1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/DenseSet.h" 23 #include "llvm/ADT/MapVector.h" 24 #include "llvm/ADT/None.h" 25 #include "llvm/ADT/Optional.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SetVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/CodeMetrics.h" 37 #include "llvm/Analysis/DemandedBits.h" 38 #include "llvm/Analysis/GlobalsModRef.h" 39 #include "llvm/Analysis/LoopAccessAnalysis.h" 40 #include "llvm/Analysis/LoopInfo.h" 41 #include "llvm/Analysis/MemoryLocation.h" 42 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 43 #include "llvm/Analysis/ScalarEvolution.h" 44 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 45 #include "llvm/Analysis/TargetLibraryInfo.h" 46 #include "llvm/Analysis/TargetTransformInfo.h" 47 #include "llvm/Analysis/ValueTracking.h" 48 #include "llvm/Analysis/VectorUtils.h" 49 #include "llvm/IR/Attributes.h" 50 #include "llvm/IR/BasicBlock.h" 51 #include "llvm/IR/Constant.h" 52 #include "llvm/IR/Constants.h" 53 #include "llvm/IR/DataLayout.h" 54 #include "llvm/IR/DebugLoc.h" 55 #include "llvm/IR/DerivedTypes.h" 56 #include "llvm/IR/Dominators.h" 57 #include "llvm/IR/Function.h" 58 #include "llvm/IR/IRBuilder.h" 59 #include "llvm/IR/InstrTypes.h" 60 #include "llvm/IR/Instruction.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/IR/IntrinsicInst.h" 63 #include "llvm/IR/Intrinsics.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/NoFolder.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PassManager.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/Verifier.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/Casting.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/Compiler.h" 79 #include "llvm/Support/DOTGraphTraits.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/GraphWriter.h" 83 #include "llvm/Support/KnownBits.h" 84 #include "llvm/Support/MathExtras.h" 85 #include "llvm/Support/raw_ostream.h" 86 #include "llvm/Transforms/Utils/LoopUtils.h" 87 #include "llvm/Transforms/Vectorize.h" 88 #include <algorithm> 89 #include <cassert> 90 #include <cstdint> 91 #include <iterator> 92 #include <memory> 93 #include <set> 94 #include <string> 95 #include <tuple> 96 #include <utility> 97 #include <vector> 98 99 using namespace llvm; 100 using namespace llvm::PatternMatch; 101 using namespace slpvectorizer; 102 103 #define SV_NAME "slp-vectorizer" 104 #define DEBUG_TYPE "SLP" 105 106 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 107 108 static cl::opt<int> 109 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 110 cl::desc("Only vectorize if you gain more than this " 111 "number ")); 112 113 static cl::opt<bool> 114 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 115 cl::desc("Attempt to vectorize horizontal reductions")); 116 117 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 118 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 119 cl::desc( 120 "Attempt to vectorize horizontal reductions feeding into a store")); 121 122 static cl::opt<int> 123 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 124 cl::desc("Attempt to vectorize for this register size in bits")); 125 126 /// Limits the size of scheduling regions in a block. 127 /// It avoid long compile times for _very_ large blocks where vector 128 /// instructions are spread over a wide range. 129 /// This limit is way higher than needed by real-world functions. 130 static cl::opt<int> 131 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 132 cl::desc("Limit the size of the SLP scheduling region per block")); 133 134 static cl::opt<int> MinVectorRegSizeOption( 135 "slp-min-reg-size", cl::init(128), cl::Hidden, 136 cl::desc("Attempt to vectorize for this register size in bits")); 137 138 static cl::opt<unsigned> RecursionMaxDepth( 139 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 140 cl::desc("Limit the recursion depth when building a vectorizable tree")); 141 142 static cl::opt<unsigned> MinTreeSize( 143 "slp-min-tree-size", cl::init(3), cl::Hidden, 144 cl::desc("Only vectorize small trees if they are fully vectorizable")); 145 146 static cl::opt<bool> 147 ViewSLPTree("view-slp-tree", cl::Hidden, 148 cl::desc("Display the SLP trees with Graphviz")); 149 150 // Limit the number of alias checks. The limit is chosen so that 151 // it has no negative effect on the llvm benchmarks. 152 static const unsigned AliasedCheckLimit = 10; 153 154 // Another limit for the alias checks: The maximum distance between load/store 155 // instructions where alias checks are done. 156 // This limit is useful for very large basic blocks. 157 static const unsigned MaxMemDepDistance = 160; 158 159 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 160 /// regions to be handled. 161 static const int MinScheduleRegionSize = 16; 162 163 /// Predicate for the element types that the SLP vectorizer supports. 164 /// 165 /// The most important thing to filter here are types which are invalid in LLVM 166 /// vectors. We also filter target specific types which have absolutely no 167 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 168 /// avoids spending time checking the cost model and realizing that they will 169 /// be inevitably scalarized. 170 static bool isValidElementType(Type *Ty) { 171 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 172 !Ty->isPPC_FP128Ty(); 173 } 174 175 /// \returns true if all of the instructions in \p VL are in the same block or 176 /// false otherwise. 177 static bool allSameBlock(ArrayRef<Value *> VL) { 178 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 179 if (!I0) 180 return false; 181 BasicBlock *BB = I0->getParent(); 182 for (int i = 1, e = VL.size(); i < e; i++) { 183 Instruction *I = dyn_cast<Instruction>(VL[i]); 184 if (!I) 185 return false; 186 187 if (BB != I->getParent()) 188 return false; 189 } 190 return true; 191 } 192 193 /// \returns True if all of the values in \p VL are constants. 194 static bool allConstant(ArrayRef<Value *> VL) { 195 for (Value *i : VL) 196 if (!isa<Constant>(i)) 197 return false; 198 return true; 199 } 200 201 /// \returns True if all of the values in \p VL are identical. 202 static bool isSplat(ArrayRef<Value *> VL) { 203 for (unsigned i = 1, e = VL.size(); i < e; ++i) 204 if (VL[i] != VL[0]) 205 return false; 206 return true; 207 } 208 209 /// \returns True if \p I is commutative, handles CmpInst as well as Instruction. 210 static bool isCommutative(Instruction *I) { 211 if (auto *IC = dyn_cast<CmpInst>(I)) 212 return IC->isCommutative(); 213 return I->isCommutative(); 214 } 215 216 /// Checks if the vector of instructions can be represented as a shuffle, like: 217 /// %x0 = extractelement <4 x i8> %x, i32 0 218 /// %x3 = extractelement <4 x i8> %x, i32 3 219 /// %y1 = extractelement <4 x i8> %y, i32 1 220 /// %y2 = extractelement <4 x i8> %y, i32 2 221 /// %x0x0 = mul i8 %x0, %x0 222 /// %x3x3 = mul i8 %x3, %x3 223 /// %y1y1 = mul i8 %y1, %y1 224 /// %y2y2 = mul i8 %y2, %y2 225 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 226 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 227 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 228 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 229 /// ret <4 x i8> %ins4 230 /// can be transformed into: 231 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 232 /// i32 6> 233 /// %2 = mul <4 x i8> %1, %1 234 /// ret <4 x i8> %2 235 /// We convert this initially to something like: 236 /// %x0 = extractelement <4 x i8> %x, i32 0 237 /// %x3 = extractelement <4 x i8> %x, i32 3 238 /// %y1 = extractelement <4 x i8> %y, i32 1 239 /// %y2 = extractelement <4 x i8> %y, i32 2 240 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 241 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 242 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 243 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 244 /// %5 = mul <4 x i8> %4, %4 245 /// %6 = extractelement <4 x i8> %5, i32 0 246 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 247 /// %7 = extractelement <4 x i8> %5, i32 1 248 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 249 /// %8 = extractelement <4 x i8> %5, i32 2 250 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 251 /// %9 = extractelement <4 x i8> %5, i32 3 252 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 253 /// ret <4 x i8> %ins4 254 /// InstCombiner transforms this into a shuffle and vector mul 255 /// TODO: Can we split off and reuse the shuffle mask detection from 256 /// TargetTransformInfo::getInstructionThroughput? 257 static Optional<TargetTransformInfo::ShuffleKind> 258 isShuffle(ArrayRef<Value *> VL) { 259 auto *EI0 = cast<ExtractElementInst>(VL[0]); 260 unsigned Size = EI0->getVectorOperandType()->getVectorNumElements(); 261 Value *Vec1 = nullptr; 262 Value *Vec2 = nullptr; 263 enum ShuffleMode { Unknown, Select, Permute }; 264 ShuffleMode CommonShuffleMode = Unknown; 265 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 266 auto *EI = cast<ExtractElementInst>(VL[I]); 267 auto *Vec = EI->getVectorOperand(); 268 // All vector operands must have the same number of vector elements. 269 if (Vec->getType()->getVectorNumElements() != Size) 270 return None; 271 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 272 if (!Idx) 273 return None; 274 // Undefined behavior if Idx is negative or >= Size. 275 if (Idx->getValue().uge(Size)) 276 continue; 277 unsigned IntIdx = Idx->getValue().getZExtValue(); 278 // We can extractelement from undef vector. 279 if (isa<UndefValue>(Vec)) 280 continue; 281 // For correct shuffling we have to have at most 2 different vector operands 282 // in all extractelement instructions. 283 if (!Vec1 || Vec1 == Vec) 284 Vec1 = Vec; 285 else if (!Vec2 || Vec2 == Vec) 286 Vec2 = Vec; 287 else 288 return None; 289 if (CommonShuffleMode == Permute) 290 continue; 291 // If the extract index is not the same as the operation number, it is a 292 // permutation. 293 if (IntIdx != I) { 294 CommonShuffleMode = Permute; 295 continue; 296 } 297 CommonShuffleMode = Select; 298 } 299 // If we're not crossing lanes in different vectors, consider it as blending. 300 if (CommonShuffleMode == Select && Vec2) 301 return TargetTransformInfo::SK_Select; 302 // If Vec2 was never used, we have a permutation of a single vector, otherwise 303 // we have permutation of 2 vectors. 304 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 305 : TargetTransformInfo::SK_PermuteSingleSrc; 306 } 307 308 namespace { 309 310 /// Main data required for vectorization of instructions. 311 struct InstructionsState { 312 /// The very first instruction in the list with the main opcode. 313 Value *OpValue = nullptr; 314 315 /// The main/alternate instruction. 316 Instruction *MainOp = nullptr; 317 Instruction *AltOp = nullptr; 318 319 /// The main/alternate opcodes for the list of instructions. 320 unsigned getOpcode() const { 321 return MainOp ? MainOp->getOpcode() : 0; 322 } 323 324 unsigned getAltOpcode() const { 325 return AltOp ? AltOp->getOpcode() : 0; 326 } 327 328 /// Some of the instructions in the list have alternate opcodes. 329 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 330 331 bool isOpcodeOrAlt(Instruction *I) const { 332 unsigned CheckedOpcode = I->getOpcode(); 333 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 334 } 335 336 InstructionsState() = delete; 337 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 338 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 339 }; 340 341 } // end anonymous namespace 342 343 /// Chooses the correct key for scheduling data. If \p Op has the same (or 344 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 345 /// OpValue. 346 static Value *isOneOf(const InstructionsState &S, Value *Op) { 347 auto *I = dyn_cast<Instruction>(Op); 348 if (I && S.isOpcodeOrAlt(I)) 349 return Op; 350 return S.OpValue; 351 } 352 353 /// \returns analysis of the Instructions in \p VL described in 354 /// InstructionsState, the Opcode that we suppose the whole list 355 /// could be vectorized even if its structure is diverse. 356 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 357 unsigned BaseIndex = 0) { 358 // Make sure these are all Instructions. 359 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 360 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 361 362 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 363 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 364 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 365 unsigned AltOpcode = Opcode; 366 unsigned AltIndex = BaseIndex; 367 368 // Check for one alternate opcode from another BinaryOperator. 369 // TODO - generalize to support all operators (types, calls etc.). 370 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 371 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 372 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 373 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 374 continue; 375 if (Opcode == AltOpcode) { 376 AltOpcode = InstOpcode; 377 AltIndex = Cnt; 378 continue; 379 } 380 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 381 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 382 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 383 if (Ty0 == Ty1) { 384 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 385 continue; 386 if (Opcode == AltOpcode) { 387 AltOpcode = InstOpcode; 388 AltIndex = Cnt; 389 continue; 390 } 391 } 392 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 393 continue; 394 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 395 } 396 397 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 398 cast<Instruction>(VL[AltIndex])); 399 } 400 401 /// \returns true if all of the values in \p VL have the same type or false 402 /// otherwise. 403 static bool allSameType(ArrayRef<Value *> VL) { 404 Type *Ty = VL[0]->getType(); 405 for (int i = 1, e = VL.size(); i < e; i++) 406 if (VL[i]->getType() != Ty) 407 return false; 408 409 return true; 410 } 411 412 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 413 static Optional<unsigned> getExtractIndex(Instruction *E) { 414 unsigned Opcode = E->getOpcode(); 415 assert((Opcode == Instruction::ExtractElement || 416 Opcode == Instruction::ExtractValue) && 417 "Expected extractelement or extractvalue instruction."); 418 if (Opcode == Instruction::ExtractElement) { 419 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 420 if (!CI) 421 return None; 422 return CI->getZExtValue(); 423 } 424 ExtractValueInst *EI = cast<ExtractValueInst>(E); 425 if (EI->getNumIndices() != 1) 426 return None; 427 return *EI->idx_begin(); 428 } 429 430 /// \returns True if in-tree use also needs extract. This refers to 431 /// possible scalar operand in vectorized instruction. 432 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 433 TargetLibraryInfo *TLI) { 434 unsigned Opcode = UserInst->getOpcode(); 435 switch (Opcode) { 436 case Instruction::Load: { 437 LoadInst *LI = cast<LoadInst>(UserInst); 438 return (LI->getPointerOperand() == Scalar); 439 } 440 case Instruction::Store: { 441 StoreInst *SI = cast<StoreInst>(UserInst); 442 return (SI->getPointerOperand() == Scalar); 443 } 444 case Instruction::Call: { 445 CallInst *CI = cast<CallInst>(UserInst); 446 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 447 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 448 if (hasVectorInstrinsicScalarOpd(ID, i)) 449 return (CI->getArgOperand(i) == Scalar); 450 } 451 LLVM_FALLTHROUGH; 452 } 453 default: 454 return false; 455 } 456 } 457 458 /// \returns the AA location that is being access by the instruction. 459 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 460 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 461 return MemoryLocation::get(SI); 462 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 463 return MemoryLocation::get(LI); 464 return MemoryLocation(); 465 } 466 467 /// \returns True if the instruction is not a volatile or atomic load/store. 468 static bool isSimple(Instruction *I) { 469 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 470 return LI->isSimple(); 471 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 472 return SI->isSimple(); 473 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 474 return !MI->isVolatile(); 475 return true; 476 } 477 478 namespace llvm { 479 480 namespace slpvectorizer { 481 482 /// Bottom Up SLP Vectorizer. 483 class BoUpSLP { 484 public: 485 using ValueList = SmallVector<Value *, 8>; 486 using InstrList = SmallVector<Instruction *, 16>; 487 using ValueSet = SmallPtrSet<Value *, 16>; 488 using StoreList = SmallVector<StoreInst *, 8>; 489 using ExtraValueToDebugLocsMap = 490 MapVector<Value *, SmallVector<Instruction *, 2>>; 491 492 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 493 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 494 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 495 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 496 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 497 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 498 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 499 // Use the vector register size specified by the target unless overridden 500 // by a command-line option. 501 // TODO: It would be better to limit the vectorization factor based on 502 // data type rather than just register size. For example, x86 AVX has 503 // 256-bit registers, but it does not support integer operations 504 // at that width (that requires AVX2). 505 if (MaxVectorRegSizeOption.getNumOccurrences()) 506 MaxVecRegSize = MaxVectorRegSizeOption; 507 else 508 MaxVecRegSize = TTI->getRegisterBitWidth(true); 509 510 if (MinVectorRegSizeOption.getNumOccurrences()) 511 MinVecRegSize = MinVectorRegSizeOption; 512 else 513 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 514 } 515 516 /// Vectorize the tree that starts with the elements in \p VL. 517 /// Returns the vectorized root. 518 Value *vectorizeTree(); 519 520 /// Vectorize the tree but with the list of externally used values \p 521 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 522 /// generated extractvalue instructions. 523 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 524 525 /// \returns the cost incurred by unwanted spills and fills, caused by 526 /// holding live values over call sites. 527 int getSpillCost(); 528 529 /// \returns the vectorization cost of the subtree that starts at \p VL. 530 /// A negative number means that this is profitable. 531 int getTreeCost(); 532 533 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 534 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 535 void buildTree(ArrayRef<Value *> Roots, 536 ArrayRef<Value *> UserIgnoreLst = None); 537 538 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 539 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 540 /// into account (anf updating it, if required) list of externally used 541 /// values stored in \p ExternallyUsedValues. 542 void buildTree(ArrayRef<Value *> Roots, 543 ExtraValueToDebugLocsMap &ExternallyUsedValues, 544 ArrayRef<Value *> UserIgnoreLst = None); 545 546 /// Clear the internal data structures that are created by 'buildTree'. 547 void deleteTree() { 548 VectorizableTree.clear(); 549 ScalarToTreeEntry.clear(); 550 MustGather.clear(); 551 ExternalUses.clear(); 552 NumOpsWantToKeepOrder.clear(); 553 NumOpsWantToKeepOriginalOrder = 0; 554 for (auto &Iter : BlocksSchedules) { 555 BlockScheduling *BS = Iter.second.get(); 556 BS->clear(); 557 } 558 MinBWs.clear(); 559 } 560 561 unsigned getTreeSize() const { return VectorizableTree.size(); } 562 563 /// Perform LICM and CSE on the newly generated gather sequences. 564 void optimizeGatherSequence(); 565 566 /// \returns The best order of instructions for vectorization. 567 Optional<ArrayRef<unsigned>> bestOrder() const { 568 auto I = std::max_element( 569 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 570 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 571 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 572 return D1.second < D2.second; 573 }); 574 if (I == NumOpsWantToKeepOrder.end() || 575 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 576 return None; 577 578 return makeArrayRef(I->getFirst()); 579 } 580 581 /// \return The vector element size in bits to use when vectorizing the 582 /// expression tree ending at \p V. If V is a store, the size is the width of 583 /// the stored value. Otherwise, the size is the width of the largest loaded 584 /// value reaching V. This method is used by the vectorizer to calculate 585 /// vectorization factors. 586 unsigned getVectorElementSize(Value *V) const; 587 588 /// Compute the minimum type sizes required to represent the entries in a 589 /// vectorizable tree. 590 void computeMinimumValueSizes(); 591 592 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 593 unsigned getMaxVecRegSize() const { 594 return MaxVecRegSize; 595 } 596 597 // \returns minimum vector register size as set by cl::opt. 598 unsigned getMinVecRegSize() const { 599 return MinVecRegSize; 600 } 601 602 /// Check if ArrayType or StructType is isomorphic to some VectorType. 603 /// 604 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 605 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 606 607 /// \returns True if the VectorizableTree is both tiny and not fully 608 /// vectorizable. We do not vectorize such trees. 609 bool isTreeTinyAndNotFullyVectorizable() const; 610 611 OptimizationRemarkEmitter *getORE() { return ORE; } 612 613 /// This structure holds any data we need about the edges being traversed 614 /// during buildTree_rec(). We keep track of: 615 /// (i) the user TreeEntry index, and 616 /// (ii) the index of the edge. 617 struct EdgeInfo { 618 EdgeInfo() = default; 619 /// The index of the user TreeEntry in VectorizableTree. 620 int Idx = -1; 621 /// The operand index of the use. 622 unsigned EdgeIdx = UINT_MAX; 623 #ifndef NDEBUG 624 friend inline raw_ostream &operator<<(raw_ostream &OS, 625 const BoUpSLP::EdgeInfo &EI) { 626 EI.dump(OS); 627 return OS; 628 } 629 /// Debug print. 630 void dump(raw_ostream &OS) const { 631 OS << "{User:" << Idx << " EdgeIdx:" << EdgeIdx << "}"; 632 } 633 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 634 #endif 635 }; 636 637 /// A helper data structure to hold the operands of a vector of instructions. 638 /// This supports a fixed vector length for all operand vectors. 639 class VLOperands { 640 /// For each operand we need (i) the value, and (ii) the opcode that it 641 /// would be attached to if the expression was in a left-linearized form. 642 /// This is required to avoid illegal operand reordering. 643 /// For example: 644 /// \verbatim 645 /// 0 Op1 646 /// |/ 647 /// Op1 Op2 Linearized + Op2 648 /// \ / ----------> |/ 649 /// - - 650 /// 651 /// Op1 - Op2 (0 + Op1) - Op2 652 /// \endverbatim 653 /// 654 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 655 /// 656 /// Another way to think of this is to track all the operations across the 657 /// path from the operand all the way to the root of the tree and to 658 /// calculate the operation that corresponds to this path. For example, the 659 /// path from Op2 to the root crosses the RHS of the '-', therefore the 660 /// corresponding operation is a '-' (which matches the one in the 661 /// linearized tree, as shown above). 662 /// 663 /// For lack of a better term, we refer to this operation as Accumulated 664 /// Path Operation (APO). 665 struct OperandData { 666 OperandData() = default; 667 OperandData(Value *V, bool APO, bool IsUsed) 668 : V(V), APO(APO), IsUsed(IsUsed) {} 669 /// The operand value. 670 Value *V = nullptr; 671 /// TreeEntries only allow a single opcode, or an alternate sequence of 672 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 673 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 674 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 675 /// (e.g., Add/Mul) 676 bool APO = false; 677 /// Helper data for the reordering function. 678 bool IsUsed = false; 679 }; 680 681 /// During operand reordering, we are trying to select the operand at lane 682 /// that matches best with the operand at the neighboring lane. Our 683 /// selection is based on the type of value we are looking for. For example, 684 /// if the neighboring lane has a load, we need to look for a load that is 685 /// accessing a consecutive address. These strategies are summarized in the 686 /// 'ReorderingMode' enumerator. 687 enum class ReorderingMode { 688 Load, ///< Matching loads to consecutive memory addresses 689 Opcode, ///< Matching instructions based on opcode (same or alternate) 690 Constant, ///< Matching constants 691 Splat, ///< Matching the same instruction multiple times (broadcast) 692 Failed, ///< We failed to create a vectorizable group 693 }; 694 695 using OperandDataVec = SmallVector<OperandData, 2>; 696 697 /// A vector of operand vectors. 698 SmallVector<OperandDataVec, 4> OpsVec; 699 700 const DataLayout &DL; 701 ScalarEvolution &SE; 702 703 /// \returns the operand data at \p OpIdx and \p Lane. 704 OperandData &getData(unsigned OpIdx, unsigned Lane) { 705 return OpsVec[OpIdx][Lane]; 706 } 707 708 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 709 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 710 return OpsVec[OpIdx][Lane]; 711 } 712 713 /// Clears the used flag for all entries. 714 void clearUsed() { 715 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 716 OpIdx != NumOperands; ++OpIdx) 717 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 718 ++Lane) 719 OpsVec[OpIdx][Lane].IsUsed = false; 720 } 721 722 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 723 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 724 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 725 } 726 727 // Search all operands in Ops[*][Lane] for the one that matches best 728 // Ops[OpIdx][LastLane] and return its opreand index. 729 // If no good match can be found, return None. 730 Optional<unsigned> 731 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 732 ArrayRef<ReorderingMode> ReorderingModes) { 733 unsigned NumOperands = getNumOperands(); 734 735 // The operand of the previous lane at OpIdx. 736 Value *OpLastLane = getData(OpIdx, LastLane).V; 737 738 // Our strategy mode for OpIdx. 739 ReorderingMode RMode = ReorderingModes[OpIdx]; 740 741 // The linearized opcode of the operand at OpIdx, Lane. 742 bool OpIdxAPO = getData(OpIdx, Lane).APO; 743 744 const unsigned BestScore = 2; 745 const unsigned GoodScore = 1; 746 747 // The best operand index and its score. 748 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 749 // are using the score to differentiate between the two. 750 struct BestOpData { 751 Optional<unsigned> Idx = None; 752 unsigned Score = 0; 753 } BestOp; 754 755 // Iterate through all unused operands and look for the best. 756 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 757 // Get the operand at Idx and Lane. 758 OperandData &OpData = getData(Idx, Lane); 759 Value *Op = OpData.V; 760 bool OpAPO = OpData.APO; 761 762 // Skip already selected operands. 763 if (OpData.IsUsed) 764 continue; 765 766 // Skip if we are trying to move the operand to a position with a 767 // different opcode in the linearized tree form. This would break the 768 // semantics. 769 if (OpAPO != OpIdxAPO) 770 continue; 771 772 // Look for an operand that matches the current mode. 773 switch (RMode) { 774 case ReorderingMode::Load: 775 if (isa<LoadInst>(Op)) { 776 // Figure out which is left and right, so that we can check for 777 // consecutive loads 778 bool LeftToRight = Lane > LastLane; 779 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 780 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 781 if (isConsecutiveAccess(cast<LoadInst>(OpLeft), 782 cast<LoadInst>(OpRight), DL, SE)) 783 BestOp.Idx = Idx; 784 } 785 break; 786 case ReorderingMode::Opcode: 787 // We accept both Instructions and Undefs, but with different scores. 788 if ((isa<Instruction>(Op) && 789 cast<Instruction>(Op)->getOpcode() == 790 cast<Instruction>(OpLastLane)->getOpcode()) || 791 isa<UndefValue>(Op)) { 792 // An instruction has a higher score than an undef. 793 unsigned Score = (isa<UndefValue>(Op)) ? GoodScore : BestScore; 794 if (Score > BestOp.Score) { 795 BestOp.Idx = Idx; 796 BestOp.Score = Score; 797 } 798 } 799 break; 800 case ReorderingMode::Constant: 801 if (isa<Constant>(Op)) { 802 unsigned Score = (isa<UndefValue>(Op)) ? GoodScore : BestScore; 803 if (Score > BestOp.Score) { 804 BestOp.Idx = Idx; 805 BestOp.Score = Score; 806 } 807 } 808 break; 809 case ReorderingMode::Splat: 810 if (Op == OpLastLane) 811 BestOp.Idx = Idx; 812 break; 813 case ReorderingMode::Failed: 814 return None; 815 } 816 } 817 818 if (BestOp.Idx) { 819 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 820 return BestOp.Idx; 821 } 822 // If we could not find a good match return None. 823 return None; 824 } 825 826 /// Helper for reorderOperandVecs. \Returns the lane that we should start 827 /// reordering from. This is the one which has the least number of operands 828 /// that can freely move about. 829 unsigned getBestLaneToStartReordering() const { 830 unsigned BestLane = 0; 831 unsigned Min = UINT_MAX; 832 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 833 ++Lane) { 834 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 835 if (NumFreeOps < Min) { 836 Min = NumFreeOps; 837 BestLane = Lane; 838 } 839 } 840 return BestLane; 841 } 842 843 /// \Returns the maximum number of operands that are allowed to be reordered 844 /// for \p Lane. This is used as a heuristic for selecting the first lane to 845 /// start operand reordering. 846 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 847 unsigned CntTrue = 0; 848 unsigned NumOperands = getNumOperands(); 849 // Operands with the same APO can be reordered. We therefore need to count 850 // how many of them we have for each APO, like this: Cnt[APO] = x. 851 // Since we only have two APOs, namely true and false, we can avoid using 852 // a map. Instead we can simply count the number of operands that 853 // correspond to one of them (in this case the 'true' APO), and calculate 854 // the other by subtracting it from the total number of operands. 855 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 856 if (getData(OpIdx, Lane).APO) 857 ++CntTrue; 858 unsigned CntFalse = NumOperands - CntTrue; 859 return std::max(CntTrue, CntFalse); 860 } 861 862 /// Go through the instructions in VL and append their operands. 863 void appendOperandsOfVL(ArrayRef<Value *> VL) { 864 assert(!VL.empty() && "Bad VL"); 865 assert((empty() || VL.size() == getNumLanes()) && 866 "Expected same number of lanes"); 867 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 868 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 869 OpsVec.resize(NumOperands); 870 unsigned NumLanes = VL.size(); 871 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 872 OpsVec[OpIdx].resize(NumLanes); 873 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 874 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 875 // Our tree has just 3 nodes: the root and two operands. 876 // It is therefore trivial to get the APO. We only need to check the 877 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 878 // RHS operand. The LHS operand of both add and sub is never attached 879 // to an inversese operation in the linearized form, therefore its APO 880 // is false. The RHS is true only if VL[Lane] is an inverse operation. 881 882 // Since operand reordering is performed on groups of commutative 883 // operations or alternating sequences (e.g., +, -), we can safely 884 // tell the inverse operations by checking commutativity. 885 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 886 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 887 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 888 APO, false}; 889 } 890 } 891 } 892 893 /// \returns the number of operands. 894 unsigned getNumOperands() const { return OpsVec.size(); } 895 896 /// \returns the number of lanes. 897 unsigned getNumLanes() const { return OpsVec[0].size(); } 898 899 /// \returns the operand value at \p OpIdx and \p Lane. 900 Value *getValue(unsigned OpIdx, unsigned Lane) const { 901 return getData(OpIdx, Lane).V; 902 } 903 904 /// \returns true if the data structure is empty. 905 bool empty() const { return OpsVec.empty(); } 906 907 /// Clears the data. 908 void clear() { OpsVec.clear(); } 909 910 public: 911 /// Initialize with all the operands of the instruction vector \p RootVL. 912 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 913 ScalarEvolution &SE) 914 : DL(DL), SE(SE) { 915 // Append all the operands of RootVL. 916 appendOperandsOfVL(RootVL); 917 } 918 919 /// \Returns a value vector with the operands across all lanes for the 920 /// opearnd at \p OpIdx. 921 ValueList getVL(unsigned OpIdx) const { 922 ValueList OpVL(OpsVec[OpIdx].size()); 923 assert(OpsVec[OpIdx].size() == getNumLanes() && 924 "Expected same num of lanes across all operands"); 925 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 926 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 927 return OpVL; 928 } 929 930 // Performs operand reordering for 2 or more operands. 931 // The original operands are in OrigOps[OpIdx][Lane]. 932 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 933 void reorder() { 934 unsigned NumOperands = getNumOperands(); 935 unsigned NumLanes = getNumLanes(); 936 // Each operand has its own mode. We are using this mode to help us select 937 // the instructions for each lane, so that they match best with the ones 938 // we have selected so far. 939 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 940 941 // This is a greedy single-pass algorithm. We are going over each lane 942 // once and deciding on the best order right away with no back-tracking. 943 // However, in order to increase its effectiveness, we start with the lane 944 // that has operands that can move the least. For example, given the 945 // following lanes: 946 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 947 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 948 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 949 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 950 // we will start at Lane 1, since the operands of the subtraction cannot 951 // be reordered. Then we will visit the rest of the lanes in a circular 952 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 953 954 // Find the first lane that we will start our search from. 955 unsigned FirstLane = getBestLaneToStartReordering(); 956 957 // Initialize the modes. 958 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 959 Value *OpLane0 = getValue(OpIdx, FirstLane); 960 // Keep track if we have instructions with all the same opcode on one 961 // side. 962 if (isa<LoadInst>(OpLane0)) 963 ReorderingModes[OpIdx] = ReorderingMode::Load; 964 else if (isa<Instruction>(OpLane0)) 965 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 966 else if (isa<Constant>(OpLane0)) 967 ReorderingModes[OpIdx] = ReorderingMode::Constant; 968 else if (isa<Argument>(OpLane0)) 969 // Our best hope is a Splat. It may save some cost in some cases. 970 ReorderingModes[OpIdx] = ReorderingMode::Splat; 971 else 972 // NOTE: This should be unreachable. 973 ReorderingModes[OpIdx] = ReorderingMode::Failed; 974 } 975 976 // If the initial strategy fails for any of the operand indexes, then we 977 // perform reordering again in a second pass. This helps avoid assigning 978 // high priority to the failed strategy, and should improve reordering for 979 // the non-failed operand indexes. 980 for (int Pass = 0; Pass != 2; ++Pass) { 981 // Skip the second pass if the first pass did not fail. 982 bool StrategyFailed = false; 983 // Mark the operand data as free to use for all but the first pass. 984 if (Pass > 0) 985 clearUsed(); 986 // We keep the original operand order for the FirstLane, so reorder the 987 // rest of the lanes. We are visiting the nodes in a circular fashion, 988 // using FirstLane as the center point and increasing the radius 989 // distance. 990 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 991 // Visit the lane on the right and then the lane on the left. 992 for (int Direction : {+1, -1}) { 993 int Lane = FirstLane + Direction * Distance; 994 if (Lane < 0 || Lane >= (int)NumLanes) 995 continue; 996 int LastLane = Lane - Direction; 997 assert(LastLane >= 0 && LastLane < (int)NumLanes && 998 "Out of bounds"); 999 // Look for a good match for each operand. 1000 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1001 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1002 Optional<unsigned> BestIdx = 1003 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1004 // By not selecting a value, we allow the operands that follow to 1005 // select a better matching value. We will get a non-null value in 1006 // the next run of getBestOperand(). 1007 if (BestIdx) { 1008 // Swap the current operand with the one returned by 1009 // getBestOperand(). 1010 swap(OpIdx, BestIdx.getValue(), Lane); 1011 } else { 1012 // We failed to find a best operand, set mode to 'Failed'. 1013 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1014 // Enable the second pass. 1015 StrategyFailed = true; 1016 } 1017 } 1018 } 1019 } 1020 // Skip second pass if the strategy did not fail. 1021 if (!StrategyFailed) 1022 break; 1023 } 1024 } 1025 1026 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1027 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1028 switch (RMode) { 1029 case ReorderingMode::Load: 1030 return "Load"; 1031 case ReorderingMode::Opcode: 1032 return "Opcode"; 1033 case ReorderingMode::Constant: 1034 return "Constant"; 1035 case ReorderingMode::Splat: 1036 return "Splat"; 1037 case ReorderingMode::Failed: 1038 return "Failed"; 1039 } 1040 llvm_unreachable("Unimplemented Reordering Type"); 1041 } 1042 1043 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1044 raw_ostream &OS) { 1045 return OS << getModeStr(RMode); 1046 } 1047 1048 /// Debug print. 1049 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1050 printMode(RMode, dbgs()); 1051 } 1052 1053 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1054 return printMode(RMode, OS); 1055 } 1056 1057 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1058 const unsigned Indent = 2; 1059 unsigned Cnt = 0; 1060 for (const OperandDataVec &OpDataVec : OpsVec) { 1061 OS << "Operand " << Cnt++ << "\n"; 1062 for (const OperandData &OpData : OpDataVec) { 1063 OS.indent(Indent) << "{"; 1064 if (Value *V = OpData.V) 1065 OS << *V; 1066 else 1067 OS << "null"; 1068 OS << ", APO:" << OpData.APO << "}\n"; 1069 } 1070 OS << "\n"; 1071 } 1072 return OS; 1073 } 1074 1075 /// Debug print. 1076 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1077 #endif 1078 }; 1079 1080 private: 1081 struct TreeEntry; 1082 1083 /// Checks if all users of \p I are the part of the vectorization tree. 1084 bool areAllUsersVectorized(Instruction *I) const; 1085 1086 /// \returns the cost of the vectorizable entry. 1087 int getEntryCost(TreeEntry *E); 1088 1089 /// This is the recursive part of buildTree. 1090 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, EdgeInfo EI); 1091 1092 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1093 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1094 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1095 /// returns false, setting \p CurrentOrder to either an empty vector or a 1096 /// non-identity permutation that allows to reuse extract instructions. 1097 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1098 SmallVectorImpl<unsigned> &CurrentOrder) const; 1099 1100 /// Vectorize a single entry in the tree. 1101 Value *vectorizeTree(TreeEntry *E); 1102 1103 /// Vectorize a single entry in the tree, starting in \p VL. 1104 Value *vectorizeTree(ArrayRef<Value *> VL); 1105 1106 /// \returns the scalarization cost for this type. Scalarization in this 1107 /// context means the creation of vectors from a group of scalars. 1108 int getGatherCost(Type *Ty, const DenseSet<unsigned> &ShuffledIndices) const; 1109 1110 /// \returns the scalarization cost for this list of values. Assuming that 1111 /// this subtree gets vectorized, we may need to extract the values from the 1112 /// roots. This method calculates the cost of extracting the values. 1113 int getGatherCost(ArrayRef<Value *> VL) const; 1114 1115 /// Set the Builder insert point to one after the last instruction in 1116 /// the bundle 1117 void setInsertPointAfterBundle(ArrayRef<Value *> VL, 1118 const InstructionsState &S); 1119 1120 /// \returns a vector from a collection of scalars in \p VL. 1121 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 1122 1123 /// \returns whether the VectorizableTree is fully vectorizable and will 1124 /// be beneficial even the tree height is tiny. 1125 bool isFullyVectorizableTinyTree() const; 1126 1127 /// Reorder commutative or alt operands to get better probability of 1128 /// generating vectorized code. 1129 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1130 SmallVectorImpl<Value *> &Left, 1131 SmallVectorImpl<Value *> &Right, 1132 const DataLayout &DL, 1133 ScalarEvolution &SE); 1134 struct TreeEntry { 1135 TreeEntry(std::vector<TreeEntry> &Container) : Container(Container) {} 1136 1137 /// \returns true if the scalars in VL are equal to this entry. 1138 bool isSame(ArrayRef<Value *> VL) const { 1139 if (VL.size() == Scalars.size()) 1140 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1141 return VL.size() == ReuseShuffleIndices.size() && 1142 std::equal( 1143 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 1144 [this](Value *V, unsigned Idx) { return V == Scalars[Idx]; }); 1145 } 1146 1147 /// A vector of scalars. 1148 ValueList Scalars; 1149 1150 /// The Scalars are vectorized into this value. It is initialized to Null. 1151 Value *VectorizedValue = nullptr; 1152 1153 /// Do we need to gather this sequence ? 1154 bool NeedToGather = false; 1155 1156 /// Does this sequence require some shuffling? 1157 SmallVector<unsigned, 4> ReuseShuffleIndices; 1158 1159 /// Does this entry require reordering? 1160 ArrayRef<unsigned> ReorderIndices; 1161 1162 /// Points back to the VectorizableTree. 1163 /// 1164 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1165 /// to be a pointer and needs to be able to initialize the child iterator. 1166 /// Thus we need a reference back to the container to translate the indices 1167 /// to entries. 1168 std::vector<TreeEntry> &Container; 1169 1170 /// The TreeEntry index containing the user of this entry. We can actually 1171 /// have multiple users so the data structure is not truly a tree. 1172 SmallVector<EdgeInfo, 1> UserTreeIndices; 1173 1174 private: 1175 /// The operands of each instruction in each lane Operands[op_index][lane]. 1176 /// Note: This helps avoid the replication of the code that performs the 1177 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1178 SmallVector<ValueList, 2> Operands; 1179 1180 public: 1181 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1182 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL, 1183 ArrayRef<unsigned> ReuseShuffleIndices) { 1184 if (Operands.size() < OpIdx + 1) 1185 Operands.resize(OpIdx + 1); 1186 assert(Operands[OpIdx].size() == 0 && "Already resized?"); 1187 Operands[OpIdx].resize(Scalars.size()); 1188 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1189 Operands[OpIdx][Lane] = (!ReuseShuffleIndices.empty()) 1190 ? OpVL[ReuseShuffleIndices[Lane]] 1191 : OpVL[Lane]; 1192 } 1193 1194 /// If there is a user TreeEntry, then set its operand. 1195 void trySetUserTEOperand(const EdgeInfo &UserTreeIdx, 1196 ArrayRef<Value *> OpVL, 1197 ArrayRef<unsigned> ReuseShuffleIndices) { 1198 if (UserTreeIdx.Idx >= 0) { 1199 auto &VectorizableTree = Container; 1200 VectorizableTree[UserTreeIdx.Idx].setOperand(UserTreeIdx.EdgeIdx, OpVL, 1201 ReuseShuffleIndices); 1202 } 1203 } 1204 1205 /// \returns the \p OpIdx operand of this TreeEntry. 1206 ValueList &getOperand(unsigned OpIdx) { 1207 assert(OpIdx < Operands.size() && "Off bounds"); 1208 return Operands[OpIdx]; 1209 } 1210 1211 /// \return the single \p OpIdx operand. 1212 Value *getSingleOperand(unsigned OpIdx) const { 1213 assert(OpIdx < Operands.size() && "Off bounds"); 1214 assert(!Operands[OpIdx].empty() && "No operand availabe"); 1215 return Operands[OpIdx][0]; 1216 } 1217 1218 #ifndef NDEBUG 1219 /// Debug printer. 1220 LLVM_DUMP_METHOD void dump() const { 1221 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1222 dbgs() << "Operand " << OpI << ":\n"; 1223 for (const Value *V : Operands[OpI]) 1224 dbgs().indent(2) << *V << "\n"; 1225 } 1226 dbgs() << "Scalars: \n"; 1227 for (Value *V : Scalars) 1228 dbgs().indent(2) << *V << "\n"; 1229 dbgs() << "NeedToGather: " << NeedToGather << "\n"; 1230 dbgs() << "VectorizedValue: "; 1231 if (VectorizedValue) 1232 dbgs() << *VectorizedValue; 1233 else 1234 dbgs() << "NULL"; 1235 dbgs() << "\n"; 1236 dbgs() << "ReuseShuffleIndices: "; 1237 if (ReuseShuffleIndices.empty()) 1238 dbgs() << "Emtpy"; 1239 else 1240 for (unsigned Idx : ReuseShuffleIndices) 1241 dbgs() << Idx << ", "; 1242 dbgs() << "\n"; 1243 dbgs() << "ReorderIndices: "; 1244 for (unsigned Idx : ReorderIndices) 1245 dbgs() << Idx << ", "; 1246 dbgs() << "\n"; 1247 dbgs() << "UserTreeIndices: "; 1248 for (const auto &EInfo : UserTreeIndices) 1249 dbgs() << EInfo << ", "; 1250 dbgs() << "\n"; 1251 } 1252 #endif 1253 }; 1254 1255 /// Create a new VectorizableTree entry. 1256 void newTreeEntry(ArrayRef<Value *> VL, bool Vectorized, 1257 EdgeInfo &UserTreeIdx, 1258 ArrayRef<unsigned> ReuseShuffleIndices = None, 1259 ArrayRef<unsigned> ReorderIndices = None) { 1260 VectorizableTree.emplace_back(VectorizableTree); 1261 int idx = VectorizableTree.size() - 1; 1262 TreeEntry *Last = &VectorizableTree[idx]; 1263 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 1264 Last->NeedToGather = !Vectorized; 1265 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1266 ReuseShuffleIndices.end()); 1267 Last->ReorderIndices = ReorderIndices; 1268 if (Vectorized) { 1269 for (int i = 0, e = VL.size(); i != e; ++i) { 1270 assert(!getTreeEntry(VL[i]) && "Scalar already in tree!"); 1271 ScalarToTreeEntry[VL[i]] = idx; 1272 } 1273 } else { 1274 MustGather.insert(VL.begin(), VL.end()); 1275 } 1276 1277 if (UserTreeIdx.Idx >= 0) 1278 Last->UserTreeIndices.push_back(UserTreeIdx); 1279 1280 Last->trySetUserTEOperand(UserTreeIdx, VL, ReuseShuffleIndices); 1281 1282 UserTreeIdx.Idx = idx; 1283 } 1284 1285 /// -- Vectorization State -- 1286 /// Holds all of the tree entries. 1287 std::vector<TreeEntry> VectorizableTree; 1288 1289 #ifndef NDEBUG 1290 /// Debug printer. 1291 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1292 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1293 dbgs() << Id << ".\n"; 1294 VectorizableTree[Id].dump(); 1295 dbgs() << "\n"; 1296 } 1297 } 1298 #endif 1299 1300 TreeEntry *getTreeEntry(Value *V) { 1301 auto I = ScalarToTreeEntry.find(V); 1302 if (I != ScalarToTreeEntry.end()) 1303 return &VectorizableTree[I->second]; 1304 return nullptr; 1305 } 1306 1307 /// Maps a specific scalar to its tree entry. 1308 SmallDenseMap<Value*, int> ScalarToTreeEntry; 1309 1310 /// A list of scalars that we found that we need to keep as scalars. 1311 ValueSet MustGather; 1312 1313 /// This POD struct describes one external user in the vectorized tree. 1314 struct ExternalUser { 1315 ExternalUser(Value *S, llvm::User *U, int L) 1316 : Scalar(S), User(U), Lane(L) {} 1317 1318 // Which scalar in our function. 1319 Value *Scalar; 1320 1321 // Which user that uses the scalar. 1322 llvm::User *User; 1323 1324 // Which lane does the scalar belong to. 1325 int Lane; 1326 }; 1327 using UserList = SmallVector<ExternalUser, 16>; 1328 1329 /// Checks if two instructions may access the same memory. 1330 /// 1331 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 1332 /// is invariant in the calling loop. 1333 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 1334 Instruction *Inst2) { 1335 // First check if the result is already in the cache. 1336 AliasCacheKey key = std::make_pair(Inst1, Inst2); 1337 Optional<bool> &result = AliasCache[key]; 1338 if (result.hasValue()) { 1339 return result.getValue(); 1340 } 1341 MemoryLocation Loc2 = getLocation(Inst2, AA); 1342 bool aliased = true; 1343 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 1344 // Do the alias check. 1345 aliased = AA->alias(Loc1, Loc2); 1346 } 1347 // Store the result in the cache. 1348 result = aliased; 1349 return aliased; 1350 } 1351 1352 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 1353 1354 /// Cache for alias results. 1355 /// TODO: consider moving this to the AliasAnalysis itself. 1356 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 1357 1358 /// Removes an instruction from its block and eventually deletes it. 1359 /// It's like Instruction::eraseFromParent() except that the actual deletion 1360 /// is delayed until BoUpSLP is destructed. 1361 /// This is required to ensure that there are no incorrect collisions in the 1362 /// AliasCache, which can happen if a new instruction is allocated at the 1363 /// same address as a previously deleted instruction. 1364 void eraseInstruction(Instruction *I) { 1365 I->removeFromParent(); 1366 I->dropAllReferences(); 1367 DeletedInstructions.emplace_back(I); 1368 } 1369 1370 /// Temporary store for deleted instructions. Instructions will be deleted 1371 /// eventually when the BoUpSLP is destructed. 1372 SmallVector<unique_value, 8> DeletedInstructions; 1373 1374 /// A list of values that need to extracted out of the tree. 1375 /// This list holds pairs of (Internal Scalar : External User). External User 1376 /// can be nullptr, it means that this Internal Scalar will be used later, 1377 /// after vectorization. 1378 UserList ExternalUses; 1379 1380 /// Values used only by @llvm.assume calls. 1381 SmallPtrSet<const Value *, 32> EphValues; 1382 1383 /// Holds all of the instructions that we gathered. 1384 SetVector<Instruction *> GatherSeq; 1385 1386 /// A list of blocks that we are going to CSE. 1387 SetVector<BasicBlock *> CSEBlocks; 1388 1389 /// Contains all scheduling relevant data for an instruction. 1390 /// A ScheduleData either represents a single instruction or a member of an 1391 /// instruction bundle (= a group of instructions which is combined into a 1392 /// vector instruction). 1393 struct ScheduleData { 1394 // The initial value for the dependency counters. It means that the 1395 // dependencies are not calculated yet. 1396 enum { InvalidDeps = -1 }; 1397 1398 ScheduleData() = default; 1399 1400 void init(int BlockSchedulingRegionID, Value *OpVal) { 1401 FirstInBundle = this; 1402 NextInBundle = nullptr; 1403 NextLoadStore = nullptr; 1404 IsScheduled = false; 1405 SchedulingRegionID = BlockSchedulingRegionID; 1406 UnscheduledDepsInBundle = UnscheduledDeps; 1407 clearDependencies(); 1408 OpValue = OpVal; 1409 } 1410 1411 /// Returns true if the dependency information has been calculated. 1412 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 1413 1414 /// Returns true for single instructions and for bundle representatives 1415 /// (= the head of a bundle). 1416 bool isSchedulingEntity() const { return FirstInBundle == this; } 1417 1418 /// Returns true if it represents an instruction bundle and not only a 1419 /// single instruction. 1420 bool isPartOfBundle() const { 1421 return NextInBundle != nullptr || FirstInBundle != this; 1422 } 1423 1424 /// Returns true if it is ready for scheduling, i.e. it has no more 1425 /// unscheduled depending instructions/bundles. 1426 bool isReady() const { 1427 assert(isSchedulingEntity() && 1428 "can't consider non-scheduling entity for ready list"); 1429 return UnscheduledDepsInBundle == 0 && !IsScheduled; 1430 } 1431 1432 /// Modifies the number of unscheduled dependencies, also updating it for 1433 /// the whole bundle. 1434 int incrementUnscheduledDeps(int Incr) { 1435 UnscheduledDeps += Incr; 1436 return FirstInBundle->UnscheduledDepsInBundle += Incr; 1437 } 1438 1439 /// Sets the number of unscheduled dependencies to the number of 1440 /// dependencies. 1441 void resetUnscheduledDeps() { 1442 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 1443 } 1444 1445 /// Clears all dependency information. 1446 void clearDependencies() { 1447 Dependencies = InvalidDeps; 1448 resetUnscheduledDeps(); 1449 MemoryDependencies.clear(); 1450 } 1451 1452 void dump(raw_ostream &os) const { 1453 if (!isSchedulingEntity()) { 1454 os << "/ " << *Inst; 1455 } else if (NextInBundle) { 1456 os << '[' << *Inst; 1457 ScheduleData *SD = NextInBundle; 1458 while (SD) { 1459 os << ';' << *SD->Inst; 1460 SD = SD->NextInBundle; 1461 } 1462 os << ']'; 1463 } else { 1464 os << *Inst; 1465 } 1466 } 1467 1468 Instruction *Inst = nullptr; 1469 1470 /// Points to the head in an instruction bundle (and always to this for 1471 /// single instructions). 1472 ScheduleData *FirstInBundle = nullptr; 1473 1474 /// Single linked list of all instructions in a bundle. Null if it is a 1475 /// single instruction. 1476 ScheduleData *NextInBundle = nullptr; 1477 1478 /// Single linked list of all memory instructions (e.g. load, store, call) 1479 /// in the block - until the end of the scheduling region. 1480 ScheduleData *NextLoadStore = nullptr; 1481 1482 /// The dependent memory instructions. 1483 /// This list is derived on demand in calculateDependencies(). 1484 SmallVector<ScheduleData *, 4> MemoryDependencies; 1485 1486 /// This ScheduleData is in the current scheduling region if this matches 1487 /// the current SchedulingRegionID of BlockScheduling. 1488 int SchedulingRegionID = 0; 1489 1490 /// Used for getting a "good" final ordering of instructions. 1491 int SchedulingPriority = 0; 1492 1493 /// The number of dependencies. Constitutes of the number of users of the 1494 /// instruction plus the number of dependent memory instructions (if any). 1495 /// This value is calculated on demand. 1496 /// If InvalidDeps, the number of dependencies is not calculated yet. 1497 int Dependencies = InvalidDeps; 1498 1499 /// The number of dependencies minus the number of dependencies of scheduled 1500 /// instructions. As soon as this is zero, the instruction/bundle gets ready 1501 /// for scheduling. 1502 /// Note that this is negative as long as Dependencies is not calculated. 1503 int UnscheduledDeps = InvalidDeps; 1504 1505 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 1506 /// single instructions. 1507 int UnscheduledDepsInBundle = InvalidDeps; 1508 1509 /// True if this instruction is scheduled (or considered as scheduled in the 1510 /// dry-run). 1511 bool IsScheduled = false; 1512 1513 /// Opcode of the current instruction in the schedule data. 1514 Value *OpValue = nullptr; 1515 }; 1516 1517 #ifndef NDEBUG 1518 friend inline raw_ostream &operator<<(raw_ostream &os, 1519 const BoUpSLP::ScheduleData &SD) { 1520 SD.dump(os); 1521 return os; 1522 } 1523 #endif 1524 1525 friend struct GraphTraits<BoUpSLP *>; 1526 friend struct DOTGraphTraits<BoUpSLP *>; 1527 1528 /// Contains all scheduling data for a basic block. 1529 struct BlockScheduling { 1530 BlockScheduling(BasicBlock *BB) 1531 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 1532 1533 void clear() { 1534 ReadyInsts.clear(); 1535 ScheduleStart = nullptr; 1536 ScheduleEnd = nullptr; 1537 FirstLoadStoreInRegion = nullptr; 1538 LastLoadStoreInRegion = nullptr; 1539 1540 // Reduce the maximum schedule region size by the size of the 1541 // previous scheduling run. 1542 ScheduleRegionSizeLimit -= ScheduleRegionSize; 1543 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 1544 ScheduleRegionSizeLimit = MinScheduleRegionSize; 1545 ScheduleRegionSize = 0; 1546 1547 // Make a new scheduling region, i.e. all existing ScheduleData is not 1548 // in the new region yet. 1549 ++SchedulingRegionID; 1550 } 1551 1552 ScheduleData *getScheduleData(Value *V) { 1553 ScheduleData *SD = ScheduleDataMap[V]; 1554 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1555 return SD; 1556 return nullptr; 1557 } 1558 1559 ScheduleData *getScheduleData(Value *V, Value *Key) { 1560 if (V == Key) 1561 return getScheduleData(V); 1562 auto I = ExtraScheduleDataMap.find(V); 1563 if (I != ExtraScheduleDataMap.end()) { 1564 ScheduleData *SD = I->second[Key]; 1565 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1566 return SD; 1567 } 1568 return nullptr; 1569 } 1570 1571 bool isInSchedulingRegion(ScheduleData *SD) { 1572 return SD->SchedulingRegionID == SchedulingRegionID; 1573 } 1574 1575 /// Marks an instruction as scheduled and puts all dependent ready 1576 /// instructions into the ready-list. 1577 template <typename ReadyListType> 1578 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 1579 SD->IsScheduled = true; 1580 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 1581 1582 ScheduleData *BundleMember = SD; 1583 while (BundleMember) { 1584 if (BundleMember->Inst != BundleMember->OpValue) { 1585 BundleMember = BundleMember->NextInBundle; 1586 continue; 1587 } 1588 // Handle the def-use chain dependencies. 1589 for (Use &U : BundleMember->Inst->operands()) { 1590 auto *I = dyn_cast<Instruction>(U.get()); 1591 if (!I) 1592 continue; 1593 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 1594 if (OpDef && OpDef->hasValidDependencies() && 1595 OpDef->incrementUnscheduledDeps(-1) == 0) { 1596 // There are no more unscheduled dependencies after 1597 // decrementing, so we can put the dependent instruction 1598 // into the ready list. 1599 ScheduleData *DepBundle = OpDef->FirstInBundle; 1600 assert(!DepBundle->IsScheduled && 1601 "already scheduled bundle gets ready"); 1602 ReadyList.insert(DepBundle); 1603 LLVM_DEBUG(dbgs() 1604 << "SLP: gets ready (def): " << *DepBundle << "\n"); 1605 } 1606 }); 1607 } 1608 // Handle the memory dependencies. 1609 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 1610 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 1611 // There are no more unscheduled dependencies after decrementing, 1612 // so we can put the dependent instruction into the ready list. 1613 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 1614 assert(!DepBundle->IsScheduled && 1615 "already scheduled bundle gets ready"); 1616 ReadyList.insert(DepBundle); 1617 LLVM_DEBUG(dbgs() 1618 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 1619 } 1620 } 1621 BundleMember = BundleMember->NextInBundle; 1622 } 1623 } 1624 1625 void doForAllOpcodes(Value *V, 1626 function_ref<void(ScheduleData *SD)> Action) { 1627 if (ScheduleData *SD = getScheduleData(V)) 1628 Action(SD); 1629 auto I = ExtraScheduleDataMap.find(V); 1630 if (I != ExtraScheduleDataMap.end()) 1631 for (auto &P : I->second) 1632 if (P.second->SchedulingRegionID == SchedulingRegionID) 1633 Action(P.second); 1634 } 1635 1636 /// Put all instructions into the ReadyList which are ready for scheduling. 1637 template <typename ReadyListType> 1638 void initialFillReadyList(ReadyListType &ReadyList) { 1639 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 1640 doForAllOpcodes(I, [&](ScheduleData *SD) { 1641 if (SD->isSchedulingEntity() && SD->isReady()) { 1642 ReadyList.insert(SD); 1643 LLVM_DEBUG(dbgs() 1644 << "SLP: initially in ready list: " << *I << "\n"); 1645 } 1646 }); 1647 } 1648 } 1649 1650 /// Checks if a bundle of instructions can be scheduled, i.e. has no 1651 /// cyclic dependencies. This is only a dry-run, no instructions are 1652 /// actually moved at this stage. 1653 bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 1654 const InstructionsState &S); 1655 1656 /// Un-bundles a group of instructions. 1657 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 1658 1659 /// Allocates schedule data chunk. 1660 ScheduleData *allocateScheduleDataChunks(); 1661 1662 /// Extends the scheduling region so that V is inside the region. 1663 /// \returns true if the region size is within the limit. 1664 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 1665 1666 /// Initialize the ScheduleData structures for new instructions in the 1667 /// scheduling region. 1668 void initScheduleData(Instruction *FromI, Instruction *ToI, 1669 ScheduleData *PrevLoadStore, 1670 ScheduleData *NextLoadStore); 1671 1672 /// Updates the dependency information of a bundle and of all instructions/ 1673 /// bundles which depend on the original bundle. 1674 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 1675 BoUpSLP *SLP); 1676 1677 /// Sets all instruction in the scheduling region to un-scheduled. 1678 void resetSchedule(); 1679 1680 BasicBlock *BB; 1681 1682 /// Simple memory allocation for ScheduleData. 1683 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 1684 1685 /// The size of a ScheduleData array in ScheduleDataChunks. 1686 int ChunkSize; 1687 1688 /// The allocator position in the current chunk, which is the last entry 1689 /// of ScheduleDataChunks. 1690 int ChunkPos; 1691 1692 /// Attaches ScheduleData to Instruction. 1693 /// Note that the mapping survives during all vectorization iterations, i.e. 1694 /// ScheduleData structures are recycled. 1695 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 1696 1697 /// Attaches ScheduleData to Instruction with the leading key. 1698 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 1699 ExtraScheduleDataMap; 1700 1701 struct ReadyList : SmallVector<ScheduleData *, 8> { 1702 void insert(ScheduleData *SD) { push_back(SD); } 1703 }; 1704 1705 /// The ready-list for scheduling (only used for the dry-run). 1706 ReadyList ReadyInsts; 1707 1708 /// The first instruction of the scheduling region. 1709 Instruction *ScheduleStart = nullptr; 1710 1711 /// The first instruction _after_ the scheduling region. 1712 Instruction *ScheduleEnd = nullptr; 1713 1714 /// The first memory accessing instruction in the scheduling region 1715 /// (can be null). 1716 ScheduleData *FirstLoadStoreInRegion = nullptr; 1717 1718 /// The last memory accessing instruction in the scheduling region 1719 /// (can be null). 1720 ScheduleData *LastLoadStoreInRegion = nullptr; 1721 1722 /// The current size of the scheduling region. 1723 int ScheduleRegionSize = 0; 1724 1725 /// The maximum size allowed for the scheduling region. 1726 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 1727 1728 /// The ID of the scheduling region. For a new vectorization iteration this 1729 /// is incremented which "removes" all ScheduleData from the region. 1730 // Make sure that the initial SchedulingRegionID is greater than the 1731 // initial SchedulingRegionID in ScheduleData (which is 0). 1732 int SchedulingRegionID = 1; 1733 }; 1734 1735 /// Attaches the BlockScheduling structures to basic blocks. 1736 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 1737 1738 /// Performs the "real" scheduling. Done before vectorization is actually 1739 /// performed in a basic block. 1740 void scheduleBlock(BlockScheduling *BS); 1741 1742 /// List of users to ignore during scheduling and that don't need extracting. 1743 ArrayRef<Value *> UserIgnoreList; 1744 1745 using OrdersType = SmallVector<unsigned, 4>; 1746 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 1747 /// sorted SmallVectors of unsigned. 1748 struct OrdersTypeDenseMapInfo { 1749 static OrdersType getEmptyKey() { 1750 OrdersType V; 1751 V.push_back(~1U); 1752 return V; 1753 } 1754 1755 static OrdersType getTombstoneKey() { 1756 OrdersType V; 1757 V.push_back(~2U); 1758 return V; 1759 } 1760 1761 static unsigned getHashValue(const OrdersType &V) { 1762 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1763 } 1764 1765 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 1766 return LHS == RHS; 1767 } 1768 }; 1769 1770 /// Contains orders of operations along with the number of bundles that have 1771 /// operations in this order. It stores only those orders that require 1772 /// reordering, if reordering is not required it is counted using \a 1773 /// NumOpsWantToKeepOriginalOrder. 1774 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 1775 /// Number of bundles that do not require reordering. 1776 unsigned NumOpsWantToKeepOriginalOrder = 0; 1777 1778 // Analysis and block reference. 1779 Function *F; 1780 ScalarEvolution *SE; 1781 TargetTransformInfo *TTI; 1782 TargetLibraryInfo *TLI; 1783 AliasAnalysis *AA; 1784 LoopInfo *LI; 1785 DominatorTree *DT; 1786 AssumptionCache *AC; 1787 DemandedBits *DB; 1788 const DataLayout *DL; 1789 OptimizationRemarkEmitter *ORE; 1790 1791 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 1792 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 1793 1794 /// Instruction builder to construct the vectorized tree. 1795 IRBuilder<> Builder; 1796 1797 /// A map of scalar integer values to the smallest bit width with which they 1798 /// can legally be represented. The values map to (width, signed) pairs, 1799 /// where "width" indicates the minimum bit width and "signed" is True if the 1800 /// value must be signed-extended, rather than zero-extended, back to its 1801 /// original width. 1802 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 1803 }; 1804 1805 } // end namespace slpvectorizer 1806 1807 template <> struct GraphTraits<BoUpSLP *> { 1808 using TreeEntry = BoUpSLP::TreeEntry; 1809 1810 /// NodeRef has to be a pointer per the GraphWriter. 1811 using NodeRef = TreeEntry *; 1812 1813 /// Add the VectorizableTree to the index iterator to be able to return 1814 /// TreeEntry pointers. 1815 struct ChildIteratorType 1816 : public iterator_adaptor_base< 1817 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 1818 std::vector<TreeEntry> &VectorizableTree; 1819 1820 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 1821 std::vector<TreeEntry> &VT) 1822 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 1823 1824 NodeRef operator*() { return &VectorizableTree[I->Idx]; } 1825 }; 1826 1827 static NodeRef getEntryNode(BoUpSLP &R) { return &R.VectorizableTree[0]; } 1828 1829 static ChildIteratorType child_begin(NodeRef N) { 1830 return {N->UserTreeIndices.begin(), N->Container}; 1831 } 1832 1833 static ChildIteratorType child_end(NodeRef N) { 1834 return {N->UserTreeIndices.end(), N->Container}; 1835 } 1836 1837 /// For the node iterator we just need to turn the TreeEntry iterator into a 1838 /// TreeEntry* iterator so that it dereferences to NodeRef. 1839 using nodes_iterator = pointer_iterator<std::vector<TreeEntry>::iterator>; 1840 1841 static nodes_iterator nodes_begin(BoUpSLP *R) { 1842 return nodes_iterator(R->VectorizableTree.begin()); 1843 } 1844 1845 static nodes_iterator nodes_end(BoUpSLP *R) { 1846 return nodes_iterator(R->VectorizableTree.end()); 1847 } 1848 1849 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 1850 }; 1851 1852 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 1853 using TreeEntry = BoUpSLP::TreeEntry; 1854 1855 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 1856 1857 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 1858 std::string Str; 1859 raw_string_ostream OS(Str); 1860 if (isSplat(Entry->Scalars)) { 1861 OS << "<splat> " << *Entry->Scalars[0]; 1862 return Str; 1863 } 1864 for (auto V : Entry->Scalars) { 1865 OS << *V; 1866 if (std::any_of( 1867 R->ExternalUses.begin(), R->ExternalUses.end(), 1868 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 1869 OS << " <extract>"; 1870 OS << "\n"; 1871 } 1872 return Str; 1873 } 1874 1875 static std::string getNodeAttributes(const TreeEntry *Entry, 1876 const BoUpSLP *) { 1877 if (Entry->NeedToGather) 1878 return "color=red"; 1879 return ""; 1880 } 1881 }; 1882 1883 } // end namespace llvm 1884 1885 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1886 ArrayRef<Value *> UserIgnoreLst) { 1887 ExtraValueToDebugLocsMap ExternallyUsedValues; 1888 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 1889 } 1890 1891 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1892 ExtraValueToDebugLocsMap &ExternallyUsedValues, 1893 ArrayRef<Value *> UserIgnoreLst) { 1894 deleteTree(); 1895 UserIgnoreList = UserIgnoreLst; 1896 if (!allSameType(Roots)) 1897 return; 1898 buildTree_rec(Roots, 0, EdgeInfo()); 1899 1900 // Collect the values that we need to extract from the tree. 1901 for (TreeEntry &EIdx : VectorizableTree) { 1902 TreeEntry *Entry = &EIdx; 1903 1904 // No need to handle users of gathered values. 1905 if (Entry->NeedToGather) 1906 continue; 1907 1908 // For each lane: 1909 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 1910 Value *Scalar = Entry->Scalars[Lane]; 1911 int FoundLane = Lane; 1912 if (!Entry->ReuseShuffleIndices.empty()) { 1913 FoundLane = 1914 std::distance(Entry->ReuseShuffleIndices.begin(), 1915 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 1916 } 1917 1918 // Check if the scalar is externally used as an extra arg. 1919 auto ExtI = ExternallyUsedValues.find(Scalar); 1920 if (ExtI != ExternallyUsedValues.end()) { 1921 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 1922 << Lane << " from " << *Scalar << ".\n"); 1923 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 1924 } 1925 for (User *U : Scalar->users()) { 1926 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 1927 1928 Instruction *UserInst = dyn_cast<Instruction>(U); 1929 if (!UserInst) 1930 continue; 1931 1932 // Skip in-tree scalars that become vectors 1933 if (TreeEntry *UseEntry = getTreeEntry(U)) { 1934 Value *UseScalar = UseEntry->Scalars[0]; 1935 // Some in-tree scalars will remain as scalar in vectorized 1936 // instructions. If that is the case, the one in Lane 0 will 1937 // be used. 1938 if (UseScalar != U || 1939 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 1940 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 1941 << ".\n"); 1942 assert(!UseEntry->NeedToGather && "Bad state"); 1943 continue; 1944 } 1945 } 1946 1947 // Ignore users in the user ignore list. 1948 if (is_contained(UserIgnoreList, UserInst)) 1949 continue; 1950 1951 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 1952 << Lane << " from " << *Scalar << ".\n"); 1953 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 1954 } 1955 } 1956 } 1957 } 1958 1959 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 1960 EdgeInfo UserTreeIdx) { 1961 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 1962 1963 InstructionsState S = getSameOpcode(VL); 1964 if (Depth == RecursionMaxDepth) { 1965 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 1966 newTreeEntry(VL, false, UserTreeIdx); 1967 return; 1968 } 1969 1970 // Don't handle vectors. 1971 if (S.OpValue->getType()->isVectorTy()) { 1972 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 1973 newTreeEntry(VL, false, UserTreeIdx); 1974 return; 1975 } 1976 1977 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 1978 if (SI->getValueOperand()->getType()->isVectorTy()) { 1979 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 1980 newTreeEntry(VL, false, UserTreeIdx); 1981 return; 1982 } 1983 1984 // If all of the operands are identical or constant we have a simple solution. 1985 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 1986 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 1987 newTreeEntry(VL, false, UserTreeIdx); 1988 return; 1989 } 1990 1991 // We now know that this is a vector of instructions of the same type from 1992 // the same block. 1993 1994 // Don't vectorize ephemeral values. 1995 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1996 if (EphValues.count(VL[i])) { 1997 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] 1998 << ") is ephemeral.\n"); 1999 newTreeEntry(VL, false, UserTreeIdx); 2000 return; 2001 } 2002 } 2003 2004 // Check if this is a duplicate of another entry. 2005 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2006 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 2007 if (!E->isSame(VL)) { 2008 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 2009 newTreeEntry(VL, false, UserTreeIdx); 2010 return; 2011 } 2012 // Record the reuse of the tree node. FIXME, currently this is only used to 2013 // properly draw the graph rather than for the actual vectorization. 2014 E->UserTreeIndices.push_back(UserTreeIdx); 2015 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 2016 << ".\n"); 2017 E->trySetUserTEOperand(UserTreeIdx, VL, None); 2018 return; 2019 } 2020 2021 // Check that none of the instructions in the bundle are already in the tree. 2022 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 2023 auto *I = dyn_cast<Instruction>(VL[i]); 2024 if (!I) 2025 continue; 2026 if (getTreeEntry(I)) { 2027 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] 2028 << ") is already in tree.\n"); 2029 newTreeEntry(VL, false, UserTreeIdx); 2030 return; 2031 } 2032 } 2033 2034 // If any of the scalars is marked as a value that needs to stay scalar, then 2035 // we need to gather the scalars. 2036 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 2037 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 2038 if (MustGather.count(VL[i]) || is_contained(UserIgnoreList, VL[i])) { 2039 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 2040 newTreeEntry(VL, false, UserTreeIdx); 2041 return; 2042 } 2043 } 2044 2045 // Check that all of the users of the scalars that we want to vectorize are 2046 // schedulable. 2047 auto *VL0 = cast<Instruction>(S.OpValue); 2048 BasicBlock *BB = VL0->getParent(); 2049 2050 if (!DT->isReachableFromEntry(BB)) { 2051 // Don't go into unreachable blocks. They may contain instructions with 2052 // dependency cycles which confuse the final scheduling. 2053 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 2054 newTreeEntry(VL, false, UserTreeIdx); 2055 return; 2056 } 2057 2058 // Check that every instruction appears once in this bundle. 2059 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2060 SmallVector<Value *, 4> UniqueValues; 2061 DenseMap<Value *, unsigned> UniquePositions; 2062 for (Value *V : VL) { 2063 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2064 ReuseShuffleIndicies.emplace_back(Res.first->second); 2065 if (Res.second) 2066 UniqueValues.emplace_back(V); 2067 } 2068 if (UniqueValues.size() == VL.size()) { 2069 ReuseShuffleIndicies.clear(); 2070 } else { 2071 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 2072 if (UniqueValues.size() <= 1 || !llvm::isPowerOf2_32(UniqueValues.size())) { 2073 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 2074 newTreeEntry(VL, false, UserTreeIdx); 2075 return; 2076 } 2077 VL = UniqueValues; 2078 } 2079 2080 auto &BSRef = BlocksSchedules[BB]; 2081 if (!BSRef) 2082 BSRef = llvm::make_unique<BlockScheduling>(BB); 2083 2084 BlockScheduling &BS = *BSRef.get(); 2085 2086 if (!BS.tryScheduleBundle(VL, this, S)) { 2087 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 2088 assert((!BS.getScheduleData(VL0) || 2089 !BS.getScheduleData(VL0)->isPartOfBundle()) && 2090 "tryScheduleBundle should cancelScheduling on failure"); 2091 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2092 return; 2093 } 2094 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 2095 2096 unsigned ShuffleOrOp = S.isAltShuffle() ? 2097 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2098 switch (ShuffleOrOp) { 2099 case Instruction::PHI: { 2100 PHINode *PH = dyn_cast<PHINode>(VL0); 2101 2102 // Check for terminator values (e.g. invoke). 2103 for (unsigned j = 0; j < VL.size(); ++j) 2104 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2105 Instruction *Term = dyn_cast<Instruction>( 2106 cast<PHINode>(VL[j])->getIncomingValueForBlock( 2107 PH->getIncomingBlock(i))); 2108 if (Term && Term->isTerminator()) { 2109 LLVM_DEBUG(dbgs() 2110 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 2111 BS.cancelScheduling(VL, VL0); 2112 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2113 return; 2114 } 2115 } 2116 2117 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 2118 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 2119 2120 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2121 ValueList Operands; 2122 // Prepare the operand vector. 2123 for (Value *j : VL) 2124 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 2125 PH->getIncomingBlock(i))); 2126 2127 UserTreeIdx.EdgeIdx = i; 2128 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 2129 } 2130 return; 2131 } 2132 case Instruction::ExtractValue: 2133 case Instruction::ExtractElement: { 2134 OrdersType CurrentOrder; 2135 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 2136 if (Reuse) { 2137 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 2138 ++NumOpsWantToKeepOriginalOrder; 2139 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, 2140 ReuseShuffleIndicies); 2141 // This is a special case, as it does not gather, but at the same time 2142 // we are not extending buildTree_rec() towards the operands. 2143 ValueList Op0; 2144 Op0.assign(VL.size(), VL0->getOperand(0)); 2145 VectorizableTree.back().setOperand(0, Op0, ReuseShuffleIndicies); 2146 return; 2147 } 2148 if (!CurrentOrder.empty()) { 2149 LLVM_DEBUG({ 2150 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 2151 "with order"; 2152 for (unsigned Idx : CurrentOrder) 2153 dbgs() << " " << Idx; 2154 dbgs() << "\n"; 2155 }); 2156 // Insert new order with initial value 0, if it does not exist, 2157 // otherwise return the iterator to the existing one. 2158 auto StoredCurrentOrderAndNum = 2159 NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 2160 ++StoredCurrentOrderAndNum->getSecond(); 2161 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, ReuseShuffleIndicies, 2162 StoredCurrentOrderAndNum->getFirst()); 2163 // This is a special case, as it does not gather, but at the same time 2164 // we are not extending buildTree_rec() towards the operands. 2165 ValueList Op0; 2166 Op0.assign(VL.size(), VL0->getOperand(0)); 2167 VectorizableTree.back().setOperand(0, Op0, ReuseShuffleIndicies); 2168 return; 2169 } 2170 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 2171 newTreeEntry(VL, /*Vectorized=*/false, UserTreeIdx, ReuseShuffleIndicies); 2172 BS.cancelScheduling(VL, VL0); 2173 return; 2174 } 2175 case Instruction::Load: { 2176 // Check that a vectorized load would load the same memory as a scalar 2177 // load. For example, we don't want to vectorize loads that are smaller 2178 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 2179 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 2180 // from such a struct, we read/write packed bits disagreeing with the 2181 // unvectorized version. 2182 Type *ScalarTy = VL0->getType(); 2183 2184 if (DL->getTypeSizeInBits(ScalarTy) != 2185 DL->getTypeAllocSizeInBits(ScalarTy)) { 2186 BS.cancelScheduling(VL, VL0); 2187 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2188 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 2189 return; 2190 } 2191 2192 // Make sure all loads in the bundle are simple - we can't vectorize 2193 // atomic or volatile loads. 2194 SmallVector<Value *, 4> PointerOps(VL.size()); 2195 auto POIter = PointerOps.begin(); 2196 for (Value *V : VL) { 2197 auto *L = cast<LoadInst>(V); 2198 if (!L->isSimple()) { 2199 BS.cancelScheduling(VL, VL0); 2200 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2201 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 2202 return; 2203 } 2204 *POIter = L->getPointerOperand(); 2205 ++POIter; 2206 } 2207 2208 OrdersType CurrentOrder; 2209 // Check the order of pointer operands. 2210 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2211 Value *Ptr0; 2212 Value *PtrN; 2213 if (CurrentOrder.empty()) { 2214 Ptr0 = PointerOps.front(); 2215 PtrN = PointerOps.back(); 2216 } else { 2217 Ptr0 = PointerOps[CurrentOrder.front()]; 2218 PtrN = PointerOps[CurrentOrder.back()]; 2219 } 2220 const SCEV *Scev0 = SE->getSCEV(Ptr0); 2221 const SCEV *ScevN = SE->getSCEV(PtrN); 2222 const auto *Diff = 2223 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 2224 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 2225 // Check that the sorted loads are consecutive. 2226 if (Diff && Diff->getAPInt().getZExtValue() == (VL.size() - 1) * Size) { 2227 if (CurrentOrder.empty()) { 2228 // Original loads are consecutive and does not require reordering. 2229 ++NumOpsWantToKeepOriginalOrder; 2230 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, 2231 ReuseShuffleIndicies); 2232 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 2233 } else { 2234 // Need to reorder. 2235 auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 2236 ++I->getSecond(); 2237 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, 2238 ReuseShuffleIndicies, I->getFirst()); 2239 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 2240 } 2241 return; 2242 } 2243 } 2244 2245 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 2246 BS.cancelScheduling(VL, VL0); 2247 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2248 return; 2249 } 2250 case Instruction::ZExt: 2251 case Instruction::SExt: 2252 case Instruction::FPToUI: 2253 case Instruction::FPToSI: 2254 case Instruction::FPExt: 2255 case Instruction::PtrToInt: 2256 case Instruction::IntToPtr: 2257 case Instruction::SIToFP: 2258 case Instruction::UIToFP: 2259 case Instruction::Trunc: 2260 case Instruction::FPTrunc: 2261 case Instruction::BitCast: { 2262 Type *SrcTy = VL0->getOperand(0)->getType(); 2263 for (unsigned i = 0; i < VL.size(); ++i) { 2264 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); 2265 if (Ty != SrcTy || !isValidElementType(Ty)) { 2266 BS.cancelScheduling(VL, VL0); 2267 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2268 LLVM_DEBUG(dbgs() 2269 << "SLP: Gathering casts with different src types.\n"); 2270 return; 2271 } 2272 } 2273 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 2274 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 2275 2276 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2277 ValueList Operands; 2278 // Prepare the operand vector. 2279 for (Value *j : VL) 2280 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 2281 2282 UserTreeIdx.EdgeIdx = i; 2283 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 2284 } 2285 return; 2286 } 2287 case Instruction::ICmp: 2288 case Instruction::FCmp: { 2289 // Check that all of the compares have the same predicate. 2290 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2291 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 2292 Type *ComparedTy = VL0->getOperand(0)->getType(); 2293 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 2294 CmpInst *Cmp = cast<CmpInst>(VL[i]); 2295 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 2296 Cmp->getOperand(0)->getType() != ComparedTy) { 2297 BS.cancelScheduling(VL, VL0); 2298 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2299 LLVM_DEBUG(dbgs() 2300 << "SLP: Gathering cmp with different predicate.\n"); 2301 return; 2302 } 2303 } 2304 2305 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 2306 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 2307 2308 ValueList Left, Right; 2309 if (cast<CmpInst>(VL0)->isCommutative()) { 2310 // Commutative predicate - collect + sort operands of the instructions 2311 // so that each side is more likely to have the same opcode. 2312 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 2313 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE); 2314 } else { 2315 // Collect operands - commute if it uses the swapped predicate. 2316 for (Value *V : VL) { 2317 auto *Cmp = cast<CmpInst>(V); 2318 Value *LHS = Cmp->getOperand(0); 2319 Value *RHS = Cmp->getOperand(1); 2320 if (Cmp->getPredicate() != P0) 2321 std::swap(LHS, RHS); 2322 Left.push_back(LHS); 2323 Right.push_back(RHS); 2324 } 2325 } 2326 2327 UserTreeIdx.EdgeIdx = 0; 2328 buildTree_rec(Left, Depth + 1, UserTreeIdx); 2329 UserTreeIdx.EdgeIdx = 1; 2330 buildTree_rec(Right, Depth + 1, UserTreeIdx); 2331 return; 2332 } 2333 case Instruction::Select: 2334 case Instruction::Add: 2335 case Instruction::FAdd: 2336 case Instruction::Sub: 2337 case Instruction::FSub: 2338 case Instruction::Mul: 2339 case Instruction::FMul: 2340 case Instruction::UDiv: 2341 case Instruction::SDiv: 2342 case Instruction::FDiv: 2343 case Instruction::URem: 2344 case Instruction::SRem: 2345 case Instruction::FRem: 2346 case Instruction::Shl: 2347 case Instruction::LShr: 2348 case Instruction::AShr: 2349 case Instruction::And: 2350 case Instruction::Or: 2351 case Instruction::Xor: 2352 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 2353 LLVM_DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); 2354 2355 // Sort operands of the instructions so that each side is more likely to 2356 // have the same opcode. 2357 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 2358 ValueList Left, Right; 2359 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE); 2360 UserTreeIdx.EdgeIdx = 0; 2361 buildTree_rec(Left, Depth + 1, UserTreeIdx); 2362 UserTreeIdx.EdgeIdx = 1; 2363 buildTree_rec(Right, Depth + 1, UserTreeIdx); 2364 return; 2365 } 2366 2367 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2368 ValueList Operands; 2369 // Prepare the operand vector. 2370 for (Value *j : VL) 2371 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 2372 2373 UserTreeIdx.EdgeIdx = i; 2374 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 2375 } 2376 return; 2377 2378 case Instruction::GetElementPtr: { 2379 // We don't combine GEPs with complicated (nested) indexing. 2380 for (unsigned j = 0; j < VL.size(); ++j) { 2381 if (cast<Instruction>(VL[j])->getNumOperands() != 2) { 2382 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 2383 BS.cancelScheduling(VL, VL0); 2384 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2385 return; 2386 } 2387 } 2388 2389 // We can't combine several GEPs into one vector if they operate on 2390 // different types. 2391 Type *Ty0 = VL0->getOperand(0)->getType(); 2392 for (unsigned j = 0; j < VL.size(); ++j) { 2393 Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType(); 2394 if (Ty0 != CurTy) { 2395 LLVM_DEBUG(dbgs() 2396 << "SLP: not-vectorizable GEP (different types).\n"); 2397 BS.cancelScheduling(VL, VL0); 2398 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2399 return; 2400 } 2401 } 2402 2403 // We don't combine GEPs with non-constant indexes. 2404 for (unsigned j = 0; j < VL.size(); ++j) { 2405 auto Op = cast<Instruction>(VL[j])->getOperand(1); 2406 if (!isa<ConstantInt>(Op)) { 2407 LLVM_DEBUG(dbgs() 2408 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 2409 BS.cancelScheduling(VL, VL0); 2410 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2411 return; 2412 } 2413 } 2414 2415 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 2416 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 2417 for (unsigned i = 0, e = 2; i < e; ++i) { 2418 ValueList Operands; 2419 // Prepare the operand vector. 2420 for (Value *j : VL) 2421 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 2422 2423 UserTreeIdx.EdgeIdx = i; 2424 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 2425 } 2426 return; 2427 } 2428 case Instruction::Store: { 2429 // Check if the stores are consecutive or of we need to swizzle them. 2430 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 2431 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 2432 BS.cancelScheduling(VL, VL0); 2433 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2434 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 2435 return; 2436 } 2437 2438 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 2439 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 2440 2441 ValueList Operands; 2442 for (Value *j : VL) 2443 Operands.push_back(cast<Instruction>(j)->getOperand(0)); 2444 2445 UserTreeIdx.EdgeIdx = 0; 2446 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 2447 return; 2448 } 2449 case Instruction::Call: { 2450 // Check if the calls are all to the same vectorizable intrinsic. 2451 CallInst *CI = cast<CallInst>(VL0); 2452 // Check if this is an Intrinsic call or something that can be 2453 // represented by an intrinsic call 2454 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2455 if (!isTriviallyVectorizable(ID)) { 2456 BS.cancelScheduling(VL, VL0); 2457 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2458 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 2459 return; 2460 } 2461 Function *Int = CI->getCalledFunction(); 2462 unsigned NumArgs = CI->getNumArgOperands(); 2463 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 2464 for (unsigned j = 0; j != NumArgs; ++j) 2465 if (hasVectorInstrinsicScalarOpd(ID, j)) 2466 ScalarArgs[j] = CI->getArgOperand(j); 2467 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 2468 CallInst *CI2 = dyn_cast<CallInst>(VL[i]); 2469 if (!CI2 || CI2->getCalledFunction() != Int || 2470 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 2471 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 2472 BS.cancelScheduling(VL, VL0); 2473 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2474 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] 2475 << "\n"); 2476 return; 2477 } 2478 // Some intrinsics have scalar arguments and should be same in order for 2479 // them to be vectorized. 2480 for (unsigned j = 0; j != NumArgs; ++j) { 2481 if (hasVectorInstrinsicScalarOpd(ID, j)) { 2482 Value *A1J = CI2->getArgOperand(j); 2483 if (ScalarArgs[j] != A1J) { 2484 BS.cancelScheduling(VL, VL0); 2485 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2486 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 2487 << " argument " << ScalarArgs[j] << "!=" << A1J 2488 << "\n"); 2489 return; 2490 } 2491 } 2492 } 2493 // Verify that the bundle operands are identical between the two calls. 2494 if (CI->hasOperandBundles() && 2495 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 2496 CI->op_begin() + CI->getBundleOperandsEndIndex(), 2497 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 2498 BS.cancelScheduling(VL, VL0); 2499 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2500 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 2501 << *CI << "!=" << *VL[i] << '\n'); 2502 return; 2503 } 2504 } 2505 2506 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 2507 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 2508 ValueList Operands; 2509 // Prepare the operand vector. 2510 for (Value *j : VL) { 2511 CallInst *CI2 = dyn_cast<CallInst>(j); 2512 Operands.push_back(CI2->getArgOperand(i)); 2513 } 2514 UserTreeIdx.EdgeIdx = i; 2515 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 2516 } 2517 return; 2518 } 2519 case Instruction::ShuffleVector: 2520 // If this is not an alternate sequence of opcode like add-sub 2521 // then do not vectorize this instruction. 2522 if (!S.isAltShuffle()) { 2523 BS.cancelScheduling(VL, VL0); 2524 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2525 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 2526 return; 2527 } 2528 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 2529 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 2530 2531 // Reorder operands if reordering would enable vectorization. 2532 if (isa<BinaryOperator>(VL0)) { 2533 ValueList Left, Right; 2534 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE); 2535 UserTreeIdx.EdgeIdx = 0; 2536 buildTree_rec(Left, Depth + 1, UserTreeIdx); 2537 UserTreeIdx.EdgeIdx = 1; 2538 buildTree_rec(Right, Depth + 1, UserTreeIdx); 2539 return; 2540 } 2541 2542 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2543 ValueList Operands; 2544 // Prepare the operand vector. 2545 for (Value *j : VL) 2546 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 2547 2548 UserTreeIdx.EdgeIdx = i; 2549 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 2550 } 2551 return; 2552 2553 default: 2554 BS.cancelScheduling(VL, VL0); 2555 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2556 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 2557 return; 2558 } 2559 } 2560 2561 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 2562 unsigned N; 2563 Type *EltTy; 2564 auto *ST = dyn_cast<StructType>(T); 2565 if (ST) { 2566 N = ST->getNumElements(); 2567 EltTy = *ST->element_begin(); 2568 } else { 2569 N = cast<ArrayType>(T)->getNumElements(); 2570 EltTy = cast<ArrayType>(T)->getElementType(); 2571 } 2572 if (!isValidElementType(EltTy)) 2573 return 0; 2574 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 2575 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 2576 return 0; 2577 if (ST) { 2578 // Check that struct is homogeneous. 2579 for (const auto *Ty : ST->elements()) 2580 if (Ty != EltTy) 2581 return 0; 2582 } 2583 return N; 2584 } 2585 2586 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 2587 SmallVectorImpl<unsigned> &CurrentOrder) const { 2588 Instruction *E0 = cast<Instruction>(OpValue); 2589 assert(E0->getOpcode() == Instruction::ExtractElement || 2590 E0->getOpcode() == Instruction::ExtractValue); 2591 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 2592 // Check if all of the extracts come from the same vector and from the 2593 // correct offset. 2594 Value *Vec = E0->getOperand(0); 2595 2596 CurrentOrder.clear(); 2597 2598 // We have to extract from a vector/aggregate with the same number of elements. 2599 unsigned NElts; 2600 if (E0->getOpcode() == Instruction::ExtractValue) { 2601 const DataLayout &DL = E0->getModule()->getDataLayout(); 2602 NElts = canMapToVector(Vec->getType(), DL); 2603 if (!NElts) 2604 return false; 2605 // Check if load can be rewritten as load of vector. 2606 LoadInst *LI = dyn_cast<LoadInst>(Vec); 2607 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 2608 return false; 2609 } else { 2610 NElts = Vec->getType()->getVectorNumElements(); 2611 } 2612 2613 if (NElts != VL.size()) 2614 return false; 2615 2616 // Check that all of the indices extract from the correct offset. 2617 bool ShouldKeepOrder = true; 2618 unsigned E = VL.size(); 2619 // Assign to all items the initial value E + 1 so we can check if the extract 2620 // instruction index was used already. 2621 // Also, later we can check that all the indices are used and we have a 2622 // consecutive access in the extract instructions, by checking that no 2623 // element of CurrentOrder still has value E + 1. 2624 CurrentOrder.assign(E, E + 1); 2625 unsigned I = 0; 2626 for (; I < E; ++I) { 2627 auto *Inst = cast<Instruction>(VL[I]); 2628 if (Inst->getOperand(0) != Vec) 2629 break; 2630 Optional<unsigned> Idx = getExtractIndex(Inst); 2631 if (!Idx) 2632 break; 2633 const unsigned ExtIdx = *Idx; 2634 if (ExtIdx != I) { 2635 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 2636 break; 2637 ShouldKeepOrder = false; 2638 CurrentOrder[ExtIdx] = I; 2639 } else { 2640 if (CurrentOrder[I] != E + 1) 2641 break; 2642 CurrentOrder[I] = I; 2643 } 2644 } 2645 if (I < E) { 2646 CurrentOrder.clear(); 2647 return false; 2648 } 2649 2650 return ShouldKeepOrder; 2651 } 2652 2653 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 2654 return I->hasOneUse() || 2655 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 2656 return ScalarToTreeEntry.count(U) > 0; 2657 }); 2658 } 2659 2660 int BoUpSLP::getEntryCost(TreeEntry *E) { 2661 ArrayRef<Value*> VL = E->Scalars; 2662 2663 Type *ScalarTy = VL[0]->getType(); 2664 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2665 ScalarTy = SI->getValueOperand()->getType(); 2666 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 2667 ScalarTy = CI->getOperand(0)->getType(); 2668 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2669 2670 // If we have computed a smaller type for the expression, update VecTy so 2671 // that the costs will be accurate. 2672 if (MinBWs.count(VL[0])) 2673 VecTy = VectorType::get( 2674 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 2675 2676 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 2677 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 2678 int ReuseShuffleCost = 0; 2679 if (NeedToShuffleReuses) { 2680 ReuseShuffleCost = 2681 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2682 } 2683 if (E->NeedToGather) { 2684 if (allConstant(VL)) 2685 return 0; 2686 if (isSplat(VL)) { 2687 return ReuseShuffleCost + 2688 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 2689 } 2690 if (getSameOpcode(VL).getOpcode() == Instruction::ExtractElement && 2691 allSameType(VL) && allSameBlock(VL)) { 2692 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 2693 if (ShuffleKind.hasValue()) { 2694 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 2695 for (auto *V : VL) { 2696 // If all users of instruction are going to be vectorized and this 2697 // instruction itself is not going to be vectorized, consider this 2698 // instruction as dead and remove its cost from the final cost of the 2699 // vectorized tree. 2700 if (areAllUsersVectorized(cast<Instruction>(V)) && 2701 !ScalarToTreeEntry.count(V)) { 2702 auto *IO = cast<ConstantInt>( 2703 cast<ExtractElementInst>(V)->getIndexOperand()); 2704 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 2705 IO->getZExtValue()); 2706 } 2707 } 2708 return ReuseShuffleCost + Cost; 2709 } 2710 } 2711 return ReuseShuffleCost + getGatherCost(VL); 2712 } 2713 InstructionsState S = getSameOpcode(VL); 2714 assert(S.getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 2715 Instruction *VL0 = cast<Instruction>(S.OpValue); 2716 unsigned ShuffleOrOp = S.isAltShuffle() ? 2717 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2718 switch (ShuffleOrOp) { 2719 case Instruction::PHI: 2720 return 0; 2721 2722 case Instruction::ExtractValue: 2723 case Instruction::ExtractElement: 2724 if (NeedToShuffleReuses) { 2725 unsigned Idx = 0; 2726 for (unsigned I : E->ReuseShuffleIndices) { 2727 if (ShuffleOrOp == Instruction::ExtractElement) { 2728 auto *IO = cast<ConstantInt>( 2729 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 2730 Idx = IO->getZExtValue(); 2731 ReuseShuffleCost -= TTI->getVectorInstrCost( 2732 Instruction::ExtractElement, VecTy, Idx); 2733 } else { 2734 ReuseShuffleCost -= TTI->getVectorInstrCost( 2735 Instruction::ExtractElement, VecTy, Idx); 2736 ++Idx; 2737 } 2738 } 2739 Idx = ReuseShuffleNumbers; 2740 for (Value *V : VL) { 2741 if (ShuffleOrOp == Instruction::ExtractElement) { 2742 auto *IO = cast<ConstantInt>( 2743 cast<ExtractElementInst>(V)->getIndexOperand()); 2744 Idx = IO->getZExtValue(); 2745 } else { 2746 --Idx; 2747 } 2748 ReuseShuffleCost += 2749 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 2750 } 2751 } 2752 if (!E->NeedToGather) { 2753 int DeadCost = ReuseShuffleCost; 2754 if (!E->ReorderIndices.empty()) { 2755 // TODO: Merge this shuffle with the ReuseShuffleCost. 2756 DeadCost += TTI->getShuffleCost( 2757 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2758 } 2759 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 2760 Instruction *E = cast<Instruction>(VL[i]); 2761 // If all users are going to be vectorized, instruction can be 2762 // considered as dead. 2763 // The same, if have only one user, it will be vectorized for sure. 2764 if (areAllUsersVectorized(E)) { 2765 // Take credit for instruction that will become dead. 2766 if (E->hasOneUse()) { 2767 Instruction *Ext = E->user_back(); 2768 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 2769 all_of(Ext->users(), 2770 [](User *U) { return isa<GetElementPtrInst>(U); })) { 2771 // Use getExtractWithExtendCost() to calculate the cost of 2772 // extractelement/ext pair. 2773 DeadCost -= TTI->getExtractWithExtendCost( 2774 Ext->getOpcode(), Ext->getType(), VecTy, i); 2775 // Add back the cost of s|zext which is subtracted separately. 2776 DeadCost += TTI->getCastInstrCost( 2777 Ext->getOpcode(), Ext->getType(), E->getType(), Ext); 2778 continue; 2779 } 2780 } 2781 DeadCost -= 2782 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 2783 } 2784 } 2785 return DeadCost; 2786 } 2787 return ReuseShuffleCost + getGatherCost(VL); 2788 2789 case Instruction::ZExt: 2790 case Instruction::SExt: 2791 case Instruction::FPToUI: 2792 case Instruction::FPToSI: 2793 case Instruction::FPExt: 2794 case Instruction::PtrToInt: 2795 case Instruction::IntToPtr: 2796 case Instruction::SIToFP: 2797 case Instruction::UIToFP: 2798 case Instruction::Trunc: 2799 case Instruction::FPTrunc: 2800 case Instruction::BitCast: { 2801 Type *SrcTy = VL0->getOperand(0)->getType(); 2802 int ScalarEltCost = 2803 TTI->getCastInstrCost(S.getOpcode(), ScalarTy, SrcTy, VL0); 2804 if (NeedToShuffleReuses) { 2805 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2806 } 2807 2808 // Calculate the cost of this instruction. 2809 int ScalarCost = VL.size() * ScalarEltCost; 2810 2811 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 2812 int VecCost = 0; 2813 // Check if the values are candidates to demote. 2814 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 2815 VecCost = ReuseShuffleCost + 2816 TTI->getCastInstrCost(S.getOpcode(), VecTy, SrcVecTy, VL0); 2817 } 2818 return VecCost - ScalarCost; 2819 } 2820 case Instruction::FCmp: 2821 case Instruction::ICmp: 2822 case Instruction::Select: { 2823 // Calculate the cost of this instruction. 2824 int ScalarEltCost = TTI->getCmpSelInstrCost(S.getOpcode(), ScalarTy, 2825 Builder.getInt1Ty(), VL0); 2826 if (NeedToShuffleReuses) { 2827 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2828 } 2829 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 2830 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 2831 int VecCost = TTI->getCmpSelInstrCost(S.getOpcode(), VecTy, MaskTy, VL0); 2832 return ReuseShuffleCost + VecCost - ScalarCost; 2833 } 2834 case Instruction::Add: 2835 case Instruction::FAdd: 2836 case Instruction::Sub: 2837 case Instruction::FSub: 2838 case Instruction::Mul: 2839 case Instruction::FMul: 2840 case Instruction::UDiv: 2841 case Instruction::SDiv: 2842 case Instruction::FDiv: 2843 case Instruction::URem: 2844 case Instruction::SRem: 2845 case Instruction::FRem: 2846 case Instruction::Shl: 2847 case Instruction::LShr: 2848 case Instruction::AShr: 2849 case Instruction::And: 2850 case Instruction::Or: 2851 case Instruction::Xor: { 2852 // Certain instructions can be cheaper to vectorize if they have a 2853 // constant second vector operand. 2854 TargetTransformInfo::OperandValueKind Op1VK = 2855 TargetTransformInfo::OK_AnyValue; 2856 TargetTransformInfo::OperandValueKind Op2VK = 2857 TargetTransformInfo::OK_UniformConstantValue; 2858 TargetTransformInfo::OperandValueProperties Op1VP = 2859 TargetTransformInfo::OP_None; 2860 TargetTransformInfo::OperandValueProperties Op2VP = 2861 TargetTransformInfo::OP_PowerOf2; 2862 2863 // If all operands are exactly the same ConstantInt then set the 2864 // operand kind to OK_UniformConstantValue. 2865 // If instead not all operands are constants, then set the operand kind 2866 // to OK_AnyValue. If all operands are constants but not the same, 2867 // then set the operand kind to OK_NonUniformConstantValue. 2868 ConstantInt *CInt0 = nullptr; 2869 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 2870 const Instruction *I = cast<Instruction>(VL[i]); 2871 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(1)); 2872 if (!CInt) { 2873 Op2VK = TargetTransformInfo::OK_AnyValue; 2874 Op2VP = TargetTransformInfo::OP_None; 2875 break; 2876 } 2877 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 2878 !CInt->getValue().isPowerOf2()) 2879 Op2VP = TargetTransformInfo::OP_None; 2880 if (i == 0) { 2881 CInt0 = CInt; 2882 continue; 2883 } 2884 if (CInt0 != CInt) 2885 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 2886 } 2887 2888 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 2889 int ScalarEltCost = TTI->getArithmeticInstrCost( 2890 S.getOpcode(), ScalarTy, Op1VK, Op2VK, Op1VP, Op2VP, Operands); 2891 if (NeedToShuffleReuses) { 2892 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2893 } 2894 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 2895 int VecCost = TTI->getArithmeticInstrCost(S.getOpcode(), VecTy, Op1VK, 2896 Op2VK, Op1VP, Op2VP, Operands); 2897 return ReuseShuffleCost + VecCost - ScalarCost; 2898 } 2899 case Instruction::GetElementPtr: { 2900 TargetTransformInfo::OperandValueKind Op1VK = 2901 TargetTransformInfo::OK_AnyValue; 2902 TargetTransformInfo::OperandValueKind Op2VK = 2903 TargetTransformInfo::OK_UniformConstantValue; 2904 2905 int ScalarEltCost = 2906 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 2907 if (NeedToShuffleReuses) { 2908 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2909 } 2910 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 2911 int VecCost = 2912 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 2913 return ReuseShuffleCost + VecCost - ScalarCost; 2914 } 2915 case Instruction::Load: { 2916 // Cost of wide load - cost of scalar loads. 2917 unsigned alignment = cast<LoadInst>(VL0)->getAlignment(); 2918 int ScalarEltCost = 2919 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0); 2920 if (NeedToShuffleReuses) { 2921 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2922 } 2923 int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 2924 int VecLdCost = 2925 TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, VL0); 2926 if (!E->ReorderIndices.empty()) { 2927 // TODO: Merge this shuffle with the ReuseShuffleCost. 2928 VecLdCost += TTI->getShuffleCost( 2929 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2930 } 2931 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 2932 } 2933 case Instruction::Store: { 2934 // We know that we can merge the stores. Calculate the cost. 2935 unsigned alignment = cast<StoreInst>(VL0)->getAlignment(); 2936 int ScalarEltCost = 2937 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0); 2938 if (NeedToShuffleReuses) { 2939 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2940 } 2941 int ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 2942 int VecStCost = 2943 TTI->getMemoryOpCost(Instruction::Store, VecTy, alignment, 0, VL0); 2944 return ReuseShuffleCost + VecStCost - ScalarStCost; 2945 } 2946 case Instruction::Call: { 2947 CallInst *CI = cast<CallInst>(VL0); 2948 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2949 2950 // Calculate the cost of the scalar and vector calls. 2951 SmallVector<Type *, 4> ScalarTys; 2952 for (unsigned op = 0, opc = CI->getNumArgOperands(); op != opc; ++op) 2953 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 2954 2955 FastMathFlags FMF; 2956 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 2957 FMF = FPMO->getFastMathFlags(); 2958 2959 int ScalarEltCost = 2960 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 2961 if (NeedToShuffleReuses) { 2962 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2963 } 2964 int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 2965 2966 SmallVector<Value *, 4> Args(CI->arg_operands()); 2967 int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF, 2968 VecTy->getNumElements()); 2969 2970 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 2971 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 2972 << " for " << *CI << "\n"); 2973 2974 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 2975 } 2976 case Instruction::ShuffleVector: { 2977 assert(S.isAltShuffle() && 2978 ((Instruction::isBinaryOp(S.getOpcode()) && 2979 Instruction::isBinaryOp(S.getAltOpcode())) || 2980 (Instruction::isCast(S.getOpcode()) && 2981 Instruction::isCast(S.getAltOpcode()))) && 2982 "Invalid Shuffle Vector Operand"); 2983 int ScalarCost = 0; 2984 if (NeedToShuffleReuses) { 2985 for (unsigned Idx : E->ReuseShuffleIndices) { 2986 Instruction *I = cast<Instruction>(VL[Idx]); 2987 ReuseShuffleCost -= TTI->getInstructionCost( 2988 I, TargetTransformInfo::TCK_RecipThroughput); 2989 } 2990 for (Value *V : VL) { 2991 Instruction *I = cast<Instruction>(V); 2992 ReuseShuffleCost += TTI->getInstructionCost( 2993 I, TargetTransformInfo::TCK_RecipThroughput); 2994 } 2995 } 2996 for (Value *i : VL) { 2997 Instruction *I = cast<Instruction>(i); 2998 assert(S.isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 2999 ScalarCost += TTI->getInstructionCost( 3000 I, TargetTransformInfo::TCK_RecipThroughput); 3001 } 3002 // VecCost is equal to sum of the cost of creating 2 vectors 3003 // and the cost of creating shuffle. 3004 int VecCost = 0; 3005 if (Instruction::isBinaryOp(S.getOpcode())) { 3006 VecCost = TTI->getArithmeticInstrCost(S.getOpcode(), VecTy); 3007 VecCost += TTI->getArithmeticInstrCost(S.getAltOpcode(), VecTy); 3008 } else { 3009 Type *Src0SclTy = S.MainOp->getOperand(0)->getType(); 3010 Type *Src1SclTy = S.AltOp->getOperand(0)->getType(); 3011 VectorType *Src0Ty = VectorType::get(Src0SclTy, VL.size()); 3012 VectorType *Src1Ty = VectorType::get(Src1SclTy, VL.size()); 3013 VecCost = TTI->getCastInstrCost(S.getOpcode(), VecTy, Src0Ty); 3014 VecCost += TTI->getCastInstrCost(S.getAltOpcode(), VecTy, Src1Ty); 3015 } 3016 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0); 3017 return ReuseShuffleCost + VecCost - ScalarCost; 3018 } 3019 default: 3020 llvm_unreachable("Unknown instruction"); 3021 } 3022 } 3023 3024 bool BoUpSLP::isFullyVectorizableTinyTree() const { 3025 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 3026 << VectorizableTree.size() << " is fully vectorizable .\n"); 3027 3028 // We only handle trees of heights 1 and 2. 3029 if (VectorizableTree.size() == 1 && !VectorizableTree[0].NeedToGather) 3030 return true; 3031 3032 if (VectorizableTree.size() != 2) 3033 return false; 3034 3035 // Handle splat and all-constants stores. 3036 if (!VectorizableTree[0].NeedToGather && 3037 (allConstant(VectorizableTree[1].Scalars) || 3038 isSplat(VectorizableTree[1].Scalars))) 3039 return true; 3040 3041 // Gathering cost would be too much for tiny trees. 3042 if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather) 3043 return false; 3044 3045 return true; 3046 } 3047 3048 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 3049 // We can vectorize the tree if its size is greater than or equal to the 3050 // minimum size specified by the MinTreeSize command line option. 3051 if (VectorizableTree.size() >= MinTreeSize) 3052 return false; 3053 3054 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 3055 // can vectorize it if we can prove it fully vectorizable. 3056 if (isFullyVectorizableTinyTree()) 3057 return false; 3058 3059 assert(VectorizableTree.empty() 3060 ? ExternalUses.empty() 3061 : true && "We shouldn't have any external users"); 3062 3063 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 3064 // vectorizable. 3065 return true; 3066 } 3067 3068 int BoUpSLP::getSpillCost() { 3069 // Walk from the bottom of the tree to the top, tracking which values are 3070 // live. When we see a call instruction that is not part of our tree, 3071 // query TTI to see if there is a cost to keeping values live over it 3072 // (for example, if spills and fills are required). 3073 unsigned BundleWidth = VectorizableTree.front().Scalars.size(); 3074 int Cost = 0; 3075 3076 SmallPtrSet<Instruction*, 4> LiveValues; 3077 Instruction *PrevInst = nullptr; 3078 3079 for (const auto &N : VectorizableTree) { 3080 Instruction *Inst = dyn_cast<Instruction>(N.Scalars[0]); 3081 if (!Inst) 3082 continue; 3083 3084 if (!PrevInst) { 3085 PrevInst = Inst; 3086 continue; 3087 } 3088 3089 // Update LiveValues. 3090 LiveValues.erase(PrevInst); 3091 for (auto &J : PrevInst->operands()) { 3092 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 3093 LiveValues.insert(cast<Instruction>(&*J)); 3094 } 3095 3096 LLVM_DEBUG({ 3097 dbgs() << "SLP: #LV: " << LiveValues.size(); 3098 for (auto *X : LiveValues) 3099 dbgs() << " " << X->getName(); 3100 dbgs() << ", Looking at "; 3101 Inst->dump(); 3102 }); 3103 3104 // Now find the sequence of instructions between PrevInst and Inst. 3105 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 3106 PrevInstIt = 3107 PrevInst->getIterator().getReverse(); 3108 while (InstIt != PrevInstIt) { 3109 if (PrevInstIt == PrevInst->getParent()->rend()) { 3110 PrevInstIt = Inst->getParent()->rbegin(); 3111 continue; 3112 } 3113 3114 // Debug informations don't impact spill cost. 3115 if ((isa<CallInst>(&*PrevInstIt) && 3116 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 3117 &*PrevInstIt != PrevInst) { 3118 SmallVector<Type*, 4> V; 3119 for (auto *II : LiveValues) 3120 V.push_back(VectorType::get(II->getType(), BundleWidth)); 3121 Cost += TTI->getCostOfKeepingLiveOverCall(V); 3122 } 3123 3124 ++PrevInstIt; 3125 } 3126 3127 PrevInst = Inst; 3128 } 3129 3130 return Cost; 3131 } 3132 3133 int BoUpSLP::getTreeCost() { 3134 int Cost = 0; 3135 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 3136 << VectorizableTree.size() << ".\n"); 3137 3138 unsigned BundleWidth = VectorizableTree[0].Scalars.size(); 3139 3140 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 3141 TreeEntry &TE = VectorizableTree[I]; 3142 3143 // We create duplicate tree entries for gather sequences that have multiple 3144 // uses. However, we should not compute the cost of duplicate sequences. 3145 // For example, if we have a build vector (i.e., insertelement sequence) 3146 // that is used by more than one vector instruction, we only need to 3147 // compute the cost of the insertelement instructions once. The redundant 3148 // instructions will be eliminated by CSE. 3149 // 3150 // We should consider not creating duplicate tree entries for gather 3151 // sequences, and instead add additional edges to the tree representing 3152 // their uses. Since such an approach results in fewer total entries, 3153 // existing heuristics based on tree size may yield different results. 3154 // 3155 if (TE.NeedToGather && 3156 std::any_of(std::next(VectorizableTree.begin(), I + 1), 3157 VectorizableTree.end(), [TE](TreeEntry &Entry) { 3158 return Entry.NeedToGather && Entry.isSame(TE.Scalars); 3159 })) 3160 continue; 3161 3162 int C = getEntryCost(&TE); 3163 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 3164 << " for bundle that starts with " << *TE.Scalars[0] 3165 << ".\n"); 3166 Cost += C; 3167 } 3168 3169 SmallPtrSet<Value *, 16> ExtractCostCalculated; 3170 int ExtractCost = 0; 3171 for (ExternalUser &EU : ExternalUses) { 3172 // We only add extract cost once for the same scalar. 3173 if (!ExtractCostCalculated.insert(EU.Scalar).second) 3174 continue; 3175 3176 // Uses by ephemeral values are free (because the ephemeral value will be 3177 // removed prior to code generation, and so the extraction will be 3178 // removed as well). 3179 if (EphValues.count(EU.User)) 3180 continue; 3181 3182 // If we plan to rewrite the tree in a smaller type, we will need to sign 3183 // extend the extracted value back to the original type. Here, we account 3184 // for the extract and the added cost of the sign extend if needed. 3185 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 3186 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 3187 if (MinBWs.count(ScalarRoot)) { 3188 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 3189 auto Extend = 3190 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 3191 VecTy = VectorType::get(MinTy, BundleWidth); 3192 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 3193 VecTy, EU.Lane); 3194 } else { 3195 ExtractCost += 3196 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 3197 } 3198 } 3199 3200 int SpillCost = getSpillCost(); 3201 Cost += SpillCost + ExtractCost; 3202 3203 std::string Str; 3204 { 3205 raw_string_ostream OS(Str); 3206 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 3207 << "SLP: Extract Cost = " << ExtractCost << ".\n" 3208 << "SLP: Total Cost = " << Cost << ".\n"; 3209 } 3210 LLVM_DEBUG(dbgs() << Str); 3211 3212 if (ViewSLPTree) 3213 ViewGraph(this, "SLP" + F->getName(), false, Str); 3214 3215 return Cost; 3216 } 3217 3218 int BoUpSLP::getGatherCost(Type *Ty, 3219 const DenseSet<unsigned> &ShuffledIndices) const { 3220 int Cost = 0; 3221 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 3222 if (!ShuffledIndices.count(i)) 3223 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 3224 if (!ShuffledIndices.empty()) 3225 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 3226 return Cost; 3227 } 3228 3229 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 3230 // Find the type of the operands in VL. 3231 Type *ScalarTy = VL[0]->getType(); 3232 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3233 ScalarTy = SI->getValueOperand()->getType(); 3234 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 3235 // Find the cost of inserting/extracting values from the vector. 3236 // Check if the same elements are inserted several times and count them as 3237 // shuffle candidates. 3238 DenseSet<unsigned> ShuffledElements; 3239 DenseSet<Value *> UniqueElements; 3240 // Iterate in reverse order to consider insert elements with the high cost. 3241 for (unsigned I = VL.size(); I > 0; --I) { 3242 unsigned Idx = I - 1; 3243 if (!UniqueElements.insert(VL[Idx]).second) 3244 ShuffledElements.insert(Idx); 3245 } 3246 return getGatherCost(VecTy, ShuffledElements); 3247 } 3248 3249 // Perform operand reordering on the instructions in VL and return the reordered 3250 // operands in Left and Right. 3251 void BoUpSLP::reorderInputsAccordingToOpcode( 3252 ArrayRef<Value *> VL, SmallVectorImpl<Value *> &Left, 3253 SmallVectorImpl<Value *> &Right, const DataLayout &DL, 3254 ScalarEvolution &SE) { 3255 if (VL.empty()) 3256 return; 3257 VLOperands Ops(VL, DL, SE); 3258 // Reorder the operands in place. 3259 Ops.reorder(); 3260 Left = Ops.getVL(0); 3261 Right = Ops.getVL(1); 3262 } 3263 3264 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL, 3265 const InstructionsState &S) { 3266 // Get the basic block this bundle is in. All instructions in the bundle 3267 // should be in this block. 3268 auto *Front = cast<Instruction>(S.OpValue); 3269 auto *BB = Front->getParent(); 3270 assert(llvm::all_of(make_range(VL.begin(), VL.end()), [=](Value *V) -> bool { 3271 auto *I = cast<Instruction>(V); 3272 return !S.isOpcodeOrAlt(I) || I->getParent() == BB; 3273 })); 3274 3275 // The last instruction in the bundle in program order. 3276 Instruction *LastInst = nullptr; 3277 3278 // Find the last instruction. The common case should be that BB has been 3279 // scheduled, and the last instruction is VL.back(). So we start with 3280 // VL.back() and iterate over schedule data until we reach the end of the 3281 // bundle. The end of the bundle is marked by null ScheduleData. 3282 if (BlocksSchedules.count(BB)) { 3283 auto *Bundle = 3284 BlocksSchedules[BB]->getScheduleData(isOneOf(S, VL.back())); 3285 if (Bundle && Bundle->isPartOfBundle()) 3286 for (; Bundle; Bundle = Bundle->NextInBundle) 3287 if (Bundle->OpValue == Bundle->Inst) 3288 LastInst = Bundle->Inst; 3289 } 3290 3291 // LastInst can still be null at this point if there's either not an entry 3292 // for BB in BlocksSchedules or there's no ScheduleData available for 3293 // VL.back(). This can be the case if buildTree_rec aborts for various 3294 // reasons (e.g., the maximum recursion depth is reached, the maximum region 3295 // size is reached, etc.). ScheduleData is initialized in the scheduling 3296 // "dry-run". 3297 // 3298 // If this happens, we can still find the last instruction by brute force. We 3299 // iterate forwards from Front (inclusive) until we either see all 3300 // instructions in the bundle or reach the end of the block. If Front is the 3301 // last instruction in program order, LastInst will be set to Front, and we 3302 // will visit all the remaining instructions in the block. 3303 // 3304 // One of the reasons we exit early from buildTree_rec is to place an upper 3305 // bound on compile-time. Thus, taking an additional compile-time hit here is 3306 // not ideal. However, this should be exceedingly rare since it requires that 3307 // we both exit early from buildTree_rec and that the bundle be out-of-order 3308 // (causing us to iterate all the way to the end of the block). 3309 if (!LastInst) { 3310 SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end()); 3311 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 3312 if (Bundle.erase(&I) && S.isOpcodeOrAlt(&I)) 3313 LastInst = &I; 3314 if (Bundle.empty()) 3315 break; 3316 } 3317 } 3318 3319 // Set the insertion point after the last instruction in the bundle. Set the 3320 // debug location to Front. 3321 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 3322 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 3323 } 3324 3325 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 3326 Value *Vec = UndefValue::get(Ty); 3327 // Generate the 'InsertElement' instruction. 3328 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 3329 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 3330 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 3331 GatherSeq.insert(Insrt); 3332 CSEBlocks.insert(Insrt->getParent()); 3333 3334 // Add to our 'need-to-extract' list. 3335 if (TreeEntry *E = getTreeEntry(VL[i])) { 3336 // Find which lane we need to extract. 3337 int FoundLane = -1; 3338 for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) { 3339 // Is this the lane of the scalar that we are looking for ? 3340 if (E->Scalars[Lane] == VL[i]) { 3341 FoundLane = Lane; 3342 break; 3343 } 3344 } 3345 assert(FoundLane >= 0 && "Could not find the correct lane"); 3346 if (!E->ReuseShuffleIndices.empty()) { 3347 FoundLane = 3348 std::distance(E->ReuseShuffleIndices.begin(), 3349 llvm::find(E->ReuseShuffleIndices, FoundLane)); 3350 } 3351 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 3352 } 3353 } 3354 } 3355 3356 return Vec; 3357 } 3358 3359 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 3360 InstructionsState S = getSameOpcode(VL); 3361 if (S.getOpcode()) { 3362 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3363 if (E->isSame(VL)) { 3364 Value *V = vectorizeTree(E); 3365 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 3366 // We need to get the vectorized value but without shuffle. 3367 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 3368 V = SV->getOperand(0); 3369 } else { 3370 // Reshuffle to get only unique values. 3371 SmallVector<unsigned, 4> UniqueIdxs; 3372 SmallSet<unsigned, 4> UsedIdxs; 3373 for(unsigned Idx : E->ReuseShuffleIndices) 3374 if (UsedIdxs.insert(Idx).second) 3375 UniqueIdxs.emplace_back(Idx); 3376 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 3377 UniqueIdxs); 3378 } 3379 } 3380 return V; 3381 } 3382 } 3383 } 3384 3385 Type *ScalarTy = S.OpValue->getType(); 3386 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3387 ScalarTy = SI->getValueOperand()->getType(); 3388 3389 // Check that every instruction appears once in this bundle. 3390 SmallVector<unsigned, 4> ReuseShuffleIndicies; 3391 SmallVector<Value *, 4> UniqueValues; 3392 if (VL.size() > 2) { 3393 DenseMap<Value *, unsigned> UniquePositions; 3394 for (Value *V : VL) { 3395 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3396 ReuseShuffleIndicies.emplace_back(Res.first->second); 3397 if (Res.second || isa<Constant>(V)) 3398 UniqueValues.emplace_back(V); 3399 } 3400 // Do not shuffle single element or if number of unique values is not power 3401 // of 2. 3402 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 3403 !llvm::isPowerOf2_32(UniqueValues.size())) 3404 ReuseShuffleIndicies.clear(); 3405 else 3406 VL = UniqueValues; 3407 } 3408 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 3409 3410 Value *V = Gather(VL, VecTy); 3411 if (!ReuseShuffleIndicies.empty()) { 3412 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3413 ReuseShuffleIndicies, "shuffle"); 3414 if (auto *I = dyn_cast<Instruction>(V)) { 3415 GatherSeq.insert(I); 3416 CSEBlocks.insert(I->getParent()); 3417 } 3418 } 3419 return V; 3420 } 3421 3422 static void inversePermutation(ArrayRef<unsigned> Indices, 3423 SmallVectorImpl<unsigned> &Mask) { 3424 Mask.clear(); 3425 const unsigned E = Indices.size(); 3426 Mask.resize(E); 3427 for (unsigned I = 0; I < E; ++I) 3428 Mask[Indices[I]] = I; 3429 } 3430 3431 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 3432 IRBuilder<>::InsertPointGuard Guard(Builder); 3433 3434 if (E->VectorizedValue) { 3435 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 3436 return E->VectorizedValue; 3437 } 3438 3439 InstructionsState S = getSameOpcode(E->Scalars); 3440 Instruction *VL0 = cast<Instruction>(S.OpValue); 3441 Type *ScalarTy = VL0->getType(); 3442 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 3443 ScalarTy = SI->getValueOperand()->getType(); 3444 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 3445 3446 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3447 3448 if (E->NeedToGather) { 3449 setInsertPointAfterBundle(E->Scalars, S); 3450 auto *V = Gather(E->Scalars, VecTy); 3451 if (NeedToShuffleReuses) { 3452 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3453 E->ReuseShuffleIndices, "shuffle"); 3454 if (auto *I = dyn_cast<Instruction>(V)) { 3455 GatherSeq.insert(I); 3456 CSEBlocks.insert(I->getParent()); 3457 } 3458 } 3459 E->VectorizedValue = V; 3460 return V; 3461 } 3462 3463 unsigned ShuffleOrOp = S.isAltShuffle() ? 3464 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 3465 switch (ShuffleOrOp) { 3466 case Instruction::PHI: { 3467 PHINode *PH = dyn_cast<PHINode>(VL0); 3468 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 3469 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 3470 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 3471 Value *V = NewPhi; 3472 if (NeedToShuffleReuses) { 3473 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3474 E->ReuseShuffleIndices, "shuffle"); 3475 } 3476 E->VectorizedValue = V; 3477 3478 // PHINodes may have multiple entries from the same block. We want to 3479 // visit every block once. 3480 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 3481 3482 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 3483 ValueList Operands; 3484 BasicBlock *IBB = PH->getIncomingBlock(i); 3485 3486 if (!VisitedBBs.insert(IBB).second) { 3487 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 3488 continue; 3489 } 3490 3491 Builder.SetInsertPoint(IBB->getTerminator()); 3492 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 3493 Value *Vec = vectorizeTree(E->getOperand(i)); 3494 NewPhi->addIncoming(Vec, IBB); 3495 } 3496 3497 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 3498 "Invalid number of incoming values"); 3499 return V; 3500 } 3501 3502 case Instruction::ExtractElement: { 3503 if (!E->NeedToGather) { 3504 Value *V = E->getSingleOperand(0); 3505 if (!E->ReorderIndices.empty()) { 3506 OrdersType Mask; 3507 inversePermutation(E->ReorderIndices, Mask); 3508 Builder.SetInsertPoint(VL0); 3509 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), Mask, 3510 "reorder_shuffle"); 3511 } 3512 if (NeedToShuffleReuses) { 3513 // TODO: Merge this shuffle with the ReorderShuffleMask. 3514 if (E->ReorderIndices.empty()) 3515 Builder.SetInsertPoint(VL0); 3516 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3517 E->ReuseShuffleIndices, "shuffle"); 3518 } 3519 E->VectorizedValue = V; 3520 return V; 3521 } 3522 setInsertPointAfterBundle(E->Scalars, S); 3523 auto *V = Gather(E->Scalars, VecTy); 3524 if (NeedToShuffleReuses) { 3525 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3526 E->ReuseShuffleIndices, "shuffle"); 3527 if (auto *I = dyn_cast<Instruction>(V)) { 3528 GatherSeq.insert(I); 3529 CSEBlocks.insert(I->getParent()); 3530 } 3531 } 3532 E->VectorizedValue = V; 3533 return V; 3534 } 3535 case Instruction::ExtractValue: { 3536 if (!E->NeedToGather) { 3537 LoadInst *LI = cast<LoadInst>(E->getSingleOperand(0)); 3538 Builder.SetInsertPoint(LI); 3539 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 3540 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 3541 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlignment()); 3542 Value *NewV = propagateMetadata(V, E->Scalars); 3543 if (!E->ReorderIndices.empty()) { 3544 OrdersType Mask; 3545 inversePermutation(E->ReorderIndices, Mask); 3546 NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), Mask, 3547 "reorder_shuffle"); 3548 } 3549 if (NeedToShuffleReuses) { 3550 // TODO: Merge this shuffle with the ReorderShuffleMask. 3551 NewV = Builder.CreateShuffleVector( 3552 NewV, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle"); 3553 } 3554 E->VectorizedValue = NewV; 3555 return NewV; 3556 } 3557 setInsertPointAfterBundle(E->Scalars, S); 3558 auto *V = Gather(E->Scalars, VecTy); 3559 if (NeedToShuffleReuses) { 3560 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3561 E->ReuseShuffleIndices, "shuffle"); 3562 if (auto *I = dyn_cast<Instruction>(V)) { 3563 GatherSeq.insert(I); 3564 CSEBlocks.insert(I->getParent()); 3565 } 3566 } 3567 E->VectorizedValue = V; 3568 return V; 3569 } 3570 case Instruction::ZExt: 3571 case Instruction::SExt: 3572 case Instruction::FPToUI: 3573 case Instruction::FPToSI: 3574 case Instruction::FPExt: 3575 case Instruction::PtrToInt: 3576 case Instruction::IntToPtr: 3577 case Instruction::SIToFP: 3578 case Instruction::UIToFP: 3579 case Instruction::Trunc: 3580 case Instruction::FPTrunc: 3581 case Instruction::BitCast: { 3582 setInsertPointAfterBundle(E->Scalars, S); 3583 3584 Value *InVec = vectorizeTree(E->getOperand(0)); 3585 3586 if (E->VectorizedValue) { 3587 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3588 return E->VectorizedValue; 3589 } 3590 3591 CastInst *CI = dyn_cast<CastInst>(VL0); 3592 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 3593 if (NeedToShuffleReuses) { 3594 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3595 E->ReuseShuffleIndices, "shuffle"); 3596 } 3597 E->VectorizedValue = V; 3598 ++NumVectorInstructions; 3599 return V; 3600 } 3601 case Instruction::FCmp: 3602 case Instruction::ICmp: { 3603 setInsertPointAfterBundle(E->Scalars, S); 3604 3605 Value *L = vectorizeTree(E->getOperand(0)); 3606 Value *R = vectorizeTree(E->getOperand(1)); 3607 3608 if (E->VectorizedValue) { 3609 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3610 return E->VectorizedValue; 3611 } 3612 3613 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 3614 Value *V; 3615 if (S.getOpcode() == Instruction::FCmp) 3616 V = Builder.CreateFCmp(P0, L, R); 3617 else 3618 V = Builder.CreateICmp(P0, L, R); 3619 3620 propagateIRFlags(V, E->Scalars, VL0); 3621 if (NeedToShuffleReuses) { 3622 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3623 E->ReuseShuffleIndices, "shuffle"); 3624 } 3625 E->VectorizedValue = V; 3626 ++NumVectorInstructions; 3627 return V; 3628 } 3629 case Instruction::Select: { 3630 setInsertPointAfterBundle(E->Scalars, S); 3631 3632 Value *Cond = vectorizeTree(E->getOperand(0)); 3633 Value *True = vectorizeTree(E->getOperand(1)); 3634 Value *False = vectorizeTree(E->getOperand(2)); 3635 3636 if (E->VectorizedValue) { 3637 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3638 return E->VectorizedValue; 3639 } 3640 3641 Value *V = Builder.CreateSelect(Cond, True, False); 3642 if (NeedToShuffleReuses) { 3643 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3644 E->ReuseShuffleIndices, "shuffle"); 3645 } 3646 E->VectorizedValue = V; 3647 ++NumVectorInstructions; 3648 return V; 3649 } 3650 case Instruction::Add: 3651 case Instruction::FAdd: 3652 case Instruction::Sub: 3653 case Instruction::FSub: 3654 case Instruction::Mul: 3655 case Instruction::FMul: 3656 case Instruction::UDiv: 3657 case Instruction::SDiv: 3658 case Instruction::FDiv: 3659 case Instruction::URem: 3660 case Instruction::SRem: 3661 case Instruction::FRem: 3662 case Instruction::Shl: 3663 case Instruction::LShr: 3664 case Instruction::AShr: 3665 case Instruction::And: 3666 case Instruction::Or: 3667 case Instruction::Xor: { 3668 setInsertPointAfterBundle(E->Scalars, S); 3669 3670 Value *LHS = vectorizeTree(E->getOperand(0)); 3671 Value *RHS = vectorizeTree(E->getOperand(1)); 3672 3673 if (E->VectorizedValue) { 3674 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3675 return E->VectorizedValue; 3676 } 3677 3678 Value *V = Builder.CreateBinOp( 3679 static_cast<Instruction::BinaryOps>(S.getOpcode()), LHS, RHS); 3680 propagateIRFlags(V, E->Scalars, VL0); 3681 if (auto *I = dyn_cast<Instruction>(V)) 3682 V = propagateMetadata(I, E->Scalars); 3683 3684 if (NeedToShuffleReuses) { 3685 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3686 E->ReuseShuffleIndices, "shuffle"); 3687 } 3688 E->VectorizedValue = V; 3689 ++NumVectorInstructions; 3690 3691 return V; 3692 } 3693 case Instruction::Load: { 3694 // Loads are inserted at the head of the tree because we don't want to 3695 // sink them all the way down past store instructions. 3696 bool IsReorder = !E->ReorderIndices.empty(); 3697 if (IsReorder) { 3698 S = getSameOpcode(E->Scalars, E->ReorderIndices.front()); 3699 VL0 = cast<Instruction>(S.OpValue); 3700 } 3701 setInsertPointAfterBundle(E->Scalars, S); 3702 3703 LoadInst *LI = cast<LoadInst>(VL0); 3704 Type *ScalarLoadTy = LI->getType(); 3705 unsigned AS = LI->getPointerAddressSpace(); 3706 3707 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 3708 VecTy->getPointerTo(AS)); 3709 3710 // The pointer operand uses an in-tree scalar so we add the new BitCast to 3711 // ExternalUses list to make sure that an extract will be generated in the 3712 // future. 3713 Value *PO = LI->getPointerOperand(); 3714 if (getTreeEntry(PO)) 3715 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0)); 3716 3717 unsigned Alignment = LI->getAlignment(); 3718 LI = Builder.CreateLoad(VecTy, VecPtr); 3719 if (!Alignment) { 3720 Alignment = DL->getABITypeAlignment(ScalarLoadTy); 3721 } 3722 LI->setAlignment(Alignment); 3723 Value *V = propagateMetadata(LI, E->Scalars); 3724 if (IsReorder) { 3725 OrdersType Mask; 3726 inversePermutation(E->ReorderIndices, Mask); 3727 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 3728 Mask, "reorder_shuffle"); 3729 } 3730 if (NeedToShuffleReuses) { 3731 // TODO: Merge this shuffle with the ReorderShuffleMask. 3732 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3733 E->ReuseShuffleIndices, "shuffle"); 3734 } 3735 E->VectorizedValue = V; 3736 ++NumVectorInstructions; 3737 return V; 3738 } 3739 case Instruction::Store: { 3740 StoreInst *SI = cast<StoreInst>(VL0); 3741 unsigned Alignment = SI->getAlignment(); 3742 unsigned AS = SI->getPointerAddressSpace(); 3743 3744 setInsertPointAfterBundle(E->Scalars, S); 3745 3746 Value *VecValue = vectorizeTree(E->getOperand(0)); 3747 Value *ScalarPtr = SI->getPointerOperand(); 3748 Value *VecPtr = Builder.CreateBitCast(ScalarPtr, VecTy->getPointerTo(AS)); 3749 StoreInst *ST = Builder.CreateStore(VecValue, VecPtr); 3750 3751 // The pointer operand uses an in-tree scalar, so add the new BitCast to 3752 // ExternalUses to make sure that an extract will be generated in the 3753 // future. 3754 if (getTreeEntry(ScalarPtr)) 3755 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 3756 3757 if (!Alignment) 3758 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 3759 3760 ST->setAlignment(Alignment); 3761 Value *V = propagateMetadata(ST, E->Scalars); 3762 if (NeedToShuffleReuses) { 3763 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3764 E->ReuseShuffleIndices, "shuffle"); 3765 } 3766 E->VectorizedValue = V; 3767 ++NumVectorInstructions; 3768 return V; 3769 } 3770 case Instruction::GetElementPtr: { 3771 setInsertPointAfterBundle(E->Scalars, S); 3772 3773 Value *Op0 = vectorizeTree(E->getOperand(0)); 3774 3775 std::vector<Value *> OpVecs; 3776 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 3777 ++j) { 3778 Value *OpVec = vectorizeTree(E->getOperand(j)); 3779 OpVecs.push_back(OpVec); 3780 } 3781 3782 Value *V = Builder.CreateGEP( 3783 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 3784 if (Instruction *I = dyn_cast<Instruction>(V)) 3785 V = propagateMetadata(I, E->Scalars); 3786 3787 if (NeedToShuffleReuses) { 3788 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3789 E->ReuseShuffleIndices, "shuffle"); 3790 } 3791 E->VectorizedValue = V; 3792 ++NumVectorInstructions; 3793 3794 return V; 3795 } 3796 case Instruction::Call: { 3797 CallInst *CI = cast<CallInst>(VL0); 3798 setInsertPointAfterBundle(E->Scalars, S); 3799 Function *FI; 3800 Intrinsic::ID IID = Intrinsic::not_intrinsic; 3801 Value *ScalarArg = nullptr; 3802 if (CI && (FI = CI->getCalledFunction())) { 3803 IID = FI->getIntrinsicID(); 3804 } 3805 std::vector<Value *> OpVecs; 3806 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 3807 ValueList OpVL; 3808 // Some intrinsics have scalar arguments. This argument should not be 3809 // vectorized. 3810 if (hasVectorInstrinsicScalarOpd(IID, j)) { 3811 CallInst *CEI = cast<CallInst>(VL0); 3812 ScalarArg = CEI->getArgOperand(j); 3813 OpVecs.push_back(CEI->getArgOperand(j)); 3814 continue; 3815 } 3816 3817 Value *OpVec = vectorizeTree(E->getOperand(j)); 3818 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 3819 OpVecs.push_back(OpVec); 3820 } 3821 3822 Module *M = F->getParent(); 3823 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3824 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 3825 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 3826 SmallVector<OperandBundleDef, 1> OpBundles; 3827 CI->getOperandBundlesAsDefs(OpBundles); 3828 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 3829 3830 // The scalar argument uses an in-tree scalar so we add the new vectorized 3831 // call to ExternalUses list to make sure that an extract will be 3832 // generated in the future. 3833 if (ScalarArg && getTreeEntry(ScalarArg)) 3834 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 3835 3836 propagateIRFlags(V, E->Scalars, VL0); 3837 if (NeedToShuffleReuses) { 3838 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3839 E->ReuseShuffleIndices, "shuffle"); 3840 } 3841 E->VectorizedValue = V; 3842 ++NumVectorInstructions; 3843 return V; 3844 } 3845 case Instruction::ShuffleVector: { 3846 assert(S.isAltShuffle() && 3847 ((Instruction::isBinaryOp(S.getOpcode()) && 3848 Instruction::isBinaryOp(S.getAltOpcode())) || 3849 (Instruction::isCast(S.getOpcode()) && 3850 Instruction::isCast(S.getAltOpcode()))) && 3851 "Invalid Shuffle Vector Operand"); 3852 3853 Value *LHS, *RHS; 3854 if (Instruction::isBinaryOp(S.getOpcode())) { 3855 setInsertPointAfterBundle(E->Scalars, S); 3856 LHS = vectorizeTree(E->getOperand(0)); 3857 RHS = vectorizeTree(E->getOperand(1)); 3858 } else { 3859 setInsertPointAfterBundle(E->Scalars, S); 3860 LHS = vectorizeTree(E->getOperand(0)); 3861 } 3862 3863 if (E->VectorizedValue) { 3864 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3865 return E->VectorizedValue; 3866 } 3867 3868 Value *V0, *V1; 3869 if (Instruction::isBinaryOp(S.getOpcode())) { 3870 V0 = Builder.CreateBinOp( 3871 static_cast<Instruction::BinaryOps>(S.getOpcode()), LHS, RHS); 3872 V1 = Builder.CreateBinOp( 3873 static_cast<Instruction::BinaryOps>(S.getAltOpcode()), LHS, RHS); 3874 } else { 3875 V0 = Builder.CreateCast( 3876 static_cast<Instruction::CastOps>(S.getOpcode()), LHS, VecTy); 3877 V1 = Builder.CreateCast( 3878 static_cast<Instruction::CastOps>(S.getAltOpcode()), LHS, VecTy); 3879 } 3880 3881 // Create shuffle to take alternate operations from the vector. 3882 // Also, gather up main and alt scalar ops to propagate IR flags to 3883 // each vector operation. 3884 ValueList OpScalars, AltScalars; 3885 unsigned e = E->Scalars.size(); 3886 SmallVector<Constant *, 8> Mask(e); 3887 for (unsigned i = 0; i < e; ++i) { 3888 auto *OpInst = cast<Instruction>(E->Scalars[i]); 3889 assert(S.isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 3890 if (OpInst->getOpcode() == S.getAltOpcode()) { 3891 Mask[i] = Builder.getInt32(e + i); 3892 AltScalars.push_back(E->Scalars[i]); 3893 } else { 3894 Mask[i] = Builder.getInt32(i); 3895 OpScalars.push_back(E->Scalars[i]); 3896 } 3897 } 3898 3899 Value *ShuffleMask = ConstantVector::get(Mask); 3900 propagateIRFlags(V0, OpScalars); 3901 propagateIRFlags(V1, AltScalars); 3902 3903 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 3904 if (Instruction *I = dyn_cast<Instruction>(V)) 3905 V = propagateMetadata(I, E->Scalars); 3906 if (NeedToShuffleReuses) { 3907 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3908 E->ReuseShuffleIndices, "shuffle"); 3909 } 3910 E->VectorizedValue = V; 3911 ++NumVectorInstructions; 3912 3913 return V; 3914 } 3915 default: 3916 llvm_unreachable("unknown inst"); 3917 } 3918 return nullptr; 3919 } 3920 3921 Value *BoUpSLP::vectorizeTree() { 3922 ExtraValueToDebugLocsMap ExternallyUsedValues; 3923 return vectorizeTree(ExternallyUsedValues); 3924 } 3925 3926 Value * 3927 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3928 // All blocks must be scheduled before any instructions are inserted. 3929 for (auto &BSIter : BlocksSchedules) { 3930 scheduleBlock(BSIter.second.get()); 3931 } 3932 3933 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3934 auto *VectorRoot = vectorizeTree(&VectorizableTree[0]); 3935 3936 // If the vectorized tree can be rewritten in a smaller type, we truncate the 3937 // vectorized root. InstCombine will then rewrite the entire expression. We 3938 // sign extend the extracted values below. 3939 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 3940 if (MinBWs.count(ScalarRoot)) { 3941 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 3942 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 3943 auto BundleWidth = VectorizableTree[0].Scalars.size(); 3944 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 3945 auto *VecTy = VectorType::get(MinTy, BundleWidth); 3946 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 3947 VectorizableTree[0].VectorizedValue = Trunc; 3948 } 3949 3950 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 3951 << " values .\n"); 3952 3953 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 3954 // specified by ScalarType. 3955 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 3956 if (!MinBWs.count(ScalarRoot)) 3957 return Ex; 3958 if (MinBWs[ScalarRoot].second) 3959 return Builder.CreateSExt(Ex, ScalarType); 3960 return Builder.CreateZExt(Ex, ScalarType); 3961 }; 3962 3963 // Extract all of the elements with the external uses. 3964 for (const auto &ExternalUse : ExternalUses) { 3965 Value *Scalar = ExternalUse.Scalar; 3966 llvm::User *User = ExternalUse.User; 3967 3968 // Skip users that we already RAUW. This happens when one instruction 3969 // has multiple uses of the same value. 3970 if (User && !is_contained(Scalar->users(), User)) 3971 continue; 3972 TreeEntry *E = getTreeEntry(Scalar); 3973 assert(E && "Invalid scalar"); 3974 assert(!E->NeedToGather && "Extracting from a gather list"); 3975 3976 Value *Vec = E->VectorizedValue; 3977 assert(Vec && "Can't find vectorizable value"); 3978 3979 Value *Lane = Builder.getInt32(ExternalUse.Lane); 3980 // If User == nullptr, the Scalar is used as extra arg. Generate 3981 // ExtractElement instruction and update the record for this scalar in 3982 // ExternallyUsedValues. 3983 if (!User) { 3984 assert(ExternallyUsedValues.count(Scalar) && 3985 "Scalar with nullptr as an external user must be registered in " 3986 "ExternallyUsedValues map"); 3987 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 3988 Builder.SetInsertPoint(VecI->getParent(), 3989 std::next(VecI->getIterator())); 3990 } else { 3991 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3992 } 3993 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3994 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3995 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 3996 auto &Locs = ExternallyUsedValues[Scalar]; 3997 ExternallyUsedValues.insert({Ex, Locs}); 3998 ExternallyUsedValues.erase(Scalar); 3999 // Required to update internally referenced instructions. 4000 Scalar->replaceAllUsesWith(Ex); 4001 continue; 4002 } 4003 4004 // Generate extracts for out-of-tree users. 4005 // Find the insertion point for the extractelement lane. 4006 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4007 if (PHINode *PH = dyn_cast<PHINode>(User)) { 4008 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 4009 if (PH->getIncomingValue(i) == Scalar) { 4010 Instruction *IncomingTerminator = 4011 PH->getIncomingBlock(i)->getTerminator(); 4012 if (isa<CatchSwitchInst>(IncomingTerminator)) { 4013 Builder.SetInsertPoint(VecI->getParent(), 4014 std::next(VecI->getIterator())); 4015 } else { 4016 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 4017 } 4018 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4019 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4020 CSEBlocks.insert(PH->getIncomingBlock(i)); 4021 PH->setOperand(i, Ex); 4022 } 4023 } 4024 } else { 4025 Builder.SetInsertPoint(cast<Instruction>(User)); 4026 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4027 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4028 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 4029 User->replaceUsesOfWith(Scalar, Ex); 4030 } 4031 } else { 4032 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4033 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4034 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4035 CSEBlocks.insert(&F->getEntryBlock()); 4036 User->replaceUsesOfWith(Scalar, Ex); 4037 } 4038 4039 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 4040 } 4041 4042 // For each vectorized value: 4043 for (TreeEntry &EIdx : VectorizableTree) { 4044 TreeEntry *Entry = &EIdx; 4045 4046 // No need to handle users of gathered values. 4047 if (Entry->NeedToGather) 4048 continue; 4049 4050 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 4051 4052 // For each lane: 4053 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 4054 Value *Scalar = Entry->Scalars[Lane]; 4055 4056 Type *Ty = Scalar->getType(); 4057 if (!Ty->isVoidTy()) { 4058 #ifndef NDEBUG 4059 for (User *U : Scalar->users()) { 4060 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 4061 4062 // It is legal to replace users in the ignorelist by undef. 4063 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 4064 "Replacing out-of-tree value with undef"); 4065 } 4066 #endif 4067 Value *Undef = UndefValue::get(Ty); 4068 Scalar->replaceAllUsesWith(Undef); 4069 } 4070 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 4071 eraseInstruction(cast<Instruction>(Scalar)); 4072 } 4073 } 4074 4075 Builder.ClearInsertionPoint(); 4076 4077 return VectorizableTree[0].VectorizedValue; 4078 } 4079 4080 void BoUpSLP::optimizeGatherSequence() { 4081 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 4082 << " gather sequences instructions.\n"); 4083 // LICM InsertElementInst sequences. 4084 for (Instruction *I : GatherSeq) { 4085 if (!isa<InsertElementInst>(I) && !isa<ShuffleVectorInst>(I)) 4086 continue; 4087 4088 // Check if this block is inside a loop. 4089 Loop *L = LI->getLoopFor(I->getParent()); 4090 if (!L) 4091 continue; 4092 4093 // Check if it has a preheader. 4094 BasicBlock *PreHeader = L->getLoopPreheader(); 4095 if (!PreHeader) 4096 continue; 4097 4098 // If the vector or the element that we insert into it are 4099 // instructions that are defined in this basic block then we can't 4100 // hoist this instruction. 4101 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 4102 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 4103 if (Op0 && L->contains(Op0)) 4104 continue; 4105 if (Op1 && L->contains(Op1)) 4106 continue; 4107 4108 // We can hoist this instruction. Move it to the pre-header. 4109 I->moveBefore(PreHeader->getTerminator()); 4110 } 4111 4112 // Make a list of all reachable blocks in our CSE queue. 4113 SmallVector<const DomTreeNode *, 8> CSEWorkList; 4114 CSEWorkList.reserve(CSEBlocks.size()); 4115 for (BasicBlock *BB : CSEBlocks) 4116 if (DomTreeNode *N = DT->getNode(BB)) { 4117 assert(DT->isReachableFromEntry(N)); 4118 CSEWorkList.push_back(N); 4119 } 4120 4121 // Sort blocks by domination. This ensures we visit a block after all blocks 4122 // dominating it are visited. 4123 llvm::stable_sort(CSEWorkList, 4124 [this](const DomTreeNode *A, const DomTreeNode *B) { 4125 return DT->properlyDominates(A, B); 4126 }); 4127 4128 // Perform O(N^2) search over the gather sequences and merge identical 4129 // instructions. TODO: We can further optimize this scan if we split the 4130 // instructions into different buckets based on the insert lane. 4131 SmallVector<Instruction *, 16> Visited; 4132 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 4133 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 4134 "Worklist not sorted properly!"); 4135 BasicBlock *BB = (*I)->getBlock(); 4136 // For all instructions in blocks containing gather sequences: 4137 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 4138 Instruction *In = &*it++; 4139 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 4140 continue; 4141 4142 // Check if we can replace this instruction with any of the 4143 // visited instructions. 4144 for (Instruction *v : Visited) { 4145 if (In->isIdenticalTo(v) && 4146 DT->dominates(v->getParent(), In->getParent())) { 4147 In->replaceAllUsesWith(v); 4148 eraseInstruction(In); 4149 In = nullptr; 4150 break; 4151 } 4152 } 4153 if (In) { 4154 assert(!is_contained(Visited, In)); 4155 Visited.push_back(In); 4156 } 4157 } 4158 } 4159 CSEBlocks.clear(); 4160 GatherSeq.clear(); 4161 } 4162 4163 // Groups the instructions to a bundle (which is then a single scheduling entity) 4164 // and schedules instructions until the bundle gets ready. 4165 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, 4166 BoUpSLP *SLP, 4167 const InstructionsState &S) { 4168 if (isa<PHINode>(S.OpValue)) 4169 return true; 4170 4171 // Initialize the instruction bundle. 4172 Instruction *OldScheduleEnd = ScheduleEnd; 4173 ScheduleData *PrevInBundle = nullptr; 4174 ScheduleData *Bundle = nullptr; 4175 bool ReSchedule = false; 4176 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 4177 4178 // Make sure that the scheduling region contains all 4179 // instructions of the bundle. 4180 for (Value *V : VL) { 4181 if (!extendSchedulingRegion(V, S)) 4182 return false; 4183 } 4184 4185 for (Value *V : VL) { 4186 ScheduleData *BundleMember = getScheduleData(V); 4187 assert(BundleMember && 4188 "no ScheduleData for bundle member (maybe not in same basic block)"); 4189 if (BundleMember->IsScheduled) { 4190 // A bundle member was scheduled as single instruction before and now 4191 // needs to be scheduled as part of the bundle. We just get rid of the 4192 // existing schedule. 4193 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 4194 << " was already scheduled\n"); 4195 ReSchedule = true; 4196 } 4197 assert(BundleMember->isSchedulingEntity() && 4198 "bundle member already part of other bundle"); 4199 if (PrevInBundle) { 4200 PrevInBundle->NextInBundle = BundleMember; 4201 } else { 4202 Bundle = BundleMember; 4203 } 4204 BundleMember->UnscheduledDepsInBundle = 0; 4205 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 4206 4207 // Group the instructions to a bundle. 4208 BundleMember->FirstInBundle = Bundle; 4209 PrevInBundle = BundleMember; 4210 } 4211 if (ScheduleEnd != OldScheduleEnd) { 4212 // The scheduling region got new instructions at the lower end (or it is a 4213 // new region for the first bundle). This makes it necessary to 4214 // recalculate all dependencies. 4215 // It is seldom that this needs to be done a second time after adding the 4216 // initial bundle to the region. 4217 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 4218 doForAllOpcodes(I, [](ScheduleData *SD) { 4219 SD->clearDependencies(); 4220 }); 4221 } 4222 ReSchedule = true; 4223 } 4224 if (ReSchedule) { 4225 resetSchedule(); 4226 initialFillReadyList(ReadyInsts); 4227 } 4228 4229 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 4230 << BB->getName() << "\n"); 4231 4232 calculateDependencies(Bundle, true, SLP); 4233 4234 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 4235 // means that there are no cyclic dependencies and we can schedule it. 4236 // Note that's important that we don't "schedule" the bundle yet (see 4237 // cancelScheduling). 4238 while (!Bundle->isReady() && !ReadyInsts.empty()) { 4239 4240 ScheduleData *pickedSD = ReadyInsts.back(); 4241 ReadyInsts.pop_back(); 4242 4243 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 4244 schedule(pickedSD, ReadyInsts); 4245 } 4246 } 4247 if (!Bundle->isReady()) { 4248 cancelScheduling(VL, S.OpValue); 4249 return false; 4250 } 4251 return true; 4252 } 4253 4254 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 4255 Value *OpValue) { 4256 if (isa<PHINode>(OpValue)) 4257 return; 4258 4259 ScheduleData *Bundle = getScheduleData(OpValue); 4260 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 4261 assert(!Bundle->IsScheduled && 4262 "Can't cancel bundle which is already scheduled"); 4263 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 4264 "tried to unbundle something which is not a bundle"); 4265 4266 // Un-bundle: make single instructions out of the bundle. 4267 ScheduleData *BundleMember = Bundle; 4268 while (BundleMember) { 4269 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 4270 BundleMember->FirstInBundle = BundleMember; 4271 ScheduleData *Next = BundleMember->NextInBundle; 4272 BundleMember->NextInBundle = nullptr; 4273 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 4274 if (BundleMember->UnscheduledDepsInBundle == 0) { 4275 ReadyInsts.insert(BundleMember); 4276 } 4277 BundleMember = Next; 4278 } 4279 } 4280 4281 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 4282 // Allocate a new ScheduleData for the instruction. 4283 if (ChunkPos >= ChunkSize) { 4284 ScheduleDataChunks.push_back(llvm::make_unique<ScheduleData[]>(ChunkSize)); 4285 ChunkPos = 0; 4286 } 4287 return &(ScheduleDataChunks.back()[ChunkPos++]); 4288 } 4289 4290 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 4291 const InstructionsState &S) { 4292 if (getScheduleData(V, isOneOf(S, V))) 4293 return true; 4294 Instruction *I = dyn_cast<Instruction>(V); 4295 assert(I && "bundle member must be an instruction"); 4296 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 4297 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 4298 ScheduleData *ISD = getScheduleData(I); 4299 if (!ISD) 4300 return false; 4301 assert(isInSchedulingRegion(ISD) && 4302 "ScheduleData not in scheduling region"); 4303 ScheduleData *SD = allocateScheduleDataChunks(); 4304 SD->Inst = I; 4305 SD->init(SchedulingRegionID, S.OpValue); 4306 ExtraScheduleDataMap[I][S.OpValue] = SD; 4307 return true; 4308 }; 4309 if (CheckSheduleForI(I)) 4310 return true; 4311 if (!ScheduleStart) { 4312 // It's the first instruction in the new region. 4313 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 4314 ScheduleStart = I; 4315 ScheduleEnd = I->getNextNode(); 4316 if (isOneOf(S, I) != I) 4317 CheckSheduleForI(I); 4318 assert(ScheduleEnd && "tried to vectorize a terminator?"); 4319 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 4320 return true; 4321 } 4322 // Search up and down at the same time, because we don't know if the new 4323 // instruction is above or below the existing scheduling region. 4324 BasicBlock::reverse_iterator UpIter = 4325 ++ScheduleStart->getIterator().getReverse(); 4326 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 4327 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 4328 BasicBlock::iterator LowerEnd = BB->end(); 4329 while (true) { 4330 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 4331 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 4332 return false; 4333 } 4334 4335 if (UpIter != UpperEnd) { 4336 if (&*UpIter == I) { 4337 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 4338 ScheduleStart = I; 4339 if (isOneOf(S, I) != I) 4340 CheckSheduleForI(I); 4341 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 4342 << "\n"); 4343 return true; 4344 } 4345 UpIter++; 4346 } 4347 if (DownIter != LowerEnd) { 4348 if (&*DownIter == I) { 4349 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 4350 nullptr); 4351 ScheduleEnd = I->getNextNode(); 4352 if (isOneOf(S, I) != I) 4353 CheckSheduleForI(I); 4354 assert(ScheduleEnd && "tried to vectorize a terminator?"); 4355 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I 4356 << "\n"); 4357 return true; 4358 } 4359 DownIter++; 4360 } 4361 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 4362 "instruction not found in block"); 4363 } 4364 return true; 4365 } 4366 4367 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 4368 Instruction *ToI, 4369 ScheduleData *PrevLoadStore, 4370 ScheduleData *NextLoadStore) { 4371 ScheduleData *CurrentLoadStore = PrevLoadStore; 4372 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 4373 ScheduleData *SD = ScheduleDataMap[I]; 4374 if (!SD) { 4375 SD = allocateScheduleDataChunks(); 4376 ScheduleDataMap[I] = SD; 4377 SD->Inst = I; 4378 } 4379 assert(!isInSchedulingRegion(SD) && 4380 "new ScheduleData already in scheduling region"); 4381 SD->init(SchedulingRegionID, I); 4382 4383 if (I->mayReadOrWriteMemory() && 4384 (!isa<IntrinsicInst>(I) || 4385 cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) { 4386 // Update the linked list of memory accessing instructions. 4387 if (CurrentLoadStore) { 4388 CurrentLoadStore->NextLoadStore = SD; 4389 } else { 4390 FirstLoadStoreInRegion = SD; 4391 } 4392 CurrentLoadStore = SD; 4393 } 4394 } 4395 if (NextLoadStore) { 4396 if (CurrentLoadStore) 4397 CurrentLoadStore->NextLoadStore = NextLoadStore; 4398 } else { 4399 LastLoadStoreInRegion = CurrentLoadStore; 4400 } 4401 } 4402 4403 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 4404 bool InsertInReadyList, 4405 BoUpSLP *SLP) { 4406 assert(SD->isSchedulingEntity()); 4407 4408 SmallVector<ScheduleData *, 10> WorkList; 4409 WorkList.push_back(SD); 4410 4411 while (!WorkList.empty()) { 4412 ScheduleData *SD = WorkList.back(); 4413 WorkList.pop_back(); 4414 4415 ScheduleData *BundleMember = SD; 4416 while (BundleMember) { 4417 assert(isInSchedulingRegion(BundleMember)); 4418 if (!BundleMember->hasValidDependencies()) { 4419 4420 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 4421 << "\n"); 4422 BundleMember->Dependencies = 0; 4423 BundleMember->resetUnscheduledDeps(); 4424 4425 // Handle def-use chain dependencies. 4426 if (BundleMember->OpValue != BundleMember->Inst) { 4427 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 4428 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 4429 BundleMember->Dependencies++; 4430 ScheduleData *DestBundle = UseSD->FirstInBundle; 4431 if (!DestBundle->IsScheduled) 4432 BundleMember->incrementUnscheduledDeps(1); 4433 if (!DestBundle->hasValidDependencies()) 4434 WorkList.push_back(DestBundle); 4435 } 4436 } else { 4437 for (User *U : BundleMember->Inst->users()) { 4438 if (isa<Instruction>(U)) { 4439 ScheduleData *UseSD = getScheduleData(U); 4440 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 4441 BundleMember->Dependencies++; 4442 ScheduleData *DestBundle = UseSD->FirstInBundle; 4443 if (!DestBundle->IsScheduled) 4444 BundleMember->incrementUnscheduledDeps(1); 4445 if (!DestBundle->hasValidDependencies()) 4446 WorkList.push_back(DestBundle); 4447 } 4448 } else { 4449 // I'm not sure if this can ever happen. But we need to be safe. 4450 // This lets the instruction/bundle never be scheduled and 4451 // eventually disable vectorization. 4452 BundleMember->Dependencies++; 4453 BundleMember->incrementUnscheduledDeps(1); 4454 } 4455 } 4456 } 4457 4458 // Handle the memory dependencies. 4459 ScheduleData *DepDest = BundleMember->NextLoadStore; 4460 if (DepDest) { 4461 Instruction *SrcInst = BundleMember->Inst; 4462 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 4463 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 4464 unsigned numAliased = 0; 4465 unsigned DistToSrc = 1; 4466 4467 while (DepDest) { 4468 assert(isInSchedulingRegion(DepDest)); 4469 4470 // We have two limits to reduce the complexity: 4471 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 4472 // SLP->isAliased (which is the expensive part in this loop). 4473 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 4474 // the whole loop (even if the loop is fast, it's quadratic). 4475 // It's important for the loop break condition (see below) to 4476 // check this limit even between two read-only instructions. 4477 if (DistToSrc >= MaxMemDepDistance || 4478 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 4479 (numAliased >= AliasedCheckLimit || 4480 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 4481 4482 // We increment the counter only if the locations are aliased 4483 // (instead of counting all alias checks). This gives a better 4484 // balance between reduced runtime and accurate dependencies. 4485 numAliased++; 4486 4487 DepDest->MemoryDependencies.push_back(BundleMember); 4488 BundleMember->Dependencies++; 4489 ScheduleData *DestBundle = DepDest->FirstInBundle; 4490 if (!DestBundle->IsScheduled) { 4491 BundleMember->incrementUnscheduledDeps(1); 4492 } 4493 if (!DestBundle->hasValidDependencies()) { 4494 WorkList.push_back(DestBundle); 4495 } 4496 } 4497 DepDest = DepDest->NextLoadStore; 4498 4499 // Example, explaining the loop break condition: Let's assume our 4500 // starting instruction is i0 and MaxMemDepDistance = 3. 4501 // 4502 // +--------v--v--v 4503 // i0,i1,i2,i3,i4,i5,i6,i7,i8 4504 // +--------^--^--^ 4505 // 4506 // MaxMemDepDistance let us stop alias-checking at i3 and we add 4507 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 4508 // Previously we already added dependencies from i3 to i6,i7,i8 4509 // (because of MaxMemDepDistance). As we added a dependency from 4510 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 4511 // and we can abort this loop at i6. 4512 if (DistToSrc >= 2 * MaxMemDepDistance) 4513 break; 4514 DistToSrc++; 4515 } 4516 } 4517 } 4518 BundleMember = BundleMember->NextInBundle; 4519 } 4520 if (InsertInReadyList && SD->isReady()) { 4521 ReadyInsts.push_back(SD); 4522 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 4523 << "\n"); 4524 } 4525 } 4526 } 4527 4528 void BoUpSLP::BlockScheduling::resetSchedule() { 4529 assert(ScheduleStart && 4530 "tried to reset schedule on block which has not been scheduled"); 4531 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 4532 doForAllOpcodes(I, [&](ScheduleData *SD) { 4533 assert(isInSchedulingRegion(SD) && 4534 "ScheduleData not in scheduling region"); 4535 SD->IsScheduled = false; 4536 SD->resetUnscheduledDeps(); 4537 }); 4538 } 4539 ReadyInsts.clear(); 4540 } 4541 4542 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 4543 if (!BS->ScheduleStart) 4544 return; 4545 4546 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 4547 4548 BS->resetSchedule(); 4549 4550 // For the real scheduling we use a more sophisticated ready-list: it is 4551 // sorted by the original instruction location. This lets the final schedule 4552 // be as close as possible to the original instruction order. 4553 struct ScheduleDataCompare { 4554 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 4555 return SD2->SchedulingPriority < SD1->SchedulingPriority; 4556 } 4557 }; 4558 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 4559 4560 // Ensure that all dependency data is updated and fill the ready-list with 4561 // initial instructions. 4562 int Idx = 0; 4563 int NumToSchedule = 0; 4564 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 4565 I = I->getNextNode()) { 4566 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 4567 assert(SD->isPartOfBundle() == 4568 (getTreeEntry(SD->Inst) != nullptr) && 4569 "scheduler and vectorizer bundle mismatch"); 4570 SD->FirstInBundle->SchedulingPriority = Idx++; 4571 if (SD->isSchedulingEntity()) { 4572 BS->calculateDependencies(SD, false, this); 4573 NumToSchedule++; 4574 } 4575 }); 4576 } 4577 BS->initialFillReadyList(ReadyInsts); 4578 4579 Instruction *LastScheduledInst = BS->ScheduleEnd; 4580 4581 // Do the "real" scheduling. 4582 while (!ReadyInsts.empty()) { 4583 ScheduleData *picked = *ReadyInsts.begin(); 4584 ReadyInsts.erase(ReadyInsts.begin()); 4585 4586 // Move the scheduled instruction(s) to their dedicated places, if not 4587 // there yet. 4588 ScheduleData *BundleMember = picked; 4589 while (BundleMember) { 4590 Instruction *pickedInst = BundleMember->Inst; 4591 if (LastScheduledInst->getNextNode() != pickedInst) { 4592 BS->BB->getInstList().remove(pickedInst); 4593 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 4594 pickedInst); 4595 } 4596 LastScheduledInst = pickedInst; 4597 BundleMember = BundleMember->NextInBundle; 4598 } 4599 4600 BS->schedule(picked, ReadyInsts); 4601 NumToSchedule--; 4602 } 4603 assert(NumToSchedule == 0 && "could not schedule all instructions"); 4604 4605 // Avoid duplicate scheduling of the block. 4606 BS->ScheduleStart = nullptr; 4607 } 4608 4609 unsigned BoUpSLP::getVectorElementSize(Value *V) const { 4610 // If V is a store, just return the width of the stored value without 4611 // traversing the expression tree. This is the common case. 4612 if (auto *Store = dyn_cast<StoreInst>(V)) 4613 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 4614 4615 // If V is not a store, we can traverse the expression tree to find loads 4616 // that feed it. The type of the loaded value may indicate a more suitable 4617 // width than V's type. We want to base the vector element size on the width 4618 // of memory operations where possible. 4619 SmallVector<Instruction *, 16> Worklist; 4620 SmallPtrSet<Instruction *, 16> Visited; 4621 if (auto *I = dyn_cast<Instruction>(V)) 4622 Worklist.push_back(I); 4623 4624 // Traverse the expression tree in bottom-up order looking for loads. If we 4625 // encounter an instruction we don't yet handle, we give up. 4626 auto MaxWidth = 0u; 4627 auto FoundUnknownInst = false; 4628 while (!Worklist.empty() && !FoundUnknownInst) { 4629 auto *I = Worklist.pop_back_val(); 4630 Visited.insert(I); 4631 4632 // We should only be looking at scalar instructions here. If the current 4633 // instruction has a vector type, give up. 4634 auto *Ty = I->getType(); 4635 if (isa<VectorType>(Ty)) 4636 FoundUnknownInst = true; 4637 4638 // If the current instruction is a load, update MaxWidth to reflect the 4639 // width of the loaded value. 4640 else if (isa<LoadInst>(I)) 4641 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 4642 4643 // Otherwise, we need to visit the operands of the instruction. We only 4644 // handle the interesting cases from buildTree here. If an operand is an 4645 // instruction we haven't yet visited, we add it to the worklist. 4646 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 4647 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 4648 for (Use &U : I->operands()) 4649 if (auto *J = dyn_cast<Instruction>(U.get())) 4650 if (!Visited.count(J)) 4651 Worklist.push_back(J); 4652 } 4653 4654 // If we don't yet handle the instruction, give up. 4655 else 4656 FoundUnknownInst = true; 4657 } 4658 4659 // If we didn't encounter a memory access in the expression tree, or if we 4660 // gave up for some reason, just return the width of V. 4661 if (!MaxWidth || FoundUnknownInst) 4662 return DL->getTypeSizeInBits(V->getType()); 4663 4664 // Otherwise, return the maximum width we found. 4665 return MaxWidth; 4666 } 4667 4668 // Determine if a value V in a vectorizable expression Expr can be demoted to a 4669 // smaller type with a truncation. We collect the values that will be demoted 4670 // in ToDemote and additional roots that require investigating in Roots. 4671 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 4672 SmallVectorImpl<Value *> &ToDemote, 4673 SmallVectorImpl<Value *> &Roots) { 4674 // We can always demote constants. 4675 if (isa<Constant>(V)) { 4676 ToDemote.push_back(V); 4677 return true; 4678 } 4679 4680 // If the value is not an instruction in the expression with only one use, it 4681 // cannot be demoted. 4682 auto *I = dyn_cast<Instruction>(V); 4683 if (!I || !I->hasOneUse() || !Expr.count(I)) 4684 return false; 4685 4686 switch (I->getOpcode()) { 4687 4688 // We can always demote truncations and extensions. Since truncations can 4689 // seed additional demotion, we save the truncated value. 4690 case Instruction::Trunc: 4691 Roots.push_back(I->getOperand(0)); 4692 break; 4693 case Instruction::ZExt: 4694 case Instruction::SExt: 4695 break; 4696 4697 // We can demote certain binary operations if we can demote both of their 4698 // operands. 4699 case Instruction::Add: 4700 case Instruction::Sub: 4701 case Instruction::Mul: 4702 case Instruction::And: 4703 case Instruction::Or: 4704 case Instruction::Xor: 4705 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 4706 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 4707 return false; 4708 break; 4709 4710 // We can demote selects if we can demote their true and false values. 4711 case Instruction::Select: { 4712 SelectInst *SI = cast<SelectInst>(I); 4713 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 4714 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 4715 return false; 4716 break; 4717 } 4718 4719 // We can demote phis if we can demote all their incoming operands. Note that 4720 // we don't need to worry about cycles since we ensure single use above. 4721 case Instruction::PHI: { 4722 PHINode *PN = cast<PHINode>(I); 4723 for (Value *IncValue : PN->incoming_values()) 4724 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 4725 return false; 4726 break; 4727 } 4728 4729 // Otherwise, conservatively give up. 4730 default: 4731 return false; 4732 } 4733 4734 // Record the value that we can demote. 4735 ToDemote.push_back(V); 4736 return true; 4737 } 4738 4739 void BoUpSLP::computeMinimumValueSizes() { 4740 // If there are no external uses, the expression tree must be rooted by a 4741 // store. We can't demote in-memory values, so there is nothing to do here. 4742 if (ExternalUses.empty()) 4743 return; 4744 4745 // We only attempt to truncate integer expressions. 4746 auto &TreeRoot = VectorizableTree[0].Scalars; 4747 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 4748 if (!TreeRootIT) 4749 return; 4750 4751 // If the expression is not rooted by a store, these roots should have 4752 // external uses. We will rely on InstCombine to rewrite the expression in 4753 // the narrower type. However, InstCombine only rewrites single-use values. 4754 // This means that if a tree entry other than a root is used externally, it 4755 // must have multiple uses and InstCombine will not rewrite it. The code 4756 // below ensures that only the roots are used externally. 4757 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 4758 for (auto &EU : ExternalUses) 4759 if (!Expr.erase(EU.Scalar)) 4760 return; 4761 if (!Expr.empty()) 4762 return; 4763 4764 // Collect the scalar values of the vectorizable expression. We will use this 4765 // context to determine which values can be demoted. If we see a truncation, 4766 // we mark it as seeding another demotion. 4767 for (auto &Entry : VectorizableTree) 4768 Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end()); 4769 4770 // Ensure the roots of the vectorizable tree don't form a cycle. They must 4771 // have a single external user that is not in the vectorizable tree. 4772 for (auto *Root : TreeRoot) 4773 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 4774 return; 4775 4776 // Conservatively determine if we can actually truncate the roots of the 4777 // expression. Collect the values that can be demoted in ToDemote and 4778 // additional roots that require investigating in Roots. 4779 SmallVector<Value *, 32> ToDemote; 4780 SmallVector<Value *, 4> Roots; 4781 for (auto *Root : TreeRoot) 4782 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 4783 return; 4784 4785 // The maximum bit width required to represent all the values that can be 4786 // demoted without loss of precision. It would be safe to truncate the roots 4787 // of the expression to this width. 4788 auto MaxBitWidth = 8u; 4789 4790 // We first check if all the bits of the roots are demanded. If they're not, 4791 // we can truncate the roots to this narrower type. 4792 for (auto *Root : TreeRoot) { 4793 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 4794 MaxBitWidth = std::max<unsigned>( 4795 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 4796 } 4797 4798 // True if the roots can be zero-extended back to their original type, rather 4799 // than sign-extended. We know that if the leading bits are not demanded, we 4800 // can safely zero-extend. So we initialize IsKnownPositive to True. 4801 bool IsKnownPositive = true; 4802 4803 // If all the bits of the roots are demanded, we can try a little harder to 4804 // compute a narrower type. This can happen, for example, if the roots are 4805 // getelementptr indices. InstCombine promotes these indices to the pointer 4806 // width. Thus, all their bits are technically demanded even though the 4807 // address computation might be vectorized in a smaller type. 4808 // 4809 // We start by looking at each entry that can be demoted. We compute the 4810 // maximum bit width required to store the scalar by using ValueTracking to 4811 // compute the number of high-order bits we can truncate. 4812 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 4813 llvm::all_of(TreeRoot, [](Value *R) { 4814 assert(R->hasOneUse() && "Root should have only one use!"); 4815 return isa<GetElementPtrInst>(R->user_back()); 4816 })) { 4817 MaxBitWidth = 8u; 4818 4819 // Determine if the sign bit of all the roots is known to be zero. If not, 4820 // IsKnownPositive is set to False. 4821 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 4822 KnownBits Known = computeKnownBits(R, *DL); 4823 return Known.isNonNegative(); 4824 }); 4825 4826 // Determine the maximum number of bits required to store the scalar 4827 // values. 4828 for (auto *Scalar : ToDemote) { 4829 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 4830 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 4831 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 4832 } 4833 4834 // If we can't prove that the sign bit is zero, we must add one to the 4835 // maximum bit width to account for the unknown sign bit. This preserves 4836 // the existing sign bit so we can safely sign-extend the root back to the 4837 // original type. Otherwise, if we know the sign bit is zero, we will 4838 // zero-extend the root instead. 4839 // 4840 // FIXME: This is somewhat suboptimal, as there will be cases where adding 4841 // one to the maximum bit width will yield a larger-than-necessary 4842 // type. In general, we need to add an extra bit only if we can't 4843 // prove that the upper bit of the original type is equal to the 4844 // upper bit of the proposed smaller type. If these two bits are the 4845 // same (either zero or one) we know that sign-extending from the 4846 // smaller type will result in the same value. Here, since we can't 4847 // yet prove this, we are just making the proposed smaller type 4848 // larger to ensure correctness. 4849 if (!IsKnownPositive) 4850 ++MaxBitWidth; 4851 } 4852 4853 // Round MaxBitWidth up to the next power-of-two. 4854 if (!isPowerOf2_64(MaxBitWidth)) 4855 MaxBitWidth = NextPowerOf2(MaxBitWidth); 4856 4857 // If the maximum bit width we compute is less than the with of the roots' 4858 // type, we can proceed with the narrowing. Otherwise, do nothing. 4859 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 4860 return; 4861 4862 // If we can truncate the root, we must collect additional values that might 4863 // be demoted as a result. That is, those seeded by truncations we will 4864 // modify. 4865 while (!Roots.empty()) 4866 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 4867 4868 // Finally, map the values we can demote to the maximum bit with we computed. 4869 for (auto *Scalar : ToDemote) 4870 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 4871 } 4872 4873 namespace { 4874 4875 /// The SLPVectorizer Pass. 4876 struct SLPVectorizer : public FunctionPass { 4877 SLPVectorizerPass Impl; 4878 4879 /// Pass identification, replacement for typeid 4880 static char ID; 4881 4882 explicit SLPVectorizer() : FunctionPass(ID) { 4883 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 4884 } 4885 4886 bool doInitialization(Module &M) override { 4887 return false; 4888 } 4889 4890 bool runOnFunction(Function &F) override { 4891 if (skipFunction(F)) 4892 return false; 4893 4894 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 4895 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 4896 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 4897 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 4898 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 4899 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 4900 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 4901 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 4902 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 4903 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 4904 4905 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 4906 } 4907 4908 void getAnalysisUsage(AnalysisUsage &AU) const override { 4909 FunctionPass::getAnalysisUsage(AU); 4910 AU.addRequired<AssumptionCacheTracker>(); 4911 AU.addRequired<ScalarEvolutionWrapperPass>(); 4912 AU.addRequired<AAResultsWrapperPass>(); 4913 AU.addRequired<TargetTransformInfoWrapperPass>(); 4914 AU.addRequired<LoopInfoWrapperPass>(); 4915 AU.addRequired<DominatorTreeWrapperPass>(); 4916 AU.addRequired<DemandedBitsWrapperPass>(); 4917 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 4918 AU.addPreserved<LoopInfoWrapperPass>(); 4919 AU.addPreserved<DominatorTreeWrapperPass>(); 4920 AU.addPreserved<AAResultsWrapperPass>(); 4921 AU.addPreserved<GlobalsAAWrapperPass>(); 4922 AU.setPreservesCFG(); 4923 } 4924 }; 4925 4926 } // end anonymous namespace 4927 4928 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 4929 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 4930 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 4931 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 4932 auto *AA = &AM.getResult<AAManager>(F); 4933 auto *LI = &AM.getResult<LoopAnalysis>(F); 4934 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 4935 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 4936 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 4937 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4938 4939 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 4940 if (!Changed) 4941 return PreservedAnalyses::all(); 4942 4943 PreservedAnalyses PA; 4944 PA.preserveSet<CFGAnalyses>(); 4945 PA.preserve<AAManager>(); 4946 PA.preserve<GlobalsAA>(); 4947 return PA; 4948 } 4949 4950 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 4951 TargetTransformInfo *TTI_, 4952 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 4953 LoopInfo *LI_, DominatorTree *DT_, 4954 AssumptionCache *AC_, DemandedBits *DB_, 4955 OptimizationRemarkEmitter *ORE_) { 4956 SE = SE_; 4957 TTI = TTI_; 4958 TLI = TLI_; 4959 AA = AA_; 4960 LI = LI_; 4961 DT = DT_; 4962 AC = AC_; 4963 DB = DB_; 4964 DL = &F.getParent()->getDataLayout(); 4965 4966 Stores.clear(); 4967 GEPs.clear(); 4968 bool Changed = false; 4969 4970 // If the target claims to have no vector registers don't attempt 4971 // vectorization. 4972 if (!TTI->getNumberOfRegisters(true)) 4973 return false; 4974 4975 // Don't vectorize when the attribute NoImplicitFloat is used. 4976 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 4977 return false; 4978 4979 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 4980 4981 // Use the bottom up slp vectorizer to construct chains that start with 4982 // store instructions. 4983 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 4984 4985 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 4986 // delete instructions. 4987 4988 // Scan the blocks in the function in post order. 4989 for (auto BB : post_order(&F.getEntryBlock())) { 4990 collectSeedInstructions(BB); 4991 4992 // Vectorize trees that end at stores. 4993 if (!Stores.empty()) { 4994 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 4995 << " underlying objects.\n"); 4996 Changed |= vectorizeStoreChains(R); 4997 } 4998 4999 // Vectorize trees that end at reductions. 5000 Changed |= vectorizeChainsInBlock(BB, R); 5001 5002 // Vectorize the index computations of getelementptr instructions. This 5003 // is primarily intended to catch gather-like idioms ending at 5004 // non-consecutive loads. 5005 if (!GEPs.empty()) { 5006 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 5007 << " underlying objects.\n"); 5008 Changed |= vectorizeGEPIndices(BB, R); 5009 } 5010 } 5011 5012 if (Changed) { 5013 R.optimizeGatherSequence(); 5014 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 5015 LLVM_DEBUG(verifyFunction(F)); 5016 } 5017 return Changed; 5018 } 5019 5020 /// Check that the Values in the slice in VL array are still existent in 5021 /// the WeakTrackingVH array. 5022 /// Vectorization of part of the VL array may cause later values in the VL array 5023 /// to become invalid. We track when this has happened in the WeakTrackingVH 5024 /// array. 5025 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, 5026 ArrayRef<WeakTrackingVH> VH, unsigned SliceBegin, 5027 unsigned SliceSize) { 5028 VL = VL.slice(SliceBegin, SliceSize); 5029 VH = VH.slice(SliceBegin, SliceSize); 5030 return !std::equal(VL.begin(), VL.end(), VH.begin()); 5031 } 5032 5033 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 5034 unsigned VecRegSize) { 5035 const unsigned ChainLen = Chain.size(); 5036 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 5037 << "\n"); 5038 const unsigned Sz = R.getVectorElementSize(Chain[0]); 5039 const unsigned VF = VecRegSize / Sz; 5040 5041 if (!isPowerOf2_32(Sz) || VF < 2) 5042 return false; 5043 5044 // Keep track of values that were deleted by vectorizing in the loop below. 5045 const SmallVector<WeakTrackingVH, 8> TrackValues(Chain.begin(), Chain.end()); 5046 5047 bool Changed = false; 5048 // Look for profitable vectorizable trees at all offsets, starting at zero. 5049 for (unsigned i = 0, e = ChainLen; i + VF <= e; ++i) { 5050 5051 // Check that a previous iteration of this loop did not delete the Value. 5052 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 5053 continue; 5054 5055 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 5056 << "\n"); 5057 ArrayRef<Value *> Operands = Chain.slice(i, VF); 5058 5059 R.buildTree(Operands); 5060 if (R.isTreeTinyAndNotFullyVectorizable()) 5061 continue; 5062 5063 R.computeMinimumValueSizes(); 5064 5065 int Cost = R.getTreeCost(); 5066 5067 LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF 5068 << "\n"); 5069 if (Cost < -SLPCostThreshold) { 5070 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 5071 5072 using namespace ore; 5073 5074 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 5075 cast<StoreInst>(Chain[i])) 5076 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 5077 << " and with tree size " 5078 << NV("TreeSize", R.getTreeSize())); 5079 5080 R.vectorizeTree(); 5081 5082 // Move to the next bundle. 5083 i += VF - 1; 5084 Changed = true; 5085 } 5086 } 5087 5088 return Changed; 5089 } 5090 5091 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 5092 BoUpSLP &R) { 5093 SetVector<StoreInst *> Heads; 5094 SmallDenseSet<StoreInst *> Tails; 5095 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 5096 5097 // We may run into multiple chains that merge into a single chain. We mark the 5098 // stores that we vectorized so that we don't visit the same store twice. 5099 BoUpSLP::ValueSet VectorizedStores; 5100 bool Changed = false; 5101 5102 auto &&FindConsecutiveAccess = 5103 [this, &Stores, &Heads, &Tails, &ConsecutiveChain] (int K, int Idx) { 5104 if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) 5105 return false; 5106 5107 Tails.insert(Stores[Idx]); 5108 Heads.insert(Stores[K]); 5109 ConsecutiveChain[Stores[K]] = Stores[Idx]; 5110 return true; 5111 }; 5112 5113 // Do a quadratic search on all of the given stores in reverse order and find 5114 // all of the pairs of stores that follow each other. 5115 int E = Stores.size(); 5116 for (int Idx = E - 1; Idx >= 0; --Idx) { 5117 // If a store has multiple consecutive store candidates, search according 5118 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 5119 // This is because usually pairing with immediate succeeding or preceding 5120 // candidate create the best chance to find slp vectorization opportunity. 5121 for (int Offset = 1, F = std::max(E - Idx, Idx + 1); Offset < F; ++Offset) 5122 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 5123 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 5124 break; 5125 } 5126 5127 // For stores that start but don't end a link in the chain: 5128 for (auto *SI : llvm::reverse(Heads)) { 5129 if (Tails.count(SI)) 5130 continue; 5131 5132 // We found a store instr that starts a chain. Now follow the chain and try 5133 // to vectorize it. 5134 BoUpSLP::ValueList Operands; 5135 StoreInst *I = SI; 5136 // Collect the chain into a list. 5137 while ((Tails.count(I) || Heads.count(I)) && !VectorizedStores.count(I)) { 5138 Operands.push_back(I); 5139 // Move to the next value in the chain. 5140 I = ConsecutiveChain[I]; 5141 } 5142 5143 // FIXME: Is division-by-2 the correct step? Should we assert that the 5144 // register size is a power-of-2? 5145 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); 5146 Size /= 2) { 5147 if (vectorizeStoreChain(Operands, R, Size)) { 5148 // Mark the vectorized stores so that we don't vectorize them again. 5149 VectorizedStores.insert(Operands.begin(), Operands.end()); 5150 Changed = true; 5151 break; 5152 } 5153 } 5154 } 5155 5156 return Changed; 5157 } 5158 5159 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 5160 // Initialize the collections. We will make a single pass over the block. 5161 Stores.clear(); 5162 GEPs.clear(); 5163 5164 // Visit the store and getelementptr instructions in BB and organize them in 5165 // Stores and GEPs according to the underlying objects of their pointer 5166 // operands. 5167 for (Instruction &I : *BB) { 5168 // Ignore store instructions that are volatile or have a pointer operand 5169 // that doesn't point to a scalar type. 5170 if (auto *SI = dyn_cast<StoreInst>(&I)) { 5171 if (!SI->isSimple()) 5172 continue; 5173 if (!isValidElementType(SI->getValueOperand()->getType())) 5174 continue; 5175 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 5176 } 5177 5178 // Ignore getelementptr instructions that have more than one index, a 5179 // constant index, or a pointer operand that doesn't point to a scalar 5180 // type. 5181 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 5182 auto Idx = GEP->idx_begin()->get(); 5183 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 5184 continue; 5185 if (!isValidElementType(Idx->getType())) 5186 continue; 5187 if (GEP->getType()->isVectorTy()) 5188 continue; 5189 GEPs[GEP->getPointerOperand()].push_back(GEP); 5190 } 5191 } 5192 } 5193 5194 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 5195 if (!A || !B) 5196 return false; 5197 Value *VL[] = { A, B }; 5198 return tryToVectorizeList(VL, R, /*UserCost=*/0, true); 5199 } 5200 5201 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 5202 int UserCost, bool AllowReorder) { 5203 if (VL.size() < 2) 5204 return false; 5205 5206 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 5207 << VL.size() << ".\n"); 5208 5209 // Check that all of the parts are scalar instructions of the same type, 5210 // we permit an alternate opcode via InstructionsState. 5211 InstructionsState S = getSameOpcode(VL); 5212 if (!S.getOpcode()) 5213 return false; 5214 5215 Instruction *I0 = cast<Instruction>(S.OpValue); 5216 unsigned Sz = R.getVectorElementSize(I0); 5217 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 5218 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 5219 if (MaxVF < 2) { 5220 R.getORE()->emit([&]() { 5221 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 5222 << "Cannot SLP vectorize list: vectorization factor " 5223 << "less than 2 is not supported"; 5224 }); 5225 return false; 5226 } 5227 5228 for (Value *V : VL) { 5229 Type *Ty = V->getType(); 5230 if (!isValidElementType(Ty)) { 5231 // NOTE: the following will give user internal llvm type name, which may 5232 // not be useful. 5233 R.getORE()->emit([&]() { 5234 std::string type_str; 5235 llvm::raw_string_ostream rso(type_str); 5236 Ty->print(rso); 5237 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 5238 << "Cannot SLP vectorize list: type " 5239 << rso.str() + " is unsupported by vectorizer"; 5240 }); 5241 return false; 5242 } 5243 } 5244 5245 bool Changed = false; 5246 bool CandidateFound = false; 5247 int MinCost = SLPCostThreshold; 5248 5249 // Keep track of values that were deleted by vectorizing in the loop below. 5250 SmallVector<WeakTrackingVH, 8> TrackValues(VL.begin(), VL.end()); 5251 5252 unsigned NextInst = 0, MaxInst = VL.size(); 5253 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; 5254 VF /= 2) { 5255 // No actual vectorization should happen, if number of parts is the same as 5256 // provided vectorization factor (i.e. the scalar type is used for vector 5257 // code during codegen). 5258 auto *VecTy = VectorType::get(VL[0]->getType(), VF); 5259 if (TTI->getNumberOfParts(VecTy) == VF) 5260 continue; 5261 for (unsigned I = NextInst; I < MaxInst; ++I) { 5262 unsigned OpsWidth = 0; 5263 5264 if (I + VF > MaxInst) 5265 OpsWidth = MaxInst - I; 5266 else 5267 OpsWidth = VF; 5268 5269 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 5270 break; 5271 5272 // Check that a previous iteration of this loop did not delete the Value. 5273 if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth)) 5274 continue; 5275 5276 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 5277 << "\n"); 5278 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 5279 5280 R.buildTree(Ops); 5281 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 5282 // TODO: check if we can allow reordering for more cases. 5283 if (AllowReorder && Order) { 5284 // TODO: reorder tree nodes without tree rebuilding. 5285 // Conceptually, there is nothing actually preventing us from trying to 5286 // reorder a larger list. In fact, we do exactly this when vectorizing 5287 // reductions. However, at this point, we only expect to get here when 5288 // there are exactly two operations. 5289 assert(Ops.size() == 2); 5290 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 5291 R.buildTree(ReorderedOps, None); 5292 } 5293 if (R.isTreeTinyAndNotFullyVectorizable()) 5294 continue; 5295 5296 R.computeMinimumValueSizes(); 5297 int Cost = R.getTreeCost() - UserCost; 5298 CandidateFound = true; 5299 MinCost = std::min(MinCost, Cost); 5300 5301 if (Cost < -SLPCostThreshold) { 5302 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 5303 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 5304 cast<Instruction>(Ops[0])) 5305 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 5306 << " and with tree size " 5307 << ore::NV("TreeSize", R.getTreeSize())); 5308 5309 R.vectorizeTree(); 5310 // Move to the next bundle. 5311 I += VF - 1; 5312 NextInst = I + 1; 5313 Changed = true; 5314 } 5315 } 5316 } 5317 5318 if (!Changed && CandidateFound) { 5319 R.getORE()->emit([&]() { 5320 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 5321 << "List vectorization was possible but not beneficial with cost " 5322 << ore::NV("Cost", MinCost) << " >= " 5323 << ore::NV("Treshold", -SLPCostThreshold); 5324 }); 5325 } else if (!Changed) { 5326 R.getORE()->emit([&]() { 5327 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 5328 << "Cannot SLP vectorize list: vectorization was impossible" 5329 << " with available vectorization factors"; 5330 }); 5331 } 5332 return Changed; 5333 } 5334 5335 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 5336 if (!I) 5337 return false; 5338 5339 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 5340 return false; 5341 5342 Value *P = I->getParent(); 5343 5344 // Vectorize in current basic block only. 5345 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 5346 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 5347 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 5348 return false; 5349 5350 // Try to vectorize V. 5351 if (tryToVectorizePair(Op0, Op1, R)) 5352 return true; 5353 5354 auto *A = dyn_cast<BinaryOperator>(Op0); 5355 auto *B = dyn_cast<BinaryOperator>(Op1); 5356 // Try to skip B. 5357 if (B && B->hasOneUse()) { 5358 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 5359 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 5360 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 5361 return true; 5362 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 5363 return true; 5364 } 5365 5366 // Try to skip A. 5367 if (A && A->hasOneUse()) { 5368 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 5369 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 5370 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 5371 return true; 5372 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 5373 return true; 5374 } 5375 return false; 5376 } 5377 5378 /// Generate a shuffle mask to be used in a reduction tree. 5379 /// 5380 /// \param VecLen The length of the vector to be reduced. 5381 /// \param NumEltsToRdx The number of elements that should be reduced in the 5382 /// vector. 5383 /// \param IsPairwise Whether the reduction is a pairwise or splitting 5384 /// reduction. A pairwise reduction will generate a mask of 5385 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 5386 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 5387 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 5388 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 5389 bool IsPairwise, bool IsLeft, 5390 IRBuilder<> &Builder) { 5391 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 5392 5393 SmallVector<Constant *, 32> ShuffleMask( 5394 VecLen, UndefValue::get(Builder.getInt32Ty())); 5395 5396 if (IsPairwise) 5397 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 5398 for (unsigned i = 0; i != NumEltsToRdx; ++i) 5399 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 5400 else 5401 // Move the upper half of the vector to the lower half. 5402 for (unsigned i = 0; i != NumEltsToRdx; ++i) 5403 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 5404 5405 return ConstantVector::get(ShuffleMask); 5406 } 5407 5408 namespace { 5409 5410 /// Model horizontal reductions. 5411 /// 5412 /// A horizontal reduction is a tree of reduction operations (currently add and 5413 /// fadd) that has operations that can be put into a vector as its leaf. 5414 /// For example, this tree: 5415 /// 5416 /// mul mul mul mul 5417 /// \ / \ / 5418 /// + + 5419 /// \ / 5420 /// + 5421 /// This tree has "mul" as its reduced values and "+" as its reduction 5422 /// operations. A reduction might be feeding into a store or a binary operation 5423 /// feeding a phi. 5424 /// ... 5425 /// \ / 5426 /// + 5427 /// | 5428 /// phi += 5429 /// 5430 /// Or: 5431 /// ... 5432 /// \ / 5433 /// + 5434 /// | 5435 /// *p = 5436 /// 5437 class HorizontalReduction { 5438 using ReductionOpsType = SmallVector<Value *, 16>; 5439 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 5440 ReductionOpsListType ReductionOps; 5441 SmallVector<Value *, 32> ReducedVals; 5442 // Use map vector to make stable output. 5443 MapVector<Instruction *, Value *> ExtraArgs; 5444 5445 /// Kind of the reduction data. 5446 enum ReductionKind { 5447 RK_None, /// Not a reduction. 5448 RK_Arithmetic, /// Binary reduction data. 5449 RK_Min, /// Minimum reduction data. 5450 RK_UMin, /// Unsigned minimum reduction data. 5451 RK_Max, /// Maximum reduction data. 5452 RK_UMax, /// Unsigned maximum reduction data. 5453 }; 5454 5455 /// Contains info about operation, like its opcode, left and right operands. 5456 class OperationData { 5457 /// Opcode of the instruction. 5458 unsigned Opcode = 0; 5459 5460 /// Left operand of the reduction operation. 5461 Value *LHS = nullptr; 5462 5463 /// Right operand of the reduction operation. 5464 Value *RHS = nullptr; 5465 5466 /// Kind of the reduction operation. 5467 ReductionKind Kind = RK_None; 5468 5469 /// True if float point min/max reduction has no NaNs. 5470 bool NoNaN = false; 5471 5472 /// Checks if the reduction operation can be vectorized. 5473 bool isVectorizable() const { 5474 return LHS && RHS && 5475 // We currently only support add/mul/logical && min/max reductions. 5476 ((Kind == RK_Arithmetic && 5477 (Opcode == Instruction::Add || Opcode == Instruction::FAdd || 5478 Opcode == Instruction::Mul || Opcode == Instruction::FMul || 5479 Opcode == Instruction::And || Opcode == Instruction::Or || 5480 Opcode == Instruction::Xor)) || 5481 ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 5482 (Kind == RK_Min || Kind == RK_Max)) || 5483 (Opcode == Instruction::ICmp && 5484 (Kind == RK_UMin || Kind == RK_UMax))); 5485 } 5486 5487 /// Creates reduction operation with the current opcode. 5488 Value *createOp(IRBuilder<> &Builder, const Twine &Name) const { 5489 assert(isVectorizable() && 5490 "Expected add|fadd or min/max reduction operation."); 5491 Value *Cmp; 5492 switch (Kind) { 5493 case RK_Arithmetic: 5494 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 5495 Name); 5496 case RK_Min: 5497 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS) 5498 : Builder.CreateFCmpOLT(LHS, RHS); 5499 break; 5500 case RK_Max: 5501 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS) 5502 : Builder.CreateFCmpOGT(LHS, RHS); 5503 break; 5504 case RK_UMin: 5505 assert(Opcode == Instruction::ICmp && "Expected integer types."); 5506 Cmp = Builder.CreateICmpULT(LHS, RHS); 5507 break; 5508 case RK_UMax: 5509 assert(Opcode == Instruction::ICmp && "Expected integer types."); 5510 Cmp = Builder.CreateICmpUGT(LHS, RHS); 5511 break; 5512 case RK_None: 5513 llvm_unreachable("Unknown reduction operation."); 5514 } 5515 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 5516 } 5517 5518 public: 5519 explicit OperationData() = default; 5520 5521 /// Construction for reduced values. They are identified by opcode only and 5522 /// don't have associated LHS/RHS values. 5523 explicit OperationData(Value *V) { 5524 if (auto *I = dyn_cast<Instruction>(V)) 5525 Opcode = I->getOpcode(); 5526 } 5527 5528 /// Constructor for reduction operations with opcode and its left and 5529 /// right operands. 5530 OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind, 5531 bool NoNaN = false) 5532 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) { 5533 assert(Kind != RK_None && "One of the reduction operations is expected."); 5534 } 5535 5536 explicit operator bool() const { return Opcode; } 5537 5538 /// Get the index of the first operand. 5539 unsigned getFirstOperandIndex() const { 5540 assert(!!*this && "The opcode is not set."); 5541 switch (Kind) { 5542 case RK_Min: 5543 case RK_UMin: 5544 case RK_Max: 5545 case RK_UMax: 5546 return 1; 5547 case RK_Arithmetic: 5548 case RK_None: 5549 break; 5550 } 5551 return 0; 5552 } 5553 5554 /// Total number of operands in the reduction operation. 5555 unsigned getNumberOfOperands() const { 5556 assert(Kind != RK_None && !!*this && LHS && RHS && 5557 "Expected reduction operation."); 5558 switch (Kind) { 5559 case RK_Arithmetic: 5560 return 2; 5561 case RK_Min: 5562 case RK_UMin: 5563 case RK_Max: 5564 case RK_UMax: 5565 return 3; 5566 case RK_None: 5567 break; 5568 } 5569 llvm_unreachable("Reduction kind is not set"); 5570 } 5571 5572 /// Checks if the operation has the same parent as \p P. 5573 bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const { 5574 assert(Kind != RK_None && !!*this && LHS && RHS && 5575 "Expected reduction operation."); 5576 if (!IsRedOp) 5577 return I->getParent() == P; 5578 switch (Kind) { 5579 case RK_Arithmetic: 5580 // Arithmetic reduction operation must be used once only. 5581 return I->getParent() == P; 5582 case RK_Min: 5583 case RK_UMin: 5584 case RK_Max: 5585 case RK_UMax: { 5586 // SelectInst must be used twice while the condition op must have single 5587 // use only. 5588 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 5589 return I->getParent() == P && Cmp && Cmp->getParent() == P; 5590 } 5591 case RK_None: 5592 break; 5593 } 5594 llvm_unreachable("Reduction kind is not set"); 5595 } 5596 /// Expected number of uses for reduction operations/reduced values. 5597 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { 5598 assert(Kind != RK_None && !!*this && LHS && RHS && 5599 "Expected reduction operation."); 5600 switch (Kind) { 5601 case RK_Arithmetic: 5602 return I->hasOneUse(); 5603 case RK_Min: 5604 case RK_UMin: 5605 case RK_Max: 5606 case RK_UMax: 5607 return I->hasNUses(2) && 5608 (!IsReductionOp || 5609 cast<SelectInst>(I)->getCondition()->hasOneUse()); 5610 case RK_None: 5611 break; 5612 } 5613 llvm_unreachable("Reduction kind is not set"); 5614 } 5615 5616 /// Initializes the list of reduction operations. 5617 void initReductionOps(ReductionOpsListType &ReductionOps) { 5618 assert(Kind != RK_None && !!*this && LHS && RHS && 5619 "Expected reduction operation."); 5620 switch (Kind) { 5621 case RK_Arithmetic: 5622 ReductionOps.assign(1, ReductionOpsType()); 5623 break; 5624 case RK_Min: 5625 case RK_UMin: 5626 case RK_Max: 5627 case RK_UMax: 5628 ReductionOps.assign(2, ReductionOpsType()); 5629 break; 5630 case RK_None: 5631 llvm_unreachable("Reduction kind is not set"); 5632 } 5633 } 5634 /// Add all reduction operations for the reduction instruction \p I. 5635 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { 5636 assert(Kind != RK_None && !!*this && LHS && RHS && 5637 "Expected reduction operation."); 5638 switch (Kind) { 5639 case RK_Arithmetic: 5640 ReductionOps[0].emplace_back(I); 5641 break; 5642 case RK_Min: 5643 case RK_UMin: 5644 case RK_Max: 5645 case RK_UMax: 5646 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 5647 ReductionOps[1].emplace_back(I); 5648 break; 5649 case RK_None: 5650 llvm_unreachable("Reduction kind is not set"); 5651 } 5652 } 5653 5654 /// Checks if instruction is associative and can be vectorized. 5655 bool isAssociative(Instruction *I) const { 5656 assert(Kind != RK_None && *this && LHS && RHS && 5657 "Expected reduction operation."); 5658 switch (Kind) { 5659 case RK_Arithmetic: 5660 return I->isAssociative(); 5661 case RK_Min: 5662 case RK_Max: 5663 return Opcode == Instruction::ICmp || 5664 cast<Instruction>(I->getOperand(0))->isFast(); 5665 case RK_UMin: 5666 case RK_UMax: 5667 assert(Opcode == Instruction::ICmp && 5668 "Only integer compare operation is expected."); 5669 return true; 5670 case RK_None: 5671 break; 5672 } 5673 llvm_unreachable("Reduction kind is not set"); 5674 } 5675 5676 /// Checks if the reduction operation can be vectorized. 5677 bool isVectorizable(Instruction *I) const { 5678 return isVectorizable() && isAssociative(I); 5679 } 5680 5681 /// Checks if two operation data are both a reduction op or both a reduced 5682 /// value. 5683 bool operator==(const OperationData &OD) { 5684 assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) && 5685 "One of the comparing operations is incorrect."); 5686 return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode); 5687 } 5688 bool operator!=(const OperationData &OD) { return !(*this == OD); } 5689 void clear() { 5690 Opcode = 0; 5691 LHS = nullptr; 5692 RHS = nullptr; 5693 Kind = RK_None; 5694 NoNaN = false; 5695 } 5696 5697 /// Get the opcode of the reduction operation. 5698 unsigned getOpcode() const { 5699 assert(isVectorizable() && "Expected vectorizable operation."); 5700 return Opcode; 5701 } 5702 5703 /// Get kind of reduction data. 5704 ReductionKind getKind() const { return Kind; } 5705 Value *getLHS() const { return LHS; } 5706 Value *getRHS() const { return RHS; } 5707 Type *getConditionType() const { 5708 switch (Kind) { 5709 case RK_Arithmetic: 5710 return nullptr; 5711 case RK_Min: 5712 case RK_Max: 5713 case RK_UMin: 5714 case RK_UMax: 5715 return CmpInst::makeCmpResultType(LHS->getType()); 5716 case RK_None: 5717 break; 5718 } 5719 llvm_unreachable("Reduction kind is not set"); 5720 } 5721 5722 /// Creates reduction operation with the current opcode with the IR flags 5723 /// from \p ReductionOps. 5724 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 5725 const ReductionOpsListType &ReductionOps) const { 5726 assert(isVectorizable() && 5727 "Expected add|fadd or min/max reduction operation."); 5728 auto *Op = createOp(Builder, Name); 5729 switch (Kind) { 5730 case RK_Arithmetic: 5731 propagateIRFlags(Op, ReductionOps[0]); 5732 return Op; 5733 case RK_Min: 5734 case RK_Max: 5735 case RK_UMin: 5736 case RK_UMax: 5737 if (auto *SI = dyn_cast<SelectInst>(Op)) 5738 propagateIRFlags(SI->getCondition(), ReductionOps[0]); 5739 propagateIRFlags(Op, ReductionOps[1]); 5740 return Op; 5741 case RK_None: 5742 break; 5743 } 5744 llvm_unreachable("Unknown reduction operation."); 5745 } 5746 /// Creates reduction operation with the current opcode with the IR flags 5747 /// from \p I. 5748 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 5749 Instruction *I) const { 5750 assert(isVectorizable() && 5751 "Expected add|fadd or min/max reduction operation."); 5752 auto *Op = createOp(Builder, Name); 5753 switch (Kind) { 5754 case RK_Arithmetic: 5755 propagateIRFlags(Op, I); 5756 return Op; 5757 case RK_Min: 5758 case RK_Max: 5759 case RK_UMin: 5760 case RK_UMax: 5761 if (auto *SI = dyn_cast<SelectInst>(Op)) { 5762 propagateIRFlags(SI->getCondition(), 5763 cast<SelectInst>(I)->getCondition()); 5764 } 5765 propagateIRFlags(Op, I); 5766 return Op; 5767 case RK_None: 5768 break; 5769 } 5770 llvm_unreachable("Unknown reduction operation."); 5771 } 5772 5773 TargetTransformInfo::ReductionFlags getFlags() const { 5774 TargetTransformInfo::ReductionFlags Flags; 5775 Flags.NoNaN = NoNaN; 5776 switch (Kind) { 5777 case RK_Arithmetic: 5778 break; 5779 case RK_Min: 5780 Flags.IsSigned = Opcode == Instruction::ICmp; 5781 Flags.IsMaxOp = false; 5782 break; 5783 case RK_Max: 5784 Flags.IsSigned = Opcode == Instruction::ICmp; 5785 Flags.IsMaxOp = true; 5786 break; 5787 case RK_UMin: 5788 Flags.IsSigned = false; 5789 Flags.IsMaxOp = false; 5790 break; 5791 case RK_UMax: 5792 Flags.IsSigned = false; 5793 Flags.IsMaxOp = true; 5794 break; 5795 case RK_None: 5796 llvm_unreachable("Reduction kind is not set"); 5797 } 5798 return Flags; 5799 } 5800 }; 5801 5802 WeakTrackingVH ReductionRoot; 5803 5804 /// The operation data of the reduction operation. 5805 OperationData ReductionData; 5806 5807 /// The operation data of the values we perform a reduction on. 5808 OperationData ReducedValueData; 5809 5810 /// Should we model this reduction as a pairwise reduction tree or a tree that 5811 /// splits the vector in halves and adds those halves. 5812 bool IsPairwiseReduction = false; 5813 5814 /// Checks if the ParentStackElem.first should be marked as a reduction 5815 /// operation with an extra argument or as extra argument itself. 5816 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 5817 Value *ExtraArg) { 5818 if (ExtraArgs.count(ParentStackElem.first)) { 5819 ExtraArgs[ParentStackElem.first] = nullptr; 5820 // We ran into something like: 5821 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 5822 // The whole ParentStackElem.first should be considered as an extra value 5823 // in this case. 5824 // Do not perform analysis of remaining operands of ParentStackElem.first 5825 // instruction, this whole instruction is an extra argument. 5826 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 5827 } else { 5828 // We ran into something like: 5829 // ParentStackElem.first += ... + ExtraArg + ... 5830 ExtraArgs[ParentStackElem.first] = ExtraArg; 5831 } 5832 } 5833 5834 static OperationData getOperationData(Value *V) { 5835 if (!V) 5836 return OperationData(); 5837 5838 Value *LHS; 5839 Value *RHS; 5840 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) { 5841 return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS, 5842 RK_Arithmetic); 5843 } 5844 if (auto *Select = dyn_cast<SelectInst>(V)) { 5845 // Look for a min/max pattern. 5846 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5847 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 5848 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5849 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 5850 } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) || 5851 m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5852 return OperationData( 5853 Instruction::FCmp, LHS, RHS, RK_Min, 5854 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 5855 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5856 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 5857 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5858 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 5859 } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) || 5860 m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5861 return OperationData( 5862 Instruction::FCmp, LHS, RHS, RK_Max, 5863 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 5864 } else { 5865 // Try harder: look for min/max pattern based on instructions producing 5866 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 5867 // During the intermediate stages of SLP, it's very common to have 5868 // pattern like this (since optimizeGatherSequence is run only once 5869 // at the end): 5870 // %1 = extractelement <2 x i32> %a, i32 0 5871 // %2 = extractelement <2 x i32> %a, i32 1 5872 // %cond = icmp sgt i32 %1, %2 5873 // %3 = extractelement <2 x i32> %a, i32 0 5874 // %4 = extractelement <2 x i32> %a, i32 1 5875 // %select = select i1 %cond, i32 %3, i32 %4 5876 CmpInst::Predicate Pred; 5877 Instruction *L1; 5878 Instruction *L2; 5879 5880 LHS = Select->getTrueValue(); 5881 RHS = Select->getFalseValue(); 5882 Value *Cond = Select->getCondition(); 5883 5884 // TODO: Support inverse predicates. 5885 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 5886 if (!isa<ExtractElementInst>(RHS) || 5887 !L2->isIdenticalTo(cast<Instruction>(RHS))) 5888 return OperationData(V); 5889 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 5890 if (!isa<ExtractElementInst>(LHS) || 5891 !L1->isIdenticalTo(cast<Instruction>(LHS))) 5892 return OperationData(V); 5893 } else { 5894 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 5895 return OperationData(V); 5896 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 5897 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 5898 !L2->isIdenticalTo(cast<Instruction>(RHS))) 5899 return OperationData(V); 5900 } 5901 switch (Pred) { 5902 default: 5903 return OperationData(V); 5904 5905 case CmpInst::ICMP_ULT: 5906 case CmpInst::ICMP_ULE: 5907 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 5908 5909 case CmpInst::ICMP_SLT: 5910 case CmpInst::ICMP_SLE: 5911 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 5912 5913 case CmpInst::FCMP_OLT: 5914 case CmpInst::FCMP_OLE: 5915 case CmpInst::FCMP_ULT: 5916 case CmpInst::FCMP_ULE: 5917 return OperationData(Instruction::FCmp, LHS, RHS, RK_Min, 5918 cast<Instruction>(Cond)->hasNoNaNs()); 5919 5920 case CmpInst::ICMP_UGT: 5921 case CmpInst::ICMP_UGE: 5922 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 5923 5924 case CmpInst::ICMP_SGT: 5925 case CmpInst::ICMP_SGE: 5926 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 5927 5928 case CmpInst::FCMP_OGT: 5929 case CmpInst::FCMP_OGE: 5930 case CmpInst::FCMP_UGT: 5931 case CmpInst::FCMP_UGE: 5932 return OperationData(Instruction::FCmp, LHS, RHS, RK_Max, 5933 cast<Instruction>(Cond)->hasNoNaNs()); 5934 } 5935 } 5936 } 5937 return OperationData(V); 5938 } 5939 5940 public: 5941 HorizontalReduction() = default; 5942 5943 /// Try to find a reduction tree. 5944 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 5945 assert((!Phi || is_contained(Phi->operands(), B)) && 5946 "Thi phi needs to use the binary operator"); 5947 5948 ReductionData = getOperationData(B); 5949 5950 // We could have a initial reductions that is not an add. 5951 // r *= v1 + v2 + v3 + v4 5952 // In such a case start looking for a tree rooted in the first '+'. 5953 if (Phi) { 5954 if (ReductionData.getLHS() == Phi) { 5955 Phi = nullptr; 5956 B = dyn_cast<Instruction>(ReductionData.getRHS()); 5957 ReductionData = getOperationData(B); 5958 } else if (ReductionData.getRHS() == Phi) { 5959 Phi = nullptr; 5960 B = dyn_cast<Instruction>(ReductionData.getLHS()); 5961 ReductionData = getOperationData(B); 5962 } 5963 } 5964 5965 if (!ReductionData.isVectorizable(B)) 5966 return false; 5967 5968 Type *Ty = B->getType(); 5969 if (!isValidElementType(Ty)) 5970 return false; 5971 if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy()) 5972 return false; 5973 5974 ReducedValueData.clear(); 5975 ReductionRoot = B; 5976 5977 // Post order traverse the reduction tree starting at B. We only handle true 5978 // trees containing only binary operators. 5979 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 5980 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); 5981 ReductionData.initReductionOps(ReductionOps); 5982 while (!Stack.empty()) { 5983 Instruction *TreeN = Stack.back().first; 5984 unsigned EdgeToVist = Stack.back().second++; 5985 OperationData OpData = getOperationData(TreeN); 5986 bool IsReducedValue = OpData != ReductionData; 5987 5988 // Postorder vist. 5989 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { 5990 if (IsReducedValue) 5991 ReducedVals.push_back(TreeN); 5992 else { 5993 auto I = ExtraArgs.find(TreeN); 5994 if (I != ExtraArgs.end() && !I->second) { 5995 // Check if TreeN is an extra argument of its parent operation. 5996 if (Stack.size() <= 1) { 5997 // TreeN can't be an extra argument as it is a root reduction 5998 // operation. 5999 return false; 6000 } 6001 // Yes, TreeN is an extra argument, do not add it to a list of 6002 // reduction operations. 6003 // Stack[Stack.size() - 2] always points to the parent operation. 6004 markExtraArg(Stack[Stack.size() - 2], TreeN); 6005 ExtraArgs.erase(TreeN); 6006 } else 6007 ReductionData.addReductionOps(TreeN, ReductionOps); 6008 } 6009 // Retract. 6010 Stack.pop_back(); 6011 continue; 6012 } 6013 6014 // Visit left or right. 6015 Value *NextV = TreeN->getOperand(EdgeToVist); 6016 if (NextV != Phi) { 6017 auto *I = dyn_cast<Instruction>(NextV); 6018 OpData = getOperationData(I); 6019 // Continue analysis if the next operand is a reduction operation or 6020 // (possibly) a reduced value. If the reduced value opcode is not set, 6021 // the first met operation != reduction operation is considered as the 6022 // reduced value class. 6023 if (I && (!ReducedValueData || OpData == ReducedValueData || 6024 OpData == ReductionData)) { 6025 const bool IsReductionOperation = OpData == ReductionData; 6026 // Only handle trees in the current basic block. 6027 if (!ReductionData.hasSameParent(I, B->getParent(), 6028 IsReductionOperation)) { 6029 // I is an extra argument for TreeN (its parent operation). 6030 markExtraArg(Stack.back(), I); 6031 continue; 6032 } 6033 6034 // Each tree node needs to have minimal number of users except for the 6035 // ultimate reduction. 6036 if (!ReductionData.hasRequiredNumberOfUses(I, 6037 OpData == ReductionData) && 6038 I != B) { 6039 // I is an extra argument for TreeN (its parent operation). 6040 markExtraArg(Stack.back(), I); 6041 continue; 6042 } 6043 6044 if (IsReductionOperation) { 6045 // We need to be able to reassociate the reduction operations. 6046 if (!OpData.isAssociative(I)) { 6047 // I is an extra argument for TreeN (its parent operation). 6048 markExtraArg(Stack.back(), I); 6049 continue; 6050 } 6051 } else if (ReducedValueData && 6052 ReducedValueData != OpData) { 6053 // Make sure that the opcodes of the operations that we are going to 6054 // reduce match. 6055 // I is an extra argument for TreeN (its parent operation). 6056 markExtraArg(Stack.back(), I); 6057 continue; 6058 } else if (!ReducedValueData) 6059 ReducedValueData = OpData; 6060 6061 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 6062 continue; 6063 } 6064 } 6065 // NextV is an extra argument for TreeN (its parent operation). 6066 markExtraArg(Stack.back(), NextV); 6067 } 6068 return true; 6069 } 6070 6071 /// Attempt to vectorize the tree found by 6072 /// matchAssociativeReduction. 6073 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 6074 if (ReducedVals.empty()) 6075 return false; 6076 6077 // If there is a sufficient number of reduction values, reduce 6078 // to a nearby power-of-2. Can safely generate oversized 6079 // vectors and rely on the backend to split them to legal sizes. 6080 unsigned NumReducedVals = ReducedVals.size(); 6081 if (NumReducedVals < 4) 6082 return false; 6083 6084 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 6085 6086 Value *VectorizedTree = nullptr; 6087 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 6088 FastMathFlags Unsafe; 6089 Unsafe.setFast(); 6090 Builder.setFastMathFlags(Unsafe); 6091 unsigned i = 0; 6092 6093 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 6094 // The same extra argument may be used several time, so log each attempt 6095 // to use it. 6096 for (auto &Pair : ExtraArgs) { 6097 assert(Pair.first && "DebugLoc must be set."); 6098 ExternallyUsedValues[Pair.second].push_back(Pair.first); 6099 } 6100 // The reduction root is used as the insertion point for new instructions, 6101 // so set it as externally used to prevent it from being deleted. 6102 ExternallyUsedValues[ReductionRoot]; 6103 SmallVector<Value *, 16> IgnoreList; 6104 for (auto &V : ReductionOps) 6105 IgnoreList.append(V.begin(), V.end()); 6106 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 6107 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 6108 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 6109 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 6110 // TODO: Handle orders of size less than number of elements in the vector. 6111 if (Order && Order->size() == VL.size()) { 6112 // TODO: reorder tree nodes without tree rebuilding. 6113 SmallVector<Value *, 4> ReorderedOps(VL.size()); 6114 llvm::transform(*Order, ReorderedOps.begin(), 6115 [VL](const unsigned Idx) { return VL[Idx]; }); 6116 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 6117 } 6118 if (V.isTreeTinyAndNotFullyVectorizable()) 6119 break; 6120 6121 V.computeMinimumValueSizes(); 6122 6123 // Estimate cost. 6124 int TreeCost = V.getTreeCost(); 6125 int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth); 6126 int Cost = TreeCost + ReductionCost; 6127 if (Cost >= -SLPCostThreshold) { 6128 V.getORE()->emit([&]() { 6129 return OptimizationRemarkMissed( 6130 SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0])) 6131 << "Vectorizing horizontal reduction is possible" 6132 << "but not beneficial with cost " 6133 << ore::NV("Cost", Cost) << " and threshold " 6134 << ore::NV("Threshold", -SLPCostThreshold); 6135 }); 6136 break; 6137 } 6138 6139 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 6140 << Cost << ". (HorRdx)\n"); 6141 V.getORE()->emit([&]() { 6142 return OptimizationRemark( 6143 SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0])) 6144 << "Vectorized horizontal reduction with cost " 6145 << ore::NV("Cost", Cost) << " and with tree size " 6146 << ore::NV("TreeSize", V.getTreeSize()); 6147 }); 6148 6149 // Vectorize a tree. 6150 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 6151 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 6152 6153 // Emit a reduction. 6154 Builder.SetInsertPoint(cast<Instruction>(ReductionRoot)); 6155 Value *ReducedSubTree = 6156 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 6157 if (VectorizedTree) { 6158 Builder.SetCurrentDebugLocation(Loc); 6159 OperationData VectReductionData(ReductionData.getOpcode(), 6160 VectorizedTree, ReducedSubTree, 6161 ReductionData.getKind()); 6162 VectorizedTree = 6163 VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 6164 } else 6165 VectorizedTree = ReducedSubTree; 6166 i += ReduxWidth; 6167 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 6168 } 6169 6170 if (VectorizedTree) { 6171 // Finish the reduction. 6172 for (; i < NumReducedVals; ++i) { 6173 auto *I = cast<Instruction>(ReducedVals[i]); 6174 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 6175 OperationData VectReductionData(ReductionData.getOpcode(), 6176 VectorizedTree, I, 6177 ReductionData.getKind()); 6178 VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps); 6179 } 6180 for (auto &Pair : ExternallyUsedValues) { 6181 // Add each externally used value to the final reduction. 6182 for (auto *I : Pair.second) { 6183 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 6184 OperationData VectReductionData(ReductionData.getOpcode(), 6185 VectorizedTree, Pair.first, 6186 ReductionData.getKind()); 6187 VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I); 6188 } 6189 } 6190 // Update users. 6191 ReductionRoot->replaceAllUsesWith(VectorizedTree); 6192 } 6193 return VectorizedTree != nullptr; 6194 } 6195 6196 unsigned numReductionValues() const { 6197 return ReducedVals.size(); 6198 } 6199 6200 private: 6201 /// Calculate the cost of a reduction. 6202 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 6203 unsigned ReduxWidth) { 6204 Type *ScalarTy = FirstReducedVal->getType(); 6205 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 6206 6207 int PairwiseRdxCost; 6208 int SplittingRdxCost; 6209 switch (ReductionData.getKind()) { 6210 case RK_Arithmetic: 6211 PairwiseRdxCost = 6212 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 6213 /*IsPairwiseForm=*/true); 6214 SplittingRdxCost = 6215 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 6216 /*IsPairwiseForm=*/false); 6217 break; 6218 case RK_Min: 6219 case RK_Max: 6220 case RK_UMin: 6221 case RK_UMax: { 6222 Type *VecCondTy = CmpInst::makeCmpResultType(VecTy); 6223 bool IsUnsigned = ReductionData.getKind() == RK_UMin || 6224 ReductionData.getKind() == RK_UMax; 6225 PairwiseRdxCost = 6226 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 6227 /*IsPairwiseForm=*/true, IsUnsigned); 6228 SplittingRdxCost = 6229 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 6230 /*IsPairwiseForm=*/false, IsUnsigned); 6231 break; 6232 } 6233 case RK_None: 6234 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 6235 } 6236 6237 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 6238 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 6239 6240 int ScalarReduxCost; 6241 switch (ReductionData.getKind()) { 6242 case RK_Arithmetic: 6243 ScalarReduxCost = 6244 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); 6245 break; 6246 case RK_Min: 6247 case RK_Max: 6248 case RK_UMin: 6249 case RK_UMax: 6250 ScalarReduxCost = 6251 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) + 6252 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 6253 CmpInst::makeCmpResultType(ScalarTy)); 6254 break; 6255 case RK_None: 6256 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 6257 } 6258 ScalarReduxCost *= (ReduxWidth - 1); 6259 6260 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 6261 << " for reduction that starts with " << *FirstReducedVal 6262 << " (It is a " 6263 << (IsPairwiseReduction ? "pairwise" : "splitting") 6264 << " reduction)\n"); 6265 6266 return VecReduxCost - ScalarReduxCost; 6267 } 6268 6269 /// Emit a horizontal reduction of the vectorized value. 6270 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 6271 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 6272 assert(VectorizedValue && "Need to have a vectorized tree node"); 6273 assert(isPowerOf2_32(ReduxWidth) && 6274 "We only handle power-of-two reductions for now"); 6275 6276 if (!IsPairwiseReduction) 6277 return createSimpleTargetReduction( 6278 Builder, TTI, ReductionData.getOpcode(), VectorizedValue, 6279 ReductionData.getFlags(), FastMathFlags::getFast(), 6280 ReductionOps.back()); 6281 6282 Value *TmpVec = VectorizedValue; 6283 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 6284 Value *LeftMask = 6285 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 6286 Value *RightMask = 6287 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 6288 6289 Value *LeftShuf = Builder.CreateShuffleVector( 6290 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 6291 Value *RightShuf = Builder.CreateShuffleVector( 6292 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 6293 "rdx.shuf.r"); 6294 OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf, 6295 RightShuf, ReductionData.getKind()); 6296 TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 6297 } 6298 6299 // The result is in the first element of the vector. 6300 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 6301 } 6302 }; 6303 6304 } // end anonymous namespace 6305 6306 /// Recognize construction of vectors like 6307 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 6308 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 6309 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 6310 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 6311 /// starting from the last insertelement instruction. 6312 /// 6313 /// Returns true if it matches 6314 static bool findBuildVector(InsertElementInst *LastInsertElem, 6315 TargetTransformInfo *TTI, 6316 SmallVectorImpl<Value *> &BuildVectorOpds, 6317 int &UserCost) { 6318 UserCost = 0; 6319 Value *V = nullptr; 6320 do { 6321 if (auto *CI = dyn_cast<ConstantInt>(LastInsertElem->getOperand(2))) { 6322 UserCost += TTI->getVectorInstrCost(Instruction::InsertElement, 6323 LastInsertElem->getType(), 6324 CI->getZExtValue()); 6325 } 6326 BuildVectorOpds.push_back(LastInsertElem->getOperand(1)); 6327 V = LastInsertElem->getOperand(0); 6328 if (isa<UndefValue>(V)) 6329 break; 6330 LastInsertElem = dyn_cast<InsertElementInst>(V); 6331 if (!LastInsertElem || !LastInsertElem->hasOneUse()) 6332 return false; 6333 } while (true); 6334 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 6335 return true; 6336 } 6337 6338 /// Like findBuildVector, but looks for construction of aggregate. 6339 /// 6340 /// \return true if it matches. 6341 static bool findBuildAggregate(InsertValueInst *IV, 6342 SmallVectorImpl<Value *> &BuildVectorOpds) { 6343 Value *V; 6344 do { 6345 BuildVectorOpds.push_back(IV->getInsertedValueOperand()); 6346 V = IV->getAggregateOperand(); 6347 if (isa<UndefValue>(V)) 6348 break; 6349 IV = dyn_cast<InsertValueInst>(V); 6350 if (!IV || !IV->hasOneUse()) 6351 return false; 6352 } while (true); 6353 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 6354 return true; 6355 } 6356 6357 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 6358 return V->getType() < V2->getType(); 6359 } 6360 6361 /// Try and get a reduction value from a phi node. 6362 /// 6363 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 6364 /// if they come from either \p ParentBB or a containing loop latch. 6365 /// 6366 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 6367 /// if not possible. 6368 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 6369 BasicBlock *ParentBB, LoopInfo *LI) { 6370 // There are situations where the reduction value is not dominated by the 6371 // reduction phi. Vectorizing such cases has been reported to cause 6372 // miscompiles. See PR25787. 6373 auto DominatedReduxValue = [&](Value *R) { 6374 return isa<Instruction>(R) && 6375 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 6376 }; 6377 6378 Value *Rdx = nullptr; 6379 6380 // Return the incoming value if it comes from the same BB as the phi node. 6381 if (P->getIncomingBlock(0) == ParentBB) { 6382 Rdx = P->getIncomingValue(0); 6383 } else if (P->getIncomingBlock(1) == ParentBB) { 6384 Rdx = P->getIncomingValue(1); 6385 } 6386 6387 if (Rdx && DominatedReduxValue(Rdx)) 6388 return Rdx; 6389 6390 // Otherwise, check whether we have a loop latch to look at. 6391 Loop *BBL = LI->getLoopFor(ParentBB); 6392 if (!BBL) 6393 return nullptr; 6394 BasicBlock *BBLatch = BBL->getLoopLatch(); 6395 if (!BBLatch) 6396 return nullptr; 6397 6398 // There is a loop latch, return the incoming value if it comes from 6399 // that. This reduction pattern occasionally turns up. 6400 if (P->getIncomingBlock(0) == BBLatch) { 6401 Rdx = P->getIncomingValue(0); 6402 } else if (P->getIncomingBlock(1) == BBLatch) { 6403 Rdx = P->getIncomingValue(1); 6404 } 6405 6406 if (Rdx && DominatedReduxValue(Rdx)) 6407 return Rdx; 6408 6409 return nullptr; 6410 } 6411 6412 /// Attempt to reduce a horizontal reduction. 6413 /// If it is legal to match a horizontal reduction feeding the phi node \a P 6414 /// with reduction operators \a Root (or one of its operands) in a basic block 6415 /// \a BB, then check if it can be done. If horizontal reduction is not found 6416 /// and root instruction is a binary operation, vectorization of the operands is 6417 /// attempted. 6418 /// \returns true if a horizontal reduction was matched and reduced or operands 6419 /// of one of the binary instruction were vectorized. 6420 /// \returns false if a horizontal reduction was not matched (or not possible) 6421 /// or no vectorization of any binary operation feeding \a Root instruction was 6422 /// performed. 6423 static bool tryToVectorizeHorReductionOrInstOperands( 6424 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 6425 TargetTransformInfo *TTI, 6426 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 6427 if (!ShouldVectorizeHor) 6428 return false; 6429 6430 if (!Root) 6431 return false; 6432 6433 if (Root->getParent() != BB || isa<PHINode>(Root)) 6434 return false; 6435 // Start analysis starting from Root instruction. If horizontal reduction is 6436 // found, try to vectorize it. If it is not a horizontal reduction or 6437 // vectorization is not possible or not effective, and currently analyzed 6438 // instruction is a binary operation, try to vectorize the operands, using 6439 // pre-order DFS traversal order. If the operands were not vectorized, repeat 6440 // the same procedure considering each operand as a possible root of the 6441 // horizontal reduction. 6442 // Interrupt the process if the Root instruction itself was vectorized or all 6443 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 6444 SmallVector<std::pair<WeakTrackingVH, unsigned>, 8> Stack(1, {Root, 0}); 6445 SmallPtrSet<Value *, 8> VisitedInstrs; 6446 bool Res = false; 6447 while (!Stack.empty()) { 6448 Value *V; 6449 unsigned Level; 6450 std::tie(V, Level) = Stack.pop_back_val(); 6451 if (!V) 6452 continue; 6453 auto *Inst = dyn_cast<Instruction>(V); 6454 if (!Inst) 6455 continue; 6456 auto *BI = dyn_cast<BinaryOperator>(Inst); 6457 auto *SI = dyn_cast<SelectInst>(Inst); 6458 if (BI || SI) { 6459 HorizontalReduction HorRdx; 6460 if (HorRdx.matchAssociativeReduction(P, Inst)) { 6461 if (HorRdx.tryToReduce(R, TTI)) { 6462 Res = true; 6463 // Set P to nullptr to avoid re-analysis of phi node in 6464 // matchAssociativeReduction function unless this is the root node. 6465 P = nullptr; 6466 continue; 6467 } 6468 } 6469 if (P && BI) { 6470 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 6471 if (Inst == P) 6472 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 6473 if (!Inst) { 6474 // Set P to nullptr to avoid re-analysis of phi node in 6475 // matchAssociativeReduction function unless this is the root node. 6476 P = nullptr; 6477 continue; 6478 } 6479 } 6480 } 6481 // Set P to nullptr to avoid re-analysis of phi node in 6482 // matchAssociativeReduction function unless this is the root node. 6483 P = nullptr; 6484 if (Vectorize(Inst, R)) { 6485 Res = true; 6486 continue; 6487 } 6488 6489 // Try to vectorize operands. 6490 // Continue analysis for the instruction from the same basic block only to 6491 // save compile time. 6492 if (++Level < RecursionMaxDepth) 6493 for (auto *Op : Inst->operand_values()) 6494 if (VisitedInstrs.insert(Op).second) 6495 if (auto *I = dyn_cast<Instruction>(Op)) 6496 if (!isa<PHINode>(I) && I->getParent() == BB) 6497 Stack.emplace_back(Op, Level); 6498 } 6499 return Res; 6500 } 6501 6502 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 6503 BasicBlock *BB, BoUpSLP &R, 6504 TargetTransformInfo *TTI) { 6505 if (!V) 6506 return false; 6507 auto *I = dyn_cast<Instruction>(V); 6508 if (!I) 6509 return false; 6510 6511 if (!isa<BinaryOperator>(I)) 6512 P = nullptr; 6513 // Try to match and vectorize a horizontal reduction. 6514 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 6515 return tryToVectorize(I, R); 6516 }; 6517 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 6518 ExtraVectorization); 6519 } 6520 6521 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 6522 BasicBlock *BB, BoUpSLP &R) { 6523 const DataLayout &DL = BB->getModule()->getDataLayout(); 6524 if (!R.canMapToVector(IVI->getType(), DL)) 6525 return false; 6526 6527 SmallVector<Value *, 16> BuildVectorOpds; 6528 if (!findBuildAggregate(IVI, BuildVectorOpds)) 6529 return false; 6530 6531 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 6532 // Aggregate value is unlikely to be processed in vector register, we need to 6533 // extract scalars into scalar registers, so NeedExtraction is set true. 6534 return tryToVectorizeList(BuildVectorOpds, R); 6535 } 6536 6537 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 6538 BasicBlock *BB, BoUpSLP &R) { 6539 int UserCost; 6540 SmallVector<Value *, 16> BuildVectorOpds; 6541 if (!findBuildVector(IEI, TTI, BuildVectorOpds, UserCost) || 6542 (llvm::all_of(BuildVectorOpds, 6543 [](Value *V) { return isa<ExtractElementInst>(V); }) && 6544 isShuffle(BuildVectorOpds))) 6545 return false; 6546 6547 // Vectorize starting with the build vector operands ignoring the BuildVector 6548 // instructions for the purpose of scheduling and user extraction. 6549 return tryToVectorizeList(BuildVectorOpds, R, UserCost); 6550 } 6551 6552 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 6553 BoUpSLP &R) { 6554 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 6555 return true; 6556 6557 bool OpsChanged = false; 6558 for (int Idx = 0; Idx < 2; ++Idx) { 6559 OpsChanged |= 6560 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 6561 } 6562 return OpsChanged; 6563 } 6564 6565 bool SLPVectorizerPass::vectorizeSimpleInstructions( 6566 SmallVectorImpl<WeakVH> &Instructions, BasicBlock *BB, BoUpSLP &R) { 6567 bool OpsChanged = false; 6568 for (auto &VH : reverse(Instructions)) { 6569 auto *I = dyn_cast_or_null<Instruction>(VH); 6570 if (!I) 6571 continue; 6572 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 6573 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 6574 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 6575 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 6576 else if (auto *CI = dyn_cast<CmpInst>(I)) 6577 OpsChanged |= vectorizeCmpInst(CI, BB, R); 6578 } 6579 Instructions.clear(); 6580 return OpsChanged; 6581 } 6582 6583 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 6584 bool Changed = false; 6585 SmallVector<Value *, 4> Incoming; 6586 SmallPtrSet<Value *, 16> VisitedInstrs; 6587 6588 bool HaveVectorizedPhiNodes = true; 6589 while (HaveVectorizedPhiNodes) { 6590 HaveVectorizedPhiNodes = false; 6591 6592 // Collect the incoming values from the PHIs. 6593 Incoming.clear(); 6594 for (Instruction &I : *BB) { 6595 PHINode *P = dyn_cast<PHINode>(&I); 6596 if (!P) 6597 break; 6598 6599 if (!VisitedInstrs.count(P)) 6600 Incoming.push_back(P); 6601 } 6602 6603 // Sort by type. 6604 llvm::stable_sort(Incoming, PhiTypeSorterFunc); 6605 6606 // Try to vectorize elements base on their type. 6607 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 6608 E = Incoming.end(); 6609 IncIt != E;) { 6610 6611 // Look for the next elements with the same type. 6612 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 6613 while (SameTypeIt != E && 6614 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 6615 VisitedInstrs.insert(*SameTypeIt); 6616 ++SameTypeIt; 6617 } 6618 6619 // Try to vectorize them. 6620 unsigned NumElts = (SameTypeIt - IncIt); 6621 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 6622 << NumElts << ")\n"); 6623 // The order in which the phi nodes appear in the program does not matter. 6624 // So allow tryToVectorizeList to reorder them if it is beneficial. This 6625 // is done when there are exactly two elements since tryToVectorizeList 6626 // asserts that there are only two values when AllowReorder is true. 6627 bool AllowReorder = NumElts == 2; 6628 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, 6629 /*UserCost=*/0, AllowReorder)) { 6630 // Success start over because instructions might have been changed. 6631 HaveVectorizedPhiNodes = true; 6632 Changed = true; 6633 break; 6634 } 6635 6636 // Start over at the next instruction of a different type (or the end). 6637 IncIt = SameTypeIt; 6638 } 6639 } 6640 6641 VisitedInstrs.clear(); 6642 6643 SmallVector<WeakVH, 8> PostProcessInstructions; 6644 SmallDenseSet<Instruction *, 4> KeyNodes; 6645 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) { 6646 // We may go through BB multiple times so skip the one we have checked. 6647 if (!VisitedInstrs.insert(&*it).second) { 6648 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 6649 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 6650 // We would like to start over since some instructions are deleted 6651 // and the iterator may become invalid value. 6652 Changed = true; 6653 it = BB->begin(); 6654 e = BB->end(); 6655 } 6656 continue; 6657 } 6658 6659 if (isa<DbgInfoIntrinsic>(it)) 6660 continue; 6661 6662 // Try to vectorize reductions that use PHINodes. 6663 if (PHINode *P = dyn_cast<PHINode>(it)) { 6664 // Check that the PHI is a reduction PHI. 6665 if (P->getNumIncomingValues() != 2) 6666 return Changed; 6667 6668 // Try to match and vectorize a horizontal reduction. 6669 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 6670 TTI)) { 6671 Changed = true; 6672 it = BB->begin(); 6673 e = BB->end(); 6674 continue; 6675 } 6676 continue; 6677 } 6678 6679 // Ran into an instruction without users, like terminator, or function call 6680 // with ignored return value, store. Ignore unused instructions (basing on 6681 // instruction type, except for CallInst and InvokeInst). 6682 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 6683 isa<InvokeInst>(it))) { 6684 KeyNodes.insert(&*it); 6685 bool OpsChanged = false; 6686 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 6687 for (auto *V : it->operand_values()) { 6688 // Try to match and vectorize a horizontal reduction. 6689 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 6690 } 6691 } 6692 // Start vectorization of post-process list of instructions from the 6693 // top-tree instructions to try to vectorize as many instructions as 6694 // possible. 6695 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 6696 if (OpsChanged) { 6697 // We would like to start over since some instructions are deleted 6698 // and the iterator may become invalid value. 6699 Changed = true; 6700 it = BB->begin(); 6701 e = BB->end(); 6702 continue; 6703 } 6704 } 6705 6706 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 6707 isa<InsertValueInst>(it)) 6708 PostProcessInstructions.push_back(&*it); 6709 } 6710 6711 return Changed; 6712 } 6713 6714 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 6715 auto Changed = false; 6716 for (auto &Entry : GEPs) { 6717 // If the getelementptr list has fewer than two elements, there's nothing 6718 // to do. 6719 if (Entry.second.size() < 2) 6720 continue; 6721 6722 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 6723 << Entry.second.size() << ".\n"); 6724 6725 // We process the getelementptr list in chunks of 16 (like we do for 6726 // stores) to minimize compile-time. 6727 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) { 6728 auto Len = std::min<unsigned>(BE - BI, 16); 6729 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 6730 6731 // Initialize a set a candidate getelementptrs. Note that we use a 6732 // SetVector here to preserve program order. If the index computations 6733 // are vectorizable and begin with loads, we want to minimize the chance 6734 // of having to reorder them later. 6735 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 6736 6737 // Some of the candidates may have already been vectorized after we 6738 // initially collected them. If so, the WeakTrackingVHs will have 6739 // nullified the 6740 // values, so remove them from the set of candidates. 6741 Candidates.remove(nullptr); 6742 6743 // Remove from the set of candidates all pairs of getelementptrs with 6744 // constant differences. Such getelementptrs are likely not good 6745 // candidates for vectorization in a bottom-up phase since one can be 6746 // computed from the other. We also ensure all candidate getelementptr 6747 // indices are unique. 6748 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 6749 auto *GEPI = cast<GetElementPtrInst>(GEPList[I]); 6750 if (!Candidates.count(GEPI)) 6751 continue; 6752 auto *SCEVI = SE->getSCEV(GEPList[I]); 6753 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 6754 auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]); 6755 auto *SCEVJ = SE->getSCEV(GEPList[J]); 6756 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 6757 Candidates.remove(GEPList[I]); 6758 Candidates.remove(GEPList[J]); 6759 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 6760 Candidates.remove(GEPList[J]); 6761 } 6762 } 6763 } 6764 6765 // We break out of the above computation as soon as we know there are 6766 // fewer than two candidates remaining. 6767 if (Candidates.size() < 2) 6768 continue; 6769 6770 // Add the single, non-constant index of each candidate to the bundle. We 6771 // ensured the indices met these constraints when we originally collected 6772 // the getelementptrs. 6773 SmallVector<Value *, 16> Bundle(Candidates.size()); 6774 auto BundleIndex = 0u; 6775 for (auto *V : Candidates) { 6776 auto *GEP = cast<GetElementPtrInst>(V); 6777 auto *GEPIdx = GEP->idx_begin()->get(); 6778 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 6779 Bundle[BundleIndex++] = GEPIdx; 6780 } 6781 6782 // Try and vectorize the indices. We are currently only interested in 6783 // gather-like cases of the form: 6784 // 6785 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 6786 // 6787 // where the loads of "a", the loads of "b", and the subtractions can be 6788 // performed in parallel. It's likely that detecting this pattern in a 6789 // bottom-up phase will be simpler and less costly than building a 6790 // full-blown top-down phase beginning at the consecutive loads. 6791 Changed |= tryToVectorizeList(Bundle, R); 6792 } 6793 } 6794 return Changed; 6795 } 6796 6797 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 6798 bool Changed = false; 6799 // Attempt to sort and vectorize each of the store-groups. 6800 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 6801 ++it) { 6802 if (it->second.size() < 2) 6803 continue; 6804 6805 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 6806 << it->second.size() << ".\n"); 6807 6808 // Process the stores in chunks of 16. 6809 // TODO: The limit of 16 inhibits greater vectorization factors. 6810 // For example, AVX2 supports v32i8. Increasing this limit, however, 6811 // may cause a significant compile-time increase. 6812 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI += 16) { 6813 unsigned Len = std::min<unsigned>(CE - CI, 16); 6814 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R); 6815 } 6816 } 6817 return Changed; 6818 } 6819 6820 char SLPVectorizer::ID = 0; 6821 6822 static const char lv_name[] = "SLP Vectorizer"; 6823 6824 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 6825 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6826 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6827 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6828 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6829 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6830 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6831 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6832 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 6833 6834 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 6835