1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10 // stores that can be put together into vector-stores. Next, it attempts to
11 // construct vectorizable tree using the use-def chains. If a profitable tree
12 // was found, the SLP vectorizer performs vectorization on the tree.
13 //
14 // The pass is inspired by the work described in the paper:
15 //  "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
16 //
17 //===----------------------------------------------------------------------===//
18 #include "llvm/Transforms/Vectorize/SLPVectorizer.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/PostOrderIterator.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/CodeMetrics.h"
24 #include "llvm/Analysis/GlobalsModRef.h"
25 #include "llvm/Analysis/LoopAccessAnalysis.h"
26 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/Analysis/VectorUtils.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/IRBuilder.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/IR/NoFolder.h"
36 #include "llvm/IR/PatternMatch.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/IR/Verifier.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/GraphWriter.h"
44 #include "llvm/Support/KnownBits.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Transforms/Utils/LoopUtils.h"
47 #include "llvm/Transforms/Vectorize.h"
48 #include <algorithm>
49 #include <memory>
50 
51 using namespace llvm;
52 using namespace llvm::PatternMatch;
53 using namespace slpvectorizer;
54 
55 #define SV_NAME "slp-vectorizer"
56 #define DEBUG_TYPE "SLP"
57 
58 STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
59 
60 static cl::opt<int>
61     SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
62                      cl::desc("Only vectorize if you gain more than this "
63                               "number "));
64 
65 static cl::opt<bool>
66 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
67                    cl::desc("Attempt to vectorize horizontal reductions"));
68 
69 static cl::opt<bool> ShouldStartVectorizeHorAtStore(
70     "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
71     cl::desc(
72         "Attempt to vectorize horizontal reductions feeding into a store"));
73 
74 static cl::opt<int>
75 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
76     cl::desc("Attempt to vectorize for this register size in bits"));
77 
78 /// Limits the size of scheduling regions in a block.
79 /// It avoid long compile times for _very_ large blocks where vector
80 /// instructions are spread over a wide range.
81 /// This limit is way higher than needed by real-world functions.
82 static cl::opt<int>
83 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
84     cl::desc("Limit the size of the SLP scheduling region per block"));
85 
86 static cl::opt<int> MinVectorRegSizeOption(
87     "slp-min-reg-size", cl::init(128), cl::Hidden,
88     cl::desc("Attempt to vectorize for this register size in bits"));
89 
90 static cl::opt<unsigned> RecursionMaxDepth(
91     "slp-recursion-max-depth", cl::init(12), cl::Hidden,
92     cl::desc("Limit the recursion depth when building a vectorizable tree"));
93 
94 static cl::opt<unsigned> MinTreeSize(
95     "slp-min-tree-size", cl::init(3), cl::Hidden,
96     cl::desc("Only vectorize small trees if they are fully vectorizable"));
97 
98 static cl::opt<bool>
99     ViewSLPTree("view-slp-tree", cl::Hidden,
100                 cl::desc("Display the SLP trees with Graphviz"));
101 
102 // Limit the number of alias checks. The limit is chosen so that
103 // it has no negative effect on the llvm benchmarks.
104 static const unsigned AliasedCheckLimit = 10;
105 
106 // Another limit for the alias checks: The maximum distance between load/store
107 // instructions where alias checks are done.
108 // This limit is useful for very large basic blocks.
109 static const unsigned MaxMemDepDistance = 160;
110 
111 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
112 /// regions to be handled.
113 static const int MinScheduleRegionSize = 16;
114 
115 /// \brief Predicate for the element types that the SLP vectorizer supports.
116 ///
117 /// The most important thing to filter here are types which are invalid in LLVM
118 /// vectors. We also filter target specific types which have absolutely no
119 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
120 /// avoids spending time checking the cost model and realizing that they will
121 /// be inevitably scalarized.
122 static bool isValidElementType(Type *Ty) {
123   return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
124          !Ty->isPPC_FP128Ty();
125 }
126 
127 /// \returns true if all of the instructions in \p VL are in the same block or
128 /// false otherwise.
129 static bool allSameBlock(ArrayRef<Value *> VL) {
130   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
131   if (!I0)
132     return false;
133   BasicBlock *BB = I0->getParent();
134   for (int i = 1, e = VL.size(); i < e; i++) {
135     Instruction *I = dyn_cast<Instruction>(VL[i]);
136     if (!I)
137       return false;
138 
139     if (BB != I->getParent())
140       return false;
141   }
142   return true;
143 }
144 
145 /// \returns True if all of the values in \p VL are constants.
146 static bool allConstant(ArrayRef<Value *> VL) {
147   for (Value *i : VL)
148     if (!isa<Constant>(i))
149       return false;
150   return true;
151 }
152 
153 /// \returns True if all of the values in \p VL are identical.
154 static bool isSplat(ArrayRef<Value *> VL) {
155   for (unsigned i = 1, e = VL.size(); i < e; ++i)
156     if (VL[i] != VL[0])
157       return false;
158   return true;
159 }
160 
161 /// Checks if the vector of instructions can be represented as a shuffle, like:
162 /// %x0 = extractelement <4 x i8> %x, i32 0
163 /// %x3 = extractelement <4 x i8> %x, i32 3
164 /// %y1 = extractelement <4 x i8> %y, i32 1
165 /// %y2 = extractelement <4 x i8> %y, i32 2
166 /// %x0x0 = mul i8 %x0, %x0
167 /// %x3x3 = mul i8 %x3, %x3
168 /// %y1y1 = mul i8 %y1, %y1
169 /// %y2y2 = mul i8 %y2, %y2
170 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0
171 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1
172 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2
173 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3
174 /// ret <4 x i8> %ins4
175 /// can be transformed into:
176 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5,
177 ///                                                         i32 6>
178 /// %2 = mul <4 x i8> %1, %1
179 /// ret <4 x i8> %2
180 /// We convert this initially to something like:
181 /// %x0 = extractelement <4 x i8> %x, i32 0
182 /// %x3 = extractelement <4 x i8> %x, i32 3
183 /// %y1 = extractelement <4 x i8> %y, i32 1
184 /// %y2 = extractelement <4 x i8> %y, i32 2
185 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0
186 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1
187 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2
188 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3
189 /// %5 = mul <4 x i8> %4, %4
190 /// %6 = extractelement <4 x i8> %5, i32 0
191 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0
192 /// %7 = extractelement <4 x i8> %5, i32 1
193 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1
194 /// %8 = extractelement <4 x i8> %5, i32 2
195 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2
196 /// %9 = extractelement <4 x i8> %5, i32 3
197 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3
198 /// ret <4 x i8> %ins4
199 /// InstCombiner transforms this into a shuffle and vector mul
200 static Optional<TargetTransformInfo::ShuffleKind>
201 isShuffle(ArrayRef<Value *> VL) {
202   auto *EI0 = cast<ExtractElementInst>(VL[0]);
203   unsigned Size = EI0->getVectorOperandType()->getVectorNumElements();
204   Value *Vec1 = nullptr;
205   Value *Vec2 = nullptr;
206   enum ShuffleMode {Unknown, FirstAlternate, SecondAlternate, Permute};
207   ShuffleMode CommonShuffleMode = Unknown;
208   for (unsigned I = 0, E = VL.size(); I < E; ++I) {
209     auto *EI = cast<ExtractElementInst>(VL[I]);
210     auto *Vec = EI->getVectorOperand();
211     // All vector operands must have the same number of vector elements.
212     if (Vec->getType()->getVectorNumElements() != Size)
213       return None;
214     auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand());
215     if (!Idx)
216       return None;
217     // Undefined behavior if Idx is negative or >= Size.
218     if (Idx->getValue().uge(Size))
219       continue;
220     unsigned IntIdx = Idx->getValue().getZExtValue();
221     // We can extractelement from undef vector.
222     if (isa<UndefValue>(Vec))
223       continue;
224     // For correct shuffling we have to have at most 2 different vector operands
225     // in all extractelement instructions.
226     if (Vec1 && Vec2 && Vec != Vec1 && Vec != Vec2)
227       return None;
228     if (CommonShuffleMode == Permute)
229       continue;
230     // If the extract index is not the same as the operation number, it is a
231     // permutation.
232     if (IntIdx != I) {
233       CommonShuffleMode = Permute;
234       continue;
235     }
236     // Check the shuffle mode for the current operation.
237     if (!Vec1)
238       Vec1 = Vec;
239     else if (Vec != Vec1)
240       Vec2 = Vec;
241     // Example: shufflevector A, B, <0,5,2,7>
242     // I is odd and IntIdx for A == I - FirstAlternate shuffle.
243     // I is even and IntIdx for B == I - FirstAlternate shuffle.
244     // Example: shufflevector A, B, <4,1,6,3>
245     // I is even and IntIdx for A == I - SecondAlternate shuffle.
246     // I is odd and IntIdx for B == I - SecondAlternate shuffle.
247     const bool IIsEven = I & 1;
248     const bool CurrVecIsA = Vec == Vec1;
249     const bool IIsOdd = !IIsEven;
250     const bool CurrVecIsB = !CurrVecIsA;
251     ShuffleMode CurrentShuffleMode =
252         ((IIsOdd && CurrVecIsA) || (IIsEven && CurrVecIsB)) ? FirstAlternate
253                                                             : SecondAlternate;
254     // Common mode is not set or the same as the shuffle mode of the current
255     // operation - alternate.
256     if (CommonShuffleMode == Unknown)
257       CommonShuffleMode = CurrentShuffleMode;
258     // Common shuffle mode is not the same as the shuffle mode of the current
259     // operation - permutation.
260     if (CommonShuffleMode != CurrentShuffleMode)
261       CommonShuffleMode = Permute;
262   }
263   // If we're not crossing lanes in different vectors, consider it as blending.
264   if ((CommonShuffleMode == FirstAlternate ||
265        CommonShuffleMode == SecondAlternate) &&
266       Vec2)
267     return TargetTransformInfo::SK_Alternate;
268   // If Vec2 was never used, we have a permutation of a single vector, otherwise
269   // we have permutation of 2 vectors.
270   return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc
271               : TargetTransformInfo::SK_PermuteSingleSrc;
272 }
273 
274 ///\returns Opcode that can be clubbed with \p Op to create an alternate
275 /// sequence which can later be merged as a ShuffleVector instruction.
276 static unsigned getAltOpcode(unsigned Op) {
277   switch (Op) {
278   case Instruction::FAdd:
279     return Instruction::FSub;
280   case Instruction::FSub:
281     return Instruction::FAdd;
282   case Instruction::Add:
283     return Instruction::Sub;
284   case Instruction::Sub:
285     return Instruction::Add;
286   default:
287     return 0;
288   }
289 }
290 
291 /// true if the \p Value is odd, false otherwise.
292 static bool isOdd(unsigned Value) {
293   return Value & 1;
294 }
295 
296 static bool sameOpcodeOrAlt(unsigned Opcode, unsigned AltOpcode,
297                             unsigned CheckedOpcode) {
298   return Opcode == CheckedOpcode || AltOpcode == CheckedOpcode;
299 }
300 
301 /// Chooses the correct key for scheduling data. If \p Op has the same (or
302 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p
303 /// OpValue.
304 static Value *isOneOf(Value *OpValue, Value *Op) {
305   auto *I = dyn_cast<Instruction>(Op);
306   if (!I)
307     return OpValue;
308   auto *OpInst = cast<Instruction>(OpValue);
309   unsigned OpInstOpcode = OpInst->getOpcode();
310   unsigned IOpcode = I->getOpcode();
311   if (sameOpcodeOrAlt(OpInstOpcode, getAltOpcode(OpInstOpcode), IOpcode))
312     return Op;
313   return OpValue;
314 }
315 
316 ///\returns bool representing if Opcode \p Op can be part
317 /// of an alternate sequence which can later be merged as
318 /// a ShuffleVector instruction.
319 static bool canCombineAsAltInst(unsigned Op) {
320   return Op == Instruction::FAdd || Op == Instruction::FSub ||
321          Op == Instruction::Sub || Op == Instruction::Add;
322 }
323 
324 /// \returns ShuffleVector instruction if instructions in \p VL have
325 ///  alternate fadd,fsub / fsub,fadd/add,sub/sub,add sequence.
326 /// (i.e. e.g. opcodes of fadd,fsub,fadd,fsub...)
327 static unsigned isAltInst(ArrayRef<Value *> VL) {
328   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
329   unsigned Opcode = I0->getOpcode();
330   unsigned AltOpcode = getAltOpcode(Opcode);
331   for (int i = 1, e = VL.size(); i < e; i++) {
332     Instruction *I = dyn_cast<Instruction>(VL[i]);
333     if (!I || I->getOpcode() != (isOdd(i) ? AltOpcode : Opcode))
334       return 0;
335   }
336   return Instruction::ShuffleVector;
337 }
338 
339 /// \returns The opcode if all of the Instructions in \p VL have the same
340 /// opcode, or zero.
341 static unsigned getSameOpcode(ArrayRef<Value *> VL) {
342   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
343   if (!I0)
344     return 0;
345   unsigned Opcode = I0->getOpcode();
346   for (int i = 1, e = VL.size(); i < e; i++) {
347     Instruction *I = dyn_cast<Instruction>(VL[i]);
348     if (!I || Opcode != I->getOpcode()) {
349       if (canCombineAsAltInst(Opcode) && i == 1)
350         return isAltInst(VL);
351       return 0;
352     }
353   }
354   return Opcode;
355 }
356 
357 /// \returns true if all of the values in \p VL have the same type or false
358 /// otherwise.
359 static bool allSameType(ArrayRef<Value *> VL) {
360   Type *Ty = VL[0]->getType();
361   for (int i = 1, e = VL.size(); i < e; i++)
362     if (VL[i]->getType() != Ty)
363       return false;
364 
365   return true;
366 }
367 
368 /// \returns True if Extract{Value,Element} instruction extracts element Idx.
369 static bool matchExtractIndex(Instruction *E, unsigned Idx, unsigned Opcode) {
370   assert(Opcode == Instruction::ExtractElement ||
371          Opcode == Instruction::ExtractValue);
372   if (Opcode == Instruction::ExtractElement) {
373     ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1));
374     return CI && CI->getZExtValue() == Idx;
375   } else {
376     ExtractValueInst *EI = cast<ExtractValueInst>(E);
377     return EI->getNumIndices() == 1 && *EI->idx_begin() == Idx;
378   }
379 }
380 
381 /// \returns True if in-tree use also needs extract. This refers to
382 /// possible scalar operand in vectorized instruction.
383 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
384                                     TargetLibraryInfo *TLI) {
385 
386   unsigned Opcode = UserInst->getOpcode();
387   switch (Opcode) {
388   case Instruction::Load: {
389     LoadInst *LI = cast<LoadInst>(UserInst);
390     return (LI->getPointerOperand() == Scalar);
391   }
392   case Instruction::Store: {
393     StoreInst *SI = cast<StoreInst>(UserInst);
394     return (SI->getPointerOperand() == Scalar);
395   }
396   case Instruction::Call: {
397     CallInst *CI = cast<CallInst>(UserInst);
398     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
399     if (hasVectorInstrinsicScalarOpd(ID, 1)) {
400       return (CI->getArgOperand(1) == Scalar);
401     }
402     LLVM_FALLTHROUGH;
403   }
404   default:
405     return false;
406   }
407 }
408 
409 /// \returns the AA location that is being access by the instruction.
410 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) {
411   if (StoreInst *SI = dyn_cast<StoreInst>(I))
412     return MemoryLocation::get(SI);
413   if (LoadInst *LI = dyn_cast<LoadInst>(I))
414     return MemoryLocation::get(LI);
415   return MemoryLocation();
416 }
417 
418 /// \returns True if the instruction is not a volatile or atomic load/store.
419 static bool isSimple(Instruction *I) {
420   if (LoadInst *LI = dyn_cast<LoadInst>(I))
421     return LI->isSimple();
422   if (StoreInst *SI = dyn_cast<StoreInst>(I))
423     return SI->isSimple();
424   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
425     return !MI->isVolatile();
426   return true;
427 }
428 
429 namespace llvm {
430 namespace slpvectorizer {
431 /// Bottom Up SLP Vectorizer.
432 class BoUpSLP {
433 public:
434   typedef SmallVector<Value *, 8> ValueList;
435   typedef SmallVector<Instruction *, 16> InstrList;
436   typedef SmallPtrSet<Value *, 16> ValueSet;
437   typedef SmallVector<StoreInst *, 8> StoreList;
438   typedef MapVector<Value *, SmallVector<Instruction *, 2>>
439       ExtraValueToDebugLocsMap;
440 
441   BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
442           TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li,
443           DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
444           const DataLayout *DL, OptimizationRemarkEmitter *ORE)
445       : NumLoadsWantToKeepOrder(0), NumLoadsWantToChangeOrder(0), F(Func),
446         SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), DB(DB),
447         DL(DL), ORE(ORE), Builder(Se->getContext()) {
448     CodeMetrics::collectEphemeralValues(F, AC, EphValues);
449     // Use the vector register size specified by the target unless overridden
450     // by a command-line option.
451     // TODO: It would be better to limit the vectorization factor based on
452     //       data type rather than just register size. For example, x86 AVX has
453     //       256-bit registers, but it does not support integer operations
454     //       at that width (that requires AVX2).
455     if (MaxVectorRegSizeOption.getNumOccurrences())
456       MaxVecRegSize = MaxVectorRegSizeOption;
457     else
458       MaxVecRegSize = TTI->getRegisterBitWidth(true);
459 
460     if (MinVectorRegSizeOption.getNumOccurrences())
461       MinVecRegSize = MinVectorRegSizeOption;
462     else
463       MinVecRegSize = TTI->getMinVectorRegisterBitWidth();
464   }
465 
466   /// \brief Vectorize the tree that starts with the elements in \p VL.
467   /// Returns the vectorized root.
468   Value *vectorizeTree();
469   /// Vectorize the tree but with the list of externally used values \p
470   /// ExternallyUsedValues. Values in this MapVector can be replaced but the
471   /// generated extractvalue instructions.
472   Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues);
473 
474   /// \returns the cost incurred by unwanted spills and fills, caused by
475   /// holding live values over call sites.
476   int getSpillCost();
477 
478   /// \returns the vectorization cost of the subtree that starts at \p VL.
479   /// A negative number means that this is profitable.
480   int getTreeCost();
481 
482   /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
483   /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
484   void buildTree(ArrayRef<Value *> Roots,
485                  ArrayRef<Value *> UserIgnoreLst = None);
486   /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
487   /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking
488   /// into account (anf updating it, if required) list of externally used
489   /// values stored in \p ExternallyUsedValues.
490   void buildTree(ArrayRef<Value *> Roots,
491                  ExtraValueToDebugLocsMap &ExternallyUsedValues,
492                  ArrayRef<Value *> UserIgnoreLst = None);
493 
494   /// Clear the internal data structures that are created by 'buildTree'.
495   void deleteTree() {
496     VectorizableTree.clear();
497     ScalarToTreeEntry.clear();
498     MustGather.clear();
499     ExternalUses.clear();
500     NumLoadsWantToKeepOrder = 0;
501     NumLoadsWantToChangeOrder = 0;
502     for (auto &Iter : BlocksSchedules) {
503       BlockScheduling *BS = Iter.second.get();
504       BS->clear();
505     }
506     MinBWs.clear();
507   }
508 
509   unsigned getTreeSize() const { return VectorizableTree.size(); }
510 
511   /// \brief Perform LICM and CSE on the newly generated gather sequences.
512   void optimizeGatherSequence();
513 
514   /// \returns true if it is beneficial to reverse the vector order.
515   bool shouldReorder() const {
516     return NumLoadsWantToChangeOrder > NumLoadsWantToKeepOrder;
517   }
518 
519   /// \return The vector element size in bits to use when vectorizing the
520   /// expression tree ending at \p V. If V is a store, the size is the width of
521   /// the stored value. Otherwise, the size is the width of the largest loaded
522   /// value reaching V. This method is used by the vectorizer to calculate
523   /// vectorization factors.
524   unsigned getVectorElementSize(Value *V);
525 
526   /// Compute the minimum type sizes required to represent the entries in a
527   /// vectorizable tree.
528   void computeMinimumValueSizes();
529 
530   // \returns maximum vector register size as set by TTI or overridden by cl::opt.
531   unsigned getMaxVecRegSize() const {
532     return MaxVecRegSize;
533   }
534 
535   // \returns minimum vector register size as set by cl::opt.
536   unsigned getMinVecRegSize() const {
537     return MinVecRegSize;
538   }
539 
540   /// \brief Check if ArrayType or StructType is isomorphic to some VectorType.
541   ///
542   /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
543   unsigned canMapToVector(Type *T, const DataLayout &DL) const;
544 
545   /// \returns True if the VectorizableTree is both tiny and not fully
546   /// vectorizable. We do not vectorize such trees.
547   bool isTreeTinyAndNotFullyVectorizable();
548 
549   OptimizationRemarkEmitter *getORE() { return ORE; }
550 
551 private:
552   struct TreeEntry;
553 
554   /// Checks if all users of \p I are the part of the vectorization tree.
555   bool areAllUsersVectorized(Instruction *I) const;
556 
557   /// \returns the cost of the vectorizable entry.
558   int getEntryCost(TreeEntry *E);
559 
560   /// This is the recursive part of buildTree.
561   void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, int);
562 
563   /// \returns True if the ExtractElement/ExtractValue instructions in VL can
564   /// be vectorized to use the original vector (or aggregate "bitcast" to a vector).
565   bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue) const;
566 
567   /// Vectorize a single entry in the tree.
568   Value *vectorizeTree(TreeEntry *E);
569 
570   /// Vectorize a single entry in the tree, starting in \p VL.
571   Value *vectorizeTree(ArrayRef<Value *> VL);
572 
573   /// \returns the pointer to the vectorized value if \p VL is already
574   /// vectorized, or NULL. They may happen in cycles.
575   Value *alreadyVectorized(ArrayRef<Value *> VL, Value *OpValue) const;
576 
577   /// \returns the scalarization cost for this type. Scalarization in this
578   /// context means the creation of vectors from a group of scalars.
579   int getGatherCost(Type *Ty);
580 
581   /// \returns the scalarization cost for this list of values. Assuming that
582   /// this subtree gets vectorized, we may need to extract the values from the
583   /// roots. This method calculates the cost of extracting the values.
584   int getGatherCost(ArrayRef<Value *> VL);
585 
586   /// \brief Set the Builder insert point to one after the last instruction in
587   /// the bundle
588   void setInsertPointAfterBundle(ArrayRef<Value *> VL, Value *OpValue);
589 
590   /// \returns a vector from a collection of scalars in \p VL.
591   Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
592 
593   /// \returns whether the VectorizableTree is fully vectorizable and will
594   /// be beneficial even the tree height is tiny.
595   bool isFullyVectorizableTinyTree();
596 
597   /// \reorder commutative operands in alt shuffle if they result in
598   ///  vectorized code.
599   void reorderAltShuffleOperands(unsigned Opcode, ArrayRef<Value *> VL,
600                                  SmallVectorImpl<Value *> &Left,
601                                  SmallVectorImpl<Value *> &Right);
602   /// \reorder commutative operands to get better probability of
603   /// generating vectorized code.
604   void reorderInputsAccordingToOpcode(unsigned Opcode, ArrayRef<Value *> VL,
605                                       SmallVectorImpl<Value *> &Left,
606                                       SmallVectorImpl<Value *> &Right);
607   struct TreeEntry {
608     TreeEntry(std::vector<TreeEntry> &Container)
609         : Scalars(), VectorizedValue(nullptr), NeedToGather(0),
610           Container(Container) {}
611 
612     /// \returns true if the scalars in VL are equal to this entry.
613     bool isSame(ArrayRef<Value *> VL) const {
614       assert(VL.size() == Scalars.size() && "Invalid size");
615       return std::equal(VL.begin(), VL.end(), Scalars.begin());
616     }
617 
618     /// A vector of scalars.
619     ValueList Scalars;
620 
621     /// The Scalars are vectorized into this value. It is initialized to Null.
622     Value *VectorizedValue;
623 
624     /// Do we need to gather this sequence ?
625     bool NeedToGather;
626 
627     /// Points back to the VectorizableTree.
628     ///
629     /// Only used for Graphviz right now.  Unfortunately GraphTrait::NodeRef has
630     /// to be a pointer and needs to be able to initialize the child iterator.
631     /// Thus we need a reference back to the container to translate the indices
632     /// to entries.
633     std::vector<TreeEntry> &Container;
634 
635     /// The TreeEntry index containing the user of this entry.  We can actually
636     /// have multiple users so the data structure is not truly a tree.
637     SmallVector<int, 1> UserTreeIndices;
638   };
639 
640   /// Create a new VectorizableTree entry.
641   TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized,
642                           int &UserTreeIdx) {
643     VectorizableTree.emplace_back(VectorizableTree);
644     int idx = VectorizableTree.size() - 1;
645     TreeEntry *Last = &VectorizableTree[idx];
646     Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
647     Last->NeedToGather = !Vectorized;
648     if (Vectorized) {
649       for (int i = 0, e = VL.size(); i != e; ++i) {
650         assert(!getTreeEntry(VL[i]) && "Scalar already in tree!");
651         ScalarToTreeEntry[VL[i]] = idx;
652       }
653     } else {
654       MustGather.insert(VL.begin(), VL.end());
655     }
656 
657     if (UserTreeIdx >= 0)
658       Last->UserTreeIndices.push_back(UserTreeIdx);
659     UserTreeIdx = idx;
660     return Last;
661   }
662 
663   /// -- Vectorization State --
664   /// Holds all of the tree entries.
665   std::vector<TreeEntry> VectorizableTree;
666 
667   TreeEntry *getTreeEntry(Value *V) {
668     auto I = ScalarToTreeEntry.find(V);
669     if (I != ScalarToTreeEntry.end())
670       return &VectorizableTree[I->second];
671     return nullptr;
672   }
673 
674   const TreeEntry *getTreeEntry(Value *V) const {
675     auto I = ScalarToTreeEntry.find(V);
676     if (I != ScalarToTreeEntry.end())
677       return &VectorizableTree[I->second];
678     return nullptr;
679   }
680 
681   /// Maps a specific scalar to its tree entry.
682   SmallDenseMap<Value*, int> ScalarToTreeEntry;
683 
684   /// A list of scalars that we found that we need to keep as scalars.
685   ValueSet MustGather;
686 
687   /// This POD struct describes one external user in the vectorized tree.
688   struct ExternalUser {
689     ExternalUser (Value *S, llvm::User *U, int L) :
690       Scalar(S), User(U), Lane(L){}
691     // Which scalar in our function.
692     Value *Scalar;
693     // Which user that uses the scalar.
694     llvm::User *User;
695     // Which lane does the scalar belong to.
696     int Lane;
697   };
698   typedef SmallVector<ExternalUser, 16> UserList;
699 
700   /// Checks if two instructions may access the same memory.
701   ///
702   /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
703   /// is invariant in the calling loop.
704   bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
705                  Instruction *Inst2) {
706 
707     // First check if the result is already in the cache.
708     AliasCacheKey key = std::make_pair(Inst1, Inst2);
709     Optional<bool> &result = AliasCache[key];
710     if (result.hasValue()) {
711       return result.getValue();
712     }
713     MemoryLocation Loc2 = getLocation(Inst2, AA);
714     bool aliased = true;
715     if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) {
716       // Do the alias check.
717       aliased = AA->alias(Loc1, Loc2);
718     }
719     // Store the result in the cache.
720     result = aliased;
721     return aliased;
722   }
723 
724   typedef std::pair<Instruction *, Instruction *> AliasCacheKey;
725 
726   /// Cache for alias results.
727   /// TODO: consider moving this to the AliasAnalysis itself.
728   DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
729 
730   /// Removes an instruction from its block and eventually deletes it.
731   /// It's like Instruction::eraseFromParent() except that the actual deletion
732   /// is delayed until BoUpSLP is destructed.
733   /// This is required to ensure that there are no incorrect collisions in the
734   /// AliasCache, which can happen if a new instruction is allocated at the
735   /// same address as a previously deleted instruction.
736   void eraseInstruction(Instruction *I) {
737     I->removeFromParent();
738     I->dropAllReferences();
739     DeletedInstructions.emplace_back(I);
740   }
741 
742   /// Temporary store for deleted instructions. Instructions will be deleted
743   /// eventually when the BoUpSLP is destructed.
744   SmallVector<unique_value, 8> DeletedInstructions;
745 
746   /// A list of values that need to extracted out of the tree.
747   /// This list holds pairs of (Internal Scalar : External User). External User
748   /// can be nullptr, it means that this Internal Scalar will be used later,
749   /// after vectorization.
750   UserList ExternalUses;
751 
752   /// Values used only by @llvm.assume calls.
753   SmallPtrSet<const Value *, 32> EphValues;
754 
755   /// Holds all of the instructions that we gathered.
756   SetVector<Instruction *> GatherSeq;
757   /// A list of blocks that we are going to CSE.
758   SetVector<BasicBlock *> CSEBlocks;
759 
760   /// Contains all scheduling relevant data for an instruction.
761   /// A ScheduleData either represents a single instruction or a member of an
762   /// instruction bundle (= a group of instructions which is combined into a
763   /// vector instruction).
764   struct ScheduleData {
765 
766     // The initial value for the dependency counters. It means that the
767     // dependencies are not calculated yet.
768     enum { InvalidDeps = -1 };
769 
770     ScheduleData()
771         : Inst(nullptr), FirstInBundle(nullptr), NextInBundle(nullptr),
772           NextLoadStore(nullptr), SchedulingRegionID(0), SchedulingPriority(0),
773           Dependencies(InvalidDeps), UnscheduledDeps(InvalidDeps),
774           UnscheduledDepsInBundle(InvalidDeps), IsScheduled(false),
775           OpValue(nullptr) {}
776 
777     void init(int BlockSchedulingRegionID, Value *OpVal) {
778       FirstInBundle = this;
779       NextInBundle = nullptr;
780       NextLoadStore = nullptr;
781       IsScheduled = false;
782       SchedulingRegionID = BlockSchedulingRegionID;
783       UnscheduledDepsInBundle = UnscheduledDeps;
784       clearDependencies();
785       OpValue = OpVal;
786     }
787 
788     /// Returns true if the dependency information has been calculated.
789     bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
790 
791     /// Returns true for single instructions and for bundle representatives
792     /// (= the head of a bundle).
793     bool isSchedulingEntity() const { return FirstInBundle == this; }
794 
795     /// Returns true if it represents an instruction bundle and not only a
796     /// single instruction.
797     bool isPartOfBundle() const {
798       return NextInBundle != nullptr || FirstInBundle != this;
799     }
800 
801     /// Returns true if it is ready for scheduling, i.e. it has no more
802     /// unscheduled depending instructions/bundles.
803     bool isReady() const {
804       assert(isSchedulingEntity() &&
805              "can't consider non-scheduling entity for ready list");
806       return UnscheduledDepsInBundle == 0 && !IsScheduled;
807     }
808 
809     /// Modifies the number of unscheduled dependencies, also updating it for
810     /// the whole bundle.
811     int incrementUnscheduledDeps(int Incr) {
812       UnscheduledDeps += Incr;
813       return FirstInBundle->UnscheduledDepsInBundle += Incr;
814     }
815 
816     /// Sets the number of unscheduled dependencies to the number of
817     /// dependencies.
818     void resetUnscheduledDeps() {
819       incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
820     }
821 
822     /// Clears all dependency information.
823     void clearDependencies() {
824       Dependencies = InvalidDeps;
825       resetUnscheduledDeps();
826       MemoryDependencies.clear();
827     }
828 
829     void dump(raw_ostream &os) const {
830       if (!isSchedulingEntity()) {
831         os << "/ " << *Inst;
832       } else if (NextInBundle) {
833         os << '[' << *Inst;
834         ScheduleData *SD = NextInBundle;
835         while (SD) {
836           os << ';' << *SD->Inst;
837           SD = SD->NextInBundle;
838         }
839         os << ']';
840       } else {
841         os << *Inst;
842       }
843     }
844 
845     Instruction *Inst;
846 
847     /// Points to the head in an instruction bundle (and always to this for
848     /// single instructions).
849     ScheduleData *FirstInBundle;
850 
851     /// Single linked list of all instructions in a bundle. Null if it is a
852     /// single instruction.
853     ScheduleData *NextInBundle;
854 
855     /// Single linked list of all memory instructions (e.g. load, store, call)
856     /// in the block - until the end of the scheduling region.
857     ScheduleData *NextLoadStore;
858 
859     /// The dependent memory instructions.
860     /// This list is derived on demand in calculateDependencies().
861     SmallVector<ScheduleData *, 4> MemoryDependencies;
862 
863     /// This ScheduleData is in the current scheduling region if this matches
864     /// the current SchedulingRegionID of BlockScheduling.
865     int SchedulingRegionID;
866 
867     /// Used for getting a "good" final ordering of instructions.
868     int SchedulingPriority;
869 
870     /// The number of dependencies. Constitutes of the number of users of the
871     /// instruction plus the number of dependent memory instructions (if any).
872     /// This value is calculated on demand.
873     /// If InvalidDeps, the number of dependencies is not calculated yet.
874     ///
875     int Dependencies;
876 
877     /// The number of dependencies minus the number of dependencies of scheduled
878     /// instructions. As soon as this is zero, the instruction/bundle gets ready
879     /// for scheduling.
880     /// Note that this is negative as long as Dependencies is not calculated.
881     int UnscheduledDeps;
882 
883     /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
884     /// single instructions.
885     int UnscheduledDepsInBundle;
886 
887     /// True if this instruction is scheduled (or considered as scheduled in the
888     /// dry-run).
889     bool IsScheduled;
890 
891     /// Opcode of the current instruction in the schedule data.
892     Value *OpValue;
893   };
894 
895 #ifndef NDEBUG
896   friend inline raw_ostream &operator<<(raw_ostream &os,
897                                         const BoUpSLP::ScheduleData &SD) {
898     SD.dump(os);
899     return os;
900   }
901 #endif
902   friend struct GraphTraits<BoUpSLP *>;
903   friend struct DOTGraphTraits<BoUpSLP *>;
904 
905   /// Contains all scheduling data for a basic block.
906   ///
907   struct BlockScheduling {
908 
909     BlockScheduling(BasicBlock *BB)
910         : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize),
911           ScheduleStart(nullptr), ScheduleEnd(nullptr),
912           FirstLoadStoreInRegion(nullptr), LastLoadStoreInRegion(nullptr),
913           ScheduleRegionSize(0),
914           ScheduleRegionSizeLimit(ScheduleRegionSizeBudget),
915           // Make sure that the initial SchedulingRegionID is greater than the
916           // initial SchedulingRegionID in ScheduleData (which is 0).
917           SchedulingRegionID(1) {}
918 
919     void clear() {
920       ReadyInsts.clear();
921       ScheduleStart = nullptr;
922       ScheduleEnd = nullptr;
923       FirstLoadStoreInRegion = nullptr;
924       LastLoadStoreInRegion = nullptr;
925 
926       // Reduce the maximum schedule region size by the size of the
927       // previous scheduling run.
928       ScheduleRegionSizeLimit -= ScheduleRegionSize;
929       if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
930         ScheduleRegionSizeLimit = MinScheduleRegionSize;
931       ScheduleRegionSize = 0;
932 
933       // Make a new scheduling region, i.e. all existing ScheduleData is not
934       // in the new region yet.
935       ++SchedulingRegionID;
936     }
937 
938     ScheduleData *getScheduleData(Value *V) {
939       ScheduleData *SD = ScheduleDataMap[V];
940       if (SD && SD->SchedulingRegionID == SchedulingRegionID)
941         return SD;
942       return nullptr;
943     }
944 
945     ScheduleData *getScheduleData(Value *V, Value *Key) {
946       if (V == Key)
947         return getScheduleData(V);
948       auto I = ExtraScheduleDataMap.find(V);
949       if (I != ExtraScheduleDataMap.end()) {
950         ScheduleData *SD = I->second[Key];
951         if (SD && SD->SchedulingRegionID == SchedulingRegionID)
952           return SD;
953       }
954       return nullptr;
955     }
956 
957     bool isInSchedulingRegion(ScheduleData *SD) {
958       return SD->SchedulingRegionID == SchedulingRegionID;
959     }
960 
961     /// Marks an instruction as scheduled and puts all dependent ready
962     /// instructions into the ready-list.
963     template <typename ReadyListType>
964     void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
965       SD->IsScheduled = true;
966       DEBUG(dbgs() << "SLP:   schedule " << *SD << "\n");
967 
968       ScheduleData *BundleMember = SD;
969       while (BundleMember) {
970         if (BundleMember->Inst != BundleMember->OpValue) {
971           BundleMember = BundleMember->NextInBundle;
972           continue;
973         }
974         // Handle the def-use chain dependencies.
975         for (Use &U : BundleMember->Inst->operands()) {
976           auto *I = dyn_cast<Instruction>(U.get());
977           if (!I)
978             continue;
979           doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) {
980             if (OpDef && OpDef->hasValidDependencies() &&
981                 OpDef->incrementUnscheduledDeps(-1) == 0) {
982               // There are no more unscheduled dependencies after
983               // decrementing, so we can put the dependent instruction
984               // into the ready list.
985               ScheduleData *DepBundle = OpDef->FirstInBundle;
986               assert(!DepBundle->IsScheduled &&
987                      "already scheduled bundle gets ready");
988               ReadyList.insert(DepBundle);
989               DEBUG(dbgs()
990                     << "SLP:    gets ready (def): " << *DepBundle << "\n");
991             }
992           });
993         }
994         // Handle the memory dependencies.
995         for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
996           if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
997             // There are no more unscheduled dependencies after decrementing,
998             // so we can put the dependent instruction into the ready list.
999             ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
1000             assert(!DepBundle->IsScheduled &&
1001                    "already scheduled bundle gets ready");
1002             ReadyList.insert(DepBundle);
1003             DEBUG(dbgs() << "SLP:    gets ready (mem): " << *DepBundle
1004                          << "\n");
1005           }
1006         }
1007         BundleMember = BundleMember->NextInBundle;
1008       }
1009     }
1010 
1011     void doForAllOpcodes(Value *V,
1012                          function_ref<void(ScheduleData *SD)> Action) {
1013       if (ScheduleData *SD = getScheduleData(V))
1014         Action(SD);
1015       auto I = ExtraScheduleDataMap.find(V);
1016       if (I != ExtraScheduleDataMap.end())
1017         for (auto &P : I->second)
1018           if (P.second->SchedulingRegionID == SchedulingRegionID)
1019             Action(P.second);
1020     }
1021 
1022     /// Put all instructions into the ReadyList which are ready for scheduling.
1023     template <typename ReadyListType>
1024     void initialFillReadyList(ReadyListType &ReadyList) {
1025       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
1026         doForAllOpcodes(I, [&](ScheduleData *SD) {
1027           if (SD->isSchedulingEntity() && SD->isReady()) {
1028             ReadyList.insert(SD);
1029             DEBUG(dbgs() << "SLP:    initially in ready list: " << *I << "\n");
1030           }
1031         });
1032       }
1033     }
1034 
1035     /// Checks if a bundle of instructions can be scheduled, i.e. has no
1036     /// cyclic dependencies. This is only a dry-run, no instructions are
1037     /// actually moved at this stage.
1038     bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, Value *OpValue);
1039 
1040     /// Un-bundles a group of instructions.
1041     void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue);
1042 
1043     /// Allocates schedule data chunk.
1044     ScheduleData *allocateScheduleDataChunks();
1045 
1046     /// Extends the scheduling region so that V is inside the region.
1047     /// \returns true if the region size is within the limit.
1048     bool extendSchedulingRegion(Value *V, Value *OpValue);
1049 
1050     /// Initialize the ScheduleData structures for new instructions in the
1051     /// scheduling region.
1052     void initScheduleData(Instruction *FromI, Instruction *ToI,
1053                           ScheduleData *PrevLoadStore,
1054                           ScheduleData *NextLoadStore);
1055 
1056     /// Updates the dependency information of a bundle and of all instructions/
1057     /// bundles which depend on the original bundle.
1058     void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
1059                                BoUpSLP *SLP);
1060 
1061     /// Sets all instruction in the scheduling region to un-scheduled.
1062     void resetSchedule();
1063 
1064     BasicBlock *BB;
1065 
1066     /// Simple memory allocation for ScheduleData.
1067     std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
1068 
1069     /// The size of a ScheduleData array in ScheduleDataChunks.
1070     int ChunkSize;
1071 
1072     /// The allocator position in the current chunk, which is the last entry
1073     /// of ScheduleDataChunks.
1074     int ChunkPos;
1075 
1076     /// Attaches ScheduleData to Instruction.
1077     /// Note that the mapping survives during all vectorization iterations, i.e.
1078     /// ScheduleData structures are recycled.
1079     DenseMap<Value *, ScheduleData *> ScheduleDataMap;
1080 
1081     /// Attaches ScheduleData to Instruction with the leading key.
1082     DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>>
1083         ExtraScheduleDataMap;
1084 
1085     struct ReadyList : SmallVector<ScheduleData *, 8> {
1086       void insert(ScheduleData *SD) { push_back(SD); }
1087     };
1088 
1089     /// The ready-list for scheduling (only used for the dry-run).
1090     ReadyList ReadyInsts;
1091 
1092     /// The first instruction of the scheduling region.
1093     Instruction *ScheduleStart;
1094 
1095     /// The first instruction _after_ the scheduling region.
1096     Instruction *ScheduleEnd;
1097 
1098     /// The first memory accessing instruction in the scheduling region
1099     /// (can be null).
1100     ScheduleData *FirstLoadStoreInRegion;
1101 
1102     /// The last memory accessing instruction in the scheduling region
1103     /// (can be null).
1104     ScheduleData *LastLoadStoreInRegion;
1105 
1106     /// The current size of the scheduling region.
1107     int ScheduleRegionSize;
1108 
1109     /// The maximum size allowed for the scheduling region.
1110     int ScheduleRegionSizeLimit;
1111 
1112     /// The ID of the scheduling region. For a new vectorization iteration this
1113     /// is incremented which "removes" all ScheduleData from the region.
1114     int SchedulingRegionID;
1115   };
1116 
1117   /// Attaches the BlockScheduling structures to basic blocks.
1118   MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
1119 
1120   /// Performs the "real" scheduling. Done before vectorization is actually
1121   /// performed in a basic block.
1122   void scheduleBlock(BlockScheduling *BS);
1123 
1124   /// List of users to ignore during scheduling and that don't need extracting.
1125   ArrayRef<Value *> UserIgnoreList;
1126 
1127   // Number of load bundles that contain consecutive loads.
1128   int NumLoadsWantToKeepOrder;
1129 
1130   // Number of load bundles that contain consecutive loads in reversed order.
1131   int NumLoadsWantToChangeOrder;
1132 
1133   // Analysis and block reference.
1134   Function *F;
1135   ScalarEvolution *SE;
1136   TargetTransformInfo *TTI;
1137   TargetLibraryInfo *TLI;
1138   AliasAnalysis *AA;
1139   LoopInfo *LI;
1140   DominatorTree *DT;
1141   AssumptionCache *AC;
1142   DemandedBits *DB;
1143   const DataLayout *DL;
1144   OptimizationRemarkEmitter *ORE;
1145 
1146   unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
1147   unsigned MinVecRegSize; // Set by cl::opt (default: 128).
1148   /// Instruction builder to construct the vectorized tree.
1149   IRBuilder<> Builder;
1150 
1151   /// A map of scalar integer values to the smallest bit width with which they
1152   /// can legally be represented. The values map to (width, signed) pairs,
1153   /// where "width" indicates the minimum bit width and "signed" is True if the
1154   /// value must be signed-extended, rather than zero-extended, back to its
1155   /// original width.
1156   MapVector<Value *, std::pair<uint64_t, bool>> MinBWs;
1157 };
1158 } // end namespace slpvectorizer
1159 
1160 template <> struct GraphTraits<BoUpSLP *> {
1161   typedef BoUpSLP::TreeEntry TreeEntry;
1162 
1163   /// NodeRef has to be a pointer per the GraphWriter.
1164   typedef TreeEntry *NodeRef;
1165 
1166   /// \brief Add the VectorizableTree to the index iterator to be able to return
1167   /// TreeEntry pointers.
1168   struct ChildIteratorType
1169       : public iterator_adaptor_base<ChildIteratorType,
1170                                      SmallVector<int, 1>::iterator> {
1171 
1172     std::vector<TreeEntry> &VectorizableTree;
1173 
1174     ChildIteratorType(SmallVector<int, 1>::iterator W,
1175                       std::vector<TreeEntry> &VT)
1176         : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {}
1177 
1178     NodeRef operator*() { return &VectorizableTree[*I]; }
1179   };
1180 
1181   static NodeRef getEntryNode(BoUpSLP &R) { return &R.VectorizableTree[0]; }
1182 
1183   static ChildIteratorType child_begin(NodeRef N) {
1184     return {N->UserTreeIndices.begin(), N->Container};
1185   }
1186   static ChildIteratorType child_end(NodeRef N) {
1187     return {N->UserTreeIndices.end(), N->Container};
1188   }
1189 
1190   /// For the node iterator we just need to turn the TreeEntry iterator into a
1191   /// TreeEntry* iterator so that it dereferences to NodeRef.
1192   typedef pointer_iterator<std::vector<TreeEntry>::iterator> nodes_iterator;
1193 
1194   static nodes_iterator nodes_begin(BoUpSLP *R) {
1195     return nodes_iterator(R->VectorizableTree.begin());
1196   }
1197   static nodes_iterator nodes_end(BoUpSLP *R) {
1198     return nodes_iterator(R->VectorizableTree.end());
1199   }
1200 
1201   static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); }
1202 };
1203 
1204 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits {
1205   typedef BoUpSLP::TreeEntry TreeEntry;
1206 
1207   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
1208 
1209   std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) {
1210     std::string Str;
1211     raw_string_ostream OS(Str);
1212     if (isSplat(Entry->Scalars)) {
1213       OS << "<splat> " << *Entry->Scalars[0];
1214       return Str;
1215     }
1216     for (auto V : Entry->Scalars) {
1217       OS << *V;
1218       if (std::any_of(
1219               R->ExternalUses.begin(), R->ExternalUses.end(),
1220               [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; }))
1221         OS << " <extract>";
1222       OS << "\n";
1223     }
1224     return Str;
1225   }
1226 
1227   static std::string getNodeAttributes(const TreeEntry *Entry,
1228                                        const BoUpSLP *) {
1229     if (Entry->NeedToGather)
1230       return "color=red";
1231     return "";
1232   }
1233 };
1234 
1235 } // end namespace llvm
1236 
1237 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
1238                         ArrayRef<Value *> UserIgnoreLst) {
1239   ExtraValueToDebugLocsMap ExternallyUsedValues;
1240   buildTree(Roots, ExternallyUsedValues, UserIgnoreLst);
1241 }
1242 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
1243                         ExtraValueToDebugLocsMap &ExternallyUsedValues,
1244                         ArrayRef<Value *> UserIgnoreLst) {
1245   deleteTree();
1246   UserIgnoreList = UserIgnoreLst;
1247   if (!allSameType(Roots))
1248     return;
1249   buildTree_rec(Roots, 0, -1);
1250 
1251   // Collect the values that we need to extract from the tree.
1252   for (TreeEntry &EIdx : VectorizableTree) {
1253     TreeEntry *Entry = &EIdx;
1254 
1255     // No need to handle users of gathered values.
1256     if (Entry->NeedToGather)
1257       continue;
1258 
1259     // For each lane:
1260     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
1261       Value *Scalar = Entry->Scalars[Lane];
1262 
1263       // Check if the scalar is externally used as an extra arg.
1264       auto ExtI = ExternallyUsedValues.find(Scalar);
1265       if (ExtI != ExternallyUsedValues.end()) {
1266         DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " <<
1267               Lane << " from " << *Scalar << ".\n");
1268         ExternalUses.emplace_back(Scalar, nullptr, Lane);
1269         continue;
1270       }
1271       for (User *U : Scalar->users()) {
1272         DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
1273 
1274         Instruction *UserInst = dyn_cast<Instruction>(U);
1275         if (!UserInst)
1276           continue;
1277 
1278         // Skip in-tree scalars that become vectors
1279         if (TreeEntry *UseEntry = getTreeEntry(U)) {
1280           Value *UseScalar = UseEntry->Scalars[0];
1281           // Some in-tree scalars will remain as scalar in vectorized
1282           // instructions. If that is the case, the one in Lane 0 will
1283           // be used.
1284           if (UseScalar != U ||
1285               !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
1286             DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
1287                          << ".\n");
1288             assert(!UseEntry->NeedToGather && "Bad state");
1289             continue;
1290           }
1291         }
1292 
1293         // Ignore users in the user ignore list.
1294         if (is_contained(UserIgnoreList, UserInst))
1295           continue;
1296 
1297         DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " <<
1298               Lane << " from " << *Scalar << ".\n");
1299         ExternalUses.push_back(ExternalUser(Scalar, U, Lane));
1300       }
1301     }
1302   }
1303 }
1304 
1305 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
1306                             int UserTreeIdx) {
1307   bool isAltShuffle = false;
1308   assert((allConstant(VL) || allSameType(VL)) && "Invalid types!");
1309 
1310   if (Depth == RecursionMaxDepth) {
1311     DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
1312     newTreeEntry(VL, false, UserTreeIdx);
1313     return;
1314   }
1315 
1316   // Don't handle vectors.
1317   if (VL[0]->getType()->isVectorTy()) {
1318     DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
1319     newTreeEntry(VL, false, UserTreeIdx);
1320     return;
1321   }
1322 
1323   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
1324     if (SI->getValueOperand()->getType()->isVectorTy()) {
1325       DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
1326       newTreeEntry(VL, false, UserTreeIdx);
1327       return;
1328     }
1329   unsigned Opcode = getSameOpcode(VL);
1330 
1331   // Check that this shuffle vector refers to the alternate
1332   // sequence of opcodes.
1333   if (Opcode == Instruction::ShuffleVector) {
1334     Instruction *I0 = dyn_cast<Instruction>(VL[0]);
1335     unsigned Op = I0->getOpcode();
1336     if (Op != Instruction::ShuffleVector)
1337       isAltShuffle = true;
1338   }
1339 
1340   // If all of the operands are identical or constant we have a simple solution.
1341   if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !Opcode) {
1342     DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
1343     newTreeEntry(VL, false, UserTreeIdx);
1344     return;
1345   }
1346 
1347   // We now know that this is a vector of instructions of the same type from
1348   // the same block.
1349 
1350   // Don't vectorize ephemeral values.
1351   for (unsigned i = 0, e = VL.size(); i != e; ++i) {
1352     if (EphValues.count(VL[i])) {
1353       DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
1354             ") is ephemeral.\n");
1355       newTreeEntry(VL, false, UserTreeIdx);
1356       return;
1357     }
1358   }
1359 
1360   // Check if this is a duplicate of another entry.
1361   if (TreeEntry *E = getTreeEntry(VL[0])) {
1362     for (unsigned i = 0, e = VL.size(); i != e; ++i) {
1363       DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n");
1364       if (E->Scalars[i] != VL[i]) {
1365         DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
1366         newTreeEntry(VL, false, UserTreeIdx);
1367         return;
1368       }
1369     }
1370     // Record the reuse of the tree node.  FIXME, currently this is only used to
1371     // properly draw the graph rather than for the actual vectorization.
1372     E->UserTreeIndices.push_back(UserTreeIdx);
1373     DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n");
1374     return;
1375   }
1376 
1377   // Check that none of the instructions in the bundle are already in the tree.
1378   for (unsigned i = 0, e = VL.size(); i != e; ++i) {
1379     if (ScalarToTreeEntry.count(VL[i])) {
1380       DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
1381             ") is already in tree.\n");
1382       newTreeEntry(VL, false, UserTreeIdx);
1383       return;
1384     }
1385   }
1386 
1387   // If any of the scalars is marked as a value that needs to stay scalar then
1388   // we need to gather the scalars.
1389   for (unsigned i = 0, e = VL.size(); i != e; ++i) {
1390     if (MustGather.count(VL[i])) {
1391       DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
1392       newTreeEntry(VL, false, UserTreeIdx);
1393       return;
1394     }
1395   }
1396 
1397   // Check that all of the users of the scalars that we want to vectorize are
1398   // schedulable.
1399   Instruction *VL0 = cast<Instruction>(VL[0]);
1400   BasicBlock *BB = VL0->getParent();
1401 
1402   if (!DT->isReachableFromEntry(BB)) {
1403     // Don't go into unreachable blocks. They may contain instructions with
1404     // dependency cycles which confuse the final scheduling.
1405     DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
1406     newTreeEntry(VL, false, UserTreeIdx);
1407     return;
1408   }
1409 
1410   // Check that every instructions appears once in this bundle.
1411   for (unsigned i = 0, e = VL.size(); i < e; ++i)
1412     for (unsigned j = i+1; j < e; ++j)
1413       if (VL[i] == VL[j]) {
1414         DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
1415         newTreeEntry(VL, false, UserTreeIdx);
1416         return;
1417       }
1418 
1419   auto &BSRef = BlocksSchedules[BB];
1420   if (!BSRef) {
1421     BSRef = llvm::make_unique<BlockScheduling>(BB);
1422   }
1423   BlockScheduling &BS = *BSRef.get();
1424 
1425   if (!BS.tryScheduleBundle(VL, this, VL0)) {
1426     DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
1427     assert((!BS.getScheduleData(VL0) ||
1428             !BS.getScheduleData(VL0)->isPartOfBundle()) &&
1429            "tryScheduleBundle should cancelScheduling on failure");
1430     newTreeEntry(VL, false, UserTreeIdx);
1431     return;
1432   }
1433   DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
1434 
1435   switch (Opcode) {
1436     case Instruction::PHI: {
1437       PHINode *PH = dyn_cast<PHINode>(VL0);
1438 
1439       // Check for terminator values (e.g. invoke).
1440       for (unsigned j = 0; j < VL.size(); ++j)
1441         for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
1442           TerminatorInst *Term = dyn_cast<TerminatorInst>(
1443               cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i)));
1444           if (Term) {
1445             DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n");
1446             BS.cancelScheduling(VL, VL0);
1447             newTreeEntry(VL, false, UserTreeIdx);
1448             return;
1449           }
1450         }
1451 
1452       newTreeEntry(VL, true, UserTreeIdx);
1453       DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
1454 
1455       for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
1456         ValueList Operands;
1457         // Prepare the operand vector.
1458         for (Value *j : VL)
1459           Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock(
1460               PH->getIncomingBlock(i)));
1461 
1462         buildTree_rec(Operands, Depth + 1, UserTreeIdx);
1463       }
1464       return;
1465     }
1466     case Instruction::ExtractValue:
1467     case Instruction::ExtractElement: {
1468       bool Reuse = canReuseExtract(VL, VL0);
1469       if (Reuse) {
1470         DEBUG(dbgs() << "SLP: Reusing extract sequence.\n");
1471       } else {
1472         BS.cancelScheduling(VL, VL0);
1473       }
1474       newTreeEntry(VL, Reuse, UserTreeIdx);
1475       return;
1476     }
1477     case Instruction::Load: {
1478       // Check that a vectorized load would load the same memory as a scalar
1479       // load.
1480       // For example we don't want vectorize loads that are smaller than 8 bit.
1481       // Even though we have a packed struct {<i2, i2, i2, i2>} LLVM treats
1482       // loading/storing it as an i8 struct. If we vectorize loads/stores from
1483       // such a struct we read/write packed bits disagreeing with the
1484       // unvectorized version.
1485       Type *ScalarTy = VL0->getType();
1486 
1487       if (DL->getTypeSizeInBits(ScalarTy) !=
1488           DL->getTypeAllocSizeInBits(ScalarTy)) {
1489         BS.cancelScheduling(VL, VL0);
1490         newTreeEntry(VL, false, UserTreeIdx);
1491         DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
1492         return;
1493       }
1494 
1495       // Make sure all loads in the bundle are simple - we can't vectorize
1496       // atomic or volatile loads.
1497       for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) {
1498         LoadInst *L = cast<LoadInst>(VL[i]);
1499         if (!L->isSimple()) {
1500           BS.cancelScheduling(VL, VL0);
1501           newTreeEntry(VL, false, UserTreeIdx);
1502           DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
1503           return;
1504         }
1505       }
1506 
1507       // Check if the loads are consecutive, reversed, or neither.
1508       // TODO: What we really want is to sort the loads, but for now, check
1509       // the two likely directions.
1510       bool Consecutive = true;
1511       bool ReverseConsecutive = true;
1512       for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) {
1513         if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) {
1514           Consecutive = false;
1515           break;
1516         } else {
1517           ReverseConsecutive = false;
1518         }
1519       }
1520 
1521       if (Consecutive) {
1522         ++NumLoadsWantToKeepOrder;
1523         newTreeEntry(VL, true, UserTreeIdx);
1524         DEBUG(dbgs() << "SLP: added a vector of loads.\n");
1525         return;
1526       }
1527 
1528       // If none of the load pairs were consecutive when checked in order,
1529       // check the reverse order.
1530       if (ReverseConsecutive)
1531         for (unsigned i = VL.size() - 1; i > 0; --i)
1532           if (!isConsecutiveAccess(VL[i], VL[i - 1], *DL, *SE)) {
1533             ReverseConsecutive = false;
1534             break;
1535           }
1536 
1537       BS.cancelScheduling(VL, VL0);
1538       newTreeEntry(VL, false, UserTreeIdx);
1539 
1540       if (ReverseConsecutive) {
1541         ++NumLoadsWantToChangeOrder;
1542         DEBUG(dbgs() << "SLP: Gathering reversed loads.\n");
1543       } else {
1544         DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
1545       }
1546       return;
1547     }
1548     case Instruction::ZExt:
1549     case Instruction::SExt:
1550     case Instruction::FPToUI:
1551     case Instruction::FPToSI:
1552     case Instruction::FPExt:
1553     case Instruction::PtrToInt:
1554     case Instruction::IntToPtr:
1555     case Instruction::SIToFP:
1556     case Instruction::UIToFP:
1557     case Instruction::Trunc:
1558     case Instruction::FPTrunc:
1559     case Instruction::BitCast: {
1560       Type *SrcTy = VL0->getOperand(0)->getType();
1561       for (unsigned i = 0; i < VL.size(); ++i) {
1562         Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType();
1563         if (Ty != SrcTy || !isValidElementType(Ty)) {
1564           BS.cancelScheduling(VL, VL0);
1565           newTreeEntry(VL, false, UserTreeIdx);
1566           DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n");
1567           return;
1568         }
1569       }
1570       newTreeEntry(VL, true, UserTreeIdx);
1571       DEBUG(dbgs() << "SLP: added a vector of casts.\n");
1572 
1573       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
1574         ValueList Operands;
1575         // Prepare the operand vector.
1576         for (Value *j : VL)
1577           Operands.push_back(cast<Instruction>(j)->getOperand(i));
1578 
1579         buildTree_rec(Operands, Depth + 1, UserTreeIdx);
1580       }
1581       return;
1582     }
1583     case Instruction::ICmp:
1584     case Instruction::FCmp: {
1585       // Check that all of the compares have the same predicate.
1586       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
1587       Type *ComparedTy = VL0->getOperand(0)->getType();
1588       for (unsigned i = 1, e = VL.size(); i < e; ++i) {
1589         CmpInst *Cmp = cast<CmpInst>(VL[i]);
1590         if (Cmp->getPredicate() != P0 ||
1591             Cmp->getOperand(0)->getType() != ComparedTy) {
1592           BS.cancelScheduling(VL, VL0);
1593           newTreeEntry(VL, false, UserTreeIdx);
1594           DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n");
1595           return;
1596         }
1597       }
1598 
1599       newTreeEntry(VL, true, UserTreeIdx);
1600       DEBUG(dbgs() << "SLP: added a vector of compares.\n");
1601 
1602       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
1603         ValueList Operands;
1604         // Prepare the operand vector.
1605         for (Value *j : VL)
1606           Operands.push_back(cast<Instruction>(j)->getOperand(i));
1607 
1608         buildTree_rec(Operands, Depth + 1, UserTreeIdx);
1609       }
1610       return;
1611     }
1612     case Instruction::Select:
1613     case Instruction::Add:
1614     case Instruction::FAdd:
1615     case Instruction::Sub:
1616     case Instruction::FSub:
1617     case Instruction::Mul:
1618     case Instruction::FMul:
1619     case Instruction::UDiv:
1620     case Instruction::SDiv:
1621     case Instruction::FDiv:
1622     case Instruction::URem:
1623     case Instruction::SRem:
1624     case Instruction::FRem:
1625     case Instruction::Shl:
1626     case Instruction::LShr:
1627     case Instruction::AShr:
1628     case Instruction::And:
1629     case Instruction::Or:
1630     case Instruction::Xor: {
1631       newTreeEntry(VL, true, UserTreeIdx);
1632       DEBUG(dbgs() << "SLP: added a vector of bin op.\n");
1633 
1634       // Sort operands of the instructions so that each side is more likely to
1635       // have the same opcode.
1636       if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
1637         ValueList Left, Right;
1638         reorderInputsAccordingToOpcode(VL0->getOpcode(), VL, Left, Right);
1639         buildTree_rec(Left, Depth + 1, UserTreeIdx);
1640         buildTree_rec(Right, Depth + 1, UserTreeIdx);
1641         return;
1642       }
1643 
1644       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
1645         ValueList Operands;
1646         // Prepare the operand vector.
1647         for (Value *j : VL)
1648           Operands.push_back(cast<Instruction>(j)->getOperand(i));
1649 
1650         buildTree_rec(Operands, Depth + 1, UserTreeIdx);
1651       }
1652       return;
1653     }
1654     case Instruction::GetElementPtr: {
1655       // We don't combine GEPs with complicated (nested) indexing.
1656       for (unsigned j = 0; j < VL.size(); ++j) {
1657         if (cast<Instruction>(VL[j])->getNumOperands() != 2) {
1658           DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
1659           BS.cancelScheduling(VL, VL0);
1660           newTreeEntry(VL, false, UserTreeIdx);
1661           return;
1662         }
1663       }
1664 
1665       // We can't combine several GEPs into one vector if they operate on
1666       // different types.
1667       Type *Ty0 = VL0->getOperand(0)->getType();
1668       for (unsigned j = 0; j < VL.size(); ++j) {
1669         Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType();
1670         if (Ty0 != CurTy) {
1671           DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n");
1672           BS.cancelScheduling(VL, VL0);
1673           newTreeEntry(VL, false, UserTreeIdx);
1674           return;
1675         }
1676       }
1677 
1678       // We don't combine GEPs with non-constant indexes.
1679       for (unsigned j = 0; j < VL.size(); ++j) {
1680         auto Op = cast<Instruction>(VL[j])->getOperand(1);
1681         if (!isa<ConstantInt>(Op)) {
1682           DEBUG(
1683               dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n");
1684           BS.cancelScheduling(VL, VL0);
1685           newTreeEntry(VL, false, UserTreeIdx);
1686           return;
1687         }
1688       }
1689 
1690       newTreeEntry(VL, true, UserTreeIdx);
1691       DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
1692       for (unsigned i = 0, e = 2; i < e; ++i) {
1693         ValueList Operands;
1694         // Prepare the operand vector.
1695         for (Value *j : VL)
1696           Operands.push_back(cast<Instruction>(j)->getOperand(i));
1697 
1698         buildTree_rec(Operands, Depth + 1, UserTreeIdx);
1699       }
1700       return;
1701     }
1702     case Instruction::Store: {
1703       // Check if the stores are consecutive or of we need to swizzle them.
1704       for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
1705         if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) {
1706           BS.cancelScheduling(VL, VL0);
1707           newTreeEntry(VL, false, UserTreeIdx);
1708           DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
1709           return;
1710         }
1711 
1712       newTreeEntry(VL, true, UserTreeIdx);
1713       DEBUG(dbgs() << "SLP: added a vector of stores.\n");
1714 
1715       ValueList Operands;
1716       for (Value *j : VL)
1717         Operands.push_back(cast<Instruction>(j)->getOperand(0));
1718 
1719       buildTree_rec(Operands, Depth + 1, UserTreeIdx);
1720       return;
1721     }
1722     case Instruction::Call: {
1723       // Check if the calls are all to the same vectorizable intrinsic.
1724       CallInst *CI = cast<CallInst>(VL0);
1725       // Check if this is an Intrinsic call or something that can be
1726       // represented by an intrinsic call
1727       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
1728       if (!isTriviallyVectorizable(ID)) {
1729         BS.cancelScheduling(VL, VL0);
1730         newTreeEntry(VL, false, UserTreeIdx);
1731         DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
1732         return;
1733       }
1734       Function *Int = CI->getCalledFunction();
1735       Value *A1I = nullptr;
1736       if (hasVectorInstrinsicScalarOpd(ID, 1))
1737         A1I = CI->getArgOperand(1);
1738       for (unsigned i = 1, e = VL.size(); i != e; ++i) {
1739         CallInst *CI2 = dyn_cast<CallInst>(VL[i]);
1740         if (!CI2 || CI2->getCalledFunction() != Int ||
1741             getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
1742             !CI->hasIdenticalOperandBundleSchema(*CI2)) {
1743           BS.cancelScheduling(VL, VL0);
1744           newTreeEntry(VL, false, UserTreeIdx);
1745           DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i]
1746                        << "\n");
1747           return;
1748         }
1749         // ctlz,cttz and powi are special intrinsics whose second argument
1750         // should be same in order for them to be vectorized.
1751         if (hasVectorInstrinsicScalarOpd(ID, 1)) {
1752           Value *A1J = CI2->getArgOperand(1);
1753           if (A1I != A1J) {
1754             BS.cancelScheduling(VL, VL0);
1755             newTreeEntry(VL, false, UserTreeIdx);
1756             DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
1757                          << " argument "<< A1I<<"!=" << A1J
1758                          << "\n");
1759             return;
1760           }
1761         }
1762         // Verify that the bundle operands are identical between the two calls.
1763         if (CI->hasOperandBundles() &&
1764             !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
1765                         CI->op_begin() + CI->getBundleOperandsEndIndex(),
1766                         CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
1767           BS.cancelScheduling(VL, VL0);
1768           newTreeEntry(VL, false, UserTreeIdx);
1769           DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" << *CI << "!="
1770                        << *VL[i] << '\n');
1771           return;
1772         }
1773       }
1774 
1775       newTreeEntry(VL, true, UserTreeIdx);
1776       for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
1777         ValueList Operands;
1778         // Prepare the operand vector.
1779         for (Value *j : VL) {
1780           CallInst *CI2 = dyn_cast<CallInst>(j);
1781           Operands.push_back(CI2->getArgOperand(i));
1782         }
1783         buildTree_rec(Operands, Depth + 1, UserTreeIdx);
1784       }
1785       return;
1786     }
1787     case Instruction::ShuffleVector: {
1788       // If this is not an alternate sequence of opcode like add-sub
1789       // then do not vectorize this instruction.
1790       if (!isAltShuffle) {
1791         BS.cancelScheduling(VL, VL0);
1792         newTreeEntry(VL, false, UserTreeIdx);
1793         DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
1794         return;
1795       }
1796       newTreeEntry(VL, true, UserTreeIdx);
1797       DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
1798 
1799       // Reorder operands if reordering would enable vectorization.
1800       if (isa<BinaryOperator>(VL0)) {
1801         ValueList Left, Right;
1802         reorderAltShuffleOperands(VL0->getOpcode(), VL, Left, Right);
1803         buildTree_rec(Left, Depth + 1, UserTreeIdx);
1804         buildTree_rec(Right, Depth + 1, UserTreeIdx);
1805         return;
1806       }
1807 
1808       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
1809         ValueList Operands;
1810         // Prepare the operand vector.
1811         for (Value *j : VL)
1812           Operands.push_back(cast<Instruction>(j)->getOperand(i));
1813 
1814         buildTree_rec(Operands, Depth + 1, UserTreeIdx);
1815       }
1816       return;
1817     }
1818     default:
1819       BS.cancelScheduling(VL, VL0);
1820       newTreeEntry(VL, false, UserTreeIdx);
1821       DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
1822       return;
1823   }
1824 }
1825 
1826 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
1827   unsigned N;
1828   Type *EltTy;
1829   auto *ST = dyn_cast<StructType>(T);
1830   if (ST) {
1831     N = ST->getNumElements();
1832     EltTy = *ST->element_begin();
1833   } else {
1834     N = cast<ArrayType>(T)->getNumElements();
1835     EltTy = cast<ArrayType>(T)->getElementType();
1836   }
1837   if (!isValidElementType(EltTy))
1838     return 0;
1839   uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N));
1840   if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
1841     return 0;
1842   if (ST) {
1843     // Check that struct is homogeneous.
1844     for (const auto *Ty : ST->elements())
1845       if (Ty != EltTy)
1846         return 0;
1847   }
1848   return N;
1849 }
1850 
1851 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue) const {
1852   Instruction *E0 = cast<Instruction>(OpValue);
1853   assert(E0->getOpcode() == Instruction::ExtractElement ||
1854          E0->getOpcode() == Instruction::ExtractValue);
1855   assert(E0->getOpcode() == getSameOpcode(VL) && "Invalid opcode");
1856   // Check if all of the extracts come from the same vector and from the
1857   // correct offset.
1858   Value *Vec = E0->getOperand(0);
1859 
1860   // We have to extract from a vector/aggregate with the same number of elements.
1861   unsigned NElts;
1862   if (E0->getOpcode() == Instruction::ExtractValue) {
1863     const DataLayout &DL = E0->getModule()->getDataLayout();
1864     NElts = canMapToVector(Vec->getType(), DL);
1865     if (!NElts)
1866       return false;
1867     // Check if load can be rewritten as load of vector.
1868     LoadInst *LI = dyn_cast<LoadInst>(Vec);
1869     if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
1870       return false;
1871   } else {
1872     NElts = Vec->getType()->getVectorNumElements();
1873   }
1874 
1875   if (NElts != VL.size())
1876     return false;
1877 
1878   // Check that all of the indices extract from the correct offset.
1879   for (unsigned I = 0, E = VL.size(); I < E; ++I) {
1880     Instruction *Inst = cast<Instruction>(VL[I]);
1881     if (!matchExtractIndex(Inst, I, Inst->getOpcode()))
1882       return false;
1883     if (Inst->getOperand(0) != Vec)
1884       return false;
1885   }
1886 
1887   return true;
1888 }
1889 
1890 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const {
1891   return I->hasOneUse() ||
1892          std::all_of(I->user_begin(), I->user_end(), [this](User *U) {
1893            return ScalarToTreeEntry.count(U) > 0;
1894          });
1895 }
1896 
1897 int BoUpSLP::getEntryCost(TreeEntry *E) {
1898   ArrayRef<Value*> VL = E->Scalars;
1899 
1900   Type *ScalarTy = VL[0]->getType();
1901   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
1902     ScalarTy = SI->getValueOperand()->getType();
1903   else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0]))
1904     ScalarTy = CI->getOperand(0)->getType();
1905   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
1906 
1907   // If we have computed a smaller type for the expression, update VecTy so
1908   // that the costs will be accurate.
1909   if (MinBWs.count(VL[0]))
1910     VecTy = VectorType::get(
1911         IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size());
1912 
1913   if (E->NeedToGather) {
1914     if (allConstant(VL))
1915       return 0;
1916     if (isSplat(VL)) {
1917       return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
1918     }
1919     if (getSameOpcode(VL) == Instruction::ExtractElement) {
1920       Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL);
1921       if (ShuffleKind.hasValue()) {
1922         int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy);
1923         for (auto *V : VL) {
1924           // If all users of instruction are going to be vectorized and this
1925           // instruction itself is not going to be vectorized, consider this
1926           // instruction as dead and remove its cost from the final cost of the
1927           // vectorized tree.
1928           if (areAllUsersVectorized(cast<Instruction>(V)) &&
1929               !ScalarToTreeEntry.count(V)) {
1930             auto *IO = cast<ConstantInt>(
1931                 cast<ExtractElementInst>(V)->getIndexOperand());
1932             Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
1933                                             IO->getZExtValue());
1934           }
1935         }
1936         return Cost;
1937       }
1938     }
1939     return getGatherCost(E->Scalars);
1940   }
1941   unsigned Opcode = getSameOpcode(VL);
1942   assert(Opcode && allSameType(VL) && allSameBlock(VL) && "Invalid VL");
1943   Instruction *VL0 = cast<Instruction>(VL[0]);
1944   switch (Opcode) {
1945     case Instruction::PHI: {
1946       return 0;
1947     }
1948     case Instruction::ExtractValue:
1949     case Instruction::ExtractElement: {
1950       if (canReuseExtract(VL, VL0)) {
1951         int DeadCost = 0;
1952         for (unsigned i = 0, e = VL.size(); i < e; ++i) {
1953           Instruction *E = cast<Instruction>(VL[i]);
1954           // If all users are going to be vectorized, instruction can be
1955           // considered as dead.
1956           // The same, if have only one user, it will be vectorized for sure.
1957           if (areAllUsersVectorized(E))
1958             // Take credit for instruction that will become dead.
1959             DeadCost +=
1960                 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i);
1961         }
1962         return -DeadCost;
1963       }
1964       return getGatherCost(VecTy);
1965     }
1966     case Instruction::ZExt:
1967     case Instruction::SExt:
1968     case Instruction::FPToUI:
1969     case Instruction::FPToSI:
1970     case Instruction::FPExt:
1971     case Instruction::PtrToInt:
1972     case Instruction::IntToPtr:
1973     case Instruction::SIToFP:
1974     case Instruction::UIToFP:
1975     case Instruction::Trunc:
1976     case Instruction::FPTrunc:
1977     case Instruction::BitCast: {
1978       Type *SrcTy = VL0->getOperand(0)->getType();
1979 
1980       // Calculate the cost of this instruction.
1981       int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(),
1982                                                          VL0->getType(), SrcTy, VL0);
1983 
1984       VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
1985       int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy, VL0);
1986       return VecCost - ScalarCost;
1987     }
1988     case Instruction::FCmp:
1989     case Instruction::ICmp:
1990     case Instruction::Select: {
1991       // Calculate the cost of this instruction.
1992       VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
1993       int ScalarCost = VecTy->getNumElements() *
1994           TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty(), VL0);
1995       int VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy, VL0);
1996       return VecCost - ScalarCost;
1997     }
1998     case Instruction::Add:
1999     case Instruction::FAdd:
2000     case Instruction::Sub:
2001     case Instruction::FSub:
2002     case Instruction::Mul:
2003     case Instruction::FMul:
2004     case Instruction::UDiv:
2005     case Instruction::SDiv:
2006     case Instruction::FDiv:
2007     case Instruction::URem:
2008     case Instruction::SRem:
2009     case Instruction::FRem:
2010     case Instruction::Shl:
2011     case Instruction::LShr:
2012     case Instruction::AShr:
2013     case Instruction::And:
2014     case Instruction::Or:
2015     case Instruction::Xor: {
2016       // Certain instructions can be cheaper to vectorize if they have a
2017       // constant second vector operand.
2018       TargetTransformInfo::OperandValueKind Op1VK =
2019           TargetTransformInfo::OK_AnyValue;
2020       TargetTransformInfo::OperandValueKind Op2VK =
2021           TargetTransformInfo::OK_UniformConstantValue;
2022       TargetTransformInfo::OperandValueProperties Op1VP =
2023           TargetTransformInfo::OP_None;
2024       TargetTransformInfo::OperandValueProperties Op2VP =
2025           TargetTransformInfo::OP_None;
2026 
2027       // If all operands are exactly the same ConstantInt then set the
2028       // operand kind to OK_UniformConstantValue.
2029       // If instead not all operands are constants, then set the operand kind
2030       // to OK_AnyValue. If all operands are constants but not the same,
2031       // then set the operand kind to OK_NonUniformConstantValue.
2032       ConstantInt *CInt = nullptr;
2033       for (unsigned i = 0; i < VL.size(); ++i) {
2034         const Instruction *I = cast<Instruction>(VL[i]);
2035         if (!isa<ConstantInt>(I->getOperand(1))) {
2036           Op2VK = TargetTransformInfo::OK_AnyValue;
2037           break;
2038         }
2039         if (i == 0) {
2040           CInt = cast<ConstantInt>(I->getOperand(1));
2041           continue;
2042         }
2043         if (Op2VK == TargetTransformInfo::OK_UniformConstantValue &&
2044             CInt != cast<ConstantInt>(I->getOperand(1)))
2045           Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
2046       }
2047       // FIXME: Currently cost of model modification for division by power of
2048       // 2 is handled for X86 and AArch64. Add support for other targets.
2049       if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt &&
2050           CInt->getValue().isPowerOf2())
2051         Op2VP = TargetTransformInfo::OP_PowerOf2;
2052 
2053       SmallVector<const Value *, 4> Operands(VL0->operand_values());
2054       int ScalarCost =
2055           VecTy->getNumElements() *
2056           TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, Op2VK, Op1VP,
2057                                       Op2VP, Operands);
2058       int VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK,
2059                                                 Op1VP, Op2VP, Operands);
2060       return VecCost - ScalarCost;
2061     }
2062     case Instruction::GetElementPtr: {
2063       TargetTransformInfo::OperandValueKind Op1VK =
2064           TargetTransformInfo::OK_AnyValue;
2065       TargetTransformInfo::OperandValueKind Op2VK =
2066           TargetTransformInfo::OK_UniformConstantValue;
2067 
2068       int ScalarCost =
2069           VecTy->getNumElements() *
2070           TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK);
2071       int VecCost =
2072           TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK);
2073 
2074       return VecCost - ScalarCost;
2075     }
2076     case Instruction::Load: {
2077       // Cost of wide load - cost of scalar loads.
2078       unsigned alignment = dyn_cast<LoadInst>(VL0)->getAlignment();
2079       int ScalarLdCost = VecTy->getNumElements() *
2080           TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0);
2081       int VecLdCost = TTI->getMemoryOpCost(Instruction::Load,
2082                                            VecTy, alignment, 0, VL0);
2083       return VecLdCost - ScalarLdCost;
2084     }
2085     case Instruction::Store: {
2086       // We know that we can merge the stores. Calculate the cost.
2087       unsigned alignment = dyn_cast<StoreInst>(VL0)->getAlignment();
2088       int ScalarStCost = VecTy->getNumElements() *
2089           TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0);
2090       int VecStCost = TTI->getMemoryOpCost(Instruction::Store,
2091                                            VecTy, alignment, 0, VL0);
2092       return VecStCost - ScalarStCost;
2093     }
2094     case Instruction::Call: {
2095       CallInst *CI = cast<CallInst>(VL0);
2096       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
2097 
2098       // Calculate the cost of the scalar and vector calls.
2099       SmallVector<Type*, 4> ScalarTys;
2100       for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op)
2101         ScalarTys.push_back(CI->getArgOperand(op)->getType());
2102 
2103       FastMathFlags FMF;
2104       if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
2105         FMF = FPMO->getFastMathFlags();
2106 
2107       int ScalarCallCost = VecTy->getNumElements() *
2108           TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF);
2109 
2110       SmallVector<Value *, 4> Args(CI->arg_operands());
2111       int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF,
2112                                                    VecTy->getNumElements());
2113 
2114       DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost
2115             << " (" << VecCallCost  << "-" <<  ScalarCallCost << ")"
2116             << " for " << *CI << "\n");
2117 
2118       return VecCallCost - ScalarCallCost;
2119     }
2120     case Instruction::ShuffleVector: {
2121       TargetTransformInfo::OperandValueKind Op1VK =
2122           TargetTransformInfo::OK_AnyValue;
2123       TargetTransformInfo::OperandValueKind Op2VK =
2124           TargetTransformInfo::OK_AnyValue;
2125       int ScalarCost = 0;
2126       int VecCost = 0;
2127       for (Value *i : VL) {
2128         Instruction *I = cast<Instruction>(i);
2129         if (!I)
2130           break;
2131         ScalarCost +=
2132             TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK);
2133       }
2134       // VecCost is equal to sum of the cost of creating 2 vectors
2135       // and the cost of creating shuffle.
2136       Instruction *I0 = cast<Instruction>(VL[0]);
2137       VecCost =
2138           TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK);
2139       Instruction *I1 = cast<Instruction>(VL[1]);
2140       VecCost +=
2141           TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK);
2142       VecCost +=
2143           TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0);
2144       return VecCost - ScalarCost;
2145     }
2146     default:
2147       llvm_unreachable("Unknown instruction");
2148   }
2149 }
2150 
2151 bool BoUpSLP::isFullyVectorizableTinyTree() {
2152   DEBUG(dbgs() << "SLP: Check whether the tree with height " <<
2153         VectorizableTree.size() << " is fully vectorizable .\n");
2154 
2155   // We only handle trees of heights 1 and 2.
2156   if (VectorizableTree.size() == 1 && !VectorizableTree[0].NeedToGather)
2157     return true;
2158 
2159   if (VectorizableTree.size() != 2)
2160     return false;
2161 
2162   // Handle splat and all-constants stores.
2163   if (!VectorizableTree[0].NeedToGather &&
2164       (allConstant(VectorizableTree[1].Scalars) ||
2165        isSplat(VectorizableTree[1].Scalars)))
2166     return true;
2167 
2168   // Gathering cost would be too much for tiny trees.
2169   if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather)
2170     return false;
2171 
2172   return true;
2173 }
2174 
2175 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() {
2176 
2177   // We can vectorize the tree if its size is greater than or equal to the
2178   // minimum size specified by the MinTreeSize command line option.
2179   if (VectorizableTree.size() >= MinTreeSize)
2180     return false;
2181 
2182   // If we have a tiny tree (a tree whose size is less than MinTreeSize), we
2183   // can vectorize it if we can prove it fully vectorizable.
2184   if (isFullyVectorizableTinyTree())
2185     return false;
2186 
2187   assert(VectorizableTree.empty()
2188              ? ExternalUses.empty()
2189              : true && "We shouldn't have any external users");
2190 
2191   // Otherwise, we can't vectorize the tree. It is both tiny and not fully
2192   // vectorizable.
2193   return true;
2194 }
2195 
2196 int BoUpSLP::getSpillCost() {
2197   // Walk from the bottom of the tree to the top, tracking which values are
2198   // live. When we see a call instruction that is not part of our tree,
2199   // query TTI to see if there is a cost to keeping values live over it
2200   // (for example, if spills and fills are required).
2201   unsigned BundleWidth = VectorizableTree.front().Scalars.size();
2202   int Cost = 0;
2203 
2204   SmallPtrSet<Instruction*, 4> LiveValues;
2205   Instruction *PrevInst = nullptr;
2206 
2207   for (const auto &N : VectorizableTree) {
2208     Instruction *Inst = dyn_cast<Instruction>(N.Scalars[0]);
2209     if (!Inst)
2210       continue;
2211 
2212     if (!PrevInst) {
2213       PrevInst = Inst;
2214       continue;
2215     }
2216 
2217     // Update LiveValues.
2218     LiveValues.erase(PrevInst);
2219     for (auto &J : PrevInst->operands()) {
2220       if (isa<Instruction>(&*J) && getTreeEntry(&*J))
2221         LiveValues.insert(cast<Instruction>(&*J));
2222     }
2223 
2224     DEBUG(
2225       dbgs() << "SLP: #LV: " << LiveValues.size();
2226       for (auto *X : LiveValues)
2227         dbgs() << " " << X->getName();
2228       dbgs() << ", Looking at ";
2229       Inst->dump();
2230       );
2231 
2232     // Now find the sequence of instructions between PrevInst and Inst.
2233     BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(),
2234                                  PrevInstIt =
2235                                      PrevInst->getIterator().getReverse();
2236     while (InstIt != PrevInstIt) {
2237       if (PrevInstIt == PrevInst->getParent()->rend()) {
2238         PrevInstIt = Inst->getParent()->rbegin();
2239         continue;
2240       }
2241 
2242       if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) {
2243         SmallVector<Type*, 4> V;
2244         for (auto *II : LiveValues)
2245           V.push_back(VectorType::get(II->getType(), BundleWidth));
2246         Cost += TTI->getCostOfKeepingLiveOverCall(V);
2247       }
2248 
2249       ++PrevInstIt;
2250     }
2251 
2252     PrevInst = Inst;
2253   }
2254 
2255   return Cost;
2256 }
2257 
2258 int BoUpSLP::getTreeCost() {
2259   int Cost = 0;
2260   DEBUG(dbgs() << "SLP: Calculating cost for tree of size " <<
2261         VectorizableTree.size() << ".\n");
2262 
2263   unsigned BundleWidth = VectorizableTree[0].Scalars.size();
2264 
2265   for (TreeEntry &TE : VectorizableTree) {
2266     int C = getEntryCost(&TE);
2267     DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with "
2268                  << *TE.Scalars[0] << ".\n");
2269     Cost += C;
2270   }
2271 
2272   SmallSet<Value *, 16> ExtractCostCalculated;
2273   int ExtractCost = 0;
2274   for (ExternalUser &EU : ExternalUses) {
2275     // We only add extract cost once for the same scalar.
2276     if (!ExtractCostCalculated.insert(EU.Scalar).second)
2277       continue;
2278 
2279     // Uses by ephemeral values are free (because the ephemeral value will be
2280     // removed prior to code generation, and so the extraction will be
2281     // removed as well).
2282     if (EphValues.count(EU.User))
2283       continue;
2284 
2285     // If we plan to rewrite the tree in a smaller type, we will need to sign
2286     // extend the extracted value back to the original type. Here, we account
2287     // for the extract and the added cost of the sign extend if needed.
2288     auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth);
2289     auto *ScalarRoot = VectorizableTree[0].Scalars[0];
2290     if (MinBWs.count(ScalarRoot)) {
2291       auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
2292       auto Extend =
2293           MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt;
2294       VecTy = VectorType::get(MinTy, BundleWidth);
2295       ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(),
2296                                                    VecTy, EU.Lane);
2297     } else {
2298       ExtractCost +=
2299           TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane);
2300     }
2301   }
2302 
2303   int SpillCost = getSpillCost();
2304   Cost += SpillCost + ExtractCost;
2305 
2306   std::string Str;
2307   {
2308     raw_string_ostream OS(Str);
2309     OS << "SLP: Spill Cost = " << SpillCost << ".\n"
2310        << "SLP: Extract Cost = " << ExtractCost << ".\n"
2311        << "SLP: Total Cost = " << Cost << ".\n";
2312   }
2313   DEBUG(dbgs() << Str);
2314 
2315   if (ViewSLPTree)
2316     ViewGraph(this, "SLP" + F->getName(), false, Str);
2317 
2318   return Cost;
2319 }
2320 
2321 int BoUpSLP::getGatherCost(Type *Ty) {
2322   int Cost = 0;
2323   for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
2324     Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
2325   return Cost;
2326 }
2327 
2328 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) {
2329   // Find the type of the operands in VL.
2330   Type *ScalarTy = VL[0]->getType();
2331   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
2332     ScalarTy = SI->getValueOperand()->getType();
2333   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
2334   // Find the cost of inserting/extracting values from the vector.
2335   return getGatherCost(VecTy);
2336 }
2337 
2338 // Reorder commutative operations in alternate shuffle if the resulting vectors
2339 // are consecutive loads. This would allow us to vectorize the tree.
2340 // If we have something like-
2341 // load a[0] - load b[0]
2342 // load b[1] + load a[1]
2343 // load a[2] - load b[2]
2344 // load a[3] + load b[3]
2345 // Reordering the second load b[1]  load a[1] would allow us to vectorize this
2346 // code.
2347 void BoUpSLP::reorderAltShuffleOperands(unsigned Opcode, ArrayRef<Value *> VL,
2348                                         SmallVectorImpl<Value *> &Left,
2349                                         SmallVectorImpl<Value *> &Right) {
2350   // Push left and right operands of binary operation into Left and Right
2351   unsigned AltOpcode = getAltOpcode(Opcode);
2352   (void)AltOpcode;
2353   for (Value *V : VL) {
2354     auto *I = cast<Instruction>(V);
2355     assert(sameOpcodeOrAlt(Opcode, AltOpcode, I->getOpcode()) &&
2356            "Incorrect instruction in vector");
2357     Left.push_back(I->getOperand(0));
2358     Right.push_back(I->getOperand(1));
2359   }
2360 
2361   // Reorder if we have a commutative operation and consecutive access
2362   // are on either side of the alternate instructions.
2363   for (unsigned j = 0; j < VL.size() - 1; ++j) {
2364     if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) {
2365       if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) {
2366         Instruction *VL1 = cast<Instruction>(VL[j]);
2367         Instruction *VL2 = cast<Instruction>(VL[j + 1]);
2368         if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) {
2369           std::swap(Left[j], Right[j]);
2370           continue;
2371         } else if (VL2->isCommutative() &&
2372                    isConsecutiveAccess(L, L1, *DL, *SE)) {
2373           std::swap(Left[j + 1], Right[j + 1]);
2374           continue;
2375         }
2376         // else unchanged
2377       }
2378     }
2379     if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) {
2380       if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) {
2381         Instruction *VL1 = cast<Instruction>(VL[j]);
2382         Instruction *VL2 = cast<Instruction>(VL[j + 1]);
2383         if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) {
2384           std::swap(Left[j], Right[j]);
2385           continue;
2386         } else if (VL2->isCommutative() &&
2387                    isConsecutiveAccess(L, L1, *DL, *SE)) {
2388           std::swap(Left[j + 1], Right[j + 1]);
2389           continue;
2390         }
2391         // else unchanged
2392       }
2393     }
2394   }
2395 }
2396 
2397 // Return true if I should be commuted before adding it's left and right
2398 // operands to the arrays Left and Right.
2399 //
2400 // The vectorizer is trying to either have all elements one side being
2401 // instruction with the same opcode to enable further vectorization, or having
2402 // a splat to lower the vectorizing cost.
2403 static bool shouldReorderOperands(
2404     int i, unsigned Opcode, Instruction &I, ArrayRef<Value *> Left,
2405     ArrayRef<Value *> Right, bool AllSameOpcodeLeft, bool AllSameOpcodeRight,
2406     bool SplatLeft, bool SplatRight, Value *&VLeft, Value *&VRight) {
2407   VLeft = I.getOperand(0);
2408   VRight = I.getOperand(1);
2409   // If we have "SplatRight", try to see if commuting is needed to preserve it.
2410   if (SplatRight) {
2411     if (VRight == Right[i - 1])
2412       // Preserve SplatRight
2413       return false;
2414     if (VLeft == Right[i - 1]) {
2415       // Commuting would preserve SplatRight, but we don't want to break
2416       // SplatLeft either, i.e. preserve the original order if possible.
2417       // (FIXME: why do we care?)
2418       if (SplatLeft && VLeft == Left[i - 1])
2419         return false;
2420       return true;
2421     }
2422   }
2423   // Symmetrically handle Right side.
2424   if (SplatLeft) {
2425     if (VLeft == Left[i - 1])
2426       // Preserve SplatLeft
2427       return false;
2428     if (VRight == Left[i - 1])
2429       return true;
2430   }
2431 
2432   Instruction *ILeft = dyn_cast<Instruction>(VLeft);
2433   Instruction *IRight = dyn_cast<Instruction>(VRight);
2434 
2435   // If we have "AllSameOpcodeRight", try to see if the left operands preserves
2436   // it and not the right, in this case we want to commute.
2437   if (AllSameOpcodeRight) {
2438     unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode();
2439     if (IRight && RightPrevOpcode == IRight->getOpcode())
2440       // Do not commute, a match on the right preserves AllSameOpcodeRight
2441       return false;
2442     if (ILeft && RightPrevOpcode == ILeft->getOpcode()) {
2443       // We have a match and may want to commute, but first check if there is
2444       // not also a match on the existing operands on the Left to preserve
2445       // AllSameOpcodeLeft, i.e. preserve the original order if possible.
2446       // (FIXME: why do we care?)
2447       if (AllSameOpcodeLeft && ILeft &&
2448           cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode())
2449         return false;
2450       return true;
2451     }
2452   }
2453   // Symmetrically handle Left side.
2454   if (AllSameOpcodeLeft) {
2455     unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode();
2456     if (ILeft && LeftPrevOpcode == ILeft->getOpcode())
2457       return false;
2458     if (IRight && LeftPrevOpcode == IRight->getOpcode())
2459       return true;
2460   }
2461   return false;
2462 }
2463 
2464 void BoUpSLP::reorderInputsAccordingToOpcode(unsigned Opcode,
2465                                              ArrayRef<Value *> VL,
2466                                              SmallVectorImpl<Value *> &Left,
2467                                              SmallVectorImpl<Value *> &Right) {
2468 
2469   if (VL.size()) {
2470     // Peel the first iteration out of the loop since there's nothing
2471     // interesting to do anyway and it simplifies the checks in the loop.
2472     auto *I = cast<Instruction>(VL[0]);
2473     Value *VLeft = I->getOperand(0);
2474     Value *VRight = I->getOperand(1);
2475     if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft))
2476       // Favor having instruction to the right. FIXME: why?
2477       std::swap(VLeft, VRight);
2478     Left.push_back(VLeft);
2479     Right.push_back(VRight);
2480   }
2481 
2482   // Keep track if we have instructions with all the same opcode on one side.
2483   bool AllSameOpcodeLeft = isa<Instruction>(Left[0]);
2484   bool AllSameOpcodeRight = isa<Instruction>(Right[0]);
2485   // Keep track if we have one side with all the same value (broadcast).
2486   bool SplatLeft = true;
2487   bool SplatRight = true;
2488 
2489   for (unsigned i = 1, e = VL.size(); i != e; ++i) {
2490     Instruction *I = cast<Instruction>(VL[i]);
2491     assert(((I->getOpcode() == Opcode && I->isCommutative()) ||
2492             (I->getOpcode() != Opcode && Instruction::isCommutative(Opcode))) &&
2493            "Can only process commutative instruction");
2494     // Commute to favor either a splat or maximizing having the same opcodes on
2495     // one side.
2496     Value *VLeft;
2497     Value *VRight;
2498     if (shouldReorderOperands(i, Opcode, *I, Left, Right, AllSameOpcodeLeft,
2499                               AllSameOpcodeRight, SplatLeft, SplatRight, VLeft,
2500                               VRight)) {
2501       Left.push_back(VRight);
2502       Right.push_back(VLeft);
2503     } else {
2504       Left.push_back(VLeft);
2505       Right.push_back(VRight);
2506     }
2507     // Update Splat* and AllSameOpcode* after the insertion.
2508     SplatRight = SplatRight && (Right[i - 1] == Right[i]);
2509     SplatLeft = SplatLeft && (Left[i - 1] == Left[i]);
2510     AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) &&
2511                         (cast<Instruction>(Left[i - 1])->getOpcode() ==
2512                          cast<Instruction>(Left[i])->getOpcode());
2513     AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) &&
2514                          (cast<Instruction>(Right[i - 1])->getOpcode() ==
2515                           cast<Instruction>(Right[i])->getOpcode());
2516   }
2517 
2518   // If one operand end up being broadcast, return this operand order.
2519   if (SplatRight || SplatLeft)
2520     return;
2521 
2522   // Finally check if we can get longer vectorizable chain by reordering
2523   // without breaking the good operand order detected above.
2524   // E.g. If we have something like-
2525   // load a[0]  load b[0]
2526   // load b[1]  load a[1]
2527   // load a[2]  load b[2]
2528   // load a[3]  load b[3]
2529   // Reordering the second load b[1]  load a[1] would allow us to vectorize
2530   // this code and we still retain AllSameOpcode property.
2531   // FIXME: This load reordering might break AllSameOpcode in some rare cases
2532   // such as-
2533   // add a[0],c[0]  load b[0]
2534   // add a[1],c[2]  load b[1]
2535   // b[2]           load b[2]
2536   // add a[3],c[3]  load b[3]
2537   for (unsigned j = 0; j < VL.size() - 1; ++j) {
2538     if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) {
2539       if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) {
2540         if (isConsecutiveAccess(L, L1, *DL, *SE)) {
2541           std::swap(Left[j + 1], Right[j + 1]);
2542           continue;
2543         }
2544       }
2545     }
2546     if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) {
2547       if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) {
2548         if (isConsecutiveAccess(L, L1, *DL, *SE)) {
2549           std::swap(Left[j + 1], Right[j + 1]);
2550           continue;
2551         }
2552       }
2553     }
2554     // else unchanged
2555   }
2556 }
2557 
2558 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL, Value *OpValue) {
2559 
2560   // Get the basic block this bundle is in. All instructions in the bundle
2561   // should be in this block.
2562   auto *Front = cast<Instruction>(OpValue);
2563   auto *BB = Front->getParent();
2564   const unsigned Opcode = cast<Instruction>(OpValue)->getOpcode();
2565   const unsigned AltOpcode = getAltOpcode(Opcode);
2566   assert(all_of(make_range(VL.begin(), VL.end()), [=](Value *V) -> bool {
2567     return !sameOpcodeOrAlt(Opcode, AltOpcode,
2568                             cast<Instruction>(V)->getOpcode()) ||
2569            cast<Instruction>(V)->getParent() == BB;
2570   }));
2571 
2572   // The last instruction in the bundle in program order.
2573   Instruction *LastInst = nullptr;
2574 
2575   // Find the last instruction. The common case should be that BB has been
2576   // scheduled, and the last instruction is VL.back(). So we start with
2577   // VL.back() and iterate over schedule data until we reach the end of the
2578   // bundle. The end of the bundle is marked by null ScheduleData.
2579   if (BlocksSchedules.count(BB)) {
2580     auto *Bundle =
2581         BlocksSchedules[BB]->getScheduleData(isOneOf(OpValue, VL.back()));
2582     if (Bundle && Bundle->isPartOfBundle())
2583       for (; Bundle; Bundle = Bundle->NextInBundle)
2584         if (Bundle->OpValue == Bundle->Inst)
2585           LastInst = Bundle->Inst;
2586   }
2587 
2588   // LastInst can still be null at this point if there's either not an entry
2589   // for BB in BlocksSchedules or there's no ScheduleData available for
2590   // VL.back(). This can be the case if buildTree_rec aborts for various
2591   // reasons (e.g., the maximum recursion depth is reached, the maximum region
2592   // size is reached, etc.). ScheduleData is initialized in the scheduling
2593   // "dry-run".
2594   //
2595   // If this happens, we can still find the last instruction by brute force. We
2596   // iterate forwards from Front (inclusive) until we either see all
2597   // instructions in the bundle or reach the end of the block. If Front is the
2598   // last instruction in program order, LastInst will be set to Front, and we
2599   // will visit all the remaining instructions in the block.
2600   //
2601   // One of the reasons we exit early from buildTree_rec is to place an upper
2602   // bound on compile-time. Thus, taking an additional compile-time hit here is
2603   // not ideal. However, this should be exceedingly rare since it requires that
2604   // we both exit early from buildTree_rec and that the bundle be out-of-order
2605   // (causing us to iterate all the way to the end of the block).
2606   if (!LastInst) {
2607     SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end());
2608     for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) {
2609       if (Bundle.erase(&I) && sameOpcodeOrAlt(Opcode, AltOpcode, I.getOpcode()))
2610         LastInst = &I;
2611       if (Bundle.empty())
2612         break;
2613     }
2614   }
2615 
2616   // Set the insertion point after the last instruction in the bundle. Set the
2617   // debug location to Front.
2618   Builder.SetInsertPoint(BB, ++LastInst->getIterator());
2619   Builder.SetCurrentDebugLocation(Front->getDebugLoc());
2620 }
2621 
2622 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
2623   Value *Vec = UndefValue::get(Ty);
2624   // Generate the 'InsertElement' instruction.
2625   for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
2626     Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
2627     if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) {
2628       GatherSeq.insert(Insrt);
2629       CSEBlocks.insert(Insrt->getParent());
2630 
2631       // Add to our 'need-to-extract' list.
2632       if (TreeEntry *E = getTreeEntry(VL[i])) {
2633         // Find which lane we need to extract.
2634         int FoundLane = -1;
2635         for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) {
2636           // Is this the lane of the scalar that we are looking for ?
2637           if (E->Scalars[Lane] == VL[i]) {
2638             FoundLane = Lane;
2639             break;
2640           }
2641         }
2642         assert(FoundLane >= 0 && "Could not find the correct lane");
2643         ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane));
2644       }
2645     }
2646   }
2647 
2648   return Vec;
2649 }
2650 
2651 Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL, Value *OpValue) const {
2652   if (const TreeEntry *En = getTreeEntry(OpValue)) {
2653     if (En->isSame(VL) && En->VectorizedValue)
2654       return En->VectorizedValue;
2655   }
2656   return nullptr;
2657 }
2658 
2659 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
2660   if (TreeEntry *E = getTreeEntry(VL[0]))
2661     if (E->isSame(VL))
2662       return vectorizeTree(E);
2663 
2664   Type *ScalarTy = VL[0]->getType();
2665   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
2666     ScalarTy = SI->getValueOperand()->getType();
2667   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
2668 
2669   return Gather(VL, VecTy);
2670 }
2671 
2672 Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
2673   IRBuilder<>::InsertPointGuard Guard(Builder);
2674 
2675   if (E->VectorizedValue) {
2676     DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
2677     return E->VectorizedValue;
2678   }
2679 
2680   Instruction *VL0 = cast<Instruction>(E->Scalars[0]);
2681   Type *ScalarTy = VL0->getType();
2682   if (StoreInst *SI = dyn_cast<StoreInst>(VL0))
2683     ScalarTy = SI->getValueOperand()->getType();
2684   VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size());
2685 
2686   if (E->NeedToGather) {
2687     setInsertPointAfterBundle(E->Scalars, VL0);
2688     auto *V = Gather(E->Scalars, VecTy);
2689     E->VectorizedValue = V;
2690     return V;
2691   }
2692 
2693   unsigned Opcode = getSameOpcode(E->Scalars);
2694 
2695   switch (Opcode) {
2696     case Instruction::PHI: {
2697       PHINode *PH = dyn_cast<PHINode>(VL0);
2698       Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
2699       Builder.SetCurrentDebugLocation(PH->getDebugLoc());
2700       PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
2701       E->VectorizedValue = NewPhi;
2702 
2703       // PHINodes may have multiple entries from the same block. We want to
2704       // visit every block once.
2705       SmallSet<BasicBlock*, 4> VisitedBBs;
2706 
2707       for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
2708         ValueList Operands;
2709         BasicBlock *IBB = PH->getIncomingBlock(i);
2710 
2711         if (!VisitedBBs.insert(IBB).second) {
2712           NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
2713           continue;
2714         }
2715 
2716         // Prepare the operand vector.
2717         for (Value *V : E->Scalars)
2718           Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB));
2719 
2720         Builder.SetInsertPoint(IBB->getTerminator());
2721         Builder.SetCurrentDebugLocation(PH->getDebugLoc());
2722         Value *Vec = vectorizeTree(Operands);
2723         NewPhi->addIncoming(Vec, IBB);
2724       }
2725 
2726       assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
2727              "Invalid number of incoming values");
2728       return NewPhi;
2729     }
2730 
2731     case Instruction::ExtractElement: {
2732       if (canReuseExtract(E->Scalars, VL0)) {
2733         Value *V = VL0->getOperand(0);
2734         E->VectorizedValue = V;
2735         return V;
2736       }
2737       setInsertPointAfterBundle(E->Scalars, VL0);
2738       auto *V = Gather(E->Scalars, VecTy);
2739       E->VectorizedValue = V;
2740       return V;
2741     }
2742     case Instruction::ExtractValue: {
2743       if (canReuseExtract(E->Scalars, VL0)) {
2744         LoadInst *LI = cast<LoadInst>(VL0->getOperand(0));
2745         Builder.SetInsertPoint(LI);
2746         PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace());
2747         Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
2748         LoadInst *V = Builder.CreateAlignedLoad(Ptr, LI->getAlignment());
2749         E->VectorizedValue = V;
2750         return propagateMetadata(V, E->Scalars);
2751       }
2752       setInsertPointAfterBundle(E->Scalars, VL0);
2753       auto *V = Gather(E->Scalars, VecTy);
2754       E->VectorizedValue = V;
2755       return V;
2756     }
2757     case Instruction::ZExt:
2758     case Instruction::SExt:
2759     case Instruction::FPToUI:
2760     case Instruction::FPToSI:
2761     case Instruction::FPExt:
2762     case Instruction::PtrToInt:
2763     case Instruction::IntToPtr:
2764     case Instruction::SIToFP:
2765     case Instruction::UIToFP:
2766     case Instruction::Trunc:
2767     case Instruction::FPTrunc:
2768     case Instruction::BitCast: {
2769       ValueList INVL;
2770       for (Value *V : E->Scalars)
2771         INVL.push_back(cast<Instruction>(V)->getOperand(0));
2772 
2773       setInsertPointAfterBundle(E->Scalars, VL0);
2774 
2775       Value *InVec = vectorizeTree(INVL);
2776 
2777       if (Value *V = alreadyVectorized(E->Scalars, VL0))
2778         return V;
2779 
2780       CastInst *CI = dyn_cast<CastInst>(VL0);
2781       Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
2782       E->VectorizedValue = V;
2783       ++NumVectorInstructions;
2784       return V;
2785     }
2786     case Instruction::FCmp:
2787     case Instruction::ICmp: {
2788       ValueList LHSV, RHSV;
2789       for (Value *V : E->Scalars) {
2790         LHSV.push_back(cast<Instruction>(V)->getOperand(0));
2791         RHSV.push_back(cast<Instruction>(V)->getOperand(1));
2792       }
2793 
2794       setInsertPointAfterBundle(E->Scalars, VL0);
2795 
2796       Value *L = vectorizeTree(LHSV);
2797       Value *R = vectorizeTree(RHSV);
2798 
2799       if (Value *V = alreadyVectorized(E->Scalars, VL0))
2800         return V;
2801 
2802       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
2803       Value *V;
2804       if (Opcode == Instruction::FCmp)
2805         V = Builder.CreateFCmp(P0, L, R);
2806       else
2807         V = Builder.CreateICmp(P0, L, R);
2808 
2809       E->VectorizedValue = V;
2810       propagateIRFlags(E->VectorizedValue, E->Scalars, VL0);
2811       ++NumVectorInstructions;
2812       return V;
2813     }
2814     case Instruction::Select: {
2815       ValueList TrueVec, FalseVec, CondVec;
2816       for (Value *V : E->Scalars) {
2817         CondVec.push_back(cast<Instruction>(V)->getOperand(0));
2818         TrueVec.push_back(cast<Instruction>(V)->getOperand(1));
2819         FalseVec.push_back(cast<Instruction>(V)->getOperand(2));
2820       }
2821 
2822       setInsertPointAfterBundle(E->Scalars, VL0);
2823 
2824       Value *Cond = vectorizeTree(CondVec);
2825       Value *True = vectorizeTree(TrueVec);
2826       Value *False = vectorizeTree(FalseVec);
2827 
2828       if (Value *V = alreadyVectorized(E->Scalars, VL0))
2829         return V;
2830 
2831       Value *V = Builder.CreateSelect(Cond, True, False);
2832       E->VectorizedValue = V;
2833       ++NumVectorInstructions;
2834       return V;
2835     }
2836     case Instruction::Add:
2837     case Instruction::FAdd:
2838     case Instruction::Sub:
2839     case Instruction::FSub:
2840     case Instruction::Mul:
2841     case Instruction::FMul:
2842     case Instruction::UDiv:
2843     case Instruction::SDiv:
2844     case Instruction::FDiv:
2845     case Instruction::URem:
2846     case Instruction::SRem:
2847     case Instruction::FRem:
2848     case Instruction::Shl:
2849     case Instruction::LShr:
2850     case Instruction::AShr:
2851     case Instruction::And:
2852     case Instruction::Or:
2853     case Instruction::Xor: {
2854       ValueList LHSVL, RHSVL;
2855       if (isa<BinaryOperator>(VL0) && VL0->isCommutative())
2856         reorderInputsAccordingToOpcode(VL0->getOpcode(),
2857                                        E->Scalars, LHSVL, RHSVL);
2858       else
2859         for (Value *V : E->Scalars) {
2860           auto *I = cast<Instruction>(V);
2861           LHSVL.push_back(I->getOperand(0));
2862           RHSVL.push_back(I->getOperand(1));
2863         }
2864 
2865       setInsertPointAfterBundle(E->Scalars, VL0);
2866 
2867       Value *LHS = vectorizeTree(LHSVL);
2868       Value *RHS = vectorizeTree(RHSVL);
2869 
2870       if (Value *V = alreadyVectorized(E->Scalars, VL0))
2871         return V;
2872 
2873       BinaryOperator *BinOp = cast<BinaryOperator>(VL0);
2874       Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS);
2875       E->VectorizedValue = V;
2876       propagateIRFlags(E->VectorizedValue, E->Scalars, VL0);
2877       ++NumVectorInstructions;
2878 
2879       if (Instruction *I = dyn_cast<Instruction>(V))
2880         return propagateMetadata(I, E->Scalars);
2881 
2882       return V;
2883     }
2884     case Instruction::Load: {
2885       // Loads are inserted at the head of the tree because we don't want to
2886       // sink them all the way down past store instructions.
2887       setInsertPointAfterBundle(E->Scalars, VL0);
2888 
2889       LoadInst *LI = cast<LoadInst>(VL0);
2890       Type *ScalarLoadTy = LI->getType();
2891       unsigned AS = LI->getPointerAddressSpace();
2892 
2893       Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
2894                                             VecTy->getPointerTo(AS));
2895 
2896       // The pointer operand uses an in-tree scalar so we add the new BitCast to
2897       // ExternalUses list to make sure that an extract will be generated in the
2898       // future.
2899       Value *PO = LI->getPointerOperand();
2900       if (getTreeEntry(PO))
2901         ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0));
2902 
2903       unsigned Alignment = LI->getAlignment();
2904       LI = Builder.CreateLoad(VecPtr);
2905       if (!Alignment) {
2906         Alignment = DL->getABITypeAlignment(ScalarLoadTy);
2907       }
2908       LI->setAlignment(Alignment);
2909       E->VectorizedValue = LI;
2910       ++NumVectorInstructions;
2911       return propagateMetadata(LI, E->Scalars);
2912     }
2913     case Instruction::Store: {
2914       StoreInst *SI = cast<StoreInst>(VL0);
2915       unsigned Alignment = SI->getAlignment();
2916       unsigned AS = SI->getPointerAddressSpace();
2917 
2918       ValueList ValueOp;
2919       for (Value *V : E->Scalars)
2920         ValueOp.push_back(cast<StoreInst>(V)->getValueOperand());
2921 
2922       setInsertPointAfterBundle(E->Scalars, VL0);
2923 
2924       Value *VecValue = vectorizeTree(ValueOp);
2925       Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(),
2926                                             VecTy->getPointerTo(AS));
2927       StoreInst *S = Builder.CreateStore(VecValue, VecPtr);
2928 
2929       // The pointer operand uses an in-tree scalar so we add the new BitCast to
2930       // ExternalUses list to make sure that an extract will be generated in the
2931       // future.
2932       Value *PO = SI->getPointerOperand();
2933       if (getTreeEntry(PO))
2934         ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0));
2935 
2936       if (!Alignment) {
2937         Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType());
2938       }
2939       S->setAlignment(Alignment);
2940       E->VectorizedValue = S;
2941       ++NumVectorInstructions;
2942       return propagateMetadata(S, E->Scalars);
2943     }
2944     case Instruction::GetElementPtr: {
2945       setInsertPointAfterBundle(E->Scalars, VL0);
2946 
2947       ValueList Op0VL;
2948       for (Value *V : E->Scalars)
2949         Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0));
2950 
2951       Value *Op0 = vectorizeTree(Op0VL);
2952 
2953       std::vector<Value *> OpVecs;
2954       for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
2955            ++j) {
2956         ValueList OpVL;
2957         for (Value *V : E->Scalars)
2958           OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j));
2959 
2960         Value *OpVec = vectorizeTree(OpVL);
2961         OpVecs.push_back(OpVec);
2962       }
2963 
2964       Value *V = Builder.CreateGEP(
2965           cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs);
2966       E->VectorizedValue = V;
2967       ++NumVectorInstructions;
2968 
2969       if (Instruction *I = dyn_cast<Instruction>(V))
2970         return propagateMetadata(I, E->Scalars);
2971 
2972       return V;
2973     }
2974     case Instruction::Call: {
2975       CallInst *CI = cast<CallInst>(VL0);
2976       setInsertPointAfterBundle(E->Scalars, VL0);
2977       Function *FI;
2978       Intrinsic::ID IID  = Intrinsic::not_intrinsic;
2979       Value *ScalarArg = nullptr;
2980       if (CI && (FI = CI->getCalledFunction())) {
2981         IID = FI->getIntrinsicID();
2982       }
2983       std::vector<Value *> OpVecs;
2984       for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
2985         ValueList OpVL;
2986         // ctlz,cttz and powi are special intrinsics whose second argument is
2987         // a scalar. This argument should not be vectorized.
2988         if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) {
2989           CallInst *CEI = cast<CallInst>(VL0);
2990           ScalarArg = CEI->getArgOperand(j);
2991           OpVecs.push_back(CEI->getArgOperand(j));
2992           continue;
2993         }
2994         for (Value *V : E->Scalars) {
2995           CallInst *CEI = cast<CallInst>(V);
2996           OpVL.push_back(CEI->getArgOperand(j));
2997         }
2998 
2999         Value *OpVec = vectorizeTree(OpVL);
3000         DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
3001         OpVecs.push_back(OpVec);
3002       }
3003 
3004       Module *M = F->getParent();
3005       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3006       Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) };
3007       Function *CF = Intrinsic::getDeclaration(M, ID, Tys);
3008       SmallVector<OperandBundleDef, 1> OpBundles;
3009       CI->getOperandBundlesAsDefs(OpBundles);
3010       Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
3011 
3012       // The scalar argument uses an in-tree scalar so we add the new vectorized
3013       // call to ExternalUses list to make sure that an extract will be
3014       // generated in the future.
3015       if (ScalarArg && getTreeEntry(ScalarArg))
3016         ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0));
3017 
3018       E->VectorizedValue = V;
3019       propagateIRFlags(E->VectorizedValue, E->Scalars, VL0);
3020       ++NumVectorInstructions;
3021       return V;
3022     }
3023     case Instruction::ShuffleVector: {
3024       ValueList LHSVL, RHSVL;
3025       assert(isa<BinaryOperator>(VL0) && "Invalid Shuffle Vector Operand");
3026       reorderAltShuffleOperands(VL0->getOpcode(), E->Scalars, LHSVL, RHSVL);
3027       setInsertPointAfterBundle(E->Scalars, VL0);
3028 
3029       Value *LHS = vectorizeTree(LHSVL);
3030       Value *RHS = vectorizeTree(RHSVL);
3031 
3032       if (Value *V = alreadyVectorized(E->Scalars, VL0))
3033         return V;
3034 
3035       // Create a vector of LHS op1 RHS
3036       BinaryOperator *BinOp0 = cast<BinaryOperator>(VL0);
3037       Value *V0 = Builder.CreateBinOp(BinOp0->getOpcode(), LHS, RHS);
3038 
3039       // Create a vector of LHS op2 RHS
3040       Instruction *VL1 = cast<Instruction>(E->Scalars[1]);
3041       BinaryOperator *BinOp1 = cast<BinaryOperator>(VL1);
3042       Value *V1 = Builder.CreateBinOp(BinOp1->getOpcode(), LHS, RHS);
3043 
3044       // Create shuffle to take alternate operations from the vector.
3045       // Also, gather up odd and even scalar ops to propagate IR flags to
3046       // each vector operation.
3047       ValueList OddScalars, EvenScalars;
3048       unsigned e = E->Scalars.size();
3049       SmallVector<Constant *, 8> Mask(e);
3050       for (unsigned i = 0; i < e; ++i) {
3051         if (isOdd(i)) {
3052           Mask[i] = Builder.getInt32(e + i);
3053           OddScalars.push_back(E->Scalars[i]);
3054         } else {
3055           Mask[i] = Builder.getInt32(i);
3056           EvenScalars.push_back(E->Scalars[i]);
3057         }
3058       }
3059 
3060       Value *ShuffleMask = ConstantVector::get(Mask);
3061       propagateIRFlags(V0, EvenScalars);
3062       propagateIRFlags(V1, OddScalars);
3063 
3064       Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask);
3065       E->VectorizedValue = V;
3066       ++NumVectorInstructions;
3067       if (Instruction *I = dyn_cast<Instruction>(V))
3068         return propagateMetadata(I, E->Scalars);
3069 
3070       return V;
3071     }
3072     default:
3073     llvm_unreachable("unknown inst");
3074   }
3075   return nullptr;
3076 }
3077 
3078 Value *BoUpSLP::vectorizeTree() {
3079   ExtraValueToDebugLocsMap ExternallyUsedValues;
3080   return vectorizeTree(ExternallyUsedValues);
3081 }
3082 
3083 Value *
3084 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) {
3085 
3086   // All blocks must be scheduled before any instructions are inserted.
3087   for (auto &BSIter : BlocksSchedules) {
3088     scheduleBlock(BSIter.second.get());
3089   }
3090 
3091   Builder.SetInsertPoint(&F->getEntryBlock().front());
3092   auto *VectorRoot = vectorizeTree(&VectorizableTree[0]);
3093 
3094   // If the vectorized tree can be rewritten in a smaller type, we truncate the
3095   // vectorized root. InstCombine will then rewrite the entire expression. We
3096   // sign extend the extracted values below.
3097   auto *ScalarRoot = VectorizableTree[0].Scalars[0];
3098   if (MinBWs.count(ScalarRoot)) {
3099     if (auto *I = dyn_cast<Instruction>(VectorRoot))
3100       Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
3101     auto BundleWidth = VectorizableTree[0].Scalars.size();
3102     auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
3103     auto *VecTy = VectorType::get(MinTy, BundleWidth);
3104     auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
3105     VectorizableTree[0].VectorizedValue = Trunc;
3106   }
3107 
3108   DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n");
3109 
3110   // If necessary, sign-extend or zero-extend ScalarRoot to the larger type
3111   // specified by ScalarType.
3112   auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) {
3113     if (!MinBWs.count(ScalarRoot))
3114       return Ex;
3115     if (MinBWs[ScalarRoot].second)
3116       return Builder.CreateSExt(Ex, ScalarType);
3117     return Builder.CreateZExt(Ex, ScalarType);
3118   };
3119 
3120   // Extract all of the elements with the external uses.
3121   for (const auto &ExternalUse : ExternalUses) {
3122     Value *Scalar = ExternalUse.Scalar;
3123     llvm::User *User = ExternalUse.User;
3124 
3125     // Skip users that we already RAUW. This happens when one instruction
3126     // has multiple uses of the same value.
3127     if (User && !is_contained(Scalar->users(), User))
3128       continue;
3129     TreeEntry *E = getTreeEntry(Scalar);
3130     assert(E && "Invalid scalar");
3131     assert(!E->NeedToGather && "Extracting from a gather list");
3132 
3133     Value *Vec = E->VectorizedValue;
3134     assert(Vec && "Can't find vectorizable value");
3135 
3136     Value *Lane = Builder.getInt32(ExternalUse.Lane);
3137     // If User == nullptr, the Scalar is used as extra arg. Generate
3138     // ExtractElement instruction and update the record for this scalar in
3139     // ExternallyUsedValues.
3140     if (!User) {
3141       assert(ExternallyUsedValues.count(Scalar) &&
3142              "Scalar with nullptr as an external user must be registered in "
3143              "ExternallyUsedValues map");
3144       if (auto *VecI = dyn_cast<Instruction>(Vec)) {
3145         Builder.SetInsertPoint(VecI->getParent(),
3146                                std::next(VecI->getIterator()));
3147       } else {
3148         Builder.SetInsertPoint(&F->getEntryBlock().front());
3149       }
3150       Value *Ex = Builder.CreateExtractElement(Vec, Lane);
3151       Ex = extend(ScalarRoot, Ex, Scalar->getType());
3152       CSEBlocks.insert(cast<Instruction>(Scalar)->getParent());
3153       auto &Locs = ExternallyUsedValues[Scalar];
3154       ExternallyUsedValues.insert({Ex, Locs});
3155       ExternallyUsedValues.erase(Scalar);
3156       continue;
3157     }
3158 
3159     // Generate extracts for out-of-tree users.
3160     // Find the insertion point for the extractelement lane.
3161     if (auto *VecI = dyn_cast<Instruction>(Vec)) {
3162       if (PHINode *PH = dyn_cast<PHINode>(User)) {
3163         for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
3164           if (PH->getIncomingValue(i) == Scalar) {
3165             TerminatorInst *IncomingTerminator =
3166                 PH->getIncomingBlock(i)->getTerminator();
3167             if (isa<CatchSwitchInst>(IncomingTerminator)) {
3168               Builder.SetInsertPoint(VecI->getParent(),
3169                                      std::next(VecI->getIterator()));
3170             } else {
3171               Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
3172             }
3173             Value *Ex = Builder.CreateExtractElement(Vec, Lane);
3174             Ex = extend(ScalarRoot, Ex, Scalar->getType());
3175             CSEBlocks.insert(PH->getIncomingBlock(i));
3176             PH->setOperand(i, Ex);
3177           }
3178         }
3179       } else {
3180         Builder.SetInsertPoint(cast<Instruction>(User));
3181         Value *Ex = Builder.CreateExtractElement(Vec, Lane);
3182         Ex = extend(ScalarRoot, Ex, Scalar->getType());
3183         CSEBlocks.insert(cast<Instruction>(User)->getParent());
3184         User->replaceUsesOfWith(Scalar, Ex);
3185      }
3186     } else {
3187       Builder.SetInsertPoint(&F->getEntryBlock().front());
3188       Value *Ex = Builder.CreateExtractElement(Vec, Lane);
3189       Ex = extend(ScalarRoot, Ex, Scalar->getType());
3190       CSEBlocks.insert(&F->getEntryBlock());
3191       User->replaceUsesOfWith(Scalar, Ex);
3192     }
3193 
3194     DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
3195   }
3196 
3197   // For each vectorized value:
3198   for (TreeEntry &EIdx : VectorizableTree) {
3199     TreeEntry *Entry = &EIdx;
3200 
3201     // For each lane:
3202     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
3203       Value *Scalar = Entry->Scalars[Lane];
3204       // No need to handle users of gathered values.
3205       if (Entry->NeedToGather)
3206         continue;
3207 
3208       assert(Entry->VectorizedValue && "Can't find vectorizable value");
3209 
3210       Type *Ty = Scalar->getType();
3211       if (!Ty->isVoidTy()) {
3212 #ifndef NDEBUG
3213         for (User *U : Scalar->users()) {
3214           DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
3215 
3216           // It is legal to replace users in the ignorelist by undef.
3217           assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) &&
3218                  "Replacing out-of-tree value with undef");
3219         }
3220 #endif
3221         Value *Undef = UndefValue::get(Ty);
3222         Scalar->replaceAllUsesWith(Undef);
3223       }
3224       DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
3225       eraseInstruction(cast<Instruction>(Scalar));
3226     }
3227   }
3228 
3229   Builder.ClearInsertionPoint();
3230 
3231   return VectorizableTree[0].VectorizedValue;
3232 }
3233 
3234 void BoUpSLP::optimizeGatherSequence() {
3235   DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
3236         << " gather sequences instructions.\n");
3237   // LICM InsertElementInst sequences.
3238   for (Instruction *it : GatherSeq) {
3239     InsertElementInst *Insert = dyn_cast<InsertElementInst>(it);
3240 
3241     if (!Insert)
3242       continue;
3243 
3244     // Check if this block is inside a loop.
3245     Loop *L = LI->getLoopFor(Insert->getParent());
3246     if (!L)
3247       continue;
3248 
3249     // Check if it has a preheader.
3250     BasicBlock *PreHeader = L->getLoopPreheader();
3251     if (!PreHeader)
3252       continue;
3253 
3254     // If the vector or the element that we insert into it are
3255     // instructions that are defined in this basic block then we can't
3256     // hoist this instruction.
3257     Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0));
3258     Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1));
3259     if (CurrVec && L->contains(CurrVec))
3260       continue;
3261     if (NewElem && L->contains(NewElem))
3262       continue;
3263 
3264     // We can hoist this instruction. Move it to the pre-header.
3265     Insert->moveBefore(PreHeader->getTerminator());
3266   }
3267 
3268   // Make a list of all reachable blocks in our CSE queue.
3269   SmallVector<const DomTreeNode *, 8> CSEWorkList;
3270   CSEWorkList.reserve(CSEBlocks.size());
3271   for (BasicBlock *BB : CSEBlocks)
3272     if (DomTreeNode *N = DT->getNode(BB)) {
3273       assert(DT->isReachableFromEntry(N));
3274       CSEWorkList.push_back(N);
3275     }
3276 
3277   // Sort blocks by domination. This ensures we visit a block after all blocks
3278   // dominating it are visited.
3279   std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(),
3280                    [this](const DomTreeNode *A, const DomTreeNode *B) {
3281     return DT->properlyDominates(A, B);
3282   });
3283 
3284   // Perform O(N^2) search over the gather sequences and merge identical
3285   // instructions. TODO: We can further optimize this scan if we split the
3286   // instructions into different buckets based on the insert lane.
3287   SmallVector<Instruction *, 16> Visited;
3288   for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
3289     assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
3290            "Worklist not sorted properly!");
3291     BasicBlock *BB = (*I)->getBlock();
3292     // For all instructions in blocks containing gather sequences:
3293     for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
3294       Instruction *In = &*it++;
3295       if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
3296         continue;
3297 
3298       // Check if we can replace this instruction with any of the
3299       // visited instructions.
3300       for (Instruction *v : Visited) {
3301         if (In->isIdenticalTo(v) &&
3302             DT->dominates(v->getParent(), In->getParent())) {
3303           In->replaceAllUsesWith(v);
3304           eraseInstruction(In);
3305           In = nullptr;
3306           break;
3307         }
3308       }
3309       if (In) {
3310         assert(!is_contained(Visited, In));
3311         Visited.push_back(In);
3312       }
3313     }
3314   }
3315   CSEBlocks.clear();
3316   GatherSeq.clear();
3317 }
3318 
3319 // Groups the instructions to a bundle (which is then a single scheduling entity)
3320 // and schedules instructions until the bundle gets ready.
3321 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL,
3322                                                  BoUpSLP *SLP, Value *OpValue) {
3323   if (isa<PHINode>(OpValue))
3324     return true;
3325 
3326   // Initialize the instruction bundle.
3327   Instruction *OldScheduleEnd = ScheduleEnd;
3328   ScheduleData *PrevInBundle = nullptr;
3329   ScheduleData *Bundle = nullptr;
3330   bool ReSchedule = false;
3331   DEBUG(dbgs() << "SLP:  bundle: " << *OpValue << "\n");
3332 
3333   // Make sure that the scheduling region contains all
3334   // instructions of the bundle.
3335   for (Value *V : VL) {
3336     if (!extendSchedulingRegion(V, OpValue))
3337       return false;
3338   }
3339 
3340   for (Value *V : VL) {
3341     ScheduleData *BundleMember = getScheduleData(V);
3342     assert(BundleMember &&
3343            "no ScheduleData for bundle member (maybe not in same basic block)");
3344     if (BundleMember->IsScheduled) {
3345       // A bundle member was scheduled as single instruction before and now
3346       // needs to be scheduled as part of the bundle. We just get rid of the
3347       // existing schedule.
3348       DEBUG(dbgs() << "SLP:  reset schedule because " << *BundleMember
3349                    << " was already scheduled\n");
3350       ReSchedule = true;
3351     }
3352     assert(BundleMember->isSchedulingEntity() &&
3353            "bundle member already part of other bundle");
3354     if (PrevInBundle) {
3355       PrevInBundle->NextInBundle = BundleMember;
3356     } else {
3357       Bundle = BundleMember;
3358     }
3359     BundleMember->UnscheduledDepsInBundle = 0;
3360     Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;
3361 
3362     // Group the instructions to a bundle.
3363     BundleMember->FirstInBundle = Bundle;
3364     PrevInBundle = BundleMember;
3365   }
3366   if (ScheduleEnd != OldScheduleEnd) {
3367     // The scheduling region got new instructions at the lower end (or it is a
3368     // new region for the first bundle). This makes it necessary to
3369     // recalculate all dependencies.
3370     // It is seldom that this needs to be done a second time after adding the
3371     // initial bundle to the region.
3372     for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
3373       doForAllOpcodes(I, [](ScheduleData *SD) {
3374         SD->clearDependencies();
3375       });
3376     }
3377     ReSchedule = true;
3378   }
3379   if (ReSchedule) {
3380     resetSchedule();
3381     initialFillReadyList(ReadyInsts);
3382   }
3383 
3384   DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block "
3385                << BB->getName() << "\n");
3386 
3387   calculateDependencies(Bundle, true, SLP);
3388 
3389   // Now try to schedule the new bundle. As soon as the bundle is "ready" it
3390   // means that there are no cyclic dependencies and we can schedule it.
3391   // Note that's important that we don't "schedule" the bundle yet (see
3392   // cancelScheduling).
3393   while (!Bundle->isReady() && !ReadyInsts.empty()) {
3394 
3395     ScheduleData *pickedSD = ReadyInsts.back();
3396     ReadyInsts.pop_back();
3397 
3398     if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) {
3399       schedule(pickedSD, ReadyInsts);
3400     }
3401   }
3402   if (!Bundle->isReady()) {
3403     cancelScheduling(VL, OpValue);
3404     return false;
3405   }
3406   return true;
3407 }
3408 
3409 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL,
3410                                                 Value *OpValue) {
3411   if (isa<PHINode>(OpValue))
3412     return;
3413 
3414   ScheduleData *Bundle = getScheduleData(OpValue);
3415   DEBUG(dbgs() << "SLP:  cancel scheduling of " << *Bundle << "\n");
3416   assert(!Bundle->IsScheduled &&
3417          "Can't cancel bundle which is already scheduled");
3418   assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&
3419          "tried to unbundle something which is not a bundle");
3420 
3421   // Un-bundle: make single instructions out of the bundle.
3422   ScheduleData *BundleMember = Bundle;
3423   while (BundleMember) {
3424     assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
3425     BundleMember->FirstInBundle = BundleMember;
3426     ScheduleData *Next = BundleMember->NextInBundle;
3427     BundleMember->NextInBundle = nullptr;
3428     BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
3429     if (BundleMember->UnscheduledDepsInBundle == 0) {
3430       ReadyInsts.insert(BundleMember);
3431     }
3432     BundleMember = Next;
3433   }
3434 }
3435 
3436 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() {
3437   // Allocate a new ScheduleData for the instruction.
3438   if (ChunkPos >= ChunkSize) {
3439     ScheduleDataChunks.push_back(llvm::make_unique<ScheduleData[]>(ChunkSize));
3440     ChunkPos = 0;
3441   }
3442   return &(ScheduleDataChunks.back()[ChunkPos++]);
3443 }
3444 
3445 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V,
3446                                                       Value *OpValue) {
3447   if (getScheduleData(V, isOneOf(OpValue, V)))
3448     return true;
3449   Instruction *I = dyn_cast<Instruction>(V);
3450   assert(I && "bundle member must be an instruction");
3451   assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled");
3452   auto &&CheckSheduleForI = [this, OpValue](Instruction *I) -> bool {
3453     ScheduleData *ISD = getScheduleData(I);
3454     if (!ISD)
3455       return false;
3456     assert(isInSchedulingRegion(ISD) &&
3457            "ScheduleData not in scheduling region");
3458     ScheduleData *SD = allocateScheduleDataChunks();
3459     SD->Inst = I;
3460     SD->init(SchedulingRegionID, OpValue);
3461     ExtraScheduleDataMap[I][OpValue] = SD;
3462     return true;
3463   };
3464   if (CheckSheduleForI(I))
3465     return true;
3466   if (!ScheduleStart) {
3467     // It's the first instruction in the new region.
3468     initScheduleData(I, I->getNextNode(), nullptr, nullptr);
3469     ScheduleStart = I;
3470     ScheduleEnd = I->getNextNode();
3471     if (isOneOf(OpValue, I) != I)
3472       CheckSheduleForI(I);
3473     assert(ScheduleEnd && "tried to vectorize a TerminatorInst?");
3474     DEBUG(dbgs() << "SLP:  initialize schedule region to " << *I << "\n");
3475     return true;
3476   }
3477   // Search up and down at the same time, because we don't know if the new
3478   // instruction is above or below the existing scheduling region.
3479   BasicBlock::reverse_iterator UpIter =
3480       ++ScheduleStart->getIterator().getReverse();
3481   BasicBlock::reverse_iterator UpperEnd = BB->rend();
3482   BasicBlock::iterator DownIter = ScheduleEnd->getIterator();
3483   BasicBlock::iterator LowerEnd = BB->end();
3484   for (;;) {
3485     if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
3486       DEBUG(dbgs() << "SLP:  exceeded schedule region size limit\n");
3487       return false;
3488     }
3489 
3490     if (UpIter != UpperEnd) {
3491       if (&*UpIter == I) {
3492         initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
3493         ScheduleStart = I;
3494         if (isOneOf(OpValue, I) != I)
3495           CheckSheduleForI(I);
3496         DEBUG(dbgs() << "SLP:  extend schedule region start to " << *I << "\n");
3497         return true;
3498       }
3499       UpIter++;
3500     }
3501     if (DownIter != LowerEnd) {
3502       if (&*DownIter == I) {
3503         initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
3504                          nullptr);
3505         ScheduleEnd = I->getNextNode();
3506         if (isOneOf(OpValue, I) != I)
3507           CheckSheduleForI(I);
3508         assert(ScheduleEnd && "tried to vectorize a TerminatorInst?");
3509         DEBUG(dbgs() << "SLP:  extend schedule region end to " << *I << "\n");
3510         return true;
3511       }
3512       DownIter++;
3513     }
3514     assert((UpIter != UpperEnd || DownIter != LowerEnd) &&
3515            "instruction not found in block");
3516   }
3517   return true;
3518 }
3519 
3520 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
3521                                                 Instruction *ToI,
3522                                                 ScheduleData *PrevLoadStore,
3523                                                 ScheduleData *NextLoadStore) {
3524   ScheduleData *CurrentLoadStore = PrevLoadStore;
3525   for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
3526     ScheduleData *SD = ScheduleDataMap[I];
3527     if (!SD) {
3528       // Allocate a new ScheduleData for the instruction.
3529       if (ChunkPos >= ChunkSize) {
3530         ScheduleDataChunks.push_back(
3531             llvm::make_unique<ScheduleData[]>(ChunkSize));
3532         ChunkPos = 0;
3533       }
3534       SD = allocateScheduleDataChunks();
3535       ScheduleDataMap[I] = SD;
3536       SD->Inst = I;
3537     }
3538     assert(!isInSchedulingRegion(SD) &&
3539            "new ScheduleData already in scheduling region");
3540     SD->init(SchedulingRegionID, I);
3541 
3542     if (I->mayReadOrWriteMemory()) {
3543       // Update the linked list of memory accessing instructions.
3544       if (CurrentLoadStore) {
3545         CurrentLoadStore->NextLoadStore = SD;
3546       } else {
3547         FirstLoadStoreInRegion = SD;
3548       }
3549       CurrentLoadStore = SD;
3550     }
3551   }
3552   if (NextLoadStore) {
3553     if (CurrentLoadStore)
3554       CurrentLoadStore->NextLoadStore = NextLoadStore;
3555   } else {
3556     LastLoadStoreInRegion = CurrentLoadStore;
3557   }
3558 }
3559 
3560 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
3561                                                      bool InsertInReadyList,
3562                                                      BoUpSLP *SLP) {
3563   assert(SD->isSchedulingEntity());
3564 
3565   SmallVector<ScheduleData *, 10> WorkList;
3566   WorkList.push_back(SD);
3567 
3568   while (!WorkList.empty()) {
3569     ScheduleData *SD = WorkList.back();
3570     WorkList.pop_back();
3571 
3572     ScheduleData *BundleMember = SD;
3573     while (BundleMember) {
3574       assert(isInSchedulingRegion(BundleMember));
3575       if (!BundleMember->hasValidDependencies()) {
3576 
3577         DEBUG(dbgs() << "SLP:       update deps of " << *BundleMember << "\n");
3578         BundleMember->Dependencies = 0;
3579         BundleMember->resetUnscheduledDeps();
3580 
3581         // Handle def-use chain dependencies.
3582         if (BundleMember->OpValue != BundleMember->Inst) {
3583           ScheduleData *UseSD = getScheduleData(BundleMember->Inst);
3584           if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
3585             BundleMember->Dependencies++;
3586             ScheduleData *DestBundle = UseSD->FirstInBundle;
3587             if (!DestBundle->IsScheduled)
3588               BundleMember->incrementUnscheduledDeps(1);
3589             if (!DestBundle->hasValidDependencies())
3590               WorkList.push_back(DestBundle);
3591           }
3592         } else {
3593           for (User *U : BundleMember->Inst->users()) {
3594             if (isa<Instruction>(U)) {
3595               ScheduleData *UseSD = getScheduleData(U);
3596               if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
3597                 BundleMember->Dependencies++;
3598                 ScheduleData *DestBundle = UseSD->FirstInBundle;
3599                 if (!DestBundle->IsScheduled)
3600                   BundleMember->incrementUnscheduledDeps(1);
3601                 if (!DestBundle->hasValidDependencies())
3602                   WorkList.push_back(DestBundle);
3603               }
3604             } else {
3605               // I'm not sure if this can ever happen. But we need to be safe.
3606               // This lets the instruction/bundle never be scheduled and
3607               // eventually disable vectorization.
3608               BundleMember->Dependencies++;
3609               BundleMember->incrementUnscheduledDeps(1);
3610             }
3611           }
3612         }
3613 
3614         // Handle the memory dependencies.
3615         ScheduleData *DepDest = BundleMember->NextLoadStore;
3616         if (DepDest) {
3617           Instruction *SrcInst = BundleMember->Inst;
3618           MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA);
3619           bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
3620           unsigned numAliased = 0;
3621           unsigned DistToSrc = 1;
3622 
3623           while (DepDest) {
3624             assert(isInSchedulingRegion(DepDest));
3625 
3626             // We have two limits to reduce the complexity:
3627             // 1) AliasedCheckLimit: It's a small limit to reduce calls to
3628             //    SLP->isAliased (which is the expensive part in this loop).
3629             // 2) MaxMemDepDistance: It's for very large blocks and it aborts
3630             //    the whole loop (even if the loop is fast, it's quadratic).
3631             //    It's important for the loop break condition (see below) to
3632             //    check this limit even between two read-only instructions.
3633             if (DistToSrc >= MaxMemDepDistance ||
3634                     ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
3635                      (numAliased >= AliasedCheckLimit ||
3636                       SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
3637 
3638               // We increment the counter only if the locations are aliased
3639               // (instead of counting all alias checks). This gives a better
3640               // balance between reduced runtime and accurate dependencies.
3641               numAliased++;
3642 
3643               DepDest->MemoryDependencies.push_back(BundleMember);
3644               BundleMember->Dependencies++;
3645               ScheduleData *DestBundle = DepDest->FirstInBundle;
3646               if (!DestBundle->IsScheduled) {
3647                 BundleMember->incrementUnscheduledDeps(1);
3648               }
3649               if (!DestBundle->hasValidDependencies()) {
3650                 WorkList.push_back(DestBundle);
3651               }
3652             }
3653             DepDest = DepDest->NextLoadStore;
3654 
3655             // Example, explaining the loop break condition: Let's assume our
3656             // starting instruction is i0 and MaxMemDepDistance = 3.
3657             //
3658             //                      +--------v--v--v
3659             //             i0,i1,i2,i3,i4,i5,i6,i7,i8
3660             //             +--------^--^--^
3661             //
3662             // MaxMemDepDistance let us stop alias-checking at i3 and we add
3663             // dependencies from i0 to i3,i4,.. (even if they are not aliased).
3664             // Previously we already added dependencies from i3 to i6,i7,i8
3665             // (because of MaxMemDepDistance). As we added a dependency from
3666             // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
3667             // and we can abort this loop at i6.
3668             if (DistToSrc >= 2 * MaxMemDepDistance)
3669                 break;
3670             DistToSrc++;
3671           }
3672         }
3673       }
3674       BundleMember = BundleMember->NextInBundle;
3675     }
3676     if (InsertInReadyList && SD->isReady()) {
3677       ReadyInsts.push_back(SD);
3678       DEBUG(dbgs() << "SLP:     gets ready on update: " << *SD->Inst << "\n");
3679     }
3680   }
3681 }
3682 
3683 void BoUpSLP::BlockScheduling::resetSchedule() {
3684   assert(ScheduleStart &&
3685          "tried to reset schedule on block which has not been scheduled");
3686   for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
3687     doForAllOpcodes(I, [&](ScheduleData *SD) {
3688       assert(isInSchedulingRegion(SD) &&
3689              "ScheduleData not in scheduling region");
3690       SD->IsScheduled = false;
3691       SD->resetUnscheduledDeps();
3692     });
3693   }
3694   ReadyInsts.clear();
3695 }
3696 
3697 void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
3698 
3699   if (!BS->ScheduleStart)
3700     return;
3701 
3702   DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
3703 
3704   BS->resetSchedule();
3705 
3706   // For the real scheduling we use a more sophisticated ready-list: it is
3707   // sorted by the original instruction location. This lets the final schedule
3708   // be as  close as possible to the original instruction order.
3709   struct ScheduleDataCompare {
3710     bool operator()(ScheduleData *SD1, ScheduleData *SD2) const {
3711       return SD2->SchedulingPriority < SD1->SchedulingPriority;
3712     }
3713   };
3714   std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
3715 
3716   // Ensure that all dependency data is updated and fill the ready-list with
3717   // initial instructions.
3718   int Idx = 0;
3719   int NumToSchedule = 0;
3720   for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
3721        I = I->getNextNode()) {
3722     BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) {
3723       assert(SD->isPartOfBundle() ==
3724                  (getTreeEntry(SD->Inst) != nullptr) &&
3725              "scheduler and vectorizer bundle mismatch");
3726       SD->FirstInBundle->SchedulingPriority = Idx++;
3727       if (SD->isSchedulingEntity()) {
3728         BS->calculateDependencies(SD, false, this);
3729         NumToSchedule++;
3730       }
3731     });
3732   }
3733   BS->initialFillReadyList(ReadyInsts);
3734 
3735   Instruction *LastScheduledInst = BS->ScheduleEnd;
3736 
3737   // Do the "real" scheduling.
3738   while (!ReadyInsts.empty()) {
3739     ScheduleData *picked = *ReadyInsts.begin();
3740     ReadyInsts.erase(ReadyInsts.begin());
3741 
3742     // Move the scheduled instruction(s) to their dedicated places, if not
3743     // there yet.
3744     ScheduleData *BundleMember = picked;
3745     while (BundleMember) {
3746       Instruction *pickedInst = BundleMember->Inst;
3747       if (LastScheduledInst->getNextNode() != pickedInst) {
3748         BS->BB->getInstList().remove(pickedInst);
3749         BS->BB->getInstList().insert(LastScheduledInst->getIterator(),
3750                                      pickedInst);
3751       }
3752       LastScheduledInst = pickedInst;
3753       BundleMember = BundleMember->NextInBundle;
3754     }
3755 
3756     BS->schedule(picked, ReadyInsts);
3757     NumToSchedule--;
3758   }
3759   assert(NumToSchedule == 0 && "could not schedule all instructions");
3760 
3761   // Avoid duplicate scheduling of the block.
3762   BS->ScheduleStart = nullptr;
3763 }
3764 
3765 unsigned BoUpSLP::getVectorElementSize(Value *V) {
3766   // If V is a store, just return the width of the stored value without
3767   // traversing the expression tree. This is the common case.
3768   if (auto *Store = dyn_cast<StoreInst>(V))
3769     return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
3770 
3771   // If V is not a store, we can traverse the expression tree to find loads
3772   // that feed it. The type of the loaded value may indicate a more suitable
3773   // width than V's type. We want to base the vector element size on the width
3774   // of memory operations where possible.
3775   SmallVector<Instruction *, 16> Worklist;
3776   SmallPtrSet<Instruction *, 16> Visited;
3777   if (auto *I = dyn_cast<Instruction>(V))
3778     Worklist.push_back(I);
3779 
3780   // Traverse the expression tree in bottom-up order looking for loads. If we
3781   // encounter an instruciton we don't yet handle, we give up.
3782   auto MaxWidth = 0u;
3783   auto FoundUnknownInst = false;
3784   while (!Worklist.empty() && !FoundUnknownInst) {
3785     auto *I = Worklist.pop_back_val();
3786     Visited.insert(I);
3787 
3788     // We should only be looking at scalar instructions here. If the current
3789     // instruction has a vector type, give up.
3790     auto *Ty = I->getType();
3791     if (isa<VectorType>(Ty))
3792       FoundUnknownInst = true;
3793 
3794     // If the current instruction is a load, update MaxWidth to reflect the
3795     // width of the loaded value.
3796     else if (isa<LoadInst>(I))
3797       MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty));
3798 
3799     // Otherwise, we need to visit the operands of the instruction. We only
3800     // handle the interesting cases from buildTree here. If an operand is an
3801     // instruction we haven't yet visited, we add it to the worklist.
3802     else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
3803              isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) {
3804       for (Use &U : I->operands())
3805         if (auto *J = dyn_cast<Instruction>(U.get()))
3806           if (!Visited.count(J))
3807             Worklist.push_back(J);
3808     }
3809 
3810     // If we don't yet handle the instruction, give up.
3811     else
3812       FoundUnknownInst = true;
3813   }
3814 
3815   // If we didn't encounter a memory access in the expression tree, or if we
3816   // gave up for some reason, just return the width of V.
3817   if (!MaxWidth || FoundUnknownInst)
3818     return DL->getTypeSizeInBits(V->getType());
3819 
3820   // Otherwise, return the maximum width we found.
3821   return MaxWidth;
3822 }
3823 
3824 // Determine if a value V in a vectorizable expression Expr can be demoted to a
3825 // smaller type with a truncation. We collect the values that will be demoted
3826 // in ToDemote and additional roots that require investigating in Roots.
3827 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
3828                                   SmallVectorImpl<Value *> &ToDemote,
3829                                   SmallVectorImpl<Value *> &Roots) {
3830 
3831   // We can always demote constants.
3832   if (isa<Constant>(V)) {
3833     ToDemote.push_back(V);
3834     return true;
3835   }
3836 
3837   // If the value is not an instruction in the expression with only one use, it
3838   // cannot be demoted.
3839   auto *I = dyn_cast<Instruction>(V);
3840   if (!I || !I->hasOneUse() || !Expr.count(I))
3841     return false;
3842 
3843   switch (I->getOpcode()) {
3844 
3845   // We can always demote truncations and extensions. Since truncations can
3846   // seed additional demotion, we save the truncated value.
3847   case Instruction::Trunc:
3848     Roots.push_back(I->getOperand(0));
3849   case Instruction::ZExt:
3850   case Instruction::SExt:
3851     break;
3852 
3853   // We can demote certain binary operations if we can demote both of their
3854   // operands.
3855   case Instruction::Add:
3856   case Instruction::Sub:
3857   case Instruction::Mul:
3858   case Instruction::And:
3859   case Instruction::Or:
3860   case Instruction::Xor:
3861     if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
3862         !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
3863       return false;
3864     break;
3865 
3866   // We can demote selects if we can demote their true and false values.
3867   case Instruction::Select: {
3868     SelectInst *SI = cast<SelectInst>(I);
3869     if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
3870         !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
3871       return false;
3872     break;
3873   }
3874 
3875   // We can demote phis if we can demote all their incoming operands. Note that
3876   // we don't need to worry about cycles since we ensure single use above.
3877   case Instruction::PHI: {
3878     PHINode *PN = cast<PHINode>(I);
3879     for (Value *IncValue : PN->incoming_values())
3880       if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
3881         return false;
3882     break;
3883   }
3884 
3885   // Otherwise, conservatively give up.
3886   default:
3887     return false;
3888   }
3889 
3890   // Record the value that we can demote.
3891   ToDemote.push_back(V);
3892   return true;
3893 }
3894 
3895 void BoUpSLP::computeMinimumValueSizes() {
3896   // If there are no external uses, the expression tree must be rooted by a
3897   // store. We can't demote in-memory values, so there is nothing to do here.
3898   if (ExternalUses.empty())
3899     return;
3900 
3901   // We only attempt to truncate integer expressions.
3902   auto &TreeRoot = VectorizableTree[0].Scalars;
3903   auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
3904   if (!TreeRootIT)
3905     return;
3906 
3907   // If the expression is not rooted by a store, these roots should have
3908   // external uses. We will rely on InstCombine to rewrite the expression in
3909   // the narrower type. However, InstCombine only rewrites single-use values.
3910   // This means that if a tree entry other than a root is used externally, it
3911   // must have multiple uses and InstCombine will not rewrite it. The code
3912   // below ensures that only the roots are used externally.
3913   SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
3914   for (auto &EU : ExternalUses)
3915     if (!Expr.erase(EU.Scalar))
3916       return;
3917   if (!Expr.empty())
3918     return;
3919 
3920   // Collect the scalar values of the vectorizable expression. We will use this
3921   // context to determine which values can be demoted. If we see a truncation,
3922   // we mark it as seeding another demotion.
3923   for (auto &Entry : VectorizableTree)
3924     Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end());
3925 
3926   // Ensure the roots of the vectorizable tree don't form a cycle. They must
3927   // have a single external user that is not in the vectorizable tree.
3928   for (auto *Root : TreeRoot)
3929     if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
3930       return;
3931 
3932   // Conservatively determine if we can actually truncate the roots of the
3933   // expression. Collect the values that can be demoted in ToDemote and
3934   // additional roots that require investigating in Roots.
3935   SmallVector<Value *, 32> ToDemote;
3936   SmallVector<Value *, 4> Roots;
3937   for (auto *Root : TreeRoot)
3938     if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
3939       return;
3940 
3941   // The maximum bit width required to represent all the values that can be
3942   // demoted without loss of precision. It would be safe to truncate the roots
3943   // of the expression to this width.
3944   auto MaxBitWidth = 8u;
3945 
3946   // We first check if all the bits of the roots are demanded. If they're not,
3947   // we can truncate the roots to this narrower type.
3948   for (auto *Root : TreeRoot) {
3949     auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
3950     MaxBitWidth = std::max<unsigned>(
3951         Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
3952   }
3953 
3954   // True if the roots can be zero-extended back to their original type, rather
3955   // than sign-extended. We know that if the leading bits are not demanded, we
3956   // can safely zero-extend. So we initialize IsKnownPositive to True.
3957   bool IsKnownPositive = true;
3958 
3959   // If all the bits of the roots are demanded, we can try a little harder to
3960   // compute a narrower type. This can happen, for example, if the roots are
3961   // getelementptr indices. InstCombine promotes these indices to the pointer
3962   // width. Thus, all their bits are technically demanded even though the
3963   // address computation might be vectorized in a smaller type.
3964   //
3965   // We start by looking at each entry that can be demoted. We compute the
3966   // maximum bit width required to store the scalar by using ValueTracking to
3967   // compute the number of high-order bits we can truncate.
3968   if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType())) {
3969     MaxBitWidth = 8u;
3970 
3971     // Determine if the sign bit of all the roots is known to be zero. If not,
3972     // IsKnownPositive is set to False.
3973     IsKnownPositive = all_of(TreeRoot, [&](Value *R) {
3974       KnownBits Known = computeKnownBits(R, *DL);
3975       return Known.isNonNegative();
3976     });
3977 
3978     // Determine the maximum number of bits required to store the scalar
3979     // values.
3980     for (auto *Scalar : ToDemote) {
3981       auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, 0, DT);
3982       auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
3983       MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
3984     }
3985 
3986     // If we can't prove that the sign bit is zero, we must add one to the
3987     // maximum bit width to account for the unknown sign bit. This preserves
3988     // the existing sign bit so we can safely sign-extend the root back to the
3989     // original type. Otherwise, if we know the sign bit is zero, we will
3990     // zero-extend the root instead.
3991     //
3992     // FIXME: This is somewhat suboptimal, as there will be cases where adding
3993     //        one to the maximum bit width will yield a larger-than-necessary
3994     //        type. In general, we need to add an extra bit only if we can't
3995     //        prove that the upper bit of the original type is equal to the
3996     //        upper bit of the proposed smaller type. If these two bits are the
3997     //        same (either zero or one) we know that sign-extending from the
3998     //        smaller type will result in the same value. Here, since we can't
3999     //        yet prove this, we are just making the proposed smaller type
4000     //        larger to ensure correctness.
4001     if (!IsKnownPositive)
4002       ++MaxBitWidth;
4003   }
4004 
4005   // Round MaxBitWidth up to the next power-of-two.
4006   if (!isPowerOf2_64(MaxBitWidth))
4007     MaxBitWidth = NextPowerOf2(MaxBitWidth);
4008 
4009   // If the maximum bit width we compute is less than the with of the roots'
4010   // type, we can proceed with the narrowing. Otherwise, do nothing.
4011   if (MaxBitWidth >= TreeRootIT->getBitWidth())
4012     return;
4013 
4014   // If we can truncate the root, we must collect additional values that might
4015   // be demoted as a result. That is, those seeded by truncations we will
4016   // modify.
4017   while (!Roots.empty())
4018     collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);
4019 
4020   // Finally, map the values we can demote to the maximum bit with we computed.
4021   for (auto *Scalar : ToDemote)
4022     MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive);
4023 }
4024 
4025 namespace {
4026 /// The SLPVectorizer Pass.
4027 struct SLPVectorizer : public FunctionPass {
4028   SLPVectorizerPass Impl;
4029 
4030   /// Pass identification, replacement for typeid
4031   static char ID;
4032 
4033   explicit SLPVectorizer() : FunctionPass(ID) {
4034     initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
4035   }
4036 
4037 
4038   bool doInitialization(Module &M) override {
4039     return false;
4040   }
4041 
4042   bool runOnFunction(Function &F) override {
4043     if (skipFunction(F))
4044       return false;
4045 
4046     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
4047     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
4048     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
4049     auto *TLI = TLIP ? &TLIP->getTLI() : nullptr;
4050     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
4051     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
4052     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
4053     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
4054     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
4055     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
4056 
4057     return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
4058   }
4059 
4060   void getAnalysisUsage(AnalysisUsage &AU) const override {
4061     FunctionPass::getAnalysisUsage(AU);
4062     AU.addRequired<AssumptionCacheTracker>();
4063     AU.addRequired<ScalarEvolutionWrapperPass>();
4064     AU.addRequired<AAResultsWrapperPass>();
4065     AU.addRequired<TargetTransformInfoWrapperPass>();
4066     AU.addRequired<LoopInfoWrapperPass>();
4067     AU.addRequired<DominatorTreeWrapperPass>();
4068     AU.addRequired<DemandedBitsWrapperPass>();
4069     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
4070     AU.addPreserved<LoopInfoWrapperPass>();
4071     AU.addPreserved<DominatorTreeWrapperPass>();
4072     AU.addPreserved<AAResultsWrapperPass>();
4073     AU.addPreserved<GlobalsAAWrapperPass>();
4074     AU.setPreservesCFG();
4075   }
4076 };
4077 } // end anonymous namespace
4078 
4079 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
4080   auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
4081   auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
4082   auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
4083   auto *AA = &AM.getResult<AAManager>(F);
4084   auto *LI = &AM.getResult<LoopAnalysis>(F);
4085   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
4086   auto *AC = &AM.getResult<AssumptionAnalysis>(F);
4087   auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
4088   auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
4089 
4090   bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
4091   if (!Changed)
4092     return PreservedAnalyses::all();
4093 
4094   PreservedAnalyses PA;
4095   PA.preserveSet<CFGAnalyses>();
4096   PA.preserve<AAManager>();
4097   PA.preserve<GlobalsAA>();
4098   return PA;
4099 }
4100 
4101 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
4102                                 TargetTransformInfo *TTI_,
4103                                 TargetLibraryInfo *TLI_, AliasAnalysis *AA_,
4104                                 LoopInfo *LI_, DominatorTree *DT_,
4105                                 AssumptionCache *AC_, DemandedBits *DB_,
4106                                 OptimizationRemarkEmitter *ORE_) {
4107   SE = SE_;
4108   TTI = TTI_;
4109   TLI = TLI_;
4110   AA = AA_;
4111   LI = LI_;
4112   DT = DT_;
4113   AC = AC_;
4114   DB = DB_;
4115   DL = &F.getParent()->getDataLayout();
4116 
4117   Stores.clear();
4118   GEPs.clear();
4119   bool Changed = false;
4120 
4121   // If the target claims to have no vector registers don't attempt
4122   // vectorization.
4123   if (!TTI->getNumberOfRegisters(true))
4124     return false;
4125 
4126   // Don't vectorize when the attribute NoImplicitFloat is used.
4127   if (F.hasFnAttribute(Attribute::NoImplicitFloat))
4128     return false;
4129 
4130   DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
4131 
4132   // Use the bottom up slp vectorizer to construct chains that start with
4133   // store instructions.
4134   BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_);
4135 
4136   // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
4137   // delete instructions.
4138 
4139   // Scan the blocks in the function in post order.
4140   for (auto BB : post_order(&F.getEntryBlock())) {
4141     collectSeedInstructions(BB);
4142 
4143     // Vectorize trees that end at stores.
4144     if (!Stores.empty()) {
4145       DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()
4146                    << " underlying objects.\n");
4147       Changed |= vectorizeStoreChains(R);
4148     }
4149 
4150     // Vectorize trees that end at reductions.
4151     Changed |= vectorizeChainsInBlock(BB, R);
4152 
4153     // Vectorize the index computations of getelementptr instructions. This
4154     // is primarily intended to catch gather-like idioms ending at
4155     // non-consecutive loads.
4156     if (!GEPs.empty()) {
4157       DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()
4158                    << " underlying objects.\n");
4159       Changed |= vectorizeGEPIndices(BB, R);
4160     }
4161   }
4162 
4163   if (Changed) {
4164     R.optimizeGatherSequence();
4165     DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
4166     DEBUG(verifyFunction(F));
4167   }
4168   return Changed;
4169 }
4170 
4171 /// \brief Check that the Values in the slice in VL array are still existent in
4172 /// the WeakTrackingVH array.
4173 /// Vectorization of part of the VL array may cause later values in the VL array
4174 /// to become invalid. We track when this has happened in the WeakTrackingVH
4175 /// array.
4176 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL,
4177                                ArrayRef<WeakTrackingVH> VH, unsigned SliceBegin,
4178                                unsigned SliceSize) {
4179   VL = VL.slice(SliceBegin, SliceSize);
4180   VH = VH.slice(SliceBegin, SliceSize);
4181   return !std::equal(VL.begin(), VL.end(), VH.begin());
4182 }
4183 
4184 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R,
4185                                             unsigned VecRegSize) {
4186   unsigned ChainLen = Chain.size();
4187   DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen
4188         << "\n");
4189   unsigned Sz = R.getVectorElementSize(Chain[0]);
4190   unsigned VF = VecRegSize / Sz;
4191 
4192   if (!isPowerOf2_32(Sz) || VF < 2)
4193     return false;
4194 
4195   // Keep track of values that were deleted by vectorizing in the loop below.
4196   SmallVector<WeakTrackingVH, 8> TrackValues(Chain.begin(), Chain.end());
4197 
4198   bool Changed = false;
4199   // Look for profitable vectorizable trees at all offsets, starting at zero.
4200   for (unsigned i = 0, e = ChainLen; i < e; ++i) {
4201     if (i + VF > e)
4202       break;
4203 
4204     // Check that a previous iteration of this loop did not delete the Value.
4205     if (hasValueBeenRAUWed(Chain, TrackValues, i, VF))
4206       continue;
4207 
4208     DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i
4209           << "\n");
4210     ArrayRef<Value *> Operands = Chain.slice(i, VF);
4211 
4212     R.buildTree(Operands);
4213     if (R.isTreeTinyAndNotFullyVectorizable())
4214       continue;
4215 
4216     R.computeMinimumValueSizes();
4217 
4218     int Cost = R.getTreeCost();
4219 
4220     DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n");
4221     if (Cost < -SLPCostThreshold) {
4222       DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
4223       using namespace ore;
4224       R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized",
4225                                           cast<StoreInst>(Chain[i]))
4226                        << "Stores SLP vectorized with cost " << NV("Cost", Cost)
4227                        << " and with tree size "
4228                        << NV("TreeSize", R.getTreeSize()));
4229 
4230       R.vectorizeTree();
4231 
4232       // Move to the next bundle.
4233       i += VF - 1;
4234       Changed = true;
4235     }
4236   }
4237 
4238   return Changed;
4239 }
4240 
4241 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
4242                                         BoUpSLP &R) {
4243   SetVector<StoreInst *> Heads, Tails;
4244   SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
4245 
4246   // We may run into multiple chains that merge into a single chain. We mark the
4247   // stores that we vectorized so that we don't visit the same store twice.
4248   BoUpSLP::ValueSet VectorizedStores;
4249   bool Changed = false;
4250 
4251   // Do a quadratic search on all of the given stores and find
4252   // all of the pairs of stores that follow each other.
4253   SmallVector<unsigned, 16> IndexQueue;
4254   for (unsigned i = 0, e = Stores.size(); i < e; ++i) {
4255     IndexQueue.clear();
4256     // If a store has multiple consecutive store candidates, search Stores
4257     // array according to the sequence: from i+1 to e, then from i-1 to 0.
4258     // This is because usually pairing with immediate succeeding or preceding
4259     // candidate create the best chance to find slp vectorization opportunity.
4260     unsigned j = 0;
4261     for (j = i + 1; j < e; ++j)
4262       IndexQueue.push_back(j);
4263     for (j = i; j > 0; --j)
4264       IndexQueue.push_back(j - 1);
4265 
4266     for (auto &k : IndexQueue) {
4267       if (isConsecutiveAccess(Stores[i], Stores[k], *DL, *SE)) {
4268         Tails.insert(Stores[k]);
4269         Heads.insert(Stores[i]);
4270         ConsecutiveChain[Stores[i]] = Stores[k];
4271         break;
4272       }
4273     }
4274   }
4275 
4276   // For stores that start but don't end a link in the chain:
4277   for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end();
4278        it != e; ++it) {
4279     if (Tails.count(*it))
4280       continue;
4281 
4282     // We found a store instr that starts a chain. Now follow the chain and try
4283     // to vectorize it.
4284     BoUpSLP::ValueList Operands;
4285     StoreInst *I = *it;
4286     // Collect the chain into a list.
4287     while (Tails.count(I) || Heads.count(I)) {
4288       if (VectorizedStores.count(I))
4289         break;
4290       Operands.push_back(I);
4291       // Move to the next value in the chain.
4292       I = ConsecutiveChain[I];
4293     }
4294 
4295     // FIXME: Is division-by-2 the correct step? Should we assert that the
4296     // register size is a power-of-2?
4297     for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize();
4298          Size /= 2) {
4299       if (vectorizeStoreChain(Operands, R, Size)) {
4300         // Mark the vectorized stores so that we don't vectorize them again.
4301         VectorizedStores.insert(Operands.begin(), Operands.end());
4302         Changed = true;
4303         break;
4304       }
4305     }
4306   }
4307 
4308   return Changed;
4309 }
4310 
4311 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
4312 
4313   // Initialize the collections. We will make a single pass over the block.
4314   Stores.clear();
4315   GEPs.clear();
4316 
4317   // Visit the store and getelementptr instructions in BB and organize them in
4318   // Stores and GEPs according to the underlying objects of their pointer
4319   // operands.
4320   for (Instruction &I : *BB) {
4321 
4322     // Ignore store instructions that are volatile or have a pointer operand
4323     // that doesn't point to a scalar type.
4324     if (auto *SI = dyn_cast<StoreInst>(&I)) {
4325       if (!SI->isSimple())
4326         continue;
4327       if (!isValidElementType(SI->getValueOperand()->getType()))
4328         continue;
4329       Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI);
4330     }
4331 
4332     // Ignore getelementptr instructions that have more than one index, a
4333     // constant index, or a pointer operand that doesn't point to a scalar
4334     // type.
4335     else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
4336       auto Idx = GEP->idx_begin()->get();
4337       if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
4338         continue;
4339       if (!isValidElementType(Idx->getType()))
4340         continue;
4341       if (GEP->getType()->isVectorTy())
4342         continue;
4343       GEPs[GetUnderlyingObject(GEP->getPointerOperand(), *DL)].push_back(GEP);
4344     }
4345   }
4346 }
4347 
4348 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
4349   if (!A || !B)
4350     return false;
4351   Value *VL[] = { A, B };
4352   return tryToVectorizeList(VL, R, None, true);
4353 }
4354 
4355 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
4356                                            ArrayRef<Value *> BuildVector,
4357                                            bool AllowReorder) {
4358   if (VL.size() < 2)
4359     return false;
4360 
4361   DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " << VL.size()
4362                << ".\n");
4363 
4364   // Check that all of the parts are scalar instructions of the same type.
4365   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
4366   if (!I0)
4367     return false;
4368 
4369   unsigned Opcode0 = I0->getOpcode();
4370 
4371   unsigned Sz = R.getVectorElementSize(I0);
4372   unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz);
4373   unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF);
4374   if (MaxVF < 2)
4375     return false;
4376 
4377   for (Value *V : VL) {
4378     Type *Ty = V->getType();
4379     if (!isValidElementType(Ty))
4380       return false;
4381     Instruction *Inst = dyn_cast<Instruction>(V);
4382     if (!Inst || Inst->getOpcode() != Opcode0)
4383       return false;
4384   }
4385 
4386   bool Changed = false;
4387 
4388   // Keep track of values that were deleted by vectorizing in the loop below.
4389   SmallVector<WeakTrackingVH, 8> TrackValues(VL.begin(), VL.end());
4390 
4391   unsigned NextInst = 0, MaxInst = VL.size();
4392   for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF;
4393        VF /= 2) {
4394     // No actual vectorization should happen, if number of parts is the same as
4395     // provided vectorization factor (i.e. the scalar type is used for vector
4396     // code during codegen).
4397     auto *VecTy = VectorType::get(VL[0]->getType(), VF);
4398     if (TTI->getNumberOfParts(VecTy) == VF)
4399       continue;
4400     for (unsigned I = NextInst; I < MaxInst; ++I) {
4401       unsigned OpsWidth = 0;
4402 
4403       if (I + VF > MaxInst)
4404         OpsWidth = MaxInst - I;
4405       else
4406         OpsWidth = VF;
4407 
4408       if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
4409         break;
4410 
4411       // Check that a previous iteration of this loop did not delete the Value.
4412       if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth))
4413         continue;
4414 
4415       DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
4416                    << "\n");
4417       ArrayRef<Value *> Ops = VL.slice(I, OpsWidth);
4418 
4419       ArrayRef<Value *> BuildVectorSlice;
4420       if (!BuildVector.empty())
4421         BuildVectorSlice = BuildVector.slice(I, OpsWidth);
4422 
4423       R.buildTree(Ops, BuildVectorSlice);
4424       // TODO: check if we can allow reordering for more cases.
4425       if (AllowReorder && R.shouldReorder()) {
4426         // Conceptually, there is nothing actually preventing us from trying to
4427         // reorder a larger list. In fact, we do exactly this when vectorizing
4428         // reductions. However, at this point, we only expect to get here when
4429         // there are exactly two operations.
4430         assert(Ops.size() == 2);
4431         assert(BuildVectorSlice.empty());
4432         Value *ReorderedOps[] = {Ops[1], Ops[0]};
4433         R.buildTree(ReorderedOps, None);
4434       }
4435       if (R.isTreeTinyAndNotFullyVectorizable())
4436         continue;
4437 
4438       R.computeMinimumValueSizes();
4439       int Cost = R.getTreeCost();
4440 
4441       if (Cost < -SLPCostThreshold) {
4442         DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
4443         R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList",
4444                                             cast<Instruction>(Ops[0]))
4445                          << "SLP vectorized with cost " << ore::NV("Cost", Cost)
4446                          << " and with tree size "
4447                          << ore::NV("TreeSize", R.getTreeSize()));
4448 
4449         Value *VectorizedRoot = R.vectorizeTree();
4450 
4451         // Reconstruct the build vector by extracting the vectorized root. This
4452         // way we handle the case where some elements of the vector are
4453         // undefined.
4454         //  (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2))
4455         if (!BuildVectorSlice.empty()) {
4456           // The insert point is the last build vector instruction. The
4457           // vectorized root will precede it. This guarantees that we get an
4458           // instruction. The vectorized tree could have been constant folded.
4459           Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back());
4460           unsigned VecIdx = 0;
4461           for (auto &V : BuildVectorSlice) {
4462             IRBuilder<NoFolder> Builder(InsertAfter->getParent(),
4463                                         ++BasicBlock::iterator(InsertAfter));
4464             Instruction *I = cast<Instruction>(V);
4465             assert(isa<InsertElementInst>(I) || isa<InsertValueInst>(I));
4466             Instruction *Extract =
4467                 cast<Instruction>(Builder.CreateExtractElement(
4468                     VectorizedRoot, Builder.getInt32(VecIdx++)));
4469             I->setOperand(1, Extract);
4470             I->removeFromParent();
4471             I->insertAfter(Extract);
4472             InsertAfter = I;
4473           }
4474         }
4475         // Move to the next bundle.
4476         I += VF - 1;
4477         NextInst = I + 1;
4478         Changed = true;
4479       }
4480     }
4481   }
4482 
4483   return Changed;
4484 }
4485 
4486 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) {
4487   if (!I)
4488     return false;
4489 
4490   if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I))
4491     return false;
4492 
4493   Value *P = I->getParent();
4494 
4495   // Vectorize in current basic block only.
4496   auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
4497   auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
4498   if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P)
4499     return false;
4500 
4501   // Try to vectorize V.
4502   if (tryToVectorizePair(Op0, Op1, R))
4503     return true;
4504 
4505   auto *A = dyn_cast<BinaryOperator>(Op0);
4506   auto *B = dyn_cast<BinaryOperator>(Op1);
4507   // Try to skip B.
4508   if (B && B->hasOneUse()) {
4509     auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
4510     auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
4511     if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R))
4512       return true;
4513     if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R))
4514       return true;
4515   }
4516 
4517   // Try to skip A.
4518   if (A && A->hasOneUse()) {
4519     auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
4520     auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
4521     if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R))
4522       return true;
4523     if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R))
4524       return true;
4525   }
4526   return false;
4527 }
4528 
4529 /// \brief Generate a shuffle mask to be used in a reduction tree.
4530 ///
4531 /// \param VecLen The length of the vector to be reduced.
4532 /// \param NumEltsToRdx The number of elements that should be reduced in the
4533 ///        vector.
4534 /// \param IsPairwise Whether the reduction is a pairwise or splitting
4535 ///        reduction. A pairwise reduction will generate a mask of
4536 ///        <0,2,...> or <1,3,..> while a splitting reduction will generate
4537 ///        <2,3, undef,undef> for a vector of 4 and NumElts = 2.
4538 /// \param IsLeft True will generate a mask of even elements, odd otherwise.
4539 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx,
4540                                    bool IsPairwise, bool IsLeft,
4541                                    IRBuilder<> &Builder) {
4542   assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask");
4543 
4544   SmallVector<Constant *, 32> ShuffleMask(
4545       VecLen, UndefValue::get(Builder.getInt32Ty()));
4546 
4547   if (IsPairwise)
4548     // Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
4549     for (unsigned i = 0; i != NumEltsToRdx; ++i)
4550       ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft);
4551   else
4552     // Move the upper half of the vector to the lower half.
4553     for (unsigned i = 0; i != NumEltsToRdx; ++i)
4554       ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i);
4555 
4556   return ConstantVector::get(ShuffleMask);
4557 }
4558 
4559 namespace {
4560 /// Model horizontal reductions.
4561 ///
4562 /// A horizontal reduction is a tree of reduction operations (currently add and
4563 /// fadd) that has operations that can be put into a vector as its leaf.
4564 /// For example, this tree:
4565 ///
4566 /// mul mul mul mul
4567 ///  \  /    \  /
4568 ///   +       +
4569 ///    \     /
4570 ///       +
4571 /// This tree has "mul" as its reduced values and "+" as its reduction
4572 /// operations. A reduction might be feeding into a store or a binary operation
4573 /// feeding a phi.
4574 ///    ...
4575 ///    \  /
4576 ///     +
4577 ///     |
4578 ///  phi +=
4579 ///
4580 ///  Or:
4581 ///    ...
4582 ///    \  /
4583 ///     +
4584 ///     |
4585 ///   *p =
4586 ///
4587 class HorizontalReduction {
4588   SmallVector<Value *, 16> ReductionOps;
4589   SmallVector<Value *, 32> ReducedVals;
4590   // Use map vector to make stable output.
4591   MapVector<Instruction *, Value *> ExtraArgs;
4592 
4593   /// Contains info about operation, like its opcode, left and right operands.
4594   struct OperationData {
4595     /// true if the operation is a reduced value, false if reduction operation.
4596     bool IsReducedValue = false;
4597     /// Opcode of the instruction.
4598     unsigned Opcode = 0;
4599     /// Left operand of the reduction operation.
4600     Value *LHS = nullptr;
4601     /// Right operand of the reduction operation.
4602     Value *RHS = nullptr;
4603 
4604     /// Checks if the reduction operation can be vectorized.
4605     bool isVectorizable() const {
4606       return LHS && RHS &&
4607              // We currently only support adds.
4608              (Opcode == Instruction::Add || Opcode == Instruction::FAdd);
4609     }
4610 
4611   public:
4612     explicit OperationData() = default;
4613     /// Construction for reduced values. They are identified by opcode only and
4614     /// don't have associated LHS/RHS values.
4615     explicit OperationData(Value *V) : IsReducedValue(true) {
4616       if (auto *I = dyn_cast<Instruction>(V))
4617         Opcode = I->getOpcode();
4618     }
4619     /// Constructor for binary reduction operations with opcode and its left and
4620     /// right operands.
4621     OperationData(unsigned Opcode, Value *LHS, Value *RHS)
4622         : IsReducedValue(false), Opcode(Opcode), LHS(LHS), RHS(RHS) {}
4623     explicit operator bool() const { return Opcode; }
4624     /// Get the index of the first operand.
4625     unsigned getFirstOperandIndex() const {
4626       assert(!!*this && "The opcode is not set.");
4627       return 0;
4628     }
4629     /// Total number of operands in the reduction operation.
4630     unsigned getNumberOfOperands() const {
4631       assert(!IsReducedValue && !!*this && LHS && RHS &&
4632              "Expected reduction operation.");
4633       return 2;
4634     }
4635     /// Expected number of uses for reduction operations/reduced values.
4636     unsigned getRequiredNumberOfUses() const {
4637       assert(!IsReducedValue && !!*this && LHS && RHS &&
4638              "Expected reduction operation.");
4639       return 1;
4640     }
4641     /// Checks if instruction is associative and can be vectorized.
4642     bool isAssociative(Instruction *I) const {
4643       assert(!IsReducedValue && *this && LHS && RHS &&
4644              "Expected reduction operation.");
4645       return I->isAssociative();
4646     }
4647     /// Checks if the reduction operation can be vectorized.
4648     bool isVectorizable(Instruction *I) const {
4649       return isVectorizable() && isAssociative(I);
4650     }
4651 
4652     /// Checks if two operation data are both a reduction op or both a reduced
4653     /// value.
4654     bool operator==(const OperationData &OD) {
4655       assert(((IsReducedValue != OD.IsReducedValue) ||
4656               ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) &&
4657              "One of the comparing operations is incorrect.");
4658       return this == &OD ||
4659              (IsReducedValue == OD.IsReducedValue && Opcode == OD.Opcode);
4660     }
4661     bool operator!=(const OperationData &OD) { return !(*this == OD); }
4662     void clear() {
4663       IsReducedValue = false;
4664       Opcode = 0;
4665       LHS = nullptr;
4666       RHS = nullptr;
4667     }
4668     /// Get the opcode of the reduction operation.
4669     unsigned getOpcode() const {
4670       assert(isVectorizable() && "Expected vectorizable operation.");
4671       return Opcode;
4672     }
4673     Value *getLHS() const { return LHS; }
4674     Value *getRHS() const { return RHS; }
4675     /// Creates reduction operation with the current opcode.
4676     Value *createOp(IRBuilder<> &Builder, const Twine &Name = "") const {
4677       assert(!IsReducedValue &&
4678              (Opcode == Instruction::FAdd || Opcode == Instruction::Add) &&
4679              "Expected add|fadd reduction operation.");
4680       return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS,
4681                                  Name);
4682     }
4683   };
4684 
4685   Instruction *ReductionRoot = nullptr;
4686 
4687   /// The operation data of the reduction operation.
4688   OperationData ReductionData;
4689   /// The operation data of the values we perform a reduction on.
4690   OperationData ReducedValueData;
4691   /// Should we model this reduction as a pairwise reduction tree or a tree that
4692   /// splits the vector in halves and adds those halves.
4693   bool IsPairwiseReduction = false;
4694 
4695   /// Checks if the ParentStackElem.first should be marked as a reduction
4696   /// operation with an extra argument or as extra argument itself.
4697   void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem,
4698                     Value *ExtraArg) {
4699     if (ExtraArgs.count(ParentStackElem.first)) {
4700       ExtraArgs[ParentStackElem.first] = nullptr;
4701       // We ran into something like:
4702       // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg.
4703       // The whole ParentStackElem.first should be considered as an extra value
4704       // in this case.
4705       // Do not perform analysis of remaining operands of ParentStackElem.first
4706       // instruction, this whole instruction is an extra argument.
4707       ParentStackElem.second = ParentStackElem.first->getNumOperands();
4708     } else {
4709       // We ran into something like:
4710       // ParentStackElem.first += ... + ExtraArg + ...
4711       ExtraArgs[ParentStackElem.first] = ExtraArg;
4712     }
4713   }
4714 
4715   static OperationData getOperationData(Value *V) {
4716     if (!V)
4717       return OperationData();
4718 
4719     Value *LHS;
4720     Value *RHS;
4721     if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V))
4722       return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS);
4723     return OperationData(V);
4724   }
4725 
4726 public:
4727   HorizontalReduction() = default;
4728 
4729   /// \brief Try to find a reduction tree.
4730   bool matchAssociativeReduction(PHINode *Phi, Instruction *B) {
4731     assert((!Phi || is_contained(Phi->operands(), B)) &&
4732            "Thi phi needs to use the binary operator");
4733 
4734     ReductionData = getOperationData(B);
4735 
4736     // We could have a initial reductions that is not an add.
4737     //  r *= v1 + v2 + v3 + v4
4738     // In such a case start looking for a tree rooted in the first '+'.
4739     if (Phi) {
4740       if (ReductionData.getLHS() == Phi) {
4741         Phi = nullptr;
4742         B = dyn_cast<Instruction>(ReductionData.getRHS());
4743         ReductionData = getOperationData(B);
4744       } else if (ReductionData.getRHS() == Phi) {
4745         Phi = nullptr;
4746         B = dyn_cast<Instruction>(ReductionData.getLHS());
4747         ReductionData = getOperationData(B);
4748       }
4749     }
4750 
4751     if (!ReductionData.isVectorizable(B))
4752       return false;
4753 
4754     Type *Ty = B->getType();
4755     if (!isValidElementType(Ty))
4756       return false;
4757 
4758     ReducedValueData.clear();
4759     ReductionRoot = B;
4760 
4761     // Post order traverse the reduction tree starting at B. We only handle true
4762     // trees containing only binary operators.
4763     SmallVector<std::pair<Instruction *, unsigned>, 32> Stack;
4764     Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex()));
4765     const unsigned NUses = ReductionData.getRequiredNumberOfUses();
4766     while (!Stack.empty()) {
4767       Instruction *TreeN = Stack.back().first;
4768       unsigned EdgeToVist = Stack.back().second++;
4769       OperationData OpData = getOperationData(TreeN);
4770       bool IsReducedValue = OpData != ReductionData;
4771 
4772       // Postorder vist.
4773       if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) {
4774         if (IsReducedValue)
4775           ReducedVals.push_back(TreeN);
4776         else {
4777           auto I = ExtraArgs.find(TreeN);
4778           if (I != ExtraArgs.end() && !I->second) {
4779             // Check if TreeN is an extra argument of its parent operation.
4780             if (Stack.size() <= 1) {
4781               // TreeN can't be an extra argument as it is a root reduction
4782               // operation.
4783               return false;
4784             }
4785             // Yes, TreeN is an extra argument, do not add it to a list of
4786             // reduction operations.
4787             // Stack[Stack.size() - 2] always points to the parent operation.
4788             markExtraArg(Stack[Stack.size() - 2], TreeN);
4789             ExtraArgs.erase(TreeN);
4790           } else
4791             ReductionOps.push_back(TreeN);
4792         }
4793         // Retract.
4794         Stack.pop_back();
4795         continue;
4796       }
4797 
4798       // Visit left or right.
4799       Value *NextV = TreeN->getOperand(EdgeToVist);
4800       if (NextV != Phi) {
4801         auto *I = dyn_cast<Instruction>(NextV);
4802         OpData = getOperationData(I);
4803         // Continue analysis if the next operand is a reduction operation or
4804         // (possibly) a reduced value. If the reduced value opcode is not set,
4805         // the first met operation != reduction operation is considered as the
4806         // reduced value class.
4807         if (I && (!ReducedValueData || OpData == ReducedValueData ||
4808                   OpData == ReductionData)) {
4809           // Only handle trees in the current basic block.
4810           if (I->getParent() != B->getParent()) {
4811             // I is an extra argument for TreeN (its parent operation).
4812             markExtraArg(Stack.back(), I);
4813             continue;
4814           }
4815 
4816           // Each tree node needs to have minimal number of users except for the
4817           // ultimate reduction.
4818           if (!I->hasNUses(NUses) && I != B) {
4819             // I is an extra argument for TreeN (its parent operation).
4820             markExtraArg(Stack.back(), I);
4821             continue;
4822           }
4823 
4824           if (OpData == ReductionData) {
4825             // We need to be able to reassociate the reduction operations.
4826             if (!OpData.isAssociative(I)) {
4827               // I is an extra argument for TreeN (its parent operation).
4828               markExtraArg(Stack.back(), I);
4829               continue;
4830             }
4831           } else if (ReducedValueData &&
4832                      ReducedValueData != OpData) {
4833             // Make sure that the opcodes of the operations that we are going to
4834             // reduce match.
4835             // I is an extra argument for TreeN (its parent operation).
4836             markExtraArg(Stack.back(), I);
4837             continue;
4838           } else if (!ReducedValueData)
4839             ReducedValueData = OpData;
4840 
4841           Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex()));
4842           continue;
4843         }
4844       }
4845       // NextV is an extra argument for TreeN (its parent operation).
4846       markExtraArg(Stack.back(), NextV);
4847     }
4848     return true;
4849   }
4850 
4851   /// \brief Attempt to vectorize the tree found by
4852   /// matchAssociativeReduction.
4853   bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
4854     if (ReducedVals.empty())
4855       return false;
4856 
4857     // If there is a sufficient number of reduction values, reduce
4858     // to a nearby power-of-2. Can safely generate oversized
4859     // vectors and rely on the backend to split them to legal sizes.
4860     unsigned NumReducedVals = ReducedVals.size();
4861     if (NumReducedVals < 4)
4862       return false;
4863 
4864     unsigned ReduxWidth = PowerOf2Floor(NumReducedVals);
4865 
4866     Value *VectorizedTree = nullptr;
4867     IRBuilder<> Builder(ReductionRoot);
4868     FastMathFlags Unsafe;
4869     Unsafe.setUnsafeAlgebra();
4870     Builder.setFastMathFlags(Unsafe);
4871     unsigned i = 0;
4872 
4873     BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues;
4874     // The same extra argument may be used several time, so log each attempt
4875     // to use it.
4876     for (auto &Pair : ExtraArgs)
4877       ExternallyUsedValues[Pair.second].push_back(Pair.first);
4878     while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) {
4879       auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth);
4880       V.buildTree(VL, ExternallyUsedValues, ReductionOps);
4881       if (V.shouldReorder()) {
4882         SmallVector<Value *, 8> Reversed(VL.rbegin(), VL.rend());
4883         V.buildTree(Reversed, ExternallyUsedValues, ReductionOps);
4884       }
4885       if (V.isTreeTinyAndNotFullyVectorizable())
4886         break;
4887 
4888       V.computeMinimumValueSizes();
4889 
4890       // Estimate cost.
4891       int Cost =
4892           V.getTreeCost() + getReductionCost(TTI, ReducedVals[i], ReduxWidth);
4893       if (Cost >= -SLPCostThreshold)
4894         break;
4895 
4896       DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost
4897                    << ". (HorRdx)\n");
4898       auto *I0 = cast<Instruction>(VL[0]);
4899       V.getORE()->emit(
4900           OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", I0)
4901           << "Vectorized horizontal reduction with cost "
4902           << ore::NV("Cost", Cost) << " and with tree size "
4903           << ore::NV("TreeSize", V.getTreeSize()));
4904 
4905       // Vectorize a tree.
4906       DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
4907       Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues);
4908 
4909       // Emit a reduction.
4910       Value *ReducedSubTree =
4911           emitReduction(VectorizedRoot, Builder, ReduxWidth, ReductionOps, TTI);
4912       if (VectorizedTree) {
4913         Builder.SetCurrentDebugLocation(Loc);
4914         OperationData VectReductionData(ReductionData.getOpcode(),
4915                                         VectorizedTree, ReducedSubTree);
4916         VectorizedTree = VectReductionData.createOp(Builder, "bin.rdx");
4917         propagateIRFlags(VectorizedTree, ReductionOps);
4918       } else
4919         VectorizedTree = ReducedSubTree;
4920       i += ReduxWidth;
4921       ReduxWidth = PowerOf2Floor(NumReducedVals - i);
4922     }
4923 
4924     if (VectorizedTree) {
4925       // Finish the reduction.
4926       for (; i < NumReducedVals; ++i) {
4927         auto *I = cast<Instruction>(ReducedVals[i]);
4928         Builder.SetCurrentDebugLocation(I->getDebugLoc());
4929         OperationData VectReductionData(ReductionData.getOpcode(),
4930                                         VectorizedTree, I);
4931         VectorizedTree = VectReductionData.createOp(Builder);
4932         propagateIRFlags(VectorizedTree, ReductionOps);
4933       }
4934       for (auto &Pair : ExternallyUsedValues) {
4935         assert(!Pair.second.empty() &&
4936                "At least one DebugLoc must be inserted");
4937         // Add each externally used value to the final reduction.
4938         for (auto *I : Pair.second) {
4939           Builder.SetCurrentDebugLocation(I->getDebugLoc());
4940           OperationData VectReductionData(ReductionData.getOpcode(),
4941                                           VectorizedTree, Pair.first);
4942           VectorizedTree = VectReductionData.createOp(Builder, "bin.extra");
4943           propagateIRFlags(VectorizedTree, I);
4944         }
4945       }
4946       // Update users.
4947       ReductionRoot->replaceAllUsesWith(VectorizedTree);
4948     }
4949     return VectorizedTree != nullptr;
4950   }
4951 
4952   unsigned numReductionValues() const {
4953     return ReducedVals.size();
4954   }
4955 
4956 private:
4957   /// \brief Calculate the cost of a reduction.
4958   int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal,
4959                        unsigned ReduxWidth) {
4960     Type *ScalarTy = FirstReducedVal->getType();
4961     Type *VecTy = VectorType::get(ScalarTy, ReduxWidth);
4962 
4963     int PairwiseRdxCost =
4964         TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy,
4965                                         /*IsPairwiseForm=*/true);
4966     int SplittingRdxCost =
4967         TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy,
4968                                         /*IsPairwiseForm=*/false);
4969 
4970     IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
4971     int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
4972 
4973     int ScalarReduxCost =
4974         (ReduxWidth - 1) *
4975         TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy);
4976 
4977     DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost
4978                  << " for reduction that starts with " << *FirstReducedVal
4979                  << " (It is a "
4980                  << (IsPairwiseReduction ? "pairwise" : "splitting")
4981                  << " reduction)\n");
4982 
4983     return VecReduxCost - ScalarReduxCost;
4984   }
4985 
4986   /// \brief Emit a horizontal reduction of the vectorized value.
4987   Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder,
4988                        unsigned ReduxWidth, ArrayRef<Value *> RedOps,
4989                        const TargetTransformInfo *TTI) {
4990     assert(VectorizedValue && "Need to have a vectorized tree node");
4991     assert(isPowerOf2_32(ReduxWidth) &&
4992            "We only handle power-of-two reductions for now");
4993 
4994     if (!IsPairwiseReduction)
4995       return createSimpleTargetReduction(
4996           Builder, TTI, ReductionData.getOpcode(), VectorizedValue,
4997           TargetTransformInfo::ReductionFlags(), RedOps);
4998 
4999     Value *TmpVec = VectorizedValue;
5000     for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
5001       Value *LeftMask =
5002           createRdxShuffleMask(ReduxWidth, i, true, true, Builder);
5003       Value *RightMask =
5004           createRdxShuffleMask(ReduxWidth, i, true, false, Builder);
5005 
5006       Value *LeftShuf = Builder.CreateShuffleVector(
5007           TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l");
5008       Value *RightShuf = Builder.CreateShuffleVector(
5009           TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
5010           "rdx.shuf.r");
5011       OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf,
5012                                       RightShuf);
5013       TmpVec = VectReductionData.createOp(Builder, "bin.rdx");
5014       propagateIRFlags(TmpVec, RedOps);
5015     }
5016 
5017     // The result is in the first element of the vector.
5018     return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
5019   }
5020 };
5021 } // end anonymous namespace
5022 
5023 /// \brief Recognize construction of vectors like
5024 ///  %ra = insertelement <4 x float> undef, float %s0, i32 0
5025 ///  %rb = insertelement <4 x float> %ra, float %s1, i32 1
5026 ///  %rc = insertelement <4 x float> %rb, float %s2, i32 2
5027 ///  %rd = insertelement <4 x float> %rc, float %s3, i32 3
5028 ///  starting from the last insertelement instruction.
5029 ///
5030 /// Returns true if it matches
5031 ///
5032 static bool findBuildVector(InsertElementInst *LastInsertElem,
5033                             SmallVectorImpl<Value *> &BuildVector,
5034                             SmallVectorImpl<Value *> &BuildVectorOpds) {
5035   Value *V = nullptr;
5036   do {
5037     BuildVector.push_back(LastInsertElem);
5038     BuildVectorOpds.push_back(LastInsertElem->getOperand(1));
5039     V = LastInsertElem->getOperand(0);
5040     if (isa<UndefValue>(V))
5041       break;
5042     LastInsertElem = dyn_cast<InsertElementInst>(V);
5043     if (!LastInsertElem || !LastInsertElem->hasOneUse())
5044       return false;
5045   } while (true);
5046   std::reverse(BuildVector.begin(), BuildVector.end());
5047   std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end());
5048   return true;
5049 }
5050 
5051 /// \brief Like findBuildVector, but looks for construction of aggregate.
5052 ///
5053 /// \return true if it matches.
5054 static bool findBuildAggregate(InsertValueInst *IV,
5055                                SmallVectorImpl<Value *> &BuildVector,
5056                                SmallVectorImpl<Value *> &BuildVectorOpds) {
5057   Value *V;
5058   do {
5059     BuildVector.push_back(IV);
5060     BuildVectorOpds.push_back(IV->getInsertedValueOperand());
5061     V = IV->getAggregateOperand();
5062     if (isa<UndefValue>(V))
5063       break;
5064     IV = dyn_cast<InsertValueInst>(V);
5065     if (!IV || !IV->hasOneUse())
5066       return false;
5067   } while (true);
5068   std::reverse(BuildVector.begin(), BuildVector.end());
5069   std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end());
5070   return true;
5071 }
5072 
5073 static bool PhiTypeSorterFunc(Value *V, Value *V2) {
5074   return V->getType() < V2->getType();
5075 }
5076 
5077 /// \brief Try and get a reduction value from a phi node.
5078 ///
5079 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions
5080 /// if they come from either \p ParentBB or a containing loop latch.
5081 ///
5082 /// \returns A candidate reduction value if possible, or \code nullptr \endcode
5083 /// if not possible.
5084 static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
5085                                 BasicBlock *ParentBB, LoopInfo *LI) {
5086   // There are situations where the reduction value is not dominated by the
5087   // reduction phi. Vectorizing such cases has been reported to cause
5088   // miscompiles. See PR25787.
5089   auto DominatedReduxValue = [&](Value *R) {
5090     return (
5091         dyn_cast<Instruction>(R) &&
5092         DT->dominates(P->getParent(), dyn_cast<Instruction>(R)->getParent()));
5093   };
5094 
5095   Value *Rdx = nullptr;
5096 
5097   // Return the incoming value if it comes from the same BB as the phi node.
5098   if (P->getIncomingBlock(0) == ParentBB) {
5099     Rdx = P->getIncomingValue(0);
5100   } else if (P->getIncomingBlock(1) == ParentBB) {
5101     Rdx = P->getIncomingValue(1);
5102   }
5103 
5104   if (Rdx && DominatedReduxValue(Rdx))
5105     return Rdx;
5106 
5107   // Otherwise, check whether we have a loop latch to look at.
5108   Loop *BBL = LI->getLoopFor(ParentBB);
5109   if (!BBL)
5110     return nullptr;
5111   BasicBlock *BBLatch = BBL->getLoopLatch();
5112   if (!BBLatch)
5113     return nullptr;
5114 
5115   // There is a loop latch, return the incoming value if it comes from
5116   // that. This reduction pattern occasionally turns up.
5117   if (P->getIncomingBlock(0) == BBLatch) {
5118     Rdx = P->getIncomingValue(0);
5119   } else if (P->getIncomingBlock(1) == BBLatch) {
5120     Rdx = P->getIncomingValue(1);
5121   }
5122 
5123   if (Rdx && DominatedReduxValue(Rdx))
5124     return Rdx;
5125 
5126   return nullptr;
5127 }
5128 
5129 /// Attempt to reduce a horizontal reduction.
5130 /// If it is legal to match a horizontal reduction feeding the phi node \a P
5131 /// with reduction operators \a Root (or one of its operands) in a basic block
5132 /// \a BB, then check if it can be done. If horizontal reduction is not found
5133 /// and root instruction is a binary operation, vectorization of the operands is
5134 /// attempted.
5135 /// \returns true if a horizontal reduction was matched and reduced or operands
5136 /// of one of the binary instruction were vectorized.
5137 /// \returns false if a horizontal reduction was not matched (or not possible)
5138 /// or no vectorization of any binary operation feeding \a Root instruction was
5139 /// performed.
5140 static bool tryToVectorizeHorReductionOrInstOperands(
5141     PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R,
5142     TargetTransformInfo *TTI,
5143     const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) {
5144   if (!ShouldVectorizeHor)
5145     return false;
5146 
5147   if (!Root)
5148     return false;
5149 
5150   if (Root->getParent() != BB || isa<PHINode>(Root))
5151     return false;
5152   // Start analysis starting from Root instruction. If horizontal reduction is
5153   // found, try to vectorize it. If it is not a horizontal reduction or
5154   // vectorization is not possible or not effective, and currently analyzed
5155   // instruction is a binary operation, try to vectorize the operands, using
5156   // pre-order DFS traversal order. If the operands were not vectorized, repeat
5157   // the same procedure considering each operand as a possible root of the
5158   // horizontal reduction.
5159   // Interrupt the process if the Root instruction itself was vectorized or all
5160   // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
5161   SmallVector<std::pair<WeakTrackingVH, unsigned>, 8> Stack(1, {Root, 0});
5162   SmallSet<Value *, 8> VisitedInstrs;
5163   bool Res = false;
5164   while (!Stack.empty()) {
5165     Value *V;
5166     unsigned Level;
5167     std::tie(V, Level) = Stack.pop_back_val();
5168     if (!V)
5169       continue;
5170     auto *Inst = dyn_cast<Instruction>(V);
5171     if (!Inst)
5172       continue;
5173     if (auto *BI = dyn_cast<BinaryOperator>(Inst)) {
5174       HorizontalReduction HorRdx;
5175       if (HorRdx.matchAssociativeReduction(P, BI)) {
5176         if (HorRdx.tryToReduce(R, TTI)) {
5177           Res = true;
5178           // Set P to nullptr to avoid re-analysis of phi node in
5179           // matchAssociativeReduction function unless this is the root node.
5180           P = nullptr;
5181           continue;
5182         }
5183       }
5184       if (P) {
5185         Inst = dyn_cast<Instruction>(BI->getOperand(0));
5186         if (Inst == P)
5187           Inst = dyn_cast<Instruction>(BI->getOperand(1));
5188         if (!Inst) {
5189           // Set P to nullptr to avoid re-analysis of phi node in
5190           // matchAssociativeReduction function unless this is the root node.
5191           P = nullptr;
5192           continue;
5193         }
5194       }
5195     }
5196     // Set P to nullptr to avoid re-analysis of phi node in
5197     // matchAssociativeReduction function unless this is the root node.
5198     P = nullptr;
5199     if (Vectorize(Inst, R)) {
5200       Res = true;
5201       continue;
5202     }
5203 
5204     // Try to vectorize operands.
5205     // Continue analysis for the instruction from the same basic block only to
5206     // save compile time.
5207     if (++Level < RecursionMaxDepth)
5208       for (auto *Op : Inst->operand_values())
5209         if (VisitedInstrs.insert(Op).second)
5210           if (auto *I = dyn_cast<Instruction>(Op))
5211             if (!isa<PHINode>(Inst) && I->getParent() == BB)
5212               Stack.emplace_back(Op, Level);
5213   }
5214   return Res;
5215 }
5216 
5217 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V,
5218                                                  BasicBlock *BB, BoUpSLP &R,
5219                                                  TargetTransformInfo *TTI) {
5220   if (!V)
5221     return false;
5222   auto *I = dyn_cast<Instruction>(V);
5223   if (!I)
5224     return false;
5225 
5226   if (!isa<BinaryOperator>(I))
5227     P = nullptr;
5228   // Try to match and vectorize a horizontal reduction.
5229   auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool {
5230     return tryToVectorize(I, R);
5231   };
5232   return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI,
5233                                                   ExtraVectorization);
5234 }
5235 
5236 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI,
5237                                                  BasicBlock *BB, BoUpSLP &R) {
5238   const DataLayout &DL = BB->getModule()->getDataLayout();
5239   if (!R.canMapToVector(IVI->getType(), DL))
5240     return false;
5241 
5242   SmallVector<Value *, 16> BuildVector;
5243   SmallVector<Value *, 16> BuildVectorOpds;
5244   if (!findBuildAggregate(IVI, BuildVector, BuildVectorOpds))
5245     return false;
5246 
5247   DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n");
5248   return tryToVectorizeList(BuildVectorOpds, R, BuildVector, false);
5249 }
5250 
5251 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI,
5252                                                    BasicBlock *BB, BoUpSLP &R) {
5253   SmallVector<Value *, 16> BuildVector;
5254   SmallVector<Value *, 16> BuildVectorOpds;
5255   if (!findBuildVector(IEI, BuildVector, BuildVectorOpds))
5256     return false;
5257 
5258   // Vectorize starting with the build vector operands ignoring the BuildVector
5259   // instructions for the purpose of scheduling and user extraction.
5260   return tryToVectorizeList(BuildVectorOpds, R, BuildVector);
5261 }
5262 
5263 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB,
5264                                          BoUpSLP &R) {
5265   if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R))
5266     return true;
5267 
5268   bool OpsChanged = false;
5269   for (int Idx = 0; Idx < 2; ++Idx) {
5270     OpsChanged |=
5271         vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI);
5272   }
5273   return OpsChanged;
5274 }
5275 
5276 bool SLPVectorizerPass::vectorizeSimpleInstructions(
5277     SmallVectorImpl<WeakVH> &Instructions, BasicBlock *BB, BoUpSLP &R) {
5278   bool OpsChanged = false;
5279   for (auto &VH : reverse(Instructions)) {
5280     auto *I = dyn_cast_or_null<Instruction>(VH);
5281     if (!I)
5282       continue;
5283     if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I))
5284       OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R);
5285     else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I))
5286       OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R);
5287     else if (auto *CI = dyn_cast<CmpInst>(I))
5288       OpsChanged |= vectorizeCmpInst(CI, BB, R);
5289   }
5290   Instructions.clear();
5291   return OpsChanged;
5292 }
5293 
5294 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
5295   bool Changed = false;
5296   SmallVector<Value *, 4> Incoming;
5297   SmallSet<Value *, 16> VisitedInstrs;
5298 
5299   bool HaveVectorizedPhiNodes = true;
5300   while (HaveVectorizedPhiNodes) {
5301     HaveVectorizedPhiNodes = false;
5302 
5303     // Collect the incoming values from the PHIs.
5304     Incoming.clear();
5305     for (Instruction &I : *BB) {
5306       PHINode *P = dyn_cast<PHINode>(&I);
5307       if (!P)
5308         break;
5309 
5310       if (!VisitedInstrs.count(P))
5311         Incoming.push_back(P);
5312     }
5313 
5314     // Sort by type.
5315     std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc);
5316 
5317     // Try to vectorize elements base on their type.
5318     for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
5319                                            E = Incoming.end();
5320          IncIt != E;) {
5321 
5322       // Look for the next elements with the same type.
5323       SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
5324       while (SameTypeIt != E &&
5325              (*SameTypeIt)->getType() == (*IncIt)->getType()) {
5326         VisitedInstrs.insert(*SameTypeIt);
5327         ++SameTypeIt;
5328       }
5329 
5330       // Try to vectorize them.
5331       unsigned NumElts = (SameTypeIt - IncIt);
5332       DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n");
5333       // The order in which the phi nodes appear in the program does not matter.
5334       // So allow tryToVectorizeList to reorder them if it is beneficial. This
5335       // is done when there are exactly two elements since tryToVectorizeList
5336       // asserts that there are only two values when AllowReorder is true.
5337       bool AllowReorder = NumElts == 2;
5338       if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R,
5339                                             None, AllowReorder)) {
5340         // Success start over because instructions might have been changed.
5341         HaveVectorizedPhiNodes = true;
5342         Changed = true;
5343         break;
5344       }
5345 
5346       // Start over at the next instruction of a different type (or the end).
5347       IncIt = SameTypeIt;
5348     }
5349   }
5350 
5351   VisitedInstrs.clear();
5352 
5353   SmallVector<WeakVH, 8> PostProcessInstructions;
5354   SmallDenseSet<Instruction *, 4> KeyNodes;
5355   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) {
5356     // We may go through BB multiple times so skip the one we have checked.
5357     if (!VisitedInstrs.insert(&*it).second) {
5358       if (it->use_empty() && KeyNodes.count(&*it) > 0 &&
5359           vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) {
5360         // We would like to start over since some instructions are deleted
5361         // and the iterator may become invalid value.
5362         Changed = true;
5363         it = BB->begin();
5364         e = BB->end();
5365       }
5366       continue;
5367     }
5368 
5369     if (isa<DbgInfoIntrinsic>(it))
5370       continue;
5371 
5372     // Try to vectorize reductions that use PHINodes.
5373     if (PHINode *P = dyn_cast<PHINode>(it)) {
5374       // Check that the PHI is a reduction PHI.
5375       if (P->getNumIncomingValues() != 2)
5376         return Changed;
5377 
5378       // Try to match and vectorize a horizontal reduction.
5379       if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R,
5380                                    TTI)) {
5381         Changed = true;
5382         it = BB->begin();
5383         e = BB->end();
5384         continue;
5385       }
5386       continue;
5387     }
5388 
5389     // Ran into an instruction without users, like terminator, or function call
5390     // with ignored return value, store. Ignore unused instructions (basing on
5391     // instruction type, except for CallInst and InvokeInst).
5392     if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) ||
5393                             isa<InvokeInst>(it))) {
5394       KeyNodes.insert(&*it);
5395       bool OpsChanged = false;
5396       if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) {
5397         for (auto *V : it->operand_values()) {
5398           // Try to match and vectorize a horizontal reduction.
5399           OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI);
5400         }
5401       }
5402       // Start vectorization of post-process list of instructions from the
5403       // top-tree instructions to try to vectorize as many instructions as
5404       // possible.
5405       OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R);
5406       if (OpsChanged) {
5407         // We would like to start over since some instructions are deleted
5408         // and the iterator may become invalid value.
5409         Changed = true;
5410         it = BB->begin();
5411         e = BB->end();
5412         continue;
5413       }
5414     }
5415 
5416     if (isa<InsertElementInst>(it) || isa<CmpInst>(it) ||
5417         isa<InsertValueInst>(it))
5418       PostProcessInstructions.push_back(&*it);
5419 
5420   }
5421 
5422   return Changed;
5423 }
5424 
5425 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
5426   auto Changed = false;
5427   for (auto &Entry : GEPs) {
5428 
5429     // If the getelementptr list has fewer than two elements, there's nothing
5430     // to do.
5431     if (Entry.second.size() < 2)
5432       continue;
5433 
5434     DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "
5435                  << Entry.second.size() << ".\n");
5436 
5437     // We process the getelementptr list in chunks of 16 (like we do for
5438     // stores) to minimize compile-time.
5439     for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) {
5440       auto Len = std::min<unsigned>(BE - BI, 16);
5441       auto GEPList = makeArrayRef(&Entry.second[BI], Len);
5442 
5443       // Initialize a set a candidate getelementptrs. Note that we use a
5444       // SetVector here to preserve program order. If the index computations
5445       // are vectorizable and begin with loads, we want to minimize the chance
5446       // of having to reorder them later.
5447       SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
5448 
5449       // Some of the candidates may have already been vectorized after we
5450       // initially collected them. If so, the WeakTrackingVHs will have
5451       // nullified the
5452       // values, so remove them from the set of candidates.
5453       Candidates.remove(nullptr);
5454 
5455       // Remove from the set of candidates all pairs of getelementptrs with
5456       // constant differences. Such getelementptrs are likely not good
5457       // candidates for vectorization in a bottom-up phase since one can be
5458       // computed from the other. We also ensure all candidate getelementptr
5459       // indices are unique.
5460       for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
5461         auto *GEPI = cast<GetElementPtrInst>(GEPList[I]);
5462         if (!Candidates.count(GEPI))
5463           continue;
5464         auto *SCEVI = SE->getSCEV(GEPList[I]);
5465         for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
5466           auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]);
5467           auto *SCEVJ = SE->getSCEV(GEPList[J]);
5468           if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
5469             Candidates.remove(GEPList[I]);
5470             Candidates.remove(GEPList[J]);
5471           } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
5472             Candidates.remove(GEPList[J]);
5473           }
5474         }
5475       }
5476 
5477       // We break out of the above computation as soon as we know there are
5478       // fewer than two candidates remaining.
5479       if (Candidates.size() < 2)
5480         continue;
5481 
5482       // Add the single, non-constant index of each candidate to the bundle. We
5483       // ensured the indices met these constraints when we originally collected
5484       // the getelementptrs.
5485       SmallVector<Value *, 16> Bundle(Candidates.size());
5486       auto BundleIndex = 0u;
5487       for (auto *V : Candidates) {
5488         auto *GEP = cast<GetElementPtrInst>(V);
5489         auto *GEPIdx = GEP->idx_begin()->get();
5490         assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx));
5491         Bundle[BundleIndex++] = GEPIdx;
5492       }
5493 
5494       // Try and vectorize the indices. We are currently only interested in
5495       // gather-like cases of the form:
5496       //
5497       // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
5498       //
5499       // where the loads of "a", the loads of "b", and the subtractions can be
5500       // performed in parallel. It's likely that detecting this pattern in a
5501       // bottom-up phase will be simpler and less costly than building a
5502       // full-blown top-down phase beginning at the consecutive loads.
5503       Changed |= tryToVectorizeList(Bundle, R);
5504     }
5505   }
5506   return Changed;
5507 }
5508 
5509 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
5510   bool Changed = false;
5511   // Attempt to sort and vectorize each of the store-groups.
5512   for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e;
5513        ++it) {
5514     if (it->second.size() < 2)
5515       continue;
5516 
5517     DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
5518           << it->second.size() << ".\n");
5519 
5520     // Process the stores in chunks of 16.
5521     // TODO: The limit of 16 inhibits greater vectorization factors.
5522     //       For example, AVX2 supports v32i8. Increasing this limit, however,
5523     //       may cause a significant compile-time increase.
5524     for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) {
5525       unsigned Len = std::min<unsigned>(CE - CI, 16);
5526       Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R);
5527     }
5528   }
5529   return Changed;
5530 }
5531 
5532 char SLPVectorizer::ID = 0;
5533 static const char lv_name[] = "SLP Vectorizer";
5534 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
5535 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
5536 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
5537 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
5538 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
5539 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
5540 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
5541 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
5542 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
5543 
5544 namespace llvm {
5545 Pass *createSLPVectorizerPass() { return new SLPVectorizer(); }
5546 }
5547