1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DebugLoc.h" 57 #include "llvm/IR/DerivedTypes.h" 58 #include "llvm/IR/Dominators.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/IRBuilder.h" 61 #include "llvm/IR/InstrTypes.h" 62 #include "llvm/IR/Instruction.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/Intrinsics.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/NoFolder.h" 68 #include "llvm/IR/Operator.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/Verifier.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/DOTGraphTraits.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/GraphWriter.h" 85 #include "llvm/Support/InstructionCost.h" 86 #include "llvm/Support/KnownBits.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 // The Look-ahead heuristic goes through the users of the bundle to calculate 168 // the users cost in getExternalUsesCost(). To avoid compilation time increase 169 // we limit the number of users visited to this value. 170 static cl::opt<unsigned> LookAheadUsersBudget( 171 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 172 cl::desc("The maximum number of users to visit while visiting the " 173 "predecessors. This prevents compilation time increase.")); 174 175 static cl::opt<bool> 176 ViewSLPTree("view-slp-tree", cl::Hidden, 177 cl::desc("Display the SLP trees with Graphviz")); 178 179 // Limit the number of alias checks. The limit is chosen so that 180 // it has no negative effect on the llvm benchmarks. 181 static const unsigned AliasedCheckLimit = 10; 182 183 // Another limit for the alias checks: The maximum distance between load/store 184 // instructions where alias checks are done. 185 // This limit is useful for very large basic blocks. 186 static const unsigned MaxMemDepDistance = 160; 187 188 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 189 /// regions to be handled. 190 static const int MinScheduleRegionSize = 16; 191 192 /// Predicate for the element types that the SLP vectorizer supports. 193 /// 194 /// The most important thing to filter here are types which are invalid in LLVM 195 /// vectors. We also filter target specific types which have absolutely no 196 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 197 /// avoids spending time checking the cost model and realizing that they will 198 /// be inevitably scalarized. 199 static bool isValidElementType(Type *Ty) { 200 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 201 !Ty->isPPC_FP128Ty(); 202 } 203 204 /// \returns True if the value is a constant (but not globals/constant 205 /// expressions). 206 static bool isConstant(Value *V) { 207 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 208 } 209 210 /// Checks if \p V is one of vector-like instructions, i.e. undef, 211 /// insertelement/extractelement with constant indices for fixed vector type or 212 /// extractvalue instruction. 213 static bool isVectorLikeInstWithConstOps(Value *V) { 214 if (!isa<InsertElementInst, ExtractElementInst>(V) && 215 !isa<ExtractValueInst, UndefValue>(V)) 216 return false; 217 auto *I = dyn_cast<Instruction>(V); 218 if (!I || isa<ExtractValueInst>(I)) 219 return true; 220 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 221 return false; 222 if (isa<ExtractElementInst>(I)) 223 return isConstant(I->getOperand(1)); 224 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 225 return isConstant(I->getOperand(2)); 226 } 227 228 /// \returns true if all of the instructions in \p VL are in the same block or 229 /// false otherwise. 230 static bool allSameBlock(ArrayRef<Value *> VL) { 231 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 232 if (!I0) 233 return false; 234 if (all_of(VL, isVectorLikeInstWithConstOps)) 235 return true; 236 237 BasicBlock *BB = I0->getParent(); 238 for (int I = 1, E = VL.size(); I < E; I++) { 239 auto *II = dyn_cast<Instruction>(VL[I]); 240 if (!II) 241 return false; 242 243 if (BB != II->getParent()) 244 return false; 245 } 246 return true; 247 } 248 249 /// \returns True if all of the values in \p VL are constants (but not 250 /// globals/constant expressions). 251 static bool allConstant(ArrayRef<Value *> VL) { 252 // Constant expressions and globals can't be vectorized like normal integer/FP 253 // constants. 254 return all_of(VL, isConstant); 255 } 256 257 /// \returns True if all of the values in \p VL are identical. 258 static bool isSplat(ArrayRef<Value *> VL) { 259 for (unsigned i = 1, e = VL.size(); i < e; ++i) 260 if (VL[i] != VL[0]) 261 return false; 262 return true; 263 } 264 265 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 266 static bool isCommutative(Instruction *I) { 267 if (auto *Cmp = dyn_cast<CmpInst>(I)) 268 return Cmp->isCommutative(); 269 if (auto *BO = dyn_cast<BinaryOperator>(I)) 270 return BO->isCommutative(); 271 // TODO: This should check for generic Instruction::isCommutative(), but 272 // we need to confirm that the caller code correctly handles Intrinsics 273 // for example (does not have 2 operands). 274 return false; 275 } 276 277 /// Checks if the vector of instructions can be represented as a shuffle, like: 278 /// %x0 = extractelement <4 x i8> %x, i32 0 279 /// %x3 = extractelement <4 x i8> %x, i32 3 280 /// %y1 = extractelement <4 x i8> %y, i32 1 281 /// %y2 = extractelement <4 x i8> %y, i32 2 282 /// %x0x0 = mul i8 %x0, %x0 283 /// %x3x3 = mul i8 %x3, %x3 284 /// %y1y1 = mul i8 %y1, %y1 285 /// %y2y2 = mul i8 %y2, %y2 286 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 287 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 288 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 289 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 290 /// ret <4 x i8> %ins4 291 /// can be transformed into: 292 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 293 /// i32 6> 294 /// %2 = mul <4 x i8> %1, %1 295 /// ret <4 x i8> %2 296 /// We convert this initially to something like: 297 /// %x0 = extractelement <4 x i8> %x, i32 0 298 /// %x3 = extractelement <4 x i8> %x, i32 3 299 /// %y1 = extractelement <4 x i8> %y, i32 1 300 /// %y2 = extractelement <4 x i8> %y, i32 2 301 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 302 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 303 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 304 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 305 /// %5 = mul <4 x i8> %4, %4 306 /// %6 = extractelement <4 x i8> %5, i32 0 307 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 308 /// %7 = extractelement <4 x i8> %5, i32 1 309 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 310 /// %8 = extractelement <4 x i8> %5, i32 2 311 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 312 /// %9 = extractelement <4 x i8> %5, i32 3 313 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 314 /// ret <4 x i8> %ins4 315 /// InstCombiner transforms this into a shuffle and vector mul 316 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 317 /// TODO: Can we split off and reuse the shuffle mask detection from 318 /// TargetTransformInfo::getInstructionThroughput? 319 static Optional<TargetTransformInfo::ShuffleKind> 320 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 321 auto *EI0 = cast<ExtractElementInst>(VL[0]); 322 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 323 return None; 324 unsigned Size = 325 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 326 Value *Vec1 = nullptr; 327 Value *Vec2 = nullptr; 328 enum ShuffleMode { Unknown, Select, Permute }; 329 ShuffleMode CommonShuffleMode = Unknown; 330 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 331 auto *EI = cast<ExtractElementInst>(VL[I]); 332 auto *Vec = EI->getVectorOperand(); 333 // All vector operands must have the same number of vector elements. 334 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 335 return None; 336 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 337 if (!Idx) 338 return None; 339 // Undefined behavior if Idx is negative or >= Size. 340 if (Idx->getValue().uge(Size)) { 341 Mask.push_back(UndefMaskElem); 342 continue; 343 } 344 unsigned IntIdx = Idx->getValue().getZExtValue(); 345 Mask.push_back(IntIdx); 346 // We can extractelement from undef or poison vector. 347 if (isa<UndefValue>(Vec)) 348 continue; 349 // For correct shuffling we have to have at most 2 different vector operands 350 // in all extractelement instructions. 351 if (!Vec1 || Vec1 == Vec) 352 Vec1 = Vec; 353 else if (!Vec2 || Vec2 == Vec) 354 Vec2 = Vec; 355 else 356 return None; 357 if (CommonShuffleMode == Permute) 358 continue; 359 // If the extract index is not the same as the operation number, it is a 360 // permutation. 361 if (IntIdx != I) { 362 CommonShuffleMode = Permute; 363 continue; 364 } 365 CommonShuffleMode = Select; 366 } 367 // If we're not crossing lanes in different vectors, consider it as blending. 368 if (CommonShuffleMode == Select && Vec2) 369 return TargetTransformInfo::SK_Select; 370 // If Vec2 was never used, we have a permutation of a single vector, otherwise 371 // we have permutation of 2 vectors. 372 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 373 : TargetTransformInfo::SK_PermuteSingleSrc; 374 } 375 376 namespace { 377 378 /// Main data required for vectorization of instructions. 379 struct InstructionsState { 380 /// The very first instruction in the list with the main opcode. 381 Value *OpValue = nullptr; 382 383 /// The main/alternate instruction. 384 Instruction *MainOp = nullptr; 385 Instruction *AltOp = nullptr; 386 387 /// The main/alternate opcodes for the list of instructions. 388 unsigned getOpcode() const { 389 return MainOp ? MainOp->getOpcode() : 0; 390 } 391 392 unsigned getAltOpcode() const { 393 return AltOp ? AltOp->getOpcode() : 0; 394 } 395 396 /// Some of the instructions in the list have alternate opcodes. 397 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 398 399 bool isOpcodeOrAlt(Instruction *I) const { 400 unsigned CheckedOpcode = I->getOpcode(); 401 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 402 } 403 404 InstructionsState() = delete; 405 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 406 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 407 }; 408 409 } // end anonymous namespace 410 411 /// Chooses the correct key for scheduling data. If \p Op has the same (or 412 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 413 /// OpValue. 414 static Value *isOneOf(const InstructionsState &S, Value *Op) { 415 auto *I = dyn_cast<Instruction>(Op); 416 if (I && S.isOpcodeOrAlt(I)) 417 return Op; 418 return S.OpValue; 419 } 420 421 /// \returns true if \p Opcode is allowed as part of of the main/alternate 422 /// instruction for SLP vectorization. 423 /// 424 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 425 /// "shuffled out" lane would result in division by zero. 426 static bool isValidForAlternation(unsigned Opcode) { 427 if (Instruction::isIntDivRem(Opcode)) 428 return false; 429 430 return true; 431 } 432 433 /// \returns analysis of the Instructions in \p VL described in 434 /// InstructionsState, the Opcode that we suppose the whole list 435 /// could be vectorized even if its structure is diverse. 436 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 437 unsigned BaseIndex = 0) { 438 // Make sure these are all Instructions. 439 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 440 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 441 442 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 443 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 444 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 445 unsigned AltOpcode = Opcode; 446 unsigned AltIndex = BaseIndex; 447 448 // Check for one alternate opcode from another BinaryOperator. 449 // TODO - generalize to support all operators (types, calls etc.). 450 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 451 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 452 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 453 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 454 continue; 455 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 456 isValidForAlternation(Opcode)) { 457 AltOpcode = InstOpcode; 458 AltIndex = Cnt; 459 continue; 460 } 461 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 462 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 463 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 464 if (Ty0 == Ty1) { 465 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 466 continue; 467 if (Opcode == AltOpcode) { 468 assert(isValidForAlternation(Opcode) && 469 isValidForAlternation(InstOpcode) && 470 "Cast isn't safe for alternation, logic needs to be updated!"); 471 AltOpcode = InstOpcode; 472 AltIndex = Cnt; 473 continue; 474 } 475 } 476 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 477 continue; 478 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 479 } 480 481 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 482 cast<Instruction>(VL[AltIndex])); 483 } 484 485 /// \returns true if all of the values in \p VL have the same type or false 486 /// otherwise. 487 static bool allSameType(ArrayRef<Value *> VL) { 488 Type *Ty = VL[0]->getType(); 489 for (int i = 1, e = VL.size(); i < e; i++) 490 if (VL[i]->getType() != Ty) 491 return false; 492 493 return true; 494 } 495 496 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 497 static Optional<unsigned> getExtractIndex(Instruction *E) { 498 unsigned Opcode = E->getOpcode(); 499 assert((Opcode == Instruction::ExtractElement || 500 Opcode == Instruction::ExtractValue) && 501 "Expected extractelement or extractvalue instruction."); 502 if (Opcode == Instruction::ExtractElement) { 503 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 504 if (!CI) 505 return None; 506 return CI->getZExtValue(); 507 } 508 ExtractValueInst *EI = cast<ExtractValueInst>(E); 509 if (EI->getNumIndices() != 1) 510 return None; 511 return *EI->idx_begin(); 512 } 513 514 /// \returns True if in-tree use also needs extract. This refers to 515 /// possible scalar operand in vectorized instruction. 516 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 517 TargetLibraryInfo *TLI) { 518 unsigned Opcode = UserInst->getOpcode(); 519 switch (Opcode) { 520 case Instruction::Load: { 521 LoadInst *LI = cast<LoadInst>(UserInst); 522 return (LI->getPointerOperand() == Scalar); 523 } 524 case Instruction::Store: { 525 StoreInst *SI = cast<StoreInst>(UserInst); 526 return (SI->getPointerOperand() == Scalar); 527 } 528 case Instruction::Call: { 529 CallInst *CI = cast<CallInst>(UserInst); 530 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 531 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 532 if (hasVectorInstrinsicScalarOpd(ID, i)) 533 return (CI->getArgOperand(i) == Scalar); 534 } 535 LLVM_FALLTHROUGH; 536 } 537 default: 538 return false; 539 } 540 } 541 542 /// \returns the AA location that is being access by the instruction. 543 static MemoryLocation getLocation(Instruction *I, AAResults *AA) { 544 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 545 return MemoryLocation::get(SI); 546 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 547 return MemoryLocation::get(LI); 548 return MemoryLocation(); 549 } 550 551 /// \returns True if the instruction is not a volatile or atomic load/store. 552 static bool isSimple(Instruction *I) { 553 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 554 return LI->isSimple(); 555 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 556 return SI->isSimple(); 557 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 558 return !MI->isVolatile(); 559 return true; 560 } 561 562 /// Shuffles \p Mask in accordance with the given \p SubMask. 563 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 564 if (SubMask.empty()) 565 return; 566 if (Mask.empty()) { 567 Mask.append(SubMask.begin(), SubMask.end()); 568 return; 569 } 570 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 571 int TermValue = std::min(Mask.size(), SubMask.size()); 572 for (int I = 0, E = SubMask.size(); I < E; ++I) { 573 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 574 Mask[SubMask[I]] >= TermValue) 575 continue; 576 NewMask[I] = Mask[SubMask[I]]; 577 } 578 Mask.swap(NewMask); 579 } 580 581 /// Order may have elements assigned special value (size) which is out of 582 /// bounds. Such indices only appear on places which correspond to undef values 583 /// (see canReuseExtract for details) and used in order to avoid undef values 584 /// have effect on operands ordering. 585 /// The first loop below simply finds all unused indices and then the next loop 586 /// nest assigns these indices for undef values positions. 587 /// As an example below Order has two undef positions and they have assigned 588 /// values 3 and 7 respectively: 589 /// before: 6 9 5 4 9 2 1 0 590 /// after: 6 3 5 4 7 2 1 0 591 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 592 const unsigned Sz = Order.size(); 593 SmallBitVector UsedIndices(Sz); 594 SmallVector<int> MaskedIndices; 595 for (unsigned I = 0; I < Sz; ++I) { 596 if (Order[I] < Sz) 597 UsedIndices.set(Order[I]); 598 else 599 MaskedIndices.push_back(I); 600 } 601 if (MaskedIndices.empty()) 602 return; 603 SmallVector<int> AvailableIndices(MaskedIndices.size()); 604 unsigned Cnt = 0; 605 int Idx = UsedIndices.find_first(); 606 do { 607 AvailableIndices[Cnt] = Idx; 608 Idx = UsedIndices.find_next(Idx); 609 ++Cnt; 610 } while (Idx > 0); 611 assert(Cnt == MaskedIndices.size() && "Non-synced masked/available indices."); 612 for (int I = 0, E = MaskedIndices.size(); I < E; ++I) 613 Order[MaskedIndices[I]] = AvailableIndices[I]; 614 } 615 616 namespace llvm { 617 618 static void inversePermutation(ArrayRef<unsigned> Indices, 619 SmallVectorImpl<int> &Mask) { 620 Mask.clear(); 621 const unsigned E = Indices.size(); 622 Mask.resize(E, UndefMaskElem); 623 for (unsigned I = 0; I < E; ++I) 624 Mask[Indices[I]] = I; 625 } 626 627 /// \returns inserting index of InsertElement or InsertValue instruction, 628 /// using Offset as base offset for index. 629 static Optional<int> getInsertIndex(Value *InsertInst, unsigned Offset) { 630 int Index = Offset; 631 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 632 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 633 auto *VT = cast<FixedVectorType>(IE->getType()); 634 if (CI->getValue().uge(VT->getNumElements())) 635 return UndefMaskElem; 636 Index *= VT->getNumElements(); 637 Index += CI->getZExtValue(); 638 return Index; 639 } 640 if (isa<UndefValue>(IE->getOperand(2))) 641 return UndefMaskElem; 642 return None; 643 } 644 645 auto *IV = cast<InsertValueInst>(InsertInst); 646 Type *CurrentType = IV->getType(); 647 for (unsigned I : IV->indices()) { 648 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 649 Index *= ST->getNumElements(); 650 CurrentType = ST->getElementType(I); 651 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 652 Index *= AT->getNumElements(); 653 CurrentType = AT->getElementType(); 654 } else { 655 return None; 656 } 657 Index += I; 658 } 659 return Index; 660 } 661 662 /// Reorders the list of scalars in accordance with the given \p Order and then 663 /// the \p Mask. \p Order - is the original order of the scalars, need to 664 /// reorder scalars into an unordered state at first according to the given 665 /// order. Then the ordered scalars are shuffled once again in accordance with 666 /// the provided mask. 667 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 668 ArrayRef<int> Mask) { 669 assert(!Mask.empty() && "Expected non-empty mask."); 670 SmallVector<Value *> Prev(Scalars.size(), 671 UndefValue::get(Scalars.front()->getType())); 672 Prev.swap(Scalars); 673 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 674 if (Mask[I] != UndefMaskElem) 675 Scalars[Mask[I]] = Prev[I]; 676 } 677 678 namespace slpvectorizer { 679 680 /// Bottom Up SLP Vectorizer. 681 class BoUpSLP { 682 struct TreeEntry; 683 struct ScheduleData; 684 685 public: 686 using ValueList = SmallVector<Value *, 8>; 687 using InstrList = SmallVector<Instruction *, 16>; 688 using ValueSet = SmallPtrSet<Value *, 16>; 689 using StoreList = SmallVector<StoreInst *, 8>; 690 using ExtraValueToDebugLocsMap = 691 MapVector<Value *, SmallVector<Instruction *, 2>>; 692 using OrdersType = SmallVector<unsigned, 4>; 693 694 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 695 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 696 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 697 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 698 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 699 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 700 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 701 // Use the vector register size specified by the target unless overridden 702 // by a command-line option. 703 // TODO: It would be better to limit the vectorization factor based on 704 // data type rather than just register size. For example, x86 AVX has 705 // 256-bit registers, but it does not support integer operations 706 // at that width (that requires AVX2). 707 if (MaxVectorRegSizeOption.getNumOccurrences()) 708 MaxVecRegSize = MaxVectorRegSizeOption; 709 else 710 MaxVecRegSize = 711 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 712 .getFixedSize(); 713 714 if (MinVectorRegSizeOption.getNumOccurrences()) 715 MinVecRegSize = MinVectorRegSizeOption; 716 else 717 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 718 } 719 720 /// Vectorize the tree that starts with the elements in \p VL. 721 /// Returns the vectorized root. 722 Value *vectorizeTree(); 723 724 /// Vectorize the tree but with the list of externally used values \p 725 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 726 /// generated extractvalue instructions. 727 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 728 729 /// \returns the cost incurred by unwanted spills and fills, caused by 730 /// holding live values over call sites. 731 InstructionCost getSpillCost() const; 732 733 /// \returns the vectorization cost of the subtree that starts at \p VL. 734 /// A negative number means that this is profitable. 735 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 736 737 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 738 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 739 void buildTree(ArrayRef<Value *> Roots, 740 ArrayRef<Value *> UserIgnoreLst = None); 741 742 /// Builds external uses of the vectorized scalars, i.e. the list of 743 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 744 /// ExternallyUsedValues contains additional list of external uses to handle 745 /// vectorization of reductions. 746 void 747 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 748 749 /// Clear the internal data structures that are created by 'buildTree'. 750 void deleteTree() { 751 VectorizableTree.clear(); 752 ScalarToTreeEntry.clear(); 753 MustGather.clear(); 754 ExternalUses.clear(); 755 for (auto &Iter : BlocksSchedules) { 756 BlockScheduling *BS = Iter.second.get(); 757 BS->clear(); 758 } 759 MinBWs.clear(); 760 InstrElementSize.clear(); 761 } 762 763 unsigned getTreeSize() const { return VectorizableTree.size(); } 764 765 /// Perform LICM and CSE on the newly generated gather sequences. 766 void optimizeGatherSequence(); 767 768 /// Checks if the specified gather tree entry \p TE can be represented as a 769 /// shuffled vector entry + (possibly) permutation with other gathers. It 770 /// implements the checks only for possibly ordered scalars (Loads, 771 /// ExtractElement, ExtractValue), which can be part of the graph. 772 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 773 774 /// Reorders the current graph to the most profitable order starting from the 775 /// root node to the leaf nodes. The best order is chosen only from the nodes 776 /// of the same size (vectorization factor). Smaller nodes are considered 777 /// parts of subgraph with smaller VF and they are reordered independently. We 778 /// can make it because we still need to extend smaller nodes to the wider VF 779 /// and we can merge reordering shuffles with the widening shuffles. 780 void reorderTopToBottom(); 781 782 /// Reorders the current graph to the most profitable order starting from 783 /// leaves to the root. It allows to rotate small subgraphs and reduce the 784 /// number of reshuffles if the leaf nodes use the same order. In this case we 785 /// can merge the orders and just shuffle user node instead of shuffling its 786 /// operands. Plus, even the leaf nodes have different orders, it allows to 787 /// sink reordering in the graph closer to the root node and merge it later 788 /// during analysis. 789 void reorderBottomToTop(bool IgnoreReorder = false); 790 791 /// \return The vector element size in bits to use when vectorizing the 792 /// expression tree ending at \p V. If V is a store, the size is the width of 793 /// the stored value. Otherwise, the size is the width of the largest loaded 794 /// value reaching V. This method is used by the vectorizer to calculate 795 /// vectorization factors. 796 unsigned getVectorElementSize(Value *V); 797 798 /// Compute the minimum type sizes required to represent the entries in a 799 /// vectorizable tree. 800 void computeMinimumValueSizes(); 801 802 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 803 unsigned getMaxVecRegSize() const { 804 return MaxVecRegSize; 805 } 806 807 // \returns minimum vector register size as set by cl::opt. 808 unsigned getMinVecRegSize() const { 809 return MinVecRegSize; 810 } 811 812 unsigned getMinVF(unsigned Sz) const { 813 return std::max(2U, getMinVecRegSize() / Sz); 814 } 815 816 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 817 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 818 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 819 return MaxVF ? MaxVF : UINT_MAX; 820 } 821 822 /// Check if homogeneous aggregate is isomorphic to some VectorType. 823 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 824 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 825 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 826 /// 827 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 828 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 829 830 /// \returns True if the VectorizableTree is both tiny and not fully 831 /// vectorizable. We do not vectorize such trees. 832 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 833 834 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 835 /// can be load combined in the backend. Load combining may not be allowed in 836 /// the IR optimizer, so we do not want to alter the pattern. For example, 837 /// partially transforming a scalar bswap() pattern into vector code is 838 /// effectively impossible for the backend to undo. 839 /// TODO: If load combining is allowed in the IR optimizer, this analysis 840 /// may not be necessary. 841 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 842 843 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 844 /// can be load combined in the backend. Load combining may not be allowed in 845 /// the IR optimizer, so we do not want to alter the pattern. For example, 846 /// partially transforming a scalar bswap() pattern into vector code is 847 /// effectively impossible for the backend to undo. 848 /// TODO: If load combining is allowed in the IR optimizer, this analysis 849 /// may not be necessary. 850 bool isLoadCombineCandidate() const; 851 852 OptimizationRemarkEmitter *getORE() { return ORE; } 853 854 /// This structure holds any data we need about the edges being traversed 855 /// during buildTree_rec(). We keep track of: 856 /// (i) the user TreeEntry index, and 857 /// (ii) the index of the edge. 858 struct EdgeInfo { 859 EdgeInfo() = default; 860 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 861 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 862 /// The user TreeEntry. 863 TreeEntry *UserTE = nullptr; 864 /// The operand index of the use. 865 unsigned EdgeIdx = UINT_MAX; 866 #ifndef NDEBUG 867 friend inline raw_ostream &operator<<(raw_ostream &OS, 868 const BoUpSLP::EdgeInfo &EI) { 869 EI.dump(OS); 870 return OS; 871 } 872 /// Debug print. 873 void dump(raw_ostream &OS) const { 874 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 875 << " EdgeIdx:" << EdgeIdx << "}"; 876 } 877 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 878 #endif 879 }; 880 881 /// A helper data structure to hold the operands of a vector of instructions. 882 /// This supports a fixed vector length for all operand vectors. 883 class VLOperands { 884 /// For each operand we need (i) the value, and (ii) the opcode that it 885 /// would be attached to if the expression was in a left-linearized form. 886 /// This is required to avoid illegal operand reordering. 887 /// For example: 888 /// \verbatim 889 /// 0 Op1 890 /// |/ 891 /// Op1 Op2 Linearized + Op2 892 /// \ / ----------> |/ 893 /// - - 894 /// 895 /// Op1 - Op2 (0 + Op1) - Op2 896 /// \endverbatim 897 /// 898 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 899 /// 900 /// Another way to think of this is to track all the operations across the 901 /// path from the operand all the way to the root of the tree and to 902 /// calculate the operation that corresponds to this path. For example, the 903 /// path from Op2 to the root crosses the RHS of the '-', therefore the 904 /// corresponding operation is a '-' (which matches the one in the 905 /// linearized tree, as shown above). 906 /// 907 /// For lack of a better term, we refer to this operation as Accumulated 908 /// Path Operation (APO). 909 struct OperandData { 910 OperandData() = default; 911 OperandData(Value *V, bool APO, bool IsUsed) 912 : V(V), APO(APO), IsUsed(IsUsed) {} 913 /// The operand value. 914 Value *V = nullptr; 915 /// TreeEntries only allow a single opcode, or an alternate sequence of 916 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 917 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 918 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 919 /// (e.g., Add/Mul) 920 bool APO = false; 921 /// Helper data for the reordering function. 922 bool IsUsed = false; 923 }; 924 925 /// During operand reordering, we are trying to select the operand at lane 926 /// that matches best with the operand at the neighboring lane. Our 927 /// selection is based on the type of value we are looking for. For example, 928 /// if the neighboring lane has a load, we need to look for a load that is 929 /// accessing a consecutive address. These strategies are summarized in the 930 /// 'ReorderingMode' enumerator. 931 enum class ReorderingMode { 932 Load, ///< Matching loads to consecutive memory addresses 933 Opcode, ///< Matching instructions based on opcode (same or alternate) 934 Constant, ///< Matching constants 935 Splat, ///< Matching the same instruction multiple times (broadcast) 936 Failed, ///< We failed to create a vectorizable group 937 }; 938 939 using OperandDataVec = SmallVector<OperandData, 2>; 940 941 /// A vector of operand vectors. 942 SmallVector<OperandDataVec, 4> OpsVec; 943 944 const DataLayout &DL; 945 ScalarEvolution &SE; 946 const BoUpSLP &R; 947 948 /// \returns the operand data at \p OpIdx and \p Lane. 949 OperandData &getData(unsigned OpIdx, unsigned Lane) { 950 return OpsVec[OpIdx][Lane]; 951 } 952 953 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 954 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 955 return OpsVec[OpIdx][Lane]; 956 } 957 958 /// Clears the used flag for all entries. 959 void clearUsed() { 960 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 961 OpIdx != NumOperands; ++OpIdx) 962 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 963 ++Lane) 964 OpsVec[OpIdx][Lane].IsUsed = false; 965 } 966 967 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 968 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 969 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 970 } 971 972 // The hard-coded scores listed here are not very important. When computing 973 // the scores of matching one sub-tree with another, we are basically 974 // counting the number of values that are matching. So even if all scores 975 // are set to 1, we would still get a decent matching result. 976 // However, sometimes we have to break ties. For example we may have to 977 // choose between matching loads vs matching opcodes. This is what these 978 // scores are helping us with: they provide the order of preference. 979 980 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 981 static const int ScoreConsecutiveLoads = 3; 982 /// ExtractElementInst from same vector and consecutive indexes. 983 static const int ScoreConsecutiveExtracts = 3; 984 /// Constants. 985 static const int ScoreConstants = 2; 986 /// Instructions with the same opcode. 987 static const int ScoreSameOpcode = 2; 988 /// Instructions with alt opcodes (e.g, add + sub). 989 static const int ScoreAltOpcodes = 1; 990 /// Identical instructions (a.k.a. splat or broadcast). 991 static const int ScoreSplat = 1; 992 /// Matching with an undef is preferable to failing. 993 static const int ScoreUndef = 1; 994 /// Score for failing to find a decent match. 995 static const int ScoreFail = 0; 996 /// User exteranl to the vectorized code. 997 static const int ExternalUseCost = 1; 998 /// The user is internal but in a different lane. 999 static const int UserInDiffLaneCost = ExternalUseCost; 1000 1001 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1002 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 1003 ScalarEvolution &SE) { 1004 auto *LI1 = dyn_cast<LoadInst>(V1); 1005 auto *LI2 = dyn_cast<LoadInst>(V2); 1006 if (LI1 && LI2) { 1007 if (LI1->getParent() != LI2->getParent()) 1008 return VLOperands::ScoreFail; 1009 1010 Optional<int> Dist = getPointersDiff( 1011 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1012 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1013 return (Dist && *Dist == 1) ? VLOperands::ScoreConsecutiveLoads 1014 : VLOperands::ScoreFail; 1015 } 1016 1017 auto *C1 = dyn_cast<Constant>(V1); 1018 auto *C2 = dyn_cast<Constant>(V2); 1019 if (C1 && C2) 1020 return VLOperands::ScoreConstants; 1021 1022 // Extracts from consecutive indexes of the same vector better score as 1023 // the extracts could be optimized away. 1024 Value *EV; 1025 ConstantInt *Ex1Idx, *Ex2Idx; 1026 if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) && 1027 match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) && 1028 Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue()) 1029 return VLOperands::ScoreConsecutiveExtracts; 1030 1031 auto *I1 = dyn_cast<Instruction>(V1); 1032 auto *I2 = dyn_cast<Instruction>(V2); 1033 if (I1 && I2) { 1034 if (I1 == I2) 1035 return VLOperands::ScoreSplat; 1036 InstructionsState S = getSameOpcode({I1, I2}); 1037 // Note: Only consider instructions with <= 2 operands to avoid 1038 // complexity explosion. 1039 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 1040 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 1041 : VLOperands::ScoreSameOpcode; 1042 } 1043 1044 if (isa<UndefValue>(V2)) 1045 return VLOperands::ScoreUndef; 1046 1047 return VLOperands::ScoreFail; 1048 } 1049 1050 /// Holds the values and their lane that are taking part in the look-ahead 1051 /// score calculation. This is used in the external uses cost calculation. 1052 SmallDenseMap<Value *, int> InLookAheadValues; 1053 1054 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are 1055 /// either external to the vectorized code, or require shuffling. 1056 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 1057 const std::pair<Value *, int> &RHS) { 1058 int Cost = 0; 1059 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 1060 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 1061 Value *V = Values[Idx].first; 1062 if (isa<Constant>(V)) { 1063 // Since this is a function pass, it doesn't make semantic sense to 1064 // walk the users of a subclass of Constant. The users could be in 1065 // another function, or even another module that happens to be in 1066 // the same LLVMContext. 1067 continue; 1068 } 1069 1070 // Calculate the absolute lane, using the minimum relative lane of LHS 1071 // and RHS as base and Idx as the offset. 1072 int Ln = std::min(LHS.second, RHS.second) + Idx; 1073 assert(Ln >= 0 && "Bad lane calculation"); 1074 unsigned UsersBudget = LookAheadUsersBudget; 1075 for (User *U : V->users()) { 1076 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 1077 // The user is in the VectorizableTree. Check if we need to insert. 1078 auto It = llvm::find(UserTE->Scalars, U); 1079 assert(It != UserTE->Scalars.end() && "U is in UserTE"); 1080 int UserLn = std::distance(UserTE->Scalars.begin(), It); 1081 assert(UserLn >= 0 && "Bad lane"); 1082 if (UserLn != Ln) 1083 Cost += UserInDiffLaneCost; 1084 } else { 1085 // Check if the user is in the look-ahead code. 1086 auto It2 = InLookAheadValues.find(U); 1087 if (It2 != InLookAheadValues.end()) { 1088 // The user is in the look-ahead code. Check the lane. 1089 if (It2->second != Ln) 1090 Cost += UserInDiffLaneCost; 1091 } else { 1092 // The user is neither in SLP tree nor in the look-ahead code. 1093 Cost += ExternalUseCost; 1094 } 1095 } 1096 // Limit the number of visited uses to cap compilation time. 1097 if (--UsersBudget == 0) 1098 break; 1099 } 1100 } 1101 return Cost; 1102 } 1103 1104 /// Go through the operands of \p LHS and \p RHS recursively until \p 1105 /// MaxLevel, and return the cummulative score. For example: 1106 /// \verbatim 1107 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1108 /// \ / \ / \ / \ / 1109 /// + + + + 1110 /// G1 G2 G3 G4 1111 /// \endverbatim 1112 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1113 /// each level recursively, accumulating the score. It starts from matching 1114 /// the additions at level 0, then moves on to the loads (level 1). The 1115 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1116 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1117 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1118 /// Please note that the order of the operands does not matter, as we 1119 /// evaluate the score of all profitable combinations of operands. In 1120 /// other words the score of G1 and G4 is the same as G1 and G2. This 1121 /// heuristic is based on ideas described in: 1122 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1123 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1124 /// Luís F. W. Góes 1125 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 1126 const std::pair<Value *, int> &RHS, int CurrLevel, 1127 int MaxLevel) { 1128 1129 Value *V1 = LHS.first; 1130 Value *V2 = RHS.first; 1131 // Get the shallow score of V1 and V2. 1132 int ShallowScoreAtThisLevel = 1133 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) - 1134 getExternalUsesCost(LHS, RHS)); 1135 int Lane1 = LHS.second; 1136 int Lane2 = RHS.second; 1137 1138 // If reached MaxLevel, 1139 // or if V1 and V2 are not instructions, 1140 // or if they are SPLAT, 1141 // or if they are not consecutive, early return the current cost. 1142 auto *I1 = dyn_cast<Instruction>(V1); 1143 auto *I2 = dyn_cast<Instruction>(V2); 1144 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1145 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1146 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel)) 1147 return ShallowScoreAtThisLevel; 1148 assert(I1 && I2 && "Should have early exited."); 1149 1150 // Keep track of in-tree values for determining the external-use cost. 1151 InLookAheadValues[V1] = Lane1; 1152 InLookAheadValues[V2] = Lane2; 1153 1154 // Contains the I2 operand indexes that got matched with I1 operands. 1155 SmallSet<unsigned, 4> Op2Used; 1156 1157 // Recursion towards the operands of I1 and I2. We are trying all possbile 1158 // operand pairs, and keeping track of the best score. 1159 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1160 OpIdx1 != NumOperands1; ++OpIdx1) { 1161 // Try to pair op1I with the best operand of I2. 1162 int MaxTmpScore = 0; 1163 unsigned MaxOpIdx2 = 0; 1164 bool FoundBest = false; 1165 // If I2 is commutative try all combinations. 1166 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1167 unsigned ToIdx = isCommutative(I2) 1168 ? I2->getNumOperands() 1169 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1170 assert(FromIdx <= ToIdx && "Bad index"); 1171 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1172 // Skip operands already paired with OpIdx1. 1173 if (Op2Used.count(OpIdx2)) 1174 continue; 1175 // Recursively calculate the cost at each level 1176 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 1177 {I2->getOperand(OpIdx2), Lane2}, 1178 CurrLevel + 1, MaxLevel); 1179 // Look for the best score. 1180 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1181 MaxTmpScore = TmpScore; 1182 MaxOpIdx2 = OpIdx2; 1183 FoundBest = true; 1184 } 1185 } 1186 if (FoundBest) { 1187 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1188 Op2Used.insert(MaxOpIdx2); 1189 ShallowScoreAtThisLevel += MaxTmpScore; 1190 } 1191 } 1192 return ShallowScoreAtThisLevel; 1193 } 1194 1195 /// \Returns the look-ahead score, which tells us how much the sub-trees 1196 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1197 /// score. This helps break ties in an informed way when we cannot decide on 1198 /// the order of the operands by just considering the immediate 1199 /// predecessors. 1200 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1201 const std::pair<Value *, int> &RHS) { 1202 InLookAheadValues.clear(); 1203 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1204 } 1205 1206 // Search all operands in Ops[*][Lane] for the one that matches best 1207 // Ops[OpIdx][LastLane] and return its opreand index. 1208 // If no good match can be found, return None. 1209 Optional<unsigned> 1210 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1211 ArrayRef<ReorderingMode> ReorderingModes) { 1212 unsigned NumOperands = getNumOperands(); 1213 1214 // The operand of the previous lane at OpIdx. 1215 Value *OpLastLane = getData(OpIdx, LastLane).V; 1216 1217 // Our strategy mode for OpIdx. 1218 ReorderingMode RMode = ReorderingModes[OpIdx]; 1219 1220 // The linearized opcode of the operand at OpIdx, Lane. 1221 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1222 1223 // The best operand index and its score. 1224 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1225 // are using the score to differentiate between the two. 1226 struct BestOpData { 1227 Optional<unsigned> Idx = None; 1228 unsigned Score = 0; 1229 } BestOp; 1230 1231 // Iterate through all unused operands and look for the best. 1232 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1233 // Get the operand at Idx and Lane. 1234 OperandData &OpData = getData(Idx, Lane); 1235 Value *Op = OpData.V; 1236 bool OpAPO = OpData.APO; 1237 1238 // Skip already selected operands. 1239 if (OpData.IsUsed) 1240 continue; 1241 1242 // Skip if we are trying to move the operand to a position with a 1243 // different opcode in the linearized tree form. This would break the 1244 // semantics. 1245 if (OpAPO != OpIdxAPO) 1246 continue; 1247 1248 // Look for an operand that matches the current mode. 1249 switch (RMode) { 1250 case ReorderingMode::Load: 1251 case ReorderingMode::Constant: 1252 case ReorderingMode::Opcode: { 1253 bool LeftToRight = Lane > LastLane; 1254 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1255 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1256 unsigned Score = 1257 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1258 if (Score > BestOp.Score) { 1259 BestOp.Idx = Idx; 1260 BestOp.Score = Score; 1261 } 1262 break; 1263 } 1264 case ReorderingMode::Splat: 1265 if (Op == OpLastLane) 1266 BestOp.Idx = Idx; 1267 break; 1268 case ReorderingMode::Failed: 1269 return None; 1270 } 1271 } 1272 1273 if (BestOp.Idx) { 1274 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1275 return BestOp.Idx; 1276 } 1277 // If we could not find a good match return None. 1278 return None; 1279 } 1280 1281 /// Helper for reorderOperandVecs. \Returns the lane that we should start 1282 /// reordering from. This is the one which has the least number of operands 1283 /// that can freely move about. 1284 unsigned getBestLaneToStartReordering() const { 1285 unsigned BestLane = 0; 1286 unsigned Min = UINT_MAX; 1287 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1288 ++Lane) { 1289 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 1290 if (NumFreeOps < Min) { 1291 Min = NumFreeOps; 1292 BestLane = Lane; 1293 } 1294 } 1295 return BestLane; 1296 } 1297 1298 /// \Returns the maximum number of operands that are allowed to be reordered 1299 /// for \p Lane. This is used as a heuristic for selecting the first lane to 1300 /// start operand reordering. 1301 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1302 unsigned CntTrue = 0; 1303 unsigned NumOperands = getNumOperands(); 1304 // Operands with the same APO can be reordered. We therefore need to count 1305 // how many of them we have for each APO, like this: Cnt[APO] = x. 1306 // Since we only have two APOs, namely true and false, we can avoid using 1307 // a map. Instead we can simply count the number of operands that 1308 // correspond to one of them (in this case the 'true' APO), and calculate 1309 // the other by subtracting it from the total number of operands. 1310 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 1311 if (getData(OpIdx, Lane).APO) 1312 ++CntTrue; 1313 unsigned CntFalse = NumOperands - CntTrue; 1314 return std::max(CntTrue, CntFalse); 1315 } 1316 1317 /// Go through the instructions in VL and append their operands. 1318 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1319 assert(!VL.empty() && "Bad VL"); 1320 assert((empty() || VL.size() == getNumLanes()) && 1321 "Expected same number of lanes"); 1322 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1323 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1324 OpsVec.resize(NumOperands); 1325 unsigned NumLanes = VL.size(); 1326 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1327 OpsVec[OpIdx].resize(NumLanes); 1328 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1329 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1330 // Our tree has just 3 nodes: the root and two operands. 1331 // It is therefore trivial to get the APO. We only need to check the 1332 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1333 // RHS operand. The LHS operand of both add and sub is never attached 1334 // to an inversese operation in the linearized form, therefore its APO 1335 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1336 1337 // Since operand reordering is performed on groups of commutative 1338 // operations or alternating sequences (e.g., +, -), we can safely 1339 // tell the inverse operations by checking commutativity. 1340 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1341 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1342 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1343 APO, false}; 1344 } 1345 } 1346 } 1347 1348 /// \returns the number of operands. 1349 unsigned getNumOperands() const { return OpsVec.size(); } 1350 1351 /// \returns the number of lanes. 1352 unsigned getNumLanes() const { return OpsVec[0].size(); } 1353 1354 /// \returns the operand value at \p OpIdx and \p Lane. 1355 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1356 return getData(OpIdx, Lane).V; 1357 } 1358 1359 /// \returns true if the data structure is empty. 1360 bool empty() const { return OpsVec.empty(); } 1361 1362 /// Clears the data. 1363 void clear() { OpsVec.clear(); } 1364 1365 /// \Returns true if there are enough operands identical to \p Op to fill 1366 /// the whole vector. 1367 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1368 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1369 bool OpAPO = getData(OpIdx, Lane).APO; 1370 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1371 if (Ln == Lane) 1372 continue; 1373 // This is set to true if we found a candidate for broadcast at Lane. 1374 bool FoundCandidate = false; 1375 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1376 OperandData &Data = getData(OpI, Ln); 1377 if (Data.APO != OpAPO || Data.IsUsed) 1378 continue; 1379 if (Data.V == Op) { 1380 FoundCandidate = true; 1381 Data.IsUsed = true; 1382 break; 1383 } 1384 } 1385 if (!FoundCandidate) 1386 return false; 1387 } 1388 return true; 1389 } 1390 1391 public: 1392 /// Initialize with all the operands of the instruction vector \p RootVL. 1393 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1394 ScalarEvolution &SE, const BoUpSLP &R) 1395 : DL(DL), SE(SE), R(R) { 1396 // Append all the operands of RootVL. 1397 appendOperandsOfVL(RootVL); 1398 } 1399 1400 /// \Returns a value vector with the operands across all lanes for the 1401 /// opearnd at \p OpIdx. 1402 ValueList getVL(unsigned OpIdx) const { 1403 ValueList OpVL(OpsVec[OpIdx].size()); 1404 assert(OpsVec[OpIdx].size() == getNumLanes() && 1405 "Expected same num of lanes across all operands"); 1406 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1407 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1408 return OpVL; 1409 } 1410 1411 // Performs operand reordering for 2 or more operands. 1412 // The original operands are in OrigOps[OpIdx][Lane]. 1413 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1414 void reorder() { 1415 unsigned NumOperands = getNumOperands(); 1416 unsigned NumLanes = getNumLanes(); 1417 // Each operand has its own mode. We are using this mode to help us select 1418 // the instructions for each lane, so that they match best with the ones 1419 // we have selected so far. 1420 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1421 1422 // This is a greedy single-pass algorithm. We are going over each lane 1423 // once and deciding on the best order right away with no back-tracking. 1424 // However, in order to increase its effectiveness, we start with the lane 1425 // that has operands that can move the least. For example, given the 1426 // following lanes: 1427 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1428 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1429 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1430 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1431 // we will start at Lane 1, since the operands of the subtraction cannot 1432 // be reordered. Then we will visit the rest of the lanes in a circular 1433 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1434 1435 // Find the first lane that we will start our search from. 1436 unsigned FirstLane = getBestLaneToStartReordering(); 1437 1438 // Initialize the modes. 1439 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1440 Value *OpLane0 = getValue(OpIdx, FirstLane); 1441 // Keep track if we have instructions with all the same opcode on one 1442 // side. 1443 if (isa<LoadInst>(OpLane0)) 1444 ReorderingModes[OpIdx] = ReorderingMode::Load; 1445 else if (isa<Instruction>(OpLane0)) { 1446 // Check if OpLane0 should be broadcast. 1447 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1448 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1449 else 1450 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1451 } 1452 else if (isa<Constant>(OpLane0)) 1453 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1454 else if (isa<Argument>(OpLane0)) 1455 // Our best hope is a Splat. It may save some cost in some cases. 1456 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1457 else 1458 // NOTE: This should be unreachable. 1459 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1460 } 1461 1462 // If the initial strategy fails for any of the operand indexes, then we 1463 // perform reordering again in a second pass. This helps avoid assigning 1464 // high priority to the failed strategy, and should improve reordering for 1465 // the non-failed operand indexes. 1466 for (int Pass = 0; Pass != 2; ++Pass) { 1467 // Skip the second pass if the first pass did not fail. 1468 bool StrategyFailed = false; 1469 // Mark all operand data as free to use. 1470 clearUsed(); 1471 // We keep the original operand order for the FirstLane, so reorder the 1472 // rest of the lanes. We are visiting the nodes in a circular fashion, 1473 // using FirstLane as the center point and increasing the radius 1474 // distance. 1475 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1476 // Visit the lane on the right and then the lane on the left. 1477 for (int Direction : {+1, -1}) { 1478 int Lane = FirstLane + Direction * Distance; 1479 if (Lane < 0 || Lane >= (int)NumLanes) 1480 continue; 1481 int LastLane = Lane - Direction; 1482 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1483 "Out of bounds"); 1484 // Look for a good match for each operand. 1485 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1486 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1487 Optional<unsigned> BestIdx = 1488 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1489 // By not selecting a value, we allow the operands that follow to 1490 // select a better matching value. We will get a non-null value in 1491 // the next run of getBestOperand(). 1492 if (BestIdx) { 1493 // Swap the current operand with the one returned by 1494 // getBestOperand(). 1495 swap(OpIdx, BestIdx.getValue(), Lane); 1496 } else { 1497 // We failed to find a best operand, set mode to 'Failed'. 1498 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1499 // Enable the second pass. 1500 StrategyFailed = true; 1501 } 1502 } 1503 } 1504 } 1505 // Skip second pass if the strategy did not fail. 1506 if (!StrategyFailed) 1507 break; 1508 } 1509 } 1510 1511 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1512 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1513 switch (RMode) { 1514 case ReorderingMode::Load: 1515 return "Load"; 1516 case ReorderingMode::Opcode: 1517 return "Opcode"; 1518 case ReorderingMode::Constant: 1519 return "Constant"; 1520 case ReorderingMode::Splat: 1521 return "Splat"; 1522 case ReorderingMode::Failed: 1523 return "Failed"; 1524 } 1525 llvm_unreachable("Unimplemented Reordering Type"); 1526 } 1527 1528 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1529 raw_ostream &OS) { 1530 return OS << getModeStr(RMode); 1531 } 1532 1533 /// Debug print. 1534 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1535 printMode(RMode, dbgs()); 1536 } 1537 1538 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1539 return printMode(RMode, OS); 1540 } 1541 1542 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1543 const unsigned Indent = 2; 1544 unsigned Cnt = 0; 1545 for (const OperandDataVec &OpDataVec : OpsVec) { 1546 OS << "Operand " << Cnt++ << "\n"; 1547 for (const OperandData &OpData : OpDataVec) { 1548 OS.indent(Indent) << "{"; 1549 if (Value *V = OpData.V) 1550 OS << *V; 1551 else 1552 OS << "null"; 1553 OS << ", APO:" << OpData.APO << "}\n"; 1554 } 1555 OS << "\n"; 1556 } 1557 return OS; 1558 } 1559 1560 /// Debug print. 1561 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1562 #endif 1563 }; 1564 1565 /// Checks if the instruction is marked for deletion. 1566 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1567 1568 /// Marks values operands for later deletion by replacing them with Undefs. 1569 void eraseInstructions(ArrayRef<Value *> AV); 1570 1571 ~BoUpSLP(); 1572 1573 private: 1574 /// Checks if all users of \p I are the part of the vectorization tree. 1575 bool areAllUsersVectorized(Instruction *I, 1576 ArrayRef<Value *> VectorizedVals) const; 1577 1578 /// \returns the cost of the vectorizable entry. 1579 InstructionCost getEntryCost(const TreeEntry *E, 1580 ArrayRef<Value *> VectorizedVals); 1581 1582 /// This is the recursive part of buildTree. 1583 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1584 const EdgeInfo &EI); 1585 1586 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1587 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1588 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1589 /// returns false, setting \p CurrentOrder to either an empty vector or a 1590 /// non-identity permutation that allows to reuse extract instructions. 1591 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1592 SmallVectorImpl<unsigned> &CurrentOrder) const; 1593 1594 /// Vectorize a single entry in the tree. 1595 Value *vectorizeTree(TreeEntry *E); 1596 1597 /// Vectorize a single entry in the tree, starting in \p VL. 1598 Value *vectorizeTree(ArrayRef<Value *> VL); 1599 1600 /// \returns the scalarization cost for this type. Scalarization in this 1601 /// context means the creation of vectors from a group of scalars. 1602 InstructionCost 1603 getGatherCost(FixedVectorType *Ty, 1604 const DenseSet<unsigned> &ShuffledIndices) const; 1605 1606 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 1607 /// tree entries. 1608 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 1609 /// previous tree entries. \p Mask is filled with the shuffle mask. 1610 Optional<TargetTransformInfo::ShuffleKind> 1611 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 1612 SmallVectorImpl<const TreeEntry *> &Entries); 1613 1614 /// \returns the scalarization cost for this list of values. Assuming that 1615 /// this subtree gets vectorized, we may need to extract the values from the 1616 /// roots. This method calculates the cost of extracting the values. 1617 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1618 1619 /// Set the Builder insert point to one after the last instruction in 1620 /// the bundle 1621 void setInsertPointAfterBundle(const TreeEntry *E); 1622 1623 /// \returns a vector from a collection of scalars in \p VL. 1624 Value *gather(ArrayRef<Value *> VL); 1625 1626 /// \returns whether the VectorizableTree is fully vectorizable and will 1627 /// be beneficial even the tree height is tiny. 1628 bool isFullyVectorizableTinyTree(bool ForReduction) const; 1629 1630 /// Reorder commutative or alt operands to get better probability of 1631 /// generating vectorized code. 1632 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1633 SmallVectorImpl<Value *> &Left, 1634 SmallVectorImpl<Value *> &Right, 1635 const DataLayout &DL, 1636 ScalarEvolution &SE, 1637 const BoUpSLP &R); 1638 struct TreeEntry { 1639 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1640 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1641 1642 /// \returns true if the scalars in VL are equal to this entry. 1643 bool isSame(ArrayRef<Value *> VL) const { 1644 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 1645 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 1646 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1647 return VL.size() == Mask.size() && 1648 std::equal(VL.begin(), VL.end(), Mask.begin(), 1649 [Scalars](Value *V, int Idx) { 1650 return (isa<UndefValue>(V) && 1651 Idx == UndefMaskElem) || 1652 (Idx != UndefMaskElem && V == Scalars[Idx]); 1653 }); 1654 }; 1655 if (!ReorderIndices.empty()) { 1656 // TODO: implement matching if the nodes are just reordered, still can 1657 // treat the vector as the same if the list of scalars matches VL 1658 // directly, without reordering. 1659 SmallVector<int> Mask; 1660 inversePermutation(ReorderIndices, Mask); 1661 if (VL.size() == Scalars.size()) 1662 return IsSame(Scalars, Mask); 1663 if (VL.size() == ReuseShuffleIndices.size()) { 1664 ::addMask(Mask, ReuseShuffleIndices); 1665 return IsSame(Scalars, Mask); 1666 } 1667 return false; 1668 } 1669 return IsSame(Scalars, ReuseShuffleIndices); 1670 } 1671 1672 /// A vector of scalars. 1673 ValueList Scalars; 1674 1675 /// The Scalars are vectorized into this value. It is initialized to Null. 1676 Value *VectorizedValue = nullptr; 1677 1678 /// Do we need to gather this sequence or vectorize it 1679 /// (either with vector instruction or with scatter/gather 1680 /// intrinsics for store/load)? 1681 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 1682 EntryState State; 1683 1684 /// Does this sequence require some shuffling? 1685 SmallVector<int, 4> ReuseShuffleIndices; 1686 1687 /// Does this entry require reordering? 1688 SmallVector<unsigned, 4> ReorderIndices; 1689 1690 /// Points back to the VectorizableTree. 1691 /// 1692 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1693 /// to be a pointer and needs to be able to initialize the child iterator. 1694 /// Thus we need a reference back to the container to translate the indices 1695 /// to entries. 1696 VecTreeTy &Container; 1697 1698 /// The TreeEntry index containing the user of this entry. We can actually 1699 /// have multiple users so the data structure is not truly a tree. 1700 SmallVector<EdgeInfo, 1> UserTreeIndices; 1701 1702 /// The index of this treeEntry in VectorizableTree. 1703 int Idx = -1; 1704 1705 private: 1706 /// The operands of each instruction in each lane Operands[op_index][lane]. 1707 /// Note: This helps avoid the replication of the code that performs the 1708 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1709 SmallVector<ValueList, 2> Operands; 1710 1711 /// The main/alternate instruction. 1712 Instruction *MainOp = nullptr; 1713 Instruction *AltOp = nullptr; 1714 1715 public: 1716 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1717 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1718 if (Operands.size() < OpIdx + 1) 1719 Operands.resize(OpIdx + 1); 1720 assert(Operands[OpIdx].empty() && "Already resized?"); 1721 Operands[OpIdx].resize(Scalars.size()); 1722 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1723 Operands[OpIdx][Lane] = OpVL[Lane]; 1724 } 1725 1726 /// Set the operands of this bundle in their original order. 1727 void setOperandsInOrder() { 1728 assert(Operands.empty() && "Already initialized?"); 1729 auto *I0 = cast<Instruction>(Scalars[0]); 1730 Operands.resize(I0->getNumOperands()); 1731 unsigned NumLanes = Scalars.size(); 1732 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1733 OpIdx != NumOperands; ++OpIdx) { 1734 Operands[OpIdx].resize(NumLanes); 1735 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1736 auto *I = cast<Instruction>(Scalars[Lane]); 1737 assert(I->getNumOperands() == NumOperands && 1738 "Expected same number of operands"); 1739 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1740 } 1741 } 1742 } 1743 1744 /// Reorders operands of the node to the given mask \p Mask. 1745 void reorderOperands(ArrayRef<int> Mask) { 1746 for (ValueList &Operand : Operands) 1747 reorderScalars(Operand, Mask); 1748 } 1749 1750 /// \returns the \p OpIdx operand of this TreeEntry. 1751 ValueList &getOperand(unsigned OpIdx) { 1752 assert(OpIdx < Operands.size() && "Off bounds"); 1753 return Operands[OpIdx]; 1754 } 1755 1756 /// \returns the number of operands. 1757 unsigned getNumOperands() const { return Operands.size(); } 1758 1759 /// \return the single \p OpIdx operand. 1760 Value *getSingleOperand(unsigned OpIdx) const { 1761 assert(OpIdx < Operands.size() && "Off bounds"); 1762 assert(!Operands[OpIdx].empty() && "No operand available"); 1763 return Operands[OpIdx][0]; 1764 } 1765 1766 /// Some of the instructions in the list have alternate opcodes. 1767 bool isAltShuffle() const { 1768 return getOpcode() != getAltOpcode(); 1769 } 1770 1771 bool isOpcodeOrAlt(Instruction *I) const { 1772 unsigned CheckedOpcode = I->getOpcode(); 1773 return (getOpcode() == CheckedOpcode || 1774 getAltOpcode() == CheckedOpcode); 1775 } 1776 1777 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1778 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1779 /// \p OpValue. 1780 Value *isOneOf(Value *Op) const { 1781 auto *I = dyn_cast<Instruction>(Op); 1782 if (I && isOpcodeOrAlt(I)) 1783 return Op; 1784 return MainOp; 1785 } 1786 1787 void setOperations(const InstructionsState &S) { 1788 MainOp = S.MainOp; 1789 AltOp = S.AltOp; 1790 } 1791 1792 Instruction *getMainOp() const { 1793 return MainOp; 1794 } 1795 1796 Instruction *getAltOp() const { 1797 return AltOp; 1798 } 1799 1800 /// The main/alternate opcodes for the list of instructions. 1801 unsigned getOpcode() const { 1802 return MainOp ? MainOp->getOpcode() : 0; 1803 } 1804 1805 unsigned getAltOpcode() const { 1806 return AltOp ? AltOp->getOpcode() : 0; 1807 } 1808 1809 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 1810 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 1811 int findLaneForValue(Value *V) const { 1812 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 1813 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 1814 if (!ReorderIndices.empty()) 1815 FoundLane = ReorderIndices[FoundLane]; 1816 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 1817 if (!ReuseShuffleIndices.empty()) { 1818 FoundLane = std::distance(ReuseShuffleIndices.begin(), 1819 find(ReuseShuffleIndices, FoundLane)); 1820 } 1821 return FoundLane; 1822 } 1823 1824 #ifndef NDEBUG 1825 /// Debug printer. 1826 LLVM_DUMP_METHOD void dump() const { 1827 dbgs() << Idx << ".\n"; 1828 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1829 dbgs() << "Operand " << OpI << ":\n"; 1830 for (const Value *V : Operands[OpI]) 1831 dbgs().indent(2) << *V << "\n"; 1832 } 1833 dbgs() << "Scalars: \n"; 1834 for (Value *V : Scalars) 1835 dbgs().indent(2) << *V << "\n"; 1836 dbgs() << "State: "; 1837 switch (State) { 1838 case Vectorize: 1839 dbgs() << "Vectorize\n"; 1840 break; 1841 case ScatterVectorize: 1842 dbgs() << "ScatterVectorize\n"; 1843 break; 1844 case NeedToGather: 1845 dbgs() << "NeedToGather\n"; 1846 break; 1847 } 1848 dbgs() << "MainOp: "; 1849 if (MainOp) 1850 dbgs() << *MainOp << "\n"; 1851 else 1852 dbgs() << "NULL\n"; 1853 dbgs() << "AltOp: "; 1854 if (AltOp) 1855 dbgs() << *AltOp << "\n"; 1856 else 1857 dbgs() << "NULL\n"; 1858 dbgs() << "VectorizedValue: "; 1859 if (VectorizedValue) 1860 dbgs() << *VectorizedValue << "\n"; 1861 else 1862 dbgs() << "NULL\n"; 1863 dbgs() << "ReuseShuffleIndices: "; 1864 if (ReuseShuffleIndices.empty()) 1865 dbgs() << "Empty"; 1866 else 1867 for (unsigned ReuseIdx : ReuseShuffleIndices) 1868 dbgs() << ReuseIdx << ", "; 1869 dbgs() << "\n"; 1870 dbgs() << "ReorderIndices: "; 1871 for (unsigned ReorderIdx : ReorderIndices) 1872 dbgs() << ReorderIdx << ", "; 1873 dbgs() << "\n"; 1874 dbgs() << "UserTreeIndices: "; 1875 for (const auto &EInfo : UserTreeIndices) 1876 dbgs() << EInfo << ", "; 1877 dbgs() << "\n"; 1878 } 1879 #endif 1880 }; 1881 1882 #ifndef NDEBUG 1883 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 1884 InstructionCost VecCost, 1885 InstructionCost ScalarCost) const { 1886 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 1887 dbgs() << "SLP: Costs:\n"; 1888 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 1889 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 1890 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 1891 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 1892 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 1893 } 1894 #endif 1895 1896 /// Create a new VectorizableTree entry. 1897 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1898 const InstructionsState &S, 1899 const EdgeInfo &UserTreeIdx, 1900 ArrayRef<int> ReuseShuffleIndices = None, 1901 ArrayRef<unsigned> ReorderIndices = None) { 1902 TreeEntry::EntryState EntryState = 1903 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 1904 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 1905 ReuseShuffleIndices, ReorderIndices); 1906 } 1907 1908 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 1909 TreeEntry::EntryState EntryState, 1910 Optional<ScheduleData *> Bundle, 1911 const InstructionsState &S, 1912 const EdgeInfo &UserTreeIdx, 1913 ArrayRef<int> ReuseShuffleIndices = None, 1914 ArrayRef<unsigned> ReorderIndices = None) { 1915 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 1916 (Bundle && EntryState != TreeEntry::NeedToGather)) && 1917 "Need to vectorize gather entry?"); 1918 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1919 TreeEntry *Last = VectorizableTree.back().get(); 1920 Last->Idx = VectorizableTree.size() - 1; 1921 Last->State = EntryState; 1922 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1923 ReuseShuffleIndices.end()); 1924 if (ReorderIndices.empty()) { 1925 Last->Scalars.assign(VL.begin(), VL.end()); 1926 Last->setOperations(S); 1927 } else { 1928 // Reorder scalars and build final mask. 1929 Last->Scalars.assign(VL.size(), nullptr); 1930 transform(ReorderIndices, Last->Scalars.begin(), 1931 [VL](unsigned Idx) -> Value * { 1932 if (Idx >= VL.size()) 1933 return UndefValue::get(VL.front()->getType()); 1934 return VL[Idx]; 1935 }); 1936 InstructionsState S = getSameOpcode(Last->Scalars); 1937 Last->setOperations(S); 1938 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 1939 } 1940 if (Last->State != TreeEntry::NeedToGather) { 1941 for (Value *V : VL) { 1942 assert(!getTreeEntry(V) && "Scalar already in tree!"); 1943 ScalarToTreeEntry[V] = Last; 1944 } 1945 // Update the scheduler bundle to point to this TreeEntry. 1946 unsigned Lane = 0; 1947 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 1948 BundleMember = BundleMember->NextInBundle) { 1949 BundleMember->TE = Last; 1950 BundleMember->Lane = Lane; 1951 ++Lane; 1952 } 1953 assert((!Bundle.getValue() || Lane == VL.size()) && 1954 "Bundle and VL out of sync"); 1955 } else { 1956 MustGather.insert(VL.begin(), VL.end()); 1957 } 1958 1959 if (UserTreeIdx.UserTE) 1960 Last->UserTreeIndices.push_back(UserTreeIdx); 1961 1962 return Last; 1963 } 1964 1965 /// -- Vectorization State -- 1966 /// Holds all of the tree entries. 1967 TreeEntry::VecTreeTy VectorizableTree; 1968 1969 #ifndef NDEBUG 1970 /// Debug printer. 1971 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1972 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1973 VectorizableTree[Id]->dump(); 1974 dbgs() << "\n"; 1975 } 1976 } 1977 #endif 1978 1979 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 1980 1981 const TreeEntry *getTreeEntry(Value *V) const { 1982 return ScalarToTreeEntry.lookup(V); 1983 } 1984 1985 /// Maps a specific scalar to its tree entry. 1986 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 1987 1988 /// Maps a value to the proposed vectorizable size. 1989 SmallDenseMap<Value *, unsigned> InstrElementSize; 1990 1991 /// A list of scalars that we found that we need to keep as scalars. 1992 ValueSet MustGather; 1993 1994 /// This POD struct describes one external user in the vectorized tree. 1995 struct ExternalUser { 1996 ExternalUser(Value *S, llvm::User *U, int L) 1997 : Scalar(S), User(U), Lane(L) {} 1998 1999 // Which scalar in our function. 2000 Value *Scalar; 2001 2002 // Which user that uses the scalar. 2003 llvm::User *User; 2004 2005 // Which lane does the scalar belong to. 2006 int Lane; 2007 }; 2008 using UserList = SmallVector<ExternalUser, 16>; 2009 2010 /// Checks if two instructions may access the same memory. 2011 /// 2012 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2013 /// is invariant in the calling loop. 2014 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2015 Instruction *Inst2) { 2016 // First check if the result is already in the cache. 2017 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2018 Optional<bool> &result = AliasCache[key]; 2019 if (result.hasValue()) { 2020 return result.getValue(); 2021 } 2022 bool aliased = true; 2023 if (Loc1.Ptr && isSimple(Inst1)) 2024 aliased = isModOrRefSet(AA->getModRefInfo(Inst2, Loc1)); 2025 // Store the result in the cache. 2026 result = aliased; 2027 return aliased; 2028 } 2029 2030 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2031 2032 /// Cache for alias results. 2033 /// TODO: consider moving this to the AliasAnalysis itself. 2034 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2035 2036 /// Removes an instruction from its block and eventually deletes it. 2037 /// It's like Instruction::eraseFromParent() except that the actual deletion 2038 /// is delayed until BoUpSLP is destructed. 2039 /// This is required to ensure that there are no incorrect collisions in the 2040 /// AliasCache, which can happen if a new instruction is allocated at the 2041 /// same address as a previously deleted instruction. 2042 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 2043 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 2044 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 2045 } 2046 2047 /// Temporary store for deleted instructions. Instructions will be deleted 2048 /// eventually when the BoUpSLP is destructed. 2049 DenseMap<Instruction *, bool> DeletedInstructions; 2050 2051 /// A list of values that need to extracted out of the tree. 2052 /// This list holds pairs of (Internal Scalar : External User). External User 2053 /// can be nullptr, it means that this Internal Scalar will be used later, 2054 /// after vectorization. 2055 UserList ExternalUses; 2056 2057 /// Values used only by @llvm.assume calls. 2058 SmallPtrSet<const Value *, 32> EphValues; 2059 2060 /// Holds all of the instructions that we gathered. 2061 SetVector<Instruction *> GatherSeq; 2062 2063 /// A list of blocks that we are going to CSE. 2064 SetVector<BasicBlock *> CSEBlocks; 2065 2066 /// Contains all scheduling relevant data for an instruction. 2067 /// A ScheduleData either represents a single instruction or a member of an 2068 /// instruction bundle (= a group of instructions which is combined into a 2069 /// vector instruction). 2070 struct ScheduleData { 2071 // The initial value for the dependency counters. It means that the 2072 // dependencies are not calculated yet. 2073 enum { InvalidDeps = -1 }; 2074 2075 ScheduleData() = default; 2076 2077 void init(int BlockSchedulingRegionID, Value *OpVal) { 2078 FirstInBundle = this; 2079 NextInBundle = nullptr; 2080 NextLoadStore = nullptr; 2081 IsScheduled = false; 2082 SchedulingRegionID = BlockSchedulingRegionID; 2083 UnscheduledDepsInBundle = UnscheduledDeps; 2084 clearDependencies(); 2085 OpValue = OpVal; 2086 TE = nullptr; 2087 Lane = -1; 2088 } 2089 2090 /// Returns true if the dependency information has been calculated. 2091 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2092 2093 /// Returns true for single instructions and for bundle representatives 2094 /// (= the head of a bundle). 2095 bool isSchedulingEntity() const { return FirstInBundle == this; } 2096 2097 /// Returns true if it represents an instruction bundle and not only a 2098 /// single instruction. 2099 bool isPartOfBundle() const { 2100 return NextInBundle != nullptr || FirstInBundle != this; 2101 } 2102 2103 /// Returns true if it is ready for scheduling, i.e. it has no more 2104 /// unscheduled depending instructions/bundles. 2105 bool isReady() const { 2106 assert(isSchedulingEntity() && 2107 "can't consider non-scheduling entity for ready list"); 2108 return UnscheduledDepsInBundle == 0 && !IsScheduled; 2109 } 2110 2111 /// Modifies the number of unscheduled dependencies, also updating it for 2112 /// the whole bundle. 2113 int incrementUnscheduledDeps(int Incr) { 2114 UnscheduledDeps += Incr; 2115 return FirstInBundle->UnscheduledDepsInBundle += Incr; 2116 } 2117 2118 /// Sets the number of unscheduled dependencies to the number of 2119 /// dependencies. 2120 void resetUnscheduledDeps() { 2121 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 2122 } 2123 2124 /// Clears all dependency information. 2125 void clearDependencies() { 2126 Dependencies = InvalidDeps; 2127 resetUnscheduledDeps(); 2128 MemoryDependencies.clear(); 2129 } 2130 2131 void dump(raw_ostream &os) const { 2132 if (!isSchedulingEntity()) { 2133 os << "/ " << *Inst; 2134 } else if (NextInBundle) { 2135 os << '[' << *Inst; 2136 ScheduleData *SD = NextInBundle; 2137 while (SD) { 2138 os << ';' << *SD->Inst; 2139 SD = SD->NextInBundle; 2140 } 2141 os << ']'; 2142 } else { 2143 os << *Inst; 2144 } 2145 } 2146 2147 Instruction *Inst = nullptr; 2148 2149 /// Points to the head in an instruction bundle (and always to this for 2150 /// single instructions). 2151 ScheduleData *FirstInBundle = nullptr; 2152 2153 /// Single linked list of all instructions in a bundle. Null if it is a 2154 /// single instruction. 2155 ScheduleData *NextInBundle = nullptr; 2156 2157 /// Single linked list of all memory instructions (e.g. load, store, call) 2158 /// in the block - until the end of the scheduling region. 2159 ScheduleData *NextLoadStore = nullptr; 2160 2161 /// The dependent memory instructions. 2162 /// This list is derived on demand in calculateDependencies(). 2163 SmallVector<ScheduleData *, 4> MemoryDependencies; 2164 2165 /// This ScheduleData is in the current scheduling region if this matches 2166 /// the current SchedulingRegionID of BlockScheduling. 2167 int SchedulingRegionID = 0; 2168 2169 /// Used for getting a "good" final ordering of instructions. 2170 int SchedulingPriority = 0; 2171 2172 /// The number of dependencies. Constitutes of the number of users of the 2173 /// instruction plus the number of dependent memory instructions (if any). 2174 /// This value is calculated on demand. 2175 /// If InvalidDeps, the number of dependencies is not calculated yet. 2176 int Dependencies = InvalidDeps; 2177 2178 /// The number of dependencies minus the number of dependencies of scheduled 2179 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2180 /// for scheduling. 2181 /// Note that this is negative as long as Dependencies is not calculated. 2182 int UnscheduledDeps = InvalidDeps; 2183 2184 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 2185 /// single instructions. 2186 int UnscheduledDepsInBundle = InvalidDeps; 2187 2188 /// True if this instruction is scheduled (or considered as scheduled in the 2189 /// dry-run). 2190 bool IsScheduled = false; 2191 2192 /// Opcode of the current instruction in the schedule data. 2193 Value *OpValue = nullptr; 2194 2195 /// The TreeEntry that this instruction corresponds to. 2196 TreeEntry *TE = nullptr; 2197 2198 /// The lane of this node in the TreeEntry. 2199 int Lane = -1; 2200 }; 2201 2202 #ifndef NDEBUG 2203 friend inline raw_ostream &operator<<(raw_ostream &os, 2204 const BoUpSLP::ScheduleData &SD) { 2205 SD.dump(os); 2206 return os; 2207 } 2208 #endif 2209 2210 friend struct GraphTraits<BoUpSLP *>; 2211 friend struct DOTGraphTraits<BoUpSLP *>; 2212 2213 /// Contains all scheduling data for a basic block. 2214 struct BlockScheduling { 2215 BlockScheduling(BasicBlock *BB) 2216 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2217 2218 void clear() { 2219 ReadyInsts.clear(); 2220 ScheduleStart = nullptr; 2221 ScheduleEnd = nullptr; 2222 FirstLoadStoreInRegion = nullptr; 2223 LastLoadStoreInRegion = nullptr; 2224 2225 // Reduce the maximum schedule region size by the size of the 2226 // previous scheduling run. 2227 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2228 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2229 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2230 ScheduleRegionSize = 0; 2231 2232 // Make a new scheduling region, i.e. all existing ScheduleData is not 2233 // in the new region yet. 2234 ++SchedulingRegionID; 2235 } 2236 2237 ScheduleData *getScheduleData(Value *V) { 2238 ScheduleData *SD = ScheduleDataMap[V]; 2239 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2240 return SD; 2241 return nullptr; 2242 } 2243 2244 ScheduleData *getScheduleData(Value *V, Value *Key) { 2245 if (V == Key) 2246 return getScheduleData(V); 2247 auto I = ExtraScheduleDataMap.find(V); 2248 if (I != ExtraScheduleDataMap.end()) { 2249 ScheduleData *SD = I->second[Key]; 2250 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2251 return SD; 2252 } 2253 return nullptr; 2254 } 2255 2256 bool isInSchedulingRegion(ScheduleData *SD) const { 2257 return SD->SchedulingRegionID == SchedulingRegionID; 2258 } 2259 2260 /// Marks an instruction as scheduled and puts all dependent ready 2261 /// instructions into the ready-list. 2262 template <typename ReadyListType> 2263 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2264 SD->IsScheduled = true; 2265 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2266 2267 ScheduleData *BundleMember = SD; 2268 while (BundleMember) { 2269 if (BundleMember->Inst != BundleMember->OpValue) { 2270 BundleMember = BundleMember->NextInBundle; 2271 continue; 2272 } 2273 // Handle the def-use chain dependencies. 2274 2275 // Decrement the unscheduled counter and insert to ready list if ready. 2276 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2277 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2278 if (OpDef && OpDef->hasValidDependencies() && 2279 OpDef->incrementUnscheduledDeps(-1) == 0) { 2280 // There are no more unscheduled dependencies after 2281 // decrementing, so we can put the dependent instruction 2282 // into the ready list. 2283 ScheduleData *DepBundle = OpDef->FirstInBundle; 2284 assert(!DepBundle->IsScheduled && 2285 "already scheduled bundle gets ready"); 2286 ReadyList.insert(DepBundle); 2287 LLVM_DEBUG(dbgs() 2288 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2289 } 2290 }); 2291 }; 2292 2293 // If BundleMember is a vector bundle, its operands may have been 2294 // reordered duiring buildTree(). We therefore need to get its operands 2295 // through the TreeEntry. 2296 if (TreeEntry *TE = BundleMember->TE) { 2297 int Lane = BundleMember->Lane; 2298 assert(Lane >= 0 && "Lane not set"); 2299 2300 // Since vectorization tree is being built recursively this assertion 2301 // ensures that the tree entry has all operands set before reaching 2302 // this code. Couple of exceptions known at the moment are extracts 2303 // where their second (immediate) operand is not added. Since 2304 // immediates do not affect scheduler behavior this is considered 2305 // okay. 2306 auto *In = TE->getMainOp(); 2307 assert(In && 2308 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2309 In->getNumOperands() == TE->getNumOperands()) && 2310 "Missed TreeEntry operands?"); 2311 (void)In; // fake use to avoid build failure when assertions disabled 2312 2313 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2314 OpIdx != NumOperands; ++OpIdx) 2315 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2316 DecrUnsched(I); 2317 } else { 2318 // If BundleMember is a stand-alone instruction, no operand reordering 2319 // has taken place, so we directly access its operands. 2320 for (Use &U : BundleMember->Inst->operands()) 2321 if (auto *I = dyn_cast<Instruction>(U.get())) 2322 DecrUnsched(I); 2323 } 2324 // Handle the memory dependencies. 2325 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2326 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2327 // There are no more unscheduled dependencies after decrementing, 2328 // so we can put the dependent instruction into the ready list. 2329 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2330 assert(!DepBundle->IsScheduled && 2331 "already scheduled bundle gets ready"); 2332 ReadyList.insert(DepBundle); 2333 LLVM_DEBUG(dbgs() 2334 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2335 } 2336 } 2337 BundleMember = BundleMember->NextInBundle; 2338 } 2339 } 2340 2341 void doForAllOpcodes(Value *V, 2342 function_ref<void(ScheduleData *SD)> Action) { 2343 if (ScheduleData *SD = getScheduleData(V)) 2344 Action(SD); 2345 auto I = ExtraScheduleDataMap.find(V); 2346 if (I != ExtraScheduleDataMap.end()) 2347 for (auto &P : I->second) 2348 if (P.second->SchedulingRegionID == SchedulingRegionID) 2349 Action(P.second); 2350 } 2351 2352 /// Put all instructions into the ReadyList which are ready for scheduling. 2353 template <typename ReadyListType> 2354 void initialFillReadyList(ReadyListType &ReadyList) { 2355 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2356 doForAllOpcodes(I, [&](ScheduleData *SD) { 2357 if (SD->isSchedulingEntity() && SD->isReady()) { 2358 ReadyList.insert(SD); 2359 LLVM_DEBUG(dbgs() 2360 << "SLP: initially in ready list: " << *I << "\n"); 2361 } 2362 }); 2363 } 2364 } 2365 2366 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2367 /// cyclic dependencies. This is only a dry-run, no instructions are 2368 /// actually moved at this stage. 2369 /// \returns the scheduling bundle. The returned Optional value is non-None 2370 /// if \p VL is allowed to be scheduled. 2371 Optional<ScheduleData *> 2372 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2373 const InstructionsState &S); 2374 2375 /// Un-bundles a group of instructions. 2376 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2377 2378 /// Allocates schedule data chunk. 2379 ScheduleData *allocateScheduleDataChunks(); 2380 2381 /// Extends the scheduling region so that V is inside the region. 2382 /// \returns true if the region size is within the limit. 2383 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2384 2385 /// Initialize the ScheduleData structures for new instructions in the 2386 /// scheduling region. 2387 void initScheduleData(Instruction *FromI, Instruction *ToI, 2388 ScheduleData *PrevLoadStore, 2389 ScheduleData *NextLoadStore); 2390 2391 /// Updates the dependency information of a bundle and of all instructions/ 2392 /// bundles which depend on the original bundle. 2393 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2394 BoUpSLP *SLP); 2395 2396 /// Sets all instruction in the scheduling region to un-scheduled. 2397 void resetSchedule(); 2398 2399 BasicBlock *BB; 2400 2401 /// Simple memory allocation for ScheduleData. 2402 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2403 2404 /// The size of a ScheduleData array in ScheduleDataChunks. 2405 int ChunkSize; 2406 2407 /// The allocator position in the current chunk, which is the last entry 2408 /// of ScheduleDataChunks. 2409 int ChunkPos; 2410 2411 /// Attaches ScheduleData to Instruction. 2412 /// Note that the mapping survives during all vectorization iterations, i.e. 2413 /// ScheduleData structures are recycled. 2414 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2415 2416 /// Attaches ScheduleData to Instruction with the leading key. 2417 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2418 ExtraScheduleDataMap; 2419 2420 struct ReadyList : SmallVector<ScheduleData *, 8> { 2421 void insert(ScheduleData *SD) { push_back(SD); } 2422 }; 2423 2424 /// The ready-list for scheduling (only used for the dry-run). 2425 ReadyList ReadyInsts; 2426 2427 /// The first instruction of the scheduling region. 2428 Instruction *ScheduleStart = nullptr; 2429 2430 /// The first instruction _after_ the scheduling region. 2431 Instruction *ScheduleEnd = nullptr; 2432 2433 /// The first memory accessing instruction in the scheduling region 2434 /// (can be null). 2435 ScheduleData *FirstLoadStoreInRegion = nullptr; 2436 2437 /// The last memory accessing instruction in the scheduling region 2438 /// (can be null). 2439 ScheduleData *LastLoadStoreInRegion = nullptr; 2440 2441 /// The current size of the scheduling region. 2442 int ScheduleRegionSize = 0; 2443 2444 /// The maximum size allowed for the scheduling region. 2445 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2446 2447 /// The ID of the scheduling region. For a new vectorization iteration this 2448 /// is incremented which "removes" all ScheduleData from the region. 2449 // Make sure that the initial SchedulingRegionID is greater than the 2450 // initial SchedulingRegionID in ScheduleData (which is 0). 2451 int SchedulingRegionID = 1; 2452 }; 2453 2454 /// Attaches the BlockScheduling structures to basic blocks. 2455 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2456 2457 /// Performs the "real" scheduling. Done before vectorization is actually 2458 /// performed in a basic block. 2459 void scheduleBlock(BlockScheduling *BS); 2460 2461 /// List of users to ignore during scheduling and that don't need extracting. 2462 ArrayRef<Value *> UserIgnoreList; 2463 2464 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2465 /// sorted SmallVectors of unsigned. 2466 struct OrdersTypeDenseMapInfo { 2467 static OrdersType getEmptyKey() { 2468 OrdersType V; 2469 V.push_back(~1U); 2470 return V; 2471 } 2472 2473 static OrdersType getTombstoneKey() { 2474 OrdersType V; 2475 V.push_back(~2U); 2476 return V; 2477 } 2478 2479 static unsigned getHashValue(const OrdersType &V) { 2480 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2481 } 2482 2483 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2484 return LHS == RHS; 2485 } 2486 }; 2487 2488 // Analysis and block reference. 2489 Function *F; 2490 ScalarEvolution *SE; 2491 TargetTransformInfo *TTI; 2492 TargetLibraryInfo *TLI; 2493 AAResults *AA; 2494 LoopInfo *LI; 2495 DominatorTree *DT; 2496 AssumptionCache *AC; 2497 DemandedBits *DB; 2498 const DataLayout *DL; 2499 OptimizationRemarkEmitter *ORE; 2500 2501 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2502 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2503 2504 /// Instruction builder to construct the vectorized tree. 2505 IRBuilder<> Builder; 2506 2507 /// A map of scalar integer values to the smallest bit width with which they 2508 /// can legally be represented. The values map to (width, signed) pairs, 2509 /// where "width" indicates the minimum bit width and "signed" is True if the 2510 /// value must be signed-extended, rather than zero-extended, back to its 2511 /// original width. 2512 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2513 }; 2514 2515 } // end namespace slpvectorizer 2516 2517 template <> struct GraphTraits<BoUpSLP *> { 2518 using TreeEntry = BoUpSLP::TreeEntry; 2519 2520 /// NodeRef has to be a pointer per the GraphWriter. 2521 using NodeRef = TreeEntry *; 2522 2523 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2524 2525 /// Add the VectorizableTree to the index iterator to be able to return 2526 /// TreeEntry pointers. 2527 struct ChildIteratorType 2528 : public iterator_adaptor_base< 2529 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2530 ContainerTy &VectorizableTree; 2531 2532 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2533 ContainerTy &VT) 2534 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2535 2536 NodeRef operator*() { return I->UserTE; } 2537 }; 2538 2539 static NodeRef getEntryNode(BoUpSLP &R) { 2540 return R.VectorizableTree[0].get(); 2541 } 2542 2543 static ChildIteratorType child_begin(NodeRef N) { 2544 return {N->UserTreeIndices.begin(), N->Container}; 2545 } 2546 2547 static ChildIteratorType child_end(NodeRef N) { 2548 return {N->UserTreeIndices.end(), N->Container}; 2549 } 2550 2551 /// For the node iterator we just need to turn the TreeEntry iterator into a 2552 /// TreeEntry* iterator so that it dereferences to NodeRef. 2553 class nodes_iterator { 2554 using ItTy = ContainerTy::iterator; 2555 ItTy It; 2556 2557 public: 2558 nodes_iterator(const ItTy &It2) : It(It2) {} 2559 NodeRef operator*() { return It->get(); } 2560 nodes_iterator operator++() { 2561 ++It; 2562 return *this; 2563 } 2564 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2565 }; 2566 2567 static nodes_iterator nodes_begin(BoUpSLP *R) { 2568 return nodes_iterator(R->VectorizableTree.begin()); 2569 } 2570 2571 static nodes_iterator nodes_end(BoUpSLP *R) { 2572 return nodes_iterator(R->VectorizableTree.end()); 2573 } 2574 2575 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2576 }; 2577 2578 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2579 using TreeEntry = BoUpSLP::TreeEntry; 2580 2581 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2582 2583 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2584 std::string Str; 2585 raw_string_ostream OS(Str); 2586 if (isSplat(Entry->Scalars)) { 2587 OS << "<splat> " << *Entry->Scalars[0]; 2588 return Str; 2589 } 2590 for (auto V : Entry->Scalars) { 2591 OS << *V; 2592 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 2593 return EU.Scalar == V; 2594 })) 2595 OS << " <extract>"; 2596 OS << "\n"; 2597 } 2598 return Str; 2599 } 2600 2601 static std::string getNodeAttributes(const TreeEntry *Entry, 2602 const BoUpSLP *) { 2603 if (Entry->State == TreeEntry::NeedToGather) 2604 return "color=red"; 2605 return ""; 2606 } 2607 }; 2608 2609 } // end namespace llvm 2610 2611 BoUpSLP::~BoUpSLP() { 2612 for (const auto &Pair : DeletedInstructions) { 2613 // Replace operands of ignored instructions with Undefs in case if they were 2614 // marked for deletion. 2615 if (Pair.getSecond()) { 2616 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2617 Pair.getFirst()->replaceAllUsesWith(Undef); 2618 } 2619 Pair.getFirst()->dropAllReferences(); 2620 } 2621 for (const auto &Pair : DeletedInstructions) { 2622 assert(Pair.getFirst()->use_empty() && 2623 "trying to erase instruction with users."); 2624 Pair.getFirst()->eraseFromParent(); 2625 } 2626 #ifdef EXPENSIVE_CHECKS 2627 // If we could guarantee that this call is not extremely slow, we could 2628 // remove the ifdef limitation (see PR47712). 2629 assert(!verifyFunction(*F, &dbgs())); 2630 #endif 2631 } 2632 2633 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2634 for (auto *V : AV) { 2635 if (auto *I = dyn_cast<Instruction>(V)) 2636 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 2637 }; 2638 } 2639 2640 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 2641 /// contains original mask for the scalars reused in the node. Procedure 2642 /// transform this mask in accordance with the given \p Mask. 2643 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 2644 assert(!Mask.empty() && Reuses.size() == Mask.size() && 2645 "Expected non-empty mask."); 2646 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 2647 Prev.swap(Reuses); 2648 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 2649 if (Mask[I] != UndefMaskElem) 2650 Reuses[Mask[I]] = Prev[I]; 2651 } 2652 2653 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 2654 /// the original order of the scalars. Procedure transforms the provided order 2655 /// in accordance with the given \p Mask. If the resulting \p Order is just an 2656 /// identity order, \p Order is cleared. 2657 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 2658 assert(!Mask.empty() && "Expected non-empty mask."); 2659 SmallVector<int> MaskOrder; 2660 if (Order.empty()) { 2661 MaskOrder.resize(Mask.size()); 2662 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 2663 } else { 2664 inversePermutation(Order, MaskOrder); 2665 } 2666 reorderReuses(MaskOrder, Mask); 2667 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 2668 Order.clear(); 2669 return; 2670 } 2671 Order.assign(Mask.size(), Mask.size()); 2672 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 2673 if (MaskOrder[I] != UndefMaskElem) 2674 Order[MaskOrder[I]] = I; 2675 fixupOrderingIndices(Order); 2676 } 2677 2678 Optional<BoUpSLP::OrdersType> 2679 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 2680 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 2681 unsigned NumScalars = TE.Scalars.size(); 2682 OrdersType CurrentOrder(NumScalars, NumScalars); 2683 SmallVector<int> Positions; 2684 SmallBitVector UsedPositions(NumScalars); 2685 const TreeEntry *STE = nullptr; 2686 // Try to find all gathered scalars that are gets vectorized in other 2687 // vectorize node. Here we can have only one single tree vector node to 2688 // correctly identify order of the gathered scalars. 2689 for (unsigned I = 0; I < NumScalars; ++I) { 2690 Value *V = TE.Scalars[I]; 2691 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 2692 continue; 2693 if (const auto *LocalSTE = getTreeEntry(V)) { 2694 if (!STE) 2695 STE = LocalSTE; 2696 else if (STE != LocalSTE) 2697 // Take the order only from the single vector node. 2698 return None; 2699 unsigned Lane = 2700 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 2701 if (Lane >= NumScalars) 2702 return None; 2703 if (CurrentOrder[Lane] != NumScalars) { 2704 if (Lane != I) 2705 continue; 2706 UsedPositions.reset(CurrentOrder[Lane]); 2707 } 2708 // The partial identity (where only some elements of the gather node are 2709 // in the identity order) is good. 2710 CurrentOrder[Lane] = I; 2711 UsedPositions.set(I); 2712 } 2713 } 2714 // Need to keep the order if we have a vector entry and at least 2 scalars or 2715 // the vectorized entry has just 2 scalars. 2716 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 2717 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 2718 for (unsigned I = 0; I < NumScalars; ++I) 2719 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 2720 return false; 2721 return true; 2722 }; 2723 if (IsIdentityOrder(CurrentOrder)) { 2724 CurrentOrder.clear(); 2725 return CurrentOrder; 2726 } 2727 auto *It = CurrentOrder.begin(); 2728 for (unsigned I = 0; I < NumScalars;) { 2729 if (UsedPositions.test(I)) { 2730 ++I; 2731 continue; 2732 } 2733 if (*It == NumScalars) { 2734 *It = I; 2735 ++I; 2736 } 2737 ++It; 2738 } 2739 return CurrentOrder; 2740 } 2741 return None; 2742 } 2743 2744 void BoUpSLP::reorderTopToBottom() { 2745 // Maps VF to the graph nodes. 2746 DenseMap<unsigned, SmallPtrSet<TreeEntry *, 4>> VFToOrderedEntries; 2747 // ExtractElement gather nodes which can be vectorized and need to handle 2748 // their ordering. 2749 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 2750 // Find all reorderable nodes with the given VF. 2751 // Currently the are vectorized loads,extracts + some gathering of extracts. 2752 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 2753 const std::unique_ptr<TreeEntry> &TE) { 2754 // No need to reorder if need to shuffle reuses, still need to shuffle the 2755 // node. 2756 if (!TE->ReuseShuffleIndices.empty()) 2757 return; 2758 if (TE->State == TreeEntry::Vectorize && 2759 isa<LoadInst, ExtractElementInst, ExtractValueInst, StoreInst, 2760 InsertElementInst>(TE->getMainOp()) && 2761 !TE->isAltShuffle()) { 2762 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 2763 return; 2764 } 2765 if (TE->State == TreeEntry::NeedToGather) { 2766 if (TE->getOpcode() == Instruction::ExtractElement && 2767 !TE->isAltShuffle() && 2768 isa<FixedVectorType>(cast<ExtractElementInst>(TE->getMainOp()) 2769 ->getVectorOperandType()) && 2770 allSameType(TE->Scalars) && allSameBlock(TE->Scalars)) { 2771 // Check that gather of extractelements can be represented as 2772 // just a shuffle of a single vector. 2773 OrdersType CurrentOrder; 2774 bool Reuse = 2775 canReuseExtract(TE->Scalars, TE->getMainOp(), CurrentOrder); 2776 if (Reuse || !CurrentOrder.empty()) { 2777 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 2778 GathersToOrders.try_emplace(TE.get(), CurrentOrder); 2779 return; 2780 } 2781 } 2782 if (Optional<OrdersType> CurrentOrder = 2783 findReusedOrderedScalars(*TE.get())) { 2784 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 2785 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 2786 } 2787 } 2788 }); 2789 2790 // Reorder the graph nodes according to their vectorization factor. 2791 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 2792 VF /= 2) { 2793 auto It = VFToOrderedEntries.find(VF); 2794 if (It == VFToOrderedEntries.end()) 2795 continue; 2796 // Try to find the most profitable order. We just are looking for the most 2797 // used order and reorder scalar elements in the nodes according to this 2798 // mostly used order. 2799 const SmallPtrSetImpl<TreeEntry *> &OrderedEntries = It->getSecond(); 2800 // All operands are reordered and used only in this node - propagate the 2801 // most used order to the user node. 2802 MapVector<OrdersType, unsigned, 2803 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 2804 OrdersUses; 2805 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 2806 for (const TreeEntry *OpTE : OrderedEntries) { 2807 // No need to reorder this nodes, still need to extend and to use shuffle, 2808 // just need to merge reordering shuffle and the reuse shuffle. 2809 if (!OpTE->ReuseShuffleIndices.empty()) 2810 continue; 2811 // Count number of orders uses. 2812 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 2813 if (OpTE->State == TreeEntry::NeedToGather) 2814 return GathersToOrders.find(OpTE)->second; 2815 return OpTE->ReorderIndices; 2816 }(); 2817 // Stores actually store the mask, not the order, need to invert. 2818 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 2819 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 2820 SmallVector<int> Mask; 2821 inversePermutation(Order, Mask); 2822 unsigned E = Order.size(); 2823 OrdersType CurrentOrder(E, E); 2824 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 2825 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 2826 }); 2827 fixupOrderingIndices(CurrentOrder); 2828 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 2829 } else { 2830 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 2831 } 2832 } 2833 // Set order of the user node. 2834 if (OrdersUses.empty()) 2835 continue; 2836 // Choose the most used order. 2837 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 2838 unsigned Cnt = OrdersUses.front().second; 2839 for (const auto &Pair : drop_begin(OrdersUses)) { 2840 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 2841 BestOrder = Pair.first; 2842 Cnt = Pair.second; 2843 } 2844 } 2845 // Set order of the user node. 2846 if (BestOrder.empty()) 2847 continue; 2848 SmallVector<int> Mask; 2849 inversePermutation(BestOrder, Mask); 2850 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 2851 unsigned E = BestOrder.size(); 2852 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 2853 return I < E ? static_cast<int>(I) : UndefMaskElem; 2854 }); 2855 // Do an actual reordering, if profitable. 2856 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 2857 // Just do the reordering for the nodes with the given VF. 2858 if (TE->Scalars.size() != VF) { 2859 if (TE->ReuseShuffleIndices.size() == VF) { 2860 // Need to reorder the reuses masks of the operands with smaller VF to 2861 // be able to find the match between the graph nodes and scalar 2862 // operands of the given node during vectorization/cost estimation. 2863 assert(all_of(TE->UserTreeIndices, 2864 [VF, &TE](const EdgeInfo &EI) { 2865 return EI.UserTE->Scalars.size() == VF || 2866 EI.UserTE->Scalars.size() == 2867 TE->Scalars.size(); 2868 }) && 2869 "All users must be of VF size."); 2870 // Update ordering of the operands with the smaller VF than the given 2871 // one. 2872 reorderReuses(TE->ReuseShuffleIndices, Mask); 2873 } 2874 continue; 2875 } 2876 if (TE->State == TreeEntry::Vectorize && 2877 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 2878 InsertElementInst>(TE->getMainOp()) && 2879 !TE->isAltShuffle()) { 2880 // Build correct orders for extract{element,value}, loads and 2881 // stores. 2882 reorderOrder(TE->ReorderIndices, Mask); 2883 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 2884 TE->reorderOperands(Mask); 2885 } else { 2886 // Reorder the node and its operands. 2887 TE->reorderOperands(Mask); 2888 assert(TE->ReorderIndices.empty() && 2889 "Expected empty reorder sequence."); 2890 reorderScalars(TE->Scalars, Mask); 2891 } 2892 if (!TE->ReuseShuffleIndices.empty()) { 2893 // Apply reversed order to keep the original ordering of the reused 2894 // elements to avoid extra reorder indices shuffling. 2895 OrdersType CurrentOrder; 2896 reorderOrder(CurrentOrder, MaskOrder); 2897 SmallVector<int> NewReuses; 2898 inversePermutation(CurrentOrder, NewReuses); 2899 addMask(NewReuses, TE->ReuseShuffleIndices); 2900 TE->ReuseShuffleIndices.swap(NewReuses); 2901 } 2902 } 2903 } 2904 } 2905 2906 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 2907 SetVector<TreeEntry *> OrderedEntries; 2908 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 2909 // Find all reorderable leaf nodes with the given VF. 2910 // Currently the are vectorized loads,extracts without alternate operands + 2911 // some gathering of extracts. 2912 SmallVector<TreeEntry *> NonVectorized; 2913 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 2914 &NonVectorized]( 2915 const std::unique_ptr<TreeEntry> &TE) { 2916 if (TE->State != TreeEntry::Vectorize) 2917 NonVectorized.push_back(TE.get()); 2918 // No need to reorder if need to shuffle reuses, still need to shuffle the 2919 // node. 2920 if (!TE->ReuseShuffleIndices.empty()) 2921 return; 2922 if (TE->State == TreeEntry::Vectorize && 2923 isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE->getMainOp()) && 2924 !TE->isAltShuffle()) { 2925 OrderedEntries.insert(TE.get()); 2926 return; 2927 } 2928 if (TE->State == TreeEntry::NeedToGather) { 2929 if (TE->getOpcode() == Instruction::ExtractElement && 2930 !TE->isAltShuffle() && 2931 isa<FixedVectorType>(cast<ExtractElementInst>(TE->getMainOp()) 2932 ->getVectorOperandType()) && 2933 allSameType(TE->Scalars) && allSameBlock(TE->Scalars)) { 2934 // Check that gather of extractelements can be represented as 2935 // just a shuffle of a single vector with a single user only. 2936 OrdersType CurrentOrder; 2937 bool Reuse = 2938 canReuseExtract(TE->Scalars, TE->getMainOp(), CurrentOrder); 2939 if ((Reuse || !CurrentOrder.empty()) && 2940 !any_of(VectorizableTree, 2941 [&TE](const std::unique_ptr<TreeEntry> &Entry) { 2942 return Entry->State == TreeEntry::NeedToGather && 2943 Entry.get() != TE.get() && 2944 Entry->isSame(TE->Scalars); 2945 })) { 2946 OrderedEntries.insert(TE.get()); 2947 GathersToOrders.try_emplace(TE.get(), CurrentOrder); 2948 return; 2949 } 2950 } 2951 if (Optional<OrdersType> CurrentOrder = 2952 findReusedOrderedScalars(*TE.get())) { 2953 OrderedEntries.insert(TE.get()); 2954 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 2955 } 2956 } 2957 }); 2958 2959 // Checks if the operands of the users are reordarable and have only single 2960 // use. 2961 auto &&CheckOperands = 2962 [this, &NonVectorized](const auto &Data, 2963 SmallVectorImpl<TreeEntry *> &GatherOps) { 2964 for (unsigned I = 0, E = Data.first->getNumOperands(); I < E; ++I) { 2965 if (any_of(Data.second, 2966 [I](const std::pair<unsigned, TreeEntry *> &OpData) { 2967 return OpData.first == I && 2968 OpData.second->State == TreeEntry::Vectorize; 2969 })) 2970 continue; 2971 ArrayRef<Value *> VL = Data.first->getOperand(I); 2972 const TreeEntry *TE = nullptr; 2973 const auto *It = find_if(VL, [this, &TE](Value *V) { 2974 TE = getTreeEntry(V); 2975 return TE; 2976 }); 2977 if (It != VL.end() && TE->isSame(VL)) 2978 return false; 2979 TreeEntry *Gather = nullptr; 2980 if (count_if(NonVectorized, [VL, &Gather](TreeEntry *TE) { 2981 assert(TE->State != TreeEntry::Vectorize && 2982 "Only non-vectorized nodes are expected."); 2983 if (TE->isSame(VL)) { 2984 Gather = TE; 2985 return true; 2986 } 2987 return false; 2988 }) > 1) 2989 return false; 2990 if (Gather) 2991 GatherOps.push_back(Gather); 2992 } 2993 return true; 2994 }; 2995 // 1. Propagate order to the graph nodes, which use only reordered nodes. 2996 // I.e., if the node has operands, that are reordered, try to make at least 2997 // one operand order in the natural order and reorder others + reorder the 2998 // user node itself. 2999 SmallPtrSet<const TreeEntry *, 4> Visited; 3000 while (!OrderedEntries.empty()) { 3001 // 1. Filter out only reordered nodes. 3002 // 2. If the entry has multiple uses - skip it and jump to the next node. 3003 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3004 SmallVector<TreeEntry *> Filtered; 3005 for (TreeEntry *TE : OrderedEntries) { 3006 if (!(TE->State == TreeEntry::Vectorize || 3007 (TE->State == TreeEntry::NeedToGather && 3008 GathersToOrders.count(TE))) || 3009 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3010 !all_of(drop_begin(TE->UserTreeIndices), 3011 [TE](const EdgeInfo &EI) { 3012 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3013 }) || 3014 !Visited.insert(TE).second) { 3015 Filtered.push_back(TE); 3016 continue; 3017 } 3018 // Build a map between user nodes and their operands order to speedup 3019 // search. The graph currently does not provide this dependency directly. 3020 for (EdgeInfo &EI : TE->UserTreeIndices) { 3021 TreeEntry *UserTE = EI.UserTE; 3022 auto It = Users.find(UserTE); 3023 if (It == Users.end()) 3024 It = Users.insert({UserTE, {}}).first; 3025 It->second.emplace_back(EI.EdgeIdx, TE); 3026 } 3027 } 3028 // Erase filtered entries. 3029 for_each(Filtered, 3030 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3031 for (const auto &Data : Users) { 3032 // Check that operands are used only in the User node. 3033 SmallVector<TreeEntry *> GatherOps; 3034 if (!CheckOperands(Data, GatherOps)) { 3035 for_each(Data.second, 3036 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3037 OrderedEntries.remove(Op.second); 3038 }); 3039 continue; 3040 } 3041 // All operands are reordered and used only in this node - propagate the 3042 // most used order to the user node. 3043 MapVector<OrdersType, unsigned, 3044 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3045 OrdersUses; 3046 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3047 for (const auto &Op : Data.second) { 3048 TreeEntry *OpTE = Op.second; 3049 if (!OpTE->ReuseShuffleIndices.empty() || 3050 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3051 continue; 3052 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3053 if (OpTE->State == TreeEntry::NeedToGather) 3054 return GathersToOrders.find(OpTE)->second; 3055 return OpTE->ReorderIndices; 3056 }(); 3057 // Stores actually store the mask, not the order, need to invert. 3058 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3059 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3060 SmallVector<int> Mask; 3061 inversePermutation(Order, Mask); 3062 unsigned E = Order.size(); 3063 OrdersType CurrentOrder(E, E); 3064 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3065 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3066 }); 3067 fixupOrderingIndices(CurrentOrder); 3068 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3069 } else { 3070 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3071 } 3072 if (VisitedOps.insert(OpTE).second) 3073 OrdersUses.insert(std::make_pair(OrdersType(), 0)).first->second += 3074 OpTE->UserTreeIndices.size(); 3075 assert(OrdersUses[{}] > 0 && "Counter cannot be less than 0."); 3076 --OrdersUses[{}]; 3077 } 3078 // If no orders - skip current nodes and jump to the next one, if any. 3079 if (OrdersUses.empty()) { 3080 for_each(Data.second, 3081 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3082 OrderedEntries.remove(Op.second); 3083 }); 3084 continue; 3085 } 3086 // Choose the best order. 3087 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3088 unsigned Cnt = OrdersUses.front().second; 3089 for (const auto &Pair : drop_begin(OrdersUses)) { 3090 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3091 BestOrder = Pair.first; 3092 Cnt = Pair.second; 3093 } 3094 } 3095 // Set order of the user node (reordering of operands and user nodes). 3096 if (BestOrder.empty()) { 3097 for_each(Data.second, 3098 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3099 OrderedEntries.remove(Op.second); 3100 }); 3101 continue; 3102 } 3103 // Erase operands from OrderedEntries list and adjust their orders. 3104 VisitedOps.clear(); 3105 SmallVector<int> Mask; 3106 inversePermutation(BestOrder, Mask); 3107 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3108 unsigned E = BestOrder.size(); 3109 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3110 return I < E ? static_cast<int>(I) : UndefMaskElem; 3111 }); 3112 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 3113 TreeEntry *TE = Op.second; 3114 OrderedEntries.remove(TE); 3115 if (!VisitedOps.insert(TE).second) 3116 continue; 3117 if (!TE->ReuseShuffleIndices.empty() && TE->ReorderIndices.empty()) { 3118 // Just reorder reuses indices. 3119 reorderReuses(TE->ReuseShuffleIndices, Mask); 3120 continue; 3121 } 3122 // Gathers are processed separately. 3123 if (TE->State != TreeEntry::Vectorize) 3124 continue; 3125 assert((BestOrder.size() == TE->ReorderIndices.size() || 3126 TE->ReorderIndices.empty()) && 3127 "Non-matching sizes of user/operand entries."); 3128 reorderOrder(TE->ReorderIndices, Mask); 3129 } 3130 // For gathers just need to reorder its scalars. 3131 for (TreeEntry *Gather : GatherOps) { 3132 assert(Gather->ReorderIndices.empty() && 3133 "Unexpected reordering of gathers."); 3134 if (!Gather->ReuseShuffleIndices.empty()) { 3135 // Just reorder reuses indices. 3136 reorderReuses(Gather->ReuseShuffleIndices, Mask); 3137 continue; 3138 } 3139 reorderScalars(Gather->Scalars, Mask); 3140 OrderedEntries.remove(Gather); 3141 } 3142 // Reorder operands of the user node and set the ordering for the user 3143 // node itself. 3144 if (Data.first->State != TreeEntry::Vectorize || 3145 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 3146 Data.first->getMainOp()) || 3147 Data.first->isAltShuffle()) 3148 Data.first->reorderOperands(Mask); 3149 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 3150 Data.first->isAltShuffle()) { 3151 reorderScalars(Data.first->Scalars, Mask); 3152 reorderOrder(Data.first->ReorderIndices, MaskOrder); 3153 if (Data.first->ReuseShuffleIndices.empty() && 3154 !Data.first->ReorderIndices.empty() && 3155 !Data.first->isAltShuffle()) { 3156 // Insert user node to the list to try to sink reordering deeper in 3157 // the graph. 3158 OrderedEntries.insert(Data.first); 3159 } 3160 } else { 3161 reorderOrder(Data.first->ReorderIndices, Mask); 3162 } 3163 } 3164 } 3165 // If the reordering is unnecessary, just remove the reorder. 3166 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 3167 VectorizableTree.front()->ReuseShuffleIndices.empty()) 3168 VectorizableTree.front()->ReorderIndices.clear(); 3169 } 3170 3171 void BoUpSLP::buildExternalUses( 3172 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3173 // Collect the values that we need to extract from the tree. 3174 for (auto &TEPtr : VectorizableTree) { 3175 TreeEntry *Entry = TEPtr.get(); 3176 3177 // No need to handle users of gathered values. 3178 if (Entry->State == TreeEntry::NeedToGather) 3179 continue; 3180 3181 // For each lane: 3182 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3183 Value *Scalar = Entry->Scalars[Lane]; 3184 int FoundLane = Entry->findLaneForValue(Scalar); 3185 3186 // Check if the scalar is externally used as an extra arg. 3187 auto ExtI = ExternallyUsedValues.find(Scalar); 3188 if (ExtI != ExternallyUsedValues.end()) { 3189 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 3190 << Lane << " from " << *Scalar << ".\n"); 3191 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 3192 } 3193 for (User *U : Scalar->users()) { 3194 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 3195 3196 Instruction *UserInst = dyn_cast<Instruction>(U); 3197 if (!UserInst) 3198 continue; 3199 3200 if (isDeleted(UserInst)) 3201 continue; 3202 3203 // Skip in-tree scalars that become vectors 3204 if (TreeEntry *UseEntry = getTreeEntry(U)) { 3205 Value *UseScalar = UseEntry->Scalars[0]; 3206 // Some in-tree scalars will remain as scalar in vectorized 3207 // instructions. If that is the case, the one in Lane 0 will 3208 // be used. 3209 if (UseScalar != U || 3210 UseEntry->State == TreeEntry::ScatterVectorize || 3211 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 3212 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 3213 << ".\n"); 3214 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 3215 continue; 3216 } 3217 } 3218 3219 // Ignore users in the user ignore list. 3220 if (is_contained(UserIgnoreList, UserInst)) 3221 continue; 3222 3223 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 3224 << Lane << " from " << *Scalar << ".\n"); 3225 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 3226 } 3227 } 3228 } 3229 } 3230 3231 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 3232 ArrayRef<Value *> UserIgnoreLst) { 3233 deleteTree(); 3234 UserIgnoreList = UserIgnoreLst; 3235 if (!allSameType(Roots)) 3236 return; 3237 buildTree_rec(Roots, 0, EdgeInfo()); 3238 } 3239 3240 namespace { 3241 /// Tracks the state we can represent the loads in the given sequence. 3242 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3243 } // anonymous namespace 3244 3245 /// Checks if the given array of loads can be represented as a vectorized, 3246 /// scatter or just simple gather. 3247 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3248 const TargetTransformInfo &TTI, 3249 const DataLayout &DL, ScalarEvolution &SE, 3250 SmallVectorImpl<unsigned> &Order, 3251 SmallVectorImpl<Value *> &PointerOps) { 3252 // Check that a vectorized load would load the same memory as a scalar 3253 // load. For example, we don't want to vectorize loads that are smaller 3254 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3255 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3256 // from such a struct, we read/write packed bits disagreeing with the 3257 // unvectorized version. 3258 Type *ScalarTy = VL0->getType(); 3259 3260 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3261 return LoadsState::Gather; 3262 3263 // Make sure all loads in the bundle are simple - we can't vectorize 3264 // atomic or volatile loads. 3265 PointerOps.clear(); 3266 PointerOps.resize(VL.size()); 3267 auto *POIter = PointerOps.begin(); 3268 for (Value *V : VL) { 3269 auto *L = cast<LoadInst>(V); 3270 if (!L->isSimple()) 3271 return LoadsState::Gather; 3272 *POIter = L->getPointerOperand(); 3273 ++POIter; 3274 } 3275 3276 Order.clear(); 3277 // Check the order of pointer operands. 3278 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 3279 Value *Ptr0; 3280 Value *PtrN; 3281 if (Order.empty()) { 3282 Ptr0 = PointerOps.front(); 3283 PtrN = PointerOps.back(); 3284 } else { 3285 Ptr0 = PointerOps[Order.front()]; 3286 PtrN = PointerOps[Order.back()]; 3287 } 3288 Optional<int> Diff = 3289 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3290 // Check that the sorted loads are consecutive. 3291 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3292 return LoadsState::Vectorize; 3293 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3294 for (Value *V : VL) 3295 CommonAlignment = 3296 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3297 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 3298 CommonAlignment)) 3299 return LoadsState::ScatterVectorize; 3300 } 3301 3302 return LoadsState::Gather; 3303 } 3304 3305 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 3306 const EdgeInfo &UserTreeIdx) { 3307 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 3308 3309 SmallVector<int> ReuseShuffleIndicies; 3310 SmallVector<Value *> UniqueValues; 3311 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 3312 &UserTreeIdx, 3313 this](const InstructionsState &S) { 3314 // Check that every instruction appears once in this bundle. 3315 DenseMap<Value *, unsigned> UniquePositions; 3316 for (Value *V : VL) { 3317 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3318 ReuseShuffleIndicies.emplace_back(isa<UndefValue>(V) ? -1 3319 : Res.first->second); 3320 if (Res.second) 3321 UniqueValues.emplace_back(V); 3322 } 3323 size_t NumUniqueScalarValues = UniqueValues.size(); 3324 if (NumUniqueScalarValues == VL.size()) { 3325 ReuseShuffleIndicies.clear(); 3326 } else { 3327 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 3328 if (NumUniqueScalarValues <= 1 || 3329 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 3330 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 3331 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3332 return false; 3333 } 3334 VL = UniqueValues; 3335 } 3336 return true; 3337 }; 3338 3339 InstructionsState S = getSameOpcode(VL); 3340 if (Depth == RecursionMaxDepth) { 3341 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 3342 if (TryToFindDuplicates(S)) 3343 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3344 ReuseShuffleIndicies); 3345 return; 3346 } 3347 3348 // Don't handle scalable vectors 3349 if (S.getOpcode() == Instruction::ExtractElement && 3350 isa<ScalableVectorType>( 3351 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 3352 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 3353 if (TryToFindDuplicates(S)) 3354 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3355 ReuseShuffleIndicies); 3356 return; 3357 } 3358 3359 // Don't handle vectors. 3360 if (S.OpValue->getType()->isVectorTy() && 3361 !isa<InsertElementInst>(S.OpValue)) { 3362 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 3363 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3364 return; 3365 } 3366 3367 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3368 if (SI->getValueOperand()->getType()->isVectorTy()) { 3369 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 3370 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3371 return; 3372 } 3373 3374 // If all of the operands are identical or constant we have a simple solution. 3375 // If we deal with insert/extract instructions, they all must have constant 3376 // indices, otherwise we should gather them, not try to vectorize. 3377 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 3378 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 3379 !all_of(VL, isVectorLikeInstWithConstOps))) { 3380 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 3381 if (TryToFindDuplicates(S)) 3382 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3383 ReuseShuffleIndicies); 3384 return; 3385 } 3386 3387 // We now know that this is a vector of instructions of the same type from 3388 // the same block. 3389 3390 // Don't vectorize ephemeral values. 3391 for (Value *V : VL) { 3392 if (EphValues.count(V)) { 3393 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3394 << ") is ephemeral.\n"); 3395 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3396 return; 3397 } 3398 } 3399 3400 // Check if this is a duplicate of another entry. 3401 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3402 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 3403 if (!E->isSame(VL)) { 3404 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 3405 if (TryToFindDuplicates(S)) 3406 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3407 ReuseShuffleIndicies); 3408 return; 3409 } 3410 // Record the reuse of the tree node. FIXME, currently this is only used to 3411 // properly draw the graph rather than for the actual vectorization. 3412 E->UserTreeIndices.push_back(UserTreeIdx); 3413 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 3414 << ".\n"); 3415 return; 3416 } 3417 3418 // Check that none of the instructions in the bundle are already in the tree. 3419 for (Value *V : VL) { 3420 auto *I = dyn_cast<Instruction>(V); 3421 if (!I) 3422 continue; 3423 if (getTreeEntry(I)) { 3424 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3425 << ") is already in tree.\n"); 3426 if (TryToFindDuplicates(S)) 3427 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3428 ReuseShuffleIndicies); 3429 return; 3430 } 3431 } 3432 3433 // If any of the scalars is marked as a value that needs to stay scalar, then 3434 // we need to gather the scalars. 3435 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 3436 for (Value *V : VL) { 3437 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 3438 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 3439 if (TryToFindDuplicates(S)) 3440 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3441 ReuseShuffleIndicies); 3442 return; 3443 } 3444 } 3445 3446 // Check that all of the users of the scalars that we want to vectorize are 3447 // schedulable. 3448 auto *VL0 = cast<Instruction>(S.OpValue); 3449 BasicBlock *BB = VL0->getParent(); 3450 3451 if (!DT->isReachableFromEntry(BB)) { 3452 // Don't go into unreachable blocks. They may contain instructions with 3453 // dependency cycles which confuse the final scheduling. 3454 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 3455 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3456 return; 3457 } 3458 3459 // Check that every instruction appears once in this bundle. 3460 if (!TryToFindDuplicates(S)) 3461 return; 3462 3463 auto &BSRef = BlocksSchedules[BB]; 3464 if (!BSRef) 3465 BSRef = std::make_unique<BlockScheduling>(BB); 3466 3467 BlockScheduling &BS = *BSRef.get(); 3468 3469 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 3470 if (!Bundle) { 3471 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 3472 assert((!BS.getScheduleData(VL0) || 3473 !BS.getScheduleData(VL0)->isPartOfBundle()) && 3474 "tryScheduleBundle should cancelScheduling on failure"); 3475 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3476 ReuseShuffleIndicies); 3477 return; 3478 } 3479 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 3480 3481 unsigned ShuffleOrOp = S.isAltShuffle() ? 3482 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 3483 switch (ShuffleOrOp) { 3484 case Instruction::PHI: { 3485 auto *PH = cast<PHINode>(VL0); 3486 3487 // Check for terminator values (e.g. invoke). 3488 for (Value *V : VL) 3489 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3490 Instruction *Term = dyn_cast<Instruction>( 3491 cast<PHINode>(V)->getIncomingValueForBlock( 3492 PH->getIncomingBlock(I))); 3493 if (Term && Term->isTerminator()) { 3494 LLVM_DEBUG(dbgs() 3495 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 3496 BS.cancelScheduling(VL, VL0); 3497 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3498 ReuseShuffleIndicies); 3499 return; 3500 } 3501 } 3502 3503 TreeEntry *TE = 3504 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 3505 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 3506 3507 // Keeps the reordered operands to avoid code duplication. 3508 SmallVector<ValueList, 2> OperandsVec; 3509 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3510 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 3511 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 3512 TE->setOperand(I, Operands); 3513 OperandsVec.push_back(Operands); 3514 continue; 3515 } 3516 ValueList Operands; 3517 // Prepare the operand vector. 3518 for (Value *V : VL) 3519 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 3520 PH->getIncomingBlock(I))); 3521 TE->setOperand(I, Operands); 3522 OperandsVec.push_back(Operands); 3523 } 3524 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 3525 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 3526 return; 3527 } 3528 case Instruction::ExtractValue: 3529 case Instruction::ExtractElement: { 3530 OrdersType CurrentOrder; 3531 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 3532 if (Reuse) { 3533 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 3534 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3535 ReuseShuffleIndicies); 3536 // This is a special case, as it does not gather, but at the same time 3537 // we are not extending buildTree_rec() towards the operands. 3538 ValueList Op0; 3539 Op0.assign(VL.size(), VL0->getOperand(0)); 3540 VectorizableTree.back()->setOperand(0, Op0); 3541 return; 3542 } 3543 if (!CurrentOrder.empty()) { 3544 LLVM_DEBUG({ 3545 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 3546 "with order"; 3547 for (unsigned Idx : CurrentOrder) 3548 dbgs() << " " << Idx; 3549 dbgs() << "\n"; 3550 }); 3551 fixupOrderingIndices(CurrentOrder); 3552 // Insert new order with initial value 0, if it does not exist, 3553 // otherwise return the iterator to the existing one. 3554 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3555 ReuseShuffleIndicies, CurrentOrder); 3556 // This is a special case, as it does not gather, but at the same time 3557 // we are not extending buildTree_rec() towards the operands. 3558 ValueList Op0; 3559 Op0.assign(VL.size(), VL0->getOperand(0)); 3560 VectorizableTree.back()->setOperand(0, Op0); 3561 return; 3562 } 3563 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 3564 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3565 ReuseShuffleIndicies); 3566 BS.cancelScheduling(VL, VL0); 3567 return; 3568 } 3569 case Instruction::InsertElement: { 3570 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 3571 3572 // Check that we have a buildvector and not a shuffle of 2 or more 3573 // different vectors. 3574 ValueSet SourceVectors; 3575 int MinIdx = std::numeric_limits<int>::max(); 3576 for (Value *V : VL) { 3577 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 3578 Optional<int> Idx = *getInsertIndex(V, 0); 3579 if (!Idx || *Idx == UndefMaskElem) 3580 continue; 3581 MinIdx = std::min(MinIdx, *Idx); 3582 } 3583 3584 if (count_if(VL, [&SourceVectors](Value *V) { 3585 return !SourceVectors.contains(V); 3586 }) >= 2) { 3587 // Found 2nd source vector - cancel. 3588 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 3589 "different source vectors.\n"); 3590 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3591 BS.cancelScheduling(VL, VL0); 3592 return; 3593 } 3594 3595 auto OrdCompare = [](const std::pair<int, int> &P1, 3596 const std::pair<int, int> &P2) { 3597 return P1.first > P2.first; 3598 }; 3599 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 3600 decltype(OrdCompare)> 3601 Indices(OrdCompare); 3602 for (int I = 0, E = VL.size(); I < E; ++I) { 3603 Optional<int> Idx = *getInsertIndex(VL[I], 0); 3604 if (!Idx || *Idx == UndefMaskElem) 3605 continue; 3606 Indices.emplace(*Idx, I); 3607 } 3608 OrdersType CurrentOrder(VL.size(), VL.size()); 3609 bool IsIdentity = true; 3610 for (int I = 0, E = VL.size(); I < E; ++I) { 3611 CurrentOrder[Indices.top().second] = I; 3612 IsIdentity &= Indices.top().second == I; 3613 Indices.pop(); 3614 } 3615 if (IsIdentity) 3616 CurrentOrder.clear(); 3617 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3618 None, CurrentOrder); 3619 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 3620 3621 constexpr int NumOps = 2; 3622 ValueList VectorOperands[NumOps]; 3623 for (int I = 0; I < NumOps; ++I) { 3624 for (Value *V : VL) 3625 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 3626 3627 TE->setOperand(I, VectorOperands[I]); 3628 } 3629 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 3630 return; 3631 } 3632 case Instruction::Load: { 3633 // Check that a vectorized load would load the same memory as a scalar 3634 // load. For example, we don't want to vectorize loads that are smaller 3635 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3636 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3637 // from such a struct, we read/write packed bits disagreeing with the 3638 // unvectorized version. 3639 SmallVector<Value *> PointerOps; 3640 OrdersType CurrentOrder; 3641 TreeEntry *TE = nullptr; 3642 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 3643 PointerOps)) { 3644 case LoadsState::Vectorize: 3645 if (CurrentOrder.empty()) { 3646 // Original loads are consecutive and does not require reordering. 3647 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3648 ReuseShuffleIndicies); 3649 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 3650 } else { 3651 fixupOrderingIndices(CurrentOrder); 3652 // Need to reorder. 3653 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3654 ReuseShuffleIndicies, CurrentOrder); 3655 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 3656 } 3657 TE->setOperandsInOrder(); 3658 break; 3659 case LoadsState::ScatterVectorize: 3660 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 3661 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 3662 UserTreeIdx, ReuseShuffleIndicies); 3663 TE->setOperandsInOrder(); 3664 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 3665 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 3666 break; 3667 case LoadsState::Gather: 3668 BS.cancelScheduling(VL, VL0); 3669 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3670 ReuseShuffleIndicies); 3671 #ifndef NDEBUG 3672 Type *ScalarTy = VL0->getType(); 3673 if (DL->getTypeSizeInBits(ScalarTy) != 3674 DL->getTypeAllocSizeInBits(ScalarTy)) 3675 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 3676 else if (any_of(VL, [](Value *V) { 3677 return !cast<LoadInst>(V)->isSimple(); 3678 })) 3679 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 3680 else 3681 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 3682 #endif // NDEBUG 3683 break; 3684 } 3685 return; 3686 } 3687 case Instruction::ZExt: 3688 case Instruction::SExt: 3689 case Instruction::FPToUI: 3690 case Instruction::FPToSI: 3691 case Instruction::FPExt: 3692 case Instruction::PtrToInt: 3693 case Instruction::IntToPtr: 3694 case Instruction::SIToFP: 3695 case Instruction::UIToFP: 3696 case Instruction::Trunc: 3697 case Instruction::FPTrunc: 3698 case Instruction::BitCast: { 3699 Type *SrcTy = VL0->getOperand(0)->getType(); 3700 for (Value *V : VL) { 3701 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 3702 if (Ty != SrcTy || !isValidElementType(Ty)) { 3703 BS.cancelScheduling(VL, VL0); 3704 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3705 ReuseShuffleIndicies); 3706 LLVM_DEBUG(dbgs() 3707 << "SLP: Gathering casts with different src types.\n"); 3708 return; 3709 } 3710 } 3711 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3712 ReuseShuffleIndicies); 3713 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 3714 3715 TE->setOperandsInOrder(); 3716 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3717 ValueList Operands; 3718 // Prepare the operand vector. 3719 for (Value *V : VL) 3720 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3721 3722 buildTree_rec(Operands, Depth + 1, {TE, i}); 3723 } 3724 return; 3725 } 3726 case Instruction::ICmp: 3727 case Instruction::FCmp: { 3728 // Check that all of the compares have the same predicate. 3729 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 3730 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 3731 Type *ComparedTy = VL0->getOperand(0)->getType(); 3732 for (Value *V : VL) { 3733 CmpInst *Cmp = cast<CmpInst>(V); 3734 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 3735 Cmp->getOperand(0)->getType() != ComparedTy) { 3736 BS.cancelScheduling(VL, VL0); 3737 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3738 ReuseShuffleIndicies); 3739 LLVM_DEBUG(dbgs() 3740 << "SLP: Gathering cmp with different predicate.\n"); 3741 return; 3742 } 3743 } 3744 3745 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3746 ReuseShuffleIndicies); 3747 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 3748 3749 ValueList Left, Right; 3750 if (cast<CmpInst>(VL0)->isCommutative()) { 3751 // Commutative predicate - collect + sort operands of the instructions 3752 // so that each side is more likely to have the same opcode. 3753 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 3754 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3755 } else { 3756 // Collect operands - commute if it uses the swapped predicate. 3757 for (Value *V : VL) { 3758 auto *Cmp = cast<CmpInst>(V); 3759 Value *LHS = Cmp->getOperand(0); 3760 Value *RHS = Cmp->getOperand(1); 3761 if (Cmp->getPredicate() != P0) 3762 std::swap(LHS, RHS); 3763 Left.push_back(LHS); 3764 Right.push_back(RHS); 3765 } 3766 } 3767 TE->setOperand(0, Left); 3768 TE->setOperand(1, Right); 3769 buildTree_rec(Left, Depth + 1, {TE, 0}); 3770 buildTree_rec(Right, Depth + 1, {TE, 1}); 3771 return; 3772 } 3773 case Instruction::Select: 3774 case Instruction::FNeg: 3775 case Instruction::Add: 3776 case Instruction::FAdd: 3777 case Instruction::Sub: 3778 case Instruction::FSub: 3779 case Instruction::Mul: 3780 case Instruction::FMul: 3781 case Instruction::UDiv: 3782 case Instruction::SDiv: 3783 case Instruction::FDiv: 3784 case Instruction::URem: 3785 case Instruction::SRem: 3786 case Instruction::FRem: 3787 case Instruction::Shl: 3788 case Instruction::LShr: 3789 case Instruction::AShr: 3790 case Instruction::And: 3791 case Instruction::Or: 3792 case Instruction::Xor: { 3793 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3794 ReuseShuffleIndicies); 3795 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 3796 3797 // Sort operands of the instructions so that each side is more likely to 3798 // have the same opcode. 3799 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 3800 ValueList Left, Right; 3801 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3802 TE->setOperand(0, Left); 3803 TE->setOperand(1, Right); 3804 buildTree_rec(Left, Depth + 1, {TE, 0}); 3805 buildTree_rec(Right, Depth + 1, {TE, 1}); 3806 return; 3807 } 3808 3809 TE->setOperandsInOrder(); 3810 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3811 ValueList Operands; 3812 // Prepare the operand vector. 3813 for (Value *V : VL) 3814 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3815 3816 buildTree_rec(Operands, Depth + 1, {TE, i}); 3817 } 3818 return; 3819 } 3820 case Instruction::GetElementPtr: { 3821 // We don't combine GEPs with complicated (nested) indexing. 3822 for (Value *V : VL) { 3823 if (cast<Instruction>(V)->getNumOperands() != 2) { 3824 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 3825 BS.cancelScheduling(VL, VL0); 3826 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3827 ReuseShuffleIndicies); 3828 return; 3829 } 3830 } 3831 3832 // We can't combine several GEPs into one vector if they operate on 3833 // different types. 3834 Type *Ty0 = VL0->getOperand(0)->getType(); 3835 for (Value *V : VL) { 3836 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 3837 if (Ty0 != CurTy) { 3838 LLVM_DEBUG(dbgs() 3839 << "SLP: not-vectorizable GEP (different types).\n"); 3840 BS.cancelScheduling(VL, VL0); 3841 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3842 ReuseShuffleIndicies); 3843 return; 3844 } 3845 } 3846 3847 // We don't combine GEPs with non-constant indexes. 3848 Type *Ty1 = VL0->getOperand(1)->getType(); 3849 for (Value *V : VL) { 3850 auto Op = cast<Instruction>(V)->getOperand(1); 3851 if (!isa<ConstantInt>(Op) || 3852 (Op->getType() != Ty1 && 3853 Op->getType()->getScalarSizeInBits() > 3854 DL->getIndexSizeInBits( 3855 V->getType()->getPointerAddressSpace()))) { 3856 LLVM_DEBUG(dbgs() 3857 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 3858 BS.cancelScheduling(VL, VL0); 3859 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3860 ReuseShuffleIndicies); 3861 return; 3862 } 3863 } 3864 3865 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3866 ReuseShuffleIndicies); 3867 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 3868 TE->setOperandsInOrder(); 3869 for (unsigned i = 0, e = 2; i < e; ++i) { 3870 ValueList Operands; 3871 // Prepare the operand vector. 3872 for (Value *V : VL) 3873 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3874 3875 buildTree_rec(Operands, Depth + 1, {TE, i}); 3876 } 3877 return; 3878 } 3879 case Instruction::Store: { 3880 // Check if the stores are consecutive or if we need to swizzle them. 3881 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 3882 // Avoid types that are padded when being allocated as scalars, while 3883 // being packed together in a vector (such as i1). 3884 if (DL->getTypeSizeInBits(ScalarTy) != 3885 DL->getTypeAllocSizeInBits(ScalarTy)) { 3886 BS.cancelScheduling(VL, VL0); 3887 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3888 ReuseShuffleIndicies); 3889 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 3890 return; 3891 } 3892 // Make sure all stores in the bundle are simple - we can't vectorize 3893 // atomic or volatile stores. 3894 SmallVector<Value *, 4> PointerOps(VL.size()); 3895 ValueList Operands(VL.size()); 3896 auto POIter = PointerOps.begin(); 3897 auto OIter = Operands.begin(); 3898 for (Value *V : VL) { 3899 auto *SI = cast<StoreInst>(V); 3900 if (!SI->isSimple()) { 3901 BS.cancelScheduling(VL, VL0); 3902 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3903 ReuseShuffleIndicies); 3904 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 3905 return; 3906 } 3907 *POIter = SI->getPointerOperand(); 3908 *OIter = SI->getValueOperand(); 3909 ++POIter; 3910 ++OIter; 3911 } 3912 3913 OrdersType CurrentOrder; 3914 // Check the order of pointer operands. 3915 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 3916 Value *Ptr0; 3917 Value *PtrN; 3918 if (CurrentOrder.empty()) { 3919 Ptr0 = PointerOps.front(); 3920 PtrN = PointerOps.back(); 3921 } else { 3922 Ptr0 = PointerOps[CurrentOrder.front()]; 3923 PtrN = PointerOps[CurrentOrder.back()]; 3924 } 3925 Optional<int> Dist = 3926 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 3927 // Check that the sorted pointer operands are consecutive. 3928 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 3929 if (CurrentOrder.empty()) { 3930 // Original stores are consecutive and does not require reordering. 3931 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 3932 UserTreeIdx, ReuseShuffleIndicies); 3933 TE->setOperandsInOrder(); 3934 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3935 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 3936 } else { 3937 fixupOrderingIndices(CurrentOrder); 3938 TreeEntry *TE = 3939 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3940 ReuseShuffleIndicies, CurrentOrder); 3941 TE->setOperandsInOrder(); 3942 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3943 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 3944 } 3945 return; 3946 } 3947 } 3948 3949 BS.cancelScheduling(VL, VL0); 3950 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3951 ReuseShuffleIndicies); 3952 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 3953 return; 3954 } 3955 case Instruction::Call: { 3956 // Check if the calls are all to the same vectorizable intrinsic or 3957 // library function. 3958 CallInst *CI = cast<CallInst>(VL0); 3959 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3960 3961 VFShape Shape = VFShape::get( 3962 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 3963 false /*HasGlobalPred*/); 3964 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3965 3966 if (!VecFunc && !isTriviallyVectorizable(ID)) { 3967 BS.cancelScheduling(VL, VL0); 3968 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3969 ReuseShuffleIndicies); 3970 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 3971 return; 3972 } 3973 Function *F = CI->getCalledFunction(); 3974 unsigned NumArgs = CI->arg_size(); 3975 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 3976 for (unsigned j = 0; j != NumArgs; ++j) 3977 if (hasVectorInstrinsicScalarOpd(ID, j)) 3978 ScalarArgs[j] = CI->getArgOperand(j); 3979 for (Value *V : VL) { 3980 CallInst *CI2 = dyn_cast<CallInst>(V); 3981 if (!CI2 || CI2->getCalledFunction() != F || 3982 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 3983 (VecFunc && 3984 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 3985 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 3986 BS.cancelScheduling(VL, VL0); 3987 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3988 ReuseShuffleIndicies); 3989 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 3990 << "\n"); 3991 return; 3992 } 3993 // Some intrinsics have scalar arguments and should be same in order for 3994 // them to be vectorized. 3995 for (unsigned j = 0; j != NumArgs; ++j) { 3996 if (hasVectorInstrinsicScalarOpd(ID, j)) { 3997 Value *A1J = CI2->getArgOperand(j); 3998 if (ScalarArgs[j] != A1J) { 3999 BS.cancelScheduling(VL, VL0); 4000 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4001 ReuseShuffleIndicies); 4002 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 4003 << " argument " << ScalarArgs[j] << "!=" << A1J 4004 << "\n"); 4005 return; 4006 } 4007 } 4008 } 4009 // Verify that the bundle operands are identical between the two calls. 4010 if (CI->hasOperandBundles() && 4011 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 4012 CI->op_begin() + CI->getBundleOperandsEndIndex(), 4013 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 4014 BS.cancelScheduling(VL, VL0); 4015 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4016 ReuseShuffleIndicies); 4017 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 4018 << *CI << "!=" << *V << '\n'); 4019 return; 4020 } 4021 } 4022 4023 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4024 ReuseShuffleIndicies); 4025 TE->setOperandsInOrder(); 4026 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 4027 ValueList Operands; 4028 // Prepare the operand vector. 4029 for (Value *V : VL) { 4030 auto *CI2 = cast<CallInst>(V); 4031 Operands.push_back(CI2->getArgOperand(i)); 4032 } 4033 buildTree_rec(Operands, Depth + 1, {TE, i}); 4034 } 4035 return; 4036 } 4037 case Instruction::ShuffleVector: { 4038 // If this is not an alternate sequence of opcode like add-sub 4039 // then do not vectorize this instruction. 4040 if (!S.isAltShuffle()) { 4041 BS.cancelScheduling(VL, VL0); 4042 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4043 ReuseShuffleIndicies); 4044 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 4045 return; 4046 } 4047 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4048 ReuseShuffleIndicies); 4049 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 4050 4051 // Reorder operands if reordering would enable vectorization. 4052 if (isa<BinaryOperator>(VL0)) { 4053 ValueList Left, Right; 4054 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4055 TE->setOperand(0, Left); 4056 TE->setOperand(1, Right); 4057 buildTree_rec(Left, Depth + 1, {TE, 0}); 4058 buildTree_rec(Right, Depth + 1, {TE, 1}); 4059 return; 4060 } 4061 4062 TE->setOperandsInOrder(); 4063 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4064 ValueList Operands; 4065 // Prepare the operand vector. 4066 for (Value *V : VL) 4067 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4068 4069 buildTree_rec(Operands, Depth + 1, {TE, i}); 4070 } 4071 return; 4072 } 4073 default: 4074 BS.cancelScheduling(VL, VL0); 4075 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4076 ReuseShuffleIndicies); 4077 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 4078 return; 4079 } 4080 } 4081 4082 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 4083 unsigned N = 1; 4084 Type *EltTy = T; 4085 4086 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 4087 isa<VectorType>(EltTy)) { 4088 if (auto *ST = dyn_cast<StructType>(EltTy)) { 4089 // Check that struct is homogeneous. 4090 for (const auto *Ty : ST->elements()) 4091 if (Ty != *ST->element_begin()) 4092 return 0; 4093 N *= ST->getNumElements(); 4094 EltTy = *ST->element_begin(); 4095 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 4096 N *= AT->getNumElements(); 4097 EltTy = AT->getElementType(); 4098 } else { 4099 auto *VT = cast<FixedVectorType>(EltTy); 4100 N *= VT->getNumElements(); 4101 EltTy = VT->getElementType(); 4102 } 4103 } 4104 4105 if (!isValidElementType(EltTy)) 4106 return 0; 4107 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 4108 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 4109 return 0; 4110 return N; 4111 } 4112 4113 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 4114 SmallVectorImpl<unsigned> &CurrentOrder) const { 4115 Instruction *E0 = cast<Instruction>(OpValue); 4116 assert(E0->getOpcode() == Instruction::ExtractElement || 4117 E0->getOpcode() == Instruction::ExtractValue); 4118 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 4119 // Check if all of the extracts come from the same vector and from the 4120 // correct offset. 4121 Value *Vec = E0->getOperand(0); 4122 4123 CurrentOrder.clear(); 4124 4125 // We have to extract from a vector/aggregate with the same number of elements. 4126 unsigned NElts; 4127 if (E0->getOpcode() == Instruction::ExtractValue) { 4128 const DataLayout &DL = E0->getModule()->getDataLayout(); 4129 NElts = canMapToVector(Vec->getType(), DL); 4130 if (!NElts) 4131 return false; 4132 // Check if load can be rewritten as load of vector. 4133 LoadInst *LI = dyn_cast<LoadInst>(Vec); 4134 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 4135 return false; 4136 } else { 4137 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 4138 } 4139 4140 if (NElts != VL.size()) 4141 return false; 4142 4143 // Check that all of the indices extract from the correct offset. 4144 bool ShouldKeepOrder = true; 4145 unsigned E = VL.size(); 4146 // Assign to all items the initial value E + 1 so we can check if the extract 4147 // instruction index was used already. 4148 // Also, later we can check that all the indices are used and we have a 4149 // consecutive access in the extract instructions, by checking that no 4150 // element of CurrentOrder still has value E + 1. 4151 CurrentOrder.assign(E, E + 1); 4152 unsigned I = 0; 4153 for (; I < E; ++I) { 4154 auto *Inst = cast<Instruction>(VL[I]); 4155 if (Inst->getOperand(0) != Vec) 4156 break; 4157 Optional<unsigned> Idx = getExtractIndex(Inst); 4158 if (!Idx) 4159 break; 4160 const unsigned ExtIdx = *Idx; 4161 if (ExtIdx != I) { 4162 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 4163 break; 4164 ShouldKeepOrder = false; 4165 CurrentOrder[ExtIdx] = I; 4166 } else { 4167 if (CurrentOrder[I] != E + 1) 4168 break; 4169 CurrentOrder[I] = I; 4170 } 4171 } 4172 if (I < E) { 4173 CurrentOrder.clear(); 4174 return false; 4175 } 4176 4177 return ShouldKeepOrder; 4178 } 4179 4180 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 4181 ArrayRef<Value *> VectorizedVals) const { 4182 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 4183 llvm::all_of(I->users(), [this](User *U) { 4184 return ScalarToTreeEntry.count(U) > 0; 4185 }); 4186 } 4187 4188 static std::pair<InstructionCost, InstructionCost> 4189 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 4190 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 4191 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4192 4193 // Calculate the cost of the scalar and vector calls. 4194 SmallVector<Type *, 4> VecTys; 4195 for (Use &Arg : CI->args()) 4196 VecTys.push_back( 4197 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 4198 FastMathFlags FMF; 4199 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 4200 FMF = FPCI->getFastMathFlags(); 4201 SmallVector<const Value *> Arguments(CI->args()); 4202 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 4203 dyn_cast<IntrinsicInst>(CI)); 4204 auto IntrinsicCost = 4205 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 4206 4207 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4208 VecTy->getNumElements())), 4209 false /*HasGlobalPred*/); 4210 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4211 auto LibCost = IntrinsicCost; 4212 if (!CI->isNoBuiltin() && VecFunc) { 4213 // Calculate the cost of the vector library call. 4214 // If the corresponding vector call is cheaper, return its cost. 4215 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 4216 TTI::TCK_RecipThroughput); 4217 } 4218 return {IntrinsicCost, LibCost}; 4219 } 4220 4221 /// Compute the cost of creating a vector of type \p VecTy containing the 4222 /// extracted values from \p VL. 4223 static InstructionCost 4224 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 4225 TargetTransformInfo::ShuffleKind ShuffleKind, 4226 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 4227 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 4228 4229 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 4230 VecTy->getNumElements() < NumOfParts) 4231 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 4232 4233 bool AllConsecutive = true; 4234 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 4235 unsigned Idx = -1; 4236 InstructionCost Cost = 0; 4237 4238 // Process extracts in blocks of EltsPerVector to check if the source vector 4239 // operand can be re-used directly. If not, add the cost of creating a shuffle 4240 // to extract the values into a vector register. 4241 for (auto *V : VL) { 4242 ++Idx; 4243 4244 // Reached the start of a new vector registers. 4245 if (Idx % EltsPerVector == 0) { 4246 AllConsecutive = true; 4247 continue; 4248 } 4249 4250 // Check all extracts for a vector register on the target directly 4251 // extract values in order. 4252 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 4253 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 4254 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 4255 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 4256 4257 if (AllConsecutive) 4258 continue; 4259 4260 // Skip all indices, except for the last index per vector block. 4261 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 4262 continue; 4263 4264 // If we have a series of extracts which are not consecutive and hence 4265 // cannot re-use the source vector register directly, compute the shuffle 4266 // cost to extract the a vector with EltsPerVector elements. 4267 Cost += TTI.getShuffleCost( 4268 TargetTransformInfo::SK_PermuteSingleSrc, 4269 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 4270 } 4271 return Cost; 4272 } 4273 4274 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 4275 /// operations operands. 4276 static void 4277 buildSuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 4278 ArrayRef<int> ReusesIndices, 4279 const function_ref<bool(Instruction *)> IsAltOp, 4280 SmallVectorImpl<int> &Mask, 4281 SmallVectorImpl<Value *> *OpScalars = nullptr, 4282 SmallVectorImpl<Value *> *AltScalars = nullptr) { 4283 unsigned Sz = VL.size(); 4284 Mask.assign(Sz, UndefMaskElem); 4285 SmallVector<int> OrderMask; 4286 if (!ReorderIndices.empty()) 4287 inversePermutation(ReorderIndices, OrderMask); 4288 for (unsigned I = 0; I < Sz; ++I) { 4289 unsigned Idx = I; 4290 if (!ReorderIndices.empty()) 4291 Idx = OrderMask[I]; 4292 auto *OpInst = cast<Instruction>(VL[Idx]); 4293 if (IsAltOp(OpInst)) { 4294 Mask[I] = Sz + Idx; 4295 if (AltScalars) 4296 AltScalars->push_back(OpInst); 4297 } else { 4298 Mask[I] = Idx; 4299 if (OpScalars) 4300 OpScalars->push_back(OpInst); 4301 } 4302 } 4303 if (!ReusesIndices.empty()) { 4304 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 4305 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 4306 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 4307 }); 4308 Mask.swap(NewMask); 4309 } 4310 } 4311 4312 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 4313 ArrayRef<Value *> VectorizedVals) { 4314 ArrayRef<Value*> VL = E->Scalars; 4315 4316 Type *ScalarTy = VL[0]->getType(); 4317 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4318 ScalarTy = SI->getValueOperand()->getType(); 4319 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 4320 ScalarTy = CI->getOperand(0)->getType(); 4321 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 4322 ScalarTy = IE->getOperand(1)->getType(); 4323 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4324 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 4325 4326 // If we have computed a smaller type for the expression, update VecTy so 4327 // that the costs will be accurate. 4328 if (MinBWs.count(VL[0])) 4329 VecTy = FixedVectorType::get( 4330 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 4331 auto *FinalVecTy = VecTy; 4332 4333 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 4334 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4335 if (NeedToShuffleReuses) 4336 FinalVecTy = 4337 FixedVectorType::get(VecTy->getElementType(), ReuseShuffleNumbers); 4338 // FIXME: it tries to fix a problem with MSVC buildbots. 4339 TargetTransformInfo &TTIRef = *TTI; 4340 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 4341 VectorizedVals](InstructionCost &Cost, 4342 bool IsGather) { 4343 DenseMap<Value *, int> ExtractVectorsTys; 4344 for (auto *V : VL) { 4345 // If all users of instruction are going to be vectorized and this 4346 // instruction itself is not going to be vectorized, consider this 4347 // instruction as dead and remove its cost from the final cost of the 4348 // vectorized tree. 4349 if (!areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 4350 (IsGather && ScalarToTreeEntry.count(V))) 4351 continue; 4352 auto *EE = cast<ExtractElementInst>(V); 4353 unsigned Idx = *getExtractIndex(EE); 4354 if (TTIRef.getNumberOfParts(VecTy) != 4355 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 4356 auto It = 4357 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 4358 It->getSecond() = std::min<int>(It->second, Idx); 4359 } 4360 // Take credit for instruction that will become dead. 4361 if (EE->hasOneUse()) { 4362 Instruction *Ext = EE->user_back(); 4363 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4364 all_of(Ext->users(), 4365 [](User *U) { return isa<GetElementPtrInst>(U); })) { 4366 // Use getExtractWithExtendCost() to calculate the cost of 4367 // extractelement/ext pair. 4368 Cost -= 4369 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 4370 EE->getVectorOperandType(), Idx); 4371 // Add back the cost of s|zext which is subtracted separately. 4372 Cost += TTIRef.getCastInstrCost( 4373 Ext->getOpcode(), Ext->getType(), EE->getType(), 4374 TTI::getCastContextHint(Ext), CostKind, Ext); 4375 continue; 4376 } 4377 } 4378 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 4379 EE->getVectorOperandType(), Idx); 4380 } 4381 // Add a cost for subvector extracts/inserts if required. 4382 for (const auto &Data : ExtractVectorsTys) { 4383 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 4384 unsigned NumElts = VecTy->getNumElements(); 4385 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 4386 unsigned Idx = (Data.second / NumElts) * NumElts; 4387 unsigned EENumElts = EEVTy->getNumElements(); 4388 if (Idx + NumElts <= EENumElts) { 4389 Cost += 4390 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4391 EEVTy, None, Idx, VecTy); 4392 } else { 4393 // Need to round up the subvector type vectorization factor to avoid a 4394 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 4395 // <= EENumElts. 4396 auto *SubVT = 4397 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 4398 Cost += 4399 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4400 EEVTy, None, Idx, SubVT); 4401 } 4402 } else { 4403 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 4404 VecTy, None, 0, EEVTy); 4405 } 4406 } 4407 }; 4408 if (E->State == TreeEntry::NeedToGather) { 4409 if (allConstant(VL)) 4410 return 0; 4411 if (isa<InsertElementInst>(VL[0])) 4412 return InstructionCost::getInvalid(); 4413 SmallVector<int> Mask; 4414 SmallVector<const TreeEntry *> Entries; 4415 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 4416 isGatherShuffledEntry(E, Mask, Entries); 4417 if (Shuffle.hasValue()) { 4418 InstructionCost GatherCost = 0; 4419 if (ShuffleVectorInst::isIdentityMask(Mask)) { 4420 // Perfect match in the graph, will reuse the previously vectorized 4421 // node. Cost is 0. 4422 LLVM_DEBUG( 4423 dbgs() 4424 << "SLP: perfect diamond match for gather bundle that starts with " 4425 << *VL.front() << ".\n"); 4426 if (NeedToShuffleReuses) 4427 GatherCost = 4428 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 4429 FinalVecTy, E->ReuseShuffleIndices); 4430 } else { 4431 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 4432 << " entries for bundle that starts with " 4433 << *VL.front() << ".\n"); 4434 // Detected that instead of gather we can emit a shuffle of single/two 4435 // previously vectorized nodes. Add the cost of the permutation rather 4436 // than gather. 4437 ::addMask(Mask, E->ReuseShuffleIndices); 4438 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 4439 } 4440 return GatherCost; 4441 } 4442 if (isSplat(VL)) { 4443 // Found the broadcasting of the single scalar, calculate the cost as the 4444 // broadcast. 4445 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy); 4446 } 4447 if (E->getOpcode() == Instruction::ExtractElement && allSameType(VL) && 4448 allSameBlock(VL) && 4449 !isa<ScalableVectorType>( 4450 cast<ExtractElementInst>(E->getMainOp())->getVectorOperandType())) { 4451 // Check that gather of extractelements can be represented as just a 4452 // shuffle of a single/two vectors the scalars are extracted from. 4453 SmallVector<int> Mask; 4454 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 4455 isFixedVectorShuffle(VL, Mask); 4456 if (ShuffleKind.hasValue()) { 4457 // Found the bunch of extractelement instructions that must be gathered 4458 // into a vector and can be represented as a permutation elements in a 4459 // single input vector or of 2 input vectors. 4460 InstructionCost Cost = 4461 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 4462 AdjustExtractsCost(Cost, /*IsGather=*/true); 4463 if (NeedToShuffleReuses) 4464 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 4465 FinalVecTy, E->ReuseShuffleIndices); 4466 return Cost; 4467 } 4468 } 4469 InstructionCost ReuseShuffleCost = 0; 4470 if (NeedToShuffleReuses) 4471 ReuseShuffleCost = TTI->getShuffleCost( 4472 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 4473 // Improve gather cost for gather of loads, if we can group some of the 4474 // loads into vector loads. 4475 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 4476 !E->isAltShuffle()) { 4477 BoUpSLP::ValueSet VectorizedLoads; 4478 unsigned StartIdx = 0; 4479 unsigned VF = VL.size() / 2; 4480 unsigned VectorizedCnt = 0; 4481 unsigned ScatterVectorizeCnt = 0; 4482 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 4483 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 4484 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 4485 Cnt += VF) { 4486 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 4487 if (!VectorizedLoads.count(Slice.front()) && 4488 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 4489 SmallVector<Value *> PointerOps; 4490 OrdersType CurrentOrder; 4491 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 4492 *SE, CurrentOrder, PointerOps); 4493 switch (LS) { 4494 case LoadsState::Vectorize: 4495 case LoadsState::ScatterVectorize: 4496 // Mark the vectorized loads so that we don't vectorize them 4497 // again. 4498 if (LS == LoadsState::Vectorize) 4499 ++VectorizedCnt; 4500 else 4501 ++ScatterVectorizeCnt; 4502 VectorizedLoads.insert(Slice.begin(), Slice.end()); 4503 // If we vectorized initial block, no need to try to vectorize it 4504 // again. 4505 if (Cnt == StartIdx) 4506 StartIdx += VF; 4507 break; 4508 case LoadsState::Gather: 4509 break; 4510 } 4511 } 4512 } 4513 // Check if the whole array was vectorized already - exit. 4514 if (StartIdx >= VL.size()) 4515 break; 4516 // Found vectorizable parts - exit. 4517 if (!VectorizedLoads.empty()) 4518 break; 4519 } 4520 if (!VectorizedLoads.empty()) { 4521 InstructionCost GatherCost = 0; 4522 // Get the cost for gathered loads. 4523 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 4524 if (VectorizedLoads.contains(VL[I])) 4525 continue; 4526 GatherCost += getGatherCost(VL.slice(I, VF)); 4527 } 4528 // The cost for vectorized loads. 4529 InstructionCost ScalarsCost = 0; 4530 for (Value *V : VectorizedLoads) { 4531 auto *LI = cast<LoadInst>(V); 4532 ScalarsCost += TTI->getMemoryOpCost( 4533 Instruction::Load, LI->getType(), LI->getAlign(), 4534 LI->getPointerAddressSpace(), CostKind, LI); 4535 } 4536 auto *LI = cast<LoadInst>(E->getMainOp()); 4537 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 4538 Align Alignment = LI->getAlign(); 4539 GatherCost += 4540 VectorizedCnt * 4541 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 4542 LI->getPointerAddressSpace(), CostKind, LI); 4543 GatherCost += ScatterVectorizeCnt * 4544 TTI->getGatherScatterOpCost( 4545 Instruction::Load, LoadTy, LI->getPointerOperand(), 4546 /*VariableMask=*/false, Alignment, CostKind, LI); 4547 // Add the cost for the subvectors shuffling. 4548 GatherCost += ((VL.size() - VF) / VF) * 4549 TTI->getShuffleCost(TTI::SK_Select, VecTy); 4550 return ReuseShuffleCost + GatherCost - ScalarsCost; 4551 } 4552 } 4553 return ReuseShuffleCost + getGatherCost(VL); 4554 } 4555 InstructionCost CommonCost = 0; 4556 SmallVector<int> Mask; 4557 if (!E->ReorderIndices.empty()) { 4558 SmallVector<int> NewMask; 4559 if (E->getOpcode() == Instruction::Store) { 4560 // For stores the order is actually a mask. 4561 NewMask.resize(E->ReorderIndices.size()); 4562 copy(E->ReorderIndices, NewMask.begin()); 4563 } else { 4564 inversePermutation(E->ReorderIndices, NewMask); 4565 } 4566 ::addMask(Mask, NewMask); 4567 } 4568 if (NeedToShuffleReuses) 4569 ::addMask(Mask, E->ReuseShuffleIndices); 4570 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 4571 CommonCost = 4572 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 4573 assert((E->State == TreeEntry::Vectorize || 4574 E->State == TreeEntry::ScatterVectorize) && 4575 "Unhandled state"); 4576 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 4577 Instruction *VL0 = E->getMainOp(); 4578 unsigned ShuffleOrOp = 4579 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 4580 switch (ShuffleOrOp) { 4581 case Instruction::PHI: 4582 return 0; 4583 4584 case Instruction::ExtractValue: 4585 case Instruction::ExtractElement: { 4586 // The common cost of removal ExtractElement/ExtractValue instructions + 4587 // the cost of shuffles, if required to resuffle the original vector. 4588 if (NeedToShuffleReuses) { 4589 unsigned Idx = 0; 4590 for (unsigned I : E->ReuseShuffleIndices) { 4591 if (ShuffleOrOp == Instruction::ExtractElement) { 4592 auto *EE = cast<ExtractElementInst>(VL[I]); 4593 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 4594 EE->getVectorOperandType(), 4595 *getExtractIndex(EE)); 4596 } else { 4597 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 4598 VecTy, Idx); 4599 ++Idx; 4600 } 4601 } 4602 Idx = ReuseShuffleNumbers; 4603 for (Value *V : VL) { 4604 if (ShuffleOrOp == Instruction::ExtractElement) { 4605 auto *EE = cast<ExtractElementInst>(V); 4606 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 4607 EE->getVectorOperandType(), 4608 *getExtractIndex(EE)); 4609 } else { 4610 --Idx; 4611 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 4612 VecTy, Idx); 4613 } 4614 } 4615 } 4616 if (ShuffleOrOp == Instruction::ExtractValue) { 4617 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 4618 auto *EI = cast<Instruction>(VL[I]); 4619 // Take credit for instruction that will become dead. 4620 if (EI->hasOneUse()) { 4621 Instruction *Ext = EI->user_back(); 4622 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4623 all_of(Ext->users(), 4624 [](User *U) { return isa<GetElementPtrInst>(U); })) { 4625 // Use getExtractWithExtendCost() to calculate the cost of 4626 // extractelement/ext pair. 4627 CommonCost -= TTI->getExtractWithExtendCost( 4628 Ext->getOpcode(), Ext->getType(), VecTy, I); 4629 // Add back the cost of s|zext which is subtracted separately. 4630 CommonCost += TTI->getCastInstrCost( 4631 Ext->getOpcode(), Ext->getType(), EI->getType(), 4632 TTI::getCastContextHint(Ext), CostKind, Ext); 4633 continue; 4634 } 4635 } 4636 CommonCost -= 4637 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 4638 } 4639 } else { 4640 AdjustExtractsCost(CommonCost, /*IsGather=*/false); 4641 } 4642 return CommonCost; 4643 } 4644 case Instruction::InsertElement: { 4645 assert(E->ReuseShuffleIndices.empty() && 4646 "Unique insertelements only are expected."); 4647 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 4648 4649 unsigned const NumElts = SrcVecTy->getNumElements(); 4650 unsigned const NumScalars = VL.size(); 4651 APInt DemandedElts = APInt::getZero(NumElts); 4652 // TODO: Add support for Instruction::InsertValue. 4653 SmallVector<int> Mask; 4654 if (!E->ReorderIndices.empty()) { 4655 inversePermutation(E->ReorderIndices, Mask); 4656 Mask.append(NumElts - NumScalars, UndefMaskElem); 4657 } else { 4658 Mask.assign(NumElts, UndefMaskElem); 4659 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 4660 } 4661 unsigned Offset = *getInsertIndex(VL0, 0); 4662 bool IsIdentity = true; 4663 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 4664 Mask.swap(PrevMask); 4665 for (unsigned I = 0; I < NumScalars; ++I) { 4666 Optional<int> InsertIdx = getInsertIndex(VL[PrevMask[I]], 0); 4667 if (!InsertIdx || *InsertIdx == UndefMaskElem) 4668 continue; 4669 DemandedElts.setBit(*InsertIdx); 4670 IsIdentity &= *InsertIdx - Offset == I; 4671 Mask[*InsertIdx - Offset] = I; 4672 } 4673 assert(Offset < NumElts && "Failed to find vector index offset"); 4674 4675 InstructionCost Cost = 0; 4676 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 4677 /*Insert*/ true, /*Extract*/ false); 4678 4679 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 4680 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 4681 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 4682 Cost += TTI->getShuffleCost( 4683 TargetTransformInfo::SK_PermuteSingleSrc, 4684 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 4685 } else if (!IsIdentity) { 4686 auto *FirstInsert = 4687 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 4688 return !is_contained(E->Scalars, 4689 cast<Instruction>(V)->getOperand(0)); 4690 })); 4691 if (isa<UndefValue>(FirstInsert->getOperand(0))) { 4692 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 4693 } else { 4694 SmallVector<int> InsertMask(NumElts); 4695 std::iota(InsertMask.begin(), InsertMask.end(), 0); 4696 for (unsigned I = 0; I < NumElts; I++) { 4697 if (Mask[I] != UndefMaskElem) 4698 InsertMask[Offset + I] = NumElts + I; 4699 } 4700 Cost += 4701 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 4702 } 4703 } 4704 4705 return Cost; 4706 } 4707 case Instruction::ZExt: 4708 case Instruction::SExt: 4709 case Instruction::FPToUI: 4710 case Instruction::FPToSI: 4711 case Instruction::FPExt: 4712 case Instruction::PtrToInt: 4713 case Instruction::IntToPtr: 4714 case Instruction::SIToFP: 4715 case Instruction::UIToFP: 4716 case Instruction::Trunc: 4717 case Instruction::FPTrunc: 4718 case Instruction::BitCast: { 4719 Type *SrcTy = VL0->getOperand(0)->getType(); 4720 InstructionCost ScalarEltCost = 4721 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 4722 TTI::getCastContextHint(VL0), CostKind, VL0); 4723 if (NeedToShuffleReuses) { 4724 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4725 } 4726 4727 // Calculate the cost of this instruction. 4728 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 4729 4730 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 4731 InstructionCost VecCost = 0; 4732 // Check if the values are candidates to demote. 4733 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 4734 VecCost = CommonCost + TTI->getCastInstrCost( 4735 E->getOpcode(), VecTy, SrcVecTy, 4736 TTI::getCastContextHint(VL0), CostKind, VL0); 4737 } 4738 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4739 return VecCost - ScalarCost; 4740 } 4741 case Instruction::FCmp: 4742 case Instruction::ICmp: 4743 case Instruction::Select: { 4744 // Calculate the cost of this instruction. 4745 InstructionCost ScalarEltCost = 4746 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 4747 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 4748 if (NeedToShuffleReuses) { 4749 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4750 } 4751 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 4752 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 4753 4754 // Check if all entries in VL are either compares or selects with compares 4755 // as condition that have the same predicates. 4756 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 4757 bool First = true; 4758 for (auto *V : VL) { 4759 CmpInst::Predicate CurrentPred; 4760 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 4761 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 4762 !match(V, MatchCmp)) || 4763 (!First && VecPred != CurrentPred)) { 4764 VecPred = CmpInst::BAD_ICMP_PREDICATE; 4765 break; 4766 } 4767 First = false; 4768 VecPred = CurrentPred; 4769 } 4770 4771 InstructionCost VecCost = TTI->getCmpSelInstrCost( 4772 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 4773 // Check if it is possible and profitable to use min/max for selects in 4774 // VL. 4775 // 4776 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 4777 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 4778 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 4779 {VecTy, VecTy}); 4780 InstructionCost IntrinsicCost = 4781 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 4782 // If the selects are the only uses of the compares, they will be dead 4783 // and we can adjust the cost by removing their cost. 4784 if (IntrinsicAndUse.second) 4785 IntrinsicCost -= 4786 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, 4787 CmpInst::BAD_ICMP_PREDICATE, CostKind); 4788 VecCost = std::min(VecCost, IntrinsicCost); 4789 } 4790 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4791 return CommonCost + VecCost - ScalarCost; 4792 } 4793 case Instruction::FNeg: 4794 case Instruction::Add: 4795 case Instruction::FAdd: 4796 case Instruction::Sub: 4797 case Instruction::FSub: 4798 case Instruction::Mul: 4799 case Instruction::FMul: 4800 case Instruction::UDiv: 4801 case Instruction::SDiv: 4802 case Instruction::FDiv: 4803 case Instruction::URem: 4804 case Instruction::SRem: 4805 case Instruction::FRem: 4806 case Instruction::Shl: 4807 case Instruction::LShr: 4808 case Instruction::AShr: 4809 case Instruction::And: 4810 case Instruction::Or: 4811 case Instruction::Xor: { 4812 // Certain instructions can be cheaper to vectorize if they have a 4813 // constant second vector operand. 4814 TargetTransformInfo::OperandValueKind Op1VK = 4815 TargetTransformInfo::OK_AnyValue; 4816 TargetTransformInfo::OperandValueKind Op2VK = 4817 TargetTransformInfo::OK_UniformConstantValue; 4818 TargetTransformInfo::OperandValueProperties Op1VP = 4819 TargetTransformInfo::OP_None; 4820 TargetTransformInfo::OperandValueProperties Op2VP = 4821 TargetTransformInfo::OP_PowerOf2; 4822 4823 // If all operands are exactly the same ConstantInt then set the 4824 // operand kind to OK_UniformConstantValue. 4825 // If instead not all operands are constants, then set the operand kind 4826 // to OK_AnyValue. If all operands are constants but not the same, 4827 // then set the operand kind to OK_NonUniformConstantValue. 4828 ConstantInt *CInt0 = nullptr; 4829 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 4830 const Instruction *I = cast<Instruction>(VL[i]); 4831 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 4832 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 4833 if (!CInt) { 4834 Op2VK = TargetTransformInfo::OK_AnyValue; 4835 Op2VP = TargetTransformInfo::OP_None; 4836 break; 4837 } 4838 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 4839 !CInt->getValue().isPowerOf2()) 4840 Op2VP = TargetTransformInfo::OP_None; 4841 if (i == 0) { 4842 CInt0 = CInt; 4843 continue; 4844 } 4845 if (CInt0 != CInt) 4846 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 4847 } 4848 4849 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 4850 InstructionCost ScalarEltCost = 4851 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 4852 Op2VK, Op1VP, Op2VP, Operands, VL0); 4853 if (NeedToShuffleReuses) { 4854 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4855 } 4856 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 4857 InstructionCost VecCost = 4858 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 4859 Op2VK, Op1VP, Op2VP, Operands, VL0); 4860 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4861 return CommonCost + VecCost - ScalarCost; 4862 } 4863 case Instruction::GetElementPtr: { 4864 TargetTransformInfo::OperandValueKind Op1VK = 4865 TargetTransformInfo::OK_AnyValue; 4866 TargetTransformInfo::OperandValueKind Op2VK = 4867 TargetTransformInfo::OK_UniformConstantValue; 4868 4869 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 4870 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 4871 if (NeedToShuffleReuses) { 4872 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4873 } 4874 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 4875 InstructionCost VecCost = TTI->getArithmeticInstrCost( 4876 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 4877 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4878 return CommonCost + VecCost - ScalarCost; 4879 } 4880 case Instruction::Load: { 4881 // Cost of wide load - cost of scalar loads. 4882 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 4883 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 4884 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 4885 if (NeedToShuffleReuses) { 4886 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4887 } 4888 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 4889 InstructionCost VecLdCost; 4890 if (E->State == TreeEntry::Vectorize) { 4891 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 4892 CostKind, VL0); 4893 } else { 4894 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 4895 Align CommonAlignment = Alignment; 4896 for (Value *V : VL) 4897 CommonAlignment = 4898 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 4899 VecLdCost = TTI->getGatherScatterOpCost( 4900 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 4901 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 4902 } 4903 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 4904 return CommonCost + VecLdCost - ScalarLdCost; 4905 } 4906 case Instruction::Store: { 4907 // We know that we can merge the stores. Calculate the cost. 4908 bool IsReorder = !E->ReorderIndices.empty(); 4909 auto *SI = 4910 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 4911 Align Alignment = SI->getAlign(); 4912 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 4913 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 4914 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 4915 InstructionCost VecStCost = TTI->getMemoryOpCost( 4916 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 4917 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 4918 return CommonCost + VecStCost - ScalarStCost; 4919 } 4920 case Instruction::Call: { 4921 CallInst *CI = cast<CallInst>(VL0); 4922 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4923 4924 // Calculate the cost of the scalar and vector calls. 4925 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 4926 InstructionCost ScalarEltCost = 4927 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 4928 if (NeedToShuffleReuses) { 4929 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4930 } 4931 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 4932 4933 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 4934 InstructionCost VecCallCost = 4935 std::min(VecCallCosts.first, VecCallCosts.second); 4936 4937 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 4938 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 4939 << " for " << *CI << "\n"); 4940 4941 return CommonCost + VecCallCost - ScalarCallCost; 4942 } 4943 case Instruction::ShuffleVector: { 4944 assert(E->isAltShuffle() && 4945 ((Instruction::isBinaryOp(E->getOpcode()) && 4946 Instruction::isBinaryOp(E->getAltOpcode())) || 4947 (Instruction::isCast(E->getOpcode()) && 4948 Instruction::isCast(E->getAltOpcode()))) && 4949 "Invalid Shuffle Vector Operand"); 4950 InstructionCost ScalarCost = 0; 4951 if (NeedToShuffleReuses) { 4952 for (unsigned Idx : E->ReuseShuffleIndices) { 4953 Instruction *I = cast<Instruction>(VL[Idx]); 4954 CommonCost -= TTI->getInstructionCost(I, CostKind); 4955 } 4956 for (Value *V : VL) { 4957 Instruction *I = cast<Instruction>(V); 4958 CommonCost += TTI->getInstructionCost(I, CostKind); 4959 } 4960 } 4961 for (Value *V : VL) { 4962 Instruction *I = cast<Instruction>(V); 4963 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 4964 ScalarCost += TTI->getInstructionCost(I, CostKind); 4965 } 4966 // VecCost is equal to sum of the cost of creating 2 vectors 4967 // and the cost of creating shuffle. 4968 InstructionCost VecCost = 0; 4969 if (Instruction::isBinaryOp(E->getOpcode())) { 4970 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 4971 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 4972 CostKind); 4973 } else { 4974 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 4975 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 4976 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 4977 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 4978 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 4979 TTI::CastContextHint::None, CostKind); 4980 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 4981 TTI::CastContextHint::None, CostKind); 4982 } 4983 4984 SmallVector<int> Mask; 4985 buildSuffleEntryMask( 4986 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 4987 [E](Instruction *I) { 4988 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 4989 return I->getOpcode() == E->getAltOpcode(); 4990 }, 4991 Mask); 4992 CommonCost = 4993 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask); 4994 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4995 return CommonCost + VecCost - ScalarCost; 4996 } 4997 default: 4998 llvm_unreachable("Unknown instruction"); 4999 } 5000 } 5001 5002 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 5003 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 5004 << VectorizableTree.size() << " is fully vectorizable .\n"); 5005 5006 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 5007 SmallVector<int> Mask; 5008 return TE->State == TreeEntry::NeedToGather && 5009 !any_of(TE->Scalars, 5010 [this](Value *V) { return EphValues.contains(V); }) && 5011 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 5012 TE->Scalars.size() < Limit || 5013 (TE->getOpcode() == Instruction::ExtractElement && 5014 isFixedVectorShuffle(TE->Scalars, Mask))); 5015 }; 5016 5017 // We only handle trees of heights 1 and 2. 5018 if (VectorizableTree.size() == 1 && 5019 (VectorizableTree[0]->State == TreeEntry::Vectorize || 5020 (ForReduction && 5021 AreVectorizableGathers(VectorizableTree[0].get(), 5022 VectorizableTree[0]->Scalars.size()) && 5023 (VectorizableTree[0]->Scalars.size() > 2 || 5024 VectorizableTree[0]->ReuseShuffleIndices.size() > 2)))) 5025 return true; 5026 5027 if (VectorizableTree.size() != 2) 5028 return false; 5029 5030 // Handle splat and all-constants stores. Also try to vectorize tiny trees 5031 // with the second gather nodes if they have less scalar operands rather than 5032 // the initial tree element (may be profitable to shuffle the second gather) 5033 // or they are extractelements, which form shuffle. 5034 SmallVector<int> Mask; 5035 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 5036 AreVectorizableGathers(VectorizableTree[1].get(), 5037 VectorizableTree[0]->Scalars.size())) 5038 return true; 5039 5040 // Gathering cost would be too much for tiny trees. 5041 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 5042 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 5043 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 5044 return false; 5045 5046 return true; 5047 } 5048 5049 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 5050 TargetTransformInfo *TTI, 5051 bool MustMatchOrInst) { 5052 // Look past the root to find a source value. Arbitrarily follow the 5053 // path through operand 0 of any 'or'. Also, peek through optional 5054 // shift-left-by-multiple-of-8-bits. 5055 Value *ZextLoad = Root; 5056 const APInt *ShAmtC; 5057 bool FoundOr = false; 5058 while (!isa<ConstantExpr>(ZextLoad) && 5059 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 5060 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 5061 ShAmtC->urem(8) == 0))) { 5062 auto *BinOp = cast<BinaryOperator>(ZextLoad); 5063 ZextLoad = BinOp->getOperand(0); 5064 if (BinOp->getOpcode() == Instruction::Or) 5065 FoundOr = true; 5066 } 5067 // Check if the input is an extended load of the required or/shift expression. 5068 Value *LoadPtr; 5069 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 5070 !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr))))) 5071 return false; 5072 5073 // Require that the total load bit width is a legal integer type. 5074 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 5075 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 5076 Type *SrcTy = LoadPtr->getType()->getPointerElementType(); 5077 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 5078 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 5079 return false; 5080 5081 // Everything matched - assume that we can fold the whole sequence using 5082 // load combining. 5083 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 5084 << *(cast<Instruction>(Root)) << "\n"); 5085 5086 return true; 5087 } 5088 5089 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 5090 if (RdxKind != RecurKind::Or) 5091 return false; 5092 5093 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5094 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 5095 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 5096 /* MatchOr */ false); 5097 } 5098 5099 bool BoUpSLP::isLoadCombineCandidate() const { 5100 // Peek through a final sequence of stores and check if all operations are 5101 // likely to be load-combined. 5102 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5103 for (Value *Scalar : VectorizableTree[0]->Scalars) { 5104 Value *X; 5105 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 5106 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 5107 return false; 5108 } 5109 return true; 5110 } 5111 5112 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 5113 // No need to vectorize inserts of gathered values. 5114 if (VectorizableTree.size() == 2 && 5115 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 5116 VectorizableTree[1]->State == TreeEntry::NeedToGather) 5117 return true; 5118 5119 // We can vectorize the tree if its size is greater than or equal to the 5120 // minimum size specified by the MinTreeSize command line option. 5121 if (VectorizableTree.size() >= MinTreeSize) 5122 return false; 5123 5124 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 5125 // can vectorize it if we can prove it fully vectorizable. 5126 if (isFullyVectorizableTinyTree(ForReduction)) 5127 return false; 5128 5129 assert(VectorizableTree.empty() 5130 ? ExternalUses.empty() 5131 : true && "We shouldn't have any external users"); 5132 5133 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 5134 // vectorizable. 5135 return true; 5136 } 5137 5138 InstructionCost BoUpSLP::getSpillCost() const { 5139 // Walk from the bottom of the tree to the top, tracking which values are 5140 // live. When we see a call instruction that is not part of our tree, 5141 // query TTI to see if there is a cost to keeping values live over it 5142 // (for example, if spills and fills are required). 5143 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 5144 InstructionCost Cost = 0; 5145 5146 SmallPtrSet<Instruction*, 4> LiveValues; 5147 Instruction *PrevInst = nullptr; 5148 5149 // The entries in VectorizableTree are not necessarily ordered by their 5150 // position in basic blocks. Collect them and order them by dominance so later 5151 // instructions are guaranteed to be visited first. For instructions in 5152 // different basic blocks, we only scan to the beginning of the block, so 5153 // their order does not matter, as long as all instructions in a basic block 5154 // are grouped together. Using dominance ensures a deterministic order. 5155 SmallVector<Instruction *, 16> OrderedScalars; 5156 for (const auto &TEPtr : VectorizableTree) { 5157 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 5158 if (!Inst) 5159 continue; 5160 OrderedScalars.push_back(Inst); 5161 } 5162 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 5163 auto *NodeA = DT->getNode(A->getParent()); 5164 auto *NodeB = DT->getNode(B->getParent()); 5165 assert(NodeA && "Should only process reachable instructions"); 5166 assert(NodeB && "Should only process reachable instructions"); 5167 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 5168 "Different nodes should have different DFS numbers"); 5169 if (NodeA != NodeB) 5170 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 5171 return B->comesBefore(A); 5172 }); 5173 5174 for (Instruction *Inst : OrderedScalars) { 5175 if (!PrevInst) { 5176 PrevInst = Inst; 5177 continue; 5178 } 5179 5180 // Update LiveValues. 5181 LiveValues.erase(PrevInst); 5182 for (auto &J : PrevInst->operands()) { 5183 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 5184 LiveValues.insert(cast<Instruction>(&*J)); 5185 } 5186 5187 LLVM_DEBUG({ 5188 dbgs() << "SLP: #LV: " << LiveValues.size(); 5189 for (auto *X : LiveValues) 5190 dbgs() << " " << X->getName(); 5191 dbgs() << ", Looking at "; 5192 Inst->dump(); 5193 }); 5194 5195 // Now find the sequence of instructions between PrevInst and Inst. 5196 unsigned NumCalls = 0; 5197 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 5198 PrevInstIt = 5199 PrevInst->getIterator().getReverse(); 5200 while (InstIt != PrevInstIt) { 5201 if (PrevInstIt == PrevInst->getParent()->rend()) { 5202 PrevInstIt = Inst->getParent()->rbegin(); 5203 continue; 5204 } 5205 5206 // Debug information does not impact spill cost. 5207 if ((isa<CallInst>(&*PrevInstIt) && 5208 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 5209 &*PrevInstIt != PrevInst) 5210 NumCalls++; 5211 5212 ++PrevInstIt; 5213 } 5214 5215 if (NumCalls) { 5216 SmallVector<Type*, 4> V; 5217 for (auto *II : LiveValues) { 5218 auto *ScalarTy = II->getType(); 5219 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 5220 ScalarTy = VectorTy->getElementType(); 5221 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 5222 } 5223 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 5224 } 5225 5226 PrevInst = Inst; 5227 } 5228 5229 return Cost; 5230 } 5231 5232 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 5233 InstructionCost Cost = 0; 5234 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 5235 << VectorizableTree.size() << ".\n"); 5236 5237 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 5238 5239 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 5240 TreeEntry &TE = *VectorizableTree[I].get(); 5241 5242 InstructionCost C = getEntryCost(&TE, VectorizedVals); 5243 Cost += C; 5244 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5245 << " for bundle that starts with " << *TE.Scalars[0] 5246 << ".\n" 5247 << "SLP: Current total cost = " << Cost << "\n"); 5248 } 5249 5250 SmallPtrSet<Value *, 16> ExtractCostCalculated; 5251 InstructionCost ExtractCost = 0; 5252 SmallVector<unsigned> VF; 5253 SmallVector<SmallVector<int>> ShuffleMask; 5254 SmallVector<Value *> FirstUsers; 5255 SmallVector<APInt> DemandedElts; 5256 for (ExternalUser &EU : ExternalUses) { 5257 // We only add extract cost once for the same scalar. 5258 if (!ExtractCostCalculated.insert(EU.Scalar).second) 5259 continue; 5260 5261 // Uses by ephemeral values are free (because the ephemeral value will be 5262 // removed prior to code generation, and so the extraction will be 5263 // removed as well). 5264 if (EphValues.count(EU.User)) 5265 continue; 5266 5267 // No extract cost for vector "scalar" 5268 if (isa<FixedVectorType>(EU.Scalar->getType())) 5269 continue; 5270 5271 // Already counted the cost for external uses when tried to adjust the cost 5272 // for extractelements, no need to add it again. 5273 if (isa<ExtractElementInst>(EU.Scalar)) 5274 continue; 5275 5276 // If found user is an insertelement, do not calculate extract cost but try 5277 // to detect it as a final shuffled/identity match. 5278 if (EU.User && isa<InsertElementInst>(EU.User)) { 5279 if (auto *FTy = dyn_cast<FixedVectorType>(EU.User->getType())) { 5280 Optional<int> InsertIdx = getInsertIndex(EU.User, 0); 5281 if (!InsertIdx || *InsertIdx == UndefMaskElem) 5282 continue; 5283 Value *VU = EU.User; 5284 auto *It = find_if(FirstUsers, [VU](Value *V) { 5285 // Checks if 2 insertelements are from the same buildvector. 5286 if (VU->getType() != V->getType()) 5287 return false; 5288 auto *IE1 = cast<InsertElementInst>(VU); 5289 auto *IE2 = cast<InsertElementInst>(V); 5290 // Go though of insertelement instructions trying to find either VU as 5291 // the original vector for IE2 or V as the original vector for IE1. 5292 do { 5293 if (IE1 == VU || IE2 == V) 5294 return true; 5295 if (IE1) 5296 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 5297 if (IE2) 5298 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 5299 } while (IE1 || IE2); 5300 return false; 5301 }); 5302 int VecId = -1; 5303 if (It == FirstUsers.end()) { 5304 VF.push_back(FTy->getNumElements()); 5305 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 5306 FirstUsers.push_back(EU.User); 5307 DemandedElts.push_back(APInt::getZero(VF.back())); 5308 VecId = FirstUsers.size() - 1; 5309 } else { 5310 VecId = std::distance(FirstUsers.begin(), It); 5311 } 5312 int Idx = *InsertIdx; 5313 ShuffleMask[VecId][Idx] = EU.Lane; 5314 DemandedElts[VecId].setBit(Idx); 5315 } 5316 } 5317 5318 // If we plan to rewrite the tree in a smaller type, we will need to sign 5319 // extend the extracted value back to the original type. Here, we account 5320 // for the extract and the added cost of the sign extend if needed. 5321 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 5322 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 5323 if (MinBWs.count(ScalarRoot)) { 5324 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 5325 auto Extend = 5326 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 5327 VecTy = FixedVectorType::get(MinTy, BundleWidth); 5328 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 5329 VecTy, EU.Lane); 5330 } else { 5331 ExtractCost += 5332 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 5333 } 5334 } 5335 5336 InstructionCost SpillCost = getSpillCost(); 5337 Cost += SpillCost + ExtractCost; 5338 for (int I = 0, E = FirstUsers.size(); I < E; ++I) { 5339 // For the very first element - simple shuffle of the source vector. 5340 int Limit = ShuffleMask[I].size() * 2; 5341 if (I == 0 && 5342 all_of(ShuffleMask[I], [Limit](int Idx) { return Idx < Limit; }) && 5343 !ShuffleVectorInst::isIdentityMask(ShuffleMask[I])) { 5344 InstructionCost C = TTI->getShuffleCost( 5345 TTI::SK_PermuteSingleSrc, 5346 cast<FixedVectorType>(FirstUsers[I]->getType()), ShuffleMask[I]); 5347 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5348 << " for final shuffle of insertelement external users " 5349 << *VectorizableTree.front()->Scalars.front() << ".\n" 5350 << "SLP: Current total cost = " << Cost << "\n"); 5351 Cost += C; 5352 continue; 5353 } 5354 // Other elements - permutation of 2 vectors (the initial one and the next 5355 // Ith incoming vector). 5356 unsigned VF = ShuffleMask[I].size(); 5357 for (unsigned Idx = 0; Idx < VF; ++Idx) { 5358 int &Mask = ShuffleMask[I][Idx]; 5359 Mask = Mask == UndefMaskElem ? Idx : VF + Mask; 5360 } 5361 InstructionCost C = TTI->getShuffleCost( 5362 TTI::SK_PermuteTwoSrc, cast<FixedVectorType>(FirstUsers[I]->getType()), 5363 ShuffleMask[I]); 5364 LLVM_DEBUG( 5365 dbgs() 5366 << "SLP: Adding cost " << C 5367 << " for final shuffle of vector node and external insertelement users " 5368 << *VectorizableTree.front()->Scalars.front() << ".\n" 5369 << "SLP: Current total cost = " << Cost << "\n"); 5370 Cost += C; 5371 InstructionCost InsertCost = TTI->getScalarizationOverhead( 5372 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 5373 /*Insert*/ true, 5374 /*Extract*/ false); 5375 Cost -= InsertCost; 5376 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 5377 << " for insertelements gather.\n" 5378 << "SLP: Current total cost = " << Cost << "\n"); 5379 } 5380 5381 #ifndef NDEBUG 5382 SmallString<256> Str; 5383 { 5384 raw_svector_ostream OS(Str); 5385 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 5386 << "SLP: Extract Cost = " << ExtractCost << ".\n" 5387 << "SLP: Total Cost = " << Cost << ".\n"; 5388 } 5389 LLVM_DEBUG(dbgs() << Str); 5390 if (ViewSLPTree) 5391 ViewGraph(this, "SLP" + F->getName(), false, Str); 5392 #endif 5393 5394 return Cost; 5395 } 5396 5397 Optional<TargetTransformInfo::ShuffleKind> 5398 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 5399 SmallVectorImpl<const TreeEntry *> &Entries) { 5400 // TODO: currently checking only for Scalars in the tree entry, need to count 5401 // reused elements too for better cost estimation. 5402 Mask.assign(TE->Scalars.size(), UndefMaskElem); 5403 Entries.clear(); 5404 // Build a lists of values to tree entries. 5405 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 5406 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 5407 if (EntryPtr.get() == TE) 5408 break; 5409 if (EntryPtr->State != TreeEntry::NeedToGather) 5410 continue; 5411 for (Value *V : EntryPtr->Scalars) 5412 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 5413 } 5414 // Find all tree entries used by the gathered values. If no common entries 5415 // found - not a shuffle. 5416 // Here we build a set of tree nodes for each gathered value and trying to 5417 // find the intersection between these sets. If we have at least one common 5418 // tree node for each gathered value - we have just a permutation of the 5419 // single vector. If we have 2 different sets, we're in situation where we 5420 // have a permutation of 2 input vectors. 5421 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 5422 DenseMap<Value *, int> UsedValuesEntry; 5423 for (Value *V : TE->Scalars) { 5424 if (isa<UndefValue>(V)) 5425 continue; 5426 // Build a list of tree entries where V is used. 5427 SmallPtrSet<const TreeEntry *, 4> VToTEs; 5428 auto It = ValueToTEs.find(V); 5429 if (It != ValueToTEs.end()) 5430 VToTEs = It->second; 5431 if (const TreeEntry *VTE = getTreeEntry(V)) 5432 VToTEs.insert(VTE); 5433 if (VToTEs.empty()) 5434 return None; 5435 if (UsedTEs.empty()) { 5436 // The first iteration, just insert the list of nodes to vector. 5437 UsedTEs.push_back(VToTEs); 5438 } else { 5439 // Need to check if there are any previously used tree nodes which use V. 5440 // If there are no such nodes, consider that we have another one input 5441 // vector. 5442 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 5443 unsigned Idx = 0; 5444 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 5445 // Do we have a non-empty intersection of previously listed tree entries 5446 // and tree entries using current V? 5447 set_intersect(VToTEs, Set); 5448 if (!VToTEs.empty()) { 5449 // Yes, write the new subset and continue analysis for the next 5450 // scalar. 5451 Set.swap(VToTEs); 5452 break; 5453 } 5454 VToTEs = SavedVToTEs; 5455 ++Idx; 5456 } 5457 // No non-empty intersection found - need to add a second set of possible 5458 // source vectors. 5459 if (Idx == UsedTEs.size()) { 5460 // If the number of input vectors is greater than 2 - not a permutation, 5461 // fallback to the regular gather. 5462 if (UsedTEs.size() == 2) 5463 return None; 5464 UsedTEs.push_back(SavedVToTEs); 5465 Idx = UsedTEs.size() - 1; 5466 } 5467 UsedValuesEntry.try_emplace(V, Idx); 5468 } 5469 } 5470 5471 unsigned VF = 0; 5472 if (UsedTEs.size() == 1) { 5473 // Try to find the perfect match in another gather node at first. 5474 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 5475 return EntryPtr->isSame(TE->Scalars); 5476 }); 5477 if (It != UsedTEs.front().end()) { 5478 Entries.push_back(*It); 5479 std::iota(Mask.begin(), Mask.end(), 0); 5480 return TargetTransformInfo::SK_PermuteSingleSrc; 5481 } 5482 // No perfect match, just shuffle, so choose the first tree node. 5483 Entries.push_back(*UsedTEs.front().begin()); 5484 } else { 5485 // Try to find nodes with the same vector factor. 5486 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 5487 // FIXME: Shall be replaced by GetVF function once non-power-2 patch is 5488 // landed. 5489 auto &&GetVF = [](const TreeEntry *TE) { 5490 if (!TE->ReuseShuffleIndices.empty()) 5491 return TE->ReuseShuffleIndices.size(); 5492 return TE->Scalars.size(); 5493 }; 5494 DenseMap<int, const TreeEntry *> VFToTE; 5495 for (const TreeEntry *TE : UsedTEs.front()) 5496 VFToTE.try_emplace(GetVF(TE), TE); 5497 for (const TreeEntry *TE : UsedTEs.back()) { 5498 auto It = VFToTE.find(GetVF(TE)); 5499 if (It != VFToTE.end()) { 5500 VF = It->first; 5501 Entries.push_back(It->second); 5502 Entries.push_back(TE); 5503 break; 5504 } 5505 } 5506 // No 2 source vectors with the same vector factor - give up and do regular 5507 // gather. 5508 if (Entries.empty()) 5509 return None; 5510 } 5511 5512 // Build a shuffle mask for better cost estimation and vector emission. 5513 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 5514 Value *V = TE->Scalars[I]; 5515 if (isa<UndefValue>(V)) 5516 continue; 5517 unsigned Idx = UsedValuesEntry.lookup(V); 5518 const TreeEntry *VTE = Entries[Idx]; 5519 int FoundLane = VTE->findLaneForValue(V); 5520 Mask[I] = Idx * VF + FoundLane; 5521 // Extra check required by isSingleSourceMaskImpl function (called by 5522 // ShuffleVectorInst::isSingleSourceMask). 5523 if (Mask[I] >= 2 * E) 5524 return None; 5525 } 5526 switch (Entries.size()) { 5527 case 1: 5528 return TargetTransformInfo::SK_PermuteSingleSrc; 5529 case 2: 5530 return TargetTransformInfo::SK_PermuteTwoSrc; 5531 default: 5532 break; 5533 } 5534 return None; 5535 } 5536 5537 InstructionCost 5538 BoUpSLP::getGatherCost(FixedVectorType *Ty, 5539 const DenseSet<unsigned> &ShuffledIndices) const { 5540 unsigned NumElts = Ty->getNumElements(); 5541 APInt DemandedElts = APInt::getZero(NumElts); 5542 for (unsigned I = 0; I < NumElts; ++I) 5543 if (!ShuffledIndices.count(I)) 5544 DemandedElts.setBit(I); 5545 InstructionCost Cost = 5546 TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 5547 /*Extract*/ false); 5548 if (!ShuffledIndices.empty()) 5549 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 5550 return Cost; 5551 } 5552 5553 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 5554 // Find the type of the operands in VL. 5555 Type *ScalarTy = VL[0]->getType(); 5556 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 5557 ScalarTy = SI->getValueOperand()->getType(); 5558 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 5559 // Find the cost of inserting/extracting values from the vector. 5560 // Check if the same elements are inserted several times and count them as 5561 // shuffle candidates. 5562 DenseSet<unsigned> ShuffledElements; 5563 DenseSet<Value *> UniqueElements; 5564 // Iterate in reverse order to consider insert elements with the high cost. 5565 for (unsigned I = VL.size(); I > 0; --I) { 5566 unsigned Idx = I - 1; 5567 if (isConstant(VL[Idx])) 5568 continue; 5569 if (!UniqueElements.insert(VL[Idx]).second) 5570 ShuffledElements.insert(Idx); 5571 } 5572 return getGatherCost(VecTy, ShuffledElements); 5573 } 5574 5575 // Perform operand reordering on the instructions in VL and return the reordered 5576 // operands in Left and Right. 5577 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 5578 SmallVectorImpl<Value *> &Left, 5579 SmallVectorImpl<Value *> &Right, 5580 const DataLayout &DL, 5581 ScalarEvolution &SE, 5582 const BoUpSLP &R) { 5583 if (VL.empty()) 5584 return; 5585 VLOperands Ops(VL, DL, SE, R); 5586 // Reorder the operands in place. 5587 Ops.reorder(); 5588 Left = Ops.getVL(0); 5589 Right = Ops.getVL(1); 5590 } 5591 5592 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 5593 // Get the basic block this bundle is in. All instructions in the bundle 5594 // should be in this block. 5595 auto *Front = E->getMainOp(); 5596 auto *BB = Front->getParent(); 5597 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 5598 auto *I = cast<Instruction>(V); 5599 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 5600 })); 5601 5602 // The last instruction in the bundle in program order. 5603 Instruction *LastInst = nullptr; 5604 5605 // Find the last instruction. The common case should be that BB has been 5606 // scheduled, and the last instruction is VL.back(). So we start with 5607 // VL.back() and iterate over schedule data until we reach the end of the 5608 // bundle. The end of the bundle is marked by null ScheduleData. 5609 if (BlocksSchedules.count(BB)) { 5610 auto *Bundle = 5611 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 5612 if (Bundle && Bundle->isPartOfBundle()) 5613 for (; Bundle; Bundle = Bundle->NextInBundle) 5614 if (Bundle->OpValue == Bundle->Inst) 5615 LastInst = Bundle->Inst; 5616 } 5617 5618 // LastInst can still be null at this point if there's either not an entry 5619 // for BB in BlocksSchedules or there's no ScheduleData available for 5620 // VL.back(). This can be the case if buildTree_rec aborts for various 5621 // reasons (e.g., the maximum recursion depth is reached, the maximum region 5622 // size is reached, etc.). ScheduleData is initialized in the scheduling 5623 // "dry-run". 5624 // 5625 // If this happens, we can still find the last instruction by brute force. We 5626 // iterate forwards from Front (inclusive) until we either see all 5627 // instructions in the bundle or reach the end of the block. If Front is the 5628 // last instruction in program order, LastInst will be set to Front, and we 5629 // will visit all the remaining instructions in the block. 5630 // 5631 // One of the reasons we exit early from buildTree_rec is to place an upper 5632 // bound on compile-time. Thus, taking an additional compile-time hit here is 5633 // not ideal. However, this should be exceedingly rare since it requires that 5634 // we both exit early from buildTree_rec and that the bundle be out-of-order 5635 // (causing us to iterate all the way to the end of the block). 5636 if (!LastInst) { 5637 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 5638 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 5639 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 5640 LastInst = &I; 5641 if (Bundle.empty()) 5642 break; 5643 } 5644 } 5645 assert(LastInst && "Failed to find last instruction in bundle"); 5646 5647 // Set the insertion point after the last instruction in the bundle. Set the 5648 // debug location to Front. 5649 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 5650 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 5651 } 5652 5653 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 5654 // List of instructions/lanes from current block and/or the blocks which are 5655 // part of the current loop. These instructions will be inserted at the end to 5656 // make it possible to optimize loops and hoist invariant instructions out of 5657 // the loops body with better chances for success. 5658 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 5659 SmallSet<int, 4> PostponedIndices; 5660 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 5661 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 5662 SmallPtrSet<BasicBlock *, 4> Visited; 5663 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 5664 InsertBB = InsertBB->getSinglePredecessor(); 5665 return InsertBB && InsertBB == InstBB; 5666 }; 5667 for (int I = 0, E = VL.size(); I < E; ++I) { 5668 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 5669 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 5670 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 5671 PostponedIndices.insert(I).second) 5672 PostponedInsts.emplace_back(Inst, I); 5673 } 5674 5675 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 5676 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 5677 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 5678 if (!InsElt) 5679 return Vec; 5680 GatherSeq.insert(InsElt); 5681 CSEBlocks.insert(InsElt->getParent()); 5682 // Add to our 'need-to-extract' list. 5683 if (TreeEntry *Entry = getTreeEntry(V)) { 5684 // Find which lane we need to extract. 5685 unsigned FoundLane = Entry->findLaneForValue(V); 5686 ExternalUses.emplace_back(V, InsElt, FoundLane); 5687 } 5688 return Vec; 5689 }; 5690 Value *Val0 = 5691 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 5692 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 5693 Value *Vec = PoisonValue::get(VecTy); 5694 SmallVector<int> NonConsts; 5695 // Insert constant values at first. 5696 for (int I = 0, E = VL.size(); I < E; ++I) { 5697 if (PostponedIndices.contains(I)) 5698 continue; 5699 if (!isConstant(VL[I])) { 5700 NonConsts.push_back(I); 5701 continue; 5702 } 5703 Vec = CreateInsertElement(Vec, VL[I], I); 5704 } 5705 // Insert non-constant values. 5706 for (int I : NonConsts) 5707 Vec = CreateInsertElement(Vec, VL[I], I); 5708 // Append instructions, which are/may be part of the loop, in the end to make 5709 // it possible to hoist non-loop-based instructions. 5710 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 5711 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 5712 5713 return Vec; 5714 } 5715 5716 namespace { 5717 /// Merges shuffle masks and emits final shuffle instruction, if required. 5718 class ShuffleInstructionBuilder { 5719 IRBuilderBase &Builder; 5720 const unsigned VF = 0; 5721 bool IsFinalized = false; 5722 SmallVector<int, 4> Mask; 5723 5724 public: 5725 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF) 5726 : Builder(Builder), VF(VF) {} 5727 5728 /// Adds a mask, inverting it before applying. 5729 void addInversedMask(ArrayRef<unsigned> SubMask) { 5730 if (SubMask.empty()) 5731 return; 5732 SmallVector<int, 4> NewMask; 5733 inversePermutation(SubMask, NewMask); 5734 addMask(NewMask); 5735 } 5736 5737 /// Functions adds masks, merging them into single one. 5738 void addMask(ArrayRef<unsigned> SubMask) { 5739 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 5740 addMask(NewMask); 5741 } 5742 5743 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 5744 5745 Value *finalize(Value *V) { 5746 IsFinalized = true; 5747 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 5748 if (VF == ValueVF && Mask.empty()) 5749 return V; 5750 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 5751 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 5752 addMask(NormalizedMask); 5753 5754 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 5755 return V; 5756 return Builder.CreateShuffleVector(V, Mask, "shuffle"); 5757 } 5758 5759 ~ShuffleInstructionBuilder() { 5760 assert((IsFinalized || Mask.empty()) && 5761 "Shuffle construction must be finalized."); 5762 } 5763 }; 5764 } // namespace 5765 5766 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 5767 unsigned VF = VL.size(); 5768 InstructionsState S = getSameOpcode(VL); 5769 if (S.getOpcode()) { 5770 if (TreeEntry *E = getTreeEntry(S.OpValue)) 5771 if (E->isSame(VL)) { 5772 Value *V = vectorizeTree(E); 5773 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 5774 if (!E->ReuseShuffleIndices.empty()) { 5775 // Reshuffle to get only unique values. 5776 // If some of the scalars are duplicated in the vectorization tree 5777 // entry, we do not vectorize them but instead generate a mask for 5778 // the reuses. But if there are several users of the same entry, 5779 // they may have different vectorization factors. This is especially 5780 // important for PHI nodes. In this case, we need to adapt the 5781 // resulting instruction for the user vectorization factor and have 5782 // to reshuffle it again to take only unique elements of the vector. 5783 // Without this code the function incorrectly returns reduced vector 5784 // instruction with the same elements, not with the unique ones. 5785 5786 // block: 5787 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 5788 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 5789 // ... (use %2) 5790 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 5791 // br %block 5792 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 5793 SmallSet<int, 4> UsedIdxs; 5794 int Pos = 0; 5795 int Sz = VL.size(); 5796 for (int Idx : E->ReuseShuffleIndices) { 5797 if (Idx != Sz && Idx != UndefMaskElem && 5798 UsedIdxs.insert(Idx).second) 5799 UniqueIdxs[Idx] = Pos; 5800 ++Pos; 5801 } 5802 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 5803 "less than original vector size."); 5804 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 5805 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 5806 } else { 5807 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 5808 "Expected vectorization factor less " 5809 "than original vector size."); 5810 SmallVector<int> UniformMask(VF, 0); 5811 std::iota(UniformMask.begin(), UniformMask.end(), 0); 5812 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 5813 } 5814 } 5815 return V; 5816 } 5817 } 5818 5819 // Check that every instruction appears once in this bundle. 5820 SmallVector<int> ReuseShuffleIndicies; 5821 SmallVector<Value *> UniqueValues; 5822 if (VL.size() > 2) { 5823 DenseMap<Value *, unsigned> UniquePositions; 5824 unsigned NumValues = 5825 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 5826 return !isa<UndefValue>(V); 5827 }).base()); 5828 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 5829 int UniqueVals = 0; 5830 for (Value *V : VL.drop_back(VL.size() - VF)) { 5831 if (isa<UndefValue>(V)) { 5832 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 5833 continue; 5834 } 5835 if (isConstant(V)) { 5836 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 5837 UniqueValues.emplace_back(V); 5838 continue; 5839 } 5840 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 5841 ReuseShuffleIndicies.emplace_back(Res.first->second); 5842 if (Res.second) { 5843 UniqueValues.emplace_back(V); 5844 ++UniqueVals; 5845 } 5846 } 5847 if (UniqueVals == 1 && UniqueValues.size() == 1) { 5848 // Emit pure splat vector. 5849 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 5850 UndefMaskElem); 5851 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 5852 ReuseShuffleIndicies.clear(); 5853 UniqueValues.clear(); 5854 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 5855 } 5856 UniqueValues.append(VF - UniqueValues.size(), 5857 PoisonValue::get(VL[0]->getType())); 5858 VL = UniqueValues; 5859 } 5860 5861 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF); 5862 Value *Vec = gather(VL); 5863 if (!ReuseShuffleIndicies.empty()) { 5864 ShuffleBuilder.addMask(ReuseShuffleIndicies); 5865 Vec = ShuffleBuilder.finalize(Vec); 5866 if (auto *I = dyn_cast<Instruction>(Vec)) { 5867 GatherSeq.insert(I); 5868 CSEBlocks.insert(I->getParent()); 5869 } 5870 } 5871 return Vec; 5872 } 5873 5874 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 5875 IRBuilder<>::InsertPointGuard Guard(Builder); 5876 5877 if (E->VectorizedValue) { 5878 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 5879 return E->VectorizedValue; 5880 } 5881 5882 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 5883 unsigned VF = E->Scalars.size(); 5884 if (NeedToShuffleReuses) 5885 VF = E->ReuseShuffleIndices.size(); 5886 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF); 5887 if (E->State == TreeEntry::NeedToGather) { 5888 if (E->getMainOp()) 5889 setInsertPointAfterBundle(E); 5890 Value *Vec; 5891 SmallVector<int> Mask; 5892 SmallVector<const TreeEntry *> Entries; 5893 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 5894 isGatherShuffledEntry(E, Mask, Entries); 5895 if (Shuffle.hasValue()) { 5896 assert((Entries.size() == 1 || Entries.size() == 2) && 5897 "Expected shuffle of 1 or 2 entries."); 5898 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 5899 Entries.back()->VectorizedValue, Mask); 5900 } else { 5901 Vec = gather(E->Scalars); 5902 } 5903 if (NeedToShuffleReuses) { 5904 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5905 Vec = ShuffleBuilder.finalize(Vec); 5906 if (auto *I = dyn_cast<Instruction>(Vec)) { 5907 GatherSeq.insert(I); 5908 CSEBlocks.insert(I->getParent()); 5909 } 5910 } 5911 E->VectorizedValue = Vec; 5912 return Vec; 5913 } 5914 5915 assert((E->State == TreeEntry::Vectorize || 5916 E->State == TreeEntry::ScatterVectorize) && 5917 "Unhandled state"); 5918 unsigned ShuffleOrOp = 5919 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 5920 Instruction *VL0 = E->getMainOp(); 5921 Type *ScalarTy = VL0->getType(); 5922 if (auto *Store = dyn_cast<StoreInst>(VL0)) 5923 ScalarTy = Store->getValueOperand()->getType(); 5924 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 5925 ScalarTy = IE->getOperand(1)->getType(); 5926 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 5927 switch (ShuffleOrOp) { 5928 case Instruction::PHI: { 5929 assert( 5930 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 5931 "PHI reordering is free."); 5932 auto *PH = cast<PHINode>(VL0); 5933 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 5934 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 5935 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 5936 Value *V = NewPhi; 5937 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5938 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5939 V = ShuffleBuilder.finalize(V); 5940 5941 E->VectorizedValue = V; 5942 5943 // PHINodes may have multiple entries from the same block. We want to 5944 // visit every block once. 5945 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 5946 5947 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 5948 ValueList Operands; 5949 BasicBlock *IBB = PH->getIncomingBlock(i); 5950 5951 if (!VisitedBBs.insert(IBB).second) { 5952 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 5953 continue; 5954 } 5955 5956 Builder.SetInsertPoint(IBB->getTerminator()); 5957 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 5958 Value *Vec = vectorizeTree(E->getOperand(i)); 5959 NewPhi->addIncoming(Vec, IBB); 5960 } 5961 5962 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 5963 "Invalid number of incoming values"); 5964 return V; 5965 } 5966 5967 case Instruction::ExtractElement: { 5968 Value *V = E->getSingleOperand(0); 5969 Builder.SetInsertPoint(VL0); 5970 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5971 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5972 V = ShuffleBuilder.finalize(V); 5973 E->VectorizedValue = V; 5974 return V; 5975 } 5976 case Instruction::ExtractValue: { 5977 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 5978 Builder.SetInsertPoint(LI); 5979 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 5980 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 5981 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 5982 Value *NewV = propagateMetadata(V, E->Scalars); 5983 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5984 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5985 NewV = ShuffleBuilder.finalize(NewV); 5986 E->VectorizedValue = NewV; 5987 return NewV; 5988 } 5989 case Instruction::InsertElement: { 5990 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 5991 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 5992 Value *V = vectorizeTree(E->getOperand(1)); 5993 5994 // Create InsertVector shuffle if necessary 5995 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 5996 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 5997 })); 5998 const unsigned NumElts = 5999 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 6000 const unsigned NumScalars = E->Scalars.size(); 6001 6002 unsigned Offset = *getInsertIndex(VL0, 0); 6003 assert(Offset < NumElts && "Failed to find vector index offset"); 6004 6005 // Create shuffle to resize vector 6006 SmallVector<int> Mask; 6007 if (!E->ReorderIndices.empty()) { 6008 inversePermutation(E->ReorderIndices, Mask); 6009 Mask.append(NumElts - NumScalars, UndefMaskElem); 6010 } else { 6011 Mask.assign(NumElts, UndefMaskElem); 6012 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 6013 } 6014 // Create InsertVector shuffle if necessary 6015 bool IsIdentity = true; 6016 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 6017 Mask.swap(PrevMask); 6018 for (unsigned I = 0; I < NumScalars; ++I) { 6019 Value *Scalar = E->Scalars[PrevMask[I]]; 6020 Optional<int> InsertIdx = getInsertIndex(Scalar, 0); 6021 if (!InsertIdx || *InsertIdx == UndefMaskElem) 6022 continue; 6023 IsIdentity &= *InsertIdx - Offset == I; 6024 Mask[*InsertIdx - Offset] = I; 6025 } 6026 if (!IsIdentity || NumElts != NumScalars) 6027 V = Builder.CreateShuffleVector(V, Mask); 6028 6029 if ((!IsIdentity || Offset != 0 || 6030 !isa<UndefValue>(FirstInsert->getOperand(0))) && 6031 NumElts != NumScalars) { 6032 SmallVector<int> InsertMask(NumElts); 6033 std::iota(InsertMask.begin(), InsertMask.end(), 0); 6034 for (unsigned I = 0; I < NumElts; I++) { 6035 if (Mask[I] != UndefMaskElem) 6036 InsertMask[Offset + I] = NumElts + I; 6037 } 6038 6039 V = Builder.CreateShuffleVector( 6040 FirstInsert->getOperand(0), V, InsertMask, 6041 cast<Instruction>(E->Scalars.back())->getName()); 6042 } 6043 6044 ++NumVectorInstructions; 6045 E->VectorizedValue = V; 6046 return V; 6047 } 6048 case Instruction::ZExt: 6049 case Instruction::SExt: 6050 case Instruction::FPToUI: 6051 case Instruction::FPToSI: 6052 case Instruction::FPExt: 6053 case Instruction::PtrToInt: 6054 case Instruction::IntToPtr: 6055 case Instruction::SIToFP: 6056 case Instruction::UIToFP: 6057 case Instruction::Trunc: 6058 case Instruction::FPTrunc: 6059 case Instruction::BitCast: { 6060 setInsertPointAfterBundle(E); 6061 6062 Value *InVec = vectorizeTree(E->getOperand(0)); 6063 6064 if (E->VectorizedValue) { 6065 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6066 return E->VectorizedValue; 6067 } 6068 6069 auto *CI = cast<CastInst>(VL0); 6070 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 6071 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6072 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6073 V = ShuffleBuilder.finalize(V); 6074 6075 E->VectorizedValue = V; 6076 ++NumVectorInstructions; 6077 return V; 6078 } 6079 case Instruction::FCmp: 6080 case Instruction::ICmp: { 6081 setInsertPointAfterBundle(E); 6082 6083 Value *L = vectorizeTree(E->getOperand(0)); 6084 Value *R = vectorizeTree(E->getOperand(1)); 6085 6086 if (E->VectorizedValue) { 6087 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6088 return E->VectorizedValue; 6089 } 6090 6091 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 6092 Value *V = Builder.CreateCmp(P0, L, R); 6093 propagateIRFlags(V, E->Scalars, VL0); 6094 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6095 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6096 V = ShuffleBuilder.finalize(V); 6097 6098 E->VectorizedValue = V; 6099 ++NumVectorInstructions; 6100 return V; 6101 } 6102 case Instruction::Select: { 6103 setInsertPointAfterBundle(E); 6104 6105 Value *Cond = vectorizeTree(E->getOperand(0)); 6106 Value *True = vectorizeTree(E->getOperand(1)); 6107 Value *False = vectorizeTree(E->getOperand(2)); 6108 6109 if (E->VectorizedValue) { 6110 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6111 return E->VectorizedValue; 6112 } 6113 6114 Value *V = Builder.CreateSelect(Cond, True, False); 6115 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6116 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6117 V = ShuffleBuilder.finalize(V); 6118 6119 E->VectorizedValue = V; 6120 ++NumVectorInstructions; 6121 return V; 6122 } 6123 case Instruction::FNeg: { 6124 setInsertPointAfterBundle(E); 6125 6126 Value *Op = vectorizeTree(E->getOperand(0)); 6127 6128 if (E->VectorizedValue) { 6129 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6130 return E->VectorizedValue; 6131 } 6132 6133 Value *V = Builder.CreateUnOp( 6134 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 6135 propagateIRFlags(V, E->Scalars, VL0); 6136 if (auto *I = dyn_cast<Instruction>(V)) 6137 V = propagateMetadata(I, E->Scalars); 6138 6139 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6140 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6141 V = ShuffleBuilder.finalize(V); 6142 6143 E->VectorizedValue = V; 6144 ++NumVectorInstructions; 6145 6146 return V; 6147 } 6148 case Instruction::Add: 6149 case Instruction::FAdd: 6150 case Instruction::Sub: 6151 case Instruction::FSub: 6152 case Instruction::Mul: 6153 case Instruction::FMul: 6154 case Instruction::UDiv: 6155 case Instruction::SDiv: 6156 case Instruction::FDiv: 6157 case Instruction::URem: 6158 case Instruction::SRem: 6159 case Instruction::FRem: 6160 case Instruction::Shl: 6161 case Instruction::LShr: 6162 case Instruction::AShr: 6163 case Instruction::And: 6164 case Instruction::Or: 6165 case Instruction::Xor: { 6166 setInsertPointAfterBundle(E); 6167 6168 Value *LHS = vectorizeTree(E->getOperand(0)); 6169 Value *RHS = vectorizeTree(E->getOperand(1)); 6170 6171 if (E->VectorizedValue) { 6172 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6173 return E->VectorizedValue; 6174 } 6175 6176 Value *V = Builder.CreateBinOp( 6177 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 6178 RHS); 6179 propagateIRFlags(V, E->Scalars, VL0); 6180 if (auto *I = dyn_cast<Instruction>(V)) 6181 V = propagateMetadata(I, E->Scalars); 6182 6183 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6184 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6185 V = ShuffleBuilder.finalize(V); 6186 6187 E->VectorizedValue = V; 6188 ++NumVectorInstructions; 6189 6190 return V; 6191 } 6192 case Instruction::Load: { 6193 // Loads are inserted at the head of the tree because we don't want to 6194 // sink them all the way down past store instructions. 6195 setInsertPointAfterBundle(E); 6196 6197 LoadInst *LI = cast<LoadInst>(VL0); 6198 Instruction *NewLI; 6199 unsigned AS = LI->getPointerAddressSpace(); 6200 Value *PO = LI->getPointerOperand(); 6201 if (E->State == TreeEntry::Vectorize) { 6202 6203 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 6204 6205 // The pointer operand uses an in-tree scalar so we add the new BitCast 6206 // to ExternalUses list to make sure that an extract will be generated 6207 // in the future. 6208 if (TreeEntry *Entry = getTreeEntry(PO)) { 6209 // Find which lane we need to extract. 6210 unsigned FoundLane = Entry->findLaneForValue(PO); 6211 ExternalUses.emplace_back(PO, cast<User>(VecPtr), FoundLane); 6212 } 6213 6214 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 6215 } else { 6216 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 6217 Value *VecPtr = vectorizeTree(E->getOperand(0)); 6218 // Use the minimum alignment of the gathered loads. 6219 Align CommonAlignment = LI->getAlign(); 6220 for (Value *V : E->Scalars) 6221 CommonAlignment = 6222 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 6223 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 6224 } 6225 Value *V = propagateMetadata(NewLI, E->Scalars); 6226 6227 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6228 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6229 V = ShuffleBuilder.finalize(V); 6230 E->VectorizedValue = V; 6231 ++NumVectorInstructions; 6232 return V; 6233 } 6234 case Instruction::Store: { 6235 auto *SI = cast<StoreInst>(VL0); 6236 unsigned AS = SI->getPointerAddressSpace(); 6237 6238 setInsertPointAfterBundle(E); 6239 6240 Value *VecValue = vectorizeTree(E->getOperand(0)); 6241 ShuffleBuilder.addMask(E->ReorderIndices); 6242 VecValue = ShuffleBuilder.finalize(VecValue); 6243 6244 Value *ScalarPtr = SI->getPointerOperand(); 6245 Value *VecPtr = Builder.CreateBitCast( 6246 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 6247 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 6248 SI->getAlign()); 6249 6250 // The pointer operand uses an in-tree scalar, so add the new BitCast to 6251 // ExternalUses to make sure that an extract will be generated in the 6252 // future. 6253 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 6254 // Find which lane we need to extract. 6255 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 6256 ExternalUses.push_back( 6257 ExternalUser(ScalarPtr, cast<User>(VecPtr), FoundLane)); 6258 } 6259 6260 Value *V = propagateMetadata(ST, E->Scalars); 6261 6262 E->VectorizedValue = V; 6263 ++NumVectorInstructions; 6264 return V; 6265 } 6266 case Instruction::GetElementPtr: { 6267 setInsertPointAfterBundle(E); 6268 6269 Value *Op0 = vectorizeTree(E->getOperand(0)); 6270 6271 std::vector<Value *> OpVecs; 6272 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 6273 ++j) { 6274 ValueList &VL = E->getOperand(j); 6275 // Need to cast all elements to the same type before vectorization to 6276 // avoid crash. 6277 Type *VL0Ty = VL0->getOperand(j)->getType(); 6278 Type *Ty = llvm::all_of( 6279 VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); }) 6280 ? VL0Ty 6281 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 6282 ->getPointerOperandType() 6283 ->getScalarType()); 6284 for (Value *&V : VL) { 6285 auto *CI = cast<ConstantInt>(V); 6286 V = ConstantExpr::getIntegerCast(CI, Ty, 6287 CI->getValue().isSignBitSet()); 6288 } 6289 Value *OpVec = vectorizeTree(VL); 6290 OpVecs.push_back(OpVec); 6291 } 6292 6293 Value *V = Builder.CreateGEP( 6294 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 6295 if (Instruction *I = dyn_cast<Instruction>(V)) 6296 V = propagateMetadata(I, E->Scalars); 6297 6298 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6299 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6300 V = ShuffleBuilder.finalize(V); 6301 6302 E->VectorizedValue = V; 6303 ++NumVectorInstructions; 6304 6305 return V; 6306 } 6307 case Instruction::Call: { 6308 CallInst *CI = cast<CallInst>(VL0); 6309 setInsertPointAfterBundle(E); 6310 6311 Intrinsic::ID IID = Intrinsic::not_intrinsic; 6312 if (Function *FI = CI->getCalledFunction()) 6313 IID = FI->getIntrinsicID(); 6314 6315 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6316 6317 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 6318 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 6319 VecCallCosts.first <= VecCallCosts.second; 6320 6321 Value *ScalarArg = nullptr; 6322 std::vector<Value *> OpVecs; 6323 SmallVector<Type *, 2> TysForDecl = 6324 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 6325 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 6326 ValueList OpVL; 6327 // Some intrinsics have scalar arguments. This argument should not be 6328 // vectorized. 6329 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 6330 CallInst *CEI = cast<CallInst>(VL0); 6331 ScalarArg = CEI->getArgOperand(j); 6332 OpVecs.push_back(CEI->getArgOperand(j)); 6333 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j)) 6334 TysForDecl.push_back(ScalarArg->getType()); 6335 continue; 6336 } 6337 6338 Value *OpVec = vectorizeTree(E->getOperand(j)); 6339 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 6340 OpVecs.push_back(OpVec); 6341 } 6342 6343 Function *CF; 6344 if (!UseIntrinsic) { 6345 VFShape Shape = 6346 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 6347 VecTy->getNumElements())), 6348 false /*HasGlobalPred*/); 6349 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 6350 } else { 6351 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 6352 } 6353 6354 SmallVector<OperandBundleDef, 1> OpBundles; 6355 CI->getOperandBundlesAsDefs(OpBundles); 6356 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 6357 6358 // The scalar argument uses an in-tree scalar so we add the new vectorized 6359 // call to ExternalUses list to make sure that an extract will be 6360 // generated in the future. 6361 if (ScalarArg) { 6362 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 6363 // Find which lane we need to extract. 6364 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 6365 ExternalUses.push_back( 6366 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 6367 } 6368 } 6369 6370 propagateIRFlags(V, E->Scalars, VL0); 6371 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6372 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6373 V = ShuffleBuilder.finalize(V); 6374 6375 E->VectorizedValue = V; 6376 ++NumVectorInstructions; 6377 return V; 6378 } 6379 case Instruction::ShuffleVector: { 6380 assert(E->isAltShuffle() && 6381 ((Instruction::isBinaryOp(E->getOpcode()) && 6382 Instruction::isBinaryOp(E->getAltOpcode())) || 6383 (Instruction::isCast(E->getOpcode()) && 6384 Instruction::isCast(E->getAltOpcode()))) && 6385 "Invalid Shuffle Vector Operand"); 6386 6387 Value *LHS = nullptr, *RHS = nullptr; 6388 if (Instruction::isBinaryOp(E->getOpcode())) { 6389 setInsertPointAfterBundle(E); 6390 LHS = vectorizeTree(E->getOperand(0)); 6391 RHS = vectorizeTree(E->getOperand(1)); 6392 } else { 6393 setInsertPointAfterBundle(E); 6394 LHS = vectorizeTree(E->getOperand(0)); 6395 } 6396 6397 if (E->VectorizedValue) { 6398 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6399 return E->VectorizedValue; 6400 } 6401 6402 Value *V0, *V1; 6403 if (Instruction::isBinaryOp(E->getOpcode())) { 6404 V0 = Builder.CreateBinOp( 6405 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 6406 V1 = Builder.CreateBinOp( 6407 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 6408 } else { 6409 V0 = Builder.CreateCast( 6410 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 6411 V1 = Builder.CreateCast( 6412 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 6413 } 6414 6415 // Create shuffle to take alternate operations from the vector. 6416 // Also, gather up main and alt scalar ops to propagate IR flags to 6417 // each vector operation. 6418 ValueList OpScalars, AltScalars; 6419 SmallVector<int> Mask; 6420 buildSuffleEntryMask( 6421 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 6422 [E](Instruction *I) { 6423 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 6424 return I->getOpcode() == E->getAltOpcode(); 6425 }, 6426 Mask, &OpScalars, &AltScalars); 6427 6428 propagateIRFlags(V0, OpScalars); 6429 propagateIRFlags(V1, AltScalars); 6430 6431 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 6432 if (Instruction *I = dyn_cast<Instruction>(V)) 6433 V = propagateMetadata(I, E->Scalars); 6434 V = ShuffleBuilder.finalize(V); 6435 6436 E->VectorizedValue = V; 6437 ++NumVectorInstructions; 6438 6439 return V; 6440 } 6441 default: 6442 llvm_unreachable("unknown inst"); 6443 } 6444 return nullptr; 6445 } 6446 6447 Value *BoUpSLP::vectorizeTree() { 6448 ExtraValueToDebugLocsMap ExternallyUsedValues; 6449 return vectorizeTree(ExternallyUsedValues); 6450 } 6451 6452 Value * 6453 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 6454 // All blocks must be scheduled before any instructions are inserted. 6455 for (auto &BSIter : BlocksSchedules) { 6456 scheduleBlock(BSIter.second.get()); 6457 } 6458 6459 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6460 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 6461 6462 // If the vectorized tree can be rewritten in a smaller type, we truncate the 6463 // vectorized root. InstCombine will then rewrite the entire expression. We 6464 // sign extend the extracted values below. 6465 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 6466 if (MinBWs.count(ScalarRoot)) { 6467 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 6468 // If current instr is a phi and not the last phi, insert it after the 6469 // last phi node. 6470 if (isa<PHINode>(I)) 6471 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 6472 else 6473 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 6474 } 6475 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 6476 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 6477 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 6478 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 6479 VectorizableTree[0]->VectorizedValue = Trunc; 6480 } 6481 6482 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 6483 << " values .\n"); 6484 6485 // Extract all of the elements with the external uses. 6486 for (const auto &ExternalUse : ExternalUses) { 6487 Value *Scalar = ExternalUse.Scalar; 6488 llvm::User *User = ExternalUse.User; 6489 6490 // Skip users that we already RAUW. This happens when one instruction 6491 // has multiple uses of the same value. 6492 if (User && !is_contained(Scalar->users(), User)) 6493 continue; 6494 TreeEntry *E = getTreeEntry(Scalar); 6495 assert(E && "Invalid scalar"); 6496 assert(E->State != TreeEntry::NeedToGather && 6497 "Extracting from a gather list"); 6498 6499 Value *Vec = E->VectorizedValue; 6500 assert(Vec && "Can't find vectorizable value"); 6501 6502 Value *Lane = Builder.getInt32(ExternalUse.Lane); 6503 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 6504 if (Scalar->getType() != Vec->getType()) { 6505 Value *Ex; 6506 // "Reuse" the existing extract to improve final codegen. 6507 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 6508 Ex = Builder.CreateExtractElement(ES->getOperand(0), 6509 ES->getOperand(1)); 6510 } else { 6511 Ex = Builder.CreateExtractElement(Vec, Lane); 6512 } 6513 // If necessary, sign-extend or zero-extend ScalarRoot 6514 // to the larger type. 6515 if (!MinBWs.count(ScalarRoot)) 6516 return Ex; 6517 if (MinBWs[ScalarRoot].second) 6518 return Builder.CreateSExt(Ex, Scalar->getType()); 6519 return Builder.CreateZExt(Ex, Scalar->getType()); 6520 } 6521 assert(isa<FixedVectorType>(Scalar->getType()) && 6522 isa<InsertElementInst>(Scalar) && 6523 "In-tree scalar of vector type is not insertelement?"); 6524 return Vec; 6525 }; 6526 // If User == nullptr, the Scalar is used as extra arg. Generate 6527 // ExtractElement instruction and update the record for this scalar in 6528 // ExternallyUsedValues. 6529 if (!User) { 6530 assert(ExternallyUsedValues.count(Scalar) && 6531 "Scalar with nullptr as an external user must be registered in " 6532 "ExternallyUsedValues map"); 6533 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 6534 Builder.SetInsertPoint(VecI->getParent(), 6535 std::next(VecI->getIterator())); 6536 } else { 6537 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6538 } 6539 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6540 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 6541 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 6542 auto It = ExternallyUsedValues.find(Scalar); 6543 assert(It != ExternallyUsedValues.end() && 6544 "Externally used scalar is not found in ExternallyUsedValues"); 6545 NewInstLocs.append(It->second); 6546 ExternallyUsedValues.erase(Scalar); 6547 // Required to update internally referenced instructions. 6548 Scalar->replaceAllUsesWith(NewInst); 6549 continue; 6550 } 6551 6552 // Generate extracts for out-of-tree users. 6553 // Find the insertion point for the extractelement lane. 6554 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 6555 if (PHINode *PH = dyn_cast<PHINode>(User)) { 6556 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 6557 if (PH->getIncomingValue(i) == Scalar) { 6558 Instruction *IncomingTerminator = 6559 PH->getIncomingBlock(i)->getTerminator(); 6560 if (isa<CatchSwitchInst>(IncomingTerminator)) { 6561 Builder.SetInsertPoint(VecI->getParent(), 6562 std::next(VecI->getIterator())); 6563 } else { 6564 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 6565 } 6566 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6567 CSEBlocks.insert(PH->getIncomingBlock(i)); 6568 PH->setOperand(i, NewInst); 6569 } 6570 } 6571 } else { 6572 Builder.SetInsertPoint(cast<Instruction>(User)); 6573 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6574 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 6575 User->replaceUsesOfWith(Scalar, NewInst); 6576 } 6577 } else { 6578 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6579 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6580 CSEBlocks.insert(&F->getEntryBlock()); 6581 User->replaceUsesOfWith(Scalar, NewInst); 6582 } 6583 6584 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 6585 } 6586 6587 // For each vectorized value: 6588 for (auto &TEPtr : VectorizableTree) { 6589 TreeEntry *Entry = TEPtr.get(); 6590 6591 // No need to handle users of gathered values. 6592 if (Entry->State == TreeEntry::NeedToGather) 6593 continue; 6594 6595 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 6596 6597 // For each lane: 6598 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 6599 Value *Scalar = Entry->Scalars[Lane]; 6600 6601 #ifndef NDEBUG 6602 Type *Ty = Scalar->getType(); 6603 if (!Ty->isVoidTy()) { 6604 for (User *U : Scalar->users()) { 6605 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 6606 6607 // It is legal to delete users in the ignorelist. 6608 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 6609 (isa_and_nonnull<Instruction>(U) && 6610 isDeleted(cast<Instruction>(U)))) && 6611 "Deleting out-of-tree value"); 6612 } 6613 } 6614 #endif 6615 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 6616 eraseInstruction(cast<Instruction>(Scalar)); 6617 } 6618 } 6619 6620 Builder.ClearInsertionPoint(); 6621 InstrElementSize.clear(); 6622 6623 return VectorizableTree[0]->VectorizedValue; 6624 } 6625 6626 void BoUpSLP::optimizeGatherSequence() { 6627 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 6628 << " gather sequences instructions.\n"); 6629 // LICM InsertElementInst sequences. 6630 for (Instruction *I : GatherSeq) { 6631 if (isDeleted(I)) 6632 continue; 6633 6634 // Check if this block is inside a loop. 6635 Loop *L = LI->getLoopFor(I->getParent()); 6636 if (!L) 6637 continue; 6638 6639 // Check if it has a preheader. 6640 BasicBlock *PreHeader = L->getLoopPreheader(); 6641 if (!PreHeader) 6642 continue; 6643 6644 // If the vector or the element that we insert into it are 6645 // instructions that are defined in this basic block then we can't 6646 // hoist this instruction. 6647 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 6648 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 6649 if (Op0 && L->contains(Op0)) 6650 continue; 6651 if (Op1 && L->contains(Op1)) 6652 continue; 6653 6654 // We can hoist this instruction. Move it to the pre-header. 6655 I->moveBefore(PreHeader->getTerminator()); 6656 } 6657 6658 // Make a list of all reachable blocks in our CSE queue. 6659 SmallVector<const DomTreeNode *, 8> CSEWorkList; 6660 CSEWorkList.reserve(CSEBlocks.size()); 6661 for (BasicBlock *BB : CSEBlocks) 6662 if (DomTreeNode *N = DT->getNode(BB)) { 6663 assert(DT->isReachableFromEntry(N)); 6664 CSEWorkList.push_back(N); 6665 } 6666 6667 // Sort blocks by domination. This ensures we visit a block after all blocks 6668 // dominating it are visited. 6669 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 6670 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 6671 "Different nodes should have different DFS numbers"); 6672 return A->getDFSNumIn() < B->getDFSNumIn(); 6673 }); 6674 6675 // Perform O(N^2) search over the gather sequences and merge identical 6676 // instructions. TODO: We can further optimize this scan if we split the 6677 // instructions into different buckets based on the insert lane. 6678 SmallVector<Instruction *, 16> Visited; 6679 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 6680 assert(*I && 6681 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 6682 "Worklist not sorted properly!"); 6683 BasicBlock *BB = (*I)->getBlock(); 6684 // For all instructions in blocks containing gather sequences: 6685 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 6686 if (isDeleted(&In)) 6687 continue; 6688 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 6689 !isa<ShuffleVectorInst>(&In)) 6690 continue; 6691 6692 // Check if we can replace this instruction with any of the 6693 // visited instructions. 6694 bool Replaced = false; 6695 for (Instruction *v : Visited) { 6696 if (In.isIdenticalTo(v) && 6697 DT->dominates(v->getParent(), In.getParent())) { 6698 In.replaceAllUsesWith(v); 6699 eraseInstruction(&In); 6700 Replaced = true; 6701 break; 6702 } 6703 } 6704 if (!Replaced) { 6705 assert(!is_contained(Visited, &In)); 6706 Visited.push_back(&In); 6707 } 6708 } 6709 } 6710 CSEBlocks.clear(); 6711 GatherSeq.clear(); 6712 } 6713 6714 // Groups the instructions to a bundle (which is then a single scheduling entity) 6715 // and schedules instructions until the bundle gets ready. 6716 Optional<BoUpSLP::ScheduleData *> 6717 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 6718 const InstructionsState &S) { 6719 // No need to schedule PHIs, insertelement, extractelement and extractvalue 6720 // instructions. 6721 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue)) 6722 return nullptr; 6723 6724 // Initialize the instruction bundle. 6725 Instruction *OldScheduleEnd = ScheduleEnd; 6726 ScheduleData *PrevInBundle = nullptr; 6727 ScheduleData *Bundle = nullptr; 6728 bool ReSchedule = false; 6729 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 6730 6731 auto &&TryScheduleBundle = [this, OldScheduleEnd, SLP](bool ReSchedule, 6732 ScheduleData *Bundle) { 6733 // The scheduling region got new instructions at the lower end (or it is a 6734 // new region for the first bundle). This makes it necessary to 6735 // recalculate all dependencies. 6736 // It is seldom that this needs to be done a second time after adding the 6737 // initial bundle to the region. 6738 if (ScheduleEnd != OldScheduleEnd) { 6739 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 6740 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 6741 ReSchedule = true; 6742 } 6743 if (ReSchedule) { 6744 resetSchedule(); 6745 initialFillReadyList(ReadyInsts); 6746 } 6747 if (Bundle) { 6748 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 6749 << " in block " << BB->getName() << "\n"); 6750 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 6751 } 6752 6753 // Now try to schedule the new bundle or (if no bundle) just calculate 6754 // dependencies. As soon as the bundle is "ready" it means that there are no 6755 // cyclic dependencies and we can schedule it. Note that's important that we 6756 // don't "schedule" the bundle yet (see cancelScheduling). 6757 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 6758 !ReadyInsts.empty()) { 6759 ScheduleData *Picked = ReadyInsts.pop_back_val(); 6760 if (Picked->isSchedulingEntity() && Picked->isReady()) 6761 schedule(Picked, ReadyInsts); 6762 } 6763 }; 6764 6765 // Make sure that the scheduling region contains all 6766 // instructions of the bundle. 6767 for (Value *V : VL) { 6768 if (!extendSchedulingRegion(V, S)) { 6769 // If the scheduling region got new instructions at the lower end (or it 6770 // is a new region for the first bundle). This makes it necessary to 6771 // recalculate all dependencies. 6772 // Otherwise the compiler may crash trying to incorrectly calculate 6773 // dependencies and emit instruction in the wrong order at the actual 6774 // scheduling. 6775 TryScheduleBundle(/*ReSchedule=*/false, nullptr); 6776 return None; 6777 } 6778 } 6779 6780 for (Value *V : VL) { 6781 ScheduleData *BundleMember = getScheduleData(V); 6782 assert(BundleMember && 6783 "no ScheduleData for bundle member (maybe not in same basic block)"); 6784 if (BundleMember->IsScheduled) { 6785 // A bundle member was scheduled as single instruction before and now 6786 // needs to be scheduled as part of the bundle. We just get rid of the 6787 // existing schedule. 6788 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 6789 << " was already scheduled\n"); 6790 ReSchedule = true; 6791 } 6792 assert(BundleMember->isSchedulingEntity() && 6793 "bundle member already part of other bundle"); 6794 if (PrevInBundle) { 6795 PrevInBundle->NextInBundle = BundleMember; 6796 } else { 6797 Bundle = BundleMember; 6798 } 6799 BundleMember->UnscheduledDepsInBundle = 0; 6800 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 6801 6802 // Group the instructions to a bundle. 6803 BundleMember->FirstInBundle = Bundle; 6804 PrevInBundle = BundleMember; 6805 } 6806 assert(Bundle && "Failed to find schedule bundle"); 6807 TryScheduleBundle(ReSchedule, Bundle); 6808 if (!Bundle->isReady()) { 6809 cancelScheduling(VL, S.OpValue); 6810 return None; 6811 } 6812 return Bundle; 6813 } 6814 6815 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 6816 Value *OpValue) { 6817 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue)) 6818 return; 6819 6820 ScheduleData *Bundle = getScheduleData(OpValue); 6821 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 6822 assert(!Bundle->IsScheduled && 6823 "Can't cancel bundle which is already scheduled"); 6824 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 6825 "tried to unbundle something which is not a bundle"); 6826 6827 // Un-bundle: make single instructions out of the bundle. 6828 ScheduleData *BundleMember = Bundle; 6829 while (BundleMember) { 6830 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 6831 BundleMember->FirstInBundle = BundleMember; 6832 ScheduleData *Next = BundleMember->NextInBundle; 6833 BundleMember->NextInBundle = nullptr; 6834 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 6835 if (BundleMember->UnscheduledDepsInBundle == 0) { 6836 ReadyInsts.insert(BundleMember); 6837 } 6838 BundleMember = Next; 6839 } 6840 } 6841 6842 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 6843 // Allocate a new ScheduleData for the instruction. 6844 if (ChunkPos >= ChunkSize) { 6845 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 6846 ChunkPos = 0; 6847 } 6848 return &(ScheduleDataChunks.back()[ChunkPos++]); 6849 } 6850 6851 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 6852 const InstructionsState &S) { 6853 if (getScheduleData(V, isOneOf(S, V))) 6854 return true; 6855 Instruction *I = dyn_cast<Instruction>(V); 6856 assert(I && "bundle member must be an instruction"); 6857 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 6858 "phi nodes/insertelements/extractelements/extractvalues don't need to " 6859 "be scheduled"); 6860 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 6861 ScheduleData *ISD = getScheduleData(I); 6862 if (!ISD) 6863 return false; 6864 assert(isInSchedulingRegion(ISD) && 6865 "ScheduleData not in scheduling region"); 6866 ScheduleData *SD = allocateScheduleDataChunks(); 6867 SD->Inst = I; 6868 SD->init(SchedulingRegionID, S.OpValue); 6869 ExtraScheduleDataMap[I][S.OpValue] = SD; 6870 return true; 6871 }; 6872 if (CheckSheduleForI(I)) 6873 return true; 6874 if (!ScheduleStart) { 6875 // It's the first instruction in the new region. 6876 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 6877 ScheduleStart = I; 6878 ScheduleEnd = I->getNextNode(); 6879 if (isOneOf(S, I) != I) 6880 CheckSheduleForI(I); 6881 assert(ScheduleEnd && "tried to vectorize a terminator?"); 6882 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 6883 return true; 6884 } 6885 // Search up and down at the same time, because we don't know if the new 6886 // instruction is above or below the existing scheduling region. 6887 BasicBlock::reverse_iterator UpIter = 6888 ++ScheduleStart->getIterator().getReverse(); 6889 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 6890 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 6891 BasicBlock::iterator LowerEnd = BB->end(); 6892 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 6893 &*DownIter != I) { 6894 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 6895 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 6896 return false; 6897 } 6898 6899 ++UpIter; 6900 ++DownIter; 6901 } 6902 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 6903 assert(I->getParent() == ScheduleStart->getParent() && 6904 "Instruction is in wrong basic block."); 6905 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 6906 ScheduleStart = I; 6907 if (isOneOf(S, I) != I) 6908 CheckSheduleForI(I); 6909 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 6910 << "\n"); 6911 return true; 6912 } 6913 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 6914 "Expected to reach top of the basic block or instruction down the " 6915 "lower end."); 6916 assert(I->getParent() == ScheduleEnd->getParent() && 6917 "Instruction is in wrong basic block."); 6918 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 6919 nullptr); 6920 ScheduleEnd = I->getNextNode(); 6921 if (isOneOf(S, I) != I) 6922 CheckSheduleForI(I); 6923 assert(ScheduleEnd && "tried to vectorize a terminator?"); 6924 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 6925 return true; 6926 } 6927 6928 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 6929 Instruction *ToI, 6930 ScheduleData *PrevLoadStore, 6931 ScheduleData *NextLoadStore) { 6932 ScheduleData *CurrentLoadStore = PrevLoadStore; 6933 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 6934 ScheduleData *SD = ScheduleDataMap[I]; 6935 if (!SD) { 6936 SD = allocateScheduleDataChunks(); 6937 ScheduleDataMap[I] = SD; 6938 SD->Inst = I; 6939 } 6940 assert(!isInSchedulingRegion(SD) && 6941 "new ScheduleData already in scheduling region"); 6942 SD->init(SchedulingRegionID, I); 6943 6944 if (I->mayReadOrWriteMemory() && 6945 (!isa<IntrinsicInst>(I) || 6946 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 6947 cast<IntrinsicInst>(I)->getIntrinsicID() != 6948 Intrinsic::pseudoprobe))) { 6949 // Update the linked list of memory accessing instructions. 6950 if (CurrentLoadStore) { 6951 CurrentLoadStore->NextLoadStore = SD; 6952 } else { 6953 FirstLoadStoreInRegion = SD; 6954 } 6955 CurrentLoadStore = SD; 6956 } 6957 } 6958 if (NextLoadStore) { 6959 if (CurrentLoadStore) 6960 CurrentLoadStore->NextLoadStore = NextLoadStore; 6961 } else { 6962 LastLoadStoreInRegion = CurrentLoadStore; 6963 } 6964 } 6965 6966 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 6967 bool InsertInReadyList, 6968 BoUpSLP *SLP) { 6969 assert(SD->isSchedulingEntity()); 6970 6971 SmallVector<ScheduleData *, 10> WorkList; 6972 WorkList.push_back(SD); 6973 6974 while (!WorkList.empty()) { 6975 ScheduleData *SD = WorkList.pop_back_val(); 6976 6977 ScheduleData *BundleMember = SD; 6978 while (BundleMember) { 6979 assert(isInSchedulingRegion(BundleMember)); 6980 if (!BundleMember->hasValidDependencies()) { 6981 6982 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 6983 << "\n"); 6984 BundleMember->Dependencies = 0; 6985 BundleMember->resetUnscheduledDeps(); 6986 6987 // Handle def-use chain dependencies. 6988 if (BundleMember->OpValue != BundleMember->Inst) { 6989 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 6990 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 6991 BundleMember->Dependencies++; 6992 ScheduleData *DestBundle = UseSD->FirstInBundle; 6993 if (!DestBundle->IsScheduled) 6994 BundleMember->incrementUnscheduledDeps(1); 6995 if (!DestBundle->hasValidDependencies()) 6996 WorkList.push_back(DestBundle); 6997 } 6998 } else { 6999 for (User *U : BundleMember->Inst->users()) { 7000 if (isa<Instruction>(U)) { 7001 ScheduleData *UseSD = getScheduleData(U); 7002 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 7003 BundleMember->Dependencies++; 7004 ScheduleData *DestBundle = UseSD->FirstInBundle; 7005 if (!DestBundle->IsScheduled) 7006 BundleMember->incrementUnscheduledDeps(1); 7007 if (!DestBundle->hasValidDependencies()) 7008 WorkList.push_back(DestBundle); 7009 } 7010 } else { 7011 // I'm not sure if this can ever happen. But we need to be safe. 7012 // This lets the instruction/bundle never be scheduled and 7013 // eventually disable vectorization. 7014 BundleMember->Dependencies++; 7015 BundleMember->incrementUnscheduledDeps(1); 7016 } 7017 } 7018 } 7019 7020 // Handle the memory dependencies. 7021 ScheduleData *DepDest = BundleMember->NextLoadStore; 7022 if (DepDest) { 7023 Instruction *SrcInst = BundleMember->Inst; 7024 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 7025 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 7026 unsigned numAliased = 0; 7027 unsigned DistToSrc = 1; 7028 7029 while (DepDest) { 7030 assert(isInSchedulingRegion(DepDest)); 7031 7032 // We have two limits to reduce the complexity: 7033 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 7034 // SLP->isAliased (which is the expensive part in this loop). 7035 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 7036 // the whole loop (even if the loop is fast, it's quadratic). 7037 // It's important for the loop break condition (see below) to 7038 // check this limit even between two read-only instructions. 7039 if (DistToSrc >= MaxMemDepDistance || 7040 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 7041 (numAliased >= AliasedCheckLimit || 7042 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 7043 7044 // We increment the counter only if the locations are aliased 7045 // (instead of counting all alias checks). This gives a better 7046 // balance between reduced runtime and accurate dependencies. 7047 numAliased++; 7048 7049 DepDest->MemoryDependencies.push_back(BundleMember); 7050 BundleMember->Dependencies++; 7051 ScheduleData *DestBundle = DepDest->FirstInBundle; 7052 if (!DestBundle->IsScheduled) { 7053 BundleMember->incrementUnscheduledDeps(1); 7054 } 7055 if (!DestBundle->hasValidDependencies()) { 7056 WorkList.push_back(DestBundle); 7057 } 7058 } 7059 DepDest = DepDest->NextLoadStore; 7060 7061 // Example, explaining the loop break condition: Let's assume our 7062 // starting instruction is i0 and MaxMemDepDistance = 3. 7063 // 7064 // +--------v--v--v 7065 // i0,i1,i2,i3,i4,i5,i6,i7,i8 7066 // +--------^--^--^ 7067 // 7068 // MaxMemDepDistance let us stop alias-checking at i3 and we add 7069 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 7070 // Previously we already added dependencies from i3 to i6,i7,i8 7071 // (because of MaxMemDepDistance). As we added a dependency from 7072 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 7073 // and we can abort this loop at i6. 7074 if (DistToSrc >= 2 * MaxMemDepDistance) 7075 break; 7076 DistToSrc++; 7077 } 7078 } 7079 } 7080 BundleMember = BundleMember->NextInBundle; 7081 } 7082 if (InsertInReadyList && SD->isReady()) { 7083 ReadyInsts.push_back(SD); 7084 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 7085 << "\n"); 7086 } 7087 } 7088 } 7089 7090 void BoUpSLP::BlockScheduling::resetSchedule() { 7091 assert(ScheduleStart && 7092 "tried to reset schedule on block which has not been scheduled"); 7093 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 7094 doForAllOpcodes(I, [&](ScheduleData *SD) { 7095 assert(isInSchedulingRegion(SD) && 7096 "ScheduleData not in scheduling region"); 7097 SD->IsScheduled = false; 7098 SD->resetUnscheduledDeps(); 7099 }); 7100 } 7101 ReadyInsts.clear(); 7102 } 7103 7104 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 7105 if (!BS->ScheduleStart) 7106 return; 7107 7108 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 7109 7110 BS->resetSchedule(); 7111 7112 // For the real scheduling we use a more sophisticated ready-list: it is 7113 // sorted by the original instruction location. This lets the final schedule 7114 // be as close as possible to the original instruction order. 7115 struct ScheduleDataCompare { 7116 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 7117 return SD2->SchedulingPriority < SD1->SchedulingPriority; 7118 } 7119 }; 7120 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 7121 7122 // Ensure that all dependency data is updated and fill the ready-list with 7123 // initial instructions. 7124 int Idx = 0; 7125 int NumToSchedule = 0; 7126 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 7127 I = I->getNextNode()) { 7128 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 7129 assert((isVectorLikeInstWithConstOps(SD->Inst) || 7130 SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr)) && 7131 "scheduler and vectorizer bundle mismatch"); 7132 SD->FirstInBundle->SchedulingPriority = Idx++; 7133 if (SD->isSchedulingEntity()) { 7134 BS->calculateDependencies(SD, false, this); 7135 NumToSchedule++; 7136 } 7137 }); 7138 } 7139 BS->initialFillReadyList(ReadyInsts); 7140 7141 Instruction *LastScheduledInst = BS->ScheduleEnd; 7142 7143 // Do the "real" scheduling. 7144 while (!ReadyInsts.empty()) { 7145 ScheduleData *picked = *ReadyInsts.begin(); 7146 ReadyInsts.erase(ReadyInsts.begin()); 7147 7148 // Move the scheduled instruction(s) to their dedicated places, if not 7149 // there yet. 7150 ScheduleData *BundleMember = picked; 7151 while (BundleMember) { 7152 Instruction *pickedInst = BundleMember->Inst; 7153 if (pickedInst->getNextNode() != LastScheduledInst) { 7154 BS->BB->getInstList().remove(pickedInst); 7155 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 7156 pickedInst); 7157 } 7158 LastScheduledInst = pickedInst; 7159 BundleMember = BundleMember->NextInBundle; 7160 } 7161 7162 BS->schedule(picked, ReadyInsts); 7163 NumToSchedule--; 7164 } 7165 assert(NumToSchedule == 0 && "could not schedule all instructions"); 7166 7167 // Avoid duplicate scheduling of the block. 7168 BS->ScheduleStart = nullptr; 7169 } 7170 7171 unsigned BoUpSLP::getVectorElementSize(Value *V) { 7172 // If V is a store, just return the width of the stored value (or value 7173 // truncated just before storing) without traversing the expression tree. 7174 // This is the common case. 7175 if (auto *Store = dyn_cast<StoreInst>(V)) { 7176 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 7177 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 7178 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 7179 } 7180 7181 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 7182 return getVectorElementSize(IEI->getOperand(1)); 7183 7184 auto E = InstrElementSize.find(V); 7185 if (E != InstrElementSize.end()) 7186 return E->second; 7187 7188 // If V is not a store, we can traverse the expression tree to find loads 7189 // that feed it. The type of the loaded value may indicate a more suitable 7190 // width than V's type. We want to base the vector element size on the width 7191 // of memory operations where possible. 7192 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 7193 SmallPtrSet<Instruction *, 16> Visited; 7194 if (auto *I = dyn_cast<Instruction>(V)) { 7195 Worklist.emplace_back(I, I->getParent()); 7196 Visited.insert(I); 7197 } 7198 7199 // Traverse the expression tree in bottom-up order looking for loads. If we 7200 // encounter an instruction we don't yet handle, we give up. 7201 auto Width = 0u; 7202 while (!Worklist.empty()) { 7203 Instruction *I; 7204 BasicBlock *Parent; 7205 std::tie(I, Parent) = Worklist.pop_back_val(); 7206 7207 // We should only be looking at scalar instructions here. If the current 7208 // instruction has a vector type, skip. 7209 auto *Ty = I->getType(); 7210 if (isa<VectorType>(Ty)) 7211 continue; 7212 7213 // If the current instruction is a load, update MaxWidth to reflect the 7214 // width of the loaded value. 7215 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 7216 isa<ExtractValueInst>(I)) 7217 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 7218 7219 // Otherwise, we need to visit the operands of the instruction. We only 7220 // handle the interesting cases from buildTree here. If an operand is an 7221 // instruction we haven't yet visited and from the same basic block as the 7222 // user or the use is a PHI node, we add it to the worklist. 7223 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 7224 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 7225 isa<UnaryOperator>(I)) { 7226 for (Use &U : I->operands()) 7227 if (auto *J = dyn_cast<Instruction>(U.get())) 7228 if (Visited.insert(J).second && 7229 (isa<PHINode>(I) || J->getParent() == Parent)) 7230 Worklist.emplace_back(J, J->getParent()); 7231 } else { 7232 break; 7233 } 7234 } 7235 7236 // If we didn't encounter a memory access in the expression tree, or if we 7237 // gave up for some reason, just return the width of V. Otherwise, return the 7238 // maximum width we found. 7239 if (!Width) { 7240 if (auto *CI = dyn_cast<CmpInst>(V)) 7241 V = CI->getOperand(0); 7242 Width = DL->getTypeSizeInBits(V->getType()); 7243 } 7244 7245 for (Instruction *I : Visited) 7246 InstrElementSize[I] = Width; 7247 7248 return Width; 7249 } 7250 7251 // Determine if a value V in a vectorizable expression Expr can be demoted to a 7252 // smaller type with a truncation. We collect the values that will be demoted 7253 // in ToDemote and additional roots that require investigating in Roots. 7254 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 7255 SmallVectorImpl<Value *> &ToDemote, 7256 SmallVectorImpl<Value *> &Roots) { 7257 // We can always demote constants. 7258 if (isa<Constant>(V)) { 7259 ToDemote.push_back(V); 7260 return true; 7261 } 7262 7263 // If the value is not an instruction in the expression with only one use, it 7264 // cannot be demoted. 7265 auto *I = dyn_cast<Instruction>(V); 7266 if (!I || !I->hasOneUse() || !Expr.count(I)) 7267 return false; 7268 7269 switch (I->getOpcode()) { 7270 7271 // We can always demote truncations and extensions. Since truncations can 7272 // seed additional demotion, we save the truncated value. 7273 case Instruction::Trunc: 7274 Roots.push_back(I->getOperand(0)); 7275 break; 7276 case Instruction::ZExt: 7277 case Instruction::SExt: 7278 if (isa<ExtractElementInst>(I->getOperand(0)) || 7279 isa<InsertElementInst>(I->getOperand(0))) 7280 return false; 7281 break; 7282 7283 // We can demote certain binary operations if we can demote both of their 7284 // operands. 7285 case Instruction::Add: 7286 case Instruction::Sub: 7287 case Instruction::Mul: 7288 case Instruction::And: 7289 case Instruction::Or: 7290 case Instruction::Xor: 7291 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 7292 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 7293 return false; 7294 break; 7295 7296 // We can demote selects if we can demote their true and false values. 7297 case Instruction::Select: { 7298 SelectInst *SI = cast<SelectInst>(I); 7299 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 7300 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 7301 return false; 7302 break; 7303 } 7304 7305 // We can demote phis if we can demote all their incoming operands. Note that 7306 // we don't need to worry about cycles since we ensure single use above. 7307 case Instruction::PHI: { 7308 PHINode *PN = cast<PHINode>(I); 7309 for (Value *IncValue : PN->incoming_values()) 7310 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 7311 return false; 7312 break; 7313 } 7314 7315 // Otherwise, conservatively give up. 7316 default: 7317 return false; 7318 } 7319 7320 // Record the value that we can demote. 7321 ToDemote.push_back(V); 7322 return true; 7323 } 7324 7325 void BoUpSLP::computeMinimumValueSizes() { 7326 // If there are no external uses, the expression tree must be rooted by a 7327 // store. We can't demote in-memory values, so there is nothing to do here. 7328 if (ExternalUses.empty()) 7329 return; 7330 7331 // We only attempt to truncate integer expressions. 7332 auto &TreeRoot = VectorizableTree[0]->Scalars; 7333 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 7334 if (!TreeRootIT) 7335 return; 7336 7337 // If the expression is not rooted by a store, these roots should have 7338 // external uses. We will rely on InstCombine to rewrite the expression in 7339 // the narrower type. However, InstCombine only rewrites single-use values. 7340 // This means that if a tree entry other than a root is used externally, it 7341 // must have multiple uses and InstCombine will not rewrite it. The code 7342 // below ensures that only the roots are used externally. 7343 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 7344 for (auto &EU : ExternalUses) 7345 if (!Expr.erase(EU.Scalar)) 7346 return; 7347 if (!Expr.empty()) 7348 return; 7349 7350 // Collect the scalar values of the vectorizable expression. We will use this 7351 // context to determine which values can be demoted. If we see a truncation, 7352 // we mark it as seeding another demotion. 7353 for (auto &EntryPtr : VectorizableTree) 7354 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 7355 7356 // Ensure the roots of the vectorizable tree don't form a cycle. They must 7357 // have a single external user that is not in the vectorizable tree. 7358 for (auto *Root : TreeRoot) 7359 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 7360 return; 7361 7362 // Conservatively determine if we can actually truncate the roots of the 7363 // expression. Collect the values that can be demoted in ToDemote and 7364 // additional roots that require investigating in Roots. 7365 SmallVector<Value *, 32> ToDemote; 7366 SmallVector<Value *, 4> Roots; 7367 for (auto *Root : TreeRoot) 7368 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 7369 return; 7370 7371 // The maximum bit width required to represent all the values that can be 7372 // demoted without loss of precision. It would be safe to truncate the roots 7373 // of the expression to this width. 7374 auto MaxBitWidth = 8u; 7375 7376 // We first check if all the bits of the roots are demanded. If they're not, 7377 // we can truncate the roots to this narrower type. 7378 for (auto *Root : TreeRoot) { 7379 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 7380 MaxBitWidth = std::max<unsigned>( 7381 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 7382 } 7383 7384 // True if the roots can be zero-extended back to their original type, rather 7385 // than sign-extended. We know that if the leading bits are not demanded, we 7386 // can safely zero-extend. So we initialize IsKnownPositive to True. 7387 bool IsKnownPositive = true; 7388 7389 // If all the bits of the roots are demanded, we can try a little harder to 7390 // compute a narrower type. This can happen, for example, if the roots are 7391 // getelementptr indices. InstCombine promotes these indices to the pointer 7392 // width. Thus, all their bits are technically demanded even though the 7393 // address computation might be vectorized in a smaller type. 7394 // 7395 // We start by looking at each entry that can be demoted. We compute the 7396 // maximum bit width required to store the scalar by using ValueTracking to 7397 // compute the number of high-order bits we can truncate. 7398 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 7399 llvm::all_of(TreeRoot, [](Value *R) { 7400 assert(R->hasOneUse() && "Root should have only one use!"); 7401 return isa<GetElementPtrInst>(R->user_back()); 7402 })) { 7403 MaxBitWidth = 8u; 7404 7405 // Determine if the sign bit of all the roots is known to be zero. If not, 7406 // IsKnownPositive is set to False. 7407 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 7408 KnownBits Known = computeKnownBits(R, *DL); 7409 return Known.isNonNegative(); 7410 }); 7411 7412 // Determine the maximum number of bits required to store the scalar 7413 // values. 7414 for (auto *Scalar : ToDemote) { 7415 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 7416 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 7417 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 7418 } 7419 7420 // If we can't prove that the sign bit is zero, we must add one to the 7421 // maximum bit width to account for the unknown sign bit. This preserves 7422 // the existing sign bit so we can safely sign-extend the root back to the 7423 // original type. Otherwise, if we know the sign bit is zero, we will 7424 // zero-extend the root instead. 7425 // 7426 // FIXME: This is somewhat suboptimal, as there will be cases where adding 7427 // one to the maximum bit width will yield a larger-than-necessary 7428 // type. In general, we need to add an extra bit only if we can't 7429 // prove that the upper bit of the original type is equal to the 7430 // upper bit of the proposed smaller type. If these two bits are the 7431 // same (either zero or one) we know that sign-extending from the 7432 // smaller type will result in the same value. Here, since we can't 7433 // yet prove this, we are just making the proposed smaller type 7434 // larger to ensure correctness. 7435 if (!IsKnownPositive) 7436 ++MaxBitWidth; 7437 } 7438 7439 // Round MaxBitWidth up to the next power-of-two. 7440 if (!isPowerOf2_64(MaxBitWidth)) 7441 MaxBitWidth = NextPowerOf2(MaxBitWidth); 7442 7443 // If the maximum bit width we compute is less than the with of the roots' 7444 // type, we can proceed with the narrowing. Otherwise, do nothing. 7445 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 7446 return; 7447 7448 // If we can truncate the root, we must collect additional values that might 7449 // be demoted as a result. That is, those seeded by truncations we will 7450 // modify. 7451 while (!Roots.empty()) 7452 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 7453 7454 // Finally, map the values we can demote to the maximum bit with we computed. 7455 for (auto *Scalar : ToDemote) 7456 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 7457 } 7458 7459 namespace { 7460 7461 /// The SLPVectorizer Pass. 7462 struct SLPVectorizer : public FunctionPass { 7463 SLPVectorizerPass Impl; 7464 7465 /// Pass identification, replacement for typeid 7466 static char ID; 7467 7468 explicit SLPVectorizer() : FunctionPass(ID) { 7469 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 7470 } 7471 7472 bool doInitialization(Module &M) override { return false; } 7473 7474 bool runOnFunction(Function &F) override { 7475 if (skipFunction(F)) 7476 return false; 7477 7478 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 7479 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 7480 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 7481 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 7482 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 7483 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 7484 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 7485 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 7486 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 7487 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 7488 7489 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 7490 } 7491 7492 void getAnalysisUsage(AnalysisUsage &AU) const override { 7493 FunctionPass::getAnalysisUsage(AU); 7494 AU.addRequired<AssumptionCacheTracker>(); 7495 AU.addRequired<ScalarEvolutionWrapperPass>(); 7496 AU.addRequired<AAResultsWrapperPass>(); 7497 AU.addRequired<TargetTransformInfoWrapperPass>(); 7498 AU.addRequired<LoopInfoWrapperPass>(); 7499 AU.addRequired<DominatorTreeWrapperPass>(); 7500 AU.addRequired<DemandedBitsWrapperPass>(); 7501 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 7502 AU.addRequired<InjectTLIMappingsLegacy>(); 7503 AU.addPreserved<LoopInfoWrapperPass>(); 7504 AU.addPreserved<DominatorTreeWrapperPass>(); 7505 AU.addPreserved<AAResultsWrapperPass>(); 7506 AU.addPreserved<GlobalsAAWrapperPass>(); 7507 AU.setPreservesCFG(); 7508 } 7509 }; 7510 7511 } // end anonymous namespace 7512 7513 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 7514 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 7515 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 7516 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 7517 auto *AA = &AM.getResult<AAManager>(F); 7518 auto *LI = &AM.getResult<LoopAnalysis>(F); 7519 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 7520 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 7521 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 7522 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7523 7524 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 7525 if (!Changed) 7526 return PreservedAnalyses::all(); 7527 7528 PreservedAnalyses PA; 7529 PA.preserveSet<CFGAnalyses>(); 7530 return PA; 7531 } 7532 7533 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 7534 TargetTransformInfo *TTI_, 7535 TargetLibraryInfo *TLI_, AAResults *AA_, 7536 LoopInfo *LI_, DominatorTree *DT_, 7537 AssumptionCache *AC_, DemandedBits *DB_, 7538 OptimizationRemarkEmitter *ORE_) { 7539 if (!RunSLPVectorization) 7540 return false; 7541 SE = SE_; 7542 TTI = TTI_; 7543 TLI = TLI_; 7544 AA = AA_; 7545 LI = LI_; 7546 DT = DT_; 7547 AC = AC_; 7548 DB = DB_; 7549 DL = &F.getParent()->getDataLayout(); 7550 7551 Stores.clear(); 7552 GEPs.clear(); 7553 bool Changed = false; 7554 7555 // If the target claims to have no vector registers don't attempt 7556 // vectorization. 7557 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 7558 return false; 7559 7560 // Don't vectorize when the attribute NoImplicitFloat is used. 7561 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 7562 return false; 7563 7564 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 7565 7566 // Use the bottom up slp vectorizer to construct chains that start with 7567 // store instructions. 7568 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 7569 7570 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 7571 // delete instructions. 7572 7573 // Update DFS numbers now so that we can use them for ordering. 7574 DT->updateDFSNumbers(); 7575 7576 // Scan the blocks in the function in post order. 7577 for (auto BB : post_order(&F.getEntryBlock())) { 7578 collectSeedInstructions(BB); 7579 7580 // Vectorize trees that end at stores. 7581 if (!Stores.empty()) { 7582 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 7583 << " underlying objects.\n"); 7584 Changed |= vectorizeStoreChains(R); 7585 } 7586 7587 // Vectorize trees that end at reductions. 7588 Changed |= vectorizeChainsInBlock(BB, R); 7589 7590 // Vectorize the index computations of getelementptr instructions. This 7591 // is primarily intended to catch gather-like idioms ending at 7592 // non-consecutive loads. 7593 if (!GEPs.empty()) { 7594 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 7595 << " underlying objects.\n"); 7596 Changed |= vectorizeGEPIndices(BB, R); 7597 } 7598 } 7599 7600 if (Changed) { 7601 R.optimizeGatherSequence(); 7602 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 7603 } 7604 return Changed; 7605 } 7606 7607 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 7608 unsigned Idx) { 7609 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 7610 << "\n"); 7611 const unsigned Sz = R.getVectorElementSize(Chain[0]); 7612 const unsigned MinVF = R.getMinVecRegSize() / Sz; 7613 unsigned VF = Chain.size(); 7614 7615 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 7616 return false; 7617 7618 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 7619 << "\n"); 7620 7621 R.buildTree(Chain); 7622 if (R.isTreeTinyAndNotFullyVectorizable()) 7623 return false; 7624 if (R.isLoadCombineCandidate()) 7625 return false; 7626 R.reorderTopToBottom(); 7627 R.reorderBottomToTop(); 7628 R.buildExternalUses(); 7629 7630 R.computeMinimumValueSizes(); 7631 7632 InstructionCost Cost = R.getTreeCost(); 7633 7634 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 7635 if (Cost < -SLPCostThreshold) { 7636 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 7637 7638 using namespace ore; 7639 7640 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 7641 cast<StoreInst>(Chain[0])) 7642 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 7643 << " and with tree size " 7644 << NV("TreeSize", R.getTreeSize())); 7645 7646 R.vectorizeTree(); 7647 return true; 7648 } 7649 7650 return false; 7651 } 7652 7653 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 7654 BoUpSLP &R) { 7655 // We may run into multiple chains that merge into a single chain. We mark the 7656 // stores that we vectorized so that we don't visit the same store twice. 7657 BoUpSLP::ValueSet VectorizedStores; 7658 bool Changed = false; 7659 7660 int E = Stores.size(); 7661 SmallBitVector Tails(E, false); 7662 int MaxIter = MaxStoreLookup.getValue(); 7663 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 7664 E, std::make_pair(E, INT_MAX)); 7665 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 7666 int IterCnt; 7667 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 7668 &CheckedPairs, 7669 &ConsecutiveChain](int K, int Idx) { 7670 if (IterCnt >= MaxIter) 7671 return true; 7672 if (CheckedPairs[Idx].test(K)) 7673 return ConsecutiveChain[K].second == 1 && 7674 ConsecutiveChain[K].first == Idx; 7675 ++IterCnt; 7676 CheckedPairs[Idx].set(K); 7677 CheckedPairs[K].set(Idx); 7678 Optional<int> Diff = getPointersDiff( 7679 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 7680 Stores[Idx]->getValueOperand()->getType(), 7681 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 7682 if (!Diff || *Diff == 0) 7683 return false; 7684 int Val = *Diff; 7685 if (Val < 0) { 7686 if (ConsecutiveChain[Idx].second > -Val) { 7687 Tails.set(K); 7688 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 7689 } 7690 return false; 7691 } 7692 if (ConsecutiveChain[K].second <= Val) 7693 return false; 7694 7695 Tails.set(Idx); 7696 ConsecutiveChain[K] = std::make_pair(Idx, Val); 7697 return Val == 1; 7698 }; 7699 // Do a quadratic search on all of the given stores in reverse order and find 7700 // all of the pairs of stores that follow each other. 7701 for (int Idx = E - 1; Idx >= 0; --Idx) { 7702 // If a store has multiple consecutive store candidates, search according 7703 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 7704 // This is because usually pairing with immediate succeeding or preceding 7705 // candidate create the best chance to find slp vectorization opportunity. 7706 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 7707 IterCnt = 0; 7708 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 7709 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 7710 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 7711 break; 7712 } 7713 7714 // Tracks if we tried to vectorize stores starting from the given tail 7715 // already. 7716 SmallBitVector TriedTails(E, false); 7717 // For stores that start but don't end a link in the chain: 7718 for (int Cnt = E; Cnt > 0; --Cnt) { 7719 int I = Cnt - 1; 7720 if (ConsecutiveChain[I].first == E || Tails.test(I)) 7721 continue; 7722 // We found a store instr that starts a chain. Now follow the chain and try 7723 // to vectorize it. 7724 BoUpSLP::ValueList Operands; 7725 // Collect the chain into a list. 7726 while (I != E && !VectorizedStores.count(Stores[I])) { 7727 Operands.push_back(Stores[I]); 7728 Tails.set(I); 7729 if (ConsecutiveChain[I].second != 1) { 7730 // Mark the new end in the chain and go back, if required. It might be 7731 // required if the original stores come in reversed order, for example. 7732 if (ConsecutiveChain[I].first != E && 7733 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 7734 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 7735 TriedTails.set(I); 7736 Tails.reset(ConsecutiveChain[I].first); 7737 if (Cnt < ConsecutiveChain[I].first + 2) 7738 Cnt = ConsecutiveChain[I].first + 2; 7739 } 7740 break; 7741 } 7742 // Move to the next value in the chain. 7743 I = ConsecutiveChain[I].first; 7744 } 7745 assert(!Operands.empty() && "Expected non-empty list of stores."); 7746 7747 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7748 unsigned EltSize = R.getVectorElementSize(Operands[0]); 7749 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 7750 7751 unsigned MinVF = R.getMinVF(EltSize); 7752 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 7753 MaxElts); 7754 7755 // FIXME: Is division-by-2 the correct step? Should we assert that the 7756 // register size is a power-of-2? 7757 unsigned StartIdx = 0; 7758 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 7759 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 7760 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 7761 if (!VectorizedStores.count(Slice.front()) && 7762 !VectorizedStores.count(Slice.back()) && 7763 vectorizeStoreChain(Slice, R, Cnt)) { 7764 // Mark the vectorized stores so that we don't vectorize them again. 7765 VectorizedStores.insert(Slice.begin(), Slice.end()); 7766 Changed = true; 7767 // If we vectorized initial block, no need to try to vectorize it 7768 // again. 7769 if (Cnt == StartIdx) 7770 StartIdx += Size; 7771 Cnt += Size; 7772 continue; 7773 } 7774 ++Cnt; 7775 } 7776 // Check if the whole array was vectorized already - exit. 7777 if (StartIdx >= Operands.size()) 7778 break; 7779 } 7780 } 7781 7782 return Changed; 7783 } 7784 7785 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 7786 // Initialize the collections. We will make a single pass over the block. 7787 Stores.clear(); 7788 GEPs.clear(); 7789 7790 // Visit the store and getelementptr instructions in BB and organize them in 7791 // Stores and GEPs according to the underlying objects of their pointer 7792 // operands. 7793 for (Instruction &I : *BB) { 7794 // Ignore store instructions that are volatile or have a pointer operand 7795 // that doesn't point to a scalar type. 7796 if (auto *SI = dyn_cast<StoreInst>(&I)) { 7797 if (!SI->isSimple()) 7798 continue; 7799 if (!isValidElementType(SI->getValueOperand()->getType())) 7800 continue; 7801 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 7802 } 7803 7804 // Ignore getelementptr instructions that have more than one index, a 7805 // constant index, or a pointer operand that doesn't point to a scalar 7806 // type. 7807 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 7808 auto Idx = GEP->idx_begin()->get(); 7809 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 7810 continue; 7811 if (!isValidElementType(Idx->getType())) 7812 continue; 7813 if (GEP->getType()->isVectorTy()) 7814 continue; 7815 GEPs[GEP->getPointerOperand()].push_back(GEP); 7816 } 7817 } 7818 } 7819 7820 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 7821 if (!A || !B) 7822 return false; 7823 Value *VL[] = {A, B}; 7824 return tryToVectorizeList(VL, R); 7825 } 7826 7827 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 7828 bool LimitForRegisterSize) { 7829 if (VL.size() < 2) 7830 return false; 7831 7832 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 7833 << VL.size() << ".\n"); 7834 7835 // Check that all of the parts are instructions of the same type, 7836 // we permit an alternate opcode via InstructionsState. 7837 InstructionsState S = getSameOpcode(VL); 7838 if (!S.getOpcode()) 7839 return false; 7840 7841 Instruction *I0 = cast<Instruction>(S.OpValue); 7842 // Make sure invalid types (including vector type) are rejected before 7843 // determining vectorization factor for scalar instructions. 7844 for (Value *V : VL) { 7845 Type *Ty = V->getType(); 7846 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 7847 // NOTE: the following will give user internal llvm type name, which may 7848 // not be useful. 7849 R.getORE()->emit([&]() { 7850 std::string type_str; 7851 llvm::raw_string_ostream rso(type_str); 7852 Ty->print(rso); 7853 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 7854 << "Cannot SLP vectorize list: type " 7855 << rso.str() + " is unsupported by vectorizer"; 7856 }); 7857 return false; 7858 } 7859 } 7860 7861 unsigned Sz = R.getVectorElementSize(I0); 7862 unsigned MinVF = R.getMinVF(Sz); 7863 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 7864 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 7865 if (MaxVF < 2) { 7866 R.getORE()->emit([&]() { 7867 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 7868 << "Cannot SLP vectorize list: vectorization factor " 7869 << "less than 2 is not supported"; 7870 }); 7871 return false; 7872 } 7873 7874 bool Changed = false; 7875 bool CandidateFound = false; 7876 InstructionCost MinCost = SLPCostThreshold.getValue(); 7877 Type *ScalarTy = VL[0]->getType(); 7878 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 7879 ScalarTy = IE->getOperand(1)->getType(); 7880 7881 unsigned NextInst = 0, MaxInst = VL.size(); 7882 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 7883 // No actual vectorization should happen, if number of parts is the same as 7884 // provided vectorization factor (i.e. the scalar type is used for vector 7885 // code during codegen). 7886 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 7887 if (TTI->getNumberOfParts(VecTy) == VF) 7888 continue; 7889 for (unsigned I = NextInst; I < MaxInst; ++I) { 7890 unsigned OpsWidth = 0; 7891 7892 if (I + VF > MaxInst) 7893 OpsWidth = MaxInst - I; 7894 else 7895 OpsWidth = VF; 7896 7897 if (!isPowerOf2_32(OpsWidth)) 7898 continue; 7899 7900 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 7901 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 7902 break; 7903 7904 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 7905 // Check that a previous iteration of this loop did not delete the Value. 7906 if (llvm::any_of(Ops, [&R](Value *V) { 7907 auto *I = dyn_cast<Instruction>(V); 7908 return I && R.isDeleted(I); 7909 })) 7910 continue; 7911 7912 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 7913 << "\n"); 7914 7915 R.buildTree(Ops); 7916 if (R.isTreeTinyAndNotFullyVectorizable()) 7917 continue; 7918 R.reorderTopToBottom(); 7919 R.reorderBottomToTop(); 7920 R.buildExternalUses(); 7921 7922 R.computeMinimumValueSizes(); 7923 InstructionCost Cost = R.getTreeCost(); 7924 CandidateFound = true; 7925 MinCost = std::min(MinCost, Cost); 7926 7927 if (Cost < -SLPCostThreshold) { 7928 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 7929 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 7930 cast<Instruction>(Ops[0])) 7931 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 7932 << " and with tree size " 7933 << ore::NV("TreeSize", R.getTreeSize())); 7934 7935 R.vectorizeTree(); 7936 // Move to the next bundle. 7937 I += VF - 1; 7938 NextInst = I + 1; 7939 Changed = true; 7940 } 7941 } 7942 } 7943 7944 if (!Changed && CandidateFound) { 7945 R.getORE()->emit([&]() { 7946 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 7947 << "List vectorization was possible but not beneficial with cost " 7948 << ore::NV("Cost", MinCost) << " >= " 7949 << ore::NV("Treshold", -SLPCostThreshold); 7950 }); 7951 } else if (!Changed) { 7952 R.getORE()->emit([&]() { 7953 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 7954 << "Cannot SLP vectorize list: vectorization was impossible" 7955 << " with available vectorization factors"; 7956 }); 7957 } 7958 return Changed; 7959 } 7960 7961 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 7962 if (!I) 7963 return false; 7964 7965 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 7966 return false; 7967 7968 Value *P = I->getParent(); 7969 7970 // Vectorize in current basic block only. 7971 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 7972 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 7973 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 7974 return false; 7975 7976 // Try to vectorize V. 7977 if (tryToVectorizePair(Op0, Op1, R)) 7978 return true; 7979 7980 auto *A = dyn_cast<BinaryOperator>(Op0); 7981 auto *B = dyn_cast<BinaryOperator>(Op1); 7982 // Try to skip B. 7983 if (B && B->hasOneUse()) { 7984 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 7985 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 7986 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 7987 return true; 7988 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 7989 return true; 7990 } 7991 7992 // Try to skip A. 7993 if (A && A->hasOneUse()) { 7994 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 7995 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 7996 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 7997 return true; 7998 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 7999 return true; 8000 } 8001 return false; 8002 } 8003 8004 namespace { 8005 8006 /// Model horizontal reductions. 8007 /// 8008 /// A horizontal reduction is a tree of reduction instructions that has values 8009 /// that can be put into a vector as its leaves. For example: 8010 /// 8011 /// mul mul mul mul 8012 /// \ / \ / 8013 /// + + 8014 /// \ / 8015 /// + 8016 /// This tree has "mul" as its leaf values and "+" as its reduction 8017 /// instructions. A reduction can feed into a store or a binary operation 8018 /// feeding a phi. 8019 /// ... 8020 /// \ / 8021 /// + 8022 /// | 8023 /// phi += 8024 /// 8025 /// Or: 8026 /// ... 8027 /// \ / 8028 /// + 8029 /// | 8030 /// *p = 8031 /// 8032 class HorizontalReduction { 8033 using ReductionOpsType = SmallVector<Value *, 16>; 8034 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 8035 ReductionOpsListType ReductionOps; 8036 SmallVector<Value *, 32> ReducedVals; 8037 // Use map vector to make stable output. 8038 MapVector<Instruction *, Value *> ExtraArgs; 8039 WeakTrackingVH ReductionRoot; 8040 /// The type of reduction operation. 8041 RecurKind RdxKind; 8042 8043 const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max(); 8044 8045 static bool isCmpSelMinMax(Instruction *I) { 8046 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 8047 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 8048 } 8049 8050 // And/or are potentially poison-safe logical patterns like: 8051 // select x, y, false 8052 // select x, true, y 8053 static bool isBoolLogicOp(Instruction *I) { 8054 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 8055 match(I, m_LogicalOr(m_Value(), m_Value())); 8056 } 8057 8058 /// Checks if instruction is associative and can be vectorized. 8059 static bool isVectorizable(RecurKind Kind, Instruction *I) { 8060 if (Kind == RecurKind::None) 8061 return false; 8062 8063 // Integer ops that map to select instructions or intrinsics are fine. 8064 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 8065 isBoolLogicOp(I)) 8066 return true; 8067 8068 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 8069 // FP min/max are associative except for NaN and -0.0. We do not 8070 // have to rule out -0.0 here because the intrinsic semantics do not 8071 // specify a fixed result for it. 8072 return I->getFastMathFlags().noNaNs(); 8073 } 8074 8075 return I->isAssociative(); 8076 } 8077 8078 static Value *getRdxOperand(Instruction *I, unsigned Index) { 8079 // Poison-safe 'or' takes the form: select X, true, Y 8080 // To make that work with the normal operand processing, we skip the 8081 // true value operand. 8082 // TODO: Change the code and data structures to handle this without a hack. 8083 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 8084 return I->getOperand(2); 8085 return I->getOperand(Index); 8086 } 8087 8088 /// Checks if the ParentStackElem.first should be marked as a reduction 8089 /// operation with an extra argument or as extra argument itself. 8090 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 8091 Value *ExtraArg) { 8092 if (ExtraArgs.count(ParentStackElem.first)) { 8093 ExtraArgs[ParentStackElem.first] = nullptr; 8094 // We ran into something like: 8095 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 8096 // The whole ParentStackElem.first should be considered as an extra value 8097 // in this case. 8098 // Do not perform analysis of remaining operands of ParentStackElem.first 8099 // instruction, this whole instruction is an extra argument. 8100 ParentStackElem.second = INVALID_OPERAND_INDEX; 8101 } else { 8102 // We ran into something like: 8103 // ParentStackElem.first += ... + ExtraArg + ... 8104 ExtraArgs[ParentStackElem.first] = ExtraArg; 8105 } 8106 } 8107 8108 /// Creates reduction operation with the current opcode. 8109 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 8110 Value *RHS, const Twine &Name, bool UseSelect) { 8111 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 8112 switch (Kind) { 8113 case RecurKind::Or: 8114 if (UseSelect && 8115 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 8116 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 8117 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8118 Name); 8119 case RecurKind::And: 8120 if (UseSelect && 8121 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 8122 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 8123 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8124 Name); 8125 case RecurKind::Add: 8126 case RecurKind::Mul: 8127 case RecurKind::Xor: 8128 case RecurKind::FAdd: 8129 case RecurKind::FMul: 8130 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8131 Name); 8132 case RecurKind::FMax: 8133 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 8134 case RecurKind::FMin: 8135 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 8136 case RecurKind::SMax: 8137 if (UseSelect) { 8138 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 8139 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8140 } 8141 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 8142 case RecurKind::SMin: 8143 if (UseSelect) { 8144 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 8145 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8146 } 8147 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 8148 case RecurKind::UMax: 8149 if (UseSelect) { 8150 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 8151 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8152 } 8153 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 8154 case RecurKind::UMin: 8155 if (UseSelect) { 8156 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 8157 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8158 } 8159 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 8160 default: 8161 llvm_unreachable("Unknown reduction operation."); 8162 } 8163 } 8164 8165 /// Creates reduction operation with the current opcode with the IR flags 8166 /// from \p ReductionOps. 8167 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 8168 Value *RHS, const Twine &Name, 8169 const ReductionOpsListType &ReductionOps) { 8170 bool UseSelect = ReductionOps.size() == 2 || 8171 // Logical or/and. 8172 (ReductionOps.size() == 1 && 8173 isa<SelectInst>(ReductionOps.front().front())); 8174 assert((!UseSelect || ReductionOps.size() != 2 || 8175 isa<SelectInst>(ReductionOps[1][0])) && 8176 "Expected cmp + select pairs for reduction"); 8177 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 8178 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 8179 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 8180 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 8181 propagateIRFlags(Op, ReductionOps[1]); 8182 return Op; 8183 } 8184 } 8185 propagateIRFlags(Op, ReductionOps[0]); 8186 return Op; 8187 } 8188 8189 /// Creates reduction operation with the current opcode with the IR flags 8190 /// from \p I. 8191 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 8192 Value *RHS, const Twine &Name, Instruction *I) { 8193 auto *SelI = dyn_cast<SelectInst>(I); 8194 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 8195 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 8196 if (auto *Sel = dyn_cast<SelectInst>(Op)) 8197 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 8198 } 8199 propagateIRFlags(Op, I); 8200 return Op; 8201 } 8202 8203 static RecurKind getRdxKind(Instruction *I) { 8204 assert(I && "Expected instruction for reduction matching"); 8205 TargetTransformInfo::ReductionFlags RdxFlags; 8206 if (match(I, m_Add(m_Value(), m_Value()))) 8207 return RecurKind::Add; 8208 if (match(I, m_Mul(m_Value(), m_Value()))) 8209 return RecurKind::Mul; 8210 if (match(I, m_And(m_Value(), m_Value())) || 8211 match(I, m_LogicalAnd(m_Value(), m_Value()))) 8212 return RecurKind::And; 8213 if (match(I, m_Or(m_Value(), m_Value())) || 8214 match(I, m_LogicalOr(m_Value(), m_Value()))) 8215 return RecurKind::Or; 8216 if (match(I, m_Xor(m_Value(), m_Value()))) 8217 return RecurKind::Xor; 8218 if (match(I, m_FAdd(m_Value(), m_Value()))) 8219 return RecurKind::FAdd; 8220 if (match(I, m_FMul(m_Value(), m_Value()))) 8221 return RecurKind::FMul; 8222 8223 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 8224 return RecurKind::FMax; 8225 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 8226 return RecurKind::FMin; 8227 8228 // This matches either cmp+select or intrinsics. SLP is expected to handle 8229 // either form. 8230 // TODO: If we are canonicalizing to intrinsics, we can remove several 8231 // special-case paths that deal with selects. 8232 if (match(I, m_SMax(m_Value(), m_Value()))) 8233 return RecurKind::SMax; 8234 if (match(I, m_SMin(m_Value(), m_Value()))) 8235 return RecurKind::SMin; 8236 if (match(I, m_UMax(m_Value(), m_Value()))) 8237 return RecurKind::UMax; 8238 if (match(I, m_UMin(m_Value(), m_Value()))) 8239 return RecurKind::UMin; 8240 8241 if (auto *Select = dyn_cast<SelectInst>(I)) { 8242 // Try harder: look for min/max pattern based on instructions producing 8243 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 8244 // During the intermediate stages of SLP, it's very common to have 8245 // pattern like this (since optimizeGatherSequence is run only once 8246 // at the end): 8247 // %1 = extractelement <2 x i32> %a, i32 0 8248 // %2 = extractelement <2 x i32> %a, i32 1 8249 // %cond = icmp sgt i32 %1, %2 8250 // %3 = extractelement <2 x i32> %a, i32 0 8251 // %4 = extractelement <2 x i32> %a, i32 1 8252 // %select = select i1 %cond, i32 %3, i32 %4 8253 CmpInst::Predicate Pred; 8254 Instruction *L1; 8255 Instruction *L2; 8256 8257 Value *LHS = Select->getTrueValue(); 8258 Value *RHS = Select->getFalseValue(); 8259 Value *Cond = Select->getCondition(); 8260 8261 // TODO: Support inverse predicates. 8262 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 8263 if (!isa<ExtractElementInst>(RHS) || 8264 !L2->isIdenticalTo(cast<Instruction>(RHS))) 8265 return RecurKind::None; 8266 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 8267 if (!isa<ExtractElementInst>(LHS) || 8268 !L1->isIdenticalTo(cast<Instruction>(LHS))) 8269 return RecurKind::None; 8270 } else { 8271 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 8272 return RecurKind::None; 8273 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 8274 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 8275 !L2->isIdenticalTo(cast<Instruction>(RHS))) 8276 return RecurKind::None; 8277 } 8278 8279 TargetTransformInfo::ReductionFlags RdxFlags; 8280 switch (Pred) { 8281 default: 8282 return RecurKind::None; 8283 case CmpInst::ICMP_SGT: 8284 case CmpInst::ICMP_SGE: 8285 return RecurKind::SMax; 8286 case CmpInst::ICMP_SLT: 8287 case CmpInst::ICMP_SLE: 8288 return RecurKind::SMin; 8289 case CmpInst::ICMP_UGT: 8290 case CmpInst::ICMP_UGE: 8291 return RecurKind::UMax; 8292 case CmpInst::ICMP_ULT: 8293 case CmpInst::ICMP_ULE: 8294 return RecurKind::UMin; 8295 } 8296 } 8297 return RecurKind::None; 8298 } 8299 8300 /// Get the index of the first operand. 8301 static unsigned getFirstOperandIndex(Instruction *I) { 8302 return isCmpSelMinMax(I) ? 1 : 0; 8303 } 8304 8305 /// Total number of operands in the reduction operation. 8306 static unsigned getNumberOfOperands(Instruction *I) { 8307 return isCmpSelMinMax(I) ? 3 : 2; 8308 } 8309 8310 /// Checks if the instruction is in basic block \p BB. 8311 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 8312 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 8313 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 8314 auto *Sel = cast<SelectInst>(I); 8315 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 8316 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 8317 } 8318 return I->getParent() == BB; 8319 } 8320 8321 /// Expected number of uses for reduction operations/reduced values. 8322 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 8323 if (IsCmpSelMinMax) { 8324 // SelectInst must be used twice while the condition op must have single 8325 // use only. 8326 if (auto *Sel = dyn_cast<SelectInst>(I)) 8327 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 8328 return I->hasNUses(2); 8329 } 8330 8331 // Arithmetic reduction operation must be used once only. 8332 return I->hasOneUse(); 8333 } 8334 8335 /// Initializes the list of reduction operations. 8336 void initReductionOps(Instruction *I) { 8337 if (isCmpSelMinMax(I)) 8338 ReductionOps.assign(2, ReductionOpsType()); 8339 else 8340 ReductionOps.assign(1, ReductionOpsType()); 8341 } 8342 8343 /// Add all reduction operations for the reduction instruction \p I. 8344 void addReductionOps(Instruction *I) { 8345 if (isCmpSelMinMax(I)) { 8346 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 8347 ReductionOps[1].emplace_back(I); 8348 } else { 8349 ReductionOps[0].emplace_back(I); 8350 } 8351 } 8352 8353 static Value *getLHS(RecurKind Kind, Instruction *I) { 8354 if (Kind == RecurKind::None) 8355 return nullptr; 8356 return I->getOperand(getFirstOperandIndex(I)); 8357 } 8358 static Value *getRHS(RecurKind Kind, Instruction *I) { 8359 if (Kind == RecurKind::None) 8360 return nullptr; 8361 return I->getOperand(getFirstOperandIndex(I) + 1); 8362 } 8363 8364 public: 8365 HorizontalReduction() = default; 8366 8367 /// Try to find a reduction tree. 8368 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) { 8369 assert((!Phi || is_contained(Phi->operands(), Inst)) && 8370 "Phi needs to use the binary operator"); 8371 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 8372 isa<IntrinsicInst>(Inst)) && 8373 "Expected binop, select, or intrinsic for reduction matching"); 8374 RdxKind = getRdxKind(Inst); 8375 8376 // We could have a initial reductions that is not an add. 8377 // r *= v1 + v2 + v3 + v4 8378 // In such a case start looking for a tree rooted in the first '+'. 8379 if (Phi) { 8380 if (getLHS(RdxKind, Inst) == Phi) { 8381 Phi = nullptr; 8382 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 8383 if (!Inst) 8384 return false; 8385 RdxKind = getRdxKind(Inst); 8386 } else if (getRHS(RdxKind, Inst) == Phi) { 8387 Phi = nullptr; 8388 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 8389 if (!Inst) 8390 return false; 8391 RdxKind = getRdxKind(Inst); 8392 } 8393 } 8394 8395 if (!isVectorizable(RdxKind, Inst)) 8396 return false; 8397 8398 // Analyze "regular" integer/FP types for reductions - no target-specific 8399 // types or pointers. 8400 Type *Ty = Inst->getType(); 8401 if (!isValidElementType(Ty) || Ty->isPointerTy()) 8402 return false; 8403 8404 // Though the ultimate reduction may have multiple uses, its condition must 8405 // have only single use. 8406 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 8407 if (!Sel->getCondition()->hasOneUse()) 8408 return false; 8409 8410 ReductionRoot = Inst; 8411 8412 // The opcode for leaf values that we perform a reduction on. 8413 // For example: load(x) + load(y) + load(z) + fptoui(w) 8414 // The leaf opcode for 'w' does not match, so we don't include it as a 8415 // potential candidate for the reduction. 8416 unsigned LeafOpcode = 0; 8417 8418 // Post-order traverse the reduction tree starting at Inst. We only handle 8419 // true trees containing binary operators or selects. 8420 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 8421 Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst))); 8422 initReductionOps(Inst); 8423 while (!Stack.empty()) { 8424 Instruction *TreeN = Stack.back().first; 8425 unsigned EdgeToVisit = Stack.back().second++; 8426 const RecurKind TreeRdxKind = getRdxKind(TreeN); 8427 bool IsReducedValue = TreeRdxKind != RdxKind; 8428 8429 // Postorder visit. 8430 if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) { 8431 if (IsReducedValue) 8432 ReducedVals.push_back(TreeN); 8433 else { 8434 auto ExtraArgsIter = ExtraArgs.find(TreeN); 8435 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 8436 // Check if TreeN is an extra argument of its parent operation. 8437 if (Stack.size() <= 1) { 8438 // TreeN can't be an extra argument as it is a root reduction 8439 // operation. 8440 return false; 8441 } 8442 // Yes, TreeN is an extra argument, do not add it to a list of 8443 // reduction operations. 8444 // Stack[Stack.size() - 2] always points to the parent operation. 8445 markExtraArg(Stack[Stack.size() - 2], TreeN); 8446 ExtraArgs.erase(TreeN); 8447 } else 8448 addReductionOps(TreeN); 8449 } 8450 // Retract. 8451 Stack.pop_back(); 8452 continue; 8453 } 8454 8455 // Visit operands. 8456 Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit); 8457 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 8458 if (!EdgeInst) { 8459 // Edge value is not a reduction instruction or a leaf instruction. 8460 // (It may be a constant, function argument, or something else.) 8461 markExtraArg(Stack.back(), EdgeVal); 8462 continue; 8463 } 8464 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 8465 // Continue analysis if the next operand is a reduction operation or 8466 // (possibly) a leaf value. If the leaf value opcode is not set, 8467 // the first met operation != reduction operation is considered as the 8468 // leaf opcode. 8469 // Only handle trees in the current basic block. 8470 // Each tree node needs to have minimal number of users except for the 8471 // ultimate reduction. 8472 const bool IsRdxInst = EdgeRdxKind == RdxKind; 8473 if (EdgeInst != Phi && EdgeInst != Inst && 8474 hasSameParent(EdgeInst, Inst->getParent()) && 8475 hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) && 8476 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 8477 if (IsRdxInst) { 8478 // We need to be able to reassociate the reduction operations. 8479 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 8480 // I is an extra argument for TreeN (its parent operation). 8481 markExtraArg(Stack.back(), EdgeInst); 8482 continue; 8483 } 8484 } else if (!LeafOpcode) { 8485 LeafOpcode = EdgeInst->getOpcode(); 8486 } 8487 Stack.push_back( 8488 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 8489 continue; 8490 } 8491 // I is an extra argument for TreeN (its parent operation). 8492 markExtraArg(Stack.back(), EdgeInst); 8493 } 8494 return true; 8495 } 8496 8497 /// Attempt to vectorize the tree found by matchAssociativeReduction. 8498 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 8499 // If there are a sufficient number of reduction values, reduce 8500 // to a nearby power-of-2. We can safely generate oversized 8501 // vectors and rely on the backend to split them to legal sizes. 8502 unsigned NumReducedVals = ReducedVals.size(); 8503 if (NumReducedVals < 4) 8504 return nullptr; 8505 8506 // Intersect the fast-math-flags from all reduction operations. 8507 FastMathFlags RdxFMF; 8508 RdxFMF.set(); 8509 for (ReductionOpsType &RdxOp : ReductionOps) { 8510 for (Value *RdxVal : RdxOp) { 8511 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 8512 RdxFMF &= FPMO->getFastMathFlags(); 8513 } 8514 } 8515 8516 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 8517 Builder.setFastMathFlags(RdxFMF); 8518 8519 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 8520 // The same extra argument may be used several times, so log each attempt 8521 // to use it. 8522 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 8523 assert(Pair.first && "DebugLoc must be set."); 8524 ExternallyUsedValues[Pair.second].push_back(Pair.first); 8525 } 8526 8527 // The compare instruction of a min/max is the insertion point for new 8528 // instructions and may be replaced with a new compare instruction. 8529 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 8530 assert(isa<SelectInst>(RdxRootInst) && 8531 "Expected min/max reduction to have select root instruction"); 8532 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 8533 assert(isa<Instruction>(ScalarCond) && 8534 "Expected min/max reduction to have compare condition"); 8535 return cast<Instruction>(ScalarCond); 8536 }; 8537 8538 // The reduction root is used as the insertion point for new instructions, 8539 // so set it as externally used to prevent it from being deleted. 8540 ExternallyUsedValues[ReductionRoot]; 8541 SmallVector<Value *, 16> IgnoreList; 8542 for (ReductionOpsType &RdxOp : ReductionOps) 8543 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 8544 8545 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 8546 if (NumReducedVals > ReduxWidth) { 8547 // In the loop below, we are building a tree based on a window of 8548 // 'ReduxWidth' values. 8549 // If the operands of those values have common traits (compare predicate, 8550 // constant operand, etc), then we want to group those together to 8551 // minimize the cost of the reduction. 8552 8553 // TODO: This should be extended to count common operands for 8554 // compares and binops. 8555 8556 // Step 1: Count the number of times each compare predicate occurs. 8557 SmallDenseMap<unsigned, unsigned> PredCountMap; 8558 for (Value *RdxVal : ReducedVals) { 8559 CmpInst::Predicate Pred; 8560 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 8561 ++PredCountMap[Pred]; 8562 } 8563 // Step 2: Sort the values so the most common predicates come first. 8564 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 8565 CmpInst::Predicate PredA, PredB; 8566 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 8567 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 8568 return PredCountMap[PredA] > PredCountMap[PredB]; 8569 } 8570 return false; 8571 }); 8572 } 8573 8574 Value *VectorizedTree = nullptr; 8575 unsigned i = 0; 8576 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 8577 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 8578 V.buildTree(VL, IgnoreList); 8579 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) 8580 break; 8581 if (V.isLoadCombineReductionCandidate(RdxKind)) 8582 break; 8583 V.reorderTopToBottom(); 8584 V.reorderBottomToTop(/*IgnoreReorder=*/true); 8585 V.buildExternalUses(ExternallyUsedValues); 8586 8587 // For a poison-safe boolean logic reduction, do not replace select 8588 // instructions with logic ops. All reduced values will be frozen (see 8589 // below) to prevent leaking poison. 8590 if (isa<SelectInst>(ReductionRoot) && 8591 isBoolLogicOp(cast<Instruction>(ReductionRoot)) && 8592 NumReducedVals != ReduxWidth) 8593 break; 8594 8595 V.computeMinimumValueSizes(); 8596 8597 // Estimate cost. 8598 InstructionCost TreeCost = 8599 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth)); 8600 InstructionCost ReductionCost = 8601 getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF); 8602 InstructionCost Cost = TreeCost + ReductionCost; 8603 if (!Cost.isValid()) { 8604 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 8605 return nullptr; 8606 } 8607 if (Cost >= -SLPCostThreshold) { 8608 V.getORE()->emit([&]() { 8609 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 8610 cast<Instruction>(VL[0])) 8611 << "Vectorizing horizontal reduction is possible" 8612 << "but not beneficial with cost " << ore::NV("Cost", Cost) 8613 << " and threshold " 8614 << ore::NV("Threshold", -SLPCostThreshold); 8615 }); 8616 break; 8617 } 8618 8619 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 8620 << Cost << ". (HorRdx)\n"); 8621 V.getORE()->emit([&]() { 8622 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 8623 cast<Instruction>(VL[0])) 8624 << "Vectorized horizontal reduction with cost " 8625 << ore::NV("Cost", Cost) << " and with tree size " 8626 << ore::NV("TreeSize", V.getTreeSize()); 8627 }); 8628 8629 // Vectorize a tree. 8630 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 8631 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 8632 8633 // Emit a reduction. If the root is a select (min/max idiom), the insert 8634 // point is the compare condition of that select. 8635 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 8636 if (isCmpSelMinMax(RdxRootInst)) 8637 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 8638 else 8639 Builder.SetInsertPoint(RdxRootInst); 8640 8641 // To prevent poison from leaking across what used to be sequential, safe, 8642 // scalar boolean logic operations, the reduction operand must be frozen. 8643 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 8644 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 8645 8646 Value *ReducedSubTree = 8647 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 8648 8649 if (!VectorizedTree) { 8650 // Initialize the final value in the reduction. 8651 VectorizedTree = ReducedSubTree; 8652 } else { 8653 // Update the final value in the reduction. 8654 Builder.SetCurrentDebugLocation(Loc); 8655 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 8656 ReducedSubTree, "op.rdx", ReductionOps); 8657 } 8658 i += ReduxWidth; 8659 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 8660 } 8661 8662 if (VectorizedTree) { 8663 // Finish the reduction. 8664 for (; i < NumReducedVals; ++i) { 8665 auto *I = cast<Instruction>(ReducedVals[i]); 8666 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 8667 VectorizedTree = 8668 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 8669 } 8670 for (auto &Pair : ExternallyUsedValues) { 8671 // Add each externally used value to the final reduction. 8672 for (auto *I : Pair.second) { 8673 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 8674 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 8675 Pair.first, "op.extra", I); 8676 } 8677 } 8678 8679 ReductionRoot->replaceAllUsesWith(VectorizedTree); 8680 8681 // Mark all scalar reduction ops for deletion, they are replaced by the 8682 // vector reductions. 8683 V.eraseInstructions(IgnoreList); 8684 } 8685 return VectorizedTree; 8686 } 8687 8688 unsigned numReductionValues() const { return ReducedVals.size(); } 8689 8690 private: 8691 /// Calculate the cost of a reduction. 8692 InstructionCost getReductionCost(TargetTransformInfo *TTI, 8693 Value *FirstReducedVal, unsigned ReduxWidth, 8694 FastMathFlags FMF) { 8695 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 8696 Type *ScalarTy = FirstReducedVal->getType(); 8697 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 8698 InstructionCost VectorCost, ScalarCost; 8699 switch (RdxKind) { 8700 case RecurKind::Add: 8701 case RecurKind::Mul: 8702 case RecurKind::Or: 8703 case RecurKind::And: 8704 case RecurKind::Xor: 8705 case RecurKind::FAdd: 8706 case RecurKind::FMul: { 8707 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 8708 VectorCost = 8709 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 8710 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 8711 break; 8712 } 8713 case RecurKind::FMax: 8714 case RecurKind::FMin: { 8715 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 8716 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 8717 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 8718 /*unsigned=*/false, CostKind); 8719 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 8720 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 8721 SclCondTy, RdxPred, CostKind) + 8722 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 8723 SclCondTy, RdxPred, CostKind); 8724 break; 8725 } 8726 case RecurKind::SMax: 8727 case RecurKind::SMin: 8728 case RecurKind::UMax: 8729 case RecurKind::UMin: { 8730 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 8731 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 8732 bool IsUnsigned = 8733 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 8734 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned, 8735 CostKind); 8736 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 8737 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 8738 SclCondTy, RdxPred, CostKind) + 8739 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 8740 SclCondTy, RdxPred, CostKind); 8741 break; 8742 } 8743 default: 8744 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 8745 } 8746 8747 // Scalar cost is repeated for N-1 elements. 8748 ScalarCost *= (ReduxWidth - 1); 8749 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 8750 << " for reduction that starts with " << *FirstReducedVal 8751 << " (It is a splitting reduction)\n"); 8752 return VectorCost - ScalarCost; 8753 } 8754 8755 /// Emit a horizontal reduction of the vectorized value. 8756 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 8757 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 8758 assert(VectorizedValue && "Need to have a vectorized tree node"); 8759 assert(isPowerOf2_32(ReduxWidth) && 8760 "We only handle power-of-two reductions for now"); 8761 8762 ++NumVectorInstructions; 8763 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind, 8764 ReductionOps.back()); 8765 } 8766 }; 8767 8768 } // end anonymous namespace 8769 8770 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 8771 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 8772 return cast<FixedVectorType>(IE->getType())->getNumElements(); 8773 8774 unsigned AggregateSize = 1; 8775 auto *IV = cast<InsertValueInst>(InsertInst); 8776 Type *CurrentType = IV->getType(); 8777 do { 8778 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 8779 for (auto *Elt : ST->elements()) 8780 if (Elt != ST->getElementType(0)) // check homogeneity 8781 return None; 8782 AggregateSize *= ST->getNumElements(); 8783 CurrentType = ST->getElementType(0); 8784 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 8785 AggregateSize *= AT->getNumElements(); 8786 CurrentType = AT->getElementType(); 8787 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 8788 AggregateSize *= VT->getNumElements(); 8789 return AggregateSize; 8790 } else if (CurrentType->isSingleValueType()) { 8791 return AggregateSize; 8792 } else { 8793 return None; 8794 } 8795 } while (true); 8796 } 8797 8798 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 8799 TargetTransformInfo *TTI, 8800 SmallVectorImpl<Value *> &BuildVectorOpds, 8801 SmallVectorImpl<Value *> &InsertElts, 8802 unsigned OperandOffset) { 8803 do { 8804 Value *InsertedOperand = LastInsertInst->getOperand(1); 8805 Optional<int> OperandIndex = getInsertIndex(LastInsertInst, OperandOffset); 8806 if (!OperandIndex) 8807 return false; 8808 if (isa<InsertElementInst>(InsertedOperand) || 8809 isa<InsertValueInst>(InsertedOperand)) { 8810 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 8811 BuildVectorOpds, InsertElts, *OperandIndex)) 8812 return false; 8813 } else { 8814 BuildVectorOpds[*OperandIndex] = InsertedOperand; 8815 InsertElts[*OperandIndex] = LastInsertInst; 8816 } 8817 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 8818 } while (LastInsertInst != nullptr && 8819 (isa<InsertValueInst>(LastInsertInst) || 8820 isa<InsertElementInst>(LastInsertInst)) && 8821 LastInsertInst->hasOneUse()); 8822 return true; 8823 } 8824 8825 /// Recognize construction of vectors like 8826 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 8827 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 8828 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 8829 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 8830 /// starting from the last insertelement or insertvalue instruction. 8831 /// 8832 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 8833 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 8834 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 8835 /// 8836 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 8837 /// 8838 /// \return true if it matches. 8839 static bool findBuildAggregate(Instruction *LastInsertInst, 8840 TargetTransformInfo *TTI, 8841 SmallVectorImpl<Value *> &BuildVectorOpds, 8842 SmallVectorImpl<Value *> &InsertElts) { 8843 8844 assert((isa<InsertElementInst>(LastInsertInst) || 8845 isa<InsertValueInst>(LastInsertInst)) && 8846 "Expected insertelement or insertvalue instruction!"); 8847 8848 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 8849 "Expected empty result vectors!"); 8850 8851 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 8852 if (!AggregateSize) 8853 return false; 8854 BuildVectorOpds.resize(*AggregateSize); 8855 InsertElts.resize(*AggregateSize); 8856 8857 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 8858 0)) { 8859 llvm::erase_value(BuildVectorOpds, nullptr); 8860 llvm::erase_value(InsertElts, nullptr); 8861 if (BuildVectorOpds.size() >= 2) 8862 return true; 8863 } 8864 8865 return false; 8866 } 8867 8868 /// Try and get a reduction value from a phi node. 8869 /// 8870 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 8871 /// if they come from either \p ParentBB or a containing loop latch. 8872 /// 8873 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 8874 /// if not possible. 8875 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 8876 BasicBlock *ParentBB, LoopInfo *LI) { 8877 // There are situations where the reduction value is not dominated by the 8878 // reduction phi. Vectorizing such cases has been reported to cause 8879 // miscompiles. See PR25787. 8880 auto DominatedReduxValue = [&](Value *R) { 8881 return isa<Instruction>(R) && 8882 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 8883 }; 8884 8885 Value *Rdx = nullptr; 8886 8887 // Return the incoming value if it comes from the same BB as the phi node. 8888 if (P->getIncomingBlock(0) == ParentBB) { 8889 Rdx = P->getIncomingValue(0); 8890 } else if (P->getIncomingBlock(1) == ParentBB) { 8891 Rdx = P->getIncomingValue(1); 8892 } 8893 8894 if (Rdx && DominatedReduxValue(Rdx)) 8895 return Rdx; 8896 8897 // Otherwise, check whether we have a loop latch to look at. 8898 Loop *BBL = LI->getLoopFor(ParentBB); 8899 if (!BBL) 8900 return nullptr; 8901 BasicBlock *BBLatch = BBL->getLoopLatch(); 8902 if (!BBLatch) 8903 return nullptr; 8904 8905 // There is a loop latch, return the incoming value if it comes from 8906 // that. This reduction pattern occasionally turns up. 8907 if (P->getIncomingBlock(0) == BBLatch) { 8908 Rdx = P->getIncomingValue(0); 8909 } else if (P->getIncomingBlock(1) == BBLatch) { 8910 Rdx = P->getIncomingValue(1); 8911 } 8912 8913 if (Rdx && DominatedReduxValue(Rdx)) 8914 return Rdx; 8915 8916 return nullptr; 8917 } 8918 8919 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 8920 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 8921 return true; 8922 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 8923 return true; 8924 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 8925 return true; 8926 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 8927 return true; 8928 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 8929 return true; 8930 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 8931 return true; 8932 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 8933 return true; 8934 return false; 8935 } 8936 8937 /// Attempt to reduce a horizontal reduction. 8938 /// If it is legal to match a horizontal reduction feeding the phi node \a P 8939 /// with reduction operators \a Root (or one of its operands) in a basic block 8940 /// \a BB, then check if it can be done. If horizontal reduction is not found 8941 /// and root instruction is a binary operation, vectorization of the operands is 8942 /// attempted. 8943 /// \returns true if a horizontal reduction was matched and reduced or operands 8944 /// of one of the binary instruction were vectorized. 8945 /// \returns false if a horizontal reduction was not matched (or not possible) 8946 /// or no vectorization of any binary operation feeding \a Root instruction was 8947 /// performed. 8948 static bool tryToVectorizeHorReductionOrInstOperands( 8949 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 8950 TargetTransformInfo *TTI, 8951 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 8952 if (!ShouldVectorizeHor) 8953 return false; 8954 8955 if (!Root) 8956 return false; 8957 8958 if (Root->getParent() != BB || isa<PHINode>(Root)) 8959 return false; 8960 // Start analysis starting from Root instruction. If horizontal reduction is 8961 // found, try to vectorize it. If it is not a horizontal reduction or 8962 // vectorization is not possible or not effective, and currently analyzed 8963 // instruction is a binary operation, try to vectorize the operands, using 8964 // pre-order DFS traversal order. If the operands were not vectorized, repeat 8965 // the same procedure considering each operand as a possible root of the 8966 // horizontal reduction. 8967 // Interrupt the process if the Root instruction itself was vectorized or all 8968 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 8969 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 8970 // CmpInsts so we can skip extra attempts in 8971 // tryToVectorizeHorReductionOrInstOperands and save compile time. 8972 std::queue<std::pair<Instruction *, unsigned>> Stack; 8973 Stack.emplace(Root, 0); 8974 SmallPtrSet<Value *, 8> VisitedInstrs; 8975 SmallVector<WeakTrackingVH> PostponedInsts; 8976 bool Res = false; 8977 auto &&TryToReduce = [TTI, &P, &R](Instruction *Inst, Value *&B0, 8978 Value *&B1) -> Value * { 8979 bool IsBinop = matchRdxBop(Inst, B0, B1); 8980 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 8981 if (IsBinop || IsSelect) { 8982 HorizontalReduction HorRdx; 8983 if (HorRdx.matchAssociativeReduction(P, Inst)) 8984 return HorRdx.tryToReduce(R, TTI); 8985 } 8986 return nullptr; 8987 }; 8988 while (!Stack.empty()) { 8989 Instruction *Inst; 8990 unsigned Level; 8991 std::tie(Inst, Level) = Stack.front(); 8992 Stack.pop(); 8993 // Do not try to analyze instruction that has already been vectorized. 8994 // This may happen when we vectorize instruction operands on a previous 8995 // iteration while stack was populated before that happened. 8996 if (R.isDeleted(Inst)) 8997 continue; 8998 Value *B0 = nullptr, *B1 = nullptr; 8999 if (Value *V = TryToReduce(Inst, B0, B1)) { 9000 Res = true; 9001 // Set P to nullptr to avoid re-analysis of phi node in 9002 // matchAssociativeReduction function unless this is the root node. 9003 P = nullptr; 9004 if (auto *I = dyn_cast<Instruction>(V)) { 9005 // Try to find another reduction. 9006 Stack.emplace(I, Level); 9007 continue; 9008 } 9009 } else { 9010 bool IsBinop = B0 && B1; 9011 if (P && IsBinop) { 9012 Inst = dyn_cast<Instruction>(B0); 9013 if (Inst == P) 9014 Inst = dyn_cast<Instruction>(B1); 9015 if (!Inst) { 9016 // Set P to nullptr to avoid re-analysis of phi node in 9017 // matchAssociativeReduction function unless this is the root node. 9018 P = nullptr; 9019 continue; 9020 } 9021 } 9022 // Set P to nullptr to avoid re-analysis of phi node in 9023 // matchAssociativeReduction function unless this is the root node. 9024 P = nullptr; 9025 // Do not try to vectorize CmpInst operands, this is done separately. 9026 // Final attempt for binop args vectorization should happen after the loop 9027 // to try to find reductions. 9028 if (!isa<CmpInst>(Inst)) 9029 PostponedInsts.push_back(Inst); 9030 } 9031 9032 // Try to vectorize operands. 9033 // Continue analysis for the instruction from the same basic block only to 9034 // save compile time. 9035 if (++Level < RecursionMaxDepth) 9036 for (auto *Op : Inst->operand_values()) 9037 if (VisitedInstrs.insert(Op).second) 9038 if (auto *I = dyn_cast<Instruction>(Op)) 9039 // Do not try to vectorize CmpInst operands, this is done 9040 // separately. 9041 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 9042 I->getParent() == BB) 9043 Stack.emplace(I, Level); 9044 } 9045 // Try to vectorized binops where reductions were not found. 9046 for (Value *V : PostponedInsts) 9047 if (auto *Inst = dyn_cast<Instruction>(V)) 9048 if (!R.isDeleted(Inst)) 9049 Res |= Vectorize(Inst, R); 9050 return Res; 9051 } 9052 9053 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 9054 BasicBlock *BB, BoUpSLP &R, 9055 TargetTransformInfo *TTI) { 9056 auto *I = dyn_cast_or_null<Instruction>(V); 9057 if (!I) 9058 return false; 9059 9060 if (!isa<BinaryOperator>(I)) 9061 P = nullptr; 9062 // Try to match and vectorize a horizontal reduction. 9063 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 9064 return tryToVectorize(I, R); 9065 }; 9066 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 9067 ExtraVectorization); 9068 } 9069 9070 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 9071 BasicBlock *BB, BoUpSLP &R) { 9072 const DataLayout &DL = BB->getModule()->getDataLayout(); 9073 if (!R.canMapToVector(IVI->getType(), DL)) 9074 return false; 9075 9076 SmallVector<Value *, 16> BuildVectorOpds; 9077 SmallVector<Value *, 16> BuildVectorInsts; 9078 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 9079 return false; 9080 9081 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 9082 // Aggregate value is unlikely to be processed in vector register, we need to 9083 // extract scalars into scalar registers, so NeedExtraction is set true. 9084 return tryToVectorizeList(BuildVectorOpds, R); 9085 } 9086 9087 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 9088 BasicBlock *BB, BoUpSLP &R) { 9089 SmallVector<Value *, 16> BuildVectorInsts; 9090 SmallVector<Value *, 16> BuildVectorOpds; 9091 SmallVector<int> Mask; 9092 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 9093 (llvm::all_of(BuildVectorOpds, 9094 [](Value *V) { return isa<ExtractElementInst>(V); }) && 9095 isFixedVectorShuffle(BuildVectorOpds, Mask))) 9096 return false; 9097 9098 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 9099 return tryToVectorizeList(BuildVectorInsts, R); 9100 } 9101 9102 bool SLPVectorizerPass::vectorizeSimpleInstructions( 9103 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 9104 bool AtTerminator) { 9105 bool OpsChanged = false; 9106 SmallVector<Instruction *, 4> PostponedCmps; 9107 for (auto *I : reverse(Instructions)) { 9108 if (R.isDeleted(I)) 9109 continue; 9110 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 9111 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 9112 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 9113 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 9114 else if (isa<CmpInst>(I)) 9115 PostponedCmps.push_back(I); 9116 } 9117 if (AtTerminator) { 9118 // Try to find reductions first. 9119 for (Instruction *I : PostponedCmps) { 9120 if (R.isDeleted(I)) 9121 continue; 9122 for (Value *Op : I->operands()) 9123 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 9124 } 9125 // Try to vectorize operands as vector bundles. 9126 for (Instruction *I : PostponedCmps) { 9127 if (R.isDeleted(I)) 9128 continue; 9129 OpsChanged |= tryToVectorize(I, R); 9130 } 9131 Instructions.clear(); 9132 } else { 9133 // Insert in reverse order since the PostponedCmps vector was filled in 9134 // reverse order. 9135 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 9136 } 9137 return OpsChanged; 9138 } 9139 9140 template <typename T> 9141 static bool 9142 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 9143 function_ref<unsigned(T *)> Limit, 9144 function_ref<bool(T *, T *)> Comparator, 9145 function_ref<bool(T *, T *)> AreCompatible, 9146 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorize, 9147 bool LimitForRegisterSize) { 9148 bool Changed = false; 9149 // Sort by type, parent, operands. 9150 stable_sort(Incoming, Comparator); 9151 9152 // Try to vectorize elements base on their type. 9153 SmallVector<T *> Candidates; 9154 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 9155 // Look for the next elements with the same type, parent and operand 9156 // kinds. 9157 auto *SameTypeIt = IncIt; 9158 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 9159 ++SameTypeIt; 9160 9161 // Try to vectorize them. 9162 unsigned NumElts = (SameTypeIt - IncIt); 9163 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 9164 << NumElts << ")\n"); 9165 // The vectorization is a 3-state attempt: 9166 // 1. Try to vectorize instructions with the same/alternate opcodes with the 9167 // size of maximal register at first. 9168 // 2. Try to vectorize remaining instructions with the same type, if 9169 // possible. This may result in the better vectorization results rather than 9170 // if we try just to vectorize instructions with the same/alternate opcodes. 9171 // 3. Final attempt to try to vectorize all instructions with the 9172 // same/alternate ops only, this may result in some extra final 9173 // vectorization. 9174 if (NumElts > 1 && 9175 TryToVectorize(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 9176 // Success start over because instructions might have been changed. 9177 Changed = true; 9178 } else if (NumElts < Limit(*IncIt) && 9179 (Candidates.empty() || 9180 Candidates.front()->getType() == (*IncIt)->getType())) { 9181 Candidates.append(IncIt, std::next(IncIt, NumElts)); 9182 } 9183 // Final attempt to vectorize instructions with the same types. 9184 if (Candidates.size() > 1 && 9185 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 9186 if (TryToVectorize(Candidates, /*LimitForRegisterSize=*/false)) { 9187 // Success start over because instructions might have been changed. 9188 Changed = true; 9189 } else if (LimitForRegisterSize) { 9190 // Try to vectorize using small vectors. 9191 for (auto *It = Candidates.begin(), *End = Candidates.end(); 9192 It != End;) { 9193 auto *SameTypeIt = It; 9194 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 9195 ++SameTypeIt; 9196 unsigned NumElts = (SameTypeIt - It); 9197 if (NumElts > 1 && TryToVectorize(makeArrayRef(It, NumElts), 9198 /*LimitForRegisterSize=*/false)) 9199 Changed = true; 9200 It = SameTypeIt; 9201 } 9202 } 9203 Candidates.clear(); 9204 } 9205 9206 // Start over at the next instruction of a different type (or the end). 9207 IncIt = SameTypeIt; 9208 } 9209 return Changed; 9210 } 9211 9212 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 9213 bool Changed = false; 9214 SmallVector<Value *, 4> Incoming; 9215 SmallPtrSet<Value *, 16> VisitedInstrs; 9216 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 9217 // node. Allows better to identify the chains that can be vectorized in the 9218 // better way. 9219 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 9220 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 9221 assert(isValidElementType(V1->getType()) && 9222 isValidElementType(V2->getType()) && 9223 "Expected vectorizable types only."); 9224 // It is fine to compare type IDs here, since we expect only vectorizable 9225 // types, like ints, floats and pointers, we don't care about other type. 9226 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 9227 return true; 9228 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 9229 return false; 9230 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 9231 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 9232 if (Opcodes1.size() < Opcodes2.size()) 9233 return true; 9234 if (Opcodes1.size() > Opcodes2.size()) 9235 return false; 9236 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 9237 // Undefs are compatible with any other value. 9238 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 9239 continue; 9240 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 9241 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 9242 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 9243 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 9244 if (!NodeI1) 9245 return NodeI2 != nullptr; 9246 if (!NodeI2) 9247 return false; 9248 assert((NodeI1 == NodeI2) == 9249 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 9250 "Different nodes should have different DFS numbers"); 9251 if (NodeI1 != NodeI2) 9252 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 9253 InstructionsState S = getSameOpcode({I1, I2}); 9254 if (S.getOpcode()) 9255 continue; 9256 return I1->getOpcode() < I2->getOpcode(); 9257 } 9258 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 9259 continue; 9260 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 9261 return true; 9262 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 9263 return false; 9264 } 9265 return false; 9266 }; 9267 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 9268 if (V1 == V2) 9269 return true; 9270 if (V1->getType() != V2->getType()) 9271 return false; 9272 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 9273 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 9274 if (Opcodes1.size() != Opcodes2.size()) 9275 return false; 9276 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 9277 // Undefs are compatible with any other value. 9278 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 9279 continue; 9280 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 9281 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 9282 if (I1->getParent() != I2->getParent()) 9283 return false; 9284 InstructionsState S = getSameOpcode({I1, I2}); 9285 if (S.getOpcode()) 9286 continue; 9287 return false; 9288 } 9289 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 9290 continue; 9291 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 9292 return false; 9293 } 9294 return true; 9295 }; 9296 auto Limit = [&R](Value *V) { 9297 unsigned EltSize = R.getVectorElementSize(V); 9298 return std::max(2U, R.getMaxVecRegSize() / EltSize); 9299 }; 9300 9301 bool HaveVectorizedPhiNodes = false; 9302 do { 9303 // Collect the incoming values from the PHIs. 9304 Incoming.clear(); 9305 for (Instruction &I : *BB) { 9306 PHINode *P = dyn_cast<PHINode>(&I); 9307 if (!P) 9308 break; 9309 9310 // No need to analyze deleted, vectorized and non-vectorizable 9311 // instructions. 9312 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 9313 isValidElementType(P->getType())) 9314 Incoming.push_back(P); 9315 } 9316 9317 // Find the corresponding non-phi nodes for better matching when trying to 9318 // build the tree. 9319 for (Value *V : Incoming) { 9320 SmallVectorImpl<Value *> &Opcodes = 9321 PHIToOpcodes.try_emplace(V).first->getSecond(); 9322 if (!Opcodes.empty()) 9323 continue; 9324 SmallVector<Value *, 4> Nodes(1, V); 9325 SmallPtrSet<Value *, 4> Visited; 9326 while (!Nodes.empty()) { 9327 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 9328 if (!Visited.insert(PHI).second) 9329 continue; 9330 for (Value *V : PHI->incoming_values()) { 9331 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 9332 Nodes.push_back(PHI1); 9333 continue; 9334 } 9335 Opcodes.emplace_back(V); 9336 } 9337 } 9338 } 9339 9340 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 9341 Incoming, Limit, PHICompare, AreCompatiblePHIs, 9342 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 9343 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 9344 }, 9345 /*LimitForRegisterSize=*/true); 9346 Changed |= HaveVectorizedPhiNodes; 9347 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 9348 } while (HaveVectorizedPhiNodes); 9349 9350 VisitedInstrs.clear(); 9351 9352 SmallVector<Instruction *, 8> PostProcessInstructions; 9353 SmallDenseSet<Instruction *, 4> KeyNodes; 9354 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 9355 // Skip instructions with scalable type. The num of elements is unknown at 9356 // compile-time for scalable type. 9357 if (isa<ScalableVectorType>(it->getType())) 9358 continue; 9359 9360 // Skip instructions marked for the deletion. 9361 if (R.isDeleted(&*it)) 9362 continue; 9363 // We may go through BB multiple times so skip the one we have checked. 9364 if (!VisitedInstrs.insert(&*it).second) { 9365 if (it->use_empty() && KeyNodes.contains(&*it) && 9366 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 9367 it->isTerminator())) { 9368 // We would like to start over since some instructions are deleted 9369 // and the iterator may become invalid value. 9370 Changed = true; 9371 it = BB->begin(); 9372 e = BB->end(); 9373 } 9374 continue; 9375 } 9376 9377 if (isa<DbgInfoIntrinsic>(it)) 9378 continue; 9379 9380 // Try to vectorize reductions that use PHINodes. 9381 if (PHINode *P = dyn_cast<PHINode>(it)) { 9382 // Check that the PHI is a reduction PHI. 9383 if (P->getNumIncomingValues() == 2) { 9384 // Try to match and vectorize a horizontal reduction. 9385 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 9386 TTI)) { 9387 Changed = true; 9388 it = BB->begin(); 9389 e = BB->end(); 9390 continue; 9391 } 9392 } 9393 // Try to vectorize the incoming values of the PHI, to catch reductions 9394 // that feed into PHIs. 9395 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 9396 // Skip if the incoming block is the current BB for now. Also, bypass 9397 // unreachable IR for efficiency and to avoid crashing. 9398 // TODO: Collect the skipped incoming values and try to vectorize them 9399 // after processing BB. 9400 if (BB == P->getIncomingBlock(I) || 9401 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 9402 continue; 9403 9404 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 9405 P->getIncomingBlock(I), R, TTI); 9406 } 9407 continue; 9408 } 9409 9410 // Ran into an instruction without users, like terminator, or function call 9411 // with ignored return value, store. Ignore unused instructions (basing on 9412 // instruction type, except for CallInst and InvokeInst). 9413 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 9414 isa<InvokeInst>(it))) { 9415 KeyNodes.insert(&*it); 9416 bool OpsChanged = false; 9417 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 9418 for (auto *V : it->operand_values()) { 9419 // Try to match and vectorize a horizontal reduction. 9420 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 9421 } 9422 } 9423 // Start vectorization of post-process list of instructions from the 9424 // top-tree instructions to try to vectorize as many instructions as 9425 // possible. 9426 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 9427 it->isTerminator()); 9428 if (OpsChanged) { 9429 // We would like to start over since some instructions are deleted 9430 // and the iterator may become invalid value. 9431 Changed = true; 9432 it = BB->begin(); 9433 e = BB->end(); 9434 continue; 9435 } 9436 } 9437 9438 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 9439 isa<InsertValueInst>(it)) 9440 PostProcessInstructions.push_back(&*it); 9441 } 9442 9443 return Changed; 9444 } 9445 9446 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 9447 auto Changed = false; 9448 for (auto &Entry : GEPs) { 9449 // If the getelementptr list has fewer than two elements, there's nothing 9450 // to do. 9451 if (Entry.second.size() < 2) 9452 continue; 9453 9454 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 9455 << Entry.second.size() << ".\n"); 9456 9457 // Process the GEP list in chunks suitable for the target's supported 9458 // vector size. If a vector register can't hold 1 element, we are done. We 9459 // are trying to vectorize the index computations, so the maximum number of 9460 // elements is based on the size of the index expression, rather than the 9461 // size of the GEP itself (the target's pointer size). 9462 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 9463 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 9464 if (MaxVecRegSize < EltSize) 9465 continue; 9466 9467 unsigned MaxElts = MaxVecRegSize / EltSize; 9468 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 9469 auto Len = std::min<unsigned>(BE - BI, MaxElts); 9470 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 9471 9472 // Initialize a set a candidate getelementptrs. Note that we use a 9473 // SetVector here to preserve program order. If the index computations 9474 // are vectorizable and begin with loads, we want to minimize the chance 9475 // of having to reorder them later. 9476 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 9477 9478 // Some of the candidates may have already been vectorized after we 9479 // initially collected them. If so, they are marked as deleted, so remove 9480 // them from the set of candidates. 9481 Candidates.remove_if( 9482 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 9483 9484 // Remove from the set of candidates all pairs of getelementptrs with 9485 // constant differences. Such getelementptrs are likely not good 9486 // candidates for vectorization in a bottom-up phase since one can be 9487 // computed from the other. We also ensure all candidate getelementptr 9488 // indices are unique. 9489 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 9490 auto *GEPI = GEPList[I]; 9491 if (!Candidates.count(GEPI)) 9492 continue; 9493 auto *SCEVI = SE->getSCEV(GEPList[I]); 9494 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 9495 auto *GEPJ = GEPList[J]; 9496 auto *SCEVJ = SE->getSCEV(GEPList[J]); 9497 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 9498 Candidates.remove(GEPI); 9499 Candidates.remove(GEPJ); 9500 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 9501 Candidates.remove(GEPJ); 9502 } 9503 } 9504 } 9505 9506 // We break out of the above computation as soon as we know there are 9507 // fewer than two candidates remaining. 9508 if (Candidates.size() < 2) 9509 continue; 9510 9511 // Add the single, non-constant index of each candidate to the bundle. We 9512 // ensured the indices met these constraints when we originally collected 9513 // the getelementptrs. 9514 SmallVector<Value *, 16> Bundle(Candidates.size()); 9515 auto BundleIndex = 0u; 9516 for (auto *V : Candidates) { 9517 auto *GEP = cast<GetElementPtrInst>(V); 9518 auto *GEPIdx = GEP->idx_begin()->get(); 9519 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 9520 Bundle[BundleIndex++] = GEPIdx; 9521 } 9522 9523 // Try and vectorize the indices. We are currently only interested in 9524 // gather-like cases of the form: 9525 // 9526 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 9527 // 9528 // where the loads of "a", the loads of "b", and the subtractions can be 9529 // performed in parallel. It's likely that detecting this pattern in a 9530 // bottom-up phase will be simpler and less costly than building a 9531 // full-blown top-down phase beginning at the consecutive loads. 9532 Changed |= tryToVectorizeList(Bundle, R); 9533 } 9534 } 9535 return Changed; 9536 } 9537 9538 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 9539 bool Changed = false; 9540 // Sort by type, base pointers and values operand. Value operands must be 9541 // compatible (have the same opcode, same parent), otherwise it is 9542 // definitely not profitable to try to vectorize them. 9543 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 9544 if (V->getPointerOperandType()->getTypeID() < 9545 V2->getPointerOperandType()->getTypeID()) 9546 return true; 9547 if (V->getPointerOperandType()->getTypeID() > 9548 V2->getPointerOperandType()->getTypeID()) 9549 return false; 9550 // UndefValues are compatible with all other values. 9551 if (isa<UndefValue>(V->getValueOperand()) || 9552 isa<UndefValue>(V2->getValueOperand())) 9553 return false; 9554 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 9555 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 9556 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 9557 DT->getNode(I1->getParent()); 9558 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 9559 DT->getNode(I2->getParent()); 9560 assert(NodeI1 && "Should only process reachable instructions"); 9561 assert(NodeI1 && "Should only process reachable instructions"); 9562 assert((NodeI1 == NodeI2) == 9563 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 9564 "Different nodes should have different DFS numbers"); 9565 if (NodeI1 != NodeI2) 9566 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 9567 InstructionsState S = getSameOpcode({I1, I2}); 9568 if (S.getOpcode()) 9569 return false; 9570 return I1->getOpcode() < I2->getOpcode(); 9571 } 9572 if (isa<Constant>(V->getValueOperand()) && 9573 isa<Constant>(V2->getValueOperand())) 9574 return false; 9575 return V->getValueOperand()->getValueID() < 9576 V2->getValueOperand()->getValueID(); 9577 }; 9578 9579 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 9580 if (V1 == V2) 9581 return true; 9582 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 9583 return false; 9584 // Undefs are compatible with any other value. 9585 if (isa<UndefValue>(V1->getValueOperand()) || 9586 isa<UndefValue>(V2->getValueOperand())) 9587 return true; 9588 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 9589 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 9590 if (I1->getParent() != I2->getParent()) 9591 return false; 9592 InstructionsState S = getSameOpcode({I1, I2}); 9593 return S.getOpcode() > 0; 9594 } 9595 if (isa<Constant>(V1->getValueOperand()) && 9596 isa<Constant>(V2->getValueOperand())) 9597 return true; 9598 return V1->getValueOperand()->getValueID() == 9599 V2->getValueOperand()->getValueID(); 9600 }; 9601 auto Limit = [&R, this](StoreInst *SI) { 9602 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 9603 return R.getMinVF(EltSize); 9604 }; 9605 9606 // Attempt to sort and vectorize each of the store-groups. 9607 for (auto &Pair : Stores) { 9608 if (Pair.second.size() < 2) 9609 continue; 9610 9611 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 9612 << Pair.second.size() << ".\n"); 9613 9614 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 9615 continue; 9616 9617 Changed |= tryToVectorizeSequence<StoreInst>( 9618 Pair.second, Limit, StoreSorter, AreCompatibleStores, 9619 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 9620 return vectorizeStores(Candidates, R); 9621 }, 9622 /*LimitForRegisterSize=*/false); 9623 } 9624 return Changed; 9625 } 9626 9627 char SLPVectorizer::ID = 0; 9628 9629 static const char lv_name[] = "SLP Vectorizer"; 9630 9631 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 9632 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 9633 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 9634 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 9635 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 9636 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 9637 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 9638 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 9639 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 9640 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 9641 9642 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 9643