetTransformInfo::OK_AnyValue; 3669 TargetTransformInfo::OperandValueKind Op2VK = 3670 TargetTransformInfo::OK_UniformConstantValue; 3671 TargetTransformInfo::OperandValueProperties Op1VP = 3672 TargetTransformInfo::OP_None; 3673 TargetTransformInfo::OperandValueProperties Op2VP = 3674 TargetTransformInfo::OP_PowerOf2; 3675 3676 // If all operands are exactly the same ConstantInt then set the 3677 // operand kind to OK_UniformConstantValue. 3678 // If instead not all operands are constants, then set the operand kind 3679 // to OK_AnyValue. If all operands are constants but not the same, 3680 // then set the operand kind to OK_NonUniformConstantValue. 3681 ConstantInt *CInt0 = nullptr; 3682 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3683 const Instruction *I = cast<Instruction>(VL[i]); 3684 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 3685 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 3686 if (!CInt) { 3687 Op2VK = TargetTransformInfo::OK_AnyValue; 3688 Op2VP = TargetTransformInfo::OP_None; 3689 break; 3690 } 3691 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 3692 !CInt->getValue().isPowerOf2()) 3693 Op2VP = TargetTransformInfo::OP_None; 3694 if (i == 0) { 3695 CInt0 = CInt; 3696 continue; 3697 } 3698 if (CInt0 != CInt) 3699 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 3700 } 3701 3702 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 3703 InstructionCost ScalarEltCost = 3704 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 3705 Op2VK, Op1VP, Op2VP, Operands, VL0); 3706 if (NeedToShuffleReuses) { 3707 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3708 } 3709 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3710 InstructionCost VecCost = 3711 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 3712 Op2VK, Op1VP, Op2VP, Operands, VL0); 3713 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3714 return ReuseShuffleCost + VecCost - ScalarCost; 3715 } 3716 case Instruction::GetElementPtr: { 3717 TargetTransformInfo::OperandValueKind Op1VK = 3718 TargetTransformInfo::OK_AnyValue; 3719 TargetTransformInfo::OperandValueKind Op2VK = 3720 TargetTransformInfo::OK_UniformConstantValue; 3721 3722 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 3723 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 3724 if (NeedToShuffleReuses) { 3725 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3726 } 3727 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3728 InstructionCost VecCost = TTI->getArithmeticInstrCost( 3729 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 3730 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3731 return ReuseShuffleCost + VecCost - ScalarCost; 3732 } 3733 case Instruction::Load: { 3734 // Cost of wide load - cost of scalar loads. 3735 Align alignment = cast<LoadInst>(VL0)->getAlign(); 3736 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 3737 Instruction::Load, ScalarTy, alignment, 0, CostKind, VL0); 3738 if (NeedToShuffleReuses) { 3739 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3740 } 3741 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 3742 InstructionCost VecLdCost; 3743 if (E->State == TreeEntry::Vectorize) { 3744 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, 3745 CostKind, VL0); 3746 } else { 3747 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 3748 VecLdCost = TTI->getGatherScatterOpCost( 3749 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 3750 /*VariableMask=*/false, alignment, CostKind, VL0); 3751 } 3752 if (!NeedToShuffleReuses && !E->ReorderIndices.empty()) 3753 VecLdCost += TTI->getShuffleCost( 3754 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3755 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecLdCost, ScalarLdCost)); 3756 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 3757 } 3758 case Instruction::Store: { 3759 // We know that we can merge the stores. Calculate the cost. 3760 bool IsReorder = !E->ReorderIndices.empty(); 3761 auto *SI = 3762 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 3763 Align Alignment = SI->getAlign(); 3764 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 3765 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 3766 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 3767 InstructionCost VecStCost = TTI->getMemoryOpCost( 3768 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 3769 if (IsReorder) 3770 VecStCost += TTI->getShuffleCost( 3771 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3772 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecStCost, ScalarStCost)); 3773 return VecStCost - ScalarStCost; 3774 } 3775 case Instruction::Call: { 3776 CallInst *CI = cast<CallInst>(VL0); 3777 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3778 3779 // Calculate the cost of the scalar and vector calls. 3780 IntrinsicCostAttributes CostAttrs(ID, *CI, ElementCount::getFixed(1), 1); 3781 InstructionCost ScalarEltCost = 3782 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 3783 if (NeedToShuffleReuses) { 3784 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3785 } 3786 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 3787 3788 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 3789 InstructionCost VecCallCost = 3790 std::min(VecCallCosts.first, VecCallCosts.second); 3791 3792 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 3793 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 3794 << " for " << *CI << "\n"); 3795 3796 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 3797 } 3798 case Instruction::ShuffleVector: { 3799 assert(E->isAltShuffle() && 3800 ((Instruction::isBinaryOp(E->getOpcode()) && 3801 Instruction::isBinaryOp(E->getAltOpcode())) || 3802 (Instruction::isCast(E->getOpcode()) && 3803 Instruction::isCast(E->getAltOpcode()))) && 3804 "Invalid Shuffle Vector Operand"); 3805 InstructionCost ScalarCost = 0; 3806 if (NeedToShuffleReuses) { 3807 for (unsigned Idx : E->ReuseShuffleIndices) { 3808 Instruction *I = cast<Instruction>(VL[Idx]); 3809 ReuseShuffleCost -= TTI->getInstructionCost(I, CostKind); 3810 } 3811 for (Value *V : VL) { 3812 Instruction *I = cast<Instruction>(V); 3813 ReuseShuffleCost += TTI->getInstructionCost(I, CostKind); 3814 } 3815 } 3816 for (Value *V : VL) { 3817 Instruction *I = cast<Instruction>(V); 3818 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 3819 ScalarCost += TTI->getInstructionCost(I, CostKind); 3820 } 3821 // VecCost is equal to sum of the cost of creating 2 vectors 3822 // and the cost of creating shuffle. 3823 InstructionCost VecCost = 0; 3824 if (Instruction::isBinaryOp(E->getOpcode())) { 3825 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 3826 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 3827 CostKind); 3828 } else { 3829 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 3830 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 3831 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 3832 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 3833 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 3834 TTI::CastContextHint::None, CostKind); 3835 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 3836 TTI::CastContextHint::None, CostKind); 3837 } 3838 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0); 3839 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3840 return ReuseShuffleCost + VecCost - ScalarCost; 3841 } 3842 default: 3843 llvm_unreachable("Unknown instruction"); 3844 } 3845 } 3846 3847 bool BoUpSLP::isFullyVectorizableTinyTree() const { 3848 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 3849 << VectorizableTree.size() << " is fully vectorizable .\n"); 3850 3851 // We only handle trees of heights 1 and 2. 3852 if (VectorizableTree.size() == 1 && 3853 VectorizableTree[0]->State == TreeEntry::Vectorize) 3854 return true; 3855 3856 if (VectorizableTree.size() != 2) 3857 return false; 3858 3859 // Handle splat and all-constants stores. 3860 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 3861 (allConstant(VectorizableTree[1]->Scalars) || 3862 isSplat(VectorizableTree[1]->Scalars))) 3863 return true; 3864 3865 // Gathering cost would be too much for tiny trees. 3866 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 3867 VectorizableTree[1]->State == TreeEntry::NeedToGather) 3868 return false; 3869 3870 return true; 3871 } 3872 3873 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 3874 TargetTransformInfo *TTI) { 3875 // Look past the root to find a source value. Arbitrarily follow the 3876 // path through operand 0 of any 'or'. Also, peek through optional 3877 // shift-left-by-multiple-of-8-bits. 3878 Value *ZextLoad = Root; 3879 const APInt *ShAmtC; 3880 while (!isa<ConstantExpr>(ZextLoad) && 3881 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 3882 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 3883 ShAmtC->urem(8) == 0))) 3884 ZextLoad = cast<BinaryOperator>(ZextLoad)->getOperand(0); 3885 3886 // Check if the input is an extended load of the required or/shift expression. 3887 Value *LoadPtr; 3888 if (ZextLoad == Root || !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr))))) 3889 return false; 3890 3891 // Require that the total load bit width is a legal integer type. 3892 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 3893 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 3894 Type *SrcTy = LoadPtr->getType()->getPointerElementType(); 3895 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 3896 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 3897 return false; 3898 3899 // Everything matched - assume that we can fold the whole sequence using 3900 // load combining. 3901 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 3902 << *(cast<Instruction>(Root)) << "\n"); 3903 3904 return true; 3905 } 3906 3907 bool BoUpSLP::isLoadCombineReductionCandidate(unsigned RdxOpcode) const { 3908 if (RdxOpcode != Instruction::Or) 3909 return false; 3910 3911 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3912 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 3913 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI); 3914 } 3915 3916 bool BoUpSLP::isLoadCombineCandidate() const { 3917 // Peek through a final sequence of stores and check if all operations are 3918 // likely to be load-combined. 3919 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3920 for (Value *Scalar : VectorizableTree[0]->Scalars) { 3921 Value *X; 3922 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 3923 !isLoadCombineCandidateImpl(X, NumElts, TTI)) 3924 return false; 3925 } 3926 return true; 3927 } 3928 3929 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 3930 // We can vectorize the tree if its size is greater than or equal to the 3931 // minimum size specified by the MinTreeSize command line option. 3932 if (VectorizableTree.size() >= MinTreeSize) 3933 return false; 3934 3935 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 3936 // can vectorize it if we can prove it fully vectorizable. 3937 if (isFullyVectorizableTinyTree()) 3938 return false; 3939 3940 assert(VectorizableTree.empty() 3941 ? ExternalUses.empty() 3942 : true && "We shouldn't have any external users"); 3943 3944 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 3945 // vectorizable. 3946 return true; 3947 } 3948 3949 InstructionCost BoUpSLP::getSpillCost() const { 3950 // Walk from the bottom of the tree to the top, tracking which values are 3951 // live. When we see a call instruction that is not part of our tree, 3952 // query TTI to see if there is a cost to keeping values live over it 3953 // (for example, if spills and fills are required). 3954 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 3955 InstructionCost Cost = 0; 3956 3957 SmallPtrSet<Instruction*, 4> LiveValues; 3958 Instruction *PrevInst = nullptr; 3959 3960 // The entries in VectorizableTree are not necessarily ordered by their 3961 // position in basic blocks. Collect them and order them by dominance so later 3962 // instructions are guaranteed to be visited first. For instructions in 3963 // different basic blocks, we only scan to the beginning of the block, so 3964 // their order does not matter, as long as all instructions in a basic block 3965 // are grouped together. Using dominance ensures a deterministic order. 3966 SmallVector<Instruction *, 16> OrderedScalars; 3967 for (const auto &TEPtr : VectorizableTree) { 3968 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 3969 if (!Inst) 3970 continue; 3971 OrderedScalars.push_back(Inst); 3972 } 3973 llvm::stable_sort(OrderedScalars, [this](Instruction *A, Instruction *B) { 3974 return DT->dominates(B, A); 3975 }); 3976 3977 for (Instruction *Inst : OrderedScalars) { 3978 if (!PrevInst) { 3979 PrevInst = Inst; 3980 continue; 3981 } 3982 3983 // Update LiveValues. 3984 LiveValues.erase(PrevInst); 3985 for (auto &J : PrevInst->operands()) { 3986 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 3987 LiveValues.insert(cast<Instruction>(&*J)); 3988 } 3989 3990 LLVM_DEBUG({ 3991 dbgs() << "SLP: #LV: " << LiveValues.size(); 3992 for (auto *X : LiveValues) 3993 dbgs() << " " << X->getName(); 3994 dbgs() << ", Looking at "; 3995 Inst->dump(); 3996 }); 3997 3998 // Now find the sequence of instructions between PrevInst and Inst. 3999 unsigned NumCalls = 0; 4000 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 4001 PrevInstIt = 4002 PrevInst->getIterator().getReverse(); 4003 while (InstIt != PrevInstIt) { 4004 if (PrevInstIt == PrevInst->getParent()->rend()) { 4005 PrevInstIt = Inst->getParent()->rbegin(); 4006 continue; 4007 } 4008 4009 // Debug information does not impact spill cost. 4010 if ((isa<CallInst>(&*PrevInstIt) && 4011 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 4012 &*PrevInstIt != PrevInst) 4013 NumCalls++; 4014 4015 ++PrevInstIt; 4016 } 4017 4018 if (NumCalls) { 4019 SmallVector<Type*, 4> V; 4020 for (auto *II : LiveValues) 4021 V.push_back(FixedVectorType::get(II->getType(), BundleWidth)); 4022 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 4023 } 4024 4025 PrevInst = Inst; 4026 } 4027 4028 return Cost; 4029 } 4030 4031 InstructionCost BoUpSLP::getTreeCost() { 4032 InstructionCost Cost = 0; 4033 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 4034 << VectorizableTree.size() << ".\n"); 4035 4036 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 4037 4038 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 4039 TreeEntry &TE = *VectorizableTree[I].get(); 4040 4041 // We create duplicate tree entries for gather sequences that have multiple 4042 // uses. However, we should not compute the cost of duplicate sequences. 4043 // For example, if we have a build vector (i.e., insertelement sequence) 4044 // that is used by more than one vector instruction, we only need to 4045 // compute the cost of the insertelement instructions once. The redundant 4046 // instructions will be eliminated by CSE. 4047 // 4048 // We should consider not creating duplicate tree entries for gather 4049 // sequences, and instead add additional edges to the tree representing 4050 // their uses. Since such an approach results in fewer total entries, 4051 // existing heuristics based on tree size may yield different results. 4052 // 4053 if (TE.State == TreeEntry::NeedToGather && 4054 std::any_of(std::next(VectorizableTree.begin(), I + 1), 4055 VectorizableTree.end(), 4056 [TE](const std::unique_ptr<TreeEntry> &EntryPtr) { 4057 return EntryPtr->State == TreeEntry::NeedToGather && 4058 EntryPtr->isSame(TE.Scalars); 4059 })) 4060 continue; 4061 4062 InstructionCost C = getEntryCost(&TE); 4063 Cost += C; 4064 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 4065 << " for bundle that starts with " << *TE.Scalars[0] 4066 << ".\n" 4067 << "SLP: Current total cost = " << Cost << "\n"); 4068 } 4069 4070 SmallPtrSet<Value *, 16> ExtractCostCalculated; 4071 InstructionCost ExtractCost = 0; 4072 for (ExternalUser &EU : ExternalUses) { 4073 // We only add extract cost once for the same scalar. 4074 if (!ExtractCostCalculated.insert(EU.Scalar).second) 4075 continue; 4076 4077 // Uses by ephemeral values are free (because the ephemeral value will be 4078 // removed prior to code generation, and so the extraction will be 4079 // removed as well). 4080 if (EphValues.count(EU.User)) 4081 continue; 4082 4083 // If we plan to rewrite the tree in a smaller type, we will need to sign 4084 // extend the extracted value back to the original type. Here, we account 4085 // for the extract and the added cost of the sign extend if needed. 4086 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 4087 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4088 if (MinBWs.count(ScalarRoot)) { 4089 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4090 auto Extend = 4091 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 4092 VecTy = FixedVectorType::get(MinTy, BundleWidth); 4093 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 4094 VecTy, EU.Lane); 4095 } else { 4096 ExtractCost += 4097 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 4098 } 4099 } 4100 4101 InstructionCost SpillCost = getSpillCost(); 4102 Cost += SpillCost + ExtractCost; 4103 4104 #ifndef NDEBUG 4105 SmallString<256> Str; 4106 { 4107 raw_svector_ostream OS(Str); 4108 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 4109 << "SLP: Extract Cost = " << ExtractCost << ".\n" 4110 << "SLP: Total Cost = " << Cost << ".\n"; 4111 } 4112 LLVM_DEBUG(dbgs() << Str); 4113 if (ViewSLPTree) 4114 ViewGraph(this, "SLP" + F->getName(), false, Str); 4115 #endif 4116 4117 return Cost; 4118 } 4119 4120 InstructionCost 4121 BoUpSLP::getGatherCost(FixedVectorType *Ty, 4122 const DenseSet<unsigned> &ShuffledIndices) const { 4123 unsigned NumElts = Ty->getNumElements(); 4124 APInt DemandedElts = APInt::getNullValue(NumElts); 4125 for (unsigned I = 0; I < NumElts; ++I) 4126 if (!ShuffledIndices.count(I)) 4127 DemandedElts.setBit(I); 4128 InstructionCost Cost = 4129 TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 4130 /*Extract*/ false); 4131 if (!ShuffledIndices.empty()) 4132 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 4133 return Cost; 4134 } 4135 4136 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 4137 // Find the type of the operands in VL. 4138 Type *ScalarTy = VL[0]->getType(); 4139 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4140 ScalarTy = SI->getValueOperand()->getType(); 4141 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4142 // Find the cost of inserting/extracting values from the vector. 4143 // Check if the same elements are inserted several times and count them as 4144 // shuffle candidates. 4145 DenseSet<unsigned> ShuffledElements; 4146 DenseSet<Value *> UniqueElements; 4147 // Iterate in reverse order to consider insert elements with the high cost. 4148 for (unsigned I = VL.size(); I > 0; --I) { 4149 unsigned Idx = I - 1; 4150 if (!UniqueElements.insert(VL[Idx]).second) 4151 ShuffledElements.insert(Idx); 4152 } 4153 return getGatherCost(VecTy, ShuffledElements); 4154 } 4155 4156 // Perform operand reordering on the instructions in VL and return the reordered 4157 // operands in Left and Right. 4158 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 4159 SmallVectorImpl<Value *> &Left, 4160 SmallVectorImpl<Value *> &Right, 4161 const DataLayout &DL, 4162 ScalarEvolution &SE, 4163 const BoUpSLP &R) { 4164 if (VL.empty()) 4165 return; 4166 VLOperands Ops(VL, DL, SE, R); 4167 // Reorder the operands in place. 4168 Ops.reorder(); 4169 Left = Ops.getVL(0); 4170 Right = Ops.getVL(1); 4171 } 4172 4173 void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) { 4174 // Get the basic block this bundle is in. All instructions in the bundle 4175 // should be in this block. 4176 auto *Front = E->getMainOp(); 4177 auto *BB = Front->getParent(); 4178 assert(llvm::all_of(make_range(E->Scalars.begin(), E->Scalars.end()), 4179 [=](Value *V) -> bool { 4180 auto *I = cast<Instruction>(V); 4181 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 4182 })); 4183 4184 // The last instruction in the bundle in program order. 4185 Instruction *LastInst = nullptr; 4186 4187 // Find the last instruction. The common case should be that BB has been 4188 // scheduled, and the last instruction is VL.back(). So we start with 4189 // VL.back() and iterate over schedule data until we reach the end of the 4190 // bundle. The end of the bundle is marked by null ScheduleData. 4191 if (BlocksSchedules.count(BB)) { 4192 auto *Bundle = 4193 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 4194 if (Bundle && Bundle->isPartOfBundle()) 4195 for (; Bundle; Bundle = Bundle->NextInBundle) 4196 if (Bundle->OpValue == Bundle->Inst) 4197 LastInst = Bundle->Inst; 4198 } 4199 4200 // LastInst can still be null at this point if there's either not an entry 4201 // for BB in BlocksSchedules or there's no ScheduleData available for 4202 // VL.back(). This can be the case if buildTree_rec aborts for various 4203 // reasons (e.g., the maximum recursion depth is reached, the maximum region 4204 // size is reached, etc.). ScheduleData is initialized in the scheduling 4205 // "dry-run". 4206 // 4207 // If this happens, we can still find the last instruction by brute force. We 4208 // iterate forwards from Front (inclusive) until we either see all 4209 // instructions in the bundle or reach the end of the block. If Front is the 4210 // last instruction in program order, LastInst will be set to Front, and we 4211 // will visit all the remaining instructions in the block. 4212 // 4213 // One of the reasons we exit early from buildTree_rec is to place an upper 4214 // bound on compile-time. Thus, taking an additional compile-time hit here is 4215 // not ideal. However, this should be exceedingly rare since it requires that 4216 // we both exit early from buildTree_rec and that the bundle be out-of-order 4217 // (causing us to iterate all the way to the end of the block). 4218 if (!LastInst) { 4219 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 4220 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 4221 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 4222 LastInst = &I; 4223 if (Bundle.empty()) 4224 break; 4225 } 4226 } 4227 assert(LastInst && "Failed to find last instruction in bundle"); 4228 4229 // Set the insertion point after the last instruction in the bundle. Set the 4230 // debug location to Front. 4231 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 4232 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 4233 } 4234 4235 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 4236 Value *Val0 = 4237 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 4238 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 4239 Value *Vec = UndefValue::get(VecTy); 4240 unsigned InsIndex = 0; 4241 for (Value *Val : VL) { 4242 Vec = Builder.CreateInsertElement(Vec, Val, Builder.getInt32(InsIndex++)); 4243 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 4244 if (!InsElt) 4245 continue; 4246 GatherSeq.insert(InsElt); 4247 CSEBlocks.insert(InsElt->getParent()); 4248 // Add to our 'need-to-extract' list. 4249 if (TreeEntry *Entry = getTreeEntry(Val)) { 4250 // Find which lane we need to extract. 4251 unsigned FoundLane = std::distance(Entry->Scalars.begin(), 4252 find(Entry->Scalars, Val)); 4253 assert(FoundLane < Entry->Scalars.size() && "Couldn't find extract lane"); 4254 if (!Entry->ReuseShuffleIndices.empty()) { 4255 FoundLane = std::distance(Entry->ReuseShuffleIndices.begin(), 4256 find(Entry->ReuseShuffleIndices, FoundLane)); 4257 } 4258 ExternalUses.push_back(ExternalUser(Val, InsElt, FoundLane)); 4259 } 4260 } 4261 4262 return Vec; 4263 } 4264 4265 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 4266 InstructionsState S = getSameOpcode(VL); 4267 if (S.getOpcode()) { 4268 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4269 if (E->isSame(VL)) { 4270 Value *V = vectorizeTree(E); 4271 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 4272 // We need to get the vectorized value but without shuffle. 4273 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 4274 V = SV->getOperand(0); 4275 } else { 4276 // Reshuffle to get only unique values. 4277 SmallVector<int, 4> UniqueIdxs; 4278 SmallSet<int, 4> UsedIdxs; 4279 for (int Idx : E->ReuseShuffleIndices) 4280 if (UsedIdxs.insert(Idx).second) 4281 UniqueIdxs.emplace_back(Idx); 4282 V = Builder.CreateShuffleVector(V, UniqueIdxs); 4283 } 4284 } 4285 return V; 4286 } 4287 } 4288 } 4289 4290 // Check that every instruction appears once in this bundle. 4291 SmallVector<int, 4> ReuseShuffleIndicies; 4292 SmallVector<Value *, 4> UniqueValues; 4293 if (VL.size() > 2) { 4294 DenseMap<Value *, unsigned> UniquePositions; 4295 for (Value *V : VL) { 4296 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 4297 ReuseShuffleIndicies.emplace_back(Res.first->second); 4298 if (Res.second || isa<Constant>(V)) 4299 UniqueValues.emplace_back(V); 4300 } 4301 // Do not shuffle single element or if number of unique values is not power 4302 // of 2. 4303 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 4304 !llvm::isPowerOf2_32(UniqueValues.size())) 4305 ReuseShuffleIndicies.clear(); 4306 else 4307 VL = UniqueValues; 4308 } 4309 4310 Value *Vec = gather(VL); 4311 if (!ReuseShuffleIndicies.empty()) { 4312 Vec = Builder.CreateShuffleVector(Vec, ReuseShuffleIndicies, "shuffle"); 4313 if (auto *I = dyn_cast<Instruction>(Vec)) { 4314 GatherSeq.insert(I); 4315 CSEBlocks.insert(I->getParent()); 4316 } 4317 } 4318 return Vec; 4319 } 4320 4321 namespace { 4322 /// Merges shuffle masks and emits final shuffle instruction, if required. 4323 class ShuffleInstructionBuilder { 4324 IRBuilderBase &Builder; 4325 bool IsFinalized = false; 4326 SmallVector<int, 4> Mask; 4327 4328 public: 4329 ShuffleInstructionBuilder(IRBuilderBase &Builder) : Builder(Builder) {} 4330 4331 /// Adds a mask, inverting it before applying. 4332 void addInversedMask(ArrayRef<unsigned> SubMask) { 4333 if (SubMask.empty()) 4334 return; 4335 SmallVector<int, 4> NewMask; 4336 inversePermutation(SubMask, NewMask); 4337 addMask(NewMask); 4338 } 4339 4340 /// Functions adds masks, merging them into single one. 4341 void addMask(ArrayRef<unsigned> SubMask) { 4342 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 4343 addMask(NewMask); 4344 } 4345 4346 void addMask(ArrayRef<int> SubMask) { 4347 if (SubMask.empty()) 4348 return; 4349 if (Mask.empty()) { 4350 Mask.append(SubMask.begin(), SubMask.end()); 4351 return; 4352 } 4353 SmallVector<int, 4> NewMask(SubMask.size(), SubMask.size()); 4354 int TermValue = std::min(Mask.size(), SubMask.size()); 4355 for (int I = 0, E = SubMask.size(); I < E; ++I) { 4356 if (SubMask[I] >= TermValue || Mask[SubMask[I]] >= TermValue) { 4357 NewMask[I] = E; 4358 continue; 4359 } 4360 NewMask[I] = Mask[SubMask[I]]; 4361 } 4362 Mask.swap(NewMask); 4363 } 4364 4365 Value *finalize(Value *V) { 4366 IsFinalized = true; 4367 if (Mask.empty()) 4368 return V; 4369 return Builder.CreateShuffleVector(V, Mask, "shuffle"); 4370 } 4371 4372 ~ShuffleInstructionBuilder() { 4373 assert((IsFinalized || Mask.empty()) && 4374 "Must be finalized construction of the shuffles."); 4375 } 4376 }; 4377 } // namespace 4378 4379 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 4380 IRBuilder<>::InsertPointGuard Guard(Builder); 4381 4382 if (E->VectorizedValue) { 4383 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 4384 return E->VectorizedValue; 4385 } 4386 4387 ShuffleInstructionBuilder ShuffleBuilder(Builder); 4388 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4389 if (E->State == TreeEntry::NeedToGather) { 4390 setInsertPointAfterBundle(E); 4391 Value *Vec = gather(E->Scalars); 4392 if (NeedToShuffleReuses) { 4393 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4394 Vec = ShuffleBuilder.finalize(Vec); 4395 if (auto *I = dyn_cast<Instruction>(Vec)) { 4396 GatherSeq.insert(I); 4397 CSEBlocks.insert(I->getParent()); 4398 } 4399 } 4400 E->VectorizedValue = Vec; 4401 return Vec; 4402 } 4403 4404 assert((E->State == TreeEntry::Vectorize || 4405 E->State == TreeEntry::ScatterVectorize) && 4406 "Unhandled state"); 4407 unsigned ShuffleOrOp = 4408 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 4409 Instruction *VL0 = E->getMainOp(); 4410 Type *ScalarTy = VL0->getType(); 4411 if (auto *Store = dyn_cast<StoreInst>(VL0)) 4412 ScalarTy = Store->getValueOperand()->getType(); 4413 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 4414 switch (ShuffleOrOp) { 4415 case Instruction::PHI: { 4416 auto *PH = cast<PHINode>(VL0); 4417 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 4418 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4419 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 4420 Value *V = NewPhi; 4421 if (NeedToShuffleReuses) 4422 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4423 4424 E->VectorizedValue = V; 4425 4426 // PHINodes may have multiple entries from the same block. We want to 4427 // visit every block once. 4428 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 4429 4430 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 4431 ValueList Operands; 4432 BasicBlock *IBB = PH->getIncomingBlock(i); 4433 4434 if (!VisitedBBs.insert(IBB).second) { 4435 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 4436 continue; 4437 } 4438 4439 Builder.SetInsertPoint(IBB->getTerminator()); 4440 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4441 Value *Vec = vectorizeTree(E->getOperand(i)); 4442 NewPhi->addIncoming(Vec, IBB); 4443 } 4444 4445 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 4446 "Invalid number of incoming values"); 4447 return V; 4448 } 4449 4450 case Instruction::ExtractElement: { 4451 Value *V = E->getSingleOperand(0); 4452 Builder.SetInsertPoint(VL0); 4453 ShuffleBuilder.addInversedMask(E->ReorderIndices); 4454 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4455 V = ShuffleBuilder.finalize(V); 4456 E->VectorizedValue = V; 4457 return V; 4458 } 4459 case Instruction::ExtractValue: { 4460 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 4461 Builder.SetInsertPoint(LI); 4462 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 4463 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 4464 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 4465 Value *NewV = propagateMetadata(V, E->Scalars); 4466 ShuffleBuilder.addInversedMask(E->ReorderIndices); 4467 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4468 NewV = ShuffleBuilder.finalize(NewV); 4469 E->VectorizedValue = NewV; 4470 return NewV; 4471 } 4472 case Instruction::ZExt: 4473 case Instruction::SExt: 4474 case Instruction::FPToUI: 4475 case Instruction::FPToSI: 4476 case Instruction::FPExt: 4477 case Instruction::PtrToInt: 4478 case Instruction::IntToPtr: 4479 case Instruction::SIToFP: 4480 case Instruction::UIToFP: 4481 case Instruction::Trunc: 4482 case Instruction::FPTrunc: 4483 case Instruction::BitCast: { 4484 setInsertPointAfterBundle(E); 4485 4486 Value *InVec = vectorizeTree(E->getOperand(0)); 4487 4488 if (E->VectorizedValue) { 4489 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4490 return E->VectorizedValue; 4491 } 4492 4493 auto *CI = cast<CastInst>(VL0); 4494 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 4495 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4496 V = ShuffleBuilder.finalize(V); 4497 4498 E->VectorizedValue = V; 4499 ++NumVectorInstructions; 4500 return V; 4501 } 4502 case Instruction::FCmp: 4503 case Instruction::ICmp: { 4504 setInsertPointAfterBundle(E); 4505 4506 Value *L = vectorizeTree(E->getOperand(0)); 4507 Value *R = vectorizeTree(E->getOperand(1)); 4508 4509 if (E->VectorizedValue) { 4510 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4511 return E->VectorizedValue; 4512 } 4513 4514 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4515 Value *V = Builder.CreateCmp(P0, L, R); 4516 propagateIRFlags(V, E->Scalars, VL0); 4517 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4518 V = ShuffleBuilder.finalize(V); 4519 4520 E->VectorizedValue = V; 4521 ++NumVectorInstructions; 4522 return V; 4523 } 4524 case Instruction::Select: { 4525 setInsertPointAfterBundle(E); 4526 4527 Value *Cond = vectorizeTree(E->getOperand(0)); 4528 Value *True = vectorizeTree(E->getOperand(1)); 4529 Value *False = vectorizeTree(E->getOperand(2)); 4530 4531 if (E->VectorizedValue) { 4532 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4533 return E->VectorizedValue; 4534 } 4535 4536 Value *V = Builder.CreateSelect(Cond, True, False); 4537 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4538 V = ShuffleBuilder.finalize(V); 4539 4540 E->VectorizedValue = V; 4541 ++NumVectorInstructions; 4542 return V; 4543 } 4544 case Instruction::FNeg: { 4545 setInsertPointAfterBundle(E); 4546 4547 Value *Op = vectorizeTree(E->getOperand(0)); 4548 4549 if (E->VectorizedValue) { 4550 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4551 return E->VectorizedValue; 4552 } 4553 4554 Value *V = Builder.CreateUnOp( 4555 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 4556 propagateIRFlags(V, E->Scalars, VL0); 4557 if (auto *I = dyn_cast<Instruction>(V)) 4558 V = propagateMetadata(I, E->Scalars); 4559 4560 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4561 V = ShuffleBuilder.finalize(V); 4562 4563 E->VectorizedValue = V; 4564 ++NumVectorInstructions; 4565 4566 return V; 4567 } 4568 case Instruction::Add: 4569 case Instruction::FAdd: 4570 case Instruction::Sub: 4571 case Instruction::FSub: 4572 case Instruction::Mul: 4573 case Instruction::FMul: 4574 case Instruction::UDiv: 4575 case Instruction::SDiv: 4576 case Instruction::FDiv: 4577 case Instruction::URem: 4578 case Instruction::SRem: 4579 case Instruction::FRem: 4580 case Instruction::Shl: 4581 case Instruction::LShr: 4582 case Instruction::AShr: 4583 case Instruction::And: 4584 case Instruction::Or: 4585 case Instruction::Xor: { 4586 setInsertPointAfterBundle(E); 4587 4588 Value *LHS = vectorizeTree(E->getOperand(0)); 4589 Value *RHS = vectorizeTree(E->getOperand(1)); 4590 4591 if (E->VectorizedValue) { 4592 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4593 return E->VectorizedValue; 4594 } 4595 4596 Value *V = Builder.CreateBinOp( 4597 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 4598 RHS); 4599 propagateIRFlags(V, E->Scalars, VL0); 4600 if (auto *I = dyn_cast<Instruction>(V)) 4601 V = propagateMetadata(I, E->Scalars); 4602 4603 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4604 V = ShuffleBuilder.finalize(V); 4605 4606 E->VectorizedValue = V; 4607 ++NumVectorInstructions; 4608 4609 return V; 4610 } 4611 case Instruction::Load: { 4612 // Loads are inserted at the head of the tree because we don't want to 4613 // sink them all the way down past store instructions. 4614 bool IsReorder = E->updateStateIfReorder(); 4615 if (IsReorder) 4616 VL0 = E->getMainOp(); 4617 setInsertPointAfterBundle(E); 4618 4619 LoadInst *LI = cast<LoadInst>(VL0); 4620 Instruction *NewLI; 4621 unsigned AS = LI->getPointerAddressSpace(); 4622 Value *PO = LI->getPointerOperand(); 4623 if (E->State == TreeEntry::Vectorize) { 4624 4625 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 4626 4627 // The pointer operand uses an in-tree scalar so we add the new BitCast 4628 // to ExternalUses list to make sure that an extract will be generated 4629 // in the future. 4630 if (getTreeEntry(PO)) 4631 ExternalUses.emplace_back(PO, cast<User>(VecPtr), 0); 4632 4633 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 4634 } else { 4635 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 4636 Value *VecPtr = vectorizeTree(E->getOperand(0)); 4637 // Use the minimum alignment of the gathered loads. 4638 Align CommonAlignment = LI->getAlign(); 4639 for (Value *V : E->Scalars) 4640 CommonAlignment = 4641 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 4642 NewLI = Builder.CreateMaskedGather(VecPtr, CommonAlignment); 4643 } 4644 Value *V = propagateMetadata(NewLI, E->Scalars); 4645 4646 ShuffleBuilder.addInversedMask(E->ReorderIndices); 4647 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4648 V = ShuffleBuilder.finalize(V); 4649 E->VectorizedValue = V; 4650 ++NumVectorInstructions; 4651 return V; 4652 } 4653 case Instruction::Store: { 4654 bool IsReorder = !E->ReorderIndices.empty(); 4655 auto *SI = cast<StoreInst>( 4656 IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0); 4657 unsigned AS = SI->getPointerAddressSpace(); 4658 4659 setInsertPointAfterBundle(E); 4660 4661 Value *VecValue = vectorizeTree(E->getOperand(0)); 4662 ShuffleBuilder.addMask(E->ReorderIndices); 4663 VecValue = ShuffleBuilder.finalize(VecValue); 4664 4665 Value *ScalarPtr = SI->getPointerOperand(); 4666 Value *VecPtr = Builder.CreateBitCast( 4667 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 4668 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 4669 SI->getAlign()); 4670 4671 // The pointer operand uses an in-tree scalar, so add the new BitCast to 4672 // ExternalUses to make sure that an extract will be generated in the 4673 // future. 4674 if (getTreeEntry(ScalarPtr)) 4675 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 4676 4677 Value *V = propagateMetadata(ST, E->Scalars); 4678 4679 E->VectorizedValue = V; 4680 ++NumVectorInstructions; 4681 return V; 4682 } 4683 case Instruction::GetElementPtr: { 4684 setInsertPointAfterBundle(E); 4685 4686 Value *Op0 = vectorizeTree(E->getOperand(0)); 4687 4688 std::vector<Value *> OpVecs; 4689 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 4690 ++j) { 4691 ValueList &VL = E->getOperand(j); 4692 // Need to cast all elements to the same type before vectorization to 4693 // avoid crash. 4694 Type *VL0Ty = VL0->getOperand(j)->getType(); 4695 Type *Ty = llvm::all_of( 4696 VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); }) 4697 ? VL0Ty 4698 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4699 ->getPointerOperandType() 4700 ->getScalarType()); 4701 for (Value *&V : VL) { 4702 auto *CI = cast<ConstantInt>(V); 4703 V = ConstantExpr::getIntegerCast(CI, Ty, 4704 CI->getValue().isSignBitSet()); 4705 } 4706 Value *OpVec = vectorizeTree(VL); 4707 OpVecs.push_back(OpVec); 4708 } 4709 4710 Value *V = Builder.CreateGEP( 4711 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 4712 if (Instruction *I = dyn_cast<Instruction>(V)) 4713 V = propagateMetadata(I, E->Scalars); 4714 4715 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4716 V = ShuffleBuilder.finalize(V); 4717 4718 E->VectorizedValue = V; 4719 ++NumVectorInstructions; 4720 4721 return V; 4722 } 4723 case Instruction::Call: { 4724 CallInst *CI = cast<CallInst>(VL0); 4725 setInsertPointAfterBundle(E); 4726 4727 Intrinsic::ID IID = Intrinsic::not_intrinsic; 4728 if (Function *FI = CI->getCalledFunction()) 4729 IID = FI->getIntrinsicID(); 4730 4731 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4732 4733 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 4734 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 4735 VecCallCosts.first <= VecCallCosts.second; 4736 4737 Value *ScalarArg = nullptr; 4738 std::vector<Value *> OpVecs; 4739 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 4740 ValueList OpVL; 4741 // Some intrinsics have scalar arguments. This argument should not be 4742 // vectorized. 4743 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 4744 CallInst *CEI = cast<CallInst>(VL0); 4745 ScalarArg = CEI->getArgOperand(j); 4746 OpVecs.push_back(CEI->getArgOperand(j)); 4747 continue; 4748 } 4749 4750 Value *OpVec = vectorizeTree(E->getOperand(j)); 4751 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 4752 OpVecs.push_back(OpVec); 4753 } 4754 4755 Function *CF; 4756 if (!UseIntrinsic) { 4757 VFShape Shape = 4758 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4759 VecTy->getNumElements())), 4760 false /*HasGlobalPred*/); 4761 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 4762 } else { 4763 Type *Tys[] = {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 4764 CF = Intrinsic::getDeclaration(F->getParent(), ID, Tys); 4765 } 4766 4767 SmallVector<OperandBundleDef, 1> OpBundles; 4768 CI->getOperandBundlesAsDefs(OpBundles); 4769 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 4770 4771 // The scalar argument uses an in-tree scalar so we add the new vectorized 4772 // call to ExternalUses list to make sure that an extract will be 4773 // generated in the future. 4774 if (ScalarArg && getTreeEntry(ScalarArg)) 4775 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 4776 4777 propagateIRFlags(V, E->Scalars, VL0); 4778 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4779 V = ShuffleBuilder.finalize(V); 4780 4781 E->VectorizedValue = V; 4782 ++NumVectorInstructions; 4783 return V; 4784 } 4785 case Instruction::ShuffleVector: { 4786 assert(E->isAltShuffle() && 4787 ((Instruction::isBinaryOp(E->getOpcode()) && 4788 Instruction::isBinaryOp(E->getAltOpcode())) || 4789 (Instruction::isCast(E->getOpcode()) && 4790 Instruction::isCast(E->getAltOpcode()))) && 4791 "Invalid Shuffle Vector Operand"); 4792 4793 Value *LHS = nullptr, *RHS = nullptr; 4794 if (Instruction::isBinaryOp(E->getOpcode())) { 4795 setInsertPointAfterBundle(E); 4796 LHS = vectorizeTree(E->getOperand(0)); 4797 RHS = vectorizeTree(E->getOperand(1)); 4798 } else { 4799 setInsertPointAfterBundle(E); 4800 LHS = vectorizeTree(E->getOperand(0)); 4801 } 4802 4803 if (E->VectorizedValue) { 4804 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4805 return E->VectorizedValue; 4806 } 4807 4808 Value *V0, *V1; 4809 if (Instruction::isBinaryOp(E->getOpcode())) { 4810 V0 = Builder.CreateBinOp( 4811 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 4812 V1 = Builder.CreateBinOp( 4813 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 4814 } else { 4815 V0 = Builder.CreateCast( 4816 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 4817 V1 = Builder.CreateCast( 4818 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 4819 } 4820 4821 // Create shuffle to take alternate operations from the vector. 4822 // Also, gather up main and alt scalar ops to propagate IR flags to 4823 // each vector operation. 4824 ValueList OpScalars, AltScalars; 4825 unsigned e = E->Scalars.size(); 4826 SmallVector<int, 8> Mask(e); 4827 for (unsigned i = 0; i < e; ++i) { 4828 auto *OpInst = cast<Instruction>(E->Scalars[i]); 4829 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 4830 if (OpInst->getOpcode() == E->getAltOpcode()) { 4831 Mask[i] = e + i; 4832 AltScalars.push_back(E->Scalars[i]); 4833 } else { 4834 Mask[i] = i; 4835 OpScalars.push_back(E->Scalars[i]); 4836 } 4837 } 4838 4839 propagateIRFlags(V0, OpScalars); 4840 propagateIRFlags(V1, AltScalars); 4841 4842 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 4843 if (Instruction *I = dyn_cast<Instruction>(V)) 4844 V = propagateMetadata(I, E->Scalars); 4845 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4846 V = ShuffleBuilder.finalize(V); 4847 4848 E->VectorizedValue = V; 4849 ++NumVectorInstructions; 4850 4851 return V; 4852 } 4853 default: 4854 llvm_unreachable("unknown inst"); 4855 } 4856 return nullptr; 4857 } 4858 4859 Value *BoUpSLP::vectorizeTree() { 4860 ExtraValueToDebugLocsMap ExternallyUsedValues; 4861 return vectorizeTree(ExternallyUsedValues); 4862 } 4863 4864 Value * 4865 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 4866 // All blocks must be scheduled before any instructions are inserted. 4867 for (auto &BSIter : BlocksSchedules) { 4868 scheduleBlock(BSIter.second.get()); 4869 } 4870 4871 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4872 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 4873 4874 // If the vectorized tree can be rewritten in a smaller type, we truncate the 4875 // vectorized root. InstCombine will then rewrite the entire expression. We 4876 // sign extend the extracted values below. 4877 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4878 if (MinBWs.count(ScalarRoot)) { 4879 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 4880 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 4881 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 4882 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4883 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 4884 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 4885 VectorizableTree[0]->VectorizedValue = Trunc; 4886 } 4887 4888 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 4889 << " values .\n"); 4890 4891 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 4892 // specified by ScalarType. 4893 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 4894 if (!MinBWs.count(ScalarRoot)) 4895 return Ex; 4896 if (MinBWs[ScalarRoot].second) 4897 return Builder.CreateSExt(Ex, ScalarType); 4898 return Builder.CreateZExt(Ex, ScalarType); 4899 }; 4900 4901 // Extract all of the elements with the external uses. 4902 for (const auto &ExternalUse : ExternalUses) { 4903 Value *Scalar = ExternalUse.Scalar; 4904 llvm::User *User = ExternalUse.User; 4905 4906 // Skip users that we already RAUW. This happens when one instruction 4907 // has multiple uses of the same value. 4908 if (User && !is_contained(Scalar->users(), User)) 4909 continue; 4910 TreeEntry *E = getTreeEntry(Scalar); 4911 assert(E && "Invalid scalar"); 4912 assert(E->State != TreeEntry::NeedToGather && 4913 "Extracting from a gather list"); 4914 4915 Value *Vec = E->VectorizedValue; 4916 assert(Vec && "Can't find vectorizable value"); 4917 4918 Value *Lane = Builder.getInt32(ExternalUse.Lane); 4919 // If User == nullptr, the Scalar is used as extra arg. Generate 4920 // ExtractElement instruction and update the record for this scalar in 4921 // ExternallyUsedValues. 4922 if (!User) { 4923 assert(ExternallyUsedValues.count(Scalar) && 4924 "Scalar with nullptr as an external user must be registered in " 4925 "ExternallyUsedValues map"); 4926 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4927 Builder.SetInsertPoint(VecI->getParent(), 4928 std::next(VecI->getIterator())); 4929 } else { 4930 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4931 } 4932 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4933 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4934 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 4935 auto &Locs = ExternallyUsedValues[Scalar]; 4936 ExternallyUsedValues.insert({Ex, Locs}); 4937 ExternallyUsedValues.erase(Scalar); 4938 // Required to update internally referenced instructions. 4939 Scalar->replaceAllUsesWith(Ex); 4940 continue; 4941 } 4942 4943 // Generate extracts for out-of-tree users. 4944 // Find the insertion point for the extractelement lane. 4945 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4946 if (PHINode *PH = dyn_cast<PHINode>(User)) { 4947 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 4948 if (PH->getIncomingValue(i) == Scalar) { 4949 Instruction *IncomingTerminator = 4950 PH->getIncomingBlock(i)->getTerminator(); 4951 if (isa<CatchSwitchInst>(IncomingTerminator)) { 4952 Builder.SetInsertPoint(VecI->getParent(), 4953 std::next(VecI->getIterator())); 4954 } else { 4955 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 4956 } 4957 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4958 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4959 CSEBlocks.insert(PH->getIncomingBlock(i)); 4960 PH->setOperand(i, Ex); 4961 } 4962 } 4963 } else { 4964 Builder.SetInsertPoint(cast<Instruction>(User)); 4965 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4966 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4967 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 4968 User->replaceUsesOfWith(Scalar, Ex); 4969 } 4970 } else { 4971 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4972 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4973 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4974 CSEBlocks.insert(&F->getEntryBlock()); 4975 User->replaceUsesOfWith(Scalar, Ex); 4976 } 4977 4978 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 4979 } 4980 4981 // For each vectorized value: 4982 for (auto &TEPtr : VectorizableTree) { 4983 TreeEntry *Entry = TEPtr.get(); 4984 4985 // No need to handle users of gathered values. 4986 if (Entry->State == TreeEntry::NeedToGather) 4987 continue; 4988 4989 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 4990 4991 // For each lane: 4992 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 4993 Value *Scalar = Entry->Scalars[Lane]; 4994 4995 #ifndef NDEBUG 4996 Type *Ty = Scalar->getType(); 4997 if (!Ty->isVoidTy()) { 4998 for (User *U : Scalar->users()) { 4999 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 5000 5001 // It is legal to delete users in the ignorelist. 5002 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 5003 "Deleting out-of-tree value"); 5004 } 5005 } 5006 #endif 5007 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 5008 eraseInstruction(cast<Instruction>(Scalar)); 5009 } 5010 } 5011 5012 Builder.ClearInsertionPoint(); 5013 InstrElementSize.clear(); 5014 5015 return VectorizableTree[0]->VectorizedValue; 5016 } 5017 5018 void BoUpSLP::optimizeGatherSequence() { 5019 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 5020 << " gather sequences instructions.\n"); 5021 // LICM InsertElementInst sequences. 5022 for (Instruction *I : GatherSeq) { 5023 if (isDeleted(I)) 5024 continue; 5025 5026 // Check if this block is inside a loop. 5027 Loop *L = LI->getLoopFor(I->getParent()); 5028 if (!L) 5029 continue; 5030 5031 // Check if it has a preheader. 5032 BasicBlock *PreHeader = L->getLoopPreheader(); 5033 if (!PreHeader) 5034 continue; 5035 5036 // If the vector or the element that we insert into it are 5037 // instructions that are defined in this basic block then we can't 5038 // hoist this instruction. 5039 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 5040 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 5041 if (Op0 && L->contains(Op0)) 5042 continue; 5043 if (Op1 && L->contains(Op1)) 5044 continue; 5045 5046 // We can hoist this instruction. Move it to the pre-header. 5047 I->moveBefore(PreHeader->getTerminator()); 5048 } 5049 5050 // Make a list of all reachable blocks in our CSE queue. 5051 SmallVector<const DomTreeNode *, 8> CSEWorkList; 5052 CSEWorkList.reserve(CSEBlocks.size()); 5053 for (BasicBlock *BB : CSEBlocks) 5054 if (DomTreeNode *N = DT->getNode(BB)) { 5055 assert(DT->isReachableFromEntry(N)); 5056 CSEWorkList.push_back(N); 5057 } 5058 5059 // Sort blocks by domination. This ensures we visit a block after all blocks 5060 // dominating it are visited. 5061 llvm::stable_sort(CSEWorkList, 5062 [this](const DomTreeNode *A, const DomTreeNode *B) { 5063 return DT->properlyDominates(A, B); 5064 }); 5065 5066 // Perform O(N^2) search over the gather sequences and merge identical 5067 // instructions. TODO: We can further optimize this scan if we split the 5068 // instructions into different buckets based on the insert lane. 5069 SmallVector<Instruction *, 16> Visited; 5070 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 5071 assert(*I && 5072 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 5073 "Worklist not sorted properly!"); 5074 BasicBlock *BB = (*I)->getBlock(); 5075 // For all instructions in blocks containing gather sequences: 5076 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 5077 Instruction *In = &*it++; 5078 if (isDeleted(In)) 5079 continue; 5080 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 5081 continue; 5082 5083 // Check if we can replace this instruction with any of the 5084 // visited instructions. 5085 for (Instruction *v : Visited) { 5086 if (In->isIdenticalTo(v) && 5087 DT->dominates(v->getParent(), In->getParent())) { 5088 In->replaceAllUsesWith(v); 5089 eraseInstruction(In); 5090 In = nullptr; 5091 break; 5092 } 5093 } 5094 if (In) { 5095 assert(!is_contained(Visited, In)); 5096 Visited.push_back(In); 5097 } 5098 } 5099 } 5100 CSEBlocks.clear(); 5101 GatherSeq.clear(); 5102 } 5103 5104 // Groups the instructions to a bundle (which is then a single scheduling entity) 5105 // and schedules instructions until the bundle gets ready. 5106 Optional<BoUpSLP::ScheduleData *> 5107 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 5108 const InstructionsState &S) { 5109 if (isa<PHINode>(S.OpValue)) 5110 return nullptr; 5111 5112 // Initialize the instruction bundle. 5113 Instruction *OldScheduleEnd = ScheduleEnd; 5114 ScheduleData *PrevInBundle = nullptr; 5115 ScheduleData *Bundle = nullptr; 5116 bool ReSchedule = false; 5117 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 5118 5119 // Make sure that the scheduling region contains all 5120 // instructions of the bundle. 5121 for (Value *V : VL) { 5122 if (!extendSchedulingRegion(V, S)) 5123 return None; 5124 } 5125 5126 for (Value *V : VL) { 5127 ScheduleData *BundleMember = getScheduleData(V); 5128 assert(BundleMember && 5129 "no ScheduleData for bundle member (maybe not in same basic block)"); 5130 if (BundleMember->IsScheduled) { 5131 // A bundle member was scheduled as single instruction before and now 5132 // needs to be scheduled as part of the bundle. We just get rid of the 5133 // existing schedule. 5134 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 5135 << " was already scheduled\n"); 5136 ReSchedule = true; 5137 } 5138 assert(BundleMember->isSchedulingEntity() && 5139 "bundle member already part of other bundle"); 5140 if (PrevInBundle) { 5141 PrevInBundle->NextInBundle = BundleMember; 5142 } else { 5143 Bundle = BundleMember; 5144 } 5145 BundleMember->UnscheduledDepsInBundle = 0; 5146 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 5147 5148 // Group the instructions to a bundle. 5149 BundleMember->FirstInBundle = Bundle; 5150 PrevInBundle = BundleMember; 5151 } 5152 if (ScheduleEnd != OldScheduleEnd) { 5153 // The scheduling region got new instructions at the lower end (or it is a 5154 // new region for the first bundle). This makes it necessary to 5155 // recalculate all dependencies. 5156 // It is seldom that this needs to be done a second time after adding the 5157 // initial bundle to the region. 5158 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 5159 doForAllOpcodes(I, [](ScheduleData *SD) { 5160 SD->clearDependencies(); 5161 }); 5162 } 5163 ReSchedule = true; 5164 } 5165 if (ReSchedule) { 5166 resetSchedule(); 5167 initialFillReadyList(ReadyInsts); 5168 } 5169 assert(Bundle && "Failed to find schedule bundle"); 5170 5171 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 5172 << BB->getName() << "\n"); 5173 5174 calculateDependencies(Bundle, true, SLP); 5175 5176 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 5177 // means that there are no cyclic dependencies and we can schedule it. 5178 // Note that's important that we don't "schedule" the bundle yet (see 5179 // cancelScheduling). 5180 while (!Bundle->isReady() && !ReadyInsts.empty()) { 5181 5182 ScheduleData *pickedSD = ReadyInsts.back(); 5183 ReadyInsts.pop_back(); 5184 5185 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 5186 schedule(pickedSD, ReadyInsts); 5187 } 5188 } 5189 if (!Bundle->isReady()) { 5190 cancelScheduling(VL, S.OpValue); 5191 return None; 5192 } 5193 return Bundle; 5194 } 5195 5196 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 5197 Value *OpValue) { 5198 if (isa<PHINode>(OpValue)) 5199 return; 5200 5201 ScheduleData *Bundle = getScheduleData(OpValue); 5202 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 5203 assert(!Bundle->IsScheduled && 5204 "Can't cancel bundle which is already scheduled"); 5205 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 5206 "tried to unbundle something which is not a bundle"); 5207 5208 // Un-bundle: make single instructions out of the bundle. 5209 ScheduleData *BundleMember = Bundle; 5210 while (BundleMember) { 5211 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 5212 BundleMember->FirstInBundle = BundleMember; 5213 ScheduleData *Next = BundleMember->NextInBundle; 5214 BundleMember->NextInBundle = nullptr; 5215 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 5216 if (BundleMember->UnscheduledDepsInBundle == 0) { 5217 ReadyInsts.insert(BundleMember); 5218 } 5219 BundleMember = Next; 5220 } 5221 } 5222 5223 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 5224 // Allocate a new ScheduleData for the instruction. 5225 if (ChunkPos >= ChunkSize) { 5226 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 5227 ChunkPos = 0; 5228 } 5229 return &(ScheduleDataChunks.back()[ChunkPos++]); 5230 } 5231 5232 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 5233 const InstructionsState &S) { 5234 if (getScheduleData(V, isOneOf(S, V))) 5235 return true; 5236 Instruction *I = dyn_cast<Instruction>(V); 5237 assert(I && "bundle member must be an instruction"); 5238 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 5239 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 5240 ScheduleData *ISD = getScheduleData(I); 5241 if (!ISD) 5242 return false; 5243 assert(isInSchedulingRegion(ISD) && 5244 "ScheduleData not in scheduling region"); 5245 ScheduleData *SD = allocateScheduleDataChunks(); 5246 SD->Inst = I; 5247 SD->init(SchedulingRegionID, S.OpValue); 5248 ExtraScheduleDataMap[I][S.OpValue] = SD; 5249 return true; 5250 }; 5251 if (CheckSheduleForI(I)) 5252 return true; 5253 if (!ScheduleStart) { 5254 // It's the first instruction in the new region. 5255 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 5256 ScheduleStart = I; 5257 ScheduleEnd = I->getNextNode(); 5258 if (isOneOf(S, I) != I) 5259 CheckSheduleForI(I); 5260 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5261 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 5262 return true; 5263 } 5264 // Search up and down at the same time, because we don't know if the new 5265 // instruction is above or below the existing scheduling region. 5266 BasicBlock::reverse_iterator UpIter = 5267 ++ScheduleStart->getIterator().getReverse(); 5268 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 5269 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 5270 BasicBlock::iterator LowerEnd = BB->end(); 5271 while (true) { 5272 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 5273 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 5274 return false; 5275 } 5276 5277 if (UpIter != UpperEnd) { 5278 if (&*UpIter == I) { 5279 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 5280 ScheduleStart = I; 5281 if (isOneOf(S, I) != I) 5282 CheckSheduleForI(I); 5283 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 5284 << "\n"); 5285 return true; 5286 } 5287 ++UpIter; 5288 } 5289 if (DownIter != LowerEnd) { 5290 if (&*DownIter == I) { 5291 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 5292 nullptr); 5293 ScheduleEnd = I->getNextNode(); 5294 if (isOneOf(S, I) != I) 5295 CheckSheduleForI(I); 5296 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5297 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I 5298 << "\n"); 5299 return true; 5300 } 5301 ++DownIter; 5302 } 5303 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 5304 "instruction not found in block"); 5305 } 5306 return true; 5307 } 5308 5309 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 5310 Instruction *ToI, 5311 ScheduleData *PrevLoadStore, 5312 ScheduleData *NextLoadStore) { 5313 ScheduleData *CurrentLoadStore = PrevLoadStore; 5314 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 5315 ScheduleData *SD = ScheduleDataMap[I]; 5316 if (!SD) { 5317 SD = allocateScheduleDataChunks(); 5318 ScheduleDataMap[I] = SD; 5319 SD->Inst = I; 5320 } 5321 assert(!isInSchedulingRegion(SD) && 5322 "new ScheduleData already in scheduling region"); 5323 SD->init(SchedulingRegionID, I); 5324 5325 if (I->mayReadOrWriteMemory() && 5326 (!isa<IntrinsicInst>(I) || 5327 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 5328 cast<IntrinsicInst>(I)->getIntrinsicID() != 5329 Intrinsic::pseudoprobe))) { 5330 // Update the linked list of memory accessing instructions. 5331 if (CurrentLoadStore) { 5332 CurrentLoadStore->NextLoadStore = SD; 5333 } else { 5334 FirstLoadStoreInRegion = SD; 5335 } 5336 CurrentLoadStore = SD; 5337 } 5338 } 5339 if (NextLoadStore) { 5340 if (CurrentLoadStore) 5341 CurrentLoadStore->NextLoadStore = NextLoadStore; 5342 } else { 5343 LastLoadStoreInRegion = CurrentLoadStore; 5344 } 5345 } 5346 5347 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 5348 bool InsertInReadyList, 5349 BoUpSLP *SLP) { 5350 assert(SD->isSchedulingEntity()); 5351 5352 SmallVector<ScheduleData *, 10> WorkList; 5353 WorkList.push_back(SD); 5354 5355 while (!WorkList.empty()) { 5356 ScheduleData *SD = WorkList.back(); 5357 WorkList.pop_back(); 5358 5359 ScheduleData *BundleMember = SD; 5360 while (BundleMember) { 5361 assert(isInSchedulingRegion(BundleMember)); 5362 if (!BundleMember->hasValidDependencies()) { 5363 5364 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 5365 << "\n"); 5366 BundleMember->Dependencies = 0; 5367 BundleMember->resetUnscheduledDeps(); 5368 5369 // Handle def-use chain dependencies. 5370 if (BundleMember->OpValue != BundleMember->Inst) { 5371 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 5372 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5373 BundleMember->Dependencies++; 5374 ScheduleData *DestBundle = UseSD->FirstInBundle; 5375 if (!DestBundle->IsScheduled) 5376 BundleMember->incrementUnscheduledDeps(1); 5377 if (!DestBundle->hasValidDependencies()) 5378 WorkList.push_back(DestBundle); 5379 } 5380 } else { 5381 for (User *U : BundleMember->Inst->users()) { 5382 if (isa<Instruction>(U)) { 5383 ScheduleData *UseSD = getScheduleData(U); 5384 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5385 BundleMember->Dependencies++; 5386 ScheduleData *DestBundle = UseSD->FirstInBundle; 5387 if (!DestBundle->IsScheduled) 5388 BundleMember->incrementUnscheduledDeps(1); 5389 if (!DestBundle->hasValidDependencies()) 5390 WorkList.push_back(DestBundle); 5391 } 5392 } else { 5393 // I'm not sure if this can ever happen. But we need to be safe. 5394 // This lets the instruction/bundle never be scheduled and 5395 // eventually disable vectorization. 5396 BundleMember->Dependencies++; 5397 BundleMember->incrementUnscheduledDeps(1); 5398 } 5399 } 5400 } 5401 5402 // Handle the memory dependencies. 5403 ScheduleData *DepDest = BundleMember->NextLoadStore; 5404 if (DepDest) { 5405 Instruction *SrcInst = BundleMember->Inst; 5406 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 5407 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 5408 unsigned numAliased = 0; 5409 unsigned DistToSrc = 1; 5410 5411 while (DepDest) { 5412 assert(isInSchedulingRegion(DepDest)); 5413 5414 // We have two limits to reduce the complexity: 5415 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 5416 // SLP->isAliased (which is the expensive part in this loop). 5417 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 5418 // the whole loop (even if the loop is fast, it's quadratic). 5419 // It's important for the loop break condition (see below) to 5420 // check this limit even between two read-only instructions. 5421 if (DistToSrc >= MaxMemDepDistance || 5422 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 5423 (numAliased >= AliasedCheckLimit || 5424 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 5425 5426 // We increment the counter only if the locations are aliased 5427 // (instead of counting all alias checks). This gives a better 5428 // balance between reduced runtime and accurate dependencies. 5429 numAliased++; 5430 5431 DepDest->MemoryDependencies.push_back(BundleMember); 5432 BundleMember->Dependencies++; 5433 ScheduleData *DestBundle = DepDest->FirstInBundle; 5434 if (!DestBundle->IsScheduled) { 5435 BundleMember->incrementUnscheduledDeps(1); 5436 } 5437 if (!DestBundle->hasValidDependencies()) { 5438 WorkList.push_back(DestBundle); 5439 } 5440 } 5441 DepDest = DepDest->NextLoadStore; 5442 5443 // Example, explaining the loop break condition: Let's assume our 5444 // starting instruction is i0 and MaxMemDepDistance = 3. 5445 // 5446 // +--------v--v--v 5447 // i0,i1,i2,i3,i4,i5,i6,i7,i8 5448 // +--------^--^--^ 5449 // 5450 // MaxMemDepDistance let us stop alias-checking at i3 and we add 5451 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 5452 // Previously we already added dependencies from i3 to i6,i7,i8 5453 // (because of MaxMemDepDistance). As we added a dependency from 5454 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 5455 // and we can abort this loop at i6. 5456 if (DistToSrc >= 2 * MaxMemDepDistance) 5457 break; 5458 DistToSrc++; 5459 } 5460 } 5461 } 5462 BundleMember = BundleMember->NextInBundle; 5463 } 5464 if (InsertInReadyList && SD->isReady()) { 5465 ReadyInsts.push_back(SD); 5466 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 5467 << "\n"); 5468 } 5469 } 5470 } 5471 5472 void BoUpSLP::BlockScheduling::resetSchedule() { 5473 assert(ScheduleStart && 5474 "tried to reset schedule on block which has not been scheduled"); 5475 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 5476 doForAllOpcodes(I, [&](ScheduleData *SD) { 5477 assert(isInSchedulingRegion(SD) && 5478 "ScheduleData not in scheduling region"); 5479 SD->IsScheduled = false; 5480 SD->resetUnscheduledDeps(); 5481 }); 5482 } 5483 ReadyInsts.clear(); 5484 } 5485 5486 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 5487 if (!BS->ScheduleStart) 5488 return; 5489 5490 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 5491 5492 BS->resetSchedule(); 5493 5494 // For the real scheduling we use a more sophisticated ready-list: it is 5495 // sorted by the original instruction location. This lets the final schedule 5496 // be as close as possible to the original instruction order. 5497 struct ScheduleDataCompare { 5498 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 5499 return SD2->SchedulingPriority < SD1->SchedulingPriority; 5500 } 5501 }; 5502 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 5503 5504 // Ensure that all dependency data is updated and fill the ready-list with 5505 // initial instructions. 5506 int Idx = 0; 5507 int NumToSchedule = 0; 5508 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 5509 I = I->getNextNode()) { 5510 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 5511 assert(SD->isPartOfBundle() == 5512 (getTreeEntry(SD->Inst) != nullptr) && 5513 "scheduler and vectorizer bundle mismatch"); 5514 SD->FirstInBundle->SchedulingPriority = Idx++; 5515 if (SD->isSchedulingEntity()) { 5516 BS->calculateDependencies(SD, false, this); 5517 NumToSchedule++; 5518 } 5519 }); 5520 } 5521 BS->initialFillReadyList(ReadyInsts); 5522 5523 Instruction *LastScheduledInst = BS->ScheduleEnd; 5524 5525 // Do the "real" scheduling. 5526 while (!ReadyInsts.empty()) { 5527 ScheduleData *picked = *ReadyInsts.begin(); 5528 ReadyInsts.erase(ReadyInsts.begin()); 5529 5530 // Move the scheduled instruction(s) to their dedicated places, if not 5531 // there yet. 5532 ScheduleData *BundleMember = picked; 5533 while (BundleMember) { 5534 Instruction *pickedInst = BundleMember->Inst; 5535 if (LastScheduledInst->getNextNode() != pickedInst) { 5536 BS->BB->getInstList().remove(pickedInst); 5537 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 5538 pickedInst); 5539 } 5540 LastScheduledInst = pickedInst; 5541 BundleMember = BundleMember->NextInBundle; 5542 } 5543 5544 BS->schedule(picked, ReadyInsts); 5545 NumToSchedule--; 5546 } 5547 assert(NumToSchedule == 0 && "could not schedule all instructions"); 5548 5549 // Avoid duplicate scheduling of the block. 5550 BS->ScheduleStart = nullptr; 5551 } 5552 5553 unsigned BoUpSLP::getVectorElementSize(Value *V) { 5554 // If V is a store, just return the width of the stored value (or value 5555 // truncated just before storing) without traversing the expression tree. 5556 // This is the common case. 5557 if (auto *Store = dyn_cast<StoreInst>(V)) { 5558 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 5559 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 5560 else 5561 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 5562 } 5563 5564 auto E = InstrElementSize.find(V); 5565 if (E != InstrElementSize.end()) 5566 return E->second; 5567 5568 // If V is not a store, we can traverse the expression tree to find loads 5569 // that feed it. The type of the loaded value may indicate a more suitable 5570 // width than V's type. We want to base the vector element size on the width 5571 // of memory operations where possible. 5572 SmallVector<Instruction *, 16> Worklist; 5573 SmallPtrSet<Instruction *, 16> Visited; 5574 if (auto *I = dyn_cast<Instruction>(V)) { 5575 Worklist.push_back(I); 5576 Visited.insert(I); 5577 } 5578 5579 // Traverse the expression tree in bottom-up order looking for loads. If we 5580 // encounter an instruction we don't yet handle, we give up. 5581 auto MaxWidth = 0u; 5582 auto FoundUnknownInst = false; 5583 while (!Worklist.empty() && !FoundUnknownInst) { 5584 auto *I = Worklist.pop_back_val(); 5585 5586 // We should only be looking at scalar instructions here. If the current 5587 // instruction has a vector type, give up. 5588 auto *Ty = I->getType(); 5589 if (isa<VectorType>(Ty)) 5590 FoundUnknownInst = true; 5591 5592 // If the current instruction is a load, update MaxWidth to reflect the 5593 // width of the loaded value. 5594 else if (isa<LoadInst>(I)) 5595 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 5596 5597 // Otherwise, we need to visit the operands of the instruction. We only 5598 // handle the interesting cases from buildTree here. If an operand is an 5599 // instruction we haven't yet visited, we add it to the worklist. 5600 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5601 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 5602 for (Use &U : I->operands()) 5603 if (auto *J = dyn_cast<Instruction>(U.get())) 5604 if (Visited.insert(J).second) 5605 Worklist.push_back(J); 5606 } 5607 5608 // If we don't yet handle the instruction, give up. 5609 else 5610 FoundUnknownInst = true; 5611 } 5612 5613 int Width = MaxWidth; 5614 // If we didn't encounter a memory access in the expression tree, or if we 5615 // gave up for some reason, just return the width of V. Otherwise, return the 5616 // maximum width we found. 5617 if (!MaxWidth || FoundUnknownInst) 5618 Width = DL->getTypeSizeInBits(V->getType()); 5619 5620 for (Instruction *I : Visited) 5621 InstrElementSize[I] = Width; 5622 5623 return Width; 5624 } 5625 5626 // Determine if a value V in a vectorizable expression Expr can be demoted to a 5627 // smaller type with a truncation. We collect the values that will be demoted 5628 // in ToDemote and additional roots that require investigating in Roots. 5629 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 5630 SmallVectorImpl<Value *> &ToDemote, 5631 SmallVectorImpl<Value *> &Roots) { 5632 // We can always demote constants. 5633 if (isa<Constant>(V)) { 5634 ToDemote.push_back(V); 5635 return true; 5636 } 5637 5638 // If the value is not an instruction in the expression with only one use, it 5639 // cannot be demoted. 5640 auto *I = dyn_cast<Instruction>(V); 5641 if (!I || !I->hasOneUse() || !Expr.count(I)) 5642 return false; 5643 5644 switch (I->getOpcode()) { 5645 5646 // We can always demote truncations and extensions. Since truncations can 5647 // seed additional demotion, we save the truncated value. 5648 case Instruction::Trunc: 5649 Roots.push_back(I->getOperand(0)); 5650 break; 5651 case Instruction::ZExt: 5652 case Instruction::SExt: 5653 break; 5654 5655 // We can demote certain binary operations if we can demote both of their 5656 // operands. 5657 case Instruction::Add: 5658 case Instruction::Sub: 5659 case Instruction::Mul: 5660 case Instruction::And: 5661 case Instruction::Or: 5662 case Instruction::Xor: 5663 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 5664 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 5665 return false; 5666 break; 5667 5668 // We can demote selects if we can demote their true and false values. 5669 case Instruction::Select: { 5670 SelectInst *SI = cast<SelectInst>(I); 5671 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 5672 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 5673 return false; 5674 break; 5675 } 5676 5677 // We can demote phis if we can demote all their incoming operands. Note that 5678 // we don't need to worry about cycles since we ensure single use above. 5679 case Instruction::PHI: { 5680 PHINode *PN = cast<PHINode>(I); 5681 for (Value *IncValue : PN->incoming_values()) 5682 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 5683 return false; 5684 break; 5685 } 5686 5687 // Otherwise, conservatively give up. 5688 default: 5689 return false; 5690 } 5691 5692 // Record the value that we can demote. 5693 ToDemote.push_back(V); 5694 return true; 5695 } 5696 5697 void BoUpSLP::computeMinimumValueSizes() { 5698 // If there are no external uses, the expression tree must be rooted by a 5699 // store. We can't demote in-memory values, so there is nothing to do here. 5700 if (ExternalUses.empty()) 5701 return; 5702 5703 // We only attempt to truncate integer expressions. 5704 auto &TreeRoot = VectorizableTree[0]->Scalars; 5705 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 5706 if (!TreeRootIT) 5707 return; 5708 5709 // If the expression is not rooted by a store, these roots should have 5710 // external uses. We will rely on InstCombine to rewrite the expression in 5711 // the narrower type. However, InstCombine only rewrites single-use values. 5712 // This means that if a tree entry other than a root is used externally, it 5713 // must have multiple uses and InstCombine will not rewrite it. The code 5714 // below ensures that only the roots are used externally. 5715 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 5716 for (auto &EU : ExternalUses) 5717 if (!Expr.erase(EU.Scalar)) 5718 return; 5719 if (!Expr.empty()) 5720 return; 5721 5722 // Collect the scalar values of the vectorizable expression. We will use this 5723 // context to determine which values can be demoted. If we see a truncation, 5724 // we mark it as seeding another demotion. 5725 for (auto &EntryPtr : VectorizableTree) 5726 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 5727 5728 // Ensure the roots of the vectorizable tree don't form a cycle. They must 5729 // have a single external user that is not in the vectorizable tree. 5730 for (auto *Root : TreeRoot) 5731 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 5732 return; 5733 5734 // Conservatively determine if we can actually truncate the roots of the 5735 // expression. Collect the values that can be demoted in ToDemote and 5736 // additional roots that require investigating in Roots. 5737 SmallVector<Value *, 32> ToDemote; 5738 SmallVector<Value *, 4> Roots; 5739 for (auto *Root : TreeRoot) 5740 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 5741 return; 5742 5743 // The maximum bit width required to represent all the values that can be 5744 // demoted without loss of precision. It would be safe to truncate the roots 5745 // of the expression to this width. 5746 auto MaxBitWidth = 8u; 5747 5748 // We first check if all the bits of the roots are demanded. If they're not, 5749 // we can truncate the roots to this narrower type. 5750 for (auto *Root : TreeRoot) { 5751 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 5752 MaxBitWidth = std::max<unsigned>( 5753 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 5754 } 5755 5756 // True if the roots can be zero-extended back to their original type, rather 5757 // than sign-extended. We know that if the leading bits are not demanded, we 5758 // can safely zero-extend. So we initialize IsKnownPositive to True. 5759 bool IsKnownPositive = true; 5760 5761 // If all the bits of the roots are demanded, we can try a little harder to 5762 // compute a narrower type. This can happen, for example, if the roots are 5763 // getelementptr indices. InstCombine promotes these indices to the pointer 5764 // width. Thus, all their bits are technically demanded even though the 5765 // address computation might be vectorized in a smaller type. 5766 // 5767 // We start by looking at each entry that can be demoted. We compute the 5768 // maximum bit width required to store the scalar by using ValueTracking to 5769 // compute the number of high-order bits we can truncate. 5770 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 5771 llvm::all_of(TreeRoot, [](Value *R) { 5772 assert(R->hasOneUse() && "Root should have only one use!"); 5773 return isa<GetElementPtrInst>(R->user_back()); 5774 })) { 5775 MaxBitWidth = 8u; 5776 5777 // Determine if the sign bit of all the roots is known to be zero. If not, 5778 // IsKnownPositive is set to False. 5779 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 5780 KnownBits Known = computeKnownBits(R, *DL); 5781 return Known.isNonNegative(); 5782 }); 5783 5784 // Determine the maximum number of bits required to store the scalar 5785 // values. 5786 for (auto *Scalar : ToDemote) { 5787 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 5788 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 5789 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 5790 } 5791 5792 // If we can't prove that the sign bit is zero, we must add one to the 5793 // maximum bit width to account for the unknown sign bit. This preserves 5794 // the existing sign bit so we can safely sign-extend the root back to the 5795 // original type. Otherwise, if we know the sign bit is zero, we will 5796 // zero-extend the root instead. 5797 // 5798 // FIXME: This is somewhat suboptimal, as there will be cases where adding 5799 // one to the maximum bit width will yield a larger-than-necessary 5800 // type. In general, we need to add an extra bit only if we can't 5801 // prove that the upper bit of the original type is equal to the 5802 // upper bit of the proposed smaller type. If these two bits are the 5803 // same (either zero or one) we know that sign-extending from the 5804 // smaller type will result in the same value. Here, since we can't 5805 // yet prove this, we are just making the proposed smaller type 5806 // larger to ensure correctness. 5807 if (!IsKnownPositive) 5808 ++MaxBitWidth; 5809 } 5810 5811 // Round MaxBitWidth up to the next power-of-two. 5812 if (!isPowerOf2_64(MaxBitWidth)) 5813 MaxBitWidth = NextPowerOf2(MaxBitWidth); 5814 5815 // If the maximum bit width we compute is less than the with of the roots' 5816 // type, we can proceed with the narrowing. Otherwise, do nothing. 5817 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 5818 return; 5819 5820 // If we can truncate the root, we must collect additional values that might 5821 // be demoted as a result. That is, those seeded by truncations we will 5822 // modify. 5823 while (!Roots.empty()) 5824 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 5825 5826 // Finally, map the values we can demote to the maximum bit with we computed. 5827 for (auto *Scalar : ToDemote) 5828 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 5829 } 5830 5831 namespace { 5832 5833 /// The SLPVectorizer Pass. 5834 struct SLPVectorizer : public FunctionPass { 5835 SLPVectorizerPass Impl; 5836 5837 /// Pass identification, replacement for typeid 5838 static char ID; 5839 5840 explicit SLPVectorizer() : FunctionPass(ID) { 5841 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 5842 } 5843 5844 bool doInitialization(Module &M) override { 5845 return false; 5846 } 5847 5848 bool runOnFunction(Function &F) override { 5849 if (skipFunction(F)) 5850 return false; 5851 5852 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5853 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 5854 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 5855 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 5856 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 5857 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5858 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5859 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 5860 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 5861 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 5862 5863 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5864 } 5865 5866 void getAnalysisUsage(AnalysisUsage &AU) const override { 5867 FunctionPass::getAnalysisUsage(AU); 5868 AU.addRequired<AssumptionCacheTracker>(); 5869 AU.addRequired<ScalarEvolutionWrapperPass>(); 5870 AU.addRequired<AAResultsWrapperPass>(); 5871 AU.addRequired<TargetTransformInfoWrapperPass>(); 5872 AU.addRequired<LoopInfoWrapperPass>(); 5873 AU.addRequired<DominatorTreeWrapperPass>(); 5874 AU.addRequired<DemandedBitsWrapperPass>(); 5875 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 5876 AU.addRequired<InjectTLIMappingsLegacy>(); 5877 AU.addPreserved<LoopInfoWrapperPass>(); 5878 AU.addPreserved<DominatorTreeWrapperPass>(); 5879 AU.addPreserved<AAResultsWrapperPass>(); 5880 AU.addPreserved<GlobalsAAWrapperPass>(); 5881 AU.setPreservesCFG(); 5882 } 5883 }; 5884 5885 } // end anonymous namespace 5886 5887 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 5888 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 5889 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 5890 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 5891 auto *AA = &AM.getResult<AAManager>(F); 5892 auto *LI = &AM.getResult<LoopAnalysis>(F); 5893 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 5894 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 5895 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 5896 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 5897 5898 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5899 if (!Changed) 5900 return PreservedAnalyses::all(); 5901 5902 PreservedAnalyses PA; 5903 PA.preserveSet<CFGAnalyses>(); 5904 PA.preserve<AAManager>(); 5905 PA.preserve<GlobalsAA>(); 5906 return PA; 5907 } 5908 5909 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 5910 TargetTransformInfo *TTI_, 5911 TargetLibraryInfo *TLI_, AAResults *AA_, 5912 LoopInfo *LI_, DominatorTree *DT_, 5913 AssumptionCache *AC_, DemandedBits *DB_, 5914 OptimizationRemarkEmitter *ORE_) { 5915 if (!RunSLPVectorization) 5916 return false; 5917 SE = SE_; 5918 TTI = TTI_; 5919 TLI = TLI_; 5920 AA = AA_; 5921 LI = LI_; 5922 DT = DT_; 5923 AC = AC_; 5924 DB = DB_; 5925 DL = &F.getParent()->getDataLayout(); 5926 5927 Stores.clear(); 5928 GEPs.clear(); 5929 bool Changed = false; 5930 5931 // If the target claims to have no vector registers don't attempt 5932 // vectorization. 5933 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 5934 return false; 5935 5936 // Don't vectorize when the attribute NoImplicitFloat is used. 5937 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 5938 return false; 5939 5940 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 5941 5942 // Use the bottom up slp vectorizer to construct chains that start with 5943 // store instructions. 5944 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 5945 5946 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 5947 // delete instructions. 5948 5949 // Scan the blocks in the function in post order. 5950 for (auto BB : post_order(&F.getEntryBlock())) { 5951 collectSeedInstructions(BB); 5952 5953 // Vectorize trees that end at stores. 5954 if (!Stores.empty()) { 5955 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 5956 << " underlying objects.\n"); 5957 Changed |= vectorizeStoreChains(R); 5958 } 5959 5960 // Vectorize trees that end at reductions. 5961 Changed |= vectorizeChainsInBlock(BB, R); 5962 5963 // Vectorize the index computations of getelementptr instructions. This 5964 // is primarily intended to catch gather-like idioms ending at 5965 // non-consecutive loads. 5966 if (!GEPs.empty()) { 5967 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 5968 << " underlying objects.\n"); 5969 Changed |= vectorizeGEPIndices(BB, R); 5970 } 5971 } 5972 5973 if (Changed) { 5974 R.optimizeGatherSequence(); 5975 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 5976 } 5977 return Changed; 5978 } 5979 5980 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 5981 unsigned Idx) { 5982 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 5983 << "\n"); 5984 const unsigned Sz = R.getVectorElementSize(Chain[0]); 5985 const unsigned MinVF = R.getMinVecRegSize() / Sz; 5986 unsigned VF = Chain.size(); 5987 5988 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 5989 return false; 5990 5991 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 5992 << "\n"); 5993 5994 R.buildTree(Chain); 5995 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 5996 // TODO: Handle orders of size less than number of elements in the vector. 5997 if (Order && Order->size() == Chain.size()) { 5998 // TODO: reorder tree nodes without tree rebuilding. 5999 SmallVector<Value *, 4> ReorderedOps(Chain.rbegin(), Chain.rend()); 6000 llvm::transform(*Order, ReorderedOps.begin(), 6001 [Chain](const unsigned Idx) { return Chain[Idx]; }); 6002 R.buildTree(ReorderedOps); 6003 } 6004 if (R.isTreeTinyAndNotFullyVectorizable()) 6005 return false; 6006 if (R.isLoadCombineCandidate()) 6007 return false; 6008 6009 R.computeMinimumValueSizes(); 6010 6011 InstructionCost Cost = R.getTreeCost(); 6012 6013 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 6014 if (Cost.isValid() && Cost < -SLPCostThreshold) { 6015 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 6016 6017 using namespace ore; 6018 6019 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 6020 cast<StoreInst>(Chain[0])) 6021 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 6022 << " and with tree size " 6023 << NV("TreeSize", R.getTreeSize())); 6024 6025 R.vectorizeTree(); 6026 return true; 6027 } 6028 6029 return false; 6030 } 6031 6032 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 6033 BoUpSLP &R) { 6034 // We may run into multiple chains that merge into a single chain. We mark the 6035 // stores that we vectorized so that we don't visit the same store twice. 6036 BoUpSLP::ValueSet VectorizedStores; 6037 bool Changed = false; 6038 6039 int E = Stores.size(); 6040 SmallBitVector Tails(E, false); 6041 SmallVector<int, 16> ConsecutiveChain(E, E + 1); 6042 int MaxIter = MaxStoreLookup.getValue(); 6043 int IterCnt; 6044 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 6045 &ConsecutiveChain](int K, int Idx) { 6046 if (IterCnt >= MaxIter) 6047 return true; 6048 ++IterCnt; 6049 if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) 6050 return false; 6051 6052 Tails.set(Idx); 6053 ConsecutiveChain[K] = Idx; 6054 return true; 6055 }; 6056 // Do a quadratic search on all of the given stores in reverse order and find 6057 // all of the pairs of stores that follow each other. 6058 for (int Idx = E - 1; Idx >= 0; --Idx) { 6059 // If a store has multiple consecutive store candidates, search according 6060 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 6061 // This is because usually pairing with immediate succeeding or preceding 6062 // candidate create the best chance to find slp vectorization opportunity. 6063 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 6064 IterCnt = 0; 6065 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 6066 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 6067 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 6068 break; 6069 } 6070 6071 // For stores that start but don't end a link in the chain: 6072 for (int Cnt = E; Cnt > 0; --Cnt) { 6073 int I = Cnt - 1; 6074 if (ConsecutiveChain[I] == E + 1 || Tails.test(I)) 6075 continue; 6076 // We found a store instr that starts a chain. Now follow the chain and try 6077 // to vectorize it. 6078 BoUpSLP::ValueList Operands; 6079 // Collect the chain into a list. 6080 while (I != E + 1 && !VectorizedStores.count(Stores[I])) { 6081 Operands.push_back(Stores[I]); 6082 // Move to the next value in the chain. 6083 I = ConsecutiveChain[I]; 6084 } 6085 6086 // If a vector register can't hold 1 element, we are done. 6087 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 6088 unsigned EltSize = R.getVectorElementSize(Operands[0]); 6089 if (MaxVecRegSize % EltSize != 0) 6090 continue; 6091 6092 unsigned MaxElts = MaxVecRegSize / EltSize; 6093 // FIXME: Is division-by-2 the correct step? Should we assert that the 6094 // register size is a power-of-2? 6095 unsigned StartIdx = 0; 6096 for (unsigned Size = llvm::PowerOf2Ceil(MaxElts); Size >= 2; Size /= 2) { 6097 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 6098 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 6099 if (!VectorizedStores.count(Slice.front()) && 6100 !VectorizedStores.count(Slice.back()) && 6101 vectorizeStoreChain(Slice, R, Cnt)) { 6102 // Mark the vectorized stores so that we don't vectorize them again. 6103 VectorizedStores.insert(Slice.begin(), Slice.end()); 6104 Changed = true; 6105 // If we vectorized initial block, no need to try to vectorize it 6106 // again. 6107 if (Cnt == StartIdx) 6108 StartIdx += Size; 6109 Cnt += Size; 6110 continue; 6111 } 6112 ++Cnt; 6113 } 6114 // Check if the whole array was vectorized already - exit. 6115 if (StartIdx >= Operands.size()) 6116 break; 6117 } 6118 } 6119 6120 return Changed; 6121 } 6122 6123 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 6124 // Initialize the collections. We will make a single pass over the block. 6125 Stores.clear(); 6126 GEPs.clear(); 6127 6128 // Visit the store and getelementptr instructions in BB and organize them in 6129 // Stores and GEPs according to the underlying objects of their pointer 6130 // operands. 6131 for (Instruction &I : *BB) { 6132 // Ignore store instructions that are volatile or have a pointer operand 6133 // that doesn't point to a scalar type. 6134 if (auto *SI = dyn_cast<StoreInst>(&I)) { 6135 if (!SI->isSimple()) 6136 continue; 6137 if (!isValidElementType(SI->getValueOperand()->getType())) 6138 continue; 6139 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 6140 } 6141 6142 // Ignore getelementptr instructions that have more than one index, a 6143 // constant index, or a pointer operand that doesn't point to a scalar 6144 // type. 6145 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 6146 auto Idx = GEP->idx_begin()->get(); 6147 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 6148 continue; 6149 if (!isValidElementType(Idx->getType())) 6150 continue; 6151 if (GEP->getType()->isVectorTy()) 6152 continue; 6153 GEPs[GEP->getPointerOperand()].push_back(GEP); 6154 } 6155 } 6156 } 6157 6158 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 6159 if (!A || !B) 6160 return false; 6161 Value *VL[] = {A, B}; 6162 return tryToVectorizeList(VL, R, /*AllowReorder=*/true); 6163 } 6164 6165 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 6166 bool AllowReorder, 6167 ArrayRef<Value *> InsertUses) { 6168 if (VL.size() < 2) 6169 return false; 6170 6171 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 6172 << VL.size() << ".\n"); 6173 6174 // Check that all of the parts are instructions of the same type, 6175 // we permit an alternate opcode via InstructionsState. 6176 InstructionsState S = getSameOpcode(VL); 6177 if (!S.getOpcode()) 6178 return false; 6179 6180 Instruction *I0 = cast<Instruction>(S.OpValue); 6181 // Make sure invalid types (including vector type) are rejected before 6182 // determining vectorization factor for scalar instructions. 6183 for (Value *V : VL) { 6184 Type *Ty = V->getType(); 6185 if (!isValidElementType(Ty)) { 6186 // NOTE: the following will give user internal llvm type name, which may 6187 // not be useful. 6188 R.getORE()->emit([&]() { 6189 std::string type_str; 6190 llvm::raw_string_ostream rso(type_str); 6191 Ty->print(rso); 6192 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 6193 << "Cannot SLP vectorize list: type " 6194 << rso.str() + " is unsupported by vectorizer"; 6195 }); 6196 return false; 6197 } 6198 } 6199 6200 unsigned Sz = R.getVectorElementSize(I0); 6201 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 6202 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 6203 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 6204 if (MaxVF < 2) { 6205 R.getORE()->emit([&]() { 6206 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 6207 << "Cannot SLP vectorize list: vectorization factor " 6208 << "less than 2 is not supported"; 6209 }); 6210 return false; 6211 } 6212 6213 bool Changed = false; 6214 bool CandidateFound = false; 6215 InstructionCost MinCost = SLPCostThreshold.getValue(); 6216 6217 bool CompensateUseCost = 6218 !InsertUses.empty() && llvm::all_of(InsertUses, [](const Value *V) { 6219 return V && isa<InsertElementInst>(V); 6220 }); 6221 assert((!CompensateUseCost || InsertUses.size() == VL.size()) && 6222 "Each scalar expected to have an associated InsertElement user."); 6223 6224 unsigned NextInst = 0, MaxInst = VL.size(); 6225 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 6226 // No actual vectorization should happen, if number of parts is the same as 6227 // provided vectorization factor (i.e. the scalar type is used for vector 6228 // code during codegen). 6229 auto *VecTy = FixedVectorType::get(VL[0]->getType(), VF); 6230 if (TTI->getNumberOfParts(VecTy) == VF) 6231 continue; 6232 for (unsigned I = NextInst; I < MaxInst; ++I) { 6233 unsigned OpsWidth = 0; 6234 6235 if (I + VF > MaxInst) 6236 OpsWidth = MaxInst - I; 6237 else 6238 OpsWidth = VF; 6239 6240 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 6241 break; 6242 6243 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 6244 // Check that a previous iteration of this loop did not delete the Value. 6245 if (llvm::any_of(Ops, [&R](Value *V) { 6246 auto *I = dyn_cast<Instruction>(V); 6247 return I && R.isDeleted(I); 6248 })) 6249 continue; 6250 6251 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 6252 << "\n"); 6253 6254 R.buildTree(Ops); 6255 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 6256 // TODO: check if we can allow reordering for more cases. 6257 if (AllowReorder && Order) { 6258 // TODO: reorder tree nodes without tree rebuilding. 6259 // Conceptually, there is nothing actually preventing us from trying to 6260 // reorder a larger list. In fact, we do exactly this when vectorizing 6261 // reductions. However, at this point, we only expect to get here when 6262 // there are exactly two operations. 6263 assert(Ops.size() == 2); 6264 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 6265 R.buildTree(ReorderedOps, None); 6266 } 6267 if (R.isTreeTinyAndNotFullyVectorizable()) 6268 continue; 6269 6270 R.computeMinimumValueSizes(); 6271 InstructionCost Cost = R.getTreeCost(); 6272 CandidateFound = true; 6273 if (CompensateUseCost) { 6274 // TODO: Use TTI's getScalarizationOverhead for sequence of inserts 6275 // rather than sum of single inserts as the latter may overestimate 6276 // cost. This work should imply improving cost estimation for extracts 6277 // that added in for external (for vectorization tree) users,i.e. that 6278 // part should also switch to same interface. 6279 // For example, the following case is projected code after SLP: 6280 // %4 = extractelement <4 x i64> %3, i32 0 6281 // %v0 = insertelement <4 x i64> undef, i64 %4, i32 0 6282 // %5 = extractelement <4 x i64> %3, i32 1 6283 // %v1 = insertelement <4 x i64> %v0, i64 %5, i32 1 6284 // %6 = extractelement <4 x i64> %3, i32 2 6285 // %v2 = insertelement <4 x i64> %v1, i64 %6, i32 2 6286 // %7 = extractelement <4 x i64> %3, i32 3 6287 // %v3 = insertelement <4 x i64> %v2, i64 %7, i32 3 6288 // 6289 // Extracts here added by SLP in order to feed users (the inserts) of 6290 // original scalars and contribute to "ExtractCost" at cost evaluation. 6291 // The inserts in turn form sequence to build an aggregate that 6292 // detected by findBuildAggregate routine. 6293 // SLP makes an assumption that such sequence will be optimized away 6294 // later (instcombine) so it tries to compensate ExctractCost with 6295 // cost of insert sequence. 6296 // Current per element cost calculation approach is not quite accurate 6297 // and tends to create bias toward favoring vectorization. 6298 // Switching to the TTI interface might help a bit. 6299 // Alternative solution could be pattern-match to detect a no-op or 6300 // shuffle. 6301 InstructionCost UserCost = 0; 6302 for (unsigned Lane = 0; Lane < OpsWidth; Lane++) { 6303 auto *IE = cast<InsertElementInst>(InsertUses[I + Lane]); 6304 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) 6305 UserCost += TTI->getVectorInstrCost( 6306 Instruction::InsertElement, IE->getType(), CI->getZExtValue()); 6307 } 6308 LLVM_DEBUG(dbgs() << "SLP: Compensate cost of users by: " << UserCost 6309 << ".\n"); 6310 Cost -= UserCost; 6311 } 6312 6313 MinCost = InstructionCost::min(MinCost, Cost); 6314 6315 if (Cost.isValid() && Cost < -SLPCostThreshold) { 6316 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 6317 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 6318 cast<Instruction>(Ops[0])) 6319 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 6320 << " and with tree size " 6321 << ore::NV("TreeSize", R.getTreeSize())); 6322 6323 R.vectorizeTree(); 6324 // Move to the next bundle. 6325 I += VF - 1; 6326 NextInst = I + 1; 6327 Changed = true; 6328 } 6329 } 6330 } 6331 6332 if (!Changed && CandidateFound) { 6333 R.getORE()->emit([&]() { 6334 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 6335 << "List vectorization was possible but not beneficial with cost " 6336 << ore::NV("Cost", MinCost) << " >= " 6337 << ore::NV("Treshold", -SLPCostThreshold); 6338 }); 6339 } else if (!Changed) { 6340 R.getORE()->emit([&]() { 6341 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 6342 << "Cannot SLP vectorize list: vectorization was impossible" 6343 << " with available vectorization factors"; 6344 }); 6345 } 6346 return Changed; 6347 } 6348 6349 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 6350 if (!I) 6351 return false; 6352 6353 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 6354 return false; 6355 6356 Value *P = I->getParent(); 6357 6358 // Vectorize in current basic block only. 6359 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 6360 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 6361 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 6362 return false; 6363 6364 // Try to vectorize V. 6365 if (tryToVectorizePair(Op0, Op1, R)) 6366 return true; 6367 6368 auto *A = dyn_cast<BinaryOperator>(Op0); 6369 auto *B = dyn_cast<BinaryOperator>(Op1); 6370 // Try to skip B. 6371 if (B && B->hasOneUse()) { 6372 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 6373 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 6374 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 6375 return true; 6376 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 6377 return true; 6378 } 6379 6380 // Try to skip A. 6381 if (A && A->hasOneUse()) { 6382 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 6383 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 6384 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 6385 return true; 6386 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 6387 return true; 6388 } 6389 return false; 6390 } 6391 6392 /// Generate a shuffle mask to be used in a reduction tree. 6393 /// 6394 /// \param VecLen The length of the vector to be reduced. 6395 /// \param NumEltsToRdx The number of elements that should be reduced in the 6396 /// vector. 6397 /// \param IsPairwise Whether the reduction is a pairwise or splitting 6398 /// reduction. A pairwise reduction will generate a mask of 6399 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 6400 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 6401 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 6402 static SmallVector<int, 32> createRdxShuffleMask(unsigned VecLen, 6403 unsigned NumEltsToRdx, 6404 bool IsPairwise, bool IsLeft) { 6405 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 6406 6407 SmallVector<int, 32> ShuffleMask(VecLen, -1); 6408 6409 if (IsPairwise) 6410 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 6411 for (unsigned i = 0; i != NumEltsToRdx; ++i) 6412 ShuffleMask[i] = 2 * i + !IsLeft; 6413 else 6414 // Move the upper half of the vector to the lower half. 6415 for (unsigned i = 0; i != NumEltsToRdx; ++i) 6416 ShuffleMask[i] = NumEltsToRdx + i; 6417 6418 return ShuffleMask; 6419 } 6420 6421 namespace { 6422 6423 /// Model horizontal reductions. 6424 /// 6425 /// A horizontal reduction is a tree of reduction instructions that has values 6426 /// that can be put into a vector as its leaves. For example: 6427 /// 6428 /// mul mul mul mul 6429 /// \ / \ / 6430 /// + + 6431 /// \ / 6432 /// + 6433 /// This tree has "mul" as its leaf values and "+" as its reduction 6434 /// instructions. A reduction can feed into a store or a binary operation 6435 /// feeding a phi. 6436 /// ... 6437 /// \ / 6438 /// + 6439 /// | 6440 /// phi += 6441 /// 6442 /// Or: 6443 /// ... 6444 /// \ / 6445 /// + 6446 /// | 6447 /// *p = 6448 /// 6449 class HorizontalReduction { 6450 using ReductionOpsType = SmallVector<Value *, 16>; 6451 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 6452 ReductionOpsListType ReductionOps; 6453 SmallVector<Value *, 32> ReducedVals; 6454 // Use map vector to make stable output. 6455 MapVector<Instruction *, Value *> ExtraArgs; 6456 6457 /// Kind of the reduction data. 6458 enum ReductionKind { 6459 RK_None, /// Not a reduction. 6460 RK_Arithmetic, /// Binary reduction data. 6461 RK_SMin, /// Signed minimum reduction data. 6462 RK_UMin, /// Unsigned minimum reduction data. 6463 RK_SMax, /// Signed maximum reduction data. 6464 RK_UMax, /// Unsigned maximum reduction data. 6465 }; 6466 6467 /// Contains info about operation, like its opcode, left and right operands. 6468 class OperationData { 6469 /// Opcode of the instruction. 6470 unsigned Opcode = 0; 6471 6472 /// Kind of the reduction operation. 6473 ReductionKind Kind = RK_None; 6474 6475 /// Checks if the reduction operation can be vectorized. 6476 bool isVectorizable() const { 6477 switch (Kind) { 6478 case RK_Arithmetic: 6479 return Opcode == Instruction::Add || Opcode == Instruction::FAdd || 6480 Opcode == Instruction::Mul || Opcode == Instruction::FMul || 6481 Opcode == Instruction::And || Opcode == Instruction::Or || 6482 Opcode == Instruction::Xor; 6483 case RK_SMin: 6484 case RK_SMax: 6485 case RK_UMin: 6486 case RK_UMax: 6487 return Opcode == Instruction::ICmp; 6488 default: 6489 return false; 6490 } 6491 } 6492 6493 /// Creates reduction operation with the current opcode. 6494 Value *createOp(IRBuilder<> &Builder, Value *LHS, Value *RHS, 6495 const Twine &Name) const { 6496 assert(isVectorizable() && 6497 "Expected add|fadd or min/max reduction operation."); 6498 Value *Cmp = nullptr; 6499 switch (Kind) { 6500 case RK_Arithmetic: 6501 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 6502 Name); 6503 case RK_SMin: 6504 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6505 Cmp = Builder.CreateICmpSLT(LHS, RHS); 6506 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6507 case RK_SMax: 6508 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6509 Cmp = Builder.CreateICmpSGT(LHS, RHS); 6510 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6511 case RK_UMin: 6512 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6513 Cmp = Builder.CreateICmpULT(LHS, RHS); 6514 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6515 case RK_UMax: 6516 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6517 Cmp = Builder.CreateICmpUGT(LHS, RHS); 6518 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6519 case RK_None: 6520 break; 6521 } 6522 llvm_unreachable("Unknown reduction operation."); 6523 } 6524 6525 public: 6526 explicit OperationData() = default; 6527 6528 /// Construction for reduced values. They are identified by opcode only and 6529 /// don't have associated LHS/RHS values. 6530 explicit OperationData(Instruction &I) { 6531 Opcode = I.getOpcode(); 6532 } 6533 6534 /// Constructor for reduction operations with opcode and its left and 6535 /// right operands. 6536 OperationData(unsigned Opcode, ReductionKind Kind) 6537 : Opcode(Opcode), Kind(Kind) { 6538 assert(Kind != RK_None && "One of the reduction operations is expected."); 6539 } 6540 6541 explicit operator bool() const { return Opcode; } 6542 6543 /// Return true if this operation is any kind of minimum or maximum. 6544 bool isMinMax() const { 6545 switch (Kind) { 6546 case RK_Arithmetic: 6547 return false; 6548 case RK_SMin: 6549 case RK_SMax: 6550 case RK_UMin: 6551 case RK_UMax: 6552 return true; 6553 case RK_None: 6554 break; 6555 } 6556 llvm_unreachable("Reduction kind is not set"); 6557 } 6558 6559 /// Get the index of the first operand. 6560 unsigned getFirstOperandIndex() const { 6561 assert(!!*this && "The opcode is not set."); 6562 // We allow calling this before 'Kind' is set, so handle that specially. 6563 if (Kind == RK_None) 6564 return 0; 6565 return isMinMax() ? 1 : 0; 6566 } 6567 6568 /// Total number of operands in the reduction operation. 6569 unsigned getNumberOfOperands() const { 6570 assert(Kind != RK_None && !!*this && "Expected reduction operation."); 6571 return isMinMax() ? 3 : 2; 6572 } 6573 6574 /// Checks if the instruction is in basic block \p BB. 6575 /// For a min/max reduction check that both compare and select are in \p BB. 6576 bool hasSameParent(Instruction *I, BasicBlock *BB, bool IsRedOp) const { 6577 assert(Kind != RK_None && !!*this && "Expected reduction operation."); 6578 if (IsRedOp && isMinMax()) { 6579 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 6580 return I->getParent() == BB && Cmp && Cmp->getParent() == BB; 6581 } 6582 return I->getParent() == BB; 6583 } 6584 6585 /// Expected number of uses for reduction operations/reduced values. 6586 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { 6587 assert(Kind != RK_None && !!*this && "Expected reduction operation."); 6588 // SelectInst must be used twice while the condition op must have single 6589 // use only. 6590 if (isMinMax()) 6591 return I->hasNUses(2) && 6592 (!IsReductionOp || 6593 cast<SelectInst>(I)->getCondition()->hasOneUse()); 6594 6595 // Arithmetic reduction operation must be used once only. 6596 return I->hasOneUse(); 6597 } 6598 6599 /// Initializes the list of reduction operations. 6600 void initReductionOps(ReductionOpsListType &ReductionOps) { 6601 assert(Kind != RK_None && !!*this && "Expected reduction operation."); 6602 if (isMinMax()) 6603 ReductionOps.assign(2, ReductionOpsType()); 6604 else 6605 ReductionOps.assign(1, ReductionOpsType()); 6606 } 6607 6608 /// Add all reduction operations for the reduction instruction \p I. 6609 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { 6610 assert(Kind != RK_None && !!*this && "Expected reduction operation."); 6611 if (isMinMax()) { 6612 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 6613 ReductionOps[1].emplace_back(I); 6614 } else { 6615 ReductionOps[0].emplace_back(I); 6616 } 6617 } 6618 6619 /// Checks if instruction is associative and can be vectorized. 6620 bool isAssociative(Instruction *I) const { 6621 assert(Kind != RK_None && *this && "Expected reduction operation."); 6622 switch (Kind) { 6623 case RK_Arithmetic: 6624 return I->isAssociative(); 6625 case RK_SMin: 6626 case RK_SMax: 6627 case RK_UMin: 6628 case RK_UMax: 6629 assert(Opcode == Instruction::ICmp && 6630 "Only integer compare operation is expected."); 6631 return true; 6632 case RK_None: 6633 break; 6634 } 6635 llvm_unreachable("Reduction kind is not set"); 6636 } 6637 6638 /// Checks if the reduction operation can be vectorized. 6639 bool isVectorizable(Instruction *I) const { 6640 return isVectorizable() && isAssociative(I); 6641 } 6642 6643 /// Checks if two operation data are both a reduction op or both a reduced 6644 /// value. 6645 bool operator==(const OperationData &OD) const { 6646 assert(((Kind != OD.Kind) || (Opcode != 0 && OD.Opcode != 0)) && 6647 "One of the comparing operations is incorrect."); 6648 return Kind == OD.Kind && Opcode == OD.Opcode; 6649 } 6650 bool operator!=(const OperationData &OD) const { return !(*this == OD); } 6651 void clear() { 6652 Opcode = 0; 6653 Kind = RK_None; 6654 } 6655 6656 /// Get the opcode of the reduction operation. 6657 unsigned getOpcode() const { 6658 assert(isVectorizable() && "Expected vectorizable operation."); 6659 return Opcode; 6660 } 6661 6662 /// Get kind of reduction data. 6663 ReductionKind getKind() const { return Kind; } 6664 Value *getLHS(Instruction *I) const { 6665 if (Kind == RK_None) 6666 return nullptr; 6667 return I->getOperand(getFirstOperandIndex()); 6668 } 6669 Value *getRHS(Instruction *I) const { 6670 if (Kind == RK_None) 6671 return nullptr; 6672 return I->getOperand(getFirstOperandIndex() + 1); 6673 } 6674 6675 /// Creates reduction operation with the current opcode with the IR flags 6676 /// from \p ReductionOps. 6677 Value *createOp(IRBuilder<> &Builder, Value *LHS, Value *RHS, 6678 const Twine &Name, 6679 const ReductionOpsListType &ReductionOps) const { 6680 assert(isVectorizable() && 6681 "Expected add|fadd or min/max reduction operation."); 6682 auto *Op = createOp(Builder, LHS, RHS, Name); 6683 switch (Kind) { 6684 case RK_Arithmetic: 6685 propagateIRFlags(Op, ReductionOps[0]); 6686 return Op; 6687 case RK_SMin: 6688 case RK_SMax: 6689 case RK_UMin: 6690 case RK_UMax: 6691 if (auto *SI = dyn_cast<SelectInst>(Op)) 6692 propagateIRFlags(SI->getCondition(), ReductionOps[0]); 6693 propagateIRFlags(Op, ReductionOps[1]); 6694 return Op; 6695 case RK_None: 6696 break; 6697 } 6698 llvm_unreachable("Unknown reduction operation."); 6699 } 6700 /// Creates reduction operation with the current opcode with the IR flags 6701 /// from \p I. 6702 Value *createOp(IRBuilder<> &Builder, Value *LHS, Value *RHS, 6703 const Twine &Name, Instruction *I) const { 6704 assert(isVectorizable() && 6705 "Expected add|fadd or min/max reduction operation."); 6706 auto *Op = createOp(Builder, LHS, RHS, Name); 6707 switch (Kind) { 6708 case RK_Arithmetic: 6709 propagateIRFlags(Op, I); 6710 return Op; 6711 case RK_SMin: 6712 case RK_SMax: 6713 case RK_UMin: 6714 case RK_UMax: 6715 if (auto *SI = dyn_cast<SelectInst>(Op)) { 6716 propagateIRFlags(SI->getCondition(), 6717 cast<SelectInst>(I)->getCondition()); 6718 } 6719 propagateIRFlags(Op, I); 6720 return Op; 6721 case RK_None: 6722 break; 6723 } 6724 llvm_unreachable("Unknown reduction operation."); 6725 } 6726 6727 TargetTransformInfo::ReductionFlags getFlags() const { 6728 TargetTransformInfo::ReductionFlags Flags; 6729 switch (Kind) { 6730 case RK_Arithmetic: 6731 break; 6732 case RK_SMin: 6733 Flags.IsSigned = true; 6734 Flags.IsMaxOp = false; 6735 break; 6736 case RK_SMax: 6737 Flags.IsSigned = true; 6738 Flags.IsMaxOp = true; 6739 break; 6740 case RK_UMin: 6741 Flags.IsSigned = false; 6742 Flags.IsMaxOp = false; 6743 break; 6744 case RK_UMax: 6745 Flags.IsSigned = false; 6746 Flags.IsMaxOp = true; 6747 break; 6748 case RK_None: 6749 llvm_unreachable("Reduction kind is not set"); 6750 } 6751 return Flags; 6752 } 6753 }; 6754 6755 WeakTrackingVH ReductionRoot; 6756 6757 /// The operation data of the reduction operation. 6758 OperationData RdxTreeInst; 6759 6760 /// The operation data for the leaf values that we perform a reduction on. 6761 OperationData RdxLeafVal; 6762 6763 /// Should we model this reduction as a pairwise reduction tree or a tree that 6764 /// splits the vector in halves and adds those halves. 6765 bool IsPairwiseReduction = false; 6766 6767 /// Checks if the ParentStackElem.first should be marked as a reduction 6768 /// operation with an extra argument or as extra argument itself. 6769 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 6770 Value *ExtraArg) { 6771 if (ExtraArgs.count(ParentStackElem.first)) { 6772 ExtraArgs[ParentStackElem.first] = nullptr; 6773 // We ran into something like: 6774 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 6775 // The whole ParentStackElem.first should be considered as an extra value 6776 // in this case. 6777 // Do not perform analysis of remaining operands of ParentStackElem.first 6778 // instruction, this whole instruction is an extra argument. 6779 OperationData OpData = getOperationData(ParentStackElem.first); 6780 ParentStackElem.second = OpData.getNumberOfOperands(); 6781 } else { 6782 // We ran into something like: 6783 // ParentStackElem.first += ... + ExtraArg + ... 6784 ExtraArgs[ParentStackElem.first] = ExtraArg; 6785 } 6786 } 6787 6788 static OperationData getOperationData(Instruction *I) { 6789 if (!I) 6790 return OperationData(); 6791 6792 Value *LHS; 6793 Value *RHS; 6794 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(I)) { 6795 return OperationData(cast<BinaryOperator>(I)->getOpcode(), RK_Arithmetic); 6796 } 6797 if (auto *Select = dyn_cast<SelectInst>(I)) { 6798 // Look for a min/max pattern. 6799 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6800 return OperationData(Instruction::ICmp, RK_UMin); 6801 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6802 return OperationData(Instruction::ICmp, RK_SMin); 6803 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6804 return OperationData(Instruction::ICmp, RK_UMax); 6805 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6806 return OperationData(Instruction::ICmp, RK_SMax); 6807 } else { 6808 // Try harder: look for min/max pattern based on instructions producing 6809 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 6810 // During the intermediate stages of SLP, it's very common to have 6811 // pattern like this (since optimizeGatherSequence is run only once 6812 // at the end): 6813 // %1 = extractelement <2 x i32> %a, i32 0 6814 // %2 = extractelement <2 x i32> %a, i32 1 6815 // %cond = icmp sgt i32 %1, %2 6816 // %3 = extractelement <2 x i32> %a, i32 0 6817 // %4 = extractelement <2 x i32> %a, i32 1 6818 // %select = select i1 %cond, i32 %3, i32 %4 6819 CmpInst::Predicate Pred; 6820 Instruction *L1; 6821 Instruction *L2; 6822 6823 LHS = Select->getTrueValue(); 6824 RHS = Select->getFalseValue(); 6825 Value *Cond = Select->getCondition(); 6826 6827 // TODO: Support inverse predicates. 6828 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 6829 if (!isa<ExtractElementInst>(RHS) || 6830 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6831 return OperationData(*I); 6832 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 6833 if (!isa<ExtractElementInst>(LHS) || 6834 !L1->isIdenticalTo(cast<Instruction>(LHS))) 6835 return OperationData(*I); 6836 } else { 6837 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 6838 return OperationData(*I); 6839 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 6840 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 6841 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6842 return OperationData(*I); 6843 } 6844 switch (Pred) { 6845 default: 6846 return OperationData(*I); 6847 6848 case CmpInst::ICMP_ULT: 6849 case CmpInst::ICMP_ULE: 6850 return OperationData(Instruction::ICmp, RK_UMin); 6851 6852 case CmpInst::ICMP_SLT: 6853 case CmpInst::ICMP_SLE: 6854 return OperationData(Instruction::ICmp, RK_SMin); 6855 6856 case CmpInst::ICMP_UGT: 6857 case CmpInst::ICMP_UGE: 6858 return OperationData(Instruction::ICmp, RK_UMax); 6859 6860 case CmpInst::ICMP_SGT: 6861 case CmpInst::ICMP_SGE: 6862 return OperationData(Instruction::ICmp, RK_SMax); 6863 } 6864 } 6865 } 6866 return OperationData(*I); 6867 } 6868 6869 public: 6870 HorizontalReduction() = default; 6871 6872 /// Try to find a reduction tree. 6873 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 6874 assert((!Phi || is_contained(Phi->operands(), B)) && 6875 "Thi phi needs to use the binary operator"); 6876 6877 RdxTreeInst = getOperationData(B); 6878 6879 // We could have a initial reductions that is not an add. 6880 // r *= v1 + v2 + v3 + v4 6881 // In such a case start looking for a tree rooted in the first '+'. 6882 if (Phi) { 6883 if (RdxTreeInst.getLHS(B) == Phi) { 6884 Phi = nullptr; 6885 B = dyn_cast<Instruction>(RdxTreeInst.getRHS(B)); 6886 RdxTreeInst = getOperationData(B); 6887 } else if (RdxTreeInst.getRHS(B) == Phi) { 6888 Phi = nullptr; 6889 B = dyn_cast<Instruction>(RdxTreeInst.getLHS(B)); 6890 RdxTreeInst = getOperationData(B); 6891 } 6892 } 6893 6894 if (!RdxTreeInst.isVectorizable(B)) 6895 return false; 6896 6897 Type *Ty = B->getType(); 6898 if (!isValidElementType(Ty)) 6899 return false; 6900 if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy()) 6901 return false; 6902 6903 RdxLeafVal.clear(); 6904 ReductionRoot = B; 6905 6906 // Post order traverse the reduction tree starting at B. We only handle true 6907 // trees containing only binary operators. 6908 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 6909 Stack.push_back(std::make_pair(B, RdxTreeInst.getFirstOperandIndex())); 6910 RdxTreeInst.initReductionOps(ReductionOps); 6911 while (!Stack.empty()) { 6912 Instruction *TreeN = Stack.back().first; 6913 unsigned EdgeToVisit = Stack.back().second++; 6914 OperationData OpData = getOperationData(TreeN); 6915 bool IsReducedValue = OpData != RdxTreeInst; 6916 6917 // Postorder vist. 6918 if (IsReducedValue || EdgeToVisit == OpData.getNumberOfOperands()) { 6919 if (IsReducedValue) 6920 ReducedVals.push_back(TreeN); 6921 else { 6922 auto I = ExtraArgs.find(TreeN); 6923 if (I != ExtraArgs.end() && !I->second) { 6924 // Check if TreeN is an extra argument of its parent operation. 6925 if (Stack.size() <= 1) { 6926 // TreeN can't be an extra argument as it is a root reduction 6927 // operation. 6928 return false; 6929 } 6930 // Yes, TreeN is an extra argument, do not add it to a list of 6931 // reduction operations. 6932 // Stack[Stack.size() - 2] always points to the parent operation. 6933 markExtraArg(Stack[Stack.size() - 2], TreeN); 6934 ExtraArgs.erase(TreeN); 6935 } else 6936 RdxTreeInst.addReductionOps(TreeN, ReductionOps); 6937 } 6938 // Retract. 6939 Stack.pop_back(); 6940 continue; 6941 } 6942 6943 // Visit left or right. 6944 Value *NextV = TreeN->getOperand(EdgeToVisit); 6945 if (NextV != Phi) { 6946 auto *I = dyn_cast<Instruction>(NextV); 6947 OpData = getOperationData(I); 6948 // Continue analysis if the next operand is a reduction operation or 6949 // (possibly) a reduced value. If the reduced value opcode is not set, 6950 // the first met operation != reduction operation is considered as the 6951 // reduced value class. 6952 const bool IsRdxInst = OpData == RdxTreeInst; 6953 if (I && (!RdxLeafVal || OpData == RdxLeafVal || IsRdxInst)) { 6954 // Only handle trees in the current basic block. 6955 if (!RdxTreeInst.hasSameParent(I, B->getParent(), IsRdxInst)) { 6956 // I is an extra argument for TreeN (its parent operation). 6957 markExtraArg(Stack.back(), I); 6958 continue; 6959 } 6960 6961 // Each tree node needs to have minimal number of users except for the 6962 // ultimate reduction. 6963 if (!RdxTreeInst.hasRequiredNumberOfUses(I, IsRdxInst) && I != B) { 6964 // I is an extra argument for TreeN (its parent operation). 6965 markExtraArg(Stack.back(), I); 6966 continue; 6967 } 6968 6969 if (IsRdxInst) { 6970 // We need to be able to reassociate the reduction operations. 6971 if (!OpData.isAssociative(I)) { 6972 // I is an extra argument for TreeN (its parent operation). 6973 markExtraArg(Stack.back(), I); 6974 continue; 6975 } 6976 } else if (RdxLeafVal && RdxLeafVal != OpData) { 6977 // Make sure that the opcodes of the operations that we are going to 6978 // reduce match. 6979 // I is an extra argument for TreeN (its parent operation). 6980 markExtraArg(Stack.back(), I); 6981 continue; 6982 } else if (!RdxLeafVal) { 6983 RdxLeafVal = OpData; 6984 } 6985 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 6986 continue; 6987 } 6988 } 6989 // NextV is an extra argument for TreeN (its parent operation). 6990 markExtraArg(Stack.back(), NextV); 6991 } 6992 return true; 6993 } 6994 6995 /// Attempt to vectorize the tree found by matchAssociativeReduction. 6996 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 6997 // If there are a sufficient number of reduction values, reduce 6998 // to a nearby power-of-2. We can safely generate oversized 6999 // vectors and rely on the backend to split them to legal sizes. 7000 unsigned NumReducedVals = ReducedVals.size(); 7001 if (NumReducedVals < 4) 7002 return false; 7003 7004 // FIXME: Fast-math-flags should be set based on the instructions in the 7005 // reduction (not all of 'fast' are required). 7006 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 7007 FastMathFlags Unsafe; 7008 Unsafe.setFast(); 7009 Builder.setFastMathFlags(Unsafe); 7010 7011 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 7012 // The same extra argument may be used several times, so log each attempt 7013 // to use it. 7014 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 7015 assert(Pair.first && "DebugLoc must be set."); 7016 ExternallyUsedValues[Pair.second].push_back(Pair.first); 7017 } 7018 7019 // The compare instruction of a min/max is the insertion point for new 7020 // instructions and may be replaced with a new compare instruction. 7021 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 7022 assert(isa<SelectInst>(RdxRootInst) && 7023 "Expected min/max reduction to have select root instruction"); 7024 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 7025 assert(isa<Instruction>(ScalarCond) && 7026 "Expected min/max reduction to have compare condition"); 7027 return cast<Instruction>(ScalarCond); 7028 }; 7029 7030 // The reduction root is used as the insertion point for new instructions, 7031 // so set it as externally used to prevent it from being deleted. 7032 ExternallyUsedValues[ReductionRoot]; 7033 SmallVector<Value *, 16> IgnoreList; 7034 for (ReductionOpsType &RdxOp : ReductionOps) 7035 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 7036 7037 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 7038 if (NumReducedVals > ReduxWidth) { 7039 // In the loop below, we are building a tree based on a window of 7040 // 'ReduxWidth' values. 7041 // If the operands of those values have common traits (compare predicate, 7042 // constant operand, etc), then we want to group those together to 7043 // minimize the cost of the reduction. 7044 7045 // TODO: This should be extended to count common operands for 7046 // compares and binops. 7047 7048 // Step 1: Count the number of times each compare predicate occurs. 7049 SmallDenseMap<unsigned, unsigned> PredCountMap; 7050 for (Value *RdxVal : ReducedVals) { 7051 CmpInst::Predicate Pred; 7052 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 7053 ++PredCountMap[Pred]; 7054 } 7055 // Step 2: Sort the values so the most common predicates come first. 7056 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 7057 CmpInst::Predicate PredA, PredB; 7058 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 7059 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 7060 return PredCountMap[PredA] > PredCountMap[PredB]; 7061 } 7062 return false; 7063 }); 7064 } 7065 7066 Value *VectorizedTree = nullptr; 7067 unsigned i = 0; 7068 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 7069 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 7070 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 7071 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 7072 if (Order) { 7073 assert(Order->size() == VL.size() && 7074 "Order size must be the same as number of vectorized " 7075 "instructions."); 7076 // TODO: reorder tree nodes without tree rebuilding. 7077 SmallVector<Value *, 4> ReorderedOps(VL.size()); 7078 llvm::transform(*Order, ReorderedOps.begin(), 7079 [VL](const unsigned Idx) { return VL[Idx]; }); 7080 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 7081 } 7082 if (V.isTreeTinyAndNotFullyVectorizable()) 7083 break; 7084 if (V.isLoadCombineReductionCandidate(RdxTreeInst.getOpcode())) 7085 break; 7086 7087 V.computeMinimumValueSizes(); 7088 7089 // Estimate cost. 7090 InstructionCost TreeCost = V.getTreeCost(); 7091 InstructionCost ReductionCost = 7092 getReductionCost(TTI, ReducedVals[i], ReduxWidth); 7093 InstructionCost Cost = TreeCost + ReductionCost; 7094 if (!Cost.isValid()) { 7095 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 7096 return false; 7097 } 7098 if (Cost >= -SLPCostThreshold) { 7099 V.getORE()->emit([&]() { 7100 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 7101 cast<Instruction>(VL[0])) 7102 << "Vectorizing horizontal reduction is possible" 7103 << "but not beneficial with cost " << ore::NV("Cost", Cost) 7104 << " and threshold " 7105 << ore::NV("Threshold", -SLPCostThreshold); 7106 }); 7107 break; 7108 } 7109 7110 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 7111 << Cost << ". (HorRdx)\n"); 7112 V.getORE()->emit([&]() { 7113 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 7114 cast<Instruction>(VL[0])) 7115 << "Vectorized horizontal reduction with cost " 7116 << ore::NV("Cost", Cost) << " and with tree size " 7117 << ore::NV("TreeSize", V.getTreeSize()); 7118 }); 7119 7120 // Vectorize a tree. 7121 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 7122 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 7123 7124 // Emit a reduction. For min/max, the root is a select, but the insertion 7125 // point is the compare condition of that select. 7126 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 7127 if (RdxTreeInst.isMinMax()) 7128 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 7129 else 7130 Builder.SetInsertPoint(RdxRootInst); 7131 7132 Value *ReducedSubTree = 7133 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 7134 7135 if (!VectorizedTree) { 7136 // Initialize the final value in the reduction. 7137 VectorizedTree = ReducedSubTree; 7138 } else { 7139 // Update the final value in the reduction. 7140 Builder.SetCurrentDebugLocation(Loc); 7141 VectorizedTree = RdxTreeInst.createOp( 7142 Builder, VectorizedTree, ReducedSubTree, "op.rdx", ReductionOps); 7143 } 7144 i += ReduxWidth; 7145 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 7146 } 7147 7148 if (VectorizedTree) { 7149 // Finish the reduction. 7150 for (; i < NumReducedVals; ++i) { 7151 auto *I = cast<Instruction>(ReducedVals[i]); 7152 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 7153 VectorizedTree = RdxTreeInst.createOp(Builder, VectorizedTree, I, "", 7154 ReductionOps); 7155 } 7156 for (auto &Pair : ExternallyUsedValues) { 7157 // Add each externally used value to the final reduction. 7158 for (auto *I : Pair.second) { 7159 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 7160 VectorizedTree = RdxTreeInst.createOp(Builder, VectorizedTree, 7161 Pair.first, "op.extra", I); 7162 } 7163 } 7164 7165 // Update users. For a min/max reduction that ends with a compare and 7166 // select, we also have to RAUW for the compare instruction feeding the 7167 // reduction root. That's because the original compare may have extra uses 7168 // besides the final select of the reduction. 7169 if (RdxTreeInst.isMinMax()) { 7170 if (auto *VecSelect = dyn_cast<SelectInst>(VectorizedTree)) { 7171 Instruction *ScalarCmp = 7172 getCmpForMinMaxReduction(cast<Instruction>(ReductionRoot)); 7173 ScalarCmp->replaceAllUsesWith(VecSelect->getCondition()); 7174 } 7175 } 7176 ReductionRoot->replaceAllUsesWith(VectorizedTree); 7177 7178 // Mark all scalar reduction ops for deletion, they are replaced by the 7179 // vector reductions. 7180 V.eraseInstructions(IgnoreList); 7181 } 7182 return VectorizedTree != nullptr; 7183 } 7184 7185 unsigned numReductionValues() const { 7186 return ReducedVals.size(); 7187 } 7188 7189 private: 7190 /// Calculate the cost of a reduction. 7191 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 7192 unsigned ReduxWidth) { 7193 Type *ScalarTy = FirstReducedVal->getType(); 7194 auto *VecTy = FixedVectorType::get(ScalarTy, ReduxWidth); 7195 7196 int PairwiseRdxCost; 7197 int SplittingRdxCost; 7198 switch (RdxTreeInst.getKind()) { 7199 case RK_Arithmetic: 7200 PairwiseRdxCost = 7201 TTI->getArithmeticReductionCost(RdxTreeInst.getOpcode(), VecTy, 7202 /*IsPairwiseForm=*/true); 7203 SplittingRdxCost = 7204 TTI->getArithmeticReductionCost(RdxTreeInst.getOpcode(), VecTy, 7205 /*IsPairwiseForm=*/false); 7206 break; 7207 case RK_SMin: 7208 case RK_SMax: 7209 case RK_UMin: 7210 case RK_UMax: { 7211 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VecTy)); 7212 bool IsUnsigned = RdxTreeInst.getKind() == RK_UMin || 7213 RdxTreeInst.getKind() == RK_UMax; 7214 PairwiseRdxCost = 7215 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 7216 /*IsPairwiseForm=*/true, IsUnsigned); 7217 SplittingRdxCost = 7218 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 7219 /*IsPairwiseForm=*/false, IsUnsigned); 7220 break; 7221 } 7222 case RK_None: 7223 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 7224 } 7225 7226 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 7227 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 7228 7229 int ScalarReduxCost = 0; 7230 switch (RdxTreeInst.getKind()) { 7231 case RK_Arithmetic: 7232 ScalarReduxCost = 7233 TTI->getArithmeticInstrCost(RdxTreeInst.getOpcode(), ScalarTy); 7234 break; 7235 case RK_SMin: 7236 case RK_SMax: 7237 case RK_UMin: 7238 case RK_UMax: 7239 ScalarReduxCost = 7240 TTI->getCmpSelInstrCost(RdxTreeInst.getOpcode(), ScalarTy) + 7241 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 7242 CmpInst::makeCmpResultType(ScalarTy)); 7243 break; 7244 case RK_None: 7245 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 7246 } 7247 ScalarReduxCost *= (ReduxWidth - 1); 7248 7249 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 7250 << " for reduction that starts with " << *FirstReducedVal 7251 << " (It is a " 7252 << (IsPairwiseReduction ? "pairwise" : "splitting") 7253 << " reduction)\n"); 7254 7255 return VecReduxCost - ScalarReduxCost; 7256 } 7257 7258 /// Emit a horizontal reduction of the vectorized value. 7259 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 7260 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 7261 assert(VectorizedValue && "Need to have a vectorized tree node"); 7262 assert(isPowerOf2_32(ReduxWidth) && 7263 "We only handle power-of-two reductions for now"); 7264 7265 if (!IsPairwiseReduction) { 7266 // FIXME: The builder should use an FMF guard. It should not be hard-coded 7267 // to 'fast'. 7268 assert(Builder.getFastMathFlags().isFast() && "Expected 'fast' FMF"); 7269 return createSimpleTargetReduction( 7270 Builder, TTI, RdxTreeInst.getOpcode(), VectorizedValue, 7271 RdxTreeInst.getFlags(), ReductionOps.back()); 7272 } 7273 7274 Value *TmpVec = VectorizedValue; 7275 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 7276 auto LeftMask = createRdxShuffleMask(ReduxWidth, i, true, true); 7277 auto RightMask = createRdxShuffleMask(ReduxWidth, i, true, false); 7278 7279 Value *LeftShuf = 7280 Builder.CreateShuffleVector(TmpVec, LeftMask, "rdx.shuf.l"); 7281 Value *RightShuf = 7282 Builder.CreateShuffleVector(TmpVec, RightMask, "rdx.shuf.r"); 7283 TmpVec = RdxTreeInst.createOp(Builder, LeftShuf, RightShuf, "op.rdx", 7284 ReductionOps); 7285 } 7286 7287 // The result is in the first element of the vector. 7288 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 7289 } 7290 }; 7291 7292 } // end anonymous namespace 7293 7294 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 7295 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 7296 return cast<FixedVectorType>(IE->getType())->getNumElements(); 7297 7298 unsigned AggregateSize = 1; 7299 auto *IV = cast<InsertValueInst>(InsertInst); 7300 Type *CurrentType = IV->getType(); 7301 do { 7302 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 7303 for (auto *Elt : ST->elements()) 7304 if (Elt != ST->getElementType(0)) // check homogeneity 7305 return None; 7306 AggregateSize *= ST->getNumElements(); 7307 CurrentType = ST->getElementType(0); 7308 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 7309 AggregateSize *= AT->getNumElements(); 7310 CurrentType = AT->getElementType(); 7311 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 7312 AggregateSize *= VT->getNumElements(); 7313 return AggregateSize; 7314 } else if (CurrentType->isSingleValueType()) { 7315 return AggregateSize; 7316 } else { 7317 return None; 7318 } 7319 } while (true); 7320 } 7321 7322 static Optional<unsigned> getOperandIndex(Instruction *InsertInst, 7323 unsigned OperandOffset) { 7324 unsigned OperandIndex = OperandOffset; 7325 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 7326 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 7327 auto *VT = cast<FixedVectorType>(IE->getType()); 7328 OperandIndex *= VT->getNumElements(); 7329 OperandIndex += CI->getZExtValue(); 7330 return OperandIndex; 7331 } 7332 return None; 7333 } 7334 7335 auto *IV = cast<InsertValueInst>(InsertInst); 7336 Type *CurrentType = IV->getType(); 7337 for (unsigned int Index : IV->indices()) { 7338 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 7339 OperandIndex *= ST->getNumElements(); 7340 CurrentType = ST->getElementType(Index); 7341 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 7342 OperandIndex *= AT->getNumElements(); 7343 CurrentType = AT->getElementType(); 7344 } else { 7345 return None; 7346 } 7347 OperandIndex += Index; 7348 } 7349 return OperandIndex; 7350 } 7351 7352 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 7353 TargetTransformInfo *TTI, 7354 SmallVectorImpl<Value *> &BuildVectorOpds, 7355 SmallVectorImpl<Value *> &InsertElts, 7356 unsigned OperandOffset) { 7357 do { 7358 Value *InsertedOperand = LastInsertInst->getOperand(1); 7359 Optional<unsigned> OperandIndex = 7360 getOperandIndex(LastInsertInst, OperandOffset); 7361 if (!OperandIndex) 7362 return false; 7363 if (isa<InsertElementInst>(InsertedOperand) || 7364 isa<InsertValueInst>(InsertedOperand)) { 7365 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 7366 BuildVectorOpds, InsertElts, *OperandIndex)) 7367 return false; 7368 } else { 7369 BuildVectorOpds[*OperandIndex] = InsertedOperand; 7370 InsertElts[*OperandIndex] = LastInsertInst; 7371 } 7372 if (isa<UndefValue>(LastInsertInst->getOperand(0))) 7373 return true; 7374 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 7375 } while (LastInsertInst != nullptr && 7376 (isa<InsertValueInst>(LastInsertInst) || 7377 isa<InsertElementInst>(LastInsertInst)) && 7378 LastInsertInst->hasOneUse()); 7379 return false; 7380 } 7381 7382 /// Recognize construction of vectors like 7383 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 7384 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 7385 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 7386 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 7387 /// starting from the last insertelement or insertvalue instruction. 7388 /// 7389 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 7390 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 7391 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 7392 /// 7393 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 7394 /// 7395 /// \return true if it matches. 7396 static bool findBuildAggregate(Instruction *LastInsertInst, 7397 TargetTransformInfo *TTI, 7398 SmallVectorImpl<Value *> &BuildVectorOpds, 7399 SmallVectorImpl<Value *> &InsertElts) { 7400 7401 assert((isa<InsertElementInst>(LastInsertInst) || 7402 isa<InsertValueInst>(LastInsertInst)) && 7403 "Expected insertelement or insertvalue instruction!"); 7404 7405 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 7406 "Expected empty result vectors!"); 7407 7408 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 7409 if (!AggregateSize) 7410 return false; 7411 BuildVectorOpds.resize(*AggregateSize); 7412 InsertElts.resize(*AggregateSize); 7413 7414 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 7415 0)) { 7416 llvm::erase_value(BuildVectorOpds, nullptr); 7417 llvm::erase_value(InsertElts, nullptr); 7418 if (BuildVectorOpds.size() >= 2) 7419 return true; 7420 } 7421 7422 return false; 7423 } 7424 7425 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 7426 return V->getType() < V2->getType(); 7427 } 7428 7429 /// Try and get a reduction value from a phi node. 7430 /// 7431 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 7432 /// if they come from either \p ParentBB or a containing loop latch. 7433 /// 7434 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 7435 /// if not possible. 7436 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 7437 BasicBlock *ParentBB, LoopInfo *LI) { 7438 // There are situations where the reduction value is not dominated by the 7439 // reduction phi. Vectorizing such cases has been reported to cause 7440 // miscompiles. See PR25787. 7441 auto DominatedReduxValue = [&](Value *R) { 7442 return isa<Instruction>(R) && 7443 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 7444 }; 7445 7446 Value *Rdx = nullptr; 7447 7448 // Return the incoming value if it comes from the same BB as the phi node. 7449 if (P->getIncomingBlock(0) == ParentBB) { 7450 Rdx = P->getIncomingValue(0); 7451 } else if (P->getIncomingBlock(1) == ParentBB) { 7452 Rdx = P->getIncomingValue(1); 7453 } 7454 7455 if (Rdx && DominatedReduxValue(Rdx)) 7456 return Rdx; 7457 7458 // Otherwise, check whether we have a loop latch to look at. 7459 Loop *BBL = LI->getLoopFor(ParentBB); 7460 if (!BBL) 7461 return nullptr; 7462 BasicBlock *BBLatch = BBL->getLoopLatch(); 7463 if (!BBLatch) 7464 return nullptr; 7465 7466 // There is a loop latch, return the incoming value if it comes from 7467 // that. This reduction pattern occasionally turns up. 7468 if (P->getIncomingBlock(0) == BBLatch) { 7469 Rdx = P->getIncomingValue(0); 7470 } else if (P->getIncomingBlock(1) == BBLatch) { 7471 Rdx = P->getIncomingValue(1); 7472 } 7473 7474 if (Rdx && DominatedReduxValue(Rdx)) 7475 return Rdx; 7476 7477 return nullptr; 7478 } 7479 7480 /// Attempt to reduce a horizontal reduction. 7481 /// If it is legal to match a horizontal reduction feeding the phi node \a P 7482 /// with reduction operators \a Root (or one of its operands) in a basic block 7483 /// \a BB, then check if it can be done. If horizontal reduction is not found 7484 /// and root instruction is a binary operation, vectorization of the operands is 7485 /// attempted. 7486 /// \returns true if a horizontal reduction was matched and reduced or operands 7487 /// of one of the binary instruction were vectorized. 7488 /// \returns false if a horizontal reduction was not matched (or not possible) 7489 /// or no vectorization of any binary operation feeding \a Root instruction was 7490 /// performed. 7491 static bool tryToVectorizeHorReductionOrInstOperands( 7492 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 7493 TargetTransformInfo *TTI, 7494 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 7495 if (!ShouldVectorizeHor) 7496 return false; 7497 7498 if (!Root) 7499 return false; 7500 7501 if (Root->getParent() != BB || isa<PHINode>(Root)) 7502 return false; 7503 // Start analysis starting from Root instruction. If horizontal reduction is 7504 // found, try to vectorize it. If it is not a horizontal reduction or 7505 // vectorization is not possible or not effective, and currently analyzed 7506 // instruction is a binary operation, try to vectorize the operands, using 7507 // pre-order DFS traversal order. If the operands were not vectorized, repeat 7508 // the same procedure considering each operand as a possible root of the 7509 // horizontal reduction. 7510 // Interrupt the process if the Root instruction itself was vectorized or all 7511 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 7512 SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0}); 7513 SmallPtrSet<Value *, 8> VisitedInstrs; 7514 bool Res = false; 7515 while (!Stack.empty()) { 7516 Instruction *Inst; 7517 unsigned Level; 7518 std::tie(Inst, Level) = Stack.pop_back_val(); 7519 Value *B0, *B1; 7520 bool IsBinop = match(Inst, m_BinOp(m_Value(B0), m_Value(B1))); 7521 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 7522 if (IsBinop || IsSelect) { 7523 HorizontalReduction HorRdx; 7524 if (HorRdx.matchAssociativeReduction(P, Inst)) { 7525 if (HorRdx.tryToReduce(R, TTI)) { 7526 Res = true; 7527 // Set P to nullptr to avoid re-analysis of phi node in 7528 // matchAssociativeReduction function unless this is the root node. 7529 P = nullptr; 7530 continue; 7531 } 7532 } 7533 if (P && IsBinop) { 7534 Inst = dyn_cast<Instruction>(B0); 7535 if (Inst == P) 7536 Inst = dyn_cast<Instruction>(B1); 7537 if (!Inst) { 7538 // Set P to nullptr to avoid re-analysis of phi node in 7539 // matchAssociativeReduction function unless this is the root node. 7540 P = nullptr; 7541 continue; 7542 } 7543 } 7544 } 7545 // Set P to nullptr to avoid re-analysis of phi node in 7546 // matchAssociativeReduction function unless this is the root node. 7547 P = nullptr; 7548 if (Vectorize(Inst, R)) { 7549 Res = true; 7550 continue; 7551 } 7552 7553 // Try to vectorize operands. 7554 // Continue analysis for the instruction from the same basic block only to 7555 // save compile time. 7556 if (++Level < RecursionMaxDepth) 7557 for (auto *Op : Inst->operand_values()) 7558 if (VisitedInstrs.insert(Op).second) 7559 if (auto *I = dyn_cast<Instruction>(Op)) 7560 if (!isa<PHINode>(I) && !R.isDeleted(I) && I->getParent() == BB) 7561 Stack.emplace_back(I, Level); 7562 } 7563 return Res; 7564 } 7565 7566 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 7567 BasicBlock *BB, BoUpSLP &R, 7568 TargetTransformInfo *TTI) { 7569 auto *I = dyn_cast_or_null<Instruction>(V); 7570 if (!I) 7571 return false; 7572 7573 if (!isa<BinaryOperator>(I)) 7574 P = nullptr; 7575 // Try to match and vectorize a horizontal reduction. 7576 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 7577 return tryToVectorize(I, R); 7578 }; 7579 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 7580 ExtraVectorization); 7581 } 7582 7583 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 7584 BasicBlock *BB, BoUpSLP &R) { 7585 const DataLayout &DL = BB->getModule()->getDataLayout(); 7586 if (!R.canMapToVector(IVI->getType(), DL)) 7587 return false; 7588 7589 SmallVector<Value *, 16> BuildVectorOpds; 7590 SmallVector<Value *, 16> BuildVectorInsts; 7591 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 7592 return false; 7593 7594 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 7595 // Aggregate value is unlikely to be processed in vector register, we need to 7596 // extract scalars into scalar registers, so NeedExtraction is set true. 7597 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false, 7598 BuildVectorInsts); 7599 } 7600 7601 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 7602 BasicBlock *BB, BoUpSLP &R) { 7603 SmallVector<Value *, 16> BuildVectorInsts; 7604 SmallVector<Value *, 16> BuildVectorOpds; 7605 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 7606 (llvm::all_of(BuildVectorOpds, 7607 [](Value *V) { return isa<ExtractElementInst>(V); }) && 7608 isShuffle(BuildVectorOpds))) 7609 return false; 7610 7611 // Vectorize starting with the build vector operands ignoring the BuildVector 7612 // instructions for the purpose of scheduling and user extraction. 7613 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false, 7614 BuildVectorInsts); 7615 } 7616 7617 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 7618 BoUpSLP &R) { 7619 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 7620 return true; 7621 7622 bool OpsChanged = false; 7623 for (int Idx = 0; Idx < 2; ++Idx) { 7624 OpsChanged |= 7625 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 7626 } 7627 return OpsChanged; 7628 } 7629 7630 bool SLPVectorizerPass::vectorizeSimpleInstructions( 7631 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R) { 7632 bool OpsChanged = false; 7633 for (auto *I : reverse(Instructions)) { 7634 if (R.isDeleted(I)) 7635 continue; 7636 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 7637 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 7638 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 7639 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 7640 else if (auto *CI = dyn_cast<CmpInst>(I)) 7641 OpsChanged |= vectorizeCmpInst(CI, BB, R); 7642 } 7643 Instructions.clear(); 7644 return OpsChanged; 7645 } 7646 7647 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 7648 bool Changed = false; 7649 SmallVector<Value *, 4> Incoming; 7650 SmallPtrSet<Value *, 16> VisitedInstrs; 7651 7652 bool HaveVectorizedPhiNodes = true; 7653 while (HaveVectorizedPhiNodes) { 7654 HaveVectorizedPhiNodes = false; 7655 7656 // Collect the incoming values from the PHIs. 7657 Incoming.clear(); 7658 for (Instruction &I : *BB) { 7659 PHINode *P = dyn_cast<PHINode>(&I); 7660 if (!P) 7661 break; 7662 7663 if (!VisitedInstrs.count(P) && !R.isDeleted(P)) 7664 Incoming.push_back(P); 7665 } 7666 7667 // Sort by type. 7668 llvm::stable_sort(Incoming, PhiTypeSorterFunc); 7669 7670 // Try to vectorize elements base on their type. 7671 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 7672 E = Incoming.end(); 7673 IncIt != E;) { 7674 7675 // Look for the next elements with the same type. 7676 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 7677 while (SameTypeIt != E && 7678 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 7679 VisitedInstrs.insert(*SameTypeIt); 7680 ++SameTypeIt; 7681 } 7682 7683 // Try to vectorize them. 7684 unsigned NumElts = (SameTypeIt - IncIt); 7685 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 7686 << NumElts << ")\n"); 7687 // The order in which the phi nodes appear in the program does not matter. 7688 // So allow tryToVectorizeList to reorder them if it is beneficial. This 7689 // is done when there are exactly two elements since tryToVectorizeList 7690 // asserts that there are only two values when AllowReorder is true. 7691 bool AllowReorder = NumElts == 2; 7692 if (NumElts > 1 && 7693 tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, AllowReorder)) { 7694 // Success start over because instructions might have been changed. 7695 HaveVectorizedPhiNodes = true; 7696 Changed = true; 7697 break; 7698 } 7699 7700 // Start over at the next instruction of a different type (or the end). 7701 IncIt = SameTypeIt; 7702 } 7703 } 7704 7705 VisitedInstrs.clear(); 7706 7707 SmallVector<Instruction *, 8> PostProcessInstructions; 7708 SmallDenseSet<Instruction *, 4> KeyNodes; 7709 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 7710 // Skip instructions with scalable type. The num of elements is unknown at 7711 // compile-time for scalable type. 7712 if (isa<ScalableVectorType>(it->getType())) 7713 continue; 7714 7715 // Skip instructions marked for the deletion. 7716 if (R.isDeleted(&*it)) 7717 continue; 7718 // We may go through BB multiple times so skip the one we have checked. 7719 if (!VisitedInstrs.insert(&*it).second) { 7720 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 7721 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 7722 // We would like to start over since some instructions are deleted 7723 // and the iterator may become invalid value. 7724 Changed = true; 7725 it = BB->begin(); 7726 e = BB->end(); 7727 } 7728 continue; 7729 } 7730 7731 if (isa<DbgInfoIntrinsic>(it)) 7732 continue; 7733 7734 // Try to vectorize reductions that use PHINodes. 7735 if (PHINode *P = dyn_cast<PHINode>(it)) { 7736 // Check that the PHI is a reduction PHI. 7737 if (P->getNumIncomingValues() == 2) { 7738 // Try to match and vectorize a horizontal reduction. 7739 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 7740 TTI)) { 7741 Changed = true; 7742 it = BB->begin(); 7743 e = BB->end(); 7744 continue; 7745 } 7746 } 7747 // Try to vectorize the incoming values of the PHI, to catch reductions 7748 // that feed into PHIs. 7749 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 7750 // Skip if the incoming block is the current BB for now. Also, bypass 7751 // unreachable IR for efficiency and to avoid crashing. 7752 // TODO: Collect the skipped incoming values and try to vectorize them 7753 // after processing BB. 7754 if (BB == P->getIncomingBlock(I) || 7755 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 7756 continue; 7757 7758 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 7759 P->getIncomingBlock(I), R, TTI); 7760 } 7761 continue; 7762 } 7763 7764 // Ran into an instruction without users, like terminator, or function call 7765 // with ignored return value, store. Ignore unused instructions (basing on 7766 // instruction type, except for CallInst and InvokeInst). 7767 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 7768 isa<InvokeInst>(it))) { 7769 KeyNodes.insert(&*it); 7770 bool OpsChanged = false; 7771 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 7772 for (auto *V : it->operand_values()) { 7773 // Try to match and vectorize a horizontal reduction. 7774 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 7775 } 7776 } 7777 // Start vectorization of post-process list of instructions from the 7778 // top-tree instructions to try to vectorize as many instructions as 7779 // possible. 7780 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 7781 if (OpsChanged) { 7782 // We would like to start over since some instructions are deleted 7783 // and the iterator may become invalid value. 7784 Changed = true; 7785 it = BB->begin(); 7786 e = BB->end(); 7787 continue; 7788 } 7789 } 7790 7791 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 7792 isa<InsertValueInst>(it)) 7793 PostProcessInstructions.push_back(&*it); 7794 } 7795 7796 return Changed; 7797 } 7798 7799 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 7800 auto Changed = false; 7801 for (auto &Entry : GEPs) { 7802 // If the getelementptr list has fewer than two elements, there's nothing 7803 // to do. 7804 if (Entry.second.size() < 2) 7805 continue; 7806 7807 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 7808 << Entry.second.size() << ".\n"); 7809 7810 // Process the GEP list in chunks suitable for the target's supported 7811 // vector size. If a vector register can't hold 1 element, we are done. We 7812 // are trying to vectorize the index computations, so the maximum number of 7813 // elements is based on the size of the index expression, rather than the 7814 // size of the GEP itself (the target's pointer size). 7815 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7816 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 7817 if (MaxVecRegSize < EltSize) 7818 continue; 7819 7820 unsigned MaxElts = MaxVecRegSize / EltSize; 7821 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 7822 auto Len = std::min<unsigned>(BE - BI, MaxElts); 7823 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 7824 7825 // Initialize a set a candidate getelementptrs. Note that we use a 7826 // SetVector here to preserve program order. If the index computations 7827 // are vectorizable and begin with loads, we want to minimize the chance 7828 // of having to reorder them later. 7829 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 7830 7831 // Some of the candidates may have already been vectorized after we 7832 // initially collected them. If so, they are marked as deleted, so remove 7833 // them from the set of candidates. 7834 Candidates.remove_if( 7835 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 7836 7837 // Remove from the set of candidates all pairs of getelementptrs with 7838 // constant differences. Such getelementptrs are likely not good 7839 // candidates for vectorization in a bottom-up phase since one can be 7840 // computed from the other. We also ensure all candidate getelementptr 7841 // indices are unique. 7842 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 7843 auto *GEPI = GEPList[I]; 7844 if (!Candidates.count(GEPI)) 7845 continue; 7846 auto *SCEVI = SE->getSCEV(GEPList[I]); 7847 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 7848 auto *GEPJ = GEPList[J]; 7849 auto *SCEVJ = SE->getSCEV(GEPList[J]); 7850 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 7851 Candidates.remove(GEPI); 7852 Candidates.remove(GEPJ); 7853 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 7854 Candidates.remove(GEPJ); 7855 } 7856 } 7857 } 7858 7859 // We break out of the above computation as soon as we know there are 7860 // fewer than two candidates remaining. 7861 if (Candidates.size() < 2) 7862 continue; 7863 7864 // Add the single, non-constant index of each candidate to the bundle. We 7865 // ensured the indices met these constraints when we originally collected 7866 // the getelementptrs. 7867 SmallVector<Value *, 16> Bundle(Candidates.size()); 7868 auto BundleIndex = 0u; 7869 for (auto *V : Candidates) { 7870 auto *GEP = cast<GetElementPtrInst>(V); 7871 auto *GEPIdx = GEP->idx_begin()->get(); 7872 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 7873 Bundle[BundleIndex++] = GEPIdx; 7874 } 7875 7876 // Try and vectorize the indices. We are currently only interested in 7877 // gather-like cases of the form: 7878 // 7879 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 7880 // 7881 // where the loads of "a", the loads of "b", and the subtractions can be 7882 // performed in parallel. It's likely that detecting this pattern in a 7883 // bottom-up phase will be simpler and less costly than building a 7884 // full-blown top-down phase beginning at the consecutive loads. 7885 Changed |= tryToVectorizeList(Bundle, R); 7886 } 7887 } 7888 return Changed; 7889 } 7890 7891 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 7892 bool Changed = false; 7893 // Attempt to sort and vectorize each of the store-groups. 7894 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 7895 ++it) { 7896 if (it->second.size() < 2) 7897 continue; 7898 7899 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 7900 << it->second.size() << ".\n"); 7901 7902 Changed |= vectorizeStores(it->second, R); 7903 } 7904 return Changed; 7905 } 7906 7907 char SLPVectorizer::ID = 0; 7908 7909 static const char lv_name[] = "SLP Vectorizer"; 7910 7911 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 7912 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7913 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7914 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7915 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7916 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 7917 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7918 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7919 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7920 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 7921 7922 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 7923