1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/ADT/SmallBitVector.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/ADT/SmallString.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/ADT/iterator.h" 32 #include "llvm/ADT/iterator_range.h" 33 #include "llvm/Analysis/AliasAnalysis.h" 34 #include "llvm/Analysis/AssumptionCache.h" 35 #include "llvm/Analysis/CodeMetrics.h" 36 #include "llvm/Analysis/DemandedBits.h" 37 #include "llvm/Analysis/GlobalsModRef.h" 38 #include "llvm/Analysis/LoopAccessAnalysis.h" 39 #include "llvm/Analysis/LoopInfo.h" 40 #include "llvm/Analysis/MemoryLocation.h" 41 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 42 #include "llvm/Analysis/ScalarEvolution.h" 43 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 44 #include "llvm/Analysis/TargetLibraryInfo.h" 45 #include "llvm/Analysis/TargetTransformInfo.h" 46 #include "llvm/Analysis/ValueTracking.h" 47 #include "llvm/Analysis/VectorUtils.h" 48 #include "llvm/IR/Attributes.h" 49 #include "llvm/IR/BasicBlock.h" 50 #include "llvm/IR/Constant.h" 51 #include "llvm/IR/Constants.h" 52 #include "llvm/IR/DataLayout.h" 53 #include "llvm/IR/DebugLoc.h" 54 #include "llvm/IR/DerivedTypes.h" 55 #include "llvm/IR/Dominators.h" 56 #include "llvm/IR/Function.h" 57 #include "llvm/IR/IRBuilder.h" 58 #include "llvm/IR/InstrTypes.h" 59 #include "llvm/IR/Instruction.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/Intrinsics.h" 63 #include "llvm/IR/Module.h" 64 #include "llvm/IR/NoFolder.h" 65 #include "llvm/IR/Operator.h" 66 #include "llvm/IR/PatternMatch.h" 67 #include "llvm/IR/Type.h" 68 #include "llvm/IR/Use.h" 69 #include "llvm/IR/User.h" 70 #include "llvm/IR/Value.h" 71 #include "llvm/IR/ValueHandle.h" 72 #include "llvm/IR/Verifier.h" 73 #include "llvm/InitializePasses.h" 74 #include "llvm/Pass.h" 75 #include "llvm/Support/Casting.h" 76 #include "llvm/Support/CommandLine.h" 77 #include "llvm/Support/Compiler.h" 78 #include "llvm/Support/DOTGraphTraits.h" 79 #include "llvm/Support/Debug.h" 80 #include "llvm/Support/ErrorHandling.h" 81 #include "llvm/Support/GraphWriter.h" 82 #include "llvm/Support/KnownBits.h" 83 #include "llvm/Support/MathExtras.h" 84 #include "llvm/Support/raw_ostream.h" 85 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 86 #include "llvm/Transforms/Utils/LoopUtils.h" 87 #include "llvm/Transforms/Vectorize.h" 88 #include <algorithm> 89 #include <cassert> 90 #include <cstdint> 91 #include <iterator> 92 #include <memory> 93 #include <set> 94 #include <string> 95 #include <tuple> 96 #include <utility> 97 #include <vector> 98 99 using namespace llvm; 100 using namespace llvm::PatternMatch; 101 using namespace slpvectorizer; 102 103 #define SV_NAME "slp-vectorizer" 104 #define DEBUG_TYPE "SLP" 105 106 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 107 108 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 109 cl::desc("Run the SLP vectorization passes")); 110 111 static cl::opt<int> 112 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 113 cl::desc("Only vectorize if you gain more than this " 114 "number ")); 115 116 static cl::opt<bool> 117 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 118 cl::desc("Attempt to vectorize horizontal reductions")); 119 120 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 121 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 122 cl::desc( 123 "Attempt to vectorize horizontal reductions feeding into a store")); 124 125 static cl::opt<int> 126 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 127 cl::desc("Attempt to vectorize for this register size in bits")); 128 129 static cl::opt<int> 130 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 131 cl::desc("Maximum depth of the lookup for consecutive stores.")); 132 133 /// Limits the size of scheduling regions in a block. 134 /// It avoid long compile times for _very_ large blocks where vector 135 /// instructions are spread over a wide range. 136 /// This limit is way higher than needed by real-world functions. 137 static cl::opt<int> 138 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 139 cl::desc("Limit the size of the SLP scheduling region per block")); 140 141 static cl::opt<int> MinVectorRegSizeOption( 142 "slp-min-reg-size", cl::init(128), cl::Hidden, 143 cl::desc("Attempt to vectorize for this register size in bits")); 144 145 static cl::opt<unsigned> RecursionMaxDepth( 146 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 147 cl::desc("Limit the recursion depth when building a vectorizable tree")); 148 149 static cl::opt<unsigned> MinTreeSize( 150 "slp-min-tree-size", cl::init(3), cl::Hidden, 151 cl::desc("Only vectorize small trees if they are fully vectorizable")); 152 153 // The maximum depth that the look-ahead score heuristic will explore. 154 // The higher this value, the higher the compilation time overhead. 155 static cl::opt<int> LookAheadMaxDepth( 156 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 157 cl::desc("The maximum look-ahead depth for operand reordering scores")); 158 159 // The Look-ahead heuristic goes through the users of the bundle to calculate 160 // the users cost in getExternalUsesCost(). To avoid compilation time increase 161 // we limit the number of users visited to this value. 162 static cl::opt<unsigned> LookAheadUsersBudget( 163 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 164 cl::desc("The maximum number of users to visit while visiting the " 165 "predecessors. This prevents compilation time increase.")); 166 167 static cl::opt<bool> 168 ViewSLPTree("view-slp-tree", cl::Hidden, 169 cl::desc("Display the SLP trees with Graphviz")); 170 171 // Limit the number of alias checks. The limit is chosen so that 172 // it has no negative effect on the llvm benchmarks. 173 static const unsigned AliasedCheckLimit = 10; 174 175 // Another limit for the alias checks: The maximum distance between load/store 176 // instructions where alias checks are done. 177 // This limit is useful for very large basic blocks. 178 static const unsigned MaxMemDepDistance = 160; 179 180 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 181 /// regions to be handled. 182 static const int MinScheduleRegionSize = 16; 183 184 /// Predicate for the element types that the SLP vectorizer supports. 185 /// 186 /// The most important thing to filter here are types which are invalid in LLVM 187 /// vectors. We also filter target specific types which have absolutely no 188 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 189 /// avoids spending time checking the cost model and realizing that they will 190 /// be inevitably scalarized. 191 static bool isValidElementType(Type *Ty) { 192 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 193 !Ty->isPPC_FP128Ty(); 194 } 195 196 /// \returns true if all of the instructions in \p VL are in the same block or 197 /// false otherwise. 198 static bool allSameBlock(ArrayRef<Value *> VL) { 199 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 200 if (!I0) 201 return false; 202 BasicBlock *BB = I0->getParent(); 203 for (int i = 1, e = VL.size(); i < e; i++) { 204 Instruction *I = dyn_cast<Instruction>(VL[i]); 205 if (!I) 206 return false; 207 208 if (BB != I->getParent()) 209 return false; 210 } 211 return true; 212 } 213 214 /// \returns True if all of the values in \p VL are constants (but not 215 /// globals/constant expressions). 216 static bool allConstant(ArrayRef<Value *> VL) { 217 // Constant expressions and globals can't be vectorized like normal integer/FP 218 // constants. 219 for (Value *i : VL) 220 if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i)) 221 return false; 222 return true; 223 } 224 225 /// \returns True if all of the values in \p VL are identical. 226 static bool isSplat(ArrayRef<Value *> VL) { 227 for (unsigned i = 1, e = VL.size(); i < e; ++i) 228 if (VL[i] != VL[0]) 229 return false; 230 return true; 231 } 232 233 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 234 static bool isCommutative(Instruction *I) { 235 if (auto *Cmp = dyn_cast<CmpInst>(I)) 236 return Cmp->isCommutative(); 237 if (auto *BO = dyn_cast<BinaryOperator>(I)) 238 return BO->isCommutative(); 239 // TODO: This should check for generic Instruction::isCommutative(), but 240 // we need to confirm that the caller code correctly handles Intrinsics 241 // for example (does not have 2 operands). 242 return false; 243 } 244 245 /// Checks if the vector of instructions can be represented as a shuffle, like: 246 /// %x0 = extractelement <4 x i8> %x, i32 0 247 /// %x3 = extractelement <4 x i8> %x, i32 3 248 /// %y1 = extractelement <4 x i8> %y, i32 1 249 /// %y2 = extractelement <4 x i8> %y, i32 2 250 /// %x0x0 = mul i8 %x0, %x0 251 /// %x3x3 = mul i8 %x3, %x3 252 /// %y1y1 = mul i8 %y1, %y1 253 /// %y2y2 = mul i8 %y2, %y2 254 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 255 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 256 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 257 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 258 /// ret <4 x i8> %ins4 259 /// can be transformed into: 260 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 261 /// i32 6> 262 /// %2 = mul <4 x i8> %1, %1 263 /// ret <4 x i8> %2 264 /// We convert this initially to something like: 265 /// %x0 = extractelement <4 x i8> %x, i32 0 266 /// %x3 = extractelement <4 x i8> %x, i32 3 267 /// %y1 = extractelement <4 x i8> %y, i32 1 268 /// %y2 = extractelement <4 x i8> %y, i32 2 269 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 270 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 271 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 272 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 273 /// %5 = mul <4 x i8> %4, %4 274 /// %6 = extractelement <4 x i8> %5, i32 0 275 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 276 /// %7 = extractelement <4 x i8> %5, i32 1 277 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 278 /// %8 = extractelement <4 x i8> %5, i32 2 279 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 280 /// %9 = extractelement <4 x i8> %5, i32 3 281 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 282 /// ret <4 x i8> %ins4 283 /// InstCombiner transforms this into a shuffle and vector mul 284 /// TODO: Can we split off and reuse the shuffle mask detection from 285 /// TargetTransformInfo::getInstructionThroughput? 286 static Optional<TargetTransformInfo::ShuffleKind> 287 isShuffle(ArrayRef<Value *> VL) { 288 auto *EI0 = cast<ExtractElementInst>(VL[0]); 289 unsigned Size = 290 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 291 Value *Vec1 = nullptr; 292 Value *Vec2 = nullptr; 293 enum ShuffleMode { Unknown, Select, Permute }; 294 ShuffleMode CommonShuffleMode = Unknown; 295 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 296 auto *EI = cast<ExtractElementInst>(VL[I]); 297 auto *Vec = EI->getVectorOperand(); 298 // All vector operands must have the same number of vector elements. 299 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 300 return None; 301 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 302 if (!Idx) 303 return None; 304 // Undefined behavior if Idx is negative or >= Size. 305 if (Idx->getValue().uge(Size)) 306 continue; 307 unsigned IntIdx = Idx->getValue().getZExtValue(); 308 // We can extractelement from undef vector. 309 if (isa<UndefValue>(Vec)) 310 continue; 311 // For correct shuffling we have to have at most 2 different vector operands 312 // in all extractelement instructions. 313 if (!Vec1 || Vec1 == Vec) 314 Vec1 = Vec; 315 else if (!Vec2 || Vec2 == Vec) 316 Vec2 = Vec; 317 else 318 return None; 319 if (CommonShuffleMode == Permute) 320 continue; 321 // If the extract index is not the same as the operation number, it is a 322 // permutation. 323 if (IntIdx != I) { 324 CommonShuffleMode = Permute; 325 continue; 326 } 327 CommonShuffleMode = Select; 328 } 329 // If we're not crossing lanes in different vectors, consider it as blending. 330 if (CommonShuffleMode == Select && Vec2) 331 return TargetTransformInfo::SK_Select; 332 // If Vec2 was never used, we have a permutation of a single vector, otherwise 333 // we have permutation of 2 vectors. 334 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 335 : TargetTransformInfo::SK_PermuteSingleSrc; 336 } 337 338 namespace { 339 340 /// Main data required for vectorization of instructions. 341 struct InstructionsState { 342 /// The very first instruction in the list with the main opcode. 343 Value *OpValue = nullptr; 344 345 /// The main/alternate instruction. 346 Instruction *MainOp = nullptr; 347 Instruction *AltOp = nullptr; 348 349 /// The main/alternate opcodes for the list of instructions. 350 unsigned getOpcode() const { 351 return MainOp ? MainOp->getOpcode() : 0; 352 } 353 354 unsigned getAltOpcode() const { 355 return AltOp ? AltOp->getOpcode() : 0; 356 } 357 358 /// Some of the instructions in the list have alternate opcodes. 359 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 360 361 bool isOpcodeOrAlt(Instruction *I) const { 362 unsigned CheckedOpcode = I->getOpcode(); 363 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 364 } 365 366 InstructionsState() = delete; 367 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 368 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 369 }; 370 371 } // end anonymous namespace 372 373 /// Chooses the correct key for scheduling data. If \p Op has the same (or 374 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 375 /// OpValue. 376 static Value *isOneOf(const InstructionsState &S, Value *Op) { 377 auto *I = dyn_cast<Instruction>(Op); 378 if (I && S.isOpcodeOrAlt(I)) 379 return Op; 380 return S.OpValue; 381 } 382 383 /// \returns true if \p Opcode is allowed as part of of the main/alternate 384 /// instruction for SLP vectorization. 385 /// 386 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 387 /// "shuffled out" lane would result in division by zero. 388 static bool isValidForAlternation(unsigned Opcode) { 389 if (Instruction::isIntDivRem(Opcode)) 390 return false; 391 392 return true; 393 } 394 395 /// \returns analysis of the Instructions in \p VL described in 396 /// InstructionsState, the Opcode that we suppose the whole list 397 /// could be vectorized even if its structure is diverse. 398 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 399 unsigned BaseIndex = 0) { 400 // Make sure these are all Instructions. 401 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 402 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 403 404 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 405 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 406 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 407 unsigned AltOpcode = Opcode; 408 unsigned AltIndex = BaseIndex; 409 410 // Check for one alternate opcode from another BinaryOperator. 411 // TODO - generalize to support all operators (types, calls etc.). 412 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 413 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 414 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 415 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 416 continue; 417 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 418 isValidForAlternation(Opcode)) { 419 AltOpcode = InstOpcode; 420 AltIndex = Cnt; 421 continue; 422 } 423 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 424 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 425 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 426 if (Ty0 == Ty1) { 427 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 428 continue; 429 if (Opcode == AltOpcode) { 430 assert(isValidForAlternation(Opcode) && 431 isValidForAlternation(InstOpcode) && 432 "Cast isn't safe for alternation, logic needs to be updated!"); 433 AltOpcode = InstOpcode; 434 AltIndex = Cnt; 435 continue; 436 } 437 } 438 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 439 continue; 440 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 441 } 442 443 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 444 cast<Instruction>(VL[AltIndex])); 445 } 446 447 /// \returns true if all of the values in \p VL have the same type or false 448 /// otherwise. 449 static bool allSameType(ArrayRef<Value *> VL) { 450 Type *Ty = VL[0]->getType(); 451 for (int i = 1, e = VL.size(); i < e; i++) 452 if (VL[i]->getType() != Ty) 453 return false; 454 455 return true; 456 } 457 458 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 459 static Optional<unsigned> getExtractIndex(Instruction *E) { 460 unsigned Opcode = E->getOpcode(); 461 assert((Opcode == Instruction::ExtractElement || 462 Opcode == Instruction::ExtractValue) && 463 "Expected extractelement or extractvalue instruction."); 464 if (Opcode == Instruction::ExtractElement) { 465 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 466 if (!CI) 467 return None; 468 return CI->getZExtValue(); 469 } 470 ExtractValueInst *EI = cast<ExtractValueInst>(E); 471 if (EI->getNumIndices() != 1) 472 return None; 473 return *EI->idx_begin(); 474 } 475 476 /// \returns True if in-tree use also needs extract. This refers to 477 /// possible scalar operand in vectorized instruction. 478 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 479 TargetLibraryInfo *TLI) { 480 unsigned Opcode = UserInst->getOpcode(); 481 switch (Opcode) { 482 case Instruction::Load: { 483 LoadInst *LI = cast<LoadInst>(UserInst); 484 return (LI->getPointerOperand() == Scalar); 485 } 486 case Instruction::Store: { 487 StoreInst *SI = cast<StoreInst>(UserInst); 488 return (SI->getPointerOperand() == Scalar); 489 } 490 case Instruction::Call: { 491 CallInst *CI = cast<CallInst>(UserInst); 492 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 493 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 494 if (hasVectorInstrinsicScalarOpd(ID, i)) 495 return (CI->getArgOperand(i) == Scalar); 496 } 497 LLVM_FALLTHROUGH; 498 } 499 default: 500 return false; 501 } 502 } 503 504 /// \returns the AA location that is being access by the instruction. 505 static MemoryLocation getLocation(Instruction *I, AAResults *AA) { 506 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 507 return MemoryLocation::get(SI); 508 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 509 return MemoryLocation::get(LI); 510 return MemoryLocation(); 511 } 512 513 /// \returns True if the instruction is not a volatile or atomic load/store. 514 static bool isSimple(Instruction *I) { 515 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 516 return LI->isSimple(); 517 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 518 return SI->isSimple(); 519 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 520 return !MI->isVolatile(); 521 return true; 522 } 523 524 namespace llvm { 525 526 static void inversePermutation(ArrayRef<unsigned> Indices, 527 SmallVectorImpl<int> &Mask) { 528 Mask.clear(); 529 const unsigned E = Indices.size(); 530 Mask.resize(E, E + 1); 531 for (unsigned I = 0; I < E; ++I) 532 Mask[Indices[I]] = I; 533 } 534 535 namespace slpvectorizer { 536 537 /// Bottom Up SLP Vectorizer. 538 class BoUpSLP { 539 struct TreeEntry; 540 struct ScheduleData; 541 542 public: 543 using ValueList = SmallVector<Value *, 8>; 544 using InstrList = SmallVector<Instruction *, 16>; 545 using ValueSet = SmallPtrSet<Value *, 16>; 546 using StoreList = SmallVector<StoreInst *, 8>; 547 using ExtraValueToDebugLocsMap = 548 MapVector<Value *, SmallVector<Instruction *, 2>>; 549 using OrdersType = SmallVector<unsigned, 4>; 550 551 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 552 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 553 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 554 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 555 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 556 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 557 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 558 // Use the vector register size specified by the target unless overridden 559 // by a command-line option. 560 // TODO: It would be better to limit the vectorization factor based on 561 // data type rather than just register size. For example, x86 AVX has 562 // 256-bit registers, but it does not support integer operations 563 // at that width (that requires AVX2). 564 if (MaxVectorRegSizeOption.getNumOccurrences()) 565 MaxVecRegSize = MaxVectorRegSizeOption; 566 else 567 MaxVecRegSize = TTI->getRegisterBitWidth(true); 568 569 if (MinVectorRegSizeOption.getNumOccurrences()) 570 MinVecRegSize = MinVectorRegSizeOption; 571 else 572 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 573 } 574 575 /// Vectorize the tree that starts with the elements in \p VL. 576 /// Returns the vectorized root. 577 Value *vectorizeTree(); 578 579 /// Vectorize the tree but with the list of externally used values \p 580 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 581 /// generated extractvalue instructions. 582 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 583 584 /// \returns the cost incurred by unwanted spills and fills, caused by 585 /// holding live values over call sites. 586 int getSpillCost() const; 587 588 /// \returns the vectorization cost of the subtree that starts at \p VL. 589 /// A negative number means that this is profitable. 590 int getTreeCost(); 591 592 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 593 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 594 void buildTree(ArrayRef<Value *> Roots, 595 ArrayRef<Value *> UserIgnoreLst = None); 596 597 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 598 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 599 /// into account (and updating it, if required) list of externally used 600 /// values stored in \p ExternallyUsedValues. 601 void buildTree(ArrayRef<Value *> Roots, 602 ExtraValueToDebugLocsMap &ExternallyUsedValues, 603 ArrayRef<Value *> UserIgnoreLst = None); 604 605 /// Clear the internal data structures that are created by 'buildTree'. 606 void deleteTree() { 607 VectorizableTree.clear(); 608 ScalarToTreeEntry.clear(); 609 MustGather.clear(); 610 ExternalUses.clear(); 611 NumOpsWantToKeepOrder.clear(); 612 NumOpsWantToKeepOriginalOrder = 0; 613 for (auto &Iter : BlocksSchedules) { 614 BlockScheduling *BS = Iter.second.get(); 615 BS->clear(); 616 } 617 MinBWs.clear(); 618 } 619 620 unsigned getTreeSize() const { return VectorizableTree.size(); } 621 622 /// Perform LICM and CSE on the newly generated gather sequences. 623 void optimizeGatherSequence(); 624 625 /// \returns The best order of instructions for vectorization. 626 Optional<ArrayRef<unsigned>> bestOrder() const { 627 assert(llvm::all_of( 628 NumOpsWantToKeepOrder, 629 [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { 630 return D.getFirst().size() == 631 VectorizableTree[0]->Scalars.size(); 632 }) && 633 "All orders must have the same size as number of instructions in " 634 "tree node."); 635 auto I = std::max_element( 636 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 637 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 638 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 639 return D1.second < D2.second; 640 }); 641 if (I == NumOpsWantToKeepOrder.end() || 642 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 643 return None; 644 645 return makeArrayRef(I->getFirst()); 646 } 647 648 /// Builds the correct order for root instructions. 649 /// If some leaves have the same instructions to be vectorized, we may 650 /// incorrectly evaluate the best order for the root node (it is built for the 651 /// vector of instructions without repeated instructions and, thus, has less 652 /// elements than the root node). This function builds the correct order for 653 /// the root node. 654 /// For example, if the root node is \<a+b, a+c, a+d, f+e\>, then the leaves 655 /// are \<a, a, a, f\> and \<b, c, d, e\>. When we try to vectorize the first 656 /// leaf, it will be shrink to \<a, b\>. If instructions in this leaf should 657 /// be reordered, the best order will be \<1, 0\>. We need to extend this 658 /// order for the root node. For the root node this order should look like 659 /// \<3, 0, 1, 2\>. This function extends the order for the reused 660 /// instructions. 661 void findRootOrder(OrdersType &Order) { 662 // If the leaf has the same number of instructions to vectorize as the root 663 // - order must be set already. 664 unsigned RootSize = VectorizableTree[0]->Scalars.size(); 665 if (Order.size() == RootSize) 666 return; 667 SmallVector<unsigned, 4> RealOrder(Order.size()); 668 std::swap(Order, RealOrder); 669 SmallVector<int, 4> Mask; 670 inversePermutation(RealOrder, Mask); 671 Order.assign(Mask.begin(), Mask.end()); 672 // The leaf has less number of instructions - need to find the true order of 673 // the root. 674 // Scan the nodes starting from the leaf back to the root. 675 const TreeEntry *PNode = VectorizableTree.back().get(); 676 SmallVector<const TreeEntry *, 4> Nodes(1, PNode); 677 SmallPtrSet<const TreeEntry *, 4> Visited; 678 while (!Nodes.empty() && Order.size() != RootSize) { 679 const TreeEntry *PNode = Nodes.pop_back_val(); 680 if (!Visited.insert(PNode).second) 681 continue; 682 const TreeEntry &Node = *PNode; 683 for (const EdgeInfo &EI : Node.UserTreeIndices) 684 if (EI.UserTE) 685 Nodes.push_back(EI.UserTE); 686 if (Node.ReuseShuffleIndices.empty()) 687 continue; 688 // Build the order for the parent node. 689 OrdersType NewOrder(Node.ReuseShuffleIndices.size(), RootSize); 690 SmallVector<unsigned, 4> OrderCounter(Order.size(), 0); 691 // The algorithm of the order extension is: 692 // 1. Calculate the number of the same instructions for the order. 693 // 2. Calculate the index of the new order: total number of instructions 694 // with order less than the order of the current instruction + reuse 695 // number of the current instruction. 696 // 3. The new order is just the index of the instruction in the original 697 // vector of the instructions. 698 for (unsigned I : Node.ReuseShuffleIndices) 699 ++OrderCounter[Order[I]]; 700 SmallVector<unsigned, 4> CurrentCounter(Order.size(), 0); 701 for (unsigned I = 0, E = Node.ReuseShuffleIndices.size(); I < E; ++I) { 702 unsigned ReusedIdx = Node.ReuseShuffleIndices[I]; 703 unsigned OrderIdx = Order[ReusedIdx]; 704 unsigned NewIdx = 0; 705 for (unsigned J = 0; J < OrderIdx; ++J) 706 NewIdx += OrderCounter[J]; 707 NewIdx += CurrentCounter[OrderIdx]; 708 ++CurrentCounter[OrderIdx]; 709 assert(NewOrder[NewIdx] == RootSize && 710 "The order index should not be written already."); 711 NewOrder[NewIdx] = I; 712 } 713 std::swap(Order, NewOrder); 714 } 715 assert(Order.size() == RootSize && 716 "Root node is expected or the size of the order must be the same as " 717 "the number of elements in the root node."); 718 assert(llvm::all_of(Order, 719 [RootSize](unsigned Val) { return Val != RootSize; }) && 720 "All indices must be initialized"); 721 } 722 723 /// \return The vector element size in bits to use when vectorizing the 724 /// expression tree ending at \p V. If V is a store, the size is the width of 725 /// the stored value. Otherwise, the size is the width of the largest loaded 726 /// value reaching V. This method is used by the vectorizer to calculate 727 /// vectorization factors. 728 unsigned getVectorElementSize(Value *V); 729 730 /// Compute the minimum type sizes required to represent the entries in a 731 /// vectorizable tree. 732 void computeMinimumValueSizes(); 733 734 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 735 unsigned getMaxVecRegSize() const { 736 return MaxVecRegSize; 737 } 738 739 // \returns minimum vector register size as set by cl::opt. 740 unsigned getMinVecRegSize() const { 741 return MinVecRegSize; 742 } 743 744 /// Check if homogeneous aggregate is isomorphic to some VectorType. 745 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 746 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 747 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 748 /// 749 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 750 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 751 752 /// \returns True if the VectorizableTree is both tiny and not fully 753 /// vectorizable. We do not vectorize such trees. 754 bool isTreeTinyAndNotFullyVectorizable() const; 755 756 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 757 /// can be load combined in the backend. Load combining may not be allowed in 758 /// the IR optimizer, so we do not want to alter the pattern. For example, 759 /// partially transforming a scalar bswap() pattern into vector code is 760 /// effectively impossible for the backend to undo. 761 /// TODO: If load combining is allowed in the IR optimizer, this analysis 762 /// may not be necessary. 763 bool isLoadCombineReductionCandidate(unsigned ReductionOpcode) const; 764 765 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 766 /// can be load combined in the backend. Load combining may not be allowed in 767 /// the IR optimizer, so we do not want to alter the pattern. For example, 768 /// partially transforming a scalar bswap() pattern into vector code is 769 /// effectively impossible for the backend to undo. 770 /// TODO: If load combining is allowed in the IR optimizer, this analysis 771 /// may not be necessary. 772 bool isLoadCombineCandidate() const; 773 774 OptimizationRemarkEmitter *getORE() { return ORE; } 775 776 /// This structure holds any data we need about the edges being traversed 777 /// during buildTree_rec(). We keep track of: 778 /// (i) the user TreeEntry index, and 779 /// (ii) the index of the edge. 780 struct EdgeInfo { 781 EdgeInfo() = default; 782 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 783 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 784 /// The user TreeEntry. 785 TreeEntry *UserTE = nullptr; 786 /// The operand index of the use. 787 unsigned EdgeIdx = UINT_MAX; 788 #ifndef NDEBUG 789 friend inline raw_ostream &operator<<(raw_ostream &OS, 790 const BoUpSLP::EdgeInfo &EI) { 791 EI.dump(OS); 792 return OS; 793 } 794 /// Debug print. 795 void dump(raw_ostream &OS) const { 796 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 797 << " EdgeIdx:" << EdgeIdx << "}"; 798 } 799 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 800 #endif 801 }; 802 803 /// A helper data structure to hold the operands of a vector of instructions. 804 /// This supports a fixed vector length for all operand vectors. 805 class VLOperands { 806 /// For each operand we need (i) the value, and (ii) the opcode that it 807 /// would be attached to if the expression was in a left-linearized form. 808 /// This is required to avoid illegal operand reordering. 809 /// For example: 810 /// \verbatim 811 /// 0 Op1 812 /// |/ 813 /// Op1 Op2 Linearized + Op2 814 /// \ / ----------> |/ 815 /// - - 816 /// 817 /// Op1 - Op2 (0 + Op1) - Op2 818 /// \endverbatim 819 /// 820 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 821 /// 822 /// Another way to think of this is to track all the operations across the 823 /// path from the operand all the way to the root of the tree and to 824 /// calculate the operation that corresponds to this path. For example, the 825 /// path from Op2 to the root crosses the RHS of the '-', therefore the 826 /// corresponding operation is a '-' (which matches the one in the 827 /// linearized tree, as shown above). 828 /// 829 /// For lack of a better term, we refer to this operation as Accumulated 830 /// Path Operation (APO). 831 struct OperandData { 832 OperandData() = default; 833 OperandData(Value *V, bool APO, bool IsUsed) 834 : V(V), APO(APO), IsUsed(IsUsed) {} 835 /// The operand value. 836 Value *V = nullptr; 837 /// TreeEntries only allow a single opcode, or an alternate sequence of 838 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 839 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 840 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 841 /// (e.g., Add/Mul) 842 bool APO = false; 843 /// Helper data for the reordering function. 844 bool IsUsed = false; 845 }; 846 847 /// During operand reordering, we are trying to select the operand at lane 848 /// that matches best with the operand at the neighboring lane. Our 849 /// selection is based on the type of value we are looking for. For example, 850 /// if the neighboring lane has a load, we need to look for a load that is 851 /// accessing a consecutive address. These strategies are summarized in the 852 /// 'ReorderingMode' enumerator. 853 enum class ReorderingMode { 854 Load, ///< Matching loads to consecutive memory addresses 855 Opcode, ///< Matching instructions based on opcode (same or alternate) 856 Constant, ///< Matching constants 857 Splat, ///< Matching the same instruction multiple times (broadcast) 858 Failed, ///< We failed to create a vectorizable group 859 }; 860 861 using OperandDataVec = SmallVector<OperandData, 2>; 862 863 /// A vector of operand vectors. 864 SmallVector<OperandDataVec, 4> OpsVec; 865 866 const DataLayout &DL; 867 ScalarEvolution &SE; 868 const BoUpSLP &R; 869 870 /// \returns the operand data at \p OpIdx and \p Lane. 871 OperandData &getData(unsigned OpIdx, unsigned Lane) { 872 return OpsVec[OpIdx][Lane]; 873 } 874 875 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 876 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 877 return OpsVec[OpIdx][Lane]; 878 } 879 880 /// Clears the used flag for all entries. 881 void clearUsed() { 882 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 883 OpIdx != NumOperands; ++OpIdx) 884 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 885 ++Lane) 886 OpsVec[OpIdx][Lane].IsUsed = false; 887 } 888 889 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 890 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 891 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 892 } 893 894 // The hard-coded scores listed here are not very important. When computing 895 // the scores of matching one sub-tree with another, we are basically 896 // counting the number of values that are matching. So even if all scores 897 // are set to 1, we would still get a decent matching result. 898 // However, sometimes we have to break ties. For example we may have to 899 // choose between matching loads vs matching opcodes. This is what these 900 // scores are helping us with: they provide the order of preference. 901 902 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 903 static const int ScoreConsecutiveLoads = 3; 904 /// ExtractElementInst from same vector and consecutive indexes. 905 static const int ScoreConsecutiveExtracts = 3; 906 /// Constants. 907 static const int ScoreConstants = 2; 908 /// Instructions with the same opcode. 909 static const int ScoreSameOpcode = 2; 910 /// Instructions with alt opcodes (e.g, add + sub). 911 static const int ScoreAltOpcodes = 1; 912 /// Identical instructions (a.k.a. splat or broadcast). 913 static const int ScoreSplat = 1; 914 /// Matching with an undef is preferable to failing. 915 static const int ScoreUndef = 1; 916 /// Score for failing to find a decent match. 917 static const int ScoreFail = 0; 918 /// User exteranl to the vectorized code. 919 static const int ExternalUseCost = 1; 920 /// The user is internal but in a different lane. 921 static const int UserInDiffLaneCost = ExternalUseCost; 922 923 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 924 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 925 ScalarEvolution &SE) { 926 auto *LI1 = dyn_cast<LoadInst>(V1); 927 auto *LI2 = dyn_cast<LoadInst>(V2); 928 if (LI1 && LI2) 929 return isConsecutiveAccess(LI1, LI2, DL, SE) 930 ? VLOperands::ScoreConsecutiveLoads 931 : VLOperands::ScoreFail; 932 933 auto *C1 = dyn_cast<Constant>(V1); 934 auto *C2 = dyn_cast<Constant>(V2); 935 if (C1 && C2) 936 return VLOperands::ScoreConstants; 937 938 // Extracts from consecutive indexes of the same vector better score as 939 // the extracts could be optimized away. 940 Value *EV; 941 ConstantInt *Ex1Idx, *Ex2Idx; 942 if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) && 943 match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) && 944 Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue()) 945 return VLOperands::ScoreConsecutiveExtracts; 946 947 auto *I1 = dyn_cast<Instruction>(V1); 948 auto *I2 = dyn_cast<Instruction>(V2); 949 if (I1 && I2) { 950 if (I1 == I2) 951 return VLOperands::ScoreSplat; 952 InstructionsState S = getSameOpcode({I1, I2}); 953 // Note: Only consider instructions with <= 2 operands to avoid 954 // complexity explosion. 955 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 956 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 957 : VLOperands::ScoreSameOpcode; 958 } 959 960 if (isa<UndefValue>(V2)) 961 return VLOperands::ScoreUndef; 962 963 return VLOperands::ScoreFail; 964 } 965 966 /// Holds the values and their lane that are taking part in the look-ahead 967 /// score calculation. This is used in the external uses cost calculation. 968 SmallDenseMap<Value *, int> InLookAheadValues; 969 970 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are 971 /// either external to the vectorized code, or require shuffling. 972 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 973 const std::pair<Value *, int> &RHS) { 974 int Cost = 0; 975 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 976 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 977 Value *V = Values[Idx].first; 978 // Calculate the absolute lane, using the minimum relative lane of LHS 979 // and RHS as base and Idx as the offset. 980 int Ln = std::min(LHS.second, RHS.second) + Idx; 981 assert(Ln >= 0 && "Bad lane calculation"); 982 unsigned UsersBudget = LookAheadUsersBudget; 983 for (User *U : V->users()) { 984 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 985 // The user is in the VectorizableTree. Check if we need to insert. 986 auto It = llvm::find(UserTE->Scalars, U); 987 assert(It != UserTE->Scalars.end() && "U is in UserTE"); 988 int UserLn = std::distance(UserTE->Scalars.begin(), It); 989 assert(UserLn >= 0 && "Bad lane"); 990 if (UserLn != Ln) 991 Cost += UserInDiffLaneCost; 992 } else { 993 // Check if the user is in the look-ahead code. 994 auto It2 = InLookAheadValues.find(U); 995 if (It2 != InLookAheadValues.end()) { 996 // The user is in the look-ahead code. Check the lane. 997 if (It2->second != Ln) 998 Cost += UserInDiffLaneCost; 999 } else { 1000 // The user is neither in SLP tree nor in the look-ahead code. 1001 Cost += ExternalUseCost; 1002 } 1003 } 1004 // Limit the number of visited uses to cap compilation time. 1005 if (--UsersBudget == 0) 1006 break; 1007 } 1008 } 1009 return Cost; 1010 } 1011 1012 /// Go through the operands of \p LHS and \p RHS recursively until \p 1013 /// MaxLevel, and return the cummulative score. For example: 1014 /// \verbatim 1015 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1016 /// \ / \ / \ / \ / 1017 /// + + + + 1018 /// G1 G2 G3 G4 1019 /// \endverbatim 1020 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1021 /// each level recursively, accumulating the score. It starts from matching 1022 /// the additions at level 0, then moves on to the loads (level 1). The 1023 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1024 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1025 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1026 /// Please note that the order of the operands does not matter, as we 1027 /// evaluate the score of all profitable combinations of operands. In 1028 /// other words the score of G1 and G4 is the same as G1 and G2. This 1029 /// heuristic is based on ideas described in: 1030 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1031 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1032 /// Luís F. W. Góes 1033 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 1034 const std::pair<Value *, int> &RHS, int CurrLevel, 1035 int MaxLevel) { 1036 1037 Value *V1 = LHS.first; 1038 Value *V2 = RHS.first; 1039 // Get the shallow score of V1 and V2. 1040 int ShallowScoreAtThisLevel = 1041 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) - 1042 getExternalUsesCost(LHS, RHS)); 1043 int Lane1 = LHS.second; 1044 int Lane2 = RHS.second; 1045 1046 // If reached MaxLevel, 1047 // or if V1 and V2 are not instructions, 1048 // or if they are SPLAT, 1049 // or if they are not consecutive, early return the current cost. 1050 auto *I1 = dyn_cast<Instruction>(V1); 1051 auto *I2 = dyn_cast<Instruction>(V2); 1052 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1053 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1054 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel)) 1055 return ShallowScoreAtThisLevel; 1056 assert(I1 && I2 && "Should have early exited."); 1057 1058 // Keep track of in-tree values for determining the external-use cost. 1059 InLookAheadValues[V1] = Lane1; 1060 InLookAheadValues[V2] = Lane2; 1061 1062 // Contains the I2 operand indexes that got matched with I1 operands. 1063 SmallSet<unsigned, 4> Op2Used; 1064 1065 // Recursion towards the operands of I1 and I2. We are trying all possbile 1066 // operand pairs, and keeping track of the best score. 1067 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1068 OpIdx1 != NumOperands1; ++OpIdx1) { 1069 // Try to pair op1I with the best operand of I2. 1070 int MaxTmpScore = 0; 1071 unsigned MaxOpIdx2 = 0; 1072 bool FoundBest = false; 1073 // If I2 is commutative try all combinations. 1074 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1075 unsigned ToIdx = isCommutative(I2) 1076 ? I2->getNumOperands() 1077 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1078 assert(FromIdx <= ToIdx && "Bad index"); 1079 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1080 // Skip operands already paired with OpIdx1. 1081 if (Op2Used.count(OpIdx2)) 1082 continue; 1083 // Recursively calculate the cost at each level 1084 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 1085 {I2->getOperand(OpIdx2), Lane2}, 1086 CurrLevel + 1, MaxLevel); 1087 // Look for the best score. 1088 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1089 MaxTmpScore = TmpScore; 1090 MaxOpIdx2 = OpIdx2; 1091 FoundBest = true; 1092 } 1093 } 1094 if (FoundBest) { 1095 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1096 Op2Used.insert(MaxOpIdx2); 1097 ShallowScoreAtThisLevel += MaxTmpScore; 1098 } 1099 } 1100 return ShallowScoreAtThisLevel; 1101 } 1102 1103 /// \Returns the look-ahead score, which tells us how much the sub-trees 1104 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1105 /// score. This helps break ties in an informed way when we cannot decide on 1106 /// the order of the operands by just considering the immediate 1107 /// predecessors. 1108 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1109 const std::pair<Value *, int> &RHS) { 1110 InLookAheadValues.clear(); 1111 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1112 } 1113 1114 // Search all operands in Ops[*][Lane] for the one that matches best 1115 // Ops[OpIdx][LastLane] and return its opreand index. 1116 // If no good match can be found, return None. 1117 Optional<unsigned> 1118 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1119 ArrayRef<ReorderingMode> ReorderingModes) { 1120 unsigned NumOperands = getNumOperands(); 1121 1122 // The operand of the previous lane at OpIdx. 1123 Value *OpLastLane = getData(OpIdx, LastLane).V; 1124 1125 // Our strategy mode for OpIdx. 1126 ReorderingMode RMode = ReorderingModes[OpIdx]; 1127 1128 // The linearized opcode of the operand at OpIdx, Lane. 1129 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1130 1131 // The best operand index and its score. 1132 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1133 // are using the score to differentiate between the two. 1134 struct BestOpData { 1135 Optional<unsigned> Idx = None; 1136 unsigned Score = 0; 1137 } BestOp; 1138 1139 // Iterate through all unused operands and look for the best. 1140 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1141 // Get the operand at Idx and Lane. 1142 OperandData &OpData = getData(Idx, Lane); 1143 Value *Op = OpData.V; 1144 bool OpAPO = OpData.APO; 1145 1146 // Skip already selected operands. 1147 if (OpData.IsUsed) 1148 continue; 1149 1150 // Skip if we are trying to move the operand to a position with a 1151 // different opcode in the linearized tree form. This would break the 1152 // semantics. 1153 if (OpAPO != OpIdxAPO) 1154 continue; 1155 1156 // Look for an operand that matches the current mode. 1157 switch (RMode) { 1158 case ReorderingMode::Load: 1159 case ReorderingMode::Constant: 1160 case ReorderingMode::Opcode: { 1161 bool LeftToRight = Lane > LastLane; 1162 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1163 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1164 unsigned Score = 1165 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1166 if (Score > BestOp.Score) { 1167 BestOp.Idx = Idx; 1168 BestOp.Score = Score; 1169 } 1170 break; 1171 } 1172 case ReorderingMode::Splat: 1173 if (Op == OpLastLane) 1174 BestOp.Idx = Idx; 1175 break; 1176 case ReorderingMode::Failed: 1177 return None; 1178 } 1179 } 1180 1181 if (BestOp.Idx) { 1182 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1183 return BestOp.Idx; 1184 } 1185 // If we could not find a good match return None. 1186 return None; 1187 } 1188 1189 /// Helper for reorderOperandVecs. \Returns the lane that we should start 1190 /// reordering from. This is the one which has the least number of operands 1191 /// that can freely move about. 1192 unsigned getBestLaneToStartReordering() const { 1193 unsigned BestLane = 0; 1194 unsigned Min = UINT_MAX; 1195 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1196 ++Lane) { 1197 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 1198 if (NumFreeOps < Min) { 1199 Min = NumFreeOps; 1200 BestLane = Lane; 1201 } 1202 } 1203 return BestLane; 1204 } 1205 1206 /// \Returns the maximum number of operands that are allowed to be reordered 1207 /// for \p Lane. This is used as a heuristic for selecting the first lane to 1208 /// start operand reordering. 1209 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1210 unsigned CntTrue = 0; 1211 unsigned NumOperands = getNumOperands(); 1212 // Operands with the same APO can be reordered. We therefore need to count 1213 // how many of them we have for each APO, like this: Cnt[APO] = x. 1214 // Since we only have two APOs, namely true and false, we can avoid using 1215 // a map. Instead we can simply count the number of operands that 1216 // correspond to one of them (in this case the 'true' APO), and calculate 1217 // the other by subtracting it from the total number of operands. 1218 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 1219 if (getData(OpIdx, Lane).APO) 1220 ++CntTrue; 1221 unsigned CntFalse = NumOperands - CntTrue; 1222 return std::max(CntTrue, CntFalse); 1223 } 1224 1225 /// Go through the instructions in VL and append their operands. 1226 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1227 assert(!VL.empty() && "Bad VL"); 1228 assert((empty() || VL.size() == getNumLanes()) && 1229 "Expected same number of lanes"); 1230 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1231 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1232 OpsVec.resize(NumOperands); 1233 unsigned NumLanes = VL.size(); 1234 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1235 OpsVec[OpIdx].resize(NumLanes); 1236 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1237 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1238 // Our tree has just 3 nodes: the root and two operands. 1239 // It is therefore trivial to get the APO. We only need to check the 1240 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1241 // RHS operand. The LHS operand of both add and sub is never attached 1242 // to an inversese operation in the linearized form, therefore its APO 1243 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1244 1245 // Since operand reordering is performed on groups of commutative 1246 // operations or alternating sequences (e.g., +, -), we can safely 1247 // tell the inverse operations by checking commutativity. 1248 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1249 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1250 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1251 APO, false}; 1252 } 1253 } 1254 } 1255 1256 /// \returns the number of operands. 1257 unsigned getNumOperands() const { return OpsVec.size(); } 1258 1259 /// \returns the number of lanes. 1260 unsigned getNumLanes() const { return OpsVec[0].size(); } 1261 1262 /// \returns the operand value at \p OpIdx and \p Lane. 1263 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1264 return getData(OpIdx, Lane).V; 1265 } 1266 1267 /// \returns true if the data structure is empty. 1268 bool empty() const { return OpsVec.empty(); } 1269 1270 /// Clears the data. 1271 void clear() { OpsVec.clear(); } 1272 1273 /// \Returns true if there are enough operands identical to \p Op to fill 1274 /// the whole vector. 1275 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1276 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1277 bool OpAPO = getData(OpIdx, Lane).APO; 1278 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1279 if (Ln == Lane) 1280 continue; 1281 // This is set to true if we found a candidate for broadcast at Lane. 1282 bool FoundCandidate = false; 1283 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1284 OperandData &Data = getData(OpI, Ln); 1285 if (Data.APO != OpAPO || Data.IsUsed) 1286 continue; 1287 if (Data.V == Op) { 1288 FoundCandidate = true; 1289 Data.IsUsed = true; 1290 break; 1291 } 1292 } 1293 if (!FoundCandidate) 1294 return false; 1295 } 1296 return true; 1297 } 1298 1299 public: 1300 /// Initialize with all the operands of the instruction vector \p RootVL. 1301 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1302 ScalarEvolution &SE, const BoUpSLP &R) 1303 : DL(DL), SE(SE), R(R) { 1304 // Append all the operands of RootVL. 1305 appendOperandsOfVL(RootVL); 1306 } 1307 1308 /// \Returns a value vector with the operands across all lanes for the 1309 /// opearnd at \p OpIdx. 1310 ValueList getVL(unsigned OpIdx) const { 1311 ValueList OpVL(OpsVec[OpIdx].size()); 1312 assert(OpsVec[OpIdx].size() == getNumLanes() && 1313 "Expected same num of lanes across all operands"); 1314 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1315 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1316 return OpVL; 1317 } 1318 1319 // Performs operand reordering for 2 or more operands. 1320 // The original operands are in OrigOps[OpIdx][Lane]. 1321 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1322 void reorder() { 1323 unsigned NumOperands = getNumOperands(); 1324 unsigned NumLanes = getNumLanes(); 1325 // Each operand has its own mode. We are using this mode to help us select 1326 // the instructions for each lane, so that they match best with the ones 1327 // we have selected so far. 1328 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1329 1330 // This is a greedy single-pass algorithm. We are going over each lane 1331 // once and deciding on the best order right away with no back-tracking. 1332 // However, in order to increase its effectiveness, we start with the lane 1333 // that has operands that can move the least. For example, given the 1334 // following lanes: 1335 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1336 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1337 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1338 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1339 // we will start at Lane 1, since the operands of the subtraction cannot 1340 // be reordered. Then we will visit the rest of the lanes in a circular 1341 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1342 1343 // Find the first lane that we will start our search from. 1344 unsigned FirstLane = getBestLaneToStartReordering(); 1345 1346 // Initialize the modes. 1347 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1348 Value *OpLane0 = getValue(OpIdx, FirstLane); 1349 // Keep track if we have instructions with all the same opcode on one 1350 // side. 1351 if (isa<LoadInst>(OpLane0)) 1352 ReorderingModes[OpIdx] = ReorderingMode::Load; 1353 else if (isa<Instruction>(OpLane0)) { 1354 // Check if OpLane0 should be broadcast. 1355 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1356 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1357 else 1358 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1359 } 1360 else if (isa<Constant>(OpLane0)) 1361 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1362 else if (isa<Argument>(OpLane0)) 1363 // Our best hope is a Splat. It may save some cost in some cases. 1364 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1365 else 1366 // NOTE: This should be unreachable. 1367 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1368 } 1369 1370 // If the initial strategy fails for any of the operand indexes, then we 1371 // perform reordering again in a second pass. This helps avoid assigning 1372 // high priority to the failed strategy, and should improve reordering for 1373 // the non-failed operand indexes. 1374 for (int Pass = 0; Pass != 2; ++Pass) { 1375 // Skip the second pass if the first pass did not fail. 1376 bool StrategyFailed = false; 1377 // Mark all operand data as free to use. 1378 clearUsed(); 1379 // We keep the original operand order for the FirstLane, so reorder the 1380 // rest of the lanes. We are visiting the nodes in a circular fashion, 1381 // using FirstLane as the center point and increasing the radius 1382 // distance. 1383 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1384 // Visit the lane on the right and then the lane on the left. 1385 for (int Direction : {+1, -1}) { 1386 int Lane = FirstLane + Direction * Distance; 1387 if (Lane < 0 || Lane >= (int)NumLanes) 1388 continue; 1389 int LastLane = Lane - Direction; 1390 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1391 "Out of bounds"); 1392 // Look for a good match for each operand. 1393 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1394 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1395 Optional<unsigned> BestIdx = 1396 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1397 // By not selecting a value, we allow the operands that follow to 1398 // select a better matching value. We will get a non-null value in 1399 // the next run of getBestOperand(). 1400 if (BestIdx) { 1401 // Swap the current operand with the one returned by 1402 // getBestOperand(). 1403 swap(OpIdx, BestIdx.getValue(), Lane); 1404 } else { 1405 // We failed to find a best operand, set mode to 'Failed'. 1406 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1407 // Enable the second pass. 1408 StrategyFailed = true; 1409 } 1410 } 1411 } 1412 } 1413 // Skip second pass if the strategy did not fail. 1414 if (!StrategyFailed) 1415 break; 1416 } 1417 } 1418 1419 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1420 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1421 switch (RMode) { 1422 case ReorderingMode::Load: 1423 return "Load"; 1424 case ReorderingMode::Opcode: 1425 return "Opcode"; 1426 case ReorderingMode::Constant: 1427 return "Constant"; 1428 case ReorderingMode::Splat: 1429 return "Splat"; 1430 case ReorderingMode::Failed: 1431 return "Failed"; 1432 } 1433 llvm_unreachable("Unimplemented Reordering Type"); 1434 } 1435 1436 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1437 raw_ostream &OS) { 1438 return OS << getModeStr(RMode); 1439 } 1440 1441 /// Debug print. 1442 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1443 printMode(RMode, dbgs()); 1444 } 1445 1446 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1447 return printMode(RMode, OS); 1448 } 1449 1450 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1451 const unsigned Indent = 2; 1452 unsigned Cnt = 0; 1453 for (const OperandDataVec &OpDataVec : OpsVec) { 1454 OS << "Operand " << Cnt++ << "\n"; 1455 for (const OperandData &OpData : OpDataVec) { 1456 OS.indent(Indent) << "{"; 1457 if (Value *V = OpData.V) 1458 OS << *V; 1459 else 1460 OS << "null"; 1461 OS << ", APO:" << OpData.APO << "}\n"; 1462 } 1463 OS << "\n"; 1464 } 1465 return OS; 1466 } 1467 1468 /// Debug print. 1469 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1470 #endif 1471 }; 1472 1473 /// Checks if the instruction is marked for deletion. 1474 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1475 1476 /// Marks values operands for later deletion by replacing them with Undefs. 1477 void eraseInstructions(ArrayRef<Value *> AV); 1478 1479 ~BoUpSLP(); 1480 1481 private: 1482 /// Checks if all users of \p I are the part of the vectorization tree. 1483 bool areAllUsersVectorized(Instruction *I) const; 1484 1485 /// \returns the cost of the vectorizable entry. 1486 int getEntryCost(TreeEntry *E); 1487 1488 /// This is the recursive part of buildTree. 1489 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1490 const EdgeInfo &EI); 1491 1492 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1493 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1494 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1495 /// returns false, setting \p CurrentOrder to either an empty vector or a 1496 /// non-identity permutation that allows to reuse extract instructions. 1497 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1498 SmallVectorImpl<unsigned> &CurrentOrder) const; 1499 1500 /// Vectorize a single entry in the tree. 1501 Value *vectorizeTree(TreeEntry *E); 1502 1503 /// Vectorize a single entry in the tree, starting in \p VL. 1504 Value *vectorizeTree(ArrayRef<Value *> VL); 1505 1506 /// \returns the scalarization cost for this type. Scalarization in this 1507 /// context means the creation of vectors from a group of scalars. 1508 int getGatherCost(FixedVectorType *Ty, 1509 const DenseSet<unsigned> &ShuffledIndices) const; 1510 1511 /// \returns the scalarization cost for this list of values. Assuming that 1512 /// this subtree gets vectorized, we may need to extract the values from the 1513 /// roots. This method calculates the cost of extracting the values. 1514 int getGatherCost(ArrayRef<Value *> VL) const; 1515 1516 /// Set the Builder insert point to one after the last instruction in 1517 /// the bundle 1518 void setInsertPointAfterBundle(TreeEntry *E); 1519 1520 /// \returns a vector from a collection of scalars in \p VL. 1521 Value *gather(ArrayRef<Value *> VL); 1522 1523 /// \returns whether the VectorizableTree is fully vectorizable and will 1524 /// be beneficial even the tree height is tiny. 1525 bool isFullyVectorizableTinyTree() const; 1526 1527 /// Reorder commutative or alt operands to get better probability of 1528 /// generating vectorized code. 1529 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1530 SmallVectorImpl<Value *> &Left, 1531 SmallVectorImpl<Value *> &Right, 1532 const DataLayout &DL, 1533 ScalarEvolution &SE, 1534 const BoUpSLP &R); 1535 struct TreeEntry { 1536 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1537 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1538 1539 /// \returns true if the scalars in VL are equal to this entry. 1540 bool isSame(ArrayRef<Value *> VL) const { 1541 if (VL.size() == Scalars.size()) 1542 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1543 return VL.size() == ReuseShuffleIndices.size() && 1544 std::equal( 1545 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 1546 [this](Value *V, int Idx) { return V == Scalars[Idx]; }); 1547 } 1548 1549 /// A vector of scalars. 1550 ValueList Scalars; 1551 1552 /// The Scalars are vectorized into this value. It is initialized to Null. 1553 Value *VectorizedValue = nullptr; 1554 1555 /// Do we need to gather this sequence ? 1556 enum EntryState { Vectorize, NeedToGather }; 1557 EntryState State; 1558 1559 /// Does this sequence require some shuffling? 1560 SmallVector<int, 4> ReuseShuffleIndices; 1561 1562 /// Does this entry require reordering? 1563 SmallVector<unsigned, 4> ReorderIndices; 1564 1565 /// Points back to the VectorizableTree. 1566 /// 1567 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1568 /// to be a pointer and needs to be able to initialize the child iterator. 1569 /// Thus we need a reference back to the container to translate the indices 1570 /// to entries. 1571 VecTreeTy &Container; 1572 1573 /// The TreeEntry index containing the user of this entry. We can actually 1574 /// have multiple users so the data structure is not truly a tree. 1575 SmallVector<EdgeInfo, 1> UserTreeIndices; 1576 1577 /// The index of this treeEntry in VectorizableTree. 1578 int Idx = -1; 1579 1580 private: 1581 /// The operands of each instruction in each lane Operands[op_index][lane]. 1582 /// Note: This helps avoid the replication of the code that performs the 1583 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1584 SmallVector<ValueList, 2> Operands; 1585 1586 /// The main/alternate instruction. 1587 Instruction *MainOp = nullptr; 1588 Instruction *AltOp = nullptr; 1589 1590 public: 1591 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1592 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1593 if (Operands.size() < OpIdx + 1) 1594 Operands.resize(OpIdx + 1); 1595 assert(Operands[OpIdx].size() == 0 && "Already resized?"); 1596 Operands[OpIdx].resize(Scalars.size()); 1597 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1598 Operands[OpIdx][Lane] = OpVL[Lane]; 1599 } 1600 1601 /// Set the operands of this bundle in their original order. 1602 void setOperandsInOrder() { 1603 assert(Operands.empty() && "Already initialized?"); 1604 auto *I0 = cast<Instruction>(Scalars[0]); 1605 Operands.resize(I0->getNumOperands()); 1606 unsigned NumLanes = Scalars.size(); 1607 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1608 OpIdx != NumOperands; ++OpIdx) { 1609 Operands[OpIdx].resize(NumLanes); 1610 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1611 auto *I = cast<Instruction>(Scalars[Lane]); 1612 assert(I->getNumOperands() == NumOperands && 1613 "Expected same number of operands"); 1614 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1615 } 1616 } 1617 } 1618 1619 /// \returns the \p OpIdx operand of this TreeEntry. 1620 ValueList &getOperand(unsigned OpIdx) { 1621 assert(OpIdx < Operands.size() && "Off bounds"); 1622 return Operands[OpIdx]; 1623 } 1624 1625 /// \returns the number of operands. 1626 unsigned getNumOperands() const { return Operands.size(); } 1627 1628 /// \return the single \p OpIdx operand. 1629 Value *getSingleOperand(unsigned OpIdx) const { 1630 assert(OpIdx < Operands.size() && "Off bounds"); 1631 assert(!Operands[OpIdx].empty() && "No operand available"); 1632 return Operands[OpIdx][0]; 1633 } 1634 1635 /// Some of the instructions in the list have alternate opcodes. 1636 bool isAltShuffle() const { 1637 return getOpcode() != getAltOpcode(); 1638 } 1639 1640 bool isOpcodeOrAlt(Instruction *I) const { 1641 unsigned CheckedOpcode = I->getOpcode(); 1642 return (getOpcode() == CheckedOpcode || 1643 getAltOpcode() == CheckedOpcode); 1644 } 1645 1646 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1647 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1648 /// \p OpValue. 1649 Value *isOneOf(Value *Op) const { 1650 auto *I = dyn_cast<Instruction>(Op); 1651 if (I && isOpcodeOrAlt(I)) 1652 return Op; 1653 return MainOp; 1654 } 1655 1656 void setOperations(const InstructionsState &S) { 1657 MainOp = S.MainOp; 1658 AltOp = S.AltOp; 1659 } 1660 1661 Instruction *getMainOp() const { 1662 return MainOp; 1663 } 1664 1665 Instruction *getAltOp() const { 1666 return AltOp; 1667 } 1668 1669 /// The main/alternate opcodes for the list of instructions. 1670 unsigned getOpcode() const { 1671 return MainOp ? MainOp->getOpcode() : 0; 1672 } 1673 1674 unsigned getAltOpcode() const { 1675 return AltOp ? AltOp->getOpcode() : 0; 1676 } 1677 1678 /// Update operations state of this entry if reorder occurred. 1679 bool updateStateIfReorder() { 1680 if (ReorderIndices.empty()) 1681 return false; 1682 InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front()); 1683 setOperations(S); 1684 return true; 1685 } 1686 1687 #ifndef NDEBUG 1688 /// Debug printer. 1689 LLVM_DUMP_METHOD void dump() const { 1690 dbgs() << Idx << ".\n"; 1691 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1692 dbgs() << "Operand " << OpI << ":\n"; 1693 for (const Value *V : Operands[OpI]) 1694 dbgs().indent(2) << *V << "\n"; 1695 } 1696 dbgs() << "Scalars: \n"; 1697 for (Value *V : Scalars) 1698 dbgs().indent(2) << *V << "\n"; 1699 dbgs() << "State: "; 1700 switch (State) { 1701 case Vectorize: 1702 dbgs() << "Vectorize\n"; 1703 break; 1704 case NeedToGather: 1705 dbgs() << "NeedToGather\n"; 1706 break; 1707 } 1708 dbgs() << "MainOp: "; 1709 if (MainOp) 1710 dbgs() << *MainOp << "\n"; 1711 else 1712 dbgs() << "NULL\n"; 1713 dbgs() << "AltOp: "; 1714 if (AltOp) 1715 dbgs() << *AltOp << "\n"; 1716 else 1717 dbgs() << "NULL\n"; 1718 dbgs() << "VectorizedValue: "; 1719 if (VectorizedValue) 1720 dbgs() << *VectorizedValue << "\n"; 1721 else 1722 dbgs() << "NULL\n"; 1723 dbgs() << "ReuseShuffleIndices: "; 1724 if (ReuseShuffleIndices.empty()) 1725 dbgs() << "Emtpy"; 1726 else 1727 for (unsigned ReuseIdx : ReuseShuffleIndices) 1728 dbgs() << ReuseIdx << ", "; 1729 dbgs() << "\n"; 1730 dbgs() << "ReorderIndices: "; 1731 for (unsigned ReorderIdx : ReorderIndices) 1732 dbgs() << ReorderIdx << ", "; 1733 dbgs() << "\n"; 1734 dbgs() << "UserTreeIndices: "; 1735 for (const auto &EInfo : UserTreeIndices) 1736 dbgs() << EInfo << ", "; 1737 dbgs() << "\n"; 1738 } 1739 #endif 1740 }; 1741 1742 /// Create a new VectorizableTree entry. 1743 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1744 const InstructionsState &S, 1745 const EdgeInfo &UserTreeIdx, 1746 ArrayRef<unsigned> ReuseShuffleIndices = None, 1747 ArrayRef<unsigned> ReorderIndices = None) { 1748 bool Vectorized = (bool)Bundle; 1749 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1750 TreeEntry *Last = VectorizableTree.back().get(); 1751 Last->Idx = VectorizableTree.size() - 1; 1752 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 1753 Last->State = Vectorized ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 1754 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1755 ReuseShuffleIndices.end()); 1756 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 1757 Last->setOperations(S); 1758 if (Vectorized) { 1759 for (Value *V : VL) { 1760 assert(!getTreeEntry(V) && "Scalar already in tree!"); 1761 ScalarToTreeEntry[V] = Last; 1762 } 1763 // Update the scheduler bundle to point to this TreeEntry. 1764 unsigned Lane = 0; 1765 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 1766 BundleMember = BundleMember->NextInBundle) { 1767 BundleMember->TE = Last; 1768 BundleMember->Lane = Lane; 1769 ++Lane; 1770 } 1771 assert((!Bundle.getValue() || Lane == VL.size()) && 1772 "Bundle and VL out of sync"); 1773 } else { 1774 MustGather.insert(VL.begin(), VL.end()); 1775 } 1776 1777 if (UserTreeIdx.UserTE) 1778 Last->UserTreeIndices.push_back(UserTreeIdx); 1779 1780 return Last; 1781 } 1782 1783 /// -- Vectorization State -- 1784 /// Holds all of the tree entries. 1785 TreeEntry::VecTreeTy VectorizableTree; 1786 1787 #ifndef NDEBUG 1788 /// Debug printer. 1789 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1790 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1791 VectorizableTree[Id]->dump(); 1792 dbgs() << "\n"; 1793 } 1794 } 1795 #endif 1796 1797 TreeEntry *getTreeEntry(Value *V) { 1798 auto I = ScalarToTreeEntry.find(V); 1799 if (I != ScalarToTreeEntry.end()) 1800 return I->second; 1801 return nullptr; 1802 } 1803 1804 const TreeEntry *getTreeEntry(Value *V) const { 1805 auto I = ScalarToTreeEntry.find(V); 1806 if (I != ScalarToTreeEntry.end()) 1807 return I->second; 1808 return nullptr; 1809 } 1810 1811 /// Maps a specific scalar to its tree entry. 1812 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 1813 1814 /// Maps a value to the proposed vectorizable size. 1815 SmallDenseMap<Value *, unsigned> InstrElementSize; 1816 1817 /// A list of scalars that we found that we need to keep as scalars. 1818 ValueSet MustGather; 1819 1820 /// This POD struct describes one external user in the vectorized tree. 1821 struct ExternalUser { 1822 ExternalUser(Value *S, llvm::User *U, int L) 1823 : Scalar(S), User(U), Lane(L) {} 1824 1825 // Which scalar in our function. 1826 Value *Scalar; 1827 1828 // Which user that uses the scalar. 1829 llvm::User *User; 1830 1831 // Which lane does the scalar belong to. 1832 int Lane; 1833 }; 1834 using UserList = SmallVector<ExternalUser, 16>; 1835 1836 /// Checks if two instructions may access the same memory. 1837 /// 1838 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 1839 /// is invariant in the calling loop. 1840 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 1841 Instruction *Inst2) { 1842 // First check if the result is already in the cache. 1843 AliasCacheKey key = std::make_pair(Inst1, Inst2); 1844 Optional<bool> &result = AliasCache[key]; 1845 if (result.hasValue()) { 1846 return result.getValue(); 1847 } 1848 MemoryLocation Loc2 = getLocation(Inst2, AA); 1849 bool aliased = true; 1850 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 1851 // Do the alias check. 1852 aliased = AA->alias(Loc1, Loc2); 1853 } 1854 // Store the result in the cache. 1855 result = aliased; 1856 return aliased; 1857 } 1858 1859 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 1860 1861 /// Cache for alias results. 1862 /// TODO: consider moving this to the AliasAnalysis itself. 1863 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 1864 1865 /// Removes an instruction from its block and eventually deletes it. 1866 /// It's like Instruction::eraseFromParent() except that the actual deletion 1867 /// is delayed until BoUpSLP is destructed. 1868 /// This is required to ensure that there are no incorrect collisions in the 1869 /// AliasCache, which can happen if a new instruction is allocated at the 1870 /// same address as a previously deleted instruction. 1871 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 1872 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 1873 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 1874 } 1875 1876 /// Temporary store for deleted instructions. Instructions will be deleted 1877 /// eventually when the BoUpSLP is destructed. 1878 DenseMap<Instruction *, bool> DeletedInstructions; 1879 1880 /// A list of values that need to extracted out of the tree. 1881 /// This list holds pairs of (Internal Scalar : External User). External User 1882 /// can be nullptr, it means that this Internal Scalar will be used later, 1883 /// after vectorization. 1884 UserList ExternalUses; 1885 1886 /// Values used only by @llvm.assume calls. 1887 SmallPtrSet<const Value *, 32> EphValues; 1888 1889 /// Holds all of the instructions that we gathered. 1890 SetVector<Instruction *> GatherSeq; 1891 1892 /// A list of blocks that we are going to CSE. 1893 SetVector<BasicBlock *> CSEBlocks; 1894 1895 /// Contains all scheduling relevant data for an instruction. 1896 /// A ScheduleData either represents a single instruction or a member of an 1897 /// instruction bundle (= a group of instructions which is combined into a 1898 /// vector instruction). 1899 struct ScheduleData { 1900 // The initial value for the dependency counters. It means that the 1901 // dependencies are not calculated yet. 1902 enum { InvalidDeps = -1 }; 1903 1904 ScheduleData() = default; 1905 1906 void init(int BlockSchedulingRegionID, Value *OpVal) { 1907 FirstInBundle = this; 1908 NextInBundle = nullptr; 1909 NextLoadStore = nullptr; 1910 IsScheduled = false; 1911 SchedulingRegionID = BlockSchedulingRegionID; 1912 UnscheduledDepsInBundle = UnscheduledDeps; 1913 clearDependencies(); 1914 OpValue = OpVal; 1915 TE = nullptr; 1916 Lane = -1; 1917 } 1918 1919 /// Returns true if the dependency information has been calculated. 1920 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 1921 1922 /// Returns true for single instructions and for bundle representatives 1923 /// (= the head of a bundle). 1924 bool isSchedulingEntity() const { return FirstInBundle == this; } 1925 1926 /// Returns true if it represents an instruction bundle and not only a 1927 /// single instruction. 1928 bool isPartOfBundle() const { 1929 return NextInBundle != nullptr || FirstInBundle != this; 1930 } 1931 1932 /// Returns true if it is ready for scheduling, i.e. it has no more 1933 /// unscheduled depending instructions/bundles. 1934 bool isReady() const { 1935 assert(isSchedulingEntity() && 1936 "can't consider non-scheduling entity for ready list"); 1937 return UnscheduledDepsInBundle == 0 && !IsScheduled; 1938 } 1939 1940 /// Modifies the number of unscheduled dependencies, also updating it for 1941 /// the whole bundle. 1942 int incrementUnscheduledDeps(int Incr) { 1943 UnscheduledDeps += Incr; 1944 return FirstInBundle->UnscheduledDepsInBundle += Incr; 1945 } 1946 1947 /// Sets the number of unscheduled dependencies to the number of 1948 /// dependencies. 1949 void resetUnscheduledDeps() { 1950 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 1951 } 1952 1953 /// Clears all dependency information. 1954 void clearDependencies() { 1955 Dependencies = InvalidDeps; 1956 resetUnscheduledDeps(); 1957 MemoryDependencies.clear(); 1958 } 1959 1960 void dump(raw_ostream &os) const { 1961 if (!isSchedulingEntity()) { 1962 os << "/ " << *Inst; 1963 } else if (NextInBundle) { 1964 os << '[' << *Inst; 1965 ScheduleData *SD = NextInBundle; 1966 while (SD) { 1967 os << ';' << *SD->Inst; 1968 SD = SD->NextInBundle; 1969 } 1970 os << ']'; 1971 } else { 1972 os << *Inst; 1973 } 1974 } 1975 1976 Instruction *Inst = nullptr; 1977 1978 /// Points to the head in an instruction bundle (and always to this for 1979 /// single instructions). 1980 ScheduleData *FirstInBundle = nullptr; 1981 1982 /// Single linked list of all instructions in a bundle. Null if it is a 1983 /// single instruction. 1984 ScheduleData *NextInBundle = nullptr; 1985 1986 /// Single linked list of all memory instructions (e.g. load, store, call) 1987 /// in the block - until the end of the scheduling region. 1988 ScheduleData *NextLoadStore = nullptr; 1989 1990 /// The dependent memory instructions. 1991 /// This list is derived on demand in calculateDependencies(). 1992 SmallVector<ScheduleData *, 4> MemoryDependencies; 1993 1994 /// This ScheduleData is in the current scheduling region if this matches 1995 /// the current SchedulingRegionID of BlockScheduling. 1996 int SchedulingRegionID = 0; 1997 1998 /// Used for getting a "good" final ordering of instructions. 1999 int SchedulingPriority = 0; 2000 2001 /// The number of dependencies. Constitutes of the number of users of the 2002 /// instruction plus the number of dependent memory instructions (if any). 2003 /// This value is calculated on demand. 2004 /// If InvalidDeps, the number of dependencies is not calculated yet. 2005 int Dependencies = InvalidDeps; 2006 2007 /// The number of dependencies minus the number of dependencies of scheduled 2008 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2009 /// for scheduling. 2010 /// Note that this is negative as long as Dependencies is not calculated. 2011 int UnscheduledDeps = InvalidDeps; 2012 2013 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 2014 /// single instructions. 2015 int UnscheduledDepsInBundle = InvalidDeps; 2016 2017 /// True if this instruction is scheduled (or considered as scheduled in the 2018 /// dry-run). 2019 bool IsScheduled = false; 2020 2021 /// Opcode of the current instruction in the schedule data. 2022 Value *OpValue = nullptr; 2023 2024 /// The TreeEntry that this instruction corresponds to. 2025 TreeEntry *TE = nullptr; 2026 2027 /// The lane of this node in the TreeEntry. 2028 int Lane = -1; 2029 }; 2030 2031 #ifndef NDEBUG 2032 friend inline raw_ostream &operator<<(raw_ostream &os, 2033 const BoUpSLP::ScheduleData &SD) { 2034 SD.dump(os); 2035 return os; 2036 } 2037 #endif 2038 2039 friend struct GraphTraits<BoUpSLP *>; 2040 friend struct DOTGraphTraits<BoUpSLP *>; 2041 2042 /// Contains all scheduling data for a basic block. 2043 struct BlockScheduling { 2044 BlockScheduling(BasicBlock *BB) 2045 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2046 2047 void clear() { 2048 ReadyInsts.clear(); 2049 ScheduleStart = nullptr; 2050 ScheduleEnd = nullptr; 2051 FirstLoadStoreInRegion = nullptr; 2052 LastLoadStoreInRegion = nullptr; 2053 2054 // Reduce the maximum schedule region size by the size of the 2055 // previous scheduling run. 2056 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2057 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2058 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2059 ScheduleRegionSize = 0; 2060 2061 // Make a new scheduling region, i.e. all existing ScheduleData is not 2062 // in the new region yet. 2063 ++SchedulingRegionID; 2064 } 2065 2066 ScheduleData *getScheduleData(Value *V) { 2067 ScheduleData *SD = ScheduleDataMap[V]; 2068 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2069 return SD; 2070 return nullptr; 2071 } 2072 2073 ScheduleData *getScheduleData(Value *V, Value *Key) { 2074 if (V == Key) 2075 return getScheduleData(V); 2076 auto I = ExtraScheduleDataMap.find(V); 2077 if (I != ExtraScheduleDataMap.end()) { 2078 ScheduleData *SD = I->second[Key]; 2079 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2080 return SD; 2081 } 2082 return nullptr; 2083 } 2084 2085 bool isInSchedulingRegion(ScheduleData *SD) const { 2086 return SD->SchedulingRegionID == SchedulingRegionID; 2087 } 2088 2089 /// Marks an instruction as scheduled and puts all dependent ready 2090 /// instructions into the ready-list. 2091 template <typename ReadyListType> 2092 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2093 SD->IsScheduled = true; 2094 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2095 2096 ScheduleData *BundleMember = SD; 2097 while (BundleMember) { 2098 if (BundleMember->Inst != BundleMember->OpValue) { 2099 BundleMember = BundleMember->NextInBundle; 2100 continue; 2101 } 2102 // Handle the def-use chain dependencies. 2103 2104 // Decrement the unscheduled counter and insert to ready list if ready. 2105 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2106 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2107 if (OpDef && OpDef->hasValidDependencies() && 2108 OpDef->incrementUnscheduledDeps(-1) == 0) { 2109 // There are no more unscheduled dependencies after 2110 // decrementing, so we can put the dependent instruction 2111 // into the ready list. 2112 ScheduleData *DepBundle = OpDef->FirstInBundle; 2113 assert(!DepBundle->IsScheduled && 2114 "already scheduled bundle gets ready"); 2115 ReadyList.insert(DepBundle); 2116 LLVM_DEBUG(dbgs() 2117 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2118 } 2119 }); 2120 }; 2121 2122 // If BundleMember is a vector bundle, its operands may have been 2123 // reordered duiring buildTree(). We therefore need to get its operands 2124 // through the TreeEntry. 2125 if (TreeEntry *TE = BundleMember->TE) { 2126 int Lane = BundleMember->Lane; 2127 assert(Lane >= 0 && "Lane not set"); 2128 2129 // Since vectorization tree is being built recursively this assertion 2130 // ensures that the tree entry has all operands set before reaching 2131 // this code. Couple of exceptions known at the moment are extracts 2132 // where their second (immediate) operand is not added. Since 2133 // immediates do not affect scheduler behavior this is considered 2134 // okay. 2135 auto *In = TE->getMainOp(); 2136 assert(In && 2137 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2138 In->getNumOperands() == TE->getNumOperands()) && 2139 "Missed TreeEntry operands?"); 2140 (void)In; // fake use to avoid build failure when assertions disabled 2141 2142 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2143 OpIdx != NumOperands; ++OpIdx) 2144 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2145 DecrUnsched(I); 2146 } else { 2147 // If BundleMember is a stand-alone instruction, no operand reordering 2148 // has taken place, so we directly access its operands. 2149 for (Use &U : BundleMember->Inst->operands()) 2150 if (auto *I = dyn_cast<Instruction>(U.get())) 2151 DecrUnsched(I); 2152 } 2153 // Handle the memory dependencies. 2154 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2155 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2156 // There are no more unscheduled dependencies after decrementing, 2157 // so we can put the dependent instruction into the ready list. 2158 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2159 assert(!DepBundle->IsScheduled && 2160 "already scheduled bundle gets ready"); 2161 ReadyList.insert(DepBundle); 2162 LLVM_DEBUG(dbgs() 2163 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2164 } 2165 } 2166 BundleMember = BundleMember->NextInBundle; 2167 } 2168 } 2169 2170 void doForAllOpcodes(Value *V, 2171 function_ref<void(ScheduleData *SD)> Action) { 2172 if (ScheduleData *SD = getScheduleData(V)) 2173 Action(SD); 2174 auto I = ExtraScheduleDataMap.find(V); 2175 if (I != ExtraScheduleDataMap.end()) 2176 for (auto &P : I->second) 2177 if (P.second->SchedulingRegionID == SchedulingRegionID) 2178 Action(P.second); 2179 } 2180 2181 /// Put all instructions into the ReadyList which are ready for scheduling. 2182 template <typename ReadyListType> 2183 void initialFillReadyList(ReadyListType &ReadyList) { 2184 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2185 doForAllOpcodes(I, [&](ScheduleData *SD) { 2186 if (SD->isSchedulingEntity() && SD->isReady()) { 2187 ReadyList.insert(SD); 2188 LLVM_DEBUG(dbgs() 2189 << "SLP: initially in ready list: " << *I << "\n"); 2190 } 2191 }); 2192 } 2193 } 2194 2195 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2196 /// cyclic dependencies. This is only a dry-run, no instructions are 2197 /// actually moved at this stage. 2198 /// \returns the scheduling bundle. The returned Optional value is non-None 2199 /// if \p VL is allowed to be scheduled. 2200 Optional<ScheduleData *> 2201 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2202 const InstructionsState &S); 2203 2204 /// Un-bundles a group of instructions. 2205 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2206 2207 /// Allocates schedule data chunk. 2208 ScheduleData *allocateScheduleDataChunks(); 2209 2210 /// Extends the scheduling region so that V is inside the region. 2211 /// \returns true if the region size is within the limit. 2212 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2213 2214 /// Initialize the ScheduleData structures for new instructions in the 2215 /// scheduling region. 2216 void initScheduleData(Instruction *FromI, Instruction *ToI, 2217 ScheduleData *PrevLoadStore, 2218 ScheduleData *NextLoadStore); 2219 2220 /// Updates the dependency information of a bundle and of all instructions/ 2221 /// bundles which depend on the original bundle. 2222 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2223 BoUpSLP *SLP); 2224 2225 /// Sets all instruction in the scheduling region to un-scheduled. 2226 void resetSchedule(); 2227 2228 BasicBlock *BB; 2229 2230 /// Simple memory allocation for ScheduleData. 2231 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2232 2233 /// The size of a ScheduleData array in ScheduleDataChunks. 2234 int ChunkSize; 2235 2236 /// The allocator position in the current chunk, which is the last entry 2237 /// of ScheduleDataChunks. 2238 int ChunkPos; 2239 2240 /// Attaches ScheduleData to Instruction. 2241 /// Note that the mapping survives during all vectorization iterations, i.e. 2242 /// ScheduleData structures are recycled. 2243 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2244 2245 /// Attaches ScheduleData to Instruction with the leading key. 2246 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2247 ExtraScheduleDataMap; 2248 2249 struct ReadyList : SmallVector<ScheduleData *, 8> { 2250 void insert(ScheduleData *SD) { push_back(SD); } 2251 }; 2252 2253 /// The ready-list for scheduling (only used for the dry-run). 2254 ReadyList ReadyInsts; 2255 2256 /// The first instruction of the scheduling region. 2257 Instruction *ScheduleStart = nullptr; 2258 2259 /// The first instruction _after_ the scheduling region. 2260 Instruction *ScheduleEnd = nullptr; 2261 2262 /// The first memory accessing instruction in the scheduling region 2263 /// (can be null). 2264 ScheduleData *FirstLoadStoreInRegion = nullptr; 2265 2266 /// The last memory accessing instruction in the scheduling region 2267 /// (can be null). 2268 ScheduleData *LastLoadStoreInRegion = nullptr; 2269 2270 /// The current size of the scheduling region. 2271 int ScheduleRegionSize = 0; 2272 2273 /// The maximum size allowed for the scheduling region. 2274 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2275 2276 /// The ID of the scheduling region. For a new vectorization iteration this 2277 /// is incremented which "removes" all ScheduleData from the region. 2278 // Make sure that the initial SchedulingRegionID is greater than the 2279 // initial SchedulingRegionID in ScheduleData (which is 0). 2280 int SchedulingRegionID = 1; 2281 }; 2282 2283 /// Attaches the BlockScheduling structures to basic blocks. 2284 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2285 2286 /// Performs the "real" scheduling. Done before vectorization is actually 2287 /// performed in a basic block. 2288 void scheduleBlock(BlockScheduling *BS); 2289 2290 /// List of users to ignore during scheduling and that don't need extracting. 2291 ArrayRef<Value *> UserIgnoreList; 2292 2293 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2294 /// sorted SmallVectors of unsigned. 2295 struct OrdersTypeDenseMapInfo { 2296 static OrdersType getEmptyKey() { 2297 OrdersType V; 2298 V.push_back(~1U); 2299 return V; 2300 } 2301 2302 static OrdersType getTombstoneKey() { 2303 OrdersType V; 2304 V.push_back(~2U); 2305 return V; 2306 } 2307 2308 static unsigned getHashValue(const OrdersType &V) { 2309 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2310 } 2311 2312 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2313 return LHS == RHS; 2314 } 2315 }; 2316 2317 /// Contains orders of operations along with the number of bundles that have 2318 /// operations in this order. It stores only those orders that require 2319 /// reordering, if reordering is not required it is counted using \a 2320 /// NumOpsWantToKeepOriginalOrder. 2321 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 2322 /// Number of bundles that do not require reordering. 2323 unsigned NumOpsWantToKeepOriginalOrder = 0; 2324 2325 // Analysis and block reference. 2326 Function *F; 2327 ScalarEvolution *SE; 2328 TargetTransformInfo *TTI; 2329 TargetLibraryInfo *TLI; 2330 AAResults *AA; 2331 LoopInfo *LI; 2332 DominatorTree *DT; 2333 AssumptionCache *AC; 2334 DemandedBits *DB; 2335 const DataLayout *DL; 2336 OptimizationRemarkEmitter *ORE; 2337 2338 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2339 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2340 2341 /// Instruction builder to construct the vectorized tree. 2342 IRBuilder<> Builder; 2343 2344 /// A map of scalar integer values to the smallest bit width with which they 2345 /// can legally be represented. The values map to (width, signed) pairs, 2346 /// where "width" indicates the minimum bit width and "signed" is True if the 2347 /// value must be signed-extended, rather than zero-extended, back to its 2348 /// original width. 2349 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2350 }; 2351 2352 } // end namespace slpvectorizer 2353 2354 template <> struct GraphTraits<BoUpSLP *> { 2355 using TreeEntry = BoUpSLP::TreeEntry; 2356 2357 /// NodeRef has to be a pointer per the GraphWriter. 2358 using NodeRef = TreeEntry *; 2359 2360 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2361 2362 /// Add the VectorizableTree to the index iterator to be able to return 2363 /// TreeEntry pointers. 2364 struct ChildIteratorType 2365 : public iterator_adaptor_base< 2366 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2367 ContainerTy &VectorizableTree; 2368 2369 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2370 ContainerTy &VT) 2371 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2372 2373 NodeRef operator*() { return I->UserTE; } 2374 }; 2375 2376 static NodeRef getEntryNode(BoUpSLP &R) { 2377 return R.VectorizableTree[0].get(); 2378 } 2379 2380 static ChildIteratorType child_begin(NodeRef N) { 2381 return {N->UserTreeIndices.begin(), N->Container}; 2382 } 2383 2384 static ChildIteratorType child_end(NodeRef N) { 2385 return {N->UserTreeIndices.end(), N->Container}; 2386 } 2387 2388 /// For the node iterator we just need to turn the TreeEntry iterator into a 2389 /// TreeEntry* iterator so that it dereferences to NodeRef. 2390 class nodes_iterator { 2391 using ItTy = ContainerTy::iterator; 2392 ItTy It; 2393 2394 public: 2395 nodes_iterator(const ItTy &It2) : It(It2) {} 2396 NodeRef operator*() { return It->get(); } 2397 nodes_iterator operator++() { 2398 ++It; 2399 return *this; 2400 } 2401 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2402 }; 2403 2404 static nodes_iterator nodes_begin(BoUpSLP *R) { 2405 return nodes_iterator(R->VectorizableTree.begin()); 2406 } 2407 2408 static nodes_iterator nodes_end(BoUpSLP *R) { 2409 return nodes_iterator(R->VectorizableTree.end()); 2410 } 2411 2412 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2413 }; 2414 2415 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2416 using TreeEntry = BoUpSLP::TreeEntry; 2417 2418 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2419 2420 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2421 std::string Str; 2422 raw_string_ostream OS(Str); 2423 if (isSplat(Entry->Scalars)) { 2424 OS << "<splat> " << *Entry->Scalars[0]; 2425 return Str; 2426 } 2427 for (auto V : Entry->Scalars) { 2428 OS << *V; 2429 if (std::any_of( 2430 R->ExternalUses.begin(), R->ExternalUses.end(), 2431 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 2432 OS << " <extract>"; 2433 OS << "\n"; 2434 } 2435 return Str; 2436 } 2437 2438 static std::string getNodeAttributes(const TreeEntry *Entry, 2439 const BoUpSLP *) { 2440 if (Entry->State == TreeEntry::NeedToGather) 2441 return "color=red"; 2442 return ""; 2443 } 2444 }; 2445 2446 } // end namespace llvm 2447 2448 BoUpSLP::~BoUpSLP() { 2449 for (const auto &Pair : DeletedInstructions) { 2450 // Replace operands of ignored instructions with Undefs in case if they were 2451 // marked for deletion. 2452 if (Pair.getSecond()) { 2453 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2454 Pair.getFirst()->replaceAllUsesWith(Undef); 2455 } 2456 Pair.getFirst()->dropAllReferences(); 2457 } 2458 for (const auto &Pair : DeletedInstructions) { 2459 assert(Pair.getFirst()->use_empty() && 2460 "trying to erase instruction with users."); 2461 Pair.getFirst()->eraseFromParent(); 2462 } 2463 assert(!verifyFunction(*F, &dbgs())); 2464 } 2465 2466 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2467 for (auto *V : AV) { 2468 if (auto *I = dyn_cast<Instruction>(V)) 2469 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 2470 }; 2471 } 2472 2473 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2474 ArrayRef<Value *> UserIgnoreLst) { 2475 ExtraValueToDebugLocsMap ExternallyUsedValues; 2476 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 2477 } 2478 2479 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2480 ExtraValueToDebugLocsMap &ExternallyUsedValues, 2481 ArrayRef<Value *> UserIgnoreLst) { 2482 deleteTree(); 2483 UserIgnoreList = UserIgnoreLst; 2484 if (!allSameType(Roots)) 2485 return; 2486 buildTree_rec(Roots, 0, EdgeInfo()); 2487 2488 // Collect the values that we need to extract from the tree. 2489 for (auto &TEPtr : VectorizableTree) { 2490 TreeEntry *Entry = TEPtr.get(); 2491 2492 // No need to handle users of gathered values. 2493 if (Entry->State == TreeEntry::NeedToGather) 2494 continue; 2495 2496 // For each lane: 2497 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2498 Value *Scalar = Entry->Scalars[Lane]; 2499 int FoundLane = Lane; 2500 if (!Entry->ReuseShuffleIndices.empty()) { 2501 FoundLane = 2502 std::distance(Entry->ReuseShuffleIndices.begin(), 2503 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 2504 } 2505 2506 // Check if the scalar is externally used as an extra arg. 2507 auto ExtI = ExternallyUsedValues.find(Scalar); 2508 if (ExtI != ExternallyUsedValues.end()) { 2509 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 2510 << Lane << " from " << *Scalar << ".\n"); 2511 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 2512 } 2513 for (User *U : Scalar->users()) { 2514 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 2515 2516 Instruction *UserInst = dyn_cast<Instruction>(U); 2517 if (!UserInst) 2518 continue; 2519 2520 // Skip in-tree scalars that become vectors 2521 if (TreeEntry *UseEntry = getTreeEntry(U)) { 2522 Value *UseScalar = UseEntry->Scalars[0]; 2523 // Some in-tree scalars will remain as scalar in vectorized 2524 // instructions. If that is the case, the one in Lane 0 will 2525 // be used. 2526 if (UseScalar != U || 2527 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 2528 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 2529 << ".\n"); 2530 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 2531 continue; 2532 } 2533 } 2534 2535 // Ignore users in the user ignore list. 2536 if (is_contained(UserIgnoreList, UserInst)) 2537 continue; 2538 2539 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 2540 << Lane << " from " << *Scalar << ".\n"); 2541 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 2542 } 2543 } 2544 } 2545 } 2546 2547 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 2548 const EdgeInfo &UserTreeIdx) { 2549 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 2550 2551 InstructionsState S = getSameOpcode(VL); 2552 if (Depth == RecursionMaxDepth) { 2553 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 2554 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2555 return; 2556 } 2557 2558 // Don't handle vectors. 2559 if (S.OpValue->getType()->isVectorTy()) { 2560 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 2561 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2562 return; 2563 } 2564 2565 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2566 if (SI->getValueOperand()->getType()->isVectorTy()) { 2567 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 2568 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2569 return; 2570 } 2571 2572 // If all of the operands are identical or constant we have a simple solution. 2573 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 2574 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 2575 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2576 return; 2577 } 2578 2579 // We now know that this is a vector of instructions of the same type from 2580 // the same block. 2581 2582 // Don't vectorize ephemeral values. 2583 for (Value *V : VL) { 2584 if (EphValues.count(V)) { 2585 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2586 << ") is ephemeral.\n"); 2587 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2588 return; 2589 } 2590 } 2591 2592 // Check if this is a duplicate of another entry. 2593 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2594 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 2595 if (!E->isSame(VL)) { 2596 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 2597 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2598 return; 2599 } 2600 // Record the reuse of the tree node. FIXME, currently this is only used to 2601 // properly draw the graph rather than for the actual vectorization. 2602 E->UserTreeIndices.push_back(UserTreeIdx); 2603 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 2604 << ".\n"); 2605 return; 2606 } 2607 2608 // Check that none of the instructions in the bundle are already in the tree. 2609 for (Value *V : VL) { 2610 auto *I = dyn_cast<Instruction>(V); 2611 if (!I) 2612 continue; 2613 if (getTreeEntry(I)) { 2614 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2615 << ") is already in tree.\n"); 2616 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2617 return; 2618 } 2619 } 2620 2621 // If any of the scalars is marked as a value that needs to stay scalar, then 2622 // we need to gather the scalars. 2623 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 2624 for (Value *V : VL) { 2625 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 2626 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 2627 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2628 return; 2629 } 2630 } 2631 2632 // Check that all of the users of the scalars that we want to vectorize are 2633 // schedulable. 2634 auto *VL0 = cast<Instruction>(S.OpValue); 2635 BasicBlock *BB = VL0->getParent(); 2636 2637 if (!DT->isReachableFromEntry(BB)) { 2638 // Don't go into unreachable blocks. They may contain instructions with 2639 // dependency cycles which confuse the final scheduling. 2640 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 2641 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2642 return; 2643 } 2644 2645 // Check that every instruction appears once in this bundle. 2646 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2647 SmallVector<Value *, 4> UniqueValues; 2648 DenseMap<Value *, unsigned> UniquePositions; 2649 for (Value *V : VL) { 2650 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2651 ReuseShuffleIndicies.emplace_back(Res.first->second); 2652 if (Res.second) 2653 UniqueValues.emplace_back(V); 2654 } 2655 size_t NumUniqueScalarValues = UniqueValues.size(); 2656 if (NumUniqueScalarValues == VL.size()) { 2657 ReuseShuffleIndicies.clear(); 2658 } else { 2659 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 2660 if (NumUniqueScalarValues <= 1 || 2661 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 2662 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 2663 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2664 return; 2665 } 2666 VL = UniqueValues; 2667 } 2668 2669 auto &BSRef = BlocksSchedules[BB]; 2670 if (!BSRef) 2671 BSRef = std::make_unique<BlockScheduling>(BB); 2672 2673 BlockScheduling &BS = *BSRef.get(); 2674 2675 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 2676 if (!Bundle) { 2677 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 2678 assert((!BS.getScheduleData(VL0) || 2679 !BS.getScheduleData(VL0)->isPartOfBundle()) && 2680 "tryScheduleBundle should cancelScheduling on failure"); 2681 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2682 ReuseShuffleIndicies); 2683 return; 2684 } 2685 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 2686 2687 unsigned ShuffleOrOp = S.isAltShuffle() ? 2688 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2689 switch (ShuffleOrOp) { 2690 case Instruction::PHI: { 2691 auto *PH = cast<PHINode>(VL0); 2692 2693 // Check for terminator values (e.g. invoke). 2694 for (Value *V : VL) 2695 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2696 Instruction *Term = dyn_cast<Instruction>( 2697 cast<PHINode>(V)->getIncomingValueForBlock( 2698 PH->getIncomingBlock(i))); 2699 if (Term && Term->isTerminator()) { 2700 LLVM_DEBUG(dbgs() 2701 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 2702 BS.cancelScheduling(VL, VL0); 2703 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2704 ReuseShuffleIndicies); 2705 return; 2706 } 2707 } 2708 2709 TreeEntry *TE = 2710 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 2711 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 2712 2713 // Keeps the reordered operands to avoid code duplication. 2714 SmallVector<ValueList, 2> OperandsVec; 2715 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2716 ValueList Operands; 2717 // Prepare the operand vector. 2718 for (Value *V : VL) 2719 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 2720 PH->getIncomingBlock(i))); 2721 TE->setOperand(i, Operands); 2722 OperandsVec.push_back(Operands); 2723 } 2724 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 2725 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 2726 return; 2727 } 2728 case Instruction::ExtractValue: 2729 case Instruction::ExtractElement: { 2730 OrdersType CurrentOrder; 2731 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 2732 if (Reuse) { 2733 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 2734 ++NumOpsWantToKeepOriginalOrder; 2735 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2736 ReuseShuffleIndicies); 2737 // This is a special case, as it does not gather, but at the same time 2738 // we are not extending buildTree_rec() towards the operands. 2739 ValueList Op0; 2740 Op0.assign(VL.size(), VL0->getOperand(0)); 2741 VectorizableTree.back()->setOperand(0, Op0); 2742 return; 2743 } 2744 if (!CurrentOrder.empty()) { 2745 LLVM_DEBUG({ 2746 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 2747 "with order"; 2748 for (unsigned Idx : CurrentOrder) 2749 dbgs() << " " << Idx; 2750 dbgs() << "\n"; 2751 }); 2752 // Insert new order with initial value 0, if it does not exist, 2753 // otherwise return the iterator to the existing one. 2754 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2755 ReuseShuffleIndicies, CurrentOrder); 2756 findRootOrder(CurrentOrder); 2757 ++NumOpsWantToKeepOrder[CurrentOrder]; 2758 // This is a special case, as it does not gather, but at the same time 2759 // we are not extending buildTree_rec() towards the operands. 2760 ValueList Op0; 2761 Op0.assign(VL.size(), VL0->getOperand(0)); 2762 VectorizableTree.back()->setOperand(0, Op0); 2763 return; 2764 } 2765 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 2766 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2767 ReuseShuffleIndicies); 2768 BS.cancelScheduling(VL, VL0); 2769 return; 2770 } 2771 case Instruction::Load: { 2772 // Check that a vectorized load would load the same memory as a scalar 2773 // load. For example, we don't want to vectorize loads that are smaller 2774 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 2775 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 2776 // from such a struct, we read/write packed bits disagreeing with the 2777 // unvectorized version. 2778 Type *ScalarTy = VL0->getType(); 2779 2780 if (DL->getTypeSizeInBits(ScalarTy) != 2781 DL->getTypeAllocSizeInBits(ScalarTy)) { 2782 BS.cancelScheduling(VL, VL0); 2783 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2784 ReuseShuffleIndicies); 2785 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 2786 return; 2787 } 2788 2789 // Make sure all loads in the bundle are simple - we can't vectorize 2790 // atomic or volatile loads. 2791 SmallVector<Value *, 4> PointerOps(VL.size()); 2792 auto POIter = PointerOps.begin(); 2793 for (Value *V : VL) { 2794 auto *L = cast<LoadInst>(V); 2795 if (!L->isSimple()) { 2796 BS.cancelScheduling(VL, VL0); 2797 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2798 ReuseShuffleIndicies); 2799 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 2800 return; 2801 } 2802 *POIter = L->getPointerOperand(); 2803 ++POIter; 2804 } 2805 2806 OrdersType CurrentOrder; 2807 // Check the order of pointer operands. 2808 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2809 Value *Ptr0; 2810 Value *PtrN; 2811 if (CurrentOrder.empty()) { 2812 Ptr0 = PointerOps.front(); 2813 PtrN = PointerOps.back(); 2814 } else { 2815 Ptr0 = PointerOps[CurrentOrder.front()]; 2816 PtrN = PointerOps[CurrentOrder.back()]; 2817 } 2818 const SCEV *Scev0 = SE->getSCEV(Ptr0); 2819 const SCEV *ScevN = SE->getSCEV(PtrN); 2820 const auto *Diff = 2821 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 2822 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 2823 // Check that the sorted loads are consecutive. 2824 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 2825 if (CurrentOrder.empty()) { 2826 // Original loads are consecutive and does not require reordering. 2827 ++NumOpsWantToKeepOriginalOrder; 2828 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 2829 UserTreeIdx, ReuseShuffleIndicies); 2830 TE->setOperandsInOrder(); 2831 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 2832 } else { 2833 // Need to reorder. 2834 TreeEntry *TE = 2835 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2836 ReuseShuffleIndicies, CurrentOrder); 2837 TE->setOperandsInOrder(); 2838 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 2839 findRootOrder(CurrentOrder); 2840 ++NumOpsWantToKeepOrder[CurrentOrder]; 2841 } 2842 return; 2843 } 2844 } 2845 2846 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 2847 BS.cancelScheduling(VL, VL0); 2848 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2849 ReuseShuffleIndicies); 2850 return; 2851 } 2852 case Instruction::ZExt: 2853 case Instruction::SExt: 2854 case Instruction::FPToUI: 2855 case Instruction::FPToSI: 2856 case Instruction::FPExt: 2857 case Instruction::PtrToInt: 2858 case Instruction::IntToPtr: 2859 case Instruction::SIToFP: 2860 case Instruction::UIToFP: 2861 case Instruction::Trunc: 2862 case Instruction::FPTrunc: 2863 case Instruction::BitCast: { 2864 Type *SrcTy = VL0->getOperand(0)->getType(); 2865 for (Value *V : VL) { 2866 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 2867 if (Ty != SrcTy || !isValidElementType(Ty)) { 2868 BS.cancelScheduling(VL, VL0); 2869 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2870 ReuseShuffleIndicies); 2871 LLVM_DEBUG(dbgs() 2872 << "SLP: Gathering casts with different src types.\n"); 2873 return; 2874 } 2875 } 2876 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2877 ReuseShuffleIndicies); 2878 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 2879 2880 TE->setOperandsInOrder(); 2881 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2882 ValueList Operands; 2883 // Prepare the operand vector. 2884 for (Value *V : VL) 2885 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2886 2887 buildTree_rec(Operands, Depth + 1, {TE, i}); 2888 } 2889 return; 2890 } 2891 case Instruction::ICmp: 2892 case Instruction::FCmp: { 2893 // Check that all of the compares have the same predicate. 2894 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2895 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 2896 Type *ComparedTy = VL0->getOperand(0)->getType(); 2897 for (Value *V : VL) { 2898 CmpInst *Cmp = cast<CmpInst>(V); 2899 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 2900 Cmp->getOperand(0)->getType() != ComparedTy) { 2901 BS.cancelScheduling(VL, VL0); 2902 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2903 ReuseShuffleIndicies); 2904 LLVM_DEBUG(dbgs() 2905 << "SLP: Gathering cmp with different predicate.\n"); 2906 return; 2907 } 2908 } 2909 2910 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2911 ReuseShuffleIndicies); 2912 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 2913 2914 ValueList Left, Right; 2915 if (cast<CmpInst>(VL0)->isCommutative()) { 2916 // Commutative predicate - collect + sort operands of the instructions 2917 // so that each side is more likely to have the same opcode. 2918 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 2919 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 2920 } else { 2921 // Collect operands - commute if it uses the swapped predicate. 2922 for (Value *V : VL) { 2923 auto *Cmp = cast<CmpInst>(V); 2924 Value *LHS = Cmp->getOperand(0); 2925 Value *RHS = Cmp->getOperand(1); 2926 if (Cmp->getPredicate() != P0) 2927 std::swap(LHS, RHS); 2928 Left.push_back(LHS); 2929 Right.push_back(RHS); 2930 } 2931 } 2932 TE->setOperand(0, Left); 2933 TE->setOperand(1, Right); 2934 buildTree_rec(Left, Depth + 1, {TE, 0}); 2935 buildTree_rec(Right, Depth + 1, {TE, 1}); 2936 return; 2937 } 2938 case Instruction::Select: 2939 case Instruction::FNeg: 2940 case Instruction::Add: 2941 case Instruction::FAdd: 2942 case Instruction::Sub: 2943 case Instruction::FSub: 2944 case Instruction::Mul: 2945 case Instruction::FMul: 2946 case Instruction::UDiv: 2947 case Instruction::SDiv: 2948 case Instruction::FDiv: 2949 case Instruction::URem: 2950 case Instruction::SRem: 2951 case Instruction::FRem: 2952 case Instruction::Shl: 2953 case Instruction::LShr: 2954 case Instruction::AShr: 2955 case Instruction::And: 2956 case Instruction::Or: 2957 case Instruction::Xor: { 2958 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2959 ReuseShuffleIndicies); 2960 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 2961 2962 // Sort operands of the instructions so that each side is more likely to 2963 // have the same opcode. 2964 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 2965 ValueList Left, Right; 2966 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 2967 TE->setOperand(0, Left); 2968 TE->setOperand(1, Right); 2969 buildTree_rec(Left, Depth + 1, {TE, 0}); 2970 buildTree_rec(Right, Depth + 1, {TE, 1}); 2971 return; 2972 } 2973 2974 TE->setOperandsInOrder(); 2975 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2976 ValueList Operands; 2977 // Prepare the operand vector. 2978 for (Value *V : VL) 2979 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2980 2981 buildTree_rec(Operands, Depth + 1, {TE, i}); 2982 } 2983 return; 2984 } 2985 case Instruction::GetElementPtr: { 2986 // We don't combine GEPs with complicated (nested) indexing. 2987 for (Value *V : VL) { 2988 if (cast<Instruction>(V)->getNumOperands() != 2) { 2989 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 2990 BS.cancelScheduling(VL, VL0); 2991 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2992 ReuseShuffleIndicies); 2993 return; 2994 } 2995 } 2996 2997 // We can't combine several GEPs into one vector if they operate on 2998 // different types. 2999 Type *Ty0 = VL0->getOperand(0)->getType(); 3000 for (Value *V : VL) { 3001 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 3002 if (Ty0 != CurTy) { 3003 LLVM_DEBUG(dbgs() 3004 << "SLP: not-vectorizable GEP (different types).\n"); 3005 BS.cancelScheduling(VL, VL0); 3006 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3007 ReuseShuffleIndicies); 3008 return; 3009 } 3010 } 3011 3012 // We don't combine GEPs with non-constant indexes. 3013 Type *Ty1 = VL0->getOperand(1)->getType(); 3014 for (Value *V : VL) { 3015 auto Op = cast<Instruction>(V)->getOperand(1); 3016 if (!isa<ConstantInt>(Op) || 3017 (Op->getType() != Ty1 && 3018 Op->getType()->getScalarSizeInBits() > 3019 DL->getIndexSizeInBits( 3020 V->getType()->getPointerAddressSpace()))) { 3021 LLVM_DEBUG(dbgs() 3022 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 3023 BS.cancelScheduling(VL, VL0); 3024 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3025 ReuseShuffleIndicies); 3026 return; 3027 } 3028 } 3029 3030 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3031 ReuseShuffleIndicies); 3032 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 3033 TE->setOperandsInOrder(); 3034 for (unsigned i = 0, e = 2; i < e; ++i) { 3035 ValueList Operands; 3036 // Prepare the operand vector. 3037 for (Value *V : VL) 3038 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3039 3040 buildTree_rec(Operands, Depth + 1, {TE, i}); 3041 } 3042 return; 3043 } 3044 case Instruction::Store: { 3045 // Check if the stores are consecutive or if we need to swizzle them. 3046 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 3047 // Make sure all stores in the bundle are simple - we can't vectorize 3048 // atomic or volatile stores. 3049 SmallVector<Value *, 4> PointerOps(VL.size()); 3050 ValueList Operands(VL.size()); 3051 auto POIter = PointerOps.begin(); 3052 auto OIter = Operands.begin(); 3053 for (Value *V : VL) { 3054 auto *SI = cast<StoreInst>(V); 3055 if (!SI->isSimple()) { 3056 BS.cancelScheduling(VL, VL0); 3057 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3058 ReuseShuffleIndicies); 3059 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 3060 return; 3061 } 3062 *POIter = SI->getPointerOperand(); 3063 *OIter = SI->getValueOperand(); 3064 ++POIter; 3065 ++OIter; 3066 } 3067 3068 OrdersType CurrentOrder; 3069 // Check the order of pointer operands. 3070 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 3071 Value *Ptr0; 3072 Value *PtrN; 3073 if (CurrentOrder.empty()) { 3074 Ptr0 = PointerOps.front(); 3075 PtrN = PointerOps.back(); 3076 } else { 3077 Ptr0 = PointerOps[CurrentOrder.front()]; 3078 PtrN = PointerOps[CurrentOrder.back()]; 3079 } 3080 const SCEV *Scev0 = SE->getSCEV(Ptr0); 3081 const SCEV *ScevN = SE->getSCEV(PtrN); 3082 const auto *Diff = 3083 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 3084 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 3085 // Check that the sorted pointer operands are consecutive. 3086 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 3087 if (CurrentOrder.empty()) { 3088 // Original stores are consecutive and does not require reordering. 3089 ++NumOpsWantToKeepOriginalOrder; 3090 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 3091 UserTreeIdx, ReuseShuffleIndicies); 3092 TE->setOperandsInOrder(); 3093 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3094 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 3095 } else { 3096 TreeEntry *TE = 3097 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3098 ReuseShuffleIndicies, CurrentOrder); 3099 TE->setOperandsInOrder(); 3100 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3101 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 3102 findRootOrder(CurrentOrder); 3103 ++NumOpsWantToKeepOrder[CurrentOrder]; 3104 } 3105 return; 3106 } 3107 } 3108 3109 BS.cancelScheduling(VL, VL0); 3110 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3111 ReuseShuffleIndicies); 3112 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 3113 return; 3114 } 3115 case Instruction::Call: { 3116 // Check if the calls are all to the same vectorizable intrinsic or 3117 // library function. 3118 CallInst *CI = cast<CallInst>(VL0); 3119 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3120 3121 VFShape Shape = VFShape::get( 3122 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 3123 false /*HasGlobalPred*/); 3124 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3125 3126 if (!VecFunc && !isTriviallyVectorizable(ID)) { 3127 BS.cancelScheduling(VL, VL0); 3128 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3129 ReuseShuffleIndicies); 3130 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 3131 return; 3132 } 3133 Function *F = CI->getCalledFunction(); 3134 unsigned NumArgs = CI->getNumArgOperands(); 3135 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 3136 for (unsigned j = 0; j != NumArgs; ++j) 3137 if (hasVectorInstrinsicScalarOpd(ID, j)) 3138 ScalarArgs[j] = CI->getArgOperand(j); 3139 for (Value *V : VL) { 3140 CallInst *CI2 = dyn_cast<CallInst>(V); 3141 if (!CI2 || CI2->getCalledFunction() != F || 3142 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 3143 (VecFunc && 3144 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 3145 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 3146 BS.cancelScheduling(VL, VL0); 3147 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3148 ReuseShuffleIndicies); 3149 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 3150 << "\n"); 3151 return; 3152 } 3153 // Some intrinsics have scalar arguments and should be same in order for 3154 // them to be vectorized. 3155 for (unsigned j = 0; j != NumArgs; ++j) { 3156 if (hasVectorInstrinsicScalarOpd(ID, j)) { 3157 Value *A1J = CI2->getArgOperand(j); 3158 if (ScalarArgs[j] != A1J) { 3159 BS.cancelScheduling(VL, VL0); 3160 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3161 ReuseShuffleIndicies); 3162 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 3163 << " argument " << ScalarArgs[j] << "!=" << A1J 3164 << "\n"); 3165 return; 3166 } 3167 } 3168 } 3169 // Verify that the bundle operands are identical between the two calls. 3170 if (CI->hasOperandBundles() && 3171 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 3172 CI->op_begin() + CI->getBundleOperandsEndIndex(), 3173 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 3174 BS.cancelScheduling(VL, VL0); 3175 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3176 ReuseShuffleIndicies); 3177 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 3178 << *CI << "!=" << *V << '\n'); 3179 return; 3180 } 3181 } 3182 3183 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3184 ReuseShuffleIndicies); 3185 TE->setOperandsInOrder(); 3186 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 3187 ValueList Operands; 3188 // Prepare the operand vector. 3189 for (Value *V : VL) { 3190 auto *CI2 = cast<CallInst>(V); 3191 Operands.push_back(CI2->getArgOperand(i)); 3192 } 3193 buildTree_rec(Operands, Depth + 1, {TE, i}); 3194 } 3195 return; 3196 } 3197 case Instruction::ShuffleVector: { 3198 // If this is not an alternate sequence of opcode like add-sub 3199 // then do not vectorize this instruction. 3200 if (!S.isAltShuffle()) { 3201 BS.cancelScheduling(VL, VL0); 3202 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3203 ReuseShuffleIndicies); 3204 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 3205 return; 3206 } 3207 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3208 ReuseShuffleIndicies); 3209 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 3210 3211 // Reorder operands if reordering would enable vectorization. 3212 if (isa<BinaryOperator>(VL0)) { 3213 ValueList Left, Right; 3214 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3215 TE->setOperand(0, Left); 3216 TE->setOperand(1, Right); 3217 buildTree_rec(Left, Depth + 1, {TE, 0}); 3218 buildTree_rec(Right, Depth + 1, {TE, 1}); 3219 return; 3220 } 3221 3222 TE->setOperandsInOrder(); 3223 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3224 ValueList Operands; 3225 // Prepare the operand vector. 3226 for (Value *V : VL) 3227 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3228 3229 buildTree_rec(Operands, Depth + 1, {TE, i}); 3230 } 3231 return; 3232 } 3233 default: 3234 BS.cancelScheduling(VL, VL0); 3235 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3236 ReuseShuffleIndicies); 3237 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 3238 return; 3239 } 3240 } 3241 3242 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 3243 unsigned N = 1; 3244 Type *EltTy = T; 3245 3246 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 3247 isa<VectorType>(EltTy)) { 3248 if (auto *ST = dyn_cast<StructType>(EltTy)) { 3249 // Check that struct is homogeneous. 3250 for (const auto *Ty : ST->elements()) 3251 if (Ty != *ST->element_begin()) 3252 return 0; 3253 N *= ST->getNumElements(); 3254 EltTy = *ST->element_begin(); 3255 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 3256 N *= AT->getNumElements(); 3257 EltTy = AT->getElementType(); 3258 } else { 3259 auto *VT = cast<FixedVectorType>(EltTy); 3260 N *= VT->getNumElements(); 3261 EltTy = VT->getElementType(); 3262 } 3263 } 3264 3265 if (!isValidElementType(EltTy)) 3266 return 0; 3267 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 3268 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 3269 return 0; 3270 return N; 3271 } 3272 3273 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 3274 SmallVectorImpl<unsigned> &CurrentOrder) const { 3275 Instruction *E0 = cast<Instruction>(OpValue); 3276 assert(E0->getOpcode() == Instruction::ExtractElement || 3277 E0->getOpcode() == Instruction::ExtractValue); 3278 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 3279 // Check if all of the extracts come from the same vector and from the 3280 // correct offset. 3281 Value *Vec = E0->getOperand(0); 3282 3283 CurrentOrder.clear(); 3284 3285 // We have to extract from a vector/aggregate with the same number of elements. 3286 unsigned NElts; 3287 if (E0->getOpcode() == Instruction::ExtractValue) { 3288 const DataLayout &DL = E0->getModule()->getDataLayout(); 3289 NElts = canMapToVector(Vec->getType(), DL); 3290 if (!NElts) 3291 return false; 3292 // Check if load can be rewritten as load of vector. 3293 LoadInst *LI = dyn_cast<LoadInst>(Vec); 3294 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 3295 return false; 3296 } else { 3297 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 3298 } 3299 3300 if (NElts != VL.size()) 3301 return false; 3302 3303 // Check that all of the indices extract from the correct offset. 3304 bool ShouldKeepOrder = true; 3305 unsigned E = VL.size(); 3306 // Assign to all items the initial value E + 1 so we can check if the extract 3307 // instruction index was used already. 3308 // Also, later we can check that all the indices are used and we have a 3309 // consecutive access in the extract instructions, by checking that no 3310 // element of CurrentOrder still has value E + 1. 3311 CurrentOrder.assign(E, E + 1); 3312 unsigned I = 0; 3313 for (; I < E; ++I) { 3314 auto *Inst = cast<Instruction>(VL[I]); 3315 if (Inst->getOperand(0) != Vec) 3316 break; 3317 Optional<unsigned> Idx = getExtractIndex(Inst); 3318 if (!Idx) 3319 break; 3320 const unsigned ExtIdx = *Idx; 3321 if (ExtIdx != I) { 3322 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 3323 break; 3324 ShouldKeepOrder = false; 3325 CurrentOrder[ExtIdx] = I; 3326 } else { 3327 if (CurrentOrder[I] != E + 1) 3328 break; 3329 CurrentOrder[I] = I; 3330 } 3331 } 3332 if (I < E) { 3333 CurrentOrder.clear(); 3334 return false; 3335 } 3336 3337 return ShouldKeepOrder; 3338 } 3339 3340 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 3341 return I->hasOneUse() || 3342 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 3343 return ScalarToTreeEntry.count(U) > 0; 3344 }); 3345 } 3346 3347 static std::pair<unsigned, unsigned> 3348 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 3349 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 3350 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3351 3352 // Calculate the cost of the scalar and vector calls. 3353 IntrinsicCostAttributes CostAttrs(ID, *CI, VecTy->getNumElements()); 3354 int IntrinsicCost = 3355 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 3356 3357 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 3358 VecTy->getNumElements())), 3359 false /*HasGlobalPred*/); 3360 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3361 int LibCost = IntrinsicCost; 3362 if (!CI->isNoBuiltin() && VecFunc) { 3363 // Calculate the cost of the vector library call. 3364 SmallVector<Type *, 4> VecTys; 3365 for (Use &Arg : CI->args()) 3366 VecTys.push_back( 3367 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 3368 3369 // If the corresponding vector call is cheaper, return its cost. 3370 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 3371 TTI::TCK_RecipThroughput); 3372 } 3373 return {IntrinsicCost, LibCost}; 3374 } 3375 3376 int BoUpSLP::getEntryCost(TreeEntry *E) { 3377 ArrayRef<Value*> VL = E->Scalars; 3378 3379 Type *ScalarTy = VL[0]->getType(); 3380 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3381 ScalarTy = SI->getValueOperand()->getType(); 3382 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 3383 ScalarTy = CI->getOperand(0)->getType(); 3384 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 3385 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 3386 3387 // If we have computed a smaller type for the expression, update VecTy so 3388 // that the costs will be accurate. 3389 if (MinBWs.count(VL[0])) 3390 VecTy = FixedVectorType::get( 3391 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 3392 3393 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 3394 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3395 int ReuseShuffleCost = 0; 3396 if (NeedToShuffleReuses) { 3397 ReuseShuffleCost = 3398 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3399 } 3400 if (E->State == TreeEntry::NeedToGather) { 3401 if (allConstant(VL)) 3402 return 0; 3403 if (isSplat(VL)) { 3404 return ReuseShuffleCost + 3405 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 3406 } 3407 if (E->getOpcode() == Instruction::ExtractElement && 3408 allSameType(VL) && allSameBlock(VL)) { 3409 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 3410 if (ShuffleKind.hasValue()) { 3411 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 3412 for (auto *V : VL) { 3413 // If all users of instruction are going to be vectorized and this 3414 // instruction itself is not going to be vectorized, consider this 3415 // instruction as dead and remove its cost from the final cost of the 3416 // vectorized tree. 3417 if (areAllUsersVectorized(cast<Instruction>(V)) && 3418 !ScalarToTreeEntry.count(V)) { 3419 auto *IO = cast<ConstantInt>( 3420 cast<ExtractElementInst>(V)->getIndexOperand()); 3421 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 3422 IO->getZExtValue()); 3423 } 3424 } 3425 return ReuseShuffleCost + Cost; 3426 } 3427 } 3428 return ReuseShuffleCost + getGatherCost(VL); 3429 } 3430 assert(E->State == TreeEntry::Vectorize && "Unhandled state"); 3431 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 3432 Instruction *VL0 = E->getMainOp(); 3433 unsigned ShuffleOrOp = 3434 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 3435 switch (ShuffleOrOp) { 3436 case Instruction::PHI: 3437 return 0; 3438 3439 case Instruction::ExtractValue: 3440 case Instruction::ExtractElement: { 3441 if (NeedToShuffleReuses) { 3442 unsigned Idx = 0; 3443 for (unsigned I : E->ReuseShuffleIndices) { 3444 if (ShuffleOrOp == Instruction::ExtractElement) { 3445 auto *IO = cast<ConstantInt>( 3446 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 3447 Idx = IO->getZExtValue(); 3448 ReuseShuffleCost -= TTI->getVectorInstrCost( 3449 Instruction::ExtractElement, VecTy, Idx); 3450 } else { 3451 ReuseShuffleCost -= TTI->getVectorInstrCost( 3452 Instruction::ExtractElement, VecTy, Idx); 3453 ++Idx; 3454 } 3455 } 3456 Idx = ReuseShuffleNumbers; 3457 for (Value *V : VL) { 3458 if (ShuffleOrOp == Instruction::ExtractElement) { 3459 auto *IO = cast<ConstantInt>( 3460 cast<ExtractElementInst>(V)->getIndexOperand()); 3461 Idx = IO->getZExtValue(); 3462 } else { 3463 --Idx; 3464 } 3465 ReuseShuffleCost += 3466 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 3467 } 3468 } 3469 int DeadCost = ReuseShuffleCost; 3470 if (!E->ReorderIndices.empty()) { 3471 // TODO: Merge this shuffle with the ReuseShuffleCost. 3472 DeadCost += TTI->getShuffleCost( 3473 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3474 } 3475 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3476 Instruction *E = cast<Instruction>(VL[i]); 3477 // If all users are going to be vectorized, instruction can be 3478 // considered as dead. 3479 // The same, if have only one user, it will be vectorized for sure. 3480 if (areAllUsersVectorized(E)) { 3481 // Take credit for instruction that will become dead. 3482 if (E->hasOneUse()) { 3483 Instruction *Ext = E->user_back(); 3484 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3485 all_of(Ext->users(), 3486 [](User *U) { return isa<GetElementPtrInst>(U); })) { 3487 // Use getExtractWithExtendCost() to calculate the cost of 3488 // extractelement/ext pair. 3489 DeadCost -= TTI->getExtractWithExtendCost( 3490 Ext->getOpcode(), Ext->getType(), VecTy, i); 3491 // Add back the cost of s|zext which is subtracted separately. 3492 DeadCost += TTI->getCastInstrCost( 3493 Ext->getOpcode(), Ext->getType(), E->getType(), 3494 TTI::getCastContextHint(Ext), CostKind, Ext); 3495 continue; 3496 } 3497 } 3498 DeadCost -= 3499 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 3500 } 3501 } 3502 return DeadCost; 3503 } 3504 case Instruction::ZExt: 3505 case Instruction::SExt: 3506 case Instruction::FPToUI: 3507 case Instruction::FPToSI: 3508 case Instruction::FPExt: 3509 case Instruction::PtrToInt: 3510 case Instruction::IntToPtr: 3511 case Instruction::SIToFP: 3512 case Instruction::UIToFP: 3513 case Instruction::Trunc: 3514 case Instruction::FPTrunc: 3515 case Instruction::BitCast: { 3516 Type *SrcTy = VL0->getOperand(0)->getType(); 3517 int ScalarEltCost = 3518 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 3519 TTI::getCastContextHint(VL0), CostKind, VL0); 3520 if (NeedToShuffleReuses) { 3521 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3522 } 3523 3524 // Calculate the cost of this instruction. 3525 int ScalarCost = VL.size() * ScalarEltCost; 3526 3527 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 3528 int VecCost = 0; 3529 // Check if the values are candidates to demote. 3530 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 3531 VecCost = 3532 ReuseShuffleCost + 3533 TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, 3534 TTI::getCastContextHint(VL0), CostKind, VL0); 3535 } 3536 return VecCost - ScalarCost; 3537 } 3538 case Instruction::FCmp: 3539 case Instruction::ICmp: 3540 case Instruction::Select: { 3541 // Calculate the cost of this instruction. 3542 int ScalarEltCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 3543 Builder.getInt1Ty(), 3544 CostKind, VL0); 3545 if (NeedToShuffleReuses) { 3546 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3547 } 3548 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 3549 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3550 int VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), VecTy, MaskTy, 3551 CostKind, VL0); 3552 return ReuseShuffleCost + VecCost - ScalarCost; 3553 } 3554 case Instruction::FNeg: 3555 case Instruction::Add: 3556 case Instruction::FAdd: 3557 case Instruction::Sub: 3558 case Instruction::FSub: 3559 case Instruction::Mul: 3560 case Instruction::FMul: 3561 case Instruction::UDiv: 3562 case Instruction::SDiv: 3563 case Instruction::FDiv: 3564 case Instruction::URem: 3565 case Instruction::SRem: 3566 case Instruction::FRem: 3567 case Instruction::Shl: 3568 case Instruction::LShr: 3569 case Instruction::AShr: 3570 case Instruction::And: 3571 case Instruction::Or: 3572 case Instruction::Xor: { 3573 // Certain instructions can be cheaper to vectorize if they have a 3574 // constant second vector operand. 3575 TargetTransformInfo::OperandValueKind Op1VK = 3576 TargetTransformInfo::OK_AnyValue; 3577 TargetTransformInfo::OperandValueKind Op2VK = 3578 TargetTransformInfo::OK_UniformConstantValue; 3579 TargetTransformInfo::OperandValueProperties Op1VP = 3580 TargetTransformInfo::OP_None; 3581 TargetTransformInfo::OperandValueProperties Op2VP = 3582 TargetTransformInfo::OP_PowerOf2; 3583 3584 // If all operands are exactly the same ConstantInt then set the 3585 // operand kind to OK_UniformConstantValue. 3586 // If instead not all operands are constants, then set the operand kind 3587 // to OK_AnyValue. If all operands are constants but not the same, 3588 // then set the operand kind to OK_NonUniformConstantValue. 3589 ConstantInt *CInt0 = nullptr; 3590 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3591 const Instruction *I = cast<Instruction>(VL[i]); 3592 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 3593 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 3594 if (!CInt) { 3595 Op2VK = TargetTransformInfo::OK_AnyValue; 3596 Op2VP = TargetTransformInfo::OP_None; 3597 break; 3598 } 3599 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 3600 !CInt->getValue().isPowerOf2()) 3601 Op2VP = TargetTransformInfo::OP_None; 3602 if (i == 0) { 3603 CInt0 = CInt; 3604 continue; 3605 } 3606 if (CInt0 != CInt) 3607 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 3608 } 3609 3610 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 3611 int ScalarEltCost = TTI->getArithmeticInstrCost( 3612 E->getOpcode(), ScalarTy, CostKind, Op1VK, Op2VK, Op1VP, Op2VP, 3613 Operands, VL0); 3614 if (NeedToShuffleReuses) { 3615 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3616 } 3617 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3618 int VecCost = TTI->getArithmeticInstrCost( 3619 E->getOpcode(), VecTy, CostKind, Op1VK, Op2VK, Op1VP, Op2VP, 3620 Operands, VL0); 3621 return ReuseShuffleCost + VecCost - ScalarCost; 3622 } 3623 case Instruction::GetElementPtr: { 3624 TargetTransformInfo::OperandValueKind Op1VK = 3625 TargetTransformInfo::OK_AnyValue; 3626 TargetTransformInfo::OperandValueKind Op2VK = 3627 TargetTransformInfo::OK_UniformConstantValue; 3628 3629 int ScalarEltCost = 3630 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, CostKind, 3631 Op1VK, Op2VK); 3632 if (NeedToShuffleReuses) { 3633 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3634 } 3635 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3636 int VecCost = 3637 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, CostKind, 3638 Op1VK, Op2VK); 3639 return ReuseShuffleCost + VecCost - ScalarCost; 3640 } 3641 case Instruction::Load: { 3642 // Cost of wide load - cost of scalar loads. 3643 Align alignment = cast<LoadInst>(VL0)->getAlign(); 3644 int ScalarEltCost = 3645 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, 3646 CostKind, VL0); 3647 if (NeedToShuffleReuses) { 3648 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3649 } 3650 int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 3651 int VecLdCost = 3652 TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, 3653 CostKind, VL0); 3654 if (!E->ReorderIndices.empty()) { 3655 // TODO: Merge this shuffle with the ReuseShuffleCost. 3656 VecLdCost += TTI->getShuffleCost( 3657 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3658 } 3659 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 3660 } 3661 case Instruction::Store: { 3662 // We know that we can merge the stores. Calculate the cost. 3663 bool IsReorder = !E->ReorderIndices.empty(); 3664 auto *SI = 3665 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 3666 Align Alignment = SI->getAlign(); 3667 int ScalarEltCost = 3668 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, Alignment, 0, 3669 CostKind, VL0); 3670 if (NeedToShuffleReuses) 3671 ReuseShuffleCost = -(ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3672 int ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 3673 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, 3674 VecTy, Alignment, 0, CostKind, VL0); 3675 if (IsReorder) { 3676 // TODO: Merge this shuffle with the ReuseShuffleCost. 3677 VecStCost += TTI->getShuffleCost( 3678 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3679 } 3680 return ReuseShuffleCost + VecStCost - ScalarStCost; 3681 } 3682 case Instruction::Call: { 3683 CallInst *CI = cast<CallInst>(VL0); 3684 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3685 3686 // Calculate the cost of the scalar and vector calls. 3687 IntrinsicCostAttributes CostAttrs(ID, *CI, 1, 1); 3688 int ScalarEltCost = TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 3689 if (NeedToShuffleReuses) { 3690 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3691 } 3692 int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 3693 3694 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 3695 int VecCallCost = std::min(VecCallCosts.first, VecCallCosts.second); 3696 3697 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 3698 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 3699 << " for " << *CI << "\n"); 3700 3701 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 3702 } 3703 case Instruction::ShuffleVector: { 3704 assert(E->isAltShuffle() && 3705 ((Instruction::isBinaryOp(E->getOpcode()) && 3706 Instruction::isBinaryOp(E->getAltOpcode())) || 3707 (Instruction::isCast(E->getOpcode()) && 3708 Instruction::isCast(E->getAltOpcode()))) && 3709 "Invalid Shuffle Vector Operand"); 3710 int ScalarCost = 0; 3711 if (NeedToShuffleReuses) { 3712 for (unsigned Idx : E->ReuseShuffleIndices) { 3713 Instruction *I = cast<Instruction>(VL[Idx]); 3714 ReuseShuffleCost -= TTI->getInstructionCost(I, CostKind); 3715 } 3716 for (Value *V : VL) { 3717 Instruction *I = cast<Instruction>(V); 3718 ReuseShuffleCost += TTI->getInstructionCost(I, CostKind); 3719 } 3720 } 3721 for (Value *V : VL) { 3722 Instruction *I = cast<Instruction>(V); 3723 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 3724 ScalarCost += TTI->getInstructionCost(I, CostKind); 3725 } 3726 // VecCost is equal to sum of the cost of creating 2 vectors 3727 // and the cost of creating shuffle. 3728 int VecCost = 0; 3729 if (Instruction::isBinaryOp(E->getOpcode())) { 3730 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 3731 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 3732 CostKind); 3733 } else { 3734 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 3735 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 3736 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 3737 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 3738 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 3739 TTI::CastContextHint::None, CostKind); 3740 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 3741 TTI::CastContextHint::None, CostKind); 3742 } 3743 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0); 3744 return ReuseShuffleCost + VecCost - ScalarCost; 3745 } 3746 default: 3747 llvm_unreachable("Unknown instruction"); 3748 } 3749 } 3750 3751 bool BoUpSLP::isFullyVectorizableTinyTree() const { 3752 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 3753 << VectorizableTree.size() << " is fully vectorizable .\n"); 3754 3755 // We only handle trees of heights 1 and 2. 3756 if (VectorizableTree.size() == 1 && 3757 VectorizableTree[0]->State == TreeEntry::Vectorize) 3758 return true; 3759 3760 if (VectorizableTree.size() != 2) 3761 return false; 3762 3763 // Handle splat and all-constants stores. 3764 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 3765 (allConstant(VectorizableTree[1]->Scalars) || 3766 isSplat(VectorizableTree[1]->Scalars))) 3767 return true; 3768 3769 // Gathering cost would be too much for tiny trees. 3770 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 3771 VectorizableTree[1]->State == TreeEntry::NeedToGather) 3772 return false; 3773 3774 return true; 3775 } 3776 3777 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 3778 TargetTransformInfo *TTI) { 3779 // Look past the root to find a source value. Arbitrarily follow the 3780 // path through operand 0 of any 'or'. Also, peek through optional 3781 // shift-left-by-multiple-of-8-bits. 3782 Value *ZextLoad = Root; 3783 const APInt *ShAmtC; 3784 while (!isa<ConstantExpr>(ZextLoad) && 3785 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 3786 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 3787 ShAmtC->urem(8) == 0))) 3788 ZextLoad = cast<BinaryOperator>(ZextLoad)->getOperand(0); 3789 3790 // Check if the input is an extended load of the required or/shift expression. 3791 Value *LoadPtr; 3792 if (ZextLoad == Root || !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr))))) 3793 return false; 3794 3795 // Require that the total load bit width is a legal integer type. 3796 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 3797 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 3798 Type *SrcTy = LoadPtr->getType()->getPointerElementType(); 3799 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 3800 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 3801 return false; 3802 3803 // Everything matched - assume that we can fold the whole sequence using 3804 // load combining. 3805 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 3806 << *(cast<Instruction>(Root)) << "\n"); 3807 3808 return true; 3809 } 3810 3811 bool BoUpSLP::isLoadCombineReductionCandidate(unsigned RdxOpcode) const { 3812 if (RdxOpcode != Instruction::Or) 3813 return false; 3814 3815 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3816 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 3817 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI); 3818 } 3819 3820 bool BoUpSLP::isLoadCombineCandidate() const { 3821 // Peek through a final sequence of stores and check if all operations are 3822 // likely to be load-combined. 3823 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3824 for (Value *Scalar : VectorizableTree[0]->Scalars) { 3825 Value *X; 3826 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 3827 !isLoadCombineCandidateImpl(X, NumElts, TTI)) 3828 return false; 3829 } 3830 return true; 3831 } 3832 3833 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 3834 // We can vectorize the tree if its size is greater than or equal to the 3835 // minimum size specified by the MinTreeSize command line option. 3836 if (VectorizableTree.size() >= MinTreeSize) 3837 return false; 3838 3839 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 3840 // can vectorize it if we can prove it fully vectorizable. 3841 if (isFullyVectorizableTinyTree()) 3842 return false; 3843 3844 assert(VectorizableTree.empty() 3845 ? ExternalUses.empty() 3846 : true && "We shouldn't have any external users"); 3847 3848 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 3849 // vectorizable. 3850 return true; 3851 } 3852 3853 int BoUpSLP::getSpillCost() const { 3854 // Walk from the bottom of the tree to the top, tracking which values are 3855 // live. When we see a call instruction that is not part of our tree, 3856 // query TTI to see if there is a cost to keeping values live over it 3857 // (for example, if spills and fills are required). 3858 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 3859 int Cost = 0; 3860 3861 SmallPtrSet<Instruction*, 4> LiveValues; 3862 Instruction *PrevInst = nullptr; 3863 3864 // The entries in VectorizableTree are not necessarily ordered by their 3865 // position in basic blocks. Collect them and order them by dominance so later 3866 // instructions are guaranteed to be visited first. For instructions in 3867 // different basic blocks, we only scan to the beginning of the block, so 3868 // their order does not matter, as long as all instructions in a basic block 3869 // are grouped together. Using dominance ensures a deterministic order. 3870 SmallVector<Instruction *, 16> OrderedScalars; 3871 for (const auto &TEPtr : VectorizableTree) { 3872 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 3873 if (!Inst) 3874 continue; 3875 OrderedScalars.push_back(Inst); 3876 } 3877 llvm::stable_sort(OrderedScalars, [this](Instruction *A, Instruction *B) { 3878 return DT->dominates(B, A); 3879 }); 3880 3881 for (Instruction *Inst : OrderedScalars) { 3882 if (!PrevInst) { 3883 PrevInst = Inst; 3884 continue; 3885 } 3886 3887 // Update LiveValues. 3888 LiveValues.erase(PrevInst); 3889 for (auto &J : PrevInst->operands()) { 3890 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 3891 LiveValues.insert(cast<Instruction>(&*J)); 3892 } 3893 3894 LLVM_DEBUG({ 3895 dbgs() << "SLP: #LV: " << LiveValues.size(); 3896 for (auto *X : LiveValues) 3897 dbgs() << " " << X->getName(); 3898 dbgs() << ", Looking at "; 3899 Inst->dump(); 3900 }); 3901 3902 // Now find the sequence of instructions between PrevInst and Inst. 3903 unsigned NumCalls = 0; 3904 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 3905 PrevInstIt = 3906 PrevInst->getIterator().getReverse(); 3907 while (InstIt != PrevInstIt) { 3908 if (PrevInstIt == PrevInst->getParent()->rend()) { 3909 PrevInstIt = Inst->getParent()->rbegin(); 3910 continue; 3911 } 3912 3913 // Debug information does not impact spill cost. 3914 if ((isa<CallInst>(&*PrevInstIt) && 3915 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 3916 &*PrevInstIt != PrevInst) 3917 NumCalls++; 3918 3919 ++PrevInstIt; 3920 } 3921 3922 if (NumCalls) { 3923 SmallVector<Type*, 4> V; 3924 for (auto *II : LiveValues) 3925 V.push_back(FixedVectorType::get(II->getType(), BundleWidth)); 3926 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 3927 } 3928 3929 PrevInst = Inst; 3930 } 3931 3932 return Cost; 3933 } 3934 3935 int BoUpSLP::getTreeCost() { 3936 int Cost = 0; 3937 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 3938 << VectorizableTree.size() << ".\n"); 3939 3940 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 3941 3942 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 3943 TreeEntry &TE = *VectorizableTree[I].get(); 3944 3945 // We create duplicate tree entries for gather sequences that have multiple 3946 // uses. However, we should not compute the cost of duplicate sequences. 3947 // For example, if we have a build vector (i.e., insertelement sequence) 3948 // that is used by more than one vector instruction, we only need to 3949 // compute the cost of the insertelement instructions once. The redundant 3950 // instructions will be eliminated by CSE. 3951 // 3952 // We should consider not creating duplicate tree entries for gather 3953 // sequences, and instead add additional edges to the tree representing 3954 // their uses. Since such an approach results in fewer total entries, 3955 // existing heuristics based on tree size may yield different results. 3956 // 3957 if (TE.State == TreeEntry::NeedToGather && 3958 std::any_of(std::next(VectorizableTree.begin(), I + 1), 3959 VectorizableTree.end(), 3960 [TE](const std::unique_ptr<TreeEntry> &EntryPtr) { 3961 return EntryPtr->State == TreeEntry::NeedToGather && 3962 EntryPtr->isSame(TE.Scalars); 3963 })) 3964 continue; 3965 3966 int C = getEntryCost(&TE); 3967 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 3968 << " for bundle that starts with " << *TE.Scalars[0] 3969 << ".\n"); 3970 Cost += C; 3971 } 3972 3973 SmallPtrSet<Value *, 16> ExtractCostCalculated; 3974 int ExtractCost = 0; 3975 for (ExternalUser &EU : ExternalUses) { 3976 // We only add extract cost once for the same scalar. 3977 if (!ExtractCostCalculated.insert(EU.Scalar).second) 3978 continue; 3979 3980 // Uses by ephemeral values are free (because the ephemeral value will be 3981 // removed prior to code generation, and so the extraction will be 3982 // removed as well). 3983 if (EphValues.count(EU.User)) 3984 continue; 3985 3986 // If we plan to rewrite the tree in a smaller type, we will need to sign 3987 // extend the extracted value back to the original type. Here, we account 3988 // for the extract and the added cost of the sign extend if needed. 3989 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 3990 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 3991 if (MinBWs.count(ScalarRoot)) { 3992 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 3993 auto Extend = 3994 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 3995 VecTy = FixedVectorType::get(MinTy, BundleWidth); 3996 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 3997 VecTy, EU.Lane); 3998 } else { 3999 ExtractCost += 4000 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 4001 } 4002 } 4003 4004 int SpillCost = getSpillCost(); 4005 Cost += SpillCost + ExtractCost; 4006 4007 #ifndef NDEBUG 4008 SmallString<256> Str; 4009 { 4010 raw_svector_ostream OS(Str); 4011 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 4012 << "SLP: Extract Cost = " << ExtractCost << ".\n" 4013 << "SLP: Total Cost = " << Cost << ".\n"; 4014 } 4015 LLVM_DEBUG(dbgs() << Str); 4016 if (ViewSLPTree) 4017 ViewGraph(this, "SLP" + F->getName(), false, Str); 4018 #endif 4019 4020 return Cost; 4021 } 4022 4023 int BoUpSLP::getGatherCost(FixedVectorType *Ty, 4024 const DenseSet<unsigned> &ShuffledIndices) const { 4025 unsigned NumElts = Ty->getNumElements(); 4026 APInt DemandedElts = APInt::getNullValue(NumElts); 4027 for (unsigned i = 0; i < NumElts; ++i) 4028 if (!ShuffledIndices.count(i)) 4029 DemandedElts.setBit(i); 4030 int Cost = TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 4031 /*Extract*/ false); 4032 if (!ShuffledIndices.empty()) 4033 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 4034 return Cost; 4035 } 4036 4037 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 4038 // Find the type of the operands in VL. 4039 Type *ScalarTy = VL[0]->getType(); 4040 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4041 ScalarTy = SI->getValueOperand()->getType(); 4042 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4043 // Find the cost of inserting/extracting values from the vector. 4044 // Check if the same elements are inserted several times and count them as 4045 // shuffle candidates. 4046 DenseSet<unsigned> ShuffledElements; 4047 DenseSet<Value *> UniqueElements; 4048 // Iterate in reverse order to consider insert elements with the high cost. 4049 for (unsigned I = VL.size(); I > 0; --I) { 4050 unsigned Idx = I - 1; 4051 if (!UniqueElements.insert(VL[Idx]).second) 4052 ShuffledElements.insert(Idx); 4053 } 4054 return getGatherCost(VecTy, ShuffledElements); 4055 } 4056 4057 // Perform operand reordering on the instructions in VL and return the reordered 4058 // operands in Left and Right. 4059 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 4060 SmallVectorImpl<Value *> &Left, 4061 SmallVectorImpl<Value *> &Right, 4062 const DataLayout &DL, 4063 ScalarEvolution &SE, 4064 const BoUpSLP &R) { 4065 if (VL.empty()) 4066 return; 4067 VLOperands Ops(VL, DL, SE, R); 4068 // Reorder the operands in place. 4069 Ops.reorder(); 4070 Left = Ops.getVL(0); 4071 Right = Ops.getVL(1); 4072 } 4073 4074 void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) { 4075 // Get the basic block this bundle is in. All instructions in the bundle 4076 // should be in this block. 4077 auto *Front = E->getMainOp(); 4078 auto *BB = Front->getParent(); 4079 assert(llvm::all_of(make_range(E->Scalars.begin(), E->Scalars.end()), 4080 [=](Value *V) -> bool { 4081 auto *I = cast<Instruction>(V); 4082 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 4083 })); 4084 4085 // The last instruction in the bundle in program order. 4086 Instruction *LastInst = nullptr; 4087 4088 // Find the last instruction. The common case should be that BB has been 4089 // scheduled, and the last instruction is VL.back(). So we start with 4090 // VL.back() and iterate over schedule data until we reach the end of the 4091 // bundle. The end of the bundle is marked by null ScheduleData. 4092 if (BlocksSchedules.count(BB)) { 4093 auto *Bundle = 4094 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 4095 if (Bundle && Bundle->isPartOfBundle()) 4096 for (; Bundle; Bundle = Bundle->NextInBundle) 4097 if (Bundle->OpValue == Bundle->Inst) 4098 LastInst = Bundle->Inst; 4099 } 4100 4101 // LastInst can still be null at this point if there's either not an entry 4102 // for BB in BlocksSchedules or there's no ScheduleData available for 4103 // VL.back(). This can be the case if buildTree_rec aborts for various 4104 // reasons (e.g., the maximum recursion depth is reached, the maximum region 4105 // size is reached, etc.). ScheduleData is initialized in the scheduling 4106 // "dry-run". 4107 // 4108 // If this happens, we can still find the last instruction by brute force. We 4109 // iterate forwards from Front (inclusive) until we either see all 4110 // instructions in the bundle or reach the end of the block. If Front is the 4111 // last instruction in program order, LastInst will be set to Front, and we 4112 // will visit all the remaining instructions in the block. 4113 // 4114 // One of the reasons we exit early from buildTree_rec is to place an upper 4115 // bound on compile-time. Thus, taking an additional compile-time hit here is 4116 // not ideal. However, this should be exceedingly rare since it requires that 4117 // we both exit early from buildTree_rec and that the bundle be out-of-order 4118 // (causing us to iterate all the way to the end of the block). 4119 if (!LastInst) { 4120 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 4121 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 4122 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 4123 LastInst = &I; 4124 if (Bundle.empty()) 4125 break; 4126 } 4127 } 4128 assert(LastInst && "Failed to find last instruction in bundle"); 4129 4130 // Set the insertion point after the last instruction in the bundle. Set the 4131 // debug location to Front. 4132 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 4133 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 4134 } 4135 4136 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 4137 Value *Val0 = 4138 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 4139 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 4140 Value *Vec = UndefValue::get(VecTy); 4141 for (unsigned i = 0; i < VecTy->getNumElements(); ++i) { 4142 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 4143 if (auto *Insrt = dyn_cast<InsertElementInst>(Vec)) { 4144 GatherSeq.insert(Insrt); 4145 CSEBlocks.insert(Insrt->getParent()); 4146 4147 // Add to our 'need-to-extract' list. 4148 if (TreeEntry *E = getTreeEntry(VL[i])) { 4149 // Find which lane we need to extract. 4150 unsigned FoundLane = 4151 std::distance(E->Scalars.begin(), find(E->Scalars, VL[i])); 4152 assert(FoundLane < E->Scalars.size() && "Could not find extract lane"); 4153 if (!E->ReuseShuffleIndices.empty()) { 4154 FoundLane = std::distance(E->ReuseShuffleIndices.begin(), 4155 find(E->ReuseShuffleIndices, FoundLane)); 4156 } 4157 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 4158 } 4159 } 4160 } 4161 4162 return Vec; 4163 } 4164 4165 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 4166 InstructionsState S = getSameOpcode(VL); 4167 if (S.getOpcode()) { 4168 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4169 if (E->isSame(VL)) { 4170 Value *V = vectorizeTree(E); 4171 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 4172 // We need to get the vectorized value but without shuffle. 4173 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 4174 V = SV->getOperand(0); 4175 } else { 4176 // Reshuffle to get only unique values. 4177 SmallVector<int, 4> UniqueIdxs; 4178 SmallSet<int, 4> UsedIdxs; 4179 for (int Idx : E->ReuseShuffleIndices) 4180 if (UsedIdxs.insert(Idx).second) 4181 UniqueIdxs.emplace_back(Idx); 4182 V = Builder.CreateShuffleVector(V, UniqueIdxs); 4183 } 4184 } 4185 return V; 4186 } 4187 } 4188 } 4189 4190 // Check that every instruction appears once in this bundle. 4191 SmallVector<int, 4> ReuseShuffleIndicies; 4192 SmallVector<Value *, 4> UniqueValues; 4193 if (VL.size() > 2) { 4194 DenseMap<Value *, unsigned> UniquePositions; 4195 for (Value *V : VL) { 4196 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 4197 ReuseShuffleIndicies.emplace_back(Res.first->second); 4198 if (Res.second || isa<Constant>(V)) 4199 UniqueValues.emplace_back(V); 4200 } 4201 // Do not shuffle single element or if number of unique values is not power 4202 // of 2. 4203 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 4204 !llvm::isPowerOf2_32(UniqueValues.size())) 4205 ReuseShuffleIndicies.clear(); 4206 else 4207 VL = UniqueValues; 4208 } 4209 4210 Value *Vec = gather(VL); 4211 if (!ReuseShuffleIndicies.empty()) { 4212 Vec = Builder.CreateShuffleVector(Vec, ReuseShuffleIndicies, "shuffle"); 4213 if (auto *I = dyn_cast<Instruction>(Vec)) { 4214 GatherSeq.insert(I); 4215 CSEBlocks.insert(I->getParent()); 4216 } 4217 } 4218 return Vec; 4219 } 4220 4221 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 4222 IRBuilder<>::InsertPointGuard Guard(Builder); 4223 4224 if (E->VectorizedValue) { 4225 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 4226 return E->VectorizedValue; 4227 } 4228 4229 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4230 if (E->State == TreeEntry::NeedToGather) { 4231 setInsertPointAfterBundle(E); 4232 Value *Vec = gather(E->Scalars); 4233 if (NeedToShuffleReuses) { 4234 Vec = Builder.CreateShuffleVector(Vec, E->ReuseShuffleIndices, "shuffle"); 4235 if (auto *I = dyn_cast<Instruction>(Vec)) { 4236 GatherSeq.insert(I); 4237 CSEBlocks.insert(I->getParent()); 4238 } 4239 } 4240 E->VectorizedValue = Vec; 4241 return Vec; 4242 } 4243 4244 assert(E->State == TreeEntry::Vectorize && "Unhandled state"); 4245 unsigned ShuffleOrOp = 4246 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 4247 Instruction *VL0 = E->getMainOp(); 4248 Type *ScalarTy = VL0->getType(); 4249 if (auto *Store = dyn_cast<StoreInst>(VL0)) 4250 ScalarTy = Store->getValueOperand()->getType(); 4251 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 4252 switch (ShuffleOrOp) { 4253 case Instruction::PHI: { 4254 auto *PH = cast<PHINode>(VL0); 4255 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 4256 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4257 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 4258 Value *V = NewPhi; 4259 if (NeedToShuffleReuses) 4260 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4261 4262 E->VectorizedValue = V; 4263 4264 // PHINodes may have multiple entries from the same block. We want to 4265 // visit every block once. 4266 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 4267 4268 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 4269 ValueList Operands; 4270 BasicBlock *IBB = PH->getIncomingBlock(i); 4271 4272 if (!VisitedBBs.insert(IBB).second) { 4273 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 4274 continue; 4275 } 4276 4277 Builder.SetInsertPoint(IBB->getTerminator()); 4278 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4279 Value *Vec = vectorizeTree(E->getOperand(i)); 4280 NewPhi->addIncoming(Vec, IBB); 4281 } 4282 4283 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 4284 "Invalid number of incoming values"); 4285 return V; 4286 } 4287 4288 case Instruction::ExtractElement: { 4289 Value *V = E->getSingleOperand(0); 4290 if (!E->ReorderIndices.empty()) { 4291 SmallVector<int, 4> Mask; 4292 inversePermutation(E->ReorderIndices, Mask); 4293 Builder.SetInsertPoint(VL0); 4294 V = Builder.CreateShuffleVector(V, Mask, "reorder_shuffle"); 4295 } 4296 if (NeedToShuffleReuses) { 4297 // TODO: Merge this shuffle with the ReorderShuffleMask. 4298 if (E->ReorderIndices.empty()) 4299 Builder.SetInsertPoint(VL0); 4300 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4301 } 4302 E->VectorizedValue = V; 4303 return V; 4304 } 4305 case Instruction::ExtractValue: { 4306 LoadInst *LI = cast<LoadInst>(E->getSingleOperand(0)); 4307 Builder.SetInsertPoint(LI); 4308 PointerType *PtrTy = 4309 PointerType::get(VecTy, LI->getPointerAddressSpace()); 4310 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 4311 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 4312 Value *NewV = propagateMetadata(V, E->Scalars); 4313 if (!E->ReorderIndices.empty()) { 4314 SmallVector<int, 4> Mask; 4315 inversePermutation(E->ReorderIndices, Mask); 4316 NewV = Builder.CreateShuffleVector(NewV, Mask, "reorder_shuffle"); 4317 } 4318 if (NeedToShuffleReuses) { 4319 // TODO: Merge this shuffle with the ReorderShuffleMask. 4320 NewV = Builder.CreateShuffleVector(NewV, E->ReuseShuffleIndices, 4321 "shuffle"); 4322 } 4323 E->VectorizedValue = NewV; 4324 return NewV; 4325 } 4326 case Instruction::ZExt: 4327 case Instruction::SExt: 4328 case Instruction::FPToUI: 4329 case Instruction::FPToSI: 4330 case Instruction::FPExt: 4331 case Instruction::PtrToInt: 4332 case Instruction::IntToPtr: 4333 case Instruction::SIToFP: 4334 case Instruction::UIToFP: 4335 case Instruction::Trunc: 4336 case Instruction::FPTrunc: 4337 case Instruction::BitCast: { 4338 setInsertPointAfterBundle(E); 4339 4340 Value *InVec = vectorizeTree(E->getOperand(0)); 4341 4342 if (E->VectorizedValue) { 4343 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4344 return E->VectorizedValue; 4345 } 4346 4347 auto *CI = cast<CastInst>(VL0); 4348 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 4349 if (NeedToShuffleReuses) 4350 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4351 4352 E->VectorizedValue = V; 4353 ++NumVectorInstructions; 4354 return V; 4355 } 4356 case Instruction::FCmp: 4357 case Instruction::ICmp: { 4358 setInsertPointAfterBundle(E); 4359 4360 Value *L = vectorizeTree(E->getOperand(0)); 4361 Value *R = vectorizeTree(E->getOperand(1)); 4362 4363 if (E->VectorizedValue) { 4364 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4365 return E->VectorizedValue; 4366 } 4367 4368 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4369 Value *V = Builder.CreateCmp(P0, L, R); 4370 propagateIRFlags(V, E->Scalars, VL0); 4371 if (NeedToShuffleReuses) 4372 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4373 4374 E->VectorizedValue = V; 4375 ++NumVectorInstructions; 4376 return V; 4377 } 4378 case Instruction::Select: { 4379 setInsertPointAfterBundle(E); 4380 4381 Value *Cond = vectorizeTree(E->getOperand(0)); 4382 Value *True = vectorizeTree(E->getOperand(1)); 4383 Value *False = vectorizeTree(E->getOperand(2)); 4384 4385 if (E->VectorizedValue) { 4386 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4387 return E->VectorizedValue; 4388 } 4389 4390 Value *V = Builder.CreateSelect(Cond, True, False); 4391 if (NeedToShuffleReuses) 4392 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4393 4394 E->VectorizedValue = V; 4395 ++NumVectorInstructions; 4396 return V; 4397 } 4398 case Instruction::FNeg: { 4399 setInsertPointAfterBundle(E); 4400 4401 Value *Op = vectorizeTree(E->getOperand(0)); 4402 4403 if (E->VectorizedValue) { 4404 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4405 return E->VectorizedValue; 4406 } 4407 4408 Value *V = Builder.CreateUnOp( 4409 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 4410 propagateIRFlags(V, E->Scalars, VL0); 4411 if (auto *I = dyn_cast<Instruction>(V)) 4412 V = propagateMetadata(I, E->Scalars); 4413 4414 if (NeedToShuffleReuses) 4415 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4416 4417 E->VectorizedValue = V; 4418 ++NumVectorInstructions; 4419 4420 return V; 4421 } 4422 case Instruction::Add: 4423 case Instruction::FAdd: 4424 case Instruction::Sub: 4425 case Instruction::FSub: 4426 case Instruction::Mul: 4427 case Instruction::FMul: 4428 case Instruction::UDiv: 4429 case Instruction::SDiv: 4430 case Instruction::FDiv: 4431 case Instruction::URem: 4432 case Instruction::SRem: 4433 case Instruction::FRem: 4434 case Instruction::Shl: 4435 case Instruction::LShr: 4436 case Instruction::AShr: 4437 case Instruction::And: 4438 case Instruction::Or: 4439 case Instruction::Xor: { 4440 setInsertPointAfterBundle(E); 4441 4442 Value *LHS = vectorizeTree(E->getOperand(0)); 4443 Value *RHS = vectorizeTree(E->getOperand(1)); 4444 4445 if (E->VectorizedValue) { 4446 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4447 return E->VectorizedValue; 4448 } 4449 4450 Value *V = Builder.CreateBinOp( 4451 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 4452 RHS); 4453 propagateIRFlags(V, E->Scalars, VL0); 4454 if (auto *I = dyn_cast<Instruction>(V)) 4455 V = propagateMetadata(I, E->Scalars); 4456 4457 if (NeedToShuffleReuses) 4458 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4459 4460 E->VectorizedValue = V; 4461 ++NumVectorInstructions; 4462 4463 return V; 4464 } 4465 case Instruction::Load: { 4466 // Loads are inserted at the head of the tree because we don't want to 4467 // sink them all the way down past store instructions. 4468 bool IsReorder = E->updateStateIfReorder(); 4469 if (IsReorder) 4470 VL0 = E->getMainOp(); 4471 setInsertPointAfterBundle(E); 4472 4473 LoadInst *LI = cast<LoadInst>(VL0); 4474 unsigned AS = LI->getPointerAddressSpace(); 4475 4476 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 4477 VecTy->getPointerTo(AS)); 4478 4479 // The pointer operand uses an in-tree scalar so we add the new BitCast to 4480 // ExternalUses list to make sure that an extract will be generated in the 4481 // future. 4482 Value *PO = LI->getPointerOperand(); 4483 if (getTreeEntry(PO)) 4484 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0)); 4485 4486 LI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 4487 Value *V = propagateMetadata(LI, E->Scalars); 4488 if (IsReorder) { 4489 SmallVector<int, 4> Mask; 4490 inversePermutation(E->ReorderIndices, Mask); 4491 V = Builder.CreateShuffleVector(V, Mask, "reorder_shuffle"); 4492 } 4493 if (NeedToShuffleReuses) { 4494 // TODO: Merge this shuffle with the ReorderShuffleMask. 4495 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4496 } 4497 E->VectorizedValue = V; 4498 ++NumVectorInstructions; 4499 return V; 4500 } 4501 case Instruction::Store: { 4502 bool IsReorder = !E->ReorderIndices.empty(); 4503 auto *SI = cast<StoreInst>( 4504 IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0); 4505 unsigned AS = SI->getPointerAddressSpace(); 4506 4507 setInsertPointAfterBundle(E); 4508 4509 Value *VecValue = vectorizeTree(E->getOperand(0)); 4510 if (IsReorder) { 4511 SmallVector<int, 4> Mask(E->ReorderIndices.begin(), 4512 E->ReorderIndices.end()); 4513 VecValue = Builder.CreateShuffleVector(VecValue, Mask, "reorder_shuf"); 4514 } 4515 Value *ScalarPtr = SI->getPointerOperand(); 4516 Value *VecPtr = Builder.CreateBitCast( 4517 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 4518 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 4519 SI->getAlign()); 4520 4521 // The pointer operand uses an in-tree scalar, so add the new BitCast to 4522 // ExternalUses to make sure that an extract will be generated in the 4523 // future. 4524 if (getTreeEntry(ScalarPtr)) 4525 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 4526 4527 Value *V = propagateMetadata(ST, E->Scalars); 4528 if (NeedToShuffleReuses) 4529 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4530 4531 E->VectorizedValue = V; 4532 ++NumVectorInstructions; 4533 return V; 4534 } 4535 case Instruction::GetElementPtr: { 4536 setInsertPointAfterBundle(E); 4537 4538 Value *Op0 = vectorizeTree(E->getOperand(0)); 4539 4540 std::vector<Value *> OpVecs; 4541 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 4542 ++j) { 4543 ValueList &VL = E->getOperand(j); 4544 // Need to cast all elements to the same type before vectorization to 4545 // avoid crash. 4546 Type *VL0Ty = VL0->getOperand(j)->getType(); 4547 Type *Ty = llvm::all_of( 4548 VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); }) 4549 ? VL0Ty 4550 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4551 ->getPointerOperandType() 4552 ->getScalarType()); 4553 for (Value *&V : VL) { 4554 auto *CI = cast<ConstantInt>(V); 4555 V = ConstantExpr::getIntegerCast(CI, Ty, 4556 CI->getValue().isSignBitSet()); 4557 } 4558 Value *OpVec = vectorizeTree(VL); 4559 OpVecs.push_back(OpVec); 4560 } 4561 4562 Value *V = Builder.CreateGEP( 4563 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 4564 if (Instruction *I = dyn_cast<Instruction>(V)) 4565 V = propagateMetadata(I, E->Scalars); 4566 4567 if (NeedToShuffleReuses) 4568 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4569 4570 E->VectorizedValue = V; 4571 ++NumVectorInstructions; 4572 4573 return V; 4574 } 4575 case Instruction::Call: { 4576 CallInst *CI = cast<CallInst>(VL0); 4577 setInsertPointAfterBundle(E); 4578 4579 Intrinsic::ID IID = Intrinsic::not_intrinsic; 4580 if (Function *FI = CI->getCalledFunction()) 4581 IID = FI->getIntrinsicID(); 4582 4583 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4584 4585 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 4586 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 4587 VecCallCosts.first <= VecCallCosts.second; 4588 4589 Value *ScalarArg = nullptr; 4590 std::vector<Value *> OpVecs; 4591 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 4592 ValueList OpVL; 4593 // Some intrinsics have scalar arguments. This argument should not be 4594 // vectorized. 4595 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 4596 CallInst *CEI = cast<CallInst>(VL0); 4597 ScalarArg = CEI->getArgOperand(j); 4598 OpVecs.push_back(CEI->getArgOperand(j)); 4599 continue; 4600 } 4601 4602 Value *OpVec = vectorizeTree(E->getOperand(j)); 4603 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 4604 OpVecs.push_back(OpVec); 4605 } 4606 4607 Function *CF; 4608 if (!UseIntrinsic) { 4609 VFShape Shape = 4610 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4611 VecTy->getNumElements())), 4612 false /*HasGlobalPred*/); 4613 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 4614 } else { 4615 Type *Tys[] = {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 4616 CF = Intrinsic::getDeclaration(F->getParent(), ID, Tys); 4617 } 4618 4619 SmallVector<OperandBundleDef, 1> OpBundles; 4620 CI->getOperandBundlesAsDefs(OpBundles); 4621 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 4622 4623 // The scalar argument uses an in-tree scalar so we add the new vectorized 4624 // call to ExternalUses list to make sure that an extract will be 4625 // generated in the future. 4626 if (ScalarArg && getTreeEntry(ScalarArg)) 4627 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 4628 4629 propagateIRFlags(V, E->Scalars, VL0); 4630 if (NeedToShuffleReuses) 4631 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4632 4633 E->VectorizedValue = V; 4634 ++NumVectorInstructions; 4635 return V; 4636 } 4637 case Instruction::ShuffleVector: { 4638 assert(E->isAltShuffle() && 4639 ((Instruction::isBinaryOp(E->getOpcode()) && 4640 Instruction::isBinaryOp(E->getAltOpcode())) || 4641 (Instruction::isCast(E->getOpcode()) && 4642 Instruction::isCast(E->getAltOpcode()))) && 4643 "Invalid Shuffle Vector Operand"); 4644 4645 Value *LHS = nullptr, *RHS = nullptr; 4646 if (Instruction::isBinaryOp(E->getOpcode())) { 4647 setInsertPointAfterBundle(E); 4648 LHS = vectorizeTree(E->getOperand(0)); 4649 RHS = vectorizeTree(E->getOperand(1)); 4650 } else { 4651 setInsertPointAfterBundle(E); 4652 LHS = vectorizeTree(E->getOperand(0)); 4653 } 4654 4655 if (E->VectorizedValue) { 4656 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4657 return E->VectorizedValue; 4658 } 4659 4660 Value *V0, *V1; 4661 if (Instruction::isBinaryOp(E->getOpcode())) { 4662 V0 = Builder.CreateBinOp( 4663 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 4664 V1 = Builder.CreateBinOp( 4665 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 4666 } else { 4667 V0 = Builder.CreateCast( 4668 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 4669 V1 = Builder.CreateCast( 4670 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 4671 } 4672 4673 // Create shuffle to take alternate operations from the vector. 4674 // Also, gather up main and alt scalar ops to propagate IR flags to 4675 // each vector operation. 4676 ValueList OpScalars, AltScalars; 4677 unsigned e = E->Scalars.size(); 4678 SmallVector<int, 8> Mask(e); 4679 for (unsigned i = 0; i < e; ++i) { 4680 auto *OpInst = cast<Instruction>(E->Scalars[i]); 4681 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 4682 if (OpInst->getOpcode() == E->getAltOpcode()) { 4683 Mask[i] = e + i; 4684 AltScalars.push_back(E->Scalars[i]); 4685 } else { 4686 Mask[i] = i; 4687 OpScalars.push_back(E->Scalars[i]); 4688 } 4689 } 4690 4691 propagateIRFlags(V0, OpScalars); 4692 propagateIRFlags(V1, AltScalars); 4693 4694 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 4695 if (Instruction *I = dyn_cast<Instruction>(V)) 4696 V = propagateMetadata(I, E->Scalars); 4697 if (NeedToShuffleReuses) 4698 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4699 4700 E->VectorizedValue = V; 4701 ++NumVectorInstructions; 4702 4703 return V; 4704 } 4705 default: 4706 llvm_unreachable("unknown inst"); 4707 } 4708 return nullptr; 4709 } 4710 4711 Value *BoUpSLP::vectorizeTree() { 4712 ExtraValueToDebugLocsMap ExternallyUsedValues; 4713 return vectorizeTree(ExternallyUsedValues); 4714 } 4715 4716 Value * 4717 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 4718 // All blocks must be scheduled before any instructions are inserted. 4719 for (auto &BSIter : BlocksSchedules) { 4720 scheduleBlock(BSIter.second.get()); 4721 } 4722 4723 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4724 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 4725 4726 // If the vectorized tree can be rewritten in a smaller type, we truncate the 4727 // vectorized root. InstCombine will then rewrite the entire expression. We 4728 // sign extend the extracted values below. 4729 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4730 if (MinBWs.count(ScalarRoot)) { 4731 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 4732 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 4733 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 4734 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4735 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 4736 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 4737 VectorizableTree[0]->VectorizedValue = Trunc; 4738 } 4739 4740 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 4741 << " values .\n"); 4742 4743 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 4744 // specified by ScalarType. 4745 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 4746 if (!MinBWs.count(ScalarRoot)) 4747 return Ex; 4748 if (MinBWs[ScalarRoot].second) 4749 return Builder.CreateSExt(Ex, ScalarType); 4750 return Builder.CreateZExt(Ex, ScalarType); 4751 }; 4752 4753 // Extract all of the elements with the external uses. 4754 for (const auto &ExternalUse : ExternalUses) { 4755 Value *Scalar = ExternalUse.Scalar; 4756 llvm::User *User = ExternalUse.User; 4757 4758 // Skip users that we already RAUW. This happens when one instruction 4759 // has multiple uses of the same value. 4760 if (User && !is_contained(Scalar->users(), User)) 4761 continue; 4762 TreeEntry *E = getTreeEntry(Scalar); 4763 assert(E && "Invalid scalar"); 4764 assert(E->State == TreeEntry::Vectorize && "Extracting from a gather list"); 4765 4766 Value *Vec = E->VectorizedValue; 4767 assert(Vec && "Can't find vectorizable value"); 4768 4769 Value *Lane = Builder.getInt32(ExternalUse.Lane); 4770 // If User == nullptr, the Scalar is used as extra arg. Generate 4771 // ExtractElement instruction and update the record for this scalar in 4772 // ExternallyUsedValues. 4773 if (!User) { 4774 assert(ExternallyUsedValues.count(Scalar) && 4775 "Scalar with nullptr as an external user must be registered in " 4776 "ExternallyUsedValues map"); 4777 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4778 Builder.SetInsertPoint(VecI->getParent(), 4779 std::next(VecI->getIterator())); 4780 } else { 4781 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4782 } 4783 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4784 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4785 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 4786 auto &Locs = ExternallyUsedValues[Scalar]; 4787 ExternallyUsedValues.insert({Ex, Locs}); 4788 ExternallyUsedValues.erase(Scalar); 4789 // Required to update internally referenced instructions. 4790 Scalar->replaceAllUsesWith(Ex); 4791 continue; 4792 } 4793 4794 // Generate extracts for out-of-tree users. 4795 // Find the insertion point for the extractelement lane. 4796 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4797 if (PHINode *PH = dyn_cast<PHINode>(User)) { 4798 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 4799 if (PH->getIncomingValue(i) == Scalar) { 4800 Instruction *IncomingTerminator = 4801 PH->getIncomingBlock(i)->getTerminator(); 4802 if (isa<CatchSwitchInst>(IncomingTerminator)) { 4803 Builder.SetInsertPoint(VecI->getParent(), 4804 std::next(VecI->getIterator())); 4805 } else { 4806 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 4807 } 4808 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4809 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4810 CSEBlocks.insert(PH->getIncomingBlock(i)); 4811 PH->setOperand(i, Ex); 4812 } 4813 } 4814 } else { 4815 Builder.SetInsertPoint(cast<Instruction>(User)); 4816 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4817 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4818 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 4819 User->replaceUsesOfWith(Scalar, Ex); 4820 } 4821 } else { 4822 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4823 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4824 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4825 CSEBlocks.insert(&F->getEntryBlock()); 4826 User->replaceUsesOfWith(Scalar, Ex); 4827 } 4828 4829 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 4830 } 4831 4832 // For each vectorized value: 4833 for (auto &TEPtr : VectorizableTree) { 4834 TreeEntry *Entry = TEPtr.get(); 4835 4836 // No need to handle users of gathered values. 4837 if (Entry->State == TreeEntry::NeedToGather) 4838 continue; 4839 4840 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 4841 4842 // For each lane: 4843 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 4844 Value *Scalar = Entry->Scalars[Lane]; 4845 4846 #ifndef NDEBUG 4847 Type *Ty = Scalar->getType(); 4848 if (!Ty->isVoidTy()) { 4849 for (User *U : Scalar->users()) { 4850 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 4851 4852 // It is legal to delete users in the ignorelist. 4853 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 4854 "Deleting out-of-tree value"); 4855 } 4856 } 4857 #endif 4858 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 4859 eraseInstruction(cast<Instruction>(Scalar)); 4860 } 4861 } 4862 4863 Builder.ClearInsertionPoint(); 4864 InstrElementSize.clear(); 4865 4866 return VectorizableTree[0]->VectorizedValue; 4867 } 4868 4869 void BoUpSLP::optimizeGatherSequence() { 4870 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 4871 << " gather sequences instructions.\n"); 4872 // LICM InsertElementInst sequences. 4873 for (Instruction *I : GatherSeq) { 4874 if (isDeleted(I)) 4875 continue; 4876 4877 // Check if this block is inside a loop. 4878 Loop *L = LI->getLoopFor(I->getParent()); 4879 if (!L) 4880 continue; 4881 4882 // Check if it has a preheader. 4883 BasicBlock *PreHeader = L->getLoopPreheader(); 4884 if (!PreHeader) 4885 continue; 4886 4887 // If the vector or the element that we insert into it are 4888 // instructions that are defined in this basic block then we can't 4889 // hoist this instruction. 4890 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 4891 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 4892 if (Op0 && L->contains(Op0)) 4893 continue; 4894 if (Op1 && L->contains(Op1)) 4895 continue; 4896 4897 // We can hoist this instruction. Move it to the pre-header. 4898 I->moveBefore(PreHeader->getTerminator()); 4899 } 4900 4901 // Make a list of all reachable blocks in our CSE queue. 4902 SmallVector<const DomTreeNode *, 8> CSEWorkList; 4903 CSEWorkList.reserve(CSEBlocks.size()); 4904 for (BasicBlock *BB : CSEBlocks) 4905 if (DomTreeNode *N = DT->getNode(BB)) { 4906 assert(DT->isReachableFromEntry(N)); 4907 CSEWorkList.push_back(N); 4908 } 4909 4910 // Sort blocks by domination. This ensures we visit a block after all blocks 4911 // dominating it are visited. 4912 llvm::stable_sort(CSEWorkList, 4913 [this](const DomTreeNode *A, const DomTreeNode *B) { 4914 return DT->properlyDominates(A, B); 4915 }); 4916 4917 // Perform O(N^2) search over the gather sequences and merge identical 4918 // instructions. TODO: We can further optimize this scan if we split the 4919 // instructions into different buckets based on the insert lane. 4920 SmallVector<Instruction *, 16> Visited; 4921 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 4922 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 4923 "Worklist not sorted properly!"); 4924 BasicBlock *BB = (*I)->getBlock(); 4925 // For all instructions in blocks containing gather sequences: 4926 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 4927 Instruction *In = &*it++; 4928 if (isDeleted(In)) 4929 continue; 4930 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 4931 continue; 4932 4933 // Check if we can replace this instruction with any of the 4934 // visited instructions. 4935 for (Instruction *v : Visited) { 4936 if (In->isIdenticalTo(v) && 4937 DT->dominates(v->getParent(), In->getParent())) { 4938 In->replaceAllUsesWith(v); 4939 eraseInstruction(In); 4940 In = nullptr; 4941 break; 4942 } 4943 } 4944 if (In) { 4945 assert(!is_contained(Visited, In)); 4946 Visited.push_back(In); 4947 } 4948 } 4949 } 4950 CSEBlocks.clear(); 4951 GatherSeq.clear(); 4952 } 4953 4954 // Groups the instructions to a bundle (which is then a single scheduling entity) 4955 // and schedules instructions until the bundle gets ready. 4956 Optional<BoUpSLP::ScheduleData *> 4957 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 4958 const InstructionsState &S) { 4959 if (isa<PHINode>(S.OpValue)) 4960 return nullptr; 4961 4962 // Initialize the instruction bundle. 4963 Instruction *OldScheduleEnd = ScheduleEnd; 4964 ScheduleData *PrevInBundle = nullptr; 4965 ScheduleData *Bundle = nullptr; 4966 bool ReSchedule = false; 4967 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 4968 4969 // Make sure that the scheduling region contains all 4970 // instructions of the bundle. 4971 for (Value *V : VL) { 4972 if (!extendSchedulingRegion(V, S)) 4973 return None; 4974 } 4975 4976 for (Value *V : VL) { 4977 ScheduleData *BundleMember = getScheduleData(V); 4978 assert(BundleMember && 4979 "no ScheduleData for bundle member (maybe not in same basic block)"); 4980 if (BundleMember->IsScheduled) { 4981 // A bundle member was scheduled as single instruction before and now 4982 // needs to be scheduled as part of the bundle. We just get rid of the 4983 // existing schedule. 4984 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 4985 << " was already scheduled\n"); 4986 ReSchedule = true; 4987 } 4988 assert(BundleMember->isSchedulingEntity() && 4989 "bundle member already part of other bundle"); 4990 if (PrevInBundle) { 4991 PrevInBundle->NextInBundle = BundleMember; 4992 } else { 4993 Bundle = BundleMember; 4994 } 4995 BundleMember->UnscheduledDepsInBundle = 0; 4996 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 4997 4998 // Group the instructions to a bundle. 4999 BundleMember->FirstInBundle = Bundle; 5000 PrevInBundle = BundleMember; 5001 } 5002 if (ScheduleEnd != OldScheduleEnd) { 5003 // The scheduling region got new instructions at the lower end (or it is a 5004 // new region for the first bundle). This makes it necessary to 5005 // recalculate all dependencies. 5006 // It is seldom that this needs to be done a second time after adding the 5007 // initial bundle to the region. 5008 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 5009 doForAllOpcodes(I, [](ScheduleData *SD) { 5010 SD->clearDependencies(); 5011 }); 5012 } 5013 ReSchedule = true; 5014 } 5015 if (ReSchedule) { 5016 resetSchedule(); 5017 initialFillReadyList(ReadyInsts); 5018 } 5019 assert(Bundle && "Failed to find schedule bundle"); 5020 5021 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 5022 << BB->getName() << "\n"); 5023 5024 calculateDependencies(Bundle, true, SLP); 5025 5026 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 5027 // means that there are no cyclic dependencies and we can schedule it. 5028 // Note that's important that we don't "schedule" the bundle yet (see 5029 // cancelScheduling). 5030 while (!Bundle->isReady() && !ReadyInsts.empty()) { 5031 5032 ScheduleData *pickedSD = ReadyInsts.back(); 5033 ReadyInsts.pop_back(); 5034 5035 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 5036 schedule(pickedSD, ReadyInsts); 5037 } 5038 } 5039 if (!Bundle->isReady()) { 5040 cancelScheduling(VL, S.OpValue); 5041 return None; 5042 } 5043 return Bundle; 5044 } 5045 5046 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 5047 Value *OpValue) { 5048 if (isa<PHINode>(OpValue)) 5049 return; 5050 5051 ScheduleData *Bundle = getScheduleData(OpValue); 5052 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 5053 assert(!Bundle->IsScheduled && 5054 "Can't cancel bundle which is already scheduled"); 5055 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 5056 "tried to unbundle something which is not a bundle"); 5057 5058 // Un-bundle: make single instructions out of the bundle. 5059 ScheduleData *BundleMember = Bundle; 5060 while (BundleMember) { 5061 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 5062 BundleMember->FirstInBundle = BundleMember; 5063 ScheduleData *Next = BundleMember->NextInBundle; 5064 BundleMember->NextInBundle = nullptr; 5065 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 5066 if (BundleMember->UnscheduledDepsInBundle == 0) { 5067 ReadyInsts.insert(BundleMember); 5068 } 5069 BundleMember = Next; 5070 } 5071 } 5072 5073 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 5074 // Allocate a new ScheduleData for the instruction. 5075 if (ChunkPos >= ChunkSize) { 5076 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 5077 ChunkPos = 0; 5078 } 5079 return &(ScheduleDataChunks.back()[ChunkPos++]); 5080 } 5081 5082 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 5083 const InstructionsState &S) { 5084 if (getScheduleData(V, isOneOf(S, V))) 5085 return true; 5086 Instruction *I = dyn_cast<Instruction>(V); 5087 assert(I && "bundle member must be an instruction"); 5088 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 5089 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 5090 ScheduleData *ISD = getScheduleData(I); 5091 if (!ISD) 5092 return false; 5093 assert(isInSchedulingRegion(ISD) && 5094 "ScheduleData not in scheduling region"); 5095 ScheduleData *SD = allocateScheduleDataChunks(); 5096 SD->Inst = I; 5097 SD->init(SchedulingRegionID, S.OpValue); 5098 ExtraScheduleDataMap[I][S.OpValue] = SD; 5099 return true; 5100 }; 5101 if (CheckSheduleForI(I)) 5102 return true; 5103 if (!ScheduleStart) { 5104 // It's the first instruction in the new region. 5105 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 5106 ScheduleStart = I; 5107 ScheduleEnd = I->getNextNode(); 5108 if (isOneOf(S, I) != I) 5109 CheckSheduleForI(I); 5110 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5111 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 5112 return true; 5113 } 5114 // Search up and down at the same time, because we don't know if the new 5115 // instruction is above or below the existing scheduling region. 5116 BasicBlock::reverse_iterator UpIter = 5117 ++ScheduleStart->getIterator().getReverse(); 5118 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 5119 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 5120 BasicBlock::iterator LowerEnd = BB->end(); 5121 while (true) { 5122 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 5123 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 5124 return false; 5125 } 5126 5127 if (UpIter != UpperEnd) { 5128 if (&*UpIter == I) { 5129 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 5130 ScheduleStart = I; 5131 if (isOneOf(S, I) != I) 5132 CheckSheduleForI(I); 5133 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 5134 << "\n"); 5135 return true; 5136 } 5137 ++UpIter; 5138 } 5139 if (DownIter != LowerEnd) { 5140 if (&*DownIter == I) { 5141 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 5142 nullptr); 5143 ScheduleEnd = I->getNextNode(); 5144 if (isOneOf(S, I) != I) 5145 CheckSheduleForI(I); 5146 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5147 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I 5148 << "\n"); 5149 return true; 5150 } 5151 ++DownIter; 5152 } 5153 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 5154 "instruction not found in block"); 5155 } 5156 return true; 5157 } 5158 5159 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 5160 Instruction *ToI, 5161 ScheduleData *PrevLoadStore, 5162 ScheduleData *NextLoadStore) { 5163 ScheduleData *CurrentLoadStore = PrevLoadStore; 5164 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 5165 ScheduleData *SD = ScheduleDataMap[I]; 5166 if (!SD) { 5167 SD = allocateScheduleDataChunks(); 5168 ScheduleDataMap[I] = SD; 5169 SD->Inst = I; 5170 } 5171 assert(!isInSchedulingRegion(SD) && 5172 "new ScheduleData already in scheduling region"); 5173 SD->init(SchedulingRegionID, I); 5174 5175 if (I->mayReadOrWriteMemory() && 5176 (!isa<IntrinsicInst>(I) || 5177 cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) { 5178 // Update the linked list of memory accessing instructions. 5179 if (CurrentLoadStore) { 5180 CurrentLoadStore->NextLoadStore = SD; 5181 } else { 5182 FirstLoadStoreInRegion = SD; 5183 } 5184 CurrentLoadStore = SD; 5185 } 5186 } 5187 if (NextLoadStore) { 5188 if (CurrentLoadStore) 5189 CurrentLoadStore->NextLoadStore = NextLoadStore; 5190 } else { 5191 LastLoadStoreInRegion = CurrentLoadStore; 5192 } 5193 } 5194 5195 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 5196 bool InsertInReadyList, 5197 BoUpSLP *SLP) { 5198 assert(SD->isSchedulingEntity()); 5199 5200 SmallVector<ScheduleData *, 10> WorkList; 5201 WorkList.push_back(SD); 5202 5203 while (!WorkList.empty()) { 5204 ScheduleData *SD = WorkList.back(); 5205 WorkList.pop_back(); 5206 5207 ScheduleData *BundleMember = SD; 5208 while (BundleMember) { 5209 assert(isInSchedulingRegion(BundleMember)); 5210 if (!BundleMember->hasValidDependencies()) { 5211 5212 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 5213 << "\n"); 5214 BundleMember->Dependencies = 0; 5215 BundleMember->resetUnscheduledDeps(); 5216 5217 // Handle def-use chain dependencies. 5218 if (BundleMember->OpValue != BundleMember->Inst) { 5219 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 5220 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5221 BundleMember->Dependencies++; 5222 ScheduleData *DestBundle = UseSD->FirstInBundle; 5223 if (!DestBundle->IsScheduled) 5224 BundleMember->incrementUnscheduledDeps(1); 5225 if (!DestBundle->hasValidDependencies()) 5226 WorkList.push_back(DestBundle); 5227 } 5228 } else { 5229 for (User *U : BundleMember->Inst->users()) { 5230 if (isa<Instruction>(U)) { 5231 ScheduleData *UseSD = getScheduleData(U); 5232 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5233 BundleMember->Dependencies++; 5234 ScheduleData *DestBundle = UseSD->FirstInBundle; 5235 if (!DestBundle->IsScheduled) 5236 BundleMember->incrementUnscheduledDeps(1); 5237 if (!DestBundle->hasValidDependencies()) 5238 WorkList.push_back(DestBundle); 5239 } 5240 } else { 5241 // I'm not sure if this can ever happen. But we need to be safe. 5242 // This lets the instruction/bundle never be scheduled and 5243 // eventually disable vectorization. 5244 BundleMember->Dependencies++; 5245 BundleMember->incrementUnscheduledDeps(1); 5246 } 5247 } 5248 } 5249 5250 // Handle the memory dependencies. 5251 ScheduleData *DepDest = BundleMember->NextLoadStore; 5252 if (DepDest) { 5253 Instruction *SrcInst = BundleMember->Inst; 5254 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 5255 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 5256 unsigned numAliased = 0; 5257 unsigned DistToSrc = 1; 5258 5259 while (DepDest) { 5260 assert(isInSchedulingRegion(DepDest)); 5261 5262 // We have two limits to reduce the complexity: 5263 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 5264 // SLP->isAliased (which is the expensive part in this loop). 5265 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 5266 // the whole loop (even if the loop is fast, it's quadratic). 5267 // It's important for the loop break condition (see below) to 5268 // check this limit even between two read-only instructions. 5269 if (DistToSrc >= MaxMemDepDistance || 5270 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 5271 (numAliased >= AliasedCheckLimit || 5272 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 5273 5274 // We increment the counter only if the locations are aliased 5275 // (instead of counting all alias checks). This gives a better 5276 // balance between reduced runtime and accurate dependencies. 5277 numAliased++; 5278 5279 DepDest->MemoryDependencies.push_back(BundleMember); 5280 BundleMember->Dependencies++; 5281 ScheduleData *DestBundle = DepDest->FirstInBundle; 5282 if (!DestBundle->IsScheduled) { 5283 BundleMember->incrementUnscheduledDeps(1); 5284 } 5285 if (!DestBundle->hasValidDependencies()) { 5286 WorkList.push_back(DestBundle); 5287 } 5288 } 5289 DepDest = DepDest->NextLoadStore; 5290 5291 // Example, explaining the loop break condition: Let's assume our 5292 // starting instruction is i0 and MaxMemDepDistance = 3. 5293 // 5294 // +--------v--v--v 5295 // i0,i1,i2,i3,i4,i5,i6,i7,i8 5296 // +--------^--^--^ 5297 // 5298 // MaxMemDepDistance let us stop alias-checking at i3 and we add 5299 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 5300 // Previously we already added dependencies from i3 to i6,i7,i8 5301 // (because of MaxMemDepDistance). As we added a dependency from 5302 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 5303 // and we can abort this loop at i6. 5304 if (DistToSrc >= 2 * MaxMemDepDistance) 5305 break; 5306 DistToSrc++; 5307 } 5308 } 5309 } 5310 BundleMember = BundleMember->NextInBundle; 5311 } 5312 if (InsertInReadyList && SD->isReady()) { 5313 ReadyInsts.push_back(SD); 5314 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 5315 << "\n"); 5316 } 5317 } 5318 } 5319 5320 void BoUpSLP::BlockScheduling::resetSchedule() { 5321 assert(ScheduleStart && 5322 "tried to reset schedule on block which has not been scheduled"); 5323 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 5324 doForAllOpcodes(I, [&](ScheduleData *SD) { 5325 assert(isInSchedulingRegion(SD) && 5326 "ScheduleData not in scheduling region"); 5327 SD->IsScheduled = false; 5328 SD->resetUnscheduledDeps(); 5329 }); 5330 } 5331 ReadyInsts.clear(); 5332 } 5333 5334 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 5335 if (!BS->ScheduleStart) 5336 return; 5337 5338 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 5339 5340 BS->resetSchedule(); 5341 5342 // For the real scheduling we use a more sophisticated ready-list: it is 5343 // sorted by the original instruction location. This lets the final schedule 5344 // be as close as possible to the original instruction order. 5345 struct ScheduleDataCompare { 5346 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 5347 return SD2->SchedulingPriority < SD1->SchedulingPriority; 5348 } 5349 }; 5350 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 5351 5352 // Ensure that all dependency data is updated and fill the ready-list with 5353 // initial instructions. 5354 int Idx = 0; 5355 int NumToSchedule = 0; 5356 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 5357 I = I->getNextNode()) { 5358 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 5359 assert(SD->isPartOfBundle() == 5360 (getTreeEntry(SD->Inst) != nullptr) && 5361 "scheduler and vectorizer bundle mismatch"); 5362 SD->FirstInBundle->SchedulingPriority = Idx++; 5363 if (SD->isSchedulingEntity()) { 5364 BS->calculateDependencies(SD, false, this); 5365 NumToSchedule++; 5366 } 5367 }); 5368 } 5369 BS->initialFillReadyList(ReadyInsts); 5370 5371 Instruction *LastScheduledInst = BS->ScheduleEnd; 5372 5373 // Do the "real" scheduling. 5374 while (!ReadyInsts.empty()) { 5375 ScheduleData *picked = *ReadyInsts.begin(); 5376 ReadyInsts.erase(ReadyInsts.begin()); 5377 5378 // Move the scheduled instruction(s) to their dedicated places, if not 5379 // there yet. 5380 ScheduleData *BundleMember = picked; 5381 while (BundleMember) { 5382 Instruction *pickedInst = BundleMember->Inst; 5383 if (LastScheduledInst->getNextNode() != pickedInst) { 5384 BS->BB->getInstList().remove(pickedInst); 5385 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 5386 pickedInst); 5387 } 5388 LastScheduledInst = pickedInst; 5389 BundleMember = BundleMember->NextInBundle; 5390 } 5391 5392 BS->schedule(picked, ReadyInsts); 5393 NumToSchedule--; 5394 } 5395 assert(NumToSchedule == 0 && "could not schedule all instructions"); 5396 5397 // Avoid duplicate scheduling of the block. 5398 BS->ScheduleStart = nullptr; 5399 } 5400 5401 unsigned BoUpSLP::getVectorElementSize(Value *V) { 5402 // If V is a store, just return the width of the stored value without 5403 // traversing the expression tree. This is the common case. 5404 if (auto *Store = dyn_cast<StoreInst>(V)) 5405 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 5406 5407 auto E = InstrElementSize.find(V); 5408 if (E != InstrElementSize.end()) 5409 return E->second; 5410 5411 // If V is not a store, we can traverse the expression tree to find loads 5412 // that feed it. The type of the loaded value may indicate a more suitable 5413 // width than V's type. We want to base the vector element size on the width 5414 // of memory operations where possible. 5415 SmallVector<Instruction *, 16> Worklist; 5416 SmallPtrSet<Instruction *, 16> Visited; 5417 if (auto *I = dyn_cast<Instruction>(V)) { 5418 Worklist.push_back(I); 5419 Visited.insert(I); 5420 } 5421 5422 // Traverse the expression tree in bottom-up order looking for loads. If we 5423 // encounter an instruction we don't yet handle, we give up. 5424 auto MaxWidth = 0u; 5425 auto FoundUnknownInst = false; 5426 while (!Worklist.empty() && !FoundUnknownInst) { 5427 auto *I = Worklist.pop_back_val(); 5428 5429 // We should only be looking at scalar instructions here. If the current 5430 // instruction has a vector type, give up. 5431 auto *Ty = I->getType(); 5432 if (isa<VectorType>(Ty)) 5433 FoundUnknownInst = true; 5434 5435 // If the current instruction is a load, update MaxWidth to reflect the 5436 // width of the loaded value. 5437 else if (isa<LoadInst>(I)) 5438 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 5439 5440 // Otherwise, we need to visit the operands of the instruction. We only 5441 // handle the interesting cases from buildTree here. If an operand is an 5442 // instruction we haven't yet visited, we add it to the worklist. 5443 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5444 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 5445 for (Use &U : I->operands()) 5446 if (auto *J = dyn_cast<Instruction>(U.get())) 5447 if (Visited.insert(J).second) 5448 Worklist.push_back(J); 5449 } 5450 5451 // If we don't yet handle the instruction, give up. 5452 else 5453 FoundUnknownInst = true; 5454 } 5455 5456 int Width = MaxWidth; 5457 // If we didn't encounter a memory access in the expression tree, or if we 5458 // gave up for some reason, just return the width of V. Otherwise, return the 5459 // maximum width we found. 5460 if (!MaxWidth || FoundUnknownInst) 5461 Width = DL->getTypeSizeInBits(V->getType()); 5462 5463 for (Instruction *I : Visited) 5464 InstrElementSize[I] = Width; 5465 5466 return Width; 5467 } 5468 5469 // Determine if a value V in a vectorizable expression Expr can be demoted to a 5470 // smaller type with a truncation. We collect the values that will be demoted 5471 // in ToDemote and additional roots that require investigating in Roots. 5472 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 5473 SmallVectorImpl<Value *> &ToDemote, 5474 SmallVectorImpl<Value *> &Roots) { 5475 // We can always demote constants. 5476 if (isa<Constant>(V)) { 5477 ToDemote.push_back(V); 5478 return true; 5479 } 5480 5481 // If the value is not an instruction in the expression with only one use, it 5482 // cannot be demoted. 5483 auto *I = dyn_cast<Instruction>(V); 5484 if (!I || !I->hasOneUse() || !Expr.count(I)) 5485 return false; 5486 5487 switch (I->getOpcode()) { 5488 5489 // We can always demote truncations and extensions. Since truncations can 5490 // seed additional demotion, we save the truncated value. 5491 case Instruction::Trunc: 5492 Roots.push_back(I->getOperand(0)); 5493 break; 5494 case Instruction::ZExt: 5495 case Instruction::SExt: 5496 break; 5497 5498 // We can demote certain binary operations if we can demote both of their 5499 // operands. 5500 case Instruction::Add: 5501 case Instruction::Sub: 5502 case Instruction::Mul: 5503 case Instruction::And: 5504 case Instruction::Or: 5505 case Instruction::Xor: 5506 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 5507 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 5508 return false; 5509 break; 5510 5511 // We can demote selects if we can demote their true and false values. 5512 case Instruction::Select: { 5513 SelectInst *SI = cast<SelectInst>(I); 5514 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 5515 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 5516 return false; 5517 break; 5518 } 5519 5520 // We can demote phis if we can demote all their incoming operands. Note that 5521 // we don't need to worry about cycles since we ensure single use above. 5522 case Instruction::PHI: { 5523 PHINode *PN = cast<PHINode>(I); 5524 for (Value *IncValue : PN->incoming_values()) 5525 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 5526 return false; 5527 break; 5528 } 5529 5530 // Otherwise, conservatively give up. 5531 default: 5532 return false; 5533 } 5534 5535 // Record the value that we can demote. 5536 ToDemote.push_back(V); 5537 return true; 5538 } 5539 5540 void BoUpSLP::computeMinimumValueSizes() { 5541 // If there are no external uses, the expression tree must be rooted by a 5542 // store. We can't demote in-memory values, so there is nothing to do here. 5543 if (ExternalUses.empty()) 5544 return; 5545 5546 // We only attempt to truncate integer expressions. 5547 auto &TreeRoot = VectorizableTree[0]->Scalars; 5548 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 5549 if (!TreeRootIT) 5550 return; 5551 5552 // If the expression is not rooted by a store, these roots should have 5553 // external uses. We will rely on InstCombine to rewrite the expression in 5554 // the narrower type. However, InstCombine only rewrites single-use values. 5555 // This means that if a tree entry other than a root is used externally, it 5556 // must have multiple uses and InstCombine will not rewrite it. The code 5557 // below ensures that only the roots are used externally. 5558 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 5559 for (auto &EU : ExternalUses) 5560 if (!Expr.erase(EU.Scalar)) 5561 return; 5562 if (!Expr.empty()) 5563 return; 5564 5565 // Collect the scalar values of the vectorizable expression. We will use this 5566 // context to determine which values can be demoted. If we see a truncation, 5567 // we mark it as seeding another demotion. 5568 for (auto &EntryPtr : VectorizableTree) 5569 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 5570 5571 // Ensure the roots of the vectorizable tree don't form a cycle. They must 5572 // have a single external user that is not in the vectorizable tree. 5573 for (auto *Root : TreeRoot) 5574 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 5575 return; 5576 5577 // Conservatively determine if we can actually truncate the roots of the 5578 // expression. Collect the values that can be demoted in ToDemote and 5579 // additional roots that require investigating in Roots. 5580 SmallVector<Value *, 32> ToDemote; 5581 SmallVector<Value *, 4> Roots; 5582 for (auto *Root : TreeRoot) 5583 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 5584 return; 5585 5586 // The maximum bit width required to represent all the values that can be 5587 // demoted without loss of precision. It would be safe to truncate the roots 5588 // of the expression to this width. 5589 auto MaxBitWidth = 8u; 5590 5591 // We first check if all the bits of the roots are demanded. If they're not, 5592 // we can truncate the roots to this narrower type. 5593 for (auto *Root : TreeRoot) { 5594 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 5595 MaxBitWidth = std::max<unsigned>( 5596 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 5597 } 5598 5599 // True if the roots can be zero-extended back to their original type, rather 5600 // than sign-extended. We know that if the leading bits are not demanded, we 5601 // can safely zero-extend. So we initialize IsKnownPositive to True. 5602 bool IsKnownPositive = true; 5603 5604 // If all the bits of the roots are demanded, we can try a little harder to 5605 // compute a narrower type. This can happen, for example, if the roots are 5606 // getelementptr indices. InstCombine promotes these indices to the pointer 5607 // width. Thus, all their bits are technically demanded even though the 5608 // address computation might be vectorized in a smaller type. 5609 // 5610 // We start by looking at each entry that can be demoted. We compute the 5611 // maximum bit width required to store the scalar by using ValueTracking to 5612 // compute the number of high-order bits we can truncate. 5613 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 5614 llvm::all_of(TreeRoot, [](Value *R) { 5615 assert(R->hasOneUse() && "Root should have only one use!"); 5616 return isa<GetElementPtrInst>(R->user_back()); 5617 })) { 5618 MaxBitWidth = 8u; 5619 5620 // Determine if the sign bit of all the roots is known to be zero. If not, 5621 // IsKnownPositive is set to False. 5622 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 5623 KnownBits Known = computeKnownBits(R, *DL); 5624 return Known.isNonNegative(); 5625 }); 5626 5627 // Determine the maximum number of bits required to store the scalar 5628 // values. 5629 for (auto *Scalar : ToDemote) { 5630 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 5631 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 5632 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 5633 } 5634 5635 // If we can't prove that the sign bit is zero, we must add one to the 5636 // maximum bit width to account for the unknown sign bit. This preserves 5637 // the existing sign bit so we can safely sign-extend the root back to the 5638 // original type. Otherwise, if we know the sign bit is zero, we will 5639 // zero-extend the root instead. 5640 // 5641 // FIXME: This is somewhat suboptimal, as there will be cases where adding 5642 // one to the maximum bit width will yield a larger-than-necessary 5643 // type. In general, we need to add an extra bit only if we can't 5644 // prove that the upper bit of the original type is equal to the 5645 // upper bit of the proposed smaller type. If these two bits are the 5646 // same (either zero or one) we know that sign-extending from the 5647 // smaller type will result in the same value. Here, since we can't 5648 // yet prove this, we are just making the proposed smaller type 5649 // larger to ensure correctness. 5650 if (!IsKnownPositive) 5651 ++MaxBitWidth; 5652 } 5653 5654 // Round MaxBitWidth up to the next power-of-two. 5655 if (!isPowerOf2_64(MaxBitWidth)) 5656 MaxBitWidth = NextPowerOf2(MaxBitWidth); 5657 5658 // If the maximum bit width we compute is less than the with of the roots' 5659 // type, we can proceed with the narrowing. Otherwise, do nothing. 5660 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 5661 return; 5662 5663 // If we can truncate the root, we must collect additional values that might 5664 // be demoted as a result. That is, those seeded by truncations we will 5665 // modify. 5666 while (!Roots.empty()) 5667 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 5668 5669 // Finally, map the values we can demote to the maximum bit with we computed. 5670 for (auto *Scalar : ToDemote) 5671 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 5672 } 5673 5674 namespace { 5675 5676 /// The SLPVectorizer Pass. 5677 struct SLPVectorizer : public FunctionPass { 5678 SLPVectorizerPass Impl; 5679 5680 /// Pass identification, replacement for typeid 5681 static char ID; 5682 5683 explicit SLPVectorizer() : FunctionPass(ID) { 5684 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 5685 } 5686 5687 bool doInitialization(Module &M) override { 5688 return false; 5689 } 5690 5691 bool runOnFunction(Function &F) override { 5692 if (skipFunction(F)) 5693 return false; 5694 5695 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5696 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 5697 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 5698 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 5699 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 5700 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5701 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5702 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 5703 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 5704 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 5705 5706 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5707 } 5708 5709 void getAnalysisUsage(AnalysisUsage &AU) const override { 5710 FunctionPass::getAnalysisUsage(AU); 5711 AU.addRequired<AssumptionCacheTracker>(); 5712 AU.addRequired<ScalarEvolutionWrapperPass>(); 5713 AU.addRequired<AAResultsWrapperPass>(); 5714 AU.addRequired<TargetTransformInfoWrapperPass>(); 5715 AU.addRequired<LoopInfoWrapperPass>(); 5716 AU.addRequired<DominatorTreeWrapperPass>(); 5717 AU.addRequired<DemandedBitsWrapperPass>(); 5718 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 5719 AU.addRequired<InjectTLIMappingsLegacy>(); 5720 AU.addPreserved<LoopInfoWrapperPass>(); 5721 AU.addPreserved<DominatorTreeWrapperPass>(); 5722 AU.addPreserved<AAResultsWrapperPass>(); 5723 AU.addPreserved<GlobalsAAWrapperPass>(); 5724 AU.setPreservesCFG(); 5725 } 5726 }; 5727 5728 } // end anonymous namespace 5729 5730 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 5731 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 5732 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 5733 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 5734 auto *AA = &AM.getResult<AAManager>(F); 5735 auto *LI = &AM.getResult<LoopAnalysis>(F); 5736 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 5737 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 5738 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 5739 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 5740 5741 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5742 if (!Changed) 5743 return PreservedAnalyses::all(); 5744 5745 PreservedAnalyses PA; 5746 PA.preserveSet<CFGAnalyses>(); 5747 PA.preserve<AAManager>(); 5748 PA.preserve<GlobalsAA>(); 5749 return PA; 5750 } 5751 5752 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 5753 TargetTransformInfo *TTI_, 5754 TargetLibraryInfo *TLI_, AAResults *AA_, 5755 LoopInfo *LI_, DominatorTree *DT_, 5756 AssumptionCache *AC_, DemandedBits *DB_, 5757 OptimizationRemarkEmitter *ORE_) { 5758 if (!RunSLPVectorization) 5759 return false; 5760 SE = SE_; 5761 TTI = TTI_; 5762 TLI = TLI_; 5763 AA = AA_; 5764 LI = LI_; 5765 DT = DT_; 5766 AC = AC_; 5767 DB = DB_; 5768 DL = &F.getParent()->getDataLayout(); 5769 5770 Stores.clear(); 5771 GEPs.clear(); 5772 bool Changed = false; 5773 5774 // If the target claims to have no vector registers don't attempt 5775 // vectorization. 5776 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 5777 return false; 5778 5779 // Don't vectorize when the attribute NoImplicitFloat is used. 5780 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 5781 return false; 5782 5783 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 5784 5785 // Use the bottom up slp vectorizer to construct chains that start with 5786 // store instructions. 5787 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 5788 5789 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 5790 // delete instructions. 5791 5792 // Scan the blocks in the function in post order. 5793 for (auto BB : post_order(&F.getEntryBlock())) { 5794 collectSeedInstructions(BB); 5795 5796 // Vectorize trees that end at stores. 5797 if (!Stores.empty()) { 5798 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 5799 << " underlying objects.\n"); 5800 Changed |= vectorizeStoreChains(R); 5801 } 5802 5803 // Vectorize trees that end at reductions. 5804 Changed |= vectorizeChainsInBlock(BB, R); 5805 5806 // Vectorize the index computations of getelementptr instructions. This 5807 // is primarily intended to catch gather-like idioms ending at 5808 // non-consecutive loads. 5809 if (!GEPs.empty()) { 5810 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 5811 << " underlying objects.\n"); 5812 Changed |= vectorizeGEPIndices(BB, R); 5813 } 5814 } 5815 5816 if (Changed) { 5817 R.optimizeGatherSequence(); 5818 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 5819 } 5820 return Changed; 5821 } 5822 5823 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 5824 unsigned Idx) { 5825 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 5826 << "\n"); 5827 const unsigned Sz = R.getVectorElementSize(Chain[0]); 5828 const unsigned MinVF = R.getMinVecRegSize() / Sz; 5829 unsigned VF = Chain.size(); 5830 5831 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 5832 return false; 5833 5834 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 5835 << "\n"); 5836 5837 R.buildTree(Chain); 5838 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 5839 // TODO: Handle orders of size less than number of elements in the vector. 5840 if (Order && Order->size() == Chain.size()) { 5841 // TODO: reorder tree nodes without tree rebuilding. 5842 SmallVector<Value *, 4> ReorderedOps(Chain.rbegin(), Chain.rend()); 5843 llvm::transform(*Order, ReorderedOps.begin(), 5844 [Chain](const unsigned Idx) { return Chain[Idx]; }); 5845 R.buildTree(ReorderedOps); 5846 } 5847 if (R.isTreeTinyAndNotFullyVectorizable()) 5848 return false; 5849 if (R.isLoadCombineCandidate()) 5850 return false; 5851 5852 R.computeMinimumValueSizes(); 5853 5854 int Cost = R.getTreeCost(); 5855 5856 LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); 5857 if (Cost < -SLPCostThreshold) { 5858 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 5859 5860 using namespace ore; 5861 5862 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 5863 cast<StoreInst>(Chain[0])) 5864 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 5865 << " and with tree size " 5866 << NV("TreeSize", R.getTreeSize())); 5867 5868 R.vectorizeTree(); 5869 return true; 5870 } 5871 5872 return false; 5873 } 5874 5875 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 5876 BoUpSLP &R) { 5877 // We may run into multiple chains that merge into a single chain. We mark the 5878 // stores that we vectorized so that we don't visit the same store twice. 5879 BoUpSLP::ValueSet VectorizedStores; 5880 bool Changed = false; 5881 5882 int E = Stores.size(); 5883 SmallBitVector Tails(E, false); 5884 SmallVector<int, 16> ConsecutiveChain(E, E + 1); 5885 int MaxIter = MaxStoreLookup.getValue(); 5886 int IterCnt; 5887 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 5888 &ConsecutiveChain](int K, int Idx) { 5889 if (IterCnt >= MaxIter) 5890 return true; 5891 ++IterCnt; 5892 if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) 5893 return false; 5894 5895 Tails.set(Idx); 5896 ConsecutiveChain[K] = Idx; 5897 return true; 5898 }; 5899 // Do a quadratic search on all of the given stores in reverse order and find 5900 // all of the pairs of stores that follow each other. 5901 for (int Idx = E - 1; Idx >= 0; --Idx) { 5902 // If a store has multiple consecutive store candidates, search according 5903 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 5904 // This is because usually pairing with immediate succeeding or preceding 5905 // candidate create the best chance to find slp vectorization opportunity. 5906 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 5907 IterCnt = 0; 5908 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 5909 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 5910 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 5911 break; 5912 } 5913 5914 // For stores that start but don't end a link in the chain: 5915 for (int Cnt = E; Cnt > 0; --Cnt) { 5916 int I = Cnt - 1; 5917 if (ConsecutiveChain[I] == E + 1 || Tails.test(I)) 5918 continue; 5919 // We found a store instr that starts a chain. Now follow the chain and try 5920 // to vectorize it. 5921 BoUpSLP::ValueList Operands; 5922 // Collect the chain into a list. 5923 while (I != E + 1 && !VectorizedStores.count(Stores[I])) { 5924 Operands.push_back(Stores[I]); 5925 // Move to the next value in the chain. 5926 I = ConsecutiveChain[I]; 5927 } 5928 5929 // If a vector register can't hold 1 element, we are done. 5930 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 5931 unsigned EltSize = R.getVectorElementSize(Stores[0]); 5932 if (MaxVecRegSize % EltSize != 0) 5933 continue; 5934 5935 unsigned MaxElts = MaxVecRegSize / EltSize; 5936 // FIXME: Is division-by-2 the correct step? Should we assert that the 5937 // register size is a power-of-2? 5938 unsigned StartIdx = 0; 5939 for (unsigned Size = llvm::PowerOf2Ceil(MaxElts); Size >= 2; Size /= 2) { 5940 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 5941 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 5942 if (!VectorizedStores.count(Slice.front()) && 5943 !VectorizedStores.count(Slice.back()) && 5944 vectorizeStoreChain(Slice, R, Cnt)) { 5945 // Mark the vectorized stores so that we don't vectorize them again. 5946 VectorizedStores.insert(Slice.begin(), Slice.end()); 5947 Changed = true; 5948 // If we vectorized initial block, no need to try to vectorize it 5949 // again. 5950 if (Cnt == StartIdx) 5951 StartIdx += Size; 5952 Cnt += Size; 5953 continue; 5954 } 5955 ++Cnt; 5956 } 5957 // Check if the whole array was vectorized already - exit. 5958 if (StartIdx >= Operands.size()) 5959 break; 5960 } 5961 } 5962 5963 return Changed; 5964 } 5965 5966 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 5967 // Initialize the collections. We will make a single pass over the block. 5968 Stores.clear(); 5969 GEPs.clear(); 5970 5971 // Visit the store and getelementptr instructions in BB and organize them in 5972 // Stores and GEPs according to the underlying objects of their pointer 5973 // operands. 5974 for (Instruction &I : *BB) { 5975 // Ignore store instructions that are volatile or have a pointer operand 5976 // that doesn't point to a scalar type. 5977 if (auto *SI = dyn_cast<StoreInst>(&I)) { 5978 if (!SI->isSimple()) 5979 continue; 5980 if (!isValidElementType(SI->getValueOperand()->getType())) 5981 continue; 5982 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 5983 } 5984 5985 // Ignore getelementptr instructions that have more than one index, a 5986 // constant index, or a pointer operand that doesn't point to a scalar 5987 // type. 5988 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 5989 auto Idx = GEP->idx_begin()->get(); 5990 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 5991 continue; 5992 if (!isValidElementType(Idx->getType())) 5993 continue; 5994 if (GEP->getType()->isVectorTy()) 5995 continue; 5996 GEPs[GEP->getPointerOperand()].push_back(GEP); 5997 } 5998 } 5999 } 6000 6001 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 6002 if (!A || !B) 6003 return false; 6004 Value *VL[] = {A, B}; 6005 return tryToVectorizeList(VL, R, /*AllowReorder=*/true); 6006 } 6007 6008 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 6009 bool AllowReorder, 6010 ArrayRef<Value *> InsertUses) { 6011 if (VL.size() < 2) 6012 return false; 6013 6014 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 6015 << VL.size() << ".\n"); 6016 6017 // Check that all of the parts are instructions of the same type, 6018 // we permit an alternate opcode via InstructionsState. 6019 InstructionsState S = getSameOpcode(VL); 6020 if (!S.getOpcode()) 6021 return false; 6022 6023 Instruction *I0 = cast<Instruction>(S.OpValue); 6024 // Make sure invalid types (including vector type) are rejected before 6025 // determining vectorization factor for scalar instructions. 6026 for (Value *V : VL) { 6027 Type *Ty = V->getType(); 6028 if (!isValidElementType(Ty)) { 6029 // NOTE: the following will give user internal llvm type name, which may 6030 // not be useful. 6031 R.getORE()->emit([&]() { 6032 std::string type_str; 6033 llvm::raw_string_ostream rso(type_str); 6034 Ty->print(rso); 6035 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 6036 << "Cannot SLP vectorize list: type " 6037 << rso.str() + " is unsupported by vectorizer"; 6038 }); 6039 return false; 6040 } 6041 } 6042 6043 unsigned Sz = R.getVectorElementSize(I0); 6044 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 6045 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 6046 if (MaxVF < 2) { 6047 R.getORE()->emit([&]() { 6048 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 6049 << "Cannot SLP vectorize list: vectorization factor " 6050 << "less than 2 is not supported"; 6051 }); 6052 return false; 6053 } 6054 6055 bool Changed = false; 6056 bool CandidateFound = false; 6057 int MinCost = SLPCostThreshold; 6058 6059 bool CompensateUseCost = 6060 !InsertUses.empty() && llvm::all_of(InsertUses, [](const Value *V) { 6061 return V && isa<InsertElementInst>(V); 6062 }); 6063 assert((!CompensateUseCost || InsertUses.size() == VL.size()) && 6064 "Each scalar expected to have an associated InsertElement user."); 6065 6066 unsigned NextInst = 0, MaxInst = VL.size(); 6067 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 6068 // No actual vectorization should happen, if number of parts is the same as 6069 // provided vectorization factor (i.e. the scalar type is used for vector 6070 // code during codegen). 6071 auto *VecTy = FixedVectorType::get(VL[0]->getType(), VF); 6072 if (TTI->getNumberOfParts(VecTy) == VF) 6073 continue; 6074 for (unsigned I = NextInst; I < MaxInst; ++I) { 6075 unsigned OpsWidth = 0; 6076 6077 if (I + VF > MaxInst) 6078 OpsWidth = MaxInst - I; 6079 else 6080 OpsWidth = VF; 6081 6082 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 6083 break; 6084 6085 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 6086 // Check that a previous iteration of this loop did not delete the Value. 6087 if (llvm::any_of(Ops, [&R](Value *V) { 6088 auto *I = dyn_cast<Instruction>(V); 6089 return I && R.isDeleted(I); 6090 })) 6091 continue; 6092 6093 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 6094 << "\n"); 6095 6096 R.buildTree(Ops); 6097 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 6098 // TODO: check if we can allow reordering for more cases. 6099 if (AllowReorder && Order) { 6100 // TODO: reorder tree nodes without tree rebuilding. 6101 // Conceptually, there is nothing actually preventing us from trying to 6102 // reorder a larger list. In fact, we do exactly this when vectorizing 6103 // reductions. However, at this point, we only expect to get here when 6104 // there are exactly two operations. 6105 assert(Ops.size() == 2); 6106 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 6107 R.buildTree(ReorderedOps, None); 6108 } 6109 if (R.isTreeTinyAndNotFullyVectorizable()) 6110 continue; 6111 6112 R.computeMinimumValueSizes(); 6113 int Cost = R.getTreeCost(); 6114 CandidateFound = true; 6115 if (CompensateUseCost) { 6116 // TODO: Use TTI's getScalarizationOverhead for sequence of inserts 6117 // rather than sum of single inserts as the latter may overestimate 6118 // cost. This work should imply improving cost estimation for extracts 6119 // that added in for external (for vectorization tree) users,i.e. that 6120 // part should also switch to same interface. 6121 // For example, the following case is projected code after SLP: 6122 // %4 = extractelement <4 x i64> %3, i32 0 6123 // %v0 = insertelement <4 x i64> undef, i64 %4, i32 0 6124 // %5 = extractelement <4 x i64> %3, i32 1 6125 // %v1 = insertelement <4 x i64> %v0, i64 %5, i32 1 6126 // %6 = extractelement <4 x i64> %3, i32 2 6127 // %v2 = insertelement <4 x i64> %v1, i64 %6, i32 2 6128 // %7 = extractelement <4 x i64> %3, i32 3 6129 // %v3 = insertelement <4 x i64> %v2, i64 %7, i32 3 6130 // 6131 // Extracts here added by SLP in order to feed users (the inserts) of 6132 // original scalars and contribute to "ExtractCost" at cost evaluation. 6133 // The inserts in turn form sequence to build an aggregate that 6134 // detected by findBuildAggregate routine. 6135 // SLP makes an assumption that such sequence will be optimized away 6136 // later (instcombine) so it tries to compensate ExctractCost with 6137 // cost of insert sequence. 6138 // Current per element cost calculation approach is not quite accurate 6139 // and tends to create bias toward favoring vectorization. 6140 // Switching to the TTI interface might help a bit. 6141 // Alternative solution could be pattern-match to detect a no-op or 6142 // shuffle. 6143 unsigned UserCost = 0; 6144 for (unsigned Lane = 0; Lane < OpsWidth; Lane++) { 6145 auto *IE = cast<InsertElementInst>(InsertUses[I + Lane]); 6146 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) 6147 UserCost += TTI->getVectorInstrCost( 6148 Instruction::InsertElement, IE->getType(), CI->getZExtValue()); 6149 } 6150 LLVM_DEBUG(dbgs() << "SLP: Compensate cost of users by: " << UserCost 6151 << ".\n"); 6152 Cost -= UserCost; 6153 } 6154 6155 MinCost = std::min(MinCost, Cost); 6156 6157 if (Cost < -SLPCostThreshold) { 6158 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 6159 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 6160 cast<Instruction>(Ops[0])) 6161 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 6162 << " and with tree size " 6163 << ore::NV("TreeSize", R.getTreeSize())); 6164 6165 R.vectorizeTree(); 6166 // Move to the next bundle. 6167 I += VF - 1; 6168 NextInst = I + 1; 6169 Changed = true; 6170 } 6171 } 6172 } 6173 6174 if (!Changed && CandidateFound) { 6175 R.getORE()->emit([&]() { 6176 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 6177 << "List vectorization was possible but not beneficial with cost " 6178 << ore::NV("Cost", MinCost) << " >= " 6179 << ore::NV("Treshold", -SLPCostThreshold); 6180 }); 6181 } else if (!Changed) { 6182 R.getORE()->emit([&]() { 6183 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 6184 << "Cannot SLP vectorize list: vectorization was impossible" 6185 << " with available vectorization factors"; 6186 }); 6187 } 6188 return Changed; 6189 } 6190 6191 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 6192 if (!I) 6193 return false; 6194 6195 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 6196 return false; 6197 6198 Value *P = I->getParent(); 6199 6200 // Vectorize in current basic block only. 6201 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 6202 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 6203 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 6204 return false; 6205 6206 // Try to vectorize V. 6207 if (tryToVectorizePair(Op0, Op1, R)) 6208 return true; 6209 6210 auto *A = dyn_cast<BinaryOperator>(Op0); 6211 auto *B = dyn_cast<BinaryOperator>(Op1); 6212 // Try to skip B. 6213 if (B && B->hasOneUse()) { 6214 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 6215 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 6216 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 6217 return true; 6218 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 6219 return true; 6220 } 6221 6222 // Try to skip A. 6223 if (A && A->hasOneUse()) { 6224 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 6225 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 6226 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 6227 return true; 6228 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 6229 return true; 6230 } 6231 return false; 6232 } 6233 6234 /// Generate a shuffle mask to be used in a reduction tree. 6235 /// 6236 /// \param VecLen The length of the vector to be reduced. 6237 /// \param NumEltsToRdx The number of elements that should be reduced in the 6238 /// vector. 6239 /// \param IsPairwise Whether the reduction is a pairwise or splitting 6240 /// reduction. A pairwise reduction will generate a mask of 6241 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 6242 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 6243 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 6244 static SmallVector<int, 32> createRdxShuffleMask(unsigned VecLen, 6245 unsigned NumEltsToRdx, 6246 bool IsPairwise, bool IsLeft) { 6247 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 6248 6249 SmallVector<int, 32> ShuffleMask(VecLen, -1); 6250 6251 if (IsPairwise) 6252 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 6253 for (unsigned i = 0; i != NumEltsToRdx; ++i) 6254 ShuffleMask[i] = 2 * i + !IsLeft; 6255 else 6256 // Move the upper half of the vector to the lower half. 6257 for (unsigned i = 0; i != NumEltsToRdx; ++i) 6258 ShuffleMask[i] = NumEltsToRdx + i; 6259 6260 return ShuffleMask; 6261 } 6262 6263 namespace { 6264 6265 /// Model horizontal reductions. 6266 /// 6267 /// A horizontal reduction is a tree of reduction operations (currently add and 6268 /// fadd) that has operations that can be put into a vector as its leaf. 6269 /// For example, this tree: 6270 /// 6271 /// mul mul mul mul 6272 /// \ / \ / 6273 /// + + 6274 /// \ / 6275 /// + 6276 /// This tree has "mul" as its reduced values and "+" as its reduction 6277 /// operations. A reduction might be feeding into a store or a binary operation 6278 /// feeding a phi. 6279 /// ... 6280 /// \ / 6281 /// + 6282 /// | 6283 /// phi += 6284 /// 6285 /// Or: 6286 /// ... 6287 /// \ / 6288 /// + 6289 /// | 6290 /// *p = 6291 /// 6292 class HorizontalReduction { 6293 using ReductionOpsType = SmallVector<Value *, 16>; 6294 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 6295 ReductionOpsListType ReductionOps; 6296 SmallVector<Value *, 32> ReducedVals; 6297 // Use map vector to make stable output. 6298 MapVector<Instruction *, Value *> ExtraArgs; 6299 6300 /// Kind of the reduction data. 6301 enum ReductionKind { 6302 RK_None, /// Not a reduction. 6303 RK_Arithmetic, /// Binary reduction data. 6304 RK_SMin, /// Signed minimum reduction data. 6305 RK_UMin, /// Unsigned minimum reduction data. 6306 RK_SMax, /// Signed maximum reduction data. 6307 RK_UMax, /// Unsigned maximum reduction data. 6308 }; 6309 6310 /// Contains info about operation, like its opcode, left and right operands. 6311 class OperationData { 6312 /// Opcode of the instruction. 6313 unsigned Opcode = 0; 6314 6315 /// Left operand of the reduction operation. 6316 Value *LHS = nullptr; 6317 6318 /// Right operand of the reduction operation. 6319 Value *RHS = nullptr; 6320 6321 /// Kind of the reduction operation. 6322 ReductionKind Kind = RK_None; 6323 6324 /// Checks if the reduction operation can be vectorized. 6325 bool isVectorizable() const { 6326 return LHS && RHS && 6327 // We currently only support add/mul/logical && min/max reductions. 6328 ((Kind == RK_Arithmetic && 6329 (Opcode == Instruction::Add || Opcode == Instruction::FAdd || 6330 Opcode == Instruction::Mul || Opcode == Instruction::FMul || 6331 Opcode == Instruction::And || Opcode == Instruction::Or || 6332 Opcode == Instruction::Xor)) || 6333 (Opcode == Instruction::ICmp && 6334 (Kind == RK_SMin || Kind == RK_SMax || 6335 Kind == RK_UMin || Kind == RK_UMax))); 6336 } 6337 6338 /// Creates reduction operation with the current opcode. 6339 Value *createOp(IRBuilder<> &Builder, const Twine &Name) const { 6340 assert(isVectorizable() && 6341 "Expected add|fadd or min/max reduction operation."); 6342 Value *Cmp = nullptr; 6343 switch (Kind) { 6344 case RK_Arithmetic: 6345 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 6346 Name); 6347 case RK_SMin: 6348 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6349 Cmp = Builder.CreateICmpSLT(LHS, RHS); 6350 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6351 case RK_SMax: 6352 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6353 Cmp = Builder.CreateICmpSGT(LHS, RHS); 6354 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6355 case RK_UMin: 6356 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6357 Cmp = Builder.CreateICmpULT(LHS, RHS); 6358 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6359 case RK_UMax: 6360 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6361 Cmp = Builder.CreateICmpUGT(LHS, RHS); 6362 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6363 case RK_None: 6364 break; 6365 } 6366 llvm_unreachable("Unknown reduction operation."); 6367 } 6368 6369 public: 6370 explicit OperationData() = default; 6371 6372 /// Construction for reduced values. They are identified by opcode only and 6373 /// don't have associated LHS/RHS values. 6374 explicit OperationData(Value *V) { 6375 if (auto *I = dyn_cast<Instruction>(V)) 6376 Opcode = I->getOpcode(); 6377 } 6378 6379 /// Constructor for reduction operations with opcode and its left and 6380 /// right operands. 6381 OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind) 6382 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind) { 6383 assert(Kind != RK_None && "One of the reduction operations is expected."); 6384 } 6385 6386 explicit operator bool() const { return Opcode; } 6387 6388 /// Return true if this operation is any kind of minimum or maximum. 6389 bool isMinMax() const { 6390 switch (Kind) { 6391 case RK_Arithmetic: 6392 return false; 6393 case RK_SMin: 6394 case RK_SMax: 6395 case RK_UMin: 6396 case RK_UMax: 6397 return true; 6398 case RK_None: 6399 break; 6400 } 6401 llvm_unreachable("Reduction kind is not set"); 6402 } 6403 6404 /// Get the index of the first operand. 6405 unsigned getFirstOperandIndex() const { 6406 assert(!!*this && "The opcode is not set."); 6407 // We allow calling this before 'Kind' is set, so handle that specially. 6408 if (Kind == RK_None) 6409 return 0; 6410 return isMinMax() ? 1 : 0; 6411 } 6412 6413 /// Total number of operands in the reduction operation. 6414 unsigned getNumberOfOperands() const { 6415 assert(Kind != RK_None && !!*this && LHS && RHS && 6416 "Expected reduction operation."); 6417 return isMinMax() ? 3 : 2; 6418 } 6419 6420 /// Checks if the operation has the same parent as \p P. 6421 bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const { 6422 assert(Kind != RK_None && !!*this && LHS && RHS && 6423 "Expected reduction operation."); 6424 if (!IsRedOp) 6425 return I->getParent() == P; 6426 if (isMinMax()) { 6427 // SelectInst must be used twice while the condition op must have single 6428 // use only. 6429 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 6430 return I->getParent() == P && Cmp && Cmp->getParent() == P; 6431 } 6432 // Arithmetic reduction operation must be used once only. 6433 return I->getParent() == P; 6434 } 6435 6436 /// Expected number of uses for reduction operations/reduced values. 6437 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { 6438 assert(Kind != RK_None && !!*this && LHS && RHS && 6439 "Expected reduction operation."); 6440 if (isMinMax()) 6441 return I->hasNUses(2) && 6442 (!IsReductionOp || 6443 cast<SelectInst>(I)->getCondition()->hasOneUse()); 6444 return I->hasOneUse(); 6445 } 6446 6447 /// Initializes the list of reduction operations. 6448 void initReductionOps(ReductionOpsListType &ReductionOps) { 6449 assert(Kind != RK_None && !!*this && LHS && RHS && 6450 "Expected reduction operation."); 6451 if (isMinMax()) 6452 ReductionOps.assign(2, ReductionOpsType()); 6453 else 6454 ReductionOps.assign(1, ReductionOpsType()); 6455 } 6456 6457 /// Add all reduction operations for the reduction instruction \p I. 6458 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { 6459 assert(Kind != RK_None && !!*this && LHS && RHS && 6460 "Expected reduction operation."); 6461 if (isMinMax()) { 6462 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 6463 ReductionOps[1].emplace_back(I); 6464 } else { 6465 ReductionOps[0].emplace_back(I); 6466 } 6467 } 6468 6469 /// Checks if instruction is associative and can be vectorized. 6470 bool isAssociative(Instruction *I) const { 6471 assert(Kind != RK_None && *this && LHS && RHS && 6472 "Expected reduction operation."); 6473 switch (Kind) { 6474 case RK_Arithmetic: 6475 return I->isAssociative(); 6476 case RK_SMin: 6477 case RK_SMax: 6478 case RK_UMin: 6479 case RK_UMax: 6480 assert(Opcode == Instruction::ICmp && 6481 "Only integer compare operation is expected."); 6482 return true; 6483 case RK_None: 6484 break; 6485 } 6486 llvm_unreachable("Reduction kind is not set"); 6487 } 6488 6489 /// Checks if the reduction operation can be vectorized. 6490 bool isVectorizable(Instruction *I) const { 6491 return isVectorizable() && isAssociative(I); 6492 } 6493 6494 /// Checks if two operation data are both a reduction op or both a reduced 6495 /// value. 6496 bool operator==(const OperationData &OD) const { 6497 assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) && 6498 "One of the comparing operations is incorrect."); 6499 return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode); 6500 } 6501 bool operator!=(const OperationData &OD) const { return !(*this == OD); } 6502 void clear() { 6503 Opcode = 0; 6504 LHS = nullptr; 6505 RHS = nullptr; 6506 Kind = RK_None; 6507 } 6508 6509 /// Get the opcode of the reduction operation. 6510 unsigned getOpcode() const { 6511 assert(isVectorizable() && "Expected vectorizable operation."); 6512 return Opcode; 6513 } 6514 6515 /// Get kind of reduction data. 6516 ReductionKind getKind() const { return Kind; } 6517 Value *getLHS() const { return LHS; } 6518 Value *getRHS() const { return RHS; } 6519 Type *getConditionType() const { 6520 return isMinMax() ? CmpInst::makeCmpResultType(LHS->getType()) : nullptr; 6521 } 6522 6523 /// Creates reduction operation with the current opcode with the IR flags 6524 /// from \p ReductionOps. 6525 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 6526 const ReductionOpsListType &ReductionOps) const { 6527 assert(isVectorizable() && 6528 "Expected add|fadd or min/max reduction operation."); 6529 auto *Op = createOp(Builder, Name); 6530 switch (Kind) { 6531 case RK_Arithmetic: 6532 propagateIRFlags(Op, ReductionOps[0]); 6533 return Op; 6534 case RK_SMin: 6535 case RK_SMax: 6536 case RK_UMin: 6537 case RK_UMax: 6538 if (auto *SI = dyn_cast<SelectInst>(Op)) 6539 propagateIRFlags(SI->getCondition(), ReductionOps[0]); 6540 propagateIRFlags(Op, ReductionOps[1]); 6541 return Op; 6542 case RK_None: 6543 break; 6544 } 6545 llvm_unreachable("Unknown reduction operation."); 6546 } 6547 /// Creates reduction operation with the current opcode with the IR flags 6548 /// from \p I. 6549 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 6550 Instruction *I) const { 6551 assert(isVectorizable() && 6552 "Expected add|fadd or min/max reduction operation."); 6553 auto *Op = createOp(Builder, Name); 6554 switch (Kind) { 6555 case RK_Arithmetic: 6556 propagateIRFlags(Op, I); 6557 return Op; 6558 case RK_SMin: 6559 case RK_SMax: 6560 case RK_UMin: 6561 case RK_UMax: 6562 if (auto *SI = dyn_cast<SelectInst>(Op)) { 6563 propagateIRFlags(SI->getCondition(), 6564 cast<SelectInst>(I)->getCondition()); 6565 } 6566 propagateIRFlags(Op, I); 6567 return Op; 6568 case RK_None: 6569 break; 6570 } 6571 llvm_unreachable("Unknown reduction operation."); 6572 } 6573 6574 TargetTransformInfo::ReductionFlags getFlags() const { 6575 TargetTransformInfo::ReductionFlags Flags; 6576 switch (Kind) { 6577 case RK_Arithmetic: 6578 break; 6579 case RK_SMin: 6580 Flags.IsSigned = true; 6581 Flags.IsMaxOp = false; 6582 break; 6583 case RK_SMax: 6584 Flags.IsSigned = true; 6585 Flags.IsMaxOp = true; 6586 break; 6587 case RK_UMin: 6588 Flags.IsSigned = false; 6589 Flags.IsMaxOp = false; 6590 break; 6591 case RK_UMax: 6592 Flags.IsSigned = false; 6593 Flags.IsMaxOp = true; 6594 break; 6595 case RK_None: 6596 llvm_unreachable("Reduction kind is not set"); 6597 } 6598 return Flags; 6599 } 6600 }; 6601 6602 WeakTrackingVH ReductionRoot; 6603 6604 /// The operation data of the reduction operation. 6605 OperationData ReductionData; 6606 6607 /// The operation data of the values we perform a reduction on. 6608 OperationData ReducedValueData; 6609 6610 /// Should we model this reduction as a pairwise reduction tree or a tree that 6611 /// splits the vector in halves and adds those halves. 6612 bool IsPairwiseReduction = false; 6613 6614 /// Checks if the ParentStackElem.first should be marked as a reduction 6615 /// operation with an extra argument or as extra argument itself. 6616 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 6617 Value *ExtraArg) { 6618 if (ExtraArgs.count(ParentStackElem.first)) { 6619 ExtraArgs[ParentStackElem.first] = nullptr; 6620 // We ran into something like: 6621 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 6622 // The whole ParentStackElem.first should be considered as an extra value 6623 // in this case. 6624 // Do not perform analysis of remaining operands of ParentStackElem.first 6625 // instruction, this whole instruction is an extra argument. 6626 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 6627 } else { 6628 // We ran into something like: 6629 // ParentStackElem.first += ... + ExtraArg + ... 6630 ExtraArgs[ParentStackElem.first] = ExtraArg; 6631 } 6632 } 6633 6634 static OperationData getOperationData(Value *V) { 6635 if (!V) 6636 return OperationData(); 6637 6638 Value *LHS; 6639 Value *RHS; 6640 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) { 6641 return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS, 6642 RK_Arithmetic); 6643 } 6644 if (auto *Select = dyn_cast<SelectInst>(V)) { 6645 // Look for a min/max pattern. 6646 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6647 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 6648 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6649 return OperationData(Instruction::ICmp, LHS, RHS, RK_SMin); 6650 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6651 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 6652 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6653 return OperationData(Instruction::ICmp, LHS, RHS, RK_SMax); 6654 } else { 6655 // Try harder: look for min/max pattern based on instructions producing 6656 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 6657 // During the intermediate stages of SLP, it's very common to have 6658 // pattern like this (since optimizeGatherSequence is run only once 6659 // at the end): 6660 // %1 = extractelement <2 x i32> %a, i32 0 6661 // %2 = extractelement <2 x i32> %a, i32 1 6662 // %cond = icmp sgt i32 %1, %2 6663 // %3 = extractelement <2 x i32> %a, i32 0 6664 // %4 = extractelement <2 x i32> %a, i32 1 6665 // %select = select i1 %cond, i32 %3, i32 %4 6666 CmpInst::Predicate Pred; 6667 Instruction *L1; 6668 Instruction *L2; 6669 6670 LHS = Select->getTrueValue(); 6671 RHS = Select->getFalseValue(); 6672 Value *Cond = Select->getCondition(); 6673 6674 // TODO: Support inverse predicates. 6675 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 6676 if (!isa<ExtractElementInst>(RHS) || 6677 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6678 return OperationData(V); 6679 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 6680 if (!isa<ExtractElementInst>(LHS) || 6681 !L1->isIdenticalTo(cast<Instruction>(LHS))) 6682 return OperationData(V); 6683 } else { 6684 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 6685 return OperationData(V); 6686 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 6687 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 6688 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6689 return OperationData(V); 6690 } 6691 switch (Pred) { 6692 default: 6693 return OperationData(V); 6694 6695 case CmpInst::ICMP_ULT: 6696 case CmpInst::ICMP_ULE: 6697 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 6698 6699 case CmpInst::ICMP_SLT: 6700 case CmpInst::ICMP_SLE: 6701 return OperationData(Instruction::ICmp, LHS, RHS, RK_SMin); 6702 6703 case CmpInst::ICMP_UGT: 6704 case CmpInst::ICMP_UGE: 6705 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 6706 6707 case CmpInst::ICMP_SGT: 6708 case CmpInst::ICMP_SGE: 6709 return OperationData(Instruction::ICmp, LHS, RHS, RK_SMax); 6710 } 6711 } 6712 } 6713 return OperationData(V); 6714 } 6715 6716 public: 6717 HorizontalReduction() = default; 6718 6719 /// Try to find a reduction tree. 6720 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 6721 assert((!Phi || is_contained(Phi->operands(), B)) && 6722 "Thi phi needs to use the binary operator"); 6723 6724 ReductionData = getOperationData(B); 6725 6726 // We could have a initial reductions that is not an add. 6727 // r *= v1 + v2 + v3 + v4 6728 // In such a case start looking for a tree rooted in the first '+'. 6729 if (Phi) { 6730 if (ReductionData.getLHS() == Phi) { 6731 Phi = nullptr; 6732 B = dyn_cast<Instruction>(ReductionData.getRHS()); 6733 ReductionData = getOperationData(B); 6734 } else if (ReductionData.getRHS() == Phi) { 6735 Phi = nullptr; 6736 B = dyn_cast<Instruction>(ReductionData.getLHS()); 6737 ReductionData = getOperationData(B); 6738 } 6739 } 6740 6741 if (!ReductionData.isVectorizable(B)) 6742 return false; 6743 6744 Type *Ty = B->getType(); 6745 if (!isValidElementType(Ty)) 6746 return false; 6747 if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy()) 6748 return false; 6749 6750 ReducedValueData.clear(); 6751 ReductionRoot = B; 6752 6753 // Post order traverse the reduction tree starting at B. We only handle true 6754 // trees containing only binary operators. 6755 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 6756 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); 6757 ReductionData.initReductionOps(ReductionOps); 6758 while (!Stack.empty()) { 6759 Instruction *TreeN = Stack.back().first; 6760 unsigned EdgeToVist = Stack.back().second++; 6761 OperationData OpData = getOperationData(TreeN); 6762 bool IsReducedValue = OpData != ReductionData; 6763 6764 // Postorder vist. 6765 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { 6766 if (IsReducedValue) 6767 ReducedVals.push_back(TreeN); 6768 else { 6769 auto I = ExtraArgs.find(TreeN); 6770 if (I != ExtraArgs.end() && !I->second) { 6771 // Check if TreeN is an extra argument of its parent operation. 6772 if (Stack.size() <= 1) { 6773 // TreeN can't be an extra argument as it is a root reduction 6774 // operation. 6775 return false; 6776 } 6777 // Yes, TreeN is an extra argument, do not add it to a list of 6778 // reduction operations. 6779 // Stack[Stack.size() - 2] always points to the parent operation. 6780 markExtraArg(Stack[Stack.size() - 2], TreeN); 6781 ExtraArgs.erase(TreeN); 6782 } else 6783 ReductionData.addReductionOps(TreeN, ReductionOps); 6784 } 6785 // Retract. 6786 Stack.pop_back(); 6787 continue; 6788 } 6789 6790 // Visit left or right. 6791 Value *NextV = TreeN->getOperand(EdgeToVist); 6792 if (NextV != Phi) { 6793 auto *I = dyn_cast<Instruction>(NextV); 6794 OpData = getOperationData(I); 6795 // Continue analysis if the next operand is a reduction operation or 6796 // (possibly) a reduced value. If the reduced value opcode is not set, 6797 // the first met operation != reduction operation is considered as the 6798 // reduced value class. 6799 if (I && (!ReducedValueData || OpData == ReducedValueData || 6800 OpData == ReductionData)) { 6801 const bool IsReductionOperation = OpData == ReductionData; 6802 // Only handle trees in the current basic block. 6803 if (!ReductionData.hasSameParent(I, B->getParent(), 6804 IsReductionOperation)) { 6805 // I is an extra argument for TreeN (its parent operation). 6806 markExtraArg(Stack.back(), I); 6807 continue; 6808 } 6809 6810 // Each tree node needs to have minimal number of users except for the 6811 // ultimate reduction. 6812 if (!ReductionData.hasRequiredNumberOfUses(I, 6813 OpData == ReductionData) && 6814 I != B) { 6815 // I is an extra argument for TreeN (its parent operation). 6816 markExtraArg(Stack.back(), I); 6817 continue; 6818 } 6819 6820 if (IsReductionOperation) { 6821 // We need to be able to reassociate the reduction operations. 6822 if (!OpData.isAssociative(I)) { 6823 // I is an extra argument for TreeN (its parent operation). 6824 markExtraArg(Stack.back(), I); 6825 continue; 6826 } 6827 } else if (ReducedValueData && 6828 ReducedValueData != OpData) { 6829 // Make sure that the opcodes of the operations that we are going to 6830 // reduce match. 6831 // I is an extra argument for TreeN (its parent operation). 6832 markExtraArg(Stack.back(), I); 6833 continue; 6834 } else if (!ReducedValueData) 6835 ReducedValueData = OpData; 6836 6837 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 6838 continue; 6839 } 6840 } 6841 // NextV is an extra argument for TreeN (its parent operation). 6842 markExtraArg(Stack.back(), NextV); 6843 } 6844 return true; 6845 } 6846 6847 /// Attempt to vectorize the tree found by matchAssociativeReduction. 6848 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 6849 // If there are a sufficient number of reduction values, reduce 6850 // to a nearby power-of-2. We can safely generate oversized 6851 // vectors and rely on the backend to split them to legal sizes. 6852 unsigned NumReducedVals = ReducedVals.size(); 6853 if (NumReducedVals < 4) 6854 return false; 6855 6856 // FIXME: Fast-math-flags should be set based on the instructions in the 6857 // reduction (not all of 'fast' are required). 6858 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 6859 FastMathFlags Unsafe; 6860 Unsafe.setFast(); 6861 Builder.setFastMathFlags(Unsafe); 6862 6863 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 6864 // The same extra argument may be used several times, so log each attempt 6865 // to use it. 6866 for (std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 6867 assert(Pair.first && "DebugLoc must be set."); 6868 ExternallyUsedValues[Pair.second].push_back(Pair.first); 6869 } 6870 6871 // The compare instruction of a min/max is the insertion point for new 6872 // instructions and may be replaced with a new compare instruction. 6873 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 6874 assert(isa<SelectInst>(RdxRootInst) && 6875 "Expected min/max reduction to have select root instruction"); 6876 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 6877 assert(isa<Instruction>(ScalarCond) && 6878 "Expected min/max reduction to have compare condition"); 6879 return cast<Instruction>(ScalarCond); 6880 }; 6881 6882 // The reduction root is used as the insertion point for new instructions, 6883 // so set it as externally used to prevent it from being deleted. 6884 ExternallyUsedValues[ReductionRoot]; 6885 SmallVector<Value *, 16> IgnoreList; 6886 for (ReductionOpsType &RdxOp : ReductionOps) 6887 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 6888 6889 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 6890 if (NumReducedVals > ReduxWidth) { 6891 // In the loop below, we are building a tree based on a window of 6892 // 'ReduxWidth' values. 6893 // If the operands of those values have common traits (compare predicate, 6894 // constant operand, etc), then we want to group those together to 6895 // minimize the cost of the reduction. 6896 6897 // TODO: This should be extended to count common operands for 6898 // compares and binops. 6899 6900 // Step 1: Count the number of times each compare predicate occurs. 6901 SmallDenseMap<unsigned, unsigned> PredCountMap; 6902 for (Value *RdxVal : ReducedVals) { 6903 CmpInst::Predicate Pred; 6904 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 6905 ++PredCountMap[Pred]; 6906 } 6907 // Step 2: Sort the values so the most common predicates come first. 6908 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 6909 CmpInst::Predicate PredA, PredB; 6910 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 6911 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 6912 return PredCountMap[PredA] > PredCountMap[PredB]; 6913 } 6914 return false; 6915 }); 6916 } 6917 6918 Value *VectorizedTree = nullptr; 6919 unsigned i = 0; 6920 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 6921 ArrayRef<Value *> VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 6922 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 6923 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 6924 if (Order) { 6925 assert(Order->size() == VL.size() && 6926 "Order size must be the same as number of vectorized " 6927 "instructions."); 6928 // TODO: reorder tree nodes without tree rebuilding. 6929 SmallVector<Value *, 4> ReorderedOps(VL.size()); 6930 llvm::transform(*Order, ReorderedOps.begin(), 6931 [VL](const unsigned Idx) { return VL[Idx]; }); 6932 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 6933 } 6934 if (V.isTreeTinyAndNotFullyVectorizable()) 6935 break; 6936 if (V.isLoadCombineReductionCandidate(ReductionData.getOpcode())) 6937 break; 6938 6939 V.computeMinimumValueSizes(); 6940 6941 // Estimate cost. 6942 int TreeCost = V.getTreeCost(); 6943 int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth); 6944 int Cost = TreeCost + ReductionCost; 6945 if (Cost >= -SLPCostThreshold) { 6946 V.getORE()->emit([&]() { 6947 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 6948 cast<Instruction>(VL[0])) 6949 << "Vectorizing horizontal reduction is possible" 6950 << "but not beneficial with cost " << ore::NV("Cost", Cost) 6951 << " and threshold " 6952 << ore::NV("Threshold", -SLPCostThreshold); 6953 }); 6954 break; 6955 } 6956 6957 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 6958 << Cost << ". (HorRdx)\n"); 6959 V.getORE()->emit([&]() { 6960 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 6961 cast<Instruction>(VL[0])) 6962 << "Vectorized horizontal reduction with cost " 6963 << ore::NV("Cost", Cost) << " and with tree size " 6964 << ore::NV("TreeSize", V.getTreeSize()); 6965 }); 6966 6967 // Vectorize a tree. 6968 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 6969 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 6970 6971 // Emit a reduction. For min/max, the root is a select, but the insertion 6972 // point is the compare condition of that select. 6973 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 6974 if (ReductionData.isMinMax()) 6975 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 6976 else 6977 Builder.SetInsertPoint(RdxRootInst); 6978 6979 Value *ReducedSubTree = 6980 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 6981 6982 if (!VectorizedTree) { 6983 // Initialize the final value in the reduction. 6984 VectorizedTree = ReducedSubTree; 6985 } else { 6986 // Update the final value in the reduction. 6987 Builder.SetCurrentDebugLocation(Loc); 6988 OperationData VectReductionData(ReductionData.getOpcode(), 6989 VectorizedTree, ReducedSubTree, 6990 ReductionData.getKind()); 6991 VectorizedTree = 6992 VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 6993 } 6994 i += ReduxWidth; 6995 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 6996 } 6997 6998 if (VectorizedTree) { 6999 // Finish the reduction. 7000 for (; i < NumReducedVals; ++i) { 7001 auto *I = cast<Instruction>(ReducedVals[i]); 7002 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 7003 OperationData VectReductionData(ReductionData.getOpcode(), 7004 VectorizedTree, I, 7005 ReductionData.getKind()); 7006 VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps); 7007 } 7008 for (auto &Pair : ExternallyUsedValues) { 7009 // Add each externally used value to the final reduction. 7010 for (auto *I : Pair.second) { 7011 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 7012 OperationData VectReductionData(ReductionData.getOpcode(), 7013 VectorizedTree, Pair.first, 7014 ReductionData.getKind()); 7015 VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I); 7016 } 7017 } 7018 7019 // Update users. For a min/max reduction that ends with a compare and 7020 // select, we also have to RAUW for the compare instruction feeding the 7021 // reduction root. That's because the original compare may have extra uses 7022 // besides the final select of the reduction. 7023 if (ReductionData.isMinMax()) { 7024 if (auto *VecSelect = dyn_cast<SelectInst>(VectorizedTree)) { 7025 Instruction *ScalarCmp = 7026 getCmpForMinMaxReduction(cast<Instruction>(ReductionRoot)); 7027 ScalarCmp->replaceAllUsesWith(VecSelect->getCondition()); 7028 } 7029 } 7030 ReductionRoot->replaceAllUsesWith(VectorizedTree); 7031 7032 // Mark all scalar reduction ops for deletion, they are replaced by the 7033 // vector reductions. 7034 V.eraseInstructions(IgnoreList); 7035 } 7036 return VectorizedTree != nullptr; 7037 } 7038 7039 unsigned numReductionValues() const { 7040 return ReducedVals.size(); 7041 } 7042 7043 private: 7044 /// Calculate the cost of a reduction. 7045 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 7046 unsigned ReduxWidth) { 7047 Type *ScalarTy = FirstReducedVal->getType(); 7048 auto *VecTy = FixedVectorType::get(ScalarTy, ReduxWidth); 7049 7050 int PairwiseRdxCost; 7051 int SplittingRdxCost; 7052 switch (ReductionData.getKind()) { 7053 case RK_Arithmetic: 7054 PairwiseRdxCost = 7055 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 7056 /*IsPairwiseForm=*/true); 7057 SplittingRdxCost = 7058 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 7059 /*IsPairwiseForm=*/false); 7060 break; 7061 case RK_SMin: 7062 case RK_SMax: 7063 case RK_UMin: 7064 case RK_UMax: { 7065 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VecTy)); 7066 bool IsUnsigned = ReductionData.getKind() == RK_UMin || 7067 ReductionData.getKind() == RK_UMax; 7068 PairwiseRdxCost = 7069 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 7070 /*IsPairwiseForm=*/true, IsUnsigned); 7071 SplittingRdxCost = 7072 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 7073 /*IsPairwiseForm=*/false, IsUnsigned); 7074 break; 7075 } 7076 case RK_None: 7077 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 7078 } 7079 7080 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 7081 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 7082 7083 int ScalarReduxCost = 0; 7084 switch (ReductionData.getKind()) { 7085 case RK_Arithmetic: 7086 ScalarReduxCost = 7087 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); 7088 break; 7089 case RK_SMin: 7090 case RK_SMax: 7091 case RK_UMin: 7092 case RK_UMax: 7093 ScalarReduxCost = 7094 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) + 7095 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 7096 CmpInst::makeCmpResultType(ScalarTy)); 7097 break; 7098 case RK_None: 7099 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 7100 } 7101 ScalarReduxCost *= (ReduxWidth - 1); 7102 7103 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 7104 << " for reduction that starts with " << *FirstReducedVal 7105 << " (It is a " 7106 << (IsPairwiseReduction ? "pairwise" : "splitting") 7107 << " reduction)\n"); 7108 7109 return VecReduxCost - ScalarReduxCost; 7110 } 7111 7112 /// Emit a horizontal reduction of the vectorized value. 7113 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 7114 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 7115 assert(VectorizedValue && "Need to have a vectorized tree node"); 7116 assert(isPowerOf2_32(ReduxWidth) && 7117 "We only handle power-of-two reductions for now"); 7118 7119 if (!IsPairwiseReduction) { 7120 // FIXME: The builder should use an FMF guard. It should not be hard-coded 7121 // to 'fast'. 7122 assert(Builder.getFastMathFlags().isFast() && "Expected 'fast' FMF"); 7123 return createSimpleTargetReduction( 7124 Builder, TTI, ReductionData.getOpcode(), VectorizedValue, 7125 ReductionData.getFlags(), ReductionOps.back()); 7126 } 7127 7128 Value *TmpVec = VectorizedValue; 7129 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 7130 auto LeftMask = createRdxShuffleMask(ReduxWidth, i, true, true); 7131 auto RightMask = createRdxShuffleMask(ReduxWidth, i, true, false); 7132 7133 Value *LeftShuf = 7134 Builder.CreateShuffleVector(TmpVec, LeftMask, "rdx.shuf.l"); 7135 Value *RightShuf = 7136 Builder.CreateShuffleVector(TmpVec, RightMask, "rdx.shuf.r"); 7137 OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf, 7138 RightShuf, ReductionData.getKind()); 7139 TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 7140 } 7141 7142 // The result is in the first element of the vector. 7143 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 7144 } 7145 }; 7146 7147 } // end anonymous namespace 7148 7149 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 7150 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 7151 return cast<FixedVectorType>(IE->getType())->getNumElements(); 7152 7153 unsigned AggregateSize = 1; 7154 auto *IV = cast<InsertValueInst>(InsertInst); 7155 Type *CurrentType = IV->getType(); 7156 do { 7157 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 7158 for (auto *Elt : ST->elements()) 7159 if (Elt != ST->getElementType(0)) // check homogeneity 7160 return None; 7161 AggregateSize *= ST->getNumElements(); 7162 CurrentType = ST->getElementType(0); 7163 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 7164 AggregateSize *= AT->getNumElements(); 7165 CurrentType = AT->getElementType(); 7166 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 7167 AggregateSize *= VT->getNumElements(); 7168 return AggregateSize; 7169 } else if (CurrentType->isSingleValueType()) { 7170 return AggregateSize; 7171 } else { 7172 return None; 7173 } 7174 } while (true); 7175 } 7176 7177 static Optional<unsigned> getOperandIndex(Instruction *InsertInst, 7178 unsigned OperandOffset) { 7179 unsigned OperandIndex = OperandOffset; 7180 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 7181 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 7182 auto *VT = cast<FixedVectorType>(IE->getType()); 7183 OperandIndex *= VT->getNumElements(); 7184 OperandIndex += CI->getZExtValue(); 7185 return OperandIndex; 7186 } 7187 return None; 7188 } 7189 7190 auto *IV = cast<InsertValueInst>(InsertInst); 7191 Type *CurrentType = IV->getType(); 7192 for (unsigned int Index : IV->indices()) { 7193 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 7194 OperandIndex *= ST->getNumElements(); 7195 CurrentType = ST->getElementType(Index); 7196 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 7197 OperandIndex *= AT->getNumElements(); 7198 CurrentType = AT->getElementType(); 7199 } else { 7200 return None; 7201 } 7202 OperandIndex += Index; 7203 } 7204 return OperandIndex; 7205 } 7206 7207 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 7208 TargetTransformInfo *TTI, 7209 SmallVectorImpl<Value *> &BuildVectorOpds, 7210 SmallVectorImpl<Value *> &InsertElts, 7211 unsigned OperandOffset) { 7212 do { 7213 Value *InsertedOperand = LastInsertInst->getOperand(1); 7214 Optional<unsigned> OperandIndex = 7215 getOperandIndex(LastInsertInst, OperandOffset); 7216 if (!OperandIndex) 7217 return false; 7218 if (isa<InsertElementInst>(InsertedOperand) || 7219 isa<InsertValueInst>(InsertedOperand)) { 7220 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 7221 BuildVectorOpds, InsertElts, *OperandIndex)) 7222 return false; 7223 } else { 7224 BuildVectorOpds[*OperandIndex] = InsertedOperand; 7225 InsertElts[*OperandIndex] = LastInsertInst; 7226 } 7227 if (isa<UndefValue>(LastInsertInst->getOperand(0))) 7228 return true; 7229 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 7230 } while (LastInsertInst != nullptr && 7231 (isa<InsertValueInst>(LastInsertInst) || 7232 isa<InsertElementInst>(LastInsertInst)) && 7233 LastInsertInst->hasOneUse()); 7234 return false; 7235 } 7236 7237 /// Recognize construction of vectors like 7238 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 7239 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 7240 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 7241 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 7242 /// starting from the last insertelement or insertvalue instruction. 7243 /// 7244 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 7245 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 7246 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 7247 /// 7248 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 7249 /// 7250 /// \return true if it matches. 7251 static bool findBuildAggregate(Instruction *LastInsertInst, 7252 TargetTransformInfo *TTI, 7253 SmallVectorImpl<Value *> &BuildVectorOpds, 7254 SmallVectorImpl<Value *> &InsertElts) { 7255 7256 assert((isa<InsertElementInst>(LastInsertInst) || 7257 isa<InsertValueInst>(LastInsertInst)) && 7258 "Expected insertelement or insertvalue instruction!"); 7259 7260 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 7261 "Expected empty result vectors!"); 7262 7263 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 7264 if (!AggregateSize) 7265 return false; 7266 BuildVectorOpds.resize(*AggregateSize); 7267 InsertElts.resize(*AggregateSize); 7268 7269 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 7270 0)) { 7271 llvm::erase_if(BuildVectorOpds, 7272 [](const Value *V) { return V == nullptr; }); 7273 llvm::erase_if(InsertElts, [](const Value *V) { return V == nullptr; }); 7274 if (BuildVectorOpds.size() >= 2) 7275 return true; 7276 } 7277 7278 return false; 7279 } 7280 7281 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 7282 return V->getType() < V2->getType(); 7283 } 7284 7285 /// Try and get a reduction value from a phi node. 7286 /// 7287 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 7288 /// if they come from either \p ParentBB or a containing loop latch. 7289 /// 7290 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 7291 /// if not possible. 7292 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 7293 BasicBlock *ParentBB, LoopInfo *LI) { 7294 // There are situations where the reduction value is not dominated by the 7295 // reduction phi. Vectorizing such cases has been reported to cause 7296 // miscompiles. See PR25787. 7297 auto DominatedReduxValue = [&](Value *R) { 7298 return isa<Instruction>(R) && 7299 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 7300 }; 7301 7302 Value *Rdx = nullptr; 7303 7304 // Return the incoming value if it comes from the same BB as the phi node. 7305 if (P->getIncomingBlock(0) == ParentBB) { 7306 Rdx = P->getIncomingValue(0); 7307 } else if (P->getIncomingBlock(1) == ParentBB) { 7308 Rdx = P->getIncomingValue(1); 7309 } 7310 7311 if (Rdx && DominatedReduxValue(Rdx)) 7312 return Rdx; 7313 7314 // Otherwise, check whether we have a loop latch to look at. 7315 Loop *BBL = LI->getLoopFor(ParentBB); 7316 if (!BBL) 7317 return nullptr; 7318 BasicBlock *BBLatch = BBL->getLoopLatch(); 7319 if (!BBLatch) 7320 return nullptr; 7321 7322 // There is a loop latch, return the incoming value if it comes from 7323 // that. This reduction pattern occasionally turns up. 7324 if (P->getIncomingBlock(0) == BBLatch) { 7325 Rdx = P->getIncomingValue(0); 7326 } else if (P->getIncomingBlock(1) == BBLatch) { 7327 Rdx = P->getIncomingValue(1); 7328 } 7329 7330 if (Rdx && DominatedReduxValue(Rdx)) 7331 return Rdx; 7332 7333 return nullptr; 7334 } 7335 7336 /// Attempt to reduce a horizontal reduction. 7337 /// If it is legal to match a horizontal reduction feeding the phi node \a P 7338 /// with reduction operators \a Root (or one of its operands) in a basic block 7339 /// \a BB, then check if it can be done. If horizontal reduction is not found 7340 /// and root instruction is a binary operation, vectorization of the operands is 7341 /// attempted. 7342 /// \returns true if a horizontal reduction was matched and reduced or operands 7343 /// of one of the binary instruction were vectorized. 7344 /// \returns false if a horizontal reduction was not matched (or not possible) 7345 /// or no vectorization of any binary operation feeding \a Root instruction was 7346 /// performed. 7347 static bool tryToVectorizeHorReductionOrInstOperands( 7348 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 7349 TargetTransformInfo *TTI, 7350 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 7351 if (!ShouldVectorizeHor) 7352 return false; 7353 7354 if (!Root) 7355 return false; 7356 7357 if (Root->getParent() != BB || isa<PHINode>(Root)) 7358 return false; 7359 // Start analysis starting from Root instruction. If horizontal reduction is 7360 // found, try to vectorize it. If it is not a horizontal reduction or 7361 // vectorization is not possible or not effective, and currently analyzed 7362 // instruction is a binary operation, try to vectorize the operands, using 7363 // pre-order DFS traversal order. If the operands were not vectorized, repeat 7364 // the same procedure considering each operand as a possible root of the 7365 // horizontal reduction. 7366 // Interrupt the process if the Root instruction itself was vectorized or all 7367 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 7368 SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0}); 7369 SmallPtrSet<Value *, 8> VisitedInstrs; 7370 bool Res = false; 7371 while (!Stack.empty()) { 7372 Instruction *Inst; 7373 unsigned Level; 7374 std::tie(Inst, Level) = Stack.pop_back_val(); 7375 auto *BI = dyn_cast<BinaryOperator>(Inst); 7376 auto *SI = dyn_cast<SelectInst>(Inst); 7377 if (BI || SI) { 7378 HorizontalReduction HorRdx; 7379 if (HorRdx.matchAssociativeReduction(P, Inst)) { 7380 if (HorRdx.tryToReduce(R, TTI)) { 7381 Res = true; 7382 // Set P to nullptr to avoid re-analysis of phi node in 7383 // matchAssociativeReduction function unless this is the root node. 7384 P = nullptr; 7385 continue; 7386 } 7387 } 7388 if (P && BI) { 7389 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 7390 if (Inst == P) 7391 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 7392 if (!Inst) { 7393 // Set P to nullptr to avoid re-analysis of phi node in 7394 // matchAssociativeReduction function unless this is the root node. 7395 P = nullptr; 7396 continue; 7397 } 7398 } 7399 } 7400 // Set P to nullptr to avoid re-analysis of phi node in 7401 // matchAssociativeReduction function unless this is the root node. 7402 P = nullptr; 7403 if (Vectorize(Inst, R)) { 7404 Res = true; 7405 continue; 7406 } 7407 7408 // Try to vectorize operands. 7409 // Continue analysis for the instruction from the same basic block only to 7410 // save compile time. 7411 if (++Level < RecursionMaxDepth) 7412 for (auto *Op : Inst->operand_values()) 7413 if (VisitedInstrs.insert(Op).second) 7414 if (auto *I = dyn_cast<Instruction>(Op)) 7415 if (!isa<PHINode>(I) && !R.isDeleted(I) && I->getParent() == BB) 7416 Stack.emplace_back(I, Level); 7417 } 7418 return Res; 7419 } 7420 7421 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 7422 BasicBlock *BB, BoUpSLP &R, 7423 TargetTransformInfo *TTI) { 7424 if (!V) 7425 return false; 7426 auto *I = dyn_cast<Instruction>(V); 7427 if (!I) 7428 return false; 7429 7430 if (!isa<BinaryOperator>(I)) 7431 P = nullptr; 7432 // Try to match and vectorize a horizontal reduction. 7433 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 7434 return tryToVectorize(I, R); 7435 }; 7436 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 7437 ExtraVectorization); 7438 } 7439 7440 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 7441 BasicBlock *BB, BoUpSLP &R) { 7442 const DataLayout &DL = BB->getModule()->getDataLayout(); 7443 if (!R.canMapToVector(IVI->getType(), DL)) 7444 return false; 7445 7446 SmallVector<Value *, 16> BuildVectorOpds; 7447 SmallVector<Value *, 16> BuildVectorInsts; 7448 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 7449 return false; 7450 7451 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 7452 // Aggregate value is unlikely to be processed in vector register, we need to 7453 // extract scalars into scalar registers, so NeedExtraction is set true. 7454 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false, 7455 BuildVectorInsts); 7456 } 7457 7458 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 7459 BasicBlock *BB, BoUpSLP &R) { 7460 SmallVector<Value *, 16> BuildVectorInsts; 7461 SmallVector<Value *, 16> BuildVectorOpds; 7462 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 7463 (llvm::all_of(BuildVectorOpds, 7464 [](Value *V) { return isa<ExtractElementInst>(V); }) && 7465 isShuffle(BuildVectorOpds))) 7466 return false; 7467 7468 // Vectorize starting with the build vector operands ignoring the BuildVector 7469 // instructions for the purpose of scheduling and user extraction. 7470 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false, 7471 BuildVectorInsts); 7472 } 7473 7474 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 7475 BoUpSLP &R) { 7476 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 7477 return true; 7478 7479 bool OpsChanged = false; 7480 for (int Idx = 0; Idx < 2; ++Idx) { 7481 OpsChanged |= 7482 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 7483 } 7484 return OpsChanged; 7485 } 7486 7487 bool SLPVectorizerPass::vectorizeSimpleInstructions( 7488 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R) { 7489 bool OpsChanged = false; 7490 for (auto *I : reverse(Instructions)) { 7491 if (R.isDeleted(I)) 7492 continue; 7493 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 7494 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 7495 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 7496 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 7497 else if (auto *CI = dyn_cast<CmpInst>(I)) 7498 OpsChanged |= vectorizeCmpInst(CI, BB, R); 7499 } 7500 Instructions.clear(); 7501 return OpsChanged; 7502 } 7503 7504 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 7505 bool Changed = false; 7506 SmallVector<Value *, 4> Incoming; 7507 SmallPtrSet<Value *, 16> VisitedInstrs; 7508 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7509 7510 bool HaveVectorizedPhiNodes = true; 7511 while (HaveVectorizedPhiNodes) { 7512 HaveVectorizedPhiNodes = false; 7513 7514 // Collect the incoming values from the PHIs. 7515 Incoming.clear(); 7516 for (Instruction &I : *BB) { 7517 PHINode *P = dyn_cast<PHINode>(&I); 7518 if (!P) 7519 break; 7520 7521 if (!VisitedInstrs.count(P) && !R.isDeleted(P)) 7522 Incoming.push_back(P); 7523 } 7524 7525 // Sort by type. 7526 llvm::stable_sort(Incoming, PhiTypeSorterFunc); 7527 7528 // Try to vectorize elements base on their type. 7529 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 7530 E = Incoming.end(); 7531 IncIt != E;) { 7532 7533 // Look for the next elements with the same type. 7534 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 7535 Type *EltTy = (*IncIt)->getType(); 7536 7537 assert(EltTy->isSized() && 7538 "Instructions should all be sized at this point"); 7539 TypeSize EltTS = DL->getTypeSizeInBits(EltTy); 7540 if (EltTS.isScalable()) { 7541 // For now, just ignore vectorizing scalable types. 7542 ++IncIt; 7543 continue; 7544 } 7545 7546 unsigned EltSize = EltTS.getFixedSize(); 7547 unsigned MaxNumElts = MaxVecRegSize / EltSize; 7548 if (MaxNumElts < 2) { 7549 ++IncIt; 7550 continue; 7551 } 7552 7553 while (SameTypeIt != E && 7554 (*SameTypeIt)->getType() == EltTy && 7555 static_cast<unsigned>(SameTypeIt - IncIt) < MaxNumElts) { 7556 VisitedInstrs.insert(*SameTypeIt); 7557 ++SameTypeIt; 7558 } 7559 7560 // Try to vectorize them. 7561 unsigned NumElts = (SameTypeIt - IncIt); 7562 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 7563 << NumElts << ")\n"); 7564 // The order in which the phi nodes appear in the program does not matter. 7565 // So allow tryToVectorizeList to reorder them if it is beneficial. This 7566 // is done when there are exactly two elements since tryToVectorizeList 7567 // asserts that there are only two values when AllowReorder is true. 7568 bool AllowReorder = NumElts == 2; 7569 if (NumElts > 1 && 7570 tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, AllowReorder)) { 7571 // Success start over because instructions might have been changed. 7572 HaveVectorizedPhiNodes = true; 7573 Changed = true; 7574 break; 7575 } 7576 7577 // Start over at the next instruction of a different type (or the end). 7578 IncIt = SameTypeIt; 7579 } 7580 } 7581 7582 VisitedInstrs.clear(); 7583 7584 SmallVector<Instruction *, 8> PostProcessInstructions; 7585 SmallDenseSet<Instruction *, 4> KeyNodes; 7586 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 7587 // Skip instructions with scalable type. The num of elements is unknown at 7588 // compile-time for scalable type. 7589 if (isa<ScalableVectorType>(it->getType())) 7590 continue; 7591 7592 // Skip instructions marked for the deletion. 7593 if (R.isDeleted(&*it)) 7594 continue; 7595 // We may go through BB multiple times so skip the one we have checked. 7596 if (!VisitedInstrs.insert(&*it).second) { 7597 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 7598 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 7599 // We would like to start over since some instructions are deleted 7600 // and the iterator may become invalid value. 7601 Changed = true; 7602 it = BB->begin(); 7603 e = BB->end(); 7604 } 7605 continue; 7606 } 7607 7608 if (isa<DbgInfoIntrinsic>(it)) 7609 continue; 7610 7611 // Try to vectorize reductions that use PHINodes. 7612 if (PHINode *P = dyn_cast<PHINode>(it)) { 7613 // Check that the PHI is a reduction PHI. 7614 if (P->getNumIncomingValues() != 2) 7615 return Changed; 7616 7617 // Try to match and vectorize a horizontal reduction. 7618 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 7619 TTI)) { 7620 Changed = true; 7621 it = BB->begin(); 7622 e = BB->end(); 7623 continue; 7624 } 7625 continue; 7626 } 7627 7628 // Ran into an instruction without users, like terminator, or function call 7629 // with ignored return value, store. Ignore unused instructions (basing on 7630 // instruction type, except for CallInst and InvokeInst). 7631 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 7632 isa<InvokeInst>(it))) { 7633 KeyNodes.insert(&*it); 7634 bool OpsChanged = false; 7635 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 7636 for (auto *V : it->operand_values()) { 7637 // Try to match and vectorize a horizontal reduction. 7638 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 7639 } 7640 } 7641 // Start vectorization of post-process list of instructions from the 7642 // top-tree instructions to try to vectorize as many instructions as 7643 // possible. 7644 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 7645 if (OpsChanged) { 7646 // We would like to start over since some instructions are deleted 7647 // and the iterator may become invalid value. 7648 Changed = true; 7649 it = BB->begin(); 7650 e = BB->end(); 7651 continue; 7652 } 7653 } 7654 7655 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 7656 isa<InsertValueInst>(it)) 7657 PostProcessInstructions.push_back(&*it); 7658 } 7659 7660 return Changed; 7661 } 7662 7663 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 7664 auto Changed = false; 7665 for (auto &Entry : GEPs) { 7666 // If the getelementptr list has fewer than two elements, there's nothing 7667 // to do. 7668 if (Entry.second.size() < 2) 7669 continue; 7670 7671 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 7672 << Entry.second.size() << ".\n"); 7673 7674 // Process the GEP list in chunks suitable for the target's supported 7675 // vector size. If a vector register can't hold 1 element, we are done. We 7676 // are trying to vectorize the index computations, so the maximum number of 7677 // elements is based on the size of the index expression, rather than the 7678 // size of the GEP itself (the target's pointer size). 7679 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7680 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 7681 if (MaxVecRegSize < EltSize) 7682 continue; 7683 7684 unsigned MaxElts = MaxVecRegSize / EltSize; 7685 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 7686 auto Len = std::min<unsigned>(BE - BI, MaxElts); 7687 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 7688 7689 // Initialize a set a candidate getelementptrs. Note that we use a 7690 // SetVector here to preserve program order. If the index computations 7691 // are vectorizable and begin with loads, we want to minimize the chance 7692 // of having to reorder them later. 7693 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 7694 7695 // Some of the candidates may have already been vectorized after we 7696 // initially collected them. If so, they are marked as deleted, so remove 7697 // them from the set of candidates. 7698 Candidates.remove_if( 7699 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 7700 7701 // Remove from the set of candidates all pairs of getelementptrs with 7702 // constant differences. Such getelementptrs are likely not good 7703 // candidates for vectorization in a bottom-up phase since one can be 7704 // computed from the other. We also ensure all candidate getelementptr 7705 // indices are unique. 7706 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 7707 auto *GEPI = GEPList[I]; 7708 if (!Candidates.count(GEPI)) 7709 continue; 7710 auto *SCEVI = SE->getSCEV(GEPList[I]); 7711 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 7712 auto *GEPJ = GEPList[J]; 7713 auto *SCEVJ = SE->getSCEV(GEPList[J]); 7714 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 7715 Candidates.remove(GEPI); 7716 Candidates.remove(GEPJ); 7717 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 7718 Candidates.remove(GEPJ); 7719 } 7720 } 7721 } 7722 7723 // We break out of the above computation as soon as we know there are 7724 // fewer than two candidates remaining. 7725 if (Candidates.size() < 2) 7726 continue; 7727 7728 // Add the single, non-constant index of each candidate to the bundle. We 7729 // ensured the indices met these constraints when we originally collected 7730 // the getelementptrs. 7731 SmallVector<Value *, 16> Bundle(Candidates.size()); 7732 auto BundleIndex = 0u; 7733 for (auto *V : Candidates) { 7734 auto *GEP = cast<GetElementPtrInst>(V); 7735 auto *GEPIdx = GEP->idx_begin()->get(); 7736 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 7737 Bundle[BundleIndex++] = GEPIdx; 7738 } 7739 7740 // Try and vectorize the indices. We are currently only interested in 7741 // gather-like cases of the form: 7742 // 7743 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 7744 // 7745 // where the loads of "a", the loads of "b", and the subtractions can be 7746 // performed in parallel. It's likely that detecting this pattern in a 7747 // bottom-up phase will be simpler and less costly than building a 7748 // full-blown top-down phase beginning at the consecutive loads. 7749 Changed |= tryToVectorizeList(Bundle, R); 7750 } 7751 } 7752 return Changed; 7753 } 7754 7755 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 7756 bool Changed = false; 7757 // Attempt to sort and vectorize each of the store-groups. 7758 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 7759 ++it) { 7760 if (it->second.size() < 2) 7761 continue; 7762 7763 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 7764 << it->second.size() << ".\n"); 7765 7766 Changed |= vectorizeStores(it->second, R); 7767 } 7768 return Changed; 7769 } 7770 7771 char SLPVectorizer::ID = 0; 7772 7773 static const char lv_name[] = "SLP Vectorizer"; 7774 7775 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 7776 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7777 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7778 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7779 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7780 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 7781 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7782 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7783 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7784 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 7785 7786 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 7787