1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DerivedTypes.h" 57 #include "llvm/IR/Dominators.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/IRBuilder.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #ifdef EXPENSIVE_CHECKS 74 #include "llvm/IR/Verifier.h" 75 #endif 76 #include "llvm/Pass.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Compiler.h" 80 #include "llvm/Support/DOTGraphTraits.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/GraphWriter.h" 84 #include "llvm/Support/InstructionCost.h" 85 #include "llvm/Support/KnownBits.h" 86 #include "llvm/Support/MathExtras.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 89 #include "llvm/Transforms/Utils/Local.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 // The maximum depth that the look-ahead score heuristic will explore 168 // when it probing among candidates for vectorization tree roots. 169 // The higher this value, the higher the compilation time overhead but unlike 170 // similar limit for operands ordering this is less frequently used, hence 171 // impact of higher value is less noticeable. 172 static cl::opt<int> RootLookAheadMaxDepth( 173 "slp-max-root-look-ahead-depth", cl::init(2), cl::Hidden, 174 cl::desc("The maximum look-ahead depth for searching best rooting option")); 175 176 static cl::opt<bool> 177 ViewSLPTree("view-slp-tree", cl::Hidden, 178 cl::desc("Display the SLP trees with Graphviz")); 179 180 // Limit the number of alias checks. The limit is chosen so that 181 // it has no negative effect on the llvm benchmarks. 182 static const unsigned AliasedCheckLimit = 10; 183 184 // Another limit for the alias checks: The maximum distance between load/store 185 // instructions where alias checks are done. 186 // This limit is useful for very large basic blocks. 187 static const unsigned MaxMemDepDistance = 160; 188 189 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 190 /// regions to be handled. 191 static const int MinScheduleRegionSize = 16; 192 193 /// Predicate for the element types that the SLP vectorizer supports. 194 /// 195 /// The most important thing to filter here are types which are invalid in LLVM 196 /// vectors. We also filter target specific types which have absolutely no 197 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 198 /// avoids spending time checking the cost model and realizing that they will 199 /// be inevitably scalarized. 200 static bool isValidElementType(Type *Ty) { 201 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 202 !Ty->isPPC_FP128Ty(); 203 } 204 205 /// \returns True if the value is a constant (but not globals/constant 206 /// expressions). 207 static bool isConstant(Value *V) { 208 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 209 } 210 211 /// Checks if \p V is one of vector-like instructions, i.e. undef, 212 /// insertelement/extractelement with constant indices for fixed vector type or 213 /// extractvalue instruction. 214 static bool isVectorLikeInstWithConstOps(Value *V) { 215 if (!isa<InsertElementInst, ExtractElementInst>(V) && 216 !isa<ExtractValueInst, UndefValue>(V)) 217 return false; 218 auto *I = dyn_cast<Instruction>(V); 219 if (!I || isa<ExtractValueInst>(I)) 220 return true; 221 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 222 return false; 223 if (isa<ExtractElementInst>(I)) 224 return isConstant(I->getOperand(1)); 225 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 226 return isConstant(I->getOperand(2)); 227 } 228 229 /// \returns true if all of the instructions in \p VL are in the same block or 230 /// false otherwise. 231 static bool allSameBlock(ArrayRef<Value *> VL) { 232 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 233 if (!I0) 234 return false; 235 if (all_of(VL, isVectorLikeInstWithConstOps)) 236 return true; 237 238 BasicBlock *BB = I0->getParent(); 239 for (int I = 1, E = VL.size(); I < E; I++) { 240 auto *II = dyn_cast<Instruction>(VL[I]); 241 if (!II) 242 return false; 243 244 if (BB != II->getParent()) 245 return false; 246 } 247 return true; 248 } 249 250 /// \returns True if all of the values in \p VL are constants (but not 251 /// globals/constant expressions). 252 static bool allConstant(ArrayRef<Value *> VL) { 253 // Constant expressions and globals can't be vectorized like normal integer/FP 254 // constants. 255 return all_of(VL, isConstant); 256 } 257 258 /// \returns True if all of the values in \p VL are identical or some of them 259 /// are UndefValue. 260 static bool isSplat(ArrayRef<Value *> VL) { 261 Value *FirstNonUndef = nullptr; 262 for (Value *V : VL) { 263 if (isa<UndefValue>(V)) 264 continue; 265 if (!FirstNonUndef) { 266 FirstNonUndef = V; 267 continue; 268 } 269 if (V != FirstNonUndef) 270 return false; 271 } 272 return FirstNonUndef != nullptr; 273 } 274 275 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 276 static bool isCommutative(Instruction *I) { 277 if (auto *Cmp = dyn_cast<CmpInst>(I)) 278 return Cmp->isCommutative(); 279 if (auto *BO = dyn_cast<BinaryOperator>(I)) 280 return BO->isCommutative(); 281 // TODO: This should check for generic Instruction::isCommutative(), but 282 // we need to confirm that the caller code correctly handles Intrinsics 283 // for example (does not have 2 operands). 284 return false; 285 } 286 287 /// Checks if the given value is actually an undefined constant vector. 288 static bool isUndefVector(const Value *V) { 289 if (isa<UndefValue>(V)) 290 return true; 291 auto *C = dyn_cast<Constant>(V); 292 if (!C) 293 return false; 294 if (!C->containsUndefOrPoisonElement()) 295 return false; 296 auto *VecTy = dyn_cast<FixedVectorType>(C->getType()); 297 if (!VecTy) 298 return false; 299 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 300 if (Constant *Elem = C->getAggregateElement(I)) 301 if (!isa<UndefValue>(Elem)) 302 return false; 303 } 304 return true; 305 } 306 307 /// Checks if the vector of instructions can be represented as a shuffle, like: 308 /// %x0 = extractelement <4 x i8> %x, i32 0 309 /// %x3 = extractelement <4 x i8> %x, i32 3 310 /// %y1 = extractelement <4 x i8> %y, i32 1 311 /// %y2 = extractelement <4 x i8> %y, i32 2 312 /// %x0x0 = mul i8 %x0, %x0 313 /// %x3x3 = mul i8 %x3, %x3 314 /// %y1y1 = mul i8 %y1, %y1 315 /// %y2y2 = mul i8 %y2, %y2 316 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 317 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 318 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 319 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 320 /// ret <4 x i8> %ins4 321 /// can be transformed into: 322 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 323 /// i32 6> 324 /// %2 = mul <4 x i8> %1, %1 325 /// ret <4 x i8> %2 326 /// We convert this initially to something like: 327 /// %x0 = extractelement <4 x i8> %x, i32 0 328 /// %x3 = extractelement <4 x i8> %x, i32 3 329 /// %y1 = extractelement <4 x i8> %y, i32 1 330 /// %y2 = extractelement <4 x i8> %y, i32 2 331 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 332 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 333 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 334 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 335 /// %5 = mul <4 x i8> %4, %4 336 /// %6 = extractelement <4 x i8> %5, i32 0 337 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 338 /// %7 = extractelement <4 x i8> %5, i32 1 339 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 340 /// %8 = extractelement <4 x i8> %5, i32 2 341 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 342 /// %9 = extractelement <4 x i8> %5, i32 3 343 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 344 /// ret <4 x i8> %ins4 345 /// InstCombiner transforms this into a shuffle and vector mul 346 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 347 /// TODO: Can we split off and reuse the shuffle mask detection from 348 /// TargetTransformInfo::getInstructionThroughput? 349 static Optional<TargetTransformInfo::ShuffleKind> 350 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 351 const auto *It = 352 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); 353 if (It == VL.end()) 354 return None; 355 auto *EI0 = cast<ExtractElementInst>(*It); 356 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 357 return None; 358 unsigned Size = 359 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 360 Value *Vec1 = nullptr; 361 Value *Vec2 = nullptr; 362 enum ShuffleMode { Unknown, Select, Permute }; 363 ShuffleMode CommonShuffleMode = Unknown; 364 Mask.assign(VL.size(), UndefMaskElem); 365 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 366 // Undef can be represented as an undef element in a vector. 367 if (isa<UndefValue>(VL[I])) 368 continue; 369 auto *EI = cast<ExtractElementInst>(VL[I]); 370 if (isa<ScalableVectorType>(EI->getVectorOperandType())) 371 return None; 372 auto *Vec = EI->getVectorOperand(); 373 // We can extractelement from undef or poison vector. 374 if (isUndefVector(Vec)) 375 continue; 376 // All vector operands must have the same number of vector elements. 377 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 378 return None; 379 if (isa<UndefValue>(EI->getIndexOperand())) 380 continue; 381 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 382 if (!Idx) 383 return None; 384 // Undefined behavior if Idx is negative or >= Size. 385 if (Idx->getValue().uge(Size)) 386 continue; 387 unsigned IntIdx = Idx->getValue().getZExtValue(); 388 Mask[I] = IntIdx; 389 // For correct shuffling we have to have at most 2 different vector operands 390 // in all extractelement instructions. 391 if (!Vec1 || Vec1 == Vec) { 392 Vec1 = Vec; 393 } else if (!Vec2 || Vec2 == Vec) { 394 Vec2 = Vec; 395 Mask[I] += Size; 396 } else { 397 return None; 398 } 399 if (CommonShuffleMode == Permute) 400 continue; 401 // If the extract index is not the same as the operation number, it is a 402 // permutation. 403 if (IntIdx != I) { 404 CommonShuffleMode = Permute; 405 continue; 406 } 407 CommonShuffleMode = Select; 408 } 409 // If we're not crossing lanes in different vectors, consider it as blending. 410 if (CommonShuffleMode == Select && Vec2) 411 return TargetTransformInfo::SK_Select; 412 // If Vec2 was never used, we have a permutation of a single vector, otherwise 413 // we have permutation of 2 vectors. 414 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 415 : TargetTransformInfo::SK_PermuteSingleSrc; 416 } 417 418 namespace { 419 420 /// Main data required for vectorization of instructions. 421 struct InstructionsState { 422 /// The very first instruction in the list with the main opcode. 423 Value *OpValue = nullptr; 424 425 /// The main/alternate instruction. 426 Instruction *MainOp = nullptr; 427 Instruction *AltOp = nullptr; 428 429 /// The main/alternate opcodes for the list of instructions. 430 unsigned getOpcode() const { 431 return MainOp ? MainOp->getOpcode() : 0; 432 } 433 434 unsigned getAltOpcode() const { 435 return AltOp ? AltOp->getOpcode() : 0; 436 } 437 438 /// Some of the instructions in the list have alternate opcodes. 439 bool isAltShuffle() const { return AltOp != MainOp; } 440 441 bool isOpcodeOrAlt(Instruction *I) const { 442 unsigned CheckedOpcode = I->getOpcode(); 443 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 444 } 445 446 InstructionsState() = delete; 447 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 448 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 449 }; 450 451 } // end anonymous namespace 452 453 /// Chooses the correct key for scheduling data. If \p Op has the same (or 454 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 455 /// OpValue. 456 static Value *isOneOf(const InstructionsState &S, Value *Op) { 457 auto *I = dyn_cast<Instruction>(Op); 458 if (I && S.isOpcodeOrAlt(I)) 459 return Op; 460 return S.OpValue; 461 } 462 463 /// \returns true if \p Opcode is allowed as part of of the main/alternate 464 /// instruction for SLP vectorization. 465 /// 466 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 467 /// "shuffled out" lane would result in division by zero. 468 static bool isValidForAlternation(unsigned Opcode) { 469 if (Instruction::isIntDivRem(Opcode)) 470 return false; 471 472 return true; 473 } 474 475 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 476 unsigned BaseIndex = 0); 477 478 /// Checks if the provided operands of 2 cmp instructions are compatible, i.e. 479 /// compatible instructions or constants, or just some other regular values. 480 static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0, 481 Value *Op1) { 482 return (isConstant(BaseOp0) && isConstant(Op0)) || 483 (isConstant(BaseOp1) && isConstant(Op1)) || 484 (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) && 485 !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) || 486 getSameOpcode({BaseOp0, Op0}).getOpcode() || 487 getSameOpcode({BaseOp1, Op1}).getOpcode(); 488 } 489 490 /// \returns analysis of the Instructions in \p VL described in 491 /// InstructionsState, the Opcode that we suppose the whole list 492 /// could be vectorized even if its structure is diverse. 493 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 494 unsigned BaseIndex) { 495 // Make sure these are all Instructions. 496 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 497 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 498 499 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 500 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 501 bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]); 502 CmpInst::Predicate BasePred = 503 IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate() 504 : CmpInst::BAD_ICMP_PREDICATE; 505 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 506 unsigned AltOpcode = Opcode; 507 unsigned AltIndex = BaseIndex; 508 509 // Check for one alternate opcode from another BinaryOperator. 510 // TODO - generalize to support all operators (types, calls etc.). 511 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 512 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 513 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 514 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 515 continue; 516 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 517 isValidForAlternation(Opcode)) { 518 AltOpcode = InstOpcode; 519 AltIndex = Cnt; 520 continue; 521 } 522 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 523 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 524 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 525 if (Ty0 == Ty1) { 526 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 527 continue; 528 if (Opcode == AltOpcode) { 529 assert(isValidForAlternation(Opcode) && 530 isValidForAlternation(InstOpcode) && 531 "Cast isn't safe for alternation, logic needs to be updated!"); 532 AltOpcode = InstOpcode; 533 AltIndex = Cnt; 534 continue; 535 } 536 } 537 } else if (IsCmpOp && isa<CmpInst>(VL[Cnt])) { 538 auto *BaseInst = cast<Instruction>(VL[BaseIndex]); 539 auto *Inst = cast<Instruction>(VL[Cnt]); 540 Type *Ty0 = BaseInst->getOperand(0)->getType(); 541 Type *Ty1 = Inst->getOperand(0)->getType(); 542 if (Ty0 == Ty1) { 543 Value *BaseOp0 = BaseInst->getOperand(0); 544 Value *BaseOp1 = BaseInst->getOperand(1); 545 Value *Op0 = Inst->getOperand(0); 546 Value *Op1 = Inst->getOperand(1); 547 CmpInst::Predicate CurrentPred = 548 cast<CmpInst>(VL[Cnt])->getPredicate(); 549 CmpInst::Predicate SwappedCurrentPred = 550 CmpInst::getSwappedPredicate(CurrentPred); 551 // Check for compatible operands. If the corresponding operands are not 552 // compatible - need to perform alternate vectorization. 553 if (InstOpcode == Opcode) { 554 if (BasePred == CurrentPred && 555 areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1)) 556 continue; 557 if (BasePred == SwappedCurrentPred && 558 areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0)) 559 continue; 560 if (E == 2 && 561 (BasePred == CurrentPred || BasePred == SwappedCurrentPred)) 562 continue; 563 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 564 CmpInst::Predicate AltPred = AltInst->getPredicate(); 565 Value *AltOp0 = AltInst->getOperand(0); 566 Value *AltOp1 = AltInst->getOperand(1); 567 // Check if operands are compatible with alternate operands. 568 if (AltPred == CurrentPred && 569 areCompatibleCmpOps(AltOp0, AltOp1, Op0, Op1)) 570 continue; 571 if (AltPred == SwappedCurrentPred && 572 areCompatibleCmpOps(AltOp0, AltOp1, Op1, Op0)) 573 continue; 574 } 575 if (BaseIndex == AltIndex && BasePred != CurrentPred) { 576 assert(isValidForAlternation(Opcode) && 577 isValidForAlternation(InstOpcode) && 578 "Cast isn't safe for alternation, logic needs to be updated!"); 579 AltIndex = Cnt; 580 continue; 581 } 582 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 583 CmpInst::Predicate AltPred = AltInst->getPredicate(); 584 if (BasePred == CurrentPred || BasePred == SwappedCurrentPred || 585 AltPred == CurrentPred || AltPred == SwappedCurrentPred) 586 continue; 587 } 588 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 589 continue; 590 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 591 } 592 593 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 594 cast<Instruction>(VL[AltIndex])); 595 } 596 597 /// \returns true if all of the values in \p VL have the same type or false 598 /// otherwise. 599 static bool allSameType(ArrayRef<Value *> VL) { 600 Type *Ty = VL[0]->getType(); 601 for (int i = 1, e = VL.size(); i < e; i++) 602 if (VL[i]->getType() != Ty) 603 return false; 604 605 return true; 606 } 607 608 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 609 static Optional<unsigned> getExtractIndex(Instruction *E) { 610 unsigned Opcode = E->getOpcode(); 611 assert((Opcode == Instruction::ExtractElement || 612 Opcode == Instruction::ExtractValue) && 613 "Expected extractelement or extractvalue instruction."); 614 if (Opcode == Instruction::ExtractElement) { 615 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 616 if (!CI) 617 return None; 618 return CI->getZExtValue(); 619 } 620 ExtractValueInst *EI = cast<ExtractValueInst>(E); 621 if (EI->getNumIndices() != 1) 622 return None; 623 return *EI->idx_begin(); 624 } 625 626 /// \returns True if in-tree use also needs extract. This refers to 627 /// possible scalar operand in vectorized instruction. 628 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 629 TargetLibraryInfo *TLI) { 630 unsigned Opcode = UserInst->getOpcode(); 631 switch (Opcode) { 632 case Instruction::Load: { 633 LoadInst *LI = cast<LoadInst>(UserInst); 634 return (LI->getPointerOperand() == Scalar); 635 } 636 case Instruction::Store: { 637 StoreInst *SI = cast<StoreInst>(UserInst); 638 return (SI->getPointerOperand() == Scalar); 639 } 640 case Instruction::Call: { 641 CallInst *CI = cast<CallInst>(UserInst); 642 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 643 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 644 if (isVectorIntrinsicWithScalarOpAtArg(ID, i)) 645 return (CI->getArgOperand(i) == Scalar); 646 } 647 LLVM_FALLTHROUGH; 648 } 649 default: 650 return false; 651 } 652 } 653 654 /// \returns the AA location that is being access by the instruction. 655 static MemoryLocation getLocation(Instruction *I) { 656 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 657 return MemoryLocation::get(SI); 658 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 659 return MemoryLocation::get(LI); 660 return MemoryLocation(); 661 } 662 663 /// \returns True if the instruction is not a volatile or atomic load/store. 664 static bool isSimple(Instruction *I) { 665 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 666 return LI->isSimple(); 667 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 668 return SI->isSimple(); 669 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 670 return !MI->isVolatile(); 671 return true; 672 } 673 674 /// Shuffles \p Mask in accordance with the given \p SubMask. 675 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 676 if (SubMask.empty()) 677 return; 678 if (Mask.empty()) { 679 Mask.append(SubMask.begin(), SubMask.end()); 680 return; 681 } 682 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 683 int TermValue = std::min(Mask.size(), SubMask.size()); 684 for (int I = 0, E = SubMask.size(); I < E; ++I) { 685 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 686 Mask[SubMask[I]] >= TermValue) 687 continue; 688 NewMask[I] = Mask[SubMask[I]]; 689 } 690 Mask.swap(NewMask); 691 } 692 693 /// Order may have elements assigned special value (size) which is out of 694 /// bounds. Such indices only appear on places which correspond to undef values 695 /// (see canReuseExtract for details) and used in order to avoid undef values 696 /// have effect on operands ordering. 697 /// The first loop below simply finds all unused indices and then the next loop 698 /// nest assigns these indices for undef values positions. 699 /// As an example below Order has two undef positions and they have assigned 700 /// values 3 and 7 respectively: 701 /// before: 6 9 5 4 9 2 1 0 702 /// after: 6 3 5 4 7 2 1 0 703 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 704 const unsigned Sz = Order.size(); 705 SmallBitVector UnusedIndices(Sz, /*t=*/true); 706 SmallBitVector MaskedIndices(Sz); 707 for (unsigned I = 0; I < Sz; ++I) { 708 if (Order[I] < Sz) 709 UnusedIndices.reset(Order[I]); 710 else 711 MaskedIndices.set(I); 712 } 713 if (MaskedIndices.none()) 714 return; 715 assert(UnusedIndices.count() == MaskedIndices.count() && 716 "Non-synced masked/available indices."); 717 int Idx = UnusedIndices.find_first(); 718 int MIdx = MaskedIndices.find_first(); 719 while (MIdx >= 0) { 720 assert(Idx >= 0 && "Indices must be synced."); 721 Order[MIdx] = Idx; 722 Idx = UnusedIndices.find_next(Idx); 723 MIdx = MaskedIndices.find_next(MIdx); 724 } 725 } 726 727 namespace llvm { 728 729 static void inversePermutation(ArrayRef<unsigned> Indices, 730 SmallVectorImpl<int> &Mask) { 731 Mask.clear(); 732 const unsigned E = Indices.size(); 733 Mask.resize(E, UndefMaskElem); 734 for (unsigned I = 0; I < E; ++I) 735 Mask[Indices[I]] = I; 736 } 737 738 /// \returns inserting index of InsertElement or InsertValue instruction, 739 /// using Offset as base offset for index. 740 static Optional<unsigned> getInsertIndex(const Value *InsertInst, 741 unsigned Offset = 0) { 742 int Index = Offset; 743 if (const auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 744 if (const auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 745 auto *VT = cast<FixedVectorType>(IE->getType()); 746 if (CI->getValue().uge(VT->getNumElements())) 747 return None; 748 Index *= VT->getNumElements(); 749 Index += CI->getZExtValue(); 750 return Index; 751 } 752 return None; 753 } 754 755 const auto *IV = cast<InsertValueInst>(InsertInst); 756 Type *CurrentType = IV->getType(); 757 for (unsigned I : IV->indices()) { 758 if (const auto *ST = dyn_cast<StructType>(CurrentType)) { 759 Index *= ST->getNumElements(); 760 CurrentType = ST->getElementType(I); 761 } else if (const auto *AT = dyn_cast<ArrayType>(CurrentType)) { 762 Index *= AT->getNumElements(); 763 CurrentType = AT->getElementType(); 764 } else { 765 return None; 766 } 767 Index += I; 768 } 769 return Index; 770 } 771 772 /// Reorders the list of scalars in accordance with the given \p Mask. 773 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 774 ArrayRef<int> Mask) { 775 assert(!Mask.empty() && "Expected non-empty mask."); 776 SmallVector<Value *> Prev(Scalars.size(), 777 UndefValue::get(Scalars.front()->getType())); 778 Prev.swap(Scalars); 779 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 780 if (Mask[I] != UndefMaskElem) 781 Scalars[Mask[I]] = Prev[I]; 782 } 783 784 /// Checks if the provided value does not require scheduling. It does not 785 /// require scheduling if this is not an instruction or it is an instruction 786 /// that does not read/write memory and all operands are either not instructions 787 /// or phi nodes or instructions from different blocks. 788 static bool areAllOperandsNonInsts(Value *V) { 789 auto *I = dyn_cast<Instruction>(V); 790 if (!I) 791 return true; 792 return !mayHaveNonDefUseDependency(*I) && 793 all_of(I->operands(), [I](Value *V) { 794 auto *IO = dyn_cast<Instruction>(V); 795 if (!IO) 796 return true; 797 return isa<PHINode>(IO) || IO->getParent() != I->getParent(); 798 }); 799 } 800 801 /// Checks if the provided value does not require scheduling. It does not 802 /// require scheduling if this is not an instruction or it is an instruction 803 /// that does not read/write memory and all users are phi nodes or instructions 804 /// from the different blocks. 805 static bool isUsedOutsideBlock(Value *V) { 806 auto *I = dyn_cast<Instruction>(V); 807 if (!I) 808 return true; 809 // Limits the number of uses to save compile time. 810 constexpr int UsesLimit = 8; 811 return !I->mayReadOrWriteMemory() && !I->hasNUsesOrMore(UsesLimit) && 812 all_of(I->users(), [I](User *U) { 813 auto *IU = dyn_cast<Instruction>(U); 814 if (!IU) 815 return true; 816 return IU->getParent() != I->getParent() || isa<PHINode>(IU); 817 }); 818 } 819 820 /// Checks if the specified value does not require scheduling. It does not 821 /// require scheduling if all operands and all users do not need to be scheduled 822 /// in the current basic block. 823 static bool doesNotNeedToBeScheduled(Value *V) { 824 return areAllOperandsNonInsts(V) && isUsedOutsideBlock(V); 825 } 826 827 /// Checks if the specified array of instructions does not require scheduling. 828 /// It is so if all either instructions have operands that do not require 829 /// scheduling or their users do not require scheduling since they are phis or 830 /// in other basic blocks. 831 static bool doesNotNeedToSchedule(ArrayRef<Value *> VL) { 832 return !VL.empty() && 833 (all_of(VL, isUsedOutsideBlock) || all_of(VL, areAllOperandsNonInsts)); 834 } 835 836 namespace slpvectorizer { 837 838 /// Bottom Up SLP Vectorizer. 839 class BoUpSLP { 840 struct TreeEntry; 841 struct ScheduleData; 842 843 public: 844 using ValueList = SmallVector<Value *, 8>; 845 using InstrList = SmallVector<Instruction *, 16>; 846 using ValueSet = SmallPtrSet<Value *, 16>; 847 using StoreList = SmallVector<StoreInst *, 8>; 848 using ExtraValueToDebugLocsMap = 849 MapVector<Value *, SmallVector<Instruction *, 2>>; 850 using OrdersType = SmallVector<unsigned, 4>; 851 852 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 853 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 854 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 855 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 856 : BatchAA(*Aa), F(Func), SE(Se), TTI(Tti), TLI(TLi), LI(Li), 857 DT(Dt), AC(AC), DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 858 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 859 // Use the vector register size specified by the target unless overridden 860 // by a command-line option. 861 // TODO: It would be better to limit the vectorization factor based on 862 // data type rather than just register size. For example, x86 AVX has 863 // 256-bit registers, but it does not support integer operations 864 // at that width (that requires AVX2). 865 if (MaxVectorRegSizeOption.getNumOccurrences()) 866 MaxVecRegSize = MaxVectorRegSizeOption; 867 else 868 MaxVecRegSize = 869 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 870 .getFixedSize(); 871 872 if (MinVectorRegSizeOption.getNumOccurrences()) 873 MinVecRegSize = MinVectorRegSizeOption; 874 else 875 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 876 } 877 878 /// Vectorize the tree that starts with the elements in \p VL. 879 /// Returns the vectorized root. 880 Value *vectorizeTree(); 881 882 /// Vectorize the tree but with the list of externally used values \p 883 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 884 /// generated extractvalue instructions. 885 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 886 887 /// \returns the cost incurred by unwanted spills and fills, caused by 888 /// holding live values over call sites. 889 InstructionCost getSpillCost() const; 890 891 /// \returns the vectorization cost of the subtree that starts at \p VL. 892 /// A negative number means that this is profitable. 893 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 894 895 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 896 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 897 void buildTree(ArrayRef<Value *> Roots, 898 const SmallDenseSet<Value *> &UserIgnoreLst); 899 900 /// Construct a vectorizable tree that starts at \p Roots. 901 void buildTree(ArrayRef<Value *> Roots); 902 903 /// Builds external uses of the vectorized scalars, i.e. the list of 904 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 905 /// ExternallyUsedValues contains additional list of external uses to handle 906 /// vectorization of reductions. 907 void 908 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 909 910 /// Clear the internal data structures that are created by 'buildTree'. 911 void deleteTree() { 912 VectorizableTree.clear(); 913 ScalarToTreeEntry.clear(); 914 MustGather.clear(); 915 ExternalUses.clear(); 916 for (auto &Iter : BlocksSchedules) { 917 BlockScheduling *BS = Iter.second.get(); 918 BS->clear(); 919 } 920 MinBWs.clear(); 921 InstrElementSize.clear(); 922 UserIgnoreList = nullptr; 923 } 924 925 unsigned getTreeSize() const { return VectorizableTree.size(); } 926 927 /// Perform LICM and CSE on the newly generated gather sequences. 928 void optimizeGatherSequence(); 929 930 /// Checks if the specified gather tree entry \p TE can be represented as a 931 /// shuffled vector entry + (possibly) permutation with other gathers. It 932 /// implements the checks only for possibly ordered scalars (Loads, 933 /// ExtractElement, ExtractValue), which can be part of the graph. 934 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 935 936 /// Sort loads into increasing pointers offsets to allow greater clustering. 937 Optional<OrdersType> findPartiallyOrderedLoads(const TreeEntry &TE); 938 939 /// Gets reordering data for the given tree entry. If the entry is vectorized 940 /// - just return ReorderIndices, otherwise check if the scalars can be 941 /// reordered and return the most optimal order. 942 /// \param TopToBottom If true, include the order of vectorized stores and 943 /// insertelement nodes, otherwise skip them. 944 Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom); 945 946 /// Reorders the current graph to the most profitable order starting from the 947 /// root node to the leaf nodes. The best order is chosen only from the nodes 948 /// of the same size (vectorization factor). Smaller nodes are considered 949 /// parts of subgraph with smaller VF and they are reordered independently. We 950 /// can make it because we still need to extend smaller nodes to the wider VF 951 /// and we can merge reordering shuffles with the widening shuffles. 952 void reorderTopToBottom(); 953 954 /// Reorders the current graph to the most profitable order starting from 955 /// leaves to the root. It allows to rotate small subgraphs and reduce the 956 /// number of reshuffles if the leaf nodes use the same order. In this case we 957 /// can merge the orders and just shuffle user node instead of shuffling its 958 /// operands. Plus, even the leaf nodes have different orders, it allows to 959 /// sink reordering in the graph closer to the root node and merge it later 960 /// during analysis. 961 void reorderBottomToTop(bool IgnoreReorder = false); 962 963 /// \return The vector element size in bits to use when vectorizing the 964 /// expression tree ending at \p V. If V is a store, the size is the width of 965 /// the stored value. Otherwise, the size is the width of the largest loaded 966 /// value reaching V. This method is used by the vectorizer to calculate 967 /// vectorization factors. 968 unsigned getVectorElementSize(Value *V); 969 970 /// Compute the minimum type sizes required to represent the entries in a 971 /// vectorizable tree. 972 void computeMinimumValueSizes(); 973 974 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 975 unsigned getMaxVecRegSize() const { 976 return MaxVecRegSize; 977 } 978 979 // \returns minimum vector register size as set by cl::opt. 980 unsigned getMinVecRegSize() const { 981 return MinVecRegSize; 982 } 983 984 unsigned getMinVF(unsigned Sz) const { 985 return std::max(2U, getMinVecRegSize() / Sz); 986 } 987 988 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 989 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 990 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 991 return MaxVF ? MaxVF : UINT_MAX; 992 } 993 994 /// Check if homogeneous aggregate is isomorphic to some VectorType. 995 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 996 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 997 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 998 /// 999 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 1000 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 1001 1002 /// \returns True if the VectorizableTree is both tiny and not fully 1003 /// vectorizable. We do not vectorize such trees. 1004 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 1005 1006 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 1007 /// can be load combined in the backend. Load combining may not be allowed in 1008 /// the IR optimizer, so we do not want to alter the pattern. For example, 1009 /// partially transforming a scalar bswap() pattern into vector code is 1010 /// effectively impossible for the backend to undo. 1011 /// TODO: If load combining is allowed in the IR optimizer, this analysis 1012 /// may not be necessary. 1013 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 1014 1015 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 1016 /// can be load combined in the backend. Load combining may not be allowed in 1017 /// the IR optimizer, so we do not want to alter the pattern. For example, 1018 /// partially transforming a scalar bswap() pattern into vector code is 1019 /// effectively impossible for the backend to undo. 1020 /// TODO: If load combining is allowed in the IR optimizer, this analysis 1021 /// may not be necessary. 1022 bool isLoadCombineCandidate() const; 1023 1024 OptimizationRemarkEmitter *getORE() { return ORE; } 1025 1026 /// This structure holds any data we need about the edges being traversed 1027 /// during buildTree_rec(). We keep track of: 1028 /// (i) the user TreeEntry index, and 1029 /// (ii) the index of the edge. 1030 struct EdgeInfo { 1031 EdgeInfo() = default; 1032 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 1033 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 1034 /// The user TreeEntry. 1035 TreeEntry *UserTE = nullptr; 1036 /// The operand index of the use. 1037 unsigned EdgeIdx = UINT_MAX; 1038 #ifndef NDEBUG 1039 friend inline raw_ostream &operator<<(raw_ostream &OS, 1040 const BoUpSLP::EdgeInfo &EI) { 1041 EI.dump(OS); 1042 return OS; 1043 } 1044 /// Debug print. 1045 void dump(raw_ostream &OS) const { 1046 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 1047 << " EdgeIdx:" << EdgeIdx << "}"; 1048 } 1049 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 1050 #endif 1051 }; 1052 1053 /// A helper class used for scoring candidates for two consecutive lanes. 1054 class LookAheadHeuristics { 1055 const DataLayout &DL; 1056 ScalarEvolution &SE; 1057 const BoUpSLP &R; 1058 int NumLanes; // Total number of lanes (aka vectorization factor). 1059 int MaxLevel; // The maximum recursion depth for accumulating score. 1060 1061 public: 1062 LookAheadHeuristics(const DataLayout &DL, ScalarEvolution &SE, 1063 const BoUpSLP &R, int NumLanes, int MaxLevel) 1064 : DL(DL), SE(SE), R(R), NumLanes(NumLanes), MaxLevel(MaxLevel) {} 1065 1066 // The hard-coded scores listed here are not very important, though it shall 1067 // be higher for better matches to improve the resulting cost. When 1068 // computing the scores of matching one sub-tree with another, we are 1069 // basically counting the number of values that are matching. So even if all 1070 // scores are set to 1, we would still get a decent matching result. 1071 // However, sometimes we have to break ties. For example we may have to 1072 // choose between matching loads vs matching opcodes. This is what these 1073 // scores are helping us with: they provide the order of preference. Also, 1074 // this is important if the scalar is externally used or used in another 1075 // tree entry node in the different lane. 1076 1077 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 1078 static const int ScoreConsecutiveLoads = 4; 1079 /// The same load multiple times. This should have a better score than 1080 /// `ScoreSplat` because it in x86 for a 2-lane vector we can represent it 1081 /// with `movddup (%reg), xmm0` which has a throughput of 0.5 versus 0.5 for 1082 /// a vector load and 1.0 for a broadcast. 1083 static const int ScoreSplatLoads = 3; 1084 /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]). 1085 static const int ScoreReversedLoads = 3; 1086 /// ExtractElementInst from same vector and consecutive indexes. 1087 static const int ScoreConsecutiveExtracts = 4; 1088 /// ExtractElementInst from same vector and reversed indices. 1089 static const int ScoreReversedExtracts = 3; 1090 /// Constants. 1091 static const int ScoreConstants = 2; 1092 /// Instructions with the same opcode. 1093 static const int ScoreSameOpcode = 2; 1094 /// Instructions with alt opcodes (e.g, add + sub). 1095 static const int ScoreAltOpcodes = 1; 1096 /// Identical instructions (a.k.a. splat or broadcast). 1097 static const int ScoreSplat = 1; 1098 /// Matching with an undef is preferable to failing. 1099 static const int ScoreUndef = 1; 1100 /// Score for failing to find a decent match. 1101 static const int ScoreFail = 0; 1102 /// Score if all users are vectorized. 1103 static const int ScoreAllUserVectorized = 1; 1104 1105 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1106 /// \p U1 and \p U2 are the users of \p V1 and \p V2. 1107 /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p 1108 /// MainAltOps. 1109 int getShallowScore(Value *V1, Value *V2, Instruction *U1, Instruction *U2, 1110 ArrayRef<Value *> MainAltOps) const { 1111 if (V1 == V2) { 1112 if (isa<LoadInst>(V1)) { 1113 // Retruns true if the users of V1 and V2 won't need to be extracted. 1114 auto AllUsersAreInternal = [U1, U2, this](Value *V1, Value *V2) { 1115 // Bail out if we have too many uses to save compilation time. 1116 static constexpr unsigned Limit = 8; 1117 if (V1->hasNUsesOrMore(Limit) || V2->hasNUsesOrMore(Limit)) 1118 return false; 1119 1120 auto AllUsersVectorized = [U1, U2, this](Value *V) { 1121 return llvm::all_of(V->users(), [U1, U2, this](Value *U) { 1122 return U == U1 || U == U2 || R.getTreeEntry(U) != nullptr; 1123 }); 1124 }; 1125 return AllUsersVectorized(V1) && AllUsersVectorized(V2); 1126 }; 1127 // A broadcast of a load can be cheaper on some targets. 1128 if (R.TTI->isLegalBroadcastLoad(V1->getType(), 1129 ElementCount::getFixed(NumLanes)) && 1130 ((int)V1->getNumUses() == NumLanes || 1131 AllUsersAreInternal(V1, V2))) 1132 return LookAheadHeuristics::ScoreSplatLoads; 1133 } 1134 return LookAheadHeuristics::ScoreSplat; 1135 } 1136 1137 auto *LI1 = dyn_cast<LoadInst>(V1); 1138 auto *LI2 = dyn_cast<LoadInst>(V2); 1139 if (LI1 && LI2) { 1140 if (LI1->getParent() != LI2->getParent()) 1141 return LookAheadHeuristics::ScoreFail; 1142 1143 Optional<int> Dist = getPointersDiff( 1144 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1145 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1146 if (!Dist || *Dist == 0) 1147 return LookAheadHeuristics::ScoreFail; 1148 // The distance is too large - still may be profitable to use masked 1149 // loads/gathers. 1150 if (std::abs(*Dist) > NumLanes / 2) 1151 return LookAheadHeuristics::ScoreAltOpcodes; 1152 // This still will detect consecutive loads, but we might have "holes" 1153 // in some cases. It is ok for non-power-2 vectorization and may produce 1154 // better results. It should not affect current vectorization. 1155 return (*Dist > 0) ? LookAheadHeuristics::ScoreConsecutiveLoads 1156 : LookAheadHeuristics::ScoreReversedLoads; 1157 } 1158 1159 auto *C1 = dyn_cast<Constant>(V1); 1160 auto *C2 = dyn_cast<Constant>(V2); 1161 if (C1 && C2) 1162 return LookAheadHeuristics::ScoreConstants; 1163 1164 // Extracts from consecutive indexes of the same vector better score as 1165 // the extracts could be optimized away. 1166 Value *EV1; 1167 ConstantInt *Ex1Idx; 1168 if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) { 1169 // Undefs are always profitable for extractelements. 1170 if (isa<UndefValue>(V2)) 1171 return LookAheadHeuristics::ScoreConsecutiveExtracts; 1172 Value *EV2 = nullptr; 1173 ConstantInt *Ex2Idx = nullptr; 1174 if (match(V2, 1175 m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx), 1176 m_Undef())))) { 1177 // Undefs are always profitable for extractelements. 1178 if (!Ex2Idx) 1179 return LookAheadHeuristics::ScoreConsecutiveExtracts; 1180 if (isUndefVector(EV2) && EV2->getType() == EV1->getType()) 1181 return LookAheadHeuristics::ScoreConsecutiveExtracts; 1182 if (EV2 == EV1) { 1183 int Idx1 = Ex1Idx->getZExtValue(); 1184 int Idx2 = Ex2Idx->getZExtValue(); 1185 int Dist = Idx2 - Idx1; 1186 // The distance is too large - still may be profitable to use 1187 // shuffles. 1188 if (std::abs(Dist) == 0) 1189 return LookAheadHeuristics::ScoreSplat; 1190 if (std::abs(Dist) > NumLanes / 2) 1191 return LookAheadHeuristics::ScoreSameOpcode; 1192 return (Dist > 0) ? LookAheadHeuristics::ScoreConsecutiveExtracts 1193 : LookAheadHeuristics::ScoreReversedExtracts; 1194 } 1195 return LookAheadHeuristics::ScoreAltOpcodes; 1196 } 1197 return LookAheadHeuristics::ScoreFail; 1198 } 1199 1200 auto *I1 = dyn_cast<Instruction>(V1); 1201 auto *I2 = dyn_cast<Instruction>(V2); 1202 if (I1 && I2) { 1203 if (I1->getParent() != I2->getParent()) 1204 return LookAheadHeuristics::ScoreFail; 1205 SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end()); 1206 Ops.push_back(I1); 1207 Ops.push_back(I2); 1208 InstructionsState S = getSameOpcode(Ops); 1209 // Note: Only consider instructions with <= 2 operands to avoid 1210 // complexity explosion. 1211 if (S.getOpcode() && 1212 (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() || 1213 !S.isAltShuffle()) && 1214 all_of(Ops, [&S](Value *V) { 1215 return cast<Instruction>(V)->getNumOperands() == 1216 S.MainOp->getNumOperands(); 1217 })) 1218 return S.isAltShuffle() ? LookAheadHeuristics::ScoreAltOpcodes 1219 : LookAheadHeuristics::ScoreSameOpcode; 1220 } 1221 1222 if (isa<UndefValue>(V2)) 1223 return LookAheadHeuristics::ScoreUndef; 1224 1225 return LookAheadHeuristics::ScoreFail; 1226 } 1227 1228 /// Go through the operands of \p LHS and \p RHS recursively until 1229 /// MaxLevel, and return the cummulative score. \p U1 and \p U2 are 1230 /// the users of \p LHS and \p RHS (that is \p LHS and \p RHS are operands 1231 /// of \p U1 and \p U2), except at the beginning of the recursion where 1232 /// these are set to nullptr. 1233 /// 1234 /// For example: 1235 /// \verbatim 1236 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1237 /// \ / \ / \ / \ / 1238 /// + + + + 1239 /// G1 G2 G3 G4 1240 /// \endverbatim 1241 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1242 /// each level recursively, accumulating the score. It starts from matching 1243 /// the additions at level 0, then moves on to the loads (level 1). The 1244 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1245 /// {B[0],B[1]} match with LookAheadHeuristics::ScoreConsecutiveLoads, while 1246 /// {A[0],C[0]} has a score of LookAheadHeuristics::ScoreFail. 1247 /// Please note that the order of the operands does not matter, as we 1248 /// evaluate the score of all profitable combinations of operands. In 1249 /// other words the score of G1 and G4 is the same as G1 and G2. This 1250 /// heuristic is based on ideas described in: 1251 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1252 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1253 /// Luís F. W. Góes 1254 int getScoreAtLevelRec(Value *LHS, Value *RHS, Instruction *U1, 1255 Instruction *U2, int CurrLevel, 1256 ArrayRef<Value *> MainAltOps) const { 1257 1258 // Get the shallow score of V1 and V2. 1259 int ShallowScoreAtThisLevel = 1260 getShallowScore(LHS, RHS, U1, U2, MainAltOps); 1261 1262 // If reached MaxLevel, 1263 // or if V1 and V2 are not instructions, 1264 // or if they are SPLAT, 1265 // or if they are not consecutive, 1266 // or if profitable to vectorize loads or extractelements, early return 1267 // the current cost. 1268 auto *I1 = dyn_cast<Instruction>(LHS); 1269 auto *I2 = dyn_cast<Instruction>(RHS); 1270 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1271 ShallowScoreAtThisLevel == LookAheadHeuristics::ScoreFail || 1272 (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) || 1273 (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) || 1274 (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) && 1275 ShallowScoreAtThisLevel)) 1276 return ShallowScoreAtThisLevel; 1277 assert(I1 && I2 && "Should have early exited."); 1278 1279 // Contains the I2 operand indexes that got matched with I1 operands. 1280 SmallSet<unsigned, 4> Op2Used; 1281 1282 // Recursion towards the operands of I1 and I2. We are trying all possible 1283 // operand pairs, and keeping track of the best score. 1284 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1285 OpIdx1 != NumOperands1; ++OpIdx1) { 1286 // Try to pair op1I with the best operand of I2. 1287 int MaxTmpScore = 0; 1288 unsigned MaxOpIdx2 = 0; 1289 bool FoundBest = false; 1290 // If I2 is commutative try all combinations. 1291 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1292 unsigned ToIdx = isCommutative(I2) 1293 ? I2->getNumOperands() 1294 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1295 assert(FromIdx <= ToIdx && "Bad index"); 1296 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1297 // Skip operands already paired with OpIdx1. 1298 if (Op2Used.count(OpIdx2)) 1299 continue; 1300 // Recursively calculate the cost at each level 1301 int TmpScore = 1302 getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2), 1303 I1, I2, CurrLevel + 1, None); 1304 // Look for the best score. 1305 if (TmpScore > LookAheadHeuristics::ScoreFail && 1306 TmpScore > MaxTmpScore) { 1307 MaxTmpScore = TmpScore; 1308 MaxOpIdx2 = OpIdx2; 1309 FoundBest = true; 1310 } 1311 } 1312 if (FoundBest) { 1313 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1314 Op2Used.insert(MaxOpIdx2); 1315 ShallowScoreAtThisLevel += MaxTmpScore; 1316 } 1317 } 1318 return ShallowScoreAtThisLevel; 1319 } 1320 }; 1321 /// A helper data structure to hold the operands of a vector of instructions. 1322 /// This supports a fixed vector length for all operand vectors. 1323 class VLOperands { 1324 /// For each operand we need (i) the value, and (ii) the opcode that it 1325 /// would be attached to if the expression was in a left-linearized form. 1326 /// This is required to avoid illegal operand reordering. 1327 /// For example: 1328 /// \verbatim 1329 /// 0 Op1 1330 /// |/ 1331 /// Op1 Op2 Linearized + Op2 1332 /// \ / ----------> |/ 1333 /// - - 1334 /// 1335 /// Op1 - Op2 (0 + Op1) - Op2 1336 /// \endverbatim 1337 /// 1338 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 1339 /// 1340 /// Another way to think of this is to track all the operations across the 1341 /// path from the operand all the way to the root of the tree and to 1342 /// calculate the operation that corresponds to this path. For example, the 1343 /// path from Op2 to the root crosses the RHS of the '-', therefore the 1344 /// corresponding operation is a '-' (which matches the one in the 1345 /// linearized tree, as shown above). 1346 /// 1347 /// For lack of a better term, we refer to this operation as Accumulated 1348 /// Path Operation (APO). 1349 struct OperandData { 1350 OperandData() = default; 1351 OperandData(Value *V, bool APO, bool IsUsed) 1352 : V(V), APO(APO), IsUsed(IsUsed) {} 1353 /// The operand value. 1354 Value *V = nullptr; 1355 /// TreeEntries only allow a single opcode, or an alternate sequence of 1356 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 1357 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 1358 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 1359 /// (e.g., Add/Mul) 1360 bool APO = false; 1361 /// Helper data for the reordering function. 1362 bool IsUsed = false; 1363 }; 1364 1365 /// During operand reordering, we are trying to select the operand at lane 1366 /// that matches best with the operand at the neighboring lane. Our 1367 /// selection is based on the type of value we are looking for. For example, 1368 /// if the neighboring lane has a load, we need to look for a load that is 1369 /// accessing a consecutive address. These strategies are summarized in the 1370 /// 'ReorderingMode' enumerator. 1371 enum class ReorderingMode { 1372 Load, ///< Matching loads to consecutive memory addresses 1373 Opcode, ///< Matching instructions based on opcode (same or alternate) 1374 Constant, ///< Matching constants 1375 Splat, ///< Matching the same instruction multiple times (broadcast) 1376 Failed, ///< We failed to create a vectorizable group 1377 }; 1378 1379 using OperandDataVec = SmallVector<OperandData, 2>; 1380 1381 /// A vector of operand vectors. 1382 SmallVector<OperandDataVec, 4> OpsVec; 1383 1384 const DataLayout &DL; 1385 ScalarEvolution &SE; 1386 const BoUpSLP &R; 1387 1388 /// \returns the operand data at \p OpIdx and \p Lane. 1389 OperandData &getData(unsigned OpIdx, unsigned Lane) { 1390 return OpsVec[OpIdx][Lane]; 1391 } 1392 1393 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 1394 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 1395 return OpsVec[OpIdx][Lane]; 1396 } 1397 1398 /// Clears the used flag for all entries. 1399 void clearUsed() { 1400 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 1401 OpIdx != NumOperands; ++OpIdx) 1402 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1403 ++Lane) 1404 OpsVec[OpIdx][Lane].IsUsed = false; 1405 } 1406 1407 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 1408 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 1409 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 1410 } 1411 1412 /// \param Lane lane of the operands under analysis. 1413 /// \param OpIdx operand index in \p Lane lane we're looking the best 1414 /// candidate for. 1415 /// \param Idx operand index of the current candidate value. 1416 /// \returns The additional score due to possible broadcasting of the 1417 /// elements in the lane. It is more profitable to have power-of-2 unique 1418 /// elements in the lane, it will be vectorized with higher probability 1419 /// after removing duplicates. Currently the SLP vectorizer supports only 1420 /// vectorization of the power-of-2 number of unique scalars. 1421 int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1422 Value *IdxLaneV = getData(Idx, Lane).V; 1423 if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V) 1424 return 0; 1425 SmallPtrSet<Value *, 4> Uniques; 1426 for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) { 1427 if (Ln == Lane) 1428 continue; 1429 Value *OpIdxLnV = getData(OpIdx, Ln).V; 1430 if (!isa<Instruction>(OpIdxLnV)) 1431 return 0; 1432 Uniques.insert(OpIdxLnV); 1433 } 1434 int UniquesCount = Uniques.size(); 1435 int UniquesCntWithIdxLaneV = 1436 Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1; 1437 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1438 int UniquesCntWithOpIdxLaneV = 1439 Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1; 1440 if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV) 1441 return 0; 1442 return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) - 1443 UniquesCntWithOpIdxLaneV) - 1444 (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV); 1445 } 1446 1447 /// \param Lane lane of the operands under analysis. 1448 /// \param OpIdx operand index in \p Lane lane we're looking the best 1449 /// candidate for. 1450 /// \param Idx operand index of the current candidate value. 1451 /// \returns The additional score for the scalar which users are all 1452 /// vectorized. 1453 int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1454 Value *IdxLaneV = getData(Idx, Lane).V; 1455 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1456 // Do not care about number of uses for vector-like instructions 1457 // (extractelement/extractvalue with constant indices), they are extracts 1458 // themselves and already externally used. Vectorization of such 1459 // instructions does not add extra extractelement instruction, just may 1460 // remove it. 1461 if (isVectorLikeInstWithConstOps(IdxLaneV) && 1462 isVectorLikeInstWithConstOps(OpIdxLaneV)) 1463 return LookAheadHeuristics::ScoreAllUserVectorized; 1464 auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV); 1465 if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV)) 1466 return 0; 1467 return R.areAllUsersVectorized(IdxLaneI, None) 1468 ? LookAheadHeuristics::ScoreAllUserVectorized 1469 : 0; 1470 } 1471 1472 /// Score scaling factor for fully compatible instructions but with 1473 /// different number of external uses. Allows better selection of the 1474 /// instructions with less external uses. 1475 static const int ScoreScaleFactor = 10; 1476 1477 /// \Returns the look-ahead score, which tells us how much the sub-trees 1478 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1479 /// score. This helps break ties in an informed way when we cannot decide on 1480 /// the order of the operands by just considering the immediate 1481 /// predecessors. 1482 int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps, 1483 int Lane, unsigned OpIdx, unsigned Idx, 1484 bool &IsUsed) { 1485 LookAheadHeuristics LookAhead(DL, SE, R, getNumLanes(), 1486 LookAheadMaxDepth); 1487 // Keep track of the instruction stack as we recurse into the operands 1488 // during the look-ahead score exploration. 1489 int Score = 1490 LookAhead.getScoreAtLevelRec(LHS, RHS, /*U1=*/nullptr, /*U2=*/nullptr, 1491 /*CurrLevel=*/1, MainAltOps); 1492 if (Score) { 1493 int SplatScore = getSplatScore(Lane, OpIdx, Idx); 1494 if (Score <= -SplatScore) { 1495 // Set the minimum score for splat-like sequence to avoid setting 1496 // failed state. 1497 Score = 1; 1498 } else { 1499 Score += SplatScore; 1500 // Scale score to see the difference between different operands 1501 // and similar operands but all vectorized/not all vectorized 1502 // uses. It does not affect actual selection of the best 1503 // compatible operand in general, just allows to select the 1504 // operand with all vectorized uses. 1505 Score *= ScoreScaleFactor; 1506 Score += getExternalUseScore(Lane, OpIdx, Idx); 1507 IsUsed = true; 1508 } 1509 } 1510 return Score; 1511 } 1512 1513 /// Best defined scores per lanes between the passes. Used to choose the 1514 /// best operand (with the highest score) between the passes. 1515 /// The key - {Operand Index, Lane}. 1516 /// The value - the best score between the passes for the lane and the 1517 /// operand. 1518 SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8> 1519 BestScoresPerLanes; 1520 1521 // Search all operands in Ops[*][Lane] for the one that matches best 1522 // Ops[OpIdx][LastLane] and return its opreand index. 1523 // If no good match can be found, return None. 1524 Optional<unsigned> getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1525 ArrayRef<ReorderingMode> ReorderingModes, 1526 ArrayRef<Value *> MainAltOps) { 1527 unsigned NumOperands = getNumOperands(); 1528 1529 // The operand of the previous lane at OpIdx. 1530 Value *OpLastLane = getData(OpIdx, LastLane).V; 1531 1532 // Our strategy mode for OpIdx. 1533 ReorderingMode RMode = ReorderingModes[OpIdx]; 1534 if (RMode == ReorderingMode::Failed) 1535 return None; 1536 1537 // The linearized opcode of the operand at OpIdx, Lane. 1538 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1539 1540 // The best operand index and its score. 1541 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1542 // are using the score to differentiate between the two. 1543 struct BestOpData { 1544 Optional<unsigned> Idx = None; 1545 unsigned Score = 0; 1546 } BestOp; 1547 BestOp.Score = 1548 BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0) 1549 .first->second; 1550 1551 // Track if the operand must be marked as used. If the operand is set to 1552 // Score 1 explicitly (because of non power-of-2 unique scalars, we may 1553 // want to reestimate the operands again on the following iterations). 1554 bool IsUsed = 1555 RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant; 1556 // Iterate through all unused operands and look for the best. 1557 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1558 // Get the operand at Idx and Lane. 1559 OperandData &OpData = getData(Idx, Lane); 1560 Value *Op = OpData.V; 1561 bool OpAPO = OpData.APO; 1562 1563 // Skip already selected operands. 1564 if (OpData.IsUsed) 1565 continue; 1566 1567 // Skip if we are trying to move the operand to a position with a 1568 // different opcode in the linearized tree form. This would break the 1569 // semantics. 1570 if (OpAPO != OpIdxAPO) 1571 continue; 1572 1573 // Look for an operand that matches the current mode. 1574 switch (RMode) { 1575 case ReorderingMode::Load: 1576 case ReorderingMode::Constant: 1577 case ReorderingMode::Opcode: { 1578 bool LeftToRight = Lane > LastLane; 1579 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1580 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1581 int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane, 1582 OpIdx, Idx, IsUsed); 1583 if (Score > static_cast<int>(BestOp.Score)) { 1584 BestOp.Idx = Idx; 1585 BestOp.Score = Score; 1586 BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score; 1587 } 1588 break; 1589 } 1590 case ReorderingMode::Splat: 1591 if (Op == OpLastLane) 1592 BestOp.Idx = Idx; 1593 break; 1594 case ReorderingMode::Failed: 1595 llvm_unreachable("Not expected Failed reordering mode."); 1596 } 1597 } 1598 1599 if (BestOp.Idx) { 1600 getData(BestOp.Idx.getValue(), Lane).IsUsed = IsUsed; 1601 return BestOp.Idx; 1602 } 1603 // If we could not find a good match return None. 1604 return None; 1605 } 1606 1607 /// Helper for reorderOperandVecs. 1608 /// \returns the lane that we should start reordering from. This is the one 1609 /// which has the least number of operands that can freely move about or 1610 /// less profitable because it already has the most optimal set of operands. 1611 unsigned getBestLaneToStartReordering() const { 1612 unsigned Min = UINT_MAX; 1613 unsigned SameOpNumber = 0; 1614 // std::pair<unsigned, unsigned> is used to implement a simple voting 1615 // algorithm and choose the lane with the least number of operands that 1616 // can freely move about or less profitable because it already has the 1617 // most optimal set of operands. The first unsigned is a counter for 1618 // voting, the second unsigned is the counter of lanes with instructions 1619 // with same/alternate opcodes and same parent basic block. 1620 MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap; 1621 // Try to be closer to the original results, if we have multiple lanes 1622 // with same cost. If 2 lanes have the same cost, use the one with the 1623 // lowest index. 1624 for (int I = getNumLanes(); I > 0; --I) { 1625 unsigned Lane = I - 1; 1626 OperandsOrderData NumFreeOpsHash = 1627 getMaxNumOperandsThatCanBeReordered(Lane); 1628 // Compare the number of operands that can move and choose the one with 1629 // the least number. 1630 if (NumFreeOpsHash.NumOfAPOs < Min) { 1631 Min = NumFreeOpsHash.NumOfAPOs; 1632 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1633 HashMap.clear(); 1634 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1635 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1636 NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) { 1637 // Select the most optimal lane in terms of number of operands that 1638 // should be moved around. 1639 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1640 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1641 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1642 NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) { 1643 auto It = HashMap.find(NumFreeOpsHash.Hash); 1644 if (It == HashMap.end()) 1645 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1646 else 1647 ++It->second.first; 1648 } 1649 } 1650 // Select the lane with the minimum counter. 1651 unsigned BestLane = 0; 1652 unsigned CntMin = UINT_MAX; 1653 for (const auto &Data : reverse(HashMap)) { 1654 if (Data.second.first < CntMin) { 1655 CntMin = Data.second.first; 1656 BestLane = Data.second.second; 1657 } 1658 } 1659 return BestLane; 1660 } 1661 1662 /// Data structure that helps to reorder operands. 1663 struct OperandsOrderData { 1664 /// The best number of operands with the same APOs, which can be 1665 /// reordered. 1666 unsigned NumOfAPOs = UINT_MAX; 1667 /// Number of operands with the same/alternate instruction opcode and 1668 /// parent. 1669 unsigned NumOpsWithSameOpcodeParent = 0; 1670 /// Hash for the actual operands ordering. 1671 /// Used to count operands, actually their position id and opcode 1672 /// value. It is used in the voting mechanism to find the lane with the 1673 /// least number of operands that can freely move about or less profitable 1674 /// because it already has the most optimal set of operands. Can be 1675 /// replaced with SmallVector<unsigned> instead but hash code is faster 1676 /// and requires less memory. 1677 unsigned Hash = 0; 1678 }; 1679 /// \returns the maximum number of operands that are allowed to be reordered 1680 /// for \p Lane and the number of compatible instructions(with the same 1681 /// parent/opcode). This is used as a heuristic for selecting the first lane 1682 /// to start operand reordering. 1683 OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1684 unsigned CntTrue = 0; 1685 unsigned NumOperands = getNumOperands(); 1686 // Operands with the same APO can be reordered. We therefore need to count 1687 // how many of them we have for each APO, like this: Cnt[APO] = x. 1688 // Since we only have two APOs, namely true and false, we can avoid using 1689 // a map. Instead we can simply count the number of operands that 1690 // correspond to one of them (in this case the 'true' APO), and calculate 1691 // the other by subtracting it from the total number of operands. 1692 // Operands with the same instruction opcode and parent are more 1693 // profitable since we don't need to move them in many cases, with a high 1694 // probability such lane already can be vectorized effectively. 1695 bool AllUndefs = true; 1696 unsigned NumOpsWithSameOpcodeParent = 0; 1697 Instruction *OpcodeI = nullptr; 1698 BasicBlock *Parent = nullptr; 1699 unsigned Hash = 0; 1700 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1701 const OperandData &OpData = getData(OpIdx, Lane); 1702 if (OpData.APO) 1703 ++CntTrue; 1704 // Use Boyer-Moore majority voting for finding the majority opcode and 1705 // the number of times it occurs. 1706 if (auto *I = dyn_cast<Instruction>(OpData.V)) { 1707 if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() || 1708 I->getParent() != Parent) { 1709 if (NumOpsWithSameOpcodeParent == 0) { 1710 NumOpsWithSameOpcodeParent = 1; 1711 OpcodeI = I; 1712 Parent = I->getParent(); 1713 } else { 1714 --NumOpsWithSameOpcodeParent; 1715 } 1716 } else { 1717 ++NumOpsWithSameOpcodeParent; 1718 } 1719 } 1720 Hash = hash_combine( 1721 Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1))); 1722 AllUndefs = AllUndefs && isa<UndefValue>(OpData.V); 1723 } 1724 if (AllUndefs) 1725 return {}; 1726 OperandsOrderData Data; 1727 Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue); 1728 Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent; 1729 Data.Hash = Hash; 1730 return Data; 1731 } 1732 1733 /// Go through the instructions in VL and append their operands. 1734 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1735 assert(!VL.empty() && "Bad VL"); 1736 assert((empty() || VL.size() == getNumLanes()) && 1737 "Expected same number of lanes"); 1738 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1739 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1740 OpsVec.resize(NumOperands); 1741 unsigned NumLanes = VL.size(); 1742 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1743 OpsVec[OpIdx].resize(NumLanes); 1744 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1745 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1746 // Our tree has just 3 nodes: the root and two operands. 1747 // It is therefore trivial to get the APO. We only need to check the 1748 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1749 // RHS operand. The LHS operand of both add and sub is never attached 1750 // to an inversese operation in the linearized form, therefore its APO 1751 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1752 1753 // Since operand reordering is performed on groups of commutative 1754 // operations or alternating sequences (e.g., +, -), we can safely 1755 // tell the inverse operations by checking commutativity. 1756 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1757 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1758 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1759 APO, false}; 1760 } 1761 } 1762 } 1763 1764 /// \returns the number of operands. 1765 unsigned getNumOperands() const { return OpsVec.size(); } 1766 1767 /// \returns the number of lanes. 1768 unsigned getNumLanes() const { return OpsVec[0].size(); } 1769 1770 /// \returns the operand value at \p OpIdx and \p Lane. 1771 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1772 return getData(OpIdx, Lane).V; 1773 } 1774 1775 /// \returns true if the data structure is empty. 1776 bool empty() const { return OpsVec.empty(); } 1777 1778 /// Clears the data. 1779 void clear() { OpsVec.clear(); } 1780 1781 /// \Returns true if there are enough operands identical to \p Op to fill 1782 /// the whole vector. 1783 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1784 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1785 bool OpAPO = getData(OpIdx, Lane).APO; 1786 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1787 if (Ln == Lane) 1788 continue; 1789 // This is set to true if we found a candidate for broadcast at Lane. 1790 bool FoundCandidate = false; 1791 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1792 OperandData &Data = getData(OpI, Ln); 1793 if (Data.APO != OpAPO || Data.IsUsed) 1794 continue; 1795 if (Data.V == Op) { 1796 FoundCandidate = true; 1797 Data.IsUsed = true; 1798 break; 1799 } 1800 } 1801 if (!FoundCandidate) 1802 return false; 1803 } 1804 return true; 1805 } 1806 1807 public: 1808 /// Initialize with all the operands of the instruction vector \p RootVL. 1809 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1810 ScalarEvolution &SE, const BoUpSLP &R) 1811 : DL(DL), SE(SE), R(R) { 1812 // Append all the operands of RootVL. 1813 appendOperandsOfVL(RootVL); 1814 } 1815 1816 /// \Returns a value vector with the operands across all lanes for the 1817 /// opearnd at \p OpIdx. 1818 ValueList getVL(unsigned OpIdx) const { 1819 ValueList OpVL(OpsVec[OpIdx].size()); 1820 assert(OpsVec[OpIdx].size() == getNumLanes() && 1821 "Expected same num of lanes across all operands"); 1822 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1823 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1824 return OpVL; 1825 } 1826 1827 // Performs operand reordering for 2 or more operands. 1828 // The original operands are in OrigOps[OpIdx][Lane]. 1829 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1830 void reorder() { 1831 unsigned NumOperands = getNumOperands(); 1832 unsigned NumLanes = getNumLanes(); 1833 // Each operand has its own mode. We are using this mode to help us select 1834 // the instructions for each lane, so that they match best with the ones 1835 // we have selected so far. 1836 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1837 1838 // This is a greedy single-pass algorithm. We are going over each lane 1839 // once and deciding on the best order right away with no back-tracking. 1840 // However, in order to increase its effectiveness, we start with the lane 1841 // that has operands that can move the least. For example, given the 1842 // following lanes: 1843 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1844 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1845 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1846 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1847 // we will start at Lane 1, since the operands of the subtraction cannot 1848 // be reordered. Then we will visit the rest of the lanes in a circular 1849 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1850 1851 // Find the first lane that we will start our search from. 1852 unsigned FirstLane = getBestLaneToStartReordering(); 1853 1854 // Initialize the modes. 1855 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1856 Value *OpLane0 = getValue(OpIdx, FirstLane); 1857 // Keep track if we have instructions with all the same opcode on one 1858 // side. 1859 if (isa<LoadInst>(OpLane0)) 1860 ReorderingModes[OpIdx] = ReorderingMode::Load; 1861 else if (isa<Instruction>(OpLane0)) { 1862 // Check if OpLane0 should be broadcast. 1863 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1864 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1865 else 1866 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1867 } 1868 else if (isa<Constant>(OpLane0)) 1869 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1870 else if (isa<Argument>(OpLane0)) 1871 // Our best hope is a Splat. It may save some cost in some cases. 1872 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1873 else 1874 // NOTE: This should be unreachable. 1875 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1876 } 1877 1878 // Check that we don't have same operands. No need to reorder if operands 1879 // are just perfect diamond or shuffled diamond match. Do not do it only 1880 // for possible broadcasts or non-power of 2 number of scalars (just for 1881 // now). 1882 auto &&SkipReordering = [this]() { 1883 SmallPtrSet<Value *, 4> UniqueValues; 1884 ArrayRef<OperandData> Op0 = OpsVec.front(); 1885 for (const OperandData &Data : Op0) 1886 UniqueValues.insert(Data.V); 1887 for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) { 1888 if (any_of(Op, [&UniqueValues](const OperandData &Data) { 1889 return !UniqueValues.contains(Data.V); 1890 })) 1891 return false; 1892 } 1893 // TODO: Check if we can remove a check for non-power-2 number of 1894 // scalars after full support of non-power-2 vectorization. 1895 return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size()); 1896 }; 1897 1898 // If the initial strategy fails for any of the operand indexes, then we 1899 // perform reordering again in a second pass. This helps avoid assigning 1900 // high priority to the failed strategy, and should improve reordering for 1901 // the non-failed operand indexes. 1902 for (int Pass = 0; Pass != 2; ++Pass) { 1903 // Check if no need to reorder operands since they're are perfect or 1904 // shuffled diamond match. 1905 // Need to to do it to avoid extra external use cost counting for 1906 // shuffled matches, which may cause regressions. 1907 if (SkipReordering()) 1908 break; 1909 // Skip the second pass if the first pass did not fail. 1910 bool StrategyFailed = false; 1911 // Mark all operand data as free to use. 1912 clearUsed(); 1913 // We keep the original operand order for the FirstLane, so reorder the 1914 // rest of the lanes. We are visiting the nodes in a circular fashion, 1915 // using FirstLane as the center point and increasing the radius 1916 // distance. 1917 SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands); 1918 for (unsigned I = 0; I < NumOperands; ++I) 1919 MainAltOps[I].push_back(getData(I, FirstLane).V); 1920 1921 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1922 // Visit the lane on the right and then the lane on the left. 1923 for (int Direction : {+1, -1}) { 1924 int Lane = FirstLane + Direction * Distance; 1925 if (Lane < 0 || Lane >= (int)NumLanes) 1926 continue; 1927 int LastLane = Lane - Direction; 1928 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1929 "Out of bounds"); 1930 // Look for a good match for each operand. 1931 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1932 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1933 Optional<unsigned> BestIdx = getBestOperand( 1934 OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]); 1935 // By not selecting a value, we allow the operands that follow to 1936 // select a better matching value. We will get a non-null value in 1937 // the next run of getBestOperand(). 1938 if (BestIdx) { 1939 // Swap the current operand with the one returned by 1940 // getBestOperand(). 1941 swap(OpIdx, BestIdx.getValue(), Lane); 1942 } else { 1943 // We failed to find a best operand, set mode to 'Failed'. 1944 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1945 // Enable the second pass. 1946 StrategyFailed = true; 1947 } 1948 // Try to get the alternate opcode and follow it during analysis. 1949 if (MainAltOps[OpIdx].size() != 2) { 1950 OperandData &AltOp = getData(OpIdx, Lane); 1951 InstructionsState OpS = 1952 getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V}); 1953 if (OpS.getOpcode() && OpS.isAltShuffle()) 1954 MainAltOps[OpIdx].push_back(AltOp.V); 1955 } 1956 } 1957 } 1958 } 1959 // Skip second pass if the strategy did not fail. 1960 if (!StrategyFailed) 1961 break; 1962 } 1963 } 1964 1965 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1966 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1967 switch (RMode) { 1968 case ReorderingMode::Load: 1969 return "Load"; 1970 case ReorderingMode::Opcode: 1971 return "Opcode"; 1972 case ReorderingMode::Constant: 1973 return "Constant"; 1974 case ReorderingMode::Splat: 1975 return "Splat"; 1976 case ReorderingMode::Failed: 1977 return "Failed"; 1978 } 1979 llvm_unreachable("Unimplemented Reordering Type"); 1980 } 1981 1982 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1983 raw_ostream &OS) { 1984 return OS << getModeStr(RMode); 1985 } 1986 1987 /// Debug print. 1988 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1989 printMode(RMode, dbgs()); 1990 } 1991 1992 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1993 return printMode(RMode, OS); 1994 } 1995 1996 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1997 const unsigned Indent = 2; 1998 unsigned Cnt = 0; 1999 for (const OperandDataVec &OpDataVec : OpsVec) { 2000 OS << "Operand " << Cnt++ << "\n"; 2001 for (const OperandData &OpData : OpDataVec) { 2002 OS.indent(Indent) << "{"; 2003 if (Value *V = OpData.V) 2004 OS << *V; 2005 else 2006 OS << "null"; 2007 OS << ", APO:" << OpData.APO << "}\n"; 2008 } 2009 OS << "\n"; 2010 } 2011 return OS; 2012 } 2013 2014 /// Debug print. 2015 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 2016 #endif 2017 }; 2018 2019 /// Evaluate each pair in \p Candidates and return index into \p Candidates 2020 /// for a pair which have highest score deemed to have best chance to form 2021 /// root of profitable tree to vectorize. Return None if no candidate scored 2022 /// above the LookAheadHeuristics::ScoreFail. 2023 /// \param Limit Lower limit of the cost, considered to be good enough score. 2024 Optional<int> 2025 findBestRootPair(ArrayRef<std::pair<Value *, Value *>> Candidates, 2026 int Limit = LookAheadHeuristics::ScoreFail) { 2027 LookAheadHeuristics LookAhead(*DL, *SE, *this, /*NumLanes=*/2, 2028 RootLookAheadMaxDepth); 2029 int BestScore = Limit; 2030 Optional<int> Index = None; 2031 for (int I : seq<int>(0, Candidates.size())) { 2032 int Score = LookAhead.getScoreAtLevelRec(Candidates[I].first, 2033 Candidates[I].second, 2034 /*U1=*/nullptr, /*U2=*/nullptr, 2035 /*Level=*/1, None); 2036 if (Score > BestScore) { 2037 BestScore = Score; 2038 Index = I; 2039 } 2040 } 2041 return Index; 2042 } 2043 2044 /// Checks if the instruction is marked for deletion. 2045 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 2046 2047 /// Removes an instruction from its block and eventually deletes it. 2048 /// It's like Instruction::eraseFromParent() except that the actual deletion 2049 /// is delayed until BoUpSLP is destructed. 2050 void eraseInstruction(Instruction *I) { 2051 DeletedInstructions.insert(I); 2052 } 2053 2054 /// Checks if the instruction was already analyzed for being possible 2055 /// reduction root. 2056 bool isAnalyzedReductionRoot(Instruction *I) const { 2057 return AnalyzedReductionsRoots.count(I); 2058 } 2059 /// Register given instruction as already analyzed for being possible 2060 /// reduction root. 2061 void analyzedReductionRoot(Instruction *I) { 2062 AnalyzedReductionsRoots.insert(I); 2063 } 2064 /// Checks if the provided list of reduced values was checked already for 2065 /// vectorization. 2066 bool areAnalyzedReductionVals(ArrayRef<Value *> VL) { 2067 return AnalyzedReductionVals.contains(hash_value(VL)); 2068 } 2069 /// Adds the list of reduced values to list of already checked values for the 2070 /// vectorization. 2071 void analyzedReductionVals(ArrayRef<Value *> VL) { 2072 AnalyzedReductionVals.insert(hash_value(VL)); 2073 } 2074 /// Clear the list of the analyzed reduction root instructions. 2075 void clearReductionData() { 2076 AnalyzedReductionsRoots.clear(); 2077 AnalyzedReductionVals.clear(); 2078 } 2079 /// Checks if the given value is gathered in one of the nodes. 2080 bool isAnyGathered(const SmallDenseSet<Value *> &Vals) const { 2081 return any_of(MustGather, [&](Value *V) { return Vals.contains(V); }); 2082 } 2083 2084 ~BoUpSLP(); 2085 2086 private: 2087 /// Check if the operands on the edges \p Edges of the \p UserTE allows 2088 /// reordering (i.e. the operands can be reordered because they have only one 2089 /// user and reordarable). 2090 /// \param ReorderableGathers List of all gather nodes that require reordering 2091 /// (e.g., gather of extractlements or partially vectorizable loads). 2092 /// \param GatherOps List of gather operand nodes for \p UserTE that require 2093 /// reordering, subset of \p NonVectorized. 2094 bool 2095 canReorderOperands(TreeEntry *UserTE, 2096 SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 2097 ArrayRef<TreeEntry *> ReorderableGathers, 2098 SmallVectorImpl<TreeEntry *> &GatherOps); 2099 2100 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 2101 /// if any. If it is not vectorized (gather node), returns nullptr. 2102 TreeEntry *getVectorizedOperand(TreeEntry *UserTE, unsigned OpIdx) { 2103 ArrayRef<Value *> VL = UserTE->getOperand(OpIdx); 2104 TreeEntry *TE = nullptr; 2105 const auto *It = find_if(VL, [this, &TE](Value *V) { 2106 TE = getTreeEntry(V); 2107 return TE; 2108 }); 2109 if (It != VL.end() && TE->isSame(VL)) 2110 return TE; 2111 return nullptr; 2112 } 2113 2114 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 2115 /// if any. If it is not vectorized (gather node), returns nullptr. 2116 const TreeEntry *getVectorizedOperand(const TreeEntry *UserTE, 2117 unsigned OpIdx) const { 2118 return const_cast<BoUpSLP *>(this)->getVectorizedOperand( 2119 const_cast<TreeEntry *>(UserTE), OpIdx); 2120 } 2121 2122 /// Checks if all users of \p I are the part of the vectorization tree. 2123 bool areAllUsersVectorized(Instruction *I, 2124 ArrayRef<Value *> VectorizedVals) const; 2125 2126 /// \returns the cost of the vectorizable entry. 2127 InstructionCost getEntryCost(const TreeEntry *E, 2128 ArrayRef<Value *> VectorizedVals); 2129 2130 /// This is the recursive part of buildTree. 2131 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 2132 const EdgeInfo &EI); 2133 2134 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 2135 /// be vectorized to use the original vector (or aggregate "bitcast" to a 2136 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 2137 /// returns false, setting \p CurrentOrder to either an empty vector or a 2138 /// non-identity permutation that allows to reuse extract instructions. 2139 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 2140 SmallVectorImpl<unsigned> &CurrentOrder) const; 2141 2142 /// Vectorize a single entry in the tree. 2143 Value *vectorizeTree(TreeEntry *E); 2144 2145 /// Vectorize a single entry in the tree, starting in \p VL. 2146 Value *vectorizeTree(ArrayRef<Value *> VL); 2147 2148 /// Create a new vector from a list of scalar values. Produces a sequence 2149 /// which exploits values reused across lanes, and arranges the inserts 2150 /// for ease of later optimization. 2151 Value *createBuildVector(ArrayRef<Value *> VL); 2152 2153 /// \returns the scalarization cost for this type. Scalarization in this 2154 /// context means the creation of vectors from a group of scalars. If \p 2155 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 2156 /// vector elements. 2157 InstructionCost getGatherCost(FixedVectorType *Ty, 2158 const APInt &ShuffledIndices, 2159 bool NeedToShuffle) const; 2160 2161 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 2162 /// tree entries. 2163 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 2164 /// previous tree entries. \p Mask is filled with the shuffle mask. 2165 Optional<TargetTransformInfo::ShuffleKind> 2166 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 2167 SmallVectorImpl<const TreeEntry *> &Entries); 2168 2169 /// \returns the scalarization cost for this list of values. Assuming that 2170 /// this subtree gets vectorized, we may need to extract the values from the 2171 /// roots. This method calculates the cost of extracting the values. 2172 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 2173 2174 /// Set the Builder insert point to one after the last instruction in 2175 /// the bundle 2176 void setInsertPointAfterBundle(const TreeEntry *E); 2177 2178 /// \returns a vector from a collection of scalars in \p VL. 2179 Value *gather(ArrayRef<Value *> VL); 2180 2181 /// \returns whether the VectorizableTree is fully vectorizable and will 2182 /// be beneficial even the tree height is tiny. 2183 bool isFullyVectorizableTinyTree(bool ForReduction) const; 2184 2185 /// Reorder commutative or alt operands to get better probability of 2186 /// generating vectorized code. 2187 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 2188 SmallVectorImpl<Value *> &Left, 2189 SmallVectorImpl<Value *> &Right, 2190 const DataLayout &DL, 2191 ScalarEvolution &SE, 2192 const BoUpSLP &R); 2193 2194 /// Helper for `findExternalStoreUsersReorderIndices()`. It iterates over the 2195 /// users of \p TE and collects the stores. It returns the map from the store 2196 /// pointers to the collected stores. 2197 DenseMap<Value *, SmallVector<StoreInst *, 4>> 2198 collectUserStores(const BoUpSLP::TreeEntry *TE) const; 2199 2200 /// Helper for `findExternalStoreUsersReorderIndices()`. It checks if the 2201 /// stores in \p StoresVec can for a vector instruction. If so it returns true 2202 /// and populates \p ReorderIndices with the shuffle indices of the the stores 2203 /// when compared to the sorted vector. 2204 bool CanFormVector(const SmallVector<StoreInst *, 4> &StoresVec, 2205 OrdersType &ReorderIndices) const; 2206 2207 /// Iterates through the users of \p TE, looking for scalar stores that can be 2208 /// potentially vectorized in a future SLP-tree. If found, it keeps track of 2209 /// their order and builds an order index vector for each store bundle. It 2210 /// returns all these order vectors found. 2211 /// We run this after the tree has formed, otherwise we may come across user 2212 /// instructions that are not yet in the tree. 2213 SmallVector<OrdersType, 1> 2214 findExternalStoreUsersReorderIndices(TreeEntry *TE) const; 2215 2216 struct TreeEntry { 2217 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 2218 TreeEntry(VecTreeTy &Container) : Container(Container) {} 2219 2220 /// \returns true if the scalars in VL are equal to this entry. 2221 bool isSame(ArrayRef<Value *> VL) const { 2222 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 2223 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 2224 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 2225 return VL.size() == Mask.size() && 2226 std::equal(VL.begin(), VL.end(), Mask.begin(), 2227 [Scalars](Value *V, int Idx) { 2228 return (isa<UndefValue>(V) && 2229 Idx == UndefMaskElem) || 2230 (Idx != UndefMaskElem && V == Scalars[Idx]); 2231 }); 2232 }; 2233 if (!ReorderIndices.empty()) { 2234 // TODO: implement matching if the nodes are just reordered, still can 2235 // treat the vector as the same if the list of scalars matches VL 2236 // directly, without reordering. 2237 SmallVector<int> Mask; 2238 inversePermutation(ReorderIndices, Mask); 2239 if (VL.size() == Scalars.size()) 2240 return IsSame(Scalars, Mask); 2241 if (VL.size() == ReuseShuffleIndices.size()) { 2242 ::addMask(Mask, ReuseShuffleIndices); 2243 return IsSame(Scalars, Mask); 2244 } 2245 return false; 2246 } 2247 return IsSame(Scalars, ReuseShuffleIndices); 2248 } 2249 2250 /// \returns true if current entry has same operands as \p TE. 2251 bool hasEqualOperands(const TreeEntry &TE) const { 2252 if (TE.getNumOperands() != getNumOperands()) 2253 return false; 2254 SmallBitVector Used(getNumOperands()); 2255 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 2256 unsigned PrevCount = Used.count(); 2257 for (unsigned K = 0; K < E; ++K) { 2258 if (Used.test(K)) 2259 continue; 2260 if (getOperand(K) == TE.getOperand(I)) { 2261 Used.set(K); 2262 break; 2263 } 2264 } 2265 // Check if we actually found the matching operand. 2266 if (PrevCount == Used.count()) 2267 return false; 2268 } 2269 return true; 2270 } 2271 2272 /// \return Final vectorization factor for the node. Defined by the total 2273 /// number of vectorized scalars, including those, used several times in the 2274 /// entry and counted in the \a ReuseShuffleIndices, if any. 2275 unsigned getVectorFactor() const { 2276 if (!ReuseShuffleIndices.empty()) 2277 return ReuseShuffleIndices.size(); 2278 return Scalars.size(); 2279 }; 2280 2281 /// A vector of scalars. 2282 ValueList Scalars; 2283 2284 /// The Scalars are vectorized into this value. It is initialized to Null. 2285 Value *VectorizedValue = nullptr; 2286 2287 /// Do we need to gather this sequence or vectorize it 2288 /// (either with vector instruction or with scatter/gather 2289 /// intrinsics for store/load)? 2290 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 2291 EntryState State; 2292 2293 /// Does this sequence require some shuffling? 2294 SmallVector<int, 4> ReuseShuffleIndices; 2295 2296 /// Does this entry require reordering? 2297 SmallVector<unsigned, 4> ReorderIndices; 2298 2299 /// Points back to the VectorizableTree. 2300 /// 2301 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 2302 /// to be a pointer and needs to be able to initialize the child iterator. 2303 /// Thus we need a reference back to the container to translate the indices 2304 /// to entries. 2305 VecTreeTy &Container; 2306 2307 /// The TreeEntry index containing the user of this entry. We can actually 2308 /// have multiple users so the data structure is not truly a tree. 2309 SmallVector<EdgeInfo, 1> UserTreeIndices; 2310 2311 /// The index of this treeEntry in VectorizableTree. 2312 int Idx = -1; 2313 2314 private: 2315 /// The operands of each instruction in each lane Operands[op_index][lane]. 2316 /// Note: This helps avoid the replication of the code that performs the 2317 /// reordering of operands during buildTree_rec() and vectorizeTree(). 2318 SmallVector<ValueList, 2> Operands; 2319 2320 /// The main/alternate instruction. 2321 Instruction *MainOp = nullptr; 2322 Instruction *AltOp = nullptr; 2323 2324 public: 2325 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 2326 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 2327 if (Operands.size() < OpIdx + 1) 2328 Operands.resize(OpIdx + 1); 2329 assert(Operands[OpIdx].empty() && "Already resized?"); 2330 assert(OpVL.size() <= Scalars.size() && 2331 "Number of operands is greater than the number of scalars."); 2332 Operands[OpIdx].resize(OpVL.size()); 2333 copy(OpVL, Operands[OpIdx].begin()); 2334 } 2335 2336 /// Set the operands of this bundle in their original order. 2337 void setOperandsInOrder() { 2338 assert(Operands.empty() && "Already initialized?"); 2339 auto *I0 = cast<Instruction>(Scalars[0]); 2340 Operands.resize(I0->getNumOperands()); 2341 unsigned NumLanes = Scalars.size(); 2342 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 2343 OpIdx != NumOperands; ++OpIdx) { 2344 Operands[OpIdx].resize(NumLanes); 2345 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 2346 auto *I = cast<Instruction>(Scalars[Lane]); 2347 assert(I->getNumOperands() == NumOperands && 2348 "Expected same number of operands"); 2349 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 2350 } 2351 } 2352 } 2353 2354 /// Reorders operands of the node to the given mask \p Mask. 2355 void reorderOperands(ArrayRef<int> Mask) { 2356 for (ValueList &Operand : Operands) 2357 reorderScalars(Operand, Mask); 2358 } 2359 2360 /// \returns the \p OpIdx operand of this TreeEntry. 2361 ValueList &getOperand(unsigned OpIdx) { 2362 assert(OpIdx < Operands.size() && "Off bounds"); 2363 return Operands[OpIdx]; 2364 } 2365 2366 /// \returns the \p OpIdx operand of this TreeEntry. 2367 ArrayRef<Value *> getOperand(unsigned OpIdx) const { 2368 assert(OpIdx < Operands.size() && "Off bounds"); 2369 return Operands[OpIdx]; 2370 } 2371 2372 /// \returns the number of operands. 2373 unsigned getNumOperands() const { return Operands.size(); } 2374 2375 /// \return the single \p OpIdx operand. 2376 Value *getSingleOperand(unsigned OpIdx) const { 2377 assert(OpIdx < Operands.size() && "Off bounds"); 2378 assert(!Operands[OpIdx].empty() && "No operand available"); 2379 return Operands[OpIdx][0]; 2380 } 2381 2382 /// Some of the instructions in the list have alternate opcodes. 2383 bool isAltShuffle() const { return MainOp != AltOp; } 2384 2385 bool isOpcodeOrAlt(Instruction *I) const { 2386 unsigned CheckedOpcode = I->getOpcode(); 2387 return (getOpcode() == CheckedOpcode || 2388 getAltOpcode() == CheckedOpcode); 2389 } 2390 2391 /// Chooses the correct key for scheduling data. If \p Op has the same (or 2392 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 2393 /// \p OpValue. 2394 Value *isOneOf(Value *Op) const { 2395 auto *I = dyn_cast<Instruction>(Op); 2396 if (I && isOpcodeOrAlt(I)) 2397 return Op; 2398 return MainOp; 2399 } 2400 2401 void setOperations(const InstructionsState &S) { 2402 MainOp = S.MainOp; 2403 AltOp = S.AltOp; 2404 } 2405 2406 Instruction *getMainOp() const { 2407 return MainOp; 2408 } 2409 2410 Instruction *getAltOp() const { 2411 return AltOp; 2412 } 2413 2414 /// The main/alternate opcodes for the list of instructions. 2415 unsigned getOpcode() const { 2416 return MainOp ? MainOp->getOpcode() : 0; 2417 } 2418 2419 unsigned getAltOpcode() const { 2420 return AltOp ? AltOp->getOpcode() : 0; 2421 } 2422 2423 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 2424 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 2425 int findLaneForValue(Value *V) const { 2426 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2427 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2428 if (!ReorderIndices.empty()) 2429 FoundLane = ReorderIndices[FoundLane]; 2430 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2431 if (!ReuseShuffleIndices.empty()) { 2432 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2433 find(ReuseShuffleIndices, FoundLane)); 2434 } 2435 return FoundLane; 2436 } 2437 2438 #ifndef NDEBUG 2439 /// Debug printer. 2440 LLVM_DUMP_METHOD void dump() const { 2441 dbgs() << Idx << ".\n"; 2442 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 2443 dbgs() << "Operand " << OpI << ":\n"; 2444 for (const Value *V : Operands[OpI]) 2445 dbgs().indent(2) << *V << "\n"; 2446 } 2447 dbgs() << "Scalars: \n"; 2448 for (Value *V : Scalars) 2449 dbgs().indent(2) << *V << "\n"; 2450 dbgs() << "State: "; 2451 switch (State) { 2452 case Vectorize: 2453 dbgs() << "Vectorize\n"; 2454 break; 2455 case ScatterVectorize: 2456 dbgs() << "ScatterVectorize\n"; 2457 break; 2458 case NeedToGather: 2459 dbgs() << "NeedToGather\n"; 2460 break; 2461 } 2462 dbgs() << "MainOp: "; 2463 if (MainOp) 2464 dbgs() << *MainOp << "\n"; 2465 else 2466 dbgs() << "NULL\n"; 2467 dbgs() << "AltOp: "; 2468 if (AltOp) 2469 dbgs() << *AltOp << "\n"; 2470 else 2471 dbgs() << "NULL\n"; 2472 dbgs() << "VectorizedValue: "; 2473 if (VectorizedValue) 2474 dbgs() << *VectorizedValue << "\n"; 2475 else 2476 dbgs() << "NULL\n"; 2477 dbgs() << "ReuseShuffleIndices: "; 2478 if (ReuseShuffleIndices.empty()) 2479 dbgs() << "Empty"; 2480 else 2481 for (int ReuseIdx : ReuseShuffleIndices) 2482 dbgs() << ReuseIdx << ", "; 2483 dbgs() << "\n"; 2484 dbgs() << "ReorderIndices: "; 2485 for (unsigned ReorderIdx : ReorderIndices) 2486 dbgs() << ReorderIdx << ", "; 2487 dbgs() << "\n"; 2488 dbgs() << "UserTreeIndices: "; 2489 for (const auto &EInfo : UserTreeIndices) 2490 dbgs() << EInfo << ", "; 2491 dbgs() << "\n"; 2492 } 2493 #endif 2494 }; 2495 2496 #ifndef NDEBUG 2497 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 2498 InstructionCost VecCost, 2499 InstructionCost ScalarCost) const { 2500 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 2501 dbgs() << "SLP: Costs:\n"; 2502 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 2503 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 2504 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 2505 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 2506 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 2507 } 2508 #endif 2509 2510 /// Create a new VectorizableTree entry. 2511 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 2512 const InstructionsState &S, 2513 const EdgeInfo &UserTreeIdx, 2514 ArrayRef<int> ReuseShuffleIndices = None, 2515 ArrayRef<unsigned> ReorderIndices = None) { 2516 TreeEntry::EntryState EntryState = 2517 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 2518 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 2519 ReuseShuffleIndices, ReorderIndices); 2520 } 2521 2522 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 2523 TreeEntry::EntryState EntryState, 2524 Optional<ScheduleData *> Bundle, 2525 const InstructionsState &S, 2526 const EdgeInfo &UserTreeIdx, 2527 ArrayRef<int> ReuseShuffleIndices = None, 2528 ArrayRef<unsigned> ReorderIndices = None) { 2529 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 2530 (Bundle && EntryState != TreeEntry::NeedToGather)) && 2531 "Need to vectorize gather entry?"); 2532 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 2533 TreeEntry *Last = VectorizableTree.back().get(); 2534 Last->Idx = VectorizableTree.size() - 1; 2535 Last->State = EntryState; 2536 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 2537 ReuseShuffleIndices.end()); 2538 if (ReorderIndices.empty()) { 2539 Last->Scalars.assign(VL.begin(), VL.end()); 2540 Last->setOperations(S); 2541 } else { 2542 // Reorder scalars and build final mask. 2543 Last->Scalars.assign(VL.size(), nullptr); 2544 transform(ReorderIndices, Last->Scalars.begin(), 2545 [VL](unsigned Idx) -> Value * { 2546 if (Idx >= VL.size()) 2547 return UndefValue::get(VL.front()->getType()); 2548 return VL[Idx]; 2549 }); 2550 InstructionsState S = getSameOpcode(Last->Scalars); 2551 Last->setOperations(S); 2552 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 2553 } 2554 if (Last->State != TreeEntry::NeedToGather) { 2555 for (Value *V : VL) { 2556 assert(!getTreeEntry(V) && "Scalar already in tree!"); 2557 ScalarToTreeEntry[V] = Last; 2558 } 2559 // Update the scheduler bundle to point to this TreeEntry. 2560 ScheduleData *BundleMember = Bundle.getValue(); 2561 assert((BundleMember || isa<PHINode>(S.MainOp) || 2562 isVectorLikeInstWithConstOps(S.MainOp) || 2563 doesNotNeedToSchedule(VL)) && 2564 "Bundle and VL out of sync"); 2565 if (BundleMember) { 2566 for (Value *V : VL) { 2567 if (doesNotNeedToBeScheduled(V)) 2568 continue; 2569 assert(BundleMember && "Unexpected end of bundle."); 2570 BundleMember->TE = Last; 2571 BundleMember = BundleMember->NextInBundle; 2572 } 2573 } 2574 assert(!BundleMember && "Bundle and VL out of sync"); 2575 } else { 2576 MustGather.insert(VL.begin(), VL.end()); 2577 } 2578 2579 if (UserTreeIdx.UserTE) 2580 Last->UserTreeIndices.push_back(UserTreeIdx); 2581 2582 return Last; 2583 } 2584 2585 /// -- Vectorization State -- 2586 /// Holds all of the tree entries. 2587 TreeEntry::VecTreeTy VectorizableTree; 2588 2589 #ifndef NDEBUG 2590 /// Debug printer. 2591 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 2592 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 2593 VectorizableTree[Id]->dump(); 2594 dbgs() << "\n"; 2595 } 2596 } 2597 #endif 2598 2599 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2600 2601 const TreeEntry *getTreeEntry(Value *V) const { 2602 return ScalarToTreeEntry.lookup(V); 2603 } 2604 2605 /// Maps a specific scalar to its tree entry. 2606 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2607 2608 /// Maps a value to the proposed vectorizable size. 2609 SmallDenseMap<Value *, unsigned> InstrElementSize; 2610 2611 /// A list of scalars that we found that we need to keep as scalars. 2612 ValueSet MustGather; 2613 2614 /// This POD struct describes one external user in the vectorized tree. 2615 struct ExternalUser { 2616 ExternalUser(Value *S, llvm::User *U, int L) 2617 : Scalar(S), User(U), Lane(L) {} 2618 2619 // Which scalar in our function. 2620 Value *Scalar; 2621 2622 // Which user that uses the scalar. 2623 llvm::User *User; 2624 2625 // Which lane does the scalar belong to. 2626 int Lane; 2627 }; 2628 using UserList = SmallVector<ExternalUser, 16>; 2629 2630 /// Checks if two instructions may access the same memory. 2631 /// 2632 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2633 /// is invariant in the calling loop. 2634 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2635 Instruction *Inst2) { 2636 // First check if the result is already in the cache. 2637 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2638 Optional<bool> &result = AliasCache[key]; 2639 if (result.hasValue()) { 2640 return result.getValue(); 2641 } 2642 bool aliased = true; 2643 if (Loc1.Ptr && isSimple(Inst1)) 2644 aliased = isModOrRefSet(BatchAA.getModRefInfo(Inst2, Loc1)); 2645 // Store the result in the cache. 2646 result = aliased; 2647 return aliased; 2648 } 2649 2650 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2651 2652 /// Cache for alias results. 2653 /// TODO: consider moving this to the AliasAnalysis itself. 2654 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2655 2656 // Cache for pointerMayBeCaptured calls inside AA. This is preserved 2657 // globally through SLP because we don't perform any action which 2658 // invalidates capture results. 2659 BatchAAResults BatchAA; 2660 2661 /// Temporary store for deleted instructions. Instructions will be deleted 2662 /// eventually when the BoUpSLP is destructed. The deferral is required to 2663 /// ensure that there are no incorrect collisions in the AliasCache, which 2664 /// can happen if a new instruction is allocated at the same address as a 2665 /// previously deleted instruction. 2666 DenseSet<Instruction *> DeletedInstructions; 2667 2668 /// Set of the instruction, being analyzed already for reductions. 2669 SmallPtrSet<Instruction *, 16> AnalyzedReductionsRoots; 2670 2671 /// Set of hashes for the list of reduction values already being analyzed. 2672 DenseSet<size_t> AnalyzedReductionVals; 2673 2674 /// A list of values that need to extracted out of the tree. 2675 /// This list holds pairs of (Internal Scalar : External User). External User 2676 /// can be nullptr, it means that this Internal Scalar will be used later, 2677 /// after vectorization. 2678 UserList ExternalUses; 2679 2680 /// Values used only by @llvm.assume calls. 2681 SmallPtrSet<const Value *, 32> EphValues; 2682 2683 /// Holds all of the instructions that we gathered. 2684 SetVector<Instruction *> GatherShuffleSeq; 2685 2686 /// A list of blocks that we are going to CSE. 2687 SetVector<BasicBlock *> CSEBlocks; 2688 2689 /// Contains all scheduling relevant data for an instruction. 2690 /// A ScheduleData either represents a single instruction or a member of an 2691 /// instruction bundle (= a group of instructions which is combined into a 2692 /// vector instruction). 2693 struct ScheduleData { 2694 // The initial value for the dependency counters. It means that the 2695 // dependencies are not calculated yet. 2696 enum { InvalidDeps = -1 }; 2697 2698 ScheduleData() = default; 2699 2700 void init(int BlockSchedulingRegionID, Value *OpVal) { 2701 FirstInBundle = this; 2702 NextInBundle = nullptr; 2703 NextLoadStore = nullptr; 2704 IsScheduled = false; 2705 SchedulingRegionID = BlockSchedulingRegionID; 2706 clearDependencies(); 2707 OpValue = OpVal; 2708 TE = nullptr; 2709 } 2710 2711 /// Verify basic self consistency properties 2712 void verify() { 2713 if (hasValidDependencies()) { 2714 assert(UnscheduledDeps <= Dependencies && "invariant"); 2715 } else { 2716 assert(UnscheduledDeps == Dependencies && "invariant"); 2717 } 2718 2719 if (IsScheduled) { 2720 assert(isSchedulingEntity() && 2721 "unexpected scheduled state"); 2722 for (const ScheduleData *BundleMember = this; BundleMember; 2723 BundleMember = BundleMember->NextInBundle) { 2724 assert(BundleMember->hasValidDependencies() && 2725 BundleMember->UnscheduledDeps == 0 && 2726 "unexpected scheduled state"); 2727 assert((BundleMember == this || !BundleMember->IsScheduled) && 2728 "only bundle is marked scheduled"); 2729 } 2730 } 2731 2732 assert(Inst->getParent() == FirstInBundle->Inst->getParent() && 2733 "all bundle members must be in same basic block"); 2734 } 2735 2736 /// Returns true if the dependency information has been calculated. 2737 /// Note that depenendency validity can vary between instructions within 2738 /// a single bundle. 2739 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2740 2741 /// Returns true for single instructions and for bundle representatives 2742 /// (= the head of a bundle). 2743 bool isSchedulingEntity() const { return FirstInBundle == this; } 2744 2745 /// Returns true if it represents an instruction bundle and not only a 2746 /// single instruction. 2747 bool isPartOfBundle() const { 2748 return NextInBundle != nullptr || FirstInBundle != this || TE; 2749 } 2750 2751 /// Returns true if it is ready for scheduling, i.e. it has no more 2752 /// unscheduled depending instructions/bundles. 2753 bool isReady() const { 2754 assert(isSchedulingEntity() && 2755 "can't consider non-scheduling entity for ready list"); 2756 return unscheduledDepsInBundle() == 0 && !IsScheduled; 2757 } 2758 2759 /// Modifies the number of unscheduled dependencies for this instruction, 2760 /// and returns the number of remaining dependencies for the containing 2761 /// bundle. 2762 int incrementUnscheduledDeps(int Incr) { 2763 assert(hasValidDependencies() && 2764 "increment of unscheduled deps would be meaningless"); 2765 UnscheduledDeps += Incr; 2766 return FirstInBundle->unscheduledDepsInBundle(); 2767 } 2768 2769 /// Sets the number of unscheduled dependencies to the number of 2770 /// dependencies. 2771 void resetUnscheduledDeps() { 2772 UnscheduledDeps = Dependencies; 2773 } 2774 2775 /// Clears all dependency information. 2776 void clearDependencies() { 2777 Dependencies = InvalidDeps; 2778 resetUnscheduledDeps(); 2779 MemoryDependencies.clear(); 2780 ControlDependencies.clear(); 2781 } 2782 2783 int unscheduledDepsInBundle() const { 2784 assert(isSchedulingEntity() && "only meaningful on the bundle"); 2785 int Sum = 0; 2786 for (const ScheduleData *BundleMember = this; BundleMember; 2787 BundleMember = BundleMember->NextInBundle) { 2788 if (BundleMember->UnscheduledDeps == InvalidDeps) 2789 return InvalidDeps; 2790 Sum += BundleMember->UnscheduledDeps; 2791 } 2792 return Sum; 2793 } 2794 2795 void dump(raw_ostream &os) const { 2796 if (!isSchedulingEntity()) { 2797 os << "/ " << *Inst; 2798 } else if (NextInBundle) { 2799 os << '[' << *Inst; 2800 ScheduleData *SD = NextInBundle; 2801 while (SD) { 2802 os << ';' << *SD->Inst; 2803 SD = SD->NextInBundle; 2804 } 2805 os << ']'; 2806 } else { 2807 os << *Inst; 2808 } 2809 } 2810 2811 Instruction *Inst = nullptr; 2812 2813 /// Opcode of the current instruction in the schedule data. 2814 Value *OpValue = nullptr; 2815 2816 /// The TreeEntry that this instruction corresponds to. 2817 TreeEntry *TE = nullptr; 2818 2819 /// Points to the head in an instruction bundle (and always to this for 2820 /// single instructions). 2821 ScheduleData *FirstInBundle = nullptr; 2822 2823 /// Single linked list of all instructions in a bundle. Null if it is a 2824 /// single instruction. 2825 ScheduleData *NextInBundle = nullptr; 2826 2827 /// Single linked list of all memory instructions (e.g. load, store, call) 2828 /// in the block - until the end of the scheduling region. 2829 ScheduleData *NextLoadStore = nullptr; 2830 2831 /// The dependent memory instructions. 2832 /// This list is derived on demand in calculateDependencies(). 2833 SmallVector<ScheduleData *, 4> MemoryDependencies; 2834 2835 /// List of instructions which this instruction could be control dependent 2836 /// on. Allowing such nodes to be scheduled below this one could introduce 2837 /// a runtime fault which didn't exist in the original program. 2838 /// ex: this is a load or udiv following a readonly call which inf loops 2839 SmallVector<ScheduleData *, 4> ControlDependencies; 2840 2841 /// This ScheduleData is in the current scheduling region if this matches 2842 /// the current SchedulingRegionID of BlockScheduling. 2843 int SchedulingRegionID = 0; 2844 2845 /// Used for getting a "good" final ordering of instructions. 2846 int SchedulingPriority = 0; 2847 2848 /// The number of dependencies. Constitutes of the number of users of the 2849 /// instruction plus the number of dependent memory instructions (if any). 2850 /// This value is calculated on demand. 2851 /// If InvalidDeps, the number of dependencies is not calculated yet. 2852 int Dependencies = InvalidDeps; 2853 2854 /// The number of dependencies minus the number of dependencies of scheduled 2855 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2856 /// for scheduling. 2857 /// Note that this is negative as long as Dependencies is not calculated. 2858 int UnscheduledDeps = InvalidDeps; 2859 2860 /// True if this instruction is scheduled (or considered as scheduled in the 2861 /// dry-run). 2862 bool IsScheduled = false; 2863 }; 2864 2865 #ifndef NDEBUG 2866 friend inline raw_ostream &operator<<(raw_ostream &os, 2867 const BoUpSLP::ScheduleData &SD) { 2868 SD.dump(os); 2869 return os; 2870 } 2871 #endif 2872 2873 friend struct GraphTraits<BoUpSLP *>; 2874 friend struct DOTGraphTraits<BoUpSLP *>; 2875 2876 /// Contains all scheduling data for a basic block. 2877 /// It does not schedules instructions, which are not memory read/write 2878 /// instructions and their operands are either constants, or arguments, or 2879 /// phis, or instructions from others blocks, or their users are phis or from 2880 /// the other blocks. The resulting vector instructions can be placed at the 2881 /// beginning of the basic block without scheduling (if operands does not need 2882 /// to be scheduled) or at the end of the block (if users are outside of the 2883 /// block). It allows to save some compile time and memory used by the 2884 /// compiler. 2885 /// ScheduleData is assigned for each instruction in between the boundaries of 2886 /// the tree entry, even for those, which are not part of the graph. It is 2887 /// required to correctly follow the dependencies between the instructions and 2888 /// their correct scheduling. The ScheduleData is not allocated for the 2889 /// instructions, which do not require scheduling, like phis, nodes with 2890 /// extractelements/insertelements only or nodes with instructions, with 2891 /// uses/operands outside of the block. 2892 struct BlockScheduling { 2893 BlockScheduling(BasicBlock *BB) 2894 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2895 2896 void clear() { 2897 ReadyInsts.clear(); 2898 ScheduleStart = nullptr; 2899 ScheduleEnd = nullptr; 2900 FirstLoadStoreInRegion = nullptr; 2901 LastLoadStoreInRegion = nullptr; 2902 RegionHasStackSave = false; 2903 2904 // Reduce the maximum schedule region size by the size of the 2905 // previous scheduling run. 2906 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2907 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2908 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2909 ScheduleRegionSize = 0; 2910 2911 // Make a new scheduling region, i.e. all existing ScheduleData is not 2912 // in the new region yet. 2913 ++SchedulingRegionID; 2914 } 2915 2916 ScheduleData *getScheduleData(Instruction *I) { 2917 if (BB != I->getParent()) 2918 // Avoid lookup if can't possibly be in map. 2919 return nullptr; 2920 ScheduleData *SD = ScheduleDataMap.lookup(I); 2921 if (SD && isInSchedulingRegion(SD)) 2922 return SD; 2923 return nullptr; 2924 } 2925 2926 ScheduleData *getScheduleData(Value *V) { 2927 if (auto *I = dyn_cast<Instruction>(V)) 2928 return getScheduleData(I); 2929 return nullptr; 2930 } 2931 2932 ScheduleData *getScheduleData(Value *V, Value *Key) { 2933 if (V == Key) 2934 return getScheduleData(V); 2935 auto I = ExtraScheduleDataMap.find(V); 2936 if (I != ExtraScheduleDataMap.end()) { 2937 ScheduleData *SD = I->second.lookup(Key); 2938 if (SD && isInSchedulingRegion(SD)) 2939 return SD; 2940 } 2941 return nullptr; 2942 } 2943 2944 bool isInSchedulingRegion(ScheduleData *SD) const { 2945 return SD->SchedulingRegionID == SchedulingRegionID; 2946 } 2947 2948 /// Marks an instruction as scheduled and puts all dependent ready 2949 /// instructions into the ready-list. 2950 template <typename ReadyListType> 2951 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2952 SD->IsScheduled = true; 2953 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2954 2955 for (ScheduleData *BundleMember = SD; BundleMember; 2956 BundleMember = BundleMember->NextInBundle) { 2957 if (BundleMember->Inst != BundleMember->OpValue) 2958 continue; 2959 2960 // Handle the def-use chain dependencies. 2961 2962 // Decrement the unscheduled counter and insert to ready list if ready. 2963 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2964 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2965 if (OpDef && OpDef->hasValidDependencies() && 2966 OpDef->incrementUnscheduledDeps(-1) == 0) { 2967 // There are no more unscheduled dependencies after 2968 // decrementing, so we can put the dependent instruction 2969 // into the ready list. 2970 ScheduleData *DepBundle = OpDef->FirstInBundle; 2971 assert(!DepBundle->IsScheduled && 2972 "already scheduled bundle gets ready"); 2973 ReadyList.insert(DepBundle); 2974 LLVM_DEBUG(dbgs() 2975 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2976 } 2977 }); 2978 }; 2979 2980 // If BundleMember is a vector bundle, its operands may have been 2981 // reordered during buildTree(). We therefore need to get its operands 2982 // through the TreeEntry. 2983 if (TreeEntry *TE = BundleMember->TE) { 2984 // Need to search for the lane since the tree entry can be reordered. 2985 int Lane = std::distance(TE->Scalars.begin(), 2986 find(TE->Scalars, BundleMember->Inst)); 2987 assert(Lane >= 0 && "Lane not set"); 2988 2989 // Since vectorization tree is being built recursively this assertion 2990 // ensures that the tree entry has all operands set before reaching 2991 // this code. Couple of exceptions known at the moment are extracts 2992 // where their second (immediate) operand is not added. Since 2993 // immediates do not affect scheduler behavior this is considered 2994 // okay. 2995 auto *In = BundleMember->Inst; 2996 assert(In && 2997 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2998 In->getNumOperands() == TE->getNumOperands()) && 2999 "Missed TreeEntry operands?"); 3000 (void)In; // fake use to avoid build failure when assertions disabled 3001 3002 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 3003 OpIdx != NumOperands; ++OpIdx) 3004 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 3005 DecrUnsched(I); 3006 } else { 3007 // If BundleMember is a stand-alone instruction, no operand reordering 3008 // has taken place, so we directly access its operands. 3009 for (Use &U : BundleMember->Inst->operands()) 3010 if (auto *I = dyn_cast<Instruction>(U.get())) 3011 DecrUnsched(I); 3012 } 3013 // Handle the memory dependencies. 3014 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 3015 if (MemoryDepSD->hasValidDependencies() && 3016 MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 3017 // There are no more unscheduled dependencies after decrementing, 3018 // so we can put the dependent instruction into the ready list. 3019 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 3020 assert(!DepBundle->IsScheduled && 3021 "already scheduled bundle gets ready"); 3022 ReadyList.insert(DepBundle); 3023 LLVM_DEBUG(dbgs() 3024 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 3025 } 3026 } 3027 // Handle the control dependencies. 3028 for (ScheduleData *DepSD : BundleMember->ControlDependencies) { 3029 if (DepSD->incrementUnscheduledDeps(-1) == 0) { 3030 // There are no more unscheduled dependencies after decrementing, 3031 // so we can put the dependent instruction into the ready list. 3032 ScheduleData *DepBundle = DepSD->FirstInBundle; 3033 assert(!DepBundle->IsScheduled && 3034 "already scheduled bundle gets ready"); 3035 ReadyList.insert(DepBundle); 3036 LLVM_DEBUG(dbgs() 3037 << "SLP: gets ready (ctl): " << *DepBundle << "\n"); 3038 } 3039 } 3040 3041 } 3042 } 3043 3044 /// Verify basic self consistency properties of the data structure. 3045 void verify() { 3046 if (!ScheduleStart) 3047 return; 3048 3049 assert(ScheduleStart->getParent() == ScheduleEnd->getParent() && 3050 ScheduleStart->comesBefore(ScheduleEnd) && 3051 "Not a valid scheduling region?"); 3052 3053 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3054 auto *SD = getScheduleData(I); 3055 if (!SD) 3056 continue; 3057 assert(isInSchedulingRegion(SD) && 3058 "primary schedule data not in window?"); 3059 assert(isInSchedulingRegion(SD->FirstInBundle) && 3060 "entire bundle in window!"); 3061 (void)SD; 3062 doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); }); 3063 } 3064 3065 for (auto *SD : ReadyInsts) { 3066 assert(SD->isSchedulingEntity() && SD->isReady() && 3067 "item in ready list not ready?"); 3068 (void)SD; 3069 } 3070 } 3071 3072 void doForAllOpcodes(Value *V, 3073 function_ref<void(ScheduleData *SD)> Action) { 3074 if (ScheduleData *SD = getScheduleData(V)) 3075 Action(SD); 3076 auto I = ExtraScheduleDataMap.find(V); 3077 if (I != ExtraScheduleDataMap.end()) 3078 for (auto &P : I->second) 3079 if (isInSchedulingRegion(P.second)) 3080 Action(P.second); 3081 } 3082 3083 /// Put all instructions into the ReadyList which are ready for scheduling. 3084 template <typename ReadyListType> 3085 void initialFillReadyList(ReadyListType &ReadyList) { 3086 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3087 doForAllOpcodes(I, [&](ScheduleData *SD) { 3088 if (SD->isSchedulingEntity() && SD->hasValidDependencies() && 3089 SD->isReady()) { 3090 ReadyList.insert(SD); 3091 LLVM_DEBUG(dbgs() 3092 << "SLP: initially in ready list: " << *SD << "\n"); 3093 } 3094 }); 3095 } 3096 } 3097 3098 /// Build a bundle from the ScheduleData nodes corresponding to the 3099 /// scalar instruction for each lane. 3100 ScheduleData *buildBundle(ArrayRef<Value *> VL); 3101 3102 /// Checks if a bundle of instructions can be scheduled, i.e. has no 3103 /// cyclic dependencies. This is only a dry-run, no instructions are 3104 /// actually moved at this stage. 3105 /// \returns the scheduling bundle. The returned Optional value is non-None 3106 /// if \p VL is allowed to be scheduled. 3107 Optional<ScheduleData *> 3108 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 3109 const InstructionsState &S); 3110 3111 /// Un-bundles a group of instructions. 3112 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 3113 3114 /// Allocates schedule data chunk. 3115 ScheduleData *allocateScheduleDataChunks(); 3116 3117 /// Extends the scheduling region so that V is inside the region. 3118 /// \returns true if the region size is within the limit. 3119 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 3120 3121 /// Initialize the ScheduleData structures for new instructions in the 3122 /// scheduling region. 3123 void initScheduleData(Instruction *FromI, Instruction *ToI, 3124 ScheduleData *PrevLoadStore, 3125 ScheduleData *NextLoadStore); 3126 3127 /// Updates the dependency information of a bundle and of all instructions/ 3128 /// bundles which depend on the original bundle. 3129 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 3130 BoUpSLP *SLP); 3131 3132 /// Sets all instruction in the scheduling region to un-scheduled. 3133 void resetSchedule(); 3134 3135 BasicBlock *BB; 3136 3137 /// Simple memory allocation for ScheduleData. 3138 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 3139 3140 /// The size of a ScheduleData array in ScheduleDataChunks. 3141 int ChunkSize; 3142 3143 /// The allocator position in the current chunk, which is the last entry 3144 /// of ScheduleDataChunks. 3145 int ChunkPos; 3146 3147 /// Attaches ScheduleData to Instruction. 3148 /// Note that the mapping survives during all vectorization iterations, i.e. 3149 /// ScheduleData structures are recycled. 3150 DenseMap<Instruction *, ScheduleData *> ScheduleDataMap; 3151 3152 /// Attaches ScheduleData to Instruction with the leading key. 3153 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 3154 ExtraScheduleDataMap; 3155 3156 /// The ready-list for scheduling (only used for the dry-run). 3157 SetVector<ScheduleData *> ReadyInsts; 3158 3159 /// The first instruction of the scheduling region. 3160 Instruction *ScheduleStart = nullptr; 3161 3162 /// The first instruction _after_ the scheduling region. 3163 Instruction *ScheduleEnd = nullptr; 3164 3165 /// The first memory accessing instruction in the scheduling region 3166 /// (can be null). 3167 ScheduleData *FirstLoadStoreInRegion = nullptr; 3168 3169 /// The last memory accessing instruction in the scheduling region 3170 /// (can be null). 3171 ScheduleData *LastLoadStoreInRegion = nullptr; 3172 3173 /// Is there an llvm.stacksave or llvm.stackrestore in the scheduling 3174 /// region? Used to optimize the dependence calculation for the 3175 /// common case where there isn't. 3176 bool RegionHasStackSave = false; 3177 3178 /// The current size of the scheduling region. 3179 int ScheduleRegionSize = 0; 3180 3181 /// The maximum size allowed for the scheduling region. 3182 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 3183 3184 /// The ID of the scheduling region. For a new vectorization iteration this 3185 /// is incremented which "removes" all ScheduleData from the region. 3186 /// Make sure that the initial SchedulingRegionID is greater than the 3187 /// initial SchedulingRegionID in ScheduleData (which is 0). 3188 int SchedulingRegionID = 1; 3189 }; 3190 3191 /// Attaches the BlockScheduling structures to basic blocks. 3192 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 3193 3194 /// Performs the "real" scheduling. Done before vectorization is actually 3195 /// performed in a basic block. 3196 void scheduleBlock(BlockScheduling *BS); 3197 3198 /// List of users to ignore during scheduling and that don't need extracting. 3199 const SmallDenseSet<Value *> *UserIgnoreList = nullptr; 3200 3201 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 3202 /// sorted SmallVectors of unsigned. 3203 struct OrdersTypeDenseMapInfo { 3204 static OrdersType getEmptyKey() { 3205 OrdersType V; 3206 V.push_back(~1U); 3207 return V; 3208 } 3209 3210 static OrdersType getTombstoneKey() { 3211 OrdersType V; 3212 V.push_back(~2U); 3213 return V; 3214 } 3215 3216 static unsigned getHashValue(const OrdersType &V) { 3217 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 3218 } 3219 3220 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 3221 return LHS == RHS; 3222 } 3223 }; 3224 3225 // Analysis and block reference. 3226 Function *F; 3227 ScalarEvolution *SE; 3228 TargetTransformInfo *TTI; 3229 TargetLibraryInfo *TLI; 3230 LoopInfo *LI; 3231 DominatorTree *DT; 3232 AssumptionCache *AC; 3233 DemandedBits *DB; 3234 const DataLayout *DL; 3235 OptimizationRemarkEmitter *ORE; 3236 3237 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 3238 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 3239 3240 /// Instruction builder to construct the vectorized tree. 3241 IRBuilder<> Builder; 3242 3243 /// A map of scalar integer values to the smallest bit width with which they 3244 /// can legally be represented. The values map to (width, signed) pairs, 3245 /// where "width" indicates the minimum bit width and "signed" is True if the 3246 /// value must be signed-extended, rather than zero-extended, back to its 3247 /// original width. 3248 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 3249 }; 3250 3251 } // end namespace slpvectorizer 3252 3253 template <> struct GraphTraits<BoUpSLP *> { 3254 using TreeEntry = BoUpSLP::TreeEntry; 3255 3256 /// NodeRef has to be a pointer per the GraphWriter. 3257 using NodeRef = TreeEntry *; 3258 3259 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 3260 3261 /// Add the VectorizableTree to the index iterator to be able to return 3262 /// TreeEntry pointers. 3263 struct ChildIteratorType 3264 : public iterator_adaptor_base< 3265 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 3266 ContainerTy &VectorizableTree; 3267 3268 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 3269 ContainerTy &VT) 3270 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 3271 3272 NodeRef operator*() { return I->UserTE; } 3273 }; 3274 3275 static NodeRef getEntryNode(BoUpSLP &R) { 3276 return R.VectorizableTree[0].get(); 3277 } 3278 3279 static ChildIteratorType child_begin(NodeRef N) { 3280 return {N->UserTreeIndices.begin(), N->Container}; 3281 } 3282 3283 static ChildIteratorType child_end(NodeRef N) { 3284 return {N->UserTreeIndices.end(), N->Container}; 3285 } 3286 3287 /// For the node iterator we just need to turn the TreeEntry iterator into a 3288 /// TreeEntry* iterator so that it dereferences to NodeRef. 3289 class nodes_iterator { 3290 using ItTy = ContainerTy::iterator; 3291 ItTy It; 3292 3293 public: 3294 nodes_iterator(const ItTy &It2) : It(It2) {} 3295 NodeRef operator*() { return It->get(); } 3296 nodes_iterator operator++() { 3297 ++It; 3298 return *this; 3299 } 3300 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 3301 }; 3302 3303 static nodes_iterator nodes_begin(BoUpSLP *R) { 3304 return nodes_iterator(R->VectorizableTree.begin()); 3305 } 3306 3307 static nodes_iterator nodes_end(BoUpSLP *R) { 3308 return nodes_iterator(R->VectorizableTree.end()); 3309 } 3310 3311 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 3312 }; 3313 3314 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 3315 using TreeEntry = BoUpSLP::TreeEntry; 3316 3317 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3318 3319 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 3320 std::string Str; 3321 raw_string_ostream OS(Str); 3322 if (isSplat(Entry->Scalars)) 3323 OS << "<splat> "; 3324 for (auto V : Entry->Scalars) { 3325 OS << *V; 3326 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 3327 return EU.Scalar == V; 3328 })) 3329 OS << " <extract>"; 3330 OS << "\n"; 3331 } 3332 return Str; 3333 } 3334 3335 static std::string getNodeAttributes(const TreeEntry *Entry, 3336 const BoUpSLP *) { 3337 if (Entry->State == TreeEntry::NeedToGather) 3338 return "color=red"; 3339 return ""; 3340 } 3341 }; 3342 3343 } // end namespace llvm 3344 3345 BoUpSLP::~BoUpSLP() { 3346 SmallVector<WeakTrackingVH> DeadInsts; 3347 for (auto *I : DeletedInstructions) { 3348 for (Use &U : I->operands()) { 3349 auto *Op = dyn_cast<Instruction>(U.get()); 3350 if (Op && !DeletedInstructions.count(Op) && Op->hasOneUser() && 3351 wouldInstructionBeTriviallyDead(Op, TLI)) 3352 DeadInsts.emplace_back(Op); 3353 } 3354 I->dropAllReferences(); 3355 } 3356 for (auto *I : DeletedInstructions) { 3357 assert(I->use_empty() && 3358 "trying to erase instruction with users."); 3359 I->eraseFromParent(); 3360 } 3361 3362 // Cleanup any dead scalar code feeding the vectorized instructions 3363 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI); 3364 3365 #ifdef EXPENSIVE_CHECKS 3366 // If we could guarantee that this call is not extremely slow, we could 3367 // remove the ifdef limitation (see PR47712). 3368 assert(!verifyFunction(*F, &dbgs())); 3369 #endif 3370 } 3371 3372 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 3373 /// contains original mask for the scalars reused in the node. Procedure 3374 /// transform this mask in accordance with the given \p Mask. 3375 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 3376 assert(!Mask.empty() && Reuses.size() == Mask.size() && 3377 "Expected non-empty mask."); 3378 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 3379 Prev.swap(Reuses); 3380 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 3381 if (Mask[I] != UndefMaskElem) 3382 Reuses[Mask[I]] = Prev[I]; 3383 } 3384 3385 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 3386 /// the original order of the scalars. Procedure transforms the provided order 3387 /// in accordance with the given \p Mask. If the resulting \p Order is just an 3388 /// identity order, \p Order is cleared. 3389 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 3390 assert(!Mask.empty() && "Expected non-empty mask."); 3391 SmallVector<int> MaskOrder; 3392 if (Order.empty()) { 3393 MaskOrder.resize(Mask.size()); 3394 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 3395 } else { 3396 inversePermutation(Order, MaskOrder); 3397 } 3398 reorderReuses(MaskOrder, Mask); 3399 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 3400 Order.clear(); 3401 return; 3402 } 3403 Order.assign(Mask.size(), Mask.size()); 3404 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 3405 if (MaskOrder[I] != UndefMaskElem) 3406 Order[MaskOrder[I]] = I; 3407 fixupOrderingIndices(Order); 3408 } 3409 3410 Optional<BoUpSLP::OrdersType> 3411 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 3412 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 3413 unsigned NumScalars = TE.Scalars.size(); 3414 OrdersType CurrentOrder(NumScalars, NumScalars); 3415 SmallVector<int> Positions; 3416 SmallBitVector UsedPositions(NumScalars); 3417 const TreeEntry *STE = nullptr; 3418 // Try to find all gathered scalars that are gets vectorized in other 3419 // vectorize node. Here we can have only one single tree vector node to 3420 // correctly identify order of the gathered scalars. 3421 for (unsigned I = 0; I < NumScalars; ++I) { 3422 Value *V = TE.Scalars[I]; 3423 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 3424 continue; 3425 if (const auto *LocalSTE = getTreeEntry(V)) { 3426 if (!STE) 3427 STE = LocalSTE; 3428 else if (STE != LocalSTE) 3429 // Take the order only from the single vector node. 3430 return None; 3431 unsigned Lane = 3432 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 3433 if (Lane >= NumScalars) 3434 return None; 3435 if (CurrentOrder[Lane] != NumScalars) { 3436 if (Lane != I) 3437 continue; 3438 UsedPositions.reset(CurrentOrder[Lane]); 3439 } 3440 // The partial identity (where only some elements of the gather node are 3441 // in the identity order) is good. 3442 CurrentOrder[Lane] = I; 3443 UsedPositions.set(I); 3444 } 3445 } 3446 // Need to keep the order if we have a vector entry and at least 2 scalars or 3447 // the vectorized entry has just 2 scalars. 3448 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 3449 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 3450 for (unsigned I = 0; I < NumScalars; ++I) 3451 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 3452 return false; 3453 return true; 3454 }; 3455 if (IsIdentityOrder(CurrentOrder)) { 3456 CurrentOrder.clear(); 3457 return CurrentOrder; 3458 } 3459 auto *It = CurrentOrder.begin(); 3460 for (unsigned I = 0; I < NumScalars;) { 3461 if (UsedPositions.test(I)) { 3462 ++I; 3463 continue; 3464 } 3465 if (*It == NumScalars) { 3466 *It = I; 3467 ++I; 3468 } 3469 ++It; 3470 } 3471 return CurrentOrder; 3472 } 3473 return None; 3474 } 3475 3476 namespace { 3477 /// Tracks the state we can represent the loads in the given sequence. 3478 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3479 } // anonymous namespace 3480 3481 /// Checks if the given array of loads can be represented as a vectorized, 3482 /// scatter or just simple gather. 3483 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3484 const TargetTransformInfo &TTI, 3485 const DataLayout &DL, ScalarEvolution &SE, 3486 SmallVectorImpl<unsigned> &Order, 3487 SmallVectorImpl<Value *> &PointerOps) { 3488 // Check that a vectorized load would load the same memory as a scalar 3489 // load. For example, we don't want to vectorize loads that are smaller 3490 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3491 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3492 // from such a struct, we read/write packed bits disagreeing with the 3493 // unvectorized version. 3494 Type *ScalarTy = VL0->getType(); 3495 3496 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3497 return LoadsState::Gather; 3498 3499 // Make sure all loads in the bundle are simple - we can't vectorize 3500 // atomic or volatile loads. 3501 PointerOps.clear(); 3502 PointerOps.resize(VL.size()); 3503 auto *POIter = PointerOps.begin(); 3504 for (Value *V : VL) { 3505 auto *L = cast<LoadInst>(V); 3506 if (!L->isSimple()) 3507 return LoadsState::Gather; 3508 *POIter = L->getPointerOperand(); 3509 ++POIter; 3510 } 3511 3512 Order.clear(); 3513 // Check the order of pointer operands. 3514 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 3515 Value *Ptr0; 3516 Value *PtrN; 3517 if (Order.empty()) { 3518 Ptr0 = PointerOps.front(); 3519 PtrN = PointerOps.back(); 3520 } else { 3521 Ptr0 = PointerOps[Order.front()]; 3522 PtrN = PointerOps[Order.back()]; 3523 } 3524 Optional<int> Diff = 3525 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3526 // Check that the sorted loads are consecutive. 3527 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3528 return LoadsState::Vectorize; 3529 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3530 for (Value *V : VL) 3531 CommonAlignment = 3532 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3533 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 3534 if (TTI.isLegalMaskedGather(VecTy, CommonAlignment) && 3535 !TTI.forceScalarizeMaskedGather(VecTy, CommonAlignment)) 3536 return LoadsState::ScatterVectorize; 3537 } 3538 3539 return LoadsState::Gather; 3540 } 3541 3542 bool clusterSortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy, 3543 const DataLayout &DL, ScalarEvolution &SE, 3544 SmallVectorImpl<unsigned> &SortedIndices) { 3545 assert(llvm::all_of( 3546 VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && 3547 "Expected list of pointer operands."); 3548 // Map from bases to a vector of (Ptr, Offset, OrigIdx), which we insert each 3549 // Ptr into, sort and return the sorted indices with values next to one 3550 // another. 3551 MapVector<Value *, SmallVector<std::tuple<Value *, int, unsigned>>> Bases; 3552 Bases[VL[0]].push_back(std::make_tuple(VL[0], 0U, 0U)); 3553 3554 unsigned Cnt = 1; 3555 for (Value *Ptr : VL.drop_front()) { 3556 bool Found = any_of(Bases, [&](auto &Base) { 3557 Optional<int> Diff = 3558 getPointersDiff(ElemTy, Base.first, ElemTy, Ptr, DL, SE, 3559 /*StrictCheck=*/true); 3560 if (!Diff) 3561 return false; 3562 3563 Base.second.emplace_back(Ptr, *Diff, Cnt++); 3564 return true; 3565 }); 3566 3567 if (!Found) { 3568 // If we haven't found enough to usefully cluster, return early. 3569 if (Bases.size() > VL.size() / 2 - 1) 3570 return false; 3571 3572 // Not found already - add a new Base 3573 Bases[Ptr].emplace_back(Ptr, 0, Cnt++); 3574 } 3575 } 3576 3577 // For each of the bases sort the pointers by Offset and check if any of the 3578 // base become consecutively allocated. 3579 bool AnyConsecutive = false; 3580 for (auto &Base : Bases) { 3581 auto &Vec = Base.second; 3582 if (Vec.size() > 1) { 3583 llvm::stable_sort(Vec, [](const std::tuple<Value *, int, unsigned> &X, 3584 const std::tuple<Value *, int, unsigned> &Y) { 3585 return std::get<1>(X) < std::get<1>(Y); 3586 }); 3587 int InitialOffset = std::get<1>(Vec[0]); 3588 AnyConsecutive |= all_of(enumerate(Vec), [InitialOffset](auto &P) { 3589 return std::get<1>(P.value()) == int(P.index()) + InitialOffset; 3590 }); 3591 } 3592 } 3593 3594 // Fill SortedIndices array only if it looks worth-while to sort the ptrs. 3595 SortedIndices.clear(); 3596 if (!AnyConsecutive) 3597 return false; 3598 3599 for (auto &Base : Bases) { 3600 for (auto &T : Base.second) 3601 SortedIndices.push_back(std::get<2>(T)); 3602 } 3603 3604 assert(SortedIndices.size() == VL.size() && 3605 "Expected SortedIndices to be the size of VL"); 3606 return true; 3607 } 3608 3609 Optional<BoUpSLP::OrdersType> 3610 BoUpSLP::findPartiallyOrderedLoads(const BoUpSLP::TreeEntry &TE) { 3611 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 3612 Type *ScalarTy = TE.Scalars[0]->getType(); 3613 3614 SmallVector<Value *> Ptrs; 3615 Ptrs.reserve(TE.Scalars.size()); 3616 for (Value *V : TE.Scalars) { 3617 auto *L = dyn_cast<LoadInst>(V); 3618 if (!L || !L->isSimple()) 3619 return None; 3620 Ptrs.push_back(L->getPointerOperand()); 3621 } 3622 3623 BoUpSLP::OrdersType Order; 3624 if (clusterSortPtrAccesses(Ptrs, ScalarTy, *DL, *SE, Order)) 3625 return Order; 3626 return None; 3627 } 3628 3629 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE, 3630 bool TopToBottom) { 3631 // No need to reorder if need to shuffle reuses, still need to shuffle the 3632 // node. 3633 if (!TE.ReuseShuffleIndices.empty()) 3634 return None; 3635 if (TE.State == TreeEntry::Vectorize && 3636 (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) || 3637 (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) && 3638 !TE.isAltShuffle()) 3639 return TE.ReorderIndices; 3640 if (TE.State == TreeEntry::NeedToGather) { 3641 // TODO: add analysis of other gather nodes with extractelement 3642 // instructions and other values/instructions, not only undefs. 3643 if (((TE.getOpcode() == Instruction::ExtractElement && 3644 !TE.isAltShuffle()) || 3645 (all_of(TE.Scalars, 3646 [](Value *V) { 3647 return isa<UndefValue, ExtractElementInst>(V); 3648 }) && 3649 any_of(TE.Scalars, 3650 [](Value *V) { return isa<ExtractElementInst>(V); }))) && 3651 all_of(TE.Scalars, 3652 [](Value *V) { 3653 auto *EE = dyn_cast<ExtractElementInst>(V); 3654 return !EE || isa<FixedVectorType>(EE->getVectorOperandType()); 3655 }) && 3656 allSameType(TE.Scalars)) { 3657 // Check that gather of extractelements can be represented as 3658 // just a shuffle of a single vector. 3659 OrdersType CurrentOrder; 3660 bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder); 3661 if (Reuse || !CurrentOrder.empty()) { 3662 if (!CurrentOrder.empty()) 3663 fixupOrderingIndices(CurrentOrder); 3664 return CurrentOrder; 3665 } 3666 } 3667 if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE)) 3668 return CurrentOrder; 3669 if (TE.Scalars.size() >= 4) 3670 if (Optional<OrdersType> Order = findPartiallyOrderedLoads(TE)) 3671 return Order; 3672 } 3673 return None; 3674 } 3675 3676 void BoUpSLP::reorderTopToBottom() { 3677 // Maps VF to the graph nodes. 3678 DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries; 3679 // ExtractElement gather nodes which can be vectorized and need to handle 3680 // their ordering. 3681 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3682 3683 // Maps a TreeEntry to the reorder indices of external users. 3684 DenseMap<const TreeEntry *, SmallVector<OrdersType, 1>> 3685 ExternalUserReorderMap; 3686 // Find all reorderable nodes with the given VF. 3687 // Currently the are vectorized stores,loads,extracts + some gathering of 3688 // extracts. 3689 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders, 3690 &ExternalUserReorderMap]( 3691 const std::unique_ptr<TreeEntry> &TE) { 3692 // Look for external users that will probably be vectorized. 3693 SmallVector<OrdersType, 1> ExternalUserReorderIndices = 3694 findExternalStoreUsersReorderIndices(TE.get()); 3695 if (!ExternalUserReorderIndices.empty()) { 3696 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3697 ExternalUserReorderMap.try_emplace(TE.get(), 3698 std::move(ExternalUserReorderIndices)); 3699 } 3700 3701 if (Optional<OrdersType> CurrentOrder = 3702 getReorderingData(*TE, /*TopToBottom=*/true)) { 3703 // Do not include ordering for nodes used in the alt opcode vectorization, 3704 // better to reorder them during bottom-to-top stage. If follow the order 3705 // here, it causes reordering of the whole graph though actually it is 3706 // profitable just to reorder the subgraph that starts from the alternate 3707 // opcode vectorization node. Such nodes already end-up with the shuffle 3708 // instruction and it is just enough to change this shuffle rather than 3709 // rotate the scalars for the whole graph. 3710 unsigned Cnt = 0; 3711 const TreeEntry *UserTE = TE.get(); 3712 while (UserTE && Cnt < RecursionMaxDepth) { 3713 if (UserTE->UserTreeIndices.size() != 1) 3714 break; 3715 if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) { 3716 return EI.UserTE->State == TreeEntry::Vectorize && 3717 EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0; 3718 })) 3719 return; 3720 if (UserTE->UserTreeIndices.empty()) 3721 UserTE = nullptr; 3722 else 3723 UserTE = UserTE->UserTreeIndices.back().UserTE; 3724 ++Cnt; 3725 } 3726 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3727 if (TE->State != TreeEntry::Vectorize) 3728 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3729 } 3730 }); 3731 3732 // Reorder the graph nodes according to their vectorization factor. 3733 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 3734 VF /= 2) { 3735 auto It = VFToOrderedEntries.find(VF); 3736 if (It == VFToOrderedEntries.end()) 3737 continue; 3738 // Try to find the most profitable order. We just are looking for the most 3739 // used order and reorder scalar elements in the nodes according to this 3740 // mostly used order. 3741 ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef(); 3742 // All operands are reordered and used only in this node - propagate the 3743 // most used order to the user node. 3744 MapVector<OrdersType, unsigned, 3745 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3746 OrdersUses; 3747 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3748 for (const TreeEntry *OpTE : OrderedEntries) { 3749 // No need to reorder this nodes, still need to extend and to use shuffle, 3750 // just need to merge reordering shuffle and the reuse shuffle. 3751 if (!OpTE->ReuseShuffleIndices.empty()) 3752 continue; 3753 // Count number of orders uses. 3754 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3755 if (OpTE->State == TreeEntry::NeedToGather) { 3756 auto It = GathersToOrders.find(OpTE); 3757 if (It != GathersToOrders.end()) 3758 return It->second; 3759 } 3760 return OpTE->ReorderIndices; 3761 }(); 3762 // First consider the order of the external scalar users. 3763 auto It = ExternalUserReorderMap.find(OpTE); 3764 if (It != ExternalUserReorderMap.end()) { 3765 const auto &ExternalUserReorderIndices = It->second; 3766 for (const OrdersType &ExtOrder : ExternalUserReorderIndices) 3767 ++OrdersUses.insert(std::make_pair(ExtOrder, 0)).first->second; 3768 // No other useful reorder data in this entry. 3769 if (Order.empty()) 3770 continue; 3771 } 3772 // Stores actually store the mask, not the order, need to invert. 3773 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3774 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3775 SmallVector<int> Mask; 3776 inversePermutation(Order, Mask); 3777 unsigned E = Order.size(); 3778 OrdersType CurrentOrder(E, E); 3779 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3780 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3781 }); 3782 fixupOrderingIndices(CurrentOrder); 3783 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3784 } else { 3785 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3786 } 3787 } 3788 // Set order of the user node. 3789 if (OrdersUses.empty()) 3790 continue; 3791 // Choose the most used order. 3792 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3793 unsigned Cnt = OrdersUses.front().second; 3794 for (const auto &Pair : drop_begin(OrdersUses)) { 3795 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3796 BestOrder = Pair.first; 3797 Cnt = Pair.second; 3798 } 3799 } 3800 // Set order of the user node. 3801 if (BestOrder.empty()) 3802 continue; 3803 SmallVector<int> Mask; 3804 inversePermutation(BestOrder, Mask); 3805 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3806 unsigned E = BestOrder.size(); 3807 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3808 return I < E ? static_cast<int>(I) : UndefMaskElem; 3809 }); 3810 // Do an actual reordering, if profitable. 3811 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 3812 // Just do the reordering for the nodes with the given VF. 3813 if (TE->Scalars.size() != VF) { 3814 if (TE->ReuseShuffleIndices.size() == VF) { 3815 // Need to reorder the reuses masks of the operands with smaller VF to 3816 // be able to find the match between the graph nodes and scalar 3817 // operands of the given node during vectorization/cost estimation. 3818 assert(all_of(TE->UserTreeIndices, 3819 [VF, &TE](const EdgeInfo &EI) { 3820 return EI.UserTE->Scalars.size() == VF || 3821 EI.UserTE->Scalars.size() == 3822 TE->Scalars.size(); 3823 }) && 3824 "All users must be of VF size."); 3825 // Update ordering of the operands with the smaller VF than the given 3826 // one. 3827 reorderReuses(TE->ReuseShuffleIndices, Mask); 3828 } 3829 continue; 3830 } 3831 if (TE->State == TreeEntry::Vectorize && 3832 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 3833 InsertElementInst>(TE->getMainOp()) && 3834 !TE->isAltShuffle()) { 3835 // Build correct orders for extract{element,value}, loads and 3836 // stores. 3837 reorderOrder(TE->ReorderIndices, Mask); 3838 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 3839 TE->reorderOperands(Mask); 3840 } else { 3841 // Reorder the node and its operands. 3842 TE->reorderOperands(Mask); 3843 assert(TE->ReorderIndices.empty() && 3844 "Expected empty reorder sequence."); 3845 reorderScalars(TE->Scalars, Mask); 3846 } 3847 if (!TE->ReuseShuffleIndices.empty()) { 3848 // Apply reversed order to keep the original ordering of the reused 3849 // elements to avoid extra reorder indices shuffling. 3850 OrdersType CurrentOrder; 3851 reorderOrder(CurrentOrder, MaskOrder); 3852 SmallVector<int> NewReuses; 3853 inversePermutation(CurrentOrder, NewReuses); 3854 addMask(NewReuses, TE->ReuseShuffleIndices); 3855 TE->ReuseShuffleIndices.swap(NewReuses); 3856 } 3857 } 3858 } 3859 } 3860 3861 bool BoUpSLP::canReorderOperands( 3862 TreeEntry *UserTE, SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 3863 ArrayRef<TreeEntry *> ReorderableGathers, 3864 SmallVectorImpl<TreeEntry *> &GatherOps) { 3865 for (unsigned I = 0, E = UserTE->getNumOperands(); I < E; ++I) { 3866 if (any_of(Edges, [I](const std::pair<unsigned, TreeEntry *> &OpData) { 3867 return OpData.first == I && 3868 OpData.second->State == TreeEntry::Vectorize; 3869 })) 3870 continue; 3871 if (TreeEntry *TE = getVectorizedOperand(UserTE, I)) { 3872 // Do not reorder if operand node is used by many user nodes. 3873 if (any_of(TE->UserTreeIndices, 3874 [UserTE](const EdgeInfo &EI) { return EI.UserTE != UserTE; })) 3875 return false; 3876 // Add the node to the list of the ordered nodes with the identity 3877 // order. 3878 Edges.emplace_back(I, TE); 3879 // Add ScatterVectorize nodes to the list of operands, where just 3880 // reordering of the scalars is required. Similar to the gathers, so 3881 // simply add to the list of gathered ops. 3882 if (TE->State != TreeEntry::Vectorize) 3883 GatherOps.push_back(TE); 3884 continue; 3885 } 3886 ArrayRef<Value *> VL = UserTE->getOperand(I); 3887 TreeEntry *Gather = nullptr; 3888 if (count_if(ReorderableGathers, [VL, &Gather](TreeEntry *TE) { 3889 assert(TE->State != TreeEntry::Vectorize && 3890 "Only non-vectorized nodes are expected."); 3891 if (TE->isSame(VL)) { 3892 Gather = TE; 3893 return true; 3894 } 3895 return false; 3896 }) > 1) 3897 return false; 3898 if (Gather) 3899 GatherOps.push_back(Gather); 3900 } 3901 return true; 3902 } 3903 3904 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 3905 SetVector<TreeEntry *> OrderedEntries; 3906 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3907 // Find all reorderable leaf nodes with the given VF. 3908 // Currently the are vectorized loads,extracts without alternate operands + 3909 // some gathering of extracts. 3910 SmallVector<TreeEntry *> NonVectorized; 3911 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 3912 &NonVectorized]( 3913 const std::unique_ptr<TreeEntry> &TE) { 3914 if (TE->State != TreeEntry::Vectorize) 3915 NonVectorized.push_back(TE.get()); 3916 if (Optional<OrdersType> CurrentOrder = 3917 getReorderingData(*TE, /*TopToBottom=*/false)) { 3918 OrderedEntries.insert(TE.get()); 3919 if (TE->State != TreeEntry::Vectorize) 3920 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3921 } 3922 }); 3923 3924 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3925 // I.e., if the node has operands, that are reordered, try to make at least 3926 // one operand order in the natural order and reorder others + reorder the 3927 // user node itself. 3928 SmallPtrSet<const TreeEntry *, 4> Visited; 3929 while (!OrderedEntries.empty()) { 3930 // 1. Filter out only reordered nodes. 3931 // 2. If the entry has multiple uses - skip it and jump to the next node. 3932 DenseMap<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3933 SmallVector<TreeEntry *> Filtered; 3934 for (TreeEntry *TE : OrderedEntries) { 3935 if (!(TE->State == TreeEntry::Vectorize || 3936 (TE->State == TreeEntry::NeedToGather && 3937 GathersToOrders.count(TE))) || 3938 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3939 !all_of(drop_begin(TE->UserTreeIndices), 3940 [TE](const EdgeInfo &EI) { 3941 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3942 }) || 3943 !Visited.insert(TE).second) { 3944 Filtered.push_back(TE); 3945 continue; 3946 } 3947 // Build a map between user nodes and their operands order to speedup 3948 // search. The graph currently does not provide this dependency directly. 3949 for (EdgeInfo &EI : TE->UserTreeIndices) { 3950 TreeEntry *UserTE = EI.UserTE; 3951 auto It = Users.find(UserTE); 3952 if (It == Users.end()) 3953 It = Users.insert({UserTE, {}}).first; 3954 It->second.emplace_back(EI.EdgeIdx, TE); 3955 } 3956 } 3957 // Erase filtered entries. 3958 for_each(Filtered, 3959 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3960 SmallVector< 3961 std::pair<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>>> 3962 UsersVec(Users.begin(), Users.end()); 3963 sort(UsersVec, [](const auto &Data1, const auto &Data2) { 3964 return Data1.first->Idx > Data2.first->Idx; 3965 }); 3966 for (auto &Data : UsersVec) { 3967 // Check that operands are used only in the User node. 3968 SmallVector<TreeEntry *> GatherOps; 3969 if (!canReorderOperands(Data.first, Data.second, NonVectorized, 3970 GatherOps)) { 3971 for_each(Data.second, 3972 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3973 OrderedEntries.remove(Op.second); 3974 }); 3975 continue; 3976 } 3977 // All operands are reordered and used only in this node - propagate the 3978 // most used order to the user node. 3979 MapVector<OrdersType, unsigned, 3980 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3981 OrdersUses; 3982 // Do the analysis for each tree entry only once, otherwise the order of 3983 // the same node my be considered several times, though might be not 3984 // profitable. 3985 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3986 SmallPtrSet<const TreeEntry *, 4> VisitedUsers; 3987 for (const auto &Op : Data.second) { 3988 TreeEntry *OpTE = Op.second; 3989 if (!VisitedOps.insert(OpTE).second) 3990 continue; 3991 if (!OpTE->ReuseShuffleIndices.empty() || 3992 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3993 continue; 3994 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3995 if (OpTE->State == TreeEntry::NeedToGather) 3996 return GathersToOrders.find(OpTE)->second; 3997 return OpTE->ReorderIndices; 3998 }(); 3999 unsigned NumOps = count_if( 4000 Data.second, [OpTE](const std::pair<unsigned, TreeEntry *> &P) { 4001 return P.second == OpTE; 4002 }); 4003 // Stores actually store the mask, not the order, need to invert. 4004 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 4005 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 4006 SmallVector<int> Mask; 4007 inversePermutation(Order, Mask); 4008 unsigned E = Order.size(); 4009 OrdersType CurrentOrder(E, E); 4010 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 4011 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 4012 }); 4013 fixupOrderingIndices(CurrentOrder); 4014 OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second += 4015 NumOps; 4016 } else { 4017 OrdersUses.insert(std::make_pair(Order, 0)).first->second += NumOps; 4018 } 4019 auto Res = OrdersUses.insert(std::make_pair(OrdersType(), 0)); 4020 const auto &&AllowsReordering = [IgnoreReorder, &GathersToOrders]( 4021 const TreeEntry *TE) { 4022 if (!TE->ReorderIndices.empty() || !TE->ReuseShuffleIndices.empty() || 4023 (TE->State == TreeEntry::Vectorize && TE->isAltShuffle()) || 4024 (IgnoreReorder && TE->Idx == 0)) 4025 return true; 4026 if (TE->State == TreeEntry::NeedToGather) { 4027 auto It = GathersToOrders.find(TE); 4028 if (It != GathersToOrders.end()) 4029 return !It->second.empty(); 4030 return true; 4031 } 4032 return false; 4033 }; 4034 for (const EdgeInfo &EI : OpTE->UserTreeIndices) { 4035 TreeEntry *UserTE = EI.UserTE; 4036 if (!VisitedUsers.insert(UserTE).second) 4037 continue; 4038 // May reorder user node if it requires reordering, has reused 4039 // scalars, is an alternate op vectorize node or its op nodes require 4040 // reordering. 4041 if (AllowsReordering(UserTE)) 4042 continue; 4043 // Check if users allow reordering. 4044 // Currently look up just 1 level of operands to avoid increase of 4045 // the compile time. 4046 // Profitable to reorder if definitely more operands allow 4047 // reordering rather than those with natural order. 4048 ArrayRef<std::pair<unsigned, TreeEntry *>> Ops = Users[UserTE]; 4049 if (static_cast<unsigned>(count_if( 4050 Ops, [UserTE, &AllowsReordering]( 4051 const std::pair<unsigned, TreeEntry *> &Op) { 4052 return AllowsReordering(Op.second) && 4053 all_of(Op.second->UserTreeIndices, 4054 [UserTE](const EdgeInfo &EI) { 4055 return EI.UserTE == UserTE; 4056 }); 4057 })) <= Ops.size() / 2) 4058 ++Res.first->second; 4059 } 4060 } 4061 // If no orders - skip current nodes and jump to the next one, if any. 4062 if (OrdersUses.empty()) { 4063 for_each(Data.second, 4064 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 4065 OrderedEntries.remove(Op.second); 4066 }); 4067 continue; 4068 } 4069 // Choose the best order. 4070 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 4071 unsigned Cnt = OrdersUses.front().second; 4072 for (const auto &Pair : drop_begin(OrdersUses)) { 4073 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 4074 BestOrder = Pair.first; 4075 Cnt = Pair.second; 4076 } 4077 } 4078 // Set order of the user node (reordering of operands and user nodes). 4079 if (BestOrder.empty()) { 4080 for_each(Data.second, 4081 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 4082 OrderedEntries.remove(Op.second); 4083 }); 4084 continue; 4085 } 4086 // Erase operands from OrderedEntries list and adjust their orders. 4087 VisitedOps.clear(); 4088 SmallVector<int> Mask; 4089 inversePermutation(BestOrder, Mask); 4090 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 4091 unsigned E = BestOrder.size(); 4092 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 4093 return I < E ? static_cast<int>(I) : UndefMaskElem; 4094 }); 4095 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 4096 TreeEntry *TE = Op.second; 4097 OrderedEntries.remove(TE); 4098 if (!VisitedOps.insert(TE).second) 4099 continue; 4100 if (TE->ReuseShuffleIndices.size() == BestOrder.size()) { 4101 // Just reorder reuses indices. 4102 reorderReuses(TE->ReuseShuffleIndices, Mask); 4103 continue; 4104 } 4105 // Gathers are processed separately. 4106 if (TE->State != TreeEntry::Vectorize) 4107 continue; 4108 assert((BestOrder.size() == TE->ReorderIndices.size() || 4109 TE->ReorderIndices.empty()) && 4110 "Non-matching sizes of user/operand entries."); 4111 reorderOrder(TE->ReorderIndices, Mask); 4112 } 4113 // For gathers just need to reorder its scalars. 4114 for (TreeEntry *Gather : GatherOps) { 4115 assert(Gather->ReorderIndices.empty() && 4116 "Unexpected reordering of gathers."); 4117 if (!Gather->ReuseShuffleIndices.empty()) { 4118 // Just reorder reuses indices. 4119 reorderReuses(Gather->ReuseShuffleIndices, Mask); 4120 continue; 4121 } 4122 reorderScalars(Gather->Scalars, Mask); 4123 OrderedEntries.remove(Gather); 4124 } 4125 // Reorder operands of the user node and set the ordering for the user 4126 // node itself. 4127 if (Data.first->State != TreeEntry::Vectorize || 4128 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 4129 Data.first->getMainOp()) || 4130 Data.first->isAltShuffle()) 4131 Data.first->reorderOperands(Mask); 4132 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 4133 Data.first->isAltShuffle()) { 4134 reorderScalars(Data.first->Scalars, Mask); 4135 reorderOrder(Data.first->ReorderIndices, MaskOrder); 4136 if (Data.first->ReuseShuffleIndices.empty() && 4137 !Data.first->ReorderIndices.empty() && 4138 !Data.first->isAltShuffle()) { 4139 // Insert user node to the list to try to sink reordering deeper in 4140 // the graph. 4141 OrderedEntries.insert(Data.first); 4142 } 4143 } else { 4144 reorderOrder(Data.first->ReorderIndices, Mask); 4145 } 4146 } 4147 } 4148 // If the reordering is unnecessary, just remove the reorder. 4149 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 4150 VectorizableTree.front()->ReuseShuffleIndices.empty()) 4151 VectorizableTree.front()->ReorderIndices.clear(); 4152 } 4153 4154 void BoUpSLP::buildExternalUses( 4155 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 4156 // Collect the values that we need to extract from the tree. 4157 for (auto &TEPtr : VectorizableTree) { 4158 TreeEntry *Entry = TEPtr.get(); 4159 4160 // No need to handle users of gathered values. 4161 if (Entry->State == TreeEntry::NeedToGather) 4162 continue; 4163 4164 // For each lane: 4165 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 4166 Value *Scalar = Entry->Scalars[Lane]; 4167 int FoundLane = Entry->findLaneForValue(Scalar); 4168 4169 // Check if the scalar is externally used as an extra arg. 4170 auto ExtI = ExternallyUsedValues.find(Scalar); 4171 if (ExtI != ExternallyUsedValues.end()) { 4172 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 4173 << Lane << " from " << *Scalar << ".\n"); 4174 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 4175 } 4176 for (User *U : Scalar->users()) { 4177 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 4178 4179 Instruction *UserInst = dyn_cast<Instruction>(U); 4180 if (!UserInst) 4181 continue; 4182 4183 if (isDeleted(UserInst)) 4184 continue; 4185 4186 // Skip in-tree scalars that become vectors 4187 if (TreeEntry *UseEntry = getTreeEntry(U)) { 4188 Value *UseScalar = UseEntry->Scalars[0]; 4189 // Some in-tree scalars will remain as scalar in vectorized 4190 // instructions. If that is the case, the one in Lane 0 will 4191 // be used. 4192 if (UseScalar != U || 4193 UseEntry->State == TreeEntry::ScatterVectorize || 4194 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 4195 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 4196 << ".\n"); 4197 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 4198 continue; 4199 } 4200 } 4201 4202 // Ignore users in the user ignore list. 4203 if (UserIgnoreList && UserIgnoreList->contains(UserInst)) 4204 continue; 4205 4206 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 4207 << Lane << " from " << *Scalar << ".\n"); 4208 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 4209 } 4210 } 4211 } 4212 } 4213 4214 DenseMap<Value *, SmallVector<StoreInst *, 4>> 4215 BoUpSLP::collectUserStores(const BoUpSLP::TreeEntry *TE) const { 4216 DenseMap<Value *, SmallVector<StoreInst *, 4>> PtrToStoresMap; 4217 for (unsigned Lane : seq<unsigned>(0, TE->Scalars.size())) { 4218 Value *V = TE->Scalars[Lane]; 4219 // To save compilation time we don't visit if we have too many users. 4220 static constexpr unsigned UsersLimit = 4; 4221 if (V->hasNUsesOrMore(UsersLimit)) 4222 break; 4223 4224 // Collect stores per pointer object. 4225 for (User *U : V->users()) { 4226 auto *SI = dyn_cast<StoreInst>(U); 4227 if (SI == nullptr || !SI->isSimple() || 4228 !isValidElementType(SI->getValueOperand()->getType())) 4229 continue; 4230 // Skip entry if already 4231 if (getTreeEntry(U)) 4232 continue; 4233 4234 Value *Ptr = getUnderlyingObject(SI->getPointerOperand()); 4235 auto &StoresVec = PtrToStoresMap[Ptr]; 4236 // For now just keep one store per pointer object per lane. 4237 // TODO: Extend this to support multiple stores per pointer per lane 4238 if (StoresVec.size() > Lane) 4239 continue; 4240 // Skip if in different BBs. 4241 if (!StoresVec.empty() && 4242 SI->getParent() != StoresVec.back()->getParent()) 4243 continue; 4244 // Make sure that the stores are of the same type. 4245 if (!StoresVec.empty() && 4246 SI->getValueOperand()->getType() != 4247 StoresVec.back()->getValueOperand()->getType()) 4248 continue; 4249 StoresVec.push_back(SI); 4250 } 4251 } 4252 return PtrToStoresMap; 4253 } 4254 4255 bool BoUpSLP::CanFormVector(const SmallVector<StoreInst *, 4> &StoresVec, 4256 OrdersType &ReorderIndices) const { 4257 // We check whether the stores in StoreVec can form a vector by sorting them 4258 // and checking whether they are consecutive. 4259 4260 // To avoid calling getPointersDiff() while sorting we create a vector of 4261 // pairs {store, offset from first} and sort this instead. 4262 SmallVector<std::pair<StoreInst *, int>, 4> StoreOffsetVec(StoresVec.size()); 4263 StoreInst *S0 = StoresVec[0]; 4264 StoreOffsetVec[0] = {S0, 0}; 4265 Type *S0Ty = S0->getValueOperand()->getType(); 4266 Value *S0Ptr = S0->getPointerOperand(); 4267 for (unsigned Idx : seq<unsigned>(1, StoresVec.size())) { 4268 StoreInst *SI = StoresVec[Idx]; 4269 Optional<int> Diff = 4270 getPointersDiff(S0Ty, S0Ptr, SI->getValueOperand()->getType(), 4271 SI->getPointerOperand(), *DL, *SE, 4272 /*StrictCheck=*/true); 4273 // We failed to compare the pointers so just abandon this StoresVec. 4274 if (!Diff) 4275 return false; 4276 StoreOffsetVec[Idx] = {StoresVec[Idx], *Diff}; 4277 } 4278 4279 // Sort the vector based on the pointers. We create a copy because we may 4280 // need the original later for calculating the reorder (shuffle) indices. 4281 stable_sort(StoreOffsetVec, [](const std::pair<StoreInst *, int> &Pair1, 4282 const std::pair<StoreInst *, int> &Pair2) { 4283 int Offset1 = Pair1.second; 4284 int Offset2 = Pair2.second; 4285 return Offset1 < Offset2; 4286 }); 4287 4288 // Check if the stores are consecutive by checking if their difference is 1. 4289 for (unsigned Idx : seq<unsigned>(1, StoreOffsetVec.size())) 4290 if (StoreOffsetVec[Idx].second != StoreOffsetVec[Idx-1].second + 1) 4291 return false; 4292 4293 // Calculate the shuffle indices according to their offset against the sorted 4294 // StoreOffsetVec. 4295 ReorderIndices.reserve(StoresVec.size()); 4296 for (StoreInst *SI : StoresVec) { 4297 unsigned Idx = find_if(StoreOffsetVec, 4298 [SI](const std::pair<StoreInst *, int> &Pair) { 4299 return Pair.first == SI; 4300 }) - 4301 StoreOffsetVec.begin(); 4302 ReorderIndices.push_back(Idx); 4303 } 4304 // Identity order (e.g., {0,1,2,3}) is modeled as an empty OrdersType in 4305 // reorderTopToBottom() and reorderBottomToTop(), so we are following the 4306 // same convention here. 4307 auto IsIdentityOrder = [](const OrdersType &Order) { 4308 for (unsigned Idx : seq<unsigned>(0, Order.size())) 4309 if (Idx != Order[Idx]) 4310 return false; 4311 return true; 4312 }; 4313 if (IsIdentityOrder(ReorderIndices)) 4314 ReorderIndices.clear(); 4315 4316 return true; 4317 } 4318 4319 #ifndef NDEBUG 4320 LLVM_DUMP_METHOD static void dumpOrder(const BoUpSLP::OrdersType &Order) { 4321 for (unsigned Idx : Order) 4322 dbgs() << Idx << ", "; 4323 dbgs() << "\n"; 4324 } 4325 #endif 4326 4327 SmallVector<BoUpSLP::OrdersType, 1> 4328 BoUpSLP::findExternalStoreUsersReorderIndices(TreeEntry *TE) const { 4329 unsigned NumLanes = TE->Scalars.size(); 4330 4331 DenseMap<Value *, SmallVector<StoreInst *, 4>> PtrToStoresMap = 4332 collectUserStores(TE); 4333 4334 // Holds the reorder indices for each candidate store vector that is a user of 4335 // the current TreeEntry. 4336 SmallVector<OrdersType, 1> ExternalReorderIndices; 4337 4338 // Now inspect the stores collected per pointer and look for vectorization 4339 // candidates. For each candidate calculate the reorder index vector and push 4340 // it into `ExternalReorderIndices` 4341 for (const auto &Pair : PtrToStoresMap) { 4342 auto &StoresVec = Pair.second; 4343 // If we have fewer than NumLanes stores, then we can't form a vector. 4344 if (StoresVec.size() != NumLanes) 4345 continue; 4346 4347 // If the stores are not consecutive then abandon this StoresVec. 4348 OrdersType ReorderIndices; 4349 if (!CanFormVector(StoresVec, ReorderIndices)) 4350 continue; 4351 4352 // We now know that the scalars in StoresVec can form a vector instruction, 4353 // so set the reorder indices. 4354 ExternalReorderIndices.push_back(ReorderIndices); 4355 } 4356 return ExternalReorderIndices; 4357 } 4358 4359 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 4360 const SmallDenseSet<Value *> &UserIgnoreLst) { 4361 deleteTree(); 4362 UserIgnoreList = &UserIgnoreLst; 4363 if (!allSameType(Roots)) 4364 return; 4365 buildTree_rec(Roots, 0, EdgeInfo()); 4366 } 4367 4368 void BoUpSLP::buildTree(ArrayRef<Value *> Roots) { 4369 deleteTree(); 4370 if (!allSameType(Roots)) 4371 return; 4372 buildTree_rec(Roots, 0, EdgeInfo()); 4373 } 4374 4375 /// \return true if the specified list of values has only one instruction that 4376 /// requires scheduling, false otherwise. 4377 #ifndef NDEBUG 4378 static bool needToScheduleSingleInstruction(ArrayRef<Value *> VL) { 4379 Value *NeedsScheduling = nullptr; 4380 for (Value *V : VL) { 4381 if (doesNotNeedToBeScheduled(V)) 4382 continue; 4383 if (!NeedsScheduling) { 4384 NeedsScheduling = V; 4385 continue; 4386 } 4387 return false; 4388 } 4389 return NeedsScheduling; 4390 } 4391 #endif 4392 4393 /// Generates key/subkey pair for the given value to provide effective sorting 4394 /// of the values and better detection of the vectorizable values sequences. The 4395 /// keys/subkeys can be used for better sorting of the values themselves (keys) 4396 /// and in values subgroups (subkeys). 4397 static std::pair<size_t, size_t> generateKeySubkey( 4398 Value *V, const TargetLibraryInfo *TLI, 4399 function_ref<hash_code(size_t, LoadInst *)> LoadsSubkeyGenerator, 4400 bool AllowAlternate) { 4401 hash_code Key = hash_value(V->getValueID() + 2); 4402 hash_code SubKey = hash_value(0); 4403 // Sort the loads by the distance between the pointers. 4404 if (auto *LI = dyn_cast<LoadInst>(V)) { 4405 Key = hash_combine(hash_value(Instruction::Load), Key); 4406 if (LI->isSimple()) 4407 SubKey = hash_value(LoadsSubkeyGenerator(Key, LI)); 4408 else 4409 SubKey = hash_value(LI); 4410 } else if (isVectorLikeInstWithConstOps(V)) { 4411 // Sort extracts by the vector operands. 4412 if (isa<ExtractElementInst, UndefValue>(V)) 4413 Key = hash_value(Value::UndefValueVal + 1); 4414 if (auto *EI = dyn_cast<ExtractElementInst>(V)) { 4415 if (!isUndefVector(EI->getVectorOperand()) && 4416 !isa<UndefValue>(EI->getIndexOperand())) 4417 SubKey = hash_value(EI->getVectorOperand()); 4418 } 4419 } else if (auto *I = dyn_cast<Instruction>(V)) { 4420 // Sort other instructions just by the opcodes except for CMPInst. 4421 // For CMP also sort by the predicate kind. 4422 if ((isa<BinaryOperator>(I) || isa<CastInst>(I)) && 4423 isValidForAlternation(I->getOpcode())) { 4424 if (AllowAlternate) 4425 Key = hash_value(isa<BinaryOperator>(I) ? 1 : 0); 4426 else 4427 Key = hash_combine(hash_value(I->getOpcode()), Key); 4428 SubKey = hash_combine( 4429 hash_value(I->getOpcode()), hash_value(I->getType()), 4430 hash_value(isa<BinaryOperator>(I) 4431 ? I->getType() 4432 : cast<CastInst>(I)->getOperand(0)->getType())); 4433 // For casts, look through the only operand to improve compile time. 4434 if (isa<CastInst>(I)) { 4435 std::pair<size_t, size_t> OpVals = 4436 generateKeySubkey(I->getOperand(0), TLI, LoadsSubkeyGenerator, 4437 /*=AllowAlternate*/ true); 4438 Key = hash_combine(OpVals.first, Key); 4439 SubKey = hash_combine(OpVals.first, SubKey); 4440 } 4441 } else if (auto *CI = dyn_cast<CmpInst>(I)) { 4442 CmpInst::Predicate Pred = CI->getPredicate(); 4443 if (CI->isCommutative()) 4444 Pred = std::min(Pred, CmpInst::getInversePredicate(Pred)); 4445 CmpInst::Predicate SwapPred = CmpInst::getSwappedPredicate(Pred); 4446 SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(Pred), 4447 hash_value(SwapPred), 4448 hash_value(CI->getOperand(0)->getType())); 4449 } else if (auto *Call = dyn_cast<CallInst>(I)) { 4450 Intrinsic::ID ID = getVectorIntrinsicIDForCall(Call, TLI); 4451 if (isTriviallyVectorizable(ID)) { 4452 SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(ID)); 4453 } else if (!VFDatabase(*Call).getMappings(*Call).empty()) { 4454 SubKey = hash_combine(hash_value(I->getOpcode()), 4455 hash_value(Call->getCalledFunction())); 4456 } else { 4457 Key = hash_combine(hash_value(Call), Key); 4458 SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(Call)); 4459 } 4460 for (const CallBase::BundleOpInfo &Op : Call->bundle_op_infos()) 4461 SubKey = hash_combine(hash_value(Op.Begin), hash_value(Op.End), 4462 hash_value(Op.Tag), SubKey); 4463 } else if (auto *Gep = dyn_cast<GetElementPtrInst>(I)) { 4464 if (Gep->getNumOperands() == 2 && isa<ConstantInt>(Gep->getOperand(1))) 4465 SubKey = hash_value(Gep->getPointerOperand()); 4466 else 4467 SubKey = hash_value(Gep); 4468 } else if (BinaryOperator::isIntDivRem(I->getOpcode()) && 4469 !isa<ConstantInt>(I->getOperand(1))) { 4470 // Do not try to vectorize instructions with potentially high cost. 4471 SubKey = hash_value(I); 4472 } else { 4473 SubKey = hash_value(I->getOpcode()); 4474 } 4475 Key = hash_combine(hash_value(I->getParent()), Key); 4476 } 4477 return std::make_pair(Key, SubKey); 4478 } 4479 4480 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 4481 const EdgeInfo &UserTreeIdx) { 4482 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 4483 4484 SmallVector<int> ReuseShuffleIndicies; 4485 SmallVector<Value *> UniqueValues; 4486 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 4487 &UserTreeIdx, 4488 this](const InstructionsState &S) { 4489 // Check that every instruction appears once in this bundle. 4490 DenseMap<Value *, unsigned> UniquePositions; 4491 for (Value *V : VL) { 4492 if (isConstant(V)) { 4493 ReuseShuffleIndicies.emplace_back( 4494 isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size()); 4495 UniqueValues.emplace_back(V); 4496 continue; 4497 } 4498 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 4499 ReuseShuffleIndicies.emplace_back(Res.first->second); 4500 if (Res.second) 4501 UniqueValues.emplace_back(V); 4502 } 4503 size_t NumUniqueScalarValues = UniqueValues.size(); 4504 if (NumUniqueScalarValues == VL.size()) { 4505 ReuseShuffleIndicies.clear(); 4506 } else { 4507 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 4508 if (NumUniqueScalarValues <= 1 || 4509 (UniquePositions.size() == 1 && all_of(UniqueValues, 4510 [](Value *V) { 4511 return isa<UndefValue>(V) || 4512 !isConstant(V); 4513 })) || 4514 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 4515 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 4516 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4517 return false; 4518 } 4519 VL = UniqueValues; 4520 } 4521 return true; 4522 }; 4523 4524 InstructionsState S = getSameOpcode(VL); 4525 if (Depth == RecursionMaxDepth) { 4526 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 4527 if (TryToFindDuplicates(S)) 4528 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4529 ReuseShuffleIndicies); 4530 return; 4531 } 4532 4533 // Don't handle scalable vectors 4534 if (S.getOpcode() == Instruction::ExtractElement && 4535 isa<ScalableVectorType>( 4536 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 4537 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 4538 if (TryToFindDuplicates(S)) 4539 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4540 ReuseShuffleIndicies); 4541 return; 4542 } 4543 4544 // Don't handle vectors. 4545 if (S.OpValue->getType()->isVectorTy() && 4546 !isa<InsertElementInst>(S.OpValue)) { 4547 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 4548 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4549 return; 4550 } 4551 4552 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 4553 if (SI->getValueOperand()->getType()->isVectorTy()) { 4554 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 4555 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4556 return; 4557 } 4558 4559 // If all of the operands are identical or constant we have a simple solution. 4560 // If we deal with insert/extract instructions, they all must have constant 4561 // indices, otherwise we should gather them, not try to vectorize. 4562 // If alternate op node with 2 elements with gathered operands - do not 4563 // vectorize. 4564 auto &&NotProfitableForVectorization = [&S, this, 4565 Depth](ArrayRef<Value *> VL) { 4566 if (!S.getOpcode() || !S.isAltShuffle() || VL.size() > 2) 4567 return false; 4568 if (VectorizableTree.size() < MinTreeSize) 4569 return false; 4570 if (Depth >= RecursionMaxDepth - 1) 4571 return true; 4572 // Check if all operands are extracts, part of vector node or can build a 4573 // regular vectorize node. 4574 SmallVector<unsigned, 2> InstsCount(VL.size(), 0); 4575 for (Value *V : VL) { 4576 auto *I = cast<Instruction>(V); 4577 InstsCount.push_back(count_if(I->operand_values(), [](Value *Op) { 4578 return isa<Instruction>(Op) || isVectorLikeInstWithConstOps(Op); 4579 })); 4580 } 4581 bool IsCommutative = isCommutative(S.MainOp) || isCommutative(S.AltOp); 4582 if ((IsCommutative && 4583 std::accumulate(InstsCount.begin(), InstsCount.end(), 0) < 2) || 4584 (!IsCommutative && 4585 all_of(InstsCount, [](unsigned ICnt) { return ICnt < 2; }))) 4586 return true; 4587 assert(VL.size() == 2 && "Expected only 2 alternate op instructions."); 4588 SmallVector<SmallVector<std::pair<Value *, Value *>>> Candidates; 4589 auto *I1 = cast<Instruction>(VL.front()); 4590 auto *I2 = cast<Instruction>(VL.back()); 4591 for (int Op = 0, E = S.MainOp->getNumOperands(); Op < E; ++Op) 4592 Candidates.emplace_back().emplace_back(I1->getOperand(Op), 4593 I2->getOperand(Op)); 4594 if (count_if( 4595 Candidates, [this](ArrayRef<std::pair<Value *, Value *>> Cand) { 4596 return findBestRootPair(Cand, LookAheadHeuristics::ScoreSplat); 4597 }) >= S.MainOp->getNumOperands() / 2) 4598 return false; 4599 if (S.MainOp->getNumOperands() > 2) 4600 return true; 4601 if (IsCommutative) { 4602 // Check permuted operands. 4603 Candidates.clear(); 4604 for (int Op = 0, E = S.MainOp->getNumOperands(); Op < E; ++Op) 4605 Candidates.emplace_back().emplace_back(I1->getOperand(Op), 4606 I2->getOperand((Op + 1) % E)); 4607 if (any_of( 4608 Candidates, [this](ArrayRef<std::pair<Value *, Value *>> Cand) { 4609 return findBestRootPair(Cand, LookAheadHeuristics::ScoreSplat); 4610 })) 4611 return false; 4612 } 4613 return true; 4614 }; 4615 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 4616 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 4617 !all_of(VL, isVectorLikeInstWithConstOps)) || 4618 NotProfitableForVectorization(VL)) { 4619 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O, small shuffle. \n"); 4620 if (TryToFindDuplicates(S)) 4621 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4622 ReuseShuffleIndicies); 4623 return; 4624 } 4625 4626 // We now know that this is a vector of instructions of the same type from 4627 // the same block. 4628 4629 // Don't vectorize ephemeral values. 4630 if (!EphValues.empty()) { 4631 for (Value *V : VL) { 4632 if (EphValues.count(V)) { 4633 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 4634 << ") is ephemeral.\n"); 4635 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4636 return; 4637 } 4638 } 4639 } 4640 4641 // Check if this is a duplicate of another entry. 4642 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4643 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 4644 if (!E->isSame(VL)) { 4645 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 4646 if (TryToFindDuplicates(S)) 4647 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4648 ReuseShuffleIndicies); 4649 return; 4650 } 4651 // Record the reuse of the tree node. FIXME, currently this is only used to 4652 // properly draw the graph rather than for the actual vectorization. 4653 E->UserTreeIndices.push_back(UserTreeIdx); 4654 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 4655 << ".\n"); 4656 return; 4657 } 4658 4659 // Check that none of the instructions in the bundle are already in the tree. 4660 for (Value *V : VL) { 4661 auto *I = dyn_cast<Instruction>(V); 4662 if (!I) 4663 continue; 4664 if (getTreeEntry(I)) { 4665 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 4666 << ") is already in tree.\n"); 4667 if (TryToFindDuplicates(S)) 4668 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4669 ReuseShuffleIndicies); 4670 return; 4671 } 4672 } 4673 4674 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 4675 if (UserIgnoreList && !UserIgnoreList->empty()) { 4676 for (Value *V : VL) { 4677 if (UserIgnoreList && UserIgnoreList->contains(V)) { 4678 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 4679 if (TryToFindDuplicates(S)) 4680 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4681 ReuseShuffleIndicies); 4682 return; 4683 } 4684 } 4685 } 4686 4687 // Check that all of the users of the scalars that we want to vectorize are 4688 // schedulable. 4689 auto *VL0 = cast<Instruction>(S.OpValue); 4690 BasicBlock *BB = VL0->getParent(); 4691 4692 if (!DT->isReachableFromEntry(BB)) { 4693 // Don't go into unreachable blocks. They may contain instructions with 4694 // dependency cycles which confuse the final scheduling. 4695 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 4696 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4697 return; 4698 } 4699 4700 // Check that every instruction appears once in this bundle. 4701 if (!TryToFindDuplicates(S)) 4702 return; 4703 4704 auto &BSRef = BlocksSchedules[BB]; 4705 if (!BSRef) 4706 BSRef = std::make_unique<BlockScheduling>(BB); 4707 4708 BlockScheduling &BS = *BSRef; 4709 4710 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 4711 #ifdef EXPENSIVE_CHECKS 4712 // Make sure we didn't break any internal invariants 4713 BS.verify(); 4714 #endif 4715 if (!Bundle) { 4716 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 4717 assert((!BS.getScheduleData(VL0) || 4718 !BS.getScheduleData(VL0)->isPartOfBundle()) && 4719 "tryScheduleBundle should cancelScheduling on failure"); 4720 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4721 ReuseShuffleIndicies); 4722 return; 4723 } 4724 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 4725 4726 unsigned ShuffleOrOp = S.isAltShuffle() ? 4727 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 4728 switch (ShuffleOrOp) { 4729 case Instruction::PHI: { 4730 auto *PH = cast<PHINode>(VL0); 4731 4732 // Check for terminator values (e.g. invoke). 4733 for (Value *V : VL) 4734 for (Value *Incoming : cast<PHINode>(V)->incoming_values()) { 4735 Instruction *Term = dyn_cast<Instruction>(Incoming); 4736 if (Term && Term->isTerminator()) { 4737 LLVM_DEBUG(dbgs() 4738 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 4739 BS.cancelScheduling(VL, VL0); 4740 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4741 ReuseShuffleIndicies); 4742 return; 4743 } 4744 } 4745 4746 TreeEntry *TE = 4747 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 4748 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 4749 4750 // Keeps the reordered operands to avoid code duplication. 4751 SmallVector<ValueList, 2> OperandsVec; 4752 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 4753 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 4754 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 4755 TE->setOperand(I, Operands); 4756 OperandsVec.push_back(Operands); 4757 continue; 4758 } 4759 ValueList Operands; 4760 // Prepare the operand vector. 4761 for (Value *V : VL) 4762 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 4763 PH->getIncomingBlock(I))); 4764 TE->setOperand(I, Operands); 4765 OperandsVec.push_back(Operands); 4766 } 4767 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 4768 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 4769 return; 4770 } 4771 case Instruction::ExtractValue: 4772 case Instruction::ExtractElement: { 4773 OrdersType CurrentOrder; 4774 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 4775 if (Reuse) { 4776 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 4777 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4778 ReuseShuffleIndicies); 4779 // This is a special case, as it does not gather, but at the same time 4780 // we are not extending buildTree_rec() towards the operands. 4781 ValueList Op0; 4782 Op0.assign(VL.size(), VL0->getOperand(0)); 4783 VectorizableTree.back()->setOperand(0, Op0); 4784 return; 4785 } 4786 if (!CurrentOrder.empty()) { 4787 LLVM_DEBUG({ 4788 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 4789 "with order"; 4790 for (unsigned Idx : CurrentOrder) 4791 dbgs() << " " << Idx; 4792 dbgs() << "\n"; 4793 }); 4794 fixupOrderingIndices(CurrentOrder); 4795 // Insert new order with initial value 0, if it does not exist, 4796 // otherwise return the iterator to the existing one. 4797 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4798 ReuseShuffleIndicies, CurrentOrder); 4799 // This is a special case, as it does not gather, but at the same time 4800 // we are not extending buildTree_rec() towards the operands. 4801 ValueList Op0; 4802 Op0.assign(VL.size(), VL0->getOperand(0)); 4803 VectorizableTree.back()->setOperand(0, Op0); 4804 return; 4805 } 4806 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 4807 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4808 ReuseShuffleIndicies); 4809 BS.cancelScheduling(VL, VL0); 4810 return; 4811 } 4812 case Instruction::InsertElement: { 4813 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 4814 4815 // Check that we have a buildvector and not a shuffle of 2 or more 4816 // different vectors. 4817 ValueSet SourceVectors; 4818 for (Value *V : VL) { 4819 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 4820 assert(getInsertIndex(V) != None && "Non-constant or undef index?"); 4821 } 4822 4823 if (count_if(VL, [&SourceVectors](Value *V) { 4824 return !SourceVectors.contains(V); 4825 }) >= 2) { 4826 // Found 2nd source vector - cancel. 4827 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 4828 "different source vectors.\n"); 4829 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4830 BS.cancelScheduling(VL, VL0); 4831 return; 4832 } 4833 4834 auto OrdCompare = [](const std::pair<int, int> &P1, 4835 const std::pair<int, int> &P2) { 4836 return P1.first > P2.first; 4837 }; 4838 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 4839 decltype(OrdCompare)> 4840 Indices(OrdCompare); 4841 for (int I = 0, E = VL.size(); I < E; ++I) { 4842 unsigned Idx = *getInsertIndex(VL[I]); 4843 Indices.emplace(Idx, I); 4844 } 4845 OrdersType CurrentOrder(VL.size(), VL.size()); 4846 bool IsIdentity = true; 4847 for (int I = 0, E = VL.size(); I < E; ++I) { 4848 CurrentOrder[Indices.top().second] = I; 4849 IsIdentity &= Indices.top().second == I; 4850 Indices.pop(); 4851 } 4852 if (IsIdentity) 4853 CurrentOrder.clear(); 4854 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4855 None, CurrentOrder); 4856 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 4857 4858 constexpr int NumOps = 2; 4859 ValueList VectorOperands[NumOps]; 4860 for (int I = 0; I < NumOps; ++I) { 4861 for (Value *V : VL) 4862 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 4863 4864 TE->setOperand(I, VectorOperands[I]); 4865 } 4866 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 4867 return; 4868 } 4869 case Instruction::Load: { 4870 // Check that a vectorized load would load the same memory as a scalar 4871 // load. For example, we don't want to vectorize loads that are smaller 4872 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 4873 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 4874 // from such a struct, we read/write packed bits disagreeing with the 4875 // unvectorized version. 4876 SmallVector<Value *> PointerOps; 4877 OrdersType CurrentOrder; 4878 TreeEntry *TE = nullptr; 4879 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 4880 PointerOps)) { 4881 case LoadsState::Vectorize: 4882 if (CurrentOrder.empty()) { 4883 // Original loads are consecutive and does not require reordering. 4884 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4885 ReuseShuffleIndicies); 4886 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 4887 } else { 4888 fixupOrderingIndices(CurrentOrder); 4889 // Need to reorder. 4890 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4891 ReuseShuffleIndicies, CurrentOrder); 4892 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 4893 } 4894 TE->setOperandsInOrder(); 4895 break; 4896 case LoadsState::ScatterVectorize: 4897 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 4898 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 4899 UserTreeIdx, ReuseShuffleIndicies); 4900 TE->setOperandsInOrder(); 4901 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 4902 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 4903 break; 4904 case LoadsState::Gather: 4905 BS.cancelScheduling(VL, VL0); 4906 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4907 ReuseShuffleIndicies); 4908 #ifndef NDEBUG 4909 Type *ScalarTy = VL0->getType(); 4910 if (DL->getTypeSizeInBits(ScalarTy) != 4911 DL->getTypeAllocSizeInBits(ScalarTy)) 4912 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 4913 else if (any_of(VL, [](Value *V) { 4914 return !cast<LoadInst>(V)->isSimple(); 4915 })) 4916 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 4917 else 4918 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 4919 #endif // NDEBUG 4920 break; 4921 } 4922 return; 4923 } 4924 case Instruction::ZExt: 4925 case Instruction::SExt: 4926 case Instruction::FPToUI: 4927 case Instruction::FPToSI: 4928 case Instruction::FPExt: 4929 case Instruction::PtrToInt: 4930 case Instruction::IntToPtr: 4931 case Instruction::SIToFP: 4932 case Instruction::UIToFP: 4933 case Instruction::Trunc: 4934 case Instruction::FPTrunc: 4935 case Instruction::BitCast: { 4936 Type *SrcTy = VL0->getOperand(0)->getType(); 4937 for (Value *V : VL) { 4938 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 4939 if (Ty != SrcTy || !isValidElementType(Ty)) { 4940 BS.cancelScheduling(VL, VL0); 4941 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4942 ReuseShuffleIndicies); 4943 LLVM_DEBUG(dbgs() 4944 << "SLP: Gathering casts with different src types.\n"); 4945 return; 4946 } 4947 } 4948 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4949 ReuseShuffleIndicies); 4950 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 4951 4952 TE->setOperandsInOrder(); 4953 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4954 ValueList Operands; 4955 // Prepare the operand vector. 4956 for (Value *V : VL) 4957 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4958 4959 buildTree_rec(Operands, Depth + 1, {TE, i}); 4960 } 4961 return; 4962 } 4963 case Instruction::ICmp: 4964 case Instruction::FCmp: { 4965 // Check that all of the compares have the same predicate. 4966 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4967 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 4968 Type *ComparedTy = VL0->getOperand(0)->getType(); 4969 for (Value *V : VL) { 4970 CmpInst *Cmp = cast<CmpInst>(V); 4971 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 4972 Cmp->getOperand(0)->getType() != ComparedTy) { 4973 BS.cancelScheduling(VL, VL0); 4974 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4975 ReuseShuffleIndicies); 4976 LLVM_DEBUG(dbgs() 4977 << "SLP: Gathering cmp with different predicate.\n"); 4978 return; 4979 } 4980 } 4981 4982 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4983 ReuseShuffleIndicies); 4984 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 4985 4986 ValueList Left, Right; 4987 if (cast<CmpInst>(VL0)->isCommutative()) { 4988 // Commutative predicate - collect + sort operands of the instructions 4989 // so that each side is more likely to have the same opcode. 4990 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 4991 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4992 } else { 4993 // Collect operands - commute if it uses the swapped predicate. 4994 for (Value *V : VL) { 4995 auto *Cmp = cast<CmpInst>(V); 4996 Value *LHS = Cmp->getOperand(0); 4997 Value *RHS = Cmp->getOperand(1); 4998 if (Cmp->getPredicate() != P0) 4999 std::swap(LHS, RHS); 5000 Left.push_back(LHS); 5001 Right.push_back(RHS); 5002 } 5003 } 5004 TE->setOperand(0, Left); 5005 TE->setOperand(1, Right); 5006 buildTree_rec(Left, Depth + 1, {TE, 0}); 5007 buildTree_rec(Right, Depth + 1, {TE, 1}); 5008 return; 5009 } 5010 case Instruction::Select: 5011 case Instruction::FNeg: 5012 case Instruction::Add: 5013 case Instruction::FAdd: 5014 case Instruction::Sub: 5015 case Instruction::FSub: 5016 case Instruction::Mul: 5017 case Instruction::FMul: 5018 case Instruction::UDiv: 5019 case Instruction::SDiv: 5020 case Instruction::FDiv: 5021 case Instruction::URem: 5022 case Instruction::SRem: 5023 case Instruction::FRem: 5024 case Instruction::Shl: 5025 case Instruction::LShr: 5026 case Instruction::AShr: 5027 case Instruction::And: 5028 case Instruction::Or: 5029 case Instruction::Xor: { 5030 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 5031 ReuseShuffleIndicies); 5032 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 5033 5034 // Sort operands of the instructions so that each side is more likely to 5035 // have the same opcode. 5036 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 5037 ValueList Left, Right; 5038 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 5039 TE->setOperand(0, Left); 5040 TE->setOperand(1, Right); 5041 buildTree_rec(Left, Depth + 1, {TE, 0}); 5042 buildTree_rec(Right, Depth + 1, {TE, 1}); 5043 return; 5044 } 5045 5046 TE->setOperandsInOrder(); 5047 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 5048 ValueList Operands; 5049 // Prepare the operand vector. 5050 for (Value *V : VL) 5051 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 5052 5053 buildTree_rec(Operands, Depth + 1, {TE, i}); 5054 } 5055 return; 5056 } 5057 case Instruction::GetElementPtr: { 5058 // We don't combine GEPs with complicated (nested) indexing. 5059 for (Value *V : VL) { 5060 if (cast<Instruction>(V)->getNumOperands() != 2) { 5061 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 5062 BS.cancelScheduling(VL, VL0); 5063 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5064 ReuseShuffleIndicies); 5065 return; 5066 } 5067 } 5068 5069 // We can't combine several GEPs into one vector if they operate on 5070 // different types. 5071 Type *Ty0 = cast<GEPOperator>(VL0)->getSourceElementType(); 5072 for (Value *V : VL) { 5073 Type *CurTy = cast<GEPOperator>(V)->getSourceElementType(); 5074 if (Ty0 != CurTy) { 5075 LLVM_DEBUG(dbgs() 5076 << "SLP: not-vectorizable GEP (different types).\n"); 5077 BS.cancelScheduling(VL, VL0); 5078 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5079 ReuseShuffleIndicies); 5080 return; 5081 } 5082 } 5083 5084 // We don't combine GEPs with non-constant indexes. 5085 Type *Ty1 = VL0->getOperand(1)->getType(); 5086 for (Value *V : VL) { 5087 auto Op = cast<Instruction>(V)->getOperand(1); 5088 if (!isa<ConstantInt>(Op) || 5089 (Op->getType() != Ty1 && 5090 Op->getType()->getScalarSizeInBits() > 5091 DL->getIndexSizeInBits( 5092 V->getType()->getPointerAddressSpace()))) { 5093 LLVM_DEBUG(dbgs() 5094 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 5095 BS.cancelScheduling(VL, VL0); 5096 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5097 ReuseShuffleIndicies); 5098 return; 5099 } 5100 } 5101 5102 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 5103 ReuseShuffleIndicies); 5104 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 5105 SmallVector<ValueList, 2> Operands(2); 5106 // Prepare the operand vector for pointer operands. 5107 for (Value *V : VL) 5108 Operands.front().push_back( 5109 cast<GetElementPtrInst>(V)->getPointerOperand()); 5110 TE->setOperand(0, Operands.front()); 5111 // Need to cast all indices to the same type before vectorization to 5112 // avoid crash. 5113 // Required to be able to find correct matches between different gather 5114 // nodes and reuse the vectorized values rather than trying to gather them 5115 // again. 5116 int IndexIdx = 1; 5117 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 5118 Type *Ty = all_of(VL, 5119 [VL0Ty, IndexIdx](Value *V) { 5120 return VL0Ty == cast<GetElementPtrInst>(V) 5121 ->getOperand(IndexIdx) 5122 ->getType(); 5123 }) 5124 ? VL0Ty 5125 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 5126 ->getPointerOperandType() 5127 ->getScalarType()); 5128 // Prepare the operand vector. 5129 for (Value *V : VL) { 5130 auto *Op = cast<Instruction>(V)->getOperand(IndexIdx); 5131 auto *CI = cast<ConstantInt>(Op); 5132 Operands.back().push_back(ConstantExpr::getIntegerCast( 5133 CI, Ty, CI->getValue().isSignBitSet())); 5134 } 5135 TE->setOperand(IndexIdx, Operands.back()); 5136 5137 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 5138 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 5139 return; 5140 } 5141 case Instruction::Store: { 5142 // Check if the stores are consecutive or if we need to swizzle them. 5143 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 5144 // Avoid types that are padded when being allocated as scalars, while 5145 // being packed together in a vector (such as i1). 5146 if (DL->getTypeSizeInBits(ScalarTy) != 5147 DL->getTypeAllocSizeInBits(ScalarTy)) { 5148 BS.cancelScheduling(VL, VL0); 5149 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5150 ReuseShuffleIndicies); 5151 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 5152 return; 5153 } 5154 // Make sure all stores in the bundle are simple - we can't vectorize 5155 // atomic or volatile stores. 5156 SmallVector<Value *, 4> PointerOps(VL.size()); 5157 ValueList Operands(VL.size()); 5158 auto POIter = PointerOps.begin(); 5159 auto OIter = Operands.begin(); 5160 for (Value *V : VL) { 5161 auto *SI = cast<StoreInst>(V); 5162 if (!SI->isSimple()) { 5163 BS.cancelScheduling(VL, VL0); 5164 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5165 ReuseShuffleIndicies); 5166 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 5167 return; 5168 } 5169 *POIter = SI->getPointerOperand(); 5170 *OIter = SI->getValueOperand(); 5171 ++POIter; 5172 ++OIter; 5173 } 5174 5175 OrdersType CurrentOrder; 5176 // Check the order of pointer operands. 5177 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 5178 Value *Ptr0; 5179 Value *PtrN; 5180 if (CurrentOrder.empty()) { 5181 Ptr0 = PointerOps.front(); 5182 PtrN = PointerOps.back(); 5183 } else { 5184 Ptr0 = PointerOps[CurrentOrder.front()]; 5185 PtrN = PointerOps[CurrentOrder.back()]; 5186 } 5187 Optional<int> Dist = 5188 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 5189 // Check that the sorted pointer operands are consecutive. 5190 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 5191 if (CurrentOrder.empty()) { 5192 // Original stores are consecutive and does not require reordering. 5193 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 5194 UserTreeIdx, ReuseShuffleIndicies); 5195 TE->setOperandsInOrder(); 5196 buildTree_rec(Operands, Depth + 1, {TE, 0}); 5197 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 5198 } else { 5199 fixupOrderingIndices(CurrentOrder); 5200 TreeEntry *TE = 5201 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 5202 ReuseShuffleIndicies, CurrentOrder); 5203 TE->setOperandsInOrder(); 5204 buildTree_rec(Operands, Depth + 1, {TE, 0}); 5205 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 5206 } 5207 return; 5208 } 5209 } 5210 5211 BS.cancelScheduling(VL, VL0); 5212 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5213 ReuseShuffleIndicies); 5214 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 5215 return; 5216 } 5217 case Instruction::Call: { 5218 // Check if the calls are all to the same vectorizable intrinsic or 5219 // library function. 5220 CallInst *CI = cast<CallInst>(VL0); 5221 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5222 5223 VFShape Shape = VFShape::get( 5224 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 5225 false /*HasGlobalPred*/); 5226 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 5227 5228 if (!VecFunc && !isTriviallyVectorizable(ID)) { 5229 BS.cancelScheduling(VL, VL0); 5230 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5231 ReuseShuffleIndicies); 5232 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 5233 return; 5234 } 5235 Function *F = CI->getCalledFunction(); 5236 unsigned NumArgs = CI->arg_size(); 5237 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 5238 for (unsigned j = 0; j != NumArgs; ++j) 5239 if (isVectorIntrinsicWithScalarOpAtArg(ID, j)) 5240 ScalarArgs[j] = CI->getArgOperand(j); 5241 for (Value *V : VL) { 5242 CallInst *CI2 = dyn_cast<CallInst>(V); 5243 if (!CI2 || CI2->getCalledFunction() != F || 5244 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 5245 (VecFunc && 5246 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 5247 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 5248 BS.cancelScheduling(VL, VL0); 5249 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5250 ReuseShuffleIndicies); 5251 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 5252 << "\n"); 5253 return; 5254 } 5255 // Some intrinsics have scalar arguments and should be same in order for 5256 // them to be vectorized. 5257 for (unsigned j = 0; j != NumArgs; ++j) { 5258 if (isVectorIntrinsicWithScalarOpAtArg(ID, j)) { 5259 Value *A1J = CI2->getArgOperand(j); 5260 if (ScalarArgs[j] != A1J) { 5261 BS.cancelScheduling(VL, VL0); 5262 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5263 ReuseShuffleIndicies); 5264 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 5265 << " argument " << ScalarArgs[j] << "!=" << A1J 5266 << "\n"); 5267 return; 5268 } 5269 } 5270 } 5271 // Verify that the bundle operands are identical between the two calls. 5272 if (CI->hasOperandBundles() && 5273 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 5274 CI->op_begin() + CI->getBundleOperandsEndIndex(), 5275 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 5276 BS.cancelScheduling(VL, VL0); 5277 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5278 ReuseShuffleIndicies); 5279 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 5280 << *CI << "!=" << *V << '\n'); 5281 return; 5282 } 5283 } 5284 5285 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 5286 ReuseShuffleIndicies); 5287 TE->setOperandsInOrder(); 5288 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 5289 // For scalar operands no need to to create an entry since no need to 5290 // vectorize it. 5291 if (isVectorIntrinsicWithScalarOpAtArg(ID, i)) 5292 continue; 5293 ValueList Operands; 5294 // Prepare the operand vector. 5295 for (Value *V : VL) { 5296 auto *CI2 = cast<CallInst>(V); 5297 Operands.push_back(CI2->getArgOperand(i)); 5298 } 5299 buildTree_rec(Operands, Depth + 1, {TE, i}); 5300 } 5301 return; 5302 } 5303 case Instruction::ShuffleVector: { 5304 // If this is not an alternate sequence of opcode like add-sub 5305 // then do not vectorize this instruction. 5306 if (!S.isAltShuffle()) { 5307 BS.cancelScheduling(VL, VL0); 5308 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5309 ReuseShuffleIndicies); 5310 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 5311 return; 5312 } 5313 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 5314 ReuseShuffleIndicies); 5315 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 5316 5317 // Reorder operands if reordering would enable vectorization. 5318 auto *CI = dyn_cast<CmpInst>(VL0); 5319 if (isa<BinaryOperator>(VL0) || CI) { 5320 ValueList Left, Right; 5321 if (!CI || all_of(VL, [](Value *V) { 5322 return cast<CmpInst>(V)->isCommutative(); 5323 })) { 5324 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 5325 } else { 5326 CmpInst::Predicate P0 = CI->getPredicate(); 5327 CmpInst::Predicate AltP0 = cast<CmpInst>(S.AltOp)->getPredicate(); 5328 assert(P0 != AltP0 && 5329 "Expected different main/alternate predicates."); 5330 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 5331 Value *BaseOp0 = VL0->getOperand(0); 5332 Value *BaseOp1 = VL0->getOperand(1); 5333 // Collect operands - commute if it uses the swapped predicate or 5334 // alternate operation. 5335 for (Value *V : VL) { 5336 auto *Cmp = cast<CmpInst>(V); 5337 Value *LHS = Cmp->getOperand(0); 5338 Value *RHS = Cmp->getOperand(1); 5339 CmpInst::Predicate CurrentPred = Cmp->getPredicate(); 5340 if (P0 == AltP0Swapped) { 5341 if (CI != Cmp && S.AltOp != Cmp && 5342 ((P0 == CurrentPred && 5343 !areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)) || 5344 (AltP0 == CurrentPred && 5345 areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)))) 5346 std::swap(LHS, RHS); 5347 } else if (P0 != CurrentPred && AltP0 != CurrentPred) { 5348 std::swap(LHS, RHS); 5349 } 5350 Left.push_back(LHS); 5351 Right.push_back(RHS); 5352 } 5353 } 5354 TE->setOperand(0, Left); 5355 TE->setOperand(1, Right); 5356 buildTree_rec(Left, Depth + 1, {TE, 0}); 5357 buildTree_rec(Right, Depth + 1, {TE, 1}); 5358 return; 5359 } 5360 5361 TE->setOperandsInOrder(); 5362 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 5363 ValueList Operands; 5364 // Prepare the operand vector. 5365 for (Value *V : VL) 5366 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 5367 5368 buildTree_rec(Operands, Depth + 1, {TE, i}); 5369 } 5370 return; 5371 } 5372 default: 5373 BS.cancelScheduling(VL, VL0); 5374 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5375 ReuseShuffleIndicies); 5376 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 5377 return; 5378 } 5379 } 5380 5381 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 5382 unsigned N = 1; 5383 Type *EltTy = T; 5384 5385 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 5386 isa<VectorType>(EltTy)) { 5387 if (auto *ST = dyn_cast<StructType>(EltTy)) { 5388 // Check that struct is homogeneous. 5389 for (const auto *Ty : ST->elements()) 5390 if (Ty != *ST->element_begin()) 5391 return 0; 5392 N *= ST->getNumElements(); 5393 EltTy = *ST->element_begin(); 5394 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 5395 N *= AT->getNumElements(); 5396 EltTy = AT->getElementType(); 5397 } else { 5398 auto *VT = cast<FixedVectorType>(EltTy); 5399 N *= VT->getNumElements(); 5400 EltTy = VT->getElementType(); 5401 } 5402 } 5403 5404 if (!isValidElementType(EltTy)) 5405 return 0; 5406 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 5407 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 5408 return 0; 5409 return N; 5410 } 5411 5412 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 5413 SmallVectorImpl<unsigned> &CurrentOrder) const { 5414 const auto *It = find_if(VL, [](Value *V) { 5415 return isa<ExtractElementInst, ExtractValueInst>(V); 5416 }); 5417 assert(It != VL.end() && "Expected at least one extract instruction."); 5418 auto *E0 = cast<Instruction>(*It); 5419 assert(all_of(VL, 5420 [](Value *V) { 5421 return isa<UndefValue, ExtractElementInst, ExtractValueInst>( 5422 V); 5423 }) && 5424 "Invalid opcode"); 5425 // Check if all of the extracts come from the same vector and from the 5426 // correct offset. 5427 Value *Vec = E0->getOperand(0); 5428 5429 CurrentOrder.clear(); 5430 5431 // We have to extract from a vector/aggregate with the same number of elements. 5432 unsigned NElts; 5433 if (E0->getOpcode() == Instruction::ExtractValue) { 5434 const DataLayout &DL = E0->getModule()->getDataLayout(); 5435 NElts = canMapToVector(Vec->getType(), DL); 5436 if (!NElts) 5437 return false; 5438 // Check if load can be rewritten as load of vector. 5439 LoadInst *LI = dyn_cast<LoadInst>(Vec); 5440 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 5441 return false; 5442 } else { 5443 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 5444 } 5445 5446 if (NElts != VL.size()) 5447 return false; 5448 5449 // Check that all of the indices extract from the correct offset. 5450 bool ShouldKeepOrder = true; 5451 unsigned E = VL.size(); 5452 // Assign to all items the initial value E + 1 so we can check if the extract 5453 // instruction index was used already. 5454 // Also, later we can check that all the indices are used and we have a 5455 // consecutive access in the extract instructions, by checking that no 5456 // element of CurrentOrder still has value E + 1. 5457 CurrentOrder.assign(E, E); 5458 unsigned I = 0; 5459 for (; I < E; ++I) { 5460 auto *Inst = dyn_cast<Instruction>(VL[I]); 5461 if (!Inst) 5462 continue; 5463 if (Inst->getOperand(0) != Vec) 5464 break; 5465 if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) 5466 if (isa<UndefValue>(EE->getIndexOperand())) 5467 continue; 5468 Optional<unsigned> Idx = getExtractIndex(Inst); 5469 if (!Idx) 5470 break; 5471 const unsigned ExtIdx = *Idx; 5472 if (ExtIdx != I) { 5473 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E) 5474 break; 5475 ShouldKeepOrder = false; 5476 CurrentOrder[ExtIdx] = I; 5477 } else { 5478 if (CurrentOrder[I] != E) 5479 break; 5480 CurrentOrder[I] = I; 5481 } 5482 } 5483 if (I < E) { 5484 CurrentOrder.clear(); 5485 return false; 5486 } 5487 if (ShouldKeepOrder) 5488 CurrentOrder.clear(); 5489 5490 return ShouldKeepOrder; 5491 } 5492 5493 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 5494 ArrayRef<Value *> VectorizedVals) const { 5495 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 5496 all_of(I->users(), [this](User *U) { 5497 return ScalarToTreeEntry.count(U) > 0 || 5498 isVectorLikeInstWithConstOps(U) || 5499 (isa<ExtractElementInst>(U) && MustGather.contains(U)); 5500 }); 5501 } 5502 5503 static std::pair<InstructionCost, InstructionCost> 5504 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 5505 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 5506 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5507 5508 // Calculate the cost of the scalar and vector calls. 5509 SmallVector<Type *, 4> VecTys; 5510 for (Use &Arg : CI->args()) 5511 VecTys.push_back( 5512 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 5513 FastMathFlags FMF; 5514 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 5515 FMF = FPCI->getFastMathFlags(); 5516 SmallVector<const Value *> Arguments(CI->args()); 5517 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 5518 dyn_cast<IntrinsicInst>(CI)); 5519 auto IntrinsicCost = 5520 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 5521 5522 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 5523 VecTy->getNumElements())), 5524 false /*HasGlobalPred*/); 5525 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 5526 auto LibCost = IntrinsicCost; 5527 if (!CI->isNoBuiltin() && VecFunc) { 5528 // Calculate the cost of the vector library call. 5529 // If the corresponding vector call is cheaper, return its cost. 5530 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 5531 TTI::TCK_RecipThroughput); 5532 } 5533 return {IntrinsicCost, LibCost}; 5534 } 5535 5536 /// Compute the cost of creating a vector of type \p VecTy containing the 5537 /// extracted values from \p VL. 5538 static InstructionCost 5539 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 5540 TargetTransformInfo::ShuffleKind ShuffleKind, 5541 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 5542 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 5543 5544 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 5545 VecTy->getNumElements() < NumOfParts) 5546 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 5547 5548 bool AllConsecutive = true; 5549 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 5550 unsigned Idx = -1; 5551 InstructionCost Cost = 0; 5552 5553 // Process extracts in blocks of EltsPerVector to check if the source vector 5554 // operand can be re-used directly. If not, add the cost of creating a shuffle 5555 // to extract the values into a vector register. 5556 SmallVector<int> RegMask(EltsPerVector, UndefMaskElem); 5557 for (auto *V : VL) { 5558 ++Idx; 5559 5560 // Need to exclude undefs from analysis. 5561 if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem) 5562 continue; 5563 5564 // Reached the start of a new vector registers. 5565 if (Idx % EltsPerVector == 0) { 5566 RegMask.assign(EltsPerVector, UndefMaskElem); 5567 AllConsecutive = true; 5568 continue; 5569 } 5570 5571 // Check all extracts for a vector register on the target directly 5572 // extract values in order. 5573 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 5574 if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) { 5575 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 5576 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 5577 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 5578 RegMask[Idx % EltsPerVector] = CurrentIdx % EltsPerVector; 5579 } 5580 5581 if (AllConsecutive) 5582 continue; 5583 5584 // Skip all indices, except for the last index per vector block. 5585 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 5586 continue; 5587 5588 // If we have a series of extracts which are not consecutive and hence 5589 // cannot re-use the source vector register directly, compute the shuffle 5590 // cost to extract the vector with EltsPerVector elements. 5591 Cost += TTI.getShuffleCost( 5592 TargetTransformInfo::SK_PermuteSingleSrc, 5593 FixedVectorType::get(VecTy->getElementType(), EltsPerVector), RegMask); 5594 } 5595 return Cost; 5596 } 5597 5598 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 5599 /// operations operands. 5600 static void 5601 buildShuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 5602 ArrayRef<int> ReusesIndices, 5603 const function_ref<bool(Instruction *)> IsAltOp, 5604 SmallVectorImpl<int> &Mask, 5605 SmallVectorImpl<Value *> *OpScalars = nullptr, 5606 SmallVectorImpl<Value *> *AltScalars = nullptr) { 5607 unsigned Sz = VL.size(); 5608 Mask.assign(Sz, UndefMaskElem); 5609 SmallVector<int> OrderMask; 5610 if (!ReorderIndices.empty()) 5611 inversePermutation(ReorderIndices, OrderMask); 5612 for (unsigned I = 0; I < Sz; ++I) { 5613 unsigned Idx = I; 5614 if (!ReorderIndices.empty()) 5615 Idx = OrderMask[I]; 5616 auto *OpInst = cast<Instruction>(VL[Idx]); 5617 if (IsAltOp(OpInst)) { 5618 Mask[I] = Sz + Idx; 5619 if (AltScalars) 5620 AltScalars->push_back(OpInst); 5621 } else { 5622 Mask[I] = Idx; 5623 if (OpScalars) 5624 OpScalars->push_back(OpInst); 5625 } 5626 } 5627 if (!ReusesIndices.empty()) { 5628 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 5629 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 5630 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 5631 }); 5632 Mask.swap(NewMask); 5633 } 5634 } 5635 5636 /// Checks if the specified instruction \p I is an alternate operation for the 5637 /// given \p MainOp and \p AltOp instructions. 5638 static bool isAlternateInstruction(const Instruction *I, 5639 const Instruction *MainOp, 5640 const Instruction *AltOp) { 5641 if (auto *CI0 = dyn_cast<CmpInst>(MainOp)) { 5642 auto *AltCI0 = cast<CmpInst>(AltOp); 5643 auto *CI = cast<CmpInst>(I); 5644 CmpInst::Predicate P0 = CI0->getPredicate(); 5645 CmpInst::Predicate AltP0 = AltCI0->getPredicate(); 5646 assert(P0 != AltP0 && "Expected different main/alternate predicates."); 5647 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 5648 CmpInst::Predicate CurrentPred = CI->getPredicate(); 5649 if (P0 == AltP0Swapped) 5650 return I == AltCI0 || 5651 (I != MainOp && 5652 !areCompatibleCmpOps(CI0->getOperand(0), CI0->getOperand(1), 5653 CI->getOperand(0), CI->getOperand(1))); 5654 return AltP0 == CurrentPred || AltP0Swapped == CurrentPred; 5655 } 5656 return I->getOpcode() == AltOp->getOpcode(); 5657 } 5658 5659 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 5660 ArrayRef<Value *> VectorizedVals) { 5661 ArrayRef<Value*> VL = E->Scalars; 5662 5663 Type *ScalarTy = VL[0]->getType(); 5664 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 5665 ScalarTy = SI->getValueOperand()->getType(); 5666 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 5667 ScalarTy = CI->getOperand(0)->getType(); 5668 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 5669 ScalarTy = IE->getOperand(1)->getType(); 5670 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 5671 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 5672 5673 // If we have computed a smaller type for the expression, update VecTy so 5674 // that the costs will be accurate. 5675 if (MinBWs.count(VL[0])) 5676 VecTy = FixedVectorType::get( 5677 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 5678 unsigned EntryVF = E->getVectorFactor(); 5679 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 5680 5681 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 5682 // FIXME: it tries to fix a problem with MSVC buildbots. 5683 TargetTransformInfo &TTIRef = *TTI; 5684 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 5685 VectorizedVals, E](InstructionCost &Cost) { 5686 DenseMap<Value *, int> ExtractVectorsTys; 5687 SmallPtrSet<Value *, 4> CheckedExtracts; 5688 for (auto *V : VL) { 5689 if (isa<UndefValue>(V)) 5690 continue; 5691 // If all users of instruction are going to be vectorized and this 5692 // instruction itself is not going to be vectorized, consider this 5693 // instruction as dead and remove its cost from the final cost of the 5694 // vectorized tree. 5695 // Also, avoid adjusting the cost for extractelements with multiple uses 5696 // in different graph entries. 5697 const TreeEntry *VE = getTreeEntry(V); 5698 if (!CheckedExtracts.insert(V).second || 5699 !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 5700 (VE && VE != E)) 5701 continue; 5702 auto *EE = cast<ExtractElementInst>(V); 5703 Optional<unsigned> EEIdx = getExtractIndex(EE); 5704 if (!EEIdx) 5705 continue; 5706 unsigned Idx = *EEIdx; 5707 if (TTIRef.getNumberOfParts(VecTy) != 5708 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 5709 auto It = 5710 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 5711 It->getSecond() = std::min<int>(It->second, Idx); 5712 } 5713 // Take credit for instruction that will become dead. 5714 if (EE->hasOneUse()) { 5715 Instruction *Ext = EE->user_back(); 5716 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5717 all_of(Ext->users(), 5718 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5719 // Use getExtractWithExtendCost() to calculate the cost of 5720 // extractelement/ext pair. 5721 Cost -= 5722 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 5723 EE->getVectorOperandType(), Idx); 5724 // Add back the cost of s|zext which is subtracted separately. 5725 Cost += TTIRef.getCastInstrCost( 5726 Ext->getOpcode(), Ext->getType(), EE->getType(), 5727 TTI::getCastContextHint(Ext), CostKind, Ext); 5728 continue; 5729 } 5730 } 5731 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 5732 EE->getVectorOperandType(), Idx); 5733 } 5734 // Add a cost for subvector extracts/inserts if required. 5735 for (const auto &Data : ExtractVectorsTys) { 5736 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 5737 unsigned NumElts = VecTy->getNumElements(); 5738 if (Data.second % NumElts == 0) 5739 continue; 5740 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 5741 unsigned Idx = (Data.second / NumElts) * NumElts; 5742 unsigned EENumElts = EEVTy->getNumElements(); 5743 if (Idx + NumElts <= EENumElts) { 5744 Cost += 5745 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5746 EEVTy, None, Idx, VecTy); 5747 } else { 5748 // Need to round up the subvector type vectorization factor to avoid a 5749 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 5750 // <= EENumElts. 5751 auto *SubVT = 5752 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 5753 Cost += 5754 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5755 EEVTy, None, Idx, SubVT); 5756 } 5757 } else { 5758 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 5759 VecTy, None, 0, EEVTy); 5760 } 5761 } 5762 }; 5763 if (E->State == TreeEntry::NeedToGather) { 5764 if (allConstant(VL)) 5765 return 0; 5766 if (isa<InsertElementInst>(VL[0])) 5767 return InstructionCost::getInvalid(); 5768 SmallVector<int> Mask; 5769 SmallVector<const TreeEntry *> Entries; 5770 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 5771 isGatherShuffledEntry(E, Mask, Entries); 5772 if (Shuffle.hasValue()) { 5773 InstructionCost GatherCost = 0; 5774 if (ShuffleVectorInst::isIdentityMask(Mask)) { 5775 // Perfect match in the graph, will reuse the previously vectorized 5776 // node. Cost is 0. 5777 LLVM_DEBUG( 5778 dbgs() 5779 << "SLP: perfect diamond match for gather bundle that starts with " 5780 << *VL.front() << ".\n"); 5781 if (NeedToShuffleReuses) 5782 GatherCost = 5783 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5784 FinalVecTy, E->ReuseShuffleIndices); 5785 } else { 5786 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 5787 << " entries for bundle that starts with " 5788 << *VL.front() << ".\n"); 5789 // Detected that instead of gather we can emit a shuffle of single/two 5790 // previously vectorized nodes. Add the cost of the permutation rather 5791 // than gather. 5792 ::addMask(Mask, E->ReuseShuffleIndices); 5793 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 5794 } 5795 return GatherCost; 5796 } 5797 if ((E->getOpcode() == Instruction::ExtractElement || 5798 all_of(E->Scalars, 5799 [](Value *V) { 5800 return isa<ExtractElementInst, UndefValue>(V); 5801 })) && 5802 allSameType(VL)) { 5803 // Check that gather of extractelements can be represented as just a 5804 // shuffle of a single/two vectors the scalars are extracted from. 5805 SmallVector<int> Mask; 5806 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 5807 isFixedVectorShuffle(VL, Mask); 5808 if (ShuffleKind.hasValue()) { 5809 // Found the bunch of extractelement instructions that must be gathered 5810 // into a vector and can be represented as a permutation elements in a 5811 // single input vector or of 2 input vectors. 5812 InstructionCost Cost = 5813 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 5814 AdjustExtractsCost(Cost); 5815 if (NeedToShuffleReuses) 5816 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5817 FinalVecTy, E->ReuseShuffleIndices); 5818 return Cost; 5819 } 5820 } 5821 if (isSplat(VL)) { 5822 // Found the broadcasting of the single scalar, calculate the cost as the 5823 // broadcast. 5824 assert(VecTy == FinalVecTy && 5825 "No reused scalars expected for broadcast."); 5826 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 5827 /*Mask=*/None, /*Index=*/0, 5828 /*SubTp=*/nullptr, /*Args=*/VL[0]); 5829 } 5830 InstructionCost ReuseShuffleCost = 0; 5831 if (NeedToShuffleReuses) 5832 ReuseShuffleCost = TTI->getShuffleCost( 5833 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 5834 // Improve gather cost for gather of loads, if we can group some of the 5835 // loads into vector loads. 5836 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 5837 !E->isAltShuffle()) { 5838 BoUpSLP::ValueSet VectorizedLoads; 5839 unsigned StartIdx = 0; 5840 unsigned VF = VL.size() / 2; 5841 unsigned VectorizedCnt = 0; 5842 unsigned ScatterVectorizeCnt = 0; 5843 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 5844 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 5845 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 5846 Cnt += VF) { 5847 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 5848 if (!VectorizedLoads.count(Slice.front()) && 5849 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 5850 SmallVector<Value *> PointerOps; 5851 OrdersType CurrentOrder; 5852 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 5853 *SE, CurrentOrder, PointerOps); 5854 switch (LS) { 5855 case LoadsState::Vectorize: 5856 case LoadsState::ScatterVectorize: 5857 // Mark the vectorized loads so that we don't vectorize them 5858 // again. 5859 if (LS == LoadsState::Vectorize) 5860 ++VectorizedCnt; 5861 else 5862 ++ScatterVectorizeCnt; 5863 VectorizedLoads.insert(Slice.begin(), Slice.end()); 5864 // If we vectorized initial block, no need to try to vectorize it 5865 // again. 5866 if (Cnt == StartIdx) 5867 StartIdx += VF; 5868 break; 5869 case LoadsState::Gather: 5870 break; 5871 } 5872 } 5873 } 5874 // Check if the whole array was vectorized already - exit. 5875 if (StartIdx >= VL.size()) 5876 break; 5877 // Found vectorizable parts - exit. 5878 if (!VectorizedLoads.empty()) 5879 break; 5880 } 5881 if (!VectorizedLoads.empty()) { 5882 InstructionCost GatherCost = 0; 5883 unsigned NumParts = TTI->getNumberOfParts(VecTy); 5884 bool NeedInsertSubvectorAnalysis = 5885 !NumParts || (VL.size() / VF) > NumParts; 5886 // Get the cost for gathered loads. 5887 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 5888 if (VectorizedLoads.contains(VL[I])) 5889 continue; 5890 GatherCost += getGatherCost(VL.slice(I, VF)); 5891 } 5892 // The cost for vectorized loads. 5893 InstructionCost ScalarsCost = 0; 5894 for (Value *V : VectorizedLoads) { 5895 auto *LI = cast<LoadInst>(V); 5896 ScalarsCost += TTI->getMemoryOpCost( 5897 Instruction::Load, LI->getType(), LI->getAlign(), 5898 LI->getPointerAddressSpace(), CostKind, LI); 5899 } 5900 auto *LI = cast<LoadInst>(E->getMainOp()); 5901 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 5902 Align Alignment = LI->getAlign(); 5903 GatherCost += 5904 VectorizedCnt * 5905 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 5906 LI->getPointerAddressSpace(), CostKind, LI); 5907 GatherCost += ScatterVectorizeCnt * 5908 TTI->getGatherScatterOpCost( 5909 Instruction::Load, LoadTy, LI->getPointerOperand(), 5910 /*VariableMask=*/false, Alignment, CostKind, LI); 5911 if (NeedInsertSubvectorAnalysis) { 5912 // Add the cost for the subvectors insert. 5913 for (int I = VF, E = VL.size(); I < E; I += VF) 5914 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 5915 None, I, LoadTy); 5916 } 5917 return ReuseShuffleCost + GatherCost - ScalarsCost; 5918 } 5919 } 5920 return ReuseShuffleCost + getGatherCost(VL); 5921 } 5922 InstructionCost CommonCost = 0; 5923 SmallVector<int> Mask; 5924 if (!E->ReorderIndices.empty()) { 5925 SmallVector<int> NewMask; 5926 if (E->getOpcode() == Instruction::Store) { 5927 // For stores the order is actually a mask. 5928 NewMask.resize(E->ReorderIndices.size()); 5929 copy(E->ReorderIndices, NewMask.begin()); 5930 } else { 5931 inversePermutation(E->ReorderIndices, NewMask); 5932 } 5933 ::addMask(Mask, NewMask); 5934 } 5935 if (NeedToShuffleReuses) 5936 ::addMask(Mask, E->ReuseShuffleIndices); 5937 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 5938 CommonCost = 5939 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 5940 assert((E->State == TreeEntry::Vectorize || 5941 E->State == TreeEntry::ScatterVectorize) && 5942 "Unhandled state"); 5943 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 5944 Instruction *VL0 = E->getMainOp(); 5945 unsigned ShuffleOrOp = 5946 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 5947 switch (ShuffleOrOp) { 5948 case Instruction::PHI: 5949 return 0; 5950 5951 case Instruction::ExtractValue: 5952 case Instruction::ExtractElement: { 5953 // The common cost of removal ExtractElement/ExtractValue instructions + 5954 // the cost of shuffles, if required to resuffle the original vector. 5955 if (NeedToShuffleReuses) { 5956 unsigned Idx = 0; 5957 for (unsigned I : E->ReuseShuffleIndices) { 5958 if (ShuffleOrOp == Instruction::ExtractElement) { 5959 auto *EE = cast<ExtractElementInst>(VL[I]); 5960 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5961 EE->getVectorOperandType(), 5962 *getExtractIndex(EE)); 5963 } else { 5964 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5965 VecTy, Idx); 5966 ++Idx; 5967 } 5968 } 5969 Idx = EntryVF; 5970 for (Value *V : VL) { 5971 if (ShuffleOrOp == Instruction::ExtractElement) { 5972 auto *EE = cast<ExtractElementInst>(V); 5973 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5974 EE->getVectorOperandType(), 5975 *getExtractIndex(EE)); 5976 } else { 5977 --Idx; 5978 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5979 VecTy, Idx); 5980 } 5981 } 5982 } 5983 if (ShuffleOrOp == Instruction::ExtractValue) { 5984 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 5985 auto *EI = cast<Instruction>(VL[I]); 5986 // Take credit for instruction that will become dead. 5987 if (EI->hasOneUse()) { 5988 Instruction *Ext = EI->user_back(); 5989 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5990 all_of(Ext->users(), 5991 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5992 // Use getExtractWithExtendCost() to calculate the cost of 5993 // extractelement/ext pair. 5994 CommonCost -= TTI->getExtractWithExtendCost( 5995 Ext->getOpcode(), Ext->getType(), VecTy, I); 5996 // Add back the cost of s|zext which is subtracted separately. 5997 CommonCost += TTI->getCastInstrCost( 5998 Ext->getOpcode(), Ext->getType(), EI->getType(), 5999 TTI::getCastContextHint(Ext), CostKind, Ext); 6000 continue; 6001 } 6002 } 6003 CommonCost -= 6004 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 6005 } 6006 } else { 6007 AdjustExtractsCost(CommonCost); 6008 } 6009 return CommonCost; 6010 } 6011 case Instruction::InsertElement: { 6012 assert(E->ReuseShuffleIndices.empty() && 6013 "Unique insertelements only are expected."); 6014 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 6015 6016 unsigned const NumElts = SrcVecTy->getNumElements(); 6017 unsigned const NumScalars = VL.size(); 6018 APInt DemandedElts = APInt::getZero(NumElts); 6019 // TODO: Add support for Instruction::InsertValue. 6020 SmallVector<int> Mask; 6021 if (!E->ReorderIndices.empty()) { 6022 inversePermutation(E->ReorderIndices, Mask); 6023 Mask.append(NumElts - NumScalars, UndefMaskElem); 6024 } else { 6025 Mask.assign(NumElts, UndefMaskElem); 6026 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 6027 } 6028 unsigned Offset = *getInsertIndex(VL0); 6029 bool IsIdentity = true; 6030 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 6031 Mask.swap(PrevMask); 6032 for (unsigned I = 0; I < NumScalars; ++I) { 6033 unsigned InsertIdx = *getInsertIndex(VL[PrevMask[I]]); 6034 DemandedElts.setBit(InsertIdx); 6035 IsIdentity &= InsertIdx - Offset == I; 6036 Mask[InsertIdx - Offset] = I; 6037 } 6038 assert(Offset < NumElts && "Failed to find vector index offset"); 6039 6040 InstructionCost Cost = 0; 6041 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 6042 /*Insert*/ true, /*Extract*/ false); 6043 6044 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 6045 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 6046 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 6047 Cost += TTI->getShuffleCost( 6048 TargetTransformInfo::SK_PermuteSingleSrc, 6049 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 6050 } else if (!IsIdentity) { 6051 auto *FirstInsert = 6052 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 6053 return !is_contained(E->Scalars, 6054 cast<Instruction>(V)->getOperand(0)); 6055 })); 6056 if (isUndefVector(FirstInsert->getOperand(0))) { 6057 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 6058 } else { 6059 SmallVector<int> InsertMask(NumElts); 6060 std::iota(InsertMask.begin(), InsertMask.end(), 0); 6061 for (unsigned I = 0; I < NumElts; I++) { 6062 if (Mask[I] != UndefMaskElem) 6063 InsertMask[Offset + I] = NumElts + I; 6064 } 6065 Cost += 6066 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 6067 } 6068 } 6069 6070 return Cost; 6071 } 6072 case Instruction::ZExt: 6073 case Instruction::SExt: 6074 case Instruction::FPToUI: 6075 case Instruction::FPToSI: 6076 case Instruction::FPExt: 6077 case Instruction::PtrToInt: 6078 case Instruction::IntToPtr: 6079 case Instruction::SIToFP: 6080 case Instruction::UIToFP: 6081 case Instruction::Trunc: 6082 case Instruction::FPTrunc: 6083 case Instruction::BitCast: { 6084 Type *SrcTy = VL0->getOperand(0)->getType(); 6085 InstructionCost ScalarEltCost = 6086 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 6087 TTI::getCastContextHint(VL0), CostKind, VL0); 6088 if (NeedToShuffleReuses) { 6089 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 6090 } 6091 6092 // Calculate the cost of this instruction. 6093 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 6094 6095 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 6096 InstructionCost VecCost = 0; 6097 // Check if the values are candidates to demote. 6098 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 6099 VecCost = CommonCost + TTI->getCastInstrCost( 6100 E->getOpcode(), VecTy, SrcVecTy, 6101 TTI::getCastContextHint(VL0), CostKind, VL0); 6102 } 6103 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 6104 return VecCost - ScalarCost; 6105 } 6106 case Instruction::FCmp: 6107 case Instruction::ICmp: 6108 case Instruction::Select: { 6109 // Calculate the cost of this instruction. 6110 InstructionCost ScalarEltCost = 6111 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 6112 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 6113 if (NeedToShuffleReuses) { 6114 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 6115 } 6116 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 6117 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 6118 6119 // Check if all entries in VL are either compares or selects with compares 6120 // as condition that have the same predicates. 6121 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 6122 bool First = true; 6123 for (auto *V : VL) { 6124 CmpInst::Predicate CurrentPred; 6125 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 6126 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 6127 !match(V, MatchCmp)) || 6128 (!First && VecPred != CurrentPred)) { 6129 VecPred = CmpInst::BAD_ICMP_PREDICATE; 6130 break; 6131 } 6132 First = false; 6133 VecPred = CurrentPred; 6134 } 6135 6136 InstructionCost VecCost = TTI->getCmpSelInstrCost( 6137 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 6138 // Check if it is possible and profitable to use min/max for selects in 6139 // VL. 6140 // 6141 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 6142 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 6143 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 6144 {VecTy, VecTy}); 6145 InstructionCost IntrinsicCost = 6146 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 6147 // If the selects are the only uses of the compares, they will be dead 6148 // and we can adjust the cost by removing their cost. 6149 if (IntrinsicAndUse.second) 6150 IntrinsicCost -= TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, 6151 MaskTy, VecPred, CostKind); 6152 VecCost = std::min(VecCost, IntrinsicCost); 6153 } 6154 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 6155 return CommonCost + VecCost - ScalarCost; 6156 } 6157 case Instruction::FNeg: 6158 case Instruction::Add: 6159 case Instruction::FAdd: 6160 case Instruction::Sub: 6161 case Instruction::FSub: 6162 case Instruction::Mul: 6163 case Instruction::FMul: 6164 case Instruction::UDiv: 6165 case Instruction::SDiv: 6166 case Instruction::FDiv: 6167 case Instruction::URem: 6168 case Instruction::SRem: 6169 case Instruction::FRem: 6170 case Instruction::Shl: 6171 case Instruction::LShr: 6172 case Instruction::AShr: 6173 case Instruction::And: 6174 case Instruction::Or: 6175 case Instruction::Xor: { 6176 // Certain instructions can be cheaper to vectorize if they have a 6177 // constant second vector operand. 6178 TargetTransformInfo::OperandValueKind Op1VK = 6179 TargetTransformInfo::OK_AnyValue; 6180 TargetTransformInfo::OperandValueKind Op2VK = 6181 TargetTransformInfo::OK_UniformConstantValue; 6182 TargetTransformInfo::OperandValueProperties Op1VP = 6183 TargetTransformInfo::OP_None; 6184 TargetTransformInfo::OperandValueProperties Op2VP = 6185 TargetTransformInfo::OP_PowerOf2; 6186 6187 // If all operands are exactly the same ConstantInt then set the 6188 // operand kind to OK_UniformConstantValue. 6189 // If instead not all operands are constants, then set the operand kind 6190 // to OK_AnyValue. If all operands are constants but not the same, 6191 // then set the operand kind to OK_NonUniformConstantValue. 6192 ConstantInt *CInt0 = nullptr; 6193 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 6194 const Instruction *I = cast<Instruction>(VL[i]); 6195 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 6196 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 6197 if (!CInt) { 6198 Op2VK = TargetTransformInfo::OK_AnyValue; 6199 Op2VP = TargetTransformInfo::OP_None; 6200 break; 6201 } 6202 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 6203 !CInt->getValue().isPowerOf2()) 6204 Op2VP = TargetTransformInfo::OP_None; 6205 if (i == 0) { 6206 CInt0 = CInt; 6207 continue; 6208 } 6209 if (CInt0 != CInt) 6210 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 6211 } 6212 6213 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 6214 InstructionCost ScalarEltCost = 6215 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 6216 Op2VK, Op1VP, Op2VP, Operands, VL0); 6217 if (NeedToShuffleReuses) { 6218 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 6219 } 6220 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 6221 InstructionCost VecCost = 6222 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 6223 Op2VK, Op1VP, Op2VP, Operands, VL0); 6224 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 6225 return CommonCost + VecCost - ScalarCost; 6226 } 6227 case Instruction::GetElementPtr: { 6228 TargetTransformInfo::OperandValueKind Op1VK = 6229 TargetTransformInfo::OK_AnyValue; 6230 TargetTransformInfo::OperandValueKind Op2VK = 6231 TargetTransformInfo::OK_UniformConstantValue; 6232 6233 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 6234 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 6235 if (NeedToShuffleReuses) { 6236 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 6237 } 6238 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 6239 InstructionCost VecCost = TTI->getArithmeticInstrCost( 6240 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 6241 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 6242 return CommonCost + VecCost - ScalarCost; 6243 } 6244 case Instruction::Load: { 6245 // Cost of wide load - cost of scalar loads. 6246 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 6247 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 6248 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 6249 if (NeedToShuffleReuses) { 6250 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 6251 } 6252 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 6253 InstructionCost VecLdCost; 6254 if (E->State == TreeEntry::Vectorize) { 6255 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 6256 CostKind, VL0); 6257 } else { 6258 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 6259 Align CommonAlignment = Alignment; 6260 for (Value *V : VL) 6261 CommonAlignment = 6262 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 6263 VecLdCost = TTI->getGatherScatterOpCost( 6264 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 6265 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 6266 } 6267 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 6268 return CommonCost + VecLdCost - ScalarLdCost; 6269 } 6270 case Instruction::Store: { 6271 // We know that we can merge the stores. Calculate the cost. 6272 bool IsReorder = !E->ReorderIndices.empty(); 6273 auto *SI = 6274 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 6275 Align Alignment = SI->getAlign(); 6276 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 6277 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 6278 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 6279 InstructionCost VecStCost = TTI->getMemoryOpCost( 6280 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 6281 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 6282 return CommonCost + VecStCost - ScalarStCost; 6283 } 6284 case Instruction::Call: { 6285 CallInst *CI = cast<CallInst>(VL0); 6286 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6287 6288 // Calculate the cost of the scalar and vector calls. 6289 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 6290 InstructionCost ScalarEltCost = 6291 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 6292 if (NeedToShuffleReuses) { 6293 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 6294 } 6295 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 6296 6297 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 6298 InstructionCost VecCallCost = 6299 std::min(VecCallCosts.first, VecCallCosts.second); 6300 6301 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 6302 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 6303 << " for " << *CI << "\n"); 6304 6305 return CommonCost + VecCallCost - ScalarCallCost; 6306 } 6307 case Instruction::ShuffleVector: { 6308 assert(E->isAltShuffle() && 6309 ((Instruction::isBinaryOp(E->getOpcode()) && 6310 Instruction::isBinaryOp(E->getAltOpcode())) || 6311 (Instruction::isCast(E->getOpcode()) && 6312 Instruction::isCast(E->getAltOpcode())) || 6313 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 6314 "Invalid Shuffle Vector Operand"); 6315 InstructionCost ScalarCost = 0; 6316 if (NeedToShuffleReuses) { 6317 for (unsigned Idx : E->ReuseShuffleIndices) { 6318 Instruction *I = cast<Instruction>(VL[Idx]); 6319 CommonCost -= TTI->getInstructionCost(I, CostKind); 6320 } 6321 for (Value *V : VL) { 6322 Instruction *I = cast<Instruction>(V); 6323 CommonCost += TTI->getInstructionCost(I, CostKind); 6324 } 6325 } 6326 for (Value *V : VL) { 6327 Instruction *I = cast<Instruction>(V); 6328 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 6329 ScalarCost += TTI->getInstructionCost(I, CostKind); 6330 } 6331 // VecCost is equal to sum of the cost of creating 2 vectors 6332 // and the cost of creating shuffle. 6333 InstructionCost VecCost = 0; 6334 // Try to find the previous shuffle node with the same operands and same 6335 // main/alternate ops. 6336 auto &&TryFindNodeWithEqualOperands = [this, E]() { 6337 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 6338 if (TE.get() == E) 6339 break; 6340 if (TE->isAltShuffle() && 6341 ((TE->getOpcode() == E->getOpcode() && 6342 TE->getAltOpcode() == E->getAltOpcode()) || 6343 (TE->getOpcode() == E->getAltOpcode() && 6344 TE->getAltOpcode() == E->getOpcode())) && 6345 TE->hasEqualOperands(*E)) 6346 return true; 6347 } 6348 return false; 6349 }; 6350 if (TryFindNodeWithEqualOperands()) { 6351 LLVM_DEBUG({ 6352 dbgs() << "SLP: diamond match for alternate node found.\n"; 6353 E->dump(); 6354 }); 6355 // No need to add new vector costs here since we're going to reuse 6356 // same main/alternate vector ops, just do different shuffling. 6357 } else if (Instruction::isBinaryOp(E->getOpcode())) { 6358 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 6359 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 6360 CostKind); 6361 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 6362 VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 6363 Builder.getInt1Ty(), 6364 CI0->getPredicate(), CostKind, VL0); 6365 VecCost += TTI->getCmpSelInstrCost( 6366 E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 6367 cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind, 6368 E->getAltOp()); 6369 } else { 6370 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 6371 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 6372 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 6373 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 6374 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 6375 TTI::CastContextHint::None, CostKind); 6376 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 6377 TTI::CastContextHint::None, CostKind); 6378 } 6379 6380 if (E->ReuseShuffleIndices.empty()) { 6381 CommonCost = 6382 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy); 6383 } else { 6384 SmallVector<int> Mask; 6385 buildShuffleEntryMask( 6386 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 6387 [E](Instruction *I) { 6388 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 6389 return I->getOpcode() == E->getAltOpcode(); 6390 }, 6391 Mask); 6392 CommonCost = TTI->getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc, 6393 FinalVecTy, Mask); 6394 } 6395 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 6396 return CommonCost + VecCost - ScalarCost; 6397 } 6398 default: 6399 llvm_unreachable("Unknown instruction"); 6400 } 6401 } 6402 6403 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 6404 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 6405 << VectorizableTree.size() << " is fully vectorizable .\n"); 6406 6407 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 6408 SmallVector<int> Mask; 6409 return TE->State == TreeEntry::NeedToGather && 6410 !any_of(TE->Scalars, 6411 [this](Value *V) { return EphValues.contains(V); }) && 6412 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 6413 TE->Scalars.size() < Limit || 6414 ((TE->getOpcode() == Instruction::ExtractElement || 6415 all_of(TE->Scalars, 6416 [](Value *V) { 6417 return isa<ExtractElementInst, UndefValue>(V); 6418 })) && 6419 isFixedVectorShuffle(TE->Scalars, Mask)) || 6420 (TE->State == TreeEntry::NeedToGather && 6421 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 6422 }; 6423 6424 // We only handle trees of heights 1 and 2. 6425 if (VectorizableTree.size() == 1 && 6426 (VectorizableTree[0]->State == TreeEntry::Vectorize || 6427 (ForReduction && 6428 AreVectorizableGathers(VectorizableTree[0].get(), 6429 VectorizableTree[0]->Scalars.size()) && 6430 VectorizableTree[0]->getVectorFactor() > 2))) 6431 return true; 6432 6433 if (VectorizableTree.size() != 2) 6434 return false; 6435 6436 // Handle splat and all-constants stores. Also try to vectorize tiny trees 6437 // with the second gather nodes if they have less scalar operands rather than 6438 // the initial tree element (may be profitable to shuffle the second gather) 6439 // or they are extractelements, which form shuffle. 6440 SmallVector<int> Mask; 6441 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 6442 AreVectorizableGathers(VectorizableTree[1].get(), 6443 VectorizableTree[0]->Scalars.size())) 6444 return true; 6445 6446 // Gathering cost would be too much for tiny trees. 6447 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 6448 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 6449 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 6450 return false; 6451 6452 return true; 6453 } 6454 6455 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 6456 TargetTransformInfo *TTI, 6457 bool MustMatchOrInst) { 6458 // Look past the root to find a source value. Arbitrarily follow the 6459 // path through operand 0 of any 'or'. Also, peek through optional 6460 // shift-left-by-multiple-of-8-bits. 6461 Value *ZextLoad = Root; 6462 const APInt *ShAmtC; 6463 bool FoundOr = false; 6464 while (!isa<ConstantExpr>(ZextLoad) && 6465 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 6466 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 6467 ShAmtC->urem(8) == 0))) { 6468 auto *BinOp = cast<BinaryOperator>(ZextLoad); 6469 ZextLoad = BinOp->getOperand(0); 6470 if (BinOp->getOpcode() == Instruction::Or) 6471 FoundOr = true; 6472 } 6473 // Check if the input is an extended load of the required or/shift expression. 6474 Value *Load; 6475 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 6476 !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load)) 6477 return false; 6478 6479 // Require that the total load bit width is a legal integer type. 6480 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 6481 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 6482 Type *SrcTy = Load->getType(); 6483 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 6484 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 6485 return false; 6486 6487 // Everything matched - assume that we can fold the whole sequence using 6488 // load combining. 6489 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 6490 << *(cast<Instruction>(Root)) << "\n"); 6491 6492 return true; 6493 } 6494 6495 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 6496 if (RdxKind != RecurKind::Or) 6497 return false; 6498 6499 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 6500 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 6501 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 6502 /* MatchOr */ false); 6503 } 6504 6505 bool BoUpSLP::isLoadCombineCandidate() const { 6506 // Peek through a final sequence of stores and check if all operations are 6507 // likely to be load-combined. 6508 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 6509 for (Value *Scalar : VectorizableTree[0]->Scalars) { 6510 Value *X; 6511 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 6512 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 6513 return false; 6514 } 6515 return true; 6516 } 6517 6518 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 6519 // No need to vectorize inserts of gathered values. 6520 if (VectorizableTree.size() == 2 && 6521 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 6522 VectorizableTree[1]->State == TreeEntry::NeedToGather) 6523 return true; 6524 6525 // We can vectorize the tree if its size is greater than or equal to the 6526 // minimum size specified by the MinTreeSize command line option. 6527 if (VectorizableTree.size() >= MinTreeSize) 6528 return false; 6529 6530 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 6531 // can vectorize it if we can prove it fully vectorizable. 6532 if (isFullyVectorizableTinyTree(ForReduction)) 6533 return false; 6534 6535 assert(VectorizableTree.empty() 6536 ? ExternalUses.empty() 6537 : true && "We shouldn't have any external users"); 6538 6539 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 6540 // vectorizable. 6541 return true; 6542 } 6543 6544 InstructionCost BoUpSLP::getSpillCost() const { 6545 // Walk from the bottom of the tree to the top, tracking which values are 6546 // live. When we see a call instruction that is not part of our tree, 6547 // query TTI to see if there is a cost to keeping values live over it 6548 // (for example, if spills and fills are required). 6549 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 6550 InstructionCost Cost = 0; 6551 6552 SmallPtrSet<Instruction*, 4> LiveValues; 6553 Instruction *PrevInst = nullptr; 6554 6555 // The entries in VectorizableTree are not necessarily ordered by their 6556 // position in basic blocks. Collect them and order them by dominance so later 6557 // instructions are guaranteed to be visited first. For instructions in 6558 // different basic blocks, we only scan to the beginning of the block, so 6559 // their order does not matter, as long as all instructions in a basic block 6560 // are grouped together. Using dominance ensures a deterministic order. 6561 SmallVector<Instruction *, 16> OrderedScalars; 6562 for (const auto &TEPtr : VectorizableTree) { 6563 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 6564 if (!Inst) 6565 continue; 6566 OrderedScalars.push_back(Inst); 6567 } 6568 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 6569 auto *NodeA = DT->getNode(A->getParent()); 6570 auto *NodeB = DT->getNode(B->getParent()); 6571 assert(NodeA && "Should only process reachable instructions"); 6572 assert(NodeB && "Should only process reachable instructions"); 6573 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 6574 "Different nodes should have different DFS numbers"); 6575 if (NodeA != NodeB) 6576 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 6577 return B->comesBefore(A); 6578 }); 6579 6580 for (Instruction *Inst : OrderedScalars) { 6581 if (!PrevInst) { 6582 PrevInst = Inst; 6583 continue; 6584 } 6585 6586 // Update LiveValues. 6587 LiveValues.erase(PrevInst); 6588 for (auto &J : PrevInst->operands()) { 6589 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 6590 LiveValues.insert(cast<Instruction>(&*J)); 6591 } 6592 6593 LLVM_DEBUG({ 6594 dbgs() << "SLP: #LV: " << LiveValues.size(); 6595 for (auto *X : LiveValues) 6596 dbgs() << " " << X->getName(); 6597 dbgs() << ", Looking at "; 6598 Inst->dump(); 6599 }); 6600 6601 // Now find the sequence of instructions between PrevInst and Inst. 6602 unsigned NumCalls = 0; 6603 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 6604 PrevInstIt = 6605 PrevInst->getIterator().getReverse(); 6606 while (InstIt != PrevInstIt) { 6607 if (PrevInstIt == PrevInst->getParent()->rend()) { 6608 PrevInstIt = Inst->getParent()->rbegin(); 6609 continue; 6610 } 6611 6612 // Debug information does not impact spill cost. 6613 if ((isa<CallInst>(&*PrevInstIt) && 6614 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 6615 &*PrevInstIt != PrevInst) 6616 NumCalls++; 6617 6618 ++PrevInstIt; 6619 } 6620 6621 if (NumCalls) { 6622 SmallVector<Type*, 4> V; 6623 for (auto *II : LiveValues) { 6624 auto *ScalarTy = II->getType(); 6625 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 6626 ScalarTy = VectorTy->getElementType(); 6627 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 6628 } 6629 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 6630 } 6631 6632 PrevInst = Inst; 6633 } 6634 6635 return Cost; 6636 } 6637 6638 /// Check if two insertelement instructions are from the same buildvector. 6639 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU, 6640 InsertElementInst *V) { 6641 // Instructions must be from the same basic blocks. 6642 if (VU->getParent() != V->getParent()) 6643 return false; 6644 // Checks if 2 insertelements are from the same buildvector. 6645 if (VU->getType() != V->getType()) 6646 return false; 6647 // Multiple used inserts are separate nodes. 6648 if (!VU->hasOneUse() && !V->hasOneUse()) 6649 return false; 6650 auto *IE1 = VU; 6651 auto *IE2 = V; 6652 unsigned Idx1 = *getInsertIndex(IE1); 6653 unsigned Idx2 = *getInsertIndex(IE2); 6654 // Go through the vector operand of insertelement instructions trying to find 6655 // either VU as the original vector for IE2 or V as the original vector for 6656 // IE1. 6657 do { 6658 if (IE2 == VU) 6659 return VU->hasOneUse(); 6660 if (IE1 == V) 6661 return V->hasOneUse(); 6662 if (IE1) { 6663 if ((IE1 != VU && !IE1->hasOneUse()) || 6664 getInsertIndex(IE1).getValueOr(Idx2) == Idx2) 6665 IE1 = nullptr; 6666 else 6667 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 6668 } 6669 if (IE2) { 6670 if ((IE2 != V && !IE2->hasOneUse()) || 6671 getInsertIndex(IE2).getValueOr(Idx1) == Idx1) 6672 IE2 = nullptr; 6673 else 6674 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 6675 } 6676 } while (IE1 || IE2); 6677 return false; 6678 } 6679 6680 /// Checks if the \p IE1 instructions is followed by \p IE2 instruction in the 6681 /// buildvector sequence. 6682 static bool isFirstInsertElement(const InsertElementInst *IE1, 6683 const InsertElementInst *IE2) { 6684 if (IE1 == IE2) 6685 return false; 6686 const auto *I1 = IE1; 6687 const auto *I2 = IE2; 6688 const InsertElementInst *PrevI1; 6689 const InsertElementInst *PrevI2; 6690 unsigned Idx1 = *getInsertIndex(IE1); 6691 unsigned Idx2 = *getInsertIndex(IE2); 6692 do { 6693 if (I2 == IE1) 6694 return true; 6695 if (I1 == IE2) 6696 return false; 6697 PrevI1 = I1; 6698 PrevI2 = I2; 6699 if (I1 && (I1 == IE1 || I1->hasOneUse()) && 6700 getInsertIndex(I1).getValueOr(Idx2) != Idx2) 6701 I1 = dyn_cast<InsertElementInst>(I1->getOperand(0)); 6702 if (I2 && ((I2 == IE2 || I2->hasOneUse())) && 6703 getInsertIndex(I2).getValueOr(Idx1) != Idx1) 6704 I2 = dyn_cast<InsertElementInst>(I2->getOperand(0)); 6705 } while ((I1 && PrevI1 != I1) || (I2 && PrevI2 != I2)); 6706 llvm_unreachable("Two different buildvectors not expected."); 6707 } 6708 6709 namespace { 6710 /// Returns incoming Value *, if the requested type is Value * too, or a default 6711 /// value, otherwise. 6712 struct ValueSelect { 6713 template <typename U> 6714 static typename std::enable_if<std::is_same<Value *, U>::value, Value *>::type 6715 get(Value *V) { 6716 return V; 6717 } 6718 template <typename U> 6719 static typename std::enable_if<!std::is_same<Value *, U>::value, U>::type 6720 get(Value *) { 6721 return U(); 6722 } 6723 }; 6724 } // namespace 6725 6726 /// Does the analysis of the provided shuffle masks and performs the requested 6727 /// actions on the vectors with the given shuffle masks. It tries to do it in 6728 /// several steps. 6729 /// 1. If the Base vector is not undef vector, resizing the very first mask to 6730 /// have common VF and perform action for 2 input vectors (including non-undef 6731 /// Base). Other shuffle masks are combined with the resulting after the 1 stage 6732 /// and processed as a shuffle of 2 elements. 6733 /// 2. If the Base is undef vector and have only 1 shuffle mask, perform the 6734 /// action only for 1 vector with the given mask, if it is not the identity 6735 /// mask. 6736 /// 3. If > 2 masks are used, perform the remaining shuffle actions for 2 6737 /// vectors, combing the masks properly between the steps. 6738 template <typename T> 6739 static T *performExtractsShuffleAction( 6740 MutableArrayRef<std::pair<T *, SmallVector<int>>> ShuffleMask, Value *Base, 6741 function_ref<unsigned(T *)> GetVF, 6742 function_ref<std::pair<T *, bool>(T *, ArrayRef<int>)> ResizeAction, 6743 function_ref<T *(ArrayRef<int>, ArrayRef<T *>)> Action) { 6744 assert(!ShuffleMask.empty() && "Empty list of shuffles for inserts."); 6745 SmallVector<int> Mask(ShuffleMask.begin()->second); 6746 auto VMIt = std::next(ShuffleMask.begin()); 6747 T *Prev = nullptr; 6748 bool IsBaseNotUndef = !isUndefVector(Base); 6749 if (IsBaseNotUndef) { 6750 // Base is not undef, need to combine it with the next subvectors. 6751 std::pair<T *, bool> Res = ResizeAction(ShuffleMask.begin()->first, Mask); 6752 for (unsigned Idx = 0, VF = Mask.size(); Idx < VF; ++Idx) { 6753 if (Mask[Idx] == UndefMaskElem) 6754 Mask[Idx] = Idx; 6755 else 6756 Mask[Idx] = (Res.second ? Idx : Mask[Idx]) + VF; 6757 } 6758 auto *V = ValueSelect::get<T *>(Base); 6759 (void)V; 6760 assert((!V || GetVF(V) == Mask.size()) && 6761 "Expected base vector of VF number of elements."); 6762 Prev = Action(Mask, {nullptr, Res.first}); 6763 } else if (ShuffleMask.size() == 1) { 6764 // Base is undef and only 1 vector is shuffled - perform the action only for 6765 // single vector, if the mask is not the identity mask. 6766 std::pair<T *, bool> Res = ResizeAction(ShuffleMask.begin()->first, Mask); 6767 if (Res.second) 6768 // Identity mask is found. 6769 Prev = Res.first; 6770 else 6771 Prev = Action(Mask, {ShuffleMask.begin()->first}); 6772 } else { 6773 // Base is undef and at least 2 input vectors shuffled - perform 2 vectors 6774 // shuffles step by step, combining shuffle between the steps. 6775 unsigned Vec1VF = GetVF(ShuffleMask.begin()->first); 6776 unsigned Vec2VF = GetVF(VMIt->first); 6777 if (Vec1VF == Vec2VF) { 6778 // No need to resize the input vectors since they are of the same size, we 6779 // can shuffle them directly. 6780 ArrayRef<int> SecMask = VMIt->second; 6781 for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) { 6782 if (SecMask[I] != UndefMaskElem) { 6783 assert(Mask[I] == UndefMaskElem && "Multiple uses of scalars."); 6784 Mask[I] = SecMask[I] + Vec1VF; 6785 } 6786 } 6787 Prev = Action(Mask, {ShuffleMask.begin()->first, VMIt->first}); 6788 } else { 6789 // Vectors of different sizes - resize and reshuffle. 6790 std::pair<T *, bool> Res1 = 6791 ResizeAction(ShuffleMask.begin()->first, Mask); 6792 std::pair<T *, bool> Res2 = ResizeAction(VMIt->first, VMIt->second); 6793 ArrayRef<int> SecMask = VMIt->second; 6794 for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) { 6795 if (Mask[I] != UndefMaskElem) { 6796 assert(SecMask[I] == UndefMaskElem && "Multiple uses of scalars."); 6797 if (Res1.second) 6798 Mask[I] = I; 6799 } else if (SecMask[I] != UndefMaskElem) { 6800 assert(Mask[I] == UndefMaskElem && "Multiple uses of scalars."); 6801 Mask[I] = (Res2.second ? I : SecMask[I]) + VF; 6802 } 6803 } 6804 Prev = Action(Mask, {Res1.first, Res2.first}); 6805 } 6806 VMIt = std::next(VMIt); 6807 } 6808 // Perform requested actions for the remaining masks/vectors. 6809 for (auto E = ShuffleMask.end(); VMIt != E; ++VMIt) { 6810 // Shuffle other input vectors, if any. 6811 std::pair<T *, bool> Res = ResizeAction(VMIt->first, VMIt->second); 6812 ArrayRef<int> SecMask = VMIt->second; 6813 for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) { 6814 if (SecMask[I] != UndefMaskElem) { 6815 assert((Mask[I] == UndefMaskElem || IsBaseNotUndef) && 6816 "Multiple uses of scalars."); 6817 Mask[I] = (Res.second ? I : SecMask[I]) + VF; 6818 } else if (Mask[I] != UndefMaskElem) { 6819 Mask[I] = I; 6820 } 6821 } 6822 Prev = Action(Mask, {Prev, Res.first}); 6823 } 6824 return Prev; 6825 } 6826 6827 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 6828 InstructionCost Cost = 0; 6829 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 6830 << VectorizableTree.size() << ".\n"); 6831 6832 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 6833 6834 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 6835 TreeEntry &TE = *VectorizableTree[I]; 6836 6837 InstructionCost C = getEntryCost(&TE, VectorizedVals); 6838 Cost += C; 6839 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6840 << " for bundle that starts with " << *TE.Scalars[0] 6841 << ".\n" 6842 << "SLP: Current total cost = " << Cost << "\n"); 6843 } 6844 6845 SmallPtrSet<Value *, 16> ExtractCostCalculated; 6846 InstructionCost ExtractCost = 0; 6847 SmallVector<MapVector<const TreeEntry *, SmallVector<int>>> ShuffleMasks; 6848 SmallVector<std::pair<Value *, const TreeEntry *>> FirstUsers; 6849 SmallVector<APInt> DemandedElts; 6850 for (ExternalUser &EU : ExternalUses) { 6851 // We only add extract cost once for the same scalar. 6852 if (!isa_and_nonnull<InsertElementInst>(EU.User) && 6853 !ExtractCostCalculated.insert(EU.Scalar).second) 6854 continue; 6855 6856 // Uses by ephemeral values are free (because the ephemeral value will be 6857 // removed prior to code generation, and so the extraction will be 6858 // removed as well). 6859 if (EphValues.count(EU.User)) 6860 continue; 6861 6862 // No extract cost for vector "scalar" 6863 if (isa<FixedVectorType>(EU.Scalar->getType())) 6864 continue; 6865 6866 // Already counted the cost for external uses when tried to adjust the cost 6867 // for extractelements, no need to add it again. 6868 if (isa<ExtractElementInst>(EU.Scalar)) 6869 continue; 6870 6871 // If found user is an insertelement, do not calculate extract cost but try 6872 // to detect it as a final shuffled/identity match. 6873 if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) { 6874 if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) { 6875 Optional<unsigned> InsertIdx = getInsertIndex(VU); 6876 if (InsertIdx) { 6877 const TreeEntry *ScalarTE = getTreeEntry(EU.Scalar); 6878 auto *It = 6879 find_if(FirstUsers, 6880 [VU](const std::pair<Value *, const TreeEntry *> &Pair) { 6881 return areTwoInsertFromSameBuildVector( 6882 VU, cast<InsertElementInst>(Pair.first)); 6883 }); 6884 int VecId = -1; 6885 if (It == FirstUsers.end()) { 6886 (void)ShuffleMasks.emplace_back(); 6887 SmallVectorImpl<int> &Mask = ShuffleMasks.back()[ScalarTE]; 6888 if (Mask.empty()) 6889 Mask.assign(FTy->getNumElements(), UndefMaskElem); 6890 // Find the insertvector, vectorized in tree, if any. 6891 Value *Base = VU; 6892 while (auto *IEBase = dyn_cast<InsertElementInst>(Base)) { 6893 if (IEBase != EU.User && 6894 (!IEBase->hasOneUse() || 6895 getInsertIndex(IEBase).getValueOr(*InsertIdx) == *InsertIdx)) 6896 break; 6897 // Build the mask for the vectorized insertelement instructions. 6898 if (const TreeEntry *E = getTreeEntry(IEBase)) { 6899 VU = IEBase; 6900 do { 6901 IEBase = cast<InsertElementInst>(Base); 6902 int Idx = *getInsertIndex(IEBase); 6903 assert(Mask[Idx] == UndefMaskElem && 6904 "InsertElementInstruction used already."); 6905 Mask[Idx] = Idx; 6906 Base = IEBase->getOperand(0); 6907 } while (E == getTreeEntry(Base)); 6908 break; 6909 } 6910 Base = cast<InsertElementInst>(Base)->getOperand(0); 6911 } 6912 FirstUsers.emplace_back(VU, ScalarTE); 6913 DemandedElts.push_back(APInt::getZero(FTy->getNumElements())); 6914 VecId = FirstUsers.size() - 1; 6915 } else { 6916 if (isFirstInsertElement(VU, cast<InsertElementInst>(It->first))) 6917 It->first = VU; 6918 VecId = std::distance(FirstUsers.begin(), It); 6919 } 6920 int InIdx = *InsertIdx; 6921 SmallVectorImpl<int> &Mask = ShuffleMasks[VecId][ScalarTE]; 6922 if (Mask.empty()) 6923 Mask.assign(FTy->getNumElements(), UndefMaskElem); 6924 Mask[InIdx] = EU.Lane; 6925 DemandedElts[VecId].setBit(InIdx); 6926 continue; 6927 } 6928 } 6929 } 6930 6931 // If we plan to rewrite the tree in a smaller type, we will need to sign 6932 // extend the extracted value back to the original type. Here, we account 6933 // for the extract and the added cost of the sign extend if needed. 6934 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 6935 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 6936 if (MinBWs.count(ScalarRoot)) { 6937 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 6938 auto Extend = 6939 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 6940 VecTy = FixedVectorType::get(MinTy, BundleWidth); 6941 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 6942 VecTy, EU.Lane); 6943 } else { 6944 ExtractCost += 6945 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 6946 } 6947 } 6948 6949 InstructionCost SpillCost = getSpillCost(); 6950 Cost += SpillCost + ExtractCost; 6951 auto &&ResizeToVF = [this, &Cost](const TreeEntry *TE, ArrayRef<int> Mask) { 6952 InstructionCost C = 0; 6953 unsigned VF = Mask.size(); 6954 unsigned VecVF = TE->getVectorFactor(); 6955 if (VF != VecVF && 6956 (any_of(Mask, [VF](int Idx) { return Idx >= static_cast<int>(VF); }) || 6957 (all_of(Mask, 6958 [VF](int Idx) { return Idx < 2 * static_cast<int>(VF); }) && 6959 !ShuffleVectorInst::isIdentityMask(Mask)))) { 6960 SmallVector<int> OrigMask(VecVF, UndefMaskElem); 6961 std::copy(Mask.begin(), std::next(Mask.begin(), std::min(VF, VecVF)), 6962 OrigMask.begin()); 6963 C = TTI->getShuffleCost( 6964 TTI::SK_PermuteSingleSrc, 6965 FixedVectorType::get(TE->getMainOp()->getType(), VecVF), OrigMask); 6966 LLVM_DEBUG( 6967 dbgs() << "SLP: Adding cost " << C 6968 << " for final shuffle of insertelement external users.\n"; 6969 TE->dump(); dbgs() << "SLP: Current total cost = " << Cost << "\n"); 6970 Cost += C; 6971 return std::make_pair(TE, true); 6972 } 6973 return std::make_pair(TE, false); 6974 }; 6975 // Calculate the cost of the reshuffled vectors, if any. 6976 for (int I = 0, E = FirstUsers.size(); I < E; ++I) { 6977 Value *Base = cast<Instruction>(FirstUsers[I].first)->getOperand(0); 6978 unsigned VF = ShuffleMasks[I].begin()->second.size(); 6979 auto *FTy = FixedVectorType::get( 6980 cast<VectorType>(FirstUsers[I].first->getType())->getElementType(), VF); 6981 auto Vector = ShuffleMasks[I].takeVector(); 6982 auto &&EstimateShufflesCost = [this, FTy, 6983 &Cost](ArrayRef<int> Mask, 6984 ArrayRef<const TreeEntry *> TEs) { 6985 assert((TEs.size() == 1 || TEs.size() == 2) && 6986 "Expected exactly 1 or 2 tree entries."); 6987 if (TEs.size() == 1) { 6988 int Limit = 2 * Mask.size(); 6989 if (!all_of(Mask, [Limit](int Idx) { return Idx < Limit; }) || 6990 !ShuffleVectorInst::isIdentityMask(Mask)) { 6991 InstructionCost C = 6992 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FTy, Mask); 6993 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6994 << " for final shuffle of insertelement " 6995 "external users.\n"; 6996 TEs.front()->dump(); 6997 dbgs() << "SLP: Current total cost = " << Cost << "\n"); 6998 Cost += C; 6999 } 7000 } else { 7001 InstructionCost C = 7002 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, FTy, Mask); 7003 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 7004 << " for final shuffle of vector node and external " 7005 "insertelement users.\n"; 7006 if (TEs.front()) { TEs.front()->dump(); } TEs.back()->dump(); 7007 dbgs() << "SLP: Current total cost = " << Cost << "\n"); 7008 Cost += C; 7009 } 7010 return TEs.back(); 7011 }; 7012 (void)performExtractsShuffleAction<const TreeEntry>( 7013 makeMutableArrayRef(Vector.data(), Vector.size()), Base, 7014 [](const TreeEntry *E) { return E->getVectorFactor(); }, ResizeToVF, 7015 EstimateShufflesCost); 7016 InstructionCost InsertCost = TTI->getScalarizationOverhead( 7017 cast<FixedVectorType>(FirstUsers[I].first->getType()), DemandedElts[I], 7018 /*Insert*/ true, /*Extract*/ false); 7019 Cost -= InsertCost; 7020 } 7021 7022 #ifndef NDEBUG 7023 SmallString<256> Str; 7024 { 7025 raw_svector_ostream OS(Str); 7026 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 7027 << "SLP: Extract Cost = " << ExtractCost << ".\n" 7028 << "SLP: Total Cost = " << Cost << ".\n"; 7029 } 7030 LLVM_DEBUG(dbgs() << Str); 7031 if (ViewSLPTree) 7032 ViewGraph(this, "SLP" + F->getName(), false, Str); 7033 #endif 7034 7035 return Cost; 7036 } 7037 7038 Optional<TargetTransformInfo::ShuffleKind> 7039 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 7040 SmallVectorImpl<const TreeEntry *> &Entries) { 7041 // TODO: currently checking only for Scalars in the tree entry, need to count 7042 // reused elements too for better cost estimation. 7043 Mask.assign(TE->Scalars.size(), UndefMaskElem); 7044 Entries.clear(); 7045 // Build a lists of values to tree entries. 7046 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 7047 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 7048 if (EntryPtr.get() == TE) 7049 break; 7050 if (EntryPtr->State != TreeEntry::NeedToGather) 7051 continue; 7052 for (Value *V : EntryPtr->Scalars) 7053 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 7054 } 7055 // Find all tree entries used by the gathered values. If no common entries 7056 // found - not a shuffle. 7057 // Here we build a set of tree nodes for each gathered value and trying to 7058 // find the intersection between these sets. If we have at least one common 7059 // tree node for each gathered value - we have just a permutation of the 7060 // single vector. If we have 2 different sets, we're in situation where we 7061 // have a permutation of 2 input vectors. 7062 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 7063 DenseMap<Value *, int> UsedValuesEntry; 7064 for (Value *V : TE->Scalars) { 7065 if (isa<UndefValue>(V)) 7066 continue; 7067 // Build a list of tree entries where V is used. 7068 SmallPtrSet<const TreeEntry *, 4> VToTEs; 7069 auto It = ValueToTEs.find(V); 7070 if (It != ValueToTEs.end()) 7071 VToTEs = It->second; 7072 if (const TreeEntry *VTE = getTreeEntry(V)) 7073 VToTEs.insert(VTE); 7074 if (VToTEs.empty()) 7075 return None; 7076 if (UsedTEs.empty()) { 7077 // The first iteration, just insert the list of nodes to vector. 7078 UsedTEs.push_back(VToTEs); 7079 } else { 7080 // Need to check if there are any previously used tree nodes which use V. 7081 // If there are no such nodes, consider that we have another one input 7082 // vector. 7083 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 7084 unsigned Idx = 0; 7085 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 7086 // Do we have a non-empty intersection of previously listed tree entries 7087 // and tree entries using current V? 7088 set_intersect(VToTEs, Set); 7089 if (!VToTEs.empty()) { 7090 // Yes, write the new subset and continue analysis for the next 7091 // scalar. 7092 Set.swap(VToTEs); 7093 break; 7094 } 7095 VToTEs = SavedVToTEs; 7096 ++Idx; 7097 } 7098 // No non-empty intersection found - need to add a second set of possible 7099 // source vectors. 7100 if (Idx == UsedTEs.size()) { 7101 // If the number of input vectors is greater than 2 - not a permutation, 7102 // fallback to the regular gather. 7103 if (UsedTEs.size() == 2) 7104 return None; 7105 UsedTEs.push_back(SavedVToTEs); 7106 Idx = UsedTEs.size() - 1; 7107 } 7108 UsedValuesEntry.try_emplace(V, Idx); 7109 } 7110 } 7111 7112 if (UsedTEs.empty()) { 7113 assert(all_of(TE->Scalars, UndefValue::classof) && 7114 "Expected vector of undefs only."); 7115 return None; 7116 } 7117 7118 unsigned VF = 0; 7119 if (UsedTEs.size() == 1) { 7120 // Try to find the perfect match in another gather node at first. 7121 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 7122 return EntryPtr->isSame(TE->Scalars); 7123 }); 7124 if (It != UsedTEs.front().end()) { 7125 Entries.push_back(*It); 7126 std::iota(Mask.begin(), Mask.end(), 0); 7127 return TargetTransformInfo::SK_PermuteSingleSrc; 7128 } 7129 // No perfect match, just shuffle, so choose the first tree node. 7130 Entries.push_back(*UsedTEs.front().begin()); 7131 } else { 7132 // Try to find nodes with the same vector factor. 7133 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 7134 DenseMap<int, const TreeEntry *> VFToTE; 7135 for (const TreeEntry *TE : UsedTEs.front()) 7136 VFToTE.try_emplace(TE->getVectorFactor(), TE); 7137 for (const TreeEntry *TE : UsedTEs.back()) { 7138 auto It = VFToTE.find(TE->getVectorFactor()); 7139 if (It != VFToTE.end()) { 7140 VF = It->first; 7141 Entries.push_back(It->second); 7142 Entries.push_back(TE); 7143 break; 7144 } 7145 } 7146 // No 2 source vectors with the same vector factor - give up and do regular 7147 // gather. 7148 if (Entries.empty()) 7149 return None; 7150 } 7151 7152 // Build a shuffle mask for better cost estimation and vector emission. 7153 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 7154 Value *V = TE->Scalars[I]; 7155 if (isa<UndefValue>(V)) 7156 continue; 7157 unsigned Idx = UsedValuesEntry.lookup(V); 7158 const TreeEntry *VTE = Entries[Idx]; 7159 int FoundLane = VTE->findLaneForValue(V); 7160 Mask[I] = Idx * VF + FoundLane; 7161 // Extra check required by isSingleSourceMaskImpl function (called by 7162 // ShuffleVectorInst::isSingleSourceMask). 7163 if (Mask[I] >= 2 * E) 7164 return None; 7165 } 7166 switch (Entries.size()) { 7167 case 1: 7168 return TargetTransformInfo::SK_PermuteSingleSrc; 7169 case 2: 7170 return TargetTransformInfo::SK_PermuteTwoSrc; 7171 default: 7172 break; 7173 } 7174 return None; 7175 } 7176 7177 InstructionCost BoUpSLP::getGatherCost(FixedVectorType *Ty, 7178 const APInt &ShuffledIndices, 7179 bool NeedToShuffle) const { 7180 InstructionCost Cost = 7181 TTI->getScalarizationOverhead(Ty, ~ShuffledIndices, /*Insert*/ true, 7182 /*Extract*/ false); 7183 if (NeedToShuffle) 7184 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 7185 return Cost; 7186 } 7187 7188 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 7189 // Find the type of the operands in VL. 7190 Type *ScalarTy = VL[0]->getType(); 7191 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 7192 ScalarTy = SI->getValueOperand()->getType(); 7193 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 7194 bool DuplicateNonConst = false; 7195 // Find the cost of inserting/extracting values from the vector. 7196 // Check if the same elements are inserted several times and count them as 7197 // shuffle candidates. 7198 APInt ShuffledElements = APInt::getZero(VL.size()); 7199 DenseSet<Value *> UniqueElements; 7200 // Iterate in reverse order to consider insert elements with the high cost. 7201 for (unsigned I = VL.size(); I > 0; --I) { 7202 unsigned Idx = I - 1; 7203 // No need to shuffle duplicates for constants. 7204 if (isConstant(VL[Idx])) { 7205 ShuffledElements.setBit(Idx); 7206 continue; 7207 } 7208 if (!UniqueElements.insert(VL[Idx]).second) { 7209 DuplicateNonConst = true; 7210 ShuffledElements.setBit(Idx); 7211 } 7212 } 7213 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 7214 } 7215 7216 // Perform operand reordering on the instructions in VL and return the reordered 7217 // operands in Left and Right. 7218 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 7219 SmallVectorImpl<Value *> &Left, 7220 SmallVectorImpl<Value *> &Right, 7221 const DataLayout &DL, 7222 ScalarEvolution &SE, 7223 const BoUpSLP &R) { 7224 if (VL.empty()) 7225 return; 7226 VLOperands Ops(VL, DL, SE, R); 7227 // Reorder the operands in place. 7228 Ops.reorder(); 7229 Left = Ops.getVL(0); 7230 Right = Ops.getVL(1); 7231 } 7232 7233 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 7234 // Get the basic block this bundle is in. All instructions in the bundle 7235 // should be in this block. 7236 auto *Front = E->getMainOp(); 7237 auto *BB = Front->getParent(); 7238 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 7239 auto *I = cast<Instruction>(V); 7240 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 7241 })); 7242 7243 auto &&FindLastInst = [E, Front]() { 7244 Instruction *LastInst = Front; 7245 for (Value *V : E->Scalars) { 7246 auto *I = dyn_cast<Instruction>(V); 7247 if (!I) 7248 continue; 7249 if (LastInst->comesBefore(I)) 7250 LastInst = I; 7251 } 7252 return LastInst; 7253 }; 7254 7255 auto &&FindFirstInst = [E, Front]() { 7256 Instruction *FirstInst = Front; 7257 for (Value *V : E->Scalars) { 7258 auto *I = dyn_cast<Instruction>(V); 7259 if (!I) 7260 continue; 7261 if (I->comesBefore(FirstInst)) 7262 FirstInst = I; 7263 } 7264 return FirstInst; 7265 }; 7266 7267 // Set the insert point to the beginning of the basic block if the entry 7268 // should not be scheduled. 7269 if (E->State != TreeEntry::NeedToGather && 7270 doesNotNeedToSchedule(E->Scalars)) { 7271 Instruction *InsertInst; 7272 if (all_of(E->Scalars, isUsedOutsideBlock)) 7273 InsertInst = FindLastInst(); 7274 else 7275 InsertInst = FindFirstInst(); 7276 // If the instruction is PHI, set the insert point after all the PHIs. 7277 if (isa<PHINode>(InsertInst)) 7278 InsertInst = BB->getFirstNonPHI(); 7279 BasicBlock::iterator InsertPt = InsertInst->getIterator(); 7280 Builder.SetInsertPoint(BB, InsertPt); 7281 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 7282 return; 7283 } 7284 7285 // The last instruction in the bundle in program order. 7286 Instruction *LastInst = nullptr; 7287 7288 // Find the last instruction. The common case should be that BB has been 7289 // scheduled, and the last instruction is VL.back(). So we start with 7290 // VL.back() and iterate over schedule data until we reach the end of the 7291 // bundle. The end of the bundle is marked by null ScheduleData. 7292 if (BlocksSchedules.count(BB)) { 7293 Value *V = E->isOneOf(E->Scalars.back()); 7294 if (doesNotNeedToBeScheduled(V)) 7295 V = *find_if_not(E->Scalars, doesNotNeedToBeScheduled); 7296 auto *Bundle = BlocksSchedules[BB]->getScheduleData(V); 7297 if (Bundle && Bundle->isPartOfBundle()) 7298 for (; Bundle; Bundle = Bundle->NextInBundle) 7299 if (Bundle->OpValue == Bundle->Inst) 7300 LastInst = Bundle->Inst; 7301 } 7302 7303 // LastInst can still be null at this point if there's either not an entry 7304 // for BB in BlocksSchedules or there's no ScheduleData available for 7305 // VL.back(). This can be the case if buildTree_rec aborts for various 7306 // reasons (e.g., the maximum recursion depth is reached, the maximum region 7307 // size is reached, etc.). ScheduleData is initialized in the scheduling 7308 // "dry-run". 7309 // 7310 // If this happens, we can still find the last instruction by brute force. We 7311 // iterate forwards from Front (inclusive) until we either see all 7312 // instructions in the bundle or reach the end of the block. If Front is the 7313 // last instruction in program order, LastInst will be set to Front, and we 7314 // will visit all the remaining instructions in the block. 7315 // 7316 // One of the reasons we exit early from buildTree_rec is to place an upper 7317 // bound on compile-time. Thus, taking an additional compile-time hit here is 7318 // not ideal. However, this should be exceedingly rare since it requires that 7319 // we both exit early from buildTree_rec and that the bundle be out-of-order 7320 // (causing us to iterate all the way to the end of the block). 7321 if (!LastInst) { 7322 LastInst = FindLastInst(); 7323 // If the instruction is PHI, set the insert point after all the PHIs. 7324 if (isa<PHINode>(LastInst)) 7325 LastInst = BB->getFirstNonPHI()->getPrevNode(); 7326 } 7327 assert(LastInst && "Failed to find last instruction in bundle"); 7328 7329 // Set the insertion point after the last instruction in the bundle. Set the 7330 // debug location to Front. 7331 Builder.SetInsertPoint(BB, std::next(LastInst->getIterator())); 7332 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 7333 } 7334 7335 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 7336 // List of instructions/lanes from current block and/or the blocks which are 7337 // part of the current loop. These instructions will be inserted at the end to 7338 // make it possible to optimize loops and hoist invariant instructions out of 7339 // the loops body with better chances for success. 7340 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 7341 SmallSet<int, 4> PostponedIndices; 7342 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 7343 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 7344 SmallPtrSet<BasicBlock *, 4> Visited; 7345 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 7346 InsertBB = InsertBB->getSinglePredecessor(); 7347 return InsertBB && InsertBB == InstBB; 7348 }; 7349 for (int I = 0, E = VL.size(); I < E; ++I) { 7350 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 7351 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 7352 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 7353 PostponedIndices.insert(I).second) 7354 PostponedInsts.emplace_back(Inst, I); 7355 } 7356 7357 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 7358 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 7359 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 7360 if (!InsElt) 7361 return Vec; 7362 GatherShuffleSeq.insert(InsElt); 7363 CSEBlocks.insert(InsElt->getParent()); 7364 // Add to our 'need-to-extract' list. 7365 if (TreeEntry *Entry = getTreeEntry(V)) { 7366 // Find which lane we need to extract. 7367 unsigned FoundLane = Entry->findLaneForValue(V); 7368 ExternalUses.emplace_back(V, InsElt, FoundLane); 7369 } 7370 return Vec; 7371 }; 7372 Value *Val0 = 7373 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 7374 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 7375 Value *Vec = PoisonValue::get(VecTy); 7376 SmallVector<int> NonConsts; 7377 // Insert constant values at first. 7378 for (int I = 0, E = VL.size(); I < E; ++I) { 7379 if (PostponedIndices.contains(I)) 7380 continue; 7381 if (!isConstant(VL[I])) { 7382 NonConsts.push_back(I); 7383 continue; 7384 } 7385 Vec = CreateInsertElement(Vec, VL[I], I); 7386 } 7387 // Insert non-constant values. 7388 for (int I : NonConsts) 7389 Vec = CreateInsertElement(Vec, VL[I], I); 7390 // Append instructions, which are/may be part of the loop, in the end to make 7391 // it possible to hoist non-loop-based instructions. 7392 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 7393 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 7394 7395 return Vec; 7396 } 7397 7398 namespace { 7399 /// Merges shuffle masks and emits final shuffle instruction, if required. 7400 class ShuffleInstructionBuilder { 7401 IRBuilderBase &Builder; 7402 const unsigned VF = 0; 7403 bool IsFinalized = false; 7404 SmallVector<int, 4> Mask; 7405 /// Holds all of the instructions that we gathered. 7406 SetVector<Instruction *> &GatherShuffleSeq; 7407 /// A list of blocks that we are going to CSE. 7408 SetVector<BasicBlock *> &CSEBlocks; 7409 7410 public: 7411 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF, 7412 SetVector<Instruction *> &GatherShuffleSeq, 7413 SetVector<BasicBlock *> &CSEBlocks) 7414 : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq), 7415 CSEBlocks(CSEBlocks) {} 7416 7417 /// Adds a mask, inverting it before applying. 7418 void addInversedMask(ArrayRef<unsigned> SubMask) { 7419 if (SubMask.empty()) 7420 return; 7421 SmallVector<int, 4> NewMask; 7422 inversePermutation(SubMask, NewMask); 7423 addMask(NewMask); 7424 } 7425 7426 /// Functions adds masks, merging them into single one. 7427 void addMask(ArrayRef<unsigned> SubMask) { 7428 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 7429 addMask(NewMask); 7430 } 7431 7432 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 7433 7434 Value *finalize(Value *V) { 7435 IsFinalized = true; 7436 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 7437 if (VF == ValueVF && Mask.empty()) 7438 return V; 7439 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 7440 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 7441 addMask(NormalizedMask); 7442 7443 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 7444 return V; 7445 Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle"); 7446 if (auto *I = dyn_cast<Instruction>(Vec)) { 7447 GatherShuffleSeq.insert(I); 7448 CSEBlocks.insert(I->getParent()); 7449 } 7450 return Vec; 7451 } 7452 7453 ~ShuffleInstructionBuilder() { 7454 assert((IsFinalized || Mask.empty()) && 7455 "Shuffle construction must be finalized."); 7456 } 7457 }; 7458 } // namespace 7459 7460 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 7461 const unsigned VF = VL.size(); 7462 InstructionsState S = getSameOpcode(VL); 7463 if (S.getOpcode()) { 7464 if (TreeEntry *E = getTreeEntry(S.OpValue)) 7465 if (E->isSame(VL)) { 7466 Value *V = vectorizeTree(E); 7467 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 7468 if (!E->ReuseShuffleIndices.empty()) { 7469 // Reshuffle to get only unique values. 7470 // If some of the scalars are duplicated in the vectorization tree 7471 // entry, we do not vectorize them but instead generate a mask for 7472 // the reuses. But if there are several users of the same entry, 7473 // they may have different vectorization factors. This is especially 7474 // important for PHI nodes. In this case, we need to adapt the 7475 // resulting instruction for the user vectorization factor and have 7476 // to reshuffle it again to take only unique elements of the vector. 7477 // Without this code the function incorrectly returns reduced vector 7478 // instruction with the same elements, not with the unique ones. 7479 7480 // block: 7481 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 7482 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 7483 // ... (use %2) 7484 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 7485 // br %block 7486 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 7487 SmallSet<int, 4> UsedIdxs; 7488 int Pos = 0; 7489 int Sz = VL.size(); 7490 for (int Idx : E->ReuseShuffleIndices) { 7491 if (Idx != Sz && Idx != UndefMaskElem && 7492 UsedIdxs.insert(Idx).second) 7493 UniqueIdxs[Idx] = Pos; 7494 ++Pos; 7495 } 7496 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 7497 "less than original vector size."); 7498 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 7499 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 7500 } else { 7501 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 7502 "Expected vectorization factor less " 7503 "than original vector size."); 7504 SmallVector<int> UniformMask(VF, 0); 7505 std::iota(UniformMask.begin(), UniformMask.end(), 0); 7506 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 7507 } 7508 if (auto *I = dyn_cast<Instruction>(V)) { 7509 GatherShuffleSeq.insert(I); 7510 CSEBlocks.insert(I->getParent()); 7511 } 7512 } 7513 return V; 7514 } 7515 } 7516 7517 // Can't vectorize this, so simply build a new vector with each lane 7518 // corresponding to the requested value. 7519 return createBuildVector(VL); 7520 } 7521 Value *BoUpSLP::createBuildVector(ArrayRef<Value *> VL) { 7522 unsigned VF = VL.size(); 7523 // Exploit possible reuse of values across lanes. 7524 SmallVector<int> ReuseShuffleIndicies; 7525 SmallVector<Value *> UniqueValues; 7526 if (VL.size() > 2) { 7527 DenseMap<Value *, unsigned> UniquePositions; 7528 unsigned NumValues = 7529 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 7530 return !isa<UndefValue>(V); 7531 }).base()); 7532 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 7533 int UniqueVals = 0; 7534 for (Value *V : VL.drop_back(VL.size() - VF)) { 7535 if (isa<UndefValue>(V)) { 7536 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 7537 continue; 7538 } 7539 if (isConstant(V)) { 7540 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 7541 UniqueValues.emplace_back(V); 7542 continue; 7543 } 7544 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 7545 ReuseShuffleIndicies.emplace_back(Res.first->second); 7546 if (Res.second) { 7547 UniqueValues.emplace_back(V); 7548 ++UniqueVals; 7549 } 7550 } 7551 if (UniqueVals == 1 && UniqueValues.size() == 1) { 7552 // Emit pure splat vector. 7553 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 7554 UndefMaskElem); 7555 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 7556 if (UniqueValues.empty()) { 7557 assert(all_of(VL, UndefValue::classof) && "Expected list of undefs."); 7558 NumValues = VF; 7559 } 7560 ReuseShuffleIndicies.clear(); 7561 UniqueValues.clear(); 7562 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 7563 } 7564 UniqueValues.append(VF - UniqueValues.size(), 7565 PoisonValue::get(VL[0]->getType())); 7566 VL = UniqueValues; 7567 } 7568 7569 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 7570 CSEBlocks); 7571 Value *Vec = gather(VL); 7572 if (!ReuseShuffleIndicies.empty()) { 7573 ShuffleBuilder.addMask(ReuseShuffleIndicies); 7574 Vec = ShuffleBuilder.finalize(Vec); 7575 } 7576 return Vec; 7577 } 7578 7579 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 7580 IRBuilder<>::InsertPointGuard Guard(Builder); 7581 7582 if (E->VectorizedValue) { 7583 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 7584 return E->VectorizedValue; 7585 } 7586 7587 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 7588 unsigned VF = E->getVectorFactor(); 7589 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 7590 CSEBlocks); 7591 if (E->State == TreeEntry::NeedToGather) { 7592 if (E->getMainOp()) 7593 setInsertPointAfterBundle(E); 7594 Value *Vec; 7595 SmallVector<int> Mask; 7596 SmallVector<const TreeEntry *> Entries; 7597 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 7598 isGatherShuffledEntry(E, Mask, Entries); 7599 if (Shuffle.hasValue()) { 7600 assert((Entries.size() == 1 || Entries.size() == 2) && 7601 "Expected shuffle of 1 or 2 entries."); 7602 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 7603 Entries.back()->VectorizedValue, Mask); 7604 if (auto *I = dyn_cast<Instruction>(Vec)) { 7605 GatherShuffleSeq.insert(I); 7606 CSEBlocks.insert(I->getParent()); 7607 } 7608 } else { 7609 Vec = gather(E->Scalars); 7610 } 7611 if (NeedToShuffleReuses) { 7612 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7613 Vec = ShuffleBuilder.finalize(Vec); 7614 } 7615 E->VectorizedValue = Vec; 7616 return Vec; 7617 } 7618 7619 assert((E->State == TreeEntry::Vectorize || 7620 E->State == TreeEntry::ScatterVectorize) && 7621 "Unhandled state"); 7622 unsigned ShuffleOrOp = 7623 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 7624 Instruction *VL0 = E->getMainOp(); 7625 Type *ScalarTy = VL0->getType(); 7626 if (auto *Store = dyn_cast<StoreInst>(VL0)) 7627 ScalarTy = Store->getValueOperand()->getType(); 7628 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 7629 ScalarTy = IE->getOperand(1)->getType(); 7630 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 7631 switch (ShuffleOrOp) { 7632 case Instruction::PHI: { 7633 assert( 7634 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 7635 "PHI reordering is free."); 7636 auto *PH = cast<PHINode>(VL0); 7637 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 7638 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 7639 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 7640 Value *V = NewPhi; 7641 7642 // Adjust insertion point once all PHI's have been generated. 7643 Builder.SetInsertPoint(&*PH->getParent()->getFirstInsertionPt()); 7644 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 7645 7646 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7647 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7648 V = ShuffleBuilder.finalize(V); 7649 7650 E->VectorizedValue = V; 7651 7652 // PHINodes may have multiple entries from the same block. We want to 7653 // visit every block once. 7654 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 7655 7656 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 7657 ValueList Operands; 7658 BasicBlock *IBB = PH->getIncomingBlock(i); 7659 7660 if (!VisitedBBs.insert(IBB).second) { 7661 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 7662 continue; 7663 } 7664 7665 Builder.SetInsertPoint(IBB->getTerminator()); 7666 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 7667 Value *Vec = vectorizeTree(E->getOperand(i)); 7668 NewPhi->addIncoming(Vec, IBB); 7669 } 7670 7671 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 7672 "Invalid number of incoming values"); 7673 return V; 7674 } 7675 7676 case Instruction::ExtractElement: { 7677 Value *V = E->getSingleOperand(0); 7678 Builder.SetInsertPoint(VL0); 7679 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7680 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7681 V = ShuffleBuilder.finalize(V); 7682 E->VectorizedValue = V; 7683 return V; 7684 } 7685 case Instruction::ExtractValue: { 7686 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 7687 Builder.SetInsertPoint(LI); 7688 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 7689 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 7690 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 7691 Value *NewV = propagateMetadata(V, E->Scalars); 7692 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7693 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7694 NewV = ShuffleBuilder.finalize(NewV); 7695 E->VectorizedValue = NewV; 7696 return NewV; 7697 } 7698 case Instruction::InsertElement: { 7699 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 7700 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 7701 Value *V = vectorizeTree(E->getOperand(1)); 7702 7703 // Create InsertVector shuffle if necessary 7704 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 7705 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 7706 })); 7707 const unsigned NumElts = 7708 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 7709 const unsigned NumScalars = E->Scalars.size(); 7710 7711 unsigned Offset = *getInsertIndex(VL0); 7712 assert(Offset < NumElts && "Failed to find vector index offset"); 7713 7714 // Create shuffle to resize vector 7715 SmallVector<int> Mask; 7716 if (!E->ReorderIndices.empty()) { 7717 inversePermutation(E->ReorderIndices, Mask); 7718 Mask.append(NumElts - NumScalars, UndefMaskElem); 7719 } else { 7720 Mask.assign(NumElts, UndefMaskElem); 7721 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 7722 } 7723 // Create InsertVector shuffle if necessary 7724 bool IsIdentity = true; 7725 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 7726 Mask.swap(PrevMask); 7727 for (unsigned I = 0; I < NumScalars; ++I) { 7728 Value *Scalar = E->Scalars[PrevMask[I]]; 7729 unsigned InsertIdx = *getInsertIndex(Scalar); 7730 IsIdentity &= InsertIdx - Offset == I; 7731 Mask[InsertIdx - Offset] = I; 7732 } 7733 if (!IsIdentity || NumElts != NumScalars) { 7734 V = Builder.CreateShuffleVector(V, Mask); 7735 if (auto *I = dyn_cast<Instruction>(V)) { 7736 GatherShuffleSeq.insert(I); 7737 CSEBlocks.insert(I->getParent()); 7738 } 7739 } 7740 7741 if ((!IsIdentity || Offset != 0 || 7742 !isUndefVector(FirstInsert->getOperand(0))) && 7743 NumElts != NumScalars) { 7744 SmallVector<int> InsertMask(NumElts); 7745 std::iota(InsertMask.begin(), InsertMask.end(), 0); 7746 for (unsigned I = 0; I < NumElts; I++) { 7747 if (Mask[I] != UndefMaskElem) 7748 InsertMask[Offset + I] = NumElts + I; 7749 } 7750 7751 V = Builder.CreateShuffleVector( 7752 FirstInsert->getOperand(0), V, InsertMask, 7753 cast<Instruction>(E->Scalars.back())->getName()); 7754 if (auto *I = dyn_cast<Instruction>(V)) { 7755 GatherShuffleSeq.insert(I); 7756 CSEBlocks.insert(I->getParent()); 7757 } 7758 } 7759 7760 ++NumVectorInstructions; 7761 E->VectorizedValue = V; 7762 return V; 7763 } 7764 case Instruction::ZExt: 7765 case Instruction::SExt: 7766 case Instruction::FPToUI: 7767 case Instruction::FPToSI: 7768 case Instruction::FPExt: 7769 case Instruction::PtrToInt: 7770 case Instruction::IntToPtr: 7771 case Instruction::SIToFP: 7772 case Instruction::UIToFP: 7773 case Instruction::Trunc: 7774 case Instruction::FPTrunc: 7775 case Instruction::BitCast: { 7776 setInsertPointAfterBundle(E); 7777 7778 Value *InVec = vectorizeTree(E->getOperand(0)); 7779 7780 if (E->VectorizedValue) { 7781 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7782 return E->VectorizedValue; 7783 } 7784 7785 auto *CI = cast<CastInst>(VL0); 7786 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 7787 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7788 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7789 V = ShuffleBuilder.finalize(V); 7790 7791 E->VectorizedValue = V; 7792 ++NumVectorInstructions; 7793 return V; 7794 } 7795 case Instruction::FCmp: 7796 case Instruction::ICmp: { 7797 setInsertPointAfterBundle(E); 7798 7799 Value *L = vectorizeTree(E->getOperand(0)); 7800 Value *R = vectorizeTree(E->getOperand(1)); 7801 7802 if (E->VectorizedValue) { 7803 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7804 return E->VectorizedValue; 7805 } 7806 7807 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 7808 Value *V = Builder.CreateCmp(P0, L, R); 7809 propagateIRFlags(V, E->Scalars, VL0); 7810 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7811 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7812 V = ShuffleBuilder.finalize(V); 7813 7814 E->VectorizedValue = V; 7815 ++NumVectorInstructions; 7816 return V; 7817 } 7818 case Instruction::Select: { 7819 setInsertPointAfterBundle(E); 7820 7821 Value *Cond = vectorizeTree(E->getOperand(0)); 7822 Value *True = vectorizeTree(E->getOperand(1)); 7823 Value *False = vectorizeTree(E->getOperand(2)); 7824 7825 if (E->VectorizedValue) { 7826 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7827 return E->VectorizedValue; 7828 } 7829 7830 Value *V = Builder.CreateSelect(Cond, True, False); 7831 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7832 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7833 V = ShuffleBuilder.finalize(V); 7834 7835 E->VectorizedValue = V; 7836 ++NumVectorInstructions; 7837 return V; 7838 } 7839 case Instruction::FNeg: { 7840 setInsertPointAfterBundle(E); 7841 7842 Value *Op = vectorizeTree(E->getOperand(0)); 7843 7844 if (E->VectorizedValue) { 7845 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7846 return E->VectorizedValue; 7847 } 7848 7849 Value *V = Builder.CreateUnOp( 7850 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 7851 propagateIRFlags(V, E->Scalars, VL0); 7852 if (auto *I = dyn_cast<Instruction>(V)) 7853 V = propagateMetadata(I, E->Scalars); 7854 7855 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7856 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7857 V = ShuffleBuilder.finalize(V); 7858 7859 E->VectorizedValue = V; 7860 ++NumVectorInstructions; 7861 7862 return V; 7863 } 7864 case Instruction::Add: 7865 case Instruction::FAdd: 7866 case Instruction::Sub: 7867 case Instruction::FSub: 7868 case Instruction::Mul: 7869 case Instruction::FMul: 7870 case Instruction::UDiv: 7871 case Instruction::SDiv: 7872 case Instruction::FDiv: 7873 case Instruction::URem: 7874 case Instruction::SRem: 7875 case Instruction::FRem: 7876 case Instruction::Shl: 7877 case Instruction::LShr: 7878 case Instruction::AShr: 7879 case Instruction::And: 7880 case Instruction::Or: 7881 case Instruction::Xor: { 7882 setInsertPointAfterBundle(E); 7883 7884 Value *LHS = vectorizeTree(E->getOperand(0)); 7885 Value *RHS = vectorizeTree(E->getOperand(1)); 7886 7887 if (E->VectorizedValue) { 7888 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7889 return E->VectorizedValue; 7890 } 7891 7892 Value *V = Builder.CreateBinOp( 7893 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 7894 RHS); 7895 propagateIRFlags(V, E->Scalars, VL0); 7896 if (auto *I = dyn_cast<Instruction>(V)) 7897 V = propagateMetadata(I, E->Scalars); 7898 7899 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7900 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7901 V = ShuffleBuilder.finalize(V); 7902 7903 E->VectorizedValue = V; 7904 ++NumVectorInstructions; 7905 7906 return V; 7907 } 7908 case Instruction::Load: { 7909 // Loads are inserted at the head of the tree because we don't want to 7910 // sink them all the way down past store instructions. 7911 setInsertPointAfterBundle(E); 7912 7913 LoadInst *LI = cast<LoadInst>(VL0); 7914 Instruction *NewLI; 7915 unsigned AS = LI->getPointerAddressSpace(); 7916 Value *PO = LI->getPointerOperand(); 7917 if (E->State == TreeEntry::Vectorize) { 7918 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 7919 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 7920 7921 // The pointer operand uses an in-tree scalar so we add the new BitCast 7922 // or LoadInst to ExternalUses list to make sure that an extract will 7923 // be generated in the future. 7924 if (TreeEntry *Entry = getTreeEntry(PO)) { 7925 // Find which lane we need to extract. 7926 unsigned FoundLane = Entry->findLaneForValue(PO); 7927 ExternalUses.emplace_back( 7928 PO, PO != VecPtr ? cast<User>(VecPtr) : NewLI, FoundLane); 7929 } 7930 } else { 7931 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 7932 Value *VecPtr = vectorizeTree(E->getOperand(0)); 7933 // Use the minimum alignment of the gathered loads. 7934 Align CommonAlignment = LI->getAlign(); 7935 for (Value *V : E->Scalars) 7936 CommonAlignment = 7937 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 7938 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 7939 } 7940 Value *V = propagateMetadata(NewLI, E->Scalars); 7941 7942 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7943 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7944 V = ShuffleBuilder.finalize(V); 7945 E->VectorizedValue = V; 7946 ++NumVectorInstructions; 7947 return V; 7948 } 7949 case Instruction::Store: { 7950 auto *SI = cast<StoreInst>(VL0); 7951 unsigned AS = SI->getPointerAddressSpace(); 7952 7953 setInsertPointAfterBundle(E); 7954 7955 Value *VecValue = vectorizeTree(E->getOperand(0)); 7956 ShuffleBuilder.addMask(E->ReorderIndices); 7957 VecValue = ShuffleBuilder.finalize(VecValue); 7958 7959 Value *ScalarPtr = SI->getPointerOperand(); 7960 Value *VecPtr = Builder.CreateBitCast( 7961 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 7962 StoreInst *ST = 7963 Builder.CreateAlignedStore(VecValue, VecPtr, SI->getAlign()); 7964 7965 // The pointer operand uses an in-tree scalar, so add the new BitCast or 7966 // StoreInst to ExternalUses to make sure that an extract will be 7967 // generated in the future. 7968 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 7969 // Find which lane we need to extract. 7970 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 7971 ExternalUses.push_back(ExternalUser( 7972 ScalarPtr, ScalarPtr != VecPtr ? cast<User>(VecPtr) : ST, 7973 FoundLane)); 7974 } 7975 7976 Value *V = propagateMetadata(ST, E->Scalars); 7977 7978 E->VectorizedValue = V; 7979 ++NumVectorInstructions; 7980 return V; 7981 } 7982 case Instruction::GetElementPtr: { 7983 auto *GEP0 = cast<GetElementPtrInst>(VL0); 7984 setInsertPointAfterBundle(E); 7985 7986 Value *Op0 = vectorizeTree(E->getOperand(0)); 7987 7988 SmallVector<Value *> OpVecs; 7989 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 7990 Value *OpVec = vectorizeTree(E->getOperand(J)); 7991 OpVecs.push_back(OpVec); 7992 } 7993 7994 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 7995 if (Instruction *I = dyn_cast<Instruction>(V)) 7996 V = propagateMetadata(I, E->Scalars); 7997 7998 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7999 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 8000 V = ShuffleBuilder.finalize(V); 8001 8002 E->VectorizedValue = V; 8003 ++NumVectorInstructions; 8004 8005 return V; 8006 } 8007 case Instruction::Call: { 8008 CallInst *CI = cast<CallInst>(VL0); 8009 setInsertPointAfterBundle(E); 8010 8011 Intrinsic::ID IID = Intrinsic::not_intrinsic; 8012 if (Function *FI = CI->getCalledFunction()) 8013 IID = FI->getIntrinsicID(); 8014 8015 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8016 8017 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 8018 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 8019 VecCallCosts.first <= VecCallCosts.second; 8020 8021 Value *ScalarArg = nullptr; 8022 std::vector<Value *> OpVecs; 8023 SmallVector<Type *, 2> TysForDecl = 8024 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 8025 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 8026 ValueList OpVL; 8027 // Some intrinsics have scalar arguments. This argument should not be 8028 // vectorized. 8029 if (UseIntrinsic && isVectorIntrinsicWithScalarOpAtArg(IID, j)) { 8030 CallInst *CEI = cast<CallInst>(VL0); 8031 ScalarArg = CEI->getArgOperand(j); 8032 OpVecs.push_back(CEI->getArgOperand(j)); 8033 if (isVectorIntrinsicWithOverloadTypeAtArg(IID, j)) 8034 TysForDecl.push_back(ScalarArg->getType()); 8035 continue; 8036 } 8037 8038 Value *OpVec = vectorizeTree(E->getOperand(j)); 8039 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 8040 OpVecs.push_back(OpVec); 8041 if (isVectorIntrinsicWithOverloadTypeAtArg(IID, j)) 8042 TysForDecl.push_back(OpVec->getType()); 8043 } 8044 8045 Function *CF; 8046 if (!UseIntrinsic) { 8047 VFShape Shape = 8048 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 8049 VecTy->getNumElements())), 8050 false /*HasGlobalPred*/); 8051 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 8052 } else { 8053 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 8054 } 8055 8056 SmallVector<OperandBundleDef, 1> OpBundles; 8057 CI->getOperandBundlesAsDefs(OpBundles); 8058 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 8059 8060 // The scalar argument uses an in-tree scalar so we add the new vectorized 8061 // call to ExternalUses list to make sure that an extract will be 8062 // generated in the future. 8063 if (ScalarArg) { 8064 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 8065 // Find which lane we need to extract. 8066 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 8067 ExternalUses.push_back( 8068 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 8069 } 8070 } 8071 8072 propagateIRFlags(V, E->Scalars, VL0); 8073 ShuffleBuilder.addInversedMask(E->ReorderIndices); 8074 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 8075 V = ShuffleBuilder.finalize(V); 8076 8077 E->VectorizedValue = V; 8078 ++NumVectorInstructions; 8079 return V; 8080 } 8081 case Instruction::ShuffleVector: { 8082 assert(E->isAltShuffle() && 8083 ((Instruction::isBinaryOp(E->getOpcode()) && 8084 Instruction::isBinaryOp(E->getAltOpcode())) || 8085 (Instruction::isCast(E->getOpcode()) && 8086 Instruction::isCast(E->getAltOpcode())) || 8087 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 8088 "Invalid Shuffle Vector Operand"); 8089 8090 Value *LHS = nullptr, *RHS = nullptr; 8091 if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) { 8092 setInsertPointAfterBundle(E); 8093 LHS = vectorizeTree(E->getOperand(0)); 8094 RHS = vectorizeTree(E->getOperand(1)); 8095 } else { 8096 setInsertPointAfterBundle(E); 8097 LHS = vectorizeTree(E->getOperand(0)); 8098 } 8099 8100 if (E->VectorizedValue) { 8101 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 8102 return E->VectorizedValue; 8103 } 8104 8105 Value *V0, *V1; 8106 if (Instruction::isBinaryOp(E->getOpcode())) { 8107 V0 = Builder.CreateBinOp( 8108 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 8109 V1 = Builder.CreateBinOp( 8110 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 8111 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 8112 V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS); 8113 auto *AltCI = cast<CmpInst>(E->getAltOp()); 8114 CmpInst::Predicate AltPred = AltCI->getPredicate(); 8115 V1 = Builder.CreateCmp(AltPred, LHS, RHS); 8116 } else { 8117 V0 = Builder.CreateCast( 8118 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 8119 V1 = Builder.CreateCast( 8120 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 8121 } 8122 // Add V0 and V1 to later analysis to try to find and remove matching 8123 // instruction, if any. 8124 for (Value *V : {V0, V1}) { 8125 if (auto *I = dyn_cast<Instruction>(V)) { 8126 GatherShuffleSeq.insert(I); 8127 CSEBlocks.insert(I->getParent()); 8128 } 8129 } 8130 8131 // Create shuffle to take alternate operations from the vector. 8132 // Also, gather up main and alt scalar ops to propagate IR flags to 8133 // each vector operation. 8134 ValueList OpScalars, AltScalars; 8135 SmallVector<int> Mask; 8136 buildShuffleEntryMask( 8137 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 8138 [E](Instruction *I) { 8139 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 8140 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 8141 }, 8142 Mask, &OpScalars, &AltScalars); 8143 8144 propagateIRFlags(V0, OpScalars); 8145 propagateIRFlags(V1, AltScalars); 8146 8147 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 8148 if (auto *I = dyn_cast<Instruction>(V)) { 8149 V = propagateMetadata(I, E->Scalars); 8150 GatherShuffleSeq.insert(I); 8151 CSEBlocks.insert(I->getParent()); 8152 } 8153 V = ShuffleBuilder.finalize(V); 8154 8155 E->VectorizedValue = V; 8156 ++NumVectorInstructions; 8157 8158 return V; 8159 } 8160 default: 8161 llvm_unreachable("unknown inst"); 8162 } 8163 return nullptr; 8164 } 8165 8166 Value *BoUpSLP::vectorizeTree() { 8167 ExtraValueToDebugLocsMap ExternallyUsedValues; 8168 return vectorizeTree(ExternallyUsedValues); 8169 } 8170 8171 namespace { 8172 /// Data type for handling buildvector sequences with the reused scalars from 8173 /// other tree entries. 8174 struct ShuffledInsertData { 8175 /// List of insertelements to be replaced by shuffles. 8176 SmallVector<InsertElementInst *> InsertElements; 8177 /// The parent vectors and shuffle mask for the given list of inserts. 8178 MapVector<Value *, SmallVector<int>> ValueMasks; 8179 }; 8180 } // namespace 8181 8182 Value * 8183 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 8184 // All blocks must be scheduled before any instructions are inserted. 8185 for (auto &BSIter : BlocksSchedules) { 8186 scheduleBlock(BSIter.second.get()); 8187 } 8188 8189 Builder.SetInsertPoint(&F->getEntryBlock().front()); 8190 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 8191 8192 // If the vectorized tree can be rewritten in a smaller type, we truncate the 8193 // vectorized root. InstCombine will then rewrite the entire expression. We 8194 // sign extend the extracted values below. 8195 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 8196 if (MinBWs.count(ScalarRoot)) { 8197 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 8198 // If current instr is a phi and not the last phi, insert it after the 8199 // last phi node. 8200 if (isa<PHINode>(I)) 8201 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 8202 else 8203 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 8204 } 8205 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 8206 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 8207 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 8208 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 8209 VectorizableTree[0]->VectorizedValue = Trunc; 8210 } 8211 8212 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 8213 << " values .\n"); 8214 8215 SmallVector<ShuffledInsertData> ShuffledInserts; 8216 // Maps vector instruction to original insertelement instruction 8217 DenseMap<Value *, InsertElementInst *> VectorToInsertElement; 8218 // Extract all of the elements with the external uses. 8219 for (const auto &ExternalUse : ExternalUses) { 8220 Value *Scalar = ExternalUse.Scalar; 8221 llvm::User *User = ExternalUse.User; 8222 8223 // Skip users that we already RAUW. This happens when one instruction 8224 // has multiple uses of the same value. 8225 if (User && !is_contained(Scalar->users(), User)) 8226 continue; 8227 TreeEntry *E = getTreeEntry(Scalar); 8228 assert(E && "Invalid scalar"); 8229 assert(E->State != TreeEntry::NeedToGather && 8230 "Extracting from a gather list"); 8231 8232 Value *Vec = E->VectorizedValue; 8233 assert(Vec && "Can't find vectorizable value"); 8234 8235 Value *Lane = Builder.getInt32(ExternalUse.Lane); 8236 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 8237 if (Scalar->getType() != Vec->getType()) { 8238 Value *Ex; 8239 // "Reuse" the existing extract to improve final codegen. 8240 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 8241 Ex = Builder.CreateExtractElement(ES->getOperand(0), 8242 ES->getOperand(1)); 8243 } else { 8244 Ex = Builder.CreateExtractElement(Vec, Lane); 8245 } 8246 // If necessary, sign-extend or zero-extend ScalarRoot 8247 // to the larger type. 8248 if (!MinBWs.count(ScalarRoot)) 8249 return Ex; 8250 if (MinBWs[ScalarRoot].second) 8251 return Builder.CreateSExt(Ex, Scalar->getType()); 8252 return Builder.CreateZExt(Ex, Scalar->getType()); 8253 } 8254 assert(isa<FixedVectorType>(Scalar->getType()) && 8255 isa<InsertElementInst>(Scalar) && 8256 "In-tree scalar of vector type is not insertelement?"); 8257 auto *IE = cast<InsertElementInst>(Scalar); 8258 VectorToInsertElement.try_emplace(Vec, IE); 8259 return Vec; 8260 }; 8261 // If User == nullptr, the Scalar is used as extra arg. Generate 8262 // ExtractElement instruction and update the record for this scalar in 8263 // ExternallyUsedValues. 8264 if (!User) { 8265 assert(ExternallyUsedValues.count(Scalar) && 8266 "Scalar with nullptr as an external user must be registered in " 8267 "ExternallyUsedValues map"); 8268 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 8269 Builder.SetInsertPoint(VecI->getParent(), 8270 std::next(VecI->getIterator())); 8271 } else { 8272 Builder.SetInsertPoint(&F->getEntryBlock().front()); 8273 } 8274 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 8275 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 8276 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 8277 auto It = ExternallyUsedValues.find(Scalar); 8278 assert(It != ExternallyUsedValues.end() && 8279 "Externally used scalar is not found in ExternallyUsedValues"); 8280 NewInstLocs.append(It->second); 8281 ExternallyUsedValues.erase(Scalar); 8282 // Required to update internally referenced instructions. 8283 Scalar->replaceAllUsesWith(NewInst); 8284 continue; 8285 } 8286 8287 if (auto *VU = dyn_cast<InsertElementInst>(User)) { 8288 // Skip if the scalar is another vector op or Vec is not an instruction. 8289 if (!Scalar->getType()->isVectorTy() && isa<Instruction>(Vec)) { 8290 if (auto *FTy = dyn_cast<FixedVectorType>(User->getType())) { 8291 Optional<unsigned> InsertIdx = getInsertIndex(VU); 8292 if (InsertIdx) { 8293 auto *It = 8294 find_if(ShuffledInserts, [VU](const ShuffledInsertData &Data) { 8295 // Checks if 2 insertelements are from the same buildvector. 8296 InsertElementInst *VecInsert = Data.InsertElements.front(); 8297 return areTwoInsertFromSameBuildVector(VU, VecInsert); 8298 }); 8299 unsigned Idx = *InsertIdx; 8300 if (It == ShuffledInserts.end()) { 8301 (void)ShuffledInserts.emplace_back(); 8302 It = std::next(ShuffledInserts.begin(), 8303 ShuffledInserts.size() - 1); 8304 SmallVectorImpl<int> &Mask = It->ValueMasks[Vec]; 8305 if (Mask.empty()) 8306 Mask.assign(FTy->getNumElements(), UndefMaskElem); 8307 // Find the insertvector, vectorized in tree, if any. 8308 Value *Base = VU; 8309 while (auto *IEBase = dyn_cast<InsertElementInst>(Base)) { 8310 if (IEBase != User && 8311 (!IEBase->hasOneUse() || 8312 getInsertIndex(IEBase).getValueOr(Idx) == Idx)) 8313 break; 8314 // Build the mask for the vectorized insertelement instructions. 8315 if (const TreeEntry *E = getTreeEntry(IEBase)) { 8316 do { 8317 IEBase = cast<InsertElementInst>(Base); 8318 int IEIdx = *getInsertIndex(IEBase); 8319 assert(Mask[Idx] == UndefMaskElem && 8320 "InsertElementInstruction used already."); 8321 Mask[IEIdx] = IEIdx; 8322 Base = IEBase->getOperand(0); 8323 } while (E == getTreeEntry(Base)); 8324 break; 8325 } 8326 Base = cast<InsertElementInst>(Base)->getOperand(0); 8327 // After the vectorization the def-use chain has changed, need 8328 // to look through original insertelement instructions, if they 8329 // get replaced by vector instructions. 8330 auto It = VectorToInsertElement.find(Base); 8331 if (It != VectorToInsertElement.end()) 8332 Base = It->second; 8333 } 8334 } 8335 SmallVectorImpl<int> &Mask = It->ValueMasks[Vec]; 8336 if (Mask.empty()) 8337 Mask.assign(FTy->getNumElements(), UndefMaskElem); 8338 Mask[Idx] = ExternalUse.Lane; 8339 It->InsertElements.push_back(cast<InsertElementInst>(User)); 8340 continue; 8341 } 8342 } 8343 } 8344 } 8345 8346 // Generate extracts for out-of-tree users. 8347 // Find the insertion point for the extractelement lane. 8348 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 8349 if (PHINode *PH = dyn_cast<PHINode>(User)) { 8350 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 8351 if (PH->getIncomingValue(i) == Scalar) { 8352 Instruction *IncomingTerminator = 8353 PH->getIncomingBlock(i)->getTerminator(); 8354 if (isa<CatchSwitchInst>(IncomingTerminator)) { 8355 Builder.SetInsertPoint(VecI->getParent(), 8356 std::next(VecI->getIterator())); 8357 } else { 8358 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 8359 } 8360 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 8361 CSEBlocks.insert(PH->getIncomingBlock(i)); 8362 PH->setOperand(i, NewInst); 8363 } 8364 } 8365 } else { 8366 Builder.SetInsertPoint(cast<Instruction>(User)); 8367 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 8368 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 8369 User->replaceUsesOfWith(Scalar, NewInst); 8370 } 8371 } else { 8372 Builder.SetInsertPoint(&F->getEntryBlock().front()); 8373 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 8374 CSEBlocks.insert(&F->getEntryBlock()); 8375 User->replaceUsesOfWith(Scalar, NewInst); 8376 } 8377 8378 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 8379 } 8380 8381 // Checks if the mask is an identity mask. 8382 auto &&IsIdentityMask = [](ArrayRef<int> Mask, FixedVectorType *VecTy) { 8383 int Limit = Mask.size(); 8384 return VecTy->getNumElements() == Mask.size() && 8385 all_of(Mask, [Limit](int Idx) { return Idx < Limit; }) && 8386 ShuffleVectorInst::isIdentityMask(Mask); 8387 }; 8388 // Tries to combine 2 different masks into single one. 8389 auto &&CombineMasks = [](SmallVectorImpl<int> &Mask, ArrayRef<int> ExtMask) { 8390 SmallVector<int> NewMask(ExtMask.size(), UndefMaskElem); 8391 for (int I = 0, Sz = ExtMask.size(); I < Sz; ++I) { 8392 if (ExtMask[I] == UndefMaskElem) 8393 continue; 8394 NewMask[I] = Mask[ExtMask[I]]; 8395 } 8396 Mask.swap(NewMask); 8397 }; 8398 // Peek through shuffles, trying to simplify the final shuffle code. 8399 auto &&PeekThroughShuffles = 8400 [&IsIdentityMask, &CombineMasks](Value *&V, SmallVectorImpl<int> &Mask, 8401 bool CheckForLengthChange = false) { 8402 while (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 8403 // Exit if not a fixed vector type or changing size shuffle. 8404 if (!isa<FixedVectorType>(SV->getType()) || 8405 (CheckForLengthChange && SV->changesLength())) 8406 break; 8407 // Exit if the identity or broadcast mask is found. 8408 if (IsIdentityMask(Mask, cast<FixedVectorType>(SV->getType())) || 8409 SV->isZeroEltSplat()) 8410 break; 8411 bool IsOp1Undef = isUndefVector(SV->getOperand(0)); 8412 bool IsOp2Undef = isUndefVector(SV->getOperand(1)); 8413 if (!IsOp1Undef && !IsOp2Undef) 8414 break; 8415 SmallVector<int> ShuffleMask(SV->getShuffleMask().begin(), 8416 SV->getShuffleMask().end()); 8417 CombineMasks(ShuffleMask, Mask); 8418 Mask.swap(ShuffleMask); 8419 if (IsOp2Undef) 8420 V = SV->getOperand(0); 8421 else 8422 V = SV->getOperand(1); 8423 } 8424 }; 8425 // Smart shuffle instruction emission, walks through shuffles trees and 8426 // tries to find the best matching vector for the actual shuffle 8427 // instruction. 8428 auto &&CreateShuffle = [this, &IsIdentityMask, &PeekThroughShuffles, 8429 &CombineMasks](Value *V1, Value *V2, 8430 ArrayRef<int> Mask) -> Value * { 8431 assert(V1 && "Expected at least one vector value."); 8432 if (V2 && !isUndefVector(V2)) { 8433 // Peek through shuffles. 8434 Value *Op1 = V1; 8435 Value *Op2 = V2; 8436 int VF = 8437 cast<VectorType>(V1->getType())->getElementCount().getKnownMinValue(); 8438 SmallVector<int> CombinedMask1(Mask.size(), UndefMaskElem); 8439 SmallVector<int> CombinedMask2(Mask.size(), UndefMaskElem); 8440 for (int I = 0, E = Mask.size(); I < E; ++I) { 8441 if (Mask[I] < VF) 8442 CombinedMask1[I] = Mask[I]; 8443 else 8444 CombinedMask2[I] = Mask[I] - VF; 8445 } 8446 Value *PrevOp1; 8447 Value *PrevOp2; 8448 do { 8449 PrevOp1 = Op1; 8450 PrevOp2 = Op2; 8451 PeekThroughShuffles(Op1, CombinedMask1, /*CheckForLengthChange=*/true); 8452 PeekThroughShuffles(Op2, CombinedMask2, /*CheckForLengthChange=*/true); 8453 // Check if we have 2 resizing shuffles - need to peek through operands 8454 // again. 8455 if (auto *SV1 = dyn_cast<ShuffleVectorInst>(Op1)) 8456 if (auto *SV2 = dyn_cast<ShuffleVectorInst>(Op2)) 8457 if (SV1->getOperand(0)->getType() == 8458 SV2->getOperand(0)->getType() && 8459 SV1->getOperand(0)->getType() != SV1->getType() && 8460 isUndefVector(SV1->getOperand(1)) && 8461 isUndefVector(SV2->getOperand(1))) { 8462 Op1 = SV1->getOperand(0); 8463 Op2 = SV2->getOperand(0); 8464 SmallVector<int> ShuffleMask1(SV1->getShuffleMask().begin(), 8465 SV1->getShuffleMask().end()); 8466 CombineMasks(ShuffleMask1, CombinedMask1); 8467 CombinedMask1.swap(ShuffleMask1); 8468 SmallVector<int> ShuffleMask2(SV2->getShuffleMask().begin(), 8469 SV2->getShuffleMask().end()); 8470 CombineMasks(ShuffleMask2, CombinedMask2); 8471 CombinedMask2.swap(ShuffleMask2); 8472 } 8473 } while (PrevOp1 != Op1 || PrevOp2 != Op2); 8474 VF = cast<VectorType>(Op1->getType()) 8475 ->getElementCount() 8476 .getKnownMinValue(); 8477 for (int I = 0, E = Mask.size(); I < E; ++I) { 8478 if (CombinedMask2[I] != UndefMaskElem) { 8479 assert(CombinedMask1[I] == UndefMaskElem && 8480 "Expected undefined mask element"); 8481 CombinedMask1[I] = CombinedMask2[I] + (Op1 == Op2 ? 0 : VF); 8482 } 8483 } 8484 Value *Vec = Builder.CreateShuffleVector( 8485 Op1, Op1 == Op2 ? PoisonValue::get(Op1->getType()) : Op2, 8486 CombinedMask1); 8487 if (auto *I = dyn_cast<Instruction>(Vec)) { 8488 GatherShuffleSeq.insert(I); 8489 CSEBlocks.insert(I->getParent()); 8490 } 8491 return Vec; 8492 } 8493 if (isa<PoisonValue>(V1)) 8494 return PoisonValue::get(FixedVectorType::get( 8495 cast<VectorType>(V1->getType())->getElementType(), Mask.size())); 8496 Value *Op = V1; 8497 SmallVector<int> CombinedMask(Mask.begin(), Mask.end()); 8498 PeekThroughShuffles(Op, CombinedMask); 8499 if (!isa<FixedVectorType>(Op->getType()) || 8500 !IsIdentityMask(CombinedMask, cast<FixedVectorType>(Op->getType()))) { 8501 Value *Vec = Builder.CreateShuffleVector(Op, CombinedMask); 8502 if (auto *I = dyn_cast<Instruction>(Vec)) { 8503 GatherShuffleSeq.insert(I); 8504 CSEBlocks.insert(I->getParent()); 8505 } 8506 return Vec; 8507 } 8508 return Op; 8509 }; 8510 8511 auto &&ResizeToVF = [&CreateShuffle](Value *Vec, ArrayRef<int> Mask) { 8512 unsigned VF = Mask.size(); 8513 unsigned VecVF = cast<FixedVectorType>(Vec->getType())->getNumElements(); 8514 if (VF != VecVF) { 8515 if (any_of(Mask, [VF](int Idx) { return Idx >= static_cast<int>(VF); })) { 8516 Vec = CreateShuffle(Vec, nullptr, Mask); 8517 return std::make_pair(Vec, true); 8518 } 8519 SmallVector<int> ResizeMask(VF, UndefMaskElem); 8520 for (unsigned I = 0; I < VF; ++I) { 8521 if (Mask[I] != UndefMaskElem) 8522 ResizeMask[Mask[I]] = Mask[I]; 8523 } 8524 Vec = CreateShuffle(Vec, nullptr, ResizeMask); 8525 } 8526 8527 return std::make_pair(Vec, false); 8528 }; 8529 // Perform shuffling of the vectorize tree entries for better handling of 8530 // external extracts. 8531 for (int I = 0, E = ShuffledInserts.size(); I < E; ++I) { 8532 // Find the first and the last instruction in the list of insertelements. 8533 sort(ShuffledInserts[I].InsertElements, isFirstInsertElement); 8534 InsertElementInst *FirstInsert = ShuffledInserts[I].InsertElements.front(); 8535 InsertElementInst *LastInsert = ShuffledInserts[I].InsertElements.back(); 8536 Builder.SetInsertPoint(LastInsert); 8537 auto Vector = ShuffledInserts[I].ValueMasks.takeVector(); 8538 Value *NewInst = performExtractsShuffleAction<Value>( 8539 makeMutableArrayRef(Vector.data(), Vector.size()), 8540 FirstInsert->getOperand(0), 8541 [](Value *Vec) { 8542 return cast<VectorType>(Vec->getType()) 8543 ->getElementCount() 8544 .getKnownMinValue(); 8545 }, 8546 ResizeToVF, 8547 [FirstInsert, &CreateShuffle](ArrayRef<int> Mask, 8548 ArrayRef<Value *> Vals) { 8549 assert((Vals.size() == 1 || Vals.size() == 2) && 8550 "Expected exactly 1 or 2 input values."); 8551 if (Vals.size() == 1) { 8552 // Do not create shuffle if the mask is a simple identity 8553 // non-resizing mask. 8554 if (Mask.size() != cast<FixedVectorType>(Vals.front()->getType()) 8555 ->getNumElements() || 8556 !ShuffleVectorInst::isIdentityMask(Mask)) 8557 return CreateShuffle(Vals.front(), nullptr, Mask); 8558 return Vals.front(); 8559 } 8560 return CreateShuffle(Vals.front() ? Vals.front() 8561 : FirstInsert->getOperand(0), 8562 Vals.back(), Mask); 8563 }); 8564 auto It = ShuffledInserts[I].InsertElements.rbegin(); 8565 // Rebuild buildvector chain. 8566 InsertElementInst *II = nullptr; 8567 if (It != ShuffledInserts[I].InsertElements.rend()) 8568 II = *It; 8569 SmallVector<Instruction *> Inserts; 8570 while (It != ShuffledInserts[I].InsertElements.rend()) { 8571 assert(II && "Must be an insertelement instruction."); 8572 if (*It == II) 8573 ++It; 8574 else 8575 Inserts.push_back(cast<Instruction>(II)); 8576 II = dyn_cast<InsertElementInst>(II->getOperand(0)); 8577 } 8578 for (Instruction *II : reverse(Inserts)) { 8579 II->replaceUsesOfWith(II->getOperand(0), NewInst); 8580 if (auto *NewI = dyn_cast<Instruction>(NewInst)) 8581 if (II->getParent() == NewI->getParent() && II->comesBefore(NewI)) 8582 II->moveAfter(NewI); 8583 NewInst = II; 8584 } 8585 LastInsert->replaceAllUsesWith(NewInst); 8586 for (InsertElementInst *IE : reverse(ShuffledInserts[I].InsertElements)) { 8587 IE->replaceUsesOfWith(IE->getOperand(1), 8588 PoisonValue::get(IE->getOperand(1)->getType())); 8589 eraseInstruction(IE); 8590 } 8591 CSEBlocks.insert(LastInsert->getParent()); 8592 } 8593 8594 // For each vectorized value: 8595 for (auto &TEPtr : VectorizableTree) { 8596 TreeEntry *Entry = TEPtr.get(); 8597 8598 // No need to handle users of gathered values. 8599 if (Entry->State == TreeEntry::NeedToGather) 8600 continue; 8601 8602 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 8603 8604 // For each lane: 8605 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 8606 Value *Scalar = Entry->Scalars[Lane]; 8607 8608 #ifndef NDEBUG 8609 Type *Ty = Scalar->getType(); 8610 if (!Ty->isVoidTy()) { 8611 for (User *U : Scalar->users()) { 8612 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 8613 8614 // It is legal to delete users in the ignorelist. 8615 assert((getTreeEntry(U) || 8616 (UserIgnoreList && UserIgnoreList->contains(U)) || 8617 (isa_and_nonnull<Instruction>(U) && 8618 isDeleted(cast<Instruction>(U)))) && 8619 "Deleting out-of-tree value"); 8620 } 8621 } 8622 #endif 8623 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 8624 eraseInstruction(cast<Instruction>(Scalar)); 8625 } 8626 } 8627 8628 Builder.ClearInsertionPoint(); 8629 InstrElementSize.clear(); 8630 8631 return VectorizableTree[0]->VectorizedValue; 8632 } 8633 8634 void BoUpSLP::optimizeGatherSequence() { 8635 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size() 8636 << " gather sequences instructions.\n"); 8637 // LICM InsertElementInst sequences. 8638 for (Instruction *I : GatherShuffleSeq) { 8639 if (isDeleted(I)) 8640 continue; 8641 8642 // Check if this block is inside a loop. 8643 Loop *L = LI->getLoopFor(I->getParent()); 8644 if (!L) 8645 continue; 8646 8647 // Check if it has a preheader. 8648 BasicBlock *PreHeader = L->getLoopPreheader(); 8649 if (!PreHeader) 8650 continue; 8651 8652 // If the vector or the element that we insert into it are 8653 // instructions that are defined in this basic block then we can't 8654 // hoist this instruction. 8655 if (any_of(I->operands(), [L](Value *V) { 8656 auto *OpI = dyn_cast<Instruction>(V); 8657 return OpI && L->contains(OpI); 8658 })) 8659 continue; 8660 8661 // We can hoist this instruction. Move it to the pre-header. 8662 I->moveBefore(PreHeader->getTerminator()); 8663 } 8664 8665 // Make a list of all reachable blocks in our CSE queue. 8666 SmallVector<const DomTreeNode *, 8> CSEWorkList; 8667 CSEWorkList.reserve(CSEBlocks.size()); 8668 for (BasicBlock *BB : CSEBlocks) 8669 if (DomTreeNode *N = DT->getNode(BB)) { 8670 assert(DT->isReachableFromEntry(N)); 8671 CSEWorkList.push_back(N); 8672 } 8673 8674 // Sort blocks by domination. This ensures we visit a block after all blocks 8675 // dominating it are visited. 8676 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 8677 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 8678 "Different nodes should have different DFS numbers"); 8679 return A->getDFSNumIn() < B->getDFSNumIn(); 8680 }); 8681 8682 // Less defined shuffles can be replaced by the more defined copies. 8683 // Between two shuffles one is less defined if it has the same vector operands 8684 // and its mask indeces are the same as in the first one or undefs. E.g. 8685 // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0, 8686 // poison, <0, 0, 0, 0>. 8687 auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2, 8688 SmallVectorImpl<int> &NewMask) { 8689 if (I1->getType() != I2->getType()) 8690 return false; 8691 auto *SI1 = dyn_cast<ShuffleVectorInst>(I1); 8692 auto *SI2 = dyn_cast<ShuffleVectorInst>(I2); 8693 if (!SI1 || !SI2) 8694 return I1->isIdenticalTo(I2); 8695 if (SI1->isIdenticalTo(SI2)) 8696 return true; 8697 for (int I = 0, E = SI1->getNumOperands(); I < E; ++I) 8698 if (SI1->getOperand(I) != SI2->getOperand(I)) 8699 return false; 8700 // Check if the second instruction is more defined than the first one. 8701 NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end()); 8702 ArrayRef<int> SM1 = SI1->getShuffleMask(); 8703 // Count trailing undefs in the mask to check the final number of used 8704 // registers. 8705 unsigned LastUndefsCnt = 0; 8706 for (int I = 0, E = NewMask.size(); I < E; ++I) { 8707 if (SM1[I] == UndefMaskElem) 8708 ++LastUndefsCnt; 8709 else 8710 LastUndefsCnt = 0; 8711 if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem && 8712 NewMask[I] != SM1[I]) 8713 return false; 8714 if (NewMask[I] == UndefMaskElem) 8715 NewMask[I] = SM1[I]; 8716 } 8717 // Check if the last undefs actually change the final number of used vector 8718 // registers. 8719 return SM1.size() - LastUndefsCnt > 1 && 8720 TTI->getNumberOfParts(SI1->getType()) == 8721 TTI->getNumberOfParts( 8722 FixedVectorType::get(SI1->getType()->getElementType(), 8723 SM1.size() - LastUndefsCnt)); 8724 }; 8725 // Perform O(N^2) search over the gather/shuffle sequences and merge identical 8726 // instructions. TODO: We can further optimize this scan if we split the 8727 // instructions into different buckets based on the insert lane. 8728 SmallVector<Instruction *, 16> Visited; 8729 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 8730 assert(*I && 8731 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 8732 "Worklist not sorted properly!"); 8733 BasicBlock *BB = (*I)->getBlock(); 8734 // For all instructions in blocks containing gather sequences: 8735 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 8736 if (isDeleted(&In)) 8737 continue; 8738 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 8739 !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In)) 8740 continue; 8741 8742 // Check if we can replace this instruction with any of the 8743 // visited instructions. 8744 bool Replaced = false; 8745 for (Instruction *&V : Visited) { 8746 SmallVector<int> NewMask; 8747 if (IsIdenticalOrLessDefined(&In, V, NewMask) && 8748 DT->dominates(V->getParent(), In.getParent())) { 8749 In.replaceAllUsesWith(V); 8750 eraseInstruction(&In); 8751 if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) 8752 if (!NewMask.empty()) 8753 SI->setShuffleMask(NewMask); 8754 Replaced = true; 8755 break; 8756 } 8757 if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) && 8758 GatherShuffleSeq.contains(V) && 8759 IsIdenticalOrLessDefined(V, &In, NewMask) && 8760 DT->dominates(In.getParent(), V->getParent())) { 8761 In.moveAfter(V); 8762 V->replaceAllUsesWith(&In); 8763 eraseInstruction(V); 8764 if (auto *SI = dyn_cast<ShuffleVectorInst>(&In)) 8765 if (!NewMask.empty()) 8766 SI->setShuffleMask(NewMask); 8767 V = &In; 8768 Replaced = true; 8769 break; 8770 } 8771 } 8772 if (!Replaced) { 8773 assert(!is_contained(Visited, &In)); 8774 Visited.push_back(&In); 8775 } 8776 } 8777 } 8778 CSEBlocks.clear(); 8779 GatherShuffleSeq.clear(); 8780 } 8781 8782 BoUpSLP::ScheduleData * 8783 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) { 8784 ScheduleData *Bundle = nullptr; 8785 ScheduleData *PrevInBundle = nullptr; 8786 for (Value *V : VL) { 8787 if (doesNotNeedToBeScheduled(V)) 8788 continue; 8789 ScheduleData *BundleMember = getScheduleData(V); 8790 assert(BundleMember && 8791 "no ScheduleData for bundle member " 8792 "(maybe not in same basic block)"); 8793 assert(BundleMember->isSchedulingEntity() && 8794 "bundle member already part of other bundle"); 8795 if (PrevInBundle) { 8796 PrevInBundle->NextInBundle = BundleMember; 8797 } else { 8798 Bundle = BundleMember; 8799 } 8800 8801 // Group the instructions to a bundle. 8802 BundleMember->FirstInBundle = Bundle; 8803 PrevInBundle = BundleMember; 8804 } 8805 assert(Bundle && "Failed to find schedule bundle"); 8806 return Bundle; 8807 } 8808 8809 // Groups the instructions to a bundle (which is then a single scheduling entity) 8810 // and schedules instructions until the bundle gets ready. 8811 Optional<BoUpSLP::ScheduleData *> 8812 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 8813 const InstructionsState &S) { 8814 // No need to schedule PHIs, insertelement, extractelement and extractvalue 8815 // instructions. 8816 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue) || 8817 doesNotNeedToSchedule(VL)) 8818 return nullptr; 8819 8820 // Initialize the instruction bundle. 8821 Instruction *OldScheduleEnd = ScheduleEnd; 8822 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 8823 8824 auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule, 8825 ScheduleData *Bundle) { 8826 // The scheduling region got new instructions at the lower end (or it is a 8827 // new region for the first bundle). This makes it necessary to 8828 // recalculate all dependencies. 8829 // It is seldom that this needs to be done a second time after adding the 8830 // initial bundle to the region. 8831 if (ScheduleEnd != OldScheduleEnd) { 8832 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 8833 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 8834 ReSchedule = true; 8835 } 8836 if (Bundle) { 8837 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 8838 << " in block " << BB->getName() << "\n"); 8839 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 8840 } 8841 8842 if (ReSchedule) { 8843 resetSchedule(); 8844 initialFillReadyList(ReadyInsts); 8845 } 8846 8847 // Now try to schedule the new bundle or (if no bundle) just calculate 8848 // dependencies. As soon as the bundle is "ready" it means that there are no 8849 // cyclic dependencies and we can schedule it. Note that's important that we 8850 // don't "schedule" the bundle yet (see cancelScheduling). 8851 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 8852 !ReadyInsts.empty()) { 8853 ScheduleData *Picked = ReadyInsts.pop_back_val(); 8854 assert(Picked->isSchedulingEntity() && Picked->isReady() && 8855 "must be ready to schedule"); 8856 schedule(Picked, ReadyInsts); 8857 } 8858 }; 8859 8860 // Make sure that the scheduling region contains all 8861 // instructions of the bundle. 8862 for (Value *V : VL) { 8863 if (doesNotNeedToBeScheduled(V)) 8864 continue; 8865 if (!extendSchedulingRegion(V, S)) { 8866 // If the scheduling region got new instructions at the lower end (or it 8867 // is a new region for the first bundle). This makes it necessary to 8868 // recalculate all dependencies. 8869 // Otherwise the compiler may crash trying to incorrectly calculate 8870 // dependencies and emit instruction in the wrong order at the actual 8871 // scheduling. 8872 TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr); 8873 return None; 8874 } 8875 } 8876 8877 bool ReSchedule = false; 8878 for (Value *V : VL) { 8879 if (doesNotNeedToBeScheduled(V)) 8880 continue; 8881 ScheduleData *BundleMember = getScheduleData(V); 8882 assert(BundleMember && 8883 "no ScheduleData for bundle member (maybe not in same basic block)"); 8884 8885 // Make sure we don't leave the pieces of the bundle in the ready list when 8886 // whole bundle might not be ready. 8887 ReadyInsts.remove(BundleMember); 8888 8889 if (!BundleMember->IsScheduled) 8890 continue; 8891 // A bundle member was scheduled as single instruction before and now 8892 // needs to be scheduled as part of the bundle. We just get rid of the 8893 // existing schedule. 8894 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 8895 << " was already scheduled\n"); 8896 ReSchedule = true; 8897 } 8898 8899 auto *Bundle = buildBundle(VL); 8900 TryScheduleBundleImpl(ReSchedule, Bundle); 8901 if (!Bundle->isReady()) { 8902 cancelScheduling(VL, S.OpValue); 8903 return None; 8904 } 8905 return Bundle; 8906 } 8907 8908 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 8909 Value *OpValue) { 8910 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue) || 8911 doesNotNeedToSchedule(VL)) 8912 return; 8913 8914 if (doesNotNeedToBeScheduled(OpValue)) 8915 OpValue = *find_if_not(VL, doesNotNeedToBeScheduled); 8916 ScheduleData *Bundle = getScheduleData(OpValue); 8917 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 8918 assert(!Bundle->IsScheduled && 8919 "Can't cancel bundle which is already scheduled"); 8920 assert(Bundle->isSchedulingEntity() && 8921 (Bundle->isPartOfBundle() || needToScheduleSingleInstruction(VL)) && 8922 "tried to unbundle something which is not a bundle"); 8923 8924 // Remove the bundle from the ready list. 8925 if (Bundle->isReady()) 8926 ReadyInsts.remove(Bundle); 8927 8928 // Un-bundle: make single instructions out of the bundle. 8929 ScheduleData *BundleMember = Bundle; 8930 while (BundleMember) { 8931 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 8932 BundleMember->FirstInBundle = BundleMember; 8933 ScheduleData *Next = BundleMember->NextInBundle; 8934 BundleMember->NextInBundle = nullptr; 8935 BundleMember->TE = nullptr; 8936 if (BundleMember->unscheduledDepsInBundle() == 0) { 8937 ReadyInsts.insert(BundleMember); 8938 } 8939 BundleMember = Next; 8940 } 8941 } 8942 8943 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 8944 // Allocate a new ScheduleData for the instruction. 8945 if (ChunkPos >= ChunkSize) { 8946 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 8947 ChunkPos = 0; 8948 } 8949 return &(ScheduleDataChunks.back()[ChunkPos++]); 8950 } 8951 8952 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 8953 const InstructionsState &S) { 8954 if (getScheduleData(V, isOneOf(S, V))) 8955 return true; 8956 Instruction *I = dyn_cast<Instruction>(V); 8957 assert(I && "bundle member must be an instruction"); 8958 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 8959 !doesNotNeedToBeScheduled(I) && 8960 "phi nodes/insertelements/extractelements/extractvalues don't need to " 8961 "be scheduled"); 8962 auto &&CheckScheduleForI = [this, &S](Instruction *I) -> bool { 8963 ScheduleData *ISD = getScheduleData(I); 8964 if (!ISD) 8965 return false; 8966 assert(isInSchedulingRegion(ISD) && 8967 "ScheduleData not in scheduling region"); 8968 ScheduleData *SD = allocateScheduleDataChunks(); 8969 SD->Inst = I; 8970 SD->init(SchedulingRegionID, S.OpValue); 8971 ExtraScheduleDataMap[I][S.OpValue] = SD; 8972 return true; 8973 }; 8974 if (CheckScheduleForI(I)) 8975 return true; 8976 if (!ScheduleStart) { 8977 // It's the first instruction in the new region. 8978 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 8979 ScheduleStart = I; 8980 ScheduleEnd = I->getNextNode(); 8981 if (isOneOf(S, I) != I) 8982 CheckScheduleForI(I); 8983 assert(ScheduleEnd && "tried to vectorize a terminator?"); 8984 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 8985 return true; 8986 } 8987 // Search up and down at the same time, because we don't know if the new 8988 // instruction is above or below the existing scheduling region. 8989 BasicBlock::reverse_iterator UpIter = 8990 ++ScheduleStart->getIterator().getReverse(); 8991 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 8992 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 8993 BasicBlock::iterator LowerEnd = BB->end(); 8994 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 8995 &*DownIter != I) { 8996 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 8997 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 8998 return false; 8999 } 9000 9001 ++UpIter; 9002 ++DownIter; 9003 } 9004 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 9005 assert(I->getParent() == ScheduleStart->getParent() && 9006 "Instruction is in wrong basic block."); 9007 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 9008 ScheduleStart = I; 9009 if (isOneOf(S, I) != I) 9010 CheckScheduleForI(I); 9011 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 9012 << "\n"); 9013 return true; 9014 } 9015 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 9016 "Expected to reach top of the basic block or instruction down the " 9017 "lower end."); 9018 assert(I->getParent() == ScheduleEnd->getParent() && 9019 "Instruction is in wrong basic block."); 9020 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 9021 nullptr); 9022 ScheduleEnd = I->getNextNode(); 9023 if (isOneOf(S, I) != I) 9024 CheckScheduleForI(I); 9025 assert(ScheduleEnd && "tried to vectorize a terminator?"); 9026 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 9027 return true; 9028 } 9029 9030 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 9031 Instruction *ToI, 9032 ScheduleData *PrevLoadStore, 9033 ScheduleData *NextLoadStore) { 9034 ScheduleData *CurrentLoadStore = PrevLoadStore; 9035 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 9036 // No need to allocate data for non-schedulable instructions. 9037 if (doesNotNeedToBeScheduled(I)) 9038 continue; 9039 ScheduleData *SD = ScheduleDataMap.lookup(I); 9040 if (!SD) { 9041 SD = allocateScheduleDataChunks(); 9042 ScheduleDataMap[I] = SD; 9043 SD->Inst = I; 9044 } 9045 assert(!isInSchedulingRegion(SD) && 9046 "new ScheduleData already in scheduling region"); 9047 SD->init(SchedulingRegionID, I); 9048 9049 if (I->mayReadOrWriteMemory() && 9050 (!isa<IntrinsicInst>(I) || 9051 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 9052 cast<IntrinsicInst>(I)->getIntrinsicID() != 9053 Intrinsic::pseudoprobe))) { 9054 // Update the linked list of memory accessing instructions. 9055 if (CurrentLoadStore) { 9056 CurrentLoadStore->NextLoadStore = SD; 9057 } else { 9058 FirstLoadStoreInRegion = SD; 9059 } 9060 CurrentLoadStore = SD; 9061 } 9062 9063 if (match(I, m_Intrinsic<Intrinsic::stacksave>()) || 9064 match(I, m_Intrinsic<Intrinsic::stackrestore>())) 9065 RegionHasStackSave = true; 9066 } 9067 if (NextLoadStore) { 9068 if (CurrentLoadStore) 9069 CurrentLoadStore->NextLoadStore = NextLoadStore; 9070 } else { 9071 LastLoadStoreInRegion = CurrentLoadStore; 9072 } 9073 } 9074 9075 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 9076 bool InsertInReadyList, 9077 BoUpSLP *SLP) { 9078 assert(SD->isSchedulingEntity()); 9079 9080 SmallVector<ScheduleData *, 10> WorkList; 9081 WorkList.push_back(SD); 9082 9083 while (!WorkList.empty()) { 9084 ScheduleData *SD = WorkList.pop_back_val(); 9085 for (ScheduleData *BundleMember = SD; BundleMember; 9086 BundleMember = BundleMember->NextInBundle) { 9087 assert(isInSchedulingRegion(BundleMember)); 9088 if (BundleMember->hasValidDependencies()) 9089 continue; 9090 9091 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 9092 << "\n"); 9093 BundleMember->Dependencies = 0; 9094 BundleMember->resetUnscheduledDeps(); 9095 9096 // Handle def-use chain dependencies. 9097 if (BundleMember->OpValue != BundleMember->Inst) { 9098 if (ScheduleData *UseSD = getScheduleData(BundleMember->Inst)) { 9099 BundleMember->Dependencies++; 9100 ScheduleData *DestBundle = UseSD->FirstInBundle; 9101 if (!DestBundle->IsScheduled) 9102 BundleMember->incrementUnscheduledDeps(1); 9103 if (!DestBundle->hasValidDependencies()) 9104 WorkList.push_back(DestBundle); 9105 } 9106 } else { 9107 for (User *U : BundleMember->Inst->users()) { 9108 if (ScheduleData *UseSD = getScheduleData(cast<Instruction>(U))) { 9109 BundleMember->Dependencies++; 9110 ScheduleData *DestBundle = UseSD->FirstInBundle; 9111 if (!DestBundle->IsScheduled) 9112 BundleMember->incrementUnscheduledDeps(1); 9113 if (!DestBundle->hasValidDependencies()) 9114 WorkList.push_back(DestBundle); 9115 } 9116 } 9117 } 9118 9119 auto makeControlDependent = [&](Instruction *I) { 9120 auto *DepDest = getScheduleData(I); 9121 assert(DepDest && "must be in schedule window"); 9122 DepDest->ControlDependencies.push_back(BundleMember); 9123 BundleMember->Dependencies++; 9124 ScheduleData *DestBundle = DepDest->FirstInBundle; 9125 if (!DestBundle->IsScheduled) 9126 BundleMember->incrementUnscheduledDeps(1); 9127 if (!DestBundle->hasValidDependencies()) 9128 WorkList.push_back(DestBundle); 9129 }; 9130 9131 // Any instruction which isn't safe to speculate at the begining of the 9132 // block is control dependend on any early exit or non-willreturn call 9133 // which proceeds it. 9134 if (!isGuaranteedToTransferExecutionToSuccessor(BundleMember->Inst)) { 9135 for (Instruction *I = BundleMember->Inst->getNextNode(); 9136 I != ScheduleEnd; I = I->getNextNode()) { 9137 if (isSafeToSpeculativelyExecute(I, &*BB->begin())) 9138 continue; 9139 9140 // Add the dependency 9141 makeControlDependent(I); 9142 9143 if (!isGuaranteedToTransferExecutionToSuccessor(I)) 9144 // Everything past here must be control dependent on I. 9145 break; 9146 } 9147 } 9148 9149 if (RegionHasStackSave) { 9150 // If we have an inalloc alloca instruction, it needs to be scheduled 9151 // after any preceeding stacksave. We also need to prevent any alloca 9152 // from reordering above a preceeding stackrestore. 9153 if (match(BundleMember->Inst, m_Intrinsic<Intrinsic::stacksave>()) || 9154 match(BundleMember->Inst, m_Intrinsic<Intrinsic::stackrestore>())) { 9155 for (Instruction *I = BundleMember->Inst->getNextNode(); 9156 I != ScheduleEnd; I = I->getNextNode()) { 9157 if (match(I, m_Intrinsic<Intrinsic::stacksave>()) || 9158 match(I, m_Intrinsic<Intrinsic::stackrestore>())) 9159 // Any allocas past here must be control dependent on I, and I 9160 // must be memory dependend on BundleMember->Inst. 9161 break; 9162 9163 if (!isa<AllocaInst>(I)) 9164 continue; 9165 9166 // Add the dependency 9167 makeControlDependent(I); 9168 } 9169 } 9170 9171 // In addition to the cases handle just above, we need to prevent 9172 // allocas from moving below a stacksave. The stackrestore case 9173 // is currently thought to be conservatism. 9174 if (isa<AllocaInst>(BundleMember->Inst)) { 9175 for (Instruction *I = BundleMember->Inst->getNextNode(); 9176 I != ScheduleEnd; I = I->getNextNode()) { 9177 if (!match(I, m_Intrinsic<Intrinsic::stacksave>()) && 9178 !match(I, m_Intrinsic<Intrinsic::stackrestore>())) 9179 continue; 9180 9181 // Add the dependency 9182 makeControlDependent(I); 9183 break; 9184 } 9185 } 9186 } 9187 9188 // Handle the memory dependencies (if any). 9189 ScheduleData *DepDest = BundleMember->NextLoadStore; 9190 if (!DepDest) 9191 continue; 9192 Instruction *SrcInst = BundleMember->Inst; 9193 assert(SrcInst->mayReadOrWriteMemory() && 9194 "NextLoadStore list for non memory effecting bundle?"); 9195 MemoryLocation SrcLoc = getLocation(SrcInst); 9196 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 9197 unsigned numAliased = 0; 9198 unsigned DistToSrc = 1; 9199 9200 for ( ; DepDest; DepDest = DepDest->NextLoadStore) { 9201 assert(isInSchedulingRegion(DepDest)); 9202 9203 // We have two limits to reduce the complexity: 9204 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 9205 // SLP->isAliased (which is the expensive part in this loop). 9206 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 9207 // the whole loop (even if the loop is fast, it's quadratic). 9208 // It's important for the loop break condition (see below) to 9209 // check this limit even between two read-only instructions. 9210 if (DistToSrc >= MaxMemDepDistance || 9211 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 9212 (numAliased >= AliasedCheckLimit || 9213 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 9214 9215 // We increment the counter only if the locations are aliased 9216 // (instead of counting all alias checks). This gives a better 9217 // balance between reduced runtime and accurate dependencies. 9218 numAliased++; 9219 9220 DepDest->MemoryDependencies.push_back(BundleMember); 9221 BundleMember->Dependencies++; 9222 ScheduleData *DestBundle = DepDest->FirstInBundle; 9223 if (!DestBundle->IsScheduled) { 9224 BundleMember->incrementUnscheduledDeps(1); 9225 } 9226 if (!DestBundle->hasValidDependencies()) { 9227 WorkList.push_back(DestBundle); 9228 } 9229 } 9230 9231 // Example, explaining the loop break condition: Let's assume our 9232 // starting instruction is i0 and MaxMemDepDistance = 3. 9233 // 9234 // +--------v--v--v 9235 // i0,i1,i2,i3,i4,i5,i6,i7,i8 9236 // +--------^--^--^ 9237 // 9238 // MaxMemDepDistance let us stop alias-checking at i3 and we add 9239 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 9240 // Previously we already added dependencies from i3 to i6,i7,i8 9241 // (because of MaxMemDepDistance). As we added a dependency from 9242 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 9243 // and we can abort this loop at i6. 9244 if (DistToSrc >= 2 * MaxMemDepDistance) 9245 break; 9246 DistToSrc++; 9247 } 9248 } 9249 if (InsertInReadyList && SD->isReady()) { 9250 ReadyInsts.insert(SD); 9251 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 9252 << "\n"); 9253 } 9254 } 9255 } 9256 9257 void BoUpSLP::BlockScheduling::resetSchedule() { 9258 assert(ScheduleStart && 9259 "tried to reset schedule on block which has not been scheduled"); 9260 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 9261 doForAllOpcodes(I, [&](ScheduleData *SD) { 9262 assert(isInSchedulingRegion(SD) && 9263 "ScheduleData not in scheduling region"); 9264 SD->IsScheduled = false; 9265 SD->resetUnscheduledDeps(); 9266 }); 9267 } 9268 ReadyInsts.clear(); 9269 } 9270 9271 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 9272 if (!BS->ScheduleStart) 9273 return; 9274 9275 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 9276 9277 // A key point - if we got here, pre-scheduling was able to find a valid 9278 // scheduling of the sub-graph of the scheduling window which consists 9279 // of all vector bundles and their transitive users. As such, we do not 9280 // need to reschedule anything *outside of* that subgraph. 9281 9282 BS->resetSchedule(); 9283 9284 // For the real scheduling we use a more sophisticated ready-list: it is 9285 // sorted by the original instruction location. This lets the final schedule 9286 // be as close as possible to the original instruction order. 9287 // WARNING: If changing this order causes a correctness issue, that means 9288 // there is some missing dependence edge in the schedule data graph. 9289 struct ScheduleDataCompare { 9290 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 9291 return SD2->SchedulingPriority < SD1->SchedulingPriority; 9292 } 9293 }; 9294 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 9295 9296 // Ensure that all dependency data is updated (for nodes in the sub-graph) 9297 // and fill the ready-list with initial instructions. 9298 int Idx = 0; 9299 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 9300 I = I->getNextNode()) { 9301 BS->doForAllOpcodes(I, [this, &Idx, BS](ScheduleData *SD) { 9302 TreeEntry *SDTE = getTreeEntry(SD->Inst); 9303 (void)SDTE; 9304 assert((isVectorLikeInstWithConstOps(SD->Inst) || 9305 SD->isPartOfBundle() == 9306 (SDTE && !doesNotNeedToSchedule(SDTE->Scalars))) && 9307 "scheduler and vectorizer bundle mismatch"); 9308 SD->FirstInBundle->SchedulingPriority = Idx++; 9309 9310 if (SD->isSchedulingEntity() && SD->isPartOfBundle()) 9311 BS->calculateDependencies(SD, false, this); 9312 }); 9313 } 9314 BS->initialFillReadyList(ReadyInsts); 9315 9316 Instruction *LastScheduledInst = BS->ScheduleEnd; 9317 9318 // Do the "real" scheduling. 9319 while (!ReadyInsts.empty()) { 9320 ScheduleData *picked = *ReadyInsts.begin(); 9321 ReadyInsts.erase(ReadyInsts.begin()); 9322 9323 // Move the scheduled instruction(s) to their dedicated places, if not 9324 // there yet. 9325 for (ScheduleData *BundleMember = picked; BundleMember; 9326 BundleMember = BundleMember->NextInBundle) { 9327 Instruction *pickedInst = BundleMember->Inst; 9328 if (pickedInst->getNextNode() != LastScheduledInst) 9329 pickedInst->moveBefore(LastScheduledInst); 9330 LastScheduledInst = pickedInst; 9331 } 9332 9333 BS->schedule(picked, ReadyInsts); 9334 } 9335 9336 // Check that we didn't break any of our invariants. 9337 #ifdef EXPENSIVE_CHECKS 9338 BS->verify(); 9339 #endif 9340 9341 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) 9342 // Check that all schedulable entities got scheduled 9343 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) { 9344 BS->doForAllOpcodes(I, [&](ScheduleData *SD) { 9345 if (SD->isSchedulingEntity() && SD->hasValidDependencies()) { 9346 assert(SD->IsScheduled && "must be scheduled at this point"); 9347 } 9348 }); 9349 } 9350 #endif 9351 9352 // Avoid duplicate scheduling of the block. 9353 BS->ScheduleStart = nullptr; 9354 } 9355 9356 unsigned BoUpSLP::getVectorElementSize(Value *V) { 9357 // If V is a store, just return the width of the stored value (or value 9358 // truncated just before storing) without traversing the expression tree. 9359 // This is the common case. 9360 if (auto *Store = dyn_cast<StoreInst>(V)) 9361 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 9362 9363 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 9364 return getVectorElementSize(IEI->getOperand(1)); 9365 9366 auto E = InstrElementSize.find(V); 9367 if (E != InstrElementSize.end()) 9368 return E->second; 9369 9370 // If V is not a store, we can traverse the expression tree to find loads 9371 // that feed it. The type of the loaded value may indicate a more suitable 9372 // width than V's type. We want to base the vector element size on the width 9373 // of memory operations where possible. 9374 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 9375 SmallPtrSet<Instruction *, 16> Visited; 9376 if (auto *I = dyn_cast<Instruction>(V)) { 9377 Worklist.emplace_back(I, I->getParent()); 9378 Visited.insert(I); 9379 } 9380 9381 // Traverse the expression tree in bottom-up order looking for loads. If we 9382 // encounter an instruction we don't yet handle, we give up. 9383 auto Width = 0u; 9384 while (!Worklist.empty()) { 9385 Instruction *I; 9386 BasicBlock *Parent; 9387 std::tie(I, Parent) = Worklist.pop_back_val(); 9388 9389 // We should only be looking at scalar instructions here. If the current 9390 // instruction has a vector type, skip. 9391 auto *Ty = I->getType(); 9392 if (isa<VectorType>(Ty)) 9393 continue; 9394 9395 // If the current instruction is a load, update MaxWidth to reflect the 9396 // width of the loaded value. 9397 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 9398 isa<ExtractValueInst>(I)) 9399 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 9400 9401 // Otherwise, we need to visit the operands of the instruction. We only 9402 // handle the interesting cases from buildTree here. If an operand is an 9403 // instruction we haven't yet visited and from the same basic block as the 9404 // user or the use is a PHI node, we add it to the worklist. 9405 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 9406 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 9407 isa<UnaryOperator>(I)) { 9408 for (Use &U : I->operands()) 9409 if (auto *J = dyn_cast<Instruction>(U.get())) 9410 if (Visited.insert(J).second && 9411 (isa<PHINode>(I) || J->getParent() == Parent)) 9412 Worklist.emplace_back(J, J->getParent()); 9413 } else { 9414 break; 9415 } 9416 } 9417 9418 // If we didn't encounter a memory access in the expression tree, or if we 9419 // gave up for some reason, just return the width of V. Otherwise, return the 9420 // maximum width we found. 9421 if (!Width) { 9422 if (auto *CI = dyn_cast<CmpInst>(V)) 9423 V = CI->getOperand(0); 9424 Width = DL->getTypeSizeInBits(V->getType()); 9425 } 9426 9427 for (Instruction *I : Visited) 9428 InstrElementSize[I] = Width; 9429 9430 return Width; 9431 } 9432 9433 // Determine if a value V in a vectorizable expression Expr can be demoted to a 9434 // smaller type with a truncation. We collect the values that will be demoted 9435 // in ToDemote and additional roots that require investigating in Roots. 9436 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 9437 SmallVectorImpl<Value *> &ToDemote, 9438 SmallVectorImpl<Value *> &Roots) { 9439 // We can always demote constants. 9440 if (isa<Constant>(V)) { 9441 ToDemote.push_back(V); 9442 return true; 9443 } 9444 9445 // If the value is not an instruction in the expression with only one use, it 9446 // cannot be demoted. 9447 auto *I = dyn_cast<Instruction>(V); 9448 if (!I || !I->hasOneUse() || !Expr.count(I)) 9449 return false; 9450 9451 switch (I->getOpcode()) { 9452 9453 // We can always demote truncations and extensions. Since truncations can 9454 // seed additional demotion, we save the truncated value. 9455 case Instruction::Trunc: 9456 Roots.push_back(I->getOperand(0)); 9457 break; 9458 case Instruction::ZExt: 9459 case Instruction::SExt: 9460 if (isa<ExtractElementInst>(I->getOperand(0)) || 9461 isa<InsertElementInst>(I->getOperand(0))) 9462 return false; 9463 break; 9464 9465 // We can demote certain binary operations if we can demote both of their 9466 // operands. 9467 case Instruction::Add: 9468 case Instruction::Sub: 9469 case Instruction::Mul: 9470 case Instruction::And: 9471 case Instruction::Or: 9472 case Instruction::Xor: 9473 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 9474 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 9475 return false; 9476 break; 9477 9478 // We can demote selects if we can demote their true and false values. 9479 case Instruction::Select: { 9480 SelectInst *SI = cast<SelectInst>(I); 9481 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 9482 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 9483 return false; 9484 break; 9485 } 9486 9487 // We can demote phis if we can demote all their incoming operands. Note that 9488 // we don't need to worry about cycles since we ensure single use above. 9489 case Instruction::PHI: { 9490 PHINode *PN = cast<PHINode>(I); 9491 for (Value *IncValue : PN->incoming_values()) 9492 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 9493 return false; 9494 break; 9495 } 9496 9497 // Otherwise, conservatively give up. 9498 default: 9499 return false; 9500 } 9501 9502 // Record the value that we can demote. 9503 ToDemote.push_back(V); 9504 return true; 9505 } 9506 9507 void BoUpSLP::computeMinimumValueSizes() { 9508 // If there are no external uses, the expression tree must be rooted by a 9509 // store. We can't demote in-memory values, so there is nothing to do here. 9510 if (ExternalUses.empty()) 9511 return; 9512 9513 // We only attempt to truncate integer expressions. 9514 auto &TreeRoot = VectorizableTree[0]->Scalars; 9515 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 9516 if (!TreeRootIT) 9517 return; 9518 9519 // If the expression is not rooted by a store, these roots should have 9520 // external uses. We will rely on InstCombine to rewrite the expression in 9521 // the narrower type. However, InstCombine only rewrites single-use values. 9522 // This means that if a tree entry other than a root is used externally, it 9523 // must have multiple uses and InstCombine will not rewrite it. The code 9524 // below ensures that only the roots are used externally. 9525 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 9526 for (auto &EU : ExternalUses) 9527 if (!Expr.erase(EU.Scalar)) 9528 return; 9529 if (!Expr.empty()) 9530 return; 9531 9532 // Collect the scalar values of the vectorizable expression. We will use this 9533 // context to determine which values can be demoted. If we see a truncation, 9534 // we mark it as seeding another demotion. 9535 for (auto &EntryPtr : VectorizableTree) 9536 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 9537 9538 // Ensure the roots of the vectorizable tree don't form a cycle. They must 9539 // have a single external user that is not in the vectorizable tree. 9540 for (auto *Root : TreeRoot) 9541 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 9542 return; 9543 9544 // Conservatively determine if we can actually truncate the roots of the 9545 // expression. Collect the values that can be demoted in ToDemote and 9546 // additional roots that require investigating in Roots. 9547 SmallVector<Value *, 32> ToDemote; 9548 SmallVector<Value *, 4> Roots; 9549 for (auto *Root : TreeRoot) 9550 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 9551 return; 9552 9553 // The maximum bit width required to represent all the values that can be 9554 // demoted without loss of precision. It would be safe to truncate the roots 9555 // of the expression to this width. 9556 auto MaxBitWidth = 8u; 9557 9558 // We first check if all the bits of the roots are demanded. If they're not, 9559 // we can truncate the roots to this narrower type. 9560 for (auto *Root : TreeRoot) { 9561 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 9562 MaxBitWidth = std::max<unsigned>( 9563 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 9564 } 9565 9566 // True if the roots can be zero-extended back to their original type, rather 9567 // than sign-extended. We know that if the leading bits are not demanded, we 9568 // can safely zero-extend. So we initialize IsKnownPositive to True. 9569 bool IsKnownPositive = true; 9570 9571 // If all the bits of the roots are demanded, we can try a little harder to 9572 // compute a narrower type. This can happen, for example, if the roots are 9573 // getelementptr indices. InstCombine promotes these indices to the pointer 9574 // width. Thus, all their bits are technically demanded even though the 9575 // address computation might be vectorized in a smaller type. 9576 // 9577 // We start by looking at each entry that can be demoted. We compute the 9578 // maximum bit width required to store the scalar by using ValueTracking to 9579 // compute the number of high-order bits we can truncate. 9580 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 9581 llvm::all_of(TreeRoot, [](Value *R) { 9582 assert(R->hasOneUse() && "Root should have only one use!"); 9583 return isa<GetElementPtrInst>(R->user_back()); 9584 })) { 9585 MaxBitWidth = 8u; 9586 9587 // Determine if the sign bit of all the roots is known to be zero. If not, 9588 // IsKnownPositive is set to False. 9589 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 9590 KnownBits Known = computeKnownBits(R, *DL); 9591 return Known.isNonNegative(); 9592 }); 9593 9594 // Determine the maximum number of bits required to store the scalar 9595 // values. 9596 for (auto *Scalar : ToDemote) { 9597 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 9598 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 9599 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 9600 } 9601 9602 // If we can't prove that the sign bit is zero, we must add one to the 9603 // maximum bit width to account for the unknown sign bit. This preserves 9604 // the existing sign bit so we can safely sign-extend the root back to the 9605 // original type. Otherwise, if we know the sign bit is zero, we will 9606 // zero-extend the root instead. 9607 // 9608 // FIXME: This is somewhat suboptimal, as there will be cases where adding 9609 // one to the maximum bit width will yield a larger-than-necessary 9610 // type. In general, we need to add an extra bit only if we can't 9611 // prove that the upper bit of the original type is equal to the 9612 // upper bit of the proposed smaller type. If these two bits are the 9613 // same (either zero or one) we know that sign-extending from the 9614 // smaller type will result in the same value. Here, since we can't 9615 // yet prove this, we are just making the proposed smaller type 9616 // larger to ensure correctness. 9617 if (!IsKnownPositive) 9618 ++MaxBitWidth; 9619 } 9620 9621 // Round MaxBitWidth up to the next power-of-two. 9622 if (!isPowerOf2_64(MaxBitWidth)) 9623 MaxBitWidth = NextPowerOf2(MaxBitWidth); 9624 9625 // If the maximum bit width we compute is less than the with of the roots' 9626 // type, we can proceed with the narrowing. Otherwise, do nothing. 9627 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 9628 return; 9629 9630 // If we can truncate the root, we must collect additional values that might 9631 // be demoted as a result. That is, those seeded by truncations we will 9632 // modify. 9633 while (!Roots.empty()) 9634 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 9635 9636 // Finally, map the values we can demote to the maximum bit with we computed. 9637 for (auto *Scalar : ToDemote) 9638 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 9639 } 9640 9641 namespace { 9642 9643 /// The SLPVectorizer Pass. 9644 struct SLPVectorizer : public FunctionPass { 9645 SLPVectorizerPass Impl; 9646 9647 /// Pass identification, replacement for typeid 9648 static char ID; 9649 9650 explicit SLPVectorizer() : FunctionPass(ID) { 9651 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 9652 } 9653 9654 bool doInitialization(Module &M) override { return false; } 9655 9656 bool runOnFunction(Function &F) override { 9657 if (skipFunction(F)) 9658 return false; 9659 9660 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 9661 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 9662 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 9663 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 9664 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 9665 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 9666 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 9667 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 9668 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 9669 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 9670 9671 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 9672 } 9673 9674 void getAnalysisUsage(AnalysisUsage &AU) const override { 9675 FunctionPass::getAnalysisUsage(AU); 9676 AU.addRequired<AssumptionCacheTracker>(); 9677 AU.addRequired<ScalarEvolutionWrapperPass>(); 9678 AU.addRequired<AAResultsWrapperPass>(); 9679 AU.addRequired<TargetTransformInfoWrapperPass>(); 9680 AU.addRequired<LoopInfoWrapperPass>(); 9681 AU.addRequired<DominatorTreeWrapperPass>(); 9682 AU.addRequired<DemandedBitsWrapperPass>(); 9683 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 9684 AU.addRequired<InjectTLIMappingsLegacy>(); 9685 AU.addPreserved<LoopInfoWrapperPass>(); 9686 AU.addPreserved<DominatorTreeWrapperPass>(); 9687 AU.addPreserved<AAResultsWrapperPass>(); 9688 AU.addPreserved<GlobalsAAWrapperPass>(); 9689 AU.setPreservesCFG(); 9690 } 9691 }; 9692 9693 } // end anonymous namespace 9694 9695 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 9696 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 9697 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 9698 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 9699 auto *AA = &AM.getResult<AAManager>(F); 9700 auto *LI = &AM.getResult<LoopAnalysis>(F); 9701 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 9702 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 9703 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 9704 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 9705 9706 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 9707 if (!Changed) 9708 return PreservedAnalyses::all(); 9709 9710 PreservedAnalyses PA; 9711 PA.preserveSet<CFGAnalyses>(); 9712 return PA; 9713 } 9714 9715 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 9716 TargetTransformInfo *TTI_, 9717 TargetLibraryInfo *TLI_, AAResults *AA_, 9718 LoopInfo *LI_, DominatorTree *DT_, 9719 AssumptionCache *AC_, DemandedBits *DB_, 9720 OptimizationRemarkEmitter *ORE_) { 9721 if (!RunSLPVectorization) 9722 return false; 9723 SE = SE_; 9724 TTI = TTI_; 9725 TLI = TLI_; 9726 AA = AA_; 9727 LI = LI_; 9728 DT = DT_; 9729 AC = AC_; 9730 DB = DB_; 9731 DL = &F.getParent()->getDataLayout(); 9732 9733 Stores.clear(); 9734 GEPs.clear(); 9735 bool Changed = false; 9736 9737 // If the target claims to have no vector registers don't attempt 9738 // vectorization. 9739 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) { 9740 LLVM_DEBUG( 9741 dbgs() << "SLP: Didn't find any vector registers for target, abort.\n"); 9742 return false; 9743 } 9744 9745 // Don't vectorize when the attribute NoImplicitFloat is used. 9746 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 9747 return false; 9748 9749 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 9750 9751 // Use the bottom up slp vectorizer to construct chains that start with 9752 // store instructions. 9753 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 9754 9755 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 9756 // delete instructions. 9757 9758 // Update DFS numbers now so that we can use them for ordering. 9759 DT->updateDFSNumbers(); 9760 9761 // Scan the blocks in the function in post order. 9762 for (auto BB : post_order(&F.getEntryBlock())) { 9763 // Start new block - clear the list of reduction roots. 9764 R.clearReductionData(); 9765 collectSeedInstructions(BB); 9766 9767 // Vectorize trees that end at stores. 9768 if (!Stores.empty()) { 9769 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 9770 << " underlying objects.\n"); 9771 Changed |= vectorizeStoreChains(R); 9772 } 9773 9774 // Vectorize trees that end at reductions. 9775 Changed |= vectorizeChainsInBlock(BB, R); 9776 9777 // Vectorize the index computations of getelementptr instructions. This 9778 // is primarily intended to catch gather-like idioms ending at 9779 // non-consecutive loads. 9780 if (!GEPs.empty()) { 9781 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 9782 << " underlying objects.\n"); 9783 Changed |= vectorizeGEPIndices(BB, R); 9784 } 9785 } 9786 9787 if (Changed) { 9788 R.optimizeGatherSequence(); 9789 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 9790 } 9791 return Changed; 9792 } 9793 9794 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 9795 unsigned Idx, unsigned MinVF) { 9796 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 9797 << "\n"); 9798 const unsigned Sz = R.getVectorElementSize(Chain[0]); 9799 unsigned VF = Chain.size(); 9800 9801 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 9802 return false; 9803 9804 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 9805 << "\n"); 9806 9807 R.buildTree(Chain); 9808 if (R.isTreeTinyAndNotFullyVectorizable()) 9809 return false; 9810 if (R.isLoadCombineCandidate()) 9811 return false; 9812 R.reorderTopToBottom(); 9813 R.reorderBottomToTop(); 9814 R.buildExternalUses(); 9815 9816 R.computeMinimumValueSizes(); 9817 9818 InstructionCost Cost = R.getTreeCost(); 9819 9820 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 9821 if (Cost < -SLPCostThreshold) { 9822 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 9823 9824 using namespace ore; 9825 9826 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 9827 cast<StoreInst>(Chain[0])) 9828 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 9829 << " and with tree size " 9830 << NV("TreeSize", R.getTreeSize())); 9831 9832 R.vectorizeTree(); 9833 return true; 9834 } 9835 9836 return false; 9837 } 9838 9839 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 9840 BoUpSLP &R) { 9841 // We may run into multiple chains that merge into a single chain. We mark the 9842 // stores that we vectorized so that we don't visit the same store twice. 9843 BoUpSLP::ValueSet VectorizedStores; 9844 bool Changed = false; 9845 9846 int E = Stores.size(); 9847 SmallBitVector Tails(E, false); 9848 int MaxIter = MaxStoreLookup.getValue(); 9849 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 9850 E, std::make_pair(E, INT_MAX)); 9851 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 9852 int IterCnt; 9853 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 9854 &CheckedPairs, 9855 &ConsecutiveChain](int K, int Idx) { 9856 if (IterCnt >= MaxIter) 9857 return true; 9858 if (CheckedPairs[Idx].test(K)) 9859 return ConsecutiveChain[K].second == 1 && 9860 ConsecutiveChain[K].first == Idx; 9861 ++IterCnt; 9862 CheckedPairs[Idx].set(K); 9863 CheckedPairs[K].set(Idx); 9864 Optional<int> Diff = getPointersDiff( 9865 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 9866 Stores[Idx]->getValueOperand()->getType(), 9867 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 9868 if (!Diff || *Diff == 0) 9869 return false; 9870 int Val = *Diff; 9871 if (Val < 0) { 9872 if (ConsecutiveChain[Idx].second > -Val) { 9873 Tails.set(K); 9874 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 9875 } 9876 return false; 9877 } 9878 if (ConsecutiveChain[K].second <= Val) 9879 return false; 9880 9881 Tails.set(Idx); 9882 ConsecutiveChain[K] = std::make_pair(Idx, Val); 9883 return Val == 1; 9884 }; 9885 // Do a quadratic search on all of the given stores in reverse order and find 9886 // all of the pairs of stores that follow each other. 9887 for (int Idx = E - 1; Idx >= 0; --Idx) { 9888 // If a store has multiple consecutive store candidates, search according 9889 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 9890 // This is because usually pairing with immediate succeeding or preceding 9891 // candidate create the best chance to find slp vectorization opportunity. 9892 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 9893 IterCnt = 0; 9894 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 9895 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 9896 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 9897 break; 9898 } 9899 9900 // Tracks if we tried to vectorize stores starting from the given tail 9901 // already. 9902 SmallBitVector TriedTails(E, false); 9903 // For stores that start but don't end a link in the chain: 9904 for (int Cnt = E; Cnt > 0; --Cnt) { 9905 int I = Cnt - 1; 9906 if (ConsecutiveChain[I].first == E || Tails.test(I)) 9907 continue; 9908 // We found a store instr that starts a chain. Now follow the chain and try 9909 // to vectorize it. 9910 BoUpSLP::ValueList Operands; 9911 // Collect the chain into a list. 9912 while (I != E && !VectorizedStores.count(Stores[I])) { 9913 Operands.push_back(Stores[I]); 9914 Tails.set(I); 9915 if (ConsecutiveChain[I].second != 1) { 9916 // Mark the new end in the chain and go back, if required. It might be 9917 // required if the original stores come in reversed order, for example. 9918 if (ConsecutiveChain[I].first != E && 9919 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 9920 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 9921 TriedTails.set(I); 9922 Tails.reset(ConsecutiveChain[I].first); 9923 if (Cnt < ConsecutiveChain[I].first + 2) 9924 Cnt = ConsecutiveChain[I].first + 2; 9925 } 9926 break; 9927 } 9928 // Move to the next value in the chain. 9929 I = ConsecutiveChain[I].first; 9930 } 9931 assert(!Operands.empty() && "Expected non-empty list of stores."); 9932 9933 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 9934 unsigned EltSize = R.getVectorElementSize(Operands[0]); 9935 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 9936 9937 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 9938 MaxElts); 9939 auto *Store = cast<StoreInst>(Operands[0]); 9940 Type *StoreTy = Store->getValueOperand()->getType(); 9941 Type *ValueTy = StoreTy; 9942 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 9943 ValueTy = Trunc->getSrcTy(); 9944 unsigned MinVF = TTI->getStoreMinimumVF( 9945 R.getMinVF(DL->getTypeSizeInBits(ValueTy)), StoreTy, ValueTy); 9946 9947 // FIXME: Is division-by-2 the correct step? Should we assert that the 9948 // register size is a power-of-2? 9949 unsigned StartIdx = 0; 9950 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 9951 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 9952 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 9953 if (!VectorizedStores.count(Slice.front()) && 9954 !VectorizedStores.count(Slice.back()) && 9955 vectorizeStoreChain(Slice, R, Cnt, MinVF)) { 9956 // Mark the vectorized stores so that we don't vectorize them again. 9957 VectorizedStores.insert(Slice.begin(), Slice.end()); 9958 Changed = true; 9959 // If we vectorized initial block, no need to try to vectorize it 9960 // again. 9961 if (Cnt == StartIdx) 9962 StartIdx += Size; 9963 Cnt += Size; 9964 continue; 9965 } 9966 ++Cnt; 9967 } 9968 // Check if the whole array was vectorized already - exit. 9969 if (StartIdx >= Operands.size()) 9970 break; 9971 } 9972 } 9973 9974 return Changed; 9975 } 9976 9977 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 9978 // Initialize the collections. We will make a single pass over the block. 9979 Stores.clear(); 9980 GEPs.clear(); 9981 9982 // Visit the store and getelementptr instructions in BB and organize them in 9983 // Stores and GEPs according to the underlying objects of their pointer 9984 // operands. 9985 for (Instruction &I : *BB) { 9986 // Ignore store instructions that are volatile or have a pointer operand 9987 // that doesn't point to a scalar type. 9988 if (auto *SI = dyn_cast<StoreInst>(&I)) { 9989 if (!SI->isSimple()) 9990 continue; 9991 if (!isValidElementType(SI->getValueOperand()->getType())) 9992 continue; 9993 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 9994 } 9995 9996 // Ignore getelementptr instructions that have more than one index, a 9997 // constant index, or a pointer operand that doesn't point to a scalar 9998 // type. 9999 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 10000 auto Idx = GEP->idx_begin()->get(); 10001 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 10002 continue; 10003 if (!isValidElementType(Idx->getType())) 10004 continue; 10005 if (GEP->getType()->isVectorTy()) 10006 continue; 10007 GEPs[GEP->getPointerOperand()].push_back(GEP); 10008 } 10009 } 10010 } 10011 10012 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 10013 if (!A || !B) 10014 return false; 10015 if (isa<InsertElementInst>(A) || isa<InsertElementInst>(B)) 10016 return false; 10017 Value *VL[] = {A, B}; 10018 return tryToVectorizeList(VL, R); 10019 } 10020 10021 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 10022 bool LimitForRegisterSize) { 10023 if (VL.size() < 2) 10024 return false; 10025 10026 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 10027 << VL.size() << ".\n"); 10028 10029 // Check that all of the parts are instructions of the same type, 10030 // we permit an alternate opcode via InstructionsState. 10031 InstructionsState S = getSameOpcode(VL); 10032 if (!S.getOpcode()) 10033 return false; 10034 10035 Instruction *I0 = cast<Instruction>(S.OpValue); 10036 // Make sure invalid types (including vector type) are rejected before 10037 // determining vectorization factor for scalar instructions. 10038 for (Value *V : VL) { 10039 Type *Ty = V->getType(); 10040 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 10041 // NOTE: the following will give user internal llvm type name, which may 10042 // not be useful. 10043 R.getORE()->emit([&]() { 10044 std::string type_str; 10045 llvm::raw_string_ostream rso(type_str); 10046 Ty->print(rso); 10047 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 10048 << "Cannot SLP vectorize list: type " 10049 << rso.str() + " is unsupported by vectorizer"; 10050 }); 10051 return false; 10052 } 10053 } 10054 10055 unsigned Sz = R.getVectorElementSize(I0); 10056 unsigned MinVF = R.getMinVF(Sz); 10057 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 10058 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 10059 if (MaxVF < 2) { 10060 R.getORE()->emit([&]() { 10061 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 10062 << "Cannot SLP vectorize list: vectorization factor " 10063 << "less than 2 is not supported"; 10064 }); 10065 return false; 10066 } 10067 10068 bool Changed = false; 10069 bool CandidateFound = false; 10070 InstructionCost MinCost = SLPCostThreshold.getValue(); 10071 Type *ScalarTy = VL[0]->getType(); 10072 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 10073 ScalarTy = IE->getOperand(1)->getType(); 10074 10075 unsigned NextInst = 0, MaxInst = VL.size(); 10076 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 10077 // No actual vectorization should happen, if number of parts is the same as 10078 // provided vectorization factor (i.e. the scalar type is used for vector 10079 // code during codegen). 10080 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 10081 if (TTI->getNumberOfParts(VecTy) == VF) 10082 continue; 10083 for (unsigned I = NextInst; I < MaxInst; ++I) { 10084 unsigned OpsWidth = 0; 10085 10086 if (I + VF > MaxInst) 10087 OpsWidth = MaxInst - I; 10088 else 10089 OpsWidth = VF; 10090 10091 if (!isPowerOf2_32(OpsWidth)) 10092 continue; 10093 10094 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 10095 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 10096 break; 10097 10098 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 10099 // Check that a previous iteration of this loop did not delete the Value. 10100 if (llvm::any_of(Ops, [&R](Value *V) { 10101 auto *I = dyn_cast<Instruction>(V); 10102 return I && R.isDeleted(I); 10103 })) 10104 continue; 10105 10106 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 10107 << "\n"); 10108 10109 R.buildTree(Ops); 10110 if (R.isTreeTinyAndNotFullyVectorizable()) 10111 continue; 10112 R.reorderTopToBottom(); 10113 R.reorderBottomToTop(!isa<InsertElementInst>(Ops.front())); 10114 R.buildExternalUses(); 10115 10116 R.computeMinimumValueSizes(); 10117 InstructionCost Cost = R.getTreeCost(); 10118 CandidateFound = true; 10119 MinCost = std::min(MinCost, Cost); 10120 10121 if (Cost < -SLPCostThreshold) { 10122 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 10123 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 10124 cast<Instruction>(Ops[0])) 10125 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 10126 << " and with tree size " 10127 << ore::NV("TreeSize", R.getTreeSize())); 10128 10129 R.vectorizeTree(); 10130 // Move to the next bundle. 10131 I += VF - 1; 10132 NextInst = I + 1; 10133 Changed = true; 10134 } 10135 } 10136 } 10137 10138 if (!Changed && CandidateFound) { 10139 R.getORE()->emit([&]() { 10140 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 10141 << "List vectorization was possible but not beneficial with cost " 10142 << ore::NV("Cost", MinCost) << " >= " 10143 << ore::NV("Treshold", -SLPCostThreshold); 10144 }); 10145 } else if (!Changed) { 10146 R.getORE()->emit([&]() { 10147 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 10148 << "Cannot SLP vectorize list: vectorization was impossible" 10149 << " with available vectorization factors"; 10150 }); 10151 } 10152 return Changed; 10153 } 10154 10155 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 10156 if (!I) 10157 return false; 10158 10159 if ((!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) || 10160 isa<VectorType>(I->getType())) 10161 return false; 10162 10163 Value *P = I->getParent(); 10164 10165 // Vectorize in current basic block only. 10166 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 10167 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 10168 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 10169 return false; 10170 10171 // First collect all possible candidates 10172 SmallVector<std::pair<Value *, Value *>, 4> Candidates; 10173 Candidates.emplace_back(Op0, Op1); 10174 10175 auto *A = dyn_cast<BinaryOperator>(Op0); 10176 auto *B = dyn_cast<BinaryOperator>(Op1); 10177 // Try to skip B. 10178 if (A && B && B->hasOneUse()) { 10179 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 10180 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 10181 if (B0 && B0->getParent() == P) 10182 Candidates.emplace_back(A, B0); 10183 if (B1 && B1->getParent() == P) 10184 Candidates.emplace_back(A, B1); 10185 } 10186 // Try to skip A. 10187 if (B && A && A->hasOneUse()) { 10188 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 10189 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 10190 if (A0 && A0->getParent() == P) 10191 Candidates.emplace_back(A0, B); 10192 if (A1 && A1->getParent() == P) 10193 Candidates.emplace_back(A1, B); 10194 } 10195 10196 if (Candidates.size() == 1) 10197 return tryToVectorizePair(Op0, Op1, R); 10198 10199 // We have multiple options. Try to pick the single best. 10200 Optional<int> BestCandidate = R.findBestRootPair(Candidates); 10201 if (!BestCandidate) 10202 return false; 10203 return tryToVectorizePair(Candidates[*BestCandidate].first, 10204 Candidates[*BestCandidate].second, R); 10205 } 10206 10207 namespace { 10208 10209 /// Model horizontal reductions. 10210 /// 10211 /// A horizontal reduction is a tree of reduction instructions that has values 10212 /// that can be put into a vector as its leaves. For example: 10213 /// 10214 /// mul mul mul mul 10215 /// \ / \ / 10216 /// + + 10217 /// \ / 10218 /// + 10219 /// This tree has "mul" as its leaf values and "+" as its reduction 10220 /// instructions. A reduction can feed into a store or a binary operation 10221 /// feeding a phi. 10222 /// ... 10223 /// \ / 10224 /// + 10225 /// | 10226 /// phi += 10227 /// 10228 /// Or: 10229 /// ... 10230 /// \ / 10231 /// + 10232 /// | 10233 /// *p = 10234 /// 10235 class HorizontalReduction { 10236 using ReductionOpsType = SmallVector<Value *, 16>; 10237 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 10238 ReductionOpsListType ReductionOps; 10239 /// List of possibly reduced values. 10240 SmallVector<SmallVector<Value *>> ReducedVals; 10241 /// Maps reduced value to the corresponding reduction operation. 10242 DenseMap<Value *, SmallVector<Instruction *>> ReducedValsToOps; 10243 // Use map vector to make stable output. 10244 MapVector<Instruction *, Value *> ExtraArgs; 10245 WeakTrackingVH ReductionRoot; 10246 /// The type of reduction operation. 10247 RecurKind RdxKind; 10248 10249 static bool isCmpSelMinMax(Instruction *I) { 10250 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 10251 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 10252 } 10253 10254 // And/or are potentially poison-safe logical patterns like: 10255 // select x, y, false 10256 // select x, true, y 10257 static bool isBoolLogicOp(Instruction *I) { 10258 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 10259 match(I, m_LogicalOr(m_Value(), m_Value())); 10260 } 10261 10262 /// Checks if instruction is associative and can be vectorized. 10263 static bool isVectorizable(RecurKind Kind, Instruction *I) { 10264 if (Kind == RecurKind::None) 10265 return false; 10266 10267 // Integer ops that map to select instructions or intrinsics are fine. 10268 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 10269 isBoolLogicOp(I)) 10270 return true; 10271 10272 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 10273 // FP min/max are associative except for NaN and -0.0. We do not 10274 // have to rule out -0.0 here because the intrinsic semantics do not 10275 // specify a fixed result for it. 10276 return I->getFastMathFlags().noNaNs(); 10277 } 10278 10279 return I->isAssociative(); 10280 } 10281 10282 static Value *getRdxOperand(Instruction *I, unsigned Index) { 10283 // Poison-safe 'or' takes the form: select X, true, Y 10284 // To make that work with the normal operand processing, we skip the 10285 // true value operand. 10286 // TODO: Change the code and data structures to handle this without a hack. 10287 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 10288 return I->getOperand(2); 10289 return I->getOperand(Index); 10290 } 10291 10292 /// Creates reduction operation with the current opcode. 10293 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 10294 Value *RHS, const Twine &Name, bool UseSelect) { 10295 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 10296 switch (Kind) { 10297 case RecurKind::Or: 10298 if (UseSelect && 10299 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 10300 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 10301 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 10302 Name); 10303 case RecurKind::And: 10304 if (UseSelect && 10305 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 10306 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 10307 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 10308 Name); 10309 case RecurKind::Add: 10310 case RecurKind::Mul: 10311 case RecurKind::Xor: 10312 case RecurKind::FAdd: 10313 case RecurKind::FMul: 10314 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 10315 Name); 10316 case RecurKind::FMax: 10317 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 10318 case RecurKind::FMin: 10319 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 10320 case RecurKind::SMax: 10321 if (UseSelect) { 10322 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 10323 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 10324 } 10325 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 10326 case RecurKind::SMin: 10327 if (UseSelect) { 10328 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 10329 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 10330 } 10331 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 10332 case RecurKind::UMax: 10333 if (UseSelect) { 10334 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 10335 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 10336 } 10337 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 10338 case RecurKind::UMin: 10339 if (UseSelect) { 10340 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 10341 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 10342 } 10343 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 10344 default: 10345 llvm_unreachable("Unknown reduction operation."); 10346 } 10347 } 10348 10349 /// Creates reduction operation with the current opcode with the IR flags 10350 /// from \p ReductionOps, dropping nuw/nsw flags. 10351 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 10352 Value *RHS, const Twine &Name, 10353 const ReductionOpsListType &ReductionOps) { 10354 bool UseSelect = ReductionOps.size() == 2 || 10355 // Logical or/and. 10356 (ReductionOps.size() == 1 && 10357 isa<SelectInst>(ReductionOps.front().front())); 10358 assert((!UseSelect || ReductionOps.size() != 2 || 10359 isa<SelectInst>(ReductionOps[1][0])) && 10360 "Expected cmp + select pairs for reduction"); 10361 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 10362 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 10363 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 10364 propagateIRFlags(Sel->getCondition(), ReductionOps[0], nullptr, 10365 /*IncludeWrapFlags=*/false); 10366 propagateIRFlags(Op, ReductionOps[1], nullptr, 10367 /*IncludeWrapFlags=*/false); 10368 return Op; 10369 } 10370 } 10371 propagateIRFlags(Op, ReductionOps[0], nullptr, /*IncludeWrapFlags=*/false); 10372 return Op; 10373 } 10374 10375 static RecurKind getRdxKind(Value *V) { 10376 auto *I = dyn_cast<Instruction>(V); 10377 if (!I) 10378 return RecurKind::None; 10379 if (match(I, m_Add(m_Value(), m_Value()))) 10380 return RecurKind::Add; 10381 if (match(I, m_Mul(m_Value(), m_Value()))) 10382 return RecurKind::Mul; 10383 if (match(I, m_And(m_Value(), m_Value())) || 10384 match(I, m_LogicalAnd(m_Value(), m_Value()))) 10385 return RecurKind::And; 10386 if (match(I, m_Or(m_Value(), m_Value())) || 10387 match(I, m_LogicalOr(m_Value(), m_Value()))) 10388 return RecurKind::Or; 10389 if (match(I, m_Xor(m_Value(), m_Value()))) 10390 return RecurKind::Xor; 10391 if (match(I, m_FAdd(m_Value(), m_Value()))) 10392 return RecurKind::FAdd; 10393 if (match(I, m_FMul(m_Value(), m_Value()))) 10394 return RecurKind::FMul; 10395 10396 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 10397 return RecurKind::FMax; 10398 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 10399 return RecurKind::FMin; 10400 10401 // This matches either cmp+select or intrinsics. SLP is expected to handle 10402 // either form. 10403 // TODO: If we are canonicalizing to intrinsics, we can remove several 10404 // special-case paths that deal with selects. 10405 if (match(I, m_SMax(m_Value(), m_Value()))) 10406 return RecurKind::SMax; 10407 if (match(I, m_SMin(m_Value(), m_Value()))) 10408 return RecurKind::SMin; 10409 if (match(I, m_UMax(m_Value(), m_Value()))) 10410 return RecurKind::UMax; 10411 if (match(I, m_UMin(m_Value(), m_Value()))) 10412 return RecurKind::UMin; 10413 10414 if (auto *Select = dyn_cast<SelectInst>(I)) { 10415 // Try harder: look for min/max pattern based on instructions producing 10416 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 10417 // During the intermediate stages of SLP, it's very common to have 10418 // pattern like this (since optimizeGatherSequence is run only once 10419 // at the end): 10420 // %1 = extractelement <2 x i32> %a, i32 0 10421 // %2 = extractelement <2 x i32> %a, i32 1 10422 // %cond = icmp sgt i32 %1, %2 10423 // %3 = extractelement <2 x i32> %a, i32 0 10424 // %4 = extractelement <2 x i32> %a, i32 1 10425 // %select = select i1 %cond, i32 %3, i32 %4 10426 CmpInst::Predicate Pred; 10427 Instruction *L1; 10428 Instruction *L2; 10429 10430 Value *LHS = Select->getTrueValue(); 10431 Value *RHS = Select->getFalseValue(); 10432 Value *Cond = Select->getCondition(); 10433 10434 // TODO: Support inverse predicates. 10435 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 10436 if (!isa<ExtractElementInst>(RHS) || 10437 !L2->isIdenticalTo(cast<Instruction>(RHS))) 10438 return RecurKind::None; 10439 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 10440 if (!isa<ExtractElementInst>(LHS) || 10441 !L1->isIdenticalTo(cast<Instruction>(LHS))) 10442 return RecurKind::None; 10443 } else { 10444 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 10445 return RecurKind::None; 10446 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 10447 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 10448 !L2->isIdenticalTo(cast<Instruction>(RHS))) 10449 return RecurKind::None; 10450 } 10451 10452 switch (Pred) { 10453 default: 10454 return RecurKind::None; 10455 case CmpInst::ICMP_SGT: 10456 case CmpInst::ICMP_SGE: 10457 return RecurKind::SMax; 10458 case CmpInst::ICMP_SLT: 10459 case CmpInst::ICMP_SLE: 10460 return RecurKind::SMin; 10461 case CmpInst::ICMP_UGT: 10462 case CmpInst::ICMP_UGE: 10463 return RecurKind::UMax; 10464 case CmpInst::ICMP_ULT: 10465 case CmpInst::ICMP_ULE: 10466 return RecurKind::UMin; 10467 } 10468 } 10469 return RecurKind::None; 10470 } 10471 10472 /// Get the index of the first operand. 10473 static unsigned getFirstOperandIndex(Instruction *I) { 10474 return isCmpSelMinMax(I) ? 1 : 0; 10475 } 10476 10477 /// Total number of operands in the reduction operation. 10478 static unsigned getNumberOfOperands(Instruction *I) { 10479 return isCmpSelMinMax(I) ? 3 : 2; 10480 } 10481 10482 /// Checks if the instruction is in basic block \p BB. 10483 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 10484 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 10485 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 10486 auto *Sel = cast<SelectInst>(I); 10487 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 10488 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 10489 } 10490 return I->getParent() == BB; 10491 } 10492 10493 /// Expected number of uses for reduction operations/reduced values. 10494 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 10495 if (IsCmpSelMinMax) { 10496 // SelectInst must be used twice while the condition op must have single 10497 // use only. 10498 if (auto *Sel = dyn_cast<SelectInst>(I)) 10499 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 10500 return I->hasNUses(2); 10501 } 10502 10503 // Arithmetic reduction operation must be used once only. 10504 return I->hasOneUse(); 10505 } 10506 10507 /// Initializes the list of reduction operations. 10508 void initReductionOps(Instruction *I) { 10509 if (isCmpSelMinMax(I)) 10510 ReductionOps.assign(2, ReductionOpsType()); 10511 else 10512 ReductionOps.assign(1, ReductionOpsType()); 10513 } 10514 10515 /// Add all reduction operations for the reduction instruction \p I. 10516 void addReductionOps(Instruction *I) { 10517 if (isCmpSelMinMax(I)) { 10518 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 10519 ReductionOps[1].emplace_back(I); 10520 } else { 10521 ReductionOps[0].emplace_back(I); 10522 } 10523 } 10524 10525 static Value *getLHS(RecurKind Kind, Instruction *I) { 10526 if (Kind == RecurKind::None) 10527 return nullptr; 10528 return I->getOperand(getFirstOperandIndex(I)); 10529 } 10530 static Value *getRHS(RecurKind Kind, Instruction *I) { 10531 if (Kind == RecurKind::None) 10532 return nullptr; 10533 return I->getOperand(getFirstOperandIndex(I) + 1); 10534 } 10535 10536 public: 10537 HorizontalReduction() = default; 10538 10539 /// Try to find a reduction tree. 10540 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst, 10541 ScalarEvolution &SE, const DataLayout &DL, 10542 const TargetLibraryInfo &TLI) { 10543 assert((!Phi || is_contained(Phi->operands(), Inst)) && 10544 "Phi needs to use the binary operator"); 10545 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 10546 isa<IntrinsicInst>(Inst)) && 10547 "Expected binop, select, or intrinsic for reduction matching"); 10548 RdxKind = getRdxKind(Inst); 10549 10550 // We could have a initial reductions that is not an add. 10551 // r *= v1 + v2 + v3 + v4 10552 // In such a case start looking for a tree rooted in the first '+'. 10553 if (Phi) { 10554 if (getLHS(RdxKind, Inst) == Phi) { 10555 Phi = nullptr; 10556 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 10557 if (!Inst) 10558 return false; 10559 RdxKind = getRdxKind(Inst); 10560 } else if (getRHS(RdxKind, Inst) == Phi) { 10561 Phi = nullptr; 10562 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 10563 if (!Inst) 10564 return false; 10565 RdxKind = getRdxKind(Inst); 10566 } 10567 } 10568 10569 if (!isVectorizable(RdxKind, Inst)) 10570 return false; 10571 10572 // Analyze "regular" integer/FP types for reductions - no target-specific 10573 // types or pointers. 10574 Type *Ty = Inst->getType(); 10575 if (!isValidElementType(Ty) || Ty->isPointerTy()) 10576 return false; 10577 10578 // Though the ultimate reduction may have multiple uses, its condition must 10579 // have only single use. 10580 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 10581 if (!Sel->getCondition()->hasOneUse()) 10582 return false; 10583 10584 ReductionRoot = Inst; 10585 10586 // Iterate through all the operands of the possible reduction tree and 10587 // gather all the reduced values, sorting them by their value id. 10588 BasicBlock *BB = Inst->getParent(); 10589 bool IsCmpSelMinMax = isCmpSelMinMax(Inst); 10590 SmallVector<Instruction *> Worklist(1, Inst); 10591 // Checks if the operands of the \p TreeN instruction are also reduction 10592 // operations or should be treated as reduced values or an extra argument, 10593 // which is not part of the reduction. 10594 auto &&CheckOperands = [this, IsCmpSelMinMax, 10595 BB](Instruction *TreeN, 10596 SmallVectorImpl<Value *> &ExtraArgs, 10597 SmallVectorImpl<Value *> &PossibleReducedVals, 10598 SmallVectorImpl<Instruction *> &ReductionOps) { 10599 for (int I = getFirstOperandIndex(TreeN), 10600 End = getNumberOfOperands(TreeN); 10601 I < End; ++I) { 10602 Value *EdgeVal = getRdxOperand(TreeN, I); 10603 ReducedValsToOps[EdgeVal].push_back(TreeN); 10604 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 10605 // Edge has wrong parent - mark as an extra argument. 10606 if (EdgeInst && !isVectorLikeInstWithConstOps(EdgeInst) && 10607 !hasSameParent(EdgeInst, BB)) { 10608 ExtraArgs.push_back(EdgeVal); 10609 continue; 10610 } 10611 // If the edge is not an instruction, or it is different from the main 10612 // reduction opcode or has too many uses - possible reduced value. 10613 if (!EdgeInst || getRdxKind(EdgeInst) != RdxKind || 10614 IsCmpSelMinMax != isCmpSelMinMax(EdgeInst) || 10615 !hasRequiredNumberOfUses(IsCmpSelMinMax, EdgeInst) || 10616 !isVectorizable(getRdxKind(EdgeInst), EdgeInst)) { 10617 PossibleReducedVals.push_back(EdgeVal); 10618 continue; 10619 } 10620 ReductionOps.push_back(EdgeInst); 10621 } 10622 }; 10623 // Try to regroup reduced values so that it gets more profitable to try to 10624 // reduce them. Values are grouped by their value ids, instructions - by 10625 // instruction op id and/or alternate op id, plus do extra analysis for 10626 // loads (grouping them by the distabce between pointers) and cmp 10627 // instructions (grouping them by the predicate). 10628 MapVector<size_t, MapVector<size_t, MapVector<Value *, unsigned>>> 10629 PossibleReducedVals; 10630 initReductionOps(Inst); 10631 while (!Worklist.empty()) { 10632 Instruction *TreeN = Worklist.pop_back_val(); 10633 SmallVector<Value *> Args; 10634 SmallVector<Value *> PossibleRedVals; 10635 SmallVector<Instruction *> PossibleReductionOps; 10636 CheckOperands(TreeN, Args, PossibleRedVals, PossibleReductionOps); 10637 // If too many extra args - mark the instruction itself as a reduction 10638 // value, not a reduction operation. 10639 if (Args.size() < 2) { 10640 addReductionOps(TreeN); 10641 // Add extra args. 10642 if (!Args.empty()) { 10643 assert(Args.size() == 1 && "Expected only single argument."); 10644 ExtraArgs[TreeN] = Args.front(); 10645 } 10646 // Add reduction values. The values are sorted for better vectorization 10647 // results. 10648 for (Value *V : PossibleRedVals) { 10649 size_t Key, Idx; 10650 std::tie(Key, Idx) = generateKeySubkey( 10651 V, &TLI, 10652 [&PossibleReducedVals, &DL, &SE](size_t Key, LoadInst *LI) { 10653 auto It = PossibleReducedVals.find(Key); 10654 if (It != PossibleReducedVals.end()) { 10655 for (const auto &LoadData : It->second) { 10656 auto *RLI = cast<LoadInst>(LoadData.second.front().first); 10657 if (getPointersDiff(RLI->getType(), 10658 RLI->getPointerOperand(), LI->getType(), 10659 LI->getPointerOperand(), DL, SE, 10660 /*StrictCheck=*/true)) 10661 return hash_value(RLI->getPointerOperand()); 10662 } 10663 } 10664 return hash_value(LI->getPointerOperand()); 10665 }, 10666 /*AllowAlternate=*/false); 10667 ++PossibleReducedVals[Key][Idx] 10668 .insert(std::make_pair(V, 0)) 10669 .first->second; 10670 } 10671 Worklist.append(PossibleReductionOps.rbegin(), 10672 PossibleReductionOps.rend()); 10673 } else { 10674 size_t Key, Idx; 10675 std::tie(Key, Idx) = generateKeySubkey( 10676 TreeN, &TLI, 10677 [&PossibleReducedVals, &DL, &SE](size_t Key, LoadInst *LI) { 10678 auto It = PossibleReducedVals.find(Key); 10679 if (It != PossibleReducedVals.end()) { 10680 for (const auto &LoadData : It->second) { 10681 auto *RLI = cast<LoadInst>(LoadData.second.front().first); 10682 if (getPointersDiff(RLI->getType(), RLI->getPointerOperand(), 10683 LI->getType(), LI->getPointerOperand(), 10684 DL, SE, /*StrictCheck=*/true)) 10685 return hash_value(RLI->getPointerOperand()); 10686 } 10687 } 10688 return hash_value(LI->getPointerOperand()); 10689 }, 10690 /*AllowAlternate=*/false); 10691 ++PossibleReducedVals[Key][Idx] 10692 .insert(std::make_pair(TreeN, 0)) 10693 .first->second; 10694 } 10695 } 10696 auto PossibleReducedValsVect = PossibleReducedVals.takeVector(); 10697 // Sort values by the total number of values kinds to start the reduction 10698 // from the longest possible reduced values sequences. 10699 for (auto &PossibleReducedVals : PossibleReducedValsVect) { 10700 auto PossibleRedVals = PossibleReducedVals.second.takeVector(); 10701 SmallVector<SmallVector<Value *>> PossibleRedValsVect; 10702 for (auto It = PossibleRedVals.begin(), E = PossibleRedVals.end(); 10703 It != E; ++It) { 10704 PossibleRedValsVect.emplace_back(); 10705 auto RedValsVect = It->second.takeVector(); 10706 stable_sort(RedValsVect, [](const auto &P1, const auto &P2) { 10707 return P1.second < P2.second; 10708 }); 10709 for (const std::pair<Value *, unsigned> &Data : RedValsVect) 10710 PossibleRedValsVect.back().append(Data.second, Data.first); 10711 } 10712 stable_sort(PossibleRedValsVect, [](const auto &P1, const auto &P2) { 10713 return P1.size() > P2.size(); 10714 }); 10715 ReducedVals.emplace_back(); 10716 for (ArrayRef<Value *> Data : PossibleRedValsVect) 10717 ReducedVals.back().append(Data.rbegin(), Data.rend()); 10718 } 10719 // Sort the reduced values by number of same/alternate opcode and/or pointer 10720 // operand. 10721 stable_sort(ReducedVals, [](ArrayRef<Value *> P1, ArrayRef<Value *> P2) { 10722 return P1.size() > P2.size(); 10723 }); 10724 return true; 10725 } 10726 10727 /// Attempt to vectorize the tree found by matchAssociativeReduction. 10728 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 10729 constexpr int ReductionLimit = 4; 10730 constexpr unsigned RegMaxNumber = 4; 10731 constexpr unsigned RedValsMaxNumber = 128; 10732 // If there are a sufficient number of reduction values, reduce 10733 // to a nearby power-of-2. We can safely generate oversized 10734 // vectors and rely on the backend to split them to legal sizes. 10735 unsigned NumReducedVals = std::accumulate( 10736 ReducedVals.begin(), ReducedVals.end(), 0, 10737 [](int Num, ArrayRef<Value *> Vals) { return Num + Vals.size(); }); 10738 if (NumReducedVals < ReductionLimit) 10739 return nullptr; 10740 10741 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 10742 10743 // Track the reduced values in case if they are replaced by extractelement 10744 // because of the vectorization. 10745 DenseMap<Value *, WeakTrackingVH> TrackedVals; 10746 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 10747 // The same extra argument may be used several times, so log each attempt 10748 // to use it. 10749 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 10750 assert(Pair.first && "DebugLoc must be set."); 10751 ExternallyUsedValues[Pair.second].push_back(Pair.first); 10752 TrackedVals.try_emplace(Pair.second, Pair.second); 10753 } 10754 10755 // The compare instruction of a min/max is the insertion point for new 10756 // instructions and may be replaced with a new compare instruction. 10757 auto &&GetCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 10758 assert(isa<SelectInst>(RdxRootInst) && 10759 "Expected min/max reduction to have select root instruction"); 10760 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 10761 assert(isa<Instruction>(ScalarCond) && 10762 "Expected min/max reduction to have compare condition"); 10763 return cast<Instruction>(ScalarCond); 10764 }; 10765 10766 // The reduction root is used as the insertion point for new instructions, 10767 // so set it as externally used to prevent it from being deleted. 10768 ExternallyUsedValues[ReductionRoot]; 10769 SmallDenseSet<Value *> IgnoreList; 10770 for (ReductionOpsType &RdxOps : ReductionOps) 10771 for (Value *RdxOp : RdxOps) { 10772 if (!RdxOp) 10773 continue; 10774 IgnoreList.insert(RdxOp); 10775 } 10776 bool IsCmpSelMinMax = isCmpSelMinMax(cast<Instruction>(ReductionRoot)); 10777 10778 // Need to track reduced vals, they may be changed during vectorization of 10779 // subvectors. 10780 for (ArrayRef<Value *> Candidates : ReducedVals) 10781 for (Value *V : Candidates) 10782 TrackedVals.try_emplace(V, V); 10783 10784 DenseMap<Value *, unsigned> VectorizedVals; 10785 Value *VectorizedTree = nullptr; 10786 bool CheckForReusedReductionOps = false; 10787 // Try to vectorize elements based on their type. 10788 for (unsigned I = 0, E = ReducedVals.size(); I < E; ++I) { 10789 ArrayRef<Value *> OrigReducedVals = ReducedVals[I]; 10790 InstructionsState S = getSameOpcode(OrigReducedVals); 10791 SmallVector<Value *> Candidates; 10792 DenseMap<Value *, Value *> TrackedToOrig; 10793 for (unsigned Cnt = 0, Sz = OrigReducedVals.size(); Cnt < Sz; ++Cnt) { 10794 Value *RdxVal = TrackedVals.find(OrigReducedVals[Cnt])->second; 10795 // Check if the reduction value was not overriden by the extractelement 10796 // instruction because of the vectorization and exclude it, if it is not 10797 // compatible with other values. 10798 if (auto *Inst = dyn_cast<Instruction>(RdxVal)) 10799 if (isVectorLikeInstWithConstOps(Inst) && 10800 (!S.getOpcode() || !S.isOpcodeOrAlt(Inst))) 10801 continue; 10802 Candidates.push_back(RdxVal); 10803 TrackedToOrig.try_emplace(RdxVal, OrigReducedVals[Cnt]); 10804 } 10805 bool ShuffledExtracts = false; 10806 // Try to handle shuffled extractelements. 10807 if (S.getOpcode() == Instruction::ExtractElement && !S.isAltShuffle() && 10808 I + 1 < E) { 10809 InstructionsState NextS = getSameOpcode(ReducedVals[I + 1]); 10810 if (NextS.getOpcode() == Instruction::ExtractElement && 10811 !NextS.isAltShuffle()) { 10812 SmallVector<Value *> CommonCandidates(Candidates); 10813 for (Value *RV : ReducedVals[I + 1]) { 10814 Value *RdxVal = TrackedVals.find(RV)->second; 10815 // Check if the reduction value was not overriden by the 10816 // extractelement instruction because of the vectorization and 10817 // exclude it, if it is not compatible with other values. 10818 if (auto *Inst = dyn_cast<Instruction>(RdxVal)) 10819 if (!NextS.getOpcode() || !NextS.isOpcodeOrAlt(Inst)) 10820 continue; 10821 CommonCandidates.push_back(RdxVal); 10822 TrackedToOrig.try_emplace(RdxVal, RV); 10823 } 10824 SmallVector<int> Mask; 10825 if (isFixedVectorShuffle(CommonCandidates, Mask)) { 10826 ++I; 10827 Candidates.swap(CommonCandidates); 10828 ShuffledExtracts = true; 10829 } 10830 } 10831 } 10832 unsigned NumReducedVals = Candidates.size(); 10833 if (NumReducedVals < ReductionLimit) 10834 continue; 10835 10836 unsigned MaxVecRegSize = V.getMaxVecRegSize(); 10837 unsigned EltSize = V.getVectorElementSize(Candidates[0]); 10838 unsigned MaxElts = RegMaxNumber * PowerOf2Floor(MaxVecRegSize / EltSize); 10839 10840 unsigned ReduxWidth = std::min<unsigned>( 10841 PowerOf2Floor(NumReducedVals), std::max(RedValsMaxNumber, MaxElts)); 10842 unsigned Start = 0; 10843 unsigned Pos = Start; 10844 // Restarts vectorization attempt with lower vector factor. 10845 unsigned PrevReduxWidth = ReduxWidth; 10846 bool CheckForReusedReductionOpsLocal = false; 10847 auto &&AdjustReducedVals = [&Pos, &Start, &ReduxWidth, NumReducedVals, 10848 &CheckForReusedReductionOpsLocal, 10849 &PrevReduxWidth, &V, 10850 &IgnoreList](bool IgnoreVL = false) { 10851 bool IsAnyRedOpGathered = !IgnoreVL && V.isAnyGathered(IgnoreList); 10852 if (!CheckForReusedReductionOpsLocal && PrevReduxWidth == ReduxWidth) { 10853 // Check if any of the reduction ops are gathered. If so, worth 10854 // trying again with less number of reduction ops. 10855 CheckForReusedReductionOpsLocal |= IsAnyRedOpGathered; 10856 } 10857 ++Pos; 10858 if (Pos < NumReducedVals - ReduxWidth + 1) 10859 return IsAnyRedOpGathered; 10860 Pos = Start; 10861 ReduxWidth /= 2; 10862 return IsAnyRedOpGathered; 10863 }; 10864 while (Pos < NumReducedVals - ReduxWidth + 1 && 10865 ReduxWidth >= ReductionLimit) { 10866 // Dependency in tree of the reduction ops - drop this attempt, try 10867 // later. 10868 if (CheckForReusedReductionOpsLocal && PrevReduxWidth != ReduxWidth && 10869 Start == 0) { 10870 CheckForReusedReductionOps = true; 10871 break; 10872 } 10873 PrevReduxWidth = ReduxWidth; 10874 ArrayRef<Value *> VL(std::next(Candidates.begin(), Pos), ReduxWidth); 10875 // Beeing analyzed already - skip. 10876 if (V.areAnalyzedReductionVals(VL)) { 10877 (void)AdjustReducedVals(/*IgnoreVL=*/true); 10878 continue; 10879 } 10880 // Early exit if any of the reduction values were deleted during 10881 // previous vectorization attempts. 10882 if (any_of(VL, [&V](Value *RedVal) { 10883 auto *RedValI = dyn_cast<Instruction>(RedVal); 10884 if (!RedValI) 10885 return false; 10886 return V.isDeleted(RedValI); 10887 })) 10888 break; 10889 V.buildTree(VL, IgnoreList); 10890 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) { 10891 if (!AdjustReducedVals()) 10892 V.analyzedReductionVals(VL); 10893 continue; 10894 } 10895 if (V.isLoadCombineReductionCandidate(RdxKind)) { 10896 if (!AdjustReducedVals()) 10897 V.analyzedReductionVals(VL); 10898 continue; 10899 } 10900 V.reorderTopToBottom(); 10901 // No need to reorder the root node at all. 10902 V.reorderBottomToTop(/*IgnoreReorder=*/true); 10903 // Keep extracted other reduction values, if they are used in the 10904 // vectorization trees. 10905 BoUpSLP::ExtraValueToDebugLocsMap LocalExternallyUsedValues( 10906 ExternallyUsedValues); 10907 for (unsigned Cnt = 0, Sz = ReducedVals.size(); Cnt < Sz; ++Cnt) { 10908 if (Cnt == I || (ShuffledExtracts && Cnt == I - 1)) 10909 continue; 10910 for_each(ReducedVals[Cnt], 10911 [&LocalExternallyUsedValues, &TrackedVals](Value *V) { 10912 if (isa<Instruction>(V)) 10913 LocalExternallyUsedValues[TrackedVals[V]]; 10914 }); 10915 } 10916 // Number of uses of the candidates in the vector of values. 10917 SmallDenseMap<Value *, unsigned> NumUses; 10918 for (unsigned Cnt = 0; Cnt < Pos; ++Cnt) { 10919 Value *V = Candidates[Cnt]; 10920 if (NumUses.count(V) > 0) 10921 continue; 10922 NumUses[V] = std::count(VL.begin(), VL.end(), V); 10923 } 10924 for (unsigned Cnt = Pos + ReduxWidth; Cnt < NumReducedVals; ++Cnt) { 10925 Value *V = Candidates[Cnt]; 10926 if (NumUses.count(V) > 0) 10927 continue; 10928 NumUses[V] = std::count(VL.begin(), VL.end(), V); 10929 } 10930 // Gather externally used values. 10931 SmallPtrSet<Value *, 4> Visited; 10932 for (unsigned Cnt = 0; Cnt < Pos; ++Cnt) { 10933 Value *V = Candidates[Cnt]; 10934 if (!Visited.insert(V).second) 10935 continue; 10936 unsigned NumOps = VectorizedVals.lookup(V) + NumUses[V]; 10937 if (NumOps != ReducedValsToOps.find(V)->second.size()) 10938 LocalExternallyUsedValues[V]; 10939 } 10940 for (unsigned Cnt = Pos + ReduxWidth; Cnt < NumReducedVals; ++Cnt) { 10941 Value *V = Candidates[Cnt]; 10942 if (!Visited.insert(V).second) 10943 continue; 10944 unsigned NumOps = VectorizedVals.lookup(V) + NumUses[V]; 10945 if (NumOps != ReducedValsToOps.find(V)->second.size()) 10946 LocalExternallyUsedValues[V]; 10947 } 10948 V.buildExternalUses(LocalExternallyUsedValues); 10949 10950 V.computeMinimumValueSizes(); 10951 10952 // Intersect the fast-math-flags from all reduction operations. 10953 FastMathFlags RdxFMF; 10954 RdxFMF.set(); 10955 for (Value *U : IgnoreList) 10956 if (auto *FPMO = dyn_cast<FPMathOperator>(U)) 10957 RdxFMF &= FPMO->getFastMathFlags(); 10958 // Estimate cost. 10959 InstructionCost TreeCost = V.getTreeCost(VL); 10960 InstructionCost ReductionCost = 10961 getReductionCost(TTI, VL, ReduxWidth, RdxFMF); 10962 InstructionCost Cost = TreeCost + ReductionCost; 10963 if (!Cost.isValid()) { 10964 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 10965 return nullptr; 10966 } 10967 if (Cost >= -SLPCostThreshold) { 10968 V.getORE()->emit([&]() { 10969 return OptimizationRemarkMissed( 10970 SV_NAME, "HorSLPNotBeneficial", 10971 ReducedValsToOps.find(VL[0])->second.front()) 10972 << "Vectorizing horizontal reduction is possible" 10973 << "but not beneficial with cost " << ore::NV("Cost", Cost) 10974 << " and threshold " 10975 << ore::NV("Threshold", -SLPCostThreshold); 10976 }); 10977 if (!AdjustReducedVals()) 10978 V.analyzedReductionVals(VL); 10979 continue; 10980 } 10981 10982 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 10983 << Cost << ". (HorRdx)\n"); 10984 V.getORE()->emit([&]() { 10985 return OptimizationRemark( 10986 SV_NAME, "VectorizedHorizontalReduction", 10987 ReducedValsToOps.find(VL[0])->second.front()) 10988 << "Vectorized horizontal reduction with cost " 10989 << ore::NV("Cost", Cost) << " and with tree size " 10990 << ore::NV("TreeSize", V.getTreeSize()); 10991 }); 10992 10993 Builder.setFastMathFlags(RdxFMF); 10994 10995 // Vectorize a tree. 10996 Value *VectorizedRoot = V.vectorizeTree(LocalExternallyUsedValues); 10997 10998 // Emit a reduction. If the root is a select (min/max idiom), the insert 10999 // point is the compare condition of that select. 11000 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 11001 if (IsCmpSelMinMax) 11002 Builder.SetInsertPoint(GetCmpForMinMaxReduction(RdxRootInst)); 11003 else 11004 Builder.SetInsertPoint(RdxRootInst); 11005 11006 // To prevent poison from leaking across what used to be sequential, 11007 // safe, scalar boolean logic operations, the reduction operand must be 11008 // frozen. 11009 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 11010 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 11011 11012 Value *ReducedSubTree = 11013 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 11014 11015 if (!VectorizedTree) { 11016 // Initialize the final value in the reduction. 11017 VectorizedTree = ReducedSubTree; 11018 } else { 11019 // Update the final value in the reduction. 11020 Builder.SetCurrentDebugLocation( 11021 cast<Instruction>(ReductionOps.front().front())->getDebugLoc()); 11022 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 11023 ReducedSubTree, "op.rdx", ReductionOps); 11024 } 11025 // Count vectorized reduced values to exclude them from final reduction. 11026 for (Value *V : VL) 11027 ++VectorizedVals.try_emplace(TrackedToOrig.find(V)->second, 0) 11028 .first->getSecond(); 11029 Pos += ReduxWidth; 11030 Start = Pos; 11031 ReduxWidth = PowerOf2Floor(NumReducedVals - Pos); 11032 } 11033 } 11034 if (VectorizedTree) { 11035 // Finish the reduction. 11036 // Need to add extra arguments and not vectorized possible reduction 11037 // values. 11038 // Try to avoid dependencies between the scalar remainders after 11039 // reductions. 11040 auto &&FinalGen = 11041 [this, &Builder, 11042 &TrackedVals](ArrayRef<std::pair<Instruction *, Value *>> InstVals) { 11043 unsigned Sz = InstVals.size(); 11044 SmallVector<std::pair<Instruction *, Value *>> ExtraReds(Sz / 2 + 11045 Sz % 2); 11046 for (unsigned I = 0, E = (Sz / 2) * 2; I < E; I += 2) { 11047 Instruction *RedOp = InstVals[I + 1].first; 11048 Builder.SetCurrentDebugLocation(RedOp->getDebugLoc()); 11049 Value *RdxVal1 = InstVals[I].second; 11050 Value *StableRdxVal1 = RdxVal1; 11051 auto It1 = TrackedVals.find(RdxVal1); 11052 if (It1 != TrackedVals.end()) 11053 StableRdxVal1 = It1->second; 11054 Value *RdxVal2 = InstVals[I + 1].second; 11055 Value *StableRdxVal2 = RdxVal2; 11056 auto It2 = TrackedVals.find(RdxVal2); 11057 if (It2 != TrackedVals.end()) 11058 StableRdxVal2 = It2->second; 11059 Value *ExtraRed = createOp(Builder, RdxKind, StableRdxVal1, 11060 StableRdxVal2, "op.rdx", ReductionOps); 11061 ExtraReds[I / 2] = std::make_pair(InstVals[I].first, ExtraRed); 11062 } 11063 if (Sz % 2 == 1) 11064 ExtraReds[Sz / 2] = InstVals.back(); 11065 return ExtraReds; 11066 }; 11067 SmallVector<std::pair<Instruction *, Value *>> ExtraReductions; 11068 SmallPtrSet<Value *, 8> Visited; 11069 for (ArrayRef<Value *> Candidates : ReducedVals) { 11070 for (Value *RdxVal : Candidates) { 11071 if (!Visited.insert(RdxVal).second) 11072 continue; 11073 unsigned NumOps = VectorizedVals.lookup(RdxVal); 11074 for (Instruction *RedOp : 11075 makeArrayRef(ReducedValsToOps.find(RdxVal)->second) 11076 .drop_back(NumOps)) 11077 ExtraReductions.emplace_back(RedOp, RdxVal); 11078 } 11079 } 11080 for (auto &Pair : ExternallyUsedValues) { 11081 // Add each externally used value to the final reduction. 11082 for (auto *I : Pair.second) 11083 ExtraReductions.emplace_back(I, Pair.first); 11084 } 11085 // Iterate through all not-vectorized reduction values/extra arguments. 11086 while (ExtraReductions.size() > 1) { 11087 SmallVector<std::pair<Instruction *, Value *>> NewReds = 11088 FinalGen(ExtraReductions); 11089 ExtraReductions.swap(NewReds); 11090 } 11091 // Final reduction. 11092 if (ExtraReductions.size() == 1) { 11093 Instruction *RedOp = ExtraReductions.back().first; 11094 Builder.SetCurrentDebugLocation(RedOp->getDebugLoc()); 11095 Value *RdxVal = ExtraReductions.back().second; 11096 Value *StableRdxVal = RdxVal; 11097 auto It = TrackedVals.find(RdxVal); 11098 if (It != TrackedVals.end()) 11099 StableRdxVal = It->second; 11100 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 11101 StableRdxVal, "op.rdx", ReductionOps); 11102 } 11103 11104 ReductionRoot->replaceAllUsesWith(VectorizedTree); 11105 11106 // The original scalar reduction is expected to have no remaining 11107 // uses outside the reduction tree itself. Assert that we got this 11108 // correct, replace internal uses with undef, and mark for eventual 11109 // deletion. 11110 #ifndef NDEBUG 11111 SmallSet<Value *, 4> IgnoreSet; 11112 for (ArrayRef<Value *> RdxOps : ReductionOps) 11113 IgnoreSet.insert(RdxOps.begin(), RdxOps.end()); 11114 #endif 11115 for (ArrayRef<Value *> RdxOps : ReductionOps) { 11116 for (Value *Ignore : RdxOps) { 11117 if (!Ignore) 11118 continue; 11119 #ifndef NDEBUG 11120 for (auto *U : Ignore->users()) { 11121 assert(IgnoreSet.count(U) && 11122 "All users must be either in the reduction ops list."); 11123 } 11124 #endif 11125 if (!Ignore->use_empty()) { 11126 Value *Undef = UndefValue::get(Ignore->getType()); 11127 Ignore->replaceAllUsesWith(Undef); 11128 } 11129 V.eraseInstruction(cast<Instruction>(Ignore)); 11130 } 11131 } 11132 } else if (!CheckForReusedReductionOps) { 11133 for (ReductionOpsType &RdxOps : ReductionOps) 11134 for (Value *RdxOp : RdxOps) 11135 V.analyzedReductionRoot(cast<Instruction>(RdxOp)); 11136 } 11137 return VectorizedTree; 11138 } 11139 11140 private: 11141 /// Calculate the cost of a reduction. 11142 InstructionCost getReductionCost(TargetTransformInfo *TTI, 11143 ArrayRef<Value *> ReducedVals, 11144 unsigned ReduxWidth, FastMathFlags FMF) { 11145 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 11146 Value *FirstReducedVal = ReducedVals.front(); 11147 Type *ScalarTy = FirstReducedVal->getType(); 11148 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 11149 InstructionCost VectorCost = 0, ScalarCost; 11150 // If all of the reduced values are constant, the vector cost is 0, since 11151 // the reduction value can be calculated at the compile time. 11152 bool AllConsts = all_of(ReducedVals, isConstant); 11153 switch (RdxKind) { 11154 case RecurKind::Add: 11155 case RecurKind::Mul: 11156 case RecurKind::Or: 11157 case RecurKind::And: 11158 case RecurKind::Xor: 11159 case RecurKind::FAdd: 11160 case RecurKind::FMul: { 11161 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 11162 if (!AllConsts) 11163 VectorCost = 11164 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 11165 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 11166 break; 11167 } 11168 case RecurKind::FMax: 11169 case RecurKind::FMin: { 11170 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 11171 if (!AllConsts) { 11172 auto *VecCondTy = 11173 cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 11174 VectorCost = 11175 TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 11176 /*IsUnsigned=*/false, CostKind); 11177 } 11178 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 11179 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 11180 SclCondTy, RdxPred, CostKind) + 11181 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 11182 SclCondTy, RdxPred, CostKind); 11183 break; 11184 } 11185 case RecurKind::SMax: 11186 case RecurKind::SMin: 11187 case RecurKind::UMax: 11188 case RecurKind::UMin: { 11189 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 11190 if (!AllConsts) { 11191 auto *VecCondTy = 11192 cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 11193 bool IsUnsigned = 11194 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 11195 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 11196 IsUnsigned, CostKind); 11197 } 11198 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 11199 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 11200 SclCondTy, RdxPred, CostKind) + 11201 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 11202 SclCondTy, RdxPred, CostKind); 11203 break; 11204 } 11205 default: 11206 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 11207 } 11208 11209 // Scalar cost is repeated for N-1 elements. 11210 ScalarCost *= (ReduxWidth - 1); 11211 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 11212 << " for reduction that starts with " << *FirstReducedVal 11213 << " (It is a splitting reduction)\n"); 11214 return VectorCost - ScalarCost; 11215 } 11216 11217 /// Emit a horizontal reduction of the vectorized value. 11218 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 11219 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 11220 assert(VectorizedValue && "Need to have a vectorized tree node"); 11221 assert(isPowerOf2_32(ReduxWidth) && 11222 "We only handle power-of-two reductions for now"); 11223 assert(RdxKind != RecurKind::FMulAdd && 11224 "A call to the llvm.fmuladd intrinsic is not handled yet"); 11225 11226 ++NumVectorInstructions; 11227 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind); 11228 } 11229 }; 11230 11231 } // end anonymous namespace 11232 11233 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 11234 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 11235 return cast<FixedVectorType>(IE->getType())->getNumElements(); 11236 11237 unsigned AggregateSize = 1; 11238 auto *IV = cast<InsertValueInst>(InsertInst); 11239 Type *CurrentType = IV->getType(); 11240 do { 11241 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 11242 for (auto *Elt : ST->elements()) 11243 if (Elt != ST->getElementType(0)) // check homogeneity 11244 return None; 11245 AggregateSize *= ST->getNumElements(); 11246 CurrentType = ST->getElementType(0); 11247 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 11248 AggregateSize *= AT->getNumElements(); 11249 CurrentType = AT->getElementType(); 11250 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 11251 AggregateSize *= VT->getNumElements(); 11252 return AggregateSize; 11253 } else if (CurrentType->isSingleValueType()) { 11254 return AggregateSize; 11255 } else { 11256 return None; 11257 } 11258 } while (true); 11259 } 11260 11261 static void findBuildAggregate_rec(Instruction *LastInsertInst, 11262 TargetTransformInfo *TTI, 11263 SmallVectorImpl<Value *> &BuildVectorOpds, 11264 SmallVectorImpl<Value *> &InsertElts, 11265 unsigned OperandOffset) { 11266 do { 11267 Value *InsertedOperand = LastInsertInst->getOperand(1); 11268 Optional<unsigned> OperandIndex = 11269 getInsertIndex(LastInsertInst, OperandOffset); 11270 if (!OperandIndex) 11271 return; 11272 if (isa<InsertElementInst>(InsertedOperand) || 11273 isa<InsertValueInst>(InsertedOperand)) { 11274 findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 11275 BuildVectorOpds, InsertElts, *OperandIndex); 11276 11277 } else { 11278 BuildVectorOpds[*OperandIndex] = InsertedOperand; 11279 InsertElts[*OperandIndex] = LastInsertInst; 11280 } 11281 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 11282 } while (LastInsertInst != nullptr && 11283 (isa<InsertValueInst>(LastInsertInst) || 11284 isa<InsertElementInst>(LastInsertInst)) && 11285 LastInsertInst->hasOneUse()); 11286 } 11287 11288 /// Recognize construction of vectors like 11289 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 11290 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 11291 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 11292 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 11293 /// starting from the last insertelement or insertvalue instruction. 11294 /// 11295 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 11296 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 11297 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 11298 /// 11299 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 11300 /// 11301 /// \return true if it matches. 11302 static bool findBuildAggregate(Instruction *LastInsertInst, 11303 TargetTransformInfo *TTI, 11304 SmallVectorImpl<Value *> &BuildVectorOpds, 11305 SmallVectorImpl<Value *> &InsertElts) { 11306 11307 assert((isa<InsertElementInst>(LastInsertInst) || 11308 isa<InsertValueInst>(LastInsertInst)) && 11309 "Expected insertelement or insertvalue instruction!"); 11310 11311 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 11312 "Expected empty result vectors!"); 11313 11314 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 11315 if (!AggregateSize) 11316 return false; 11317 BuildVectorOpds.resize(*AggregateSize); 11318 InsertElts.resize(*AggregateSize); 11319 11320 findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 0); 11321 llvm::erase_value(BuildVectorOpds, nullptr); 11322 llvm::erase_value(InsertElts, nullptr); 11323 if (BuildVectorOpds.size() >= 2) 11324 return true; 11325 11326 return false; 11327 } 11328 11329 /// Try and get a reduction value from a phi node. 11330 /// 11331 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 11332 /// if they come from either \p ParentBB or a containing loop latch. 11333 /// 11334 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 11335 /// if not possible. 11336 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 11337 BasicBlock *ParentBB, LoopInfo *LI) { 11338 // There are situations where the reduction value is not dominated by the 11339 // reduction phi. Vectorizing such cases has been reported to cause 11340 // miscompiles. See PR25787. 11341 auto DominatedReduxValue = [&](Value *R) { 11342 return isa<Instruction>(R) && 11343 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 11344 }; 11345 11346 Value *Rdx = nullptr; 11347 11348 // Return the incoming value if it comes from the same BB as the phi node. 11349 if (P->getIncomingBlock(0) == ParentBB) { 11350 Rdx = P->getIncomingValue(0); 11351 } else if (P->getIncomingBlock(1) == ParentBB) { 11352 Rdx = P->getIncomingValue(1); 11353 } 11354 11355 if (Rdx && DominatedReduxValue(Rdx)) 11356 return Rdx; 11357 11358 // Otherwise, check whether we have a loop latch to look at. 11359 Loop *BBL = LI->getLoopFor(ParentBB); 11360 if (!BBL) 11361 return nullptr; 11362 BasicBlock *BBLatch = BBL->getLoopLatch(); 11363 if (!BBLatch) 11364 return nullptr; 11365 11366 // There is a loop latch, return the incoming value if it comes from 11367 // that. This reduction pattern occasionally turns up. 11368 if (P->getIncomingBlock(0) == BBLatch) { 11369 Rdx = P->getIncomingValue(0); 11370 } else if (P->getIncomingBlock(1) == BBLatch) { 11371 Rdx = P->getIncomingValue(1); 11372 } 11373 11374 if (Rdx && DominatedReduxValue(Rdx)) 11375 return Rdx; 11376 11377 return nullptr; 11378 } 11379 11380 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 11381 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 11382 return true; 11383 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 11384 return true; 11385 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 11386 return true; 11387 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 11388 return true; 11389 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 11390 return true; 11391 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 11392 return true; 11393 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 11394 return true; 11395 return false; 11396 } 11397 11398 /// Attempt to reduce a horizontal reduction. 11399 /// If it is legal to match a horizontal reduction feeding the phi node \a P 11400 /// with reduction operators \a Root (or one of its operands) in a basic block 11401 /// \a BB, then check if it can be done. If horizontal reduction is not found 11402 /// and root instruction is a binary operation, vectorization of the operands is 11403 /// attempted. 11404 /// \returns true if a horizontal reduction was matched and reduced or operands 11405 /// of one of the binary instruction were vectorized. 11406 /// \returns false if a horizontal reduction was not matched (or not possible) 11407 /// or no vectorization of any binary operation feeding \a Root instruction was 11408 /// performed. 11409 static bool tryToVectorizeHorReductionOrInstOperands( 11410 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 11411 TargetTransformInfo *TTI, ScalarEvolution &SE, const DataLayout &DL, 11412 const TargetLibraryInfo &TLI, 11413 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 11414 if (!ShouldVectorizeHor) 11415 return false; 11416 11417 if (!Root) 11418 return false; 11419 11420 if (Root->getParent() != BB || isa<PHINode>(Root)) 11421 return false; 11422 // Start analysis starting from Root instruction. If horizontal reduction is 11423 // found, try to vectorize it. If it is not a horizontal reduction or 11424 // vectorization is not possible or not effective, and currently analyzed 11425 // instruction is a binary operation, try to vectorize the operands, using 11426 // pre-order DFS traversal order. If the operands were not vectorized, repeat 11427 // the same procedure considering each operand as a possible root of the 11428 // horizontal reduction. 11429 // Interrupt the process if the Root instruction itself was vectorized or all 11430 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 11431 // Skip the analysis of CmpInsts. Compiler implements postanalysis of the 11432 // CmpInsts so we can skip extra attempts in 11433 // tryToVectorizeHorReductionOrInstOperands and save compile time. 11434 std::queue<std::pair<Instruction *, unsigned>> Stack; 11435 Stack.emplace(Root, 0); 11436 SmallPtrSet<Value *, 8> VisitedInstrs; 11437 SmallVector<WeakTrackingVH> PostponedInsts; 11438 bool Res = false; 11439 auto &&TryToReduce = [TTI, &SE, &DL, &P, &R, &TLI](Instruction *Inst, 11440 Value *&B0, 11441 Value *&B1) -> Value * { 11442 if (R.isAnalyzedReductionRoot(Inst)) 11443 return nullptr; 11444 bool IsBinop = matchRdxBop(Inst, B0, B1); 11445 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 11446 if (IsBinop || IsSelect) { 11447 HorizontalReduction HorRdx; 11448 if (HorRdx.matchAssociativeReduction(P, Inst, SE, DL, TLI)) 11449 return HorRdx.tryToReduce(R, TTI); 11450 } 11451 return nullptr; 11452 }; 11453 while (!Stack.empty()) { 11454 Instruction *Inst; 11455 unsigned Level; 11456 std::tie(Inst, Level) = Stack.front(); 11457 Stack.pop(); 11458 // Do not try to analyze instruction that has already been vectorized. 11459 // This may happen when we vectorize instruction operands on a previous 11460 // iteration while stack was populated before that happened. 11461 if (R.isDeleted(Inst)) 11462 continue; 11463 Value *B0 = nullptr, *B1 = nullptr; 11464 if (Value *V = TryToReduce(Inst, B0, B1)) { 11465 Res = true; 11466 // Set P to nullptr to avoid re-analysis of phi node in 11467 // matchAssociativeReduction function unless this is the root node. 11468 P = nullptr; 11469 if (auto *I = dyn_cast<Instruction>(V)) { 11470 // Try to find another reduction. 11471 Stack.emplace(I, Level); 11472 continue; 11473 } 11474 } else { 11475 bool IsBinop = B0 && B1; 11476 if (P && IsBinop) { 11477 Inst = dyn_cast<Instruction>(B0); 11478 if (Inst == P) 11479 Inst = dyn_cast<Instruction>(B1); 11480 if (!Inst) { 11481 // Set P to nullptr to avoid re-analysis of phi node in 11482 // matchAssociativeReduction function unless this is the root node. 11483 P = nullptr; 11484 continue; 11485 } 11486 } 11487 // Set P to nullptr to avoid re-analysis of phi node in 11488 // matchAssociativeReduction function unless this is the root node. 11489 P = nullptr; 11490 // Do not try to vectorize CmpInst operands, this is done separately. 11491 // Final attempt for binop args vectorization should happen after the loop 11492 // to try to find reductions. 11493 if (!isa<CmpInst, InsertElementInst, InsertValueInst>(Inst)) 11494 PostponedInsts.push_back(Inst); 11495 } 11496 11497 // Try to vectorize operands. 11498 // Continue analysis for the instruction from the same basic block only to 11499 // save compile time. 11500 if (++Level < RecursionMaxDepth) 11501 for (auto *Op : Inst->operand_values()) 11502 if (VisitedInstrs.insert(Op).second) 11503 if (auto *I = dyn_cast<Instruction>(Op)) 11504 // Do not try to vectorize CmpInst operands, this is done 11505 // separately. 11506 if (!isa<PHINode, CmpInst, InsertElementInst, InsertValueInst>(I) && 11507 !R.isDeleted(I) && I->getParent() == BB) 11508 Stack.emplace(I, Level); 11509 } 11510 // Try to vectorized binops where reductions were not found. 11511 for (Value *V : PostponedInsts) 11512 if (auto *Inst = dyn_cast<Instruction>(V)) 11513 if (!R.isDeleted(Inst)) 11514 Res |= Vectorize(Inst, R); 11515 return Res; 11516 } 11517 11518 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 11519 BasicBlock *BB, BoUpSLP &R, 11520 TargetTransformInfo *TTI) { 11521 auto *I = dyn_cast_or_null<Instruction>(V); 11522 if (!I) 11523 return false; 11524 11525 if (!isa<BinaryOperator>(I)) 11526 P = nullptr; 11527 // Try to match and vectorize a horizontal reduction. 11528 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 11529 return tryToVectorize(I, R); 11530 }; 11531 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, *SE, *DL, 11532 *TLI, ExtraVectorization); 11533 } 11534 11535 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 11536 BasicBlock *BB, BoUpSLP &R) { 11537 const DataLayout &DL = BB->getModule()->getDataLayout(); 11538 if (!R.canMapToVector(IVI->getType(), DL)) 11539 return false; 11540 11541 SmallVector<Value *, 16> BuildVectorOpds; 11542 SmallVector<Value *, 16> BuildVectorInsts; 11543 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 11544 return false; 11545 11546 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 11547 // Aggregate value is unlikely to be processed in vector register. 11548 return tryToVectorizeList(BuildVectorOpds, R); 11549 } 11550 11551 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 11552 BasicBlock *BB, BoUpSLP &R) { 11553 SmallVector<Value *, 16> BuildVectorInsts; 11554 SmallVector<Value *, 16> BuildVectorOpds; 11555 SmallVector<int> Mask; 11556 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 11557 (llvm::all_of( 11558 BuildVectorOpds, 11559 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) && 11560 isFixedVectorShuffle(BuildVectorOpds, Mask))) 11561 return false; 11562 11563 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 11564 return tryToVectorizeList(BuildVectorInsts, R); 11565 } 11566 11567 template <typename T> 11568 static bool 11569 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 11570 function_ref<unsigned(T *)> Limit, 11571 function_ref<bool(T *, T *)> Comparator, 11572 function_ref<bool(T *, T *)> AreCompatible, 11573 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper, 11574 bool LimitForRegisterSize) { 11575 bool Changed = false; 11576 // Sort by type, parent, operands. 11577 stable_sort(Incoming, Comparator); 11578 11579 // Try to vectorize elements base on their type. 11580 SmallVector<T *> Candidates; 11581 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 11582 // Look for the next elements with the same type, parent and operand 11583 // kinds. 11584 auto *SameTypeIt = IncIt; 11585 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 11586 ++SameTypeIt; 11587 11588 // Try to vectorize them. 11589 unsigned NumElts = (SameTypeIt - IncIt); 11590 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 11591 << NumElts << ")\n"); 11592 // The vectorization is a 3-state attempt: 11593 // 1. Try to vectorize instructions with the same/alternate opcodes with the 11594 // size of maximal register at first. 11595 // 2. Try to vectorize remaining instructions with the same type, if 11596 // possible. This may result in the better vectorization results rather than 11597 // if we try just to vectorize instructions with the same/alternate opcodes. 11598 // 3. Final attempt to try to vectorize all instructions with the 11599 // same/alternate ops only, this may result in some extra final 11600 // vectorization. 11601 if (NumElts > 1 && 11602 TryToVectorizeHelper(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 11603 // Success start over because instructions might have been changed. 11604 Changed = true; 11605 } else if (NumElts < Limit(*IncIt) && 11606 (Candidates.empty() || 11607 Candidates.front()->getType() == (*IncIt)->getType())) { 11608 Candidates.append(IncIt, std::next(IncIt, NumElts)); 11609 } 11610 // Final attempt to vectorize instructions with the same types. 11611 if (Candidates.size() > 1 && 11612 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 11613 if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) { 11614 // Success start over because instructions might have been changed. 11615 Changed = true; 11616 } else if (LimitForRegisterSize) { 11617 // Try to vectorize using small vectors. 11618 for (auto *It = Candidates.begin(), *End = Candidates.end(); 11619 It != End;) { 11620 auto *SameTypeIt = It; 11621 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 11622 ++SameTypeIt; 11623 unsigned NumElts = (SameTypeIt - It); 11624 if (NumElts > 1 && TryToVectorizeHelper(makeArrayRef(It, NumElts), 11625 /*LimitForRegisterSize=*/false)) 11626 Changed = true; 11627 It = SameTypeIt; 11628 } 11629 } 11630 Candidates.clear(); 11631 } 11632 11633 // Start over at the next instruction of a different type (or the end). 11634 IncIt = SameTypeIt; 11635 } 11636 return Changed; 11637 } 11638 11639 /// Compare two cmp instructions. If IsCompatibility is true, function returns 11640 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding 11641 /// operands. If IsCompatibility is false, function implements strict weak 11642 /// ordering relation between two cmp instructions, returning true if the first 11643 /// instruction is "less" than the second, i.e. its predicate is less than the 11644 /// predicate of the second or the operands IDs are less than the operands IDs 11645 /// of the second cmp instruction. 11646 template <bool IsCompatibility> 11647 static bool compareCmp(Value *V, Value *V2, 11648 function_ref<bool(Instruction *)> IsDeleted) { 11649 auto *CI1 = cast<CmpInst>(V); 11650 auto *CI2 = cast<CmpInst>(V2); 11651 if (IsDeleted(CI2) || !isValidElementType(CI2->getType())) 11652 return false; 11653 if (CI1->getOperand(0)->getType()->getTypeID() < 11654 CI2->getOperand(0)->getType()->getTypeID()) 11655 return !IsCompatibility; 11656 if (CI1->getOperand(0)->getType()->getTypeID() > 11657 CI2->getOperand(0)->getType()->getTypeID()) 11658 return false; 11659 CmpInst::Predicate Pred1 = CI1->getPredicate(); 11660 CmpInst::Predicate Pred2 = CI2->getPredicate(); 11661 CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1); 11662 CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2); 11663 CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1); 11664 CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2); 11665 if (BasePred1 < BasePred2) 11666 return !IsCompatibility; 11667 if (BasePred1 > BasePred2) 11668 return false; 11669 // Compare operands. 11670 bool LEPreds = Pred1 <= Pred2; 11671 bool GEPreds = Pred1 >= Pred2; 11672 for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) { 11673 auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1); 11674 auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1); 11675 if (Op1->getValueID() < Op2->getValueID()) 11676 return !IsCompatibility; 11677 if (Op1->getValueID() > Op2->getValueID()) 11678 return false; 11679 if (auto *I1 = dyn_cast<Instruction>(Op1)) 11680 if (auto *I2 = dyn_cast<Instruction>(Op2)) { 11681 if (I1->getParent() != I2->getParent()) 11682 return false; 11683 InstructionsState S = getSameOpcode({I1, I2}); 11684 if (S.getOpcode()) 11685 continue; 11686 return false; 11687 } 11688 } 11689 return IsCompatibility; 11690 } 11691 11692 bool SLPVectorizerPass::vectorizeSimpleInstructions( 11693 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 11694 bool AtTerminator) { 11695 bool OpsChanged = false; 11696 SmallVector<Instruction *, 4> PostponedCmps; 11697 for (auto *I : reverse(Instructions)) { 11698 if (R.isDeleted(I)) 11699 continue; 11700 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) { 11701 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 11702 } else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) { 11703 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 11704 } else if (isa<CmpInst>(I)) { 11705 PostponedCmps.push_back(I); 11706 continue; 11707 } 11708 // Try to find reductions in buildvector sequnces. 11709 OpsChanged |= vectorizeRootInstruction(nullptr, I, BB, R, TTI); 11710 } 11711 if (AtTerminator) { 11712 // Try to find reductions first. 11713 for (Instruction *I : PostponedCmps) { 11714 if (R.isDeleted(I)) 11715 continue; 11716 for (Value *Op : I->operands()) 11717 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 11718 } 11719 // Try to vectorize operands as vector bundles. 11720 for (Instruction *I : PostponedCmps) { 11721 if (R.isDeleted(I)) 11722 continue; 11723 OpsChanged |= tryToVectorize(I, R); 11724 } 11725 // Try to vectorize list of compares. 11726 // Sort by type, compare predicate, etc. 11727 auto &&CompareSorter = [&R](Value *V, Value *V2) { 11728 return compareCmp<false>(V, V2, 11729 [&R](Instruction *I) { return R.isDeleted(I); }); 11730 }; 11731 11732 auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) { 11733 if (V1 == V2) 11734 return true; 11735 return compareCmp<true>(V1, V2, 11736 [&R](Instruction *I) { return R.isDeleted(I); }); 11737 }; 11738 auto Limit = [&R](Value *V) { 11739 unsigned EltSize = R.getVectorElementSize(V); 11740 return std::max(2U, R.getMaxVecRegSize() / EltSize); 11741 }; 11742 11743 SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end()); 11744 OpsChanged |= tryToVectorizeSequence<Value>( 11745 Vals, Limit, CompareSorter, AreCompatibleCompares, 11746 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 11747 // Exclude possible reductions from other blocks. 11748 bool ArePossiblyReducedInOtherBlock = 11749 any_of(Candidates, [](Value *V) { 11750 return any_of(V->users(), [V](User *U) { 11751 return isa<SelectInst>(U) && 11752 cast<SelectInst>(U)->getParent() != 11753 cast<Instruction>(V)->getParent(); 11754 }); 11755 }); 11756 if (ArePossiblyReducedInOtherBlock) 11757 return false; 11758 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 11759 }, 11760 /*LimitForRegisterSize=*/true); 11761 Instructions.clear(); 11762 } else { 11763 // Insert in reverse order since the PostponedCmps vector was filled in 11764 // reverse order. 11765 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 11766 } 11767 return OpsChanged; 11768 } 11769 11770 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 11771 bool Changed = false; 11772 SmallVector<Value *, 4> Incoming; 11773 SmallPtrSet<Value *, 16> VisitedInstrs; 11774 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 11775 // node. Allows better to identify the chains that can be vectorized in the 11776 // better way. 11777 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 11778 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 11779 assert(isValidElementType(V1->getType()) && 11780 isValidElementType(V2->getType()) && 11781 "Expected vectorizable types only."); 11782 // It is fine to compare type IDs here, since we expect only vectorizable 11783 // types, like ints, floats and pointers, we don't care about other type. 11784 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 11785 return true; 11786 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 11787 return false; 11788 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 11789 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 11790 if (Opcodes1.size() < Opcodes2.size()) 11791 return true; 11792 if (Opcodes1.size() > Opcodes2.size()) 11793 return false; 11794 Optional<bool> ConstOrder; 11795 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 11796 // Undefs are compatible with any other value. 11797 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) { 11798 if (!ConstOrder) 11799 ConstOrder = 11800 !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]); 11801 continue; 11802 } 11803 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 11804 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 11805 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 11806 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 11807 if (!NodeI1) 11808 return NodeI2 != nullptr; 11809 if (!NodeI2) 11810 return false; 11811 assert((NodeI1 == NodeI2) == 11812 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 11813 "Different nodes should have different DFS numbers"); 11814 if (NodeI1 != NodeI2) 11815 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 11816 InstructionsState S = getSameOpcode({I1, I2}); 11817 if (S.getOpcode()) 11818 continue; 11819 return I1->getOpcode() < I2->getOpcode(); 11820 } 11821 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) { 11822 if (!ConstOrder) 11823 ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID(); 11824 continue; 11825 } 11826 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 11827 return true; 11828 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 11829 return false; 11830 } 11831 return ConstOrder && *ConstOrder; 11832 }; 11833 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 11834 if (V1 == V2) 11835 return true; 11836 if (V1->getType() != V2->getType()) 11837 return false; 11838 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 11839 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 11840 if (Opcodes1.size() != Opcodes2.size()) 11841 return false; 11842 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 11843 // Undefs are compatible with any other value. 11844 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 11845 continue; 11846 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 11847 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 11848 if (I1->getParent() != I2->getParent()) 11849 return false; 11850 InstructionsState S = getSameOpcode({I1, I2}); 11851 if (S.getOpcode()) 11852 continue; 11853 return false; 11854 } 11855 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 11856 continue; 11857 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 11858 return false; 11859 } 11860 return true; 11861 }; 11862 auto Limit = [&R](Value *V) { 11863 unsigned EltSize = R.getVectorElementSize(V); 11864 return std::max(2U, R.getMaxVecRegSize() / EltSize); 11865 }; 11866 11867 bool HaveVectorizedPhiNodes = false; 11868 do { 11869 // Collect the incoming values from the PHIs. 11870 Incoming.clear(); 11871 for (Instruction &I : *BB) { 11872 PHINode *P = dyn_cast<PHINode>(&I); 11873 if (!P) 11874 break; 11875 11876 // No need to analyze deleted, vectorized and non-vectorizable 11877 // instructions. 11878 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 11879 isValidElementType(P->getType())) 11880 Incoming.push_back(P); 11881 } 11882 11883 // Find the corresponding non-phi nodes for better matching when trying to 11884 // build the tree. 11885 for (Value *V : Incoming) { 11886 SmallVectorImpl<Value *> &Opcodes = 11887 PHIToOpcodes.try_emplace(V).first->getSecond(); 11888 if (!Opcodes.empty()) 11889 continue; 11890 SmallVector<Value *, 4> Nodes(1, V); 11891 SmallPtrSet<Value *, 4> Visited; 11892 while (!Nodes.empty()) { 11893 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 11894 if (!Visited.insert(PHI).second) 11895 continue; 11896 for (Value *V : PHI->incoming_values()) { 11897 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 11898 Nodes.push_back(PHI1); 11899 continue; 11900 } 11901 Opcodes.emplace_back(V); 11902 } 11903 } 11904 } 11905 11906 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 11907 Incoming, Limit, PHICompare, AreCompatiblePHIs, 11908 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 11909 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 11910 }, 11911 /*LimitForRegisterSize=*/true); 11912 Changed |= HaveVectorizedPhiNodes; 11913 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 11914 } while (HaveVectorizedPhiNodes); 11915 11916 VisitedInstrs.clear(); 11917 11918 SmallVector<Instruction *, 8> PostProcessInstructions; 11919 SmallDenseSet<Instruction *, 4> KeyNodes; 11920 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 11921 // Skip instructions with scalable type. The num of elements is unknown at 11922 // compile-time for scalable type. 11923 if (isa<ScalableVectorType>(it->getType())) 11924 continue; 11925 11926 // Skip instructions marked for the deletion. 11927 if (R.isDeleted(&*it)) 11928 continue; 11929 // We may go through BB multiple times so skip the one we have checked. 11930 if (!VisitedInstrs.insert(&*it).second) { 11931 if (it->use_empty() && KeyNodes.contains(&*it) && 11932 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 11933 it->isTerminator())) { 11934 // We would like to start over since some instructions are deleted 11935 // and the iterator may become invalid value. 11936 Changed = true; 11937 it = BB->begin(); 11938 e = BB->end(); 11939 } 11940 continue; 11941 } 11942 11943 if (isa<DbgInfoIntrinsic>(it)) 11944 continue; 11945 11946 // Try to vectorize reductions that use PHINodes. 11947 if (PHINode *P = dyn_cast<PHINode>(it)) { 11948 // Check that the PHI is a reduction PHI. 11949 if (P->getNumIncomingValues() == 2) { 11950 // Try to match and vectorize a horizontal reduction. 11951 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 11952 TTI)) { 11953 Changed = true; 11954 it = BB->begin(); 11955 e = BB->end(); 11956 continue; 11957 } 11958 } 11959 // Try to vectorize the incoming values of the PHI, to catch reductions 11960 // that feed into PHIs. 11961 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 11962 // Skip if the incoming block is the current BB for now. Also, bypass 11963 // unreachable IR for efficiency and to avoid crashing. 11964 // TODO: Collect the skipped incoming values and try to vectorize them 11965 // after processing BB. 11966 if (BB == P->getIncomingBlock(I) || 11967 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 11968 continue; 11969 11970 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 11971 P->getIncomingBlock(I), R, TTI); 11972 } 11973 continue; 11974 } 11975 11976 // Ran into an instruction without users, like terminator, or function call 11977 // with ignored return value, store. Ignore unused instructions (basing on 11978 // instruction type, except for CallInst and InvokeInst). 11979 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 11980 isa<InvokeInst>(it))) { 11981 KeyNodes.insert(&*it); 11982 bool OpsChanged = false; 11983 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 11984 for (auto *V : it->operand_values()) { 11985 // Try to match and vectorize a horizontal reduction. 11986 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 11987 } 11988 } 11989 // Start vectorization of post-process list of instructions from the 11990 // top-tree instructions to try to vectorize as many instructions as 11991 // possible. 11992 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 11993 it->isTerminator()); 11994 if (OpsChanged) { 11995 // We would like to start over since some instructions are deleted 11996 // and the iterator may become invalid value. 11997 Changed = true; 11998 it = BB->begin(); 11999 e = BB->end(); 12000 continue; 12001 } 12002 } 12003 12004 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 12005 isa<InsertValueInst>(it)) 12006 PostProcessInstructions.push_back(&*it); 12007 } 12008 12009 return Changed; 12010 } 12011 12012 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 12013 auto Changed = false; 12014 for (auto &Entry : GEPs) { 12015 // If the getelementptr list has fewer than two elements, there's nothing 12016 // to do. 12017 if (Entry.second.size() < 2) 12018 continue; 12019 12020 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 12021 << Entry.second.size() << ".\n"); 12022 12023 // Process the GEP list in chunks suitable for the target's supported 12024 // vector size. If a vector register can't hold 1 element, we are done. We 12025 // are trying to vectorize the index computations, so the maximum number of 12026 // elements is based on the size of the index expression, rather than the 12027 // size of the GEP itself (the target's pointer size). 12028 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 12029 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 12030 if (MaxVecRegSize < EltSize) 12031 continue; 12032 12033 unsigned MaxElts = MaxVecRegSize / EltSize; 12034 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 12035 auto Len = std::min<unsigned>(BE - BI, MaxElts); 12036 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 12037 12038 // Initialize a set a candidate getelementptrs. Note that we use a 12039 // SetVector here to preserve program order. If the index computations 12040 // are vectorizable and begin with loads, we want to minimize the chance 12041 // of having to reorder them later. 12042 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 12043 12044 // Some of the candidates may have already been vectorized after we 12045 // initially collected them. If so, they are marked as deleted, so remove 12046 // them from the set of candidates. 12047 Candidates.remove_if( 12048 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 12049 12050 // Remove from the set of candidates all pairs of getelementptrs with 12051 // constant differences. Such getelementptrs are likely not good 12052 // candidates for vectorization in a bottom-up phase since one can be 12053 // computed from the other. We also ensure all candidate getelementptr 12054 // indices are unique. 12055 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 12056 auto *GEPI = GEPList[I]; 12057 if (!Candidates.count(GEPI)) 12058 continue; 12059 auto *SCEVI = SE->getSCEV(GEPList[I]); 12060 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 12061 auto *GEPJ = GEPList[J]; 12062 auto *SCEVJ = SE->getSCEV(GEPList[J]); 12063 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 12064 Candidates.remove(GEPI); 12065 Candidates.remove(GEPJ); 12066 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 12067 Candidates.remove(GEPJ); 12068 } 12069 } 12070 } 12071 12072 // We break out of the above computation as soon as we know there are 12073 // fewer than two candidates remaining. 12074 if (Candidates.size() < 2) 12075 continue; 12076 12077 // Add the single, non-constant index of each candidate to the bundle. We 12078 // ensured the indices met these constraints when we originally collected 12079 // the getelementptrs. 12080 SmallVector<Value *, 16> Bundle(Candidates.size()); 12081 auto BundleIndex = 0u; 12082 for (auto *V : Candidates) { 12083 auto *GEP = cast<GetElementPtrInst>(V); 12084 auto *GEPIdx = GEP->idx_begin()->get(); 12085 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 12086 Bundle[BundleIndex++] = GEPIdx; 12087 } 12088 12089 // Try and vectorize the indices. We are currently only interested in 12090 // gather-like cases of the form: 12091 // 12092 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 12093 // 12094 // where the loads of "a", the loads of "b", and the subtractions can be 12095 // performed in parallel. It's likely that detecting this pattern in a 12096 // bottom-up phase will be simpler and less costly than building a 12097 // full-blown top-down phase beginning at the consecutive loads. 12098 Changed |= tryToVectorizeList(Bundle, R); 12099 } 12100 } 12101 return Changed; 12102 } 12103 12104 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 12105 bool Changed = false; 12106 // Sort by type, base pointers and values operand. Value operands must be 12107 // compatible (have the same opcode, same parent), otherwise it is 12108 // definitely not profitable to try to vectorize them. 12109 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 12110 if (V->getPointerOperandType()->getTypeID() < 12111 V2->getPointerOperandType()->getTypeID()) 12112 return true; 12113 if (V->getPointerOperandType()->getTypeID() > 12114 V2->getPointerOperandType()->getTypeID()) 12115 return false; 12116 // UndefValues are compatible with all other values. 12117 if (isa<UndefValue>(V->getValueOperand()) || 12118 isa<UndefValue>(V2->getValueOperand())) 12119 return false; 12120 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 12121 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 12122 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 12123 DT->getNode(I1->getParent()); 12124 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 12125 DT->getNode(I2->getParent()); 12126 assert(NodeI1 && "Should only process reachable instructions"); 12127 assert(NodeI2 && "Should only process reachable instructions"); 12128 assert((NodeI1 == NodeI2) == 12129 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 12130 "Different nodes should have different DFS numbers"); 12131 if (NodeI1 != NodeI2) 12132 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 12133 InstructionsState S = getSameOpcode({I1, I2}); 12134 if (S.getOpcode()) 12135 return false; 12136 return I1->getOpcode() < I2->getOpcode(); 12137 } 12138 if (isa<Constant>(V->getValueOperand()) && 12139 isa<Constant>(V2->getValueOperand())) 12140 return false; 12141 return V->getValueOperand()->getValueID() < 12142 V2->getValueOperand()->getValueID(); 12143 }; 12144 12145 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 12146 if (V1 == V2) 12147 return true; 12148 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 12149 return false; 12150 // Undefs are compatible with any other value. 12151 if (isa<UndefValue>(V1->getValueOperand()) || 12152 isa<UndefValue>(V2->getValueOperand())) 12153 return true; 12154 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 12155 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 12156 if (I1->getParent() != I2->getParent()) 12157 return false; 12158 InstructionsState S = getSameOpcode({I1, I2}); 12159 return S.getOpcode() > 0; 12160 } 12161 if (isa<Constant>(V1->getValueOperand()) && 12162 isa<Constant>(V2->getValueOperand())) 12163 return true; 12164 return V1->getValueOperand()->getValueID() == 12165 V2->getValueOperand()->getValueID(); 12166 }; 12167 auto Limit = [&R, this](StoreInst *SI) { 12168 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 12169 return R.getMinVF(EltSize); 12170 }; 12171 12172 // Attempt to sort and vectorize each of the store-groups. 12173 for (auto &Pair : Stores) { 12174 if (Pair.second.size() < 2) 12175 continue; 12176 12177 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 12178 << Pair.second.size() << ".\n"); 12179 12180 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 12181 continue; 12182 12183 Changed |= tryToVectorizeSequence<StoreInst>( 12184 Pair.second, Limit, StoreSorter, AreCompatibleStores, 12185 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 12186 return vectorizeStores(Candidates, R); 12187 }, 12188 /*LimitForRegisterSize=*/false); 12189 } 12190 return Changed; 12191 } 12192 12193 char SLPVectorizer::ID = 0; 12194 12195 static const char lv_name[] = "SLP Vectorizer"; 12196 12197 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 12198 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 12199 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 12200 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 12201 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 12202 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 12203 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 12204 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 12205 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 12206 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 12207 12208 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 12209