1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DebugLoc.h" 57 #include "llvm/IR/DerivedTypes.h" 58 #include "llvm/IR/Dominators.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/IRBuilder.h" 61 #include "llvm/IR/InstrTypes.h" 62 #include "llvm/IR/Instruction.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/Intrinsics.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/Verifier.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/Casting.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/Compiler.h" 79 #include "llvm/Support/DOTGraphTraits.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/GraphWriter.h" 83 #include "llvm/Support/InstructionCost.h" 84 #include "llvm/Support/KnownBits.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 88 #include "llvm/Transforms/Utils/LoopUtils.h" 89 #include "llvm/Transforms/Vectorize.h" 90 #include <algorithm> 91 #include <cassert> 92 #include <cstdint> 93 #include <iterator> 94 #include <memory> 95 #include <set> 96 #include <string> 97 #include <tuple> 98 #include <utility> 99 #include <vector> 100 101 using namespace llvm; 102 using namespace llvm::PatternMatch; 103 using namespace slpvectorizer; 104 105 #define SV_NAME "slp-vectorizer" 106 #define DEBUG_TYPE "SLP" 107 108 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 109 110 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 111 cl::desc("Run the SLP vectorization passes")); 112 113 static cl::opt<int> 114 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 115 cl::desc("Only vectorize if you gain more than this " 116 "number ")); 117 118 static cl::opt<bool> 119 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 120 cl::desc("Attempt to vectorize horizontal reductions")); 121 122 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 123 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 124 cl::desc( 125 "Attempt to vectorize horizontal reductions feeding into a store")); 126 127 static cl::opt<int> 128 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 129 cl::desc("Attempt to vectorize for this register size in bits")); 130 131 static cl::opt<unsigned> 132 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 133 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 134 135 static cl::opt<int> 136 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 137 cl::desc("Maximum depth of the lookup for consecutive stores.")); 138 139 /// Limits the size of scheduling regions in a block. 140 /// It avoid long compile times for _very_ large blocks where vector 141 /// instructions are spread over a wide range. 142 /// This limit is way higher than needed by real-world functions. 143 static cl::opt<int> 144 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 145 cl::desc("Limit the size of the SLP scheduling region per block")); 146 147 static cl::opt<int> MinVectorRegSizeOption( 148 "slp-min-reg-size", cl::init(128), cl::Hidden, 149 cl::desc("Attempt to vectorize for this register size in bits")); 150 151 static cl::opt<unsigned> RecursionMaxDepth( 152 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 153 cl::desc("Limit the recursion depth when building a vectorizable tree")); 154 155 static cl::opt<unsigned> MinTreeSize( 156 "slp-min-tree-size", cl::init(3), cl::Hidden, 157 cl::desc("Only vectorize small trees if they are fully vectorizable")); 158 159 // The maximum depth that the look-ahead score heuristic will explore. 160 // The higher this value, the higher the compilation time overhead. 161 static cl::opt<int> LookAheadMaxDepth( 162 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 163 cl::desc("The maximum look-ahead depth for operand reordering scores")); 164 165 static cl::opt<bool> 166 ViewSLPTree("view-slp-tree", cl::Hidden, 167 cl::desc("Display the SLP trees with Graphviz")); 168 169 // Limit the number of alias checks. The limit is chosen so that 170 // it has no negative effect on the llvm benchmarks. 171 static const unsigned AliasedCheckLimit = 10; 172 173 // Another limit for the alias checks: The maximum distance between load/store 174 // instructions where alias checks are done. 175 // This limit is useful for very large basic blocks. 176 static const unsigned MaxMemDepDistance = 160; 177 178 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 179 /// regions to be handled. 180 static const int MinScheduleRegionSize = 16; 181 182 /// Predicate for the element types that the SLP vectorizer supports. 183 /// 184 /// The most important thing to filter here are types which are invalid in LLVM 185 /// vectors. We also filter target specific types which have absolutely no 186 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 187 /// avoids spending time checking the cost model and realizing that they will 188 /// be inevitably scalarized. 189 static bool isValidElementType(Type *Ty) { 190 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 191 !Ty->isPPC_FP128Ty(); 192 } 193 194 /// \returns True if the value is a constant (but not globals/constant 195 /// expressions). 196 static bool isConstant(Value *V) { 197 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 198 } 199 200 /// Checks if \p V is one of vector-like instructions, i.e. undef, 201 /// insertelement/extractelement with constant indices for fixed vector type or 202 /// extractvalue instruction. 203 static bool isVectorLikeInstWithConstOps(Value *V) { 204 if (!isa<InsertElementInst, ExtractElementInst>(V) && 205 !isa<ExtractValueInst, UndefValue>(V)) 206 return false; 207 auto *I = dyn_cast<Instruction>(V); 208 if (!I || isa<ExtractValueInst>(I)) 209 return true; 210 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 211 return false; 212 if (isa<ExtractElementInst>(I)) 213 return isConstant(I->getOperand(1)); 214 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 215 return isConstant(I->getOperand(2)); 216 } 217 218 /// \returns true if all of the instructions in \p VL are in the same block or 219 /// false otherwise. 220 static bool allSameBlock(ArrayRef<Value *> VL) { 221 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 222 if (!I0) 223 return false; 224 if (all_of(VL, isVectorLikeInstWithConstOps)) 225 return true; 226 227 BasicBlock *BB = I0->getParent(); 228 for (int I = 1, E = VL.size(); I < E; I++) { 229 auto *II = dyn_cast<Instruction>(VL[I]); 230 if (!II) 231 return false; 232 233 if (BB != II->getParent()) 234 return false; 235 } 236 return true; 237 } 238 239 /// \returns True if all of the values in \p VL are constants (but not 240 /// globals/constant expressions). 241 static bool allConstant(ArrayRef<Value *> VL) { 242 // Constant expressions and globals can't be vectorized like normal integer/FP 243 // constants. 244 return all_of(VL, isConstant); 245 } 246 247 /// \returns True if all of the values in \p VL are identical or some of them 248 /// are UndefValue. 249 static bool isSplat(ArrayRef<Value *> VL) { 250 Value *FirstNonUndef = nullptr; 251 for (Value *V : VL) { 252 if (isa<UndefValue>(V)) 253 continue; 254 if (!FirstNonUndef) { 255 FirstNonUndef = V; 256 continue; 257 } 258 if (V != FirstNonUndef) 259 return false; 260 } 261 return FirstNonUndef != nullptr; 262 } 263 264 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 265 static bool isCommutative(Instruction *I) { 266 if (auto *Cmp = dyn_cast<CmpInst>(I)) 267 return Cmp->isCommutative(); 268 if (auto *BO = dyn_cast<BinaryOperator>(I)) 269 return BO->isCommutative(); 270 // TODO: This should check for generic Instruction::isCommutative(), but 271 // we need to confirm that the caller code correctly handles Intrinsics 272 // for example (does not have 2 operands). 273 return false; 274 } 275 276 /// Checks if the given value is actually an undefined constant vector. 277 static bool isUndefVector(const Value *V) { 278 if (isa<UndefValue>(V)) 279 return true; 280 auto *C = dyn_cast<Constant>(V); 281 if (!C) 282 return false; 283 if (!C->containsUndefOrPoisonElement()) 284 return false; 285 auto *VecTy = dyn_cast<FixedVectorType>(C->getType()); 286 if (!VecTy) 287 return false; 288 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 289 if (Constant *Elem = C->getAggregateElement(I)) 290 if (!isa<UndefValue>(Elem)) 291 return false; 292 } 293 return true; 294 } 295 296 /// Checks if the vector of instructions can be represented as a shuffle, like: 297 /// %x0 = extractelement <4 x i8> %x, i32 0 298 /// %x3 = extractelement <4 x i8> %x, i32 3 299 /// %y1 = extractelement <4 x i8> %y, i32 1 300 /// %y2 = extractelement <4 x i8> %y, i32 2 301 /// %x0x0 = mul i8 %x0, %x0 302 /// %x3x3 = mul i8 %x3, %x3 303 /// %y1y1 = mul i8 %y1, %y1 304 /// %y2y2 = mul i8 %y2, %y2 305 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 306 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 307 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 308 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 309 /// ret <4 x i8> %ins4 310 /// can be transformed into: 311 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 312 /// i32 6> 313 /// %2 = mul <4 x i8> %1, %1 314 /// ret <4 x i8> %2 315 /// We convert this initially to something like: 316 /// %x0 = extractelement <4 x i8> %x, i32 0 317 /// %x3 = extractelement <4 x i8> %x, i32 3 318 /// %y1 = extractelement <4 x i8> %y, i32 1 319 /// %y2 = extractelement <4 x i8> %y, i32 2 320 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 321 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 322 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 323 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 324 /// %5 = mul <4 x i8> %4, %4 325 /// %6 = extractelement <4 x i8> %5, i32 0 326 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 327 /// %7 = extractelement <4 x i8> %5, i32 1 328 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 329 /// %8 = extractelement <4 x i8> %5, i32 2 330 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 331 /// %9 = extractelement <4 x i8> %5, i32 3 332 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 333 /// ret <4 x i8> %ins4 334 /// InstCombiner transforms this into a shuffle and vector mul 335 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 336 /// TODO: Can we split off and reuse the shuffle mask detection from 337 /// TargetTransformInfo::getInstructionThroughput? 338 static Optional<TargetTransformInfo::ShuffleKind> 339 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 340 const auto *It = 341 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); 342 if (It == VL.end()) 343 return None; 344 auto *EI0 = cast<ExtractElementInst>(*It); 345 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 346 return None; 347 unsigned Size = 348 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 349 Value *Vec1 = nullptr; 350 Value *Vec2 = nullptr; 351 enum ShuffleMode { Unknown, Select, Permute }; 352 ShuffleMode CommonShuffleMode = Unknown; 353 Mask.assign(VL.size(), UndefMaskElem); 354 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 355 // Undef can be represented as an undef element in a vector. 356 if (isa<UndefValue>(VL[I])) 357 continue; 358 auto *EI = cast<ExtractElementInst>(VL[I]); 359 if (isa<ScalableVectorType>(EI->getVectorOperandType())) 360 return None; 361 auto *Vec = EI->getVectorOperand(); 362 // We can extractelement from undef or poison vector. 363 if (isUndefVector(Vec)) 364 continue; 365 // All vector operands must have the same number of vector elements. 366 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 367 return None; 368 if (isa<UndefValue>(EI->getIndexOperand())) 369 continue; 370 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 371 if (!Idx) 372 return None; 373 // Undefined behavior if Idx is negative or >= Size. 374 if (Idx->getValue().uge(Size)) 375 continue; 376 unsigned IntIdx = Idx->getValue().getZExtValue(); 377 Mask[I] = IntIdx; 378 // For correct shuffling we have to have at most 2 different vector operands 379 // in all extractelement instructions. 380 if (!Vec1 || Vec1 == Vec) { 381 Vec1 = Vec; 382 } else if (!Vec2 || Vec2 == Vec) { 383 Vec2 = Vec; 384 Mask[I] += Size; 385 } else { 386 return None; 387 } 388 if (CommonShuffleMode == Permute) 389 continue; 390 // If the extract index is not the same as the operation number, it is a 391 // permutation. 392 if (IntIdx != I) { 393 CommonShuffleMode = Permute; 394 continue; 395 } 396 CommonShuffleMode = Select; 397 } 398 // If we're not crossing lanes in different vectors, consider it as blending. 399 if (CommonShuffleMode == Select && Vec2) 400 return TargetTransformInfo::SK_Select; 401 // If Vec2 was never used, we have a permutation of a single vector, otherwise 402 // we have permutation of 2 vectors. 403 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 404 : TargetTransformInfo::SK_PermuteSingleSrc; 405 } 406 407 namespace { 408 409 /// Main data required for vectorization of instructions. 410 struct InstructionsState { 411 /// The very first instruction in the list with the main opcode. 412 Value *OpValue = nullptr; 413 414 /// The main/alternate instruction. 415 Instruction *MainOp = nullptr; 416 Instruction *AltOp = nullptr; 417 418 /// The main/alternate opcodes for the list of instructions. 419 unsigned getOpcode() const { 420 return MainOp ? MainOp->getOpcode() : 0; 421 } 422 423 unsigned getAltOpcode() const { 424 return AltOp ? AltOp->getOpcode() : 0; 425 } 426 427 /// Some of the instructions in the list have alternate opcodes. 428 bool isAltShuffle() const { return AltOp != MainOp; } 429 430 bool isOpcodeOrAlt(Instruction *I) const { 431 unsigned CheckedOpcode = I->getOpcode(); 432 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 433 } 434 435 InstructionsState() = delete; 436 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 437 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 438 }; 439 440 } // end anonymous namespace 441 442 /// Chooses the correct key for scheduling data. If \p Op has the same (or 443 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 444 /// OpValue. 445 static Value *isOneOf(const InstructionsState &S, Value *Op) { 446 auto *I = dyn_cast<Instruction>(Op); 447 if (I && S.isOpcodeOrAlt(I)) 448 return Op; 449 return S.OpValue; 450 } 451 452 /// \returns true if \p Opcode is allowed as part of of the main/alternate 453 /// instruction for SLP vectorization. 454 /// 455 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 456 /// "shuffled out" lane would result in division by zero. 457 static bool isValidForAlternation(unsigned Opcode) { 458 if (Instruction::isIntDivRem(Opcode)) 459 return false; 460 461 return true; 462 } 463 464 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 465 unsigned BaseIndex = 0); 466 467 /// Checks if the provided operands of 2 cmp instructions are compatible, i.e. 468 /// compatible instructions or constants, or just some other regular values. 469 static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0, 470 Value *Op1) { 471 return (isConstant(BaseOp0) && isConstant(Op0)) || 472 (isConstant(BaseOp1) && isConstant(Op1)) || 473 (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) && 474 !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) || 475 getSameOpcode({BaseOp0, Op0}).getOpcode() || 476 getSameOpcode({BaseOp1, Op1}).getOpcode(); 477 } 478 479 /// \returns analysis of the Instructions in \p VL described in 480 /// InstructionsState, the Opcode that we suppose the whole list 481 /// could be vectorized even if its structure is diverse. 482 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 483 unsigned BaseIndex) { 484 // Make sure these are all Instructions. 485 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 486 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 487 488 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 489 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 490 bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]); 491 CmpInst::Predicate BasePred = 492 IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate() 493 : CmpInst::BAD_ICMP_PREDICATE; 494 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 495 unsigned AltOpcode = Opcode; 496 unsigned AltIndex = BaseIndex; 497 498 // Check for one alternate opcode from another BinaryOperator. 499 // TODO - generalize to support all operators (types, calls etc.). 500 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 501 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 502 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 503 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 504 continue; 505 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 506 isValidForAlternation(Opcode)) { 507 AltOpcode = InstOpcode; 508 AltIndex = Cnt; 509 continue; 510 } 511 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 512 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 513 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 514 if (Ty0 == Ty1) { 515 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 516 continue; 517 if (Opcode == AltOpcode) { 518 assert(isValidForAlternation(Opcode) && 519 isValidForAlternation(InstOpcode) && 520 "Cast isn't safe for alternation, logic needs to be updated!"); 521 AltOpcode = InstOpcode; 522 AltIndex = Cnt; 523 continue; 524 } 525 } 526 } else if (IsCmpOp && isa<CmpInst>(VL[Cnt])) { 527 auto *BaseInst = cast<Instruction>(VL[BaseIndex]); 528 auto *Inst = cast<Instruction>(VL[Cnt]); 529 Type *Ty0 = BaseInst->getOperand(0)->getType(); 530 Type *Ty1 = Inst->getOperand(0)->getType(); 531 if (Ty0 == Ty1) { 532 Value *BaseOp0 = BaseInst->getOperand(0); 533 Value *BaseOp1 = BaseInst->getOperand(1); 534 Value *Op0 = Inst->getOperand(0); 535 Value *Op1 = Inst->getOperand(1); 536 CmpInst::Predicate CurrentPred = 537 cast<CmpInst>(VL[Cnt])->getPredicate(); 538 CmpInst::Predicate SwappedCurrentPred = 539 CmpInst::getSwappedPredicate(CurrentPred); 540 // Check for compatible operands. If the corresponding operands are not 541 // compatible - need to perform alternate vectorization. 542 if (InstOpcode == Opcode) { 543 if (BasePred == CurrentPred && 544 areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1)) 545 continue; 546 if (BasePred == SwappedCurrentPred && 547 areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0)) 548 continue; 549 if (E == 2 && 550 (BasePred == CurrentPred || BasePred == SwappedCurrentPred)) 551 continue; 552 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 553 CmpInst::Predicate AltPred = AltInst->getPredicate(); 554 Value *AltOp0 = AltInst->getOperand(0); 555 Value *AltOp1 = AltInst->getOperand(1); 556 // Check if operands are compatible with alternate operands. 557 if (AltPred == CurrentPred && 558 areCompatibleCmpOps(AltOp0, AltOp1, Op0, Op1)) 559 continue; 560 if (AltPred == SwappedCurrentPred && 561 areCompatibleCmpOps(AltOp0, AltOp1, Op1, Op0)) 562 continue; 563 } 564 if (BaseIndex == AltIndex && BasePred != CurrentPred) { 565 assert(isValidForAlternation(Opcode) && 566 isValidForAlternation(InstOpcode) && 567 "Cast isn't safe for alternation, logic needs to be updated!"); 568 AltIndex = Cnt; 569 continue; 570 } 571 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 572 CmpInst::Predicate AltPred = AltInst->getPredicate(); 573 if (BasePred == CurrentPred || BasePred == SwappedCurrentPred || 574 AltPred == CurrentPred || AltPred == SwappedCurrentPred) 575 continue; 576 } 577 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 578 continue; 579 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 580 } 581 582 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 583 cast<Instruction>(VL[AltIndex])); 584 } 585 586 /// \returns true if all of the values in \p VL have the same type or false 587 /// otherwise. 588 static bool allSameType(ArrayRef<Value *> VL) { 589 Type *Ty = VL[0]->getType(); 590 for (int i = 1, e = VL.size(); i < e; i++) 591 if (VL[i]->getType() != Ty) 592 return false; 593 594 return true; 595 } 596 597 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 598 static Optional<unsigned> getExtractIndex(Instruction *E) { 599 unsigned Opcode = E->getOpcode(); 600 assert((Opcode == Instruction::ExtractElement || 601 Opcode == Instruction::ExtractValue) && 602 "Expected extractelement or extractvalue instruction."); 603 if (Opcode == Instruction::ExtractElement) { 604 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 605 if (!CI) 606 return None; 607 return CI->getZExtValue(); 608 } 609 ExtractValueInst *EI = cast<ExtractValueInst>(E); 610 if (EI->getNumIndices() != 1) 611 return None; 612 return *EI->idx_begin(); 613 } 614 615 /// \returns True if in-tree use also needs extract. This refers to 616 /// possible scalar operand in vectorized instruction. 617 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 618 TargetLibraryInfo *TLI) { 619 unsigned Opcode = UserInst->getOpcode(); 620 switch (Opcode) { 621 case Instruction::Load: { 622 LoadInst *LI = cast<LoadInst>(UserInst); 623 return (LI->getPointerOperand() == Scalar); 624 } 625 case Instruction::Store: { 626 StoreInst *SI = cast<StoreInst>(UserInst); 627 return (SI->getPointerOperand() == Scalar); 628 } 629 case Instruction::Call: { 630 CallInst *CI = cast<CallInst>(UserInst); 631 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 632 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 633 if (hasVectorInstrinsicScalarOpd(ID, i)) 634 return (CI->getArgOperand(i) == Scalar); 635 } 636 LLVM_FALLTHROUGH; 637 } 638 default: 639 return false; 640 } 641 } 642 643 /// \returns the AA location that is being access by the instruction. 644 static MemoryLocation getLocation(Instruction *I) { 645 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 646 return MemoryLocation::get(SI); 647 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 648 return MemoryLocation::get(LI); 649 return MemoryLocation(); 650 } 651 652 /// \returns True if the instruction is not a volatile or atomic load/store. 653 static bool isSimple(Instruction *I) { 654 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 655 return LI->isSimple(); 656 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 657 return SI->isSimple(); 658 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 659 return !MI->isVolatile(); 660 return true; 661 } 662 663 /// Shuffles \p Mask in accordance with the given \p SubMask. 664 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 665 if (SubMask.empty()) 666 return; 667 if (Mask.empty()) { 668 Mask.append(SubMask.begin(), SubMask.end()); 669 return; 670 } 671 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 672 int TermValue = std::min(Mask.size(), SubMask.size()); 673 for (int I = 0, E = SubMask.size(); I < E; ++I) { 674 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 675 Mask[SubMask[I]] >= TermValue) 676 continue; 677 NewMask[I] = Mask[SubMask[I]]; 678 } 679 Mask.swap(NewMask); 680 } 681 682 /// Order may have elements assigned special value (size) which is out of 683 /// bounds. Such indices only appear on places which correspond to undef values 684 /// (see canReuseExtract for details) and used in order to avoid undef values 685 /// have effect on operands ordering. 686 /// The first loop below simply finds all unused indices and then the next loop 687 /// nest assigns these indices for undef values positions. 688 /// As an example below Order has two undef positions and they have assigned 689 /// values 3 and 7 respectively: 690 /// before: 6 9 5 4 9 2 1 0 691 /// after: 6 3 5 4 7 2 1 0 692 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 693 const unsigned Sz = Order.size(); 694 SmallBitVector UnusedIndices(Sz, /*t=*/true); 695 SmallBitVector MaskedIndices(Sz); 696 for (unsigned I = 0; I < Sz; ++I) { 697 if (Order[I] < Sz) 698 UnusedIndices.reset(Order[I]); 699 else 700 MaskedIndices.set(I); 701 } 702 if (MaskedIndices.none()) 703 return; 704 assert(UnusedIndices.count() == MaskedIndices.count() && 705 "Non-synced masked/available indices."); 706 int Idx = UnusedIndices.find_first(); 707 int MIdx = MaskedIndices.find_first(); 708 while (MIdx >= 0) { 709 assert(Idx >= 0 && "Indices must be synced."); 710 Order[MIdx] = Idx; 711 Idx = UnusedIndices.find_next(Idx); 712 MIdx = MaskedIndices.find_next(MIdx); 713 } 714 } 715 716 namespace llvm { 717 718 static void inversePermutation(ArrayRef<unsigned> Indices, 719 SmallVectorImpl<int> &Mask) { 720 Mask.clear(); 721 const unsigned E = Indices.size(); 722 Mask.resize(E, UndefMaskElem); 723 for (unsigned I = 0; I < E; ++I) 724 Mask[Indices[I]] = I; 725 } 726 727 /// \returns inserting index of InsertElement or InsertValue instruction, 728 /// using Offset as base offset for index. 729 static Optional<unsigned> getInsertIndex(Value *InsertInst, 730 unsigned Offset = 0) { 731 int Index = Offset; 732 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 733 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 734 auto *VT = cast<FixedVectorType>(IE->getType()); 735 if (CI->getValue().uge(VT->getNumElements())) 736 return None; 737 Index *= VT->getNumElements(); 738 Index += CI->getZExtValue(); 739 return Index; 740 } 741 return None; 742 } 743 744 auto *IV = cast<InsertValueInst>(InsertInst); 745 Type *CurrentType = IV->getType(); 746 for (unsigned I : IV->indices()) { 747 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 748 Index *= ST->getNumElements(); 749 CurrentType = ST->getElementType(I); 750 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 751 Index *= AT->getNumElements(); 752 CurrentType = AT->getElementType(); 753 } else { 754 return None; 755 } 756 Index += I; 757 } 758 return Index; 759 } 760 761 /// Reorders the list of scalars in accordance with the given \p Mask. 762 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 763 ArrayRef<int> Mask) { 764 assert(!Mask.empty() && "Expected non-empty mask."); 765 SmallVector<Value *> Prev(Scalars.size(), 766 UndefValue::get(Scalars.front()->getType())); 767 Prev.swap(Scalars); 768 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 769 if (Mask[I] != UndefMaskElem) 770 Scalars[Mask[I]] = Prev[I]; 771 } 772 773 /// Checks if the provided value does not require scheduling. It does not 774 /// require scheduling if this is not an instruction or it is an instruction 775 /// that does not read/write memory and all operands are either not instructions 776 /// or phi nodes or instructions from different blocks. 777 static bool areAllOperandsNonInsts(Value *V) { 778 auto *I = dyn_cast<Instruction>(V); 779 if (!I) 780 return true; 781 return !mayHaveNonDefUseDependency(*I) && 782 all_of(I->operands(), [I](Value *V) { 783 auto *IO = dyn_cast<Instruction>(V); 784 if (!IO) 785 return true; 786 return isa<PHINode>(IO) || IO->getParent() != I->getParent(); 787 }); 788 } 789 790 /// Checks if the provided value does not require scheduling. It does not 791 /// require scheduling if this is not an instruction or it is an instruction 792 /// that does not read/write memory and all users are phi nodes or instructions 793 /// from the different blocks. 794 static bool isUsedOutsideBlock(Value *V) { 795 auto *I = dyn_cast<Instruction>(V); 796 if (!I) 797 return true; 798 // Limits the number of uses to save compile time. 799 constexpr int UsesLimit = 8; 800 return !I->mayReadOrWriteMemory() && !I->hasNUsesOrMore(UsesLimit) && 801 all_of(I->users(), [I](User *U) { 802 auto *IU = dyn_cast<Instruction>(U); 803 if (!IU) 804 return true; 805 return IU->getParent() != I->getParent() || isa<PHINode>(IU); 806 }); 807 } 808 809 /// Checks if the specified value does not require scheduling. It does not 810 /// require scheduling if all operands and all users do not need to be scheduled 811 /// in the current basic block. 812 static bool doesNotNeedToBeScheduled(Value *V) { 813 return areAllOperandsNonInsts(V) && isUsedOutsideBlock(V); 814 } 815 816 /// Checks if the specified array of instructions does not require scheduling. 817 /// It is so if all either instructions have operands that do not require 818 /// scheduling or their users do not require scheduling since they are phis or 819 /// in other basic blocks. 820 static bool doesNotNeedToSchedule(ArrayRef<Value *> VL) { 821 return !VL.empty() && 822 (all_of(VL, isUsedOutsideBlock) || all_of(VL, areAllOperandsNonInsts)); 823 } 824 825 namespace slpvectorizer { 826 827 /// Bottom Up SLP Vectorizer. 828 class BoUpSLP { 829 struct TreeEntry; 830 struct ScheduleData; 831 832 public: 833 using ValueList = SmallVector<Value *, 8>; 834 using InstrList = SmallVector<Instruction *, 16>; 835 using ValueSet = SmallPtrSet<Value *, 16>; 836 using StoreList = SmallVector<StoreInst *, 8>; 837 using ExtraValueToDebugLocsMap = 838 MapVector<Value *, SmallVector<Instruction *, 2>>; 839 using OrdersType = SmallVector<unsigned, 4>; 840 841 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 842 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 843 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 844 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 845 : BatchAA(*Aa), F(Func), SE(Se), TTI(Tti), TLI(TLi), LI(Li), 846 DT(Dt), AC(AC), DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 847 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 848 // Use the vector register size specified by the target unless overridden 849 // by a command-line option. 850 // TODO: It would be better to limit the vectorization factor based on 851 // data type rather than just register size. For example, x86 AVX has 852 // 256-bit registers, but it does not support integer operations 853 // at that width (that requires AVX2). 854 if (MaxVectorRegSizeOption.getNumOccurrences()) 855 MaxVecRegSize = MaxVectorRegSizeOption; 856 else 857 MaxVecRegSize = 858 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 859 .getFixedSize(); 860 861 if (MinVectorRegSizeOption.getNumOccurrences()) 862 MinVecRegSize = MinVectorRegSizeOption; 863 else 864 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 865 } 866 867 /// Vectorize the tree that starts with the elements in \p VL. 868 /// Returns the vectorized root. 869 Value *vectorizeTree(); 870 871 /// Vectorize the tree but with the list of externally used values \p 872 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 873 /// generated extractvalue instructions. 874 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 875 876 /// \returns the cost incurred by unwanted spills and fills, caused by 877 /// holding live values over call sites. 878 InstructionCost getSpillCost() const; 879 880 /// \returns the vectorization cost of the subtree that starts at \p VL. 881 /// A negative number means that this is profitable. 882 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 883 884 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 885 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 886 void buildTree(ArrayRef<Value *> Roots, 887 ArrayRef<Value *> UserIgnoreLst = None); 888 889 /// Builds external uses of the vectorized scalars, i.e. the list of 890 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 891 /// ExternallyUsedValues contains additional list of external uses to handle 892 /// vectorization of reductions. 893 void 894 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 895 896 /// Clear the internal data structures that are created by 'buildTree'. 897 void deleteTree() { 898 VectorizableTree.clear(); 899 ScalarToTreeEntry.clear(); 900 MustGather.clear(); 901 ExternalUses.clear(); 902 for (auto &Iter : BlocksSchedules) { 903 BlockScheduling *BS = Iter.second.get(); 904 BS->clear(); 905 } 906 MinBWs.clear(); 907 InstrElementSize.clear(); 908 } 909 910 unsigned getTreeSize() const { return VectorizableTree.size(); } 911 912 /// Perform LICM and CSE on the newly generated gather sequences. 913 void optimizeGatherSequence(); 914 915 /// Checks if the specified gather tree entry \p TE can be represented as a 916 /// shuffled vector entry + (possibly) permutation with other gathers. It 917 /// implements the checks only for possibly ordered scalars (Loads, 918 /// ExtractElement, ExtractValue), which can be part of the graph. 919 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 920 921 /// Gets reordering data for the given tree entry. If the entry is vectorized 922 /// - just return ReorderIndices, otherwise check if the scalars can be 923 /// reordered and return the most optimal order. 924 /// \param TopToBottom If true, include the order of vectorized stores and 925 /// insertelement nodes, otherwise skip them. 926 Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom); 927 928 /// Reorders the current graph to the most profitable order starting from the 929 /// root node to the leaf nodes. The best order is chosen only from the nodes 930 /// of the same size (vectorization factor). Smaller nodes are considered 931 /// parts of subgraph with smaller VF and they are reordered independently. We 932 /// can make it because we still need to extend smaller nodes to the wider VF 933 /// and we can merge reordering shuffles with the widening shuffles. 934 void reorderTopToBottom(); 935 936 /// Reorders the current graph to the most profitable order starting from 937 /// leaves to the root. It allows to rotate small subgraphs and reduce the 938 /// number of reshuffles if the leaf nodes use the same order. In this case we 939 /// can merge the orders and just shuffle user node instead of shuffling its 940 /// operands. Plus, even the leaf nodes have different orders, it allows to 941 /// sink reordering in the graph closer to the root node and merge it later 942 /// during analysis. 943 void reorderBottomToTop(bool IgnoreReorder = false); 944 945 /// \return The vector element size in bits to use when vectorizing the 946 /// expression tree ending at \p V. If V is a store, the size is the width of 947 /// the stored value. Otherwise, the size is the width of the largest loaded 948 /// value reaching V. This method is used by the vectorizer to calculate 949 /// vectorization factors. 950 unsigned getVectorElementSize(Value *V); 951 952 /// Compute the minimum type sizes required to represent the entries in a 953 /// vectorizable tree. 954 void computeMinimumValueSizes(); 955 956 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 957 unsigned getMaxVecRegSize() const { 958 return MaxVecRegSize; 959 } 960 961 // \returns minimum vector register size as set by cl::opt. 962 unsigned getMinVecRegSize() const { 963 return MinVecRegSize; 964 } 965 966 unsigned getMinVF(unsigned Sz) const { 967 return std::max(2U, getMinVecRegSize() / Sz); 968 } 969 970 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 971 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 972 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 973 return MaxVF ? MaxVF : UINT_MAX; 974 } 975 976 /// Check if homogeneous aggregate is isomorphic to some VectorType. 977 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 978 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 979 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 980 /// 981 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 982 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 983 984 /// \returns True if the VectorizableTree is both tiny and not fully 985 /// vectorizable. We do not vectorize such trees. 986 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 987 988 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 989 /// can be load combined in the backend. Load combining may not be allowed in 990 /// the IR optimizer, so we do not want to alter the pattern. For example, 991 /// partially transforming a scalar bswap() pattern into vector code is 992 /// effectively impossible for the backend to undo. 993 /// TODO: If load combining is allowed in the IR optimizer, this analysis 994 /// may not be necessary. 995 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 996 997 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 998 /// can be load combined in the backend. Load combining may not be allowed in 999 /// the IR optimizer, so we do not want to alter the pattern. For example, 1000 /// partially transforming a scalar bswap() pattern into vector code is 1001 /// effectively impossible for the backend to undo. 1002 /// TODO: If load combining is allowed in the IR optimizer, this analysis 1003 /// may not be necessary. 1004 bool isLoadCombineCandidate() const; 1005 1006 OptimizationRemarkEmitter *getORE() { return ORE; } 1007 1008 /// This structure holds any data we need about the edges being traversed 1009 /// during buildTree_rec(). We keep track of: 1010 /// (i) the user TreeEntry index, and 1011 /// (ii) the index of the edge. 1012 struct EdgeInfo { 1013 EdgeInfo() = default; 1014 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 1015 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 1016 /// The user TreeEntry. 1017 TreeEntry *UserTE = nullptr; 1018 /// The operand index of the use. 1019 unsigned EdgeIdx = UINT_MAX; 1020 #ifndef NDEBUG 1021 friend inline raw_ostream &operator<<(raw_ostream &OS, 1022 const BoUpSLP::EdgeInfo &EI) { 1023 EI.dump(OS); 1024 return OS; 1025 } 1026 /// Debug print. 1027 void dump(raw_ostream &OS) const { 1028 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 1029 << " EdgeIdx:" << EdgeIdx << "}"; 1030 } 1031 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 1032 #endif 1033 }; 1034 1035 /// A helper data structure to hold the operands of a vector of instructions. 1036 /// This supports a fixed vector length for all operand vectors. 1037 class VLOperands { 1038 /// For each operand we need (i) the value, and (ii) the opcode that it 1039 /// would be attached to if the expression was in a left-linearized form. 1040 /// This is required to avoid illegal operand reordering. 1041 /// For example: 1042 /// \verbatim 1043 /// 0 Op1 1044 /// |/ 1045 /// Op1 Op2 Linearized + Op2 1046 /// \ / ----------> |/ 1047 /// - - 1048 /// 1049 /// Op1 - Op2 (0 + Op1) - Op2 1050 /// \endverbatim 1051 /// 1052 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 1053 /// 1054 /// Another way to think of this is to track all the operations across the 1055 /// path from the operand all the way to the root of the tree and to 1056 /// calculate the operation that corresponds to this path. For example, the 1057 /// path from Op2 to the root crosses the RHS of the '-', therefore the 1058 /// corresponding operation is a '-' (which matches the one in the 1059 /// linearized tree, as shown above). 1060 /// 1061 /// For lack of a better term, we refer to this operation as Accumulated 1062 /// Path Operation (APO). 1063 struct OperandData { 1064 OperandData() = default; 1065 OperandData(Value *V, bool APO, bool IsUsed) 1066 : V(V), APO(APO), IsUsed(IsUsed) {} 1067 /// The operand value. 1068 Value *V = nullptr; 1069 /// TreeEntries only allow a single opcode, or an alternate sequence of 1070 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 1071 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 1072 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 1073 /// (e.g., Add/Mul) 1074 bool APO = false; 1075 /// Helper data for the reordering function. 1076 bool IsUsed = false; 1077 }; 1078 1079 /// During operand reordering, we are trying to select the operand at lane 1080 /// that matches best with the operand at the neighboring lane. Our 1081 /// selection is based on the type of value we are looking for. For example, 1082 /// if the neighboring lane has a load, we need to look for a load that is 1083 /// accessing a consecutive address. These strategies are summarized in the 1084 /// 'ReorderingMode' enumerator. 1085 enum class ReorderingMode { 1086 Load, ///< Matching loads to consecutive memory addresses 1087 Opcode, ///< Matching instructions based on opcode (same or alternate) 1088 Constant, ///< Matching constants 1089 Splat, ///< Matching the same instruction multiple times (broadcast) 1090 Failed, ///< We failed to create a vectorizable group 1091 }; 1092 1093 using OperandDataVec = SmallVector<OperandData, 2>; 1094 1095 /// A vector of operand vectors. 1096 SmallVector<OperandDataVec, 4> OpsVec; 1097 1098 const DataLayout &DL; 1099 ScalarEvolution &SE; 1100 const BoUpSLP &R; 1101 1102 /// \returns the operand data at \p OpIdx and \p Lane. 1103 OperandData &getData(unsigned OpIdx, unsigned Lane) { 1104 return OpsVec[OpIdx][Lane]; 1105 } 1106 1107 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 1108 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 1109 return OpsVec[OpIdx][Lane]; 1110 } 1111 1112 /// Clears the used flag for all entries. 1113 void clearUsed() { 1114 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 1115 OpIdx != NumOperands; ++OpIdx) 1116 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1117 ++Lane) 1118 OpsVec[OpIdx][Lane].IsUsed = false; 1119 } 1120 1121 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 1122 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 1123 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 1124 } 1125 1126 // The hard-coded scores listed here are not very important, though it shall 1127 // be higher for better matches to improve the resulting cost. When 1128 // computing the scores of matching one sub-tree with another, we are 1129 // basically counting the number of values that are matching. So even if all 1130 // scores are set to 1, we would still get a decent matching result. 1131 // However, sometimes we have to break ties. For example we may have to 1132 // choose between matching loads vs matching opcodes. This is what these 1133 // scores are helping us with: they provide the order of preference. Also, 1134 // this is important if the scalar is externally used or used in another 1135 // tree entry node in the different lane. 1136 1137 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 1138 static const int ScoreConsecutiveLoads = 4; 1139 /// The same load multiple times. This should have a better score than 1140 /// `ScoreSplat` because it in x86 for a 2-lane vector we can represent it 1141 /// with `movddup (%reg), xmm0` which has a throughput of 0.5 versus 0.5 for 1142 /// a vector load and 1.0 for a broadcast. 1143 static const int ScoreSplatLoads = 3; 1144 /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]). 1145 static const int ScoreReversedLoads = 3; 1146 /// ExtractElementInst from same vector and consecutive indexes. 1147 static const int ScoreConsecutiveExtracts = 4; 1148 /// ExtractElementInst from same vector and reversed indices. 1149 static const int ScoreReversedExtracts = 3; 1150 /// Constants. 1151 static const int ScoreConstants = 2; 1152 /// Instructions with the same opcode. 1153 static const int ScoreSameOpcode = 2; 1154 /// Instructions with alt opcodes (e.g, add + sub). 1155 static const int ScoreAltOpcodes = 1; 1156 /// Identical instructions (a.k.a. splat or broadcast). 1157 static const int ScoreSplat = 1; 1158 /// Matching with an undef is preferable to failing. 1159 static const int ScoreUndef = 1; 1160 /// Score for failing to find a decent match. 1161 static const int ScoreFail = 0; 1162 /// Score if all users are vectorized. 1163 static const int ScoreAllUserVectorized = 1; 1164 1165 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1166 /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p 1167 /// MainAltOps. 1168 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 1169 ScalarEvolution &SE, int NumLanes, 1170 ArrayRef<Value *> MainAltOps, 1171 const TargetTransformInfo *TTI) { 1172 if (V1 == V2) { 1173 if (isa<LoadInst>(V1)) { 1174 // A broadcast of a load can be cheaper on some targets. 1175 // TODO: For now accept a broadcast load with no other internal uses. 1176 if (TTI->isLegalBroadcastLoad(V1->getType(), NumLanes) && 1177 (int)V1->getNumUses() == NumLanes) 1178 return VLOperands::ScoreSplatLoads; 1179 } 1180 return VLOperands::ScoreSplat; 1181 } 1182 1183 auto *LI1 = dyn_cast<LoadInst>(V1); 1184 auto *LI2 = dyn_cast<LoadInst>(V2); 1185 if (LI1 && LI2) { 1186 if (LI1->getParent() != LI2->getParent()) 1187 return VLOperands::ScoreFail; 1188 1189 Optional<int> Dist = getPointersDiff( 1190 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1191 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1192 if (!Dist || *Dist == 0) 1193 return VLOperands::ScoreFail; 1194 // The distance is too large - still may be profitable to use masked 1195 // loads/gathers. 1196 if (std::abs(*Dist) > NumLanes / 2) 1197 return VLOperands::ScoreAltOpcodes; 1198 // This still will detect consecutive loads, but we might have "holes" 1199 // in some cases. It is ok for non-power-2 vectorization and may produce 1200 // better results. It should not affect current vectorization. 1201 return (*Dist > 0) ? VLOperands::ScoreConsecutiveLoads 1202 : VLOperands::ScoreReversedLoads; 1203 } 1204 1205 auto *C1 = dyn_cast<Constant>(V1); 1206 auto *C2 = dyn_cast<Constant>(V2); 1207 if (C1 && C2) 1208 return VLOperands::ScoreConstants; 1209 1210 // Extracts from consecutive indexes of the same vector better score as 1211 // the extracts could be optimized away. 1212 Value *EV1; 1213 ConstantInt *Ex1Idx; 1214 if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) { 1215 // Undefs are always profitable for extractelements. 1216 if (isa<UndefValue>(V2)) 1217 return VLOperands::ScoreConsecutiveExtracts; 1218 Value *EV2 = nullptr; 1219 ConstantInt *Ex2Idx = nullptr; 1220 if (match(V2, 1221 m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx), 1222 m_Undef())))) { 1223 // Undefs are always profitable for extractelements. 1224 if (!Ex2Idx) 1225 return VLOperands::ScoreConsecutiveExtracts; 1226 if (isUndefVector(EV2) && EV2->getType() == EV1->getType()) 1227 return VLOperands::ScoreConsecutiveExtracts; 1228 if (EV2 == EV1) { 1229 int Idx1 = Ex1Idx->getZExtValue(); 1230 int Idx2 = Ex2Idx->getZExtValue(); 1231 int Dist = Idx2 - Idx1; 1232 // The distance is too large - still may be profitable to use 1233 // shuffles. 1234 if (std::abs(Dist) == 0) 1235 return VLOperands::ScoreSplat; 1236 if (std::abs(Dist) > NumLanes / 2) 1237 return VLOperands::ScoreSameOpcode; 1238 return (Dist > 0) ? VLOperands::ScoreConsecutiveExtracts 1239 : VLOperands::ScoreReversedExtracts; 1240 } 1241 return VLOperands::ScoreAltOpcodes; 1242 } 1243 return VLOperands::ScoreFail; 1244 } 1245 1246 auto *I1 = dyn_cast<Instruction>(V1); 1247 auto *I2 = dyn_cast<Instruction>(V2); 1248 if (I1 && I2) { 1249 if (I1->getParent() != I2->getParent()) 1250 return VLOperands::ScoreFail; 1251 SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end()); 1252 Ops.push_back(I1); 1253 Ops.push_back(I2); 1254 InstructionsState S = getSameOpcode(Ops); 1255 // Note: Only consider instructions with <= 2 operands to avoid 1256 // complexity explosion. 1257 if (S.getOpcode() && 1258 (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() || 1259 !S.isAltShuffle()) && 1260 all_of(Ops, [&S](Value *V) { 1261 return cast<Instruction>(V)->getNumOperands() == 1262 S.MainOp->getNumOperands(); 1263 })) 1264 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 1265 : VLOperands::ScoreSameOpcode; 1266 } 1267 1268 if (isa<UndefValue>(V2)) 1269 return VLOperands::ScoreUndef; 1270 1271 return VLOperands::ScoreFail; 1272 } 1273 1274 /// \param Lane lane of the operands under analysis. 1275 /// \param OpIdx operand index in \p Lane lane we're looking the best 1276 /// candidate for. 1277 /// \param Idx operand index of the current candidate value. 1278 /// \returns The additional score due to possible broadcasting of the 1279 /// elements in the lane. It is more profitable to have power-of-2 unique 1280 /// elements in the lane, it will be vectorized with higher probability 1281 /// after removing duplicates. Currently the SLP vectorizer supports only 1282 /// vectorization of the power-of-2 number of unique scalars. 1283 int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1284 Value *IdxLaneV = getData(Idx, Lane).V; 1285 if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V) 1286 return 0; 1287 SmallPtrSet<Value *, 4> Uniques; 1288 for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) { 1289 if (Ln == Lane) 1290 continue; 1291 Value *OpIdxLnV = getData(OpIdx, Ln).V; 1292 if (!isa<Instruction>(OpIdxLnV)) 1293 return 0; 1294 Uniques.insert(OpIdxLnV); 1295 } 1296 int UniquesCount = Uniques.size(); 1297 int UniquesCntWithIdxLaneV = 1298 Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1; 1299 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1300 int UniquesCntWithOpIdxLaneV = 1301 Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1; 1302 if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV) 1303 return 0; 1304 return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) - 1305 UniquesCntWithOpIdxLaneV) - 1306 (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV); 1307 } 1308 1309 /// \param Lane lane of the operands under analysis. 1310 /// \param OpIdx operand index in \p Lane lane we're looking the best 1311 /// candidate for. 1312 /// \param Idx operand index of the current candidate value. 1313 /// \returns The additional score for the scalar which users are all 1314 /// vectorized. 1315 int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1316 Value *IdxLaneV = getData(Idx, Lane).V; 1317 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1318 // Do not care about number of uses for vector-like instructions 1319 // (extractelement/extractvalue with constant indices), they are extracts 1320 // themselves and already externally used. Vectorization of such 1321 // instructions does not add extra extractelement instruction, just may 1322 // remove it. 1323 if (isVectorLikeInstWithConstOps(IdxLaneV) && 1324 isVectorLikeInstWithConstOps(OpIdxLaneV)) 1325 return VLOperands::ScoreAllUserVectorized; 1326 auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV); 1327 if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV)) 1328 return 0; 1329 return R.areAllUsersVectorized(IdxLaneI, None) 1330 ? VLOperands::ScoreAllUserVectorized 1331 : 0; 1332 } 1333 1334 /// Go through the operands of \p LHS and \p RHS recursively until \p 1335 /// MaxLevel, and return the cummulative score. For example: 1336 /// \verbatim 1337 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1338 /// \ / \ / \ / \ / 1339 /// + + + + 1340 /// G1 G2 G3 G4 1341 /// \endverbatim 1342 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1343 /// each level recursively, accumulating the score. It starts from matching 1344 /// the additions at level 0, then moves on to the loads (level 1). The 1345 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1346 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1347 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1348 /// Please note that the order of the operands does not matter, as we 1349 /// evaluate the score of all profitable combinations of operands. In 1350 /// other words the score of G1 and G4 is the same as G1 and G2. This 1351 /// heuristic is based on ideas described in: 1352 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1353 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1354 /// Luís F. W. Góes 1355 int getScoreAtLevelRec(Value *LHS, Value *RHS, int CurrLevel, int MaxLevel, 1356 ArrayRef<Value *> MainAltOps) { 1357 1358 // Get the shallow score of V1 and V2. 1359 int ShallowScoreAtThisLevel = 1360 getShallowScore(LHS, RHS, DL, SE, getNumLanes(), MainAltOps, R.TTI); 1361 1362 // If reached MaxLevel, 1363 // or if V1 and V2 are not instructions, 1364 // or if they are SPLAT, 1365 // or if they are not consecutive, 1366 // or if profitable to vectorize loads or extractelements, early return 1367 // the current cost. 1368 auto *I1 = dyn_cast<Instruction>(LHS); 1369 auto *I2 = dyn_cast<Instruction>(RHS); 1370 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1371 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1372 (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) || 1373 (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) || 1374 (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) && 1375 ShallowScoreAtThisLevel)) 1376 return ShallowScoreAtThisLevel; 1377 assert(I1 && I2 && "Should have early exited."); 1378 1379 // Contains the I2 operand indexes that got matched with I1 operands. 1380 SmallSet<unsigned, 4> Op2Used; 1381 1382 // Recursion towards the operands of I1 and I2. We are trying all possible 1383 // operand pairs, and keeping track of the best score. 1384 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1385 OpIdx1 != NumOperands1; ++OpIdx1) { 1386 // Try to pair op1I with the best operand of I2. 1387 int MaxTmpScore = 0; 1388 unsigned MaxOpIdx2 = 0; 1389 bool FoundBest = false; 1390 // If I2 is commutative try all combinations. 1391 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1392 unsigned ToIdx = isCommutative(I2) 1393 ? I2->getNumOperands() 1394 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1395 assert(FromIdx <= ToIdx && "Bad index"); 1396 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1397 // Skip operands already paired with OpIdx1. 1398 if (Op2Used.count(OpIdx2)) 1399 continue; 1400 // Recursively calculate the cost at each level 1401 int TmpScore = 1402 getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2), 1403 CurrLevel + 1, MaxLevel, None); 1404 // Look for the best score. 1405 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1406 MaxTmpScore = TmpScore; 1407 MaxOpIdx2 = OpIdx2; 1408 FoundBest = true; 1409 } 1410 } 1411 if (FoundBest) { 1412 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1413 Op2Used.insert(MaxOpIdx2); 1414 ShallowScoreAtThisLevel += MaxTmpScore; 1415 } 1416 } 1417 return ShallowScoreAtThisLevel; 1418 } 1419 1420 /// Score scaling factor for fully compatible instructions but with 1421 /// different number of external uses. Allows better selection of the 1422 /// instructions with less external uses. 1423 static const int ScoreScaleFactor = 10; 1424 1425 /// \Returns the look-ahead score, which tells us how much the sub-trees 1426 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1427 /// score. This helps break ties in an informed way when we cannot decide on 1428 /// the order of the operands by just considering the immediate 1429 /// predecessors. 1430 int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps, 1431 int Lane, unsigned OpIdx, unsigned Idx, 1432 bool &IsUsed) { 1433 int Score = 1434 getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth, MainAltOps); 1435 if (Score) { 1436 int SplatScore = getSplatScore(Lane, OpIdx, Idx); 1437 if (Score <= -SplatScore) { 1438 // Set the minimum score for splat-like sequence to avoid setting 1439 // failed state. 1440 Score = 1; 1441 } else { 1442 Score += SplatScore; 1443 // Scale score to see the difference between different operands 1444 // and similar operands but all vectorized/not all vectorized 1445 // uses. It does not affect actual selection of the best 1446 // compatible operand in general, just allows to select the 1447 // operand with all vectorized uses. 1448 Score *= ScoreScaleFactor; 1449 Score += getExternalUseScore(Lane, OpIdx, Idx); 1450 IsUsed = true; 1451 } 1452 } 1453 return Score; 1454 } 1455 1456 /// Best defined scores per lanes between the passes. Used to choose the 1457 /// best operand (with the highest score) between the passes. 1458 /// The key - {Operand Index, Lane}. 1459 /// The value - the best score between the passes for the lane and the 1460 /// operand. 1461 SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8> 1462 BestScoresPerLanes; 1463 1464 // Search all operands in Ops[*][Lane] for the one that matches best 1465 // Ops[OpIdx][LastLane] and return its opreand index. 1466 // If no good match can be found, return None. 1467 Optional<unsigned> getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1468 ArrayRef<ReorderingMode> ReorderingModes, 1469 ArrayRef<Value *> MainAltOps) { 1470 unsigned NumOperands = getNumOperands(); 1471 1472 // The operand of the previous lane at OpIdx. 1473 Value *OpLastLane = getData(OpIdx, LastLane).V; 1474 1475 // Our strategy mode for OpIdx. 1476 ReorderingMode RMode = ReorderingModes[OpIdx]; 1477 if (RMode == ReorderingMode::Failed) 1478 return None; 1479 1480 // The linearized opcode of the operand at OpIdx, Lane. 1481 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1482 1483 // The best operand index and its score. 1484 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1485 // are using the score to differentiate between the two. 1486 struct BestOpData { 1487 Optional<unsigned> Idx = None; 1488 unsigned Score = 0; 1489 } BestOp; 1490 BestOp.Score = 1491 BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0) 1492 .first->second; 1493 1494 // Track if the operand must be marked as used. If the operand is set to 1495 // Score 1 explicitly (because of non power-of-2 unique scalars, we may 1496 // want to reestimate the operands again on the following iterations). 1497 bool IsUsed = 1498 RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant; 1499 // Iterate through all unused operands and look for the best. 1500 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1501 // Get the operand at Idx and Lane. 1502 OperandData &OpData = getData(Idx, Lane); 1503 Value *Op = OpData.V; 1504 bool OpAPO = OpData.APO; 1505 1506 // Skip already selected operands. 1507 if (OpData.IsUsed) 1508 continue; 1509 1510 // Skip if we are trying to move the operand to a position with a 1511 // different opcode in the linearized tree form. This would break the 1512 // semantics. 1513 if (OpAPO != OpIdxAPO) 1514 continue; 1515 1516 // Look for an operand that matches the current mode. 1517 switch (RMode) { 1518 case ReorderingMode::Load: 1519 case ReorderingMode::Constant: 1520 case ReorderingMode::Opcode: { 1521 bool LeftToRight = Lane > LastLane; 1522 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1523 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1524 int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane, 1525 OpIdx, Idx, IsUsed); 1526 if (Score > static_cast<int>(BestOp.Score)) { 1527 BestOp.Idx = Idx; 1528 BestOp.Score = Score; 1529 BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score; 1530 } 1531 break; 1532 } 1533 case ReorderingMode::Splat: 1534 if (Op == OpLastLane) 1535 BestOp.Idx = Idx; 1536 break; 1537 case ReorderingMode::Failed: 1538 llvm_unreachable("Not expected Failed reordering mode."); 1539 } 1540 } 1541 1542 if (BestOp.Idx) { 1543 getData(BestOp.Idx.getValue(), Lane).IsUsed = IsUsed; 1544 return BestOp.Idx; 1545 } 1546 // If we could not find a good match return None. 1547 return None; 1548 } 1549 1550 /// Helper for reorderOperandVecs. 1551 /// \returns the lane that we should start reordering from. This is the one 1552 /// which has the least number of operands that can freely move about or 1553 /// less profitable because it already has the most optimal set of operands. 1554 unsigned getBestLaneToStartReordering() const { 1555 unsigned Min = UINT_MAX; 1556 unsigned SameOpNumber = 0; 1557 // std::pair<unsigned, unsigned> is used to implement a simple voting 1558 // algorithm and choose the lane with the least number of operands that 1559 // can freely move about or less profitable because it already has the 1560 // most optimal set of operands. The first unsigned is a counter for 1561 // voting, the second unsigned is the counter of lanes with instructions 1562 // with same/alternate opcodes and same parent basic block. 1563 MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap; 1564 // Try to be closer to the original results, if we have multiple lanes 1565 // with same cost. If 2 lanes have the same cost, use the one with the 1566 // lowest index. 1567 for (int I = getNumLanes(); I > 0; --I) { 1568 unsigned Lane = I - 1; 1569 OperandsOrderData NumFreeOpsHash = 1570 getMaxNumOperandsThatCanBeReordered(Lane); 1571 // Compare the number of operands that can move and choose the one with 1572 // the least number. 1573 if (NumFreeOpsHash.NumOfAPOs < Min) { 1574 Min = NumFreeOpsHash.NumOfAPOs; 1575 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1576 HashMap.clear(); 1577 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1578 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1579 NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) { 1580 // Select the most optimal lane in terms of number of operands that 1581 // should be moved around. 1582 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1583 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1584 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1585 NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) { 1586 auto It = HashMap.find(NumFreeOpsHash.Hash); 1587 if (It == HashMap.end()) 1588 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1589 else 1590 ++It->second.first; 1591 } 1592 } 1593 // Select the lane with the minimum counter. 1594 unsigned BestLane = 0; 1595 unsigned CntMin = UINT_MAX; 1596 for (const auto &Data : reverse(HashMap)) { 1597 if (Data.second.first < CntMin) { 1598 CntMin = Data.second.first; 1599 BestLane = Data.second.second; 1600 } 1601 } 1602 return BestLane; 1603 } 1604 1605 /// Data structure that helps to reorder operands. 1606 struct OperandsOrderData { 1607 /// The best number of operands with the same APOs, which can be 1608 /// reordered. 1609 unsigned NumOfAPOs = UINT_MAX; 1610 /// Number of operands with the same/alternate instruction opcode and 1611 /// parent. 1612 unsigned NumOpsWithSameOpcodeParent = 0; 1613 /// Hash for the actual operands ordering. 1614 /// Used to count operands, actually their position id and opcode 1615 /// value. It is used in the voting mechanism to find the lane with the 1616 /// least number of operands that can freely move about or less profitable 1617 /// because it already has the most optimal set of operands. Can be 1618 /// replaced with SmallVector<unsigned> instead but hash code is faster 1619 /// and requires less memory. 1620 unsigned Hash = 0; 1621 }; 1622 /// \returns the maximum number of operands that are allowed to be reordered 1623 /// for \p Lane and the number of compatible instructions(with the same 1624 /// parent/opcode). This is used as a heuristic for selecting the first lane 1625 /// to start operand reordering. 1626 OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1627 unsigned CntTrue = 0; 1628 unsigned NumOperands = getNumOperands(); 1629 // Operands with the same APO can be reordered. We therefore need to count 1630 // how many of them we have for each APO, like this: Cnt[APO] = x. 1631 // Since we only have two APOs, namely true and false, we can avoid using 1632 // a map. Instead we can simply count the number of operands that 1633 // correspond to one of them (in this case the 'true' APO), and calculate 1634 // the other by subtracting it from the total number of operands. 1635 // Operands with the same instruction opcode and parent are more 1636 // profitable since we don't need to move them in many cases, with a high 1637 // probability such lane already can be vectorized effectively. 1638 bool AllUndefs = true; 1639 unsigned NumOpsWithSameOpcodeParent = 0; 1640 Instruction *OpcodeI = nullptr; 1641 BasicBlock *Parent = nullptr; 1642 unsigned Hash = 0; 1643 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1644 const OperandData &OpData = getData(OpIdx, Lane); 1645 if (OpData.APO) 1646 ++CntTrue; 1647 // Use Boyer-Moore majority voting for finding the majority opcode and 1648 // the number of times it occurs. 1649 if (auto *I = dyn_cast<Instruction>(OpData.V)) { 1650 if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() || 1651 I->getParent() != Parent) { 1652 if (NumOpsWithSameOpcodeParent == 0) { 1653 NumOpsWithSameOpcodeParent = 1; 1654 OpcodeI = I; 1655 Parent = I->getParent(); 1656 } else { 1657 --NumOpsWithSameOpcodeParent; 1658 } 1659 } else { 1660 ++NumOpsWithSameOpcodeParent; 1661 } 1662 } 1663 Hash = hash_combine( 1664 Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1))); 1665 AllUndefs = AllUndefs && isa<UndefValue>(OpData.V); 1666 } 1667 if (AllUndefs) 1668 return {}; 1669 OperandsOrderData Data; 1670 Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue); 1671 Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent; 1672 Data.Hash = Hash; 1673 return Data; 1674 } 1675 1676 /// Go through the instructions in VL and append their operands. 1677 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1678 assert(!VL.empty() && "Bad VL"); 1679 assert((empty() || VL.size() == getNumLanes()) && 1680 "Expected same number of lanes"); 1681 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1682 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1683 OpsVec.resize(NumOperands); 1684 unsigned NumLanes = VL.size(); 1685 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1686 OpsVec[OpIdx].resize(NumLanes); 1687 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1688 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1689 // Our tree has just 3 nodes: the root and two operands. 1690 // It is therefore trivial to get the APO. We only need to check the 1691 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1692 // RHS operand. The LHS operand of both add and sub is never attached 1693 // to an inversese operation in the linearized form, therefore its APO 1694 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1695 1696 // Since operand reordering is performed on groups of commutative 1697 // operations or alternating sequences (e.g., +, -), we can safely 1698 // tell the inverse operations by checking commutativity. 1699 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1700 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1701 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1702 APO, false}; 1703 } 1704 } 1705 } 1706 1707 /// \returns the number of operands. 1708 unsigned getNumOperands() const { return OpsVec.size(); } 1709 1710 /// \returns the number of lanes. 1711 unsigned getNumLanes() const { return OpsVec[0].size(); } 1712 1713 /// \returns the operand value at \p OpIdx and \p Lane. 1714 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1715 return getData(OpIdx, Lane).V; 1716 } 1717 1718 /// \returns true if the data structure is empty. 1719 bool empty() const { return OpsVec.empty(); } 1720 1721 /// Clears the data. 1722 void clear() { OpsVec.clear(); } 1723 1724 /// \Returns true if there are enough operands identical to \p Op to fill 1725 /// the whole vector. 1726 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1727 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1728 bool OpAPO = getData(OpIdx, Lane).APO; 1729 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1730 if (Ln == Lane) 1731 continue; 1732 // This is set to true if we found a candidate for broadcast at Lane. 1733 bool FoundCandidate = false; 1734 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1735 OperandData &Data = getData(OpI, Ln); 1736 if (Data.APO != OpAPO || Data.IsUsed) 1737 continue; 1738 if (Data.V == Op) { 1739 FoundCandidate = true; 1740 Data.IsUsed = true; 1741 break; 1742 } 1743 } 1744 if (!FoundCandidate) 1745 return false; 1746 } 1747 return true; 1748 } 1749 1750 public: 1751 /// Initialize with all the operands of the instruction vector \p RootVL. 1752 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1753 ScalarEvolution &SE, const BoUpSLP &R) 1754 : DL(DL), SE(SE), R(R) { 1755 // Append all the operands of RootVL. 1756 appendOperandsOfVL(RootVL); 1757 } 1758 1759 /// \Returns a value vector with the operands across all lanes for the 1760 /// opearnd at \p OpIdx. 1761 ValueList getVL(unsigned OpIdx) const { 1762 ValueList OpVL(OpsVec[OpIdx].size()); 1763 assert(OpsVec[OpIdx].size() == getNumLanes() && 1764 "Expected same num of lanes across all operands"); 1765 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1766 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1767 return OpVL; 1768 } 1769 1770 // Performs operand reordering for 2 or more operands. 1771 // The original operands are in OrigOps[OpIdx][Lane]. 1772 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1773 void reorder() { 1774 unsigned NumOperands = getNumOperands(); 1775 unsigned NumLanes = getNumLanes(); 1776 // Each operand has its own mode. We are using this mode to help us select 1777 // the instructions for each lane, so that they match best with the ones 1778 // we have selected so far. 1779 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1780 1781 // This is a greedy single-pass algorithm. We are going over each lane 1782 // once and deciding on the best order right away with no back-tracking. 1783 // However, in order to increase its effectiveness, we start with the lane 1784 // that has operands that can move the least. For example, given the 1785 // following lanes: 1786 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1787 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1788 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1789 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1790 // we will start at Lane 1, since the operands of the subtraction cannot 1791 // be reordered. Then we will visit the rest of the lanes in a circular 1792 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1793 1794 // Find the first lane that we will start our search from. 1795 unsigned FirstLane = getBestLaneToStartReordering(); 1796 1797 // Initialize the modes. 1798 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1799 Value *OpLane0 = getValue(OpIdx, FirstLane); 1800 // Keep track if we have instructions with all the same opcode on one 1801 // side. 1802 if (isa<LoadInst>(OpLane0)) 1803 ReorderingModes[OpIdx] = ReorderingMode::Load; 1804 else if (isa<Instruction>(OpLane0)) { 1805 // Check if OpLane0 should be broadcast. 1806 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1807 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1808 else 1809 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1810 } 1811 else if (isa<Constant>(OpLane0)) 1812 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1813 else if (isa<Argument>(OpLane0)) 1814 // Our best hope is a Splat. It may save some cost in some cases. 1815 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1816 else 1817 // NOTE: This should be unreachable. 1818 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1819 } 1820 1821 // Check that we don't have same operands. No need to reorder if operands 1822 // are just perfect diamond or shuffled diamond match. Do not do it only 1823 // for possible broadcasts or non-power of 2 number of scalars (just for 1824 // now). 1825 auto &&SkipReordering = [this]() { 1826 SmallPtrSet<Value *, 4> UniqueValues; 1827 ArrayRef<OperandData> Op0 = OpsVec.front(); 1828 for (const OperandData &Data : Op0) 1829 UniqueValues.insert(Data.V); 1830 for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) { 1831 if (any_of(Op, [&UniqueValues](const OperandData &Data) { 1832 return !UniqueValues.contains(Data.V); 1833 })) 1834 return false; 1835 } 1836 // TODO: Check if we can remove a check for non-power-2 number of 1837 // scalars after full support of non-power-2 vectorization. 1838 return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size()); 1839 }; 1840 1841 // If the initial strategy fails for any of the operand indexes, then we 1842 // perform reordering again in a second pass. This helps avoid assigning 1843 // high priority to the failed strategy, and should improve reordering for 1844 // the non-failed operand indexes. 1845 for (int Pass = 0; Pass != 2; ++Pass) { 1846 // Check if no need to reorder operands since they're are perfect or 1847 // shuffled diamond match. 1848 // Need to to do it to avoid extra external use cost counting for 1849 // shuffled matches, which may cause regressions. 1850 if (SkipReordering()) 1851 break; 1852 // Skip the second pass if the first pass did not fail. 1853 bool StrategyFailed = false; 1854 // Mark all operand data as free to use. 1855 clearUsed(); 1856 // We keep the original operand order for the FirstLane, so reorder the 1857 // rest of the lanes. We are visiting the nodes in a circular fashion, 1858 // using FirstLane as the center point and increasing the radius 1859 // distance. 1860 SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands); 1861 for (unsigned I = 0; I < NumOperands; ++I) 1862 MainAltOps[I].push_back(getData(I, FirstLane).V); 1863 1864 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1865 // Visit the lane on the right and then the lane on the left. 1866 for (int Direction : {+1, -1}) { 1867 int Lane = FirstLane + Direction * Distance; 1868 if (Lane < 0 || Lane >= (int)NumLanes) 1869 continue; 1870 int LastLane = Lane - Direction; 1871 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1872 "Out of bounds"); 1873 // Look for a good match for each operand. 1874 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1875 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1876 Optional<unsigned> BestIdx = getBestOperand( 1877 OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]); 1878 // By not selecting a value, we allow the operands that follow to 1879 // select a better matching value. We will get a non-null value in 1880 // the next run of getBestOperand(). 1881 if (BestIdx) { 1882 // Swap the current operand with the one returned by 1883 // getBestOperand(). 1884 swap(OpIdx, BestIdx.getValue(), Lane); 1885 } else { 1886 // We failed to find a best operand, set mode to 'Failed'. 1887 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1888 // Enable the second pass. 1889 StrategyFailed = true; 1890 } 1891 // Try to get the alternate opcode and follow it during analysis. 1892 if (MainAltOps[OpIdx].size() != 2) { 1893 OperandData &AltOp = getData(OpIdx, Lane); 1894 InstructionsState OpS = 1895 getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V}); 1896 if (OpS.getOpcode() && OpS.isAltShuffle()) 1897 MainAltOps[OpIdx].push_back(AltOp.V); 1898 } 1899 } 1900 } 1901 } 1902 // Skip second pass if the strategy did not fail. 1903 if (!StrategyFailed) 1904 break; 1905 } 1906 } 1907 1908 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1909 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1910 switch (RMode) { 1911 case ReorderingMode::Load: 1912 return "Load"; 1913 case ReorderingMode::Opcode: 1914 return "Opcode"; 1915 case ReorderingMode::Constant: 1916 return "Constant"; 1917 case ReorderingMode::Splat: 1918 return "Splat"; 1919 case ReorderingMode::Failed: 1920 return "Failed"; 1921 } 1922 llvm_unreachable("Unimplemented Reordering Type"); 1923 } 1924 1925 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1926 raw_ostream &OS) { 1927 return OS << getModeStr(RMode); 1928 } 1929 1930 /// Debug print. 1931 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1932 printMode(RMode, dbgs()); 1933 } 1934 1935 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1936 return printMode(RMode, OS); 1937 } 1938 1939 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1940 const unsigned Indent = 2; 1941 unsigned Cnt = 0; 1942 for (const OperandDataVec &OpDataVec : OpsVec) { 1943 OS << "Operand " << Cnt++ << "\n"; 1944 for (const OperandData &OpData : OpDataVec) { 1945 OS.indent(Indent) << "{"; 1946 if (Value *V = OpData.V) 1947 OS << *V; 1948 else 1949 OS << "null"; 1950 OS << ", APO:" << OpData.APO << "}\n"; 1951 } 1952 OS << "\n"; 1953 } 1954 return OS; 1955 } 1956 1957 /// Debug print. 1958 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1959 #endif 1960 }; 1961 1962 /// Checks if the instruction is marked for deletion. 1963 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1964 1965 /// Marks values operands for later deletion by replacing them with Undefs. 1966 void eraseInstructions(ArrayRef<Value *> AV); 1967 1968 ~BoUpSLP(); 1969 1970 private: 1971 /// Check if the operands on the edges \p Edges of the \p UserTE allows 1972 /// reordering (i.e. the operands can be reordered because they have only one 1973 /// user and reordarable). 1974 /// \param NonVectorized List of all gather nodes that require reordering 1975 /// (e.g., gather of extractlements or partially vectorizable loads). 1976 /// \param GatherOps List of gather operand nodes for \p UserTE that require 1977 /// reordering, subset of \p NonVectorized. 1978 bool 1979 canReorderOperands(TreeEntry *UserTE, 1980 SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 1981 ArrayRef<TreeEntry *> ReorderableGathers, 1982 SmallVectorImpl<TreeEntry *> &GatherOps); 1983 1984 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 1985 /// if any. If it is not vectorized (gather node), returns nullptr. 1986 TreeEntry *getVectorizedOperand(TreeEntry *UserTE, unsigned OpIdx) { 1987 ArrayRef<Value *> VL = UserTE->getOperand(OpIdx); 1988 TreeEntry *TE = nullptr; 1989 const auto *It = find_if(VL, [this, &TE](Value *V) { 1990 TE = getTreeEntry(V); 1991 return TE; 1992 }); 1993 if (It != VL.end() && TE->isSame(VL)) 1994 return TE; 1995 return nullptr; 1996 } 1997 1998 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 1999 /// if any. If it is not vectorized (gather node), returns nullptr. 2000 const TreeEntry *getVectorizedOperand(const TreeEntry *UserTE, 2001 unsigned OpIdx) const { 2002 return const_cast<BoUpSLP *>(this)->getVectorizedOperand( 2003 const_cast<TreeEntry *>(UserTE), OpIdx); 2004 } 2005 2006 /// Checks if all users of \p I are the part of the vectorization tree. 2007 bool areAllUsersVectorized(Instruction *I, 2008 ArrayRef<Value *> VectorizedVals) const; 2009 2010 /// \returns the cost of the vectorizable entry. 2011 InstructionCost getEntryCost(const TreeEntry *E, 2012 ArrayRef<Value *> VectorizedVals); 2013 2014 /// This is the recursive part of buildTree. 2015 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 2016 const EdgeInfo &EI); 2017 2018 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 2019 /// be vectorized to use the original vector (or aggregate "bitcast" to a 2020 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 2021 /// returns false, setting \p CurrentOrder to either an empty vector or a 2022 /// non-identity permutation that allows to reuse extract instructions. 2023 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 2024 SmallVectorImpl<unsigned> &CurrentOrder) const; 2025 2026 /// Vectorize a single entry in the tree. 2027 Value *vectorizeTree(TreeEntry *E); 2028 2029 /// Vectorize a single entry in the tree, starting in \p VL. 2030 Value *vectorizeTree(ArrayRef<Value *> VL); 2031 2032 /// Create a new vector from a list of scalar values. Produces a sequence 2033 /// which exploits values reused across lanes, and arranges the inserts 2034 /// for ease of later optimization. 2035 Value *createBuildVector(ArrayRef<Value *> VL); 2036 2037 /// \returns the scalarization cost for this type. Scalarization in this 2038 /// context means the creation of vectors from a group of scalars. If \p 2039 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 2040 /// vector elements. 2041 InstructionCost getGatherCost(FixedVectorType *Ty, 2042 const APInt &ShuffledIndices, 2043 bool NeedToShuffle) const; 2044 2045 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 2046 /// tree entries. 2047 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 2048 /// previous tree entries. \p Mask is filled with the shuffle mask. 2049 Optional<TargetTransformInfo::ShuffleKind> 2050 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 2051 SmallVectorImpl<const TreeEntry *> &Entries); 2052 2053 /// \returns the scalarization cost for this list of values. Assuming that 2054 /// this subtree gets vectorized, we may need to extract the values from the 2055 /// roots. This method calculates the cost of extracting the values. 2056 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 2057 2058 /// Set the Builder insert point to one after the last instruction in 2059 /// the bundle 2060 void setInsertPointAfterBundle(const TreeEntry *E); 2061 2062 /// \returns a vector from a collection of scalars in \p VL. 2063 Value *gather(ArrayRef<Value *> VL); 2064 2065 /// \returns whether the VectorizableTree is fully vectorizable and will 2066 /// be beneficial even the tree height is tiny. 2067 bool isFullyVectorizableTinyTree(bool ForReduction) const; 2068 2069 /// Reorder commutative or alt operands to get better probability of 2070 /// generating vectorized code. 2071 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 2072 SmallVectorImpl<Value *> &Left, 2073 SmallVectorImpl<Value *> &Right, 2074 const DataLayout &DL, 2075 ScalarEvolution &SE, 2076 const BoUpSLP &R); 2077 struct TreeEntry { 2078 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 2079 TreeEntry(VecTreeTy &Container) : Container(Container) {} 2080 2081 /// \returns true if the scalars in VL are equal to this entry. 2082 bool isSame(ArrayRef<Value *> VL) const { 2083 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 2084 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 2085 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 2086 return VL.size() == Mask.size() && 2087 std::equal(VL.begin(), VL.end(), Mask.begin(), 2088 [Scalars](Value *V, int Idx) { 2089 return (isa<UndefValue>(V) && 2090 Idx == UndefMaskElem) || 2091 (Idx != UndefMaskElem && V == Scalars[Idx]); 2092 }); 2093 }; 2094 if (!ReorderIndices.empty()) { 2095 // TODO: implement matching if the nodes are just reordered, still can 2096 // treat the vector as the same if the list of scalars matches VL 2097 // directly, without reordering. 2098 SmallVector<int> Mask; 2099 inversePermutation(ReorderIndices, Mask); 2100 if (VL.size() == Scalars.size()) 2101 return IsSame(Scalars, Mask); 2102 if (VL.size() == ReuseShuffleIndices.size()) { 2103 ::addMask(Mask, ReuseShuffleIndices); 2104 return IsSame(Scalars, Mask); 2105 } 2106 return false; 2107 } 2108 return IsSame(Scalars, ReuseShuffleIndices); 2109 } 2110 2111 /// \returns true if current entry has same operands as \p TE. 2112 bool hasEqualOperands(const TreeEntry &TE) const { 2113 if (TE.getNumOperands() != getNumOperands()) 2114 return false; 2115 SmallBitVector Used(getNumOperands()); 2116 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 2117 unsigned PrevCount = Used.count(); 2118 for (unsigned K = 0; K < E; ++K) { 2119 if (Used.test(K)) 2120 continue; 2121 if (getOperand(K) == TE.getOperand(I)) { 2122 Used.set(K); 2123 break; 2124 } 2125 } 2126 // Check if we actually found the matching operand. 2127 if (PrevCount == Used.count()) 2128 return false; 2129 } 2130 return true; 2131 } 2132 2133 /// \return Final vectorization factor for the node. Defined by the total 2134 /// number of vectorized scalars, including those, used several times in the 2135 /// entry and counted in the \a ReuseShuffleIndices, if any. 2136 unsigned getVectorFactor() const { 2137 if (!ReuseShuffleIndices.empty()) 2138 return ReuseShuffleIndices.size(); 2139 return Scalars.size(); 2140 }; 2141 2142 /// A vector of scalars. 2143 ValueList Scalars; 2144 2145 /// The Scalars are vectorized into this value. It is initialized to Null. 2146 Value *VectorizedValue = nullptr; 2147 2148 /// Do we need to gather this sequence or vectorize it 2149 /// (either with vector instruction or with scatter/gather 2150 /// intrinsics for store/load)? 2151 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 2152 EntryState State; 2153 2154 /// Does this sequence require some shuffling? 2155 SmallVector<int, 4> ReuseShuffleIndices; 2156 2157 /// Does this entry require reordering? 2158 SmallVector<unsigned, 4> ReorderIndices; 2159 2160 /// Points back to the VectorizableTree. 2161 /// 2162 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 2163 /// to be a pointer and needs to be able to initialize the child iterator. 2164 /// Thus we need a reference back to the container to translate the indices 2165 /// to entries. 2166 VecTreeTy &Container; 2167 2168 /// The TreeEntry index containing the user of this entry. We can actually 2169 /// have multiple users so the data structure is not truly a tree. 2170 SmallVector<EdgeInfo, 1> UserTreeIndices; 2171 2172 /// The index of this treeEntry in VectorizableTree. 2173 int Idx = -1; 2174 2175 private: 2176 /// The operands of each instruction in each lane Operands[op_index][lane]. 2177 /// Note: This helps avoid the replication of the code that performs the 2178 /// reordering of operands during buildTree_rec() and vectorizeTree(). 2179 SmallVector<ValueList, 2> Operands; 2180 2181 /// The main/alternate instruction. 2182 Instruction *MainOp = nullptr; 2183 Instruction *AltOp = nullptr; 2184 2185 public: 2186 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 2187 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 2188 if (Operands.size() < OpIdx + 1) 2189 Operands.resize(OpIdx + 1); 2190 assert(Operands[OpIdx].empty() && "Already resized?"); 2191 assert(OpVL.size() <= Scalars.size() && 2192 "Number of operands is greater than the number of scalars."); 2193 Operands[OpIdx].resize(OpVL.size()); 2194 copy(OpVL, Operands[OpIdx].begin()); 2195 } 2196 2197 /// Set the operands of this bundle in their original order. 2198 void setOperandsInOrder() { 2199 assert(Operands.empty() && "Already initialized?"); 2200 auto *I0 = cast<Instruction>(Scalars[0]); 2201 Operands.resize(I0->getNumOperands()); 2202 unsigned NumLanes = Scalars.size(); 2203 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 2204 OpIdx != NumOperands; ++OpIdx) { 2205 Operands[OpIdx].resize(NumLanes); 2206 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 2207 auto *I = cast<Instruction>(Scalars[Lane]); 2208 assert(I->getNumOperands() == NumOperands && 2209 "Expected same number of operands"); 2210 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 2211 } 2212 } 2213 } 2214 2215 /// Reorders operands of the node to the given mask \p Mask. 2216 void reorderOperands(ArrayRef<int> Mask) { 2217 for (ValueList &Operand : Operands) 2218 reorderScalars(Operand, Mask); 2219 } 2220 2221 /// \returns the \p OpIdx operand of this TreeEntry. 2222 ValueList &getOperand(unsigned OpIdx) { 2223 assert(OpIdx < Operands.size() && "Off bounds"); 2224 return Operands[OpIdx]; 2225 } 2226 2227 /// \returns the \p OpIdx operand of this TreeEntry. 2228 ArrayRef<Value *> getOperand(unsigned OpIdx) const { 2229 assert(OpIdx < Operands.size() && "Off bounds"); 2230 return Operands[OpIdx]; 2231 } 2232 2233 /// \returns the number of operands. 2234 unsigned getNumOperands() const { return Operands.size(); } 2235 2236 /// \return the single \p OpIdx operand. 2237 Value *getSingleOperand(unsigned OpIdx) const { 2238 assert(OpIdx < Operands.size() && "Off bounds"); 2239 assert(!Operands[OpIdx].empty() && "No operand available"); 2240 return Operands[OpIdx][0]; 2241 } 2242 2243 /// Some of the instructions in the list have alternate opcodes. 2244 bool isAltShuffle() const { return MainOp != AltOp; } 2245 2246 bool isOpcodeOrAlt(Instruction *I) const { 2247 unsigned CheckedOpcode = I->getOpcode(); 2248 return (getOpcode() == CheckedOpcode || 2249 getAltOpcode() == CheckedOpcode); 2250 } 2251 2252 /// Chooses the correct key for scheduling data. If \p Op has the same (or 2253 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 2254 /// \p OpValue. 2255 Value *isOneOf(Value *Op) const { 2256 auto *I = dyn_cast<Instruction>(Op); 2257 if (I && isOpcodeOrAlt(I)) 2258 return Op; 2259 return MainOp; 2260 } 2261 2262 void setOperations(const InstructionsState &S) { 2263 MainOp = S.MainOp; 2264 AltOp = S.AltOp; 2265 } 2266 2267 Instruction *getMainOp() const { 2268 return MainOp; 2269 } 2270 2271 Instruction *getAltOp() const { 2272 return AltOp; 2273 } 2274 2275 /// The main/alternate opcodes for the list of instructions. 2276 unsigned getOpcode() const { 2277 return MainOp ? MainOp->getOpcode() : 0; 2278 } 2279 2280 unsigned getAltOpcode() const { 2281 return AltOp ? AltOp->getOpcode() : 0; 2282 } 2283 2284 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 2285 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 2286 int findLaneForValue(Value *V) const { 2287 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2288 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2289 if (!ReorderIndices.empty()) 2290 FoundLane = ReorderIndices[FoundLane]; 2291 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2292 if (!ReuseShuffleIndices.empty()) { 2293 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2294 find(ReuseShuffleIndices, FoundLane)); 2295 } 2296 return FoundLane; 2297 } 2298 2299 #ifndef NDEBUG 2300 /// Debug printer. 2301 LLVM_DUMP_METHOD void dump() const { 2302 dbgs() << Idx << ".\n"; 2303 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 2304 dbgs() << "Operand " << OpI << ":\n"; 2305 for (const Value *V : Operands[OpI]) 2306 dbgs().indent(2) << *V << "\n"; 2307 } 2308 dbgs() << "Scalars: \n"; 2309 for (Value *V : Scalars) 2310 dbgs().indent(2) << *V << "\n"; 2311 dbgs() << "State: "; 2312 switch (State) { 2313 case Vectorize: 2314 dbgs() << "Vectorize\n"; 2315 break; 2316 case ScatterVectorize: 2317 dbgs() << "ScatterVectorize\n"; 2318 break; 2319 case NeedToGather: 2320 dbgs() << "NeedToGather\n"; 2321 break; 2322 } 2323 dbgs() << "MainOp: "; 2324 if (MainOp) 2325 dbgs() << *MainOp << "\n"; 2326 else 2327 dbgs() << "NULL\n"; 2328 dbgs() << "AltOp: "; 2329 if (AltOp) 2330 dbgs() << *AltOp << "\n"; 2331 else 2332 dbgs() << "NULL\n"; 2333 dbgs() << "VectorizedValue: "; 2334 if (VectorizedValue) 2335 dbgs() << *VectorizedValue << "\n"; 2336 else 2337 dbgs() << "NULL\n"; 2338 dbgs() << "ReuseShuffleIndices: "; 2339 if (ReuseShuffleIndices.empty()) 2340 dbgs() << "Empty"; 2341 else 2342 for (int ReuseIdx : ReuseShuffleIndices) 2343 dbgs() << ReuseIdx << ", "; 2344 dbgs() << "\n"; 2345 dbgs() << "ReorderIndices: "; 2346 for (unsigned ReorderIdx : ReorderIndices) 2347 dbgs() << ReorderIdx << ", "; 2348 dbgs() << "\n"; 2349 dbgs() << "UserTreeIndices: "; 2350 for (const auto &EInfo : UserTreeIndices) 2351 dbgs() << EInfo << ", "; 2352 dbgs() << "\n"; 2353 } 2354 #endif 2355 }; 2356 2357 #ifndef NDEBUG 2358 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 2359 InstructionCost VecCost, 2360 InstructionCost ScalarCost) const { 2361 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 2362 dbgs() << "SLP: Costs:\n"; 2363 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 2364 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 2365 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 2366 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 2367 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 2368 } 2369 #endif 2370 2371 /// Create a new VectorizableTree entry. 2372 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 2373 const InstructionsState &S, 2374 const EdgeInfo &UserTreeIdx, 2375 ArrayRef<int> ReuseShuffleIndices = None, 2376 ArrayRef<unsigned> ReorderIndices = None) { 2377 TreeEntry::EntryState EntryState = 2378 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 2379 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 2380 ReuseShuffleIndices, ReorderIndices); 2381 } 2382 2383 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 2384 TreeEntry::EntryState EntryState, 2385 Optional<ScheduleData *> Bundle, 2386 const InstructionsState &S, 2387 const EdgeInfo &UserTreeIdx, 2388 ArrayRef<int> ReuseShuffleIndices = None, 2389 ArrayRef<unsigned> ReorderIndices = None) { 2390 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 2391 (Bundle && EntryState != TreeEntry::NeedToGather)) && 2392 "Need to vectorize gather entry?"); 2393 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 2394 TreeEntry *Last = VectorizableTree.back().get(); 2395 Last->Idx = VectorizableTree.size() - 1; 2396 Last->State = EntryState; 2397 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 2398 ReuseShuffleIndices.end()); 2399 if (ReorderIndices.empty()) { 2400 Last->Scalars.assign(VL.begin(), VL.end()); 2401 Last->setOperations(S); 2402 } else { 2403 // Reorder scalars and build final mask. 2404 Last->Scalars.assign(VL.size(), nullptr); 2405 transform(ReorderIndices, Last->Scalars.begin(), 2406 [VL](unsigned Idx) -> Value * { 2407 if (Idx >= VL.size()) 2408 return UndefValue::get(VL.front()->getType()); 2409 return VL[Idx]; 2410 }); 2411 InstructionsState S = getSameOpcode(Last->Scalars); 2412 Last->setOperations(S); 2413 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 2414 } 2415 if (Last->State != TreeEntry::NeedToGather) { 2416 for (Value *V : VL) { 2417 assert(!getTreeEntry(V) && "Scalar already in tree!"); 2418 ScalarToTreeEntry[V] = Last; 2419 } 2420 // Update the scheduler bundle to point to this TreeEntry. 2421 ScheduleData *BundleMember = Bundle.getValue(); 2422 assert((BundleMember || isa<PHINode>(S.MainOp) || 2423 isVectorLikeInstWithConstOps(S.MainOp) || 2424 doesNotNeedToSchedule(VL)) && 2425 "Bundle and VL out of sync"); 2426 if (BundleMember) { 2427 for (Value *V : VL) { 2428 if (doesNotNeedToBeScheduled(V)) 2429 continue; 2430 assert(BundleMember && "Unexpected end of bundle."); 2431 BundleMember->TE = Last; 2432 BundleMember = BundleMember->NextInBundle; 2433 } 2434 } 2435 assert(!BundleMember && "Bundle and VL out of sync"); 2436 } else { 2437 MustGather.insert(VL.begin(), VL.end()); 2438 } 2439 2440 if (UserTreeIdx.UserTE) 2441 Last->UserTreeIndices.push_back(UserTreeIdx); 2442 2443 return Last; 2444 } 2445 2446 /// -- Vectorization State -- 2447 /// Holds all of the tree entries. 2448 TreeEntry::VecTreeTy VectorizableTree; 2449 2450 #ifndef NDEBUG 2451 /// Debug printer. 2452 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 2453 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 2454 VectorizableTree[Id]->dump(); 2455 dbgs() << "\n"; 2456 } 2457 } 2458 #endif 2459 2460 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2461 2462 const TreeEntry *getTreeEntry(Value *V) const { 2463 return ScalarToTreeEntry.lookup(V); 2464 } 2465 2466 /// Maps a specific scalar to its tree entry. 2467 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2468 2469 /// Maps a value to the proposed vectorizable size. 2470 SmallDenseMap<Value *, unsigned> InstrElementSize; 2471 2472 /// A list of scalars that we found that we need to keep as scalars. 2473 ValueSet MustGather; 2474 2475 /// This POD struct describes one external user in the vectorized tree. 2476 struct ExternalUser { 2477 ExternalUser(Value *S, llvm::User *U, int L) 2478 : Scalar(S), User(U), Lane(L) {} 2479 2480 // Which scalar in our function. 2481 Value *Scalar; 2482 2483 // Which user that uses the scalar. 2484 llvm::User *User; 2485 2486 // Which lane does the scalar belong to. 2487 int Lane; 2488 }; 2489 using UserList = SmallVector<ExternalUser, 16>; 2490 2491 /// Checks if two instructions may access the same memory. 2492 /// 2493 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2494 /// is invariant in the calling loop. 2495 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2496 Instruction *Inst2) { 2497 // First check if the result is already in the cache. 2498 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2499 Optional<bool> &result = AliasCache[key]; 2500 if (result.hasValue()) { 2501 return result.getValue(); 2502 } 2503 bool aliased = true; 2504 if (Loc1.Ptr && isSimple(Inst1)) 2505 aliased = isModOrRefSet(BatchAA.getModRefInfo(Inst2, Loc1)); 2506 // Store the result in the cache. 2507 result = aliased; 2508 return aliased; 2509 } 2510 2511 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2512 2513 /// Cache for alias results. 2514 /// TODO: consider moving this to the AliasAnalysis itself. 2515 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2516 2517 // Cache for pointerMayBeCaptured calls inside AA. This is preserved 2518 // globally through SLP because we don't perform any action which 2519 // invalidates capture results. 2520 BatchAAResults BatchAA; 2521 2522 /// Removes an instruction from its block and eventually deletes it. 2523 /// It's like Instruction::eraseFromParent() except that the actual deletion 2524 /// is delayed until BoUpSLP is destructed. 2525 /// This is required to ensure that there are no incorrect collisions in the 2526 /// AliasCache, which can happen if a new instruction is allocated at the 2527 /// same address as a previously deleted instruction. 2528 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 2529 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 2530 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 2531 } 2532 2533 /// Temporary store for deleted instructions. Instructions will be deleted 2534 /// eventually when the BoUpSLP is destructed. 2535 DenseMap<Instruction *, bool> DeletedInstructions; 2536 2537 /// A list of values that need to extracted out of the tree. 2538 /// This list holds pairs of (Internal Scalar : External User). External User 2539 /// can be nullptr, it means that this Internal Scalar will be used later, 2540 /// after vectorization. 2541 UserList ExternalUses; 2542 2543 /// Values used only by @llvm.assume calls. 2544 SmallPtrSet<const Value *, 32> EphValues; 2545 2546 /// Holds all of the instructions that we gathered. 2547 SetVector<Instruction *> GatherShuffleSeq; 2548 2549 /// A list of blocks that we are going to CSE. 2550 SetVector<BasicBlock *> CSEBlocks; 2551 2552 /// Contains all scheduling relevant data for an instruction. 2553 /// A ScheduleData either represents a single instruction or a member of an 2554 /// instruction bundle (= a group of instructions which is combined into a 2555 /// vector instruction). 2556 struct ScheduleData { 2557 // The initial value for the dependency counters. It means that the 2558 // dependencies are not calculated yet. 2559 enum { InvalidDeps = -1 }; 2560 2561 ScheduleData() = default; 2562 2563 void init(int BlockSchedulingRegionID, Value *OpVal) { 2564 FirstInBundle = this; 2565 NextInBundle = nullptr; 2566 NextLoadStore = nullptr; 2567 IsScheduled = false; 2568 SchedulingRegionID = BlockSchedulingRegionID; 2569 clearDependencies(); 2570 OpValue = OpVal; 2571 TE = nullptr; 2572 } 2573 2574 /// Verify basic self consistency properties 2575 void verify() { 2576 if (hasValidDependencies()) { 2577 assert(UnscheduledDeps <= Dependencies && "invariant"); 2578 } else { 2579 assert(UnscheduledDeps == Dependencies && "invariant"); 2580 } 2581 2582 if (IsScheduled) { 2583 assert(isSchedulingEntity() && 2584 "unexpected scheduled state"); 2585 for (const ScheduleData *BundleMember = this; BundleMember; 2586 BundleMember = BundleMember->NextInBundle) { 2587 assert(BundleMember->hasValidDependencies() && 2588 BundleMember->UnscheduledDeps == 0 && 2589 "unexpected scheduled state"); 2590 assert((BundleMember == this || !BundleMember->IsScheduled) && 2591 "only bundle is marked scheduled"); 2592 } 2593 } 2594 2595 assert(Inst->getParent() == FirstInBundle->Inst->getParent() && 2596 "all bundle members must be in same basic block"); 2597 } 2598 2599 /// Returns true if the dependency information has been calculated. 2600 /// Note that depenendency validity can vary between instructions within 2601 /// a single bundle. 2602 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2603 2604 /// Returns true for single instructions and for bundle representatives 2605 /// (= the head of a bundle). 2606 bool isSchedulingEntity() const { return FirstInBundle == this; } 2607 2608 /// Returns true if it represents an instruction bundle and not only a 2609 /// single instruction. 2610 bool isPartOfBundle() const { 2611 return NextInBundle != nullptr || FirstInBundle != this || TE; 2612 } 2613 2614 /// Returns true if it is ready for scheduling, i.e. it has no more 2615 /// unscheduled depending instructions/bundles. 2616 bool isReady() const { 2617 assert(isSchedulingEntity() && 2618 "can't consider non-scheduling entity for ready list"); 2619 return unscheduledDepsInBundle() == 0 && !IsScheduled; 2620 } 2621 2622 /// Modifies the number of unscheduled dependencies for this instruction, 2623 /// and returns the number of remaining dependencies for the containing 2624 /// bundle. 2625 int incrementUnscheduledDeps(int Incr) { 2626 assert(hasValidDependencies() && 2627 "increment of unscheduled deps would be meaningless"); 2628 UnscheduledDeps += Incr; 2629 return FirstInBundle->unscheduledDepsInBundle(); 2630 } 2631 2632 /// Sets the number of unscheduled dependencies to the number of 2633 /// dependencies. 2634 void resetUnscheduledDeps() { 2635 UnscheduledDeps = Dependencies; 2636 } 2637 2638 /// Clears all dependency information. 2639 void clearDependencies() { 2640 Dependencies = InvalidDeps; 2641 resetUnscheduledDeps(); 2642 MemoryDependencies.clear(); 2643 ControlDependencies.clear(); 2644 } 2645 2646 int unscheduledDepsInBundle() const { 2647 assert(isSchedulingEntity() && "only meaningful on the bundle"); 2648 int Sum = 0; 2649 for (const ScheduleData *BundleMember = this; BundleMember; 2650 BundleMember = BundleMember->NextInBundle) { 2651 if (BundleMember->UnscheduledDeps == InvalidDeps) 2652 return InvalidDeps; 2653 Sum += BundleMember->UnscheduledDeps; 2654 } 2655 return Sum; 2656 } 2657 2658 void dump(raw_ostream &os) const { 2659 if (!isSchedulingEntity()) { 2660 os << "/ " << *Inst; 2661 } else if (NextInBundle) { 2662 os << '[' << *Inst; 2663 ScheduleData *SD = NextInBundle; 2664 while (SD) { 2665 os << ';' << *SD->Inst; 2666 SD = SD->NextInBundle; 2667 } 2668 os << ']'; 2669 } else { 2670 os << *Inst; 2671 } 2672 } 2673 2674 Instruction *Inst = nullptr; 2675 2676 /// Opcode of the current instruction in the schedule data. 2677 Value *OpValue = nullptr; 2678 2679 /// The TreeEntry that this instruction corresponds to. 2680 TreeEntry *TE = nullptr; 2681 2682 /// Points to the head in an instruction bundle (and always to this for 2683 /// single instructions). 2684 ScheduleData *FirstInBundle = nullptr; 2685 2686 /// Single linked list of all instructions in a bundle. Null if it is a 2687 /// single instruction. 2688 ScheduleData *NextInBundle = nullptr; 2689 2690 /// Single linked list of all memory instructions (e.g. load, store, call) 2691 /// in the block - until the end of the scheduling region. 2692 ScheduleData *NextLoadStore = nullptr; 2693 2694 /// The dependent memory instructions. 2695 /// This list is derived on demand in calculateDependencies(). 2696 SmallVector<ScheduleData *, 4> MemoryDependencies; 2697 2698 /// List of instructions which this instruction could be control dependent 2699 /// on. Allowing such nodes to be scheduled below this one could introduce 2700 /// a runtime fault which didn't exist in the original program. 2701 /// ex: this is a load or udiv following a readonly call which inf loops 2702 SmallVector<ScheduleData *, 4> ControlDependencies; 2703 2704 /// This ScheduleData is in the current scheduling region if this matches 2705 /// the current SchedulingRegionID of BlockScheduling. 2706 int SchedulingRegionID = 0; 2707 2708 /// Used for getting a "good" final ordering of instructions. 2709 int SchedulingPriority = 0; 2710 2711 /// The number of dependencies. Constitutes of the number of users of the 2712 /// instruction plus the number of dependent memory instructions (if any). 2713 /// This value is calculated on demand. 2714 /// If InvalidDeps, the number of dependencies is not calculated yet. 2715 int Dependencies = InvalidDeps; 2716 2717 /// The number of dependencies minus the number of dependencies of scheduled 2718 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2719 /// for scheduling. 2720 /// Note that this is negative as long as Dependencies is not calculated. 2721 int UnscheduledDeps = InvalidDeps; 2722 2723 /// True if this instruction is scheduled (or considered as scheduled in the 2724 /// dry-run). 2725 bool IsScheduled = false; 2726 }; 2727 2728 #ifndef NDEBUG 2729 friend inline raw_ostream &operator<<(raw_ostream &os, 2730 const BoUpSLP::ScheduleData &SD) { 2731 SD.dump(os); 2732 return os; 2733 } 2734 #endif 2735 2736 friend struct GraphTraits<BoUpSLP *>; 2737 friend struct DOTGraphTraits<BoUpSLP *>; 2738 2739 /// Contains all scheduling data for a basic block. 2740 /// It does not schedules instructions, which are not memory read/write 2741 /// instructions and their operands are either constants, or arguments, or 2742 /// phis, or instructions from others blocks, or their users are phis or from 2743 /// the other blocks. The resulting vector instructions can be placed at the 2744 /// beginning of the basic block without scheduling (if operands does not need 2745 /// to be scheduled) or at the end of the block (if users are outside of the 2746 /// block). It allows to save some compile time and memory used by the 2747 /// compiler. 2748 /// ScheduleData is assigned for each instruction in between the boundaries of 2749 /// the tree entry, even for those, which are not part of the graph. It is 2750 /// required to correctly follow the dependencies between the instructions and 2751 /// their correct scheduling. The ScheduleData is not allocated for the 2752 /// instructions, which do not require scheduling, like phis, nodes with 2753 /// extractelements/insertelements only or nodes with instructions, with 2754 /// uses/operands outside of the block. 2755 struct BlockScheduling { 2756 BlockScheduling(BasicBlock *BB) 2757 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2758 2759 void clear() { 2760 ReadyInsts.clear(); 2761 ScheduleStart = nullptr; 2762 ScheduleEnd = nullptr; 2763 FirstLoadStoreInRegion = nullptr; 2764 LastLoadStoreInRegion = nullptr; 2765 2766 // Reduce the maximum schedule region size by the size of the 2767 // previous scheduling run. 2768 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2769 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2770 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2771 ScheduleRegionSize = 0; 2772 2773 // Make a new scheduling region, i.e. all existing ScheduleData is not 2774 // in the new region yet. 2775 ++SchedulingRegionID; 2776 } 2777 2778 ScheduleData *getScheduleData(Instruction *I) { 2779 if (BB != I->getParent()) 2780 // Avoid lookup if can't possibly be in map. 2781 return nullptr; 2782 ScheduleData *SD = ScheduleDataMap.lookup(I); 2783 if (SD && isInSchedulingRegion(SD)) 2784 return SD; 2785 return nullptr; 2786 } 2787 2788 ScheduleData *getScheduleData(Value *V) { 2789 if (auto *I = dyn_cast<Instruction>(V)) 2790 return getScheduleData(I); 2791 return nullptr; 2792 } 2793 2794 ScheduleData *getScheduleData(Value *V, Value *Key) { 2795 if (V == Key) 2796 return getScheduleData(V); 2797 auto I = ExtraScheduleDataMap.find(V); 2798 if (I != ExtraScheduleDataMap.end()) { 2799 ScheduleData *SD = I->second.lookup(Key); 2800 if (SD && isInSchedulingRegion(SD)) 2801 return SD; 2802 } 2803 return nullptr; 2804 } 2805 2806 bool isInSchedulingRegion(ScheduleData *SD) const { 2807 return SD->SchedulingRegionID == SchedulingRegionID; 2808 } 2809 2810 /// Marks an instruction as scheduled and puts all dependent ready 2811 /// instructions into the ready-list. 2812 template <typename ReadyListType> 2813 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2814 SD->IsScheduled = true; 2815 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2816 2817 for (ScheduleData *BundleMember = SD; BundleMember; 2818 BundleMember = BundleMember->NextInBundle) { 2819 if (BundleMember->Inst != BundleMember->OpValue) 2820 continue; 2821 2822 // Handle the def-use chain dependencies. 2823 2824 // Decrement the unscheduled counter and insert to ready list if ready. 2825 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2826 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2827 if (OpDef && OpDef->hasValidDependencies() && 2828 OpDef->incrementUnscheduledDeps(-1) == 0) { 2829 // There are no more unscheduled dependencies after 2830 // decrementing, so we can put the dependent instruction 2831 // into the ready list. 2832 ScheduleData *DepBundle = OpDef->FirstInBundle; 2833 assert(!DepBundle->IsScheduled && 2834 "already scheduled bundle gets ready"); 2835 ReadyList.insert(DepBundle); 2836 LLVM_DEBUG(dbgs() 2837 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2838 } 2839 }); 2840 }; 2841 2842 // If BundleMember is a vector bundle, its operands may have been 2843 // reordered during buildTree(). We therefore need to get its operands 2844 // through the TreeEntry. 2845 if (TreeEntry *TE = BundleMember->TE) { 2846 // Need to search for the lane since the tree entry can be reordered. 2847 int Lane = std::distance(TE->Scalars.begin(), 2848 find(TE->Scalars, BundleMember->Inst)); 2849 assert(Lane >= 0 && "Lane not set"); 2850 2851 // Since vectorization tree is being built recursively this assertion 2852 // ensures that the tree entry has all operands set before reaching 2853 // this code. Couple of exceptions known at the moment are extracts 2854 // where their second (immediate) operand is not added. Since 2855 // immediates do not affect scheduler behavior this is considered 2856 // okay. 2857 auto *In = BundleMember->Inst; 2858 assert(In && 2859 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2860 In->getNumOperands() == TE->getNumOperands()) && 2861 "Missed TreeEntry operands?"); 2862 (void)In; // fake use to avoid build failure when assertions disabled 2863 2864 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2865 OpIdx != NumOperands; ++OpIdx) 2866 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2867 DecrUnsched(I); 2868 } else { 2869 // If BundleMember is a stand-alone instruction, no operand reordering 2870 // has taken place, so we directly access its operands. 2871 for (Use &U : BundleMember->Inst->operands()) 2872 if (auto *I = dyn_cast<Instruction>(U.get())) 2873 DecrUnsched(I); 2874 } 2875 // Handle the memory dependencies. 2876 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2877 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2878 // There are no more unscheduled dependencies after decrementing, 2879 // so we can put the dependent instruction into the ready list. 2880 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2881 assert(!DepBundle->IsScheduled && 2882 "already scheduled bundle gets ready"); 2883 ReadyList.insert(DepBundle); 2884 LLVM_DEBUG(dbgs() 2885 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2886 } 2887 } 2888 // Handle the control dependencies. 2889 for (ScheduleData *DepSD : BundleMember->ControlDependencies) { 2890 if (DepSD->incrementUnscheduledDeps(-1) == 0) { 2891 // There are no more unscheduled dependencies after decrementing, 2892 // so we can put the dependent instruction into the ready list. 2893 ScheduleData *DepBundle = DepSD->FirstInBundle; 2894 assert(!DepBundle->IsScheduled && 2895 "already scheduled bundle gets ready"); 2896 ReadyList.insert(DepBundle); 2897 LLVM_DEBUG(dbgs() 2898 << "SLP: gets ready (ctl): " << *DepBundle << "\n"); 2899 } 2900 } 2901 2902 } 2903 } 2904 2905 /// Verify basic self consistency properties of the data structure. 2906 void verify() { 2907 if (!ScheduleStart) 2908 return; 2909 2910 assert(ScheduleStart->getParent() == ScheduleEnd->getParent() && 2911 ScheduleStart->comesBefore(ScheduleEnd) && 2912 "Not a valid scheduling region?"); 2913 2914 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2915 auto *SD = getScheduleData(I); 2916 if (!SD) 2917 continue; 2918 assert(isInSchedulingRegion(SD) && 2919 "primary schedule data not in window?"); 2920 assert(isInSchedulingRegion(SD->FirstInBundle) && 2921 "entire bundle in window!"); 2922 (void)SD; 2923 doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); }); 2924 } 2925 2926 for (auto *SD : ReadyInsts) { 2927 assert(SD->isSchedulingEntity() && SD->isReady() && 2928 "item in ready list not ready?"); 2929 (void)SD; 2930 } 2931 } 2932 2933 void doForAllOpcodes(Value *V, 2934 function_ref<void(ScheduleData *SD)> Action) { 2935 if (ScheduleData *SD = getScheduleData(V)) 2936 Action(SD); 2937 auto I = ExtraScheduleDataMap.find(V); 2938 if (I != ExtraScheduleDataMap.end()) 2939 for (auto &P : I->second) 2940 if (isInSchedulingRegion(P.second)) 2941 Action(P.second); 2942 } 2943 2944 /// Put all instructions into the ReadyList which are ready for scheduling. 2945 template <typename ReadyListType> 2946 void initialFillReadyList(ReadyListType &ReadyList) { 2947 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2948 doForAllOpcodes(I, [&](ScheduleData *SD) { 2949 if (SD->isSchedulingEntity() && SD->isReady()) { 2950 ReadyList.insert(SD); 2951 LLVM_DEBUG(dbgs() 2952 << "SLP: initially in ready list: " << *SD << "\n"); 2953 } 2954 }); 2955 } 2956 } 2957 2958 /// Build a bundle from the ScheduleData nodes corresponding to the 2959 /// scalar instruction for each lane. 2960 ScheduleData *buildBundle(ArrayRef<Value *> VL); 2961 2962 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2963 /// cyclic dependencies. This is only a dry-run, no instructions are 2964 /// actually moved at this stage. 2965 /// \returns the scheduling bundle. The returned Optional value is non-None 2966 /// if \p VL is allowed to be scheduled. 2967 Optional<ScheduleData *> 2968 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2969 const InstructionsState &S); 2970 2971 /// Un-bundles a group of instructions. 2972 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2973 2974 /// Allocates schedule data chunk. 2975 ScheduleData *allocateScheduleDataChunks(); 2976 2977 /// Extends the scheduling region so that V is inside the region. 2978 /// \returns true if the region size is within the limit. 2979 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2980 2981 /// Initialize the ScheduleData structures for new instructions in the 2982 /// scheduling region. 2983 void initScheduleData(Instruction *FromI, Instruction *ToI, 2984 ScheduleData *PrevLoadStore, 2985 ScheduleData *NextLoadStore); 2986 2987 /// Updates the dependency information of a bundle and of all instructions/ 2988 /// bundles which depend on the original bundle. 2989 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2990 BoUpSLP *SLP); 2991 2992 /// Sets all instruction in the scheduling region to un-scheduled. 2993 void resetSchedule(); 2994 2995 BasicBlock *BB; 2996 2997 /// Simple memory allocation for ScheduleData. 2998 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2999 3000 /// The size of a ScheduleData array in ScheduleDataChunks. 3001 int ChunkSize; 3002 3003 /// The allocator position in the current chunk, which is the last entry 3004 /// of ScheduleDataChunks. 3005 int ChunkPos; 3006 3007 /// Attaches ScheduleData to Instruction. 3008 /// Note that the mapping survives during all vectorization iterations, i.e. 3009 /// ScheduleData structures are recycled. 3010 DenseMap<Instruction *, ScheduleData *> ScheduleDataMap; 3011 3012 /// Attaches ScheduleData to Instruction with the leading key. 3013 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 3014 ExtraScheduleDataMap; 3015 3016 /// The ready-list for scheduling (only used for the dry-run). 3017 SetVector<ScheduleData *> ReadyInsts; 3018 3019 /// The first instruction of the scheduling region. 3020 Instruction *ScheduleStart = nullptr; 3021 3022 /// The first instruction _after_ the scheduling region. 3023 Instruction *ScheduleEnd = nullptr; 3024 3025 /// The first memory accessing instruction in the scheduling region 3026 /// (can be null). 3027 ScheduleData *FirstLoadStoreInRegion = nullptr; 3028 3029 /// The last memory accessing instruction in the scheduling region 3030 /// (can be null). 3031 ScheduleData *LastLoadStoreInRegion = nullptr; 3032 3033 /// The current size of the scheduling region. 3034 int ScheduleRegionSize = 0; 3035 3036 /// The maximum size allowed for the scheduling region. 3037 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 3038 3039 /// The ID of the scheduling region. For a new vectorization iteration this 3040 /// is incremented which "removes" all ScheduleData from the region. 3041 /// Make sure that the initial SchedulingRegionID is greater than the 3042 /// initial SchedulingRegionID in ScheduleData (which is 0). 3043 int SchedulingRegionID = 1; 3044 }; 3045 3046 /// Attaches the BlockScheduling structures to basic blocks. 3047 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 3048 3049 /// Performs the "real" scheduling. Done before vectorization is actually 3050 /// performed in a basic block. 3051 void scheduleBlock(BlockScheduling *BS); 3052 3053 /// List of users to ignore during scheduling and that don't need extracting. 3054 ArrayRef<Value *> UserIgnoreList; 3055 3056 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 3057 /// sorted SmallVectors of unsigned. 3058 struct OrdersTypeDenseMapInfo { 3059 static OrdersType getEmptyKey() { 3060 OrdersType V; 3061 V.push_back(~1U); 3062 return V; 3063 } 3064 3065 static OrdersType getTombstoneKey() { 3066 OrdersType V; 3067 V.push_back(~2U); 3068 return V; 3069 } 3070 3071 static unsigned getHashValue(const OrdersType &V) { 3072 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 3073 } 3074 3075 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 3076 return LHS == RHS; 3077 } 3078 }; 3079 3080 // Analysis and block reference. 3081 Function *F; 3082 ScalarEvolution *SE; 3083 TargetTransformInfo *TTI; 3084 TargetLibraryInfo *TLI; 3085 LoopInfo *LI; 3086 DominatorTree *DT; 3087 AssumptionCache *AC; 3088 DemandedBits *DB; 3089 const DataLayout *DL; 3090 OptimizationRemarkEmitter *ORE; 3091 3092 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 3093 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 3094 3095 /// Instruction builder to construct the vectorized tree. 3096 IRBuilder<> Builder; 3097 3098 /// A map of scalar integer values to the smallest bit width with which they 3099 /// can legally be represented. The values map to (width, signed) pairs, 3100 /// where "width" indicates the minimum bit width and "signed" is True if the 3101 /// value must be signed-extended, rather than zero-extended, back to its 3102 /// original width. 3103 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 3104 }; 3105 3106 } // end namespace slpvectorizer 3107 3108 template <> struct GraphTraits<BoUpSLP *> { 3109 using TreeEntry = BoUpSLP::TreeEntry; 3110 3111 /// NodeRef has to be a pointer per the GraphWriter. 3112 using NodeRef = TreeEntry *; 3113 3114 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 3115 3116 /// Add the VectorizableTree to the index iterator to be able to return 3117 /// TreeEntry pointers. 3118 struct ChildIteratorType 3119 : public iterator_adaptor_base< 3120 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 3121 ContainerTy &VectorizableTree; 3122 3123 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 3124 ContainerTy &VT) 3125 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 3126 3127 NodeRef operator*() { return I->UserTE; } 3128 }; 3129 3130 static NodeRef getEntryNode(BoUpSLP &R) { 3131 return R.VectorizableTree[0].get(); 3132 } 3133 3134 static ChildIteratorType child_begin(NodeRef N) { 3135 return {N->UserTreeIndices.begin(), N->Container}; 3136 } 3137 3138 static ChildIteratorType child_end(NodeRef N) { 3139 return {N->UserTreeIndices.end(), N->Container}; 3140 } 3141 3142 /// For the node iterator we just need to turn the TreeEntry iterator into a 3143 /// TreeEntry* iterator so that it dereferences to NodeRef. 3144 class nodes_iterator { 3145 using ItTy = ContainerTy::iterator; 3146 ItTy It; 3147 3148 public: 3149 nodes_iterator(const ItTy &It2) : It(It2) {} 3150 NodeRef operator*() { return It->get(); } 3151 nodes_iterator operator++() { 3152 ++It; 3153 return *this; 3154 } 3155 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 3156 }; 3157 3158 static nodes_iterator nodes_begin(BoUpSLP *R) { 3159 return nodes_iterator(R->VectorizableTree.begin()); 3160 } 3161 3162 static nodes_iterator nodes_end(BoUpSLP *R) { 3163 return nodes_iterator(R->VectorizableTree.end()); 3164 } 3165 3166 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 3167 }; 3168 3169 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 3170 using TreeEntry = BoUpSLP::TreeEntry; 3171 3172 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3173 3174 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 3175 std::string Str; 3176 raw_string_ostream OS(Str); 3177 if (isSplat(Entry->Scalars)) 3178 OS << "<splat> "; 3179 for (auto V : Entry->Scalars) { 3180 OS << *V; 3181 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 3182 return EU.Scalar == V; 3183 })) 3184 OS << " <extract>"; 3185 OS << "\n"; 3186 } 3187 return Str; 3188 } 3189 3190 static std::string getNodeAttributes(const TreeEntry *Entry, 3191 const BoUpSLP *) { 3192 if (Entry->State == TreeEntry::NeedToGather) 3193 return "color=red"; 3194 return ""; 3195 } 3196 }; 3197 3198 } // end namespace llvm 3199 3200 BoUpSLP::~BoUpSLP() { 3201 for (const auto &Pair : DeletedInstructions) { 3202 // Replace operands of ignored instructions with Undefs in case if they were 3203 // marked for deletion. 3204 if (Pair.getSecond()) { 3205 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 3206 Pair.getFirst()->replaceAllUsesWith(Undef); 3207 } 3208 Pair.getFirst()->dropAllReferences(); 3209 } 3210 for (const auto &Pair : DeletedInstructions) { 3211 assert(Pair.getFirst()->use_empty() && 3212 "trying to erase instruction with users."); 3213 Pair.getFirst()->eraseFromParent(); 3214 } 3215 #ifdef EXPENSIVE_CHECKS 3216 // If we could guarantee that this call is not extremely slow, we could 3217 // remove the ifdef limitation (see PR47712). 3218 assert(!verifyFunction(*F, &dbgs())); 3219 #endif 3220 } 3221 3222 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 3223 for (auto *V : AV) { 3224 if (auto *I = dyn_cast<Instruction>(V)) 3225 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 3226 }; 3227 } 3228 3229 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 3230 /// contains original mask for the scalars reused in the node. Procedure 3231 /// transform this mask in accordance with the given \p Mask. 3232 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 3233 assert(!Mask.empty() && Reuses.size() == Mask.size() && 3234 "Expected non-empty mask."); 3235 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 3236 Prev.swap(Reuses); 3237 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 3238 if (Mask[I] != UndefMaskElem) 3239 Reuses[Mask[I]] = Prev[I]; 3240 } 3241 3242 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 3243 /// the original order of the scalars. Procedure transforms the provided order 3244 /// in accordance with the given \p Mask. If the resulting \p Order is just an 3245 /// identity order, \p Order is cleared. 3246 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 3247 assert(!Mask.empty() && "Expected non-empty mask."); 3248 SmallVector<int> MaskOrder; 3249 if (Order.empty()) { 3250 MaskOrder.resize(Mask.size()); 3251 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 3252 } else { 3253 inversePermutation(Order, MaskOrder); 3254 } 3255 reorderReuses(MaskOrder, Mask); 3256 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 3257 Order.clear(); 3258 return; 3259 } 3260 Order.assign(Mask.size(), Mask.size()); 3261 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 3262 if (MaskOrder[I] != UndefMaskElem) 3263 Order[MaskOrder[I]] = I; 3264 fixupOrderingIndices(Order); 3265 } 3266 3267 Optional<BoUpSLP::OrdersType> 3268 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 3269 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 3270 unsigned NumScalars = TE.Scalars.size(); 3271 OrdersType CurrentOrder(NumScalars, NumScalars); 3272 SmallVector<int> Positions; 3273 SmallBitVector UsedPositions(NumScalars); 3274 const TreeEntry *STE = nullptr; 3275 // Try to find all gathered scalars that are gets vectorized in other 3276 // vectorize node. Here we can have only one single tree vector node to 3277 // correctly identify order of the gathered scalars. 3278 for (unsigned I = 0; I < NumScalars; ++I) { 3279 Value *V = TE.Scalars[I]; 3280 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 3281 continue; 3282 if (const auto *LocalSTE = getTreeEntry(V)) { 3283 if (!STE) 3284 STE = LocalSTE; 3285 else if (STE != LocalSTE) 3286 // Take the order only from the single vector node. 3287 return None; 3288 unsigned Lane = 3289 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 3290 if (Lane >= NumScalars) 3291 return None; 3292 if (CurrentOrder[Lane] != NumScalars) { 3293 if (Lane != I) 3294 continue; 3295 UsedPositions.reset(CurrentOrder[Lane]); 3296 } 3297 // The partial identity (where only some elements of the gather node are 3298 // in the identity order) is good. 3299 CurrentOrder[Lane] = I; 3300 UsedPositions.set(I); 3301 } 3302 } 3303 // Need to keep the order if we have a vector entry and at least 2 scalars or 3304 // the vectorized entry has just 2 scalars. 3305 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 3306 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 3307 for (unsigned I = 0; I < NumScalars; ++I) 3308 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 3309 return false; 3310 return true; 3311 }; 3312 if (IsIdentityOrder(CurrentOrder)) { 3313 CurrentOrder.clear(); 3314 return CurrentOrder; 3315 } 3316 auto *It = CurrentOrder.begin(); 3317 for (unsigned I = 0; I < NumScalars;) { 3318 if (UsedPositions.test(I)) { 3319 ++I; 3320 continue; 3321 } 3322 if (*It == NumScalars) { 3323 *It = I; 3324 ++I; 3325 } 3326 ++It; 3327 } 3328 return CurrentOrder; 3329 } 3330 return None; 3331 } 3332 3333 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE, 3334 bool TopToBottom) { 3335 // No need to reorder if need to shuffle reuses, still need to shuffle the 3336 // node. 3337 if (!TE.ReuseShuffleIndices.empty()) 3338 return None; 3339 if (TE.State == TreeEntry::Vectorize && 3340 (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) || 3341 (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) && 3342 !TE.isAltShuffle()) 3343 return TE.ReorderIndices; 3344 if (TE.State == TreeEntry::NeedToGather) { 3345 // TODO: add analysis of other gather nodes with extractelement 3346 // instructions and other values/instructions, not only undefs. 3347 if (((TE.getOpcode() == Instruction::ExtractElement && 3348 !TE.isAltShuffle()) || 3349 (all_of(TE.Scalars, 3350 [](Value *V) { 3351 return isa<UndefValue, ExtractElementInst>(V); 3352 }) && 3353 any_of(TE.Scalars, 3354 [](Value *V) { return isa<ExtractElementInst>(V); }))) && 3355 all_of(TE.Scalars, 3356 [](Value *V) { 3357 auto *EE = dyn_cast<ExtractElementInst>(V); 3358 return !EE || isa<FixedVectorType>(EE->getVectorOperandType()); 3359 }) && 3360 allSameType(TE.Scalars)) { 3361 // Check that gather of extractelements can be represented as 3362 // just a shuffle of a single vector. 3363 OrdersType CurrentOrder; 3364 bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder); 3365 if (Reuse || !CurrentOrder.empty()) { 3366 if (!CurrentOrder.empty()) 3367 fixupOrderingIndices(CurrentOrder); 3368 return CurrentOrder; 3369 } 3370 } 3371 if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE)) 3372 return CurrentOrder; 3373 } 3374 return None; 3375 } 3376 3377 void BoUpSLP::reorderTopToBottom() { 3378 // Maps VF to the graph nodes. 3379 DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries; 3380 // ExtractElement gather nodes which can be vectorized and need to handle 3381 // their ordering. 3382 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3383 // Find all reorderable nodes with the given VF. 3384 // Currently the are vectorized stores,loads,extracts + some gathering of 3385 // extracts. 3386 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 3387 const std::unique_ptr<TreeEntry> &TE) { 3388 if (Optional<OrdersType> CurrentOrder = 3389 getReorderingData(*TE, /*TopToBottom=*/true)) { 3390 // Do not include ordering for nodes used in the alt opcode vectorization, 3391 // better to reorder them during bottom-to-top stage. If follow the order 3392 // here, it causes reordering of the whole graph though actually it is 3393 // profitable just to reorder the subgraph that starts from the alternate 3394 // opcode vectorization node. Such nodes already end-up with the shuffle 3395 // instruction and it is just enough to change this shuffle rather than 3396 // rotate the scalars for the whole graph. 3397 unsigned Cnt = 0; 3398 const TreeEntry *UserTE = TE.get(); 3399 while (UserTE && Cnt < RecursionMaxDepth) { 3400 if (UserTE->UserTreeIndices.size() != 1) 3401 break; 3402 if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) { 3403 return EI.UserTE->State == TreeEntry::Vectorize && 3404 EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0; 3405 })) 3406 return; 3407 if (UserTE->UserTreeIndices.empty()) 3408 UserTE = nullptr; 3409 else 3410 UserTE = UserTE->UserTreeIndices.back().UserTE; 3411 ++Cnt; 3412 } 3413 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3414 if (TE->State != TreeEntry::Vectorize) 3415 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3416 } 3417 }); 3418 3419 // Reorder the graph nodes according to their vectorization factor. 3420 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 3421 VF /= 2) { 3422 auto It = VFToOrderedEntries.find(VF); 3423 if (It == VFToOrderedEntries.end()) 3424 continue; 3425 // Try to find the most profitable order. We just are looking for the most 3426 // used order and reorder scalar elements in the nodes according to this 3427 // mostly used order. 3428 ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef(); 3429 // All operands are reordered and used only in this node - propagate the 3430 // most used order to the user node. 3431 MapVector<OrdersType, unsigned, 3432 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3433 OrdersUses; 3434 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3435 for (const TreeEntry *OpTE : OrderedEntries) { 3436 // No need to reorder this nodes, still need to extend and to use shuffle, 3437 // just need to merge reordering shuffle and the reuse shuffle. 3438 if (!OpTE->ReuseShuffleIndices.empty()) 3439 continue; 3440 // Count number of orders uses. 3441 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3442 if (OpTE->State == TreeEntry::NeedToGather) 3443 return GathersToOrders.find(OpTE)->second; 3444 return OpTE->ReorderIndices; 3445 }(); 3446 // Stores actually store the mask, not the order, need to invert. 3447 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3448 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3449 SmallVector<int> Mask; 3450 inversePermutation(Order, Mask); 3451 unsigned E = Order.size(); 3452 OrdersType CurrentOrder(E, E); 3453 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3454 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3455 }); 3456 fixupOrderingIndices(CurrentOrder); 3457 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3458 } else { 3459 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3460 } 3461 } 3462 // Set order of the user node. 3463 if (OrdersUses.empty()) 3464 continue; 3465 // Choose the most used order. 3466 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3467 unsigned Cnt = OrdersUses.front().second; 3468 for (const auto &Pair : drop_begin(OrdersUses)) { 3469 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3470 BestOrder = Pair.first; 3471 Cnt = Pair.second; 3472 } 3473 } 3474 // Set order of the user node. 3475 if (BestOrder.empty()) 3476 continue; 3477 SmallVector<int> Mask; 3478 inversePermutation(BestOrder, Mask); 3479 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3480 unsigned E = BestOrder.size(); 3481 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3482 return I < E ? static_cast<int>(I) : UndefMaskElem; 3483 }); 3484 // Do an actual reordering, if profitable. 3485 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 3486 // Just do the reordering for the nodes with the given VF. 3487 if (TE->Scalars.size() != VF) { 3488 if (TE->ReuseShuffleIndices.size() == VF) { 3489 // Need to reorder the reuses masks of the operands with smaller VF to 3490 // be able to find the match between the graph nodes and scalar 3491 // operands of the given node during vectorization/cost estimation. 3492 assert(all_of(TE->UserTreeIndices, 3493 [VF, &TE](const EdgeInfo &EI) { 3494 return EI.UserTE->Scalars.size() == VF || 3495 EI.UserTE->Scalars.size() == 3496 TE->Scalars.size(); 3497 }) && 3498 "All users must be of VF size."); 3499 // Update ordering of the operands with the smaller VF than the given 3500 // one. 3501 reorderReuses(TE->ReuseShuffleIndices, Mask); 3502 } 3503 continue; 3504 } 3505 if (TE->State == TreeEntry::Vectorize && 3506 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 3507 InsertElementInst>(TE->getMainOp()) && 3508 !TE->isAltShuffle()) { 3509 // Build correct orders for extract{element,value}, loads and 3510 // stores. 3511 reorderOrder(TE->ReorderIndices, Mask); 3512 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 3513 TE->reorderOperands(Mask); 3514 } else { 3515 // Reorder the node and its operands. 3516 TE->reorderOperands(Mask); 3517 assert(TE->ReorderIndices.empty() && 3518 "Expected empty reorder sequence."); 3519 reorderScalars(TE->Scalars, Mask); 3520 } 3521 if (!TE->ReuseShuffleIndices.empty()) { 3522 // Apply reversed order to keep the original ordering of the reused 3523 // elements to avoid extra reorder indices shuffling. 3524 OrdersType CurrentOrder; 3525 reorderOrder(CurrentOrder, MaskOrder); 3526 SmallVector<int> NewReuses; 3527 inversePermutation(CurrentOrder, NewReuses); 3528 addMask(NewReuses, TE->ReuseShuffleIndices); 3529 TE->ReuseShuffleIndices.swap(NewReuses); 3530 } 3531 } 3532 } 3533 } 3534 3535 bool BoUpSLP::canReorderOperands( 3536 TreeEntry *UserTE, SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 3537 ArrayRef<TreeEntry *> ReorderableGathers, 3538 SmallVectorImpl<TreeEntry *> &GatherOps) { 3539 for (unsigned I = 0, E = UserTE->getNumOperands(); I < E; ++I) { 3540 if (any_of(Edges, [I](const std::pair<unsigned, TreeEntry *> &OpData) { 3541 return OpData.first == I && 3542 OpData.second->State == TreeEntry::Vectorize; 3543 })) 3544 continue; 3545 if (TreeEntry *TE = getVectorizedOperand(UserTE, I)) { 3546 // Do not reorder if operand node is used by many user nodes. 3547 if (any_of(TE->UserTreeIndices, 3548 [UserTE](const EdgeInfo &EI) { return EI.UserTE != UserTE; })) 3549 return false; 3550 // Add the node to the list of the ordered nodes with the identity 3551 // order. 3552 Edges.emplace_back(I, TE); 3553 continue; 3554 } 3555 ArrayRef<Value *> VL = UserTE->getOperand(I); 3556 TreeEntry *Gather = nullptr; 3557 if (count_if(ReorderableGathers, [VL, &Gather](TreeEntry *TE) { 3558 assert(TE->State != TreeEntry::Vectorize && 3559 "Only non-vectorized nodes are expected."); 3560 if (TE->isSame(VL)) { 3561 Gather = TE; 3562 return true; 3563 } 3564 return false; 3565 }) > 1) 3566 return false; 3567 if (Gather) 3568 GatherOps.push_back(Gather); 3569 } 3570 return true; 3571 } 3572 3573 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 3574 SetVector<TreeEntry *> OrderedEntries; 3575 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3576 // Find all reorderable leaf nodes with the given VF. 3577 // Currently the are vectorized loads,extracts without alternate operands + 3578 // some gathering of extracts. 3579 SmallVector<TreeEntry *> NonVectorized; 3580 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 3581 &NonVectorized]( 3582 const std::unique_ptr<TreeEntry> &TE) { 3583 if (TE->State != TreeEntry::Vectorize) 3584 NonVectorized.push_back(TE.get()); 3585 if (Optional<OrdersType> CurrentOrder = 3586 getReorderingData(*TE, /*TopToBottom=*/false)) { 3587 OrderedEntries.insert(TE.get()); 3588 if (TE->State != TreeEntry::Vectorize) 3589 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3590 } 3591 }); 3592 3593 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3594 // I.e., if the node has operands, that are reordered, try to make at least 3595 // one operand order in the natural order and reorder others + reorder the 3596 // user node itself. 3597 SmallPtrSet<const TreeEntry *, 4> Visited; 3598 while (!OrderedEntries.empty()) { 3599 // 1. Filter out only reordered nodes. 3600 // 2. If the entry has multiple uses - skip it and jump to the next node. 3601 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3602 SmallVector<TreeEntry *> Filtered; 3603 for (TreeEntry *TE : OrderedEntries) { 3604 if (!(TE->State == TreeEntry::Vectorize || 3605 (TE->State == TreeEntry::NeedToGather && 3606 GathersToOrders.count(TE))) || 3607 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3608 !all_of(drop_begin(TE->UserTreeIndices), 3609 [TE](const EdgeInfo &EI) { 3610 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3611 }) || 3612 !Visited.insert(TE).second) { 3613 Filtered.push_back(TE); 3614 continue; 3615 } 3616 // Build a map between user nodes and their operands order to speedup 3617 // search. The graph currently does not provide this dependency directly. 3618 for (EdgeInfo &EI : TE->UserTreeIndices) { 3619 TreeEntry *UserTE = EI.UserTE; 3620 auto It = Users.find(UserTE); 3621 if (It == Users.end()) 3622 It = Users.insert({UserTE, {}}).first; 3623 It->second.emplace_back(EI.EdgeIdx, TE); 3624 } 3625 } 3626 // Erase filtered entries. 3627 for_each(Filtered, 3628 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3629 for (auto &Data : Users) { 3630 // Check that operands are used only in the User node. 3631 SmallVector<TreeEntry *> GatherOps; 3632 if (!canReorderOperands(Data.first, Data.second, NonVectorized, 3633 GatherOps)) { 3634 for_each(Data.second, 3635 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3636 OrderedEntries.remove(Op.second); 3637 }); 3638 continue; 3639 } 3640 // All operands are reordered and used only in this node - propagate the 3641 // most used order to the user node. 3642 MapVector<OrdersType, unsigned, 3643 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3644 OrdersUses; 3645 // Do the analysis for each tree entry only once, otherwise the order of 3646 // the same node my be considered several times, though might be not 3647 // profitable. 3648 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3649 SmallPtrSet<const TreeEntry *, 4> VisitedUsers; 3650 for (const auto &Op : Data.second) { 3651 TreeEntry *OpTE = Op.second; 3652 if (!VisitedOps.insert(OpTE).second) 3653 continue; 3654 if (!OpTE->ReuseShuffleIndices.empty() || 3655 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3656 continue; 3657 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3658 if (OpTE->State == TreeEntry::NeedToGather) 3659 return GathersToOrders.find(OpTE)->second; 3660 return OpTE->ReorderIndices; 3661 }(); 3662 unsigned NumOps = count_if( 3663 Data.second, [OpTE](const std::pair<unsigned, TreeEntry *> &P) { 3664 return P.second == OpTE; 3665 }); 3666 // Stores actually store the mask, not the order, need to invert. 3667 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3668 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3669 SmallVector<int> Mask; 3670 inversePermutation(Order, Mask); 3671 unsigned E = Order.size(); 3672 OrdersType CurrentOrder(E, E); 3673 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3674 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3675 }); 3676 fixupOrderingIndices(CurrentOrder); 3677 OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second += 3678 NumOps; 3679 } else { 3680 OrdersUses.insert(std::make_pair(Order, 0)).first->second += NumOps; 3681 } 3682 auto Res = OrdersUses.insert(std::make_pair(OrdersType(), 0)); 3683 const auto &&AllowsReordering = [IgnoreReorder, &GathersToOrders]( 3684 const TreeEntry *TE) { 3685 if (!TE->ReorderIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3686 (TE->State == TreeEntry::Vectorize && TE->isAltShuffle()) || 3687 (IgnoreReorder && TE->Idx == 0)) 3688 return true; 3689 if (TE->State == TreeEntry::NeedToGather) { 3690 auto It = GathersToOrders.find(TE); 3691 if (It != GathersToOrders.end()) 3692 return !It->second.empty(); 3693 return true; 3694 } 3695 return false; 3696 }; 3697 for (const EdgeInfo &EI : OpTE->UserTreeIndices) { 3698 TreeEntry *UserTE = EI.UserTE; 3699 if (!VisitedUsers.insert(UserTE).second) 3700 continue; 3701 // May reorder user node if it requires reordering, has reused 3702 // scalars, is an alternate op vectorize node or its op nodes require 3703 // reordering. 3704 if (AllowsReordering(UserTE)) 3705 continue; 3706 // Check if users allow reordering. 3707 // Currently look up just 1 level of operands to avoid increase of 3708 // the compile time. 3709 // Profitable to reorder if definitely more operands allow 3710 // reordering rather than those with natural order. 3711 ArrayRef<std::pair<unsigned, TreeEntry *>> Ops = Users[UserTE]; 3712 if (static_cast<unsigned>(count_if( 3713 Ops, [UserTE, &AllowsReordering]( 3714 const std::pair<unsigned, TreeEntry *> &Op) { 3715 return AllowsReordering(Op.second) && 3716 all_of(Op.second->UserTreeIndices, 3717 [UserTE](const EdgeInfo &EI) { 3718 return EI.UserTE == UserTE; 3719 }); 3720 })) <= Ops.size() / 2) 3721 ++Res.first->second; 3722 } 3723 } 3724 // If no orders - skip current nodes and jump to the next one, if any. 3725 if (OrdersUses.empty()) { 3726 for_each(Data.second, 3727 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3728 OrderedEntries.remove(Op.second); 3729 }); 3730 continue; 3731 } 3732 // Choose the best order. 3733 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3734 unsigned Cnt = OrdersUses.front().second; 3735 for (const auto &Pair : drop_begin(OrdersUses)) { 3736 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3737 BestOrder = Pair.first; 3738 Cnt = Pair.second; 3739 } 3740 } 3741 // Set order of the user node (reordering of operands and user nodes). 3742 if (BestOrder.empty()) { 3743 for_each(Data.second, 3744 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3745 OrderedEntries.remove(Op.second); 3746 }); 3747 continue; 3748 } 3749 // Erase operands from OrderedEntries list and adjust their orders. 3750 VisitedOps.clear(); 3751 SmallVector<int> Mask; 3752 inversePermutation(BestOrder, Mask); 3753 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3754 unsigned E = BestOrder.size(); 3755 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3756 return I < E ? static_cast<int>(I) : UndefMaskElem; 3757 }); 3758 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 3759 TreeEntry *TE = Op.second; 3760 OrderedEntries.remove(TE); 3761 if (!VisitedOps.insert(TE).second) 3762 continue; 3763 if (TE->ReuseShuffleIndices.size() == BestOrder.size()) { 3764 // Just reorder reuses indices. 3765 reorderReuses(TE->ReuseShuffleIndices, Mask); 3766 continue; 3767 } 3768 // Gathers are processed separately. 3769 if (TE->State != TreeEntry::Vectorize) 3770 continue; 3771 assert((BestOrder.size() == TE->ReorderIndices.size() || 3772 TE->ReorderIndices.empty()) && 3773 "Non-matching sizes of user/operand entries."); 3774 reorderOrder(TE->ReorderIndices, Mask); 3775 } 3776 // For gathers just need to reorder its scalars. 3777 for (TreeEntry *Gather : GatherOps) { 3778 assert(Gather->ReorderIndices.empty() && 3779 "Unexpected reordering of gathers."); 3780 if (!Gather->ReuseShuffleIndices.empty()) { 3781 // Just reorder reuses indices. 3782 reorderReuses(Gather->ReuseShuffleIndices, Mask); 3783 continue; 3784 } 3785 reorderScalars(Gather->Scalars, Mask); 3786 OrderedEntries.remove(Gather); 3787 } 3788 // Reorder operands of the user node and set the ordering for the user 3789 // node itself. 3790 if (Data.first->State != TreeEntry::Vectorize || 3791 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 3792 Data.first->getMainOp()) || 3793 Data.first->isAltShuffle()) 3794 Data.first->reorderOperands(Mask); 3795 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 3796 Data.first->isAltShuffle()) { 3797 reorderScalars(Data.first->Scalars, Mask); 3798 reorderOrder(Data.first->ReorderIndices, MaskOrder); 3799 if (Data.first->ReuseShuffleIndices.empty() && 3800 !Data.first->ReorderIndices.empty() && 3801 !Data.first->isAltShuffle()) { 3802 // Insert user node to the list to try to sink reordering deeper in 3803 // the graph. 3804 OrderedEntries.insert(Data.first); 3805 } 3806 } else { 3807 reorderOrder(Data.first->ReorderIndices, Mask); 3808 } 3809 } 3810 } 3811 // If the reordering is unnecessary, just remove the reorder. 3812 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 3813 VectorizableTree.front()->ReuseShuffleIndices.empty()) 3814 VectorizableTree.front()->ReorderIndices.clear(); 3815 } 3816 3817 void BoUpSLP::buildExternalUses( 3818 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3819 // Collect the values that we need to extract from the tree. 3820 for (auto &TEPtr : VectorizableTree) { 3821 TreeEntry *Entry = TEPtr.get(); 3822 3823 // No need to handle users of gathered values. 3824 if (Entry->State == TreeEntry::NeedToGather) 3825 continue; 3826 3827 // For each lane: 3828 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3829 Value *Scalar = Entry->Scalars[Lane]; 3830 int FoundLane = Entry->findLaneForValue(Scalar); 3831 3832 // Check if the scalar is externally used as an extra arg. 3833 auto ExtI = ExternallyUsedValues.find(Scalar); 3834 if (ExtI != ExternallyUsedValues.end()) { 3835 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 3836 << Lane << " from " << *Scalar << ".\n"); 3837 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 3838 } 3839 for (User *U : Scalar->users()) { 3840 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 3841 3842 Instruction *UserInst = dyn_cast<Instruction>(U); 3843 if (!UserInst) 3844 continue; 3845 3846 if (isDeleted(UserInst)) 3847 continue; 3848 3849 // Skip in-tree scalars that become vectors 3850 if (TreeEntry *UseEntry = getTreeEntry(U)) { 3851 Value *UseScalar = UseEntry->Scalars[0]; 3852 // Some in-tree scalars will remain as scalar in vectorized 3853 // instructions. If that is the case, the one in Lane 0 will 3854 // be used. 3855 if (UseScalar != U || 3856 UseEntry->State == TreeEntry::ScatterVectorize || 3857 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 3858 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 3859 << ".\n"); 3860 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 3861 continue; 3862 } 3863 } 3864 3865 // Ignore users in the user ignore list. 3866 if (is_contained(UserIgnoreList, UserInst)) 3867 continue; 3868 3869 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 3870 << Lane << " from " << *Scalar << ".\n"); 3871 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 3872 } 3873 } 3874 } 3875 } 3876 3877 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 3878 ArrayRef<Value *> UserIgnoreLst) { 3879 deleteTree(); 3880 UserIgnoreList = UserIgnoreLst; 3881 if (!allSameType(Roots)) 3882 return; 3883 buildTree_rec(Roots, 0, EdgeInfo()); 3884 } 3885 3886 namespace { 3887 /// Tracks the state we can represent the loads in the given sequence. 3888 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3889 } // anonymous namespace 3890 3891 /// Checks if the given array of loads can be represented as a vectorized, 3892 /// scatter or just simple gather. 3893 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3894 const TargetTransformInfo &TTI, 3895 const DataLayout &DL, ScalarEvolution &SE, 3896 SmallVectorImpl<unsigned> &Order, 3897 SmallVectorImpl<Value *> &PointerOps) { 3898 // Check that a vectorized load would load the same memory as a scalar 3899 // load. For example, we don't want to vectorize loads that are smaller 3900 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3901 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3902 // from such a struct, we read/write packed bits disagreeing with the 3903 // unvectorized version. 3904 Type *ScalarTy = VL0->getType(); 3905 3906 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3907 return LoadsState::Gather; 3908 3909 // Make sure all loads in the bundle are simple - we can't vectorize 3910 // atomic or volatile loads. 3911 PointerOps.clear(); 3912 PointerOps.resize(VL.size()); 3913 auto *POIter = PointerOps.begin(); 3914 for (Value *V : VL) { 3915 auto *L = cast<LoadInst>(V); 3916 if (!L->isSimple()) 3917 return LoadsState::Gather; 3918 *POIter = L->getPointerOperand(); 3919 ++POIter; 3920 } 3921 3922 Order.clear(); 3923 // Check the order of pointer operands. 3924 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 3925 Value *Ptr0; 3926 Value *PtrN; 3927 if (Order.empty()) { 3928 Ptr0 = PointerOps.front(); 3929 PtrN = PointerOps.back(); 3930 } else { 3931 Ptr0 = PointerOps[Order.front()]; 3932 PtrN = PointerOps[Order.back()]; 3933 } 3934 Optional<int> Diff = 3935 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3936 // Check that the sorted loads are consecutive. 3937 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3938 return LoadsState::Vectorize; 3939 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3940 for (Value *V : VL) 3941 CommonAlignment = 3942 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3943 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 3944 CommonAlignment)) 3945 return LoadsState::ScatterVectorize; 3946 } 3947 3948 return LoadsState::Gather; 3949 } 3950 3951 /// \return true if the specified list of values has only one instruction that 3952 /// requires scheduling, false otherwise. 3953 #ifndef NDEBUG 3954 static bool needToScheduleSingleInstruction(ArrayRef<Value *> VL) { 3955 Value *NeedsScheduling = nullptr; 3956 for (Value *V : VL) { 3957 if (doesNotNeedToBeScheduled(V)) 3958 continue; 3959 if (!NeedsScheduling) { 3960 NeedsScheduling = V; 3961 continue; 3962 } 3963 return false; 3964 } 3965 return NeedsScheduling; 3966 } 3967 #endif 3968 3969 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 3970 const EdgeInfo &UserTreeIdx) { 3971 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 3972 3973 SmallVector<int> ReuseShuffleIndicies; 3974 SmallVector<Value *> UniqueValues; 3975 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 3976 &UserTreeIdx, 3977 this](const InstructionsState &S) { 3978 // Check that every instruction appears once in this bundle. 3979 DenseMap<Value *, unsigned> UniquePositions; 3980 for (Value *V : VL) { 3981 if (isConstant(V)) { 3982 ReuseShuffleIndicies.emplace_back( 3983 isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size()); 3984 UniqueValues.emplace_back(V); 3985 continue; 3986 } 3987 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3988 ReuseShuffleIndicies.emplace_back(Res.first->second); 3989 if (Res.second) 3990 UniqueValues.emplace_back(V); 3991 } 3992 size_t NumUniqueScalarValues = UniqueValues.size(); 3993 if (NumUniqueScalarValues == VL.size()) { 3994 ReuseShuffleIndicies.clear(); 3995 } else { 3996 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 3997 if (NumUniqueScalarValues <= 1 || 3998 (UniquePositions.size() == 1 && all_of(UniqueValues, 3999 [](Value *V) { 4000 return isa<UndefValue>(V) || 4001 !isConstant(V); 4002 })) || 4003 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 4004 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 4005 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4006 return false; 4007 } 4008 VL = UniqueValues; 4009 } 4010 return true; 4011 }; 4012 4013 InstructionsState S = getSameOpcode(VL); 4014 if (Depth == RecursionMaxDepth) { 4015 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 4016 if (TryToFindDuplicates(S)) 4017 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4018 ReuseShuffleIndicies); 4019 return; 4020 } 4021 4022 // Don't handle scalable vectors 4023 if (S.getOpcode() == Instruction::ExtractElement && 4024 isa<ScalableVectorType>( 4025 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 4026 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 4027 if (TryToFindDuplicates(S)) 4028 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4029 ReuseShuffleIndicies); 4030 return; 4031 } 4032 4033 // Don't handle vectors. 4034 if (S.OpValue->getType()->isVectorTy() && 4035 !isa<InsertElementInst>(S.OpValue)) { 4036 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 4037 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4038 return; 4039 } 4040 4041 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 4042 if (SI->getValueOperand()->getType()->isVectorTy()) { 4043 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 4044 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4045 return; 4046 } 4047 4048 // If all of the operands are identical or constant we have a simple solution. 4049 // If we deal with insert/extract instructions, they all must have constant 4050 // indices, otherwise we should gather them, not try to vectorize. 4051 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 4052 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 4053 !all_of(VL, isVectorLikeInstWithConstOps))) { 4054 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 4055 if (TryToFindDuplicates(S)) 4056 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4057 ReuseShuffleIndicies); 4058 return; 4059 } 4060 4061 // We now know that this is a vector of instructions of the same type from 4062 // the same block. 4063 4064 // Don't vectorize ephemeral values. 4065 for (Value *V : VL) { 4066 if (EphValues.count(V)) { 4067 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 4068 << ") is ephemeral.\n"); 4069 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4070 return; 4071 } 4072 } 4073 4074 // Check if this is a duplicate of another entry. 4075 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4076 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 4077 if (!E->isSame(VL)) { 4078 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 4079 if (TryToFindDuplicates(S)) 4080 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4081 ReuseShuffleIndicies); 4082 return; 4083 } 4084 // Record the reuse of the tree node. FIXME, currently this is only used to 4085 // properly draw the graph rather than for the actual vectorization. 4086 E->UserTreeIndices.push_back(UserTreeIdx); 4087 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 4088 << ".\n"); 4089 return; 4090 } 4091 4092 // Check that none of the instructions in the bundle are already in the tree. 4093 for (Value *V : VL) { 4094 auto *I = dyn_cast<Instruction>(V); 4095 if (!I) 4096 continue; 4097 if (getTreeEntry(I)) { 4098 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 4099 << ") is already in tree.\n"); 4100 if (TryToFindDuplicates(S)) 4101 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4102 ReuseShuffleIndicies); 4103 return; 4104 } 4105 } 4106 4107 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 4108 for (Value *V : VL) { 4109 if (is_contained(UserIgnoreList, V)) { 4110 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 4111 if (TryToFindDuplicates(S)) 4112 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4113 ReuseShuffleIndicies); 4114 return; 4115 } 4116 } 4117 4118 // Check that all of the users of the scalars that we want to vectorize are 4119 // schedulable. 4120 auto *VL0 = cast<Instruction>(S.OpValue); 4121 BasicBlock *BB = VL0->getParent(); 4122 4123 if (!DT->isReachableFromEntry(BB)) { 4124 // Don't go into unreachable blocks. They may contain instructions with 4125 // dependency cycles which confuse the final scheduling. 4126 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 4127 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4128 return; 4129 } 4130 4131 // Check that every instruction appears once in this bundle. 4132 if (!TryToFindDuplicates(S)) 4133 return; 4134 4135 auto &BSRef = BlocksSchedules[BB]; 4136 if (!BSRef) 4137 BSRef = std::make_unique<BlockScheduling>(BB); 4138 4139 BlockScheduling &BS = *BSRef; 4140 4141 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 4142 #ifdef EXPENSIVE_CHECKS 4143 // Make sure we didn't break any internal invariants 4144 BS.verify(); 4145 #endif 4146 if (!Bundle) { 4147 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 4148 assert((!BS.getScheduleData(VL0) || 4149 !BS.getScheduleData(VL0)->isPartOfBundle()) && 4150 "tryScheduleBundle should cancelScheduling on failure"); 4151 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4152 ReuseShuffleIndicies); 4153 return; 4154 } 4155 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 4156 4157 unsigned ShuffleOrOp = S.isAltShuffle() ? 4158 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 4159 switch (ShuffleOrOp) { 4160 case Instruction::PHI: { 4161 auto *PH = cast<PHINode>(VL0); 4162 4163 // Check for terminator values (e.g. invoke). 4164 for (Value *V : VL) 4165 for (Value *Incoming : cast<PHINode>(V)->incoming_values()) { 4166 Instruction *Term = dyn_cast<Instruction>(Incoming); 4167 if (Term && Term->isTerminator()) { 4168 LLVM_DEBUG(dbgs() 4169 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 4170 BS.cancelScheduling(VL, VL0); 4171 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4172 ReuseShuffleIndicies); 4173 return; 4174 } 4175 } 4176 4177 TreeEntry *TE = 4178 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 4179 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 4180 4181 // Keeps the reordered operands to avoid code duplication. 4182 SmallVector<ValueList, 2> OperandsVec; 4183 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 4184 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 4185 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 4186 TE->setOperand(I, Operands); 4187 OperandsVec.push_back(Operands); 4188 continue; 4189 } 4190 ValueList Operands; 4191 // Prepare the operand vector. 4192 for (Value *V : VL) 4193 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 4194 PH->getIncomingBlock(I))); 4195 TE->setOperand(I, Operands); 4196 OperandsVec.push_back(Operands); 4197 } 4198 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 4199 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 4200 return; 4201 } 4202 case Instruction::ExtractValue: 4203 case Instruction::ExtractElement: { 4204 OrdersType CurrentOrder; 4205 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 4206 if (Reuse) { 4207 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 4208 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4209 ReuseShuffleIndicies); 4210 // This is a special case, as it does not gather, but at the same time 4211 // we are not extending buildTree_rec() towards the operands. 4212 ValueList Op0; 4213 Op0.assign(VL.size(), VL0->getOperand(0)); 4214 VectorizableTree.back()->setOperand(0, Op0); 4215 return; 4216 } 4217 if (!CurrentOrder.empty()) { 4218 LLVM_DEBUG({ 4219 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 4220 "with order"; 4221 for (unsigned Idx : CurrentOrder) 4222 dbgs() << " " << Idx; 4223 dbgs() << "\n"; 4224 }); 4225 fixupOrderingIndices(CurrentOrder); 4226 // Insert new order with initial value 0, if it does not exist, 4227 // otherwise return the iterator to the existing one. 4228 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4229 ReuseShuffleIndicies, CurrentOrder); 4230 // This is a special case, as it does not gather, but at the same time 4231 // we are not extending buildTree_rec() towards the operands. 4232 ValueList Op0; 4233 Op0.assign(VL.size(), VL0->getOperand(0)); 4234 VectorizableTree.back()->setOperand(0, Op0); 4235 return; 4236 } 4237 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 4238 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4239 ReuseShuffleIndicies); 4240 BS.cancelScheduling(VL, VL0); 4241 return; 4242 } 4243 case Instruction::InsertElement: { 4244 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 4245 4246 // Check that we have a buildvector and not a shuffle of 2 or more 4247 // different vectors. 4248 ValueSet SourceVectors; 4249 for (Value *V : VL) { 4250 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 4251 assert(getInsertIndex(V) != None && "Non-constant or undef index?"); 4252 } 4253 4254 if (count_if(VL, [&SourceVectors](Value *V) { 4255 return !SourceVectors.contains(V); 4256 }) >= 2) { 4257 // Found 2nd source vector - cancel. 4258 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 4259 "different source vectors.\n"); 4260 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4261 BS.cancelScheduling(VL, VL0); 4262 return; 4263 } 4264 4265 auto OrdCompare = [](const std::pair<int, int> &P1, 4266 const std::pair<int, int> &P2) { 4267 return P1.first > P2.first; 4268 }; 4269 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 4270 decltype(OrdCompare)> 4271 Indices(OrdCompare); 4272 for (int I = 0, E = VL.size(); I < E; ++I) { 4273 unsigned Idx = *getInsertIndex(VL[I]); 4274 Indices.emplace(Idx, I); 4275 } 4276 OrdersType CurrentOrder(VL.size(), VL.size()); 4277 bool IsIdentity = true; 4278 for (int I = 0, E = VL.size(); I < E; ++I) { 4279 CurrentOrder[Indices.top().second] = I; 4280 IsIdentity &= Indices.top().second == I; 4281 Indices.pop(); 4282 } 4283 if (IsIdentity) 4284 CurrentOrder.clear(); 4285 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4286 None, CurrentOrder); 4287 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 4288 4289 constexpr int NumOps = 2; 4290 ValueList VectorOperands[NumOps]; 4291 for (int I = 0; I < NumOps; ++I) { 4292 for (Value *V : VL) 4293 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 4294 4295 TE->setOperand(I, VectorOperands[I]); 4296 } 4297 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 4298 return; 4299 } 4300 case Instruction::Load: { 4301 // Check that a vectorized load would load the same memory as a scalar 4302 // load. For example, we don't want to vectorize loads that are smaller 4303 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 4304 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 4305 // from such a struct, we read/write packed bits disagreeing with the 4306 // unvectorized version. 4307 SmallVector<Value *> PointerOps; 4308 OrdersType CurrentOrder; 4309 TreeEntry *TE = nullptr; 4310 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 4311 PointerOps)) { 4312 case LoadsState::Vectorize: 4313 if (CurrentOrder.empty()) { 4314 // Original loads are consecutive and does not require reordering. 4315 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4316 ReuseShuffleIndicies); 4317 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 4318 } else { 4319 fixupOrderingIndices(CurrentOrder); 4320 // Need to reorder. 4321 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4322 ReuseShuffleIndicies, CurrentOrder); 4323 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 4324 } 4325 TE->setOperandsInOrder(); 4326 break; 4327 case LoadsState::ScatterVectorize: 4328 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 4329 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 4330 UserTreeIdx, ReuseShuffleIndicies); 4331 TE->setOperandsInOrder(); 4332 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 4333 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 4334 break; 4335 case LoadsState::Gather: 4336 BS.cancelScheduling(VL, VL0); 4337 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4338 ReuseShuffleIndicies); 4339 #ifndef NDEBUG 4340 Type *ScalarTy = VL0->getType(); 4341 if (DL->getTypeSizeInBits(ScalarTy) != 4342 DL->getTypeAllocSizeInBits(ScalarTy)) 4343 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 4344 else if (any_of(VL, [](Value *V) { 4345 return !cast<LoadInst>(V)->isSimple(); 4346 })) 4347 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 4348 else 4349 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 4350 #endif // NDEBUG 4351 break; 4352 } 4353 return; 4354 } 4355 case Instruction::ZExt: 4356 case Instruction::SExt: 4357 case Instruction::FPToUI: 4358 case Instruction::FPToSI: 4359 case Instruction::FPExt: 4360 case Instruction::PtrToInt: 4361 case Instruction::IntToPtr: 4362 case Instruction::SIToFP: 4363 case Instruction::UIToFP: 4364 case Instruction::Trunc: 4365 case Instruction::FPTrunc: 4366 case Instruction::BitCast: { 4367 Type *SrcTy = VL0->getOperand(0)->getType(); 4368 for (Value *V : VL) { 4369 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 4370 if (Ty != SrcTy || !isValidElementType(Ty)) { 4371 BS.cancelScheduling(VL, VL0); 4372 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4373 ReuseShuffleIndicies); 4374 LLVM_DEBUG(dbgs() 4375 << "SLP: Gathering casts with different src types.\n"); 4376 return; 4377 } 4378 } 4379 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4380 ReuseShuffleIndicies); 4381 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 4382 4383 TE->setOperandsInOrder(); 4384 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4385 ValueList Operands; 4386 // Prepare the operand vector. 4387 for (Value *V : VL) 4388 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4389 4390 buildTree_rec(Operands, Depth + 1, {TE, i}); 4391 } 4392 return; 4393 } 4394 case Instruction::ICmp: 4395 case Instruction::FCmp: { 4396 // Check that all of the compares have the same predicate. 4397 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4398 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 4399 Type *ComparedTy = VL0->getOperand(0)->getType(); 4400 for (Value *V : VL) { 4401 CmpInst *Cmp = cast<CmpInst>(V); 4402 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 4403 Cmp->getOperand(0)->getType() != ComparedTy) { 4404 BS.cancelScheduling(VL, VL0); 4405 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4406 ReuseShuffleIndicies); 4407 LLVM_DEBUG(dbgs() 4408 << "SLP: Gathering cmp with different predicate.\n"); 4409 return; 4410 } 4411 } 4412 4413 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4414 ReuseShuffleIndicies); 4415 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 4416 4417 ValueList Left, Right; 4418 if (cast<CmpInst>(VL0)->isCommutative()) { 4419 // Commutative predicate - collect + sort operands of the instructions 4420 // so that each side is more likely to have the same opcode. 4421 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 4422 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4423 } else { 4424 // Collect operands - commute if it uses the swapped predicate. 4425 for (Value *V : VL) { 4426 auto *Cmp = cast<CmpInst>(V); 4427 Value *LHS = Cmp->getOperand(0); 4428 Value *RHS = Cmp->getOperand(1); 4429 if (Cmp->getPredicate() != P0) 4430 std::swap(LHS, RHS); 4431 Left.push_back(LHS); 4432 Right.push_back(RHS); 4433 } 4434 } 4435 TE->setOperand(0, Left); 4436 TE->setOperand(1, Right); 4437 buildTree_rec(Left, Depth + 1, {TE, 0}); 4438 buildTree_rec(Right, Depth + 1, {TE, 1}); 4439 return; 4440 } 4441 case Instruction::Select: 4442 case Instruction::FNeg: 4443 case Instruction::Add: 4444 case Instruction::FAdd: 4445 case Instruction::Sub: 4446 case Instruction::FSub: 4447 case Instruction::Mul: 4448 case Instruction::FMul: 4449 case Instruction::UDiv: 4450 case Instruction::SDiv: 4451 case Instruction::FDiv: 4452 case Instruction::URem: 4453 case Instruction::SRem: 4454 case Instruction::FRem: 4455 case Instruction::Shl: 4456 case Instruction::LShr: 4457 case Instruction::AShr: 4458 case Instruction::And: 4459 case Instruction::Or: 4460 case Instruction::Xor: { 4461 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4462 ReuseShuffleIndicies); 4463 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 4464 4465 // Sort operands of the instructions so that each side is more likely to 4466 // have the same opcode. 4467 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 4468 ValueList Left, Right; 4469 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4470 TE->setOperand(0, Left); 4471 TE->setOperand(1, Right); 4472 buildTree_rec(Left, Depth + 1, {TE, 0}); 4473 buildTree_rec(Right, Depth + 1, {TE, 1}); 4474 return; 4475 } 4476 4477 TE->setOperandsInOrder(); 4478 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4479 ValueList Operands; 4480 // Prepare the operand vector. 4481 for (Value *V : VL) 4482 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4483 4484 buildTree_rec(Operands, Depth + 1, {TE, i}); 4485 } 4486 return; 4487 } 4488 case Instruction::GetElementPtr: { 4489 // We don't combine GEPs with complicated (nested) indexing. 4490 for (Value *V : VL) { 4491 if (cast<Instruction>(V)->getNumOperands() != 2) { 4492 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 4493 BS.cancelScheduling(VL, VL0); 4494 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4495 ReuseShuffleIndicies); 4496 return; 4497 } 4498 } 4499 4500 // We can't combine several GEPs into one vector if they operate on 4501 // different types. 4502 Type *Ty0 = cast<GEPOperator>(VL0)->getSourceElementType(); 4503 for (Value *V : VL) { 4504 Type *CurTy = cast<GEPOperator>(V)->getSourceElementType(); 4505 if (Ty0 != CurTy) { 4506 LLVM_DEBUG(dbgs() 4507 << "SLP: not-vectorizable GEP (different types).\n"); 4508 BS.cancelScheduling(VL, VL0); 4509 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4510 ReuseShuffleIndicies); 4511 return; 4512 } 4513 } 4514 4515 // We don't combine GEPs with non-constant indexes. 4516 Type *Ty1 = VL0->getOperand(1)->getType(); 4517 for (Value *V : VL) { 4518 auto Op = cast<Instruction>(V)->getOperand(1); 4519 if (!isa<ConstantInt>(Op) || 4520 (Op->getType() != Ty1 && 4521 Op->getType()->getScalarSizeInBits() > 4522 DL->getIndexSizeInBits( 4523 V->getType()->getPointerAddressSpace()))) { 4524 LLVM_DEBUG(dbgs() 4525 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 4526 BS.cancelScheduling(VL, VL0); 4527 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4528 ReuseShuffleIndicies); 4529 return; 4530 } 4531 } 4532 4533 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4534 ReuseShuffleIndicies); 4535 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 4536 SmallVector<ValueList, 2> Operands(2); 4537 // Prepare the operand vector for pointer operands. 4538 for (Value *V : VL) 4539 Operands.front().push_back( 4540 cast<GetElementPtrInst>(V)->getPointerOperand()); 4541 TE->setOperand(0, Operands.front()); 4542 // Need to cast all indices to the same type before vectorization to 4543 // avoid crash. 4544 // Required to be able to find correct matches between different gather 4545 // nodes and reuse the vectorized values rather than trying to gather them 4546 // again. 4547 int IndexIdx = 1; 4548 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 4549 Type *Ty = all_of(VL, 4550 [VL0Ty, IndexIdx](Value *V) { 4551 return VL0Ty == cast<GetElementPtrInst>(V) 4552 ->getOperand(IndexIdx) 4553 ->getType(); 4554 }) 4555 ? VL0Ty 4556 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4557 ->getPointerOperandType() 4558 ->getScalarType()); 4559 // Prepare the operand vector. 4560 for (Value *V : VL) { 4561 auto *Op = cast<Instruction>(V)->getOperand(IndexIdx); 4562 auto *CI = cast<ConstantInt>(Op); 4563 Operands.back().push_back(ConstantExpr::getIntegerCast( 4564 CI, Ty, CI->getValue().isSignBitSet())); 4565 } 4566 TE->setOperand(IndexIdx, Operands.back()); 4567 4568 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 4569 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 4570 return; 4571 } 4572 case Instruction::Store: { 4573 // Check if the stores are consecutive or if we need to swizzle them. 4574 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 4575 // Avoid types that are padded when being allocated as scalars, while 4576 // being packed together in a vector (such as i1). 4577 if (DL->getTypeSizeInBits(ScalarTy) != 4578 DL->getTypeAllocSizeInBits(ScalarTy)) { 4579 BS.cancelScheduling(VL, VL0); 4580 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4581 ReuseShuffleIndicies); 4582 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 4583 return; 4584 } 4585 // Make sure all stores in the bundle are simple - we can't vectorize 4586 // atomic or volatile stores. 4587 SmallVector<Value *, 4> PointerOps(VL.size()); 4588 ValueList Operands(VL.size()); 4589 auto POIter = PointerOps.begin(); 4590 auto OIter = Operands.begin(); 4591 for (Value *V : VL) { 4592 auto *SI = cast<StoreInst>(V); 4593 if (!SI->isSimple()) { 4594 BS.cancelScheduling(VL, VL0); 4595 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4596 ReuseShuffleIndicies); 4597 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 4598 return; 4599 } 4600 *POIter = SI->getPointerOperand(); 4601 *OIter = SI->getValueOperand(); 4602 ++POIter; 4603 ++OIter; 4604 } 4605 4606 OrdersType CurrentOrder; 4607 // Check the order of pointer operands. 4608 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 4609 Value *Ptr0; 4610 Value *PtrN; 4611 if (CurrentOrder.empty()) { 4612 Ptr0 = PointerOps.front(); 4613 PtrN = PointerOps.back(); 4614 } else { 4615 Ptr0 = PointerOps[CurrentOrder.front()]; 4616 PtrN = PointerOps[CurrentOrder.back()]; 4617 } 4618 Optional<int> Dist = 4619 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 4620 // Check that the sorted pointer operands are consecutive. 4621 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 4622 if (CurrentOrder.empty()) { 4623 // Original stores are consecutive and does not require reordering. 4624 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 4625 UserTreeIdx, ReuseShuffleIndicies); 4626 TE->setOperandsInOrder(); 4627 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4628 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 4629 } else { 4630 fixupOrderingIndices(CurrentOrder); 4631 TreeEntry *TE = 4632 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4633 ReuseShuffleIndicies, CurrentOrder); 4634 TE->setOperandsInOrder(); 4635 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4636 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 4637 } 4638 return; 4639 } 4640 } 4641 4642 BS.cancelScheduling(VL, VL0); 4643 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4644 ReuseShuffleIndicies); 4645 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 4646 return; 4647 } 4648 case Instruction::Call: { 4649 // Check if the calls are all to the same vectorizable intrinsic or 4650 // library function. 4651 CallInst *CI = cast<CallInst>(VL0); 4652 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4653 4654 VFShape Shape = VFShape::get( 4655 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 4656 false /*HasGlobalPred*/); 4657 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4658 4659 if (!VecFunc && !isTriviallyVectorizable(ID)) { 4660 BS.cancelScheduling(VL, VL0); 4661 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4662 ReuseShuffleIndicies); 4663 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 4664 return; 4665 } 4666 Function *F = CI->getCalledFunction(); 4667 unsigned NumArgs = CI->arg_size(); 4668 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 4669 for (unsigned j = 0; j != NumArgs; ++j) 4670 if (hasVectorInstrinsicScalarOpd(ID, j)) 4671 ScalarArgs[j] = CI->getArgOperand(j); 4672 for (Value *V : VL) { 4673 CallInst *CI2 = dyn_cast<CallInst>(V); 4674 if (!CI2 || CI2->getCalledFunction() != F || 4675 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 4676 (VecFunc && 4677 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 4678 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 4679 BS.cancelScheduling(VL, VL0); 4680 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4681 ReuseShuffleIndicies); 4682 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 4683 << "\n"); 4684 return; 4685 } 4686 // Some intrinsics have scalar arguments and should be same in order for 4687 // them to be vectorized. 4688 for (unsigned j = 0; j != NumArgs; ++j) { 4689 if (hasVectorInstrinsicScalarOpd(ID, j)) { 4690 Value *A1J = CI2->getArgOperand(j); 4691 if (ScalarArgs[j] != A1J) { 4692 BS.cancelScheduling(VL, VL0); 4693 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4694 ReuseShuffleIndicies); 4695 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 4696 << " argument " << ScalarArgs[j] << "!=" << A1J 4697 << "\n"); 4698 return; 4699 } 4700 } 4701 } 4702 // Verify that the bundle operands are identical between the two calls. 4703 if (CI->hasOperandBundles() && 4704 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 4705 CI->op_begin() + CI->getBundleOperandsEndIndex(), 4706 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 4707 BS.cancelScheduling(VL, VL0); 4708 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4709 ReuseShuffleIndicies); 4710 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 4711 << *CI << "!=" << *V << '\n'); 4712 return; 4713 } 4714 } 4715 4716 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4717 ReuseShuffleIndicies); 4718 TE->setOperandsInOrder(); 4719 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 4720 // For scalar operands no need to to create an entry since no need to 4721 // vectorize it. 4722 if (hasVectorInstrinsicScalarOpd(ID, i)) 4723 continue; 4724 ValueList Operands; 4725 // Prepare the operand vector. 4726 for (Value *V : VL) { 4727 auto *CI2 = cast<CallInst>(V); 4728 Operands.push_back(CI2->getArgOperand(i)); 4729 } 4730 buildTree_rec(Operands, Depth + 1, {TE, i}); 4731 } 4732 return; 4733 } 4734 case Instruction::ShuffleVector: { 4735 // If this is not an alternate sequence of opcode like add-sub 4736 // then do not vectorize this instruction. 4737 if (!S.isAltShuffle()) { 4738 BS.cancelScheduling(VL, VL0); 4739 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4740 ReuseShuffleIndicies); 4741 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 4742 return; 4743 } 4744 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4745 ReuseShuffleIndicies); 4746 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 4747 4748 // Reorder operands if reordering would enable vectorization. 4749 auto *CI = dyn_cast<CmpInst>(VL0); 4750 if (isa<BinaryOperator>(VL0) || CI) { 4751 ValueList Left, Right; 4752 if (!CI || all_of(VL, [](Value *V) { 4753 return cast<CmpInst>(V)->isCommutative(); 4754 })) { 4755 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4756 } else { 4757 CmpInst::Predicate P0 = CI->getPredicate(); 4758 CmpInst::Predicate AltP0 = cast<CmpInst>(S.AltOp)->getPredicate(); 4759 assert(P0 != AltP0 && 4760 "Expected different main/alternate predicates."); 4761 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 4762 Value *BaseOp0 = VL0->getOperand(0); 4763 Value *BaseOp1 = VL0->getOperand(1); 4764 // Collect operands - commute if it uses the swapped predicate or 4765 // alternate operation. 4766 for (Value *V : VL) { 4767 auto *Cmp = cast<CmpInst>(V); 4768 Value *LHS = Cmp->getOperand(0); 4769 Value *RHS = Cmp->getOperand(1); 4770 CmpInst::Predicate CurrentPred = Cmp->getPredicate(); 4771 if (P0 == AltP0Swapped) { 4772 if (CI != Cmp && S.AltOp != Cmp && 4773 ((P0 == CurrentPred && 4774 !areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)) || 4775 (AltP0 == CurrentPred && 4776 areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)))) 4777 std::swap(LHS, RHS); 4778 } else if (P0 != CurrentPred && AltP0 != CurrentPred) { 4779 std::swap(LHS, RHS); 4780 } 4781 Left.push_back(LHS); 4782 Right.push_back(RHS); 4783 } 4784 } 4785 TE->setOperand(0, Left); 4786 TE->setOperand(1, Right); 4787 buildTree_rec(Left, Depth + 1, {TE, 0}); 4788 buildTree_rec(Right, Depth + 1, {TE, 1}); 4789 return; 4790 } 4791 4792 TE->setOperandsInOrder(); 4793 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4794 ValueList Operands; 4795 // Prepare the operand vector. 4796 for (Value *V : VL) 4797 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4798 4799 buildTree_rec(Operands, Depth + 1, {TE, i}); 4800 } 4801 return; 4802 } 4803 default: 4804 BS.cancelScheduling(VL, VL0); 4805 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4806 ReuseShuffleIndicies); 4807 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 4808 return; 4809 } 4810 } 4811 4812 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 4813 unsigned N = 1; 4814 Type *EltTy = T; 4815 4816 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 4817 isa<VectorType>(EltTy)) { 4818 if (auto *ST = dyn_cast<StructType>(EltTy)) { 4819 // Check that struct is homogeneous. 4820 for (const auto *Ty : ST->elements()) 4821 if (Ty != *ST->element_begin()) 4822 return 0; 4823 N *= ST->getNumElements(); 4824 EltTy = *ST->element_begin(); 4825 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 4826 N *= AT->getNumElements(); 4827 EltTy = AT->getElementType(); 4828 } else { 4829 auto *VT = cast<FixedVectorType>(EltTy); 4830 N *= VT->getNumElements(); 4831 EltTy = VT->getElementType(); 4832 } 4833 } 4834 4835 if (!isValidElementType(EltTy)) 4836 return 0; 4837 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 4838 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 4839 return 0; 4840 return N; 4841 } 4842 4843 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 4844 SmallVectorImpl<unsigned> &CurrentOrder) const { 4845 const auto *It = find_if(VL, [](Value *V) { 4846 return isa<ExtractElementInst, ExtractValueInst>(V); 4847 }); 4848 assert(It != VL.end() && "Expected at least one extract instruction."); 4849 auto *E0 = cast<Instruction>(*It); 4850 assert(all_of(VL, 4851 [](Value *V) { 4852 return isa<UndefValue, ExtractElementInst, ExtractValueInst>( 4853 V); 4854 }) && 4855 "Invalid opcode"); 4856 // Check if all of the extracts come from the same vector and from the 4857 // correct offset. 4858 Value *Vec = E0->getOperand(0); 4859 4860 CurrentOrder.clear(); 4861 4862 // We have to extract from a vector/aggregate with the same number of elements. 4863 unsigned NElts; 4864 if (E0->getOpcode() == Instruction::ExtractValue) { 4865 const DataLayout &DL = E0->getModule()->getDataLayout(); 4866 NElts = canMapToVector(Vec->getType(), DL); 4867 if (!NElts) 4868 return false; 4869 // Check if load can be rewritten as load of vector. 4870 LoadInst *LI = dyn_cast<LoadInst>(Vec); 4871 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 4872 return false; 4873 } else { 4874 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 4875 } 4876 4877 if (NElts != VL.size()) 4878 return false; 4879 4880 // Check that all of the indices extract from the correct offset. 4881 bool ShouldKeepOrder = true; 4882 unsigned E = VL.size(); 4883 // Assign to all items the initial value E + 1 so we can check if the extract 4884 // instruction index was used already. 4885 // Also, later we can check that all the indices are used and we have a 4886 // consecutive access in the extract instructions, by checking that no 4887 // element of CurrentOrder still has value E + 1. 4888 CurrentOrder.assign(E, E); 4889 unsigned I = 0; 4890 for (; I < E; ++I) { 4891 auto *Inst = dyn_cast<Instruction>(VL[I]); 4892 if (!Inst) 4893 continue; 4894 if (Inst->getOperand(0) != Vec) 4895 break; 4896 if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) 4897 if (isa<UndefValue>(EE->getIndexOperand())) 4898 continue; 4899 Optional<unsigned> Idx = getExtractIndex(Inst); 4900 if (!Idx) 4901 break; 4902 const unsigned ExtIdx = *Idx; 4903 if (ExtIdx != I) { 4904 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E) 4905 break; 4906 ShouldKeepOrder = false; 4907 CurrentOrder[ExtIdx] = I; 4908 } else { 4909 if (CurrentOrder[I] != E) 4910 break; 4911 CurrentOrder[I] = I; 4912 } 4913 } 4914 if (I < E) { 4915 CurrentOrder.clear(); 4916 return false; 4917 } 4918 if (ShouldKeepOrder) 4919 CurrentOrder.clear(); 4920 4921 return ShouldKeepOrder; 4922 } 4923 4924 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 4925 ArrayRef<Value *> VectorizedVals) const { 4926 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 4927 all_of(I->users(), [this](User *U) { 4928 return ScalarToTreeEntry.count(U) > 0 || 4929 isVectorLikeInstWithConstOps(U) || 4930 (isa<ExtractElementInst>(U) && MustGather.contains(U)); 4931 }); 4932 } 4933 4934 static std::pair<InstructionCost, InstructionCost> 4935 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 4936 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 4937 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4938 4939 // Calculate the cost of the scalar and vector calls. 4940 SmallVector<Type *, 4> VecTys; 4941 for (Use &Arg : CI->args()) 4942 VecTys.push_back( 4943 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 4944 FastMathFlags FMF; 4945 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 4946 FMF = FPCI->getFastMathFlags(); 4947 SmallVector<const Value *> Arguments(CI->args()); 4948 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 4949 dyn_cast<IntrinsicInst>(CI)); 4950 auto IntrinsicCost = 4951 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 4952 4953 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4954 VecTy->getNumElements())), 4955 false /*HasGlobalPred*/); 4956 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4957 auto LibCost = IntrinsicCost; 4958 if (!CI->isNoBuiltin() && VecFunc) { 4959 // Calculate the cost of the vector library call. 4960 // If the corresponding vector call is cheaper, return its cost. 4961 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 4962 TTI::TCK_RecipThroughput); 4963 } 4964 return {IntrinsicCost, LibCost}; 4965 } 4966 4967 /// Compute the cost of creating a vector of type \p VecTy containing the 4968 /// extracted values from \p VL. 4969 static InstructionCost 4970 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 4971 TargetTransformInfo::ShuffleKind ShuffleKind, 4972 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 4973 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 4974 4975 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 4976 VecTy->getNumElements() < NumOfParts) 4977 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 4978 4979 bool AllConsecutive = true; 4980 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 4981 unsigned Idx = -1; 4982 InstructionCost Cost = 0; 4983 4984 // Process extracts in blocks of EltsPerVector to check if the source vector 4985 // operand can be re-used directly. If not, add the cost of creating a shuffle 4986 // to extract the values into a vector register. 4987 for (auto *V : VL) { 4988 ++Idx; 4989 4990 // Need to exclude undefs from analysis. 4991 if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem) 4992 continue; 4993 4994 // Reached the start of a new vector registers. 4995 if (Idx % EltsPerVector == 0) { 4996 AllConsecutive = true; 4997 continue; 4998 } 4999 5000 // Check all extracts for a vector register on the target directly 5001 // extract values in order. 5002 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 5003 if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) { 5004 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 5005 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 5006 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 5007 } 5008 5009 if (AllConsecutive) 5010 continue; 5011 5012 // Skip all indices, except for the last index per vector block. 5013 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 5014 continue; 5015 5016 // If we have a series of extracts which are not consecutive and hence 5017 // cannot re-use the source vector register directly, compute the shuffle 5018 // cost to extract the a vector with EltsPerVector elements. 5019 Cost += TTI.getShuffleCost( 5020 TargetTransformInfo::SK_PermuteSingleSrc, 5021 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 5022 } 5023 return Cost; 5024 } 5025 5026 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 5027 /// operations operands. 5028 static void 5029 buildShuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 5030 ArrayRef<int> ReusesIndices, 5031 const function_ref<bool(Instruction *)> IsAltOp, 5032 SmallVectorImpl<int> &Mask, 5033 SmallVectorImpl<Value *> *OpScalars = nullptr, 5034 SmallVectorImpl<Value *> *AltScalars = nullptr) { 5035 unsigned Sz = VL.size(); 5036 Mask.assign(Sz, UndefMaskElem); 5037 SmallVector<int> OrderMask; 5038 if (!ReorderIndices.empty()) 5039 inversePermutation(ReorderIndices, OrderMask); 5040 for (unsigned I = 0; I < Sz; ++I) { 5041 unsigned Idx = I; 5042 if (!ReorderIndices.empty()) 5043 Idx = OrderMask[I]; 5044 auto *OpInst = cast<Instruction>(VL[Idx]); 5045 if (IsAltOp(OpInst)) { 5046 Mask[I] = Sz + Idx; 5047 if (AltScalars) 5048 AltScalars->push_back(OpInst); 5049 } else { 5050 Mask[I] = Idx; 5051 if (OpScalars) 5052 OpScalars->push_back(OpInst); 5053 } 5054 } 5055 if (!ReusesIndices.empty()) { 5056 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 5057 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 5058 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 5059 }); 5060 Mask.swap(NewMask); 5061 } 5062 } 5063 5064 /// Checks if the specified instruction \p I is an alternate operation for the 5065 /// given \p MainOp and \p AltOp instructions. 5066 static bool isAlternateInstruction(const Instruction *I, 5067 const Instruction *MainOp, 5068 const Instruction *AltOp) { 5069 if (auto *CI0 = dyn_cast<CmpInst>(MainOp)) { 5070 auto *AltCI0 = cast<CmpInst>(AltOp); 5071 auto *CI = cast<CmpInst>(I); 5072 CmpInst::Predicate P0 = CI0->getPredicate(); 5073 CmpInst::Predicate AltP0 = AltCI0->getPredicate(); 5074 assert(P0 != AltP0 && "Expected different main/alternate predicates."); 5075 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 5076 CmpInst::Predicate CurrentPred = CI->getPredicate(); 5077 if (P0 == AltP0Swapped) 5078 return I == AltCI0 || 5079 (I != MainOp && 5080 !areCompatibleCmpOps(CI0->getOperand(0), CI0->getOperand(1), 5081 CI->getOperand(0), CI->getOperand(1))); 5082 return AltP0 == CurrentPred || AltP0Swapped == CurrentPred; 5083 } 5084 return I->getOpcode() == AltOp->getOpcode(); 5085 } 5086 5087 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 5088 ArrayRef<Value *> VectorizedVals) { 5089 ArrayRef<Value*> VL = E->Scalars; 5090 5091 Type *ScalarTy = VL[0]->getType(); 5092 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 5093 ScalarTy = SI->getValueOperand()->getType(); 5094 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 5095 ScalarTy = CI->getOperand(0)->getType(); 5096 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 5097 ScalarTy = IE->getOperand(1)->getType(); 5098 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 5099 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 5100 5101 // If we have computed a smaller type for the expression, update VecTy so 5102 // that the costs will be accurate. 5103 if (MinBWs.count(VL[0])) 5104 VecTy = FixedVectorType::get( 5105 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 5106 unsigned EntryVF = E->getVectorFactor(); 5107 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 5108 5109 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 5110 // FIXME: it tries to fix a problem with MSVC buildbots. 5111 TargetTransformInfo &TTIRef = *TTI; 5112 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 5113 VectorizedVals, E](InstructionCost &Cost) { 5114 DenseMap<Value *, int> ExtractVectorsTys; 5115 SmallPtrSet<Value *, 4> CheckedExtracts; 5116 for (auto *V : VL) { 5117 if (isa<UndefValue>(V)) 5118 continue; 5119 // If all users of instruction are going to be vectorized and this 5120 // instruction itself is not going to be vectorized, consider this 5121 // instruction as dead and remove its cost from the final cost of the 5122 // vectorized tree. 5123 // Also, avoid adjusting the cost for extractelements with multiple uses 5124 // in different graph entries. 5125 const TreeEntry *VE = getTreeEntry(V); 5126 if (!CheckedExtracts.insert(V).second || 5127 !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 5128 (VE && VE != E)) 5129 continue; 5130 auto *EE = cast<ExtractElementInst>(V); 5131 Optional<unsigned> EEIdx = getExtractIndex(EE); 5132 if (!EEIdx) 5133 continue; 5134 unsigned Idx = *EEIdx; 5135 if (TTIRef.getNumberOfParts(VecTy) != 5136 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 5137 auto It = 5138 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 5139 It->getSecond() = std::min<int>(It->second, Idx); 5140 } 5141 // Take credit for instruction that will become dead. 5142 if (EE->hasOneUse()) { 5143 Instruction *Ext = EE->user_back(); 5144 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5145 all_of(Ext->users(), 5146 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5147 // Use getExtractWithExtendCost() to calculate the cost of 5148 // extractelement/ext pair. 5149 Cost -= 5150 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 5151 EE->getVectorOperandType(), Idx); 5152 // Add back the cost of s|zext which is subtracted separately. 5153 Cost += TTIRef.getCastInstrCost( 5154 Ext->getOpcode(), Ext->getType(), EE->getType(), 5155 TTI::getCastContextHint(Ext), CostKind, Ext); 5156 continue; 5157 } 5158 } 5159 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 5160 EE->getVectorOperandType(), Idx); 5161 } 5162 // Add a cost for subvector extracts/inserts if required. 5163 for (const auto &Data : ExtractVectorsTys) { 5164 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 5165 unsigned NumElts = VecTy->getNumElements(); 5166 if (Data.second % NumElts == 0) 5167 continue; 5168 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 5169 unsigned Idx = (Data.second / NumElts) * NumElts; 5170 unsigned EENumElts = EEVTy->getNumElements(); 5171 if (Idx + NumElts <= EENumElts) { 5172 Cost += 5173 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5174 EEVTy, None, Idx, VecTy); 5175 } else { 5176 // Need to round up the subvector type vectorization factor to avoid a 5177 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 5178 // <= EENumElts. 5179 auto *SubVT = 5180 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 5181 Cost += 5182 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5183 EEVTy, None, Idx, SubVT); 5184 } 5185 } else { 5186 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 5187 VecTy, None, 0, EEVTy); 5188 } 5189 } 5190 }; 5191 if (E->State == TreeEntry::NeedToGather) { 5192 if (allConstant(VL)) 5193 return 0; 5194 if (isa<InsertElementInst>(VL[0])) 5195 return InstructionCost::getInvalid(); 5196 SmallVector<int> Mask; 5197 SmallVector<const TreeEntry *> Entries; 5198 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 5199 isGatherShuffledEntry(E, Mask, Entries); 5200 if (Shuffle.hasValue()) { 5201 InstructionCost GatherCost = 0; 5202 if (ShuffleVectorInst::isIdentityMask(Mask)) { 5203 // Perfect match in the graph, will reuse the previously vectorized 5204 // node. Cost is 0. 5205 LLVM_DEBUG( 5206 dbgs() 5207 << "SLP: perfect diamond match for gather bundle that starts with " 5208 << *VL.front() << ".\n"); 5209 if (NeedToShuffleReuses) 5210 GatherCost = 5211 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5212 FinalVecTy, E->ReuseShuffleIndices); 5213 } else { 5214 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 5215 << " entries for bundle that starts with " 5216 << *VL.front() << ".\n"); 5217 // Detected that instead of gather we can emit a shuffle of single/two 5218 // previously vectorized nodes. Add the cost of the permutation rather 5219 // than gather. 5220 ::addMask(Mask, E->ReuseShuffleIndices); 5221 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 5222 } 5223 return GatherCost; 5224 } 5225 if ((E->getOpcode() == Instruction::ExtractElement || 5226 all_of(E->Scalars, 5227 [](Value *V) { 5228 return isa<ExtractElementInst, UndefValue>(V); 5229 })) && 5230 allSameType(VL)) { 5231 // Check that gather of extractelements can be represented as just a 5232 // shuffle of a single/two vectors the scalars are extracted from. 5233 SmallVector<int> Mask; 5234 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 5235 isFixedVectorShuffle(VL, Mask); 5236 if (ShuffleKind.hasValue()) { 5237 // Found the bunch of extractelement instructions that must be gathered 5238 // into a vector and can be represented as a permutation elements in a 5239 // single input vector or of 2 input vectors. 5240 InstructionCost Cost = 5241 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 5242 AdjustExtractsCost(Cost); 5243 if (NeedToShuffleReuses) 5244 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5245 FinalVecTy, E->ReuseShuffleIndices); 5246 return Cost; 5247 } 5248 } 5249 if (isSplat(VL)) { 5250 // Found the broadcasting of the single scalar, calculate the cost as the 5251 // broadcast. 5252 assert(VecTy == FinalVecTy && 5253 "No reused scalars expected for broadcast."); 5254 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 5255 /*Mask=*/None, /*Index=*/0, 5256 /*SubTp=*/nullptr, /*Args=*/VL); 5257 } 5258 InstructionCost ReuseShuffleCost = 0; 5259 if (NeedToShuffleReuses) 5260 ReuseShuffleCost = TTI->getShuffleCost( 5261 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 5262 // Improve gather cost for gather of loads, if we can group some of the 5263 // loads into vector loads. 5264 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 5265 !E->isAltShuffle()) { 5266 BoUpSLP::ValueSet VectorizedLoads; 5267 unsigned StartIdx = 0; 5268 unsigned VF = VL.size() / 2; 5269 unsigned VectorizedCnt = 0; 5270 unsigned ScatterVectorizeCnt = 0; 5271 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 5272 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 5273 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 5274 Cnt += VF) { 5275 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 5276 if (!VectorizedLoads.count(Slice.front()) && 5277 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 5278 SmallVector<Value *> PointerOps; 5279 OrdersType CurrentOrder; 5280 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 5281 *SE, CurrentOrder, PointerOps); 5282 switch (LS) { 5283 case LoadsState::Vectorize: 5284 case LoadsState::ScatterVectorize: 5285 // Mark the vectorized loads so that we don't vectorize them 5286 // again. 5287 if (LS == LoadsState::Vectorize) 5288 ++VectorizedCnt; 5289 else 5290 ++ScatterVectorizeCnt; 5291 VectorizedLoads.insert(Slice.begin(), Slice.end()); 5292 // If we vectorized initial block, no need to try to vectorize it 5293 // again. 5294 if (Cnt == StartIdx) 5295 StartIdx += VF; 5296 break; 5297 case LoadsState::Gather: 5298 break; 5299 } 5300 } 5301 } 5302 // Check if the whole array was vectorized already - exit. 5303 if (StartIdx >= VL.size()) 5304 break; 5305 // Found vectorizable parts - exit. 5306 if (!VectorizedLoads.empty()) 5307 break; 5308 } 5309 if (!VectorizedLoads.empty()) { 5310 InstructionCost GatherCost = 0; 5311 unsigned NumParts = TTI->getNumberOfParts(VecTy); 5312 bool NeedInsertSubvectorAnalysis = 5313 !NumParts || (VL.size() / VF) > NumParts; 5314 // Get the cost for gathered loads. 5315 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 5316 if (VectorizedLoads.contains(VL[I])) 5317 continue; 5318 GatherCost += getGatherCost(VL.slice(I, VF)); 5319 } 5320 // The cost for vectorized loads. 5321 InstructionCost ScalarsCost = 0; 5322 for (Value *V : VectorizedLoads) { 5323 auto *LI = cast<LoadInst>(V); 5324 ScalarsCost += TTI->getMemoryOpCost( 5325 Instruction::Load, LI->getType(), LI->getAlign(), 5326 LI->getPointerAddressSpace(), CostKind, LI); 5327 } 5328 auto *LI = cast<LoadInst>(E->getMainOp()); 5329 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 5330 Align Alignment = LI->getAlign(); 5331 GatherCost += 5332 VectorizedCnt * 5333 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 5334 LI->getPointerAddressSpace(), CostKind, LI); 5335 GatherCost += ScatterVectorizeCnt * 5336 TTI->getGatherScatterOpCost( 5337 Instruction::Load, LoadTy, LI->getPointerOperand(), 5338 /*VariableMask=*/false, Alignment, CostKind, LI); 5339 if (NeedInsertSubvectorAnalysis) { 5340 // Add the cost for the subvectors insert. 5341 for (int I = VF, E = VL.size(); I < E; I += VF) 5342 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 5343 None, I, LoadTy); 5344 } 5345 return ReuseShuffleCost + GatherCost - ScalarsCost; 5346 } 5347 } 5348 return ReuseShuffleCost + getGatherCost(VL); 5349 } 5350 InstructionCost CommonCost = 0; 5351 SmallVector<int> Mask; 5352 if (!E->ReorderIndices.empty()) { 5353 SmallVector<int> NewMask; 5354 if (E->getOpcode() == Instruction::Store) { 5355 // For stores the order is actually a mask. 5356 NewMask.resize(E->ReorderIndices.size()); 5357 copy(E->ReorderIndices, NewMask.begin()); 5358 } else { 5359 inversePermutation(E->ReorderIndices, NewMask); 5360 } 5361 ::addMask(Mask, NewMask); 5362 } 5363 if (NeedToShuffleReuses) 5364 ::addMask(Mask, E->ReuseShuffleIndices); 5365 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 5366 CommonCost = 5367 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 5368 assert((E->State == TreeEntry::Vectorize || 5369 E->State == TreeEntry::ScatterVectorize) && 5370 "Unhandled state"); 5371 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 5372 Instruction *VL0 = E->getMainOp(); 5373 unsigned ShuffleOrOp = 5374 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 5375 switch (ShuffleOrOp) { 5376 case Instruction::PHI: 5377 return 0; 5378 5379 case Instruction::ExtractValue: 5380 case Instruction::ExtractElement: { 5381 // The common cost of removal ExtractElement/ExtractValue instructions + 5382 // the cost of shuffles, if required to resuffle the original vector. 5383 if (NeedToShuffleReuses) { 5384 unsigned Idx = 0; 5385 for (unsigned I : E->ReuseShuffleIndices) { 5386 if (ShuffleOrOp == Instruction::ExtractElement) { 5387 auto *EE = cast<ExtractElementInst>(VL[I]); 5388 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5389 EE->getVectorOperandType(), 5390 *getExtractIndex(EE)); 5391 } else { 5392 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5393 VecTy, Idx); 5394 ++Idx; 5395 } 5396 } 5397 Idx = EntryVF; 5398 for (Value *V : VL) { 5399 if (ShuffleOrOp == Instruction::ExtractElement) { 5400 auto *EE = cast<ExtractElementInst>(V); 5401 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5402 EE->getVectorOperandType(), 5403 *getExtractIndex(EE)); 5404 } else { 5405 --Idx; 5406 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5407 VecTy, Idx); 5408 } 5409 } 5410 } 5411 if (ShuffleOrOp == Instruction::ExtractValue) { 5412 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 5413 auto *EI = cast<Instruction>(VL[I]); 5414 // Take credit for instruction that will become dead. 5415 if (EI->hasOneUse()) { 5416 Instruction *Ext = EI->user_back(); 5417 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5418 all_of(Ext->users(), 5419 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5420 // Use getExtractWithExtendCost() to calculate the cost of 5421 // extractelement/ext pair. 5422 CommonCost -= TTI->getExtractWithExtendCost( 5423 Ext->getOpcode(), Ext->getType(), VecTy, I); 5424 // Add back the cost of s|zext which is subtracted separately. 5425 CommonCost += TTI->getCastInstrCost( 5426 Ext->getOpcode(), Ext->getType(), EI->getType(), 5427 TTI::getCastContextHint(Ext), CostKind, Ext); 5428 continue; 5429 } 5430 } 5431 CommonCost -= 5432 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 5433 } 5434 } else { 5435 AdjustExtractsCost(CommonCost); 5436 } 5437 return CommonCost; 5438 } 5439 case Instruction::InsertElement: { 5440 assert(E->ReuseShuffleIndices.empty() && 5441 "Unique insertelements only are expected."); 5442 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 5443 5444 unsigned const NumElts = SrcVecTy->getNumElements(); 5445 unsigned const NumScalars = VL.size(); 5446 APInt DemandedElts = APInt::getZero(NumElts); 5447 // TODO: Add support for Instruction::InsertValue. 5448 SmallVector<int> Mask; 5449 if (!E->ReorderIndices.empty()) { 5450 inversePermutation(E->ReorderIndices, Mask); 5451 Mask.append(NumElts - NumScalars, UndefMaskElem); 5452 } else { 5453 Mask.assign(NumElts, UndefMaskElem); 5454 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 5455 } 5456 unsigned Offset = *getInsertIndex(VL0); 5457 bool IsIdentity = true; 5458 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 5459 Mask.swap(PrevMask); 5460 for (unsigned I = 0; I < NumScalars; ++I) { 5461 unsigned InsertIdx = *getInsertIndex(VL[PrevMask[I]]); 5462 DemandedElts.setBit(InsertIdx); 5463 IsIdentity &= InsertIdx - Offset == I; 5464 Mask[InsertIdx - Offset] = I; 5465 } 5466 assert(Offset < NumElts && "Failed to find vector index offset"); 5467 5468 InstructionCost Cost = 0; 5469 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 5470 /*Insert*/ true, /*Extract*/ false); 5471 5472 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 5473 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 5474 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 5475 Cost += TTI->getShuffleCost( 5476 TargetTransformInfo::SK_PermuteSingleSrc, 5477 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 5478 } else if (!IsIdentity) { 5479 auto *FirstInsert = 5480 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 5481 return !is_contained(E->Scalars, 5482 cast<Instruction>(V)->getOperand(0)); 5483 })); 5484 if (isUndefVector(FirstInsert->getOperand(0))) { 5485 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 5486 } else { 5487 SmallVector<int> InsertMask(NumElts); 5488 std::iota(InsertMask.begin(), InsertMask.end(), 0); 5489 for (unsigned I = 0; I < NumElts; I++) { 5490 if (Mask[I] != UndefMaskElem) 5491 InsertMask[Offset + I] = NumElts + I; 5492 } 5493 Cost += 5494 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 5495 } 5496 } 5497 5498 return Cost; 5499 } 5500 case Instruction::ZExt: 5501 case Instruction::SExt: 5502 case Instruction::FPToUI: 5503 case Instruction::FPToSI: 5504 case Instruction::FPExt: 5505 case Instruction::PtrToInt: 5506 case Instruction::IntToPtr: 5507 case Instruction::SIToFP: 5508 case Instruction::UIToFP: 5509 case Instruction::Trunc: 5510 case Instruction::FPTrunc: 5511 case Instruction::BitCast: { 5512 Type *SrcTy = VL0->getOperand(0)->getType(); 5513 InstructionCost ScalarEltCost = 5514 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 5515 TTI::getCastContextHint(VL0), CostKind, VL0); 5516 if (NeedToShuffleReuses) { 5517 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5518 } 5519 5520 // Calculate the cost of this instruction. 5521 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 5522 5523 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 5524 InstructionCost VecCost = 0; 5525 // Check if the values are candidates to demote. 5526 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 5527 VecCost = CommonCost + TTI->getCastInstrCost( 5528 E->getOpcode(), VecTy, SrcVecTy, 5529 TTI::getCastContextHint(VL0), CostKind, VL0); 5530 } 5531 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5532 return VecCost - ScalarCost; 5533 } 5534 case Instruction::FCmp: 5535 case Instruction::ICmp: 5536 case Instruction::Select: { 5537 // Calculate the cost of this instruction. 5538 InstructionCost ScalarEltCost = 5539 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5540 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 5541 if (NeedToShuffleReuses) { 5542 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5543 } 5544 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 5545 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5546 5547 // Check if all entries in VL are either compares or selects with compares 5548 // as condition that have the same predicates. 5549 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 5550 bool First = true; 5551 for (auto *V : VL) { 5552 CmpInst::Predicate CurrentPred; 5553 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 5554 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 5555 !match(V, MatchCmp)) || 5556 (!First && VecPred != CurrentPred)) { 5557 VecPred = CmpInst::BAD_ICMP_PREDICATE; 5558 break; 5559 } 5560 First = false; 5561 VecPred = CurrentPred; 5562 } 5563 5564 InstructionCost VecCost = TTI->getCmpSelInstrCost( 5565 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 5566 // Check if it is possible and profitable to use min/max for selects in 5567 // VL. 5568 // 5569 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 5570 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 5571 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 5572 {VecTy, VecTy}); 5573 InstructionCost IntrinsicCost = 5574 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5575 // If the selects are the only uses of the compares, they will be dead 5576 // and we can adjust the cost by removing their cost. 5577 if (IntrinsicAndUse.second) 5578 IntrinsicCost -= TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, 5579 MaskTy, VecPred, CostKind); 5580 VecCost = std::min(VecCost, IntrinsicCost); 5581 } 5582 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5583 return CommonCost + VecCost - ScalarCost; 5584 } 5585 case Instruction::FNeg: 5586 case Instruction::Add: 5587 case Instruction::FAdd: 5588 case Instruction::Sub: 5589 case Instruction::FSub: 5590 case Instruction::Mul: 5591 case Instruction::FMul: 5592 case Instruction::UDiv: 5593 case Instruction::SDiv: 5594 case Instruction::FDiv: 5595 case Instruction::URem: 5596 case Instruction::SRem: 5597 case Instruction::FRem: 5598 case Instruction::Shl: 5599 case Instruction::LShr: 5600 case Instruction::AShr: 5601 case Instruction::And: 5602 case Instruction::Or: 5603 case Instruction::Xor: { 5604 // Certain instructions can be cheaper to vectorize if they have a 5605 // constant second vector operand. 5606 TargetTransformInfo::OperandValueKind Op1VK = 5607 TargetTransformInfo::OK_AnyValue; 5608 TargetTransformInfo::OperandValueKind Op2VK = 5609 TargetTransformInfo::OK_UniformConstantValue; 5610 TargetTransformInfo::OperandValueProperties Op1VP = 5611 TargetTransformInfo::OP_None; 5612 TargetTransformInfo::OperandValueProperties Op2VP = 5613 TargetTransformInfo::OP_PowerOf2; 5614 5615 // If all operands are exactly the same ConstantInt then set the 5616 // operand kind to OK_UniformConstantValue. 5617 // If instead not all operands are constants, then set the operand kind 5618 // to OK_AnyValue. If all operands are constants but not the same, 5619 // then set the operand kind to OK_NonUniformConstantValue. 5620 ConstantInt *CInt0 = nullptr; 5621 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 5622 const Instruction *I = cast<Instruction>(VL[i]); 5623 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 5624 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 5625 if (!CInt) { 5626 Op2VK = TargetTransformInfo::OK_AnyValue; 5627 Op2VP = TargetTransformInfo::OP_None; 5628 break; 5629 } 5630 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 5631 !CInt->getValue().isPowerOf2()) 5632 Op2VP = TargetTransformInfo::OP_None; 5633 if (i == 0) { 5634 CInt0 = CInt; 5635 continue; 5636 } 5637 if (CInt0 != CInt) 5638 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5639 } 5640 5641 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 5642 InstructionCost ScalarEltCost = 5643 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 5644 Op2VK, Op1VP, Op2VP, Operands, VL0); 5645 if (NeedToShuffleReuses) { 5646 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5647 } 5648 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5649 InstructionCost VecCost = 5650 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 5651 Op2VK, Op1VP, Op2VP, Operands, VL0); 5652 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5653 return CommonCost + VecCost - ScalarCost; 5654 } 5655 case Instruction::GetElementPtr: { 5656 TargetTransformInfo::OperandValueKind Op1VK = 5657 TargetTransformInfo::OK_AnyValue; 5658 TargetTransformInfo::OperandValueKind Op2VK = 5659 TargetTransformInfo::OK_UniformConstantValue; 5660 5661 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 5662 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 5663 if (NeedToShuffleReuses) { 5664 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5665 } 5666 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5667 InstructionCost VecCost = TTI->getArithmeticInstrCost( 5668 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 5669 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5670 return CommonCost + VecCost - ScalarCost; 5671 } 5672 case Instruction::Load: { 5673 // Cost of wide load - cost of scalar loads. 5674 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 5675 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5676 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 5677 if (NeedToShuffleReuses) { 5678 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5679 } 5680 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 5681 InstructionCost VecLdCost; 5682 if (E->State == TreeEntry::Vectorize) { 5683 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 5684 CostKind, VL0); 5685 } else { 5686 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 5687 Align CommonAlignment = Alignment; 5688 for (Value *V : VL) 5689 CommonAlignment = 5690 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 5691 VecLdCost = TTI->getGatherScatterOpCost( 5692 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 5693 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 5694 } 5695 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 5696 return CommonCost + VecLdCost - ScalarLdCost; 5697 } 5698 case Instruction::Store: { 5699 // We know that we can merge the stores. Calculate the cost. 5700 bool IsReorder = !E->ReorderIndices.empty(); 5701 auto *SI = 5702 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 5703 Align Alignment = SI->getAlign(); 5704 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5705 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 5706 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 5707 InstructionCost VecStCost = TTI->getMemoryOpCost( 5708 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 5709 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 5710 return CommonCost + VecStCost - ScalarStCost; 5711 } 5712 case Instruction::Call: { 5713 CallInst *CI = cast<CallInst>(VL0); 5714 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5715 5716 // Calculate the cost of the scalar and vector calls. 5717 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 5718 InstructionCost ScalarEltCost = 5719 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5720 if (NeedToShuffleReuses) { 5721 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5722 } 5723 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 5724 5725 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 5726 InstructionCost VecCallCost = 5727 std::min(VecCallCosts.first, VecCallCosts.second); 5728 5729 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 5730 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 5731 << " for " << *CI << "\n"); 5732 5733 return CommonCost + VecCallCost - ScalarCallCost; 5734 } 5735 case Instruction::ShuffleVector: { 5736 assert(E->isAltShuffle() && 5737 ((Instruction::isBinaryOp(E->getOpcode()) && 5738 Instruction::isBinaryOp(E->getAltOpcode())) || 5739 (Instruction::isCast(E->getOpcode()) && 5740 Instruction::isCast(E->getAltOpcode())) || 5741 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 5742 "Invalid Shuffle Vector Operand"); 5743 InstructionCost ScalarCost = 0; 5744 if (NeedToShuffleReuses) { 5745 for (unsigned Idx : E->ReuseShuffleIndices) { 5746 Instruction *I = cast<Instruction>(VL[Idx]); 5747 CommonCost -= TTI->getInstructionCost(I, CostKind); 5748 } 5749 for (Value *V : VL) { 5750 Instruction *I = cast<Instruction>(V); 5751 CommonCost += TTI->getInstructionCost(I, CostKind); 5752 } 5753 } 5754 for (Value *V : VL) { 5755 Instruction *I = cast<Instruction>(V); 5756 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5757 ScalarCost += TTI->getInstructionCost(I, CostKind); 5758 } 5759 // VecCost is equal to sum of the cost of creating 2 vectors 5760 // and the cost of creating shuffle. 5761 InstructionCost VecCost = 0; 5762 // Try to find the previous shuffle node with the same operands and same 5763 // main/alternate ops. 5764 auto &&TryFindNodeWithEqualOperands = [this, E]() { 5765 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 5766 if (TE.get() == E) 5767 break; 5768 if (TE->isAltShuffle() && 5769 ((TE->getOpcode() == E->getOpcode() && 5770 TE->getAltOpcode() == E->getAltOpcode()) || 5771 (TE->getOpcode() == E->getAltOpcode() && 5772 TE->getAltOpcode() == E->getOpcode())) && 5773 TE->hasEqualOperands(*E)) 5774 return true; 5775 } 5776 return false; 5777 }; 5778 if (TryFindNodeWithEqualOperands()) { 5779 LLVM_DEBUG({ 5780 dbgs() << "SLP: diamond match for alternate node found.\n"; 5781 E->dump(); 5782 }); 5783 // No need to add new vector costs here since we're going to reuse 5784 // same main/alternate vector ops, just do different shuffling. 5785 } else if (Instruction::isBinaryOp(E->getOpcode())) { 5786 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 5787 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 5788 CostKind); 5789 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 5790 VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 5791 Builder.getInt1Ty(), 5792 CI0->getPredicate(), CostKind, VL0); 5793 VecCost += TTI->getCmpSelInstrCost( 5794 E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5795 cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind, 5796 E->getAltOp()); 5797 } else { 5798 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 5799 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 5800 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 5801 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 5802 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 5803 TTI::CastContextHint::None, CostKind); 5804 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 5805 TTI::CastContextHint::None, CostKind); 5806 } 5807 5808 SmallVector<int> Mask; 5809 buildShuffleEntryMask( 5810 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 5811 [E](Instruction *I) { 5812 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5813 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 5814 }, 5815 Mask); 5816 CommonCost = 5817 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask); 5818 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5819 return CommonCost + VecCost - ScalarCost; 5820 } 5821 default: 5822 llvm_unreachable("Unknown instruction"); 5823 } 5824 } 5825 5826 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 5827 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 5828 << VectorizableTree.size() << " is fully vectorizable .\n"); 5829 5830 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 5831 SmallVector<int> Mask; 5832 return TE->State == TreeEntry::NeedToGather && 5833 !any_of(TE->Scalars, 5834 [this](Value *V) { return EphValues.contains(V); }) && 5835 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 5836 TE->Scalars.size() < Limit || 5837 ((TE->getOpcode() == Instruction::ExtractElement || 5838 all_of(TE->Scalars, 5839 [](Value *V) { 5840 return isa<ExtractElementInst, UndefValue>(V); 5841 })) && 5842 isFixedVectorShuffle(TE->Scalars, Mask)) || 5843 (TE->State == TreeEntry::NeedToGather && 5844 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 5845 }; 5846 5847 // We only handle trees of heights 1 and 2. 5848 if (VectorizableTree.size() == 1 && 5849 (VectorizableTree[0]->State == TreeEntry::Vectorize || 5850 (ForReduction && 5851 AreVectorizableGathers(VectorizableTree[0].get(), 5852 VectorizableTree[0]->Scalars.size()) && 5853 VectorizableTree[0]->getVectorFactor() > 2))) 5854 return true; 5855 5856 if (VectorizableTree.size() != 2) 5857 return false; 5858 5859 // Handle splat and all-constants stores. Also try to vectorize tiny trees 5860 // with the second gather nodes if they have less scalar operands rather than 5861 // the initial tree element (may be profitable to shuffle the second gather) 5862 // or they are extractelements, which form shuffle. 5863 SmallVector<int> Mask; 5864 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 5865 AreVectorizableGathers(VectorizableTree[1].get(), 5866 VectorizableTree[0]->Scalars.size())) 5867 return true; 5868 5869 // Gathering cost would be too much for tiny trees. 5870 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 5871 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 5872 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 5873 return false; 5874 5875 return true; 5876 } 5877 5878 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 5879 TargetTransformInfo *TTI, 5880 bool MustMatchOrInst) { 5881 // Look past the root to find a source value. Arbitrarily follow the 5882 // path through operand 0 of any 'or'. Also, peek through optional 5883 // shift-left-by-multiple-of-8-bits. 5884 Value *ZextLoad = Root; 5885 const APInt *ShAmtC; 5886 bool FoundOr = false; 5887 while (!isa<ConstantExpr>(ZextLoad) && 5888 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 5889 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 5890 ShAmtC->urem(8) == 0))) { 5891 auto *BinOp = cast<BinaryOperator>(ZextLoad); 5892 ZextLoad = BinOp->getOperand(0); 5893 if (BinOp->getOpcode() == Instruction::Or) 5894 FoundOr = true; 5895 } 5896 // Check if the input is an extended load of the required or/shift expression. 5897 Value *Load; 5898 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 5899 !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load)) 5900 return false; 5901 5902 // Require that the total load bit width is a legal integer type. 5903 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 5904 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 5905 Type *SrcTy = Load->getType(); 5906 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 5907 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 5908 return false; 5909 5910 // Everything matched - assume that we can fold the whole sequence using 5911 // load combining. 5912 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 5913 << *(cast<Instruction>(Root)) << "\n"); 5914 5915 return true; 5916 } 5917 5918 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 5919 if (RdxKind != RecurKind::Or) 5920 return false; 5921 5922 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5923 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 5924 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 5925 /* MatchOr */ false); 5926 } 5927 5928 bool BoUpSLP::isLoadCombineCandidate() const { 5929 // Peek through a final sequence of stores and check if all operations are 5930 // likely to be load-combined. 5931 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5932 for (Value *Scalar : VectorizableTree[0]->Scalars) { 5933 Value *X; 5934 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 5935 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 5936 return false; 5937 } 5938 return true; 5939 } 5940 5941 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 5942 // No need to vectorize inserts of gathered values. 5943 if (VectorizableTree.size() == 2 && 5944 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 5945 VectorizableTree[1]->State == TreeEntry::NeedToGather) 5946 return true; 5947 5948 // We can vectorize the tree if its size is greater than or equal to the 5949 // minimum size specified by the MinTreeSize command line option. 5950 if (VectorizableTree.size() >= MinTreeSize) 5951 return false; 5952 5953 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 5954 // can vectorize it if we can prove it fully vectorizable. 5955 if (isFullyVectorizableTinyTree(ForReduction)) 5956 return false; 5957 5958 assert(VectorizableTree.empty() 5959 ? ExternalUses.empty() 5960 : true && "We shouldn't have any external users"); 5961 5962 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 5963 // vectorizable. 5964 return true; 5965 } 5966 5967 InstructionCost BoUpSLP::getSpillCost() const { 5968 // Walk from the bottom of the tree to the top, tracking which values are 5969 // live. When we see a call instruction that is not part of our tree, 5970 // query TTI to see if there is a cost to keeping values live over it 5971 // (for example, if spills and fills are required). 5972 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 5973 InstructionCost Cost = 0; 5974 5975 SmallPtrSet<Instruction*, 4> LiveValues; 5976 Instruction *PrevInst = nullptr; 5977 5978 // The entries in VectorizableTree are not necessarily ordered by their 5979 // position in basic blocks. Collect them and order them by dominance so later 5980 // instructions are guaranteed to be visited first. For instructions in 5981 // different basic blocks, we only scan to the beginning of the block, so 5982 // their order does not matter, as long as all instructions in a basic block 5983 // are grouped together. Using dominance ensures a deterministic order. 5984 SmallVector<Instruction *, 16> OrderedScalars; 5985 for (const auto &TEPtr : VectorizableTree) { 5986 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 5987 if (!Inst) 5988 continue; 5989 OrderedScalars.push_back(Inst); 5990 } 5991 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 5992 auto *NodeA = DT->getNode(A->getParent()); 5993 auto *NodeB = DT->getNode(B->getParent()); 5994 assert(NodeA && "Should only process reachable instructions"); 5995 assert(NodeB && "Should only process reachable instructions"); 5996 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 5997 "Different nodes should have different DFS numbers"); 5998 if (NodeA != NodeB) 5999 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 6000 return B->comesBefore(A); 6001 }); 6002 6003 for (Instruction *Inst : OrderedScalars) { 6004 if (!PrevInst) { 6005 PrevInst = Inst; 6006 continue; 6007 } 6008 6009 // Update LiveValues. 6010 LiveValues.erase(PrevInst); 6011 for (auto &J : PrevInst->operands()) { 6012 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 6013 LiveValues.insert(cast<Instruction>(&*J)); 6014 } 6015 6016 LLVM_DEBUG({ 6017 dbgs() << "SLP: #LV: " << LiveValues.size(); 6018 for (auto *X : LiveValues) 6019 dbgs() << " " << X->getName(); 6020 dbgs() << ", Looking at "; 6021 Inst->dump(); 6022 }); 6023 6024 // Now find the sequence of instructions between PrevInst and Inst. 6025 unsigned NumCalls = 0; 6026 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 6027 PrevInstIt = 6028 PrevInst->getIterator().getReverse(); 6029 while (InstIt != PrevInstIt) { 6030 if (PrevInstIt == PrevInst->getParent()->rend()) { 6031 PrevInstIt = Inst->getParent()->rbegin(); 6032 continue; 6033 } 6034 6035 // Debug information does not impact spill cost. 6036 if ((isa<CallInst>(&*PrevInstIt) && 6037 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 6038 &*PrevInstIt != PrevInst) 6039 NumCalls++; 6040 6041 ++PrevInstIt; 6042 } 6043 6044 if (NumCalls) { 6045 SmallVector<Type*, 4> V; 6046 for (auto *II : LiveValues) { 6047 auto *ScalarTy = II->getType(); 6048 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 6049 ScalarTy = VectorTy->getElementType(); 6050 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 6051 } 6052 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 6053 } 6054 6055 PrevInst = Inst; 6056 } 6057 6058 return Cost; 6059 } 6060 6061 /// Check if two insertelement instructions are from the same buildvector. 6062 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU, 6063 InsertElementInst *V) { 6064 // Instructions must be from the same basic blocks. 6065 if (VU->getParent() != V->getParent()) 6066 return false; 6067 // Checks if 2 insertelements are from the same buildvector. 6068 if (VU->getType() != V->getType()) 6069 return false; 6070 // Multiple used inserts are separate nodes. 6071 if (!VU->hasOneUse() && !V->hasOneUse()) 6072 return false; 6073 auto *IE1 = VU; 6074 auto *IE2 = V; 6075 // Go through the vector operand of insertelement instructions trying to find 6076 // either VU as the original vector for IE2 or V as the original vector for 6077 // IE1. 6078 do { 6079 if (IE2 == VU || IE1 == V) 6080 return true; 6081 if (IE1) { 6082 if (IE1 != VU && !IE1->hasOneUse()) 6083 IE1 = nullptr; 6084 else 6085 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 6086 } 6087 if (IE2) { 6088 if (IE2 != V && !IE2->hasOneUse()) 6089 IE2 = nullptr; 6090 else 6091 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 6092 } 6093 } while (IE1 || IE2); 6094 return false; 6095 } 6096 6097 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 6098 InstructionCost Cost = 0; 6099 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 6100 << VectorizableTree.size() << ".\n"); 6101 6102 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 6103 6104 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 6105 TreeEntry &TE = *VectorizableTree[I]; 6106 6107 InstructionCost C = getEntryCost(&TE, VectorizedVals); 6108 Cost += C; 6109 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6110 << " for bundle that starts with " << *TE.Scalars[0] 6111 << ".\n" 6112 << "SLP: Current total cost = " << Cost << "\n"); 6113 } 6114 6115 SmallPtrSet<Value *, 16> ExtractCostCalculated; 6116 InstructionCost ExtractCost = 0; 6117 SmallVector<unsigned> VF; 6118 SmallVector<SmallVector<int>> ShuffleMask; 6119 SmallVector<Value *> FirstUsers; 6120 SmallVector<APInt> DemandedElts; 6121 for (ExternalUser &EU : ExternalUses) { 6122 // We only add extract cost once for the same scalar. 6123 if (!isa_and_nonnull<InsertElementInst>(EU.User) && 6124 !ExtractCostCalculated.insert(EU.Scalar).second) 6125 continue; 6126 6127 // Uses by ephemeral values are free (because the ephemeral value will be 6128 // removed prior to code generation, and so the extraction will be 6129 // removed as well). 6130 if (EphValues.count(EU.User)) 6131 continue; 6132 6133 // No extract cost for vector "scalar" 6134 if (isa<FixedVectorType>(EU.Scalar->getType())) 6135 continue; 6136 6137 // Already counted the cost for external uses when tried to adjust the cost 6138 // for extractelements, no need to add it again. 6139 if (isa<ExtractElementInst>(EU.Scalar)) 6140 continue; 6141 6142 // If found user is an insertelement, do not calculate extract cost but try 6143 // to detect it as a final shuffled/identity match. 6144 if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) { 6145 if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) { 6146 Optional<unsigned> InsertIdx = getInsertIndex(VU); 6147 if (InsertIdx) { 6148 auto *It = find_if(FirstUsers, [VU](Value *V) { 6149 return areTwoInsertFromSameBuildVector(VU, 6150 cast<InsertElementInst>(V)); 6151 }); 6152 int VecId = -1; 6153 if (It == FirstUsers.end()) { 6154 VF.push_back(FTy->getNumElements()); 6155 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 6156 // Find the insertvector, vectorized in tree, if any. 6157 Value *Base = VU; 6158 while (isa<InsertElementInst>(Base)) { 6159 // Build the mask for the vectorized insertelement instructions. 6160 if (const TreeEntry *E = getTreeEntry(Base)) { 6161 VU = cast<InsertElementInst>(Base); 6162 do { 6163 int Idx = E->findLaneForValue(Base); 6164 ShuffleMask.back()[Idx] = Idx; 6165 Base = cast<InsertElementInst>(Base)->getOperand(0); 6166 } while (E == getTreeEntry(Base)); 6167 break; 6168 } 6169 Base = cast<InsertElementInst>(Base)->getOperand(0); 6170 } 6171 FirstUsers.push_back(VU); 6172 DemandedElts.push_back(APInt::getZero(VF.back())); 6173 VecId = FirstUsers.size() - 1; 6174 } else { 6175 VecId = std::distance(FirstUsers.begin(), It); 6176 } 6177 ShuffleMask[VecId][*InsertIdx] = EU.Lane; 6178 DemandedElts[VecId].setBit(*InsertIdx); 6179 continue; 6180 } 6181 } 6182 } 6183 6184 // If we plan to rewrite the tree in a smaller type, we will need to sign 6185 // extend the extracted value back to the original type. Here, we account 6186 // for the extract and the added cost of the sign extend if needed. 6187 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 6188 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 6189 if (MinBWs.count(ScalarRoot)) { 6190 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 6191 auto Extend = 6192 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 6193 VecTy = FixedVectorType::get(MinTy, BundleWidth); 6194 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 6195 VecTy, EU.Lane); 6196 } else { 6197 ExtractCost += 6198 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 6199 } 6200 } 6201 6202 InstructionCost SpillCost = getSpillCost(); 6203 Cost += SpillCost + ExtractCost; 6204 if (FirstUsers.size() == 1) { 6205 int Limit = ShuffleMask.front().size() * 2; 6206 if (all_of(ShuffleMask.front(), [Limit](int Idx) { return Idx < Limit; }) && 6207 !ShuffleVectorInst::isIdentityMask(ShuffleMask.front())) { 6208 InstructionCost C = TTI->getShuffleCost( 6209 TTI::SK_PermuteSingleSrc, 6210 cast<FixedVectorType>(FirstUsers.front()->getType()), 6211 ShuffleMask.front()); 6212 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6213 << " for final shuffle of insertelement external users " 6214 << *VectorizableTree.front()->Scalars.front() << ".\n" 6215 << "SLP: Current total cost = " << Cost << "\n"); 6216 Cost += C; 6217 } 6218 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6219 cast<FixedVectorType>(FirstUsers.front()->getType()), 6220 DemandedElts.front(), /*Insert*/ true, /*Extract*/ false); 6221 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6222 << " for insertelements gather.\n" 6223 << "SLP: Current total cost = " << Cost << "\n"); 6224 Cost -= InsertCost; 6225 } else if (FirstUsers.size() >= 2) { 6226 unsigned MaxVF = *std::max_element(VF.begin(), VF.end()); 6227 // Combined masks of the first 2 vectors. 6228 SmallVector<int> CombinedMask(MaxVF, UndefMaskElem); 6229 copy(ShuffleMask.front(), CombinedMask.begin()); 6230 APInt CombinedDemandedElts = DemandedElts.front().zextOrSelf(MaxVF); 6231 auto *VecTy = FixedVectorType::get( 6232 cast<VectorType>(FirstUsers.front()->getType())->getElementType(), 6233 MaxVF); 6234 for (int I = 0, E = ShuffleMask[1].size(); I < E; ++I) { 6235 if (ShuffleMask[1][I] != UndefMaskElem) { 6236 CombinedMask[I] = ShuffleMask[1][I] + MaxVF; 6237 CombinedDemandedElts.setBit(I); 6238 } 6239 } 6240 InstructionCost C = 6241 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6242 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6243 << " for final shuffle of vector node and external " 6244 "insertelement users " 6245 << *VectorizableTree.front()->Scalars.front() << ".\n" 6246 << "SLP: Current total cost = " << Cost << "\n"); 6247 Cost += C; 6248 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6249 VecTy, CombinedDemandedElts, /*Insert*/ true, /*Extract*/ false); 6250 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6251 << " for insertelements gather.\n" 6252 << "SLP: Current total cost = " << Cost << "\n"); 6253 Cost -= InsertCost; 6254 for (int I = 2, E = FirstUsers.size(); I < E; ++I) { 6255 // Other elements - permutation of 2 vectors (the initial one and the 6256 // next Ith incoming vector). 6257 unsigned VF = ShuffleMask[I].size(); 6258 for (unsigned Idx = 0; Idx < VF; ++Idx) { 6259 int Mask = ShuffleMask[I][Idx]; 6260 if (Mask != UndefMaskElem) 6261 CombinedMask[Idx] = MaxVF + Mask; 6262 else if (CombinedMask[Idx] != UndefMaskElem) 6263 CombinedMask[Idx] = Idx; 6264 } 6265 for (unsigned Idx = VF; Idx < MaxVF; ++Idx) 6266 if (CombinedMask[Idx] != UndefMaskElem) 6267 CombinedMask[Idx] = Idx; 6268 InstructionCost C = 6269 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6270 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6271 << " for final shuffle of vector node and external " 6272 "insertelement users " 6273 << *VectorizableTree.front()->Scalars.front() << ".\n" 6274 << "SLP: Current total cost = " << Cost << "\n"); 6275 Cost += C; 6276 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6277 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 6278 /*Insert*/ true, /*Extract*/ false); 6279 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6280 << " for insertelements gather.\n" 6281 << "SLP: Current total cost = " << Cost << "\n"); 6282 Cost -= InsertCost; 6283 } 6284 } 6285 6286 #ifndef NDEBUG 6287 SmallString<256> Str; 6288 { 6289 raw_svector_ostream OS(Str); 6290 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 6291 << "SLP: Extract Cost = " << ExtractCost << ".\n" 6292 << "SLP: Total Cost = " << Cost << ".\n"; 6293 } 6294 LLVM_DEBUG(dbgs() << Str); 6295 if (ViewSLPTree) 6296 ViewGraph(this, "SLP" + F->getName(), false, Str); 6297 #endif 6298 6299 return Cost; 6300 } 6301 6302 Optional<TargetTransformInfo::ShuffleKind> 6303 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 6304 SmallVectorImpl<const TreeEntry *> &Entries) { 6305 // TODO: currently checking only for Scalars in the tree entry, need to count 6306 // reused elements too for better cost estimation. 6307 Mask.assign(TE->Scalars.size(), UndefMaskElem); 6308 Entries.clear(); 6309 // Build a lists of values to tree entries. 6310 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 6311 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 6312 if (EntryPtr.get() == TE) 6313 break; 6314 if (EntryPtr->State != TreeEntry::NeedToGather) 6315 continue; 6316 for (Value *V : EntryPtr->Scalars) 6317 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 6318 } 6319 // Find all tree entries used by the gathered values. If no common entries 6320 // found - not a shuffle. 6321 // Here we build a set of tree nodes for each gathered value and trying to 6322 // find the intersection between these sets. If we have at least one common 6323 // tree node for each gathered value - we have just a permutation of the 6324 // single vector. If we have 2 different sets, we're in situation where we 6325 // have a permutation of 2 input vectors. 6326 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 6327 DenseMap<Value *, int> UsedValuesEntry; 6328 for (Value *V : TE->Scalars) { 6329 if (isa<UndefValue>(V)) 6330 continue; 6331 // Build a list of tree entries where V is used. 6332 SmallPtrSet<const TreeEntry *, 4> VToTEs; 6333 auto It = ValueToTEs.find(V); 6334 if (It != ValueToTEs.end()) 6335 VToTEs = It->second; 6336 if (const TreeEntry *VTE = getTreeEntry(V)) 6337 VToTEs.insert(VTE); 6338 if (VToTEs.empty()) 6339 return None; 6340 if (UsedTEs.empty()) { 6341 // The first iteration, just insert the list of nodes to vector. 6342 UsedTEs.push_back(VToTEs); 6343 } else { 6344 // Need to check if there are any previously used tree nodes which use V. 6345 // If there are no such nodes, consider that we have another one input 6346 // vector. 6347 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 6348 unsigned Idx = 0; 6349 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 6350 // Do we have a non-empty intersection of previously listed tree entries 6351 // and tree entries using current V? 6352 set_intersect(VToTEs, Set); 6353 if (!VToTEs.empty()) { 6354 // Yes, write the new subset and continue analysis for the next 6355 // scalar. 6356 Set.swap(VToTEs); 6357 break; 6358 } 6359 VToTEs = SavedVToTEs; 6360 ++Idx; 6361 } 6362 // No non-empty intersection found - need to add a second set of possible 6363 // source vectors. 6364 if (Idx == UsedTEs.size()) { 6365 // If the number of input vectors is greater than 2 - not a permutation, 6366 // fallback to the regular gather. 6367 if (UsedTEs.size() == 2) 6368 return None; 6369 UsedTEs.push_back(SavedVToTEs); 6370 Idx = UsedTEs.size() - 1; 6371 } 6372 UsedValuesEntry.try_emplace(V, Idx); 6373 } 6374 } 6375 6376 unsigned VF = 0; 6377 if (UsedTEs.size() == 1) { 6378 // Try to find the perfect match in another gather node at first. 6379 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 6380 return EntryPtr->isSame(TE->Scalars); 6381 }); 6382 if (It != UsedTEs.front().end()) { 6383 Entries.push_back(*It); 6384 std::iota(Mask.begin(), Mask.end(), 0); 6385 return TargetTransformInfo::SK_PermuteSingleSrc; 6386 } 6387 // No perfect match, just shuffle, so choose the first tree node. 6388 Entries.push_back(*UsedTEs.front().begin()); 6389 } else { 6390 // Try to find nodes with the same vector factor. 6391 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 6392 DenseMap<int, const TreeEntry *> VFToTE; 6393 for (const TreeEntry *TE : UsedTEs.front()) 6394 VFToTE.try_emplace(TE->getVectorFactor(), TE); 6395 for (const TreeEntry *TE : UsedTEs.back()) { 6396 auto It = VFToTE.find(TE->getVectorFactor()); 6397 if (It != VFToTE.end()) { 6398 VF = It->first; 6399 Entries.push_back(It->second); 6400 Entries.push_back(TE); 6401 break; 6402 } 6403 } 6404 // No 2 source vectors with the same vector factor - give up and do regular 6405 // gather. 6406 if (Entries.empty()) 6407 return None; 6408 } 6409 6410 // Build a shuffle mask for better cost estimation and vector emission. 6411 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 6412 Value *V = TE->Scalars[I]; 6413 if (isa<UndefValue>(V)) 6414 continue; 6415 unsigned Idx = UsedValuesEntry.lookup(V); 6416 const TreeEntry *VTE = Entries[Idx]; 6417 int FoundLane = VTE->findLaneForValue(V); 6418 Mask[I] = Idx * VF + FoundLane; 6419 // Extra check required by isSingleSourceMaskImpl function (called by 6420 // ShuffleVectorInst::isSingleSourceMask). 6421 if (Mask[I] >= 2 * E) 6422 return None; 6423 } 6424 switch (Entries.size()) { 6425 case 1: 6426 return TargetTransformInfo::SK_PermuteSingleSrc; 6427 case 2: 6428 return TargetTransformInfo::SK_PermuteTwoSrc; 6429 default: 6430 break; 6431 } 6432 return None; 6433 } 6434 6435 InstructionCost BoUpSLP::getGatherCost(FixedVectorType *Ty, 6436 const APInt &ShuffledIndices, 6437 bool NeedToShuffle) const { 6438 InstructionCost Cost = 6439 TTI->getScalarizationOverhead(Ty, ~ShuffledIndices, /*Insert*/ true, 6440 /*Extract*/ false); 6441 if (NeedToShuffle) 6442 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 6443 return Cost; 6444 } 6445 6446 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 6447 // Find the type of the operands in VL. 6448 Type *ScalarTy = VL[0]->getType(); 6449 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 6450 ScalarTy = SI->getValueOperand()->getType(); 6451 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 6452 bool DuplicateNonConst = false; 6453 // Find the cost of inserting/extracting values from the vector. 6454 // Check if the same elements are inserted several times and count them as 6455 // shuffle candidates. 6456 APInt ShuffledElements = APInt::getZero(VL.size()); 6457 DenseSet<Value *> UniqueElements; 6458 // Iterate in reverse order to consider insert elements with the high cost. 6459 for (unsigned I = VL.size(); I > 0; --I) { 6460 unsigned Idx = I - 1; 6461 // No need to shuffle duplicates for constants. 6462 if (isConstant(VL[Idx])) { 6463 ShuffledElements.setBit(Idx); 6464 continue; 6465 } 6466 if (!UniqueElements.insert(VL[Idx]).second) { 6467 DuplicateNonConst = true; 6468 ShuffledElements.setBit(Idx); 6469 } 6470 } 6471 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 6472 } 6473 6474 // Perform operand reordering on the instructions in VL and return the reordered 6475 // operands in Left and Right. 6476 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 6477 SmallVectorImpl<Value *> &Left, 6478 SmallVectorImpl<Value *> &Right, 6479 const DataLayout &DL, 6480 ScalarEvolution &SE, 6481 const BoUpSLP &R) { 6482 if (VL.empty()) 6483 return; 6484 VLOperands Ops(VL, DL, SE, R); 6485 // Reorder the operands in place. 6486 Ops.reorder(); 6487 Left = Ops.getVL(0); 6488 Right = Ops.getVL(1); 6489 } 6490 6491 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 6492 // Get the basic block this bundle is in. All instructions in the bundle 6493 // should be in this block. 6494 auto *Front = E->getMainOp(); 6495 auto *BB = Front->getParent(); 6496 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 6497 auto *I = cast<Instruction>(V); 6498 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 6499 })); 6500 6501 auto &&FindLastInst = [E, Front]() { 6502 Instruction *LastInst = Front; 6503 for (Value *V : E->Scalars) { 6504 auto *I = dyn_cast<Instruction>(V); 6505 if (!I) 6506 continue; 6507 if (LastInst->comesBefore(I)) 6508 LastInst = I; 6509 } 6510 return LastInst; 6511 }; 6512 6513 auto &&FindFirstInst = [E, Front]() { 6514 Instruction *FirstInst = Front; 6515 for (Value *V : E->Scalars) { 6516 auto *I = dyn_cast<Instruction>(V); 6517 if (!I) 6518 continue; 6519 if (I->comesBefore(FirstInst)) 6520 FirstInst = I; 6521 } 6522 return FirstInst; 6523 }; 6524 6525 // Set the insert point to the beginning of the basic block if the entry 6526 // should not be scheduled. 6527 if (E->State != TreeEntry::NeedToGather && 6528 doesNotNeedToSchedule(E->Scalars)) { 6529 BasicBlock::iterator InsertPt; 6530 if (all_of(E->Scalars, isUsedOutsideBlock)) 6531 InsertPt = FindLastInst()->getIterator(); 6532 else 6533 InsertPt = FindFirstInst()->getIterator(); 6534 Builder.SetInsertPoint(BB, InsertPt); 6535 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6536 return; 6537 } 6538 6539 // The last instruction in the bundle in program order. 6540 Instruction *LastInst = nullptr; 6541 6542 // Find the last instruction. The common case should be that BB has been 6543 // scheduled, and the last instruction is VL.back(). So we start with 6544 // VL.back() and iterate over schedule data until we reach the end of the 6545 // bundle. The end of the bundle is marked by null ScheduleData. 6546 if (BlocksSchedules.count(BB)) { 6547 Value *V = E->isOneOf(E->Scalars.back()); 6548 if (doesNotNeedToBeScheduled(V)) 6549 V = *find_if_not(E->Scalars, doesNotNeedToBeScheduled); 6550 auto *Bundle = BlocksSchedules[BB]->getScheduleData(V); 6551 if (Bundle && Bundle->isPartOfBundle()) 6552 for (; Bundle; Bundle = Bundle->NextInBundle) 6553 if (Bundle->OpValue == Bundle->Inst) 6554 LastInst = Bundle->Inst; 6555 } 6556 6557 // LastInst can still be null at this point if there's either not an entry 6558 // for BB in BlocksSchedules or there's no ScheduleData available for 6559 // VL.back(). This can be the case if buildTree_rec aborts for various 6560 // reasons (e.g., the maximum recursion depth is reached, the maximum region 6561 // size is reached, etc.). ScheduleData is initialized in the scheduling 6562 // "dry-run". 6563 // 6564 // If this happens, we can still find the last instruction by brute force. We 6565 // iterate forwards from Front (inclusive) until we either see all 6566 // instructions in the bundle or reach the end of the block. If Front is the 6567 // last instruction in program order, LastInst will be set to Front, and we 6568 // will visit all the remaining instructions in the block. 6569 // 6570 // One of the reasons we exit early from buildTree_rec is to place an upper 6571 // bound on compile-time. Thus, taking an additional compile-time hit here is 6572 // not ideal. However, this should be exceedingly rare since it requires that 6573 // we both exit early from buildTree_rec and that the bundle be out-of-order 6574 // (causing us to iterate all the way to the end of the block). 6575 if (!LastInst) 6576 LastInst = FindLastInst(); 6577 assert(LastInst && "Failed to find last instruction in bundle"); 6578 6579 // Set the insertion point after the last instruction in the bundle. Set the 6580 // debug location to Front. 6581 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 6582 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6583 } 6584 6585 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 6586 // List of instructions/lanes from current block and/or the blocks which are 6587 // part of the current loop. These instructions will be inserted at the end to 6588 // make it possible to optimize loops and hoist invariant instructions out of 6589 // the loops body with better chances for success. 6590 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 6591 SmallSet<int, 4> PostponedIndices; 6592 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 6593 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 6594 SmallPtrSet<BasicBlock *, 4> Visited; 6595 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 6596 InsertBB = InsertBB->getSinglePredecessor(); 6597 return InsertBB && InsertBB == InstBB; 6598 }; 6599 for (int I = 0, E = VL.size(); I < E; ++I) { 6600 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 6601 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 6602 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 6603 PostponedIndices.insert(I).second) 6604 PostponedInsts.emplace_back(Inst, I); 6605 } 6606 6607 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 6608 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 6609 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 6610 if (!InsElt) 6611 return Vec; 6612 GatherShuffleSeq.insert(InsElt); 6613 CSEBlocks.insert(InsElt->getParent()); 6614 // Add to our 'need-to-extract' list. 6615 if (TreeEntry *Entry = getTreeEntry(V)) { 6616 // Find which lane we need to extract. 6617 unsigned FoundLane = Entry->findLaneForValue(V); 6618 ExternalUses.emplace_back(V, InsElt, FoundLane); 6619 } 6620 return Vec; 6621 }; 6622 Value *Val0 = 6623 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 6624 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 6625 Value *Vec = PoisonValue::get(VecTy); 6626 SmallVector<int> NonConsts; 6627 // Insert constant values at first. 6628 for (int I = 0, E = VL.size(); I < E; ++I) { 6629 if (PostponedIndices.contains(I)) 6630 continue; 6631 if (!isConstant(VL[I])) { 6632 NonConsts.push_back(I); 6633 continue; 6634 } 6635 Vec = CreateInsertElement(Vec, VL[I], I); 6636 } 6637 // Insert non-constant values. 6638 for (int I : NonConsts) 6639 Vec = CreateInsertElement(Vec, VL[I], I); 6640 // Append instructions, which are/may be part of the loop, in the end to make 6641 // it possible to hoist non-loop-based instructions. 6642 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 6643 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 6644 6645 return Vec; 6646 } 6647 6648 namespace { 6649 /// Merges shuffle masks and emits final shuffle instruction, if required. 6650 class ShuffleInstructionBuilder { 6651 IRBuilderBase &Builder; 6652 const unsigned VF = 0; 6653 bool IsFinalized = false; 6654 SmallVector<int, 4> Mask; 6655 /// Holds all of the instructions that we gathered. 6656 SetVector<Instruction *> &GatherShuffleSeq; 6657 /// A list of blocks that we are going to CSE. 6658 SetVector<BasicBlock *> &CSEBlocks; 6659 6660 public: 6661 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF, 6662 SetVector<Instruction *> &GatherShuffleSeq, 6663 SetVector<BasicBlock *> &CSEBlocks) 6664 : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq), 6665 CSEBlocks(CSEBlocks) {} 6666 6667 /// Adds a mask, inverting it before applying. 6668 void addInversedMask(ArrayRef<unsigned> SubMask) { 6669 if (SubMask.empty()) 6670 return; 6671 SmallVector<int, 4> NewMask; 6672 inversePermutation(SubMask, NewMask); 6673 addMask(NewMask); 6674 } 6675 6676 /// Functions adds masks, merging them into single one. 6677 void addMask(ArrayRef<unsigned> SubMask) { 6678 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 6679 addMask(NewMask); 6680 } 6681 6682 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 6683 6684 Value *finalize(Value *V) { 6685 IsFinalized = true; 6686 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 6687 if (VF == ValueVF && Mask.empty()) 6688 return V; 6689 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 6690 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 6691 addMask(NormalizedMask); 6692 6693 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 6694 return V; 6695 Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle"); 6696 if (auto *I = dyn_cast<Instruction>(Vec)) { 6697 GatherShuffleSeq.insert(I); 6698 CSEBlocks.insert(I->getParent()); 6699 } 6700 return Vec; 6701 } 6702 6703 ~ShuffleInstructionBuilder() { 6704 assert((IsFinalized || Mask.empty()) && 6705 "Shuffle construction must be finalized."); 6706 } 6707 }; 6708 } // namespace 6709 6710 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 6711 const unsigned VF = VL.size(); 6712 InstructionsState S = getSameOpcode(VL); 6713 if (S.getOpcode()) { 6714 if (TreeEntry *E = getTreeEntry(S.OpValue)) 6715 if (E->isSame(VL)) { 6716 Value *V = vectorizeTree(E); 6717 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 6718 if (!E->ReuseShuffleIndices.empty()) { 6719 // Reshuffle to get only unique values. 6720 // If some of the scalars are duplicated in the vectorization tree 6721 // entry, we do not vectorize them but instead generate a mask for 6722 // the reuses. But if there are several users of the same entry, 6723 // they may have different vectorization factors. This is especially 6724 // important for PHI nodes. In this case, we need to adapt the 6725 // resulting instruction for the user vectorization factor and have 6726 // to reshuffle it again to take only unique elements of the vector. 6727 // Without this code the function incorrectly returns reduced vector 6728 // instruction with the same elements, not with the unique ones. 6729 6730 // block: 6731 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 6732 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 6733 // ... (use %2) 6734 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 6735 // br %block 6736 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 6737 SmallSet<int, 4> UsedIdxs; 6738 int Pos = 0; 6739 int Sz = VL.size(); 6740 for (int Idx : E->ReuseShuffleIndices) { 6741 if (Idx != Sz && Idx != UndefMaskElem && 6742 UsedIdxs.insert(Idx).second) 6743 UniqueIdxs[Idx] = Pos; 6744 ++Pos; 6745 } 6746 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 6747 "less than original vector size."); 6748 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 6749 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 6750 } else { 6751 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 6752 "Expected vectorization factor less " 6753 "than original vector size."); 6754 SmallVector<int> UniformMask(VF, 0); 6755 std::iota(UniformMask.begin(), UniformMask.end(), 0); 6756 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 6757 } 6758 if (auto *I = dyn_cast<Instruction>(V)) { 6759 GatherShuffleSeq.insert(I); 6760 CSEBlocks.insert(I->getParent()); 6761 } 6762 } 6763 return V; 6764 } 6765 } 6766 6767 // Can't vectorize this, so simply build a new vector with each lane 6768 // corresponding to the requested value. 6769 return createBuildVector(VL); 6770 } 6771 Value *BoUpSLP::createBuildVector(ArrayRef<Value *> VL) { 6772 unsigned VF = VL.size(); 6773 // Exploit possible reuse of values across lanes. 6774 SmallVector<int> ReuseShuffleIndicies; 6775 SmallVector<Value *> UniqueValues; 6776 if (VL.size() > 2) { 6777 DenseMap<Value *, unsigned> UniquePositions; 6778 unsigned NumValues = 6779 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 6780 return !isa<UndefValue>(V); 6781 }).base()); 6782 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 6783 int UniqueVals = 0; 6784 for (Value *V : VL.drop_back(VL.size() - VF)) { 6785 if (isa<UndefValue>(V)) { 6786 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 6787 continue; 6788 } 6789 if (isConstant(V)) { 6790 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 6791 UniqueValues.emplace_back(V); 6792 continue; 6793 } 6794 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 6795 ReuseShuffleIndicies.emplace_back(Res.first->second); 6796 if (Res.second) { 6797 UniqueValues.emplace_back(V); 6798 ++UniqueVals; 6799 } 6800 } 6801 if (UniqueVals == 1 && UniqueValues.size() == 1) { 6802 // Emit pure splat vector. 6803 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 6804 UndefMaskElem); 6805 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 6806 ReuseShuffleIndicies.clear(); 6807 UniqueValues.clear(); 6808 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 6809 } 6810 UniqueValues.append(VF - UniqueValues.size(), 6811 PoisonValue::get(VL[0]->getType())); 6812 VL = UniqueValues; 6813 } 6814 6815 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6816 CSEBlocks); 6817 Value *Vec = gather(VL); 6818 if (!ReuseShuffleIndicies.empty()) { 6819 ShuffleBuilder.addMask(ReuseShuffleIndicies); 6820 Vec = ShuffleBuilder.finalize(Vec); 6821 } 6822 return Vec; 6823 } 6824 6825 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 6826 IRBuilder<>::InsertPointGuard Guard(Builder); 6827 6828 if (E->VectorizedValue) { 6829 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 6830 return E->VectorizedValue; 6831 } 6832 6833 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 6834 unsigned VF = E->getVectorFactor(); 6835 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6836 CSEBlocks); 6837 if (E->State == TreeEntry::NeedToGather) { 6838 if (E->getMainOp()) 6839 setInsertPointAfterBundle(E); 6840 Value *Vec; 6841 SmallVector<int> Mask; 6842 SmallVector<const TreeEntry *> Entries; 6843 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 6844 isGatherShuffledEntry(E, Mask, Entries); 6845 if (Shuffle.hasValue()) { 6846 assert((Entries.size() == 1 || Entries.size() == 2) && 6847 "Expected shuffle of 1 or 2 entries."); 6848 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 6849 Entries.back()->VectorizedValue, Mask); 6850 if (auto *I = dyn_cast<Instruction>(Vec)) { 6851 GatherShuffleSeq.insert(I); 6852 CSEBlocks.insert(I->getParent()); 6853 } 6854 } else { 6855 Vec = gather(E->Scalars); 6856 } 6857 if (NeedToShuffleReuses) { 6858 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6859 Vec = ShuffleBuilder.finalize(Vec); 6860 } 6861 E->VectorizedValue = Vec; 6862 return Vec; 6863 } 6864 6865 assert((E->State == TreeEntry::Vectorize || 6866 E->State == TreeEntry::ScatterVectorize) && 6867 "Unhandled state"); 6868 unsigned ShuffleOrOp = 6869 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 6870 Instruction *VL0 = E->getMainOp(); 6871 Type *ScalarTy = VL0->getType(); 6872 if (auto *Store = dyn_cast<StoreInst>(VL0)) 6873 ScalarTy = Store->getValueOperand()->getType(); 6874 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 6875 ScalarTy = IE->getOperand(1)->getType(); 6876 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 6877 switch (ShuffleOrOp) { 6878 case Instruction::PHI: { 6879 assert( 6880 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 6881 "PHI reordering is free."); 6882 auto *PH = cast<PHINode>(VL0); 6883 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 6884 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6885 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 6886 Value *V = NewPhi; 6887 6888 // Adjust insertion point once all PHI's have been generated. 6889 Builder.SetInsertPoint(&*PH->getParent()->getFirstInsertionPt()); 6890 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6891 6892 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6893 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6894 V = ShuffleBuilder.finalize(V); 6895 6896 E->VectorizedValue = V; 6897 6898 // PHINodes may have multiple entries from the same block. We want to 6899 // visit every block once. 6900 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 6901 6902 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 6903 ValueList Operands; 6904 BasicBlock *IBB = PH->getIncomingBlock(i); 6905 6906 if (!VisitedBBs.insert(IBB).second) { 6907 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 6908 continue; 6909 } 6910 6911 Builder.SetInsertPoint(IBB->getTerminator()); 6912 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6913 Value *Vec = vectorizeTree(E->getOperand(i)); 6914 NewPhi->addIncoming(Vec, IBB); 6915 } 6916 6917 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 6918 "Invalid number of incoming values"); 6919 return V; 6920 } 6921 6922 case Instruction::ExtractElement: { 6923 Value *V = E->getSingleOperand(0); 6924 Builder.SetInsertPoint(VL0); 6925 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6926 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6927 V = ShuffleBuilder.finalize(V); 6928 E->VectorizedValue = V; 6929 return V; 6930 } 6931 case Instruction::ExtractValue: { 6932 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 6933 Builder.SetInsertPoint(LI); 6934 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 6935 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 6936 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 6937 Value *NewV = propagateMetadata(V, E->Scalars); 6938 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6939 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6940 NewV = ShuffleBuilder.finalize(NewV); 6941 E->VectorizedValue = NewV; 6942 return NewV; 6943 } 6944 case Instruction::InsertElement: { 6945 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 6946 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 6947 Value *V = vectorizeTree(E->getOperand(1)); 6948 6949 // Create InsertVector shuffle if necessary 6950 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 6951 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 6952 })); 6953 const unsigned NumElts = 6954 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 6955 const unsigned NumScalars = E->Scalars.size(); 6956 6957 unsigned Offset = *getInsertIndex(VL0); 6958 assert(Offset < NumElts && "Failed to find vector index offset"); 6959 6960 // Create shuffle to resize vector 6961 SmallVector<int> Mask; 6962 if (!E->ReorderIndices.empty()) { 6963 inversePermutation(E->ReorderIndices, Mask); 6964 Mask.append(NumElts - NumScalars, UndefMaskElem); 6965 } else { 6966 Mask.assign(NumElts, UndefMaskElem); 6967 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 6968 } 6969 // Create InsertVector shuffle if necessary 6970 bool IsIdentity = true; 6971 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 6972 Mask.swap(PrevMask); 6973 for (unsigned I = 0; I < NumScalars; ++I) { 6974 Value *Scalar = E->Scalars[PrevMask[I]]; 6975 unsigned InsertIdx = *getInsertIndex(Scalar); 6976 IsIdentity &= InsertIdx - Offset == I; 6977 Mask[InsertIdx - Offset] = I; 6978 } 6979 if (!IsIdentity || NumElts != NumScalars) { 6980 V = Builder.CreateShuffleVector(V, Mask); 6981 if (auto *I = dyn_cast<Instruction>(V)) { 6982 GatherShuffleSeq.insert(I); 6983 CSEBlocks.insert(I->getParent()); 6984 } 6985 } 6986 6987 if ((!IsIdentity || Offset != 0 || 6988 !isUndefVector(FirstInsert->getOperand(0))) && 6989 NumElts != NumScalars) { 6990 SmallVector<int> InsertMask(NumElts); 6991 std::iota(InsertMask.begin(), InsertMask.end(), 0); 6992 for (unsigned I = 0; I < NumElts; I++) { 6993 if (Mask[I] != UndefMaskElem) 6994 InsertMask[Offset + I] = NumElts + I; 6995 } 6996 6997 V = Builder.CreateShuffleVector( 6998 FirstInsert->getOperand(0), V, InsertMask, 6999 cast<Instruction>(E->Scalars.back())->getName()); 7000 if (auto *I = dyn_cast<Instruction>(V)) { 7001 GatherShuffleSeq.insert(I); 7002 CSEBlocks.insert(I->getParent()); 7003 } 7004 } 7005 7006 ++NumVectorInstructions; 7007 E->VectorizedValue = V; 7008 return V; 7009 } 7010 case Instruction::ZExt: 7011 case Instruction::SExt: 7012 case Instruction::FPToUI: 7013 case Instruction::FPToSI: 7014 case Instruction::FPExt: 7015 case Instruction::PtrToInt: 7016 case Instruction::IntToPtr: 7017 case Instruction::SIToFP: 7018 case Instruction::UIToFP: 7019 case Instruction::Trunc: 7020 case Instruction::FPTrunc: 7021 case Instruction::BitCast: { 7022 setInsertPointAfterBundle(E); 7023 7024 Value *InVec = vectorizeTree(E->getOperand(0)); 7025 7026 if (E->VectorizedValue) { 7027 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7028 return E->VectorizedValue; 7029 } 7030 7031 auto *CI = cast<CastInst>(VL0); 7032 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 7033 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7034 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7035 V = ShuffleBuilder.finalize(V); 7036 7037 E->VectorizedValue = V; 7038 ++NumVectorInstructions; 7039 return V; 7040 } 7041 case Instruction::FCmp: 7042 case Instruction::ICmp: { 7043 setInsertPointAfterBundle(E); 7044 7045 Value *L = vectorizeTree(E->getOperand(0)); 7046 Value *R = vectorizeTree(E->getOperand(1)); 7047 7048 if (E->VectorizedValue) { 7049 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7050 return E->VectorizedValue; 7051 } 7052 7053 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 7054 Value *V = Builder.CreateCmp(P0, L, R); 7055 propagateIRFlags(V, E->Scalars, VL0); 7056 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7057 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7058 V = ShuffleBuilder.finalize(V); 7059 7060 E->VectorizedValue = V; 7061 ++NumVectorInstructions; 7062 return V; 7063 } 7064 case Instruction::Select: { 7065 setInsertPointAfterBundle(E); 7066 7067 Value *Cond = vectorizeTree(E->getOperand(0)); 7068 Value *True = vectorizeTree(E->getOperand(1)); 7069 Value *False = vectorizeTree(E->getOperand(2)); 7070 7071 if (E->VectorizedValue) { 7072 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7073 return E->VectorizedValue; 7074 } 7075 7076 Value *V = Builder.CreateSelect(Cond, True, False); 7077 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7078 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7079 V = ShuffleBuilder.finalize(V); 7080 7081 E->VectorizedValue = V; 7082 ++NumVectorInstructions; 7083 return V; 7084 } 7085 case Instruction::FNeg: { 7086 setInsertPointAfterBundle(E); 7087 7088 Value *Op = vectorizeTree(E->getOperand(0)); 7089 7090 if (E->VectorizedValue) { 7091 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7092 return E->VectorizedValue; 7093 } 7094 7095 Value *V = Builder.CreateUnOp( 7096 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 7097 propagateIRFlags(V, E->Scalars, VL0); 7098 if (auto *I = dyn_cast<Instruction>(V)) 7099 V = propagateMetadata(I, E->Scalars); 7100 7101 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7102 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7103 V = ShuffleBuilder.finalize(V); 7104 7105 E->VectorizedValue = V; 7106 ++NumVectorInstructions; 7107 7108 return V; 7109 } 7110 case Instruction::Add: 7111 case Instruction::FAdd: 7112 case Instruction::Sub: 7113 case Instruction::FSub: 7114 case Instruction::Mul: 7115 case Instruction::FMul: 7116 case Instruction::UDiv: 7117 case Instruction::SDiv: 7118 case Instruction::FDiv: 7119 case Instruction::URem: 7120 case Instruction::SRem: 7121 case Instruction::FRem: 7122 case Instruction::Shl: 7123 case Instruction::LShr: 7124 case Instruction::AShr: 7125 case Instruction::And: 7126 case Instruction::Or: 7127 case Instruction::Xor: { 7128 setInsertPointAfterBundle(E); 7129 7130 Value *LHS = vectorizeTree(E->getOperand(0)); 7131 Value *RHS = vectorizeTree(E->getOperand(1)); 7132 7133 if (E->VectorizedValue) { 7134 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7135 return E->VectorizedValue; 7136 } 7137 7138 Value *V = Builder.CreateBinOp( 7139 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 7140 RHS); 7141 propagateIRFlags(V, E->Scalars, VL0); 7142 if (auto *I = dyn_cast<Instruction>(V)) 7143 V = propagateMetadata(I, E->Scalars); 7144 7145 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7146 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7147 V = ShuffleBuilder.finalize(V); 7148 7149 E->VectorizedValue = V; 7150 ++NumVectorInstructions; 7151 7152 return V; 7153 } 7154 case Instruction::Load: { 7155 // Loads are inserted at the head of the tree because we don't want to 7156 // sink them all the way down past store instructions. 7157 setInsertPointAfterBundle(E); 7158 7159 LoadInst *LI = cast<LoadInst>(VL0); 7160 Instruction *NewLI; 7161 unsigned AS = LI->getPointerAddressSpace(); 7162 Value *PO = LI->getPointerOperand(); 7163 if (E->State == TreeEntry::Vectorize) { 7164 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 7165 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 7166 7167 // The pointer operand uses an in-tree scalar so we add the new BitCast 7168 // or LoadInst to ExternalUses list to make sure that an extract will 7169 // be generated in the future. 7170 if (TreeEntry *Entry = getTreeEntry(PO)) { 7171 // Find which lane we need to extract. 7172 unsigned FoundLane = Entry->findLaneForValue(PO); 7173 ExternalUses.emplace_back( 7174 PO, PO != VecPtr ? cast<User>(VecPtr) : NewLI, FoundLane); 7175 } 7176 } else { 7177 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 7178 Value *VecPtr = vectorizeTree(E->getOperand(0)); 7179 // Use the minimum alignment of the gathered loads. 7180 Align CommonAlignment = LI->getAlign(); 7181 for (Value *V : E->Scalars) 7182 CommonAlignment = 7183 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 7184 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 7185 } 7186 Value *V = propagateMetadata(NewLI, E->Scalars); 7187 7188 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7189 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7190 V = ShuffleBuilder.finalize(V); 7191 E->VectorizedValue = V; 7192 ++NumVectorInstructions; 7193 return V; 7194 } 7195 case Instruction::Store: { 7196 auto *SI = cast<StoreInst>(VL0); 7197 unsigned AS = SI->getPointerAddressSpace(); 7198 7199 setInsertPointAfterBundle(E); 7200 7201 Value *VecValue = vectorizeTree(E->getOperand(0)); 7202 ShuffleBuilder.addMask(E->ReorderIndices); 7203 VecValue = ShuffleBuilder.finalize(VecValue); 7204 7205 Value *ScalarPtr = SI->getPointerOperand(); 7206 Value *VecPtr = Builder.CreateBitCast( 7207 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 7208 StoreInst *ST = 7209 Builder.CreateAlignedStore(VecValue, VecPtr, SI->getAlign()); 7210 7211 // The pointer operand uses an in-tree scalar, so add the new BitCast or 7212 // StoreInst to ExternalUses to make sure that an extract will be 7213 // generated in the future. 7214 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 7215 // Find which lane we need to extract. 7216 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 7217 ExternalUses.push_back(ExternalUser( 7218 ScalarPtr, ScalarPtr != VecPtr ? cast<User>(VecPtr) : ST, 7219 FoundLane)); 7220 } 7221 7222 Value *V = propagateMetadata(ST, E->Scalars); 7223 7224 E->VectorizedValue = V; 7225 ++NumVectorInstructions; 7226 return V; 7227 } 7228 case Instruction::GetElementPtr: { 7229 auto *GEP0 = cast<GetElementPtrInst>(VL0); 7230 setInsertPointAfterBundle(E); 7231 7232 Value *Op0 = vectorizeTree(E->getOperand(0)); 7233 7234 SmallVector<Value *> OpVecs; 7235 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 7236 Value *OpVec = vectorizeTree(E->getOperand(J)); 7237 OpVecs.push_back(OpVec); 7238 } 7239 7240 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 7241 if (Instruction *I = dyn_cast<Instruction>(V)) 7242 V = propagateMetadata(I, E->Scalars); 7243 7244 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7245 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7246 V = ShuffleBuilder.finalize(V); 7247 7248 E->VectorizedValue = V; 7249 ++NumVectorInstructions; 7250 7251 return V; 7252 } 7253 case Instruction::Call: { 7254 CallInst *CI = cast<CallInst>(VL0); 7255 setInsertPointAfterBundle(E); 7256 7257 Intrinsic::ID IID = Intrinsic::not_intrinsic; 7258 if (Function *FI = CI->getCalledFunction()) 7259 IID = FI->getIntrinsicID(); 7260 7261 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7262 7263 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 7264 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 7265 VecCallCosts.first <= VecCallCosts.second; 7266 7267 Value *ScalarArg = nullptr; 7268 std::vector<Value *> OpVecs; 7269 SmallVector<Type *, 2> TysForDecl = 7270 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 7271 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 7272 ValueList OpVL; 7273 // Some intrinsics have scalar arguments. This argument should not be 7274 // vectorized. 7275 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 7276 CallInst *CEI = cast<CallInst>(VL0); 7277 ScalarArg = CEI->getArgOperand(j); 7278 OpVecs.push_back(CEI->getArgOperand(j)); 7279 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j)) 7280 TysForDecl.push_back(ScalarArg->getType()); 7281 continue; 7282 } 7283 7284 Value *OpVec = vectorizeTree(E->getOperand(j)); 7285 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 7286 OpVecs.push_back(OpVec); 7287 } 7288 7289 Function *CF; 7290 if (!UseIntrinsic) { 7291 VFShape Shape = 7292 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 7293 VecTy->getNumElements())), 7294 false /*HasGlobalPred*/); 7295 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 7296 } else { 7297 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 7298 } 7299 7300 SmallVector<OperandBundleDef, 1> OpBundles; 7301 CI->getOperandBundlesAsDefs(OpBundles); 7302 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 7303 7304 // The scalar argument uses an in-tree scalar so we add the new vectorized 7305 // call to ExternalUses list to make sure that an extract will be 7306 // generated in the future. 7307 if (ScalarArg) { 7308 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 7309 // Find which lane we need to extract. 7310 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 7311 ExternalUses.push_back( 7312 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 7313 } 7314 } 7315 7316 propagateIRFlags(V, E->Scalars, VL0); 7317 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7318 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7319 V = ShuffleBuilder.finalize(V); 7320 7321 E->VectorizedValue = V; 7322 ++NumVectorInstructions; 7323 return V; 7324 } 7325 case Instruction::ShuffleVector: { 7326 assert(E->isAltShuffle() && 7327 ((Instruction::isBinaryOp(E->getOpcode()) && 7328 Instruction::isBinaryOp(E->getAltOpcode())) || 7329 (Instruction::isCast(E->getOpcode()) && 7330 Instruction::isCast(E->getAltOpcode())) || 7331 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 7332 "Invalid Shuffle Vector Operand"); 7333 7334 Value *LHS = nullptr, *RHS = nullptr; 7335 if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) { 7336 setInsertPointAfterBundle(E); 7337 LHS = vectorizeTree(E->getOperand(0)); 7338 RHS = vectorizeTree(E->getOperand(1)); 7339 } else { 7340 setInsertPointAfterBundle(E); 7341 LHS = vectorizeTree(E->getOperand(0)); 7342 } 7343 7344 if (E->VectorizedValue) { 7345 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7346 return E->VectorizedValue; 7347 } 7348 7349 Value *V0, *V1; 7350 if (Instruction::isBinaryOp(E->getOpcode())) { 7351 V0 = Builder.CreateBinOp( 7352 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 7353 V1 = Builder.CreateBinOp( 7354 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 7355 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 7356 V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS); 7357 auto *AltCI = cast<CmpInst>(E->getAltOp()); 7358 CmpInst::Predicate AltPred = AltCI->getPredicate(); 7359 V1 = Builder.CreateCmp(AltPred, LHS, RHS); 7360 } else { 7361 V0 = Builder.CreateCast( 7362 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 7363 V1 = Builder.CreateCast( 7364 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 7365 } 7366 // Add V0 and V1 to later analysis to try to find and remove matching 7367 // instruction, if any. 7368 for (Value *V : {V0, V1}) { 7369 if (auto *I = dyn_cast<Instruction>(V)) { 7370 GatherShuffleSeq.insert(I); 7371 CSEBlocks.insert(I->getParent()); 7372 } 7373 } 7374 7375 // Create shuffle to take alternate operations from the vector. 7376 // Also, gather up main and alt scalar ops to propagate IR flags to 7377 // each vector operation. 7378 ValueList OpScalars, AltScalars; 7379 SmallVector<int> Mask; 7380 buildShuffleEntryMask( 7381 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 7382 [E](Instruction *I) { 7383 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 7384 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 7385 }, 7386 Mask, &OpScalars, &AltScalars); 7387 7388 propagateIRFlags(V0, OpScalars); 7389 propagateIRFlags(V1, AltScalars); 7390 7391 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 7392 if (auto *I = dyn_cast<Instruction>(V)) { 7393 V = propagateMetadata(I, E->Scalars); 7394 GatherShuffleSeq.insert(I); 7395 CSEBlocks.insert(I->getParent()); 7396 } 7397 V = ShuffleBuilder.finalize(V); 7398 7399 E->VectorizedValue = V; 7400 ++NumVectorInstructions; 7401 7402 return V; 7403 } 7404 default: 7405 llvm_unreachable("unknown inst"); 7406 } 7407 return nullptr; 7408 } 7409 7410 Value *BoUpSLP::vectorizeTree() { 7411 ExtraValueToDebugLocsMap ExternallyUsedValues; 7412 return vectorizeTree(ExternallyUsedValues); 7413 } 7414 7415 Value * 7416 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 7417 // All blocks must be scheduled before any instructions are inserted. 7418 for (auto &BSIter : BlocksSchedules) { 7419 scheduleBlock(BSIter.second.get()); 7420 } 7421 7422 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7423 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 7424 7425 // If the vectorized tree can be rewritten in a smaller type, we truncate the 7426 // vectorized root. InstCombine will then rewrite the entire expression. We 7427 // sign extend the extracted values below. 7428 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 7429 if (MinBWs.count(ScalarRoot)) { 7430 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 7431 // If current instr is a phi and not the last phi, insert it after the 7432 // last phi node. 7433 if (isa<PHINode>(I)) 7434 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 7435 else 7436 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 7437 } 7438 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 7439 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 7440 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 7441 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 7442 VectorizableTree[0]->VectorizedValue = Trunc; 7443 } 7444 7445 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 7446 << " values .\n"); 7447 7448 // Extract all of the elements with the external uses. 7449 for (const auto &ExternalUse : ExternalUses) { 7450 Value *Scalar = ExternalUse.Scalar; 7451 llvm::User *User = ExternalUse.User; 7452 7453 // Skip users that we already RAUW. This happens when one instruction 7454 // has multiple uses of the same value. 7455 if (User && !is_contained(Scalar->users(), User)) 7456 continue; 7457 TreeEntry *E = getTreeEntry(Scalar); 7458 assert(E && "Invalid scalar"); 7459 assert(E->State != TreeEntry::NeedToGather && 7460 "Extracting from a gather list"); 7461 7462 Value *Vec = E->VectorizedValue; 7463 assert(Vec && "Can't find vectorizable value"); 7464 7465 Value *Lane = Builder.getInt32(ExternalUse.Lane); 7466 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 7467 if (Scalar->getType() != Vec->getType()) { 7468 Value *Ex; 7469 // "Reuse" the existing extract to improve final codegen. 7470 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 7471 Ex = Builder.CreateExtractElement(ES->getOperand(0), 7472 ES->getOperand(1)); 7473 } else { 7474 Ex = Builder.CreateExtractElement(Vec, Lane); 7475 } 7476 // If necessary, sign-extend or zero-extend ScalarRoot 7477 // to the larger type. 7478 if (!MinBWs.count(ScalarRoot)) 7479 return Ex; 7480 if (MinBWs[ScalarRoot].second) 7481 return Builder.CreateSExt(Ex, Scalar->getType()); 7482 return Builder.CreateZExt(Ex, Scalar->getType()); 7483 } 7484 assert(isa<FixedVectorType>(Scalar->getType()) && 7485 isa<InsertElementInst>(Scalar) && 7486 "In-tree scalar of vector type is not insertelement?"); 7487 return Vec; 7488 }; 7489 // If User == nullptr, the Scalar is used as extra arg. Generate 7490 // ExtractElement instruction and update the record for this scalar in 7491 // ExternallyUsedValues. 7492 if (!User) { 7493 assert(ExternallyUsedValues.count(Scalar) && 7494 "Scalar with nullptr as an external user must be registered in " 7495 "ExternallyUsedValues map"); 7496 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7497 Builder.SetInsertPoint(VecI->getParent(), 7498 std::next(VecI->getIterator())); 7499 } else { 7500 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7501 } 7502 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7503 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 7504 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 7505 auto It = ExternallyUsedValues.find(Scalar); 7506 assert(It != ExternallyUsedValues.end() && 7507 "Externally used scalar is not found in ExternallyUsedValues"); 7508 NewInstLocs.append(It->second); 7509 ExternallyUsedValues.erase(Scalar); 7510 // Required to update internally referenced instructions. 7511 Scalar->replaceAllUsesWith(NewInst); 7512 continue; 7513 } 7514 7515 // Generate extracts for out-of-tree users. 7516 // Find the insertion point for the extractelement lane. 7517 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7518 if (PHINode *PH = dyn_cast<PHINode>(User)) { 7519 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 7520 if (PH->getIncomingValue(i) == Scalar) { 7521 Instruction *IncomingTerminator = 7522 PH->getIncomingBlock(i)->getTerminator(); 7523 if (isa<CatchSwitchInst>(IncomingTerminator)) { 7524 Builder.SetInsertPoint(VecI->getParent(), 7525 std::next(VecI->getIterator())); 7526 } else { 7527 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 7528 } 7529 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7530 CSEBlocks.insert(PH->getIncomingBlock(i)); 7531 PH->setOperand(i, NewInst); 7532 } 7533 } 7534 } else { 7535 Builder.SetInsertPoint(cast<Instruction>(User)); 7536 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7537 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 7538 User->replaceUsesOfWith(Scalar, NewInst); 7539 } 7540 } else { 7541 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7542 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7543 CSEBlocks.insert(&F->getEntryBlock()); 7544 User->replaceUsesOfWith(Scalar, NewInst); 7545 } 7546 7547 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 7548 } 7549 7550 // For each vectorized value: 7551 for (auto &TEPtr : VectorizableTree) { 7552 TreeEntry *Entry = TEPtr.get(); 7553 7554 // No need to handle users of gathered values. 7555 if (Entry->State == TreeEntry::NeedToGather) 7556 continue; 7557 7558 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 7559 7560 // For each lane: 7561 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 7562 Value *Scalar = Entry->Scalars[Lane]; 7563 7564 #ifndef NDEBUG 7565 Type *Ty = Scalar->getType(); 7566 if (!Ty->isVoidTy()) { 7567 for (User *U : Scalar->users()) { 7568 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 7569 7570 // It is legal to delete users in the ignorelist. 7571 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 7572 (isa_and_nonnull<Instruction>(U) && 7573 isDeleted(cast<Instruction>(U)))) && 7574 "Deleting out-of-tree value"); 7575 } 7576 } 7577 #endif 7578 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 7579 eraseInstruction(cast<Instruction>(Scalar)); 7580 } 7581 } 7582 7583 Builder.ClearInsertionPoint(); 7584 InstrElementSize.clear(); 7585 7586 return VectorizableTree[0]->VectorizedValue; 7587 } 7588 7589 void BoUpSLP::optimizeGatherSequence() { 7590 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size() 7591 << " gather sequences instructions.\n"); 7592 // LICM InsertElementInst sequences. 7593 for (Instruction *I : GatherShuffleSeq) { 7594 if (isDeleted(I)) 7595 continue; 7596 7597 // Check if this block is inside a loop. 7598 Loop *L = LI->getLoopFor(I->getParent()); 7599 if (!L) 7600 continue; 7601 7602 // Check if it has a preheader. 7603 BasicBlock *PreHeader = L->getLoopPreheader(); 7604 if (!PreHeader) 7605 continue; 7606 7607 // If the vector or the element that we insert into it are 7608 // instructions that are defined in this basic block then we can't 7609 // hoist this instruction. 7610 if (any_of(I->operands(), [L](Value *V) { 7611 auto *OpI = dyn_cast<Instruction>(V); 7612 return OpI && L->contains(OpI); 7613 })) 7614 continue; 7615 7616 // We can hoist this instruction. Move it to the pre-header. 7617 I->moveBefore(PreHeader->getTerminator()); 7618 } 7619 7620 // Make a list of all reachable blocks in our CSE queue. 7621 SmallVector<const DomTreeNode *, 8> CSEWorkList; 7622 CSEWorkList.reserve(CSEBlocks.size()); 7623 for (BasicBlock *BB : CSEBlocks) 7624 if (DomTreeNode *N = DT->getNode(BB)) { 7625 assert(DT->isReachableFromEntry(N)); 7626 CSEWorkList.push_back(N); 7627 } 7628 7629 // Sort blocks by domination. This ensures we visit a block after all blocks 7630 // dominating it are visited. 7631 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 7632 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 7633 "Different nodes should have different DFS numbers"); 7634 return A->getDFSNumIn() < B->getDFSNumIn(); 7635 }); 7636 7637 // Less defined shuffles can be replaced by the more defined copies. 7638 // Between two shuffles one is less defined if it has the same vector operands 7639 // and its mask indeces are the same as in the first one or undefs. E.g. 7640 // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0, 7641 // poison, <0, 0, 0, 0>. 7642 auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2, 7643 SmallVectorImpl<int> &NewMask) { 7644 if (I1->getType() != I2->getType()) 7645 return false; 7646 auto *SI1 = dyn_cast<ShuffleVectorInst>(I1); 7647 auto *SI2 = dyn_cast<ShuffleVectorInst>(I2); 7648 if (!SI1 || !SI2) 7649 return I1->isIdenticalTo(I2); 7650 if (SI1->isIdenticalTo(SI2)) 7651 return true; 7652 for (int I = 0, E = SI1->getNumOperands(); I < E; ++I) 7653 if (SI1->getOperand(I) != SI2->getOperand(I)) 7654 return false; 7655 // Check if the second instruction is more defined than the first one. 7656 NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end()); 7657 ArrayRef<int> SM1 = SI1->getShuffleMask(); 7658 // Count trailing undefs in the mask to check the final number of used 7659 // registers. 7660 unsigned LastUndefsCnt = 0; 7661 for (int I = 0, E = NewMask.size(); I < E; ++I) { 7662 if (SM1[I] == UndefMaskElem) 7663 ++LastUndefsCnt; 7664 else 7665 LastUndefsCnt = 0; 7666 if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem && 7667 NewMask[I] != SM1[I]) 7668 return false; 7669 if (NewMask[I] == UndefMaskElem) 7670 NewMask[I] = SM1[I]; 7671 } 7672 // Check if the last undefs actually change the final number of used vector 7673 // registers. 7674 return SM1.size() - LastUndefsCnt > 1 && 7675 TTI->getNumberOfParts(SI1->getType()) == 7676 TTI->getNumberOfParts( 7677 FixedVectorType::get(SI1->getType()->getElementType(), 7678 SM1.size() - LastUndefsCnt)); 7679 }; 7680 // Perform O(N^2) search over the gather/shuffle sequences and merge identical 7681 // instructions. TODO: We can further optimize this scan if we split the 7682 // instructions into different buckets based on the insert lane. 7683 SmallVector<Instruction *, 16> Visited; 7684 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 7685 assert(*I && 7686 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 7687 "Worklist not sorted properly!"); 7688 BasicBlock *BB = (*I)->getBlock(); 7689 // For all instructions in blocks containing gather sequences: 7690 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 7691 if (isDeleted(&In)) 7692 continue; 7693 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 7694 !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In)) 7695 continue; 7696 7697 // Check if we can replace this instruction with any of the 7698 // visited instructions. 7699 bool Replaced = false; 7700 for (Instruction *&V : Visited) { 7701 SmallVector<int> NewMask; 7702 if (IsIdenticalOrLessDefined(&In, V, NewMask) && 7703 DT->dominates(V->getParent(), In.getParent())) { 7704 In.replaceAllUsesWith(V); 7705 eraseInstruction(&In); 7706 if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) 7707 if (!NewMask.empty()) 7708 SI->setShuffleMask(NewMask); 7709 Replaced = true; 7710 break; 7711 } 7712 if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) && 7713 GatherShuffleSeq.contains(V) && 7714 IsIdenticalOrLessDefined(V, &In, NewMask) && 7715 DT->dominates(In.getParent(), V->getParent())) { 7716 In.moveAfter(V); 7717 V->replaceAllUsesWith(&In); 7718 eraseInstruction(V); 7719 if (auto *SI = dyn_cast<ShuffleVectorInst>(&In)) 7720 if (!NewMask.empty()) 7721 SI->setShuffleMask(NewMask); 7722 V = &In; 7723 Replaced = true; 7724 break; 7725 } 7726 } 7727 if (!Replaced) { 7728 assert(!is_contained(Visited, &In)); 7729 Visited.push_back(&In); 7730 } 7731 } 7732 } 7733 CSEBlocks.clear(); 7734 GatherShuffleSeq.clear(); 7735 } 7736 7737 BoUpSLP::ScheduleData * 7738 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) { 7739 ScheduleData *Bundle = nullptr; 7740 ScheduleData *PrevInBundle = nullptr; 7741 for (Value *V : VL) { 7742 if (doesNotNeedToBeScheduled(V)) 7743 continue; 7744 ScheduleData *BundleMember = getScheduleData(V); 7745 assert(BundleMember && 7746 "no ScheduleData for bundle member " 7747 "(maybe not in same basic block)"); 7748 assert(BundleMember->isSchedulingEntity() && 7749 "bundle member already part of other bundle"); 7750 if (PrevInBundle) { 7751 PrevInBundle->NextInBundle = BundleMember; 7752 } else { 7753 Bundle = BundleMember; 7754 } 7755 7756 // Group the instructions to a bundle. 7757 BundleMember->FirstInBundle = Bundle; 7758 PrevInBundle = BundleMember; 7759 } 7760 assert(Bundle && "Failed to find schedule bundle"); 7761 return Bundle; 7762 } 7763 7764 // Groups the instructions to a bundle (which is then a single scheduling entity) 7765 // and schedules instructions until the bundle gets ready. 7766 Optional<BoUpSLP::ScheduleData *> 7767 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 7768 const InstructionsState &S) { 7769 // No need to schedule PHIs, insertelement, extractelement and extractvalue 7770 // instructions. 7771 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue) || 7772 doesNotNeedToSchedule(VL)) 7773 return nullptr; 7774 7775 // Initialize the instruction bundle. 7776 Instruction *OldScheduleEnd = ScheduleEnd; 7777 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 7778 7779 auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule, 7780 ScheduleData *Bundle) { 7781 // The scheduling region got new instructions at the lower end (or it is a 7782 // new region for the first bundle). This makes it necessary to 7783 // recalculate all dependencies. 7784 // It is seldom that this needs to be done a second time after adding the 7785 // initial bundle to the region. 7786 if (ScheduleEnd != OldScheduleEnd) { 7787 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 7788 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 7789 ReSchedule = true; 7790 } 7791 if (Bundle) { 7792 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 7793 << " in block " << BB->getName() << "\n"); 7794 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 7795 } 7796 7797 if (ReSchedule) { 7798 resetSchedule(); 7799 initialFillReadyList(ReadyInsts); 7800 } 7801 7802 // Now try to schedule the new bundle or (if no bundle) just calculate 7803 // dependencies. As soon as the bundle is "ready" it means that there are no 7804 // cyclic dependencies and we can schedule it. Note that's important that we 7805 // don't "schedule" the bundle yet (see cancelScheduling). 7806 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 7807 !ReadyInsts.empty()) { 7808 ScheduleData *Picked = ReadyInsts.pop_back_val(); 7809 assert(Picked->isSchedulingEntity() && Picked->isReady() && 7810 "must be ready to schedule"); 7811 schedule(Picked, ReadyInsts); 7812 } 7813 }; 7814 7815 // Make sure that the scheduling region contains all 7816 // instructions of the bundle. 7817 for (Value *V : VL) { 7818 if (doesNotNeedToBeScheduled(V)) 7819 continue; 7820 if (!extendSchedulingRegion(V, S)) { 7821 // If the scheduling region got new instructions at the lower end (or it 7822 // is a new region for the first bundle). This makes it necessary to 7823 // recalculate all dependencies. 7824 // Otherwise the compiler may crash trying to incorrectly calculate 7825 // dependencies and emit instruction in the wrong order at the actual 7826 // scheduling. 7827 TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr); 7828 return None; 7829 } 7830 } 7831 7832 bool ReSchedule = false; 7833 for (Value *V : VL) { 7834 if (doesNotNeedToBeScheduled(V)) 7835 continue; 7836 ScheduleData *BundleMember = getScheduleData(V); 7837 assert(BundleMember && 7838 "no ScheduleData for bundle member (maybe not in same basic block)"); 7839 7840 // Make sure we don't leave the pieces of the bundle in the ready list when 7841 // whole bundle might not be ready. 7842 ReadyInsts.remove(BundleMember); 7843 7844 if (!BundleMember->IsScheduled) 7845 continue; 7846 // A bundle member was scheduled as single instruction before and now 7847 // needs to be scheduled as part of the bundle. We just get rid of the 7848 // existing schedule. 7849 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 7850 << " was already scheduled\n"); 7851 ReSchedule = true; 7852 } 7853 7854 auto *Bundle = buildBundle(VL); 7855 TryScheduleBundleImpl(ReSchedule, Bundle); 7856 if (!Bundle->isReady()) { 7857 cancelScheduling(VL, S.OpValue); 7858 return None; 7859 } 7860 return Bundle; 7861 } 7862 7863 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 7864 Value *OpValue) { 7865 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue) || 7866 doesNotNeedToSchedule(VL)) 7867 return; 7868 7869 if (doesNotNeedToBeScheduled(OpValue)) 7870 OpValue = *find_if_not(VL, doesNotNeedToBeScheduled); 7871 ScheduleData *Bundle = getScheduleData(OpValue); 7872 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 7873 assert(!Bundle->IsScheduled && 7874 "Can't cancel bundle which is already scheduled"); 7875 assert(Bundle->isSchedulingEntity() && 7876 (Bundle->isPartOfBundle() || needToScheduleSingleInstruction(VL)) && 7877 "tried to unbundle something which is not a bundle"); 7878 7879 // Remove the bundle from the ready list. 7880 if (Bundle->isReady()) 7881 ReadyInsts.remove(Bundle); 7882 7883 // Un-bundle: make single instructions out of the bundle. 7884 ScheduleData *BundleMember = Bundle; 7885 while (BundleMember) { 7886 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 7887 BundleMember->FirstInBundle = BundleMember; 7888 ScheduleData *Next = BundleMember->NextInBundle; 7889 BundleMember->NextInBundle = nullptr; 7890 BundleMember->TE = nullptr; 7891 if (BundleMember->unscheduledDepsInBundle() == 0) { 7892 ReadyInsts.insert(BundleMember); 7893 } 7894 BundleMember = Next; 7895 } 7896 } 7897 7898 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 7899 // Allocate a new ScheduleData for the instruction. 7900 if (ChunkPos >= ChunkSize) { 7901 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 7902 ChunkPos = 0; 7903 } 7904 return &(ScheduleDataChunks.back()[ChunkPos++]); 7905 } 7906 7907 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 7908 const InstructionsState &S) { 7909 if (getScheduleData(V, isOneOf(S, V))) 7910 return true; 7911 Instruction *I = dyn_cast<Instruction>(V); 7912 assert(I && "bundle member must be an instruction"); 7913 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 7914 !doesNotNeedToBeScheduled(I) && 7915 "phi nodes/insertelements/extractelements/extractvalues don't need to " 7916 "be scheduled"); 7917 auto &&CheckScheduleForI = [this, &S](Instruction *I) -> bool { 7918 ScheduleData *ISD = getScheduleData(I); 7919 if (!ISD) 7920 return false; 7921 assert(isInSchedulingRegion(ISD) && 7922 "ScheduleData not in scheduling region"); 7923 ScheduleData *SD = allocateScheduleDataChunks(); 7924 SD->Inst = I; 7925 SD->init(SchedulingRegionID, S.OpValue); 7926 ExtraScheduleDataMap[I][S.OpValue] = SD; 7927 return true; 7928 }; 7929 if (CheckScheduleForI(I)) 7930 return true; 7931 if (!ScheduleStart) { 7932 // It's the first instruction in the new region. 7933 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 7934 ScheduleStart = I; 7935 ScheduleEnd = I->getNextNode(); 7936 if (isOneOf(S, I) != I) 7937 CheckScheduleForI(I); 7938 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7939 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 7940 return true; 7941 } 7942 // Search up and down at the same time, because we don't know if the new 7943 // instruction is above or below the existing scheduling region. 7944 BasicBlock::reverse_iterator UpIter = 7945 ++ScheduleStart->getIterator().getReverse(); 7946 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 7947 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 7948 BasicBlock::iterator LowerEnd = BB->end(); 7949 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 7950 &*DownIter != I) { 7951 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 7952 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 7953 return false; 7954 } 7955 7956 ++UpIter; 7957 ++DownIter; 7958 } 7959 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 7960 assert(I->getParent() == ScheduleStart->getParent() && 7961 "Instruction is in wrong basic block."); 7962 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 7963 ScheduleStart = I; 7964 if (isOneOf(S, I) != I) 7965 CheckScheduleForI(I); 7966 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 7967 << "\n"); 7968 return true; 7969 } 7970 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 7971 "Expected to reach top of the basic block or instruction down the " 7972 "lower end."); 7973 assert(I->getParent() == ScheduleEnd->getParent() && 7974 "Instruction is in wrong basic block."); 7975 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 7976 nullptr); 7977 ScheduleEnd = I->getNextNode(); 7978 if (isOneOf(S, I) != I) 7979 CheckScheduleForI(I); 7980 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7981 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 7982 return true; 7983 } 7984 7985 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 7986 Instruction *ToI, 7987 ScheduleData *PrevLoadStore, 7988 ScheduleData *NextLoadStore) { 7989 ScheduleData *CurrentLoadStore = PrevLoadStore; 7990 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 7991 // No need to allocate data for non-schedulable instructions. 7992 if (doesNotNeedToBeScheduled(I)) 7993 continue; 7994 ScheduleData *SD = ScheduleDataMap.lookup(I); 7995 if (!SD) { 7996 SD = allocateScheduleDataChunks(); 7997 ScheduleDataMap[I] = SD; 7998 SD->Inst = I; 7999 } 8000 assert(!isInSchedulingRegion(SD) && 8001 "new ScheduleData already in scheduling region"); 8002 SD->init(SchedulingRegionID, I); 8003 8004 if (I->mayReadOrWriteMemory() && 8005 (!isa<IntrinsicInst>(I) || 8006 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 8007 cast<IntrinsicInst>(I)->getIntrinsicID() != 8008 Intrinsic::pseudoprobe))) { 8009 // Update the linked list of memory accessing instructions. 8010 if (CurrentLoadStore) { 8011 CurrentLoadStore->NextLoadStore = SD; 8012 } else { 8013 FirstLoadStoreInRegion = SD; 8014 } 8015 CurrentLoadStore = SD; 8016 } 8017 } 8018 if (NextLoadStore) { 8019 if (CurrentLoadStore) 8020 CurrentLoadStore->NextLoadStore = NextLoadStore; 8021 } else { 8022 LastLoadStoreInRegion = CurrentLoadStore; 8023 } 8024 } 8025 8026 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 8027 bool InsertInReadyList, 8028 BoUpSLP *SLP) { 8029 assert(SD->isSchedulingEntity()); 8030 8031 SmallVector<ScheduleData *, 10> WorkList; 8032 WorkList.push_back(SD); 8033 8034 while (!WorkList.empty()) { 8035 ScheduleData *SD = WorkList.pop_back_val(); 8036 for (ScheduleData *BundleMember = SD; BundleMember; 8037 BundleMember = BundleMember->NextInBundle) { 8038 assert(isInSchedulingRegion(BundleMember)); 8039 if (BundleMember->hasValidDependencies()) 8040 continue; 8041 8042 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 8043 << "\n"); 8044 BundleMember->Dependencies = 0; 8045 BundleMember->resetUnscheduledDeps(); 8046 8047 // Handle def-use chain dependencies. 8048 if (BundleMember->OpValue != BundleMember->Inst) { 8049 if (ScheduleData *UseSD = getScheduleData(BundleMember->Inst)) { 8050 BundleMember->Dependencies++; 8051 ScheduleData *DestBundle = UseSD->FirstInBundle; 8052 if (!DestBundle->IsScheduled) 8053 BundleMember->incrementUnscheduledDeps(1); 8054 if (!DestBundle->hasValidDependencies()) 8055 WorkList.push_back(DestBundle); 8056 } 8057 } else { 8058 for (User *U : BundleMember->Inst->users()) { 8059 if (ScheduleData *UseSD = getScheduleData(cast<Instruction>(U))) { 8060 BundleMember->Dependencies++; 8061 ScheduleData *DestBundle = UseSD->FirstInBundle; 8062 if (!DestBundle->IsScheduled) 8063 BundleMember->incrementUnscheduledDeps(1); 8064 if (!DestBundle->hasValidDependencies()) 8065 WorkList.push_back(DestBundle); 8066 } 8067 } 8068 } 8069 8070 // Any instruction which isn't safe to speculate at the begining of the 8071 // block is control dependend on any early exit or non-willreturn call 8072 // which proceeds it. 8073 if (!isGuaranteedToTransferExecutionToSuccessor(BundleMember->Inst)) { 8074 for (Instruction *I = BundleMember->Inst->getNextNode(); 8075 I != ScheduleEnd; I = I->getNextNode()) { 8076 if (isSafeToSpeculativelyExecute(I, &*BB->begin())) 8077 continue; 8078 8079 // Add the dependency 8080 auto *DepDest = getScheduleData(I); 8081 assert(DepDest && "must be in schedule window"); 8082 DepDest->ControlDependencies.push_back(BundleMember); 8083 BundleMember->Dependencies++; 8084 ScheduleData *DestBundle = DepDest->FirstInBundle; 8085 if (!DestBundle->IsScheduled) 8086 BundleMember->incrementUnscheduledDeps(1); 8087 if (!DestBundle->hasValidDependencies()) 8088 WorkList.push_back(DestBundle); 8089 8090 if (!isGuaranteedToTransferExecutionToSuccessor(I)) 8091 // Everything past here must be control dependent on I. 8092 break; 8093 } 8094 } 8095 8096 // If we have an inalloc alloca instruction, it needs to be scheduled 8097 // after any preceeding stacksave. 8098 if (match(BundleMember->Inst, m_Intrinsic<Intrinsic::stacksave>())) { 8099 for (Instruction *I = BundleMember->Inst->getNextNode(); 8100 I != ScheduleEnd; I = I->getNextNode()) { 8101 if (match(I, m_Intrinsic<Intrinsic::stacksave>())) 8102 // Any allocas past here must be control dependent on I, and I 8103 // must be memory dependend on BundleMember->Inst. 8104 break; 8105 8106 if (!isa<AllocaInst>(I)) 8107 continue; 8108 8109 // Add the dependency 8110 auto *DepDest = getScheduleData(I); 8111 assert(DepDest && "must be in schedule window"); 8112 DepDest->ControlDependencies.push_back(BundleMember); 8113 BundleMember->Dependencies++; 8114 ScheduleData *DestBundle = DepDest->FirstInBundle; 8115 if (!DestBundle->IsScheduled) 8116 BundleMember->incrementUnscheduledDeps(1); 8117 if (!DestBundle->hasValidDependencies()) 8118 WorkList.push_back(DestBundle); 8119 } 8120 } 8121 8122 8123 // Handle the memory dependencies (if any). 8124 ScheduleData *DepDest = BundleMember->NextLoadStore; 8125 if (!DepDest) 8126 continue; 8127 Instruction *SrcInst = BundleMember->Inst; 8128 assert(SrcInst->mayReadOrWriteMemory() && 8129 "NextLoadStore list for non memory effecting bundle?"); 8130 MemoryLocation SrcLoc = getLocation(SrcInst); 8131 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 8132 unsigned numAliased = 0; 8133 unsigned DistToSrc = 1; 8134 8135 for ( ; DepDest; DepDest = DepDest->NextLoadStore) { 8136 assert(isInSchedulingRegion(DepDest)); 8137 8138 // We have two limits to reduce the complexity: 8139 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 8140 // SLP->isAliased (which is the expensive part in this loop). 8141 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 8142 // the whole loop (even if the loop is fast, it's quadratic). 8143 // It's important for the loop break condition (see below) to 8144 // check this limit even between two read-only instructions. 8145 if (DistToSrc >= MaxMemDepDistance || 8146 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 8147 (numAliased >= AliasedCheckLimit || 8148 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 8149 8150 // We increment the counter only if the locations are aliased 8151 // (instead of counting all alias checks). This gives a better 8152 // balance between reduced runtime and accurate dependencies. 8153 numAliased++; 8154 8155 DepDest->MemoryDependencies.push_back(BundleMember); 8156 BundleMember->Dependencies++; 8157 ScheduleData *DestBundle = DepDest->FirstInBundle; 8158 if (!DestBundle->IsScheduled) { 8159 BundleMember->incrementUnscheduledDeps(1); 8160 } 8161 if (!DestBundle->hasValidDependencies()) { 8162 WorkList.push_back(DestBundle); 8163 } 8164 } 8165 8166 // Example, explaining the loop break condition: Let's assume our 8167 // starting instruction is i0 and MaxMemDepDistance = 3. 8168 // 8169 // +--------v--v--v 8170 // i0,i1,i2,i3,i4,i5,i6,i7,i8 8171 // +--------^--^--^ 8172 // 8173 // MaxMemDepDistance let us stop alias-checking at i3 and we add 8174 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 8175 // Previously we already added dependencies from i3 to i6,i7,i8 8176 // (because of MaxMemDepDistance). As we added a dependency from 8177 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 8178 // and we can abort this loop at i6. 8179 if (DistToSrc >= 2 * MaxMemDepDistance) 8180 break; 8181 DistToSrc++; 8182 } 8183 } 8184 if (InsertInReadyList && SD->isReady()) { 8185 ReadyInsts.insert(SD); 8186 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 8187 << "\n"); 8188 } 8189 } 8190 } 8191 8192 void BoUpSLP::BlockScheduling::resetSchedule() { 8193 assert(ScheduleStart && 8194 "tried to reset schedule on block which has not been scheduled"); 8195 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 8196 doForAllOpcodes(I, [&](ScheduleData *SD) { 8197 assert(isInSchedulingRegion(SD) && 8198 "ScheduleData not in scheduling region"); 8199 SD->IsScheduled = false; 8200 SD->resetUnscheduledDeps(); 8201 }); 8202 } 8203 ReadyInsts.clear(); 8204 } 8205 8206 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 8207 if (!BS->ScheduleStart) 8208 return; 8209 8210 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 8211 8212 BS->resetSchedule(); 8213 8214 // For the real scheduling we use a more sophisticated ready-list: it is 8215 // sorted by the original instruction location. This lets the final schedule 8216 // be as close as possible to the original instruction order. 8217 // WARNING: If changing this order causes a correctness issue, that means 8218 // there is some missing dependence edge in the schedule data graph. 8219 struct ScheduleDataCompare { 8220 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 8221 return SD2->SchedulingPriority < SD1->SchedulingPriority; 8222 } 8223 }; 8224 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 8225 8226 // Ensure that all dependency data is updated and fill the ready-list with 8227 // initial instructions. 8228 int Idx = 0; 8229 int NumToSchedule = 0; 8230 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 8231 I = I->getNextNode()) { 8232 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 8233 TreeEntry *SDTE = getTreeEntry(SD->Inst); 8234 (void)SDTE; 8235 assert((isVectorLikeInstWithConstOps(SD->Inst) || 8236 SD->isPartOfBundle() == 8237 (SDTE && !doesNotNeedToSchedule(SDTE->Scalars))) && 8238 "scheduler and vectorizer bundle mismatch"); 8239 SD->FirstInBundle->SchedulingPriority = Idx++; 8240 if (SD->isSchedulingEntity()) { 8241 BS->calculateDependencies(SD, false, this); 8242 NumToSchedule++; 8243 } 8244 }); 8245 } 8246 BS->initialFillReadyList(ReadyInsts); 8247 8248 Instruction *LastScheduledInst = BS->ScheduleEnd; 8249 8250 // Do the "real" scheduling. 8251 while (!ReadyInsts.empty()) { 8252 ScheduleData *picked = *ReadyInsts.begin(); 8253 ReadyInsts.erase(ReadyInsts.begin()); 8254 8255 // Move the scheduled instruction(s) to their dedicated places, if not 8256 // there yet. 8257 for (ScheduleData *BundleMember = picked; BundleMember; 8258 BundleMember = BundleMember->NextInBundle) { 8259 Instruction *pickedInst = BundleMember->Inst; 8260 if (pickedInst->getNextNode() != LastScheduledInst) 8261 pickedInst->moveBefore(LastScheduledInst); 8262 LastScheduledInst = pickedInst; 8263 } 8264 8265 BS->schedule(picked, ReadyInsts); 8266 NumToSchedule--; 8267 } 8268 assert(NumToSchedule == 0 && "could not schedule all instructions"); 8269 8270 // Check that we didn't break any of our invariants. 8271 #ifdef EXPENSIVE_CHECKS 8272 BS->verify(); 8273 #endif 8274 8275 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) 8276 // Check that all schedulable entities got scheduled 8277 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) { 8278 BS->doForAllOpcodes(I, [&](ScheduleData *SD) { 8279 if (SD->isSchedulingEntity() && SD->hasValidDependencies()) { 8280 assert(SD->IsScheduled && "must be scheduled at this point"); 8281 } 8282 }); 8283 } 8284 #endif 8285 8286 // Avoid duplicate scheduling of the block. 8287 BS->ScheduleStart = nullptr; 8288 } 8289 8290 unsigned BoUpSLP::getVectorElementSize(Value *V) { 8291 // If V is a store, just return the width of the stored value (or value 8292 // truncated just before storing) without traversing the expression tree. 8293 // This is the common case. 8294 if (auto *Store = dyn_cast<StoreInst>(V)) { 8295 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 8296 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 8297 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 8298 } 8299 8300 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 8301 return getVectorElementSize(IEI->getOperand(1)); 8302 8303 auto E = InstrElementSize.find(V); 8304 if (E != InstrElementSize.end()) 8305 return E->second; 8306 8307 // If V is not a store, we can traverse the expression tree to find loads 8308 // that feed it. The type of the loaded value may indicate a more suitable 8309 // width than V's type. We want to base the vector element size on the width 8310 // of memory operations where possible. 8311 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 8312 SmallPtrSet<Instruction *, 16> Visited; 8313 if (auto *I = dyn_cast<Instruction>(V)) { 8314 Worklist.emplace_back(I, I->getParent()); 8315 Visited.insert(I); 8316 } 8317 8318 // Traverse the expression tree in bottom-up order looking for loads. If we 8319 // encounter an instruction we don't yet handle, we give up. 8320 auto Width = 0u; 8321 while (!Worklist.empty()) { 8322 Instruction *I; 8323 BasicBlock *Parent; 8324 std::tie(I, Parent) = Worklist.pop_back_val(); 8325 8326 // We should only be looking at scalar instructions here. If the current 8327 // instruction has a vector type, skip. 8328 auto *Ty = I->getType(); 8329 if (isa<VectorType>(Ty)) 8330 continue; 8331 8332 // If the current instruction is a load, update MaxWidth to reflect the 8333 // width of the loaded value. 8334 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 8335 isa<ExtractValueInst>(I)) 8336 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 8337 8338 // Otherwise, we need to visit the operands of the instruction. We only 8339 // handle the interesting cases from buildTree here. If an operand is an 8340 // instruction we haven't yet visited and from the same basic block as the 8341 // user or the use is a PHI node, we add it to the worklist. 8342 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8343 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 8344 isa<UnaryOperator>(I)) { 8345 for (Use &U : I->operands()) 8346 if (auto *J = dyn_cast<Instruction>(U.get())) 8347 if (Visited.insert(J).second && 8348 (isa<PHINode>(I) || J->getParent() == Parent)) 8349 Worklist.emplace_back(J, J->getParent()); 8350 } else { 8351 break; 8352 } 8353 } 8354 8355 // If we didn't encounter a memory access in the expression tree, or if we 8356 // gave up for some reason, just return the width of V. Otherwise, return the 8357 // maximum width we found. 8358 if (!Width) { 8359 if (auto *CI = dyn_cast<CmpInst>(V)) 8360 V = CI->getOperand(0); 8361 Width = DL->getTypeSizeInBits(V->getType()); 8362 } 8363 8364 for (Instruction *I : Visited) 8365 InstrElementSize[I] = Width; 8366 8367 return Width; 8368 } 8369 8370 // Determine if a value V in a vectorizable expression Expr can be demoted to a 8371 // smaller type with a truncation. We collect the values that will be demoted 8372 // in ToDemote and additional roots that require investigating in Roots. 8373 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 8374 SmallVectorImpl<Value *> &ToDemote, 8375 SmallVectorImpl<Value *> &Roots) { 8376 // We can always demote constants. 8377 if (isa<Constant>(V)) { 8378 ToDemote.push_back(V); 8379 return true; 8380 } 8381 8382 // If the value is not an instruction in the expression with only one use, it 8383 // cannot be demoted. 8384 auto *I = dyn_cast<Instruction>(V); 8385 if (!I || !I->hasOneUse() || !Expr.count(I)) 8386 return false; 8387 8388 switch (I->getOpcode()) { 8389 8390 // We can always demote truncations and extensions. Since truncations can 8391 // seed additional demotion, we save the truncated value. 8392 case Instruction::Trunc: 8393 Roots.push_back(I->getOperand(0)); 8394 break; 8395 case Instruction::ZExt: 8396 case Instruction::SExt: 8397 if (isa<ExtractElementInst>(I->getOperand(0)) || 8398 isa<InsertElementInst>(I->getOperand(0))) 8399 return false; 8400 break; 8401 8402 // We can demote certain binary operations if we can demote both of their 8403 // operands. 8404 case Instruction::Add: 8405 case Instruction::Sub: 8406 case Instruction::Mul: 8407 case Instruction::And: 8408 case Instruction::Or: 8409 case Instruction::Xor: 8410 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 8411 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 8412 return false; 8413 break; 8414 8415 // We can demote selects if we can demote their true and false values. 8416 case Instruction::Select: { 8417 SelectInst *SI = cast<SelectInst>(I); 8418 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 8419 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 8420 return false; 8421 break; 8422 } 8423 8424 // We can demote phis if we can demote all their incoming operands. Note that 8425 // we don't need to worry about cycles since we ensure single use above. 8426 case Instruction::PHI: { 8427 PHINode *PN = cast<PHINode>(I); 8428 for (Value *IncValue : PN->incoming_values()) 8429 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 8430 return false; 8431 break; 8432 } 8433 8434 // Otherwise, conservatively give up. 8435 default: 8436 return false; 8437 } 8438 8439 // Record the value that we can demote. 8440 ToDemote.push_back(V); 8441 return true; 8442 } 8443 8444 void BoUpSLP::computeMinimumValueSizes() { 8445 // If there are no external uses, the expression tree must be rooted by a 8446 // store. We can't demote in-memory values, so there is nothing to do here. 8447 if (ExternalUses.empty()) 8448 return; 8449 8450 // We only attempt to truncate integer expressions. 8451 auto &TreeRoot = VectorizableTree[0]->Scalars; 8452 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 8453 if (!TreeRootIT) 8454 return; 8455 8456 // If the expression is not rooted by a store, these roots should have 8457 // external uses. We will rely on InstCombine to rewrite the expression in 8458 // the narrower type. However, InstCombine only rewrites single-use values. 8459 // This means that if a tree entry other than a root is used externally, it 8460 // must have multiple uses and InstCombine will not rewrite it. The code 8461 // below ensures that only the roots are used externally. 8462 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 8463 for (auto &EU : ExternalUses) 8464 if (!Expr.erase(EU.Scalar)) 8465 return; 8466 if (!Expr.empty()) 8467 return; 8468 8469 // Collect the scalar values of the vectorizable expression. We will use this 8470 // context to determine which values can be demoted. If we see a truncation, 8471 // we mark it as seeding another demotion. 8472 for (auto &EntryPtr : VectorizableTree) 8473 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 8474 8475 // Ensure the roots of the vectorizable tree don't form a cycle. They must 8476 // have a single external user that is not in the vectorizable tree. 8477 for (auto *Root : TreeRoot) 8478 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 8479 return; 8480 8481 // Conservatively determine if we can actually truncate the roots of the 8482 // expression. Collect the values that can be demoted in ToDemote and 8483 // additional roots that require investigating in Roots. 8484 SmallVector<Value *, 32> ToDemote; 8485 SmallVector<Value *, 4> Roots; 8486 for (auto *Root : TreeRoot) 8487 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 8488 return; 8489 8490 // The maximum bit width required to represent all the values that can be 8491 // demoted without loss of precision. It would be safe to truncate the roots 8492 // of the expression to this width. 8493 auto MaxBitWidth = 8u; 8494 8495 // We first check if all the bits of the roots are demanded. If they're not, 8496 // we can truncate the roots to this narrower type. 8497 for (auto *Root : TreeRoot) { 8498 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 8499 MaxBitWidth = std::max<unsigned>( 8500 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 8501 } 8502 8503 // True if the roots can be zero-extended back to their original type, rather 8504 // than sign-extended. We know that if the leading bits are not demanded, we 8505 // can safely zero-extend. So we initialize IsKnownPositive to True. 8506 bool IsKnownPositive = true; 8507 8508 // If all the bits of the roots are demanded, we can try a little harder to 8509 // compute a narrower type. This can happen, for example, if the roots are 8510 // getelementptr indices. InstCombine promotes these indices to the pointer 8511 // width. Thus, all their bits are technically demanded even though the 8512 // address computation might be vectorized in a smaller type. 8513 // 8514 // We start by looking at each entry that can be demoted. We compute the 8515 // maximum bit width required to store the scalar by using ValueTracking to 8516 // compute the number of high-order bits we can truncate. 8517 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 8518 llvm::all_of(TreeRoot, [](Value *R) { 8519 assert(R->hasOneUse() && "Root should have only one use!"); 8520 return isa<GetElementPtrInst>(R->user_back()); 8521 })) { 8522 MaxBitWidth = 8u; 8523 8524 // Determine if the sign bit of all the roots is known to be zero. If not, 8525 // IsKnownPositive is set to False. 8526 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 8527 KnownBits Known = computeKnownBits(R, *DL); 8528 return Known.isNonNegative(); 8529 }); 8530 8531 // Determine the maximum number of bits required to store the scalar 8532 // values. 8533 for (auto *Scalar : ToDemote) { 8534 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 8535 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 8536 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 8537 } 8538 8539 // If we can't prove that the sign bit is zero, we must add one to the 8540 // maximum bit width to account for the unknown sign bit. This preserves 8541 // the existing sign bit so we can safely sign-extend the root back to the 8542 // original type. Otherwise, if we know the sign bit is zero, we will 8543 // zero-extend the root instead. 8544 // 8545 // FIXME: This is somewhat suboptimal, as there will be cases where adding 8546 // one to the maximum bit width will yield a larger-than-necessary 8547 // type. In general, we need to add an extra bit only if we can't 8548 // prove that the upper bit of the original type is equal to the 8549 // upper bit of the proposed smaller type. If these two bits are the 8550 // same (either zero or one) we know that sign-extending from the 8551 // smaller type will result in the same value. Here, since we can't 8552 // yet prove this, we are just making the proposed smaller type 8553 // larger to ensure correctness. 8554 if (!IsKnownPositive) 8555 ++MaxBitWidth; 8556 } 8557 8558 // Round MaxBitWidth up to the next power-of-two. 8559 if (!isPowerOf2_64(MaxBitWidth)) 8560 MaxBitWidth = NextPowerOf2(MaxBitWidth); 8561 8562 // If the maximum bit width we compute is less than the with of the roots' 8563 // type, we can proceed with the narrowing. Otherwise, do nothing. 8564 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 8565 return; 8566 8567 // If we can truncate the root, we must collect additional values that might 8568 // be demoted as a result. That is, those seeded by truncations we will 8569 // modify. 8570 while (!Roots.empty()) 8571 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 8572 8573 // Finally, map the values we can demote to the maximum bit with we computed. 8574 for (auto *Scalar : ToDemote) 8575 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 8576 } 8577 8578 namespace { 8579 8580 /// The SLPVectorizer Pass. 8581 struct SLPVectorizer : public FunctionPass { 8582 SLPVectorizerPass Impl; 8583 8584 /// Pass identification, replacement for typeid 8585 static char ID; 8586 8587 explicit SLPVectorizer() : FunctionPass(ID) { 8588 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 8589 } 8590 8591 bool doInitialization(Module &M) override { return false; } 8592 8593 bool runOnFunction(Function &F) override { 8594 if (skipFunction(F)) 8595 return false; 8596 8597 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 8598 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 8599 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 8600 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 8601 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 8602 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 8603 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 8604 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 8605 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 8606 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 8607 8608 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8609 } 8610 8611 void getAnalysisUsage(AnalysisUsage &AU) const override { 8612 FunctionPass::getAnalysisUsage(AU); 8613 AU.addRequired<AssumptionCacheTracker>(); 8614 AU.addRequired<ScalarEvolutionWrapperPass>(); 8615 AU.addRequired<AAResultsWrapperPass>(); 8616 AU.addRequired<TargetTransformInfoWrapperPass>(); 8617 AU.addRequired<LoopInfoWrapperPass>(); 8618 AU.addRequired<DominatorTreeWrapperPass>(); 8619 AU.addRequired<DemandedBitsWrapperPass>(); 8620 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 8621 AU.addRequired<InjectTLIMappingsLegacy>(); 8622 AU.addPreserved<LoopInfoWrapperPass>(); 8623 AU.addPreserved<DominatorTreeWrapperPass>(); 8624 AU.addPreserved<AAResultsWrapperPass>(); 8625 AU.addPreserved<GlobalsAAWrapperPass>(); 8626 AU.setPreservesCFG(); 8627 } 8628 }; 8629 8630 } // end anonymous namespace 8631 8632 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 8633 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 8634 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 8635 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 8636 auto *AA = &AM.getResult<AAManager>(F); 8637 auto *LI = &AM.getResult<LoopAnalysis>(F); 8638 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 8639 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 8640 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 8641 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8642 8643 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8644 if (!Changed) 8645 return PreservedAnalyses::all(); 8646 8647 PreservedAnalyses PA; 8648 PA.preserveSet<CFGAnalyses>(); 8649 return PA; 8650 } 8651 8652 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 8653 TargetTransformInfo *TTI_, 8654 TargetLibraryInfo *TLI_, AAResults *AA_, 8655 LoopInfo *LI_, DominatorTree *DT_, 8656 AssumptionCache *AC_, DemandedBits *DB_, 8657 OptimizationRemarkEmitter *ORE_) { 8658 if (!RunSLPVectorization) 8659 return false; 8660 SE = SE_; 8661 TTI = TTI_; 8662 TLI = TLI_; 8663 AA = AA_; 8664 LI = LI_; 8665 DT = DT_; 8666 AC = AC_; 8667 DB = DB_; 8668 DL = &F.getParent()->getDataLayout(); 8669 8670 Stores.clear(); 8671 GEPs.clear(); 8672 bool Changed = false; 8673 8674 // If the target claims to have no vector registers don't attempt 8675 // vectorization. 8676 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) { 8677 LLVM_DEBUG( 8678 dbgs() << "SLP: Didn't find any vector registers for target, abort.\n"); 8679 return false; 8680 } 8681 8682 // Don't vectorize when the attribute NoImplicitFloat is used. 8683 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 8684 return false; 8685 8686 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 8687 8688 // Use the bottom up slp vectorizer to construct chains that start with 8689 // store instructions. 8690 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 8691 8692 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 8693 // delete instructions. 8694 8695 // Update DFS numbers now so that we can use them for ordering. 8696 DT->updateDFSNumbers(); 8697 8698 // Scan the blocks in the function in post order. 8699 for (auto BB : post_order(&F.getEntryBlock())) { 8700 collectSeedInstructions(BB); 8701 8702 // Vectorize trees that end at stores. 8703 if (!Stores.empty()) { 8704 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 8705 << " underlying objects.\n"); 8706 Changed |= vectorizeStoreChains(R); 8707 } 8708 8709 // Vectorize trees that end at reductions. 8710 Changed |= vectorizeChainsInBlock(BB, R); 8711 8712 // Vectorize the index computations of getelementptr instructions. This 8713 // is primarily intended to catch gather-like idioms ending at 8714 // non-consecutive loads. 8715 if (!GEPs.empty()) { 8716 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 8717 << " underlying objects.\n"); 8718 Changed |= vectorizeGEPIndices(BB, R); 8719 } 8720 } 8721 8722 if (Changed) { 8723 R.optimizeGatherSequence(); 8724 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 8725 } 8726 return Changed; 8727 } 8728 8729 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 8730 unsigned Idx) { 8731 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 8732 << "\n"); 8733 const unsigned Sz = R.getVectorElementSize(Chain[0]); 8734 const unsigned MinVF = R.getMinVecRegSize() / Sz; 8735 unsigned VF = Chain.size(); 8736 8737 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 8738 return false; 8739 8740 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 8741 << "\n"); 8742 8743 R.buildTree(Chain); 8744 if (R.isTreeTinyAndNotFullyVectorizable()) 8745 return false; 8746 if (R.isLoadCombineCandidate()) 8747 return false; 8748 R.reorderTopToBottom(); 8749 R.reorderBottomToTop(); 8750 R.buildExternalUses(); 8751 8752 R.computeMinimumValueSizes(); 8753 8754 InstructionCost Cost = R.getTreeCost(); 8755 8756 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 8757 if (Cost < -SLPCostThreshold) { 8758 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 8759 8760 using namespace ore; 8761 8762 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 8763 cast<StoreInst>(Chain[0])) 8764 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 8765 << " and with tree size " 8766 << NV("TreeSize", R.getTreeSize())); 8767 8768 R.vectorizeTree(); 8769 return true; 8770 } 8771 8772 return false; 8773 } 8774 8775 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 8776 BoUpSLP &R) { 8777 // We may run into multiple chains that merge into a single chain. We mark the 8778 // stores that we vectorized so that we don't visit the same store twice. 8779 BoUpSLP::ValueSet VectorizedStores; 8780 bool Changed = false; 8781 8782 int E = Stores.size(); 8783 SmallBitVector Tails(E, false); 8784 int MaxIter = MaxStoreLookup.getValue(); 8785 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 8786 E, std::make_pair(E, INT_MAX)); 8787 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 8788 int IterCnt; 8789 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 8790 &CheckedPairs, 8791 &ConsecutiveChain](int K, int Idx) { 8792 if (IterCnt >= MaxIter) 8793 return true; 8794 if (CheckedPairs[Idx].test(K)) 8795 return ConsecutiveChain[K].second == 1 && 8796 ConsecutiveChain[K].first == Idx; 8797 ++IterCnt; 8798 CheckedPairs[Idx].set(K); 8799 CheckedPairs[K].set(Idx); 8800 Optional<int> Diff = getPointersDiff( 8801 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 8802 Stores[Idx]->getValueOperand()->getType(), 8803 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 8804 if (!Diff || *Diff == 0) 8805 return false; 8806 int Val = *Diff; 8807 if (Val < 0) { 8808 if (ConsecutiveChain[Idx].second > -Val) { 8809 Tails.set(K); 8810 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 8811 } 8812 return false; 8813 } 8814 if (ConsecutiveChain[K].second <= Val) 8815 return false; 8816 8817 Tails.set(Idx); 8818 ConsecutiveChain[K] = std::make_pair(Idx, Val); 8819 return Val == 1; 8820 }; 8821 // Do a quadratic search on all of the given stores in reverse order and find 8822 // all of the pairs of stores that follow each other. 8823 for (int Idx = E - 1; Idx >= 0; --Idx) { 8824 // If a store has multiple consecutive store candidates, search according 8825 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 8826 // This is because usually pairing with immediate succeeding or preceding 8827 // candidate create the best chance to find slp vectorization opportunity. 8828 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 8829 IterCnt = 0; 8830 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 8831 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 8832 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 8833 break; 8834 } 8835 8836 // Tracks if we tried to vectorize stores starting from the given tail 8837 // already. 8838 SmallBitVector TriedTails(E, false); 8839 // For stores that start but don't end a link in the chain: 8840 for (int Cnt = E; Cnt > 0; --Cnt) { 8841 int I = Cnt - 1; 8842 if (ConsecutiveChain[I].first == E || Tails.test(I)) 8843 continue; 8844 // We found a store instr that starts a chain. Now follow the chain and try 8845 // to vectorize it. 8846 BoUpSLP::ValueList Operands; 8847 // Collect the chain into a list. 8848 while (I != E && !VectorizedStores.count(Stores[I])) { 8849 Operands.push_back(Stores[I]); 8850 Tails.set(I); 8851 if (ConsecutiveChain[I].second != 1) { 8852 // Mark the new end in the chain and go back, if required. It might be 8853 // required if the original stores come in reversed order, for example. 8854 if (ConsecutiveChain[I].first != E && 8855 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 8856 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 8857 TriedTails.set(I); 8858 Tails.reset(ConsecutiveChain[I].first); 8859 if (Cnt < ConsecutiveChain[I].first + 2) 8860 Cnt = ConsecutiveChain[I].first + 2; 8861 } 8862 break; 8863 } 8864 // Move to the next value in the chain. 8865 I = ConsecutiveChain[I].first; 8866 } 8867 assert(!Operands.empty() && "Expected non-empty list of stores."); 8868 8869 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 8870 unsigned EltSize = R.getVectorElementSize(Operands[0]); 8871 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 8872 8873 unsigned MinVF = R.getMinVF(EltSize); 8874 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 8875 MaxElts); 8876 8877 // FIXME: Is division-by-2 the correct step? Should we assert that the 8878 // register size is a power-of-2? 8879 unsigned StartIdx = 0; 8880 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 8881 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 8882 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 8883 if (!VectorizedStores.count(Slice.front()) && 8884 !VectorizedStores.count(Slice.back()) && 8885 vectorizeStoreChain(Slice, R, Cnt)) { 8886 // Mark the vectorized stores so that we don't vectorize them again. 8887 VectorizedStores.insert(Slice.begin(), Slice.end()); 8888 Changed = true; 8889 // If we vectorized initial block, no need to try to vectorize it 8890 // again. 8891 if (Cnt == StartIdx) 8892 StartIdx += Size; 8893 Cnt += Size; 8894 continue; 8895 } 8896 ++Cnt; 8897 } 8898 // Check if the whole array was vectorized already - exit. 8899 if (StartIdx >= Operands.size()) 8900 break; 8901 } 8902 } 8903 8904 return Changed; 8905 } 8906 8907 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 8908 // Initialize the collections. We will make a single pass over the block. 8909 Stores.clear(); 8910 GEPs.clear(); 8911 8912 // Visit the store and getelementptr instructions in BB and organize them in 8913 // Stores and GEPs according to the underlying objects of their pointer 8914 // operands. 8915 for (Instruction &I : *BB) { 8916 // Ignore store instructions that are volatile or have a pointer operand 8917 // that doesn't point to a scalar type. 8918 if (auto *SI = dyn_cast<StoreInst>(&I)) { 8919 if (!SI->isSimple()) 8920 continue; 8921 if (!isValidElementType(SI->getValueOperand()->getType())) 8922 continue; 8923 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 8924 } 8925 8926 // Ignore getelementptr instructions that have more than one index, a 8927 // constant index, or a pointer operand that doesn't point to a scalar 8928 // type. 8929 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 8930 auto Idx = GEP->idx_begin()->get(); 8931 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 8932 continue; 8933 if (!isValidElementType(Idx->getType())) 8934 continue; 8935 if (GEP->getType()->isVectorTy()) 8936 continue; 8937 GEPs[GEP->getPointerOperand()].push_back(GEP); 8938 } 8939 } 8940 } 8941 8942 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 8943 if (!A || !B) 8944 return false; 8945 if (isa<InsertElementInst>(A) || isa<InsertElementInst>(B)) 8946 return false; 8947 Value *VL[] = {A, B}; 8948 return tryToVectorizeList(VL, R); 8949 } 8950 8951 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 8952 bool LimitForRegisterSize) { 8953 if (VL.size() < 2) 8954 return false; 8955 8956 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 8957 << VL.size() << ".\n"); 8958 8959 // Check that all of the parts are instructions of the same type, 8960 // we permit an alternate opcode via InstructionsState. 8961 InstructionsState S = getSameOpcode(VL); 8962 if (!S.getOpcode()) 8963 return false; 8964 8965 Instruction *I0 = cast<Instruction>(S.OpValue); 8966 // Make sure invalid types (including vector type) are rejected before 8967 // determining vectorization factor for scalar instructions. 8968 for (Value *V : VL) { 8969 Type *Ty = V->getType(); 8970 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 8971 // NOTE: the following will give user internal llvm type name, which may 8972 // not be useful. 8973 R.getORE()->emit([&]() { 8974 std::string type_str; 8975 llvm::raw_string_ostream rso(type_str); 8976 Ty->print(rso); 8977 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 8978 << "Cannot SLP vectorize list: type " 8979 << rso.str() + " is unsupported by vectorizer"; 8980 }); 8981 return false; 8982 } 8983 } 8984 8985 unsigned Sz = R.getVectorElementSize(I0); 8986 unsigned MinVF = R.getMinVF(Sz); 8987 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 8988 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 8989 if (MaxVF < 2) { 8990 R.getORE()->emit([&]() { 8991 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 8992 << "Cannot SLP vectorize list: vectorization factor " 8993 << "less than 2 is not supported"; 8994 }); 8995 return false; 8996 } 8997 8998 bool Changed = false; 8999 bool CandidateFound = false; 9000 InstructionCost MinCost = SLPCostThreshold.getValue(); 9001 Type *ScalarTy = VL[0]->getType(); 9002 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 9003 ScalarTy = IE->getOperand(1)->getType(); 9004 9005 unsigned NextInst = 0, MaxInst = VL.size(); 9006 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 9007 // No actual vectorization should happen, if number of parts is the same as 9008 // provided vectorization factor (i.e. the scalar type is used for vector 9009 // code during codegen). 9010 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 9011 if (TTI->getNumberOfParts(VecTy) == VF) 9012 continue; 9013 for (unsigned I = NextInst; I < MaxInst; ++I) { 9014 unsigned OpsWidth = 0; 9015 9016 if (I + VF > MaxInst) 9017 OpsWidth = MaxInst - I; 9018 else 9019 OpsWidth = VF; 9020 9021 if (!isPowerOf2_32(OpsWidth)) 9022 continue; 9023 9024 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 9025 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 9026 break; 9027 9028 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 9029 // Check that a previous iteration of this loop did not delete the Value. 9030 if (llvm::any_of(Ops, [&R](Value *V) { 9031 auto *I = dyn_cast<Instruction>(V); 9032 return I && R.isDeleted(I); 9033 })) 9034 continue; 9035 9036 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 9037 << "\n"); 9038 9039 R.buildTree(Ops); 9040 if (R.isTreeTinyAndNotFullyVectorizable()) 9041 continue; 9042 R.reorderTopToBottom(); 9043 R.reorderBottomToTop(!isa<InsertElementInst>(Ops.front())); 9044 R.buildExternalUses(); 9045 9046 R.computeMinimumValueSizes(); 9047 InstructionCost Cost = R.getTreeCost(); 9048 CandidateFound = true; 9049 MinCost = std::min(MinCost, Cost); 9050 9051 if (Cost < -SLPCostThreshold) { 9052 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 9053 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 9054 cast<Instruction>(Ops[0])) 9055 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 9056 << " and with tree size " 9057 << ore::NV("TreeSize", R.getTreeSize())); 9058 9059 R.vectorizeTree(); 9060 // Move to the next bundle. 9061 I += VF - 1; 9062 NextInst = I + 1; 9063 Changed = true; 9064 } 9065 } 9066 } 9067 9068 if (!Changed && CandidateFound) { 9069 R.getORE()->emit([&]() { 9070 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 9071 << "List vectorization was possible but not beneficial with cost " 9072 << ore::NV("Cost", MinCost) << " >= " 9073 << ore::NV("Treshold", -SLPCostThreshold); 9074 }); 9075 } else if (!Changed) { 9076 R.getORE()->emit([&]() { 9077 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 9078 << "Cannot SLP vectorize list: vectorization was impossible" 9079 << " with available vectorization factors"; 9080 }); 9081 } 9082 return Changed; 9083 } 9084 9085 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 9086 if (!I) 9087 return false; 9088 9089 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 9090 return false; 9091 9092 Value *P = I->getParent(); 9093 9094 // Vectorize in current basic block only. 9095 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 9096 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 9097 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 9098 return false; 9099 9100 // Try to vectorize V. 9101 if (tryToVectorizePair(Op0, Op1, R)) 9102 return true; 9103 9104 auto *A = dyn_cast<BinaryOperator>(Op0); 9105 auto *B = dyn_cast<BinaryOperator>(Op1); 9106 // Try to skip B. 9107 if (B && B->hasOneUse()) { 9108 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 9109 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 9110 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 9111 return true; 9112 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 9113 return true; 9114 } 9115 9116 // Try to skip A. 9117 if (A && A->hasOneUse()) { 9118 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 9119 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 9120 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 9121 return true; 9122 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 9123 return true; 9124 } 9125 return false; 9126 } 9127 9128 namespace { 9129 9130 /// Model horizontal reductions. 9131 /// 9132 /// A horizontal reduction is a tree of reduction instructions that has values 9133 /// that can be put into a vector as its leaves. For example: 9134 /// 9135 /// mul mul mul mul 9136 /// \ / \ / 9137 /// + + 9138 /// \ / 9139 /// + 9140 /// This tree has "mul" as its leaf values and "+" as its reduction 9141 /// instructions. A reduction can feed into a store or a binary operation 9142 /// feeding a phi. 9143 /// ... 9144 /// \ / 9145 /// + 9146 /// | 9147 /// phi += 9148 /// 9149 /// Or: 9150 /// ... 9151 /// \ / 9152 /// + 9153 /// | 9154 /// *p = 9155 /// 9156 class HorizontalReduction { 9157 using ReductionOpsType = SmallVector<Value *, 16>; 9158 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 9159 ReductionOpsListType ReductionOps; 9160 SmallVector<Value *, 32> ReducedVals; 9161 // Use map vector to make stable output. 9162 MapVector<Instruction *, Value *> ExtraArgs; 9163 WeakTrackingVH ReductionRoot; 9164 /// The type of reduction operation. 9165 RecurKind RdxKind; 9166 9167 const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max(); 9168 9169 static bool isCmpSelMinMax(Instruction *I) { 9170 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 9171 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 9172 } 9173 9174 // And/or are potentially poison-safe logical patterns like: 9175 // select x, y, false 9176 // select x, true, y 9177 static bool isBoolLogicOp(Instruction *I) { 9178 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 9179 match(I, m_LogicalOr(m_Value(), m_Value())); 9180 } 9181 9182 /// Checks if instruction is associative and can be vectorized. 9183 static bool isVectorizable(RecurKind Kind, Instruction *I) { 9184 if (Kind == RecurKind::None) 9185 return false; 9186 9187 // Integer ops that map to select instructions or intrinsics are fine. 9188 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 9189 isBoolLogicOp(I)) 9190 return true; 9191 9192 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 9193 // FP min/max are associative except for NaN and -0.0. We do not 9194 // have to rule out -0.0 here because the intrinsic semantics do not 9195 // specify a fixed result for it. 9196 return I->getFastMathFlags().noNaNs(); 9197 } 9198 9199 return I->isAssociative(); 9200 } 9201 9202 static Value *getRdxOperand(Instruction *I, unsigned Index) { 9203 // Poison-safe 'or' takes the form: select X, true, Y 9204 // To make that work with the normal operand processing, we skip the 9205 // true value operand. 9206 // TODO: Change the code and data structures to handle this without a hack. 9207 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 9208 return I->getOperand(2); 9209 return I->getOperand(Index); 9210 } 9211 9212 /// Checks if the ParentStackElem.first should be marked as a reduction 9213 /// operation with an extra argument or as extra argument itself. 9214 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 9215 Value *ExtraArg) { 9216 if (ExtraArgs.count(ParentStackElem.first)) { 9217 ExtraArgs[ParentStackElem.first] = nullptr; 9218 // We ran into something like: 9219 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 9220 // The whole ParentStackElem.first should be considered as an extra value 9221 // in this case. 9222 // Do not perform analysis of remaining operands of ParentStackElem.first 9223 // instruction, this whole instruction is an extra argument. 9224 ParentStackElem.second = INVALID_OPERAND_INDEX; 9225 } else { 9226 // We ran into something like: 9227 // ParentStackElem.first += ... + ExtraArg + ... 9228 ExtraArgs[ParentStackElem.first] = ExtraArg; 9229 } 9230 } 9231 9232 /// Creates reduction operation with the current opcode. 9233 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 9234 Value *RHS, const Twine &Name, bool UseSelect) { 9235 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 9236 switch (Kind) { 9237 case RecurKind::Or: 9238 if (UseSelect && 9239 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 9240 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 9241 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9242 Name); 9243 case RecurKind::And: 9244 if (UseSelect && 9245 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 9246 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 9247 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9248 Name); 9249 case RecurKind::Add: 9250 case RecurKind::Mul: 9251 case RecurKind::Xor: 9252 case RecurKind::FAdd: 9253 case RecurKind::FMul: 9254 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9255 Name); 9256 case RecurKind::FMax: 9257 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 9258 case RecurKind::FMin: 9259 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 9260 case RecurKind::SMax: 9261 if (UseSelect) { 9262 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 9263 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9264 } 9265 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 9266 case RecurKind::SMin: 9267 if (UseSelect) { 9268 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 9269 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9270 } 9271 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 9272 case RecurKind::UMax: 9273 if (UseSelect) { 9274 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 9275 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9276 } 9277 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 9278 case RecurKind::UMin: 9279 if (UseSelect) { 9280 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 9281 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9282 } 9283 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 9284 default: 9285 llvm_unreachable("Unknown reduction operation."); 9286 } 9287 } 9288 9289 /// Creates reduction operation with the current opcode with the IR flags 9290 /// from \p ReductionOps. 9291 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9292 Value *RHS, const Twine &Name, 9293 const ReductionOpsListType &ReductionOps) { 9294 bool UseSelect = ReductionOps.size() == 2 || 9295 // Logical or/and. 9296 (ReductionOps.size() == 1 && 9297 isa<SelectInst>(ReductionOps.front().front())); 9298 assert((!UseSelect || ReductionOps.size() != 2 || 9299 isa<SelectInst>(ReductionOps[1][0])) && 9300 "Expected cmp + select pairs for reduction"); 9301 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 9302 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9303 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 9304 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 9305 propagateIRFlags(Op, ReductionOps[1]); 9306 return Op; 9307 } 9308 } 9309 propagateIRFlags(Op, ReductionOps[0]); 9310 return Op; 9311 } 9312 9313 /// Creates reduction operation with the current opcode with the IR flags 9314 /// from \p I. 9315 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9316 Value *RHS, const Twine &Name, Instruction *I) { 9317 auto *SelI = dyn_cast<SelectInst>(I); 9318 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 9319 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9320 if (auto *Sel = dyn_cast<SelectInst>(Op)) 9321 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 9322 } 9323 propagateIRFlags(Op, I); 9324 return Op; 9325 } 9326 9327 static RecurKind getRdxKind(Instruction *I) { 9328 assert(I && "Expected instruction for reduction matching"); 9329 if (match(I, m_Add(m_Value(), m_Value()))) 9330 return RecurKind::Add; 9331 if (match(I, m_Mul(m_Value(), m_Value()))) 9332 return RecurKind::Mul; 9333 if (match(I, m_And(m_Value(), m_Value())) || 9334 match(I, m_LogicalAnd(m_Value(), m_Value()))) 9335 return RecurKind::And; 9336 if (match(I, m_Or(m_Value(), m_Value())) || 9337 match(I, m_LogicalOr(m_Value(), m_Value()))) 9338 return RecurKind::Or; 9339 if (match(I, m_Xor(m_Value(), m_Value()))) 9340 return RecurKind::Xor; 9341 if (match(I, m_FAdd(m_Value(), m_Value()))) 9342 return RecurKind::FAdd; 9343 if (match(I, m_FMul(m_Value(), m_Value()))) 9344 return RecurKind::FMul; 9345 9346 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 9347 return RecurKind::FMax; 9348 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 9349 return RecurKind::FMin; 9350 9351 // This matches either cmp+select or intrinsics. SLP is expected to handle 9352 // either form. 9353 // TODO: If we are canonicalizing to intrinsics, we can remove several 9354 // special-case paths that deal with selects. 9355 if (match(I, m_SMax(m_Value(), m_Value()))) 9356 return RecurKind::SMax; 9357 if (match(I, m_SMin(m_Value(), m_Value()))) 9358 return RecurKind::SMin; 9359 if (match(I, m_UMax(m_Value(), m_Value()))) 9360 return RecurKind::UMax; 9361 if (match(I, m_UMin(m_Value(), m_Value()))) 9362 return RecurKind::UMin; 9363 9364 if (auto *Select = dyn_cast<SelectInst>(I)) { 9365 // Try harder: look for min/max pattern based on instructions producing 9366 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 9367 // During the intermediate stages of SLP, it's very common to have 9368 // pattern like this (since optimizeGatherSequence is run only once 9369 // at the end): 9370 // %1 = extractelement <2 x i32> %a, i32 0 9371 // %2 = extractelement <2 x i32> %a, i32 1 9372 // %cond = icmp sgt i32 %1, %2 9373 // %3 = extractelement <2 x i32> %a, i32 0 9374 // %4 = extractelement <2 x i32> %a, i32 1 9375 // %select = select i1 %cond, i32 %3, i32 %4 9376 CmpInst::Predicate Pred; 9377 Instruction *L1; 9378 Instruction *L2; 9379 9380 Value *LHS = Select->getTrueValue(); 9381 Value *RHS = Select->getFalseValue(); 9382 Value *Cond = Select->getCondition(); 9383 9384 // TODO: Support inverse predicates. 9385 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 9386 if (!isa<ExtractElementInst>(RHS) || 9387 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9388 return RecurKind::None; 9389 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 9390 if (!isa<ExtractElementInst>(LHS) || 9391 !L1->isIdenticalTo(cast<Instruction>(LHS))) 9392 return RecurKind::None; 9393 } else { 9394 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 9395 return RecurKind::None; 9396 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 9397 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 9398 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9399 return RecurKind::None; 9400 } 9401 9402 switch (Pred) { 9403 default: 9404 return RecurKind::None; 9405 case CmpInst::ICMP_SGT: 9406 case CmpInst::ICMP_SGE: 9407 return RecurKind::SMax; 9408 case CmpInst::ICMP_SLT: 9409 case CmpInst::ICMP_SLE: 9410 return RecurKind::SMin; 9411 case CmpInst::ICMP_UGT: 9412 case CmpInst::ICMP_UGE: 9413 return RecurKind::UMax; 9414 case CmpInst::ICMP_ULT: 9415 case CmpInst::ICMP_ULE: 9416 return RecurKind::UMin; 9417 } 9418 } 9419 return RecurKind::None; 9420 } 9421 9422 /// Get the index of the first operand. 9423 static unsigned getFirstOperandIndex(Instruction *I) { 9424 return isCmpSelMinMax(I) ? 1 : 0; 9425 } 9426 9427 /// Total number of operands in the reduction operation. 9428 static unsigned getNumberOfOperands(Instruction *I) { 9429 return isCmpSelMinMax(I) ? 3 : 2; 9430 } 9431 9432 /// Checks if the instruction is in basic block \p BB. 9433 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 9434 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 9435 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 9436 auto *Sel = cast<SelectInst>(I); 9437 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 9438 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 9439 } 9440 return I->getParent() == BB; 9441 } 9442 9443 /// Expected number of uses for reduction operations/reduced values. 9444 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 9445 if (IsCmpSelMinMax) { 9446 // SelectInst must be used twice while the condition op must have single 9447 // use only. 9448 if (auto *Sel = dyn_cast<SelectInst>(I)) 9449 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 9450 return I->hasNUses(2); 9451 } 9452 9453 // Arithmetic reduction operation must be used once only. 9454 return I->hasOneUse(); 9455 } 9456 9457 /// Initializes the list of reduction operations. 9458 void initReductionOps(Instruction *I) { 9459 if (isCmpSelMinMax(I)) 9460 ReductionOps.assign(2, ReductionOpsType()); 9461 else 9462 ReductionOps.assign(1, ReductionOpsType()); 9463 } 9464 9465 /// Add all reduction operations for the reduction instruction \p I. 9466 void addReductionOps(Instruction *I) { 9467 if (isCmpSelMinMax(I)) { 9468 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 9469 ReductionOps[1].emplace_back(I); 9470 } else { 9471 ReductionOps[0].emplace_back(I); 9472 } 9473 } 9474 9475 static Value *getLHS(RecurKind Kind, Instruction *I) { 9476 if (Kind == RecurKind::None) 9477 return nullptr; 9478 return I->getOperand(getFirstOperandIndex(I)); 9479 } 9480 static Value *getRHS(RecurKind Kind, Instruction *I) { 9481 if (Kind == RecurKind::None) 9482 return nullptr; 9483 return I->getOperand(getFirstOperandIndex(I) + 1); 9484 } 9485 9486 public: 9487 HorizontalReduction() = default; 9488 9489 /// Try to find a reduction tree. 9490 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) { 9491 assert((!Phi || is_contained(Phi->operands(), Inst)) && 9492 "Phi needs to use the binary operator"); 9493 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 9494 isa<IntrinsicInst>(Inst)) && 9495 "Expected binop, select, or intrinsic for reduction matching"); 9496 RdxKind = getRdxKind(Inst); 9497 9498 // We could have a initial reductions that is not an add. 9499 // r *= v1 + v2 + v3 + v4 9500 // In such a case start looking for a tree rooted in the first '+'. 9501 if (Phi) { 9502 if (getLHS(RdxKind, Inst) == Phi) { 9503 Phi = nullptr; 9504 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 9505 if (!Inst) 9506 return false; 9507 RdxKind = getRdxKind(Inst); 9508 } else if (getRHS(RdxKind, Inst) == Phi) { 9509 Phi = nullptr; 9510 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 9511 if (!Inst) 9512 return false; 9513 RdxKind = getRdxKind(Inst); 9514 } 9515 } 9516 9517 if (!isVectorizable(RdxKind, Inst)) 9518 return false; 9519 9520 // Analyze "regular" integer/FP types for reductions - no target-specific 9521 // types or pointers. 9522 Type *Ty = Inst->getType(); 9523 if (!isValidElementType(Ty) || Ty->isPointerTy()) 9524 return false; 9525 9526 // Though the ultimate reduction may have multiple uses, its condition must 9527 // have only single use. 9528 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 9529 if (!Sel->getCondition()->hasOneUse()) 9530 return false; 9531 9532 ReductionRoot = Inst; 9533 9534 // The opcode for leaf values that we perform a reduction on. 9535 // For example: load(x) + load(y) + load(z) + fptoui(w) 9536 // The leaf opcode for 'w' does not match, so we don't include it as a 9537 // potential candidate for the reduction. 9538 unsigned LeafOpcode = 0; 9539 9540 // Post-order traverse the reduction tree starting at Inst. We only handle 9541 // true trees containing binary operators or selects. 9542 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 9543 Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst))); 9544 initReductionOps(Inst); 9545 while (!Stack.empty()) { 9546 Instruction *TreeN = Stack.back().first; 9547 unsigned EdgeToVisit = Stack.back().second++; 9548 const RecurKind TreeRdxKind = getRdxKind(TreeN); 9549 bool IsReducedValue = TreeRdxKind != RdxKind; 9550 9551 // Postorder visit. 9552 if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) { 9553 if (IsReducedValue) 9554 ReducedVals.push_back(TreeN); 9555 else { 9556 auto ExtraArgsIter = ExtraArgs.find(TreeN); 9557 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 9558 // Check if TreeN is an extra argument of its parent operation. 9559 if (Stack.size() <= 1) { 9560 // TreeN can't be an extra argument as it is a root reduction 9561 // operation. 9562 return false; 9563 } 9564 // Yes, TreeN is an extra argument, do not add it to a list of 9565 // reduction operations. 9566 // Stack[Stack.size() - 2] always points to the parent operation. 9567 markExtraArg(Stack[Stack.size() - 2], TreeN); 9568 ExtraArgs.erase(TreeN); 9569 } else 9570 addReductionOps(TreeN); 9571 } 9572 // Retract. 9573 Stack.pop_back(); 9574 continue; 9575 } 9576 9577 // Visit operands. 9578 Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit); 9579 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 9580 if (!EdgeInst) { 9581 // Edge value is not a reduction instruction or a leaf instruction. 9582 // (It may be a constant, function argument, or something else.) 9583 markExtraArg(Stack.back(), EdgeVal); 9584 continue; 9585 } 9586 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 9587 // Continue analysis if the next operand is a reduction operation or 9588 // (possibly) a leaf value. If the leaf value opcode is not set, 9589 // the first met operation != reduction operation is considered as the 9590 // leaf opcode. 9591 // Only handle trees in the current basic block. 9592 // Each tree node needs to have minimal number of users except for the 9593 // ultimate reduction. 9594 const bool IsRdxInst = EdgeRdxKind == RdxKind; 9595 if (EdgeInst != Phi && EdgeInst != Inst && 9596 hasSameParent(EdgeInst, Inst->getParent()) && 9597 hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) && 9598 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 9599 if (IsRdxInst) { 9600 // We need to be able to reassociate the reduction operations. 9601 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 9602 // I is an extra argument for TreeN (its parent operation). 9603 markExtraArg(Stack.back(), EdgeInst); 9604 continue; 9605 } 9606 } else if (!LeafOpcode) { 9607 LeafOpcode = EdgeInst->getOpcode(); 9608 } 9609 Stack.push_back( 9610 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 9611 continue; 9612 } 9613 // I is an extra argument for TreeN (its parent operation). 9614 markExtraArg(Stack.back(), EdgeInst); 9615 } 9616 return true; 9617 } 9618 9619 /// Attempt to vectorize the tree found by matchAssociativeReduction. 9620 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 9621 // If there are a sufficient number of reduction values, reduce 9622 // to a nearby power-of-2. We can safely generate oversized 9623 // vectors and rely on the backend to split them to legal sizes. 9624 unsigned NumReducedVals = ReducedVals.size(); 9625 if (NumReducedVals < 4) 9626 return nullptr; 9627 9628 // Intersect the fast-math-flags from all reduction operations. 9629 FastMathFlags RdxFMF; 9630 RdxFMF.set(); 9631 for (ReductionOpsType &RdxOp : ReductionOps) { 9632 for (Value *RdxVal : RdxOp) { 9633 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 9634 RdxFMF &= FPMO->getFastMathFlags(); 9635 } 9636 } 9637 9638 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 9639 Builder.setFastMathFlags(RdxFMF); 9640 9641 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 9642 // The same extra argument may be used several times, so log each attempt 9643 // to use it. 9644 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 9645 assert(Pair.first && "DebugLoc must be set."); 9646 ExternallyUsedValues[Pair.second].push_back(Pair.first); 9647 } 9648 9649 // The compare instruction of a min/max is the insertion point for new 9650 // instructions and may be replaced with a new compare instruction. 9651 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 9652 assert(isa<SelectInst>(RdxRootInst) && 9653 "Expected min/max reduction to have select root instruction"); 9654 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 9655 assert(isa<Instruction>(ScalarCond) && 9656 "Expected min/max reduction to have compare condition"); 9657 return cast<Instruction>(ScalarCond); 9658 }; 9659 9660 // The reduction root is used as the insertion point for new instructions, 9661 // so set it as externally used to prevent it from being deleted. 9662 ExternallyUsedValues[ReductionRoot]; 9663 SmallVector<Value *, 16> IgnoreList; 9664 for (ReductionOpsType &RdxOp : ReductionOps) 9665 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 9666 9667 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 9668 if (NumReducedVals > ReduxWidth) { 9669 // In the loop below, we are building a tree based on a window of 9670 // 'ReduxWidth' values. 9671 // If the operands of those values have common traits (compare predicate, 9672 // constant operand, etc), then we want to group those together to 9673 // minimize the cost of the reduction. 9674 9675 // TODO: This should be extended to count common operands for 9676 // compares and binops. 9677 9678 // Step 1: Count the number of times each compare predicate occurs. 9679 SmallDenseMap<unsigned, unsigned> PredCountMap; 9680 for (Value *RdxVal : ReducedVals) { 9681 CmpInst::Predicate Pred; 9682 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 9683 ++PredCountMap[Pred]; 9684 } 9685 // Step 2: Sort the values so the most common predicates come first. 9686 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 9687 CmpInst::Predicate PredA, PredB; 9688 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 9689 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 9690 return PredCountMap[PredA] > PredCountMap[PredB]; 9691 } 9692 return false; 9693 }); 9694 } 9695 9696 Value *VectorizedTree = nullptr; 9697 unsigned i = 0; 9698 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 9699 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 9700 V.buildTree(VL, IgnoreList); 9701 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) 9702 break; 9703 if (V.isLoadCombineReductionCandidate(RdxKind)) 9704 break; 9705 V.reorderTopToBottom(); 9706 V.reorderBottomToTop(/*IgnoreReorder=*/true); 9707 V.buildExternalUses(ExternallyUsedValues); 9708 9709 // For a poison-safe boolean logic reduction, do not replace select 9710 // instructions with logic ops. All reduced values will be frozen (see 9711 // below) to prevent leaking poison. 9712 if (isa<SelectInst>(ReductionRoot) && 9713 isBoolLogicOp(cast<Instruction>(ReductionRoot)) && 9714 NumReducedVals != ReduxWidth) 9715 break; 9716 9717 V.computeMinimumValueSizes(); 9718 9719 // Estimate cost. 9720 InstructionCost TreeCost = 9721 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth)); 9722 InstructionCost ReductionCost = 9723 getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF); 9724 InstructionCost Cost = TreeCost + ReductionCost; 9725 if (!Cost.isValid()) { 9726 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 9727 return nullptr; 9728 } 9729 if (Cost >= -SLPCostThreshold) { 9730 V.getORE()->emit([&]() { 9731 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 9732 cast<Instruction>(VL[0])) 9733 << "Vectorizing horizontal reduction is possible" 9734 << "but not beneficial with cost " << ore::NV("Cost", Cost) 9735 << " and threshold " 9736 << ore::NV("Threshold", -SLPCostThreshold); 9737 }); 9738 break; 9739 } 9740 9741 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 9742 << Cost << ". (HorRdx)\n"); 9743 V.getORE()->emit([&]() { 9744 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 9745 cast<Instruction>(VL[0])) 9746 << "Vectorized horizontal reduction with cost " 9747 << ore::NV("Cost", Cost) << " and with tree size " 9748 << ore::NV("TreeSize", V.getTreeSize()); 9749 }); 9750 9751 // Vectorize a tree. 9752 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 9753 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 9754 9755 // Emit a reduction. If the root is a select (min/max idiom), the insert 9756 // point is the compare condition of that select. 9757 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 9758 if (isCmpSelMinMax(RdxRootInst)) 9759 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 9760 else 9761 Builder.SetInsertPoint(RdxRootInst); 9762 9763 // To prevent poison from leaking across what used to be sequential, safe, 9764 // scalar boolean logic operations, the reduction operand must be frozen. 9765 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 9766 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 9767 9768 Value *ReducedSubTree = 9769 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 9770 9771 if (!VectorizedTree) { 9772 // Initialize the final value in the reduction. 9773 VectorizedTree = ReducedSubTree; 9774 } else { 9775 // Update the final value in the reduction. 9776 Builder.SetCurrentDebugLocation(Loc); 9777 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9778 ReducedSubTree, "op.rdx", ReductionOps); 9779 } 9780 i += ReduxWidth; 9781 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 9782 } 9783 9784 if (VectorizedTree) { 9785 // Finish the reduction. 9786 for (; i < NumReducedVals; ++i) { 9787 auto *I = cast<Instruction>(ReducedVals[i]); 9788 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9789 VectorizedTree = 9790 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 9791 } 9792 for (auto &Pair : ExternallyUsedValues) { 9793 // Add each externally used value to the final reduction. 9794 for (auto *I : Pair.second) { 9795 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9796 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9797 Pair.first, "op.extra", I); 9798 } 9799 } 9800 9801 ReductionRoot->replaceAllUsesWith(VectorizedTree); 9802 9803 // Mark all scalar reduction ops for deletion, they are replaced by the 9804 // vector reductions. 9805 V.eraseInstructions(IgnoreList); 9806 } 9807 return VectorizedTree; 9808 } 9809 9810 unsigned numReductionValues() const { return ReducedVals.size(); } 9811 9812 private: 9813 /// Calculate the cost of a reduction. 9814 InstructionCost getReductionCost(TargetTransformInfo *TTI, 9815 Value *FirstReducedVal, unsigned ReduxWidth, 9816 FastMathFlags FMF) { 9817 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 9818 Type *ScalarTy = FirstReducedVal->getType(); 9819 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 9820 InstructionCost VectorCost, ScalarCost; 9821 switch (RdxKind) { 9822 case RecurKind::Add: 9823 case RecurKind::Mul: 9824 case RecurKind::Or: 9825 case RecurKind::And: 9826 case RecurKind::Xor: 9827 case RecurKind::FAdd: 9828 case RecurKind::FMul: { 9829 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 9830 VectorCost = 9831 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 9832 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 9833 break; 9834 } 9835 case RecurKind::FMax: 9836 case RecurKind::FMin: { 9837 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9838 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9839 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 9840 /*IsUnsigned=*/false, CostKind); 9841 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9842 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 9843 SclCondTy, RdxPred, CostKind) + 9844 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9845 SclCondTy, RdxPred, CostKind); 9846 break; 9847 } 9848 case RecurKind::SMax: 9849 case RecurKind::SMin: 9850 case RecurKind::UMax: 9851 case RecurKind::UMin: { 9852 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9853 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9854 bool IsUnsigned = 9855 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 9856 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned, 9857 CostKind); 9858 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9859 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 9860 SclCondTy, RdxPred, CostKind) + 9861 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9862 SclCondTy, RdxPred, CostKind); 9863 break; 9864 } 9865 default: 9866 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 9867 } 9868 9869 // Scalar cost is repeated for N-1 elements. 9870 ScalarCost *= (ReduxWidth - 1); 9871 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 9872 << " for reduction that starts with " << *FirstReducedVal 9873 << " (It is a splitting reduction)\n"); 9874 return VectorCost - ScalarCost; 9875 } 9876 9877 /// Emit a horizontal reduction of the vectorized value. 9878 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 9879 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 9880 assert(VectorizedValue && "Need to have a vectorized tree node"); 9881 assert(isPowerOf2_32(ReduxWidth) && 9882 "We only handle power-of-two reductions for now"); 9883 assert(RdxKind != RecurKind::FMulAdd && 9884 "A call to the llvm.fmuladd intrinsic is not handled yet"); 9885 9886 ++NumVectorInstructions; 9887 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind); 9888 } 9889 }; 9890 9891 } // end anonymous namespace 9892 9893 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 9894 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 9895 return cast<FixedVectorType>(IE->getType())->getNumElements(); 9896 9897 unsigned AggregateSize = 1; 9898 auto *IV = cast<InsertValueInst>(InsertInst); 9899 Type *CurrentType = IV->getType(); 9900 do { 9901 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 9902 for (auto *Elt : ST->elements()) 9903 if (Elt != ST->getElementType(0)) // check homogeneity 9904 return None; 9905 AggregateSize *= ST->getNumElements(); 9906 CurrentType = ST->getElementType(0); 9907 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 9908 AggregateSize *= AT->getNumElements(); 9909 CurrentType = AT->getElementType(); 9910 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 9911 AggregateSize *= VT->getNumElements(); 9912 return AggregateSize; 9913 } else if (CurrentType->isSingleValueType()) { 9914 return AggregateSize; 9915 } else { 9916 return None; 9917 } 9918 } while (true); 9919 } 9920 9921 static void findBuildAggregate_rec(Instruction *LastInsertInst, 9922 TargetTransformInfo *TTI, 9923 SmallVectorImpl<Value *> &BuildVectorOpds, 9924 SmallVectorImpl<Value *> &InsertElts, 9925 unsigned OperandOffset) { 9926 do { 9927 Value *InsertedOperand = LastInsertInst->getOperand(1); 9928 Optional<unsigned> OperandIndex = 9929 getInsertIndex(LastInsertInst, OperandOffset); 9930 if (!OperandIndex) 9931 return; 9932 if (isa<InsertElementInst>(InsertedOperand) || 9933 isa<InsertValueInst>(InsertedOperand)) { 9934 findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 9935 BuildVectorOpds, InsertElts, *OperandIndex); 9936 9937 } else { 9938 BuildVectorOpds[*OperandIndex] = InsertedOperand; 9939 InsertElts[*OperandIndex] = LastInsertInst; 9940 } 9941 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 9942 } while (LastInsertInst != nullptr && 9943 (isa<InsertValueInst>(LastInsertInst) || 9944 isa<InsertElementInst>(LastInsertInst)) && 9945 LastInsertInst->hasOneUse()); 9946 } 9947 9948 /// Recognize construction of vectors like 9949 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 9950 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 9951 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 9952 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 9953 /// starting from the last insertelement or insertvalue instruction. 9954 /// 9955 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 9956 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 9957 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 9958 /// 9959 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 9960 /// 9961 /// \return true if it matches. 9962 static bool findBuildAggregate(Instruction *LastInsertInst, 9963 TargetTransformInfo *TTI, 9964 SmallVectorImpl<Value *> &BuildVectorOpds, 9965 SmallVectorImpl<Value *> &InsertElts) { 9966 9967 assert((isa<InsertElementInst>(LastInsertInst) || 9968 isa<InsertValueInst>(LastInsertInst)) && 9969 "Expected insertelement or insertvalue instruction!"); 9970 9971 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 9972 "Expected empty result vectors!"); 9973 9974 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 9975 if (!AggregateSize) 9976 return false; 9977 BuildVectorOpds.resize(*AggregateSize); 9978 InsertElts.resize(*AggregateSize); 9979 9980 findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 0); 9981 llvm::erase_value(BuildVectorOpds, nullptr); 9982 llvm::erase_value(InsertElts, nullptr); 9983 if (BuildVectorOpds.size() >= 2) 9984 return true; 9985 9986 return false; 9987 } 9988 9989 /// Try and get a reduction value from a phi node. 9990 /// 9991 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 9992 /// if they come from either \p ParentBB or a containing loop latch. 9993 /// 9994 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 9995 /// if not possible. 9996 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 9997 BasicBlock *ParentBB, LoopInfo *LI) { 9998 // There are situations where the reduction value is not dominated by the 9999 // reduction phi. Vectorizing such cases has been reported to cause 10000 // miscompiles. See PR25787. 10001 auto DominatedReduxValue = [&](Value *R) { 10002 return isa<Instruction>(R) && 10003 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 10004 }; 10005 10006 Value *Rdx = nullptr; 10007 10008 // Return the incoming value if it comes from the same BB as the phi node. 10009 if (P->getIncomingBlock(0) == ParentBB) { 10010 Rdx = P->getIncomingValue(0); 10011 } else if (P->getIncomingBlock(1) == ParentBB) { 10012 Rdx = P->getIncomingValue(1); 10013 } 10014 10015 if (Rdx && DominatedReduxValue(Rdx)) 10016 return Rdx; 10017 10018 // Otherwise, check whether we have a loop latch to look at. 10019 Loop *BBL = LI->getLoopFor(ParentBB); 10020 if (!BBL) 10021 return nullptr; 10022 BasicBlock *BBLatch = BBL->getLoopLatch(); 10023 if (!BBLatch) 10024 return nullptr; 10025 10026 // There is a loop latch, return the incoming value if it comes from 10027 // that. This reduction pattern occasionally turns up. 10028 if (P->getIncomingBlock(0) == BBLatch) { 10029 Rdx = P->getIncomingValue(0); 10030 } else if (P->getIncomingBlock(1) == BBLatch) { 10031 Rdx = P->getIncomingValue(1); 10032 } 10033 10034 if (Rdx && DominatedReduxValue(Rdx)) 10035 return Rdx; 10036 10037 return nullptr; 10038 } 10039 10040 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 10041 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 10042 return true; 10043 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 10044 return true; 10045 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 10046 return true; 10047 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 10048 return true; 10049 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 10050 return true; 10051 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 10052 return true; 10053 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 10054 return true; 10055 return false; 10056 } 10057 10058 /// Attempt to reduce a horizontal reduction. 10059 /// If it is legal to match a horizontal reduction feeding the phi node \a P 10060 /// with reduction operators \a Root (or one of its operands) in a basic block 10061 /// \a BB, then check if it can be done. If horizontal reduction is not found 10062 /// and root instruction is a binary operation, vectorization of the operands is 10063 /// attempted. 10064 /// \returns true if a horizontal reduction was matched and reduced or operands 10065 /// of one of the binary instruction were vectorized. 10066 /// \returns false if a horizontal reduction was not matched (or not possible) 10067 /// or no vectorization of any binary operation feeding \a Root instruction was 10068 /// performed. 10069 static bool tryToVectorizeHorReductionOrInstOperands( 10070 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 10071 TargetTransformInfo *TTI, 10072 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 10073 if (!ShouldVectorizeHor) 10074 return false; 10075 10076 if (!Root) 10077 return false; 10078 10079 if (Root->getParent() != BB || isa<PHINode>(Root)) 10080 return false; 10081 // Start analysis starting from Root instruction. If horizontal reduction is 10082 // found, try to vectorize it. If it is not a horizontal reduction or 10083 // vectorization is not possible or not effective, and currently analyzed 10084 // instruction is a binary operation, try to vectorize the operands, using 10085 // pre-order DFS traversal order. If the operands were not vectorized, repeat 10086 // the same procedure considering each operand as a possible root of the 10087 // horizontal reduction. 10088 // Interrupt the process if the Root instruction itself was vectorized or all 10089 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 10090 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 10091 // CmpInsts so we can skip extra attempts in 10092 // tryToVectorizeHorReductionOrInstOperands and save compile time. 10093 std::queue<std::pair<Instruction *, unsigned>> Stack; 10094 Stack.emplace(Root, 0); 10095 SmallPtrSet<Value *, 8> VisitedInstrs; 10096 SmallVector<WeakTrackingVH> PostponedInsts; 10097 bool Res = false; 10098 auto &&TryToReduce = [TTI, &P, &R](Instruction *Inst, Value *&B0, 10099 Value *&B1) -> Value * { 10100 bool IsBinop = matchRdxBop(Inst, B0, B1); 10101 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 10102 if (IsBinop || IsSelect) { 10103 HorizontalReduction HorRdx; 10104 if (HorRdx.matchAssociativeReduction(P, Inst)) 10105 return HorRdx.tryToReduce(R, TTI); 10106 } 10107 return nullptr; 10108 }; 10109 while (!Stack.empty()) { 10110 Instruction *Inst; 10111 unsigned Level; 10112 std::tie(Inst, Level) = Stack.front(); 10113 Stack.pop(); 10114 // Do not try to analyze instruction that has already been vectorized. 10115 // This may happen when we vectorize instruction operands on a previous 10116 // iteration while stack was populated before that happened. 10117 if (R.isDeleted(Inst)) 10118 continue; 10119 Value *B0 = nullptr, *B1 = nullptr; 10120 if (Value *V = TryToReduce(Inst, B0, B1)) { 10121 Res = true; 10122 // Set P to nullptr to avoid re-analysis of phi node in 10123 // matchAssociativeReduction function unless this is the root node. 10124 P = nullptr; 10125 if (auto *I = dyn_cast<Instruction>(V)) { 10126 // Try to find another reduction. 10127 Stack.emplace(I, Level); 10128 continue; 10129 } 10130 } else { 10131 bool IsBinop = B0 && B1; 10132 if (P && IsBinop) { 10133 Inst = dyn_cast<Instruction>(B0); 10134 if (Inst == P) 10135 Inst = dyn_cast<Instruction>(B1); 10136 if (!Inst) { 10137 // Set P to nullptr to avoid re-analysis of phi node in 10138 // matchAssociativeReduction function unless this is the root node. 10139 P = nullptr; 10140 continue; 10141 } 10142 } 10143 // Set P to nullptr to avoid re-analysis of phi node in 10144 // matchAssociativeReduction function unless this is the root node. 10145 P = nullptr; 10146 // Do not try to vectorize CmpInst operands, this is done separately. 10147 // Final attempt for binop args vectorization should happen after the loop 10148 // to try to find reductions. 10149 if (!isa<CmpInst>(Inst)) 10150 PostponedInsts.push_back(Inst); 10151 } 10152 10153 // Try to vectorize operands. 10154 // Continue analysis for the instruction from the same basic block only to 10155 // save compile time. 10156 if (++Level < RecursionMaxDepth) 10157 for (auto *Op : Inst->operand_values()) 10158 if (VisitedInstrs.insert(Op).second) 10159 if (auto *I = dyn_cast<Instruction>(Op)) 10160 // Do not try to vectorize CmpInst operands, this is done 10161 // separately. 10162 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 10163 I->getParent() == BB) 10164 Stack.emplace(I, Level); 10165 } 10166 // Try to vectorized binops where reductions were not found. 10167 for (Value *V : PostponedInsts) 10168 if (auto *Inst = dyn_cast<Instruction>(V)) 10169 if (!R.isDeleted(Inst)) 10170 Res |= Vectorize(Inst, R); 10171 return Res; 10172 } 10173 10174 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 10175 BasicBlock *BB, BoUpSLP &R, 10176 TargetTransformInfo *TTI) { 10177 auto *I = dyn_cast_or_null<Instruction>(V); 10178 if (!I) 10179 return false; 10180 10181 if (!isa<BinaryOperator>(I)) 10182 P = nullptr; 10183 // Try to match and vectorize a horizontal reduction. 10184 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 10185 return tryToVectorize(I, R); 10186 }; 10187 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 10188 ExtraVectorization); 10189 } 10190 10191 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 10192 BasicBlock *BB, BoUpSLP &R) { 10193 const DataLayout &DL = BB->getModule()->getDataLayout(); 10194 if (!R.canMapToVector(IVI->getType(), DL)) 10195 return false; 10196 10197 SmallVector<Value *, 16> BuildVectorOpds; 10198 SmallVector<Value *, 16> BuildVectorInsts; 10199 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 10200 return false; 10201 10202 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 10203 // Aggregate value is unlikely to be processed in vector register. 10204 return tryToVectorizeList(BuildVectorOpds, R); 10205 } 10206 10207 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 10208 BasicBlock *BB, BoUpSLP &R) { 10209 SmallVector<Value *, 16> BuildVectorInsts; 10210 SmallVector<Value *, 16> BuildVectorOpds; 10211 SmallVector<int> Mask; 10212 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 10213 (llvm::all_of( 10214 BuildVectorOpds, 10215 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) && 10216 isFixedVectorShuffle(BuildVectorOpds, Mask))) 10217 return false; 10218 10219 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 10220 return tryToVectorizeList(BuildVectorInsts, R); 10221 } 10222 10223 template <typename T> 10224 static bool 10225 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 10226 function_ref<unsigned(T *)> Limit, 10227 function_ref<bool(T *, T *)> Comparator, 10228 function_ref<bool(T *, T *)> AreCompatible, 10229 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper, 10230 bool LimitForRegisterSize) { 10231 bool Changed = false; 10232 // Sort by type, parent, operands. 10233 stable_sort(Incoming, Comparator); 10234 10235 // Try to vectorize elements base on their type. 10236 SmallVector<T *> Candidates; 10237 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 10238 // Look for the next elements with the same type, parent and operand 10239 // kinds. 10240 auto *SameTypeIt = IncIt; 10241 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 10242 ++SameTypeIt; 10243 10244 // Try to vectorize them. 10245 unsigned NumElts = (SameTypeIt - IncIt); 10246 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 10247 << NumElts << ")\n"); 10248 // The vectorization is a 3-state attempt: 10249 // 1. Try to vectorize instructions with the same/alternate opcodes with the 10250 // size of maximal register at first. 10251 // 2. Try to vectorize remaining instructions with the same type, if 10252 // possible. This may result in the better vectorization results rather than 10253 // if we try just to vectorize instructions with the same/alternate opcodes. 10254 // 3. Final attempt to try to vectorize all instructions with the 10255 // same/alternate ops only, this may result in some extra final 10256 // vectorization. 10257 if (NumElts > 1 && 10258 TryToVectorizeHelper(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 10259 // Success start over because instructions might have been changed. 10260 Changed = true; 10261 } else if (NumElts < Limit(*IncIt) && 10262 (Candidates.empty() || 10263 Candidates.front()->getType() == (*IncIt)->getType())) { 10264 Candidates.append(IncIt, std::next(IncIt, NumElts)); 10265 } 10266 // Final attempt to vectorize instructions with the same types. 10267 if (Candidates.size() > 1 && 10268 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 10269 if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) { 10270 // Success start over because instructions might have been changed. 10271 Changed = true; 10272 } else if (LimitForRegisterSize) { 10273 // Try to vectorize using small vectors. 10274 for (auto *It = Candidates.begin(), *End = Candidates.end(); 10275 It != End;) { 10276 auto *SameTypeIt = It; 10277 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 10278 ++SameTypeIt; 10279 unsigned NumElts = (SameTypeIt - It); 10280 if (NumElts > 1 && TryToVectorizeHelper(makeArrayRef(It, NumElts), 10281 /*LimitForRegisterSize=*/false)) 10282 Changed = true; 10283 It = SameTypeIt; 10284 } 10285 } 10286 Candidates.clear(); 10287 } 10288 10289 // Start over at the next instruction of a different type (or the end). 10290 IncIt = SameTypeIt; 10291 } 10292 return Changed; 10293 } 10294 10295 /// Compare two cmp instructions. If IsCompatibility is true, function returns 10296 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding 10297 /// operands. If IsCompatibility is false, function implements strict weak 10298 /// ordering relation between two cmp instructions, returning true if the first 10299 /// instruction is "less" than the second, i.e. its predicate is less than the 10300 /// predicate of the second or the operands IDs are less than the operands IDs 10301 /// of the second cmp instruction. 10302 template <bool IsCompatibility> 10303 static bool compareCmp(Value *V, Value *V2, 10304 function_ref<bool(Instruction *)> IsDeleted) { 10305 auto *CI1 = cast<CmpInst>(V); 10306 auto *CI2 = cast<CmpInst>(V2); 10307 if (IsDeleted(CI2) || !isValidElementType(CI2->getType())) 10308 return false; 10309 if (CI1->getOperand(0)->getType()->getTypeID() < 10310 CI2->getOperand(0)->getType()->getTypeID()) 10311 return !IsCompatibility; 10312 if (CI1->getOperand(0)->getType()->getTypeID() > 10313 CI2->getOperand(0)->getType()->getTypeID()) 10314 return false; 10315 CmpInst::Predicate Pred1 = CI1->getPredicate(); 10316 CmpInst::Predicate Pred2 = CI2->getPredicate(); 10317 CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1); 10318 CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2); 10319 CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1); 10320 CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2); 10321 if (BasePred1 < BasePred2) 10322 return !IsCompatibility; 10323 if (BasePred1 > BasePred2) 10324 return false; 10325 // Compare operands. 10326 bool LEPreds = Pred1 <= Pred2; 10327 bool GEPreds = Pred1 >= Pred2; 10328 for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) { 10329 auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1); 10330 auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1); 10331 if (Op1->getValueID() < Op2->getValueID()) 10332 return !IsCompatibility; 10333 if (Op1->getValueID() > Op2->getValueID()) 10334 return false; 10335 if (auto *I1 = dyn_cast<Instruction>(Op1)) 10336 if (auto *I2 = dyn_cast<Instruction>(Op2)) { 10337 if (I1->getParent() != I2->getParent()) 10338 return false; 10339 InstructionsState S = getSameOpcode({I1, I2}); 10340 if (S.getOpcode()) 10341 continue; 10342 return false; 10343 } 10344 } 10345 return IsCompatibility; 10346 } 10347 10348 bool SLPVectorizerPass::vectorizeSimpleInstructions( 10349 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 10350 bool AtTerminator) { 10351 bool OpsChanged = false; 10352 SmallVector<Instruction *, 4> PostponedCmps; 10353 for (auto *I : reverse(Instructions)) { 10354 if (R.isDeleted(I)) 10355 continue; 10356 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 10357 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 10358 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 10359 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 10360 else if (isa<CmpInst>(I)) 10361 PostponedCmps.push_back(I); 10362 } 10363 if (AtTerminator) { 10364 // Try to find reductions first. 10365 for (Instruction *I : PostponedCmps) { 10366 if (R.isDeleted(I)) 10367 continue; 10368 for (Value *Op : I->operands()) 10369 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 10370 } 10371 // Try to vectorize operands as vector bundles. 10372 for (Instruction *I : PostponedCmps) { 10373 if (R.isDeleted(I)) 10374 continue; 10375 OpsChanged |= tryToVectorize(I, R); 10376 } 10377 // Try to vectorize list of compares. 10378 // Sort by type, compare predicate, etc. 10379 auto &&CompareSorter = [&R](Value *V, Value *V2) { 10380 return compareCmp<false>(V, V2, 10381 [&R](Instruction *I) { return R.isDeleted(I); }); 10382 }; 10383 10384 auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) { 10385 if (V1 == V2) 10386 return true; 10387 return compareCmp<true>(V1, V2, 10388 [&R](Instruction *I) { return R.isDeleted(I); }); 10389 }; 10390 auto Limit = [&R](Value *V) { 10391 unsigned EltSize = R.getVectorElementSize(V); 10392 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10393 }; 10394 10395 SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end()); 10396 OpsChanged |= tryToVectorizeSequence<Value>( 10397 Vals, Limit, CompareSorter, AreCompatibleCompares, 10398 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10399 // Exclude possible reductions from other blocks. 10400 bool ArePossiblyReducedInOtherBlock = 10401 any_of(Candidates, [](Value *V) { 10402 return any_of(V->users(), [V](User *U) { 10403 return isa<SelectInst>(U) && 10404 cast<SelectInst>(U)->getParent() != 10405 cast<Instruction>(V)->getParent(); 10406 }); 10407 }); 10408 if (ArePossiblyReducedInOtherBlock) 10409 return false; 10410 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10411 }, 10412 /*LimitForRegisterSize=*/true); 10413 Instructions.clear(); 10414 } else { 10415 // Insert in reverse order since the PostponedCmps vector was filled in 10416 // reverse order. 10417 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 10418 } 10419 return OpsChanged; 10420 } 10421 10422 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 10423 bool Changed = false; 10424 SmallVector<Value *, 4> Incoming; 10425 SmallPtrSet<Value *, 16> VisitedInstrs; 10426 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 10427 // node. Allows better to identify the chains that can be vectorized in the 10428 // better way. 10429 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 10430 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 10431 assert(isValidElementType(V1->getType()) && 10432 isValidElementType(V2->getType()) && 10433 "Expected vectorizable types only."); 10434 // It is fine to compare type IDs here, since we expect only vectorizable 10435 // types, like ints, floats and pointers, we don't care about other type. 10436 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 10437 return true; 10438 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 10439 return false; 10440 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10441 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10442 if (Opcodes1.size() < Opcodes2.size()) 10443 return true; 10444 if (Opcodes1.size() > Opcodes2.size()) 10445 return false; 10446 Optional<bool> ConstOrder; 10447 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10448 // Undefs are compatible with any other value. 10449 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) { 10450 if (!ConstOrder) 10451 ConstOrder = 10452 !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]); 10453 continue; 10454 } 10455 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10456 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10457 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 10458 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 10459 if (!NodeI1) 10460 return NodeI2 != nullptr; 10461 if (!NodeI2) 10462 return false; 10463 assert((NodeI1 == NodeI2) == 10464 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10465 "Different nodes should have different DFS numbers"); 10466 if (NodeI1 != NodeI2) 10467 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10468 InstructionsState S = getSameOpcode({I1, I2}); 10469 if (S.getOpcode()) 10470 continue; 10471 return I1->getOpcode() < I2->getOpcode(); 10472 } 10473 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) { 10474 if (!ConstOrder) 10475 ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID(); 10476 continue; 10477 } 10478 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 10479 return true; 10480 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 10481 return false; 10482 } 10483 return ConstOrder && *ConstOrder; 10484 }; 10485 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 10486 if (V1 == V2) 10487 return true; 10488 if (V1->getType() != V2->getType()) 10489 return false; 10490 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10491 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10492 if (Opcodes1.size() != Opcodes2.size()) 10493 return false; 10494 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10495 // Undefs are compatible with any other value. 10496 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 10497 continue; 10498 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10499 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10500 if (I1->getParent() != I2->getParent()) 10501 return false; 10502 InstructionsState S = getSameOpcode({I1, I2}); 10503 if (S.getOpcode()) 10504 continue; 10505 return false; 10506 } 10507 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 10508 continue; 10509 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 10510 return false; 10511 } 10512 return true; 10513 }; 10514 auto Limit = [&R](Value *V) { 10515 unsigned EltSize = R.getVectorElementSize(V); 10516 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10517 }; 10518 10519 bool HaveVectorizedPhiNodes = false; 10520 do { 10521 // Collect the incoming values from the PHIs. 10522 Incoming.clear(); 10523 for (Instruction &I : *BB) { 10524 PHINode *P = dyn_cast<PHINode>(&I); 10525 if (!P) 10526 break; 10527 10528 // No need to analyze deleted, vectorized and non-vectorizable 10529 // instructions. 10530 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 10531 isValidElementType(P->getType())) 10532 Incoming.push_back(P); 10533 } 10534 10535 // Find the corresponding non-phi nodes for better matching when trying to 10536 // build the tree. 10537 for (Value *V : Incoming) { 10538 SmallVectorImpl<Value *> &Opcodes = 10539 PHIToOpcodes.try_emplace(V).first->getSecond(); 10540 if (!Opcodes.empty()) 10541 continue; 10542 SmallVector<Value *, 4> Nodes(1, V); 10543 SmallPtrSet<Value *, 4> Visited; 10544 while (!Nodes.empty()) { 10545 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 10546 if (!Visited.insert(PHI).second) 10547 continue; 10548 for (Value *V : PHI->incoming_values()) { 10549 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 10550 Nodes.push_back(PHI1); 10551 continue; 10552 } 10553 Opcodes.emplace_back(V); 10554 } 10555 } 10556 } 10557 10558 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 10559 Incoming, Limit, PHICompare, AreCompatiblePHIs, 10560 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10561 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10562 }, 10563 /*LimitForRegisterSize=*/true); 10564 Changed |= HaveVectorizedPhiNodes; 10565 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 10566 } while (HaveVectorizedPhiNodes); 10567 10568 VisitedInstrs.clear(); 10569 10570 SmallVector<Instruction *, 8> PostProcessInstructions; 10571 SmallDenseSet<Instruction *, 4> KeyNodes; 10572 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 10573 // Skip instructions with scalable type. The num of elements is unknown at 10574 // compile-time for scalable type. 10575 if (isa<ScalableVectorType>(it->getType())) 10576 continue; 10577 10578 // Skip instructions marked for the deletion. 10579 if (R.isDeleted(&*it)) 10580 continue; 10581 // We may go through BB multiple times so skip the one we have checked. 10582 if (!VisitedInstrs.insert(&*it).second) { 10583 if (it->use_empty() && KeyNodes.contains(&*it) && 10584 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10585 it->isTerminator())) { 10586 // We would like to start over since some instructions are deleted 10587 // and the iterator may become invalid value. 10588 Changed = true; 10589 it = BB->begin(); 10590 e = BB->end(); 10591 } 10592 continue; 10593 } 10594 10595 if (isa<DbgInfoIntrinsic>(it)) 10596 continue; 10597 10598 // Try to vectorize reductions that use PHINodes. 10599 if (PHINode *P = dyn_cast<PHINode>(it)) { 10600 // Check that the PHI is a reduction PHI. 10601 if (P->getNumIncomingValues() == 2) { 10602 // Try to match and vectorize a horizontal reduction. 10603 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 10604 TTI)) { 10605 Changed = true; 10606 it = BB->begin(); 10607 e = BB->end(); 10608 continue; 10609 } 10610 } 10611 // Try to vectorize the incoming values of the PHI, to catch reductions 10612 // that feed into PHIs. 10613 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 10614 // Skip if the incoming block is the current BB for now. Also, bypass 10615 // unreachable IR for efficiency and to avoid crashing. 10616 // TODO: Collect the skipped incoming values and try to vectorize them 10617 // after processing BB. 10618 if (BB == P->getIncomingBlock(I) || 10619 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 10620 continue; 10621 10622 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 10623 P->getIncomingBlock(I), R, TTI); 10624 } 10625 continue; 10626 } 10627 10628 // Ran into an instruction without users, like terminator, or function call 10629 // with ignored return value, store. Ignore unused instructions (basing on 10630 // instruction type, except for CallInst and InvokeInst). 10631 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 10632 isa<InvokeInst>(it))) { 10633 KeyNodes.insert(&*it); 10634 bool OpsChanged = false; 10635 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 10636 for (auto *V : it->operand_values()) { 10637 // Try to match and vectorize a horizontal reduction. 10638 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 10639 } 10640 } 10641 // Start vectorization of post-process list of instructions from the 10642 // top-tree instructions to try to vectorize as many instructions as 10643 // possible. 10644 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10645 it->isTerminator()); 10646 if (OpsChanged) { 10647 // We would like to start over since some instructions are deleted 10648 // and the iterator may become invalid value. 10649 Changed = true; 10650 it = BB->begin(); 10651 e = BB->end(); 10652 continue; 10653 } 10654 } 10655 10656 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 10657 isa<InsertValueInst>(it)) 10658 PostProcessInstructions.push_back(&*it); 10659 } 10660 10661 return Changed; 10662 } 10663 10664 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 10665 auto Changed = false; 10666 for (auto &Entry : GEPs) { 10667 // If the getelementptr list has fewer than two elements, there's nothing 10668 // to do. 10669 if (Entry.second.size() < 2) 10670 continue; 10671 10672 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 10673 << Entry.second.size() << ".\n"); 10674 10675 // Process the GEP list in chunks suitable for the target's supported 10676 // vector size. If a vector register can't hold 1 element, we are done. We 10677 // are trying to vectorize the index computations, so the maximum number of 10678 // elements is based on the size of the index expression, rather than the 10679 // size of the GEP itself (the target's pointer size). 10680 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 10681 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 10682 if (MaxVecRegSize < EltSize) 10683 continue; 10684 10685 unsigned MaxElts = MaxVecRegSize / EltSize; 10686 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 10687 auto Len = std::min<unsigned>(BE - BI, MaxElts); 10688 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 10689 10690 // Initialize a set a candidate getelementptrs. Note that we use a 10691 // SetVector here to preserve program order. If the index computations 10692 // are vectorizable and begin with loads, we want to minimize the chance 10693 // of having to reorder them later. 10694 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 10695 10696 // Some of the candidates may have already been vectorized after we 10697 // initially collected them. If so, they are marked as deleted, so remove 10698 // them from the set of candidates. 10699 Candidates.remove_if( 10700 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 10701 10702 // Remove from the set of candidates all pairs of getelementptrs with 10703 // constant differences. Such getelementptrs are likely not good 10704 // candidates for vectorization in a bottom-up phase since one can be 10705 // computed from the other. We also ensure all candidate getelementptr 10706 // indices are unique. 10707 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 10708 auto *GEPI = GEPList[I]; 10709 if (!Candidates.count(GEPI)) 10710 continue; 10711 auto *SCEVI = SE->getSCEV(GEPList[I]); 10712 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 10713 auto *GEPJ = GEPList[J]; 10714 auto *SCEVJ = SE->getSCEV(GEPList[J]); 10715 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 10716 Candidates.remove(GEPI); 10717 Candidates.remove(GEPJ); 10718 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 10719 Candidates.remove(GEPJ); 10720 } 10721 } 10722 } 10723 10724 // We break out of the above computation as soon as we know there are 10725 // fewer than two candidates remaining. 10726 if (Candidates.size() < 2) 10727 continue; 10728 10729 // Add the single, non-constant index of each candidate to the bundle. We 10730 // ensured the indices met these constraints when we originally collected 10731 // the getelementptrs. 10732 SmallVector<Value *, 16> Bundle(Candidates.size()); 10733 auto BundleIndex = 0u; 10734 for (auto *V : Candidates) { 10735 auto *GEP = cast<GetElementPtrInst>(V); 10736 auto *GEPIdx = GEP->idx_begin()->get(); 10737 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 10738 Bundle[BundleIndex++] = GEPIdx; 10739 } 10740 10741 // Try and vectorize the indices. We are currently only interested in 10742 // gather-like cases of the form: 10743 // 10744 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 10745 // 10746 // where the loads of "a", the loads of "b", and the subtractions can be 10747 // performed in parallel. It's likely that detecting this pattern in a 10748 // bottom-up phase will be simpler and less costly than building a 10749 // full-blown top-down phase beginning at the consecutive loads. 10750 Changed |= tryToVectorizeList(Bundle, R); 10751 } 10752 } 10753 return Changed; 10754 } 10755 10756 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 10757 bool Changed = false; 10758 // Sort by type, base pointers and values operand. Value operands must be 10759 // compatible (have the same opcode, same parent), otherwise it is 10760 // definitely not profitable to try to vectorize them. 10761 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 10762 if (V->getPointerOperandType()->getTypeID() < 10763 V2->getPointerOperandType()->getTypeID()) 10764 return true; 10765 if (V->getPointerOperandType()->getTypeID() > 10766 V2->getPointerOperandType()->getTypeID()) 10767 return false; 10768 // UndefValues are compatible with all other values. 10769 if (isa<UndefValue>(V->getValueOperand()) || 10770 isa<UndefValue>(V2->getValueOperand())) 10771 return false; 10772 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 10773 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10774 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 10775 DT->getNode(I1->getParent()); 10776 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 10777 DT->getNode(I2->getParent()); 10778 assert(NodeI1 && "Should only process reachable instructions"); 10779 assert(NodeI1 && "Should only process reachable instructions"); 10780 assert((NodeI1 == NodeI2) == 10781 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10782 "Different nodes should have different DFS numbers"); 10783 if (NodeI1 != NodeI2) 10784 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10785 InstructionsState S = getSameOpcode({I1, I2}); 10786 if (S.getOpcode()) 10787 return false; 10788 return I1->getOpcode() < I2->getOpcode(); 10789 } 10790 if (isa<Constant>(V->getValueOperand()) && 10791 isa<Constant>(V2->getValueOperand())) 10792 return false; 10793 return V->getValueOperand()->getValueID() < 10794 V2->getValueOperand()->getValueID(); 10795 }; 10796 10797 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 10798 if (V1 == V2) 10799 return true; 10800 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 10801 return false; 10802 // Undefs are compatible with any other value. 10803 if (isa<UndefValue>(V1->getValueOperand()) || 10804 isa<UndefValue>(V2->getValueOperand())) 10805 return true; 10806 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 10807 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10808 if (I1->getParent() != I2->getParent()) 10809 return false; 10810 InstructionsState S = getSameOpcode({I1, I2}); 10811 return S.getOpcode() > 0; 10812 } 10813 if (isa<Constant>(V1->getValueOperand()) && 10814 isa<Constant>(V2->getValueOperand())) 10815 return true; 10816 return V1->getValueOperand()->getValueID() == 10817 V2->getValueOperand()->getValueID(); 10818 }; 10819 auto Limit = [&R, this](StoreInst *SI) { 10820 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 10821 return R.getMinVF(EltSize); 10822 }; 10823 10824 // Attempt to sort and vectorize each of the store-groups. 10825 for (auto &Pair : Stores) { 10826 if (Pair.second.size() < 2) 10827 continue; 10828 10829 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 10830 << Pair.second.size() << ".\n"); 10831 10832 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 10833 continue; 10834 10835 Changed |= tryToVectorizeSequence<StoreInst>( 10836 Pair.second, Limit, StoreSorter, AreCompatibleStores, 10837 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 10838 return vectorizeStores(Candidates, R); 10839 }, 10840 /*LimitForRegisterSize=*/false); 10841 } 10842 return Changed; 10843 } 10844 10845 char SLPVectorizer::ID = 0; 10846 10847 static const char lv_name[] = "SLP Vectorizer"; 10848 10849 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 10850 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 10851 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 10852 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 10853 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 10854 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 10855 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 10856 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 10857 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 10858 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 10859 10860 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 10861