1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 #include "llvm/Transforms/Vectorize.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/PostOrderIterator.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/CodeMetrics.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/Analysis/ScalarEvolution.h" 29 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 30 #include "llvm/Analysis/TargetTransformInfo.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Dominators.h" 34 #include "llvm/IR/IRBuilder.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/Module.h" 38 #include "llvm/IR/NoFolder.h" 39 #include "llvm/IR/Type.h" 40 #include "llvm/IR/Value.h" 41 #include "llvm/IR/Verifier.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Analysis/VectorUtils.h" 47 #include <algorithm> 48 #include <map> 49 #include <memory> 50 51 using namespace llvm; 52 53 #define SV_NAME "slp-vectorizer" 54 #define DEBUG_TYPE "SLP" 55 56 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 57 58 static cl::opt<int> 59 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 60 cl::desc("Only vectorize if you gain more than this " 61 "number ")); 62 63 static cl::opt<bool> 64 ShouldVectorizeHor("slp-vectorize-hor", cl::init(false), cl::Hidden, 65 cl::desc("Attempt to vectorize horizontal reductions")); 66 67 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 68 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 69 cl::desc( 70 "Attempt to vectorize horizontal reductions feeding into a store")); 71 72 static cl::opt<int> 73 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 74 cl::desc("Attempt to vectorize for this register size in bits")); 75 76 /// Limits the size of scheduling regions in a block. 77 /// It avoid long compile times for _very_ large blocks where vector 78 /// instructions are spread over a wide range. 79 /// This limit is way higher than needed by real-world functions. 80 static cl::opt<int> 81 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 82 cl::desc("Limit the size of the SLP scheduling region per block")); 83 84 namespace { 85 86 // FIXME: Set this via cl::opt to allow overriding. 87 static const unsigned MinVecRegSize = 128; 88 89 static const unsigned RecursionMaxDepth = 12; 90 91 // Limit the number of alias checks. The limit is chosen so that 92 // it has no negative effect on the llvm benchmarks. 93 static const unsigned AliasedCheckLimit = 10; 94 95 // Another limit for the alias checks: The maximum distance between load/store 96 // instructions where alias checks are done. 97 // This limit is useful for very large basic blocks. 98 static const unsigned MaxMemDepDistance = 160; 99 100 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 101 /// regions to be handled. 102 static const int MinScheduleRegionSize = 16; 103 104 /// \brief Predicate for the element types that the SLP vectorizer supports. 105 /// 106 /// The most important thing to filter here are types which are invalid in LLVM 107 /// vectors. We also filter target specific types which have absolutely no 108 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 109 /// avoids spending time checking the cost model and realizing that they will 110 /// be inevitably scalarized. 111 static bool isValidElementType(Type *Ty) { 112 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 113 !Ty->isPPC_FP128Ty(); 114 } 115 116 /// \returns the parent basic block if all of the instructions in \p VL 117 /// are in the same block or null otherwise. 118 static BasicBlock *getSameBlock(ArrayRef<Value *> VL) { 119 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 120 if (!I0) 121 return nullptr; 122 BasicBlock *BB = I0->getParent(); 123 for (int i = 1, e = VL.size(); i < e; i++) { 124 Instruction *I = dyn_cast<Instruction>(VL[i]); 125 if (!I) 126 return nullptr; 127 128 if (BB != I->getParent()) 129 return nullptr; 130 } 131 return BB; 132 } 133 134 /// \returns True if all of the values in \p VL are constants. 135 static bool allConstant(ArrayRef<Value *> VL) { 136 for (unsigned i = 0, e = VL.size(); i < e; ++i) 137 if (!isa<Constant>(VL[i])) 138 return false; 139 return true; 140 } 141 142 /// \returns True if all of the values in \p VL are identical. 143 static bool isSplat(ArrayRef<Value *> VL) { 144 for (unsigned i = 1, e = VL.size(); i < e; ++i) 145 if (VL[i] != VL[0]) 146 return false; 147 return true; 148 } 149 150 ///\returns Opcode that can be clubbed with \p Op to create an alternate 151 /// sequence which can later be merged as a ShuffleVector instruction. 152 static unsigned getAltOpcode(unsigned Op) { 153 switch (Op) { 154 case Instruction::FAdd: 155 return Instruction::FSub; 156 case Instruction::FSub: 157 return Instruction::FAdd; 158 case Instruction::Add: 159 return Instruction::Sub; 160 case Instruction::Sub: 161 return Instruction::Add; 162 default: 163 return 0; 164 } 165 } 166 167 ///\returns bool representing if Opcode \p Op can be part 168 /// of an alternate sequence which can later be merged as 169 /// a ShuffleVector instruction. 170 static bool canCombineAsAltInst(unsigned Op) { 171 if (Op == Instruction::FAdd || Op == Instruction::FSub || 172 Op == Instruction::Sub || Op == Instruction::Add) 173 return true; 174 return false; 175 } 176 177 /// \returns ShuffleVector instruction if instructions in \p VL have 178 /// alternate fadd,fsub / fsub,fadd/add,sub/sub,add sequence. 179 /// (i.e. e.g. opcodes of fadd,fsub,fadd,fsub...) 180 static unsigned isAltInst(ArrayRef<Value *> VL) { 181 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 182 unsigned Opcode = I0->getOpcode(); 183 unsigned AltOpcode = getAltOpcode(Opcode); 184 for (int i = 1, e = VL.size(); i < e; i++) { 185 Instruction *I = dyn_cast<Instruction>(VL[i]); 186 if (!I || I->getOpcode() != ((i & 1) ? AltOpcode : Opcode)) 187 return 0; 188 } 189 return Instruction::ShuffleVector; 190 } 191 192 /// \returns The opcode if all of the Instructions in \p VL have the same 193 /// opcode, or zero. 194 static unsigned getSameOpcode(ArrayRef<Value *> VL) { 195 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 196 if (!I0) 197 return 0; 198 unsigned Opcode = I0->getOpcode(); 199 for (int i = 1, e = VL.size(); i < e; i++) { 200 Instruction *I = dyn_cast<Instruction>(VL[i]); 201 if (!I || Opcode != I->getOpcode()) { 202 if (canCombineAsAltInst(Opcode) && i == 1) 203 return isAltInst(VL); 204 return 0; 205 } 206 } 207 return Opcode; 208 } 209 210 /// Get the intersection (logical and) of all of the potential IR flags 211 /// of each scalar operation (VL) that will be converted into a vector (I). 212 /// Flag set: NSW, NUW, exact, and all of fast-math. 213 static void propagateIRFlags(Value *I, ArrayRef<Value *> VL) { 214 if (auto *VecOp = dyn_cast<BinaryOperator>(I)) { 215 if (auto *Intersection = dyn_cast<BinaryOperator>(VL[0])) { 216 // Intersection is initialized to the 0th scalar, 217 // so start counting from index '1'. 218 for (int i = 1, e = VL.size(); i < e; ++i) { 219 if (auto *Scalar = dyn_cast<BinaryOperator>(VL[i])) 220 Intersection->andIRFlags(Scalar); 221 } 222 VecOp->copyIRFlags(Intersection); 223 } 224 } 225 } 226 227 /// \returns \p I after propagating metadata from \p VL. 228 static Instruction *propagateMetadata(Instruction *I, ArrayRef<Value *> VL) { 229 Instruction *I0 = cast<Instruction>(VL[0]); 230 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 231 I0->getAllMetadataOtherThanDebugLoc(Metadata); 232 233 for (unsigned i = 0, n = Metadata.size(); i != n; ++i) { 234 unsigned Kind = Metadata[i].first; 235 MDNode *MD = Metadata[i].second; 236 237 for (int i = 1, e = VL.size(); MD && i != e; i++) { 238 Instruction *I = cast<Instruction>(VL[i]); 239 MDNode *IMD = I->getMetadata(Kind); 240 241 switch (Kind) { 242 default: 243 MD = nullptr; // Remove unknown metadata 244 break; 245 case LLVMContext::MD_tbaa: 246 MD = MDNode::getMostGenericTBAA(MD, IMD); 247 break; 248 case LLVMContext::MD_alias_scope: 249 MD = MDNode::getMostGenericAliasScope(MD, IMD); 250 break; 251 case LLVMContext::MD_noalias: 252 MD = MDNode::intersect(MD, IMD); 253 break; 254 case LLVMContext::MD_fpmath: 255 MD = MDNode::getMostGenericFPMath(MD, IMD); 256 break; 257 case LLVMContext::MD_nontemporal: 258 MD = MDNode::intersect(MD, IMD); 259 break; 260 } 261 } 262 I->setMetadata(Kind, MD); 263 } 264 return I; 265 } 266 267 /// \returns The type that all of the values in \p VL have or null if there 268 /// are different types. 269 static Type* getSameType(ArrayRef<Value *> VL) { 270 Type *Ty = VL[0]->getType(); 271 for (int i = 1, e = VL.size(); i < e; i++) 272 if (VL[i]->getType() != Ty) 273 return nullptr; 274 275 return Ty; 276 } 277 278 /// \returns True if the ExtractElement instructions in VL can be vectorized 279 /// to use the original vector. 280 static bool CanReuseExtract(ArrayRef<Value *> VL) { 281 assert(Instruction::ExtractElement == getSameOpcode(VL) && "Invalid opcode"); 282 // Check if all of the extracts come from the same vector and from the 283 // correct offset. 284 Value *VL0 = VL[0]; 285 ExtractElementInst *E0 = cast<ExtractElementInst>(VL0); 286 Value *Vec = E0->getOperand(0); 287 288 // We have to extract from the same vector type. 289 unsigned NElts = Vec->getType()->getVectorNumElements(); 290 291 if (NElts != VL.size()) 292 return false; 293 294 // Check that all of the indices extract from the correct offset. 295 ConstantInt *CI = dyn_cast<ConstantInt>(E0->getOperand(1)); 296 if (!CI || CI->getZExtValue()) 297 return false; 298 299 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 300 ExtractElementInst *E = cast<ExtractElementInst>(VL[i]); 301 ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 302 303 if (!CI || CI->getZExtValue() != i || E->getOperand(0) != Vec) 304 return false; 305 } 306 307 return true; 308 } 309 310 /// \returns True if in-tree use also needs extract. This refers to 311 /// possible scalar operand in vectorized instruction. 312 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 313 TargetLibraryInfo *TLI) { 314 315 unsigned Opcode = UserInst->getOpcode(); 316 switch (Opcode) { 317 case Instruction::Load: { 318 LoadInst *LI = cast<LoadInst>(UserInst); 319 return (LI->getPointerOperand() == Scalar); 320 } 321 case Instruction::Store: { 322 StoreInst *SI = cast<StoreInst>(UserInst); 323 return (SI->getPointerOperand() == Scalar); 324 } 325 case Instruction::Call: { 326 CallInst *CI = cast<CallInst>(UserInst); 327 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 328 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 329 return (CI->getArgOperand(1) == Scalar); 330 } 331 } 332 default: 333 return false; 334 } 335 } 336 337 /// \returns the AA location that is being access by the instruction. 338 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 339 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 340 return MemoryLocation::get(SI); 341 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 342 return MemoryLocation::get(LI); 343 return MemoryLocation(); 344 } 345 346 /// \returns True if the instruction is not a volatile or atomic load/store. 347 static bool isSimple(Instruction *I) { 348 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 349 return LI->isSimple(); 350 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 351 return SI->isSimple(); 352 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 353 return !MI->isVolatile(); 354 return true; 355 } 356 357 /// Bottom Up SLP Vectorizer. 358 class BoUpSLP { 359 public: 360 typedef SmallVector<Value *, 8> ValueList; 361 typedef SmallVector<Instruction *, 16> InstrList; 362 typedef SmallPtrSet<Value *, 16> ValueSet; 363 typedef SmallVector<StoreInst *, 8> StoreList; 364 365 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 366 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 367 DominatorTree *Dt, AssumptionCache *AC) 368 : NumLoadsWantToKeepOrder(0), NumLoadsWantToChangeOrder(0), F(Func), 369 SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), 370 Builder(Se->getContext()) { 371 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 372 } 373 374 /// \brief Vectorize the tree that starts with the elements in \p VL. 375 /// Returns the vectorized root. 376 Value *vectorizeTree(); 377 378 /// \returns the cost incurred by unwanted spills and fills, caused by 379 /// holding live values over call sites. 380 int getSpillCost(); 381 382 /// \returns the vectorization cost of the subtree that starts at \p VL. 383 /// A negative number means that this is profitable. 384 int getTreeCost(); 385 386 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 387 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 388 void buildTree(ArrayRef<Value *> Roots, 389 ArrayRef<Value *> UserIgnoreLst = None); 390 391 /// Clear the internal data structures that are created by 'buildTree'. 392 void deleteTree() { 393 VectorizableTree.clear(); 394 ScalarToTreeEntry.clear(); 395 MustGather.clear(); 396 ExternalUses.clear(); 397 NumLoadsWantToKeepOrder = 0; 398 NumLoadsWantToChangeOrder = 0; 399 for (auto &Iter : BlocksSchedules) { 400 BlockScheduling *BS = Iter.second.get(); 401 BS->clear(); 402 } 403 } 404 405 /// \returns true if the memory operations A and B are consecutive. 406 bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL); 407 408 /// \brief Perform LICM and CSE on the newly generated gather sequences. 409 void optimizeGatherSequence(); 410 411 /// \returns true if it is beneficial to reverse the vector order. 412 bool shouldReorder() const { 413 return NumLoadsWantToChangeOrder > NumLoadsWantToKeepOrder; 414 } 415 416 private: 417 struct TreeEntry; 418 419 /// \returns the cost of the vectorizable entry. 420 int getEntryCost(TreeEntry *E); 421 422 /// This is the recursive part of buildTree. 423 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth); 424 425 /// Vectorize a single entry in the tree. 426 Value *vectorizeTree(TreeEntry *E); 427 428 /// Vectorize a single entry in the tree, starting in \p VL. 429 Value *vectorizeTree(ArrayRef<Value *> VL); 430 431 /// \returns the pointer to the vectorized value if \p VL is already 432 /// vectorized, or NULL. They may happen in cycles. 433 Value *alreadyVectorized(ArrayRef<Value *> VL) const; 434 435 /// \brief Take the pointer operand from the Load/Store instruction. 436 /// \returns NULL if this is not a valid Load/Store instruction. 437 static Value *getPointerOperand(Value *I); 438 439 /// \brief Take the address space operand from the Load/Store instruction. 440 /// \returns -1 if this is not a valid Load/Store instruction. 441 static unsigned getAddressSpaceOperand(Value *I); 442 443 /// \returns the scalarization cost for this type. Scalarization in this 444 /// context means the creation of vectors from a group of scalars. 445 int getGatherCost(Type *Ty); 446 447 /// \returns the scalarization cost for this list of values. Assuming that 448 /// this subtree gets vectorized, we may need to extract the values from the 449 /// roots. This method calculates the cost of extracting the values. 450 int getGatherCost(ArrayRef<Value *> VL); 451 452 /// \brief Set the Builder insert point to one after the last instruction in 453 /// the bundle 454 void setInsertPointAfterBundle(ArrayRef<Value *> VL); 455 456 /// \returns a vector from a collection of scalars in \p VL. 457 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 458 459 /// \returns whether the VectorizableTree is fully vectorizable and will 460 /// be beneficial even the tree height is tiny. 461 bool isFullyVectorizableTinyTree(); 462 463 /// \reorder commutative operands in alt shuffle if they result in 464 /// vectorized code. 465 void reorderAltShuffleOperands(ArrayRef<Value *> VL, 466 SmallVectorImpl<Value *> &Left, 467 SmallVectorImpl<Value *> &Right); 468 /// \reorder commutative operands to get better probability of 469 /// generating vectorized code. 470 void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 471 SmallVectorImpl<Value *> &Left, 472 SmallVectorImpl<Value *> &Right); 473 struct TreeEntry { 474 TreeEntry() : Scalars(), VectorizedValue(nullptr), 475 NeedToGather(0) {} 476 477 /// \returns true if the scalars in VL are equal to this entry. 478 bool isSame(ArrayRef<Value *> VL) const { 479 assert(VL.size() == Scalars.size() && "Invalid size"); 480 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 481 } 482 483 /// A vector of scalars. 484 ValueList Scalars; 485 486 /// The Scalars are vectorized into this value. It is initialized to Null. 487 Value *VectorizedValue; 488 489 /// Do we need to gather this sequence ? 490 bool NeedToGather; 491 }; 492 493 /// Create a new VectorizableTree entry. 494 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) { 495 VectorizableTree.emplace_back(); 496 int idx = VectorizableTree.size() - 1; 497 TreeEntry *Last = &VectorizableTree[idx]; 498 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 499 Last->NeedToGather = !Vectorized; 500 if (Vectorized) { 501 for (int i = 0, e = VL.size(); i != e; ++i) { 502 assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!"); 503 ScalarToTreeEntry[VL[i]] = idx; 504 } 505 } else { 506 MustGather.insert(VL.begin(), VL.end()); 507 } 508 return Last; 509 } 510 511 /// -- Vectorization State -- 512 /// Holds all of the tree entries. 513 std::vector<TreeEntry> VectorizableTree; 514 515 /// Maps a specific scalar to its tree entry. 516 SmallDenseMap<Value*, int> ScalarToTreeEntry; 517 518 /// A list of scalars that we found that we need to keep as scalars. 519 ValueSet MustGather; 520 521 /// This POD struct describes one external user in the vectorized tree. 522 struct ExternalUser { 523 ExternalUser (Value *S, llvm::User *U, int L) : 524 Scalar(S), User(U), Lane(L){} 525 // Which scalar in our function. 526 Value *Scalar; 527 // Which user that uses the scalar. 528 llvm::User *User; 529 // Which lane does the scalar belong to. 530 int Lane; 531 }; 532 typedef SmallVector<ExternalUser, 16> UserList; 533 534 /// Checks if two instructions may access the same memory. 535 /// 536 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 537 /// is invariant in the calling loop. 538 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 539 Instruction *Inst2) { 540 541 // First check if the result is already in the cache. 542 AliasCacheKey key = std::make_pair(Inst1, Inst2); 543 Optional<bool> &result = AliasCache[key]; 544 if (result.hasValue()) { 545 return result.getValue(); 546 } 547 MemoryLocation Loc2 = getLocation(Inst2, AA); 548 bool aliased = true; 549 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 550 // Do the alias check. 551 aliased = AA->alias(Loc1, Loc2); 552 } 553 // Store the result in the cache. 554 result = aliased; 555 return aliased; 556 } 557 558 typedef std::pair<Instruction *, Instruction *> AliasCacheKey; 559 560 /// Cache for alias results. 561 /// TODO: consider moving this to the AliasAnalysis itself. 562 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 563 564 /// Removes an instruction from its block and eventually deletes it. 565 /// It's like Instruction::eraseFromParent() except that the actual deletion 566 /// is delayed until BoUpSLP is destructed. 567 /// This is required to ensure that there are no incorrect collisions in the 568 /// AliasCache, which can happen if a new instruction is allocated at the 569 /// same address as a previously deleted instruction. 570 void eraseInstruction(Instruction *I) { 571 I->removeFromParent(); 572 I->dropAllReferences(); 573 DeletedInstructions.push_back(std::unique_ptr<Instruction>(I)); 574 } 575 576 /// Temporary store for deleted instructions. Instructions will be deleted 577 /// eventually when the BoUpSLP is destructed. 578 SmallVector<std::unique_ptr<Instruction>, 8> DeletedInstructions; 579 580 /// A list of values that need to extracted out of the tree. 581 /// This list holds pairs of (Internal Scalar : External User). 582 UserList ExternalUses; 583 584 /// Values used only by @llvm.assume calls. 585 SmallPtrSet<const Value *, 32> EphValues; 586 587 /// Holds all of the instructions that we gathered. 588 SetVector<Instruction *> GatherSeq; 589 /// A list of blocks that we are going to CSE. 590 SetVector<BasicBlock *> CSEBlocks; 591 592 /// Contains all scheduling relevant data for an instruction. 593 /// A ScheduleData either represents a single instruction or a member of an 594 /// instruction bundle (= a group of instructions which is combined into a 595 /// vector instruction). 596 struct ScheduleData { 597 598 // The initial value for the dependency counters. It means that the 599 // dependencies are not calculated yet. 600 enum { InvalidDeps = -1 }; 601 602 ScheduleData() 603 : Inst(nullptr), FirstInBundle(nullptr), NextInBundle(nullptr), 604 NextLoadStore(nullptr), SchedulingRegionID(0), SchedulingPriority(0), 605 Dependencies(InvalidDeps), UnscheduledDeps(InvalidDeps), 606 UnscheduledDepsInBundle(InvalidDeps), IsScheduled(false) {} 607 608 void init(int BlockSchedulingRegionID) { 609 FirstInBundle = this; 610 NextInBundle = nullptr; 611 NextLoadStore = nullptr; 612 IsScheduled = false; 613 SchedulingRegionID = BlockSchedulingRegionID; 614 UnscheduledDepsInBundle = UnscheduledDeps; 615 clearDependencies(); 616 } 617 618 /// Returns true if the dependency information has been calculated. 619 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 620 621 /// Returns true for single instructions and for bundle representatives 622 /// (= the head of a bundle). 623 bool isSchedulingEntity() const { return FirstInBundle == this; } 624 625 /// Returns true if it represents an instruction bundle and not only a 626 /// single instruction. 627 bool isPartOfBundle() const { 628 return NextInBundle != nullptr || FirstInBundle != this; 629 } 630 631 /// Returns true if it is ready for scheduling, i.e. it has no more 632 /// unscheduled depending instructions/bundles. 633 bool isReady() const { 634 assert(isSchedulingEntity() && 635 "can't consider non-scheduling entity for ready list"); 636 return UnscheduledDepsInBundle == 0 && !IsScheduled; 637 } 638 639 /// Modifies the number of unscheduled dependencies, also updating it for 640 /// the whole bundle. 641 int incrementUnscheduledDeps(int Incr) { 642 UnscheduledDeps += Incr; 643 return FirstInBundle->UnscheduledDepsInBundle += Incr; 644 } 645 646 /// Sets the number of unscheduled dependencies to the number of 647 /// dependencies. 648 void resetUnscheduledDeps() { 649 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 650 } 651 652 /// Clears all dependency information. 653 void clearDependencies() { 654 Dependencies = InvalidDeps; 655 resetUnscheduledDeps(); 656 MemoryDependencies.clear(); 657 } 658 659 void dump(raw_ostream &os) const { 660 if (!isSchedulingEntity()) { 661 os << "/ " << *Inst; 662 } else if (NextInBundle) { 663 os << '[' << *Inst; 664 ScheduleData *SD = NextInBundle; 665 while (SD) { 666 os << ';' << *SD->Inst; 667 SD = SD->NextInBundle; 668 } 669 os << ']'; 670 } else { 671 os << *Inst; 672 } 673 } 674 675 Instruction *Inst; 676 677 /// Points to the head in an instruction bundle (and always to this for 678 /// single instructions). 679 ScheduleData *FirstInBundle; 680 681 /// Single linked list of all instructions in a bundle. Null if it is a 682 /// single instruction. 683 ScheduleData *NextInBundle; 684 685 /// Single linked list of all memory instructions (e.g. load, store, call) 686 /// in the block - until the end of the scheduling region. 687 ScheduleData *NextLoadStore; 688 689 /// The dependent memory instructions. 690 /// This list is derived on demand in calculateDependencies(). 691 SmallVector<ScheduleData *, 4> MemoryDependencies; 692 693 /// This ScheduleData is in the current scheduling region if this matches 694 /// the current SchedulingRegionID of BlockScheduling. 695 int SchedulingRegionID; 696 697 /// Used for getting a "good" final ordering of instructions. 698 int SchedulingPriority; 699 700 /// The number of dependencies. Constitutes of the number of users of the 701 /// instruction plus the number of dependent memory instructions (if any). 702 /// This value is calculated on demand. 703 /// If InvalidDeps, the number of dependencies is not calculated yet. 704 /// 705 int Dependencies; 706 707 /// The number of dependencies minus the number of dependencies of scheduled 708 /// instructions. As soon as this is zero, the instruction/bundle gets ready 709 /// for scheduling. 710 /// Note that this is negative as long as Dependencies is not calculated. 711 int UnscheduledDeps; 712 713 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 714 /// single instructions. 715 int UnscheduledDepsInBundle; 716 717 /// True if this instruction is scheduled (or considered as scheduled in the 718 /// dry-run). 719 bool IsScheduled; 720 }; 721 722 #ifndef NDEBUG 723 friend raw_ostream &operator<<(raw_ostream &os, 724 const BoUpSLP::ScheduleData &SD); 725 #endif 726 727 /// Contains all scheduling data for a basic block. 728 /// 729 struct BlockScheduling { 730 731 BlockScheduling(BasicBlock *BB) 732 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize), 733 ScheduleStart(nullptr), ScheduleEnd(nullptr), 734 FirstLoadStoreInRegion(nullptr), LastLoadStoreInRegion(nullptr), 735 ScheduleRegionSize(0), 736 ScheduleRegionSizeLimit(ScheduleRegionSizeBudget), 737 // Make sure that the initial SchedulingRegionID is greater than the 738 // initial SchedulingRegionID in ScheduleData (which is 0). 739 SchedulingRegionID(1) {} 740 741 void clear() { 742 ReadyInsts.clear(); 743 ScheduleStart = nullptr; 744 ScheduleEnd = nullptr; 745 FirstLoadStoreInRegion = nullptr; 746 LastLoadStoreInRegion = nullptr; 747 748 // Reduce the maximum schedule region size by the size of the 749 // previous scheduling run. 750 ScheduleRegionSizeLimit -= ScheduleRegionSize; 751 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 752 ScheduleRegionSizeLimit = MinScheduleRegionSize; 753 ScheduleRegionSize = 0; 754 755 // Make a new scheduling region, i.e. all existing ScheduleData is not 756 // in the new region yet. 757 ++SchedulingRegionID; 758 } 759 760 ScheduleData *getScheduleData(Value *V) { 761 ScheduleData *SD = ScheduleDataMap[V]; 762 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 763 return SD; 764 return nullptr; 765 } 766 767 bool isInSchedulingRegion(ScheduleData *SD) { 768 return SD->SchedulingRegionID == SchedulingRegionID; 769 } 770 771 /// Marks an instruction as scheduled and puts all dependent ready 772 /// instructions into the ready-list. 773 template <typename ReadyListType> 774 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 775 SD->IsScheduled = true; 776 DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 777 778 ScheduleData *BundleMember = SD; 779 while (BundleMember) { 780 // Handle the def-use chain dependencies. 781 for (Use &U : BundleMember->Inst->operands()) { 782 ScheduleData *OpDef = getScheduleData(U.get()); 783 if (OpDef && OpDef->hasValidDependencies() && 784 OpDef->incrementUnscheduledDeps(-1) == 0) { 785 // There are no more unscheduled dependencies after decrementing, 786 // so we can put the dependent instruction into the ready list. 787 ScheduleData *DepBundle = OpDef->FirstInBundle; 788 assert(!DepBundle->IsScheduled && 789 "already scheduled bundle gets ready"); 790 ReadyList.insert(DepBundle); 791 DEBUG(dbgs() << "SLP: gets ready (def): " << *DepBundle << "\n"); 792 } 793 } 794 // Handle the memory dependencies. 795 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 796 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 797 // There are no more unscheduled dependencies after decrementing, 798 // so we can put the dependent instruction into the ready list. 799 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 800 assert(!DepBundle->IsScheduled && 801 "already scheduled bundle gets ready"); 802 ReadyList.insert(DepBundle); 803 DEBUG(dbgs() << "SLP: gets ready (mem): " << *DepBundle << "\n"); 804 } 805 } 806 BundleMember = BundleMember->NextInBundle; 807 } 808 } 809 810 /// Put all instructions into the ReadyList which are ready for scheduling. 811 template <typename ReadyListType> 812 void initialFillReadyList(ReadyListType &ReadyList) { 813 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 814 ScheduleData *SD = getScheduleData(I); 815 if (SD->isSchedulingEntity() && SD->isReady()) { 816 ReadyList.insert(SD); 817 DEBUG(dbgs() << "SLP: initially in ready list: " << *I << "\n"); 818 } 819 } 820 } 821 822 /// Checks if a bundle of instructions can be scheduled, i.e. has no 823 /// cyclic dependencies. This is only a dry-run, no instructions are 824 /// actually moved at this stage. 825 bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP); 826 827 /// Un-bundles a group of instructions. 828 void cancelScheduling(ArrayRef<Value *> VL); 829 830 /// Extends the scheduling region so that V is inside the region. 831 /// \returns true if the region size is within the limit. 832 bool extendSchedulingRegion(Value *V); 833 834 /// Initialize the ScheduleData structures for new instructions in the 835 /// scheduling region. 836 void initScheduleData(Instruction *FromI, Instruction *ToI, 837 ScheduleData *PrevLoadStore, 838 ScheduleData *NextLoadStore); 839 840 /// Updates the dependency information of a bundle and of all instructions/ 841 /// bundles which depend on the original bundle. 842 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 843 BoUpSLP *SLP); 844 845 /// Sets all instruction in the scheduling region to un-scheduled. 846 void resetSchedule(); 847 848 BasicBlock *BB; 849 850 /// Simple memory allocation for ScheduleData. 851 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 852 853 /// The size of a ScheduleData array in ScheduleDataChunks. 854 int ChunkSize; 855 856 /// The allocator position in the current chunk, which is the last entry 857 /// of ScheduleDataChunks. 858 int ChunkPos; 859 860 /// Attaches ScheduleData to Instruction. 861 /// Note that the mapping survives during all vectorization iterations, i.e. 862 /// ScheduleData structures are recycled. 863 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 864 865 struct ReadyList : SmallVector<ScheduleData *, 8> { 866 void insert(ScheduleData *SD) { push_back(SD); } 867 }; 868 869 /// The ready-list for scheduling (only used for the dry-run). 870 ReadyList ReadyInsts; 871 872 /// The first instruction of the scheduling region. 873 Instruction *ScheduleStart; 874 875 /// The first instruction _after_ the scheduling region. 876 Instruction *ScheduleEnd; 877 878 /// The first memory accessing instruction in the scheduling region 879 /// (can be null). 880 ScheduleData *FirstLoadStoreInRegion; 881 882 /// The last memory accessing instruction in the scheduling region 883 /// (can be null). 884 ScheduleData *LastLoadStoreInRegion; 885 886 /// The current size of the scheduling region. 887 int ScheduleRegionSize; 888 889 /// The maximum size allowed for the scheduling region. 890 int ScheduleRegionSizeLimit; 891 892 /// The ID of the scheduling region. For a new vectorization iteration this 893 /// is incremented which "removes" all ScheduleData from the region. 894 int SchedulingRegionID; 895 }; 896 897 /// Attaches the BlockScheduling structures to basic blocks. 898 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 899 900 /// Performs the "real" scheduling. Done before vectorization is actually 901 /// performed in a basic block. 902 void scheduleBlock(BlockScheduling *BS); 903 904 /// List of users to ignore during scheduling and that don't need extracting. 905 ArrayRef<Value *> UserIgnoreList; 906 907 // Number of load-bundles, which contain consecutive loads. 908 int NumLoadsWantToKeepOrder; 909 910 // Number of load-bundles of size 2, which are consecutive loads if reversed. 911 int NumLoadsWantToChangeOrder; 912 913 // Analysis and block reference. 914 Function *F; 915 ScalarEvolution *SE; 916 TargetTransformInfo *TTI; 917 TargetLibraryInfo *TLI; 918 AliasAnalysis *AA; 919 LoopInfo *LI; 920 DominatorTree *DT; 921 /// Instruction builder to construct the vectorized tree. 922 IRBuilder<> Builder; 923 }; 924 925 #ifndef NDEBUG 926 raw_ostream &operator<<(raw_ostream &os, const BoUpSLP::ScheduleData &SD) { 927 SD.dump(os); 928 return os; 929 } 930 #endif 931 932 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 933 ArrayRef<Value *> UserIgnoreLst) { 934 deleteTree(); 935 UserIgnoreList = UserIgnoreLst; 936 if (!getSameType(Roots)) 937 return; 938 buildTree_rec(Roots, 0); 939 940 // Collect the values that we need to extract from the tree. 941 for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) { 942 TreeEntry *Entry = &VectorizableTree[EIdx]; 943 944 // For each lane: 945 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 946 Value *Scalar = Entry->Scalars[Lane]; 947 948 // No need to handle users of gathered values. 949 if (Entry->NeedToGather) 950 continue; 951 952 for (User *U : Scalar->users()) { 953 DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 954 955 Instruction *UserInst = dyn_cast<Instruction>(U); 956 if (!UserInst) 957 continue; 958 959 // Skip in-tree scalars that become vectors 960 if (ScalarToTreeEntry.count(U)) { 961 int Idx = ScalarToTreeEntry[U]; 962 TreeEntry *UseEntry = &VectorizableTree[Idx]; 963 Value *UseScalar = UseEntry->Scalars[0]; 964 // Some in-tree scalars will remain as scalar in vectorized 965 // instructions. If that is the case, the one in Lane 0 will 966 // be used. 967 if (UseScalar != U || 968 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 969 DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 970 << ".\n"); 971 assert(!VectorizableTree[Idx].NeedToGather && "Bad state"); 972 continue; 973 } 974 } 975 976 // Ignore users in the user ignore list. 977 if (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), UserInst) != 978 UserIgnoreList.end()) 979 continue; 980 981 DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " << 982 Lane << " from " << *Scalar << ".\n"); 983 ExternalUses.push_back(ExternalUser(Scalar, U, Lane)); 984 } 985 } 986 } 987 } 988 989 990 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { 991 bool SameTy = getSameType(VL); (void)SameTy; 992 bool isAltShuffle = false; 993 assert(SameTy && "Invalid types!"); 994 995 if (Depth == RecursionMaxDepth) { 996 DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 997 newTreeEntry(VL, false); 998 return; 999 } 1000 1001 // Don't handle vectors. 1002 if (VL[0]->getType()->isVectorTy()) { 1003 DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 1004 newTreeEntry(VL, false); 1005 return; 1006 } 1007 1008 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1009 if (SI->getValueOperand()->getType()->isVectorTy()) { 1010 DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 1011 newTreeEntry(VL, false); 1012 return; 1013 } 1014 unsigned Opcode = getSameOpcode(VL); 1015 1016 // Check that this shuffle vector refers to the alternate 1017 // sequence of opcodes. 1018 if (Opcode == Instruction::ShuffleVector) { 1019 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 1020 unsigned Op = I0->getOpcode(); 1021 if (Op != Instruction::ShuffleVector) 1022 isAltShuffle = true; 1023 } 1024 1025 // If all of the operands are identical or constant we have a simple solution. 1026 if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL) || !Opcode) { 1027 DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 1028 newTreeEntry(VL, false); 1029 return; 1030 } 1031 1032 // We now know that this is a vector of instructions of the same type from 1033 // the same block. 1034 1035 // Don't vectorize ephemeral values. 1036 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1037 if (EphValues.count(VL[i])) { 1038 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1039 ") is ephemeral.\n"); 1040 newTreeEntry(VL, false); 1041 return; 1042 } 1043 } 1044 1045 // Check if this is a duplicate of another entry. 1046 if (ScalarToTreeEntry.count(VL[0])) { 1047 int Idx = ScalarToTreeEntry[VL[0]]; 1048 TreeEntry *E = &VectorizableTree[Idx]; 1049 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1050 DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n"); 1051 if (E->Scalars[i] != VL[i]) { 1052 DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 1053 newTreeEntry(VL, false); 1054 return; 1055 } 1056 } 1057 DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n"); 1058 return; 1059 } 1060 1061 // Check that none of the instructions in the bundle are already in the tree. 1062 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1063 if (ScalarToTreeEntry.count(VL[i])) { 1064 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1065 ") is already in tree.\n"); 1066 newTreeEntry(VL, false); 1067 return; 1068 } 1069 } 1070 1071 // If any of the scalars is marked as a value that needs to stay scalar then 1072 // we need to gather the scalars. 1073 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1074 if (MustGather.count(VL[i])) { 1075 DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 1076 newTreeEntry(VL, false); 1077 return; 1078 } 1079 } 1080 1081 // Check that all of the users of the scalars that we want to vectorize are 1082 // schedulable. 1083 Instruction *VL0 = cast<Instruction>(VL[0]); 1084 BasicBlock *BB = cast<Instruction>(VL0)->getParent(); 1085 1086 if (!DT->isReachableFromEntry(BB)) { 1087 // Don't go into unreachable blocks. They may contain instructions with 1088 // dependency cycles which confuse the final scheduling. 1089 DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 1090 newTreeEntry(VL, false); 1091 return; 1092 } 1093 1094 // Check that every instructions appears once in this bundle. 1095 for (unsigned i = 0, e = VL.size(); i < e; ++i) 1096 for (unsigned j = i+1; j < e; ++j) 1097 if (VL[i] == VL[j]) { 1098 DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 1099 newTreeEntry(VL, false); 1100 return; 1101 } 1102 1103 auto &BSRef = BlocksSchedules[BB]; 1104 if (!BSRef) { 1105 BSRef = llvm::make_unique<BlockScheduling>(BB); 1106 } 1107 BlockScheduling &BS = *BSRef.get(); 1108 1109 if (!BS.tryScheduleBundle(VL, this)) { 1110 DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 1111 assert((!BS.getScheduleData(VL[0]) || 1112 !BS.getScheduleData(VL[0])->isPartOfBundle()) && 1113 "tryScheduleBundle should cancelScheduling on failure"); 1114 newTreeEntry(VL, false); 1115 return; 1116 } 1117 DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 1118 1119 switch (Opcode) { 1120 case Instruction::PHI: { 1121 PHINode *PH = dyn_cast<PHINode>(VL0); 1122 1123 // Check for terminator values (e.g. invoke). 1124 for (unsigned j = 0; j < VL.size(); ++j) 1125 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1126 TerminatorInst *Term = dyn_cast<TerminatorInst>( 1127 cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i))); 1128 if (Term) { 1129 DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n"); 1130 BS.cancelScheduling(VL); 1131 newTreeEntry(VL, false); 1132 return; 1133 } 1134 } 1135 1136 newTreeEntry(VL, true); 1137 DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 1138 1139 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1140 ValueList Operands; 1141 // Prepare the operand vector. 1142 for (unsigned j = 0; j < VL.size(); ++j) 1143 Operands.push_back(cast<PHINode>(VL[j])->getIncomingValueForBlock( 1144 PH->getIncomingBlock(i))); 1145 1146 buildTree_rec(Operands, Depth + 1); 1147 } 1148 return; 1149 } 1150 case Instruction::ExtractElement: { 1151 bool Reuse = CanReuseExtract(VL); 1152 if (Reuse) { 1153 DEBUG(dbgs() << "SLP: Reusing extract sequence.\n"); 1154 } else { 1155 BS.cancelScheduling(VL); 1156 } 1157 newTreeEntry(VL, Reuse); 1158 return; 1159 } 1160 case Instruction::Load: { 1161 // Check that a vectorized load would load the same memory as a scalar 1162 // load. 1163 // For example we don't want vectorize loads that are smaller than 8 bit. 1164 // Even though we have a packed struct {<i2, i2, i2, i2>} LLVM treats 1165 // loading/storing it as an i8 struct. If we vectorize loads/stores from 1166 // such a struct we read/write packed bits disagreeing with the 1167 // unvectorized version. 1168 const DataLayout &DL = F->getParent()->getDataLayout(); 1169 Type *ScalarTy = VL[0]->getType(); 1170 1171 if (DL.getTypeSizeInBits(ScalarTy) != 1172 DL.getTypeAllocSizeInBits(ScalarTy)) { 1173 BS.cancelScheduling(VL); 1174 newTreeEntry(VL, false); 1175 DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 1176 return; 1177 } 1178 // Check if the loads are consecutive or of we need to swizzle them. 1179 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1180 LoadInst *L = cast<LoadInst>(VL[i]); 1181 if (!L->isSimple()) { 1182 BS.cancelScheduling(VL); 1183 newTreeEntry(VL, false); 1184 DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 1185 return; 1186 } 1187 1188 if (!isConsecutiveAccess(VL[i], VL[i + 1], DL)) { 1189 if (VL.size() == 2 && isConsecutiveAccess(VL[1], VL[0], DL)) { 1190 ++NumLoadsWantToChangeOrder; 1191 } 1192 BS.cancelScheduling(VL); 1193 newTreeEntry(VL, false); 1194 DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 1195 return; 1196 } 1197 } 1198 ++NumLoadsWantToKeepOrder; 1199 newTreeEntry(VL, true); 1200 DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 1201 return; 1202 } 1203 case Instruction::ZExt: 1204 case Instruction::SExt: 1205 case Instruction::FPToUI: 1206 case Instruction::FPToSI: 1207 case Instruction::FPExt: 1208 case Instruction::PtrToInt: 1209 case Instruction::IntToPtr: 1210 case Instruction::SIToFP: 1211 case Instruction::UIToFP: 1212 case Instruction::Trunc: 1213 case Instruction::FPTrunc: 1214 case Instruction::BitCast: { 1215 Type *SrcTy = VL0->getOperand(0)->getType(); 1216 for (unsigned i = 0; i < VL.size(); ++i) { 1217 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); 1218 if (Ty != SrcTy || !isValidElementType(Ty)) { 1219 BS.cancelScheduling(VL); 1220 newTreeEntry(VL, false); 1221 DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n"); 1222 return; 1223 } 1224 } 1225 newTreeEntry(VL, true); 1226 DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 1227 1228 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1229 ValueList Operands; 1230 // Prepare the operand vector. 1231 for (unsigned j = 0; j < VL.size(); ++j) 1232 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 1233 1234 buildTree_rec(Operands, Depth+1); 1235 } 1236 return; 1237 } 1238 case Instruction::ICmp: 1239 case Instruction::FCmp: { 1240 // Check that all of the compares have the same predicate. 1241 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 1242 Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType(); 1243 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1244 CmpInst *Cmp = cast<CmpInst>(VL[i]); 1245 if (Cmp->getPredicate() != P0 || 1246 Cmp->getOperand(0)->getType() != ComparedTy) { 1247 BS.cancelScheduling(VL); 1248 newTreeEntry(VL, false); 1249 DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n"); 1250 return; 1251 } 1252 } 1253 1254 newTreeEntry(VL, true); 1255 DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 1256 1257 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1258 ValueList Operands; 1259 // Prepare the operand vector. 1260 for (unsigned j = 0; j < VL.size(); ++j) 1261 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 1262 1263 buildTree_rec(Operands, Depth+1); 1264 } 1265 return; 1266 } 1267 case Instruction::Select: 1268 case Instruction::Add: 1269 case Instruction::FAdd: 1270 case Instruction::Sub: 1271 case Instruction::FSub: 1272 case Instruction::Mul: 1273 case Instruction::FMul: 1274 case Instruction::UDiv: 1275 case Instruction::SDiv: 1276 case Instruction::FDiv: 1277 case Instruction::URem: 1278 case Instruction::SRem: 1279 case Instruction::FRem: 1280 case Instruction::Shl: 1281 case Instruction::LShr: 1282 case Instruction::AShr: 1283 case Instruction::And: 1284 case Instruction::Or: 1285 case Instruction::Xor: { 1286 newTreeEntry(VL, true); 1287 DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); 1288 1289 // Sort operands of the instructions so that each side is more likely to 1290 // have the same opcode. 1291 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 1292 ValueList Left, Right; 1293 reorderInputsAccordingToOpcode(VL, Left, Right); 1294 buildTree_rec(Left, Depth + 1); 1295 buildTree_rec(Right, Depth + 1); 1296 return; 1297 } 1298 1299 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1300 ValueList Operands; 1301 // Prepare the operand vector. 1302 for (unsigned j = 0; j < VL.size(); ++j) 1303 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 1304 1305 buildTree_rec(Operands, Depth+1); 1306 } 1307 return; 1308 } 1309 case Instruction::GetElementPtr: { 1310 // We don't combine GEPs with complicated (nested) indexing. 1311 for (unsigned j = 0; j < VL.size(); ++j) { 1312 if (cast<Instruction>(VL[j])->getNumOperands() != 2) { 1313 DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 1314 BS.cancelScheduling(VL); 1315 newTreeEntry(VL, false); 1316 return; 1317 } 1318 } 1319 1320 // We can't combine several GEPs into one vector if they operate on 1321 // different types. 1322 Type *Ty0 = cast<Instruction>(VL0)->getOperand(0)->getType(); 1323 for (unsigned j = 0; j < VL.size(); ++j) { 1324 Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType(); 1325 if (Ty0 != CurTy) { 1326 DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n"); 1327 BS.cancelScheduling(VL); 1328 newTreeEntry(VL, false); 1329 return; 1330 } 1331 } 1332 1333 // We don't combine GEPs with non-constant indexes. 1334 for (unsigned j = 0; j < VL.size(); ++j) { 1335 auto Op = cast<Instruction>(VL[j])->getOperand(1); 1336 if (!isa<ConstantInt>(Op)) { 1337 DEBUG( 1338 dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 1339 BS.cancelScheduling(VL); 1340 newTreeEntry(VL, false); 1341 return; 1342 } 1343 } 1344 1345 newTreeEntry(VL, true); 1346 DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 1347 for (unsigned i = 0, e = 2; i < e; ++i) { 1348 ValueList Operands; 1349 // Prepare the operand vector. 1350 for (unsigned j = 0; j < VL.size(); ++j) 1351 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 1352 1353 buildTree_rec(Operands, Depth + 1); 1354 } 1355 return; 1356 } 1357 case Instruction::Store: { 1358 const DataLayout &DL = F->getParent()->getDataLayout(); 1359 // Check if the stores are consecutive or of we need to swizzle them. 1360 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 1361 if (!isConsecutiveAccess(VL[i], VL[i + 1], DL)) { 1362 BS.cancelScheduling(VL); 1363 newTreeEntry(VL, false); 1364 DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 1365 return; 1366 } 1367 1368 newTreeEntry(VL, true); 1369 DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 1370 1371 ValueList Operands; 1372 for (unsigned j = 0; j < VL.size(); ++j) 1373 Operands.push_back(cast<Instruction>(VL[j])->getOperand(0)); 1374 1375 buildTree_rec(Operands, Depth + 1); 1376 return; 1377 } 1378 case Instruction::Call: { 1379 // Check if the calls are all to the same vectorizable intrinsic. 1380 CallInst *CI = cast<CallInst>(VL[0]); 1381 // Check if this is an Intrinsic call or something that can be 1382 // represented by an intrinsic call 1383 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 1384 if (!isTriviallyVectorizable(ID)) { 1385 BS.cancelScheduling(VL); 1386 newTreeEntry(VL, false); 1387 DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 1388 return; 1389 } 1390 Function *Int = CI->getCalledFunction(); 1391 Value *A1I = nullptr; 1392 if (hasVectorInstrinsicScalarOpd(ID, 1)) 1393 A1I = CI->getArgOperand(1); 1394 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 1395 CallInst *CI2 = dyn_cast<CallInst>(VL[i]); 1396 if (!CI2 || CI2->getCalledFunction() != Int || 1397 getIntrinsicIDForCall(CI2, TLI) != ID) { 1398 BS.cancelScheduling(VL); 1399 newTreeEntry(VL, false); 1400 DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] 1401 << "\n"); 1402 return; 1403 } 1404 // ctlz,cttz and powi are special intrinsics whose second argument 1405 // should be same in order for them to be vectorized. 1406 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 1407 Value *A1J = CI2->getArgOperand(1); 1408 if (A1I != A1J) { 1409 BS.cancelScheduling(VL); 1410 newTreeEntry(VL, false); 1411 DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 1412 << " argument "<< A1I<<"!=" << A1J 1413 << "\n"); 1414 return; 1415 } 1416 } 1417 } 1418 1419 newTreeEntry(VL, true); 1420 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 1421 ValueList Operands; 1422 // Prepare the operand vector. 1423 for (unsigned j = 0; j < VL.size(); ++j) { 1424 CallInst *CI2 = dyn_cast<CallInst>(VL[j]); 1425 Operands.push_back(CI2->getArgOperand(i)); 1426 } 1427 buildTree_rec(Operands, Depth + 1); 1428 } 1429 return; 1430 } 1431 case Instruction::ShuffleVector: { 1432 // If this is not an alternate sequence of opcode like add-sub 1433 // then do not vectorize this instruction. 1434 if (!isAltShuffle) { 1435 BS.cancelScheduling(VL); 1436 newTreeEntry(VL, false); 1437 DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 1438 return; 1439 } 1440 newTreeEntry(VL, true); 1441 DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 1442 1443 // Reorder operands if reordering would enable vectorization. 1444 if (isa<BinaryOperator>(VL0)) { 1445 ValueList Left, Right; 1446 reorderAltShuffleOperands(VL, Left, Right); 1447 buildTree_rec(Left, Depth + 1); 1448 buildTree_rec(Right, Depth + 1); 1449 return; 1450 } 1451 1452 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1453 ValueList Operands; 1454 // Prepare the operand vector. 1455 for (unsigned j = 0; j < VL.size(); ++j) 1456 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 1457 1458 buildTree_rec(Operands, Depth + 1); 1459 } 1460 return; 1461 } 1462 default: 1463 BS.cancelScheduling(VL); 1464 newTreeEntry(VL, false); 1465 DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 1466 return; 1467 } 1468 } 1469 1470 int BoUpSLP::getEntryCost(TreeEntry *E) { 1471 ArrayRef<Value*> VL = E->Scalars; 1472 1473 Type *ScalarTy = VL[0]->getType(); 1474 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1475 ScalarTy = SI->getValueOperand()->getType(); 1476 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1477 1478 if (E->NeedToGather) { 1479 if (allConstant(VL)) 1480 return 0; 1481 if (isSplat(VL)) { 1482 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 1483 } 1484 return getGatherCost(E->Scalars); 1485 } 1486 unsigned Opcode = getSameOpcode(VL); 1487 assert(Opcode && getSameType(VL) && getSameBlock(VL) && "Invalid VL"); 1488 Instruction *VL0 = cast<Instruction>(VL[0]); 1489 switch (Opcode) { 1490 case Instruction::PHI: { 1491 return 0; 1492 } 1493 case Instruction::ExtractElement: { 1494 if (CanReuseExtract(VL)) { 1495 int DeadCost = 0; 1496 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 1497 ExtractElementInst *E = cast<ExtractElementInst>(VL[i]); 1498 if (E->hasOneUse()) 1499 // Take credit for instruction that will become dead. 1500 DeadCost += 1501 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 1502 } 1503 return -DeadCost; 1504 } 1505 return getGatherCost(VecTy); 1506 } 1507 case Instruction::ZExt: 1508 case Instruction::SExt: 1509 case Instruction::FPToUI: 1510 case Instruction::FPToSI: 1511 case Instruction::FPExt: 1512 case Instruction::PtrToInt: 1513 case Instruction::IntToPtr: 1514 case Instruction::SIToFP: 1515 case Instruction::UIToFP: 1516 case Instruction::Trunc: 1517 case Instruction::FPTrunc: 1518 case Instruction::BitCast: { 1519 Type *SrcTy = VL0->getOperand(0)->getType(); 1520 1521 // Calculate the cost of this instruction. 1522 int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(), 1523 VL0->getType(), SrcTy); 1524 1525 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 1526 int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy); 1527 return VecCost - ScalarCost; 1528 } 1529 case Instruction::FCmp: 1530 case Instruction::ICmp: 1531 case Instruction::Select: 1532 case Instruction::Add: 1533 case Instruction::FAdd: 1534 case Instruction::Sub: 1535 case Instruction::FSub: 1536 case Instruction::Mul: 1537 case Instruction::FMul: 1538 case Instruction::UDiv: 1539 case Instruction::SDiv: 1540 case Instruction::FDiv: 1541 case Instruction::URem: 1542 case Instruction::SRem: 1543 case Instruction::FRem: 1544 case Instruction::Shl: 1545 case Instruction::LShr: 1546 case Instruction::AShr: 1547 case Instruction::And: 1548 case Instruction::Or: 1549 case Instruction::Xor: { 1550 // Calculate the cost of this instruction. 1551 int ScalarCost = 0; 1552 int VecCost = 0; 1553 if (Opcode == Instruction::FCmp || Opcode == Instruction::ICmp || 1554 Opcode == Instruction::Select) { 1555 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 1556 ScalarCost = VecTy->getNumElements() * 1557 TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty()); 1558 VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy); 1559 } else { 1560 // Certain instructions can be cheaper to vectorize if they have a 1561 // constant second vector operand. 1562 TargetTransformInfo::OperandValueKind Op1VK = 1563 TargetTransformInfo::OK_AnyValue; 1564 TargetTransformInfo::OperandValueKind Op2VK = 1565 TargetTransformInfo::OK_UniformConstantValue; 1566 TargetTransformInfo::OperandValueProperties Op1VP = 1567 TargetTransformInfo::OP_None; 1568 TargetTransformInfo::OperandValueProperties Op2VP = 1569 TargetTransformInfo::OP_None; 1570 1571 // If all operands are exactly the same ConstantInt then set the 1572 // operand kind to OK_UniformConstantValue. 1573 // If instead not all operands are constants, then set the operand kind 1574 // to OK_AnyValue. If all operands are constants but not the same, 1575 // then set the operand kind to OK_NonUniformConstantValue. 1576 ConstantInt *CInt = nullptr; 1577 for (unsigned i = 0; i < VL.size(); ++i) { 1578 const Instruction *I = cast<Instruction>(VL[i]); 1579 if (!isa<ConstantInt>(I->getOperand(1))) { 1580 Op2VK = TargetTransformInfo::OK_AnyValue; 1581 break; 1582 } 1583 if (i == 0) { 1584 CInt = cast<ConstantInt>(I->getOperand(1)); 1585 continue; 1586 } 1587 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && 1588 CInt != cast<ConstantInt>(I->getOperand(1))) 1589 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 1590 } 1591 // FIXME: Currently cost of model modification for division by 1592 // power of 2 is handled only for X86. Add support for other targets. 1593 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt && 1594 CInt->getValue().isPowerOf2()) 1595 Op2VP = TargetTransformInfo::OP_PowerOf2; 1596 1597 ScalarCost = VecTy->getNumElements() * 1598 TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, Op2VK, 1599 Op1VP, Op2VP); 1600 VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK, 1601 Op1VP, Op2VP); 1602 } 1603 return VecCost - ScalarCost; 1604 } 1605 case Instruction::GetElementPtr: { 1606 TargetTransformInfo::OperandValueKind Op1VK = 1607 TargetTransformInfo::OK_AnyValue; 1608 TargetTransformInfo::OperandValueKind Op2VK = 1609 TargetTransformInfo::OK_UniformConstantValue; 1610 1611 int ScalarCost = 1612 VecTy->getNumElements() * 1613 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 1614 int VecCost = 1615 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 1616 1617 return VecCost - ScalarCost; 1618 } 1619 case Instruction::Load: { 1620 // Cost of wide load - cost of scalar loads. 1621 int ScalarLdCost = VecTy->getNumElements() * 1622 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0); 1623 int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, 1, 0); 1624 return VecLdCost - ScalarLdCost; 1625 } 1626 case Instruction::Store: { 1627 // We know that we can merge the stores. Calculate the cost. 1628 int ScalarStCost = VecTy->getNumElements() * 1629 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0); 1630 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, VecTy, 1, 0); 1631 return VecStCost - ScalarStCost; 1632 } 1633 case Instruction::Call: { 1634 CallInst *CI = cast<CallInst>(VL0); 1635 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 1636 1637 // Calculate the cost of the scalar and vector calls. 1638 SmallVector<Type*, 4> ScalarTys, VecTys; 1639 for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) { 1640 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 1641 VecTys.push_back(VectorType::get(CI->getArgOperand(op)->getType(), 1642 VecTy->getNumElements())); 1643 } 1644 1645 int ScalarCallCost = VecTy->getNumElements() * 1646 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys); 1647 1648 int VecCallCost = TTI->getIntrinsicInstrCost(ID, VecTy, VecTys); 1649 1650 DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost 1651 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 1652 << " for " << *CI << "\n"); 1653 1654 return VecCallCost - ScalarCallCost; 1655 } 1656 case Instruction::ShuffleVector: { 1657 TargetTransformInfo::OperandValueKind Op1VK = 1658 TargetTransformInfo::OK_AnyValue; 1659 TargetTransformInfo::OperandValueKind Op2VK = 1660 TargetTransformInfo::OK_AnyValue; 1661 int ScalarCost = 0; 1662 int VecCost = 0; 1663 for (unsigned i = 0; i < VL.size(); ++i) { 1664 Instruction *I = cast<Instruction>(VL[i]); 1665 if (!I) 1666 break; 1667 ScalarCost += 1668 TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK); 1669 } 1670 // VecCost is equal to sum of the cost of creating 2 vectors 1671 // and the cost of creating shuffle. 1672 Instruction *I0 = cast<Instruction>(VL[0]); 1673 VecCost = 1674 TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK); 1675 Instruction *I1 = cast<Instruction>(VL[1]); 1676 VecCost += 1677 TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK); 1678 VecCost += 1679 TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0); 1680 return VecCost - ScalarCost; 1681 } 1682 default: 1683 llvm_unreachable("Unknown instruction"); 1684 } 1685 } 1686 1687 bool BoUpSLP::isFullyVectorizableTinyTree() { 1688 DEBUG(dbgs() << "SLP: Check whether the tree with height " << 1689 VectorizableTree.size() << " is fully vectorizable .\n"); 1690 1691 // We only handle trees of height 2. 1692 if (VectorizableTree.size() != 2) 1693 return false; 1694 1695 // Handle splat and all-constants stores. 1696 if (!VectorizableTree[0].NeedToGather && 1697 (allConstant(VectorizableTree[1].Scalars) || 1698 isSplat(VectorizableTree[1].Scalars))) 1699 return true; 1700 1701 // Gathering cost would be too much for tiny trees. 1702 if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather) 1703 return false; 1704 1705 return true; 1706 } 1707 1708 int BoUpSLP::getSpillCost() { 1709 // Walk from the bottom of the tree to the top, tracking which values are 1710 // live. When we see a call instruction that is not part of our tree, 1711 // query TTI to see if there is a cost to keeping values live over it 1712 // (for example, if spills and fills are required). 1713 unsigned BundleWidth = VectorizableTree.front().Scalars.size(); 1714 int Cost = 0; 1715 1716 SmallPtrSet<Instruction*, 4> LiveValues; 1717 Instruction *PrevInst = nullptr; 1718 1719 for (unsigned N = 0; N < VectorizableTree.size(); ++N) { 1720 Instruction *Inst = dyn_cast<Instruction>(VectorizableTree[N].Scalars[0]); 1721 if (!Inst) 1722 continue; 1723 1724 if (!PrevInst) { 1725 PrevInst = Inst; 1726 continue; 1727 } 1728 1729 DEBUG( 1730 dbgs() << "SLP: #LV: " << LiveValues.size(); 1731 for (auto *X : LiveValues) 1732 dbgs() << " " << X->getName(); 1733 dbgs() << ", Looking at "; 1734 Inst->dump(); 1735 ); 1736 1737 // Update LiveValues. 1738 LiveValues.erase(PrevInst); 1739 for (auto &J : PrevInst->operands()) { 1740 if (isa<Instruction>(&*J) && ScalarToTreeEntry.count(&*J)) 1741 LiveValues.insert(cast<Instruction>(&*J)); 1742 } 1743 1744 // Now find the sequence of instructions between PrevInst and Inst. 1745 BasicBlock::reverse_iterator InstIt(Inst), PrevInstIt(PrevInst); 1746 --PrevInstIt; 1747 while (InstIt != PrevInstIt) { 1748 if (PrevInstIt == PrevInst->getParent()->rend()) { 1749 PrevInstIt = Inst->getParent()->rbegin(); 1750 continue; 1751 } 1752 1753 if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) { 1754 SmallVector<Type*, 4> V; 1755 for (auto *II : LiveValues) 1756 V.push_back(VectorType::get(II->getType(), BundleWidth)); 1757 Cost += TTI->getCostOfKeepingLiveOverCall(V); 1758 } 1759 1760 ++PrevInstIt; 1761 } 1762 1763 PrevInst = Inst; 1764 } 1765 1766 DEBUG(dbgs() << "SLP: SpillCost=" << Cost << "\n"); 1767 return Cost; 1768 } 1769 1770 int BoUpSLP::getTreeCost() { 1771 int Cost = 0; 1772 DEBUG(dbgs() << "SLP: Calculating cost for tree of size " << 1773 VectorizableTree.size() << ".\n"); 1774 1775 // We only vectorize tiny trees if it is fully vectorizable. 1776 if (VectorizableTree.size() < 3 && !isFullyVectorizableTinyTree()) { 1777 if (VectorizableTree.empty()) { 1778 assert(!ExternalUses.size() && "We should not have any external users"); 1779 } 1780 return INT_MAX; 1781 } 1782 1783 unsigned BundleWidth = VectorizableTree[0].Scalars.size(); 1784 1785 for (unsigned i = 0, e = VectorizableTree.size(); i != e; ++i) { 1786 int C = getEntryCost(&VectorizableTree[i]); 1787 DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with " 1788 << *VectorizableTree[i].Scalars[0] << " .\n"); 1789 Cost += C; 1790 } 1791 1792 SmallSet<Value *, 16> ExtractCostCalculated; 1793 int ExtractCost = 0; 1794 for (UserList::iterator I = ExternalUses.begin(), E = ExternalUses.end(); 1795 I != E; ++I) { 1796 // We only add extract cost once for the same scalar. 1797 if (!ExtractCostCalculated.insert(I->Scalar).second) 1798 continue; 1799 1800 // Uses by ephemeral values are free (because the ephemeral value will be 1801 // removed prior to code generation, and so the extraction will be 1802 // removed as well). 1803 if (EphValues.count(I->User)) 1804 continue; 1805 1806 VectorType *VecTy = VectorType::get(I->Scalar->getType(), BundleWidth); 1807 ExtractCost += TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 1808 I->Lane); 1809 } 1810 1811 Cost += getSpillCost(); 1812 1813 DEBUG(dbgs() << "SLP: Total Cost " << Cost + ExtractCost<< ".\n"); 1814 return Cost + ExtractCost; 1815 } 1816 1817 int BoUpSLP::getGatherCost(Type *Ty) { 1818 int Cost = 0; 1819 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 1820 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 1821 return Cost; 1822 } 1823 1824 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) { 1825 // Find the type of the operands in VL. 1826 Type *ScalarTy = VL[0]->getType(); 1827 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1828 ScalarTy = SI->getValueOperand()->getType(); 1829 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1830 // Find the cost of inserting/extracting values from the vector. 1831 return getGatherCost(VecTy); 1832 } 1833 1834 Value *BoUpSLP::getPointerOperand(Value *I) { 1835 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 1836 return LI->getPointerOperand(); 1837 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 1838 return SI->getPointerOperand(); 1839 return nullptr; 1840 } 1841 1842 unsigned BoUpSLP::getAddressSpaceOperand(Value *I) { 1843 if (LoadInst *L = dyn_cast<LoadInst>(I)) 1844 return L->getPointerAddressSpace(); 1845 if (StoreInst *S = dyn_cast<StoreInst>(I)) 1846 return S->getPointerAddressSpace(); 1847 return -1; 1848 } 1849 1850 bool BoUpSLP::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL) { 1851 Value *PtrA = getPointerOperand(A); 1852 Value *PtrB = getPointerOperand(B); 1853 unsigned ASA = getAddressSpaceOperand(A); 1854 unsigned ASB = getAddressSpaceOperand(B); 1855 1856 // Check that the address spaces match and that the pointers are valid. 1857 if (!PtrA || !PtrB || (ASA != ASB)) 1858 return false; 1859 1860 // Make sure that A and B are different pointers of the same type. 1861 if (PtrA == PtrB || PtrA->getType() != PtrB->getType()) 1862 return false; 1863 1864 unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA); 1865 Type *Ty = cast<PointerType>(PtrA->getType())->getElementType(); 1866 APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty)); 1867 1868 APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0); 1869 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 1870 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 1871 1872 APInt OffsetDelta = OffsetB - OffsetA; 1873 1874 // Check if they are based on the same pointer. That makes the offsets 1875 // sufficient. 1876 if (PtrA == PtrB) 1877 return OffsetDelta == Size; 1878 1879 // Compute the necessary base pointer delta to have the necessary final delta 1880 // equal to the size. 1881 APInt BaseDelta = Size - OffsetDelta; 1882 1883 // Otherwise compute the distance with SCEV between the base pointers. 1884 const SCEV *PtrSCEVA = SE->getSCEV(PtrA); 1885 const SCEV *PtrSCEVB = SE->getSCEV(PtrB); 1886 const SCEV *C = SE->getConstant(BaseDelta); 1887 const SCEV *X = SE->getAddExpr(PtrSCEVA, C); 1888 return X == PtrSCEVB; 1889 } 1890 1891 // Reorder commutative operations in alternate shuffle if the resulting vectors 1892 // are consecutive loads. This would allow us to vectorize the tree. 1893 // If we have something like- 1894 // load a[0] - load b[0] 1895 // load b[1] + load a[1] 1896 // load a[2] - load b[2] 1897 // load a[3] + load b[3] 1898 // Reordering the second load b[1] load a[1] would allow us to vectorize this 1899 // code. 1900 void BoUpSLP::reorderAltShuffleOperands(ArrayRef<Value *> VL, 1901 SmallVectorImpl<Value *> &Left, 1902 SmallVectorImpl<Value *> &Right) { 1903 const DataLayout &DL = F->getParent()->getDataLayout(); 1904 1905 // Push left and right operands of binary operation into Left and Right 1906 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 1907 Left.push_back(cast<Instruction>(VL[i])->getOperand(0)); 1908 Right.push_back(cast<Instruction>(VL[i])->getOperand(1)); 1909 } 1910 1911 // Reorder if we have a commutative operation and consecutive access 1912 // are on either side of the alternate instructions. 1913 for (unsigned j = 0; j < VL.size() - 1; ++j) { 1914 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 1915 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 1916 Instruction *VL1 = cast<Instruction>(VL[j]); 1917 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 1918 if (isConsecutiveAccess(L, L1, DL) && VL1->isCommutative()) { 1919 std::swap(Left[j], Right[j]); 1920 continue; 1921 } else if (isConsecutiveAccess(L, L1, DL) && VL2->isCommutative()) { 1922 std::swap(Left[j + 1], Right[j + 1]); 1923 continue; 1924 } 1925 // else unchanged 1926 } 1927 } 1928 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 1929 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 1930 Instruction *VL1 = cast<Instruction>(VL[j]); 1931 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 1932 if (isConsecutiveAccess(L, L1, DL) && VL1->isCommutative()) { 1933 std::swap(Left[j], Right[j]); 1934 continue; 1935 } else if (isConsecutiveAccess(L, L1, DL) && VL2->isCommutative()) { 1936 std::swap(Left[j + 1], Right[j + 1]); 1937 continue; 1938 } 1939 // else unchanged 1940 } 1941 } 1942 } 1943 } 1944 1945 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1946 SmallVectorImpl<Value *> &Left, 1947 SmallVectorImpl<Value *> &Right) { 1948 1949 SmallVector<Value *, 16> OrigLeft, OrigRight; 1950 1951 bool AllSameOpcodeLeft = true; 1952 bool AllSameOpcodeRight = true; 1953 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1954 Instruction *I = cast<Instruction>(VL[i]); 1955 Value *VLeft = I->getOperand(0); 1956 Value *VRight = I->getOperand(1); 1957 1958 OrigLeft.push_back(VLeft); 1959 OrigRight.push_back(VRight); 1960 1961 Instruction *ILeft = dyn_cast<Instruction>(VLeft); 1962 Instruction *IRight = dyn_cast<Instruction>(VRight); 1963 1964 // Check whether all operands on one side have the same opcode. In this case 1965 // we want to preserve the original order and not make things worse by 1966 // reordering. 1967 if (i && AllSameOpcodeLeft && ILeft) { 1968 if (Instruction *PLeft = dyn_cast<Instruction>(OrigLeft[i - 1])) { 1969 if (PLeft->getOpcode() != ILeft->getOpcode()) 1970 AllSameOpcodeLeft = false; 1971 } else 1972 AllSameOpcodeLeft = false; 1973 } 1974 if (i && AllSameOpcodeRight && IRight) { 1975 if (Instruction *PRight = dyn_cast<Instruction>(OrigRight[i - 1])) { 1976 if (PRight->getOpcode() != IRight->getOpcode()) 1977 AllSameOpcodeRight = false; 1978 } else 1979 AllSameOpcodeRight = false; 1980 } 1981 1982 // Sort two opcodes. In the code below we try to preserve the ability to use 1983 // broadcast of values instead of individual inserts. 1984 // vl1 = load 1985 // vl2 = phi 1986 // vr1 = load 1987 // vr2 = vr2 1988 // = vl1 x vr1 1989 // = vl2 x vr2 1990 // If we just sorted according to opcode we would leave the first line in 1991 // tact but we would swap vl2 with vr2 because opcode(phi) > opcode(load). 1992 // = vl1 x vr1 1993 // = vr2 x vl2 1994 // Because vr2 and vr1 are from the same load we loose the opportunity of a 1995 // broadcast for the packed right side in the backend: we have [vr1, vl2] 1996 // instead of [vr1, vr2=vr1]. 1997 if (ILeft && IRight) { 1998 if (!i && ILeft->getOpcode() > IRight->getOpcode()) { 1999 Left.push_back(IRight); 2000 Right.push_back(ILeft); 2001 } else if (i && ILeft->getOpcode() > IRight->getOpcode() && 2002 Right[i - 1] != IRight) { 2003 // Try not to destroy a broad cast for no apparent benefit. 2004 Left.push_back(IRight); 2005 Right.push_back(ILeft); 2006 } else if (i && ILeft->getOpcode() == IRight->getOpcode() && 2007 Right[i - 1] == ILeft) { 2008 // Try preserve broadcasts. 2009 Left.push_back(IRight); 2010 Right.push_back(ILeft); 2011 } else if (i && ILeft->getOpcode() == IRight->getOpcode() && 2012 Left[i - 1] == IRight) { 2013 // Try preserve broadcasts. 2014 Left.push_back(IRight); 2015 Right.push_back(ILeft); 2016 } else { 2017 Left.push_back(ILeft); 2018 Right.push_back(IRight); 2019 } 2020 continue; 2021 } 2022 // One opcode, put the instruction on the right. 2023 if (ILeft) { 2024 Left.push_back(VRight); 2025 Right.push_back(ILeft); 2026 continue; 2027 } 2028 Left.push_back(VLeft); 2029 Right.push_back(VRight); 2030 } 2031 2032 bool LeftBroadcast = isSplat(Left); 2033 bool RightBroadcast = isSplat(Right); 2034 2035 // If operands end up being broadcast return this operand order. 2036 if (LeftBroadcast || RightBroadcast) 2037 return; 2038 2039 // Don't reorder if the operands where good to begin. 2040 if (AllSameOpcodeRight || AllSameOpcodeLeft) { 2041 Left = OrigLeft; 2042 Right = OrigRight; 2043 } 2044 2045 const DataLayout &DL = F->getParent()->getDataLayout(); 2046 2047 // Finally check if we can get longer vectorizable chain by reordering 2048 // without breaking the good operand order detected above. 2049 // E.g. If we have something like- 2050 // load a[0] load b[0] 2051 // load b[1] load a[1] 2052 // load a[2] load b[2] 2053 // load a[3] load b[3] 2054 // Reordering the second load b[1] load a[1] would allow us to vectorize 2055 // this code and we still retain AllSameOpcode property. 2056 // FIXME: This load reordering might break AllSameOpcode in some rare cases 2057 // such as- 2058 // add a[0],c[0] load b[0] 2059 // add a[1],c[2] load b[1] 2060 // b[2] load b[2] 2061 // add a[3],c[3] load b[3] 2062 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2063 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2064 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2065 if (isConsecutiveAccess(L, L1, DL)) { 2066 std::swap(Left[j + 1], Right[j + 1]); 2067 continue; 2068 } 2069 } 2070 } 2071 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2072 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2073 if (isConsecutiveAccess(L, L1, DL)) { 2074 std::swap(Left[j + 1], Right[j + 1]); 2075 continue; 2076 } 2077 } 2078 } 2079 // else unchanged 2080 } 2081 } 2082 2083 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) { 2084 Instruction *VL0 = cast<Instruction>(VL[0]); 2085 BasicBlock::iterator NextInst = VL0; 2086 ++NextInst; 2087 Builder.SetInsertPoint(VL0->getParent(), NextInst); 2088 Builder.SetCurrentDebugLocation(VL0->getDebugLoc()); 2089 } 2090 2091 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 2092 Value *Vec = UndefValue::get(Ty); 2093 // Generate the 'InsertElement' instruction. 2094 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 2095 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 2096 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 2097 GatherSeq.insert(Insrt); 2098 CSEBlocks.insert(Insrt->getParent()); 2099 2100 // Add to our 'need-to-extract' list. 2101 if (ScalarToTreeEntry.count(VL[i])) { 2102 int Idx = ScalarToTreeEntry[VL[i]]; 2103 TreeEntry *E = &VectorizableTree[Idx]; 2104 // Find which lane we need to extract. 2105 int FoundLane = -1; 2106 for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) { 2107 // Is this the lane of the scalar that we are looking for ? 2108 if (E->Scalars[Lane] == VL[i]) { 2109 FoundLane = Lane; 2110 break; 2111 } 2112 } 2113 assert(FoundLane >= 0 && "Could not find the correct lane"); 2114 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 2115 } 2116 } 2117 } 2118 2119 return Vec; 2120 } 2121 2122 Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const { 2123 SmallDenseMap<Value*, int>::const_iterator Entry 2124 = ScalarToTreeEntry.find(VL[0]); 2125 if (Entry != ScalarToTreeEntry.end()) { 2126 int Idx = Entry->second; 2127 const TreeEntry *En = &VectorizableTree[Idx]; 2128 if (En->isSame(VL) && En->VectorizedValue) 2129 return En->VectorizedValue; 2130 } 2131 return nullptr; 2132 } 2133 2134 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 2135 if (ScalarToTreeEntry.count(VL[0])) { 2136 int Idx = ScalarToTreeEntry[VL[0]]; 2137 TreeEntry *E = &VectorizableTree[Idx]; 2138 if (E->isSame(VL)) 2139 return vectorizeTree(E); 2140 } 2141 2142 Type *ScalarTy = VL[0]->getType(); 2143 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2144 ScalarTy = SI->getValueOperand()->getType(); 2145 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2146 2147 return Gather(VL, VecTy); 2148 } 2149 2150 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 2151 IRBuilder<>::InsertPointGuard Guard(Builder); 2152 2153 if (E->VectorizedValue) { 2154 DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 2155 return E->VectorizedValue; 2156 } 2157 2158 Instruction *VL0 = cast<Instruction>(E->Scalars[0]); 2159 Type *ScalarTy = VL0->getType(); 2160 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 2161 ScalarTy = SI->getValueOperand()->getType(); 2162 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 2163 2164 if (E->NeedToGather) { 2165 setInsertPointAfterBundle(E->Scalars); 2166 return Gather(E->Scalars, VecTy); 2167 } 2168 2169 const DataLayout &DL = F->getParent()->getDataLayout(); 2170 unsigned Opcode = getSameOpcode(E->Scalars); 2171 2172 switch (Opcode) { 2173 case Instruction::PHI: { 2174 PHINode *PH = dyn_cast<PHINode>(VL0); 2175 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 2176 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2177 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 2178 E->VectorizedValue = NewPhi; 2179 2180 // PHINodes may have multiple entries from the same block. We want to 2181 // visit every block once. 2182 SmallSet<BasicBlock*, 4> VisitedBBs; 2183 2184 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2185 ValueList Operands; 2186 BasicBlock *IBB = PH->getIncomingBlock(i); 2187 2188 if (!VisitedBBs.insert(IBB).second) { 2189 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 2190 continue; 2191 } 2192 2193 // Prepare the operand vector. 2194 for (Value *V : E->Scalars) 2195 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB)); 2196 2197 Builder.SetInsertPoint(IBB->getTerminator()); 2198 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2199 Value *Vec = vectorizeTree(Operands); 2200 NewPhi->addIncoming(Vec, IBB); 2201 } 2202 2203 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 2204 "Invalid number of incoming values"); 2205 return NewPhi; 2206 } 2207 2208 case Instruction::ExtractElement: { 2209 if (CanReuseExtract(E->Scalars)) { 2210 Value *V = VL0->getOperand(0); 2211 E->VectorizedValue = V; 2212 return V; 2213 } 2214 return Gather(E->Scalars, VecTy); 2215 } 2216 case Instruction::ZExt: 2217 case Instruction::SExt: 2218 case Instruction::FPToUI: 2219 case Instruction::FPToSI: 2220 case Instruction::FPExt: 2221 case Instruction::PtrToInt: 2222 case Instruction::IntToPtr: 2223 case Instruction::SIToFP: 2224 case Instruction::UIToFP: 2225 case Instruction::Trunc: 2226 case Instruction::FPTrunc: 2227 case Instruction::BitCast: { 2228 ValueList INVL; 2229 for (Value *V : E->Scalars) 2230 INVL.push_back(cast<Instruction>(V)->getOperand(0)); 2231 2232 setInsertPointAfterBundle(E->Scalars); 2233 2234 Value *InVec = vectorizeTree(INVL); 2235 2236 if (Value *V = alreadyVectorized(E->Scalars)) 2237 return V; 2238 2239 CastInst *CI = dyn_cast<CastInst>(VL0); 2240 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 2241 E->VectorizedValue = V; 2242 ++NumVectorInstructions; 2243 return V; 2244 } 2245 case Instruction::FCmp: 2246 case Instruction::ICmp: { 2247 ValueList LHSV, RHSV; 2248 for (Value *V : E->Scalars) { 2249 LHSV.push_back(cast<Instruction>(V)->getOperand(0)); 2250 RHSV.push_back(cast<Instruction>(V)->getOperand(1)); 2251 } 2252 2253 setInsertPointAfterBundle(E->Scalars); 2254 2255 Value *L = vectorizeTree(LHSV); 2256 Value *R = vectorizeTree(RHSV); 2257 2258 if (Value *V = alreadyVectorized(E->Scalars)) 2259 return V; 2260 2261 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2262 Value *V; 2263 if (Opcode == Instruction::FCmp) 2264 V = Builder.CreateFCmp(P0, L, R); 2265 else 2266 V = Builder.CreateICmp(P0, L, R); 2267 2268 E->VectorizedValue = V; 2269 ++NumVectorInstructions; 2270 return V; 2271 } 2272 case Instruction::Select: { 2273 ValueList TrueVec, FalseVec, CondVec; 2274 for (Value *V : E->Scalars) { 2275 CondVec.push_back(cast<Instruction>(V)->getOperand(0)); 2276 TrueVec.push_back(cast<Instruction>(V)->getOperand(1)); 2277 FalseVec.push_back(cast<Instruction>(V)->getOperand(2)); 2278 } 2279 2280 setInsertPointAfterBundle(E->Scalars); 2281 2282 Value *Cond = vectorizeTree(CondVec); 2283 Value *True = vectorizeTree(TrueVec); 2284 Value *False = vectorizeTree(FalseVec); 2285 2286 if (Value *V = alreadyVectorized(E->Scalars)) 2287 return V; 2288 2289 Value *V = Builder.CreateSelect(Cond, True, False); 2290 E->VectorizedValue = V; 2291 ++NumVectorInstructions; 2292 return V; 2293 } 2294 case Instruction::Add: 2295 case Instruction::FAdd: 2296 case Instruction::Sub: 2297 case Instruction::FSub: 2298 case Instruction::Mul: 2299 case Instruction::FMul: 2300 case Instruction::UDiv: 2301 case Instruction::SDiv: 2302 case Instruction::FDiv: 2303 case Instruction::URem: 2304 case Instruction::SRem: 2305 case Instruction::FRem: 2306 case Instruction::Shl: 2307 case Instruction::LShr: 2308 case Instruction::AShr: 2309 case Instruction::And: 2310 case Instruction::Or: 2311 case Instruction::Xor: { 2312 ValueList LHSVL, RHSVL; 2313 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) 2314 reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL); 2315 else 2316 for (Value *V : E->Scalars) { 2317 LHSVL.push_back(cast<Instruction>(V)->getOperand(0)); 2318 RHSVL.push_back(cast<Instruction>(V)->getOperand(1)); 2319 } 2320 2321 setInsertPointAfterBundle(E->Scalars); 2322 2323 Value *LHS = vectorizeTree(LHSVL); 2324 Value *RHS = vectorizeTree(RHSVL); 2325 2326 if (LHS == RHS && isa<Instruction>(LHS)) { 2327 assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order"); 2328 } 2329 2330 if (Value *V = alreadyVectorized(E->Scalars)) 2331 return V; 2332 2333 BinaryOperator *BinOp = cast<BinaryOperator>(VL0); 2334 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS); 2335 E->VectorizedValue = V; 2336 propagateIRFlags(E->VectorizedValue, E->Scalars); 2337 ++NumVectorInstructions; 2338 2339 if (Instruction *I = dyn_cast<Instruction>(V)) 2340 return propagateMetadata(I, E->Scalars); 2341 2342 return V; 2343 } 2344 case Instruction::Load: { 2345 // Loads are inserted at the head of the tree because we don't want to 2346 // sink them all the way down past store instructions. 2347 setInsertPointAfterBundle(E->Scalars); 2348 2349 LoadInst *LI = cast<LoadInst>(VL0); 2350 Type *ScalarLoadTy = LI->getType(); 2351 unsigned AS = LI->getPointerAddressSpace(); 2352 2353 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 2354 VecTy->getPointerTo(AS)); 2355 2356 // The pointer operand uses an in-tree scalar so we add the new BitCast to 2357 // ExternalUses list to make sure that an extract will be generated in the 2358 // future. 2359 if (ScalarToTreeEntry.count(LI->getPointerOperand())) 2360 ExternalUses.push_back( 2361 ExternalUser(LI->getPointerOperand(), cast<User>(VecPtr), 0)); 2362 2363 unsigned Alignment = LI->getAlignment(); 2364 LI = Builder.CreateLoad(VecPtr); 2365 if (!Alignment) { 2366 Alignment = DL.getABITypeAlignment(ScalarLoadTy); 2367 } 2368 LI->setAlignment(Alignment); 2369 E->VectorizedValue = LI; 2370 ++NumVectorInstructions; 2371 return propagateMetadata(LI, E->Scalars); 2372 } 2373 case Instruction::Store: { 2374 StoreInst *SI = cast<StoreInst>(VL0); 2375 unsigned Alignment = SI->getAlignment(); 2376 unsigned AS = SI->getPointerAddressSpace(); 2377 2378 ValueList ValueOp; 2379 for (Value *V : E->Scalars) 2380 ValueOp.push_back(cast<StoreInst>(V)->getValueOperand()); 2381 2382 setInsertPointAfterBundle(E->Scalars); 2383 2384 Value *VecValue = vectorizeTree(ValueOp); 2385 Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(), 2386 VecTy->getPointerTo(AS)); 2387 StoreInst *S = Builder.CreateStore(VecValue, VecPtr); 2388 2389 // The pointer operand uses an in-tree scalar so we add the new BitCast to 2390 // ExternalUses list to make sure that an extract will be generated in the 2391 // future. 2392 if (ScalarToTreeEntry.count(SI->getPointerOperand())) 2393 ExternalUses.push_back( 2394 ExternalUser(SI->getPointerOperand(), cast<User>(VecPtr), 0)); 2395 2396 if (!Alignment) { 2397 Alignment = DL.getABITypeAlignment(SI->getValueOperand()->getType()); 2398 } 2399 S->setAlignment(Alignment); 2400 E->VectorizedValue = S; 2401 ++NumVectorInstructions; 2402 return propagateMetadata(S, E->Scalars); 2403 } 2404 case Instruction::GetElementPtr: { 2405 setInsertPointAfterBundle(E->Scalars); 2406 2407 ValueList Op0VL; 2408 for (Value *V : E->Scalars) 2409 Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0)); 2410 2411 Value *Op0 = vectorizeTree(Op0VL); 2412 2413 std::vector<Value *> OpVecs; 2414 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 2415 ++j) { 2416 ValueList OpVL; 2417 for (Value *V : E->Scalars) 2418 OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j)); 2419 2420 Value *OpVec = vectorizeTree(OpVL); 2421 OpVecs.push_back(OpVec); 2422 } 2423 2424 Value *V = Builder.CreateGEP( 2425 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 2426 E->VectorizedValue = V; 2427 ++NumVectorInstructions; 2428 2429 if (Instruction *I = dyn_cast<Instruction>(V)) 2430 return propagateMetadata(I, E->Scalars); 2431 2432 return V; 2433 } 2434 case Instruction::Call: { 2435 CallInst *CI = cast<CallInst>(VL0); 2436 setInsertPointAfterBundle(E->Scalars); 2437 Function *FI; 2438 Intrinsic::ID IID = Intrinsic::not_intrinsic; 2439 Value *ScalarArg = nullptr; 2440 if (CI && (FI = CI->getCalledFunction())) { 2441 IID = FI->getIntrinsicID(); 2442 } 2443 std::vector<Value *> OpVecs; 2444 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 2445 ValueList OpVL; 2446 // ctlz,cttz and powi are special intrinsics whose second argument is 2447 // a scalar. This argument should not be vectorized. 2448 if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) { 2449 CallInst *CEI = cast<CallInst>(E->Scalars[0]); 2450 ScalarArg = CEI->getArgOperand(j); 2451 OpVecs.push_back(CEI->getArgOperand(j)); 2452 continue; 2453 } 2454 for (Value *V : E->Scalars) { 2455 CallInst *CEI = cast<CallInst>(V); 2456 OpVL.push_back(CEI->getArgOperand(j)); 2457 } 2458 2459 Value *OpVec = vectorizeTree(OpVL); 2460 DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 2461 OpVecs.push_back(OpVec); 2462 } 2463 2464 Module *M = F->getParent(); 2465 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 2466 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 2467 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 2468 Value *V = Builder.CreateCall(CF, OpVecs); 2469 2470 // The scalar argument uses an in-tree scalar so we add the new vectorized 2471 // call to ExternalUses list to make sure that an extract will be 2472 // generated in the future. 2473 if (ScalarArg && ScalarToTreeEntry.count(ScalarArg)) 2474 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 2475 2476 E->VectorizedValue = V; 2477 ++NumVectorInstructions; 2478 return V; 2479 } 2480 case Instruction::ShuffleVector: { 2481 ValueList LHSVL, RHSVL; 2482 assert(isa<BinaryOperator>(VL0) && "Invalid Shuffle Vector Operand"); 2483 reorderAltShuffleOperands(E->Scalars, LHSVL, RHSVL); 2484 setInsertPointAfterBundle(E->Scalars); 2485 2486 Value *LHS = vectorizeTree(LHSVL); 2487 Value *RHS = vectorizeTree(RHSVL); 2488 2489 if (Value *V = alreadyVectorized(E->Scalars)) 2490 return V; 2491 2492 // Create a vector of LHS op1 RHS 2493 BinaryOperator *BinOp0 = cast<BinaryOperator>(VL0); 2494 Value *V0 = Builder.CreateBinOp(BinOp0->getOpcode(), LHS, RHS); 2495 2496 // Create a vector of LHS op2 RHS 2497 Instruction *VL1 = cast<Instruction>(E->Scalars[1]); 2498 BinaryOperator *BinOp1 = cast<BinaryOperator>(VL1); 2499 Value *V1 = Builder.CreateBinOp(BinOp1->getOpcode(), LHS, RHS); 2500 2501 // Create shuffle to take alternate operations from the vector. 2502 // Also, gather up odd and even scalar ops to propagate IR flags to 2503 // each vector operation. 2504 ValueList OddScalars, EvenScalars; 2505 unsigned e = E->Scalars.size(); 2506 SmallVector<Constant *, 8> Mask(e); 2507 for (unsigned i = 0; i < e; ++i) { 2508 if (i & 1) { 2509 Mask[i] = Builder.getInt32(e + i); 2510 OddScalars.push_back(E->Scalars[i]); 2511 } else { 2512 Mask[i] = Builder.getInt32(i); 2513 EvenScalars.push_back(E->Scalars[i]); 2514 } 2515 } 2516 2517 Value *ShuffleMask = ConstantVector::get(Mask); 2518 propagateIRFlags(V0, EvenScalars); 2519 propagateIRFlags(V1, OddScalars); 2520 2521 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 2522 E->VectorizedValue = V; 2523 ++NumVectorInstructions; 2524 if (Instruction *I = dyn_cast<Instruction>(V)) 2525 return propagateMetadata(I, E->Scalars); 2526 2527 return V; 2528 } 2529 default: 2530 llvm_unreachable("unknown inst"); 2531 } 2532 return nullptr; 2533 } 2534 2535 Value *BoUpSLP::vectorizeTree() { 2536 2537 // All blocks must be scheduled before any instructions are inserted. 2538 for (auto &BSIter : BlocksSchedules) { 2539 scheduleBlock(BSIter.second.get()); 2540 } 2541 2542 Builder.SetInsertPoint(F->getEntryBlock().begin()); 2543 vectorizeTree(&VectorizableTree[0]); 2544 2545 DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n"); 2546 2547 // Extract all of the elements with the external uses. 2548 for (UserList::iterator it = ExternalUses.begin(), e = ExternalUses.end(); 2549 it != e; ++it) { 2550 Value *Scalar = it->Scalar; 2551 llvm::User *User = it->User; 2552 2553 // Skip users that we already RAUW. This happens when one instruction 2554 // has multiple uses of the same value. 2555 if (std::find(Scalar->user_begin(), Scalar->user_end(), User) == 2556 Scalar->user_end()) 2557 continue; 2558 assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar"); 2559 2560 int Idx = ScalarToTreeEntry[Scalar]; 2561 TreeEntry *E = &VectorizableTree[Idx]; 2562 assert(!E->NeedToGather && "Extracting from a gather list"); 2563 2564 Value *Vec = E->VectorizedValue; 2565 assert(Vec && "Can't find vectorizable value"); 2566 2567 Value *Lane = Builder.getInt32(it->Lane); 2568 // Generate extracts for out-of-tree users. 2569 // Find the insertion point for the extractelement lane. 2570 if (isa<Instruction>(Vec)){ 2571 if (PHINode *PH = dyn_cast<PHINode>(User)) { 2572 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 2573 if (PH->getIncomingValue(i) == Scalar) { 2574 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 2575 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2576 CSEBlocks.insert(PH->getIncomingBlock(i)); 2577 PH->setOperand(i, Ex); 2578 } 2579 } 2580 } else { 2581 Builder.SetInsertPoint(cast<Instruction>(User)); 2582 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2583 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 2584 User->replaceUsesOfWith(Scalar, Ex); 2585 } 2586 } else { 2587 Builder.SetInsertPoint(F->getEntryBlock().begin()); 2588 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2589 CSEBlocks.insert(&F->getEntryBlock()); 2590 User->replaceUsesOfWith(Scalar, Ex); 2591 } 2592 2593 DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 2594 } 2595 2596 // For each vectorized value: 2597 for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) { 2598 TreeEntry *Entry = &VectorizableTree[EIdx]; 2599 2600 // For each lane: 2601 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2602 Value *Scalar = Entry->Scalars[Lane]; 2603 // No need to handle users of gathered values. 2604 if (Entry->NeedToGather) 2605 continue; 2606 2607 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 2608 2609 Type *Ty = Scalar->getType(); 2610 if (!Ty->isVoidTy()) { 2611 #ifndef NDEBUG 2612 for (User *U : Scalar->users()) { 2613 DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 2614 2615 assert((ScalarToTreeEntry.count(U) || 2616 // It is legal to replace users in the ignorelist by undef. 2617 (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), U) != 2618 UserIgnoreList.end())) && 2619 "Replacing out-of-tree value with undef"); 2620 } 2621 #endif 2622 Value *Undef = UndefValue::get(Ty); 2623 Scalar->replaceAllUsesWith(Undef); 2624 } 2625 DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 2626 eraseInstruction(cast<Instruction>(Scalar)); 2627 } 2628 } 2629 2630 Builder.ClearInsertionPoint(); 2631 2632 return VectorizableTree[0].VectorizedValue; 2633 } 2634 2635 void BoUpSLP::optimizeGatherSequence() { 2636 DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 2637 << " gather sequences instructions.\n"); 2638 // LICM InsertElementInst sequences. 2639 for (SetVector<Instruction *>::iterator it = GatherSeq.begin(), 2640 e = GatherSeq.end(); it != e; ++it) { 2641 InsertElementInst *Insert = dyn_cast<InsertElementInst>(*it); 2642 2643 if (!Insert) 2644 continue; 2645 2646 // Check if this block is inside a loop. 2647 Loop *L = LI->getLoopFor(Insert->getParent()); 2648 if (!L) 2649 continue; 2650 2651 // Check if it has a preheader. 2652 BasicBlock *PreHeader = L->getLoopPreheader(); 2653 if (!PreHeader) 2654 continue; 2655 2656 // If the vector or the element that we insert into it are 2657 // instructions that are defined in this basic block then we can't 2658 // hoist this instruction. 2659 Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0)); 2660 Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1)); 2661 if (CurrVec && L->contains(CurrVec)) 2662 continue; 2663 if (NewElem && L->contains(NewElem)) 2664 continue; 2665 2666 // We can hoist this instruction. Move it to the pre-header. 2667 Insert->moveBefore(PreHeader->getTerminator()); 2668 } 2669 2670 // Make a list of all reachable blocks in our CSE queue. 2671 SmallVector<const DomTreeNode *, 8> CSEWorkList; 2672 CSEWorkList.reserve(CSEBlocks.size()); 2673 for (BasicBlock *BB : CSEBlocks) 2674 if (DomTreeNode *N = DT->getNode(BB)) { 2675 assert(DT->isReachableFromEntry(N)); 2676 CSEWorkList.push_back(N); 2677 } 2678 2679 // Sort blocks by domination. This ensures we visit a block after all blocks 2680 // dominating it are visited. 2681 std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), 2682 [this](const DomTreeNode *A, const DomTreeNode *B) { 2683 return DT->properlyDominates(A, B); 2684 }); 2685 2686 // Perform O(N^2) search over the gather sequences and merge identical 2687 // instructions. TODO: We can further optimize this scan if we split the 2688 // instructions into different buckets based on the insert lane. 2689 SmallVector<Instruction *, 16> Visited; 2690 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 2691 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 2692 "Worklist not sorted properly!"); 2693 BasicBlock *BB = (*I)->getBlock(); 2694 // For all instructions in blocks containing gather sequences: 2695 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 2696 Instruction *In = it++; 2697 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 2698 continue; 2699 2700 // Check if we can replace this instruction with any of the 2701 // visited instructions. 2702 for (SmallVectorImpl<Instruction *>::iterator v = Visited.begin(), 2703 ve = Visited.end(); 2704 v != ve; ++v) { 2705 if (In->isIdenticalTo(*v) && 2706 DT->dominates((*v)->getParent(), In->getParent())) { 2707 In->replaceAllUsesWith(*v); 2708 eraseInstruction(In); 2709 In = nullptr; 2710 break; 2711 } 2712 } 2713 if (In) { 2714 assert(std::find(Visited.begin(), Visited.end(), In) == Visited.end()); 2715 Visited.push_back(In); 2716 } 2717 } 2718 } 2719 CSEBlocks.clear(); 2720 GatherSeq.clear(); 2721 } 2722 2723 // Groups the instructions to a bundle (which is then a single scheduling entity) 2724 // and schedules instructions until the bundle gets ready. 2725 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, 2726 BoUpSLP *SLP) { 2727 if (isa<PHINode>(VL[0])) 2728 return true; 2729 2730 // Initialize the instruction bundle. 2731 Instruction *OldScheduleEnd = ScheduleEnd; 2732 ScheduleData *PrevInBundle = nullptr; 2733 ScheduleData *Bundle = nullptr; 2734 bool ReSchedule = false; 2735 DEBUG(dbgs() << "SLP: bundle: " << *VL[0] << "\n"); 2736 2737 // Make sure that the scheduling region contains all 2738 // instructions of the bundle. 2739 for (Value *V : VL) { 2740 if (!extendSchedulingRegion(V)) 2741 return false; 2742 } 2743 2744 for (Value *V : VL) { 2745 ScheduleData *BundleMember = getScheduleData(V); 2746 assert(BundleMember && 2747 "no ScheduleData for bundle member (maybe not in same basic block)"); 2748 if (BundleMember->IsScheduled) { 2749 // A bundle member was scheduled as single instruction before and now 2750 // needs to be scheduled as part of the bundle. We just get rid of the 2751 // existing schedule. 2752 DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 2753 << " was already scheduled\n"); 2754 ReSchedule = true; 2755 } 2756 assert(BundleMember->isSchedulingEntity() && 2757 "bundle member already part of other bundle"); 2758 if (PrevInBundle) { 2759 PrevInBundle->NextInBundle = BundleMember; 2760 } else { 2761 Bundle = BundleMember; 2762 } 2763 BundleMember->UnscheduledDepsInBundle = 0; 2764 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 2765 2766 // Group the instructions to a bundle. 2767 BundleMember->FirstInBundle = Bundle; 2768 PrevInBundle = BundleMember; 2769 } 2770 if (ScheduleEnd != OldScheduleEnd) { 2771 // The scheduling region got new instructions at the lower end (or it is a 2772 // new region for the first bundle). This makes it necessary to 2773 // recalculate all dependencies. 2774 // It is seldom that this needs to be done a second time after adding the 2775 // initial bundle to the region. 2776 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2777 ScheduleData *SD = getScheduleData(I); 2778 SD->clearDependencies(); 2779 } 2780 ReSchedule = true; 2781 } 2782 if (ReSchedule) { 2783 resetSchedule(); 2784 initialFillReadyList(ReadyInsts); 2785 } 2786 2787 DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 2788 << BB->getName() << "\n"); 2789 2790 calculateDependencies(Bundle, true, SLP); 2791 2792 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 2793 // means that there are no cyclic dependencies and we can schedule it. 2794 // Note that's important that we don't "schedule" the bundle yet (see 2795 // cancelScheduling). 2796 while (!Bundle->isReady() && !ReadyInsts.empty()) { 2797 2798 ScheduleData *pickedSD = ReadyInsts.back(); 2799 ReadyInsts.pop_back(); 2800 2801 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 2802 schedule(pickedSD, ReadyInsts); 2803 } 2804 } 2805 if (!Bundle->isReady()) { 2806 cancelScheduling(VL); 2807 return false; 2808 } 2809 return true; 2810 } 2811 2812 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL) { 2813 if (isa<PHINode>(VL[0])) 2814 return; 2815 2816 ScheduleData *Bundle = getScheduleData(VL[0]); 2817 DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 2818 assert(!Bundle->IsScheduled && 2819 "Can't cancel bundle which is already scheduled"); 2820 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 2821 "tried to unbundle something which is not a bundle"); 2822 2823 // Un-bundle: make single instructions out of the bundle. 2824 ScheduleData *BundleMember = Bundle; 2825 while (BundleMember) { 2826 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 2827 BundleMember->FirstInBundle = BundleMember; 2828 ScheduleData *Next = BundleMember->NextInBundle; 2829 BundleMember->NextInBundle = nullptr; 2830 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 2831 if (BundleMember->UnscheduledDepsInBundle == 0) { 2832 ReadyInsts.insert(BundleMember); 2833 } 2834 BundleMember = Next; 2835 } 2836 } 2837 2838 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V) { 2839 if (getScheduleData(V)) 2840 return true; 2841 Instruction *I = dyn_cast<Instruction>(V); 2842 assert(I && "bundle member must be an instruction"); 2843 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 2844 if (!ScheduleStart) { 2845 // It's the first instruction in the new region. 2846 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 2847 ScheduleStart = I; 2848 ScheduleEnd = I->getNextNode(); 2849 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 2850 DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 2851 return true; 2852 } 2853 // Search up and down at the same time, because we don't know if the new 2854 // instruction is above or below the existing scheduling region. 2855 BasicBlock::reverse_iterator UpIter(ScheduleStart); 2856 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 2857 BasicBlock::iterator DownIter(ScheduleEnd); 2858 BasicBlock::iterator LowerEnd = BB->end(); 2859 for (;;) { 2860 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 2861 DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 2862 return false; 2863 } 2864 2865 if (UpIter != UpperEnd) { 2866 if (&*UpIter == I) { 2867 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 2868 ScheduleStart = I; 2869 DEBUG(dbgs() << "SLP: extend schedule region start to " << *I << "\n"); 2870 return true; 2871 } 2872 UpIter++; 2873 } 2874 if (DownIter != LowerEnd) { 2875 if (&*DownIter == I) { 2876 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 2877 nullptr); 2878 ScheduleEnd = I->getNextNode(); 2879 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 2880 DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 2881 return true; 2882 } 2883 DownIter++; 2884 } 2885 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 2886 "instruction not found in block"); 2887 } 2888 return true; 2889 } 2890 2891 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 2892 Instruction *ToI, 2893 ScheduleData *PrevLoadStore, 2894 ScheduleData *NextLoadStore) { 2895 ScheduleData *CurrentLoadStore = PrevLoadStore; 2896 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 2897 ScheduleData *SD = ScheduleDataMap[I]; 2898 if (!SD) { 2899 // Allocate a new ScheduleData for the instruction. 2900 if (ChunkPos >= ChunkSize) { 2901 ScheduleDataChunks.push_back( 2902 llvm::make_unique<ScheduleData[]>(ChunkSize)); 2903 ChunkPos = 0; 2904 } 2905 SD = &(ScheduleDataChunks.back()[ChunkPos++]); 2906 ScheduleDataMap[I] = SD; 2907 SD->Inst = I; 2908 } 2909 assert(!isInSchedulingRegion(SD) && 2910 "new ScheduleData already in scheduling region"); 2911 SD->init(SchedulingRegionID); 2912 2913 if (I->mayReadOrWriteMemory()) { 2914 // Update the linked list of memory accessing instructions. 2915 if (CurrentLoadStore) { 2916 CurrentLoadStore->NextLoadStore = SD; 2917 } else { 2918 FirstLoadStoreInRegion = SD; 2919 } 2920 CurrentLoadStore = SD; 2921 } 2922 } 2923 if (NextLoadStore) { 2924 if (CurrentLoadStore) 2925 CurrentLoadStore->NextLoadStore = NextLoadStore; 2926 } else { 2927 LastLoadStoreInRegion = CurrentLoadStore; 2928 } 2929 } 2930 2931 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 2932 bool InsertInReadyList, 2933 BoUpSLP *SLP) { 2934 assert(SD->isSchedulingEntity()); 2935 2936 SmallVector<ScheduleData *, 10> WorkList; 2937 WorkList.push_back(SD); 2938 2939 while (!WorkList.empty()) { 2940 ScheduleData *SD = WorkList.back(); 2941 WorkList.pop_back(); 2942 2943 ScheduleData *BundleMember = SD; 2944 while (BundleMember) { 2945 assert(isInSchedulingRegion(BundleMember)); 2946 if (!BundleMember->hasValidDependencies()) { 2947 2948 DEBUG(dbgs() << "SLP: update deps of " << *BundleMember << "\n"); 2949 BundleMember->Dependencies = 0; 2950 BundleMember->resetUnscheduledDeps(); 2951 2952 // Handle def-use chain dependencies. 2953 for (User *U : BundleMember->Inst->users()) { 2954 if (isa<Instruction>(U)) { 2955 ScheduleData *UseSD = getScheduleData(U); 2956 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 2957 BundleMember->Dependencies++; 2958 ScheduleData *DestBundle = UseSD->FirstInBundle; 2959 if (!DestBundle->IsScheduled) { 2960 BundleMember->incrementUnscheduledDeps(1); 2961 } 2962 if (!DestBundle->hasValidDependencies()) { 2963 WorkList.push_back(DestBundle); 2964 } 2965 } 2966 } else { 2967 // I'm not sure if this can ever happen. But we need to be safe. 2968 // This lets the instruction/bundle never be scheduled and 2969 // eventually disable vectorization. 2970 BundleMember->Dependencies++; 2971 BundleMember->incrementUnscheduledDeps(1); 2972 } 2973 } 2974 2975 // Handle the memory dependencies. 2976 ScheduleData *DepDest = BundleMember->NextLoadStore; 2977 if (DepDest) { 2978 Instruction *SrcInst = BundleMember->Inst; 2979 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 2980 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 2981 unsigned numAliased = 0; 2982 unsigned DistToSrc = 1; 2983 2984 while (DepDest) { 2985 assert(isInSchedulingRegion(DepDest)); 2986 2987 // We have two limits to reduce the complexity: 2988 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 2989 // SLP->isAliased (which is the expensive part in this loop). 2990 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 2991 // the whole loop (even if the loop is fast, it's quadratic). 2992 // It's important for the loop break condition (see below) to 2993 // check this limit even between two read-only instructions. 2994 if (DistToSrc >= MaxMemDepDistance || 2995 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 2996 (numAliased >= AliasedCheckLimit || 2997 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 2998 2999 // We increment the counter only if the locations are aliased 3000 // (instead of counting all alias checks). This gives a better 3001 // balance between reduced runtime and accurate dependencies. 3002 numAliased++; 3003 3004 DepDest->MemoryDependencies.push_back(BundleMember); 3005 BundleMember->Dependencies++; 3006 ScheduleData *DestBundle = DepDest->FirstInBundle; 3007 if (!DestBundle->IsScheduled) { 3008 BundleMember->incrementUnscheduledDeps(1); 3009 } 3010 if (!DestBundle->hasValidDependencies()) { 3011 WorkList.push_back(DestBundle); 3012 } 3013 } 3014 DepDest = DepDest->NextLoadStore; 3015 3016 // Example, explaining the loop break condition: Let's assume our 3017 // starting instruction is i0 and MaxMemDepDistance = 3. 3018 // 3019 // +--------v--v--v 3020 // i0,i1,i2,i3,i4,i5,i6,i7,i8 3021 // +--------^--^--^ 3022 // 3023 // MaxMemDepDistance let us stop alias-checking at i3 and we add 3024 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 3025 // Previously we already added dependencies from i3 to i6,i7,i8 3026 // (because of MaxMemDepDistance). As we added a dependency from 3027 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 3028 // and we can abort this loop at i6. 3029 if (DistToSrc >= 2 * MaxMemDepDistance) 3030 break; 3031 DistToSrc++; 3032 } 3033 } 3034 } 3035 BundleMember = BundleMember->NextInBundle; 3036 } 3037 if (InsertInReadyList && SD->isReady()) { 3038 ReadyInsts.push_back(SD); 3039 DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst << "\n"); 3040 } 3041 } 3042 } 3043 3044 void BoUpSLP::BlockScheduling::resetSchedule() { 3045 assert(ScheduleStart && 3046 "tried to reset schedule on block which has not been scheduled"); 3047 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3048 ScheduleData *SD = getScheduleData(I); 3049 assert(isInSchedulingRegion(SD)); 3050 SD->IsScheduled = false; 3051 SD->resetUnscheduledDeps(); 3052 } 3053 ReadyInsts.clear(); 3054 } 3055 3056 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 3057 3058 if (!BS->ScheduleStart) 3059 return; 3060 3061 DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 3062 3063 BS->resetSchedule(); 3064 3065 // For the real scheduling we use a more sophisticated ready-list: it is 3066 // sorted by the original instruction location. This lets the final schedule 3067 // be as close as possible to the original instruction order. 3068 struct ScheduleDataCompare { 3069 bool operator()(ScheduleData *SD1, ScheduleData *SD2) { 3070 return SD2->SchedulingPriority < SD1->SchedulingPriority; 3071 } 3072 }; 3073 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 3074 3075 // Ensure that all dependency data is updated and fill the ready-list with 3076 // initial instructions. 3077 int Idx = 0; 3078 int NumToSchedule = 0; 3079 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 3080 I = I->getNextNode()) { 3081 ScheduleData *SD = BS->getScheduleData(I); 3082 assert( 3083 SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->Inst) != 0) && 3084 "scheduler and vectorizer have different opinion on what is a bundle"); 3085 SD->FirstInBundle->SchedulingPriority = Idx++; 3086 if (SD->isSchedulingEntity()) { 3087 BS->calculateDependencies(SD, false, this); 3088 NumToSchedule++; 3089 } 3090 } 3091 BS->initialFillReadyList(ReadyInsts); 3092 3093 Instruction *LastScheduledInst = BS->ScheduleEnd; 3094 3095 // Do the "real" scheduling. 3096 while (!ReadyInsts.empty()) { 3097 ScheduleData *picked = *ReadyInsts.begin(); 3098 ReadyInsts.erase(ReadyInsts.begin()); 3099 3100 // Move the scheduled instruction(s) to their dedicated places, if not 3101 // there yet. 3102 ScheduleData *BundleMember = picked; 3103 while (BundleMember) { 3104 Instruction *pickedInst = BundleMember->Inst; 3105 if (LastScheduledInst->getNextNode() != pickedInst) { 3106 BS->BB->getInstList().remove(pickedInst); 3107 BS->BB->getInstList().insert(LastScheduledInst, pickedInst); 3108 } 3109 LastScheduledInst = pickedInst; 3110 BundleMember = BundleMember->NextInBundle; 3111 } 3112 3113 BS->schedule(picked, ReadyInsts); 3114 NumToSchedule--; 3115 } 3116 assert(NumToSchedule == 0 && "could not schedule all instructions"); 3117 3118 // Avoid duplicate scheduling of the block. 3119 BS->ScheduleStart = nullptr; 3120 } 3121 3122 /// The SLPVectorizer Pass. 3123 struct SLPVectorizer : public FunctionPass { 3124 typedef SmallVector<StoreInst *, 8> StoreList; 3125 typedef MapVector<Value *, StoreList> StoreListMap; 3126 3127 /// Pass identification, replacement for typeid 3128 static char ID; 3129 3130 explicit SLPVectorizer() : FunctionPass(ID) { 3131 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 3132 } 3133 3134 ScalarEvolution *SE; 3135 TargetTransformInfo *TTI; 3136 TargetLibraryInfo *TLI; 3137 AliasAnalysis *AA; 3138 LoopInfo *LI; 3139 DominatorTree *DT; 3140 AssumptionCache *AC; 3141 3142 bool runOnFunction(Function &F) override { 3143 if (skipOptnoneFunction(F)) 3144 return false; 3145 3146 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 3147 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 3148 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 3149 TLI = TLIP ? &TLIP->getTLI() : nullptr; 3150 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3151 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 3152 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3153 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3154 3155 StoreRefs.clear(); 3156 bool Changed = false; 3157 3158 // If the target claims to have no vector registers don't attempt 3159 // vectorization. 3160 if (!TTI->getNumberOfRegisters(true)) 3161 return false; 3162 3163 // Use the vector register size specified by the target unless overridden 3164 // by a command-line option. 3165 // TODO: It would be better to limit the vectorization factor based on 3166 // data type rather than just register size. For example, x86 AVX has 3167 // 256-bit registers, but it does not support integer operations 3168 // at that width (that requires AVX2). 3169 if (MaxVectorRegSizeOption.getNumOccurrences()) 3170 MaxVecRegSize = MaxVectorRegSizeOption; 3171 else 3172 MaxVecRegSize = TTI->getRegisterBitWidth(true); 3173 3174 // Don't vectorize when the attribute NoImplicitFloat is used. 3175 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 3176 return false; 3177 3178 DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 3179 3180 // Use the bottom up slp vectorizer to construct chains that start with 3181 // store instructions. 3182 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC); 3183 3184 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 3185 // delete instructions. 3186 3187 // Scan the blocks in the function in post order. 3188 for (auto BB : post_order(&F.getEntryBlock())) { 3189 // Vectorize trees that end at stores. 3190 if (unsigned count = collectStores(BB, R)) { 3191 (void)count; 3192 DEBUG(dbgs() << "SLP: Found " << count << " stores to vectorize.\n"); 3193 Changed |= vectorizeStoreChains(R); 3194 } 3195 3196 // Vectorize trees that end at reductions. 3197 Changed |= vectorizeChainsInBlock(BB, R); 3198 } 3199 3200 if (Changed) { 3201 R.optimizeGatherSequence(); 3202 DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 3203 DEBUG(verifyFunction(F)); 3204 } 3205 return Changed; 3206 } 3207 3208 void getAnalysisUsage(AnalysisUsage &AU) const override { 3209 FunctionPass::getAnalysisUsage(AU); 3210 AU.addRequired<AssumptionCacheTracker>(); 3211 AU.addRequired<ScalarEvolutionWrapperPass>(); 3212 AU.addRequired<AAResultsWrapperPass>(); 3213 AU.addRequired<TargetTransformInfoWrapperPass>(); 3214 AU.addRequired<LoopInfoWrapperPass>(); 3215 AU.addRequired<DominatorTreeWrapperPass>(); 3216 AU.addPreserved<LoopInfoWrapperPass>(); 3217 AU.addPreserved<DominatorTreeWrapperPass>(); 3218 AU.setPreservesCFG(); 3219 } 3220 3221 private: 3222 3223 /// \brief Collect memory references and sort them according to their base 3224 /// object. We sort the stores to their base objects to reduce the cost of the 3225 /// quadratic search on the stores. TODO: We can further reduce this cost 3226 /// if we flush the chain creation every time we run into a memory barrier. 3227 unsigned collectStores(BasicBlock *BB, BoUpSLP &R); 3228 3229 /// \brief Try to vectorize a chain that starts at two arithmetic instrs. 3230 bool tryToVectorizePair(Value *A, Value *B, BoUpSLP &R); 3231 3232 /// \brief Try to vectorize a list of operands. 3233 /// \@param BuildVector A list of users to ignore for the purpose of 3234 /// scheduling and that don't need extracting. 3235 /// \returns true if a value was vectorized. 3236 bool tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 3237 ArrayRef<Value *> BuildVector = None, 3238 bool allowReorder = false); 3239 3240 /// \brief Try to vectorize a chain that may start at the operands of \V; 3241 bool tryToVectorize(BinaryOperator *V, BoUpSLP &R); 3242 3243 /// \brief Vectorize the stores that were collected in StoreRefs. 3244 bool vectorizeStoreChains(BoUpSLP &R); 3245 3246 /// \brief Scan the basic block and look for patterns that are likely to start 3247 /// a vectorization chain. 3248 bool vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R); 3249 3250 bool vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold, 3251 BoUpSLP &R, unsigned VecRegSize); 3252 3253 bool vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold, 3254 BoUpSLP &R); 3255 private: 3256 StoreListMap StoreRefs; 3257 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 3258 }; 3259 3260 /// \brief Check that the Values in the slice in VL array are still existent in 3261 /// the WeakVH array. 3262 /// Vectorization of part of the VL array may cause later values in the VL array 3263 /// to become invalid. We track when this has happened in the WeakVH array. 3264 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, ArrayRef<WeakVH> VH, 3265 unsigned SliceBegin, unsigned SliceSize) { 3266 VL = VL.slice(SliceBegin, SliceSize); 3267 VH = VH.slice(SliceBegin, SliceSize); 3268 return !std::equal(VL.begin(), VL.end(), VH.begin()); 3269 } 3270 3271 bool SLPVectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain, 3272 int CostThreshold, BoUpSLP &R, 3273 unsigned VecRegSize) { 3274 unsigned ChainLen = Chain.size(); 3275 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 3276 << "\n"); 3277 Type *StoreTy = cast<StoreInst>(Chain[0])->getValueOperand()->getType(); 3278 auto &DL = cast<StoreInst>(Chain[0])->getModule()->getDataLayout(); 3279 unsigned Sz = DL.getTypeSizeInBits(StoreTy); 3280 unsigned VF = VecRegSize / Sz; 3281 3282 if (!isPowerOf2_32(Sz) || VF < 2) 3283 return false; 3284 3285 // Keep track of values that were deleted by vectorizing in the loop below. 3286 SmallVector<WeakVH, 8> TrackValues(Chain.begin(), Chain.end()); 3287 3288 bool Changed = false; 3289 // Look for profitable vectorizable trees at all offsets, starting at zero. 3290 for (unsigned i = 0, e = ChainLen; i < e; ++i) { 3291 if (i + VF > e) 3292 break; 3293 3294 // Check that a previous iteration of this loop did not delete the Value. 3295 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 3296 continue; 3297 3298 DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 3299 << "\n"); 3300 ArrayRef<Value *> Operands = Chain.slice(i, VF); 3301 3302 R.buildTree(Operands); 3303 3304 int Cost = R.getTreeCost(); 3305 3306 DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); 3307 if (Cost < CostThreshold) { 3308 DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 3309 R.vectorizeTree(); 3310 3311 // Move to the next bundle. 3312 i += VF - 1; 3313 Changed = true; 3314 } 3315 } 3316 3317 return Changed; 3318 } 3319 3320 bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores, 3321 int costThreshold, BoUpSLP &R) { 3322 SetVector<StoreInst *> Heads, Tails; 3323 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 3324 3325 // We may run into multiple chains that merge into a single chain. We mark the 3326 // stores that we vectorized so that we don't visit the same store twice. 3327 BoUpSLP::ValueSet VectorizedStores; 3328 bool Changed = false; 3329 3330 // Do a quadratic search on all of the given stores and find 3331 // all of the pairs of stores that follow each other. 3332 SmallVector<unsigned, 16> IndexQueue; 3333 for (unsigned i = 0, e = Stores.size(); i < e; ++i) { 3334 const DataLayout &DL = Stores[i]->getModule()->getDataLayout(); 3335 IndexQueue.clear(); 3336 // If a store has multiple consecutive store candidates, search Stores 3337 // array according to the sequence: from i+1 to e, then from i-1 to 0. 3338 // This is because usually pairing with immediate succeeding or preceding 3339 // candidate create the best chance to find slp vectorization opportunity. 3340 unsigned j = 0; 3341 for (j = i + 1; j < e; ++j) 3342 IndexQueue.push_back(j); 3343 for (j = i; j > 0; --j) 3344 IndexQueue.push_back(j - 1); 3345 3346 for (auto &k : IndexQueue) { 3347 if (R.isConsecutiveAccess(Stores[i], Stores[k], DL)) { 3348 Tails.insert(Stores[k]); 3349 Heads.insert(Stores[i]); 3350 ConsecutiveChain[Stores[i]] = Stores[k]; 3351 break; 3352 } 3353 } 3354 } 3355 3356 // For stores that start but don't end a link in the chain: 3357 for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end(); 3358 it != e; ++it) { 3359 if (Tails.count(*it)) 3360 continue; 3361 3362 // We found a store instr that starts a chain. Now follow the chain and try 3363 // to vectorize it. 3364 BoUpSLP::ValueList Operands; 3365 StoreInst *I = *it; 3366 // Collect the chain into a list. 3367 while (Tails.count(I) || Heads.count(I)) { 3368 if (VectorizedStores.count(I)) 3369 break; 3370 Operands.push_back(I); 3371 // Move to the next value in the chain. 3372 I = ConsecutiveChain[I]; 3373 } 3374 3375 // FIXME: Is division-by-2 the correct step? Should we assert that the 3376 // register size is a power-of-2? 3377 for (unsigned Size = MaxVecRegSize; Size >= MinVecRegSize; Size /= 2) { 3378 if (vectorizeStoreChain(Operands, costThreshold, R, Size)) { 3379 // Mark the vectorized stores so that we don't vectorize them again. 3380 VectorizedStores.insert(Operands.begin(), Operands.end()); 3381 Changed = true; 3382 break; 3383 } 3384 } 3385 } 3386 3387 return Changed; 3388 } 3389 3390 3391 unsigned SLPVectorizer::collectStores(BasicBlock *BB, BoUpSLP &R) { 3392 unsigned count = 0; 3393 StoreRefs.clear(); 3394 const DataLayout &DL = BB->getModule()->getDataLayout(); 3395 for (Instruction &I : *BB) { 3396 StoreInst *SI = dyn_cast<StoreInst>(&I); 3397 if (!SI) 3398 continue; 3399 3400 // Don't touch volatile stores. 3401 if (!SI->isSimple()) 3402 continue; 3403 3404 // Check that the pointer points to scalars. 3405 Type *Ty = SI->getValueOperand()->getType(); 3406 if (!isValidElementType(Ty)) 3407 continue; 3408 3409 // Find the base pointer. 3410 Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), DL); 3411 3412 // Save the store locations. 3413 StoreRefs[Ptr].push_back(SI); 3414 count++; 3415 } 3416 return count; 3417 } 3418 3419 bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 3420 if (!A || !B) 3421 return false; 3422 Value *VL[] = { A, B }; 3423 return tryToVectorizeList(VL, R, None, true); 3424 } 3425 3426 bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 3427 ArrayRef<Value *> BuildVector, 3428 bool allowReorder) { 3429 if (VL.size() < 2) 3430 return false; 3431 3432 DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n"); 3433 3434 // Check that all of the parts are scalar instructions of the same type. 3435 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 3436 if (!I0) 3437 return false; 3438 3439 unsigned Opcode0 = I0->getOpcode(); 3440 const DataLayout &DL = I0->getModule()->getDataLayout(); 3441 3442 Type *Ty0 = I0->getType(); 3443 unsigned Sz = DL.getTypeSizeInBits(Ty0); 3444 // FIXME: Register size should be a parameter to this function, so we can 3445 // try different vectorization factors. 3446 unsigned VF = MinVecRegSize / Sz; 3447 3448 for (Value *V : VL) { 3449 Type *Ty = V->getType(); 3450 if (!isValidElementType(Ty)) 3451 return false; 3452 Instruction *Inst = dyn_cast<Instruction>(V); 3453 if (!Inst || Inst->getOpcode() != Opcode0) 3454 return false; 3455 } 3456 3457 bool Changed = false; 3458 3459 // Keep track of values that were deleted by vectorizing in the loop below. 3460 SmallVector<WeakVH, 8> TrackValues(VL.begin(), VL.end()); 3461 3462 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3463 unsigned OpsWidth = 0; 3464 3465 if (i + VF > e) 3466 OpsWidth = e - i; 3467 else 3468 OpsWidth = VF; 3469 3470 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 3471 break; 3472 3473 // Check that a previous iteration of this loop did not delete the Value. 3474 if (hasValueBeenRAUWed(VL, TrackValues, i, OpsWidth)) 3475 continue; 3476 3477 DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 3478 << "\n"); 3479 ArrayRef<Value *> Ops = VL.slice(i, OpsWidth); 3480 3481 ArrayRef<Value *> BuildVectorSlice; 3482 if (!BuildVector.empty()) 3483 BuildVectorSlice = BuildVector.slice(i, OpsWidth); 3484 3485 R.buildTree(Ops, BuildVectorSlice); 3486 // TODO: check if we can allow reordering also for other cases than 3487 // tryToVectorizePair() 3488 if (allowReorder && R.shouldReorder()) { 3489 assert(Ops.size() == 2); 3490 assert(BuildVectorSlice.empty()); 3491 Value *ReorderedOps[] = { Ops[1], Ops[0] }; 3492 R.buildTree(ReorderedOps, None); 3493 } 3494 int Cost = R.getTreeCost(); 3495 3496 if (Cost < -SLPCostThreshold) { 3497 DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 3498 Value *VectorizedRoot = R.vectorizeTree(); 3499 3500 // Reconstruct the build vector by extracting the vectorized root. This 3501 // way we handle the case where some elements of the vector are undefined. 3502 // (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2)) 3503 if (!BuildVectorSlice.empty()) { 3504 // The insert point is the last build vector instruction. The vectorized 3505 // root will precede it. This guarantees that we get an instruction. The 3506 // vectorized tree could have been constant folded. 3507 Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back()); 3508 unsigned VecIdx = 0; 3509 for (auto &V : BuildVectorSlice) { 3510 IRBuilder<true, NoFolder> Builder( 3511 ++BasicBlock::iterator(InsertAfter)); 3512 InsertElementInst *IE = cast<InsertElementInst>(V); 3513 Instruction *Extract = cast<Instruction>(Builder.CreateExtractElement( 3514 VectorizedRoot, Builder.getInt32(VecIdx++))); 3515 IE->setOperand(1, Extract); 3516 IE->removeFromParent(); 3517 IE->insertAfter(Extract); 3518 InsertAfter = IE; 3519 } 3520 } 3521 // Move to the next bundle. 3522 i += VF - 1; 3523 Changed = true; 3524 } 3525 } 3526 3527 return Changed; 3528 } 3529 3530 bool SLPVectorizer::tryToVectorize(BinaryOperator *V, BoUpSLP &R) { 3531 if (!V) 3532 return false; 3533 3534 // Try to vectorize V. 3535 if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R)) 3536 return true; 3537 3538 BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0)); 3539 BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1)); 3540 // Try to skip B. 3541 if (B && B->hasOneUse()) { 3542 BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 3543 BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 3544 if (tryToVectorizePair(A, B0, R)) { 3545 return true; 3546 } 3547 if (tryToVectorizePair(A, B1, R)) { 3548 return true; 3549 } 3550 } 3551 3552 // Try to skip A. 3553 if (A && A->hasOneUse()) { 3554 BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 3555 BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 3556 if (tryToVectorizePair(A0, B, R)) { 3557 return true; 3558 } 3559 if (tryToVectorizePair(A1, B, R)) { 3560 return true; 3561 } 3562 } 3563 return 0; 3564 } 3565 3566 /// \brief Generate a shuffle mask to be used in a reduction tree. 3567 /// 3568 /// \param VecLen The length of the vector to be reduced. 3569 /// \param NumEltsToRdx The number of elements that should be reduced in the 3570 /// vector. 3571 /// \param IsPairwise Whether the reduction is a pairwise or splitting 3572 /// reduction. A pairwise reduction will generate a mask of 3573 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 3574 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 3575 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 3576 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 3577 bool IsPairwise, bool IsLeft, 3578 IRBuilder<> &Builder) { 3579 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 3580 3581 SmallVector<Constant *, 32> ShuffleMask( 3582 VecLen, UndefValue::get(Builder.getInt32Ty())); 3583 3584 if (IsPairwise) 3585 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 3586 for (unsigned i = 0; i != NumEltsToRdx; ++i) 3587 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 3588 else 3589 // Move the upper half of the vector to the lower half. 3590 for (unsigned i = 0; i != NumEltsToRdx; ++i) 3591 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 3592 3593 return ConstantVector::get(ShuffleMask); 3594 } 3595 3596 3597 /// Model horizontal reductions. 3598 /// 3599 /// A horizontal reduction is a tree of reduction operations (currently add and 3600 /// fadd) that has operations that can be put into a vector as its leaf. 3601 /// For example, this tree: 3602 /// 3603 /// mul mul mul mul 3604 /// \ / \ / 3605 /// + + 3606 /// \ / 3607 /// + 3608 /// This tree has "mul" as its reduced values and "+" as its reduction 3609 /// operations. A reduction might be feeding into a store or a binary operation 3610 /// feeding a phi. 3611 /// ... 3612 /// \ / 3613 /// + 3614 /// | 3615 /// phi += 3616 /// 3617 /// Or: 3618 /// ... 3619 /// \ / 3620 /// + 3621 /// | 3622 /// *p = 3623 /// 3624 class HorizontalReduction { 3625 SmallVector<Value *, 16> ReductionOps; 3626 SmallVector<Value *, 32> ReducedVals; 3627 3628 BinaryOperator *ReductionRoot; 3629 PHINode *ReductionPHI; 3630 3631 /// The opcode of the reduction. 3632 unsigned ReductionOpcode; 3633 /// The opcode of the values we perform a reduction on. 3634 unsigned ReducedValueOpcode; 3635 /// The width of one full horizontal reduction operation. 3636 unsigned ReduxWidth; 3637 /// Should we model this reduction as a pairwise reduction tree or a tree that 3638 /// splits the vector in halves and adds those halves. 3639 bool IsPairwiseReduction; 3640 3641 public: 3642 HorizontalReduction() 3643 : ReductionRoot(nullptr), ReductionPHI(nullptr), ReductionOpcode(0), 3644 ReducedValueOpcode(0), ReduxWidth(0), IsPairwiseReduction(false) {} 3645 3646 /// \brief Try to find a reduction tree. 3647 bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B) { 3648 assert((!Phi || 3649 std::find(Phi->op_begin(), Phi->op_end(), B) != Phi->op_end()) && 3650 "Thi phi needs to use the binary operator"); 3651 3652 // We could have a initial reductions that is not an add. 3653 // r *= v1 + v2 + v3 + v4 3654 // In such a case start looking for a tree rooted in the first '+'. 3655 if (Phi) { 3656 if (B->getOperand(0) == Phi) { 3657 Phi = nullptr; 3658 B = dyn_cast<BinaryOperator>(B->getOperand(1)); 3659 } else if (B->getOperand(1) == Phi) { 3660 Phi = nullptr; 3661 B = dyn_cast<BinaryOperator>(B->getOperand(0)); 3662 } 3663 } 3664 3665 if (!B) 3666 return false; 3667 3668 Type *Ty = B->getType(); 3669 if (!isValidElementType(Ty)) 3670 return false; 3671 3672 const DataLayout &DL = B->getModule()->getDataLayout(); 3673 ReductionOpcode = B->getOpcode(); 3674 ReducedValueOpcode = 0; 3675 // FIXME: Register size should be a parameter to this function, so we can 3676 // try different vectorization factors. 3677 ReduxWidth = MinVecRegSize / DL.getTypeSizeInBits(Ty); 3678 ReductionRoot = B; 3679 ReductionPHI = Phi; 3680 3681 if (ReduxWidth < 4) 3682 return false; 3683 3684 // We currently only support adds. 3685 if (ReductionOpcode != Instruction::Add && 3686 ReductionOpcode != Instruction::FAdd) 3687 return false; 3688 3689 // Post order traverse the reduction tree starting at B. We only handle true 3690 // trees containing only binary operators. 3691 SmallVector<std::pair<BinaryOperator *, unsigned>, 32> Stack; 3692 Stack.push_back(std::make_pair(B, 0)); 3693 while (!Stack.empty()) { 3694 BinaryOperator *TreeN = Stack.back().first; 3695 unsigned EdgeToVist = Stack.back().second++; 3696 bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode; 3697 3698 // Only handle trees in the current basic block. 3699 if (TreeN->getParent() != B->getParent()) 3700 return false; 3701 3702 // Each tree node needs to have one user except for the ultimate 3703 // reduction. 3704 if (!TreeN->hasOneUse() && TreeN != B) 3705 return false; 3706 3707 // Postorder vist. 3708 if (EdgeToVist == 2 || IsReducedValue) { 3709 if (IsReducedValue) { 3710 // Make sure that the opcodes of the operations that we are going to 3711 // reduce match. 3712 if (!ReducedValueOpcode) 3713 ReducedValueOpcode = TreeN->getOpcode(); 3714 else if (ReducedValueOpcode != TreeN->getOpcode()) 3715 return false; 3716 ReducedVals.push_back(TreeN); 3717 } else { 3718 // We need to be able to reassociate the adds. 3719 if (!TreeN->isAssociative()) 3720 return false; 3721 ReductionOps.push_back(TreeN); 3722 } 3723 // Retract. 3724 Stack.pop_back(); 3725 continue; 3726 } 3727 3728 // Visit left or right. 3729 Value *NextV = TreeN->getOperand(EdgeToVist); 3730 BinaryOperator *Next = dyn_cast<BinaryOperator>(NextV); 3731 if (Next) 3732 Stack.push_back(std::make_pair(Next, 0)); 3733 else if (NextV != Phi) 3734 return false; 3735 } 3736 return true; 3737 } 3738 3739 /// \brief Attempt to vectorize the tree found by 3740 /// matchAssociativeReduction. 3741 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 3742 if (ReducedVals.empty()) 3743 return false; 3744 3745 unsigned NumReducedVals = ReducedVals.size(); 3746 if (NumReducedVals < ReduxWidth) 3747 return false; 3748 3749 Value *VectorizedTree = nullptr; 3750 IRBuilder<> Builder(ReductionRoot); 3751 FastMathFlags Unsafe; 3752 Unsafe.setUnsafeAlgebra(); 3753 Builder.SetFastMathFlags(Unsafe); 3754 unsigned i = 0; 3755 3756 for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) { 3757 V.buildTree(makeArrayRef(&ReducedVals[i], ReduxWidth), ReductionOps); 3758 3759 // Estimate cost. 3760 int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]); 3761 if (Cost >= -SLPCostThreshold) 3762 break; 3763 3764 DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost 3765 << ". (HorRdx)\n"); 3766 3767 // Vectorize a tree. 3768 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 3769 Value *VectorizedRoot = V.vectorizeTree(); 3770 3771 // Emit a reduction. 3772 Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder); 3773 if (VectorizedTree) { 3774 Builder.SetCurrentDebugLocation(Loc); 3775 VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree, 3776 ReducedSubTree, "bin.rdx"); 3777 } else 3778 VectorizedTree = ReducedSubTree; 3779 } 3780 3781 if (VectorizedTree) { 3782 // Finish the reduction. 3783 for (; i < NumReducedVals; ++i) { 3784 Builder.SetCurrentDebugLocation( 3785 cast<Instruction>(ReducedVals[i])->getDebugLoc()); 3786 VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree, 3787 ReducedVals[i]); 3788 } 3789 // Update users. 3790 if (ReductionPHI) { 3791 assert(ReductionRoot && "Need a reduction operation"); 3792 ReductionRoot->setOperand(0, VectorizedTree); 3793 ReductionRoot->setOperand(1, ReductionPHI); 3794 } else 3795 ReductionRoot->replaceAllUsesWith(VectorizedTree); 3796 } 3797 return VectorizedTree != nullptr; 3798 } 3799 3800 private: 3801 3802 /// \brief Calculate the cost of a reduction. 3803 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal) { 3804 Type *ScalarTy = FirstReducedVal->getType(); 3805 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 3806 3807 int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true); 3808 int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false); 3809 3810 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 3811 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 3812 3813 int ScalarReduxCost = 3814 ReduxWidth * TTI->getArithmeticInstrCost(ReductionOpcode, VecTy); 3815 3816 DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 3817 << " for reduction that starts with " << *FirstReducedVal 3818 << " (It is a " 3819 << (IsPairwiseReduction ? "pairwise" : "splitting") 3820 << " reduction)\n"); 3821 3822 return VecReduxCost - ScalarReduxCost; 3823 } 3824 3825 static Value *createBinOp(IRBuilder<> &Builder, unsigned Opcode, Value *L, 3826 Value *R, const Twine &Name = "") { 3827 if (Opcode == Instruction::FAdd) 3828 return Builder.CreateFAdd(L, R, Name); 3829 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, L, R, Name); 3830 } 3831 3832 /// \brief Emit a horizontal reduction of the vectorized value. 3833 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) { 3834 assert(VectorizedValue && "Need to have a vectorized tree node"); 3835 assert(isPowerOf2_32(ReduxWidth) && 3836 "We only handle power-of-two reductions for now"); 3837 3838 Value *TmpVec = VectorizedValue; 3839 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 3840 if (IsPairwiseReduction) { 3841 Value *LeftMask = 3842 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 3843 Value *RightMask = 3844 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 3845 3846 Value *LeftShuf = Builder.CreateShuffleVector( 3847 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 3848 Value *RightShuf = Builder.CreateShuffleVector( 3849 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 3850 "rdx.shuf.r"); 3851 TmpVec = createBinOp(Builder, ReductionOpcode, LeftShuf, RightShuf, 3852 "bin.rdx"); 3853 } else { 3854 Value *UpperHalf = 3855 createRdxShuffleMask(ReduxWidth, i, false, false, Builder); 3856 Value *Shuf = Builder.CreateShuffleVector( 3857 TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf"); 3858 TmpVec = createBinOp(Builder, ReductionOpcode, TmpVec, Shuf, "bin.rdx"); 3859 } 3860 } 3861 3862 // The result is in the first element of the vector. 3863 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 3864 } 3865 }; 3866 3867 /// \brief Recognize construction of vectors like 3868 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 3869 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 3870 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 3871 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 3872 /// 3873 /// Returns true if it matches 3874 /// 3875 static bool findBuildVector(InsertElementInst *FirstInsertElem, 3876 SmallVectorImpl<Value *> &BuildVector, 3877 SmallVectorImpl<Value *> &BuildVectorOpds) { 3878 if (!isa<UndefValue>(FirstInsertElem->getOperand(0))) 3879 return false; 3880 3881 InsertElementInst *IE = FirstInsertElem; 3882 while (true) { 3883 BuildVector.push_back(IE); 3884 BuildVectorOpds.push_back(IE->getOperand(1)); 3885 3886 if (IE->use_empty()) 3887 return false; 3888 3889 InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->user_back()); 3890 if (!NextUse) 3891 return true; 3892 3893 // If this isn't the final use, make sure the next insertelement is the only 3894 // use. It's OK if the final constructed vector is used multiple times 3895 if (!IE->hasOneUse()) 3896 return false; 3897 3898 IE = NextUse; 3899 } 3900 3901 return false; 3902 } 3903 3904 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 3905 return V->getType() < V2->getType(); 3906 } 3907 3908 bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 3909 bool Changed = false; 3910 SmallVector<Value *, 4> Incoming; 3911 SmallSet<Value *, 16> VisitedInstrs; 3912 3913 bool HaveVectorizedPhiNodes = true; 3914 while (HaveVectorizedPhiNodes) { 3915 HaveVectorizedPhiNodes = false; 3916 3917 // Collect the incoming values from the PHIs. 3918 Incoming.clear(); 3919 for (BasicBlock::iterator instr = BB->begin(), ie = BB->end(); instr != ie; 3920 ++instr) { 3921 PHINode *P = dyn_cast<PHINode>(instr); 3922 if (!P) 3923 break; 3924 3925 if (!VisitedInstrs.count(P)) 3926 Incoming.push_back(P); 3927 } 3928 3929 // Sort by type. 3930 std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc); 3931 3932 // Try to vectorize elements base on their type. 3933 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 3934 E = Incoming.end(); 3935 IncIt != E;) { 3936 3937 // Look for the next elements with the same type. 3938 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 3939 while (SameTypeIt != E && 3940 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 3941 VisitedInstrs.insert(*SameTypeIt); 3942 ++SameTypeIt; 3943 } 3944 3945 // Try to vectorize them. 3946 unsigned NumElts = (SameTypeIt - IncIt); 3947 DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n"); 3948 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R)) { 3949 // Success start over because instructions might have been changed. 3950 HaveVectorizedPhiNodes = true; 3951 Changed = true; 3952 break; 3953 } 3954 3955 // Start over at the next instruction of a different type (or the end). 3956 IncIt = SameTypeIt; 3957 } 3958 } 3959 3960 VisitedInstrs.clear(); 3961 3962 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) { 3963 // We may go through BB multiple times so skip the one we have checked. 3964 if (!VisitedInstrs.insert(it).second) 3965 continue; 3966 3967 if (isa<DbgInfoIntrinsic>(it)) 3968 continue; 3969 3970 // Try to vectorize reductions that use PHINodes. 3971 if (PHINode *P = dyn_cast<PHINode>(it)) { 3972 // Check that the PHI is a reduction PHI. 3973 if (P->getNumIncomingValues() != 2) 3974 return Changed; 3975 Value *Rdx = 3976 (P->getIncomingBlock(0) == BB 3977 ? (P->getIncomingValue(0)) 3978 : (P->getIncomingBlock(1) == BB ? P->getIncomingValue(1) 3979 : nullptr)); 3980 // Check if this is a Binary Operator. 3981 BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx); 3982 if (!BI) 3983 continue; 3984 3985 // Try to match and vectorize a horizontal reduction. 3986 HorizontalReduction HorRdx; 3987 if (ShouldVectorizeHor && HorRdx.matchAssociativeReduction(P, BI) && 3988 HorRdx.tryToReduce(R, TTI)) { 3989 Changed = true; 3990 it = BB->begin(); 3991 e = BB->end(); 3992 continue; 3993 } 3994 3995 Value *Inst = BI->getOperand(0); 3996 if (Inst == P) 3997 Inst = BI->getOperand(1); 3998 3999 if (tryToVectorize(dyn_cast<BinaryOperator>(Inst), R)) { 4000 // We would like to start over since some instructions are deleted 4001 // and the iterator may become invalid value. 4002 Changed = true; 4003 it = BB->begin(); 4004 e = BB->end(); 4005 continue; 4006 } 4007 4008 continue; 4009 } 4010 4011 // Try to vectorize horizontal reductions feeding into a store. 4012 if (ShouldStartVectorizeHorAtStore) 4013 if (StoreInst *SI = dyn_cast<StoreInst>(it)) 4014 if (BinaryOperator *BinOp = 4015 dyn_cast<BinaryOperator>(SI->getValueOperand())) { 4016 HorizontalReduction HorRdx; 4017 if (((HorRdx.matchAssociativeReduction(nullptr, BinOp) && 4018 HorRdx.tryToReduce(R, TTI)) || 4019 tryToVectorize(BinOp, R))) { 4020 Changed = true; 4021 it = BB->begin(); 4022 e = BB->end(); 4023 continue; 4024 } 4025 } 4026 4027 // Try to vectorize horizontal reductions feeding into a return. 4028 if (ReturnInst *RI = dyn_cast<ReturnInst>(it)) 4029 if (RI->getNumOperands() != 0) 4030 if (BinaryOperator *BinOp = 4031 dyn_cast<BinaryOperator>(RI->getOperand(0))) { 4032 DEBUG(dbgs() << "SLP: Found a return to vectorize.\n"); 4033 if (tryToVectorizePair(BinOp->getOperand(0), 4034 BinOp->getOperand(1), R)) { 4035 Changed = true; 4036 it = BB->begin(); 4037 e = BB->end(); 4038 continue; 4039 } 4040 } 4041 4042 // Try to vectorize trees that start at compare instructions. 4043 if (CmpInst *CI = dyn_cast<CmpInst>(it)) { 4044 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) { 4045 Changed = true; 4046 // We would like to start over since some instructions are deleted 4047 // and the iterator may become invalid value. 4048 it = BB->begin(); 4049 e = BB->end(); 4050 continue; 4051 } 4052 4053 for (int i = 0; i < 2; ++i) { 4054 if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i))) { 4055 if (tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R)) { 4056 Changed = true; 4057 // We would like to start over since some instructions are deleted 4058 // and the iterator may become invalid value. 4059 it = BB->begin(); 4060 e = BB->end(); 4061 break; 4062 } 4063 } 4064 } 4065 continue; 4066 } 4067 4068 // Try to vectorize trees that start at insertelement instructions. 4069 if (InsertElementInst *FirstInsertElem = dyn_cast<InsertElementInst>(it)) { 4070 SmallVector<Value *, 16> BuildVector; 4071 SmallVector<Value *, 16> BuildVectorOpds; 4072 if (!findBuildVector(FirstInsertElem, BuildVector, BuildVectorOpds)) 4073 continue; 4074 4075 // Vectorize starting with the build vector operands ignoring the 4076 // BuildVector instructions for the purpose of scheduling and user 4077 // extraction. 4078 if (tryToVectorizeList(BuildVectorOpds, R, BuildVector)) { 4079 Changed = true; 4080 it = BB->begin(); 4081 e = BB->end(); 4082 } 4083 4084 continue; 4085 } 4086 } 4087 4088 return Changed; 4089 } 4090 4091 bool SLPVectorizer::vectorizeStoreChains(BoUpSLP &R) { 4092 bool Changed = false; 4093 // Attempt to sort and vectorize each of the store-groups. 4094 for (StoreListMap::iterator it = StoreRefs.begin(), e = StoreRefs.end(); 4095 it != e; ++it) { 4096 if (it->second.size() < 2) 4097 continue; 4098 4099 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 4100 << it->second.size() << ".\n"); 4101 4102 // Process the stores in chunks of 16. 4103 // TODO: The limit of 16 inhibits greater vectorization factors. 4104 // For example, AVX2 supports v32i8. Increasing this limit, however, 4105 // may cause a significant compile-time increase. 4106 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) { 4107 unsigned Len = std::min<unsigned>(CE - CI, 16); 4108 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), 4109 -SLPCostThreshold, R); 4110 } 4111 } 4112 return Changed; 4113 } 4114 4115 } // end anonymous namespace 4116 4117 char SLPVectorizer::ID = 0; 4118 static const char lv_name[] = "SLP Vectorizer"; 4119 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 4120 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 4121 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 4122 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 4123 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 4124 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 4125 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 4126 4127 namespace llvm { 4128 Pass *createSLPVectorizerPass() { return new SLPVectorizer(); } 4129 } 4130