1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/DenseSet.h" 23 #include "llvm/ADT/MapVector.h" 24 #include "llvm/ADT/None.h" 25 #include "llvm/ADT/Optional.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SetVector.h" 29 #include "llvm/ADT/SmallBitVector.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/ADT/iterator.h" 35 #include "llvm/ADT/iterator_range.h" 36 #include "llvm/Analysis/AliasAnalysis.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/LoopAccessAnalysis.h" 41 #include "llvm/Analysis/LoopInfo.h" 42 #include "llvm/Analysis/MemoryLocation.h" 43 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 44 #include "llvm/Analysis/ScalarEvolution.h" 45 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 46 #include "llvm/Analysis/TargetLibraryInfo.h" 47 #include "llvm/Analysis/TargetTransformInfo.h" 48 #include "llvm/Analysis/ValueTracking.h" 49 #include "llvm/Analysis/VectorUtils.h" 50 #include "llvm/IR/Attributes.h" 51 #include "llvm/IR/BasicBlock.h" 52 #include "llvm/IR/Constant.h" 53 #include "llvm/IR/Constants.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/DebugLoc.h" 56 #include "llvm/IR/DerivedTypes.h" 57 #include "llvm/IR/Dominators.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/IRBuilder.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/NoFolder.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PassManager.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/Verifier.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/DOTGraphTraits.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/GraphWriter.h" 85 #include "llvm/Support/KnownBits.h" 86 #include "llvm/Support/MathExtras.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Transforms/Utils/LoopUtils.h" 89 #include "llvm/Transforms/Vectorize.h" 90 #include <algorithm> 91 #include <cassert> 92 #include <cstdint> 93 #include <iterator> 94 #include <memory> 95 #include <set> 96 #include <string> 97 #include <tuple> 98 #include <utility> 99 #include <vector> 100 101 using namespace llvm; 102 using namespace llvm::PatternMatch; 103 using namespace slpvectorizer; 104 105 #define SV_NAME "slp-vectorizer" 106 #define DEBUG_TYPE "SLP" 107 108 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 109 110 cl::opt<bool> 111 llvm::RunSLPVectorization("vectorize-slp", cl::init(false), cl::Hidden, 112 cl::desc("Run the SLP vectorization passes")); 113 114 static cl::opt<int> 115 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 116 cl::desc("Only vectorize if you gain more than this " 117 "number ")); 118 119 static cl::opt<bool> 120 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 121 cl::desc("Attempt to vectorize horizontal reductions")); 122 123 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 124 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 125 cl::desc( 126 "Attempt to vectorize horizontal reductions feeding into a store")); 127 128 static cl::opt<int> 129 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 130 cl::desc("Attempt to vectorize for this register size in bits")); 131 132 static cl::opt<int> 133 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 134 cl::desc("Maximum depth of the lookup for consecutive stores.")); 135 136 /// Limits the size of scheduling regions in a block. 137 /// It avoid long compile times for _very_ large blocks where vector 138 /// instructions are spread over a wide range. 139 /// This limit is way higher than needed by real-world functions. 140 static cl::opt<int> 141 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 142 cl::desc("Limit the size of the SLP scheduling region per block")); 143 144 static cl::opt<int> MinVectorRegSizeOption( 145 "slp-min-reg-size", cl::init(128), cl::Hidden, 146 cl::desc("Attempt to vectorize for this register size in bits")); 147 148 static cl::opt<unsigned> RecursionMaxDepth( 149 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 150 cl::desc("Limit the recursion depth when building a vectorizable tree")); 151 152 static cl::opt<unsigned> MinTreeSize( 153 "slp-min-tree-size", cl::init(3), cl::Hidden, 154 cl::desc("Only vectorize small trees if they are fully vectorizable")); 155 156 // The maximum depth that the look-ahead score heuristic will explore. 157 // The higher this value, the higher the compilation time overhead. 158 static cl::opt<int> LookAheadMaxDepth( 159 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 160 cl::desc("The maximum look-ahead depth for operand reordering scores")); 161 162 // The Look-ahead heuristic goes through the users of the bundle to calculate 163 // the users cost in getExternalUsesCost(). To avoid compilation time increase 164 // we limit the number of users visited to this value. 165 static cl::opt<unsigned> LookAheadUsersBudget( 166 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 167 cl::desc("The maximum number of users to visit while visiting the " 168 "predecessors. This prevents compilation time increase.")); 169 170 static cl::opt<bool> 171 ViewSLPTree("view-slp-tree", cl::Hidden, 172 cl::desc("Display the SLP trees with Graphviz")); 173 174 // Limit the number of alias checks. The limit is chosen so that 175 // it has no negative effect on the llvm benchmarks. 176 static const unsigned AliasedCheckLimit = 10; 177 178 // Another limit for the alias checks: The maximum distance between load/store 179 // instructions where alias checks are done. 180 // This limit is useful for very large basic blocks. 181 static const unsigned MaxMemDepDistance = 160; 182 183 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 184 /// regions to be handled. 185 static const int MinScheduleRegionSize = 16; 186 187 /// Predicate for the element types that the SLP vectorizer supports. 188 /// 189 /// The most important thing to filter here are types which are invalid in LLVM 190 /// vectors. We also filter target specific types which have absolutely no 191 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 192 /// avoids spending time checking the cost model and realizing that they will 193 /// be inevitably scalarized. 194 static bool isValidElementType(Type *Ty) { 195 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 196 !Ty->isPPC_FP128Ty(); 197 } 198 199 /// \returns true if all of the instructions in \p VL are in the same block or 200 /// false otherwise. 201 static bool allSameBlock(ArrayRef<Value *> VL) { 202 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 203 if (!I0) 204 return false; 205 BasicBlock *BB = I0->getParent(); 206 for (int i = 1, e = VL.size(); i < e; i++) { 207 Instruction *I = dyn_cast<Instruction>(VL[i]); 208 if (!I) 209 return false; 210 211 if (BB != I->getParent()) 212 return false; 213 } 214 return true; 215 } 216 217 /// \returns True if all of the values in \p VL are constants (but not 218 /// globals/constant expressions). 219 static bool allConstant(ArrayRef<Value *> VL) { 220 // Constant expressions and globals can't be vectorized like normal integer/FP 221 // constants. 222 for (Value *i : VL) 223 if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i)) 224 return false; 225 return true; 226 } 227 228 /// \returns True if all of the values in \p VL are identical. 229 static bool isSplat(ArrayRef<Value *> VL) { 230 for (unsigned i = 1, e = VL.size(); i < e; ++i) 231 if (VL[i] != VL[0]) 232 return false; 233 return true; 234 } 235 236 /// \returns True if \p I is commutative, handles CmpInst as well as Instruction. 237 static bool isCommutative(Instruction *I) { 238 if (auto *IC = dyn_cast<CmpInst>(I)) 239 return IC->isCommutative(); 240 return I->isCommutative(); 241 } 242 243 /// Checks if the vector of instructions can be represented as a shuffle, like: 244 /// %x0 = extractelement <4 x i8> %x, i32 0 245 /// %x3 = extractelement <4 x i8> %x, i32 3 246 /// %y1 = extractelement <4 x i8> %y, i32 1 247 /// %y2 = extractelement <4 x i8> %y, i32 2 248 /// %x0x0 = mul i8 %x0, %x0 249 /// %x3x3 = mul i8 %x3, %x3 250 /// %y1y1 = mul i8 %y1, %y1 251 /// %y2y2 = mul i8 %y2, %y2 252 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 253 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 254 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 255 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 256 /// ret <4 x i8> %ins4 257 /// can be transformed into: 258 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 259 /// i32 6> 260 /// %2 = mul <4 x i8> %1, %1 261 /// ret <4 x i8> %2 262 /// We convert this initially to something like: 263 /// %x0 = extractelement <4 x i8> %x, i32 0 264 /// %x3 = extractelement <4 x i8> %x, i32 3 265 /// %y1 = extractelement <4 x i8> %y, i32 1 266 /// %y2 = extractelement <4 x i8> %y, i32 2 267 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 268 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 269 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 270 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 271 /// %5 = mul <4 x i8> %4, %4 272 /// %6 = extractelement <4 x i8> %5, i32 0 273 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 274 /// %7 = extractelement <4 x i8> %5, i32 1 275 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 276 /// %8 = extractelement <4 x i8> %5, i32 2 277 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 278 /// %9 = extractelement <4 x i8> %5, i32 3 279 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 280 /// ret <4 x i8> %ins4 281 /// InstCombiner transforms this into a shuffle and vector mul 282 /// TODO: Can we split off and reuse the shuffle mask detection from 283 /// TargetTransformInfo::getInstructionThroughput? 284 static Optional<TargetTransformInfo::ShuffleKind> 285 isShuffle(ArrayRef<Value *> VL) { 286 auto *EI0 = cast<ExtractElementInst>(VL[0]); 287 unsigned Size = EI0->getVectorOperandType()->getVectorNumElements(); 288 Value *Vec1 = nullptr; 289 Value *Vec2 = nullptr; 290 enum ShuffleMode { Unknown, Select, Permute }; 291 ShuffleMode CommonShuffleMode = Unknown; 292 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 293 auto *EI = cast<ExtractElementInst>(VL[I]); 294 auto *Vec = EI->getVectorOperand(); 295 // All vector operands must have the same number of vector elements. 296 if (Vec->getType()->getVectorNumElements() != Size) 297 return None; 298 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 299 if (!Idx) 300 return None; 301 // Undefined behavior if Idx is negative or >= Size. 302 if (Idx->getValue().uge(Size)) 303 continue; 304 unsigned IntIdx = Idx->getValue().getZExtValue(); 305 // We can extractelement from undef vector. 306 if (isa<UndefValue>(Vec)) 307 continue; 308 // For correct shuffling we have to have at most 2 different vector operands 309 // in all extractelement instructions. 310 if (!Vec1 || Vec1 == Vec) 311 Vec1 = Vec; 312 else if (!Vec2 || Vec2 == Vec) 313 Vec2 = Vec; 314 else 315 return None; 316 if (CommonShuffleMode == Permute) 317 continue; 318 // If the extract index is not the same as the operation number, it is a 319 // permutation. 320 if (IntIdx != I) { 321 CommonShuffleMode = Permute; 322 continue; 323 } 324 CommonShuffleMode = Select; 325 } 326 // If we're not crossing lanes in different vectors, consider it as blending. 327 if (CommonShuffleMode == Select && Vec2) 328 return TargetTransformInfo::SK_Select; 329 // If Vec2 was never used, we have a permutation of a single vector, otherwise 330 // we have permutation of 2 vectors. 331 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 332 : TargetTransformInfo::SK_PermuteSingleSrc; 333 } 334 335 namespace { 336 337 /// Main data required for vectorization of instructions. 338 struct InstructionsState { 339 /// The very first instruction in the list with the main opcode. 340 Value *OpValue = nullptr; 341 342 /// The main/alternate instruction. 343 Instruction *MainOp = nullptr; 344 Instruction *AltOp = nullptr; 345 346 /// The main/alternate opcodes for the list of instructions. 347 unsigned getOpcode() const { 348 return MainOp ? MainOp->getOpcode() : 0; 349 } 350 351 unsigned getAltOpcode() const { 352 return AltOp ? AltOp->getOpcode() : 0; 353 } 354 355 /// Some of the instructions in the list have alternate opcodes. 356 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 357 358 bool isOpcodeOrAlt(Instruction *I) const { 359 unsigned CheckedOpcode = I->getOpcode(); 360 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 361 } 362 363 InstructionsState() = delete; 364 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 365 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 366 }; 367 368 } // end anonymous namespace 369 370 /// Chooses the correct key for scheduling data. If \p Op has the same (or 371 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 372 /// OpValue. 373 static Value *isOneOf(const InstructionsState &S, Value *Op) { 374 auto *I = dyn_cast<Instruction>(Op); 375 if (I && S.isOpcodeOrAlt(I)) 376 return Op; 377 return S.OpValue; 378 } 379 380 /// \returns true if \p Opcode is allowed as part of of the main/alternate 381 /// instruction for SLP vectorization. 382 /// 383 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 384 /// "shuffled out" lane would result in division by zero. 385 static bool isValidForAlternation(unsigned Opcode) { 386 if (Instruction::isIntDivRem(Opcode)) 387 return false; 388 389 return true; 390 } 391 392 /// \returns analysis of the Instructions in \p VL described in 393 /// InstructionsState, the Opcode that we suppose the whole list 394 /// could be vectorized even if its structure is diverse. 395 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 396 unsigned BaseIndex = 0) { 397 // Make sure these are all Instructions. 398 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 399 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 400 401 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 402 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 403 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 404 unsigned AltOpcode = Opcode; 405 unsigned AltIndex = BaseIndex; 406 407 // Check for one alternate opcode from another BinaryOperator. 408 // TODO - generalize to support all operators (types, calls etc.). 409 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 410 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 411 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 412 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 413 continue; 414 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 415 isValidForAlternation(Opcode)) { 416 AltOpcode = InstOpcode; 417 AltIndex = Cnt; 418 continue; 419 } 420 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 421 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 422 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 423 if (Ty0 == Ty1) { 424 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 425 continue; 426 if (Opcode == AltOpcode) { 427 assert(isValidForAlternation(Opcode) && 428 isValidForAlternation(InstOpcode) && 429 "Cast isn't safe for alternation, logic needs to be updated!"); 430 AltOpcode = InstOpcode; 431 AltIndex = Cnt; 432 continue; 433 } 434 } 435 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 436 continue; 437 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 438 } 439 440 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 441 cast<Instruction>(VL[AltIndex])); 442 } 443 444 /// \returns true if all of the values in \p VL have the same type or false 445 /// otherwise. 446 static bool allSameType(ArrayRef<Value *> VL) { 447 Type *Ty = VL[0]->getType(); 448 for (int i = 1, e = VL.size(); i < e; i++) 449 if (VL[i]->getType() != Ty) 450 return false; 451 452 return true; 453 } 454 455 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 456 static Optional<unsigned> getExtractIndex(Instruction *E) { 457 unsigned Opcode = E->getOpcode(); 458 assert((Opcode == Instruction::ExtractElement || 459 Opcode == Instruction::ExtractValue) && 460 "Expected extractelement or extractvalue instruction."); 461 if (Opcode == Instruction::ExtractElement) { 462 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 463 if (!CI) 464 return None; 465 return CI->getZExtValue(); 466 } 467 ExtractValueInst *EI = cast<ExtractValueInst>(E); 468 if (EI->getNumIndices() != 1) 469 return None; 470 return *EI->idx_begin(); 471 } 472 473 /// \returns True if in-tree use also needs extract. This refers to 474 /// possible scalar operand in vectorized instruction. 475 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 476 TargetLibraryInfo *TLI) { 477 unsigned Opcode = UserInst->getOpcode(); 478 switch (Opcode) { 479 case Instruction::Load: { 480 LoadInst *LI = cast<LoadInst>(UserInst); 481 return (LI->getPointerOperand() == Scalar); 482 } 483 case Instruction::Store: { 484 StoreInst *SI = cast<StoreInst>(UserInst); 485 return (SI->getPointerOperand() == Scalar); 486 } 487 case Instruction::Call: { 488 CallInst *CI = cast<CallInst>(UserInst); 489 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 490 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 491 if (hasVectorInstrinsicScalarOpd(ID, i)) 492 return (CI->getArgOperand(i) == Scalar); 493 } 494 LLVM_FALLTHROUGH; 495 } 496 default: 497 return false; 498 } 499 } 500 501 /// \returns the AA location that is being access by the instruction. 502 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 503 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 504 return MemoryLocation::get(SI); 505 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 506 return MemoryLocation::get(LI); 507 return MemoryLocation(); 508 } 509 510 /// \returns True if the instruction is not a volatile or atomic load/store. 511 static bool isSimple(Instruction *I) { 512 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 513 return LI->isSimple(); 514 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 515 return SI->isSimple(); 516 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 517 return !MI->isVolatile(); 518 return true; 519 } 520 521 namespace llvm { 522 523 namespace slpvectorizer { 524 525 /// Bottom Up SLP Vectorizer. 526 class BoUpSLP { 527 struct TreeEntry; 528 struct ScheduleData; 529 530 public: 531 using ValueList = SmallVector<Value *, 8>; 532 using InstrList = SmallVector<Instruction *, 16>; 533 using ValueSet = SmallPtrSet<Value *, 16>; 534 using StoreList = SmallVector<StoreInst *, 8>; 535 using ExtraValueToDebugLocsMap = 536 MapVector<Value *, SmallVector<Instruction *, 2>>; 537 538 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 539 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 540 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 541 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 542 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 543 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 544 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 545 // Use the vector register size specified by the target unless overridden 546 // by a command-line option. 547 // TODO: It would be better to limit the vectorization factor based on 548 // data type rather than just register size. For example, x86 AVX has 549 // 256-bit registers, but it does not support integer operations 550 // at that width (that requires AVX2). 551 if (MaxVectorRegSizeOption.getNumOccurrences()) 552 MaxVecRegSize = MaxVectorRegSizeOption; 553 else 554 MaxVecRegSize = TTI->getRegisterBitWidth(true); 555 556 if (MinVectorRegSizeOption.getNumOccurrences()) 557 MinVecRegSize = MinVectorRegSizeOption; 558 else 559 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 560 } 561 562 /// Vectorize the tree that starts with the elements in \p VL. 563 /// Returns the vectorized root. 564 Value *vectorizeTree(); 565 566 /// Vectorize the tree but with the list of externally used values \p 567 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 568 /// generated extractvalue instructions. 569 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 570 571 /// \returns the cost incurred by unwanted spills and fills, caused by 572 /// holding live values over call sites. 573 int getSpillCost() const; 574 575 /// \returns the vectorization cost of the subtree that starts at \p VL. 576 /// A negative number means that this is profitable. 577 int getTreeCost(); 578 579 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 580 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 581 void buildTree(ArrayRef<Value *> Roots, 582 ArrayRef<Value *> UserIgnoreLst = None); 583 584 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 585 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 586 /// into account (and updating it, if required) list of externally used 587 /// values stored in \p ExternallyUsedValues. 588 void buildTree(ArrayRef<Value *> Roots, 589 ExtraValueToDebugLocsMap &ExternallyUsedValues, 590 ArrayRef<Value *> UserIgnoreLst = None); 591 592 /// Clear the internal data structures that are created by 'buildTree'. 593 void deleteTree() { 594 VectorizableTree.clear(); 595 ScalarToTreeEntry.clear(); 596 MustGather.clear(); 597 ExternalUses.clear(); 598 NumOpsWantToKeepOrder.clear(); 599 NumOpsWantToKeepOriginalOrder = 0; 600 for (auto &Iter : BlocksSchedules) { 601 BlockScheduling *BS = Iter.second.get(); 602 BS->clear(); 603 } 604 MinBWs.clear(); 605 } 606 607 unsigned getTreeSize() const { return VectorizableTree.size(); } 608 609 /// Perform LICM and CSE on the newly generated gather sequences. 610 void optimizeGatherSequence(); 611 612 /// \returns The best order of instructions for vectorization. 613 Optional<ArrayRef<unsigned>> bestOrder() const { 614 auto I = std::max_element( 615 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 616 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 617 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 618 return D1.second < D2.second; 619 }); 620 if (I == NumOpsWantToKeepOrder.end() || 621 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 622 return None; 623 624 return makeArrayRef(I->getFirst()); 625 } 626 627 /// \return The vector element size in bits to use when vectorizing the 628 /// expression tree ending at \p V. If V is a store, the size is the width of 629 /// the stored value. Otherwise, the size is the width of the largest loaded 630 /// value reaching V. This method is used by the vectorizer to calculate 631 /// vectorization factors. 632 unsigned getVectorElementSize(Value *V) const; 633 634 /// Compute the minimum type sizes required to represent the entries in a 635 /// vectorizable tree. 636 void computeMinimumValueSizes(); 637 638 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 639 unsigned getMaxVecRegSize() const { 640 return MaxVecRegSize; 641 } 642 643 // \returns minimum vector register size as set by cl::opt. 644 unsigned getMinVecRegSize() const { 645 return MinVecRegSize; 646 } 647 648 /// Check if homogeneous aggregate is isomorphic to some VectorType. 649 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 650 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 651 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 652 /// 653 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 654 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 655 656 /// \returns True if the VectorizableTree is both tiny and not fully 657 /// vectorizable. We do not vectorize such trees. 658 bool isTreeTinyAndNotFullyVectorizable() const; 659 660 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 661 /// can be load combined in the backend. Load combining may not be allowed in 662 /// the IR optimizer, so we do not want to alter the pattern. For example, 663 /// partially transforming a scalar bswap() pattern into vector code is 664 /// effectively impossible for the backend to undo. 665 /// TODO: If load combining is allowed in the IR optimizer, this analysis 666 /// may not be necessary. 667 bool isLoadCombineReductionCandidate(unsigned ReductionOpcode) const; 668 669 OptimizationRemarkEmitter *getORE() { return ORE; } 670 671 /// This structure holds any data we need about the edges being traversed 672 /// during buildTree_rec(). We keep track of: 673 /// (i) the user TreeEntry index, and 674 /// (ii) the index of the edge. 675 struct EdgeInfo { 676 EdgeInfo() = default; 677 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 678 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 679 /// The user TreeEntry. 680 TreeEntry *UserTE = nullptr; 681 /// The operand index of the use. 682 unsigned EdgeIdx = UINT_MAX; 683 #ifndef NDEBUG 684 friend inline raw_ostream &operator<<(raw_ostream &OS, 685 const BoUpSLP::EdgeInfo &EI) { 686 EI.dump(OS); 687 return OS; 688 } 689 /// Debug print. 690 void dump(raw_ostream &OS) const { 691 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 692 << " EdgeIdx:" << EdgeIdx << "}"; 693 } 694 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 695 #endif 696 }; 697 698 /// A helper data structure to hold the operands of a vector of instructions. 699 /// This supports a fixed vector length for all operand vectors. 700 class VLOperands { 701 /// For each operand we need (i) the value, and (ii) the opcode that it 702 /// would be attached to if the expression was in a left-linearized form. 703 /// This is required to avoid illegal operand reordering. 704 /// For example: 705 /// \verbatim 706 /// 0 Op1 707 /// |/ 708 /// Op1 Op2 Linearized + Op2 709 /// \ / ----------> |/ 710 /// - - 711 /// 712 /// Op1 - Op2 (0 + Op1) - Op2 713 /// \endverbatim 714 /// 715 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 716 /// 717 /// Another way to think of this is to track all the operations across the 718 /// path from the operand all the way to the root of the tree and to 719 /// calculate the operation that corresponds to this path. For example, the 720 /// path from Op2 to the root crosses the RHS of the '-', therefore the 721 /// corresponding operation is a '-' (which matches the one in the 722 /// linearized tree, as shown above). 723 /// 724 /// For lack of a better term, we refer to this operation as Accumulated 725 /// Path Operation (APO). 726 struct OperandData { 727 OperandData() = default; 728 OperandData(Value *V, bool APO, bool IsUsed) 729 : V(V), APO(APO), IsUsed(IsUsed) {} 730 /// The operand value. 731 Value *V = nullptr; 732 /// TreeEntries only allow a single opcode, or an alternate sequence of 733 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 734 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 735 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 736 /// (e.g., Add/Mul) 737 bool APO = false; 738 /// Helper data for the reordering function. 739 bool IsUsed = false; 740 }; 741 742 /// During operand reordering, we are trying to select the operand at lane 743 /// that matches best with the operand at the neighboring lane. Our 744 /// selection is based on the type of value we are looking for. For example, 745 /// if the neighboring lane has a load, we need to look for a load that is 746 /// accessing a consecutive address. These strategies are summarized in the 747 /// 'ReorderingMode' enumerator. 748 enum class ReorderingMode { 749 Load, ///< Matching loads to consecutive memory addresses 750 Opcode, ///< Matching instructions based on opcode (same or alternate) 751 Constant, ///< Matching constants 752 Splat, ///< Matching the same instruction multiple times (broadcast) 753 Failed, ///< We failed to create a vectorizable group 754 }; 755 756 using OperandDataVec = SmallVector<OperandData, 2>; 757 758 /// A vector of operand vectors. 759 SmallVector<OperandDataVec, 4> OpsVec; 760 761 const DataLayout &DL; 762 ScalarEvolution &SE; 763 const BoUpSLP &R; 764 765 /// \returns the operand data at \p OpIdx and \p Lane. 766 OperandData &getData(unsigned OpIdx, unsigned Lane) { 767 return OpsVec[OpIdx][Lane]; 768 } 769 770 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 771 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 772 return OpsVec[OpIdx][Lane]; 773 } 774 775 /// Clears the used flag for all entries. 776 void clearUsed() { 777 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 778 OpIdx != NumOperands; ++OpIdx) 779 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 780 ++Lane) 781 OpsVec[OpIdx][Lane].IsUsed = false; 782 } 783 784 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 785 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 786 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 787 } 788 789 // The hard-coded scores listed here are not very important. When computing 790 // the scores of matching one sub-tree with another, we are basically 791 // counting the number of values that are matching. So even if all scores 792 // are set to 1, we would still get a decent matching result. 793 // However, sometimes we have to break ties. For example we may have to 794 // choose between matching loads vs matching opcodes. This is what these 795 // scores are helping us with: they provide the order of preference. 796 797 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 798 static const int ScoreConsecutiveLoads = 3; 799 /// ExtractElementInst from same vector and consecutive indexes. 800 static const int ScoreConsecutiveExtracts = 3; 801 /// Constants. 802 static const int ScoreConstants = 2; 803 /// Instructions with the same opcode. 804 static const int ScoreSameOpcode = 2; 805 /// Instructions with alt opcodes (e.g, add + sub). 806 static const int ScoreAltOpcodes = 1; 807 /// Identical instructions (a.k.a. splat or broadcast). 808 static const int ScoreSplat = 1; 809 /// Matching with an undef is preferable to failing. 810 static const int ScoreUndef = 1; 811 /// Score for failing to find a decent match. 812 static const int ScoreFail = 0; 813 /// User exteranl to the vectorized code. 814 static const int ExternalUseCost = 1; 815 /// The user is internal but in a different lane. 816 static const int UserInDiffLaneCost = ExternalUseCost; 817 818 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 819 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 820 ScalarEvolution &SE) { 821 auto *LI1 = dyn_cast<LoadInst>(V1); 822 auto *LI2 = dyn_cast<LoadInst>(V2); 823 if (LI1 && LI2) 824 return isConsecutiveAccess(LI1, LI2, DL, SE) 825 ? VLOperands::ScoreConsecutiveLoads 826 : VLOperands::ScoreFail; 827 828 auto *C1 = dyn_cast<Constant>(V1); 829 auto *C2 = dyn_cast<Constant>(V2); 830 if (C1 && C2) 831 return VLOperands::ScoreConstants; 832 833 // Extracts from consecutive indexes of the same vector better score as 834 // the extracts could be optimized away. 835 auto *Ex1 = dyn_cast<ExtractElementInst>(V1); 836 auto *Ex2 = dyn_cast<ExtractElementInst>(V2); 837 if (Ex1 && Ex2 && Ex1->getVectorOperand() == Ex2->getVectorOperand() && 838 cast<ConstantInt>(Ex1->getIndexOperand())->getZExtValue() + 1 == 839 cast<ConstantInt>(Ex2->getIndexOperand())->getZExtValue()) { 840 return VLOperands::ScoreConsecutiveExtracts; 841 } 842 843 auto *I1 = dyn_cast<Instruction>(V1); 844 auto *I2 = dyn_cast<Instruction>(V2); 845 if (I1 && I2) { 846 if (I1 == I2) 847 return VLOperands::ScoreSplat; 848 InstructionsState S = getSameOpcode({I1, I2}); 849 // Note: Only consider instructions with <= 2 operands to avoid 850 // complexity explosion. 851 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 852 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 853 : VLOperands::ScoreSameOpcode; 854 } 855 856 if (isa<UndefValue>(V2)) 857 return VLOperands::ScoreUndef; 858 859 return VLOperands::ScoreFail; 860 } 861 862 /// Holds the values and their lane that are taking part in the look-ahead 863 /// score calculation. This is used in the external uses cost calculation. 864 SmallDenseMap<Value *, int> InLookAheadValues; 865 866 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are 867 /// either external to the vectorized code, or require shuffling. 868 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 869 const std::pair<Value *, int> &RHS) { 870 int Cost = 0; 871 SmallVector<std::pair<Value *, int>, 2> Values = {LHS, RHS}; 872 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 873 Value *V = Values[Idx].first; 874 // Calculate the absolute lane, using the minimum relative lane of LHS 875 // and RHS as base and Idx as the offset. 876 int Ln = std::min(LHS.second, RHS.second) + Idx; 877 assert(Ln >= 0 && "Bad lane calculation"); 878 unsigned UsersBudget = LookAheadUsersBudget; 879 for (User *U : V->users()) { 880 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 881 // The user is in the VectorizableTree. Check if we need to insert. 882 auto It = llvm::find(UserTE->Scalars, U); 883 assert(It != UserTE->Scalars.end() && "U is in UserTE"); 884 int UserLn = std::distance(UserTE->Scalars.begin(), It); 885 assert(UserLn >= 0 && "Bad lane"); 886 if (UserLn != Ln) 887 Cost += UserInDiffLaneCost; 888 } else { 889 // Check if the user is in the look-ahead code. 890 auto It2 = InLookAheadValues.find(U); 891 if (It2 != InLookAheadValues.end()) { 892 // The user is in the look-ahead code. Check the lane. 893 if (It2->second != Ln) 894 Cost += UserInDiffLaneCost; 895 } else { 896 // The user is neither in SLP tree nor in the look-ahead code. 897 Cost += ExternalUseCost; 898 } 899 } 900 // Limit the number of visited uses to cap compilation time. 901 if (--UsersBudget == 0) 902 break; 903 } 904 } 905 return Cost; 906 } 907 908 /// Go through the operands of \p LHS and \p RHS recursively until \p 909 /// MaxLevel, and return the cummulative score. For example: 910 /// \verbatim 911 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 912 /// \ / \ / \ / \ / 913 /// + + + + 914 /// G1 G2 G3 G4 915 /// \endverbatim 916 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 917 /// each level recursively, accumulating the score. It starts from matching 918 /// the additions at level 0, then moves on to the loads (level 1). The 919 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 920 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 921 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 922 /// Please note that the order of the operands does not matter, as we 923 /// evaluate the score of all profitable combinations of operands. In 924 /// other words the score of G1 and G4 is the same as G1 and G2. This 925 /// heuristic is based on ideas described in: 926 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 927 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 928 /// Luís F. W. Góes 929 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 930 const std::pair<Value *, int> &RHS, int CurrLevel, 931 int MaxLevel) { 932 933 Value *V1 = LHS.first; 934 Value *V2 = RHS.first; 935 // Get the shallow score of V1 and V2. 936 int ShallowScoreAtThisLevel = 937 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) - 938 getExternalUsesCost(LHS, RHS)); 939 int Lane1 = LHS.second; 940 int Lane2 = RHS.second; 941 942 // If reached MaxLevel, 943 // or if V1 and V2 are not instructions, 944 // or if they are SPLAT, 945 // or if they are not consecutive, early return the current cost. 946 auto *I1 = dyn_cast<Instruction>(V1); 947 auto *I2 = dyn_cast<Instruction>(V2); 948 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 949 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 950 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel)) 951 return ShallowScoreAtThisLevel; 952 assert(I1 && I2 && "Should have early exited."); 953 954 // Keep track of in-tree values for determining the external-use cost. 955 InLookAheadValues[V1] = Lane1; 956 InLookAheadValues[V2] = Lane2; 957 958 // Contains the I2 operand indexes that got matched with I1 operands. 959 SmallSet<unsigned, 4> Op2Used; 960 961 // Recursion towards the operands of I1 and I2. We are trying all possbile 962 // operand pairs, and keeping track of the best score. 963 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 964 OpIdx1 != NumOperands1; ++OpIdx1) { 965 // Try to pair op1I with the best operand of I2. 966 int MaxTmpScore = 0; 967 unsigned MaxOpIdx2 = 0; 968 bool FoundBest = false; 969 // If I2 is commutative try all combinations. 970 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 971 unsigned ToIdx = isCommutative(I2) 972 ? I2->getNumOperands() 973 : std::min(I2->getNumOperands(), OpIdx1 + 1); 974 assert(FromIdx <= ToIdx && "Bad index"); 975 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 976 // Skip operands already paired with OpIdx1. 977 if (Op2Used.count(OpIdx2)) 978 continue; 979 // Recursively calculate the cost at each level 980 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 981 {I2->getOperand(OpIdx2), Lane2}, 982 CurrLevel + 1, MaxLevel); 983 // Look for the best score. 984 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 985 MaxTmpScore = TmpScore; 986 MaxOpIdx2 = OpIdx2; 987 FoundBest = true; 988 } 989 } 990 if (FoundBest) { 991 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 992 Op2Used.insert(MaxOpIdx2); 993 ShallowScoreAtThisLevel += MaxTmpScore; 994 } 995 } 996 return ShallowScoreAtThisLevel; 997 } 998 999 /// \Returns the look-ahead score, which tells us how much the sub-trees 1000 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1001 /// score. This helps break ties in an informed way when we cannot decide on 1002 /// the order of the operands by just considering the immediate 1003 /// predecessors. 1004 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1005 const std::pair<Value *, int> &RHS) { 1006 InLookAheadValues.clear(); 1007 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1008 } 1009 1010 // Search all operands in Ops[*][Lane] for the one that matches best 1011 // Ops[OpIdx][LastLane] and return its opreand index. 1012 // If no good match can be found, return None. 1013 Optional<unsigned> 1014 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1015 ArrayRef<ReorderingMode> ReorderingModes) { 1016 unsigned NumOperands = getNumOperands(); 1017 1018 // The operand of the previous lane at OpIdx. 1019 Value *OpLastLane = getData(OpIdx, LastLane).V; 1020 1021 // Our strategy mode for OpIdx. 1022 ReorderingMode RMode = ReorderingModes[OpIdx]; 1023 1024 // The linearized opcode of the operand at OpIdx, Lane. 1025 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1026 1027 // The best operand index and its score. 1028 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1029 // are using the score to differentiate between the two. 1030 struct BestOpData { 1031 Optional<unsigned> Idx = None; 1032 unsigned Score = 0; 1033 } BestOp; 1034 1035 // Iterate through all unused operands and look for the best. 1036 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1037 // Get the operand at Idx and Lane. 1038 OperandData &OpData = getData(Idx, Lane); 1039 Value *Op = OpData.V; 1040 bool OpAPO = OpData.APO; 1041 1042 // Skip already selected operands. 1043 if (OpData.IsUsed) 1044 continue; 1045 1046 // Skip if we are trying to move the operand to a position with a 1047 // different opcode in the linearized tree form. This would break the 1048 // semantics. 1049 if (OpAPO != OpIdxAPO) 1050 continue; 1051 1052 // Look for an operand that matches the current mode. 1053 switch (RMode) { 1054 case ReorderingMode::Load: 1055 case ReorderingMode::Constant: 1056 case ReorderingMode::Opcode: { 1057 bool LeftToRight = Lane > LastLane; 1058 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1059 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1060 unsigned Score = 1061 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1062 if (Score > BestOp.Score) { 1063 BestOp.Idx = Idx; 1064 BestOp.Score = Score; 1065 } 1066 break; 1067 } 1068 case ReorderingMode::Splat: 1069 if (Op == OpLastLane) 1070 BestOp.Idx = Idx; 1071 break; 1072 case ReorderingMode::Failed: 1073 return None; 1074 } 1075 } 1076 1077 if (BestOp.Idx) { 1078 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1079 return BestOp.Idx; 1080 } 1081 // If we could not find a good match return None. 1082 return None; 1083 } 1084 1085 /// Helper for reorderOperandVecs. \Returns the lane that we should start 1086 /// reordering from. This is the one which has the least number of operands 1087 /// that can freely move about. 1088 unsigned getBestLaneToStartReordering() const { 1089 unsigned BestLane = 0; 1090 unsigned Min = UINT_MAX; 1091 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1092 ++Lane) { 1093 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 1094 if (NumFreeOps < Min) { 1095 Min = NumFreeOps; 1096 BestLane = Lane; 1097 } 1098 } 1099 return BestLane; 1100 } 1101 1102 /// \Returns the maximum number of operands that are allowed to be reordered 1103 /// for \p Lane. This is used as a heuristic for selecting the first lane to 1104 /// start operand reordering. 1105 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1106 unsigned CntTrue = 0; 1107 unsigned NumOperands = getNumOperands(); 1108 // Operands with the same APO can be reordered. We therefore need to count 1109 // how many of them we have for each APO, like this: Cnt[APO] = x. 1110 // Since we only have two APOs, namely true and false, we can avoid using 1111 // a map. Instead we can simply count the number of operands that 1112 // correspond to one of them (in this case the 'true' APO), and calculate 1113 // the other by subtracting it from the total number of operands. 1114 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 1115 if (getData(OpIdx, Lane).APO) 1116 ++CntTrue; 1117 unsigned CntFalse = NumOperands - CntTrue; 1118 return std::max(CntTrue, CntFalse); 1119 } 1120 1121 /// Go through the instructions in VL and append their operands. 1122 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1123 assert(!VL.empty() && "Bad VL"); 1124 assert((empty() || VL.size() == getNumLanes()) && 1125 "Expected same number of lanes"); 1126 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1127 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1128 OpsVec.resize(NumOperands); 1129 unsigned NumLanes = VL.size(); 1130 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1131 OpsVec[OpIdx].resize(NumLanes); 1132 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1133 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1134 // Our tree has just 3 nodes: the root and two operands. 1135 // It is therefore trivial to get the APO. We only need to check the 1136 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1137 // RHS operand. The LHS operand of both add and sub is never attached 1138 // to an inversese operation in the linearized form, therefore its APO 1139 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1140 1141 // Since operand reordering is performed on groups of commutative 1142 // operations or alternating sequences (e.g., +, -), we can safely 1143 // tell the inverse operations by checking commutativity. 1144 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1145 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1146 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1147 APO, false}; 1148 } 1149 } 1150 } 1151 1152 /// \returns the number of operands. 1153 unsigned getNumOperands() const { return OpsVec.size(); } 1154 1155 /// \returns the number of lanes. 1156 unsigned getNumLanes() const { return OpsVec[0].size(); } 1157 1158 /// \returns the operand value at \p OpIdx and \p Lane. 1159 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1160 return getData(OpIdx, Lane).V; 1161 } 1162 1163 /// \returns true if the data structure is empty. 1164 bool empty() const { return OpsVec.empty(); } 1165 1166 /// Clears the data. 1167 void clear() { OpsVec.clear(); } 1168 1169 /// \Returns true if there are enough operands identical to \p Op to fill 1170 /// the whole vector. 1171 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1172 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1173 bool OpAPO = getData(OpIdx, Lane).APO; 1174 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1175 if (Ln == Lane) 1176 continue; 1177 // This is set to true if we found a candidate for broadcast at Lane. 1178 bool FoundCandidate = false; 1179 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1180 OperandData &Data = getData(OpI, Ln); 1181 if (Data.APO != OpAPO || Data.IsUsed) 1182 continue; 1183 if (Data.V == Op) { 1184 FoundCandidate = true; 1185 Data.IsUsed = true; 1186 break; 1187 } 1188 } 1189 if (!FoundCandidate) 1190 return false; 1191 } 1192 return true; 1193 } 1194 1195 public: 1196 /// Initialize with all the operands of the instruction vector \p RootVL. 1197 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1198 ScalarEvolution &SE, const BoUpSLP &R) 1199 : DL(DL), SE(SE), R(R) { 1200 // Append all the operands of RootVL. 1201 appendOperandsOfVL(RootVL); 1202 } 1203 1204 /// \Returns a value vector with the operands across all lanes for the 1205 /// opearnd at \p OpIdx. 1206 ValueList getVL(unsigned OpIdx) const { 1207 ValueList OpVL(OpsVec[OpIdx].size()); 1208 assert(OpsVec[OpIdx].size() == getNumLanes() && 1209 "Expected same num of lanes across all operands"); 1210 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1211 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1212 return OpVL; 1213 } 1214 1215 // Performs operand reordering for 2 or more operands. 1216 // The original operands are in OrigOps[OpIdx][Lane]. 1217 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1218 void reorder() { 1219 unsigned NumOperands = getNumOperands(); 1220 unsigned NumLanes = getNumLanes(); 1221 // Each operand has its own mode. We are using this mode to help us select 1222 // the instructions for each lane, so that they match best with the ones 1223 // we have selected so far. 1224 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1225 1226 // This is a greedy single-pass algorithm. We are going over each lane 1227 // once and deciding on the best order right away with no back-tracking. 1228 // However, in order to increase its effectiveness, we start with the lane 1229 // that has operands that can move the least. For example, given the 1230 // following lanes: 1231 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1232 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1233 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1234 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1235 // we will start at Lane 1, since the operands of the subtraction cannot 1236 // be reordered. Then we will visit the rest of the lanes in a circular 1237 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1238 1239 // Find the first lane that we will start our search from. 1240 unsigned FirstLane = getBestLaneToStartReordering(); 1241 1242 // Initialize the modes. 1243 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1244 Value *OpLane0 = getValue(OpIdx, FirstLane); 1245 // Keep track if we have instructions with all the same opcode on one 1246 // side. 1247 if (isa<LoadInst>(OpLane0)) 1248 ReorderingModes[OpIdx] = ReorderingMode::Load; 1249 else if (isa<Instruction>(OpLane0)) { 1250 // Check if OpLane0 should be broadcast. 1251 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1252 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1253 else 1254 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1255 } 1256 else if (isa<Constant>(OpLane0)) 1257 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1258 else if (isa<Argument>(OpLane0)) 1259 // Our best hope is a Splat. It may save some cost in some cases. 1260 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1261 else 1262 // NOTE: This should be unreachable. 1263 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1264 } 1265 1266 // If the initial strategy fails for any of the operand indexes, then we 1267 // perform reordering again in a second pass. This helps avoid assigning 1268 // high priority to the failed strategy, and should improve reordering for 1269 // the non-failed operand indexes. 1270 for (int Pass = 0; Pass != 2; ++Pass) { 1271 // Skip the second pass if the first pass did not fail. 1272 bool StrategyFailed = false; 1273 // Mark all operand data as free to use. 1274 clearUsed(); 1275 // We keep the original operand order for the FirstLane, so reorder the 1276 // rest of the lanes. We are visiting the nodes in a circular fashion, 1277 // using FirstLane as the center point and increasing the radius 1278 // distance. 1279 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1280 // Visit the lane on the right and then the lane on the left. 1281 for (int Direction : {+1, -1}) { 1282 int Lane = FirstLane + Direction * Distance; 1283 if (Lane < 0 || Lane >= (int)NumLanes) 1284 continue; 1285 int LastLane = Lane - Direction; 1286 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1287 "Out of bounds"); 1288 // Look for a good match for each operand. 1289 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1290 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1291 Optional<unsigned> BestIdx = 1292 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1293 // By not selecting a value, we allow the operands that follow to 1294 // select a better matching value. We will get a non-null value in 1295 // the next run of getBestOperand(). 1296 if (BestIdx) { 1297 // Swap the current operand with the one returned by 1298 // getBestOperand(). 1299 swap(OpIdx, BestIdx.getValue(), Lane); 1300 } else { 1301 // We failed to find a best operand, set mode to 'Failed'. 1302 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1303 // Enable the second pass. 1304 StrategyFailed = true; 1305 } 1306 } 1307 } 1308 } 1309 // Skip second pass if the strategy did not fail. 1310 if (!StrategyFailed) 1311 break; 1312 } 1313 } 1314 1315 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1316 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1317 switch (RMode) { 1318 case ReorderingMode::Load: 1319 return "Load"; 1320 case ReorderingMode::Opcode: 1321 return "Opcode"; 1322 case ReorderingMode::Constant: 1323 return "Constant"; 1324 case ReorderingMode::Splat: 1325 return "Splat"; 1326 case ReorderingMode::Failed: 1327 return "Failed"; 1328 } 1329 llvm_unreachable("Unimplemented Reordering Type"); 1330 } 1331 1332 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1333 raw_ostream &OS) { 1334 return OS << getModeStr(RMode); 1335 } 1336 1337 /// Debug print. 1338 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1339 printMode(RMode, dbgs()); 1340 } 1341 1342 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1343 return printMode(RMode, OS); 1344 } 1345 1346 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1347 const unsigned Indent = 2; 1348 unsigned Cnt = 0; 1349 for (const OperandDataVec &OpDataVec : OpsVec) { 1350 OS << "Operand " << Cnt++ << "\n"; 1351 for (const OperandData &OpData : OpDataVec) { 1352 OS.indent(Indent) << "{"; 1353 if (Value *V = OpData.V) 1354 OS << *V; 1355 else 1356 OS << "null"; 1357 OS << ", APO:" << OpData.APO << "}\n"; 1358 } 1359 OS << "\n"; 1360 } 1361 return OS; 1362 } 1363 1364 /// Debug print. 1365 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1366 #endif 1367 }; 1368 1369 /// Checks if the instruction is marked for deletion. 1370 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1371 1372 /// Marks values operands for later deletion by replacing them with Undefs. 1373 void eraseInstructions(ArrayRef<Value *> AV); 1374 1375 ~BoUpSLP(); 1376 1377 private: 1378 /// Checks if all users of \p I are the part of the vectorization tree. 1379 bool areAllUsersVectorized(Instruction *I) const; 1380 1381 /// \returns the cost of the vectorizable entry. 1382 int getEntryCost(TreeEntry *E); 1383 1384 /// This is the recursive part of buildTree. 1385 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1386 const EdgeInfo &EI); 1387 1388 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1389 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1390 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1391 /// returns false, setting \p CurrentOrder to either an empty vector or a 1392 /// non-identity permutation that allows to reuse extract instructions. 1393 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1394 SmallVectorImpl<unsigned> &CurrentOrder) const; 1395 1396 /// Vectorize a single entry in the tree. 1397 Value *vectorizeTree(TreeEntry *E); 1398 1399 /// Vectorize a single entry in the tree, starting in \p VL. 1400 Value *vectorizeTree(ArrayRef<Value *> VL); 1401 1402 /// \returns the scalarization cost for this type. Scalarization in this 1403 /// context means the creation of vectors from a group of scalars. 1404 int getGatherCost(Type *Ty, const DenseSet<unsigned> &ShuffledIndices) const; 1405 1406 /// \returns the scalarization cost for this list of values. Assuming that 1407 /// this subtree gets vectorized, we may need to extract the values from the 1408 /// roots. This method calculates the cost of extracting the values. 1409 int getGatherCost(ArrayRef<Value *> VL) const; 1410 1411 /// Set the Builder insert point to one after the last instruction in 1412 /// the bundle 1413 void setInsertPointAfterBundle(TreeEntry *E); 1414 1415 /// \returns a vector from a collection of scalars in \p VL. 1416 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 1417 1418 /// \returns whether the VectorizableTree is fully vectorizable and will 1419 /// be beneficial even the tree height is tiny. 1420 bool isFullyVectorizableTinyTree() const; 1421 1422 /// Reorder commutative or alt operands to get better probability of 1423 /// generating vectorized code. 1424 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1425 SmallVectorImpl<Value *> &Left, 1426 SmallVectorImpl<Value *> &Right, 1427 const DataLayout &DL, 1428 ScalarEvolution &SE, 1429 const BoUpSLP &R); 1430 struct TreeEntry { 1431 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1432 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1433 1434 /// \returns true if the scalars in VL are equal to this entry. 1435 bool isSame(ArrayRef<Value *> VL) const { 1436 if (VL.size() == Scalars.size()) 1437 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1438 return VL.size() == ReuseShuffleIndices.size() && 1439 std::equal( 1440 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 1441 [this](Value *V, unsigned Idx) { return V == Scalars[Idx]; }); 1442 } 1443 1444 /// A vector of scalars. 1445 ValueList Scalars; 1446 1447 /// The Scalars are vectorized into this value. It is initialized to Null. 1448 Value *VectorizedValue = nullptr; 1449 1450 /// Do we need to gather this sequence ? 1451 enum EntryState { Vectorize, NeedToGather }; 1452 EntryState State; 1453 1454 /// Does this sequence require some shuffling? 1455 SmallVector<unsigned, 4> ReuseShuffleIndices; 1456 1457 /// Does this entry require reordering? 1458 ArrayRef<unsigned> ReorderIndices; 1459 1460 /// Points back to the VectorizableTree. 1461 /// 1462 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1463 /// to be a pointer and needs to be able to initialize the child iterator. 1464 /// Thus we need a reference back to the container to translate the indices 1465 /// to entries. 1466 VecTreeTy &Container; 1467 1468 /// The TreeEntry index containing the user of this entry. We can actually 1469 /// have multiple users so the data structure is not truly a tree. 1470 SmallVector<EdgeInfo, 1> UserTreeIndices; 1471 1472 /// The index of this treeEntry in VectorizableTree. 1473 int Idx = -1; 1474 1475 private: 1476 /// The operands of each instruction in each lane Operands[op_index][lane]. 1477 /// Note: This helps avoid the replication of the code that performs the 1478 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1479 SmallVector<ValueList, 2> Operands; 1480 1481 /// The main/alternate instruction. 1482 Instruction *MainOp = nullptr; 1483 Instruction *AltOp = nullptr; 1484 1485 public: 1486 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1487 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1488 if (Operands.size() < OpIdx + 1) 1489 Operands.resize(OpIdx + 1); 1490 assert(Operands[OpIdx].size() == 0 && "Already resized?"); 1491 Operands[OpIdx].resize(Scalars.size()); 1492 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1493 Operands[OpIdx][Lane] = OpVL[Lane]; 1494 } 1495 1496 /// Set the operands of this bundle in their original order. 1497 void setOperandsInOrder() { 1498 assert(Operands.empty() && "Already initialized?"); 1499 auto *I0 = cast<Instruction>(Scalars[0]); 1500 Operands.resize(I0->getNumOperands()); 1501 unsigned NumLanes = Scalars.size(); 1502 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1503 OpIdx != NumOperands; ++OpIdx) { 1504 Operands[OpIdx].resize(NumLanes); 1505 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1506 auto *I = cast<Instruction>(Scalars[Lane]); 1507 assert(I->getNumOperands() == NumOperands && 1508 "Expected same number of operands"); 1509 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1510 } 1511 } 1512 } 1513 1514 /// \returns the \p OpIdx operand of this TreeEntry. 1515 ValueList &getOperand(unsigned OpIdx) { 1516 assert(OpIdx < Operands.size() && "Off bounds"); 1517 return Operands[OpIdx]; 1518 } 1519 1520 /// \returns the number of operands. 1521 unsigned getNumOperands() const { return Operands.size(); } 1522 1523 /// \return the single \p OpIdx operand. 1524 Value *getSingleOperand(unsigned OpIdx) const { 1525 assert(OpIdx < Operands.size() && "Off bounds"); 1526 assert(!Operands[OpIdx].empty() && "No operand available"); 1527 return Operands[OpIdx][0]; 1528 } 1529 1530 /// Some of the instructions in the list have alternate opcodes. 1531 bool isAltShuffle() const { 1532 return getOpcode() != getAltOpcode(); 1533 } 1534 1535 bool isOpcodeOrAlt(Instruction *I) const { 1536 unsigned CheckedOpcode = I->getOpcode(); 1537 return (getOpcode() == CheckedOpcode || 1538 getAltOpcode() == CheckedOpcode); 1539 } 1540 1541 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1542 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1543 /// \p OpValue. 1544 Value *isOneOf(Value *Op) const { 1545 auto *I = dyn_cast<Instruction>(Op); 1546 if (I && isOpcodeOrAlt(I)) 1547 return Op; 1548 return MainOp; 1549 } 1550 1551 void setOperations(const InstructionsState &S) { 1552 MainOp = S.MainOp; 1553 AltOp = S.AltOp; 1554 } 1555 1556 Instruction *getMainOp() const { 1557 return MainOp; 1558 } 1559 1560 Instruction *getAltOp() const { 1561 return AltOp; 1562 } 1563 1564 /// The main/alternate opcodes for the list of instructions. 1565 unsigned getOpcode() const { 1566 return MainOp ? MainOp->getOpcode() : 0; 1567 } 1568 1569 unsigned getAltOpcode() const { 1570 return AltOp ? AltOp->getOpcode() : 0; 1571 } 1572 1573 /// Update operations state of this entry if reorder occurred. 1574 bool updateStateIfReorder() { 1575 if (ReorderIndices.empty()) 1576 return false; 1577 InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front()); 1578 setOperations(S); 1579 return true; 1580 } 1581 1582 #ifndef NDEBUG 1583 /// Debug printer. 1584 LLVM_DUMP_METHOD void dump() const { 1585 dbgs() << Idx << ".\n"; 1586 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1587 dbgs() << "Operand " << OpI << ":\n"; 1588 for (const Value *V : Operands[OpI]) 1589 dbgs().indent(2) << *V << "\n"; 1590 } 1591 dbgs() << "Scalars: \n"; 1592 for (Value *V : Scalars) 1593 dbgs().indent(2) << *V << "\n"; 1594 dbgs() << "State: "; 1595 switch (State) { 1596 case Vectorize: 1597 dbgs() << "Vectorize\n"; 1598 break; 1599 case NeedToGather: 1600 dbgs() << "NeedToGather\n"; 1601 break; 1602 } 1603 dbgs() << "MainOp: "; 1604 if (MainOp) 1605 dbgs() << *MainOp << "\n"; 1606 else 1607 dbgs() << "NULL\n"; 1608 dbgs() << "AltOp: "; 1609 if (AltOp) 1610 dbgs() << *AltOp << "\n"; 1611 else 1612 dbgs() << "NULL\n"; 1613 dbgs() << "VectorizedValue: "; 1614 if (VectorizedValue) 1615 dbgs() << *VectorizedValue << "\n"; 1616 else 1617 dbgs() << "NULL\n"; 1618 dbgs() << "ReuseShuffleIndices: "; 1619 if (ReuseShuffleIndices.empty()) 1620 dbgs() << "Emtpy"; 1621 else 1622 for (unsigned ReuseIdx : ReuseShuffleIndices) 1623 dbgs() << ReuseIdx << ", "; 1624 dbgs() << "\n"; 1625 dbgs() << "ReorderIndices: "; 1626 for (unsigned ReorderIdx : ReorderIndices) 1627 dbgs() << ReorderIdx << ", "; 1628 dbgs() << "\n"; 1629 dbgs() << "UserTreeIndices: "; 1630 for (const auto &EInfo : UserTreeIndices) 1631 dbgs() << EInfo << ", "; 1632 dbgs() << "\n"; 1633 } 1634 #endif 1635 }; 1636 1637 /// Create a new VectorizableTree entry. 1638 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1639 const InstructionsState &S, 1640 const EdgeInfo &UserTreeIdx, 1641 ArrayRef<unsigned> ReuseShuffleIndices = None, 1642 ArrayRef<unsigned> ReorderIndices = None) { 1643 bool Vectorized = (bool)Bundle; 1644 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1645 TreeEntry *Last = VectorizableTree.back().get(); 1646 Last->Idx = VectorizableTree.size() - 1; 1647 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 1648 Last->State = Vectorized ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 1649 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1650 ReuseShuffleIndices.end()); 1651 Last->ReorderIndices = ReorderIndices; 1652 Last->setOperations(S); 1653 if (Vectorized) { 1654 for (int i = 0, e = VL.size(); i != e; ++i) { 1655 assert(!getTreeEntry(VL[i]) && "Scalar already in tree!"); 1656 ScalarToTreeEntry[VL[i]] = Last; 1657 } 1658 // Update the scheduler bundle to point to this TreeEntry. 1659 unsigned Lane = 0; 1660 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 1661 BundleMember = BundleMember->NextInBundle) { 1662 BundleMember->TE = Last; 1663 BundleMember->Lane = Lane; 1664 ++Lane; 1665 } 1666 assert((!Bundle.getValue() || Lane == VL.size()) && 1667 "Bundle and VL out of sync"); 1668 } else { 1669 MustGather.insert(VL.begin(), VL.end()); 1670 } 1671 1672 if (UserTreeIdx.UserTE) 1673 Last->UserTreeIndices.push_back(UserTreeIdx); 1674 1675 return Last; 1676 } 1677 1678 /// -- Vectorization State -- 1679 /// Holds all of the tree entries. 1680 TreeEntry::VecTreeTy VectorizableTree; 1681 1682 #ifndef NDEBUG 1683 /// Debug printer. 1684 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1685 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1686 VectorizableTree[Id]->dump(); 1687 dbgs() << "\n"; 1688 } 1689 } 1690 #endif 1691 1692 TreeEntry *getTreeEntry(Value *V) { 1693 auto I = ScalarToTreeEntry.find(V); 1694 if (I != ScalarToTreeEntry.end()) 1695 return I->second; 1696 return nullptr; 1697 } 1698 1699 const TreeEntry *getTreeEntry(Value *V) const { 1700 auto I = ScalarToTreeEntry.find(V); 1701 if (I != ScalarToTreeEntry.end()) 1702 return I->second; 1703 return nullptr; 1704 } 1705 1706 /// Maps a specific scalar to its tree entry. 1707 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 1708 1709 /// A list of scalars that we found that we need to keep as scalars. 1710 ValueSet MustGather; 1711 1712 /// This POD struct describes one external user in the vectorized tree. 1713 struct ExternalUser { 1714 ExternalUser(Value *S, llvm::User *U, int L) 1715 : Scalar(S), User(U), Lane(L) {} 1716 1717 // Which scalar in our function. 1718 Value *Scalar; 1719 1720 // Which user that uses the scalar. 1721 llvm::User *User; 1722 1723 // Which lane does the scalar belong to. 1724 int Lane; 1725 }; 1726 using UserList = SmallVector<ExternalUser, 16>; 1727 1728 /// Checks if two instructions may access the same memory. 1729 /// 1730 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 1731 /// is invariant in the calling loop. 1732 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 1733 Instruction *Inst2) { 1734 // First check if the result is already in the cache. 1735 AliasCacheKey key = std::make_pair(Inst1, Inst2); 1736 Optional<bool> &result = AliasCache[key]; 1737 if (result.hasValue()) { 1738 return result.getValue(); 1739 } 1740 MemoryLocation Loc2 = getLocation(Inst2, AA); 1741 bool aliased = true; 1742 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 1743 // Do the alias check. 1744 aliased = AA->alias(Loc1, Loc2); 1745 } 1746 // Store the result in the cache. 1747 result = aliased; 1748 return aliased; 1749 } 1750 1751 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 1752 1753 /// Cache for alias results. 1754 /// TODO: consider moving this to the AliasAnalysis itself. 1755 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 1756 1757 /// Removes an instruction from its block and eventually deletes it. 1758 /// It's like Instruction::eraseFromParent() except that the actual deletion 1759 /// is delayed until BoUpSLP is destructed. 1760 /// This is required to ensure that there are no incorrect collisions in the 1761 /// AliasCache, which can happen if a new instruction is allocated at the 1762 /// same address as a previously deleted instruction. 1763 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 1764 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 1765 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 1766 } 1767 1768 /// Temporary store for deleted instructions. Instructions will be deleted 1769 /// eventually when the BoUpSLP is destructed. 1770 DenseMap<Instruction *, bool> DeletedInstructions; 1771 1772 /// A list of values that need to extracted out of the tree. 1773 /// This list holds pairs of (Internal Scalar : External User). External User 1774 /// can be nullptr, it means that this Internal Scalar will be used later, 1775 /// after vectorization. 1776 UserList ExternalUses; 1777 1778 /// Values used only by @llvm.assume calls. 1779 SmallPtrSet<const Value *, 32> EphValues; 1780 1781 /// Holds all of the instructions that we gathered. 1782 SetVector<Instruction *> GatherSeq; 1783 1784 /// A list of blocks that we are going to CSE. 1785 SetVector<BasicBlock *> CSEBlocks; 1786 1787 /// Contains all scheduling relevant data for an instruction. 1788 /// A ScheduleData either represents a single instruction or a member of an 1789 /// instruction bundle (= a group of instructions which is combined into a 1790 /// vector instruction). 1791 struct ScheduleData { 1792 // The initial value for the dependency counters. It means that the 1793 // dependencies are not calculated yet. 1794 enum { InvalidDeps = -1 }; 1795 1796 ScheduleData() = default; 1797 1798 void init(int BlockSchedulingRegionID, Value *OpVal) { 1799 FirstInBundle = this; 1800 NextInBundle = nullptr; 1801 NextLoadStore = nullptr; 1802 IsScheduled = false; 1803 SchedulingRegionID = BlockSchedulingRegionID; 1804 UnscheduledDepsInBundle = UnscheduledDeps; 1805 clearDependencies(); 1806 OpValue = OpVal; 1807 TE = nullptr; 1808 Lane = -1; 1809 } 1810 1811 /// Returns true if the dependency information has been calculated. 1812 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 1813 1814 /// Returns true for single instructions and for bundle representatives 1815 /// (= the head of a bundle). 1816 bool isSchedulingEntity() const { return FirstInBundle == this; } 1817 1818 /// Returns true if it represents an instruction bundle and not only a 1819 /// single instruction. 1820 bool isPartOfBundle() const { 1821 return NextInBundle != nullptr || FirstInBundle != this; 1822 } 1823 1824 /// Returns true if it is ready for scheduling, i.e. it has no more 1825 /// unscheduled depending instructions/bundles. 1826 bool isReady() const { 1827 assert(isSchedulingEntity() && 1828 "can't consider non-scheduling entity for ready list"); 1829 return UnscheduledDepsInBundle == 0 && !IsScheduled; 1830 } 1831 1832 /// Modifies the number of unscheduled dependencies, also updating it for 1833 /// the whole bundle. 1834 int incrementUnscheduledDeps(int Incr) { 1835 UnscheduledDeps += Incr; 1836 return FirstInBundle->UnscheduledDepsInBundle += Incr; 1837 } 1838 1839 /// Sets the number of unscheduled dependencies to the number of 1840 /// dependencies. 1841 void resetUnscheduledDeps() { 1842 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 1843 } 1844 1845 /// Clears all dependency information. 1846 void clearDependencies() { 1847 Dependencies = InvalidDeps; 1848 resetUnscheduledDeps(); 1849 MemoryDependencies.clear(); 1850 } 1851 1852 void dump(raw_ostream &os) const { 1853 if (!isSchedulingEntity()) { 1854 os << "/ " << *Inst; 1855 } else if (NextInBundle) { 1856 os << '[' << *Inst; 1857 ScheduleData *SD = NextInBundle; 1858 while (SD) { 1859 os << ';' << *SD->Inst; 1860 SD = SD->NextInBundle; 1861 } 1862 os << ']'; 1863 } else { 1864 os << *Inst; 1865 } 1866 } 1867 1868 Instruction *Inst = nullptr; 1869 1870 /// Points to the head in an instruction bundle (and always to this for 1871 /// single instructions). 1872 ScheduleData *FirstInBundle = nullptr; 1873 1874 /// Single linked list of all instructions in a bundle. Null if it is a 1875 /// single instruction. 1876 ScheduleData *NextInBundle = nullptr; 1877 1878 /// Single linked list of all memory instructions (e.g. load, store, call) 1879 /// in the block - until the end of the scheduling region. 1880 ScheduleData *NextLoadStore = nullptr; 1881 1882 /// The dependent memory instructions. 1883 /// This list is derived on demand in calculateDependencies(). 1884 SmallVector<ScheduleData *, 4> MemoryDependencies; 1885 1886 /// This ScheduleData is in the current scheduling region if this matches 1887 /// the current SchedulingRegionID of BlockScheduling. 1888 int SchedulingRegionID = 0; 1889 1890 /// Used for getting a "good" final ordering of instructions. 1891 int SchedulingPriority = 0; 1892 1893 /// The number of dependencies. Constitutes of the number of users of the 1894 /// instruction plus the number of dependent memory instructions (if any). 1895 /// This value is calculated on demand. 1896 /// If InvalidDeps, the number of dependencies is not calculated yet. 1897 int Dependencies = InvalidDeps; 1898 1899 /// The number of dependencies minus the number of dependencies of scheduled 1900 /// instructions. As soon as this is zero, the instruction/bundle gets ready 1901 /// for scheduling. 1902 /// Note that this is negative as long as Dependencies is not calculated. 1903 int UnscheduledDeps = InvalidDeps; 1904 1905 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 1906 /// single instructions. 1907 int UnscheduledDepsInBundle = InvalidDeps; 1908 1909 /// True if this instruction is scheduled (or considered as scheduled in the 1910 /// dry-run). 1911 bool IsScheduled = false; 1912 1913 /// Opcode of the current instruction in the schedule data. 1914 Value *OpValue = nullptr; 1915 1916 /// The TreeEntry that this instruction corresponds to. 1917 TreeEntry *TE = nullptr; 1918 1919 /// The lane of this node in the TreeEntry. 1920 int Lane = -1; 1921 }; 1922 1923 #ifndef NDEBUG 1924 friend inline raw_ostream &operator<<(raw_ostream &os, 1925 const BoUpSLP::ScheduleData &SD) { 1926 SD.dump(os); 1927 return os; 1928 } 1929 #endif 1930 1931 friend struct GraphTraits<BoUpSLP *>; 1932 friend struct DOTGraphTraits<BoUpSLP *>; 1933 1934 /// Contains all scheduling data for a basic block. 1935 struct BlockScheduling { 1936 BlockScheduling(BasicBlock *BB) 1937 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 1938 1939 void clear() { 1940 ReadyInsts.clear(); 1941 ScheduleStart = nullptr; 1942 ScheduleEnd = nullptr; 1943 FirstLoadStoreInRegion = nullptr; 1944 LastLoadStoreInRegion = nullptr; 1945 1946 // Reduce the maximum schedule region size by the size of the 1947 // previous scheduling run. 1948 ScheduleRegionSizeLimit -= ScheduleRegionSize; 1949 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 1950 ScheduleRegionSizeLimit = MinScheduleRegionSize; 1951 ScheduleRegionSize = 0; 1952 1953 // Make a new scheduling region, i.e. all existing ScheduleData is not 1954 // in the new region yet. 1955 ++SchedulingRegionID; 1956 } 1957 1958 ScheduleData *getScheduleData(Value *V) { 1959 ScheduleData *SD = ScheduleDataMap[V]; 1960 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1961 return SD; 1962 return nullptr; 1963 } 1964 1965 ScheduleData *getScheduleData(Value *V, Value *Key) { 1966 if (V == Key) 1967 return getScheduleData(V); 1968 auto I = ExtraScheduleDataMap.find(V); 1969 if (I != ExtraScheduleDataMap.end()) { 1970 ScheduleData *SD = I->second[Key]; 1971 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1972 return SD; 1973 } 1974 return nullptr; 1975 } 1976 1977 bool isInSchedulingRegion(ScheduleData *SD) const { 1978 return SD->SchedulingRegionID == SchedulingRegionID; 1979 } 1980 1981 /// Marks an instruction as scheduled and puts all dependent ready 1982 /// instructions into the ready-list. 1983 template <typename ReadyListType> 1984 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 1985 SD->IsScheduled = true; 1986 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 1987 1988 ScheduleData *BundleMember = SD; 1989 while (BundleMember) { 1990 if (BundleMember->Inst != BundleMember->OpValue) { 1991 BundleMember = BundleMember->NextInBundle; 1992 continue; 1993 } 1994 // Handle the def-use chain dependencies. 1995 1996 // Decrement the unscheduled counter and insert to ready list if ready. 1997 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 1998 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 1999 if (OpDef && OpDef->hasValidDependencies() && 2000 OpDef->incrementUnscheduledDeps(-1) == 0) { 2001 // There are no more unscheduled dependencies after 2002 // decrementing, so we can put the dependent instruction 2003 // into the ready list. 2004 ScheduleData *DepBundle = OpDef->FirstInBundle; 2005 assert(!DepBundle->IsScheduled && 2006 "already scheduled bundle gets ready"); 2007 ReadyList.insert(DepBundle); 2008 LLVM_DEBUG(dbgs() 2009 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2010 } 2011 }); 2012 }; 2013 2014 // If BundleMember is a vector bundle, its operands may have been 2015 // reordered duiring buildTree(). We therefore need to get its operands 2016 // through the TreeEntry. 2017 if (TreeEntry *TE = BundleMember->TE) { 2018 int Lane = BundleMember->Lane; 2019 assert(Lane >= 0 && "Lane not set"); 2020 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2021 OpIdx != NumOperands; ++OpIdx) 2022 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2023 DecrUnsched(I); 2024 } else { 2025 // If BundleMember is a stand-alone instruction, no operand reordering 2026 // has taken place, so we directly access its operands. 2027 for (Use &U : BundleMember->Inst->operands()) 2028 if (auto *I = dyn_cast<Instruction>(U.get())) 2029 DecrUnsched(I); 2030 } 2031 // Handle the memory dependencies. 2032 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2033 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2034 // There are no more unscheduled dependencies after decrementing, 2035 // so we can put the dependent instruction into the ready list. 2036 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2037 assert(!DepBundle->IsScheduled && 2038 "already scheduled bundle gets ready"); 2039 ReadyList.insert(DepBundle); 2040 LLVM_DEBUG(dbgs() 2041 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2042 } 2043 } 2044 BundleMember = BundleMember->NextInBundle; 2045 } 2046 } 2047 2048 void doForAllOpcodes(Value *V, 2049 function_ref<void(ScheduleData *SD)> Action) { 2050 if (ScheduleData *SD = getScheduleData(V)) 2051 Action(SD); 2052 auto I = ExtraScheduleDataMap.find(V); 2053 if (I != ExtraScheduleDataMap.end()) 2054 for (auto &P : I->second) 2055 if (P.second->SchedulingRegionID == SchedulingRegionID) 2056 Action(P.second); 2057 } 2058 2059 /// Put all instructions into the ReadyList which are ready for scheduling. 2060 template <typename ReadyListType> 2061 void initialFillReadyList(ReadyListType &ReadyList) { 2062 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2063 doForAllOpcodes(I, [&](ScheduleData *SD) { 2064 if (SD->isSchedulingEntity() && SD->isReady()) { 2065 ReadyList.insert(SD); 2066 LLVM_DEBUG(dbgs() 2067 << "SLP: initially in ready list: " << *I << "\n"); 2068 } 2069 }); 2070 } 2071 } 2072 2073 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2074 /// cyclic dependencies. This is only a dry-run, no instructions are 2075 /// actually moved at this stage. 2076 /// \returns the scheduling bundle. The returned Optional value is non-None 2077 /// if \p VL is allowed to be scheduled. 2078 Optional<ScheduleData *> 2079 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2080 const InstructionsState &S); 2081 2082 /// Un-bundles a group of instructions. 2083 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2084 2085 /// Allocates schedule data chunk. 2086 ScheduleData *allocateScheduleDataChunks(); 2087 2088 /// Extends the scheduling region so that V is inside the region. 2089 /// \returns true if the region size is within the limit. 2090 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2091 2092 /// Initialize the ScheduleData structures for new instructions in the 2093 /// scheduling region. 2094 void initScheduleData(Instruction *FromI, Instruction *ToI, 2095 ScheduleData *PrevLoadStore, 2096 ScheduleData *NextLoadStore); 2097 2098 /// Updates the dependency information of a bundle and of all instructions/ 2099 /// bundles which depend on the original bundle. 2100 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2101 BoUpSLP *SLP); 2102 2103 /// Sets all instruction in the scheduling region to un-scheduled. 2104 void resetSchedule(); 2105 2106 BasicBlock *BB; 2107 2108 /// Simple memory allocation for ScheduleData. 2109 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2110 2111 /// The size of a ScheduleData array in ScheduleDataChunks. 2112 int ChunkSize; 2113 2114 /// The allocator position in the current chunk, which is the last entry 2115 /// of ScheduleDataChunks. 2116 int ChunkPos; 2117 2118 /// Attaches ScheduleData to Instruction. 2119 /// Note that the mapping survives during all vectorization iterations, i.e. 2120 /// ScheduleData structures are recycled. 2121 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2122 2123 /// Attaches ScheduleData to Instruction with the leading key. 2124 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2125 ExtraScheduleDataMap; 2126 2127 struct ReadyList : SmallVector<ScheduleData *, 8> { 2128 void insert(ScheduleData *SD) { push_back(SD); } 2129 }; 2130 2131 /// The ready-list for scheduling (only used for the dry-run). 2132 ReadyList ReadyInsts; 2133 2134 /// The first instruction of the scheduling region. 2135 Instruction *ScheduleStart = nullptr; 2136 2137 /// The first instruction _after_ the scheduling region. 2138 Instruction *ScheduleEnd = nullptr; 2139 2140 /// The first memory accessing instruction in the scheduling region 2141 /// (can be null). 2142 ScheduleData *FirstLoadStoreInRegion = nullptr; 2143 2144 /// The last memory accessing instruction in the scheduling region 2145 /// (can be null). 2146 ScheduleData *LastLoadStoreInRegion = nullptr; 2147 2148 /// The current size of the scheduling region. 2149 int ScheduleRegionSize = 0; 2150 2151 /// The maximum size allowed for the scheduling region. 2152 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2153 2154 /// The ID of the scheduling region. For a new vectorization iteration this 2155 /// is incremented which "removes" all ScheduleData from the region. 2156 // Make sure that the initial SchedulingRegionID is greater than the 2157 // initial SchedulingRegionID in ScheduleData (which is 0). 2158 int SchedulingRegionID = 1; 2159 }; 2160 2161 /// Attaches the BlockScheduling structures to basic blocks. 2162 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2163 2164 /// Performs the "real" scheduling. Done before vectorization is actually 2165 /// performed in a basic block. 2166 void scheduleBlock(BlockScheduling *BS); 2167 2168 /// List of users to ignore during scheduling and that don't need extracting. 2169 ArrayRef<Value *> UserIgnoreList; 2170 2171 using OrdersType = SmallVector<unsigned, 4>; 2172 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2173 /// sorted SmallVectors of unsigned. 2174 struct OrdersTypeDenseMapInfo { 2175 static OrdersType getEmptyKey() { 2176 OrdersType V; 2177 V.push_back(~1U); 2178 return V; 2179 } 2180 2181 static OrdersType getTombstoneKey() { 2182 OrdersType V; 2183 V.push_back(~2U); 2184 return V; 2185 } 2186 2187 static unsigned getHashValue(const OrdersType &V) { 2188 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2189 } 2190 2191 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2192 return LHS == RHS; 2193 } 2194 }; 2195 2196 /// Contains orders of operations along with the number of bundles that have 2197 /// operations in this order. It stores only those orders that require 2198 /// reordering, if reordering is not required it is counted using \a 2199 /// NumOpsWantToKeepOriginalOrder. 2200 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 2201 /// Number of bundles that do not require reordering. 2202 unsigned NumOpsWantToKeepOriginalOrder = 0; 2203 2204 // Analysis and block reference. 2205 Function *F; 2206 ScalarEvolution *SE; 2207 TargetTransformInfo *TTI; 2208 TargetLibraryInfo *TLI; 2209 AliasAnalysis *AA; 2210 LoopInfo *LI; 2211 DominatorTree *DT; 2212 AssumptionCache *AC; 2213 DemandedBits *DB; 2214 const DataLayout *DL; 2215 OptimizationRemarkEmitter *ORE; 2216 2217 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2218 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2219 2220 /// Instruction builder to construct the vectorized tree. 2221 IRBuilder<> Builder; 2222 2223 /// A map of scalar integer values to the smallest bit width with which they 2224 /// can legally be represented. The values map to (width, signed) pairs, 2225 /// where "width" indicates the minimum bit width and "signed" is True if the 2226 /// value must be signed-extended, rather than zero-extended, back to its 2227 /// original width. 2228 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2229 }; 2230 2231 } // end namespace slpvectorizer 2232 2233 template <> struct GraphTraits<BoUpSLP *> { 2234 using TreeEntry = BoUpSLP::TreeEntry; 2235 2236 /// NodeRef has to be a pointer per the GraphWriter. 2237 using NodeRef = TreeEntry *; 2238 2239 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2240 2241 /// Add the VectorizableTree to the index iterator to be able to return 2242 /// TreeEntry pointers. 2243 struct ChildIteratorType 2244 : public iterator_adaptor_base< 2245 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2246 ContainerTy &VectorizableTree; 2247 2248 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2249 ContainerTy &VT) 2250 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2251 2252 NodeRef operator*() { return I->UserTE; } 2253 }; 2254 2255 static NodeRef getEntryNode(BoUpSLP &R) { 2256 return R.VectorizableTree[0].get(); 2257 } 2258 2259 static ChildIteratorType child_begin(NodeRef N) { 2260 return {N->UserTreeIndices.begin(), N->Container}; 2261 } 2262 2263 static ChildIteratorType child_end(NodeRef N) { 2264 return {N->UserTreeIndices.end(), N->Container}; 2265 } 2266 2267 /// For the node iterator we just need to turn the TreeEntry iterator into a 2268 /// TreeEntry* iterator so that it dereferences to NodeRef. 2269 class nodes_iterator { 2270 using ItTy = ContainerTy::iterator; 2271 ItTy It; 2272 2273 public: 2274 nodes_iterator(const ItTy &It2) : It(It2) {} 2275 NodeRef operator*() { return It->get(); } 2276 nodes_iterator operator++() { 2277 ++It; 2278 return *this; 2279 } 2280 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2281 }; 2282 2283 static nodes_iterator nodes_begin(BoUpSLP *R) { 2284 return nodes_iterator(R->VectorizableTree.begin()); 2285 } 2286 2287 static nodes_iterator nodes_end(BoUpSLP *R) { 2288 return nodes_iterator(R->VectorizableTree.end()); 2289 } 2290 2291 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2292 }; 2293 2294 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2295 using TreeEntry = BoUpSLP::TreeEntry; 2296 2297 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2298 2299 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2300 std::string Str; 2301 raw_string_ostream OS(Str); 2302 if (isSplat(Entry->Scalars)) { 2303 OS << "<splat> " << *Entry->Scalars[0]; 2304 return Str; 2305 } 2306 for (auto V : Entry->Scalars) { 2307 OS << *V; 2308 if (std::any_of( 2309 R->ExternalUses.begin(), R->ExternalUses.end(), 2310 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 2311 OS << " <extract>"; 2312 OS << "\n"; 2313 } 2314 return Str; 2315 } 2316 2317 static std::string getNodeAttributes(const TreeEntry *Entry, 2318 const BoUpSLP *) { 2319 if (Entry->State == TreeEntry::NeedToGather) 2320 return "color=red"; 2321 return ""; 2322 } 2323 }; 2324 2325 } // end namespace llvm 2326 2327 BoUpSLP::~BoUpSLP() { 2328 for (const auto &Pair : DeletedInstructions) { 2329 // Replace operands of ignored instructions with Undefs in case if they were 2330 // marked for deletion. 2331 if (Pair.getSecond()) { 2332 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2333 Pair.getFirst()->replaceAllUsesWith(Undef); 2334 } 2335 Pair.getFirst()->dropAllReferences(); 2336 } 2337 for (const auto &Pair : DeletedInstructions) { 2338 assert(Pair.getFirst()->use_empty() && 2339 "trying to erase instruction with users."); 2340 Pair.getFirst()->eraseFromParent(); 2341 } 2342 } 2343 2344 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2345 for (auto *V : AV) { 2346 if (auto *I = dyn_cast<Instruction>(V)) 2347 eraseInstruction(I, /*ReplaceWithUndef=*/true); 2348 }; 2349 } 2350 2351 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2352 ArrayRef<Value *> UserIgnoreLst) { 2353 ExtraValueToDebugLocsMap ExternallyUsedValues; 2354 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 2355 } 2356 2357 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2358 ExtraValueToDebugLocsMap &ExternallyUsedValues, 2359 ArrayRef<Value *> UserIgnoreLst) { 2360 deleteTree(); 2361 UserIgnoreList = UserIgnoreLst; 2362 if (!allSameType(Roots)) 2363 return; 2364 buildTree_rec(Roots, 0, EdgeInfo()); 2365 2366 // Collect the values that we need to extract from the tree. 2367 for (auto &TEPtr : VectorizableTree) { 2368 TreeEntry *Entry = TEPtr.get(); 2369 2370 // No need to handle users of gathered values. 2371 if (Entry->State == TreeEntry::NeedToGather) 2372 continue; 2373 2374 // For each lane: 2375 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2376 Value *Scalar = Entry->Scalars[Lane]; 2377 int FoundLane = Lane; 2378 if (!Entry->ReuseShuffleIndices.empty()) { 2379 FoundLane = 2380 std::distance(Entry->ReuseShuffleIndices.begin(), 2381 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 2382 } 2383 2384 // Check if the scalar is externally used as an extra arg. 2385 auto ExtI = ExternallyUsedValues.find(Scalar); 2386 if (ExtI != ExternallyUsedValues.end()) { 2387 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 2388 << Lane << " from " << *Scalar << ".\n"); 2389 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 2390 } 2391 for (User *U : Scalar->users()) { 2392 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 2393 2394 Instruction *UserInst = dyn_cast<Instruction>(U); 2395 if (!UserInst) 2396 continue; 2397 2398 // Skip in-tree scalars that become vectors 2399 if (TreeEntry *UseEntry = getTreeEntry(U)) { 2400 Value *UseScalar = UseEntry->Scalars[0]; 2401 // Some in-tree scalars will remain as scalar in vectorized 2402 // instructions. If that is the case, the one in Lane 0 will 2403 // be used. 2404 if (UseScalar != U || 2405 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 2406 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 2407 << ".\n"); 2408 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 2409 continue; 2410 } 2411 } 2412 2413 // Ignore users in the user ignore list. 2414 if (is_contained(UserIgnoreList, UserInst)) 2415 continue; 2416 2417 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 2418 << Lane << " from " << *Scalar << ".\n"); 2419 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 2420 } 2421 } 2422 } 2423 } 2424 2425 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 2426 const EdgeInfo &UserTreeIdx) { 2427 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 2428 2429 InstructionsState S = getSameOpcode(VL); 2430 if (Depth == RecursionMaxDepth) { 2431 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 2432 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2433 return; 2434 } 2435 2436 // Don't handle vectors. 2437 if (S.OpValue->getType()->isVectorTy()) { 2438 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 2439 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2440 return; 2441 } 2442 2443 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2444 if (SI->getValueOperand()->getType()->isVectorTy()) { 2445 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 2446 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2447 return; 2448 } 2449 2450 // If all of the operands are identical or constant we have a simple solution. 2451 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 2452 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 2453 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2454 return; 2455 } 2456 2457 // We now know that this is a vector of instructions of the same type from 2458 // the same block. 2459 2460 // Don't vectorize ephemeral values. 2461 for (Value *V : VL) { 2462 if (EphValues.count(V)) { 2463 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2464 << ") is ephemeral.\n"); 2465 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2466 return; 2467 } 2468 } 2469 2470 // Check if this is a duplicate of another entry. 2471 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2472 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 2473 if (!E->isSame(VL)) { 2474 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 2475 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2476 return; 2477 } 2478 // Record the reuse of the tree node. FIXME, currently this is only used to 2479 // properly draw the graph rather than for the actual vectorization. 2480 E->UserTreeIndices.push_back(UserTreeIdx); 2481 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 2482 << ".\n"); 2483 return; 2484 } 2485 2486 // Check that none of the instructions in the bundle are already in the tree. 2487 for (Value *V : VL) { 2488 auto *I = dyn_cast<Instruction>(V); 2489 if (!I) 2490 continue; 2491 if (getTreeEntry(I)) { 2492 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2493 << ") is already in tree.\n"); 2494 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2495 return; 2496 } 2497 } 2498 2499 // If any of the scalars is marked as a value that needs to stay scalar, then 2500 // we need to gather the scalars. 2501 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 2502 for (Value *V : VL) { 2503 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 2504 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 2505 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2506 return; 2507 } 2508 } 2509 2510 // Check that all of the users of the scalars that we want to vectorize are 2511 // schedulable. 2512 auto *VL0 = cast<Instruction>(S.OpValue); 2513 BasicBlock *BB = VL0->getParent(); 2514 2515 if (!DT->isReachableFromEntry(BB)) { 2516 // Don't go into unreachable blocks. They may contain instructions with 2517 // dependency cycles which confuse the final scheduling. 2518 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 2519 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2520 return; 2521 } 2522 2523 // Check that every instruction appears once in this bundle. 2524 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2525 SmallVector<Value *, 4> UniqueValues; 2526 DenseMap<Value *, unsigned> UniquePositions; 2527 for (Value *V : VL) { 2528 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2529 ReuseShuffleIndicies.emplace_back(Res.first->second); 2530 if (Res.second) 2531 UniqueValues.emplace_back(V); 2532 } 2533 size_t NumUniqueScalarValues = UniqueValues.size(); 2534 if (NumUniqueScalarValues == VL.size()) { 2535 ReuseShuffleIndicies.clear(); 2536 } else { 2537 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 2538 if (NumUniqueScalarValues <= 1 || 2539 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 2540 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 2541 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2542 return; 2543 } 2544 VL = UniqueValues; 2545 } 2546 2547 auto &BSRef = BlocksSchedules[BB]; 2548 if (!BSRef) 2549 BSRef = std::make_unique<BlockScheduling>(BB); 2550 2551 BlockScheduling &BS = *BSRef.get(); 2552 2553 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 2554 if (!Bundle) { 2555 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 2556 assert((!BS.getScheduleData(VL0) || 2557 !BS.getScheduleData(VL0)->isPartOfBundle()) && 2558 "tryScheduleBundle should cancelScheduling on failure"); 2559 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2560 ReuseShuffleIndicies); 2561 return; 2562 } 2563 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 2564 2565 unsigned ShuffleOrOp = S.isAltShuffle() ? 2566 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2567 switch (ShuffleOrOp) { 2568 case Instruction::PHI: { 2569 auto *PH = cast<PHINode>(VL0); 2570 2571 // Check for terminator values (e.g. invoke). 2572 for (unsigned j = 0; j < VL.size(); ++j) 2573 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2574 Instruction *Term = dyn_cast<Instruction>( 2575 cast<PHINode>(VL[j])->getIncomingValueForBlock( 2576 PH->getIncomingBlock(i))); 2577 if (Term && Term->isTerminator()) { 2578 LLVM_DEBUG(dbgs() 2579 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 2580 BS.cancelScheduling(VL, VL0); 2581 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2582 ReuseShuffleIndicies); 2583 return; 2584 } 2585 } 2586 2587 TreeEntry *TE = 2588 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 2589 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 2590 2591 // Keeps the reordered operands to avoid code duplication. 2592 SmallVector<ValueList, 2> OperandsVec; 2593 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2594 ValueList Operands; 2595 // Prepare the operand vector. 2596 for (Value *j : VL) 2597 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 2598 PH->getIncomingBlock(i))); 2599 TE->setOperand(i, Operands); 2600 OperandsVec.push_back(Operands); 2601 } 2602 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 2603 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 2604 return; 2605 } 2606 case Instruction::ExtractValue: 2607 case Instruction::ExtractElement: { 2608 OrdersType CurrentOrder; 2609 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 2610 if (Reuse) { 2611 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 2612 ++NumOpsWantToKeepOriginalOrder; 2613 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2614 ReuseShuffleIndicies); 2615 // This is a special case, as it does not gather, but at the same time 2616 // we are not extending buildTree_rec() towards the operands. 2617 ValueList Op0; 2618 Op0.assign(VL.size(), VL0->getOperand(0)); 2619 VectorizableTree.back()->setOperand(0, Op0); 2620 return; 2621 } 2622 if (!CurrentOrder.empty()) { 2623 LLVM_DEBUG({ 2624 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 2625 "with order"; 2626 for (unsigned Idx : CurrentOrder) 2627 dbgs() << " " << Idx; 2628 dbgs() << "\n"; 2629 }); 2630 // Insert new order with initial value 0, if it does not exist, 2631 // otherwise return the iterator to the existing one. 2632 auto StoredCurrentOrderAndNum = 2633 NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 2634 ++StoredCurrentOrderAndNum->getSecond(); 2635 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2636 ReuseShuffleIndicies, 2637 StoredCurrentOrderAndNum->getFirst()); 2638 // This is a special case, as it does not gather, but at the same time 2639 // we are not extending buildTree_rec() towards the operands. 2640 ValueList Op0; 2641 Op0.assign(VL.size(), VL0->getOperand(0)); 2642 VectorizableTree.back()->setOperand(0, Op0); 2643 return; 2644 } 2645 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 2646 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2647 ReuseShuffleIndicies); 2648 BS.cancelScheduling(VL, VL0); 2649 return; 2650 } 2651 case Instruction::Load: { 2652 // Check that a vectorized load would load the same memory as a scalar 2653 // load. For example, we don't want to vectorize loads that are smaller 2654 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 2655 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 2656 // from such a struct, we read/write packed bits disagreeing with the 2657 // unvectorized version. 2658 Type *ScalarTy = VL0->getType(); 2659 2660 if (DL->getTypeSizeInBits(ScalarTy) != 2661 DL->getTypeAllocSizeInBits(ScalarTy)) { 2662 BS.cancelScheduling(VL, VL0); 2663 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2664 ReuseShuffleIndicies); 2665 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 2666 return; 2667 } 2668 2669 // Make sure all loads in the bundle are simple - we can't vectorize 2670 // atomic or volatile loads. 2671 SmallVector<Value *, 4> PointerOps(VL.size()); 2672 auto POIter = PointerOps.begin(); 2673 for (Value *V : VL) { 2674 auto *L = cast<LoadInst>(V); 2675 if (!L->isSimple()) { 2676 BS.cancelScheduling(VL, VL0); 2677 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2678 ReuseShuffleIndicies); 2679 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 2680 return; 2681 } 2682 *POIter = L->getPointerOperand(); 2683 ++POIter; 2684 } 2685 2686 OrdersType CurrentOrder; 2687 // Check the order of pointer operands. 2688 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2689 Value *Ptr0; 2690 Value *PtrN; 2691 if (CurrentOrder.empty()) { 2692 Ptr0 = PointerOps.front(); 2693 PtrN = PointerOps.back(); 2694 } else { 2695 Ptr0 = PointerOps[CurrentOrder.front()]; 2696 PtrN = PointerOps[CurrentOrder.back()]; 2697 } 2698 const SCEV *Scev0 = SE->getSCEV(Ptr0); 2699 const SCEV *ScevN = SE->getSCEV(PtrN); 2700 const auto *Diff = 2701 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 2702 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 2703 // Check that the sorted loads are consecutive. 2704 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 2705 if (CurrentOrder.empty()) { 2706 // Original loads are consecutive and does not require reordering. 2707 ++NumOpsWantToKeepOriginalOrder; 2708 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 2709 UserTreeIdx, ReuseShuffleIndicies); 2710 TE->setOperandsInOrder(); 2711 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 2712 } else { 2713 // Need to reorder. 2714 auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 2715 ++I->getSecond(); 2716 TreeEntry *TE = 2717 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2718 ReuseShuffleIndicies, I->getFirst()); 2719 TE->setOperandsInOrder(); 2720 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 2721 } 2722 return; 2723 } 2724 } 2725 2726 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 2727 BS.cancelScheduling(VL, VL0); 2728 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2729 ReuseShuffleIndicies); 2730 return; 2731 } 2732 case Instruction::ZExt: 2733 case Instruction::SExt: 2734 case Instruction::FPToUI: 2735 case Instruction::FPToSI: 2736 case Instruction::FPExt: 2737 case Instruction::PtrToInt: 2738 case Instruction::IntToPtr: 2739 case Instruction::SIToFP: 2740 case Instruction::UIToFP: 2741 case Instruction::Trunc: 2742 case Instruction::FPTrunc: 2743 case Instruction::BitCast: { 2744 Type *SrcTy = VL0->getOperand(0)->getType(); 2745 for (Value *V : VL) { 2746 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 2747 if (Ty != SrcTy || !isValidElementType(Ty)) { 2748 BS.cancelScheduling(VL, VL0); 2749 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2750 ReuseShuffleIndicies); 2751 LLVM_DEBUG(dbgs() 2752 << "SLP: Gathering casts with different src types.\n"); 2753 return; 2754 } 2755 } 2756 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2757 ReuseShuffleIndicies); 2758 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 2759 2760 TE->setOperandsInOrder(); 2761 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2762 ValueList Operands; 2763 // Prepare the operand vector. 2764 for (Value *V : VL) 2765 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2766 2767 buildTree_rec(Operands, Depth + 1, {TE, i}); 2768 } 2769 return; 2770 } 2771 case Instruction::ICmp: 2772 case Instruction::FCmp: { 2773 // Check that all of the compares have the same predicate. 2774 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2775 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 2776 Type *ComparedTy = VL0->getOperand(0)->getType(); 2777 for (Value *V : VL) { 2778 CmpInst *Cmp = cast<CmpInst>(V); 2779 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 2780 Cmp->getOperand(0)->getType() != ComparedTy) { 2781 BS.cancelScheduling(VL, VL0); 2782 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2783 ReuseShuffleIndicies); 2784 LLVM_DEBUG(dbgs() 2785 << "SLP: Gathering cmp with different predicate.\n"); 2786 return; 2787 } 2788 } 2789 2790 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2791 ReuseShuffleIndicies); 2792 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 2793 2794 ValueList Left, Right; 2795 if (cast<CmpInst>(VL0)->isCommutative()) { 2796 // Commutative predicate - collect + sort operands of the instructions 2797 // so that each side is more likely to have the same opcode. 2798 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 2799 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 2800 } else { 2801 // Collect operands - commute if it uses the swapped predicate. 2802 for (Value *V : VL) { 2803 auto *Cmp = cast<CmpInst>(V); 2804 Value *LHS = Cmp->getOperand(0); 2805 Value *RHS = Cmp->getOperand(1); 2806 if (Cmp->getPredicate() != P0) 2807 std::swap(LHS, RHS); 2808 Left.push_back(LHS); 2809 Right.push_back(RHS); 2810 } 2811 } 2812 TE->setOperand(0, Left); 2813 TE->setOperand(1, Right); 2814 buildTree_rec(Left, Depth + 1, {TE, 0}); 2815 buildTree_rec(Right, Depth + 1, {TE, 1}); 2816 return; 2817 } 2818 case Instruction::Select: 2819 case Instruction::FNeg: 2820 case Instruction::Add: 2821 case Instruction::FAdd: 2822 case Instruction::Sub: 2823 case Instruction::FSub: 2824 case Instruction::Mul: 2825 case Instruction::FMul: 2826 case Instruction::UDiv: 2827 case Instruction::SDiv: 2828 case Instruction::FDiv: 2829 case Instruction::URem: 2830 case Instruction::SRem: 2831 case Instruction::FRem: 2832 case Instruction::Shl: 2833 case Instruction::LShr: 2834 case Instruction::AShr: 2835 case Instruction::And: 2836 case Instruction::Or: 2837 case Instruction::Xor: { 2838 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2839 ReuseShuffleIndicies); 2840 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 2841 2842 // Sort operands of the instructions so that each side is more likely to 2843 // have the same opcode. 2844 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 2845 ValueList Left, Right; 2846 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 2847 TE->setOperand(0, Left); 2848 TE->setOperand(1, Right); 2849 buildTree_rec(Left, Depth + 1, {TE, 0}); 2850 buildTree_rec(Right, Depth + 1, {TE, 1}); 2851 return; 2852 } 2853 2854 TE->setOperandsInOrder(); 2855 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2856 ValueList Operands; 2857 // Prepare the operand vector. 2858 for (Value *j : VL) 2859 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 2860 2861 buildTree_rec(Operands, Depth + 1, {TE, i}); 2862 } 2863 return; 2864 } 2865 case Instruction::GetElementPtr: { 2866 // We don't combine GEPs with complicated (nested) indexing. 2867 for (Value *V : VL) { 2868 if (cast<Instruction>(V)->getNumOperands() != 2) { 2869 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 2870 BS.cancelScheduling(VL, VL0); 2871 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2872 ReuseShuffleIndicies); 2873 return; 2874 } 2875 } 2876 2877 // We can't combine several GEPs into one vector if they operate on 2878 // different types. 2879 Type *Ty0 = VL0->getOperand(0)->getType(); 2880 for (Value *V : VL) { 2881 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 2882 if (Ty0 != CurTy) { 2883 LLVM_DEBUG(dbgs() 2884 << "SLP: not-vectorizable GEP (different types).\n"); 2885 BS.cancelScheduling(VL, VL0); 2886 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2887 ReuseShuffleIndicies); 2888 return; 2889 } 2890 } 2891 2892 // We don't combine GEPs with non-constant indexes. 2893 Type *Ty1 = VL0->getOperand(1)->getType(); 2894 for (Value *V : VL) { 2895 auto Op = cast<Instruction>(V)->getOperand(1); 2896 if (!isa<ConstantInt>(Op) || 2897 (Op->getType() != Ty1 && 2898 Op->getType()->getScalarSizeInBits() > 2899 DL->getIndexSizeInBits( 2900 V->getType()->getPointerAddressSpace()))) { 2901 LLVM_DEBUG(dbgs() 2902 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 2903 BS.cancelScheduling(VL, VL0); 2904 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2905 ReuseShuffleIndicies); 2906 return; 2907 } 2908 } 2909 2910 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2911 ReuseShuffleIndicies); 2912 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 2913 TE->setOperandsInOrder(); 2914 for (unsigned i = 0, e = 2; i < e; ++i) { 2915 ValueList Operands; 2916 // Prepare the operand vector. 2917 for (Value *V : VL) 2918 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2919 2920 buildTree_rec(Operands, Depth + 1, {TE, i}); 2921 } 2922 return; 2923 } 2924 case Instruction::Store: { 2925 // Check if the stores are consecutive or if we need to swizzle them. 2926 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 2927 // Make sure all stores in the bundle are simple - we can't vectorize 2928 // atomic or volatile stores. 2929 SmallVector<Value *, 4> PointerOps(VL.size()); 2930 ValueList Operands(VL.size()); 2931 auto POIter = PointerOps.begin(); 2932 auto OIter = Operands.begin(); 2933 for (Value *V : VL) { 2934 auto *SI = cast<StoreInst>(V); 2935 if (!SI->isSimple()) { 2936 BS.cancelScheduling(VL, VL0); 2937 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2938 ReuseShuffleIndicies); 2939 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 2940 return; 2941 } 2942 *POIter = SI->getPointerOperand(); 2943 *OIter = SI->getValueOperand(); 2944 ++POIter; 2945 ++OIter; 2946 } 2947 2948 OrdersType CurrentOrder; 2949 // Check the order of pointer operands. 2950 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2951 Value *Ptr0; 2952 Value *PtrN; 2953 if (CurrentOrder.empty()) { 2954 Ptr0 = PointerOps.front(); 2955 PtrN = PointerOps.back(); 2956 } else { 2957 Ptr0 = PointerOps[CurrentOrder.front()]; 2958 PtrN = PointerOps[CurrentOrder.back()]; 2959 } 2960 const SCEV *Scev0 = SE->getSCEV(Ptr0); 2961 const SCEV *ScevN = SE->getSCEV(PtrN); 2962 const auto *Diff = 2963 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 2964 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 2965 // Check that the sorted pointer operands are consecutive. 2966 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 2967 if (CurrentOrder.empty()) { 2968 // Original stores are consecutive and does not require reordering. 2969 ++NumOpsWantToKeepOriginalOrder; 2970 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 2971 UserTreeIdx, ReuseShuffleIndicies); 2972 TE->setOperandsInOrder(); 2973 buildTree_rec(Operands, Depth + 1, {TE, 0}); 2974 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 2975 } else { 2976 // Need to reorder. 2977 auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 2978 ++(I->getSecond()); 2979 TreeEntry *TE = 2980 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2981 ReuseShuffleIndicies, I->getFirst()); 2982 TE->setOperandsInOrder(); 2983 buildTree_rec(Operands, Depth + 1, {TE, 0}); 2984 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 2985 } 2986 return; 2987 } 2988 } 2989 2990 BS.cancelScheduling(VL, VL0); 2991 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2992 ReuseShuffleIndicies); 2993 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 2994 return; 2995 } 2996 case Instruction::Call: { 2997 // Check if the calls are all to the same vectorizable intrinsic. 2998 CallInst *CI = cast<CallInst>(VL0); 2999 // Check if this is an Intrinsic call or something that can be 3000 // represented by an intrinsic call 3001 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3002 if (!isTriviallyVectorizable(ID)) { 3003 BS.cancelScheduling(VL, VL0); 3004 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3005 ReuseShuffleIndicies); 3006 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 3007 return; 3008 } 3009 Function *Int = CI->getCalledFunction(); 3010 unsigned NumArgs = CI->getNumArgOperands(); 3011 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 3012 for (unsigned j = 0; j != NumArgs; ++j) 3013 if (hasVectorInstrinsicScalarOpd(ID, j)) 3014 ScalarArgs[j] = CI->getArgOperand(j); 3015 for (Value *V : VL) { 3016 CallInst *CI2 = dyn_cast<CallInst>(V); 3017 if (!CI2 || CI2->getCalledFunction() != Int || 3018 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 3019 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 3020 BS.cancelScheduling(VL, VL0); 3021 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3022 ReuseShuffleIndicies); 3023 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 3024 << "\n"); 3025 return; 3026 } 3027 // Some intrinsics have scalar arguments and should be same in order for 3028 // them to be vectorized. 3029 for (unsigned j = 0; j != NumArgs; ++j) { 3030 if (hasVectorInstrinsicScalarOpd(ID, j)) { 3031 Value *A1J = CI2->getArgOperand(j); 3032 if (ScalarArgs[j] != A1J) { 3033 BS.cancelScheduling(VL, VL0); 3034 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3035 ReuseShuffleIndicies); 3036 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 3037 << " argument " << ScalarArgs[j] << "!=" << A1J 3038 << "\n"); 3039 return; 3040 } 3041 } 3042 } 3043 // Verify that the bundle operands are identical between the two calls. 3044 if (CI->hasOperandBundles() && 3045 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 3046 CI->op_begin() + CI->getBundleOperandsEndIndex(), 3047 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 3048 BS.cancelScheduling(VL, VL0); 3049 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3050 ReuseShuffleIndicies); 3051 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 3052 << *CI << "!=" << *V << '\n'); 3053 return; 3054 } 3055 } 3056 3057 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3058 ReuseShuffleIndicies); 3059 TE->setOperandsInOrder(); 3060 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 3061 ValueList Operands; 3062 // Prepare the operand vector. 3063 for (Value *V : VL) { 3064 auto *CI2 = cast<CallInst>(V); 3065 Operands.push_back(CI2->getArgOperand(i)); 3066 } 3067 buildTree_rec(Operands, Depth + 1, {TE, i}); 3068 } 3069 return; 3070 } 3071 case Instruction::ShuffleVector: { 3072 // If this is not an alternate sequence of opcode like add-sub 3073 // then do not vectorize this instruction. 3074 if (!S.isAltShuffle()) { 3075 BS.cancelScheduling(VL, VL0); 3076 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3077 ReuseShuffleIndicies); 3078 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 3079 return; 3080 } 3081 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3082 ReuseShuffleIndicies); 3083 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 3084 3085 // Reorder operands if reordering would enable vectorization. 3086 if (isa<BinaryOperator>(VL0)) { 3087 ValueList Left, Right; 3088 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3089 TE->setOperand(0, Left); 3090 TE->setOperand(1, Right); 3091 buildTree_rec(Left, Depth + 1, {TE, 0}); 3092 buildTree_rec(Right, Depth + 1, {TE, 1}); 3093 return; 3094 } 3095 3096 TE->setOperandsInOrder(); 3097 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3098 ValueList Operands; 3099 // Prepare the operand vector. 3100 for (Value *V : VL) 3101 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3102 3103 buildTree_rec(Operands, Depth + 1, {TE, i}); 3104 } 3105 return; 3106 } 3107 default: 3108 BS.cancelScheduling(VL, VL0); 3109 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3110 ReuseShuffleIndicies); 3111 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 3112 return; 3113 } 3114 } 3115 3116 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 3117 unsigned N = 1; 3118 Type *EltTy = T; 3119 3120 while (isa<CompositeType>(EltTy)) { 3121 if (auto *ST = dyn_cast<StructType>(EltTy)) { 3122 // Check that struct is homogeneous. 3123 for (const auto *Ty : ST->elements()) 3124 if (Ty != *ST->element_begin()) 3125 return 0; 3126 N *= ST->getNumElements(); 3127 EltTy = *ST->element_begin(); 3128 } else { 3129 auto *SeqT = cast<SequentialType>(EltTy); 3130 N *= SeqT->getNumElements(); 3131 EltTy = SeqT->getElementType(); 3132 } 3133 } 3134 3135 if (!isValidElementType(EltTy)) 3136 return 0; 3137 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 3138 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 3139 return 0; 3140 return N; 3141 } 3142 3143 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 3144 SmallVectorImpl<unsigned> &CurrentOrder) const { 3145 Instruction *E0 = cast<Instruction>(OpValue); 3146 assert(E0->getOpcode() == Instruction::ExtractElement || 3147 E0->getOpcode() == Instruction::ExtractValue); 3148 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 3149 // Check if all of the extracts come from the same vector and from the 3150 // correct offset. 3151 Value *Vec = E0->getOperand(0); 3152 3153 CurrentOrder.clear(); 3154 3155 // We have to extract from a vector/aggregate with the same number of elements. 3156 unsigned NElts; 3157 if (E0->getOpcode() == Instruction::ExtractValue) { 3158 const DataLayout &DL = E0->getModule()->getDataLayout(); 3159 NElts = canMapToVector(Vec->getType(), DL); 3160 if (!NElts) 3161 return false; 3162 // Check if load can be rewritten as load of vector. 3163 LoadInst *LI = dyn_cast<LoadInst>(Vec); 3164 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 3165 return false; 3166 } else { 3167 NElts = Vec->getType()->getVectorNumElements(); 3168 } 3169 3170 if (NElts != VL.size()) 3171 return false; 3172 3173 // Check that all of the indices extract from the correct offset. 3174 bool ShouldKeepOrder = true; 3175 unsigned E = VL.size(); 3176 // Assign to all items the initial value E + 1 so we can check if the extract 3177 // instruction index was used already. 3178 // Also, later we can check that all the indices are used and we have a 3179 // consecutive access in the extract instructions, by checking that no 3180 // element of CurrentOrder still has value E + 1. 3181 CurrentOrder.assign(E, E + 1); 3182 unsigned I = 0; 3183 for (; I < E; ++I) { 3184 auto *Inst = cast<Instruction>(VL[I]); 3185 if (Inst->getOperand(0) != Vec) 3186 break; 3187 Optional<unsigned> Idx = getExtractIndex(Inst); 3188 if (!Idx) 3189 break; 3190 const unsigned ExtIdx = *Idx; 3191 if (ExtIdx != I) { 3192 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 3193 break; 3194 ShouldKeepOrder = false; 3195 CurrentOrder[ExtIdx] = I; 3196 } else { 3197 if (CurrentOrder[I] != E + 1) 3198 break; 3199 CurrentOrder[I] = I; 3200 } 3201 } 3202 if (I < E) { 3203 CurrentOrder.clear(); 3204 return false; 3205 } 3206 3207 return ShouldKeepOrder; 3208 } 3209 3210 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 3211 return I->hasOneUse() || 3212 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 3213 return ScalarToTreeEntry.count(U) > 0; 3214 }); 3215 } 3216 3217 int BoUpSLP::getEntryCost(TreeEntry *E) { 3218 ArrayRef<Value*> VL = E->Scalars; 3219 3220 Type *ScalarTy = VL[0]->getType(); 3221 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3222 ScalarTy = SI->getValueOperand()->getType(); 3223 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 3224 ScalarTy = CI->getOperand(0)->getType(); 3225 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 3226 3227 // If we have computed a smaller type for the expression, update VecTy so 3228 // that the costs will be accurate. 3229 if (MinBWs.count(VL[0])) 3230 VecTy = VectorType::get( 3231 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 3232 3233 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 3234 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3235 int ReuseShuffleCost = 0; 3236 if (NeedToShuffleReuses) { 3237 ReuseShuffleCost = 3238 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3239 } 3240 if (E->State == TreeEntry::NeedToGather) { 3241 if (allConstant(VL)) 3242 return 0; 3243 if (isSplat(VL)) { 3244 return ReuseShuffleCost + 3245 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 3246 } 3247 if (E->getOpcode() == Instruction::ExtractElement && 3248 allSameType(VL) && allSameBlock(VL)) { 3249 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 3250 if (ShuffleKind.hasValue()) { 3251 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 3252 for (auto *V : VL) { 3253 // If all users of instruction are going to be vectorized and this 3254 // instruction itself is not going to be vectorized, consider this 3255 // instruction as dead and remove its cost from the final cost of the 3256 // vectorized tree. 3257 if (areAllUsersVectorized(cast<Instruction>(V)) && 3258 !ScalarToTreeEntry.count(V)) { 3259 auto *IO = cast<ConstantInt>( 3260 cast<ExtractElementInst>(V)->getIndexOperand()); 3261 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 3262 IO->getZExtValue()); 3263 } 3264 } 3265 return ReuseShuffleCost + Cost; 3266 } 3267 } 3268 return ReuseShuffleCost + getGatherCost(VL); 3269 } 3270 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 3271 Instruction *VL0 = E->getMainOp(); 3272 unsigned ShuffleOrOp = 3273 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 3274 switch (ShuffleOrOp) { 3275 case Instruction::PHI: 3276 return 0; 3277 3278 case Instruction::ExtractValue: 3279 case Instruction::ExtractElement: 3280 if (NeedToShuffleReuses) { 3281 unsigned Idx = 0; 3282 for (unsigned I : E->ReuseShuffleIndices) { 3283 if (ShuffleOrOp == Instruction::ExtractElement) { 3284 auto *IO = cast<ConstantInt>( 3285 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 3286 Idx = IO->getZExtValue(); 3287 ReuseShuffleCost -= TTI->getVectorInstrCost( 3288 Instruction::ExtractElement, VecTy, Idx); 3289 } else { 3290 ReuseShuffleCost -= TTI->getVectorInstrCost( 3291 Instruction::ExtractElement, VecTy, Idx); 3292 ++Idx; 3293 } 3294 } 3295 Idx = ReuseShuffleNumbers; 3296 for (Value *V : VL) { 3297 if (ShuffleOrOp == Instruction::ExtractElement) { 3298 auto *IO = cast<ConstantInt>( 3299 cast<ExtractElementInst>(V)->getIndexOperand()); 3300 Idx = IO->getZExtValue(); 3301 } else { 3302 --Idx; 3303 } 3304 ReuseShuffleCost += 3305 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 3306 } 3307 } 3308 if (E->State == TreeEntry::Vectorize) { 3309 int DeadCost = ReuseShuffleCost; 3310 if (!E->ReorderIndices.empty()) { 3311 // TODO: Merge this shuffle with the ReuseShuffleCost. 3312 DeadCost += TTI->getShuffleCost( 3313 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3314 } 3315 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3316 Instruction *E = cast<Instruction>(VL[i]); 3317 // If all users are going to be vectorized, instruction can be 3318 // considered as dead. 3319 // The same, if have only one user, it will be vectorized for sure. 3320 if (areAllUsersVectorized(E)) { 3321 // Take credit for instruction that will become dead. 3322 if (E->hasOneUse()) { 3323 Instruction *Ext = E->user_back(); 3324 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3325 all_of(Ext->users(), 3326 [](User *U) { return isa<GetElementPtrInst>(U); })) { 3327 // Use getExtractWithExtendCost() to calculate the cost of 3328 // extractelement/ext pair. 3329 DeadCost -= TTI->getExtractWithExtendCost( 3330 Ext->getOpcode(), Ext->getType(), VecTy, i); 3331 // Add back the cost of s|zext which is subtracted separately. 3332 DeadCost += TTI->getCastInstrCost( 3333 Ext->getOpcode(), Ext->getType(), E->getType(), Ext); 3334 continue; 3335 } 3336 } 3337 DeadCost -= 3338 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 3339 } 3340 } 3341 return DeadCost; 3342 } 3343 return ReuseShuffleCost + getGatherCost(VL); 3344 3345 case Instruction::ZExt: 3346 case Instruction::SExt: 3347 case Instruction::FPToUI: 3348 case Instruction::FPToSI: 3349 case Instruction::FPExt: 3350 case Instruction::PtrToInt: 3351 case Instruction::IntToPtr: 3352 case Instruction::SIToFP: 3353 case Instruction::UIToFP: 3354 case Instruction::Trunc: 3355 case Instruction::FPTrunc: 3356 case Instruction::BitCast: { 3357 Type *SrcTy = VL0->getOperand(0)->getType(); 3358 int ScalarEltCost = 3359 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, VL0); 3360 if (NeedToShuffleReuses) { 3361 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3362 } 3363 3364 // Calculate the cost of this instruction. 3365 int ScalarCost = VL.size() * ScalarEltCost; 3366 3367 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 3368 int VecCost = 0; 3369 // Check if the values are candidates to demote. 3370 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 3371 VecCost = ReuseShuffleCost + 3372 TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, VL0); 3373 } 3374 return VecCost - ScalarCost; 3375 } 3376 case Instruction::FCmp: 3377 case Instruction::ICmp: 3378 case Instruction::Select: { 3379 // Calculate the cost of this instruction. 3380 int ScalarEltCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 3381 Builder.getInt1Ty(), VL0); 3382 if (NeedToShuffleReuses) { 3383 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3384 } 3385 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 3386 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3387 int VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), VecTy, MaskTy, VL0); 3388 return ReuseShuffleCost + VecCost - ScalarCost; 3389 } 3390 case Instruction::FNeg: 3391 case Instruction::Add: 3392 case Instruction::FAdd: 3393 case Instruction::Sub: 3394 case Instruction::FSub: 3395 case Instruction::Mul: 3396 case Instruction::FMul: 3397 case Instruction::UDiv: 3398 case Instruction::SDiv: 3399 case Instruction::FDiv: 3400 case Instruction::URem: 3401 case Instruction::SRem: 3402 case Instruction::FRem: 3403 case Instruction::Shl: 3404 case Instruction::LShr: 3405 case Instruction::AShr: 3406 case Instruction::And: 3407 case Instruction::Or: 3408 case Instruction::Xor: { 3409 // Certain instructions can be cheaper to vectorize if they have a 3410 // constant second vector operand. 3411 TargetTransformInfo::OperandValueKind Op1VK = 3412 TargetTransformInfo::OK_AnyValue; 3413 TargetTransformInfo::OperandValueKind Op2VK = 3414 TargetTransformInfo::OK_UniformConstantValue; 3415 TargetTransformInfo::OperandValueProperties Op1VP = 3416 TargetTransformInfo::OP_None; 3417 TargetTransformInfo::OperandValueProperties Op2VP = 3418 TargetTransformInfo::OP_PowerOf2; 3419 3420 // If all operands are exactly the same ConstantInt then set the 3421 // operand kind to OK_UniformConstantValue. 3422 // If instead not all operands are constants, then set the operand kind 3423 // to OK_AnyValue. If all operands are constants but not the same, 3424 // then set the operand kind to OK_NonUniformConstantValue. 3425 ConstantInt *CInt0 = nullptr; 3426 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3427 const Instruction *I = cast<Instruction>(VL[i]); 3428 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 3429 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 3430 if (!CInt) { 3431 Op2VK = TargetTransformInfo::OK_AnyValue; 3432 Op2VP = TargetTransformInfo::OP_None; 3433 break; 3434 } 3435 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 3436 !CInt->getValue().isPowerOf2()) 3437 Op2VP = TargetTransformInfo::OP_None; 3438 if (i == 0) { 3439 CInt0 = CInt; 3440 continue; 3441 } 3442 if (CInt0 != CInt) 3443 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 3444 } 3445 3446 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 3447 int ScalarEltCost = TTI->getArithmeticInstrCost( 3448 E->getOpcode(), ScalarTy, Op1VK, Op2VK, Op1VP, Op2VP, Operands, VL0); 3449 if (NeedToShuffleReuses) { 3450 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3451 } 3452 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3453 int VecCost = TTI->getArithmeticInstrCost( 3454 E->getOpcode(), VecTy, Op1VK, Op2VK, Op1VP, Op2VP, Operands, VL0); 3455 return ReuseShuffleCost + VecCost - ScalarCost; 3456 } 3457 case Instruction::GetElementPtr: { 3458 TargetTransformInfo::OperandValueKind Op1VK = 3459 TargetTransformInfo::OK_AnyValue; 3460 TargetTransformInfo::OperandValueKind Op2VK = 3461 TargetTransformInfo::OK_UniformConstantValue; 3462 3463 int ScalarEltCost = 3464 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 3465 if (NeedToShuffleReuses) { 3466 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3467 } 3468 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3469 int VecCost = 3470 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 3471 return ReuseShuffleCost + VecCost - ScalarCost; 3472 } 3473 case Instruction::Load: { 3474 // Cost of wide load - cost of scalar loads. 3475 MaybeAlign alignment(cast<LoadInst>(VL0)->getAlignment()); 3476 int ScalarEltCost = 3477 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0); 3478 if (NeedToShuffleReuses) { 3479 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3480 } 3481 int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 3482 int VecLdCost = 3483 TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, VL0); 3484 if (!E->ReorderIndices.empty()) { 3485 // TODO: Merge this shuffle with the ReuseShuffleCost. 3486 VecLdCost += TTI->getShuffleCost( 3487 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3488 } 3489 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 3490 } 3491 case Instruction::Store: { 3492 // We know that we can merge the stores. Calculate the cost. 3493 bool IsReorder = !E->ReorderIndices.empty(); 3494 auto *SI = 3495 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 3496 MaybeAlign Alignment(SI->getAlignment()); 3497 int ScalarEltCost = 3498 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, Alignment, 0, VL0); 3499 if (NeedToShuffleReuses) 3500 ReuseShuffleCost = -(ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3501 int ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 3502 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, 3503 VecTy, Alignment, 0, VL0); 3504 if (IsReorder) { 3505 // TODO: Merge this shuffle with the ReuseShuffleCost. 3506 VecStCost += TTI->getShuffleCost( 3507 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3508 } 3509 return ReuseShuffleCost + VecStCost - ScalarStCost; 3510 } 3511 case Instruction::Call: { 3512 CallInst *CI = cast<CallInst>(VL0); 3513 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3514 3515 // Calculate the cost of the scalar and vector calls. 3516 SmallVector<Type *, 4> ScalarTys; 3517 for (unsigned op = 0, opc = CI->getNumArgOperands(); op != opc; ++op) 3518 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 3519 3520 FastMathFlags FMF; 3521 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3522 FMF = FPMO->getFastMathFlags(); 3523 3524 int ScalarEltCost = 3525 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 3526 if (NeedToShuffleReuses) { 3527 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3528 } 3529 int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 3530 3531 SmallVector<Value *, 4> Args(CI->arg_operands()); 3532 int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF, 3533 VecTy->getNumElements()); 3534 3535 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 3536 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 3537 << " for " << *CI << "\n"); 3538 3539 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 3540 } 3541 case Instruction::ShuffleVector: { 3542 assert(E->isAltShuffle() && 3543 ((Instruction::isBinaryOp(E->getOpcode()) && 3544 Instruction::isBinaryOp(E->getAltOpcode())) || 3545 (Instruction::isCast(E->getOpcode()) && 3546 Instruction::isCast(E->getAltOpcode()))) && 3547 "Invalid Shuffle Vector Operand"); 3548 int ScalarCost = 0; 3549 if (NeedToShuffleReuses) { 3550 for (unsigned Idx : E->ReuseShuffleIndices) { 3551 Instruction *I = cast<Instruction>(VL[Idx]); 3552 ReuseShuffleCost -= TTI->getInstructionCost( 3553 I, TargetTransformInfo::TCK_RecipThroughput); 3554 } 3555 for (Value *V : VL) { 3556 Instruction *I = cast<Instruction>(V); 3557 ReuseShuffleCost += TTI->getInstructionCost( 3558 I, TargetTransformInfo::TCK_RecipThroughput); 3559 } 3560 } 3561 for (Value *V : VL) { 3562 Instruction *I = cast<Instruction>(V); 3563 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 3564 ScalarCost += TTI->getInstructionCost( 3565 I, TargetTransformInfo::TCK_RecipThroughput); 3566 } 3567 // VecCost is equal to sum of the cost of creating 2 vectors 3568 // and the cost of creating shuffle. 3569 int VecCost = 0; 3570 if (Instruction::isBinaryOp(E->getOpcode())) { 3571 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy); 3572 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy); 3573 } else { 3574 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 3575 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 3576 VectorType *Src0Ty = VectorType::get(Src0SclTy, VL.size()); 3577 VectorType *Src1Ty = VectorType::get(Src1SclTy, VL.size()); 3578 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty); 3579 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty); 3580 } 3581 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0); 3582 return ReuseShuffleCost + VecCost - ScalarCost; 3583 } 3584 default: 3585 llvm_unreachable("Unknown instruction"); 3586 } 3587 } 3588 3589 bool BoUpSLP::isFullyVectorizableTinyTree() const { 3590 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 3591 << VectorizableTree.size() << " is fully vectorizable .\n"); 3592 3593 // We only handle trees of heights 1 and 2. 3594 if (VectorizableTree.size() == 1 && 3595 VectorizableTree[0]->State == TreeEntry::Vectorize) 3596 return true; 3597 3598 if (VectorizableTree.size() != 2) 3599 return false; 3600 3601 // Handle splat and all-constants stores. 3602 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 3603 (allConstant(VectorizableTree[1]->Scalars) || 3604 isSplat(VectorizableTree[1]->Scalars))) 3605 return true; 3606 3607 // Gathering cost would be too much for tiny trees. 3608 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 3609 VectorizableTree[1]->State == TreeEntry::NeedToGather) 3610 return false; 3611 3612 return true; 3613 } 3614 3615 bool BoUpSLP::isLoadCombineReductionCandidate(unsigned RdxOpcode) const { 3616 if (RdxOpcode != Instruction::Or) 3617 return false; 3618 3619 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3620 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 3621 3622 // Look past the reduction to find a source value. Arbitrarily follow the 3623 // path through operand 0 of any 'or'. Also, peek through optional 3624 // shift-left-by-constant. 3625 Value *ZextLoad = FirstReduced; 3626 while (match(ZextLoad, m_Or(m_Value(), m_Value())) || 3627 match(ZextLoad, m_Shl(m_Value(), m_Constant()))) 3628 ZextLoad = cast<BinaryOperator>(ZextLoad)->getOperand(0); 3629 3630 // Check if the input to the reduction is an extended load. 3631 Value *LoadPtr; 3632 if (!match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr))))) 3633 return false; 3634 3635 // Require that the total load bit width is a legal integer type. 3636 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 3637 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 3638 Type *SrcTy = LoadPtr->getType()->getPointerElementType(); 3639 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 3640 LLVMContext &Context = FirstReduced->getContext(); 3641 if (!TTI->isTypeLegal(IntegerType::get(Context, LoadBitWidth))) 3642 return false; 3643 3644 // Everything matched - assume that we can fold the whole sequence using 3645 // load combining. 3646 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for scalar reduction of " 3647 << *(cast<Instruction>(FirstReduced)) << "\n"); 3648 3649 return true; 3650 } 3651 3652 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 3653 // We can vectorize the tree if its size is greater than or equal to the 3654 // minimum size specified by the MinTreeSize command line option. 3655 if (VectorizableTree.size() >= MinTreeSize) 3656 return false; 3657 3658 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 3659 // can vectorize it if we can prove it fully vectorizable. 3660 if (isFullyVectorizableTinyTree()) 3661 return false; 3662 3663 assert(VectorizableTree.empty() 3664 ? ExternalUses.empty() 3665 : true && "We shouldn't have any external users"); 3666 3667 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 3668 // vectorizable. 3669 return true; 3670 } 3671 3672 int BoUpSLP::getSpillCost() const { 3673 // Walk from the bottom of the tree to the top, tracking which values are 3674 // live. When we see a call instruction that is not part of our tree, 3675 // query TTI to see if there is a cost to keeping values live over it 3676 // (for example, if spills and fills are required). 3677 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 3678 int Cost = 0; 3679 3680 SmallPtrSet<Instruction*, 4> LiveValues; 3681 Instruction *PrevInst = nullptr; 3682 3683 for (const auto &TEPtr : VectorizableTree) { 3684 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 3685 if (!Inst) 3686 continue; 3687 3688 if (!PrevInst) { 3689 PrevInst = Inst; 3690 continue; 3691 } 3692 3693 // Update LiveValues. 3694 LiveValues.erase(PrevInst); 3695 for (auto &J : PrevInst->operands()) { 3696 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 3697 LiveValues.insert(cast<Instruction>(&*J)); 3698 } 3699 3700 LLVM_DEBUG({ 3701 dbgs() << "SLP: #LV: " << LiveValues.size(); 3702 for (auto *X : LiveValues) 3703 dbgs() << " " << X->getName(); 3704 dbgs() << ", Looking at "; 3705 Inst->dump(); 3706 }); 3707 3708 // Now find the sequence of instructions between PrevInst and Inst. 3709 unsigned NumCalls = 0; 3710 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 3711 PrevInstIt = 3712 PrevInst->getIterator().getReverse(); 3713 while (InstIt != PrevInstIt) { 3714 if (PrevInstIt == PrevInst->getParent()->rend()) { 3715 PrevInstIt = Inst->getParent()->rbegin(); 3716 continue; 3717 } 3718 3719 // Debug information does not impact spill cost. 3720 if ((isa<CallInst>(&*PrevInstIt) && 3721 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 3722 &*PrevInstIt != PrevInst) 3723 NumCalls++; 3724 3725 ++PrevInstIt; 3726 } 3727 3728 if (NumCalls) { 3729 SmallVector<Type*, 4> V; 3730 for (auto *II : LiveValues) 3731 V.push_back(VectorType::get(II->getType(), BundleWidth)); 3732 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 3733 } 3734 3735 PrevInst = Inst; 3736 } 3737 3738 return Cost; 3739 } 3740 3741 int BoUpSLP::getTreeCost() { 3742 int Cost = 0; 3743 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 3744 << VectorizableTree.size() << ".\n"); 3745 3746 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 3747 3748 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 3749 TreeEntry &TE = *VectorizableTree[I].get(); 3750 3751 // We create duplicate tree entries for gather sequences that have multiple 3752 // uses. However, we should not compute the cost of duplicate sequences. 3753 // For example, if we have a build vector (i.e., insertelement sequence) 3754 // that is used by more than one vector instruction, we only need to 3755 // compute the cost of the insertelement instructions once. The redundant 3756 // instructions will be eliminated by CSE. 3757 // 3758 // We should consider not creating duplicate tree entries for gather 3759 // sequences, and instead add additional edges to the tree representing 3760 // their uses. Since such an approach results in fewer total entries, 3761 // existing heuristics based on tree size may yield different results. 3762 // 3763 if (TE.State == TreeEntry::NeedToGather && 3764 std::any_of(std::next(VectorizableTree.begin(), I + 1), 3765 VectorizableTree.end(), 3766 [TE](const std::unique_ptr<TreeEntry> &EntryPtr) { 3767 return EntryPtr->State == TreeEntry::NeedToGather && 3768 EntryPtr->isSame(TE.Scalars); 3769 })) 3770 continue; 3771 3772 int C = getEntryCost(&TE); 3773 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 3774 << " for bundle that starts with " << *TE.Scalars[0] 3775 << ".\n"); 3776 Cost += C; 3777 } 3778 3779 SmallPtrSet<Value *, 16> ExtractCostCalculated; 3780 int ExtractCost = 0; 3781 for (ExternalUser &EU : ExternalUses) { 3782 // We only add extract cost once for the same scalar. 3783 if (!ExtractCostCalculated.insert(EU.Scalar).second) 3784 continue; 3785 3786 // Uses by ephemeral values are free (because the ephemeral value will be 3787 // removed prior to code generation, and so the extraction will be 3788 // removed as well). 3789 if (EphValues.count(EU.User)) 3790 continue; 3791 3792 // If we plan to rewrite the tree in a smaller type, we will need to sign 3793 // extend the extracted value back to the original type. Here, we account 3794 // for the extract and the added cost of the sign extend if needed. 3795 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 3796 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 3797 if (MinBWs.count(ScalarRoot)) { 3798 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 3799 auto Extend = 3800 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 3801 VecTy = VectorType::get(MinTy, BundleWidth); 3802 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 3803 VecTy, EU.Lane); 3804 } else { 3805 ExtractCost += 3806 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 3807 } 3808 } 3809 3810 int SpillCost = getSpillCost(); 3811 Cost += SpillCost + ExtractCost; 3812 3813 std::string Str; 3814 { 3815 raw_string_ostream OS(Str); 3816 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 3817 << "SLP: Extract Cost = " << ExtractCost << ".\n" 3818 << "SLP: Total Cost = " << Cost << ".\n"; 3819 } 3820 LLVM_DEBUG(dbgs() << Str); 3821 3822 if (ViewSLPTree) 3823 ViewGraph(this, "SLP" + F->getName(), false, Str); 3824 3825 return Cost; 3826 } 3827 3828 int BoUpSLP::getGatherCost(Type *Ty, 3829 const DenseSet<unsigned> &ShuffledIndices) const { 3830 int Cost = 0; 3831 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 3832 if (!ShuffledIndices.count(i)) 3833 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 3834 if (!ShuffledIndices.empty()) 3835 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 3836 return Cost; 3837 } 3838 3839 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 3840 // Find the type of the operands in VL. 3841 Type *ScalarTy = VL[0]->getType(); 3842 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3843 ScalarTy = SI->getValueOperand()->getType(); 3844 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 3845 // Find the cost of inserting/extracting values from the vector. 3846 // Check if the same elements are inserted several times and count them as 3847 // shuffle candidates. 3848 DenseSet<unsigned> ShuffledElements; 3849 DenseSet<Value *> UniqueElements; 3850 // Iterate in reverse order to consider insert elements with the high cost. 3851 for (unsigned I = VL.size(); I > 0; --I) { 3852 unsigned Idx = I - 1; 3853 if (!UniqueElements.insert(VL[Idx]).second) 3854 ShuffledElements.insert(Idx); 3855 } 3856 return getGatherCost(VecTy, ShuffledElements); 3857 } 3858 3859 // Perform operand reordering on the instructions in VL and return the reordered 3860 // operands in Left and Right. 3861 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 3862 SmallVectorImpl<Value *> &Left, 3863 SmallVectorImpl<Value *> &Right, 3864 const DataLayout &DL, 3865 ScalarEvolution &SE, 3866 const BoUpSLP &R) { 3867 if (VL.empty()) 3868 return; 3869 VLOperands Ops(VL, DL, SE, R); 3870 // Reorder the operands in place. 3871 Ops.reorder(); 3872 Left = Ops.getVL(0); 3873 Right = Ops.getVL(1); 3874 } 3875 3876 void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) { 3877 // Get the basic block this bundle is in. All instructions in the bundle 3878 // should be in this block. 3879 auto *Front = E->getMainOp(); 3880 auto *BB = Front->getParent(); 3881 assert(llvm::all_of(make_range(E->Scalars.begin(), E->Scalars.end()), 3882 [=](Value *V) -> bool { 3883 auto *I = cast<Instruction>(V); 3884 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 3885 })); 3886 3887 // The last instruction in the bundle in program order. 3888 Instruction *LastInst = nullptr; 3889 3890 // Find the last instruction. The common case should be that BB has been 3891 // scheduled, and the last instruction is VL.back(). So we start with 3892 // VL.back() and iterate over schedule data until we reach the end of the 3893 // bundle. The end of the bundle is marked by null ScheduleData. 3894 if (BlocksSchedules.count(BB)) { 3895 auto *Bundle = 3896 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 3897 if (Bundle && Bundle->isPartOfBundle()) 3898 for (; Bundle; Bundle = Bundle->NextInBundle) 3899 if (Bundle->OpValue == Bundle->Inst) 3900 LastInst = Bundle->Inst; 3901 } 3902 3903 // LastInst can still be null at this point if there's either not an entry 3904 // for BB in BlocksSchedules or there's no ScheduleData available for 3905 // VL.back(). This can be the case if buildTree_rec aborts for various 3906 // reasons (e.g., the maximum recursion depth is reached, the maximum region 3907 // size is reached, etc.). ScheduleData is initialized in the scheduling 3908 // "dry-run". 3909 // 3910 // If this happens, we can still find the last instruction by brute force. We 3911 // iterate forwards from Front (inclusive) until we either see all 3912 // instructions in the bundle or reach the end of the block. If Front is the 3913 // last instruction in program order, LastInst will be set to Front, and we 3914 // will visit all the remaining instructions in the block. 3915 // 3916 // One of the reasons we exit early from buildTree_rec is to place an upper 3917 // bound on compile-time. Thus, taking an additional compile-time hit here is 3918 // not ideal. However, this should be exceedingly rare since it requires that 3919 // we both exit early from buildTree_rec and that the bundle be out-of-order 3920 // (causing us to iterate all the way to the end of the block). 3921 if (!LastInst) { 3922 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 3923 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 3924 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 3925 LastInst = &I; 3926 if (Bundle.empty()) 3927 break; 3928 } 3929 } 3930 assert(LastInst && "Failed to find last instruction in bundle"); 3931 3932 // Set the insertion point after the last instruction in the bundle. Set the 3933 // debug location to Front. 3934 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 3935 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 3936 } 3937 3938 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 3939 Value *Vec = UndefValue::get(Ty); 3940 // Generate the 'InsertElement' instruction. 3941 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 3942 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 3943 if (auto *Insrt = dyn_cast<InsertElementInst>(Vec)) { 3944 GatherSeq.insert(Insrt); 3945 CSEBlocks.insert(Insrt->getParent()); 3946 3947 // Add to our 'need-to-extract' list. 3948 if (TreeEntry *E = getTreeEntry(VL[i])) { 3949 // Find which lane we need to extract. 3950 int FoundLane = -1; 3951 for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) { 3952 // Is this the lane of the scalar that we are looking for ? 3953 if (E->Scalars[Lane] == VL[i]) { 3954 FoundLane = Lane; 3955 break; 3956 } 3957 } 3958 assert(FoundLane >= 0 && "Could not find the correct lane"); 3959 if (!E->ReuseShuffleIndices.empty()) { 3960 FoundLane = 3961 std::distance(E->ReuseShuffleIndices.begin(), 3962 llvm::find(E->ReuseShuffleIndices, FoundLane)); 3963 } 3964 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 3965 } 3966 } 3967 } 3968 3969 return Vec; 3970 } 3971 3972 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 3973 InstructionsState S = getSameOpcode(VL); 3974 if (S.getOpcode()) { 3975 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3976 if (E->isSame(VL)) { 3977 Value *V = vectorizeTree(E); 3978 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 3979 // We need to get the vectorized value but without shuffle. 3980 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 3981 V = SV->getOperand(0); 3982 } else { 3983 // Reshuffle to get only unique values. 3984 SmallVector<unsigned, 4> UniqueIdxs; 3985 SmallSet<unsigned, 4> UsedIdxs; 3986 for(unsigned Idx : E->ReuseShuffleIndices) 3987 if (UsedIdxs.insert(Idx).second) 3988 UniqueIdxs.emplace_back(Idx); 3989 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 3990 UniqueIdxs); 3991 } 3992 } 3993 return V; 3994 } 3995 } 3996 } 3997 3998 Type *ScalarTy = S.OpValue->getType(); 3999 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 4000 ScalarTy = SI->getValueOperand()->getType(); 4001 4002 // Check that every instruction appears once in this bundle. 4003 SmallVector<unsigned, 4> ReuseShuffleIndicies; 4004 SmallVector<Value *, 4> UniqueValues; 4005 if (VL.size() > 2) { 4006 DenseMap<Value *, unsigned> UniquePositions; 4007 for (Value *V : VL) { 4008 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 4009 ReuseShuffleIndicies.emplace_back(Res.first->second); 4010 if (Res.second || isa<Constant>(V)) 4011 UniqueValues.emplace_back(V); 4012 } 4013 // Do not shuffle single element or if number of unique values is not power 4014 // of 2. 4015 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 4016 !llvm::isPowerOf2_32(UniqueValues.size())) 4017 ReuseShuffleIndicies.clear(); 4018 else 4019 VL = UniqueValues; 4020 } 4021 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 4022 4023 Value *V = Gather(VL, VecTy); 4024 if (!ReuseShuffleIndicies.empty()) { 4025 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4026 ReuseShuffleIndicies, "shuffle"); 4027 if (auto *I = dyn_cast<Instruction>(V)) { 4028 GatherSeq.insert(I); 4029 CSEBlocks.insert(I->getParent()); 4030 } 4031 } 4032 return V; 4033 } 4034 4035 static void inversePermutation(ArrayRef<unsigned> Indices, 4036 SmallVectorImpl<unsigned> &Mask) { 4037 Mask.clear(); 4038 const unsigned E = Indices.size(); 4039 Mask.resize(E); 4040 for (unsigned I = 0; I < E; ++I) 4041 Mask[Indices[I]] = I; 4042 } 4043 4044 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 4045 IRBuilder<>::InsertPointGuard Guard(Builder); 4046 4047 if (E->VectorizedValue) { 4048 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 4049 return E->VectorizedValue; 4050 } 4051 4052 Instruction *VL0 = E->getMainOp(); 4053 Type *ScalarTy = VL0->getType(); 4054 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 4055 ScalarTy = SI->getValueOperand()->getType(); 4056 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 4057 4058 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4059 4060 if (E->State == TreeEntry::NeedToGather) { 4061 setInsertPointAfterBundle(E); 4062 auto *V = Gather(E->Scalars, VecTy); 4063 if (NeedToShuffleReuses) { 4064 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4065 E->ReuseShuffleIndices, "shuffle"); 4066 if (auto *I = dyn_cast<Instruction>(V)) { 4067 GatherSeq.insert(I); 4068 CSEBlocks.insert(I->getParent()); 4069 } 4070 } 4071 E->VectorizedValue = V; 4072 return V; 4073 } 4074 4075 unsigned ShuffleOrOp = 4076 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 4077 switch (ShuffleOrOp) { 4078 case Instruction::PHI: { 4079 auto *PH = cast<PHINode>(VL0); 4080 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 4081 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4082 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 4083 Value *V = NewPhi; 4084 if (NeedToShuffleReuses) { 4085 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4086 E->ReuseShuffleIndices, "shuffle"); 4087 } 4088 E->VectorizedValue = V; 4089 4090 // PHINodes may have multiple entries from the same block. We want to 4091 // visit every block once. 4092 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 4093 4094 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 4095 ValueList Operands; 4096 BasicBlock *IBB = PH->getIncomingBlock(i); 4097 4098 if (!VisitedBBs.insert(IBB).second) { 4099 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 4100 continue; 4101 } 4102 4103 Builder.SetInsertPoint(IBB->getTerminator()); 4104 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4105 Value *Vec = vectorizeTree(E->getOperand(i)); 4106 NewPhi->addIncoming(Vec, IBB); 4107 } 4108 4109 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 4110 "Invalid number of incoming values"); 4111 return V; 4112 } 4113 4114 case Instruction::ExtractElement: { 4115 if (E->State == TreeEntry::Vectorize) { 4116 Value *V = E->getSingleOperand(0); 4117 if (!E->ReorderIndices.empty()) { 4118 OrdersType Mask; 4119 inversePermutation(E->ReorderIndices, Mask); 4120 Builder.SetInsertPoint(VL0); 4121 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), Mask, 4122 "reorder_shuffle"); 4123 } 4124 if (NeedToShuffleReuses) { 4125 // TODO: Merge this shuffle with the ReorderShuffleMask. 4126 if (E->ReorderIndices.empty()) 4127 Builder.SetInsertPoint(VL0); 4128 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4129 E->ReuseShuffleIndices, "shuffle"); 4130 } 4131 E->VectorizedValue = V; 4132 return V; 4133 } 4134 setInsertPointAfterBundle(E); 4135 auto *V = Gather(E->Scalars, VecTy); 4136 if (NeedToShuffleReuses) { 4137 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4138 E->ReuseShuffleIndices, "shuffle"); 4139 if (auto *I = dyn_cast<Instruction>(V)) { 4140 GatherSeq.insert(I); 4141 CSEBlocks.insert(I->getParent()); 4142 } 4143 } 4144 E->VectorizedValue = V; 4145 return V; 4146 } 4147 case Instruction::ExtractValue: { 4148 if (E->State == TreeEntry::Vectorize) { 4149 LoadInst *LI = cast<LoadInst>(E->getSingleOperand(0)); 4150 Builder.SetInsertPoint(LI); 4151 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 4152 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 4153 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 4154 Value *NewV = propagateMetadata(V, E->Scalars); 4155 if (!E->ReorderIndices.empty()) { 4156 OrdersType Mask; 4157 inversePermutation(E->ReorderIndices, Mask); 4158 NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), Mask, 4159 "reorder_shuffle"); 4160 } 4161 if (NeedToShuffleReuses) { 4162 // TODO: Merge this shuffle with the ReorderShuffleMask. 4163 NewV = Builder.CreateShuffleVector( 4164 NewV, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle"); 4165 } 4166 E->VectorizedValue = NewV; 4167 return NewV; 4168 } 4169 setInsertPointAfterBundle(E); 4170 auto *V = Gather(E->Scalars, VecTy); 4171 if (NeedToShuffleReuses) { 4172 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4173 E->ReuseShuffleIndices, "shuffle"); 4174 if (auto *I = dyn_cast<Instruction>(V)) { 4175 GatherSeq.insert(I); 4176 CSEBlocks.insert(I->getParent()); 4177 } 4178 } 4179 E->VectorizedValue = V; 4180 return V; 4181 } 4182 case Instruction::ZExt: 4183 case Instruction::SExt: 4184 case Instruction::FPToUI: 4185 case Instruction::FPToSI: 4186 case Instruction::FPExt: 4187 case Instruction::PtrToInt: 4188 case Instruction::IntToPtr: 4189 case Instruction::SIToFP: 4190 case Instruction::UIToFP: 4191 case Instruction::Trunc: 4192 case Instruction::FPTrunc: 4193 case Instruction::BitCast: { 4194 setInsertPointAfterBundle(E); 4195 4196 Value *InVec = vectorizeTree(E->getOperand(0)); 4197 4198 if (E->VectorizedValue) { 4199 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4200 return E->VectorizedValue; 4201 } 4202 4203 auto *CI = cast<CastInst>(VL0); 4204 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 4205 if (NeedToShuffleReuses) { 4206 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4207 E->ReuseShuffleIndices, "shuffle"); 4208 } 4209 E->VectorizedValue = V; 4210 ++NumVectorInstructions; 4211 return V; 4212 } 4213 case Instruction::FCmp: 4214 case Instruction::ICmp: { 4215 setInsertPointAfterBundle(E); 4216 4217 Value *L = vectorizeTree(E->getOperand(0)); 4218 Value *R = vectorizeTree(E->getOperand(1)); 4219 4220 if (E->VectorizedValue) { 4221 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4222 return E->VectorizedValue; 4223 } 4224 4225 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4226 Value *V; 4227 if (E->getOpcode() == Instruction::FCmp) 4228 V = Builder.CreateFCmp(P0, L, R); 4229 else 4230 V = Builder.CreateICmp(P0, L, R); 4231 4232 propagateIRFlags(V, E->Scalars, VL0); 4233 if (NeedToShuffleReuses) { 4234 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4235 E->ReuseShuffleIndices, "shuffle"); 4236 } 4237 E->VectorizedValue = V; 4238 ++NumVectorInstructions; 4239 return V; 4240 } 4241 case Instruction::Select: { 4242 setInsertPointAfterBundle(E); 4243 4244 Value *Cond = vectorizeTree(E->getOperand(0)); 4245 Value *True = vectorizeTree(E->getOperand(1)); 4246 Value *False = vectorizeTree(E->getOperand(2)); 4247 4248 if (E->VectorizedValue) { 4249 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4250 return E->VectorizedValue; 4251 } 4252 4253 Value *V = Builder.CreateSelect(Cond, True, False); 4254 if (NeedToShuffleReuses) { 4255 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4256 E->ReuseShuffleIndices, "shuffle"); 4257 } 4258 E->VectorizedValue = V; 4259 ++NumVectorInstructions; 4260 return V; 4261 } 4262 case Instruction::FNeg: { 4263 setInsertPointAfterBundle(E); 4264 4265 Value *Op = vectorizeTree(E->getOperand(0)); 4266 4267 if (E->VectorizedValue) { 4268 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4269 return E->VectorizedValue; 4270 } 4271 4272 Value *V = Builder.CreateUnOp( 4273 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 4274 propagateIRFlags(V, E->Scalars, VL0); 4275 if (auto *I = dyn_cast<Instruction>(V)) 4276 V = propagateMetadata(I, E->Scalars); 4277 4278 if (NeedToShuffleReuses) { 4279 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4280 E->ReuseShuffleIndices, "shuffle"); 4281 } 4282 E->VectorizedValue = V; 4283 ++NumVectorInstructions; 4284 4285 return V; 4286 } 4287 case Instruction::Add: 4288 case Instruction::FAdd: 4289 case Instruction::Sub: 4290 case Instruction::FSub: 4291 case Instruction::Mul: 4292 case Instruction::FMul: 4293 case Instruction::UDiv: 4294 case Instruction::SDiv: 4295 case Instruction::FDiv: 4296 case Instruction::URem: 4297 case Instruction::SRem: 4298 case Instruction::FRem: 4299 case Instruction::Shl: 4300 case Instruction::LShr: 4301 case Instruction::AShr: 4302 case Instruction::And: 4303 case Instruction::Or: 4304 case Instruction::Xor: { 4305 setInsertPointAfterBundle(E); 4306 4307 Value *LHS = vectorizeTree(E->getOperand(0)); 4308 Value *RHS = vectorizeTree(E->getOperand(1)); 4309 4310 if (E->VectorizedValue) { 4311 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4312 return E->VectorizedValue; 4313 } 4314 4315 Value *V = Builder.CreateBinOp( 4316 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 4317 RHS); 4318 propagateIRFlags(V, E->Scalars, VL0); 4319 if (auto *I = dyn_cast<Instruction>(V)) 4320 V = propagateMetadata(I, E->Scalars); 4321 4322 if (NeedToShuffleReuses) { 4323 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4324 E->ReuseShuffleIndices, "shuffle"); 4325 } 4326 E->VectorizedValue = V; 4327 ++NumVectorInstructions; 4328 4329 return V; 4330 } 4331 case Instruction::Load: { 4332 // Loads are inserted at the head of the tree because we don't want to 4333 // sink them all the way down past store instructions. 4334 bool IsReorder = E->updateStateIfReorder(); 4335 if (IsReorder) 4336 VL0 = E->getMainOp(); 4337 setInsertPointAfterBundle(E); 4338 4339 LoadInst *LI = cast<LoadInst>(VL0); 4340 Type *ScalarLoadTy = LI->getType(); 4341 unsigned AS = LI->getPointerAddressSpace(); 4342 4343 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 4344 VecTy->getPointerTo(AS)); 4345 4346 // The pointer operand uses an in-tree scalar so we add the new BitCast to 4347 // ExternalUses list to make sure that an extract will be generated in the 4348 // future. 4349 Value *PO = LI->getPointerOperand(); 4350 if (getTreeEntry(PO)) 4351 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0)); 4352 4353 MaybeAlign Alignment = MaybeAlign(LI->getAlignment()); 4354 LI = Builder.CreateLoad(VecTy, VecPtr); 4355 if (!Alignment) 4356 Alignment = MaybeAlign(DL->getABITypeAlignment(ScalarLoadTy)); 4357 LI->setAlignment(Alignment); 4358 Value *V = propagateMetadata(LI, E->Scalars); 4359 if (IsReorder) { 4360 OrdersType Mask; 4361 inversePermutation(E->ReorderIndices, Mask); 4362 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 4363 Mask, "reorder_shuffle"); 4364 } 4365 if (NeedToShuffleReuses) { 4366 // TODO: Merge this shuffle with the ReorderShuffleMask. 4367 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4368 E->ReuseShuffleIndices, "shuffle"); 4369 } 4370 E->VectorizedValue = V; 4371 ++NumVectorInstructions; 4372 return V; 4373 } 4374 case Instruction::Store: { 4375 bool IsReorder = !E->ReorderIndices.empty(); 4376 auto *SI = cast<StoreInst>( 4377 IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0); 4378 unsigned Alignment = SI->getAlignment(); 4379 unsigned AS = SI->getPointerAddressSpace(); 4380 4381 setInsertPointAfterBundle(E); 4382 4383 Value *VecValue = vectorizeTree(E->getOperand(0)); 4384 if (IsReorder) { 4385 OrdersType Mask; 4386 inversePermutation(E->ReorderIndices, Mask); 4387 VecValue = Builder.CreateShuffleVector( 4388 VecValue, UndefValue::get(VecValue->getType()), E->ReorderIndices, 4389 "reorder_shuffle"); 4390 } 4391 Value *ScalarPtr = SI->getPointerOperand(); 4392 Value *VecPtr = Builder.CreateBitCast( 4393 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 4394 StoreInst *ST = Builder.CreateStore(VecValue, VecPtr); 4395 4396 // The pointer operand uses an in-tree scalar, so add the new BitCast to 4397 // ExternalUses to make sure that an extract will be generated in the 4398 // future. 4399 if (getTreeEntry(ScalarPtr)) 4400 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 4401 4402 if (!Alignment) 4403 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 4404 4405 ST->setAlignment(Align(Alignment)); 4406 Value *V = propagateMetadata(ST, E->Scalars); 4407 if (NeedToShuffleReuses) { 4408 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4409 E->ReuseShuffleIndices, "shuffle"); 4410 } 4411 E->VectorizedValue = V; 4412 ++NumVectorInstructions; 4413 return V; 4414 } 4415 case Instruction::GetElementPtr: { 4416 setInsertPointAfterBundle(E); 4417 4418 Value *Op0 = vectorizeTree(E->getOperand(0)); 4419 4420 std::vector<Value *> OpVecs; 4421 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 4422 ++j) { 4423 ValueList &VL = E->getOperand(j); 4424 // Need to cast all elements to the same type before vectorization to 4425 // avoid crash. 4426 Type *VL0Ty = VL0->getOperand(j)->getType(); 4427 Type *Ty = llvm::all_of( 4428 VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); }) 4429 ? VL0Ty 4430 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4431 ->getPointerOperandType() 4432 ->getScalarType()); 4433 for (Value *&V : VL) { 4434 auto *CI = cast<ConstantInt>(V); 4435 V = ConstantExpr::getIntegerCast(CI, Ty, 4436 CI->getValue().isSignBitSet()); 4437 } 4438 Value *OpVec = vectorizeTree(VL); 4439 OpVecs.push_back(OpVec); 4440 } 4441 4442 Value *V = Builder.CreateGEP( 4443 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 4444 if (Instruction *I = dyn_cast<Instruction>(V)) 4445 V = propagateMetadata(I, E->Scalars); 4446 4447 if (NeedToShuffleReuses) { 4448 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4449 E->ReuseShuffleIndices, "shuffle"); 4450 } 4451 E->VectorizedValue = V; 4452 ++NumVectorInstructions; 4453 4454 return V; 4455 } 4456 case Instruction::Call: { 4457 CallInst *CI = cast<CallInst>(VL0); 4458 setInsertPointAfterBundle(E); 4459 4460 Intrinsic::ID IID = Intrinsic::not_intrinsic; 4461 if (Function *FI = CI->getCalledFunction()) 4462 IID = FI->getIntrinsicID(); 4463 4464 Value *ScalarArg = nullptr; 4465 std::vector<Value *> OpVecs; 4466 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 4467 ValueList OpVL; 4468 // Some intrinsics have scalar arguments. This argument should not be 4469 // vectorized. 4470 if (hasVectorInstrinsicScalarOpd(IID, j)) { 4471 CallInst *CEI = cast<CallInst>(VL0); 4472 ScalarArg = CEI->getArgOperand(j); 4473 OpVecs.push_back(CEI->getArgOperand(j)); 4474 continue; 4475 } 4476 4477 Value *OpVec = vectorizeTree(E->getOperand(j)); 4478 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 4479 OpVecs.push_back(OpVec); 4480 } 4481 4482 Module *M = F->getParent(); 4483 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4484 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 4485 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 4486 SmallVector<OperandBundleDef, 1> OpBundles; 4487 CI->getOperandBundlesAsDefs(OpBundles); 4488 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 4489 4490 // The scalar argument uses an in-tree scalar so we add the new vectorized 4491 // call to ExternalUses list to make sure that an extract will be 4492 // generated in the future. 4493 if (ScalarArg && getTreeEntry(ScalarArg)) 4494 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 4495 4496 propagateIRFlags(V, E->Scalars, VL0); 4497 if (NeedToShuffleReuses) { 4498 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4499 E->ReuseShuffleIndices, "shuffle"); 4500 } 4501 E->VectorizedValue = V; 4502 ++NumVectorInstructions; 4503 return V; 4504 } 4505 case Instruction::ShuffleVector: { 4506 assert(E->isAltShuffle() && 4507 ((Instruction::isBinaryOp(E->getOpcode()) && 4508 Instruction::isBinaryOp(E->getAltOpcode())) || 4509 (Instruction::isCast(E->getOpcode()) && 4510 Instruction::isCast(E->getAltOpcode()))) && 4511 "Invalid Shuffle Vector Operand"); 4512 4513 Value *LHS = nullptr, *RHS = nullptr; 4514 if (Instruction::isBinaryOp(E->getOpcode())) { 4515 setInsertPointAfterBundle(E); 4516 LHS = vectorizeTree(E->getOperand(0)); 4517 RHS = vectorizeTree(E->getOperand(1)); 4518 } else { 4519 setInsertPointAfterBundle(E); 4520 LHS = vectorizeTree(E->getOperand(0)); 4521 } 4522 4523 if (E->VectorizedValue) { 4524 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4525 return E->VectorizedValue; 4526 } 4527 4528 Value *V0, *V1; 4529 if (Instruction::isBinaryOp(E->getOpcode())) { 4530 V0 = Builder.CreateBinOp( 4531 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 4532 V1 = Builder.CreateBinOp( 4533 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 4534 } else { 4535 V0 = Builder.CreateCast( 4536 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 4537 V1 = Builder.CreateCast( 4538 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 4539 } 4540 4541 // Create shuffle to take alternate operations from the vector. 4542 // Also, gather up main and alt scalar ops to propagate IR flags to 4543 // each vector operation. 4544 ValueList OpScalars, AltScalars; 4545 unsigned e = E->Scalars.size(); 4546 SmallVector<Constant *, 8> Mask(e); 4547 for (unsigned i = 0; i < e; ++i) { 4548 auto *OpInst = cast<Instruction>(E->Scalars[i]); 4549 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 4550 if (OpInst->getOpcode() == E->getAltOpcode()) { 4551 Mask[i] = Builder.getInt32(e + i); 4552 AltScalars.push_back(E->Scalars[i]); 4553 } else { 4554 Mask[i] = Builder.getInt32(i); 4555 OpScalars.push_back(E->Scalars[i]); 4556 } 4557 } 4558 4559 Value *ShuffleMask = ConstantVector::get(Mask); 4560 propagateIRFlags(V0, OpScalars); 4561 propagateIRFlags(V1, AltScalars); 4562 4563 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 4564 if (Instruction *I = dyn_cast<Instruction>(V)) 4565 V = propagateMetadata(I, E->Scalars); 4566 if (NeedToShuffleReuses) { 4567 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4568 E->ReuseShuffleIndices, "shuffle"); 4569 } 4570 E->VectorizedValue = V; 4571 ++NumVectorInstructions; 4572 4573 return V; 4574 } 4575 default: 4576 llvm_unreachable("unknown inst"); 4577 } 4578 return nullptr; 4579 } 4580 4581 Value *BoUpSLP::vectorizeTree() { 4582 ExtraValueToDebugLocsMap ExternallyUsedValues; 4583 return vectorizeTree(ExternallyUsedValues); 4584 } 4585 4586 Value * 4587 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 4588 // All blocks must be scheduled before any instructions are inserted. 4589 for (auto &BSIter : BlocksSchedules) { 4590 scheduleBlock(BSIter.second.get()); 4591 } 4592 4593 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4594 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 4595 4596 // If the vectorized tree can be rewritten in a smaller type, we truncate the 4597 // vectorized root. InstCombine will then rewrite the entire expression. We 4598 // sign extend the extracted values below. 4599 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4600 if (MinBWs.count(ScalarRoot)) { 4601 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 4602 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 4603 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 4604 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4605 auto *VecTy = VectorType::get(MinTy, BundleWidth); 4606 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 4607 VectorizableTree[0]->VectorizedValue = Trunc; 4608 } 4609 4610 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 4611 << " values .\n"); 4612 4613 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 4614 // specified by ScalarType. 4615 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 4616 if (!MinBWs.count(ScalarRoot)) 4617 return Ex; 4618 if (MinBWs[ScalarRoot].second) 4619 return Builder.CreateSExt(Ex, ScalarType); 4620 return Builder.CreateZExt(Ex, ScalarType); 4621 }; 4622 4623 // Extract all of the elements with the external uses. 4624 for (const auto &ExternalUse : ExternalUses) { 4625 Value *Scalar = ExternalUse.Scalar; 4626 llvm::User *User = ExternalUse.User; 4627 4628 // Skip users that we already RAUW. This happens when one instruction 4629 // has multiple uses of the same value. 4630 if (User && !is_contained(Scalar->users(), User)) 4631 continue; 4632 TreeEntry *E = getTreeEntry(Scalar); 4633 assert(E && "Invalid scalar"); 4634 assert(E->State == TreeEntry::Vectorize && "Extracting from a gather list"); 4635 4636 Value *Vec = E->VectorizedValue; 4637 assert(Vec && "Can't find vectorizable value"); 4638 4639 Value *Lane = Builder.getInt32(ExternalUse.Lane); 4640 // If User == nullptr, the Scalar is used as extra arg. Generate 4641 // ExtractElement instruction and update the record for this scalar in 4642 // ExternallyUsedValues. 4643 if (!User) { 4644 assert(ExternallyUsedValues.count(Scalar) && 4645 "Scalar with nullptr as an external user must be registered in " 4646 "ExternallyUsedValues map"); 4647 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4648 Builder.SetInsertPoint(VecI->getParent(), 4649 std::next(VecI->getIterator())); 4650 } else { 4651 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4652 } 4653 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4654 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4655 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 4656 auto &Locs = ExternallyUsedValues[Scalar]; 4657 ExternallyUsedValues.insert({Ex, Locs}); 4658 ExternallyUsedValues.erase(Scalar); 4659 // Required to update internally referenced instructions. 4660 Scalar->replaceAllUsesWith(Ex); 4661 continue; 4662 } 4663 4664 // Generate extracts for out-of-tree users. 4665 // Find the insertion point for the extractelement lane. 4666 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4667 if (PHINode *PH = dyn_cast<PHINode>(User)) { 4668 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 4669 if (PH->getIncomingValue(i) == Scalar) { 4670 Instruction *IncomingTerminator = 4671 PH->getIncomingBlock(i)->getTerminator(); 4672 if (isa<CatchSwitchInst>(IncomingTerminator)) { 4673 Builder.SetInsertPoint(VecI->getParent(), 4674 std::next(VecI->getIterator())); 4675 } else { 4676 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 4677 } 4678 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4679 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4680 CSEBlocks.insert(PH->getIncomingBlock(i)); 4681 PH->setOperand(i, Ex); 4682 } 4683 } 4684 } else { 4685 Builder.SetInsertPoint(cast<Instruction>(User)); 4686 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4687 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4688 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 4689 User->replaceUsesOfWith(Scalar, Ex); 4690 } 4691 } else { 4692 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4693 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4694 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4695 CSEBlocks.insert(&F->getEntryBlock()); 4696 User->replaceUsesOfWith(Scalar, Ex); 4697 } 4698 4699 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 4700 } 4701 4702 // For each vectorized value: 4703 for (auto &TEPtr : VectorizableTree) { 4704 TreeEntry *Entry = TEPtr.get(); 4705 4706 // No need to handle users of gathered values. 4707 if (Entry->State == TreeEntry::NeedToGather) 4708 continue; 4709 4710 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 4711 4712 // For each lane: 4713 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 4714 Value *Scalar = Entry->Scalars[Lane]; 4715 4716 #ifndef NDEBUG 4717 Type *Ty = Scalar->getType(); 4718 if (!Ty->isVoidTy()) { 4719 for (User *U : Scalar->users()) { 4720 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 4721 4722 // It is legal to delete users in the ignorelist. 4723 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 4724 "Deleting out-of-tree value"); 4725 } 4726 } 4727 #endif 4728 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 4729 eraseInstruction(cast<Instruction>(Scalar)); 4730 } 4731 } 4732 4733 Builder.ClearInsertionPoint(); 4734 4735 return VectorizableTree[0]->VectorizedValue; 4736 } 4737 4738 void BoUpSLP::optimizeGatherSequence() { 4739 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 4740 << " gather sequences instructions.\n"); 4741 // LICM InsertElementInst sequences. 4742 for (Instruction *I : GatherSeq) { 4743 if (isDeleted(I)) 4744 continue; 4745 4746 // Check if this block is inside a loop. 4747 Loop *L = LI->getLoopFor(I->getParent()); 4748 if (!L) 4749 continue; 4750 4751 // Check if it has a preheader. 4752 BasicBlock *PreHeader = L->getLoopPreheader(); 4753 if (!PreHeader) 4754 continue; 4755 4756 // If the vector or the element that we insert into it are 4757 // instructions that are defined in this basic block then we can't 4758 // hoist this instruction. 4759 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 4760 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 4761 if (Op0 && L->contains(Op0)) 4762 continue; 4763 if (Op1 && L->contains(Op1)) 4764 continue; 4765 4766 // We can hoist this instruction. Move it to the pre-header. 4767 I->moveBefore(PreHeader->getTerminator()); 4768 } 4769 4770 // Make a list of all reachable blocks in our CSE queue. 4771 SmallVector<const DomTreeNode *, 8> CSEWorkList; 4772 CSEWorkList.reserve(CSEBlocks.size()); 4773 for (BasicBlock *BB : CSEBlocks) 4774 if (DomTreeNode *N = DT->getNode(BB)) { 4775 assert(DT->isReachableFromEntry(N)); 4776 CSEWorkList.push_back(N); 4777 } 4778 4779 // Sort blocks by domination. This ensures we visit a block after all blocks 4780 // dominating it are visited. 4781 llvm::stable_sort(CSEWorkList, 4782 [this](const DomTreeNode *A, const DomTreeNode *B) { 4783 return DT->properlyDominates(A, B); 4784 }); 4785 4786 // Perform O(N^2) search over the gather sequences and merge identical 4787 // instructions. TODO: We can further optimize this scan if we split the 4788 // instructions into different buckets based on the insert lane. 4789 SmallVector<Instruction *, 16> Visited; 4790 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 4791 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 4792 "Worklist not sorted properly!"); 4793 BasicBlock *BB = (*I)->getBlock(); 4794 // For all instructions in blocks containing gather sequences: 4795 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 4796 Instruction *In = &*it++; 4797 if (isDeleted(In)) 4798 continue; 4799 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 4800 continue; 4801 4802 // Check if we can replace this instruction with any of the 4803 // visited instructions. 4804 for (Instruction *v : Visited) { 4805 if (In->isIdenticalTo(v) && 4806 DT->dominates(v->getParent(), In->getParent())) { 4807 In->replaceAllUsesWith(v); 4808 eraseInstruction(In); 4809 In = nullptr; 4810 break; 4811 } 4812 } 4813 if (In) { 4814 assert(!is_contained(Visited, In)); 4815 Visited.push_back(In); 4816 } 4817 } 4818 } 4819 CSEBlocks.clear(); 4820 GatherSeq.clear(); 4821 } 4822 4823 // Groups the instructions to a bundle (which is then a single scheduling entity) 4824 // and schedules instructions until the bundle gets ready. 4825 Optional<BoUpSLP::ScheduleData *> 4826 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 4827 const InstructionsState &S) { 4828 if (isa<PHINode>(S.OpValue)) 4829 return nullptr; 4830 4831 // Initialize the instruction bundle. 4832 Instruction *OldScheduleEnd = ScheduleEnd; 4833 ScheduleData *PrevInBundle = nullptr; 4834 ScheduleData *Bundle = nullptr; 4835 bool ReSchedule = false; 4836 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 4837 4838 // Make sure that the scheduling region contains all 4839 // instructions of the bundle. 4840 for (Value *V : VL) { 4841 if (!extendSchedulingRegion(V, S)) 4842 return None; 4843 } 4844 4845 for (Value *V : VL) { 4846 ScheduleData *BundleMember = getScheduleData(V); 4847 assert(BundleMember && 4848 "no ScheduleData for bundle member (maybe not in same basic block)"); 4849 if (BundleMember->IsScheduled) { 4850 // A bundle member was scheduled as single instruction before and now 4851 // needs to be scheduled as part of the bundle. We just get rid of the 4852 // existing schedule. 4853 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 4854 << " was already scheduled\n"); 4855 ReSchedule = true; 4856 } 4857 assert(BundleMember->isSchedulingEntity() && 4858 "bundle member already part of other bundle"); 4859 if (PrevInBundle) { 4860 PrevInBundle->NextInBundle = BundleMember; 4861 } else { 4862 Bundle = BundleMember; 4863 } 4864 BundleMember->UnscheduledDepsInBundle = 0; 4865 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 4866 4867 // Group the instructions to a bundle. 4868 BundleMember->FirstInBundle = Bundle; 4869 PrevInBundle = BundleMember; 4870 } 4871 if (ScheduleEnd != OldScheduleEnd) { 4872 // The scheduling region got new instructions at the lower end (or it is a 4873 // new region for the first bundle). This makes it necessary to 4874 // recalculate all dependencies. 4875 // It is seldom that this needs to be done a second time after adding the 4876 // initial bundle to the region. 4877 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 4878 doForAllOpcodes(I, [](ScheduleData *SD) { 4879 SD->clearDependencies(); 4880 }); 4881 } 4882 ReSchedule = true; 4883 } 4884 if (ReSchedule) { 4885 resetSchedule(); 4886 initialFillReadyList(ReadyInsts); 4887 } 4888 assert(Bundle && "Failed to find schedule bundle"); 4889 4890 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 4891 << BB->getName() << "\n"); 4892 4893 calculateDependencies(Bundle, true, SLP); 4894 4895 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 4896 // means that there are no cyclic dependencies and we can schedule it. 4897 // Note that's important that we don't "schedule" the bundle yet (see 4898 // cancelScheduling). 4899 while (!Bundle->isReady() && !ReadyInsts.empty()) { 4900 4901 ScheduleData *pickedSD = ReadyInsts.back(); 4902 ReadyInsts.pop_back(); 4903 4904 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 4905 schedule(pickedSD, ReadyInsts); 4906 } 4907 } 4908 if (!Bundle->isReady()) { 4909 cancelScheduling(VL, S.OpValue); 4910 return None; 4911 } 4912 return Bundle; 4913 } 4914 4915 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 4916 Value *OpValue) { 4917 if (isa<PHINode>(OpValue)) 4918 return; 4919 4920 ScheduleData *Bundle = getScheduleData(OpValue); 4921 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 4922 assert(!Bundle->IsScheduled && 4923 "Can't cancel bundle which is already scheduled"); 4924 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 4925 "tried to unbundle something which is not a bundle"); 4926 4927 // Un-bundle: make single instructions out of the bundle. 4928 ScheduleData *BundleMember = Bundle; 4929 while (BundleMember) { 4930 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 4931 BundleMember->FirstInBundle = BundleMember; 4932 ScheduleData *Next = BundleMember->NextInBundle; 4933 BundleMember->NextInBundle = nullptr; 4934 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 4935 if (BundleMember->UnscheduledDepsInBundle == 0) { 4936 ReadyInsts.insert(BundleMember); 4937 } 4938 BundleMember = Next; 4939 } 4940 } 4941 4942 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 4943 // Allocate a new ScheduleData for the instruction. 4944 if (ChunkPos >= ChunkSize) { 4945 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 4946 ChunkPos = 0; 4947 } 4948 return &(ScheduleDataChunks.back()[ChunkPos++]); 4949 } 4950 4951 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 4952 const InstructionsState &S) { 4953 if (getScheduleData(V, isOneOf(S, V))) 4954 return true; 4955 Instruction *I = dyn_cast<Instruction>(V); 4956 assert(I && "bundle member must be an instruction"); 4957 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 4958 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 4959 ScheduleData *ISD = getScheduleData(I); 4960 if (!ISD) 4961 return false; 4962 assert(isInSchedulingRegion(ISD) && 4963 "ScheduleData not in scheduling region"); 4964 ScheduleData *SD = allocateScheduleDataChunks(); 4965 SD->Inst = I; 4966 SD->init(SchedulingRegionID, S.OpValue); 4967 ExtraScheduleDataMap[I][S.OpValue] = SD; 4968 return true; 4969 }; 4970 if (CheckSheduleForI(I)) 4971 return true; 4972 if (!ScheduleStart) { 4973 // It's the first instruction in the new region. 4974 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 4975 ScheduleStart = I; 4976 ScheduleEnd = I->getNextNode(); 4977 if (isOneOf(S, I) != I) 4978 CheckSheduleForI(I); 4979 assert(ScheduleEnd && "tried to vectorize a terminator?"); 4980 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 4981 return true; 4982 } 4983 // Search up and down at the same time, because we don't know if the new 4984 // instruction is above or below the existing scheduling region. 4985 BasicBlock::reverse_iterator UpIter = 4986 ++ScheduleStart->getIterator().getReverse(); 4987 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 4988 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 4989 BasicBlock::iterator LowerEnd = BB->end(); 4990 while (true) { 4991 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 4992 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 4993 return false; 4994 } 4995 4996 if (UpIter != UpperEnd) { 4997 if (&*UpIter == I) { 4998 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 4999 ScheduleStart = I; 5000 if (isOneOf(S, I) != I) 5001 CheckSheduleForI(I); 5002 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 5003 << "\n"); 5004 return true; 5005 } 5006 ++UpIter; 5007 } 5008 if (DownIter != LowerEnd) { 5009 if (&*DownIter == I) { 5010 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 5011 nullptr); 5012 ScheduleEnd = I->getNextNode(); 5013 if (isOneOf(S, I) != I) 5014 CheckSheduleForI(I); 5015 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5016 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I 5017 << "\n"); 5018 return true; 5019 } 5020 ++DownIter; 5021 } 5022 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 5023 "instruction not found in block"); 5024 } 5025 return true; 5026 } 5027 5028 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 5029 Instruction *ToI, 5030 ScheduleData *PrevLoadStore, 5031 ScheduleData *NextLoadStore) { 5032 ScheduleData *CurrentLoadStore = PrevLoadStore; 5033 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 5034 ScheduleData *SD = ScheduleDataMap[I]; 5035 if (!SD) { 5036 SD = allocateScheduleDataChunks(); 5037 ScheduleDataMap[I] = SD; 5038 SD->Inst = I; 5039 } 5040 assert(!isInSchedulingRegion(SD) && 5041 "new ScheduleData already in scheduling region"); 5042 SD->init(SchedulingRegionID, I); 5043 5044 if (I->mayReadOrWriteMemory() && 5045 (!isa<IntrinsicInst>(I) || 5046 cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) { 5047 // Update the linked list of memory accessing instructions. 5048 if (CurrentLoadStore) { 5049 CurrentLoadStore->NextLoadStore = SD; 5050 } else { 5051 FirstLoadStoreInRegion = SD; 5052 } 5053 CurrentLoadStore = SD; 5054 } 5055 } 5056 if (NextLoadStore) { 5057 if (CurrentLoadStore) 5058 CurrentLoadStore->NextLoadStore = NextLoadStore; 5059 } else { 5060 LastLoadStoreInRegion = CurrentLoadStore; 5061 } 5062 } 5063 5064 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 5065 bool InsertInReadyList, 5066 BoUpSLP *SLP) { 5067 assert(SD->isSchedulingEntity()); 5068 5069 SmallVector<ScheduleData *, 10> WorkList; 5070 WorkList.push_back(SD); 5071 5072 while (!WorkList.empty()) { 5073 ScheduleData *SD = WorkList.back(); 5074 WorkList.pop_back(); 5075 5076 ScheduleData *BundleMember = SD; 5077 while (BundleMember) { 5078 assert(isInSchedulingRegion(BundleMember)); 5079 if (!BundleMember->hasValidDependencies()) { 5080 5081 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 5082 << "\n"); 5083 BundleMember->Dependencies = 0; 5084 BundleMember->resetUnscheduledDeps(); 5085 5086 // Handle def-use chain dependencies. 5087 if (BundleMember->OpValue != BundleMember->Inst) { 5088 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 5089 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5090 BundleMember->Dependencies++; 5091 ScheduleData *DestBundle = UseSD->FirstInBundle; 5092 if (!DestBundle->IsScheduled) 5093 BundleMember->incrementUnscheduledDeps(1); 5094 if (!DestBundle->hasValidDependencies()) 5095 WorkList.push_back(DestBundle); 5096 } 5097 } else { 5098 for (User *U : BundleMember->Inst->users()) { 5099 if (isa<Instruction>(U)) { 5100 ScheduleData *UseSD = getScheduleData(U); 5101 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5102 BundleMember->Dependencies++; 5103 ScheduleData *DestBundle = UseSD->FirstInBundle; 5104 if (!DestBundle->IsScheduled) 5105 BundleMember->incrementUnscheduledDeps(1); 5106 if (!DestBundle->hasValidDependencies()) 5107 WorkList.push_back(DestBundle); 5108 } 5109 } else { 5110 // I'm not sure if this can ever happen. But we need to be safe. 5111 // This lets the instruction/bundle never be scheduled and 5112 // eventually disable vectorization. 5113 BundleMember->Dependencies++; 5114 BundleMember->incrementUnscheduledDeps(1); 5115 } 5116 } 5117 } 5118 5119 // Handle the memory dependencies. 5120 ScheduleData *DepDest = BundleMember->NextLoadStore; 5121 if (DepDest) { 5122 Instruction *SrcInst = BundleMember->Inst; 5123 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 5124 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 5125 unsigned numAliased = 0; 5126 unsigned DistToSrc = 1; 5127 5128 while (DepDest) { 5129 assert(isInSchedulingRegion(DepDest)); 5130 5131 // We have two limits to reduce the complexity: 5132 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 5133 // SLP->isAliased (which is the expensive part in this loop). 5134 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 5135 // the whole loop (even if the loop is fast, it's quadratic). 5136 // It's important for the loop break condition (see below) to 5137 // check this limit even between two read-only instructions. 5138 if (DistToSrc >= MaxMemDepDistance || 5139 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 5140 (numAliased >= AliasedCheckLimit || 5141 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 5142 5143 // We increment the counter only if the locations are aliased 5144 // (instead of counting all alias checks). This gives a better 5145 // balance between reduced runtime and accurate dependencies. 5146 numAliased++; 5147 5148 DepDest->MemoryDependencies.push_back(BundleMember); 5149 BundleMember->Dependencies++; 5150 ScheduleData *DestBundle = DepDest->FirstInBundle; 5151 if (!DestBundle->IsScheduled) { 5152 BundleMember->incrementUnscheduledDeps(1); 5153 } 5154 if (!DestBundle->hasValidDependencies()) { 5155 WorkList.push_back(DestBundle); 5156 } 5157 } 5158 DepDest = DepDest->NextLoadStore; 5159 5160 // Example, explaining the loop break condition: Let's assume our 5161 // starting instruction is i0 and MaxMemDepDistance = 3. 5162 // 5163 // +--------v--v--v 5164 // i0,i1,i2,i3,i4,i5,i6,i7,i8 5165 // +--------^--^--^ 5166 // 5167 // MaxMemDepDistance let us stop alias-checking at i3 and we add 5168 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 5169 // Previously we already added dependencies from i3 to i6,i7,i8 5170 // (because of MaxMemDepDistance). As we added a dependency from 5171 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 5172 // and we can abort this loop at i6. 5173 if (DistToSrc >= 2 * MaxMemDepDistance) 5174 break; 5175 DistToSrc++; 5176 } 5177 } 5178 } 5179 BundleMember = BundleMember->NextInBundle; 5180 } 5181 if (InsertInReadyList && SD->isReady()) { 5182 ReadyInsts.push_back(SD); 5183 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 5184 << "\n"); 5185 } 5186 } 5187 } 5188 5189 void BoUpSLP::BlockScheduling::resetSchedule() { 5190 assert(ScheduleStart && 5191 "tried to reset schedule on block which has not been scheduled"); 5192 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 5193 doForAllOpcodes(I, [&](ScheduleData *SD) { 5194 assert(isInSchedulingRegion(SD) && 5195 "ScheduleData not in scheduling region"); 5196 SD->IsScheduled = false; 5197 SD->resetUnscheduledDeps(); 5198 }); 5199 } 5200 ReadyInsts.clear(); 5201 } 5202 5203 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 5204 if (!BS->ScheduleStart) 5205 return; 5206 5207 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 5208 5209 BS->resetSchedule(); 5210 5211 // For the real scheduling we use a more sophisticated ready-list: it is 5212 // sorted by the original instruction location. This lets the final schedule 5213 // be as close as possible to the original instruction order. 5214 struct ScheduleDataCompare { 5215 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 5216 return SD2->SchedulingPriority < SD1->SchedulingPriority; 5217 } 5218 }; 5219 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 5220 5221 // Ensure that all dependency data is updated and fill the ready-list with 5222 // initial instructions. 5223 int Idx = 0; 5224 int NumToSchedule = 0; 5225 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 5226 I = I->getNextNode()) { 5227 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 5228 assert(SD->isPartOfBundle() == 5229 (getTreeEntry(SD->Inst) != nullptr) && 5230 "scheduler and vectorizer bundle mismatch"); 5231 SD->FirstInBundle->SchedulingPriority = Idx++; 5232 if (SD->isSchedulingEntity()) { 5233 BS->calculateDependencies(SD, false, this); 5234 NumToSchedule++; 5235 } 5236 }); 5237 } 5238 BS->initialFillReadyList(ReadyInsts); 5239 5240 Instruction *LastScheduledInst = BS->ScheduleEnd; 5241 5242 // Do the "real" scheduling. 5243 while (!ReadyInsts.empty()) { 5244 ScheduleData *picked = *ReadyInsts.begin(); 5245 ReadyInsts.erase(ReadyInsts.begin()); 5246 5247 // Move the scheduled instruction(s) to their dedicated places, if not 5248 // there yet. 5249 ScheduleData *BundleMember = picked; 5250 while (BundleMember) { 5251 Instruction *pickedInst = BundleMember->Inst; 5252 if (LastScheduledInst->getNextNode() != pickedInst) { 5253 BS->BB->getInstList().remove(pickedInst); 5254 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 5255 pickedInst); 5256 } 5257 LastScheduledInst = pickedInst; 5258 BundleMember = BundleMember->NextInBundle; 5259 } 5260 5261 BS->schedule(picked, ReadyInsts); 5262 NumToSchedule--; 5263 } 5264 assert(NumToSchedule == 0 && "could not schedule all instructions"); 5265 5266 // Avoid duplicate scheduling of the block. 5267 BS->ScheduleStart = nullptr; 5268 } 5269 5270 unsigned BoUpSLP::getVectorElementSize(Value *V) const { 5271 // If V is a store, just return the width of the stored value without 5272 // traversing the expression tree. This is the common case. 5273 if (auto *Store = dyn_cast<StoreInst>(V)) 5274 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 5275 5276 // If V is not a store, we can traverse the expression tree to find loads 5277 // that feed it. The type of the loaded value may indicate a more suitable 5278 // width than V's type. We want to base the vector element size on the width 5279 // of memory operations where possible. 5280 SmallVector<Instruction *, 16> Worklist; 5281 SmallPtrSet<Instruction *, 16> Visited; 5282 if (auto *I = dyn_cast<Instruction>(V)) 5283 Worklist.push_back(I); 5284 5285 // Traverse the expression tree in bottom-up order looking for loads. If we 5286 // encounter an instruction we don't yet handle, we give up. 5287 auto MaxWidth = 0u; 5288 auto FoundUnknownInst = false; 5289 while (!Worklist.empty() && !FoundUnknownInst) { 5290 auto *I = Worklist.pop_back_val(); 5291 Visited.insert(I); 5292 5293 // We should only be looking at scalar instructions here. If the current 5294 // instruction has a vector type, give up. 5295 auto *Ty = I->getType(); 5296 if (isa<VectorType>(Ty)) 5297 FoundUnknownInst = true; 5298 5299 // If the current instruction is a load, update MaxWidth to reflect the 5300 // width of the loaded value. 5301 else if (isa<LoadInst>(I)) 5302 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 5303 5304 // Otherwise, we need to visit the operands of the instruction. We only 5305 // handle the interesting cases from buildTree here. If an operand is an 5306 // instruction we haven't yet visited, we add it to the worklist. 5307 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5308 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 5309 for (Use &U : I->operands()) 5310 if (auto *J = dyn_cast<Instruction>(U.get())) 5311 if (!Visited.count(J)) 5312 Worklist.push_back(J); 5313 } 5314 5315 // If we don't yet handle the instruction, give up. 5316 else 5317 FoundUnknownInst = true; 5318 } 5319 5320 // If we didn't encounter a memory access in the expression tree, or if we 5321 // gave up for some reason, just return the width of V. 5322 if (!MaxWidth || FoundUnknownInst) 5323 return DL->getTypeSizeInBits(V->getType()); 5324 5325 // Otherwise, return the maximum width we found. 5326 return MaxWidth; 5327 } 5328 5329 // Determine if a value V in a vectorizable expression Expr can be demoted to a 5330 // smaller type with a truncation. We collect the values that will be demoted 5331 // in ToDemote and additional roots that require investigating in Roots. 5332 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 5333 SmallVectorImpl<Value *> &ToDemote, 5334 SmallVectorImpl<Value *> &Roots) { 5335 // We can always demote constants. 5336 if (isa<Constant>(V)) { 5337 ToDemote.push_back(V); 5338 return true; 5339 } 5340 5341 // If the value is not an instruction in the expression with only one use, it 5342 // cannot be demoted. 5343 auto *I = dyn_cast<Instruction>(V); 5344 if (!I || !I->hasOneUse() || !Expr.count(I)) 5345 return false; 5346 5347 switch (I->getOpcode()) { 5348 5349 // We can always demote truncations and extensions. Since truncations can 5350 // seed additional demotion, we save the truncated value. 5351 case Instruction::Trunc: 5352 Roots.push_back(I->getOperand(0)); 5353 break; 5354 case Instruction::ZExt: 5355 case Instruction::SExt: 5356 break; 5357 5358 // We can demote certain binary operations if we can demote both of their 5359 // operands. 5360 case Instruction::Add: 5361 case Instruction::Sub: 5362 case Instruction::Mul: 5363 case Instruction::And: 5364 case Instruction::Or: 5365 case Instruction::Xor: 5366 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 5367 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 5368 return false; 5369 break; 5370 5371 // We can demote selects if we can demote their true and false values. 5372 case Instruction::Select: { 5373 SelectInst *SI = cast<SelectInst>(I); 5374 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 5375 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 5376 return false; 5377 break; 5378 } 5379 5380 // We can demote phis if we can demote all their incoming operands. Note that 5381 // we don't need to worry about cycles since we ensure single use above. 5382 case Instruction::PHI: { 5383 PHINode *PN = cast<PHINode>(I); 5384 for (Value *IncValue : PN->incoming_values()) 5385 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 5386 return false; 5387 break; 5388 } 5389 5390 // Otherwise, conservatively give up. 5391 default: 5392 return false; 5393 } 5394 5395 // Record the value that we can demote. 5396 ToDemote.push_back(V); 5397 return true; 5398 } 5399 5400 void BoUpSLP::computeMinimumValueSizes() { 5401 // If there are no external uses, the expression tree must be rooted by a 5402 // store. We can't demote in-memory values, so there is nothing to do here. 5403 if (ExternalUses.empty()) 5404 return; 5405 5406 // We only attempt to truncate integer expressions. 5407 auto &TreeRoot = VectorizableTree[0]->Scalars; 5408 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 5409 if (!TreeRootIT) 5410 return; 5411 5412 // If the expression is not rooted by a store, these roots should have 5413 // external uses. We will rely on InstCombine to rewrite the expression in 5414 // the narrower type. However, InstCombine only rewrites single-use values. 5415 // This means that if a tree entry other than a root is used externally, it 5416 // must have multiple uses and InstCombine will not rewrite it. The code 5417 // below ensures that only the roots are used externally. 5418 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 5419 for (auto &EU : ExternalUses) 5420 if (!Expr.erase(EU.Scalar)) 5421 return; 5422 if (!Expr.empty()) 5423 return; 5424 5425 // Collect the scalar values of the vectorizable expression. We will use this 5426 // context to determine which values can be demoted. If we see a truncation, 5427 // we mark it as seeding another demotion. 5428 for (auto &EntryPtr : VectorizableTree) 5429 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 5430 5431 // Ensure the roots of the vectorizable tree don't form a cycle. They must 5432 // have a single external user that is not in the vectorizable tree. 5433 for (auto *Root : TreeRoot) 5434 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 5435 return; 5436 5437 // Conservatively determine if we can actually truncate the roots of the 5438 // expression. Collect the values that can be demoted in ToDemote and 5439 // additional roots that require investigating in Roots. 5440 SmallVector<Value *, 32> ToDemote; 5441 SmallVector<Value *, 4> Roots; 5442 for (auto *Root : TreeRoot) 5443 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 5444 return; 5445 5446 // The maximum bit width required to represent all the values that can be 5447 // demoted without loss of precision. It would be safe to truncate the roots 5448 // of the expression to this width. 5449 auto MaxBitWidth = 8u; 5450 5451 // We first check if all the bits of the roots are demanded. If they're not, 5452 // we can truncate the roots to this narrower type. 5453 for (auto *Root : TreeRoot) { 5454 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 5455 MaxBitWidth = std::max<unsigned>( 5456 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 5457 } 5458 5459 // True if the roots can be zero-extended back to their original type, rather 5460 // than sign-extended. We know that if the leading bits are not demanded, we 5461 // can safely zero-extend. So we initialize IsKnownPositive to True. 5462 bool IsKnownPositive = true; 5463 5464 // If all the bits of the roots are demanded, we can try a little harder to 5465 // compute a narrower type. This can happen, for example, if the roots are 5466 // getelementptr indices. InstCombine promotes these indices to the pointer 5467 // width. Thus, all their bits are technically demanded even though the 5468 // address computation might be vectorized in a smaller type. 5469 // 5470 // We start by looking at each entry that can be demoted. We compute the 5471 // maximum bit width required to store the scalar by using ValueTracking to 5472 // compute the number of high-order bits we can truncate. 5473 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 5474 llvm::all_of(TreeRoot, [](Value *R) { 5475 assert(R->hasOneUse() && "Root should have only one use!"); 5476 return isa<GetElementPtrInst>(R->user_back()); 5477 })) { 5478 MaxBitWidth = 8u; 5479 5480 // Determine if the sign bit of all the roots is known to be zero. If not, 5481 // IsKnownPositive is set to False. 5482 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 5483 KnownBits Known = computeKnownBits(R, *DL); 5484 return Known.isNonNegative(); 5485 }); 5486 5487 // Determine the maximum number of bits required to store the scalar 5488 // values. 5489 for (auto *Scalar : ToDemote) { 5490 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 5491 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 5492 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 5493 } 5494 5495 // If we can't prove that the sign bit is zero, we must add one to the 5496 // maximum bit width to account for the unknown sign bit. This preserves 5497 // the existing sign bit so we can safely sign-extend the root back to the 5498 // original type. Otherwise, if we know the sign bit is zero, we will 5499 // zero-extend the root instead. 5500 // 5501 // FIXME: This is somewhat suboptimal, as there will be cases where adding 5502 // one to the maximum bit width will yield a larger-than-necessary 5503 // type. In general, we need to add an extra bit only if we can't 5504 // prove that the upper bit of the original type is equal to the 5505 // upper bit of the proposed smaller type. If these two bits are the 5506 // same (either zero or one) we know that sign-extending from the 5507 // smaller type will result in the same value. Here, since we can't 5508 // yet prove this, we are just making the proposed smaller type 5509 // larger to ensure correctness. 5510 if (!IsKnownPositive) 5511 ++MaxBitWidth; 5512 } 5513 5514 // Round MaxBitWidth up to the next power-of-two. 5515 if (!isPowerOf2_64(MaxBitWidth)) 5516 MaxBitWidth = NextPowerOf2(MaxBitWidth); 5517 5518 // If the maximum bit width we compute is less than the with of the roots' 5519 // type, we can proceed with the narrowing. Otherwise, do nothing. 5520 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 5521 return; 5522 5523 // If we can truncate the root, we must collect additional values that might 5524 // be demoted as a result. That is, those seeded by truncations we will 5525 // modify. 5526 while (!Roots.empty()) 5527 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 5528 5529 // Finally, map the values we can demote to the maximum bit with we computed. 5530 for (auto *Scalar : ToDemote) 5531 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 5532 } 5533 5534 namespace { 5535 5536 /// The SLPVectorizer Pass. 5537 struct SLPVectorizer : public FunctionPass { 5538 SLPVectorizerPass Impl; 5539 5540 /// Pass identification, replacement for typeid 5541 static char ID; 5542 5543 explicit SLPVectorizer() : FunctionPass(ID) { 5544 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 5545 } 5546 5547 bool doInitialization(Module &M) override { 5548 return false; 5549 } 5550 5551 bool runOnFunction(Function &F) override { 5552 if (skipFunction(F)) 5553 return false; 5554 5555 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5556 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 5557 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 5558 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 5559 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 5560 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5561 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5562 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 5563 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 5564 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 5565 5566 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5567 } 5568 5569 void getAnalysisUsage(AnalysisUsage &AU) const override { 5570 FunctionPass::getAnalysisUsage(AU); 5571 AU.addRequired<AssumptionCacheTracker>(); 5572 AU.addRequired<ScalarEvolutionWrapperPass>(); 5573 AU.addRequired<AAResultsWrapperPass>(); 5574 AU.addRequired<TargetTransformInfoWrapperPass>(); 5575 AU.addRequired<LoopInfoWrapperPass>(); 5576 AU.addRequired<DominatorTreeWrapperPass>(); 5577 AU.addRequired<DemandedBitsWrapperPass>(); 5578 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 5579 AU.addPreserved<LoopInfoWrapperPass>(); 5580 AU.addPreserved<DominatorTreeWrapperPass>(); 5581 AU.addPreserved<AAResultsWrapperPass>(); 5582 AU.addPreserved<GlobalsAAWrapperPass>(); 5583 AU.setPreservesCFG(); 5584 } 5585 }; 5586 5587 } // end anonymous namespace 5588 5589 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 5590 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 5591 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 5592 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 5593 auto *AA = &AM.getResult<AAManager>(F); 5594 auto *LI = &AM.getResult<LoopAnalysis>(F); 5595 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 5596 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 5597 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 5598 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 5599 5600 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5601 if (!Changed) 5602 return PreservedAnalyses::all(); 5603 5604 PreservedAnalyses PA; 5605 PA.preserveSet<CFGAnalyses>(); 5606 PA.preserve<AAManager>(); 5607 PA.preserve<GlobalsAA>(); 5608 return PA; 5609 } 5610 5611 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 5612 TargetTransformInfo *TTI_, 5613 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 5614 LoopInfo *LI_, DominatorTree *DT_, 5615 AssumptionCache *AC_, DemandedBits *DB_, 5616 OptimizationRemarkEmitter *ORE_) { 5617 SE = SE_; 5618 TTI = TTI_; 5619 TLI = TLI_; 5620 AA = AA_; 5621 LI = LI_; 5622 DT = DT_; 5623 AC = AC_; 5624 DB = DB_; 5625 DL = &F.getParent()->getDataLayout(); 5626 5627 Stores.clear(); 5628 GEPs.clear(); 5629 bool Changed = false; 5630 5631 // If the target claims to have no vector registers don't attempt 5632 // vectorization. 5633 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 5634 return false; 5635 5636 // Don't vectorize when the attribute NoImplicitFloat is used. 5637 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 5638 return false; 5639 5640 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 5641 5642 // Use the bottom up slp vectorizer to construct chains that start with 5643 // store instructions. 5644 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 5645 5646 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 5647 // delete instructions. 5648 5649 // Scan the blocks in the function in post order. 5650 for (auto BB : post_order(&F.getEntryBlock())) { 5651 collectSeedInstructions(BB); 5652 5653 // Vectorize trees that end at stores. 5654 if (!Stores.empty()) { 5655 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 5656 << " underlying objects.\n"); 5657 Changed |= vectorizeStoreChains(R); 5658 } 5659 5660 // Vectorize trees that end at reductions. 5661 Changed |= vectorizeChainsInBlock(BB, R); 5662 5663 // Vectorize the index computations of getelementptr instructions. This 5664 // is primarily intended to catch gather-like idioms ending at 5665 // non-consecutive loads. 5666 if (!GEPs.empty()) { 5667 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 5668 << " underlying objects.\n"); 5669 Changed |= vectorizeGEPIndices(BB, R); 5670 } 5671 } 5672 5673 if (Changed) { 5674 R.optimizeGatherSequence(); 5675 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 5676 LLVM_DEBUG(verifyFunction(F)); 5677 } 5678 return Changed; 5679 } 5680 5681 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 5682 unsigned Idx) { 5683 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 5684 << "\n"); 5685 const unsigned Sz = R.getVectorElementSize(Chain[0]); 5686 const unsigned MinVF = R.getMinVecRegSize() / Sz; 5687 unsigned VF = Chain.size(); 5688 5689 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 5690 return false; 5691 5692 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 5693 << "\n"); 5694 5695 R.buildTree(Chain); 5696 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 5697 // TODO: Handle orders of size less than number of elements in the vector. 5698 if (Order && Order->size() == Chain.size()) { 5699 // TODO: reorder tree nodes without tree rebuilding. 5700 SmallVector<Value *, 4> ReorderedOps(Chain.rbegin(), Chain.rend()); 5701 llvm::transform(*Order, ReorderedOps.begin(), 5702 [Chain](const unsigned Idx) { return Chain[Idx]; }); 5703 R.buildTree(ReorderedOps); 5704 } 5705 if (R.isTreeTinyAndNotFullyVectorizable()) 5706 return false; 5707 5708 R.computeMinimumValueSizes(); 5709 5710 int Cost = R.getTreeCost(); 5711 5712 LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); 5713 if (Cost < -SLPCostThreshold) { 5714 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 5715 5716 using namespace ore; 5717 5718 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 5719 cast<StoreInst>(Chain[0])) 5720 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 5721 << " and with tree size " 5722 << NV("TreeSize", R.getTreeSize())); 5723 5724 R.vectorizeTree(); 5725 return true; 5726 } 5727 5728 return false; 5729 } 5730 5731 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 5732 BoUpSLP &R) { 5733 // We may run into multiple chains that merge into a single chain. We mark the 5734 // stores that we vectorized so that we don't visit the same store twice. 5735 BoUpSLP::ValueSet VectorizedStores; 5736 bool Changed = false; 5737 5738 int E = Stores.size(); 5739 SmallBitVector Tails(E, false); 5740 SmallVector<int, 16> ConsecutiveChain(E, E + 1); 5741 int MaxIter = MaxStoreLookup.getValue(); 5742 int IterCnt; 5743 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 5744 &ConsecutiveChain](int K, int Idx) { 5745 if (IterCnt >= MaxIter) 5746 return true; 5747 ++IterCnt; 5748 if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) 5749 return false; 5750 5751 Tails.set(Idx); 5752 ConsecutiveChain[K] = Idx; 5753 return true; 5754 }; 5755 // Do a quadratic search on all of the given stores in reverse order and find 5756 // all of the pairs of stores that follow each other. 5757 for (int Idx = E - 1; Idx >= 0; --Idx) { 5758 // If a store has multiple consecutive store candidates, search according 5759 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 5760 // This is because usually pairing with immediate succeeding or preceding 5761 // candidate create the best chance to find slp vectorization opportunity. 5762 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 5763 IterCnt = 0; 5764 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 5765 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 5766 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 5767 break; 5768 } 5769 5770 // For stores that start but don't end a link in the chain: 5771 for (int Cnt = E; Cnt > 0; --Cnt) { 5772 int I = Cnt - 1; 5773 if (ConsecutiveChain[I] == E + 1 || Tails.test(I)) 5774 continue; 5775 // We found a store instr that starts a chain. Now follow the chain and try 5776 // to vectorize it. 5777 BoUpSLP::ValueList Operands; 5778 // Collect the chain into a list. 5779 while (I != E + 1 && !VectorizedStores.count(Stores[I])) { 5780 Operands.push_back(Stores[I]); 5781 // Move to the next value in the chain. 5782 I = ConsecutiveChain[I]; 5783 } 5784 5785 // If a vector register can't hold 1 element, we are done. 5786 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 5787 unsigned EltSize = R.getVectorElementSize(Stores[0]); 5788 if (MaxVecRegSize % EltSize != 0) 5789 continue; 5790 5791 unsigned MaxElts = MaxVecRegSize / EltSize; 5792 // FIXME: Is division-by-2 the correct step? Should we assert that the 5793 // register size is a power-of-2? 5794 unsigned StartIdx = 0; 5795 for (unsigned Size = llvm::PowerOf2Ceil(MaxElts); Size >= 2; Size /= 2) { 5796 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 5797 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 5798 if (!VectorizedStores.count(Slice.front()) && 5799 !VectorizedStores.count(Slice.back()) && 5800 vectorizeStoreChain(Slice, R, Cnt)) { 5801 // Mark the vectorized stores so that we don't vectorize them again. 5802 VectorizedStores.insert(Slice.begin(), Slice.end()); 5803 Changed = true; 5804 // If we vectorized initial block, no need to try to vectorize it 5805 // again. 5806 if (Cnt == StartIdx) 5807 StartIdx += Size; 5808 Cnt += Size; 5809 continue; 5810 } 5811 ++Cnt; 5812 } 5813 // Check if the whole array was vectorized already - exit. 5814 if (StartIdx >= Operands.size()) 5815 break; 5816 } 5817 } 5818 5819 return Changed; 5820 } 5821 5822 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 5823 // Initialize the collections. We will make a single pass over the block. 5824 Stores.clear(); 5825 GEPs.clear(); 5826 5827 // Visit the store and getelementptr instructions in BB and organize them in 5828 // Stores and GEPs according to the underlying objects of their pointer 5829 // operands. 5830 for (Instruction &I : *BB) { 5831 // Ignore store instructions that are volatile or have a pointer operand 5832 // that doesn't point to a scalar type. 5833 if (auto *SI = dyn_cast<StoreInst>(&I)) { 5834 if (!SI->isSimple()) 5835 continue; 5836 if (!isValidElementType(SI->getValueOperand()->getType())) 5837 continue; 5838 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 5839 } 5840 5841 // Ignore getelementptr instructions that have more than one index, a 5842 // constant index, or a pointer operand that doesn't point to a scalar 5843 // type. 5844 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 5845 auto Idx = GEP->idx_begin()->get(); 5846 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 5847 continue; 5848 if (!isValidElementType(Idx->getType())) 5849 continue; 5850 if (GEP->getType()->isVectorTy()) 5851 continue; 5852 GEPs[GEP->getPointerOperand()].push_back(GEP); 5853 } 5854 } 5855 } 5856 5857 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 5858 if (!A || !B) 5859 return false; 5860 Value *VL[] = { A, B }; 5861 return tryToVectorizeList(VL, R, /*UserCost=*/0, true); 5862 } 5863 5864 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 5865 int UserCost, bool AllowReorder) { 5866 if (VL.size() < 2) 5867 return false; 5868 5869 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 5870 << VL.size() << ".\n"); 5871 5872 // Check that all of the parts are scalar instructions of the same type, 5873 // we permit an alternate opcode via InstructionsState. 5874 InstructionsState S = getSameOpcode(VL); 5875 if (!S.getOpcode()) 5876 return false; 5877 5878 Instruction *I0 = cast<Instruction>(S.OpValue); 5879 unsigned Sz = R.getVectorElementSize(I0); 5880 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 5881 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 5882 if (MaxVF < 2) { 5883 R.getORE()->emit([&]() { 5884 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 5885 << "Cannot SLP vectorize list: vectorization factor " 5886 << "less than 2 is not supported"; 5887 }); 5888 return false; 5889 } 5890 5891 for (Value *V : VL) { 5892 Type *Ty = V->getType(); 5893 if (!isValidElementType(Ty)) { 5894 // NOTE: the following will give user internal llvm type name, which may 5895 // not be useful. 5896 R.getORE()->emit([&]() { 5897 std::string type_str; 5898 llvm::raw_string_ostream rso(type_str); 5899 Ty->print(rso); 5900 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 5901 << "Cannot SLP vectorize list: type " 5902 << rso.str() + " is unsupported by vectorizer"; 5903 }); 5904 return false; 5905 } 5906 } 5907 5908 bool Changed = false; 5909 bool CandidateFound = false; 5910 int MinCost = SLPCostThreshold; 5911 5912 unsigned NextInst = 0, MaxInst = VL.size(); 5913 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 5914 // No actual vectorization should happen, if number of parts is the same as 5915 // provided vectorization factor (i.e. the scalar type is used for vector 5916 // code during codegen). 5917 auto *VecTy = VectorType::get(VL[0]->getType(), VF); 5918 if (TTI->getNumberOfParts(VecTy) == VF) 5919 continue; 5920 for (unsigned I = NextInst; I < MaxInst; ++I) { 5921 unsigned OpsWidth = 0; 5922 5923 if (I + VF > MaxInst) 5924 OpsWidth = MaxInst - I; 5925 else 5926 OpsWidth = VF; 5927 5928 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 5929 break; 5930 5931 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 5932 // Check that a previous iteration of this loop did not delete the Value. 5933 if (llvm::any_of(Ops, [&R](Value *V) { 5934 auto *I = dyn_cast<Instruction>(V); 5935 return I && R.isDeleted(I); 5936 })) 5937 continue; 5938 5939 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 5940 << "\n"); 5941 5942 R.buildTree(Ops); 5943 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 5944 // TODO: check if we can allow reordering for more cases. 5945 if (AllowReorder && Order) { 5946 // TODO: reorder tree nodes without tree rebuilding. 5947 // Conceptually, there is nothing actually preventing us from trying to 5948 // reorder a larger list. In fact, we do exactly this when vectorizing 5949 // reductions. However, at this point, we only expect to get here when 5950 // there are exactly two operations. 5951 assert(Ops.size() == 2); 5952 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 5953 R.buildTree(ReorderedOps, None); 5954 } 5955 if (R.isTreeTinyAndNotFullyVectorizable()) 5956 continue; 5957 5958 R.computeMinimumValueSizes(); 5959 int Cost = R.getTreeCost() - UserCost; 5960 CandidateFound = true; 5961 MinCost = std::min(MinCost, Cost); 5962 5963 if (Cost < -SLPCostThreshold) { 5964 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 5965 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 5966 cast<Instruction>(Ops[0])) 5967 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 5968 << " and with tree size " 5969 << ore::NV("TreeSize", R.getTreeSize())); 5970 5971 R.vectorizeTree(); 5972 // Move to the next bundle. 5973 I += VF - 1; 5974 NextInst = I + 1; 5975 Changed = true; 5976 } 5977 } 5978 } 5979 5980 if (!Changed && CandidateFound) { 5981 R.getORE()->emit([&]() { 5982 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 5983 << "List vectorization was possible but not beneficial with cost " 5984 << ore::NV("Cost", MinCost) << " >= " 5985 << ore::NV("Treshold", -SLPCostThreshold); 5986 }); 5987 } else if (!Changed) { 5988 R.getORE()->emit([&]() { 5989 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 5990 << "Cannot SLP vectorize list: vectorization was impossible" 5991 << " with available vectorization factors"; 5992 }); 5993 } 5994 return Changed; 5995 } 5996 5997 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 5998 if (!I) 5999 return false; 6000 6001 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 6002 return false; 6003 6004 Value *P = I->getParent(); 6005 6006 // Vectorize in current basic block only. 6007 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 6008 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 6009 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 6010 return false; 6011 6012 // Try to vectorize V. 6013 if (tryToVectorizePair(Op0, Op1, R)) 6014 return true; 6015 6016 auto *A = dyn_cast<BinaryOperator>(Op0); 6017 auto *B = dyn_cast<BinaryOperator>(Op1); 6018 // Try to skip B. 6019 if (B && B->hasOneUse()) { 6020 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 6021 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 6022 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 6023 return true; 6024 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 6025 return true; 6026 } 6027 6028 // Try to skip A. 6029 if (A && A->hasOneUse()) { 6030 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 6031 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 6032 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 6033 return true; 6034 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 6035 return true; 6036 } 6037 return false; 6038 } 6039 6040 /// Generate a shuffle mask to be used in a reduction tree. 6041 /// 6042 /// \param VecLen The length of the vector to be reduced. 6043 /// \param NumEltsToRdx The number of elements that should be reduced in the 6044 /// vector. 6045 /// \param IsPairwise Whether the reduction is a pairwise or splitting 6046 /// reduction. A pairwise reduction will generate a mask of 6047 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 6048 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 6049 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 6050 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 6051 bool IsPairwise, bool IsLeft, 6052 IRBuilder<> &Builder) { 6053 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 6054 6055 SmallVector<Constant *, 32> ShuffleMask( 6056 VecLen, UndefValue::get(Builder.getInt32Ty())); 6057 6058 if (IsPairwise) 6059 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 6060 for (unsigned i = 0; i != NumEltsToRdx; ++i) 6061 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 6062 else 6063 // Move the upper half of the vector to the lower half. 6064 for (unsigned i = 0; i != NumEltsToRdx; ++i) 6065 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 6066 6067 return ConstantVector::get(ShuffleMask); 6068 } 6069 6070 namespace { 6071 6072 /// Model horizontal reductions. 6073 /// 6074 /// A horizontal reduction is a tree of reduction operations (currently add and 6075 /// fadd) that has operations that can be put into a vector as its leaf. 6076 /// For example, this tree: 6077 /// 6078 /// mul mul mul mul 6079 /// \ / \ / 6080 /// + + 6081 /// \ / 6082 /// + 6083 /// This tree has "mul" as its reduced values and "+" as its reduction 6084 /// operations. A reduction might be feeding into a store or a binary operation 6085 /// feeding a phi. 6086 /// ... 6087 /// \ / 6088 /// + 6089 /// | 6090 /// phi += 6091 /// 6092 /// Or: 6093 /// ... 6094 /// \ / 6095 /// + 6096 /// | 6097 /// *p = 6098 /// 6099 class HorizontalReduction { 6100 using ReductionOpsType = SmallVector<Value *, 16>; 6101 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 6102 ReductionOpsListType ReductionOps; 6103 SmallVector<Value *, 32> ReducedVals; 6104 // Use map vector to make stable output. 6105 MapVector<Instruction *, Value *> ExtraArgs; 6106 6107 /// Kind of the reduction data. 6108 enum ReductionKind { 6109 RK_None, /// Not a reduction. 6110 RK_Arithmetic, /// Binary reduction data. 6111 RK_Min, /// Minimum reduction data. 6112 RK_UMin, /// Unsigned minimum reduction data. 6113 RK_Max, /// Maximum reduction data. 6114 RK_UMax, /// Unsigned maximum reduction data. 6115 }; 6116 6117 /// Contains info about operation, like its opcode, left and right operands. 6118 class OperationData { 6119 /// Opcode of the instruction. 6120 unsigned Opcode = 0; 6121 6122 /// Left operand of the reduction operation. 6123 Value *LHS = nullptr; 6124 6125 /// Right operand of the reduction operation. 6126 Value *RHS = nullptr; 6127 6128 /// Kind of the reduction operation. 6129 ReductionKind Kind = RK_None; 6130 6131 /// True if float point min/max reduction has no NaNs. 6132 bool NoNaN = false; 6133 6134 /// Checks if the reduction operation can be vectorized. 6135 bool isVectorizable() const { 6136 return LHS && RHS && 6137 // We currently only support add/mul/logical && min/max reductions. 6138 ((Kind == RK_Arithmetic && 6139 (Opcode == Instruction::Add || Opcode == Instruction::FAdd || 6140 Opcode == Instruction::Mul || Opcode == Instruction::FMul || 6141 Opcode == Instruction::And || Opcode == Instruction::Or || 6142 Opcode == Instruction::Xor)) || 6143 ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 6144 (Kind == RK_Min || Kind == RK_Max)) || 6145 (Opcode == Instruction::ICmp && 6146 (Kind == RK_UMin || Kind == RK_UMax))); 6147 } 6148 6149 /// Creates reduction operation with the current opcode. 6150 Value *createOp(IRBuilder<> &Builder, const Twine &Name) const { 6151 assert(isVectorizable() && 6152 "Expected add|fadd or min/max reduction operation."); 6153 Value *Cmp = nullptr; 6154 switch (Kind) { 6155 case RK_Arithmetic: 6156 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 6157 Name); 6158 case RK_Min: 6159 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS) 6160 : Builder.CreateFCmpOLT(LHS, RHS); 6161 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6162 case RK_Max: 6163 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS) 6164 : Builder.CreateFCmpOGT(LHS, RHS); 6165 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6166 case RK_UMin: 6167 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6168 Cmp = Builder.CreateICmpULT(LHS, RHS); 6169 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6170 case RK_UMax: 6171 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6172 Cmp = Builder.CreateICmpUGT(LHS, RHS); 6173 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6174 case RK_None: 6175 break; 6176 } 6177 llvm_unreachable("Unknown reduction operation."); 6178 } 6179 6180 public: 6181 explicit OperationData() = default; 6182 6183 /// Construction for reduced values. They are identified by opcode only and 6184 /// don't have associated LHS/RHS values. 6185 explicit OperationData(Value *V) { 6186 if (auto *I = dyn_cast<Instruction>(V)) 6187 Opcode = I->getOpcode(); 6188 } 6189 6190 /// Constructor for reduction operations with opcode and its left and 6191 /// right operands. 6192 OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind, 6193 bool NoNaN = false) 6194 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) { 6195 assert(Kind != RK_None && "One of the reduction operations is expected."); 6196 } 6197 6198 explicit operator bool() const { return Opcode; } 6199 6200 /// Return true if this operation is any kind of minimum or maximum. 6201 bool isMinMax() const { 6202 switch (Kind) { 6203 case RK_Arithmetic: 6204 return false; 6205 case RK_Min: 6206 case RK_Max: 6207 case RK_UMin: 6208 case RK_UMax: 6209 return true; 6210 case RK_None: 6211 break; 6212 } 6213 llvm_unreachable("Reduction kind is not set"); 6214 } 6215 6216 /// Get the index of the first operand. 6217 unsigned getFirstOperandIndex() const { 6218 assert(!!*this && "The opcode is not set."); 6219 // We allow calling this before 'Kind' is set, so handle that specially. 6220 if (Kind == RK_None) 6221 return 0; 6222 return isMinMax() ? 1 : 0; 6223 } 6224 6225 /// Total number of operands in the reduction operation. 6226 unsigned getNumberOfOperands() const { 6227 assert(Kind != RK_None && !!*this && LHS && RHS && 6228 "Expected reduction operation."); 6229 return isMinMax() ? 3 : 2; 6230 } 6231 6232 /// Checks if the operation has the same parent as \p P. 6233 bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const { 6234 assert(Kind != RK_None && !!*this && LHS && RHS && 6235 "Expected reduction operation."); 6236 if (!IsRedOp) 6237 return I->getParent() == P; 6238 if (isMinMax()) { 6239 // SelectInst must be used twice while the condition op must have single 6240 // use only. 6241 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 6242 return I->getParent() == P && Cmp && Cmp->getParent() == P; 6243 } 6244 // Arithmetic reduction operation must be used once only. 6245 return I->getParent() == P; 6246 } 6247 6248 /// Expected number of uses for reduction operations/reduced values. 6249 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { 6250 assert(Kind != RK_None && !!*this && LHS && RHS && 6251 "Expected reduction operation."); 6252 if (isMinMax()) 6253 return I->hasNUses(2) && 6254 (!IsReductionOp || 6255 cast<SelectInst>(I)->getCondition()->hasOneUse()); 6256 return I->hasOneUse(); 6257 } 6258 6259 /// Initializes the list of reduction operations. 6260 void initReductionOps(ReductionOpsListType &ReductionOps) { 6261 assert(Kind != RK_None && !!*this && LHS && RHS && 6262 "Expected reduction operation."); 6263 if (isMinMax()) 6264 ReductionOps.assign(2, ReductionOpsType()); 6265 else 6266 ReductionOps.assign(1, ReductionOpsType()); 6267 } 6268 6269 /// Add all reduction operations for the reduction instruction \p I. 6270 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { 6271 assert(Kind != RK_None && !!*this && LHS && RHS && 6272 "Expected reduction operation."); 6273 if (isMinMax()) { 6274 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 6275 ReductionOps[1].emplace_back(I); 6276 } else { 6277 ReductionOps[0].emplace_back(I); 6278 } 6279 } 6280 6281 /// Checks if instruction is associative and can be vectorized. 6282 bool isAssociative(Instruction *I) const { 6283 assert(Kind != RK_None && *this && LHS && RHS && 6284 "Expected reduction operation."); 6285 switch (Kind) { 6286 case RK_Arithmetic: 6287 return I->isAssociative(); 6288 case RK_Min: 6289 case RK_Max: 6290 return Opcode == Instruction::ICmp || 6291 cast<Instruction>(I->getOperand(0))->isFast(); 6292 case RK_UMin: 6293 case RK_UMax: 6294 assert(Opcode == Instruction::ICmp && 6295 "Only integer compare operation is expected."); 6296 return true; 6297 case RK_None: 6298 break; 6299 } 6300 llvm_unreachable("Reduction kind is not set"); 6301 } 6302 6303 /// Checks if the reduction operation can be vectorized. 6304 bool isVectorizable(Instruction *I) const { 6305 return isVectorizable() && isAssociative(I); 6306 } 6307 6308 /// Checks if two operation data are both a reduction op or both a reduced 6309 /// value. 6310 bool operator==(const OperationData &OD) const { 6311 assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) && 6312 "One of the comparing operations is incorrect."); 6313 return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode); 6314 } 6315 bool operator!=(const OperationData &OD) const { return !(*this == OD); } 6316 void clear() { 6317 Opcode = 0; 6318 LHS = nullptr; 6319 RHS = nullptr; 6320 Kind = RK_None; 6321 NoNaN = false; 6322 } 6323 6324 /// Get the opcode of the reduction operation. 6325 unsigned getOpcode() const { 6326 assert(isVectorizable() && "Expected vectorizable operation."); 6327 return Opcode; 6328 } 6329 6330 /// Get kind of reduction data. 6331 ReductionKind getKind() const { return Kind; } 6332 Value *getLHS() const { return LHS; } 6333 Value *getRHS() const { return RHS; } 6334 Type *getConditionType() const { 6335 return isMinMax() ? CmpInst::makeCmpResultType(LHS->getType()) : nullptr; 6336 } 6337 6338 /// Creates reduction operation with the current opcode with the IR flags 6339 /// from \p ReductionOps. 6340 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 6341 const ReductionOpsListType &ReductionOps) const { 6342 assert(isVectorizable() && 6343 "Expected add|fadd or min/max reduction operation."); 6344 auto *Op = createOp(Builder, Name); 6345 switch (Kind) { 6346 case RK_Arithmetic: 6347 propagateIRFlags(Op, ReductionOps[0]); 6348 return Op; 6349 case RK_Min: 6350 case RK_Max: 6351 case RK_UMin: 6352 case RK_UMax: 6353 if (auto *SI = dyn_cast<SelectInst>(Op)) 6354 propagateIRFlags(SI->getCondition(), ReductionOps[0]); 6355 propagateIRFlags(Op, ReductionOps[1]); 6356 return Op; 6357 case RK_None: 6358 break; 6359 } 6360 llvm_unreachable("Unknown reduction operation."); 6361 } 6362 /// Creates reduction operation with the current opcode with the IR flags 6363 /// from \p I. 6364 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 6365 Instruction *I) const { 6366 assert(isVectorizable() && 6367 "Expected add|fadd or min/max reduction operation."); 6368 auto *Op = createOp(Builder, Name); 6369 switch (Kind) { 6370 case RK_Arithmetic: 6371 propagateIRFlags(Op, I); 6372 return Op; 6373 case RK_Min: 6374 case RK_Max: 6375 case RK_UMin: 6376 case RK_UMax: 6377 if (auto *SI = dyn_cast<SelectInst>(Op)) { 6378 propagateIRFlags(SI->getCondition(), 6379 cast<SelectInst>(I)->getCondition()); 6380 } 6381 propagateIRFlags(Op, I); 6382 return Op; 6383 case RK_None: 6384 break; 6385 } 6386 llvm_unreachable("Unknown reduction operation."); 6387 } 6388 6389 TargetTransformInfo::ReductionFlags getFlags() const { 6390 TargetTransformInfo::ReductionFlags Flags; 6391 Flags.NoNaN = NoNaN; 6392 switch (Kind) { 6393 case RK_Arithmetic: 6394 break; 6395 case RK_Min: 6396 Flags.IsSigned = Opcode == Instruction::ICmp; 6397 Flags.IsMaxOp = false; 6398 break; 6399 case RK_Max: 6400 Flags.IsSigned = Opcode == Instruction::ICmp; 6401 Flags.IsMaxOp = true; 6402 break; 6403 case RK_UMin: 6404 Flags.IsSigned = false; 6405 Flags.IsMaxOp = false; 6406 break; 6407 case RK_UMax: 6408 Flags.IsSigned = false; 6409 Flags.IsMaxOp = true; 6410 break; 6411 case RK_None: 6412 llvm_unreachable("Reduction kind is not set"); 6413 } 6414 return Flags; 6415 } 6416 }; 6417 6418 WeakTrackingVH ReductionRoot; 6419 6420 /// The operation data of the reduction operation. 6421 OperationData ReductionData; 6422 6423 /// The operation data of the values we perform a reduction on. 6424 OperationData ReducedValueData; 6425 6426 /// Should we model this reduction as a pairwise reduction tree or a tree that 6427 /// splits the vector in halves and adds those halves. 6428 bool IsPairwiseReduction = false; 6429 6430 /// Checks if the ParentStackElem.first should be marked as a reduction 6431 /// operation with an extra argument or as extra argument itself. 6432 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 6433 Value *ExtraArg) { 6434 if (ExtraArgs.count(ParentStackElem.first)) { 6435 ExtraArgs[ParentStackElem.first] = nullptr; 6436 // We ran into something like: 6437 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 6438 // The whole ParentStackElem.first should be considered as an extra value 6439 // in this case. 6440 // Do not perform analysis of remaining operands of ParentStackElem.first 6441 // instruction, this whole instruction is an extra argument. 6442 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 6443 } else { 6444 // We ran into something like: 6445 // ParentStackElem.first += ... + ExtraArg + ... 6446 ExtraArgs[ParentStackElem.first] = ExtraArg; 6447 } 6448 } 6449 6450 static OperationData getOperationData(Value *V) { 6451 if (!V) 6452 return OperationData(); 6453 6454 Value *LHS; 6455 Value *RHS; 6456 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) { 6457 return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS, 6458 RK_Arithmetic); 6459 } 6460 if (auto *Select = dyn_cast<SelectInst>(V)) { 6461 // Look for a min/max pattern. 6462 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6463 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 6464 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6465 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 6466 } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) || 6467 m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6468 return OperationData( 6469 Instruction::FCmp, LHS, RHS, RK_Min, 6470 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 6471 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6472 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 6473 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6474 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 6475 } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) || 6476 m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6477 return OperationData( 6478 Instruction::FCmp, LHS, RHS, RK_Max, 6479 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 6480 } else { 6481 // Try harder: look for min/max pattern based on instructions producing 6482 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 6483 // During the intermediate stages of SLP, it's very common to have 6484 // pattern like this (since optimizeGatherSequence is run only once 6485 // at the end): 6486 // %1 = extractelement <2 x i32> %a, i32 0 6487 // %2 = extractelement <2 x i32> %a, i32 1 6488 // %cond = icmp sgt i32 %1, %2 6489 // %3 = extractelement <2 x i32> %a, i32 0 6490 // %4 = extractelement <2 x i32> %a, i32 1 6491 // %select = select i1 %cond, i32 %3, i32 %4 6492 CmpInst::Predicate Pred; 6493 Instruction *L1; 6494 Instruction *L2; 6495 6496 LHS = Select->getTrueValue(); 6497 RHS = Select->getFalseValue(); 6498 Value *Cond = Select->getCondition(); 6499 6500 // TODO: Support inverse predicates. 6501 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 6502 if (!isa<ExtractElementInst>(RHS) || 6503 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6504 return OperationData(V); 6505 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 6506 if (!isa<ExtractElementInst>(LHS) || 6507 !L1->isIdenticalTo(cast<Instruction>(LHS))) 6508 return OperationData(V); 6509 } else { 6510 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 6511 return OperationData(V); 6512 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 6513 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 6514 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6515 return OperationData(V); 6516 } 6517 switch (Pred) { 6518 default: 6519 return OperationData(V); 6520 6521 case CmpInst::ICMP_ULT: 6522 case CmpInst::ICMP_ULE: 6523 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 6524 6525 case CmpInst::ICMP_SLT: 6526 case CmpInst::ICMP_SLE: 6527 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 6528 6529 case CmpInst::FCMP_OLT: 6530 case CmpInst::FCMP_OLE: 6531 case CmpInst::FCMP_ULT: 6532 case CmpInst::FCMP_ULE: 6533 return OperationData(Instruction::FCmp, LHS, RHS, RK_Min, 6534 cast<Instruction>(Cond)->hasNoNaNs()); 6535 6536 case CmpInst::ICMP_UGT: 6537 case CmpInst::ICMP_UGE: 6538 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 6539 6540 case CmpInst::ICMP_SGT: 6541 case CmpInst::ICMP_SGE: 6542 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 6543 6544 case CmpInst::FCMP_OGT: 6545 case CmpInst::FCMP_OGE: 6546 case CmpInst::FCMP_UGT: 6547 case CmpInst::FCMP_UGE: 6548 return OperationData(Instruction::FCmp, LHS, RHS, RK_Max, 6549 cast<Instruction>(Cond)->hasNoNaNs()); 6550 } 6551 } 6552 } 6553 return OperationData(V); 6554 } 6555 6556 public: 6557 HorizontalReduction() = default; 6558 6559 /// Try to find a reduction tree. 6560 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 6561 assert((!Phi || is_contained(Phi->operands(), B)) && 6562 "Thi phi needs to use the binary operator"); 6563 6564 ReductionData = getOperationData(B); 6565 6566 // We could have a initial reductions that is not an add. 6567 // r *= v1 + v2 + v3 + v4 6568 // In such a case start looking for a tree rooted in the first '+'. 6569 if (Phi) { 6570 if (ReductionData.getLHS() == Phi) { 6571 Phi = nullptr; 6572 B = dyn_cast<Instruction>(ReductionData.getRHS()); 6573 ReductionData = getOperationData(B); 6574 } else if (ReductionData.getRHS() == Phi) { 6575 Phi = nullptr; 6576 B = dyn_cast<Instruction>(ReductionData.getLHS()); 6577 ReductionData = getOperationData(B); 6578 } 6579 } 6580 6581 if (!ReductionData.isVectorizable(B)) 6582 return false; 6583 6584 Type *Ty = B->getType(); 6585 if (!isValidElementType(Ty)) 6586 return false; 6587 if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy()) 6588 return false; 6589 6590 ReducedValueData.clear(); 6591 ReductionRoot = B; 6592 6593 // Post order traverse the reduction tree starting at B. We only handle true 6594 // trees containing only binary operators. 6595 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 6596 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); 6597 ReductionData.initReductionOps(ReductionOps); 6598 while (!Stack.empty()) { 6599 Instruction *TreeN = Stack.back().first; 6600 unsigned EdgeToVist = Stack.back().second++; 6601 OperationData OpData = getOperationData(TreeN); 6602 bool IsReducedValue = OpData != ReductionData; 6603 6604 // Postorder vist. 6605 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { 6606 if (IsReducedValue) 6607 ReducedVals.push_back(TreeN); 6608 else { 6609 auto I = ExtraArgs.find(TreeN); 6610 if (I != ExtraArgs.end() && !I->second) { 6611 // Check if TreeN is an extra argument of its parent operation. 6612 if (Stack.size() <= 1) { 6613 // TreeN can't be an extra argument as it is a root reduction 6614 // operation. 6615 return false; 6616 } 6617 // Yes, TreeN is an extra argument, do not add it to a list of 6618 // reduction operations. 6619 // Stack[Stack.size() - 2] always points to the parent operation. 6620 markExtraArg(Stack[Stack.size() - 2], TreeN); 6621 ExtraArgs.erase(TreeN); 6622 } else 6623 ReductionData.addReductionOps(TreeN, ReductionOps); 6624 } 6625 // Retract. 6626 Stack.pop_back(); 6627 continue; 6628 } 6629 6630 // Visit left or right. 6631 Value *NextV = TreeN->getOperand(EdgeToVist); 6632 if (NextV != Phi) { 6633 auto *I = dyn_cast<Instruction>(NextV); 6634 OpData = getOperationData(I); 6635 // Continue analysis if the next operand is a reduction operation or 6636 // (possibly) a reduced value. If the reduced value opcode is not set, 6637 // the first met operation != reduction operation is considered as the 6638 // reduced value class. 6639 if (I && (!ReducedValueData || OpData == ReducedValueData || 6640 OpData == ReductionData)) { 6641 const bool IsReductionOperation = OpData == ReductionData; 6642 // Only handle trees in the current basic block. 6643 if (!ReductionData.hasSameParent(I, B->getParent(), 6644 IsReductionOperation)) { 6645 // I is an extra argument for TreeN (its parent operation). 6646 markExtraArg(Stack.back(), I); 6647 continue; 6648 } 6649 6650 // Each tree node needs to have minimal number of users except for the 6651 // ultimate reduction. 6652 if (!ReductionData.hasRequiredNumberOfUses(I, 6653 OpData == ReductionData) && 6654 I != B) { 6655 // I is an extra argument for TreeN (its parent operation). 6656 markExtraArg(Stack.back(), I); 6657 continue; 6658 } 6659 6660 if (IsReductionOperation) { 6661 // We need to be able to reassociate the reduction operations. 6662 if (!OpData.isAssociative(I)) { 6663 // I is an extra argument for TreeN (its parent operation). 6664 markExtraArg(Stack.back(), I); 6665 continue; 6666 } 6667 } else if (ReducedValueData && 6668 ReducedValueData != OpData) { 6669 // Make sure that the opcodes of the operations that we are going to 6670 // reduce match. 6671 // I is an extra argument for TreeN (its parent operation). 6672 markExtraArg(Stack.back(), I); 6673 continue; 6674 } else if (!ReducedValueData) 6675 ReducedValueData = OpData; 6676 6677 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 6678 continue; 6679 } 6680 } 6681 // NextV is an extra argument for TreeN (its parent operation). 6682 markExtraArg(Stack.back(), NextV); 6683 } 6684 return true; 6685 } 6686 6687 /// Attempt to vectorize the tree found by 6688 /// matchAssociativeReduction. 6689 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 6690 if (ReducedVals.empty()) 6691 return false; 6692 6693 // If there is a sufficient number of reduction values, reduce 6694 // to a nearby power-of-2. Can safely generate oversized 6695 // vectors and rely on the backend to split them to legal sizes. 6696 unsigned NumReducedVals = ReducedVals.size(); 6697 if (NumReducedVals < 4) 6698 return false; 6699 6700 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 6701 6702 Value *VectorizedTree = nullptr; 6703 6704 // FIXME: Fast-math-flags should be set based on the instructions in the 6705 // reduction (not all of 'fast' are required). 6706 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 6707 FastMathFlags Unsafe; 6708 Unsafe.setFast(); 6709 Builder.setFastMathFlags(Unsafe); 6710 unsigned i = 0; 6711 6712 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 6713 // The same extra argument may be used several time, so log each attempt 6714 // to use it. 6715 for (auto &Pair : ExtraArgs) { 6716 assert(Pair.first && "DebugLoc must be set."); 6717 ExternallyUsedValues[Pair.second].push_back(Pair.first); 6718 } 6719 6720 // The compare instruction of a min/max is the insertion point for new 6721 // instructions and may be replaced with a new compare instruction. 6722 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 6723 assert(isa<SelectInst>(RdxRootInst) && 6724 "Expected min/max reduction to have select root instruction"); 6725 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 6726 assert(isa<Instruction>(ScalarCond) && 6727 "Expected min/max reduction to have compare condition"); 6728 return cast<Instruction>(ScalarCond); 6729 }; 6730 6731 // The reduction root is used as the insertion point for new instructions, 6732 // so set it as externally used to prevent it from being deleted. 6733 ExternallyUsedValues[ReductionRoot]; 6734 SmallVector<Value *, 16> IgnoreList; 6735 for (auto &V : ReductionOps) 6736 IgnoreList.append(V.begin(), V.end()); 6737 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 6738 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 6739 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 6740 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 6741 // TODO: Handle orders of size less than number of elements in the vector. 6742 if (Order && Order->size() == VL.size()) { 6743 // TODO: reorder tree nodes without tree rebuilding. 6744 SmallVector<Value *, 4> ReorderedOps(VL.size()); 6745 llvm::transform(*Order, ReorderedOps.begin(), 6746 [VL](const unsigned Idx) { return VL[Idx]; }); 6747 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 6748 } 6749 if (V.isTreeTinyAndNotFullyVectorizable()) 6750 break; 6751 if (V.isLoadCombineReductionCandidate(ReductionData.getOpcode())) 6752 break; 6753 6754 V.computeMinimumValueSizes(); 6755 6756 // Estimate cost. 6757 int TreeCost = V.getTreeCost(); 6758 int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth); 6759 int Cost = TreeCost + ReductionCost; 6760 if (Cost >= -SLPCostThreshold) { 6761 V.getORE()->emit([&]() { 6762 return OptimizationRemarkMissed( 6763 SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0])) 6764 << "Vectorizing horizontal reduction is possible" 6765 << "but not beneficial with cost " 6766 << ore::NV("Cost", Cost) << " and threshold " 6767 << ore::NV("Threshold", -SLPCostThreshold); 6768 }); 6769 break; 6770 } 6771 6772 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 6773 << Cost << ". (HorRdx)\n"); 6774 V.getORE()->emit([&]() { 6775 return OptimizationRemark( 6776 SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0])) 6777 << "Vectorized horizontal reduction with cost " 6778 << ore::NV("Cost", Cost) << " and with tree size " 6779 << ore::NV("TreeSize", V.getTreeSize()); 6780 }); 6781 6782 // Vectorize a tree. 6783 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 6784 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 6785 6786 // Emit a reduction. For min/max, the root is a select, but the insertion 6787 // point is the compare condition of that select. 6788 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 6789 if (ReductionData.isMinMax()) 6790 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 6791 else 6792 Builder.SetInsertPoint(RdxRootInst); 6793 6794 Value *ReducedSubTree = 6795 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 6796 if (VectorizedTree) { 6797 Builder.SetCurrentDebugLocation(Loc); 6798 OperationData VectReductionData(ReductionData.getOpcode(), 6799 VectorizedTree, ReducedSubTree, 6800 ReductionData.getKind()); 6801 VectorizedTree = 6802 VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 6803 } else 6804 VectorizedTree = ReducedSubTree; 6805 i += ReduxWidth; 6806 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 6807 } 6808 6809 if (VectorizedTree) { 6810 // Finish the reduction. 6811 for (; i < NumReducedVals; ++i) { 6812 auto *I = cast<Instruction>(ReducedVals[i]); 6813 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 6814 OperationData VectReductionData(ReductionData.getOpcode(), 6815 VectorizedTree, I, 6816 ReductionData.getKind()); 6817 VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps); 6818 } 6819 for (auto &Pair : ExternallyUsedValues) { 6820 // Add each externally used value to the final reduction. 6821 for (auto *I : Pair.second) { 6822 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 6823 OperationData VectReductionData(ReductionData.getOpcode(), 6824 VectorizedTree, Pair.first, 6825 ReductionData.getKind()); 6826 VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I); 6827 } 6828 } 6829 6830 // Update users. For a min/max reduction that ends with a compare and 6831 // select, we also have to RAUW for the compare instruction feeding the 6832 // reduction root. That's because the original compare may have extra uses 6833 // besides the final select of the reduction. 6834 if (ReductionData.isMinMax()) { 6835 if (auto *VecSelect = dyn_cast<SelectInst>(VectorizedTree)) { 6836 Instruction *ScalarCmp = 6837 getCmpForMinMaxReduction(cast<Instruction>(ReductionRoot)); 6838 ScalarCmp->replaceAllUsesWith(VecSelect->getCondition()); 6839 } 6840 } 6841 ReductionRoot->replaceAllUsesWith(VectorizedTree); 6842 6843 // Mark all scalar reduction ops for deletion, they are replaced by the 6844 // vector reductions. 6845 V.eraseInstructions(IgnoreList); 6846 } 6847 return VectorizedTree != nullptr; 6848 } 6849 6850 unsigned numReductionValues() const { 6851 return ReducedVals.size(); 6852 } 6853 6854 private: 6855 /// Calculate the cost of a reduction. 6856 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 6857 unsigned ReduxWidth) { 6858 Type *ScalarTy = FirstReducedVal->getType(); 6859 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 6860 6861 int PairwiseRdxCost; 6862 int SplittingRdxCost; 6863 switch (ReductionData.getKind()) { 6864 case RK_Arithmetic: 6865 PairwiseRdxCost = 6866 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 6867 /*IsPairwiseForm=*/true); 6868 SplittingRdxCost = 6869 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 6870 /*IsPairwiseForm=*/false); 6871 break; 6872 case RK_Min: 6873 case RK_Max: 6874 case RK_UMin: 6875 case RK_UMax: { 6876 Type *VecCondTy = CmpInst::makeCmpResultType(VecTy); 6877 bool IsUnsigned = ReductionData.getKind() == RK_UMin || 6878 ReductionData.getKind() == RK_UMax; 6879 PairwiseRdxCost = 6880 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 6881 /*IsPairwiseForm=*/true, IsUnsigned); 6882 SplittingRdxCost = 6883 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 6884 /*IsPairwiseForm=*/false, IsUnsigned); 6885 break; 6886 } 6887 case RK_None: 6888 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 6889 } 6890 6891 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 6892 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 6893 6894 int ScalarReduxCost = 0; 6895 switch (ReductionData.getKind()) { 6896 case RK_Arithmetic: 6897 ScalarReduxCost = 6898 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); 6899 break; 6900 case RK_Min: 6901 case RK_Max: 6902 case RK_UMin: 6903 case RK_UMax: 6904 ScalarReduxCost = 6905 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) + 6906 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 6907 CmpInst::makeCmpResultType(ScalarTy)); 6908 break; 6909 case RK_None: 6910 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 6911 } 6912 ScalarReduxCost *= (ReduxWidth - 1); 6913 6914 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 6915 << " for reduction that starts with " << *FirstReducedVal 6916 << " (It is a " 6917 << (IsPairwiseReduction ? "pairwise" : "splitting") 6918 << " reduction)\n"); 6919 6920 return VecReduxCost - ScalarReduxCost; 6921 } 6922 6923 /// Emit a horizontal reduction of the vectorized value. 6924 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 6925 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 6926 assert(VectorizedValue && "Need to have a vectorized tree node"); 6927 assert(isPowerOf2_32(ReduxWidth) && 6928 "We only handle power-of-two reductions for now"); 6929 6930 if (!IsPairwiseReduction) { 6931 // FIXME: The builder should use an FMF guard. It should not be hard-coded 6932 // to 'fast'. 6933 assert(Builder.getFastMathFlags().isFast() && "Expected 'fast' FMF"); 6934 return createSimpleTargetReduction( 6935 Builder, TTI, ReductionData.getOpcode(), VectorizedValue, 6936 ReductionData.getFlags(), ReductionOps.back()); 6937 } 6938 6939 Value *TmpVec = VectorizedValue; 6940 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 6941 Value *LeftMask = 6942 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 6943 Value *RightMask = 6944 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 6945 6946 Value *LeftShuf = Builder.CreateShuffleVector( 6947 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 6948 Value *RightShuf = Builder.CreateShuffleVector( 6949 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 6950 "rdx.shuf.r"); 6951 OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf, 6952 RightShuf, ReductionData.getKind()); 6953 TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 6954 } 6955 6956 // The result is in the first element of the vector. 6957 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 6958 } 6959 }; 6960 6961 } // end anonymous namespace 6962 6963 /// Recognize construction of vectors like 6964 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 6965 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 6966 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 6967 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 6968 /// starting from the last insertelement or insertvalue instruction. 6969 /// 6970 /// Also recognize aggregates like {<2 x float>, <2 x float>}, 6971 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 6972 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 6973 /// 6974 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 6975 /// 6976 /// \return true if it matches. 6977 static bool findBuildAggregate(Value *LastInsertInst, TargetTransformInfo *TTI, 6978 SmallVectorImpl<Value *> &BuildVectorOpds, 6979 int &UserCost) { 6980 assert((isa<InsertElementInst>(LastInsertInst) || 6981 isa<InsertValueInst>(LastInsertInst)) && 6982 "Expected insertelement or insertvalue instruction!"); 6983 UserCost = 0; 6984 do { 6985 Value *InsertedOperand; 6986 if (auto *IE = dyn_cast<InsertElementInst>(LastInsertInst)) { 6987 InsertedOperand = IE->getOperand(1); 6988 LastInsertInst = IE->getOperand(0); 6989 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 6990 UserCost += TTI->getVectorInstrCost(Instruction::InsertElement, 6991 IE->getType(), CI->getZExtValue()); 6992 } 6993 } else { 6994 auto *IV = cast<InsertValueInst>(LastInsertInst); 6995 InsertedOperand = IV->getInsertedValueOperand(); 6996 LastInsertInst = IV->getAggregateOperand(); 6997 } 6998 if (isa<InsertElementInst>(InsertedOperand) || 6999 isa<InsertValueInst>(InsertedOperand)) { 7000 int TmpUserCost; 7001 SmallVector<Value *, 8> TmpBuildVectorOpds; 7002 if (!findBuildAggregate(InsertedOperand, TTI, TmpBuildVectorOpds, 7003 TmpUserCost)) 7004 return false; 7005 BuildVectorOpds.append(TmpBuildVectorOpds.rbegin(), 7006 TmpBuildVectorOpds.rend()); 7007 UserCost += TmpUserCost; 7008 } else { 7009 BuildVectorOpds.push_back(InsertedOperand); 7010 } 7011 if (isa<UndefValue>(LastInsertInst)) 7012 break; 7013 if ((!isa<InsertValueInst>(LastInsertInst) && 7014 !isa<InsertElementInst>(LastInsertInst)) || 7015 !LastInsertInst->hasOneUse()) 7016 return false; 7017 } while (true); 7018 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 7019 return true; 7020 } 7021 7022 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 7023 return V->getType() < V2->getType(); 7024 } 7025 7026 /// Try and get a reduction value from a phi node. 7027 /// 7028 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 7029 /// if they come from either \p ParentBB or a containing loop latch. 7030 /// 7031 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 7032 /// if not possible. 7033 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 7034 BasicBlock *ParentBB, LoopInfo *LI) { 7035 // There are situations where the reduction value is not dominated by the 7036 // reduction phi. Vectorizing such cases has been reported to cause 7037 // miscompiles. See PR25787. 7038 auto DominatedReduxValue = [&](Value *R) { 7039 return isa<Instruction>(R) && 7040 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 7041 }; 7042 7043 Value *Rdx = nullptr; 7044 7045 // Return the incoming value if it comes from the same BB as the phi node. 7046 if (P->getIncomingBlock(0) == ParentBB) { 7047 Rdx = P->getIncomingValue(0); 7048 } else if (P->getIncomingBlock(1) == ParentBB) { 7049 Rdx = P->getIncomingValue(1); 7050 } 7051 7052 if (Rdx && DominatedReduxValue(Rdx)) 7053 return Rdx; 7054 7055 // Otherwise, check whether we have a loop latch to look at. 7056 Loop *BBL = LI->getLoopFor(ParentBB); 7057 if (!BBL) 7058 return nullptr; 7059 BasicBlock *BBLatch = BBL->getLoopLatch(); 7060 if (!BBLatch) 7061 return nullptr; 7062 7063 // There is a loop latch, return the incoming value if it comes from 7064 // that. This reduction pattern occasionally turns up. 7065 if (P->getIncomingBlock(0) == BBLatch) { 7066 Rdx = P->getIncomingValue(0); 7067 } else if (P->getIncomingBlock(1) == BBLatch) { 7068 Rdx = P->getIncomingValue(1); 7069 } 7070 7071 if (Rdx && DominatedReduxValue(Rdx)) 7072 return Rdx; 7073 7074 return nullptr; 7075 } 7076 7077 /// Attempt to reduce a horizontal reduction. 7078 /// If it is legal to match a horizontal reduction feeding the phi node \a P 7079 /// with reduction operators \a Root (or one of its operands) in a basic block 7080 /// \a BB, then check if it can be done. If horizontal reduction is not found 7081 /// and root instruction is a binary operation, vectorization of the operands is 7082 /// attempted. 7083 /// \returns true if a horizontal reduction was matched and reduced or operands 7084 /// of one of the binary instruction were vectorized. 7085 /// \returns false if a horizontal reduction was not matched (or not possible) 7086 /// or no vectorization of any binary operation feeding \a Root instruction was 7087 /// performed. 7088 static bool tryToVectorizeHorReductionOrInstOperands( 7089 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 7090 TargetTransformInfo *TTI, 7091 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 7092 if (!ShouldVectorizeHor) 7093 return false; 7094 7095 if (!Root) 7096 return false; 7097 7098 if (Root->getParent() != BB || isa<PHINode>(Root)) 7099 return false; 7100 // Start analysis starting from Root instruction. If horizontal reduction is 7101 // found, try to vectorize it. If it is not a horizontal reduction or 7102 // vectorization is not possible or not effective, and currently analyzed 7103 // instruction is a binary operation, try to vectorize the operands, using 7104 // pre-order DFS traversal order. If the operands were not vectorized, repeat 7105 // the same procedure considering each operand as a possible root of the 7106 // horizontal reduction. 7107 // Interrupt the process if the Root instruction itself was vectorized or all 7108 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 7109 SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0}); 7110 SmallPtrSet<Value *, 8> VisitedInstrs; 7111 bool Res = false; 7112 while (!Stack.empty()) { 7113 Instruction *Inst; 7114 unsigned Level; 7115 std::tie(Inst, Level) = Stack.pop_back_val(); 7116 auto *BI = dyn_cast<BinaryOperator>(Inst); 7117 auto *SI = dyn_cast<SelectInst>(Inst); 7118 if (BI || SI) { 7119 HorizontalReduction HorRdx; 7120 if (HorRdx.matchAssociativeReduction(P, Inst)) { 7121 if (HorRdx.tryToReduce(R, TTI)) { 7122 Res = true; 7123 // Set P to nullptr to avoid re-analysis of phi node in 7124 // matchAssociativeReduction function unless this is the root node. 7125 P = nullptr; 7126 continue; 7127 } 7128 } 7129 if (P && BI) { 7130 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 7131 if (Inst == P) 7132 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 7133 if (!Inst) { 7134 // Set P to nullptr to avoid re-analysis of phi node in 7135 // matchAssociativeReduction function unless this is the root node. 7136 P = nullptr; 7137 continue; 7138 } 7139 } 7140 } 7141 // Set P to nullptr to avoid re-analysis of phi node in 7142 // matchAssociativeReduction function unless this is the root node. 7143 P = nullptr; 7144 if (Vectorize(Inst, R)) { 7145 Res = true; 7146 continue; 7147 } 7148 7149 // Try to vectorize operands. 7150 // Continue analysis for the instruction from the same basic block only to 7151 // save compile time. 7152 if (++Level < RecursionMaxDepth) 7153 for (auto *Op : Inst->operand_values()) 7154 if (VisitedInstrs.insert(Op).second) 7155 if (auto *I = dyn_cast<Instruction>(Op)) 7156 if (!isa<PHINode>(I) && !R.isDeleted(I) && I->getParent() == BB) 7157 Stack.emplace_back(I, Level); 7158 } 7159 return Res; 7160 } 7161 7162 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 7163 BasicBlock *BB, BoUpSLP &R, 7164 TargetTransformInfo *TTI) { 7165 if (!V) 7166 return false; 7167 auto *I = dyn_cast<Instruction>(V); 7168 if (!I) 7169 return false; 7170 7171 if (!isa<BinaryOperator>(I)) 7172 P = nullptr; 7173 // Try to match and vectorize a horizontal reduction. 7174 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 7175 return tryToVectorize(I, R); 7176 }; 7177 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 7178 ExtraVectorization); 7179 } 7180 7181 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 7182 BasicBlock *BB, BoUpSLP &R) { 7183 int UserCost = 0; 7184 const DataLayout &DL = BB->getModule()->getDataLayout(); 7185 if (!R.canMapToVector(IVI->getType(), DL)) 7186 return false; 7187 7188 SmallVector<Value *, 16> BuildVectorOpds; 7189 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, UserCost)) 7190 return false; 7191 7192 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 7193 // Aggregate value is unlikely to be processed in vector register, we need to 7194 // extract scalars into scalar registers, so NeedExtraction is set true. 7195 return tryToVectorizeList(BuildVectorOpds, R, UserCost); 7196 } 7197 7198 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 7199 BasicBlock *BB, BoUpSLP &R) { 7200 int UserCost; 7201 SmallVector<Value *, 16> BuildVectorOpds; 7202 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, UserCost) || 7203 (llvm::all_of(BuildVectorOpds, 7204 [](Value *V) { return isa<ExtractElementInst>(V); }) && 7205 isShuffle(BuildVectorOpds))) 7206 return false; 7207 7208 // Vectorize starting with the build vector operands ignoring the BuildVector 7209 // instructions for the purpose of scheduling and user extraction. 7210 return tryToVectorizeList(BuildVectorOpds, R, UserCost); 7211 } 7212 7213 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 7214 BoUpSLP &R) { 7215 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 7216 return true; 7217 7218 bool OpsChanged = false; 7219 for (int Idx = 0; Idx < 2; ++Idx) { 7220 OpsChanged |= 7221 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 7222 } 7223 return OpsChanged; 7224 } 7225 7226 bool SLPVectorizerPass::vectorizeSimpleInstructions( 7227 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R) { 7228 bool OpsChanged = false; 7229 for (auto *I : reverse(Instructions)) { 7230 if (R.isDeleted(I)) 7231 continue; 7232 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 7233 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 7234 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 7235 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 7236 else if (auto *CI = dyn_cast<CmpInst>(I)) 7237 OpsChanged |= vectorizeCmpInst(CI, BB, R); 7238 } 7239 Instructions.clear(); 7240 return OpsChanged; 7241 } 7242 7243 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 7244 bool Changed = false; 7245 SmallVector<Value *, 4> Incoming; 7246 SmallPtrSet<Value *, 16> VisitedInstrs; 7247 7248 bool HaveVectorizedPhiNodes = true; 7249 while (HaveVectorizedPhiNodes) { 7250 HaveVectorizedPhiNodes = false; 7251 7252 // Collect the incoming values from the PHIs. 7253 Incoming.clear(); 7254 for (Instruction &I : *BB) { 7255 PHINode *P = dyn_cast<PHINode>(&I); 7256 if (!P) 7257 break; 7258 7259 if (!VisitedInstrs.count(P) && !R.isDeleted(P)) 7260 Incoming.push_back(P); 7261 } 7262 7263 // Sort by type. 7264 llvm::stable_sort(Incoming, PhiTypeSorterFunc); 7265 7266 // Try to vectorize elements base on their type. 7267 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 7268 E = Incoming.end(); 7269 IncIt != E;) { 7270 7271 // Look for the next elements with the same type. 7272 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 7273 while (SameTypeIt != E && 7274 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 7275 VisitedInstrs.insert(*SameTypeIt); 7276 ++SameTypeIt; 7277 } 7278 7279 // Try to vectorize them. 7280 unsigned NumElts = (SameTypeIt - IncIt); 7281 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 7282 << NumElts << ")\n"); 7283 // The order in which the phi nodes appear in the program does not matter. 7284 // So allow tryToVectorizeList to reorder them if it is beneficial. This 7285 // is done when there are exactly two elements since tryToVectorizeList 7286 // asserts that there are only two values when AllowReorder is true. 7287 bool AllowReorder = NumElts == 2; 7288 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, 7289 /*UserCost=*/0, AllowReorder)) { 7290 // Success start over because instructions might have been changed. 7291 HaveVectorizedPhiNodes = true; 7292 Changed = true; 7293 break; 7294 } 7295 7296 // Start over at the next instruction of a different type (or the end). 7297 IncIt = SameTypeIt; 7298 } 7299 } 7300 7301 VisitedInstrs.clear(); 7302 7303 SmallVector<Instruction *, 8> PostProcessInstructions; 7304 SmallDenseSet<Instruction *, 4> KeyNodes; 7305 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 7306 // Skip instructions marked for the deletion. 7307 if (R.isDeleted(&*it)) 7308 continue; 7309 // We may go through BB multiple times so skip the one we have checked. 7310 if (!VisitedInstrs.insert(&*it).second) { 7311 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 7312 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 7313 // We would like to start over since some instructions are deleted 7314 // and the iterator may become invalid value. 7315 Changed = true; 7316 it = BB->begin(); 7317 e = BB->end(); 7318 } 7319 continue; 7320 } 7321 7322 if (isa<DbgInfoIntrinsic>(it)) 7323 continue; 7324 7325 // Try to vectorize reductions that use PHINodes. 7326 if (PHINode *P = dyn_cast<PHINode>(it)) { 7327 // Check that the PHI is a reduction PHI. 7328 if (P->getNumIncomingValues() != 2) 7329 return Changed; 7330 7331 // Try to match and vectorize a horizontal reduction. 7332 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 7333 TTI)) { 7334 Changed = true; 7335 it = BB->begin(); 7336 e = BB->end(); 7337 continue; 7338 } 7339 continue; 7340 } 7341 7342 // Ran into an instruction without users, like terminator, or function call 7343 // with ignored return value, store. Ignore unused instructions (basing on 7344 // instruction type, except for CallInst and InvokeInst). 7345 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 7346 isa<InvokeInst>(it))) { 7347 KeyNodes.insert(&*it); 7348 bool OpsChanged = false; 7349 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 7350 for (auto *V : it->operand_values()) { 7351 // Try to match and vectorize a horizontal reduction. 7352 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 7353 } 7354 } 7355 // Start vectorization of post-process list of instructions from the 7356 // top-tree instructions to try to vectorize as many instructions as 7357 // possible. 7358 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 7359 if (OpsChanged) { 7360 // We would like to start over since some instructions are deleted 7361 // and the iterator may become invalid value. 7362 Changed = true; 7363 it = BB->begin(); 7364 e = BB->end(); 7365 continue; 7366 } 7367 } 7368 7369 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 7370 isa<InsertValueInst>(it)) 7371 PostProcessInstructions.push_back(&*it); 7372 } 7373 7374 return Changed; 7375 } 7376 7377 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 7378 auto Changed = false; 7379 for (auto &Entry : GEPs) { 7380 // If the getelementptr list has fewer than two elements, there's nothing 7381 // to do. 7382 if (Entry.second.size() < 2) 7383 continue; 7384 7385 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 7386 << Entry.second.size() << ".\n"); 7387 7388 // Process the GEP list in chunks suitable for the target's supported 7389 // vector size. If a vector register can't hold 1 element, we are done. 7390 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7391 unsigned EltSize = R.getVectorElementSize(Entry.second[0]); 7392 if (MaxVecRegSize < EltSize) 7393 continue; 7394 7395 unsigned MaxElts = MaxVecRegSize / EltSize; 7396 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 7397 auto Len = std::min<unsigned>(BE - BI, MaxElts); 7398 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 7399 7400 // Initialize a set a candidate getelementptrs. Note that we use a 7401 // SetVector here to preserve program order. If the index computations 7402 // are vectorizable and begin with loads, we want to minimize the chance 7403 // of having to reorder them later. 7404 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 7405 7406 // Some of the candidates may have already been vectorized after we 7407 // initially collected them. If so, they are marked as deleted, so remove 7408 // them from the set of candidates. 7409 Candidates.remove_if( 7410 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 7411 7412 // Remove from the set of candidates all pairs of getelementptrs with 7413 // constant differences. Such getelementptrs are likely not good 7414 // candidates for vectorization in a bottom-up phase since one can be 7415 // computed from the other. We also ensure all candidate getelementptr 7416 // indices are unique. 7417 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 7418 auto *GEPI = GEPList[I]; 7419 if (!Candidates.count(GEPI)) 7420 continue; 7421 auto *SCEVI = SE->getSCEV(GEPList[I]); 7422 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 7423 auto *GEPJ = GEPList[J]; 7424 auto *SCEVJ = SE->getSCEV(GEPList[J]); 7425 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 7426 Candidates.remove(GEPI); 7427 Candidates.remove(GEPJ); 7428 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 7429 Candidates.remove(GEPJ); 7430 } 7431 } 7432 } 7433 7434 // We break out of the above computation as soon as we know there are 7435 // fewer than two candidates remaining. 7436 if (Candidates.size() < 2) 7437 continue; 7438 7439 // Add the single, non-constant index of each candidate to the bundle. We 7440 // ensured the indices met these constraints when we originally collected 7441 // the getelementptrs. 7442 SmallVector<Value *, 16> Bundle(Candidates.size()); 7443 auto BundleIndex = 0u; 7444 for (auto *V : Candidates) { 7445 auto *GEP = cast<GetElementPtrInst>(V); 7446 auto *GEPIdx = GEP->idx_begin()->get(); 7447 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 7448 Bundle[BundleIndex++] = GEPIdx; 7449 } 7450 7451 // Try and vectorize the indices. We are currently only interested in 7452 // gather-like cases of the form: 7453 // 7454 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 7455 // 7456 // where the loads of "a", the loads of "b", and the subtractions can be 7457 // performed in parallel. It's likely that detecting this pattern in a 7458 // bottom-up phase will be simpler and less costly than building a 7459 // full-blown top-down phase beginning at the consecutive loads. 7460 Changed |= tryToVectorizeList(Bundle, R); 7461 } 7462 } 7463 return Changed; 7464 } 7465 7466 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 7467 bool Changed = false; 7468 // Attempt to sort and vectorize each of the store-groups. 7469 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 7470 ++it) { 7471 if (it->second.size() < 2) 7472 continue; 7473 7474 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 7475 << it->second.size() << ".\n"); 7476 7477 Changed |= vectorizeStores(it->second, R); 7478 } 7479 return Changed; 7480 } 7481 7482 char SLPVectorizer::ID = 0; 7483 7484 static const char lv_name[] = "SLP Vectorizer"; 7485 7486 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 7487 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7488 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7489 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7490 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7491 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 7492 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7493 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7494 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 7495 7496 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 7497