1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/DenseSet.h" 23 #include "llvm/ADT/MapVector.h" 24 #include "llvm/ADT/None.h" 25 #include "llvm/ADT/Optional.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SetVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/CodeMetrics.h" 37 #include "llvm/Analysis/DemandedBits.h" 38 #include "llvm/Analysis/GlobalsModRef.h" 39 #include "llvm/Analysis/LoopAccessAnalysis.h" 40 #include "llvm/Analysis/LoopInfo.h" 41 #include "llvm/Analysis/MemoryLocation.h" 42 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 43 #include "llvm/Analysis/ScalarEvolution.h" 44 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 45 #include "llvm/Analysis/TargetLibraryInfo.h" 46 #include "llvm/Analysis/TargetTransformInfo.h" 47 #include "llvm/Analysis/ValueTracking.h" 48 #include "llvm/Analysis/VectorUtils.h" 49 #include "llvm/IR/Attributes.h" 50 #include "llvm/IR/BasicBlock.h" 51 #include "llvm/IR/Constant.h" 52 #include "llvm/IR/Constants.h" 53 #include "llvm/IR/DataLayout.h" 54 #include "llvm/IR/DebugLoc.h" 55 #include "llvm/IR/DerivedTypes.h" 56 #include "llvm/IR/Dominators.h" 57 #include "llvm/IR/Function.h" 58 #include "llvm/IR/IRBuilder.h" 59 #include "llvm/IR/InstrTypes.h" 60 #include "llvm/IR/Instruction.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/IR/IntrinsicInst.h" 63 #include "llvm/IR/Intrinsics.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/NoFolder.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PassManager.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/Verifier.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/Casting.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/Compiler.h" 79 #include "llvm/Support/DOTGraphTraits.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/GraphWriter.h" 83 #include "llvm/Support/KnownBits.h" 84 #include "llvm/Support/MathExtras.h" 85 #include "llvm/Support/raw_ostream.h" 86 #include "llvm/Transforms/Utils/LoopUtils.h" 87 #include "llvm/Transforms/Vectorize.h" 88 #include <algorithm> 89 #include <cassert> 90 #include <cstdint> 91 #include <iterator> 92 #include <memory> 93 #include <set> 94 #include <string> 95 #include <tuple> 96 #include <utility> 97 #include <vector> 98 99 using namespace llvm; 100 using namespace llvm::PatternMatch; 101 using namespace slpvectorizer; 102 103 #define SV_NAME "slp-vectorizer" 104 #define DEBUG_TYPE "SLP" 105 106 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 107 108 static cl::opt<int> 109 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 110 cl::desc("Only vectorize if you gain more than this " 111 "number ")); 112 113 static cl::opt<bool> 114 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 115 cl::desc("Attempt to vectorize horizontal reductions")); 116 117 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 118 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 119 cl::desc( 120 "Attempt to vectorize horizontal reductions feeding into a store")); 121 122 static cl::opt<int> 123 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 124 cl::desc("Attempt to vectorize for this register size in bits")); 125 126 /// Limits the size of scheduling regions in a block. 127 /// It avoid long compile times for _very_ large blocks where vector 128 /// instructions are spread over a wide range. 129 /// This limit is way higher than needed by real-world functions. 130 static cl::opt<int> 131 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 132 cl::desc("Limit the size of the SLP scheduling region per block")); 133 134 static cl::opt<int> MinVectorRegSizeOption( 135 "slp-min-reg-size", cl::init(128), cl::Hidden, 136 cl::desc("Attempt to vectorize for this register size in bits")); 137 138 static cl::opt<unsigned> RecursionMaxDepth( 139 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 140 cl::desc("Limit the recursion depth when building a vectorizable tree")); 141 142 static cl::opt<unsigned> MinTreeSize( 143 "slp-min-tree-size", cl::init(3), cl::Hidden, 144 cl::desc("Only vectorize small trees if they are fully vectorizable")); 145 146 static cl::opt<bool> 147 ViewSLPTree("view-slp-tree", cl::Hidden, 148 cl::desc("Display the SLP trees with Graphviz")); 149 150 // Limit the number of alias checks. The limit is chosen so that 151 // it has no negative effect on the llvm benchmarks. 152 static const unsigned AliasedCheckLimit = 10; 153 154 // Another limit for the alias checks: The maximum distance between load/store 155 // instructions where alias checks are done. 156 // This limit is useful for very large basic blocks. 157 static const unsigned MaxMemDepDistance = 160; 158 159 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 160 /// regions to be handled. 161 static const int MinScheduleRegionSize = 16; 162 163 /// Predicate for the element types that the SLP vectorizer supports. 164 /// 165 /// The most important thing to filter here are types which are invalid in LLVM 166 /// vectors. We also filter target specific types which have absolutely no 167 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 168 /// avoids spending time checking the cost model and realizing that they will 169 /// be inevitably scalarized. 170 static bool isValidElementType(Type *Ty) { 171 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 172 !Ty->isPPC_FP128Ty(); 173 } 174 175 /// \returns true if all of the instructions in \p VL are in the same block or 176 /// false otherwise. 177 static bool allSameBlock(ArrayRef<Value *> VL) { 178 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 179 if (!I0) 180 return false; 181 BasicBlock *BB = I0->getParent(); 182 for (int i = 1, e = VL.size(); i < e; i++) { 183 Instruction *I = dyn_cast<Instruction>(VL[i]); 184 if (!I) 185 return false; 186 187 if (BB != I->getParent()) 188 return false; 189 } 190 return true; 191 } 192 193 /// \returns True if all of the values in \p VL are constants. 194 static bool allConstant(ArrayRef<Value *> VL) { 195 for (Value *i : VL) 196 if (!isa<Constant>(i)) 197 return false; 198 return true; 199 } 200 201 /// \returns True if all of the values in \p VL are identical. 202 static bool isSplat(ArrayRef<Value *> VL) { 203 for (unsigned i = 1, e = VL.size(); i < e; ++i) 204 if (VL[i] != VL[0]) 205 return false; 206 return true; 207 } 208 209 /// Checks if the vector of instructions can be represented as a shuffle, like: 210 /// %x0 = extractelement <4 x i8> %x, i32 0 211 /// %x3 = extractelement <4 x i8> %x, i32 3 212 /// %y1 = extractelement <4 x i8> %y, i32 1 213 /// %y2 = extractelement <4 x i8> %y, i32 2 214 /// %x0x0 = mul i8 %x0, %x0 215 /// %x3x3 = mul i8 %x3, %x3 216 /// %y1y1 = mul i8 %y1, %y1 217 /// %y2y2 = mul i8 %y2, %y2 218 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 219 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 220 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 221 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 222 /// ret <4 x i8> %ins4 223 /// can be transformed into: 224 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 225 /// i32 6> 226 /// %2 = mul <4 x i8> %1, %1 227 /// ret <4 x i8> %2 228 /// We convert this initially to something like: 229 /// %x0 = extractelement <4 x i8> %x, i32 0 230 /// %x3 = extractelement <4 x i8> %x, i32 3 231 /// %y1 = extractelement <4 x i8> %y, i32 1 232 /// %y2 = extractelement <4 x i8> %y, i32 2 233 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 234 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 235 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 236 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 237 /// %5 = mul <4 x i8> %4, %4 238 /// %6 = extractelement <4 x i8> %5, i32 0 239 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 240 /// %7 = extractelement <4 x i8> %5, i32 1 241 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 242 /// %8 = extractelement <4 x i8> %5, i32 2 243 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 244 /// %9 = extractelement <4 x i8> %5, i32 3 245 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 246 /// ret <4 x i8> %ins4 247 /// InstCombiner transforms this into a shuffle and vector mul 248 /// TODO: Can we split off and reuse the shuffle mask detection from 249 /// TargetTransformInfo::getInstructionThroughput? 250 static Optional<TargetTransformInfo::ShuffleKind> 251 isShuffle(ArrayRef<Value *> VL) { 252 auto *EI0 = cast<ExtractElementInst>(VL[0]); 253 unsigned Size = EI0->getVectorOperandType()->getVectorNumElements(); 254 Value *Vec1 = nullptr; 255 Value *Vec2 = nullptr; 256 enum ShuffleMode { Unknown, Select, Permute }; 257 ShuffleMode CommonShuffleMode = Unknown; 258 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 259 auto *EI = cast<ExtractElementInst>(VL[I]); 260 auto *Vec = EI->getVectorOperand(); 261 // All vector operands must have the same number of vector elements. 262 if (Vec->getType()->getVectorNumElements() != Size) 263 return None; 264 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 265 if (!Idx) 266 return None; 267 // Undefined behavior if Idx is negative or >= Size. 268 if (Idx->getValue().uge(Size)) 269 continue; 270 unsigned IntIdx = Idx->getValue().getZExtValue(); 271 // We can extractelement from undef vector. 272 if (isa<UndefValue>(Vec)) 273 continue; 274 // For correct shuffling we have to have at most 2 different vector operands 275 // in all extractelement instructions. 276 if (!Vec1 || Vec1 == Vec) 277 Vec1 = Vec; 278 else if (!Vec2 || Vec2 == Vec) 279 Vec2 = Vec; 280 else 281 return None; 282 if (CommonShuffleMode == Permute) 283 continue; 284 // If the extract index is not the same as the operation number, it is a 285 // permutation. 286 if (IntIdx != I) { 287 CommonShuffleMode = Permute; 288 continue; 289 } 290 CommonShuffleMode = Select; 291 } 292 // If we're not crossing lanes in different vectors, consider it as blending. 293 if (CommonShuffleMode == Select && Vec2) 294 return TargetTransformInfo::SK_Select; 295 // If Vec2 was never used, we have a permutation of a single vector, otherwise 296 // we have permutation of 2 vectors. 297 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 298 : TargetTransformInfo::SK_PermuteSingleSrc; 299 } 300 301 namespace { 302 303 /// Main data required for vectorization of instructions. 304 struct InstructionsState { 305 /// The very first instruction in the list with the main opcode. 306 Value *OpValue = nullptr; 307 308 /// The main/alternate instruction. 309 Instruction *MainOp = nullptr; 310 Instruction *AltOp = nullptr; 311 312 /// The main/alternate opcodes for the list of instructions. 313 unsigned getOpcode() const { 314 return MainOp ? MainOp->getOpcode() : 0; 315 } 316 317 unsigned getAltOpcode() const { 318 return AltOp ? AltOp->getOpcode() : 0; 319 } 320 321 /// Some of the instructions in the list have alternate opcodes. 322 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 323 324 bool isOpcodeOrAlt(Instruction *I) const { 325 unsigned CheckedOpcode = I->getOpcode(); 326 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 327 } 328 329 InstructionsState() = delete; 330 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 331 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 332 }; 333 334 } // end anonymous namespace 335 336 /// Chooses the correct key for scheduling data. If \p Op has the same (or 337 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 338 /// OpValue. 339 static Value *isOneOf(const InstructionsState &S, Value *Op) { 340 auto *I = dyn_cast<Instruction>(Op); 341 if (I && S.isOpcodeOrAlt(I)) 342 return Op; 343 return S.OpValue; 344 } 345 346 /// \returns analysis of the Instructions in \p VL described in 347 /// InstructionsState, the Opcode that we suppose the whole list 348 /// could be vectorized even if its structure is diverse. 349 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 350 unsigned BaseIndex = 0) { 351 // Make sure these are all Instructions. 352 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 353 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 354 355 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 356 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 357 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 358 unsigned AltOpcode = Opcode; 359 unsigned AltIndex = BaseIndex; 360 361 // Check for one alternate opcode from another BinaryOperator. 362 // TODO - generalize to support all operators (types, calls etc.). 363 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 364 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 365 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 366 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 367 continue; 368 if (Opcode == AltOpcode) { 369 AltOpcode = InstOpcode; 370 AltIndex = Cnt; 371 continue; 372 } 373 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 374 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 375 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 376 if (Ty0 == Ty1) { 377 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 378 continue; 379 if (Opcode == AltOpcode) { 380 AltOpcode = InstOpcode; 381 AltIndex = Cnt; 382 continue; 383 } 384 } 385 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 386 continue; 387 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 388 } 389 390 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 391 cast<Instruction>(VL[AltIndex])); 392 } 393 394 /// \returns true if all of the values in \p VL have the same type or false 395 /// otherwise. 396 static bool allSameType(ArrayRef<Value *> VL) { 397 Type *Ty = VL[0]->getType(); 398 for (int i = 1, e = VL.size(); i < e; i++) 399 if (VL[i]->getType() != Ty) 400 return false; 401 402 return true; 403 } 404 405 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 406 static Optional<unsigned> getExtractIndex(Instruction *E) { 407 unsigned Opcode = E->getOpcode(); 408 assert((Opcode == Instruction::ExtractElement || 409 Opcode == Instruction::ExtractValue) && 410 "Expected extractelement or extractvalue instruction."); 411 if (Opcode == Instruction::ExtractElement) { 412 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 413 if (!CI) 414 return None; 415 return CI->getZExtValue(); 416 } 417 ExtractValueInst *EI = cast<ExtractValueInst>(E); 418 if (EI->getNumIndices() != 1) 419 return None; 420 return *EI->idx_begin(); 421 } 422 423 /// \returns True if in-tree use also needs extract. This refers to 424 /// possible scalar operand in vectorized instruction. 425 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 426 TargetLibraryInfo *TLI) { 427 unsigned Opcode = UserInst->getOpcode(); 428 switch (Opcode) { 429 case Instruction::Load: { 430 LoadInst *LI = cast<LoadInst>(UserInst); 431 return (LI->getPointerOperand() == Scalar); 432 } 433 case Instruction::Store: { 434 StoreInst *SI = cast<StoreInst>(UserInst); 435 return (SI->getPointerOperand() == Scalar); 436 } 437 case Instruction::Call: { 438 CallInst *CI = cast<CallInst>(UserInst); 439 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 440 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 441 if (hasVectorInstrinsicScalarOpd(ID, i)) 442 return (CI->getArgOperand(i) == Scalar); 443 } 444 LLVM_FALLTHROUGH; 445 } 446 default: 447 return false; 448 } 449 } 450 451 /// \returns the AA location that is being access by the instruction. 452 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 453 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 454 return MemoryLocation::get(SI); 455 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 456 return MemoryLocation::get(LI); 457 return MemoryLocation(); 458 } 459 460 /// \returns True if the instruction is not a volatile or atomic load/store. 461 static bool isSimple(Instruction *I) { 462 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 463 return LI->isSimple(); 464 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 465 return SI->isSimple(); 466 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 467 return !MI->isVolatile(); 468 return true; 469 } 470 471 namespace llvm { 472 473 namespace slpvectorizer { 474 475 /// Bottom Up SLP Vectorizer. 476 class BoUpSLP { 477 public: 478 using ValueList = SmallVector<Value *, 8>; 479 using InstrList = SmallVector<Instruction *, 16>; 480 using ValueSet = SmallPtrSet<Value *, 16>; 481 using StoreList = SmallVector<StoreInst *, 8>; 482 using ExtraValueToDebugLocsMap = 483 MapVector<Value *, SmallVector<Instruction *, 2>>; 484 485 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 486 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 487 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 488 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 489 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 490 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 491 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 492 // Use the vector register size specified by the target unless overridden 493 // by a command-line option. 494 // TODO: It would be better to limit the vectorization factor based on 495 // data type rather than just register size. For example, x86 AVX has 496 // 256-bit registers, but it does not support integer operations 497 // at that width (that requires AVX2). 498 if (MaxVectorRegSizeOption.getNumOccurrences()) 499 MaxVecRegSize = MaxVectorRegSizeOption; 500 else 501 MaxVecRegSize = TTI->getRegisterBitWidth(true); 502 503 if (MinVectorRegSizeOption.getNumOccurrences()) 504 MinVecRegSize = MinVectorRegSizeOption; 505 else 506 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 507 } 508 509 /// Vectorize the tree that starts with the elements in \p VL. 510 /// Returns the vectorized root. 511 Value *vectorizeTree(); 512 513 /// Vectorize the tree but with the list of externally used values \p 514 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 515 /// generated extractvalue instructions. 516 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 517 518 /// \returns the cost incurred by unwanted spills and fills, caused by 519 /// holding live values over call sites. 520 int getSpillCost(); 521 522 /// \returns the vectorization cost of the subtree that starts at \p VL. 523 /// A negative number means that this is profitable. 524 int getTreeCost(); 525 526 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 527 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 528 void buildTree(ArrayRef<Value *> Roots, 529 ArrayRef<Value *> UserIgnoreLst = None); 530 531 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 532 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 533 /// into account (anf updating it, if required) list of externally used 534 /// values stored in \p ExternallyUsedValues. 535 void buildTree(ArrayRef<Value *> Roots, 536 ExtraValueToDebugLocsMap &ExternallyUsedValues, 537 ArrayRef<Value *> UserIgnoreLst = None); 538 539 /// Clear the internal data structures that are created by 'buildTree'. 540 void deleteTree() { 541 VectorizableTree.clear(); 542 ScalarToTreeEntry.clear(); 543 MustGather.clear(); 544 ExternalUses.clear(); 545 NumOpsWantToKeepOrder.clear(); 546 NumOpsWantToKeepOriginalOrder = 0; 547 for (auto &Iter : BlocksSchedules) { 548 BlockScheduling *BS = Iter.second.get(); 549 BS->clear(); 550 } 551 MinBWs.clear(); 552 } 553 554 unsigned getTreeSize() const { return VectorizableTree.size(); } 555 556 /// Perform LICM and CSE on the newly generated gather sequences. 557 void optimizeGatherSequence(); 558 559 /// \returns The best order of instructions for vectorization. 560 Optional<ArrayRef<unsigned>> bestOrder() const { 561 auto I = std::max_element( 562 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 563 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 564 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 565 return D1.second < D2.second; 566 }); 567 if (I == NumOpsWantToKeepOrder.end() || 568 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 569 return None; 570 571 return makeArrayRef(I->getFirst()); 572 } 573 574 /// \return The vector element size in bits to use when vectorizing the 575 /// expression tree ending at \p V. If V is a store, the size is the width of 576 /// the stored value. Otherwise, the size is the width of the largest loaded 577 /// value reaching V. This method is used by the vectorizer to calculate 578 /// vectorization factors. 579 unsigned getVectorElementSize(Value *V); 580 581 /// Compute the minimum type sizes required to represent the entries in a 582 /// vectorizable tree. 583 void computeMinimumValueSizes(); 584 585 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 586 unsigned getMaxVecRegSize() const { 587 return MaxVecRegSize; 588 } 589 590 // \returns minimum vector register size as set by cl::opt. 591 unsigned getMinVecRegSize() const { 592 return MinVecRegSize; 593 } 594 595 /// Check if ArrayType or StructType is isomorphic to some VectorType. 596 /// 597 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 598 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 599 600 /// \returns True if the VectorizableTree is both tiny and not fully 601 /// vectorizable. We do not vectorize such trees. 602 bool isTreeTinyAndNotFullyVectorizable(); 603 604 OptimizationRemarkEmitter *getORE() { return ORE; } 605 606 /// This structure holds any data we need about the edges being traversed 607 /// during buildTree_rec(). We keep track of: 608 /// (i) the user TreeEntry index, and 609 /// (ii) the index of the edge. 610 struct EdgeInfo { 611 EdgeInfo() = default; 612 /// The index of the user TreeEntry in VectorizableTree. 613 int Idx = -1; 614 /// The operand index of the use. 615 unsigned EdgeIdx = UINT_MAX; 616 #ifndef NDEBUG 617 friend inline raw_ostream &operator<<(raw_ostream &OS, 618 const BoUpSLP::EdgeInfo &EI) { 619 EI.dump(OS); 620 return OS; 621 } 622 /// Debug print. 623 void dump(raw_ostream &OS) const { 624 OS << "{User:" << Idx << " EdgeIdx:" << EdgeIdx << "}"; 625 } 626 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 627 #endif 628 }; 629 630 private: 631 struct TreeEntry; 632 633 /// Checks if all users of \p I are the part of the vectorization tree. 634 bool areAllUsersVectorized(Instruction *I) const; 635 636 /// \returns the cost of the vectorizable entry. 637 int getEntryCost(TreeEntry *E); 638 639 /// This is the recursive part of buildTree. 640 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, EdgeInfo EI); 641 642 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 643 /// be vectorized to use the original vector (or aggregate "bitcast" to a 644 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 645 /// returns false, setting \p CurrentOrder to either an empty vector or a 646 /// non-identity permutation that allows to reuse extract instructions. 647 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 648 SmallVectorImpl<unsigned> &CurrentOrder) const; 649 650 /// Vectorize a single entry in the tree. 651 Value *vectorizeTree(TreeEntry *E); 652 653 /// Vectorize a single entry in the tree, starting in \p VL. 654 Value *vectorizeTree(ArrayRef<Value *> VL); 655 656 /// \returns the scalarization cost for this type. Scalarization in this 657 /// context means the creation of vectors from a group of scalars. 658 int getGatherCost(Type *Ty, const DenseSet<unsigned> &ShuffledIndices); 659 660 /// \returns the scalarization cost for this list of values. Assuming that 661 /// this subtree gets vectorized, we may need to extract the values from the 662 /// roots. This method calculates the cost of extracting the values. 663 int getGatherCost(ArrayRef<Value *> VL); 664 665 /// Set the Builder insert point to one after the last instruction in 666 /// the bundle 667 void setInsertPointAfterBundle(ArrayRef<Value *> VL, 668 const InstructionsState &S); 669 670 /// \returns a vector from a collection of scalars in \p VL. 671 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 672 673 /// \returns whether the VectorizableTree is fully vectorizable and will 674 /// be beneficial even the tree height is tiny. 675 bool isFullyVectorizableTinyTree(); 676 677 /// \reorder commutative operands to get better probability of 678 /// generating vectorized code. 679 void reorderInputsAccordingToOpcode(const InstructionsState &S, 680 ArrayRef<Value *> VL, 681 SmallVectorImpl<Value *> &Left, 682 SmallVectorImpl<Value *> &Right); 683 struct TreeEntry { 684 TreeEntry(std::vector<TreeEntry> &Container) : Container(Container) {} 685 686 /// \returns true if the scalars in VL are equal to this entry. 687 bool isSame(ArrayRef<Value *> VL) const { 688 if (VL.size() == Scalars.size()) 689 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 690 return VL.size() == ReuseShuffleIndices.size() && 691 std::equal( 692 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 693 [this](Value *V, unsigned Idx) { return V == Scalars[Idx]; }); 694 } 695 696 /// A vector of scalars. 697 ValueList Scalars; 698 699 /// The Scalars are vectorized into this value. It is initialized to Null. 700 Value *VectorizedValue = nullptr; 701 702 /// Do we need to gather this sequence ? 703 bool NeedToGather = false; 704 705 /// Does this sequence require some shuffling? 706 SmallVector<unsigned, 4> ReuseShuffleIndices; 707 708 /// Does this entry require reordering? 709 ArrayRef<unsigned> ReorderIndices; 710 711 /// Points back to the VectorizableTree. 712 /// 713 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 714 /// to be a pointer and needs to be able to initialize the child iterator. 715 /// Thus we need a reference back to the container to translate the indices 716 /// to entries. 717 std::vector<TreeEntry> &Container; 718 719 /// The TreeEntry index containing the user of this entry. We can actually 720 /// have multiple users so the data structure is not truly a tree. 721 SmallVector<EdgeInfo, 1> UserTreeIndices; 722 723 private: 724 /// The operands of each instruction in each lane Operands[op_index][lane]. 725 /// Note: This helps avoid the replication of the code that performs the 726 /// reordering of operands during buildTree_rec() and vectorizeTree(). 727 SmallVector<ValueList, 2> Operands; 728 729 public: 730 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 731 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL, 732 ArrayRef<unsigned> ReuseShuffleIndices) { 733 if (Operands.size() < OpIdx + 1) 734 Operands.resize(OpIdx + 1); 735 assert(Operands[OpIdx].size() == 0 && "Already resized?"); 736 Operands[OpIdx].resize(Scalars.size()); 737 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 738 Operands[OpIdx][Lane] = (!ReuseShuffleIndices.empty()) 739 ? OpVL[ReuseShuffleIndices[Lane]] 740 : OpVL[Lane]; 741 } 742 743 /// If there is a user TreeEntry, then set its operand. 744 void trySetUserTEOperand(const EdgeInfo &UserTreeIdx, 745 ArrayRef<Value *> OpVL, 746 ArrayRef<unsigned> ReuseShuffleIndices) { 747 if (UserTreeIdx.Idx >= 0) { 748 auto &VectorizableTree = Container; 749 VectorizableTree[UserTreeIdx.Idx].setOperand(UserTreeIdx.EdgeIdx, OpVL, 750 ReuseShuffleIndices); 751 } 752 } 753 754 /// \returns the \p OpIdx operand of this TreeEntry. 755 ValueList &getOperand(unsigned OpIdx) { 756 assert(OpIdx < Operands.size() && "Off bounds"); 757 return Operands[OpIdx]; 758 } 759 760 /// \return the single \p OpIdx operand. 761 Value *getSingleOperand(unsigned OpIdx) const { 762 assert(OpIdx < Operands.size() && "Off bounds"); 763 assert(!Operands[OpIdx].empty() && "No operand availabe"); 764 return Operands[OpIdx][0]; 765 } 766 767 #ifndef NDEBUG 768 /// Debug printer. 769 LLVM_DUMP_METHOD void dump() const { 770 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 771 dbgs() << "Operand " << OpI << ":\n"; 772 for (const Value *V : Operands[OpI]) 773 dbgs().indent(2) << *V << "\n"; 774 } 775 dbgs() << "Scalars: \n"; 776 for (Value *V : Scalars) 777 dbgs().indent(2) << *V << "\n"; 778 dbgs() << "NeedToGather: " << NeedToGather << "\n"; 779 dbgs() << "VectorizedValue: "; 780 if (VectorizedValue) 781 dbgs() << *VectorizedValue; 782 else 783 dbgs() << "NULL"; 784 dbgs() << "\n"; 785 dbgs() << "ReuseShuffleIndices: "; 786 if (ReuseShuffleIndices.empty()) 787 dbgs() << "Emtpy"; 788 else 789 for (unsigned Idx : ReuseShuffleIndices) 790 dbgs() << Idx << ", "; 791 dbgs() << "\n"; 792 dbgs() << "ReorderIndices: "; 793 for (unsigned Idx : ReorderIndices) 794 dbgs() << Idx << ", "; 795 dbgs() << "\n"; 796 dbgs() << "UserTreeIndices: "; 797 for (const auto &EInfo : UserTreeIndices) 798 dbgs() << EInfo << ", "; 799 dbgs() << "\n"; 800 } 801 #endif 802 }; 803 804 /// Create a new VectorizableTree entry. 805 void newTreeEntry(ArrayRef<Value *> VL, bool Vectorized, 806 EdgeInfo &UserTreeIdx, 807 ArrayRef<unsigned> ReuseShuffleIndices = None, 808 ArrayRef<unsigned> ReorderIndices = None) { 809 VectorizableTree.emplace_back(VectorizableTree); 810 int idx = VectorizableTree.size() - 1; 811 TreeEntry *Last = &VectorizableTree[idx]; 812 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 813 Last->NeedToGather = !Vectorized; 814 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 815 ReuseShuffleIndices.end()); 816 Last->ReorderIndices = ReorderIndices; 817 if (Vectorized) { 818 for (int i = 0, e = VL.size(); i != e; ++i) { 819 assert(!getTreeEntry(VL[i]) && "Scalar already in tree!"); 820 ScalarToTreeEntry[VL[i]] = idx; 821 } 822 } else { 823 MustGather.insert(VL.begin(), VL.end()); 824 } 825 826 if (UserTreeIdx.Idx >= 0) 827 Last->UserTreeIndices.push_back(UserTreeIdx); 828 829 Last->trySetUserTEOperand(UserTreeIdx, VL, ReuseShuffleIndices); 830 831 UserTreeIdx.Idx = idx; 832 } 833 834 /// -- Vectorization State -- 835 /// Holds all of the tree entries. 836 std::vector<TreeEntry> VectorizableTree; 837 838 #ifndef NDEBUG 839 /// Debug printer. 840 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 841 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 842 dbgs() << Id << ".\n"; 843 VectorizableTree[Id].dump(); 844 dbgs() << "\n"; 845 } 846 } 847 #endif 848 849 TreeEntry *getTreeEntry(Value *V) { 850 auto I = ScalarToTreeEntry.find(V); 851 if (I != ScalarToTreeEntry.end()) 852 return &VectorizableTree[I->second]; 853 return nullptr; 854 } 855 856 /// Maps a specific scalar to its tree entry. 857 SmallDenseMap<Value*, int> ScalarToTreeEntry; 858 859 /// A list of scalars that we found that we need to keep as scalars. 860 ValueSet MustGather; 861 862 /// This POD struct describes one external user in the vectorized tree. 863 struct ExternalUser { 864 ExternalUser(Value *S, llvm::User *U, int L) 865 : Scalar(S), User(U), Lane(L) {} 866 867 // Which scalar in our function. 868 Value *Scalar; 869 870 // Which user that uses the scalar. 871 llvm::User *User; 872 873 // Which lane does the scalar belong to. 874 int Lane; 875 }; 876 using UserList = SmallVector<ExternalUser, 16>; 877 878 /// Checks if two instructions may access the same memory. 879 /// 880 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 881 /// is invariant in the calling loop. 882 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 883 Instruction *Inst2) { 884 // First check if the result is already in the cache. 885 AliasCacheKey key = std::make_pair(Inst1, Inst2); 886 Optional<bool> &result = AliasCache[key]; 887 if (result.hasValue()) { 888 return result.getValue(); 889 } 890 MemoryLocation Loc2 = getLocation(Inst2, AA); 891 bool aliased = true; 892 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 893 // Do the alias check. 894 aliased = AA->alias(Loc1, Loc2); 895 } 896 // Store the result in the cache. 897 result = aliased; 898 return aliased; 899 } 900 901 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 902 903 /// Cache for alias results. 904 /// TODO: consider moving this to the AliasAnalysis itself. 905 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 906 907 /// Removes an instruction from its block and eventually deletes it. 908 /// It's like Instruction::eraseFromParent() except that the actual deletion 909 /// is delayed until BoUpSLP is destructed. 910 /// This is required to ensure that there are no incorrect collisions in the 911 /// AliasCache, which can happen if a new instruction is allocated at the 912 /// same address as a previously deleted instruction. 913 void eraseInstruction(Instruction *I) { 914 I->removeFromParent(); 915 I->dropAllReferences(); 916 DeletedInstructions.emplace_back(I); 917 } 918 919 /// Temporary store for deleted instructions. Instructions will be deleted 920 /// eventually when the BoUpSLP is destructed. 921 SmallVector<unique_value, 8> DeletedInstructions; 922 923 /// A list of values that need to extracted out of the tree. 924 /// This list holds pairs of (Internal Scalar : External User). External User 925 /// can be nullptr, it means that this Internal Scalar will be used later, 926 /// after vectorization. 927 UserList ExternalUses; 928 929 /// Values used only by @llvm.assume calls. 930 SmallPtrSet<const Value *, 32> EphValues; 931 932 /// Holds all of the instructions that we gathered. 933 SetVector<Instruction *> GatherSeq; 934 935 /// A list of blocks that we are going to CSE. 936 SetVector<BasicBlock *> CSEBlocks; 937 938 /// Contains all scheduling relevant data for an instruction. 939 /// A ScheduleData either represents a single instruction or a member of an 940 /// instruction bundle (= a group of instructions which is combined into a 941 /// vector instruction). 942 struct ScheduleData { 943 // The initial value for the dependency counters. It means that the 944 // dependencies are not calculated yet. 945 enum { InvalidDeps = -1 }; 946 947 ScheduleData() = default; 948 949 void init(int BlockSchedulingRegionID, Value *OpVal) { 950 FirstInBundle = this; 951 NextInBundle = nullptr; 952 NextLoadStore = nullptr; 953 IsScheduled = false; 954 SchedulingRegionID = BlockSchedulingRegionID; 955 UnscheduledDepsInBundle = UnscheduledDeps; 956 clearDependencies(); 957 OpValue = OpVal; 958 } 959 960 /// Returns true if the dependency information has been calculated. 961 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 962 963 /// Returns true for single instructions and for bundle representatives 964 /// (= the head of a bundle). 965 bool isSchedulingEntity() const { return FirstInBundle == this; } 966 967 /// Returns true if it represents an instruction bundle and not only a 968 /// single instruction. 969 bool isPartOfBundle() const { 970 return NextInBundle != nullptr || FirstInBundle != this; 971 } 972 973 /// Returns true if it is ready for scheduling, i.e. it has no more 974 /// unscheduled depending instructions/bundles. 975 bool isReady() const { 976 assert(isSchedulingEntity() && 977 "can't consider non-scheduling entity for ready list"); 978 return UnscheduledDepsInBundle == 0 && !IsScheduled; 979 } 980 981 /// Modifies the number of unscheduled dependencies, also updating it for 982 /// the whole bundle. 983 int incrementUnscheduledDeps(int Incr) { 984 UnscheduledDeps += Incr; 985 return FirstInBundle->UnscheduledDepsInBundle += Incr; 986 } 987 988 /// Sets the number of unscheduled dependencies to the number of 989 /// dependencies. 990 void resetUnscheduledDeps() { 991 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 992 } 993 994 /// Clears all dependency information. 995 void clearDependencies() { 996 Dependencies = InvalidDeps; 997 resetUnscheduledDeps(); 998 MemoryDependencies.clear(); 999 } 1000 1001 void dump(raw_ostream &os) const { 1002 if (!isSchedulingEntity()) { 1003 os << "/ " << *Inst; 1004 } else if (NextInBundle) { 1005 os << '[' << *Inst; 1006 ScheduleData *SD = NextInBundle; 1007 while (SD) { 1008 os << ';' << *SD->Inst; 1009 SD = SD->NextInBundle; 1010 } 1011 os << ']'; 1012 } else { 1013 os << *Inst; 1014 } 1015 } 1016 1017 Instruction *Inst = nullptr; 1018 1019 /// Points to the head in an instruction bundle (and always to this for 1020 /// single instructions). 1021 ScheduleData *FirstInBundle = nullptr; 1022 1023 /// Single linked list of all instructions in a bundle. Null if it is a 1024 /// single instruction. 1025 ScheduleData *NextInBundle = nullptr; 1026 1027 /// Single linked list of all memory instructions (e.g. load, store, call) 1028 /// in the block - until the end of the scheduling region. 1029 ScheduleData *NextLoadStore = nullptr; 1030 1031 /// The dependent memory instructions. 1032 /// This list is derived on demand in calculateDependencies(). 1033 SmallVector<ScheduleData *, 4> MemoryDependencies; 1034 1035 /// This ScheduleData is in the current scheduling region if this matches 1036 /// the current SchedulingRegionID of BlockScheduling. 1037 int SchedulingRegionID = 0; 1038 1039 /// Used for getting a "good" final ordering of instructions. 1040 int SchedulingPriority = 0; 1041 1042 /// The number of dependencies. Constitutes of the number of users of the 1043 /// instruction plus the number of dependent memory instructions (if any). 1044 /// This value is calculated on demand. 1045 /// If InvalidDeps, the number of dependencies is not calculated yet. 1046 int Dependencies = InvalidDeps; 1047 1048 /// The number of dependencies minus the number of dependencies of scheduled 1049 /// instructions. As soon as this is zero, the instruction/bundle gets ready 1050 /// for scheduling. 1051 /// Note that this is negative as long as Dependencies is not calculated. 1052 int UnscheduledDeps = InvalidDeps; 1053 1054 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 1055 /// single instructions. 1056 int UnscheduledDepsInBundle = InvalidDeps; 1057 1058 /// True if this instruction is scheduled (or considered as scheduled in the 1059 /// dry-run). 1060 bool IsScheduled = false; 1061 1062 /// Opcode of the current instruction in the schedule data. 1063 Value *OpValue = nullptr; 1064 }; 1065 1066 #ifndef NDEBUG 1067 friend inline raw_ostream &operator<<(raw_ostream &os, 1068 const BoUpSLP::ScheduleData &SD) { 1069 SD.dump(os); 1070 return os; 1071 } 1072 #endif 1073 1074 friend struct GraphTraits<BoUpSLP *>; 1075 friend struct DOTGraphTraits<BoUpSLP *>; 1076 1077 /// Contains all scheduling data for a basic block. 1078 struct BlockScheduling { 1079 BlockScheduling(BasicBlock *BB) 1080 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 1081 1082 void clear() { 1083 ReadyInsts.clear(); 1084 ScheduleStart = nullptr; 1085 ScheduleEnd = nullptr; 1086 FirstLoadStoreInRegion = nullptr; 1087 LastLoadStoreInRegion = nullptr; 1088 1089 // Reduce the maximum schedule region size by the size of the 1090 // previous scheduling run. 1091 ScheduleRegionSizeLimit -= ScheduleRegionSize; 1092 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 1093 ScheduleRegionSizeLimit = MinScheduleRegionSize; 1094 ScheduleRegionSize = 0; 1095 1096 // Make a new scheduling region, i.e. all existing ScheduleData is not 1097 // in the new region yet. 1098 ++SchedulingRegionID; 1099 } 1100 1101 ScheduleData *getScheduleData(Value *V) { 1102 ScheduleData *SD = ScheduleDataMap[V]; 1103 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1104 return SD; 1105 return nullptr; 1106 } 1107 1108 ScheduleData *getScheduleData(Value *V, Value *Key) { 1109 if (V == Key) 1110 return getScheduleData(V); 1111 auto I = ExtraScheduleDataMap.find(V); 1112 if (I != ExtraScheduleDataMap.end()) { 1113 ScheduleData *SD = I->second[Key]; 1114 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1115 return SD; 1116 } 1117 return nullptr; 1118 } 1119 1120 bool isInSchedulingRegion(ScheduleData *SD) { 1121 return SD->SchedulingRegionID == SchedulingRegionID; 1122 } 1123 1124 /// Marks an instruction as scheduled and puts all dependent ready 1125 /// instructions into the ready-list. 1126 template <typename ReadyListType> 1127 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 1128 SD->IsScheduled = true; 1129 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 1130 1131 ScheduleData *BundleMember = SD; 1132 while (BundleMember) { 1133 if (BundleMember->Inst != BundleMember->OpValue) { 1134 BundleMember = BundleMember->NextInBundle; 1135 continue; 1136 } 1137 // Handle the def-use chain dependencies. 1138 for (Use &U : BundleMember->Inst->operands()) { 1139 auto *I = dyn_cast<Instruction>(U.get()); 1140 if (!I) 1141 continue; 1142 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 1143 if (OpDef && OpDef->hasValidDependencies() && 1144 OpDef->incrementUnscheduledDeps(-1) == 0) { 1145 // There are no more unscheduled dependencies after 1146 // decrementing, so we can put the dependent instruction 1147 // into the ready list. 1148 ScheduleData *DepBundle = OpDef->FirstInBundle; 1149 assert(!DepBundle->IsScheduled && 1150 "already scheduled bundle gets ready"); 1151 ReadyList.insert(DepBundle); 1152 LLVM_DEBUG(dbgs() 1153 << "SLP: gets ready (def): " << *DepBundle << "\n"); 1154 } 1155 }); 1156 } 1157 // Handle the memory dependencies. 1158 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 1159 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 1160 // There are no more unscheduled dependencies after decrementing, 1161 // so we can put the dependent instruction into the ready list. 1162 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 1163 assert(!DepBundle->IsScheduled && 1164 "already scheduled bundle gets ready"); 1165 ReadyList.insert(DepBundle); 1166 LLVM_DEBUG(dbgs() 1167 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 1168 } 1169 } 1170 BundleMember = BundleMember->NextInBundle; 1171 } 1172 } 1173 1174 void doForAllOpcodes(Value *V, 1175 function_ref<void(ScheduleData *SD)> Action) { 1176 if (ScheduleData *SD = getScheduleData(V)) 1177 Action(SD); 1178 auto I = ExtraScheduleDataMap.find(V); 1179 if (I != ExtraScheduleDataMap.end()) 1180 for (auto &P : I->second) 1181 if (P.second->SchedulingRegionID == SchedulingRegionID) 1182 Action(P.second); 1183 } 1184 1185 /// Put all instructions into the ReadyList which are ready for scheduling. 1186 template <typename ReadyListType> 1187 void initialFillReadyList(ReadyListType &ReadyList) { 1188 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 1189 doForAllOpcodes(I, [&](ScheduleData *SD) { 1190 if (SD->isSchedulingEntity() && SD->isReady()) { 1191 ReadyList.insert(SD); 1192 LLVM_DEBUG(dbgs() 1193 << "SLP: initially in ready list: " << *I << "\n"); 1194 } 1195 }); 1196 } 1197 } 1198 1199 /// Checks if a bundle of instructions can be scheduled, i.e. has no 1200 /// cyclic dependencies. This is only a dry-run, no instructions are 1201 /// actually moved at this stage. 1202 bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 1203 const InstructionsState &S); 1204 1205 /// Un-bundles a group of instructions. 1206 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 1207 1208 /// Allocates schedule data chunk. 1209 ScheduleData *allocateScheduleDataChunks(); 1210 1211 /// Extends the scheduling region so that V is inside the region. 1212 /// \returns true if the region size is within the limit. 1213 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 1214 1215 /// Initialize the ScheduleData structures for new instructions in the 1216 /// scheduling region. 1217 void initScheduleData(Instruction *FromI, Instruction *ToI, 1218 ScheduleData *PrevLoadStore, 1219 ScheduleData *NextLoadStore); 1220 1221 /// Updates the dependency information of a bundle and of all instructions/ 1222 /// bundles which depend on the original bundle. 1223 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 1224 BoUpSLP *SLP); 1225 1226 /// Sets all instruction in the scheduling region to un-scheduled. 1227 void resetSchedule(); 1228 1229 BasicBlock *BB; 1230 1231 /// Simple memory allocation for ScheduleData. 1232 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 1233 1234 /// The size of a ScheduleData array in ScheduleDataChunks. 1235 int ChunkSize; 1236 1237 /// The allocator position in the current chunk, which is the last entry 1238 /// of ScheduleDataChunks. 1239 int ChunkPos; 1240 1241 /// Attaches ScheduleData to Instruction. 1242 /// Note that the mapping survives during all vectorization iterations, i.e. 1243 /// ScheduleData structures are recycled. 1244 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 1245 1246 /// Attaches ScheduleData to Instruction with the leading key. 1247 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 1248 ExtraScheduleDataMap; 1249 1250 struct ReadyList : SmallVector<ScheduleData *, 8> { 1251 void insert(ScheduleData *SD) { push_back(SD); } 1252 }; 1253 1254 /// The ready-list for scheduling (only used for the dry-run). 1255 ReadyList ReadyInsts; 1256 1257 /// The first instruction of the scheduling region. 1258 Instruction *ScheduleStart = nullptr; 1259 1260 /// The first instruction _after_ the scheduling region. 1261 Instruction *ScheduleEnd = nullptr; 1262 1263 /// The first memory accessing instruction in the scheduling region 1264 /// (can be null). 1265 ScheduleData *FirstLoadStoreInRegion = nullptr; 1266 1267 /// The last memory accessing instruction in the scheduling region 1268 /// (can be null). 1269 ScheduleData *LastLoadStoreInRegion = nullptr; 1270 1271 /// The current size of the scheduling region. 1272 int ScheduleRegionSize = 0; 1273 1274 /// The maximum size allowed for the scheduling region. 1275 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 1276 1277 /// The ID of the scheduling region. For a new vectorization iteration this 1278 /// is incremented which "removes" all ScheduleData from the region. 1279 // Make sure that the initial SchedulingRegionID is greater than the 1280 // initial SchedulingRegionID in ScheduleData (which is 0). 1281 int SchedulingRegionID = 1; 1282 }; 1283 1284 /// Attaches the BlockScheduling structures to basic blocks. 1285 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 1286 1287 /// Performs the "real" scheduling. Done before vectorization is actually 1288 /// performed in a basic block. 1289 void scheduleBlock(BlockScheduling *BS); 1290 1291 /// List of users to ignore during scheduling and that don't need extracting. 1292 ArrayRef<Value *> UserIgnoreList; 1293 1294 using OrdersType = SmallVector<unsigned, 4>; 1295 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 1296 /// sorted SmallVectors of unsigned. 1297 struct OrdersTypeDenseMapInfo { 1298 static OrdersType getEmptyKey() { 1299 OrdersType V; 1300 V.push_back(~1U); 1301 return V; 1302 } 1303 1304 static OrdersType getTombstoneKey() { 1305 OrdersType V; 1306 V.push_back(~2U); 1307 return V; 1308 } 1309 1310 static unsigned getHashValue(const OrdersType &V) { 1311 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1312 } 1313 1314 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 1315 return LHS == RHS; 1316 } 1317 }; 1318 1319 /// Contains orders of operations along with the number of bundles that have 1320 /// operations in this order. It stores only those orders that require 1321 /// reordering, if reordering is not required it is counted using \a 1322 /// NumOpsWantToKeepOriginalOrder. 1323 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 1324 /// Number of bundles that do not require reordering. 1325 unsigned NumOpsWantToKeepOriginalOrder = 0; 1326 1327 // Analysis and block reference. 1328 Function *F; 1329 ScalarEvolution *SE; 1330 TargetTransformInfo *TTI; 1331 TargetLibraryInfo *TLI; 1332 AliasAnalysis *AA; 1333 LoopInfo *LI; 1334 DominatorTree *DT; 1335 AssumptionCache *AC; 1336 DemandedBits *DB; 1337 const DataLayout *DL; 1338 OptimizationRemarkEmitter *ORE; 1339 1340 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 1341 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 1342 1343 /// Instruction builder to construct the vectorized tree. 1344 IRBuilder<> Builder; 1345 1346 /// A map of scalar integer values to the smallest bit width with which they 1347 /// can legally be represented. The values map to (width, signed) pairs, 1348 /// where "width" indicates the minimum bit width and "signed" is True if the 1349 /// value must be signed-extended, rather than zero-extended, back to its 1350 /// original width. 1351 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 1352 }; 1353 1354 } // end namespace slpvectorizer 1355 1356 template <> struct GraphTraits<BoUpSLP *> { 1357 using TreeEntry = BoUpSLP::TreeEntry; 1358 1359 /// NodeRef has to be a pointer per the GraphWriter. 1360 using NodeRef = TreeEntry *; 1361 1362 /// Add the VectorizableTree to the index iterator to be able to return 1363 /// TreeEntry pointers. 1364 struct ChildIteratorType 1365 : public iterator_adaptor_base< 1366 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 1367 std::vector<TreeEntry> &VectorizableTree; 1368 1369 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 1370 std::vector<TreeEntry> &VT) 1371 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 1372 1373 NodeRef operator*() { return &VectorizableTree[I->Idx]; } 1374 }; 1375 1376 static NodeRef getEntryNode(BoUpSLP &R) { return &R.VectorizableTree[0]; } 1377 1378 static ChildIteratorType child_begin(NodeRef N) { 1379 return {N->UserTreeIndices.begin(), N->Container}; 1380 } 1381 1382 static ChildIteratorType child_end(NodeRef N) { 1383 return {N->UserTreeIndices.end(), N->Container}; 1384 } 1385 1386 /// For the node iterator we just need to turn the TreeEntry iterator into a 1387 /// TreeEntry* iterator so that it dereferences to NodeRef. 1388 using nodes_iterator = pointer_iterator<std::vector<TreeEntry>::iterator>; 1389 1390 static nodes_iterator nodes_begin(BoUpSLP *R) { 1391 return nodes_iterator(R->VectorizableTree.begin()); 1392 } 1393 1394 static nodes_iterator nodes_end(BoUpSLP *R) { 1395 return nodes_iterator(R->VectorizableTree.end()); 1396 } 1397 1398 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 1399 }; 1400 1401 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 1402 using TreeEntry = BoUpSLP::TreeEntry; 1403 1404 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 1405 1406 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 1407 std::string Str; 1408 raw_string_ostream OS(Str); 1409 if (isSplat(Entry->Scalars)) { 1410 OS << "<splat> " << *Entry->Scalars[0]; 1411 return Str; 1412 } 1413 for (auto V : Entry->Scalars) { 1414 OS << *V; 1415 if (std::any_of( 1416 R->ExternalUses.begin(), R->ExternalUses.end(), 1417 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 1418 OS << " <extract>"; 1419 OS << "\n"; 1420 } 1421 return Str; 1422 } 1423 1424 static std::string getNodeAttributes(const TreeEntry *Entry, 1425 const BoUpSLP *) { 1426 if (Entry->NeedToGather) 1427 return "color=red"; 1428 return ""; 1429 } 1430 }; 1431 1432 } // end namespace llvm 1433 1434 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1435 ArrayRef<Value *> UserIgnoreLst) { 1436 ExtraValueToDebugLocsMap ExternallyUsedValues; 1437 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 1438 } 1439 1440 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1441 ExtraValueToDebugLocsMap &ExternallyUsedValues, 1442 ArrayRef<Value *> UserIgnoreLst) { 1443 deleteTree(); 1444 UserIgnoreList = UserIgnoreLst; 1445 if (!allSameType(Roots)) 1446 return; 1447 buildTree_rec(Roots, 0, EdgeInfo()); 1448 1449 // Collect the values that we need to extract from the tree. 1450 for (TreeEntry &EIdx : VectorizableTree) { 1451 TreeEntry *Entry = &EIdx; 1452 1453 // No need to handle users of gathered values. 1454 if (Entry->NeedToGather) 1455 continue; 1456 1457 // For each lane: 1458 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 1459 Value *Scalar = Entry->Scalars[Lane]; 1460 int FoundLane = Lane; 1461 if (!Entry->ReuseShuffleIndices.empty()) { 1462 FoundLane = 1463 std::distance(Entry->ReuseShuffleIndices.begin(), 1464 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 1465 } 1466 1467 // Check if the scalar is externally used as an extra arg. 1468 auto ExtI = ExternallyUsedValues.find(Scalar); 1469 if (ExtI != ExternallyUsedValues.end()) { 1470 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 1471 << Lane << " from " << *Scalar << ".\n"); 1472 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 1473 } 1474 for (User *U : Scalar->users()) { 1475 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 1476 1477 Instruction *UserInst = dyn_cast<Instruction>(U); 1478 if (!UserInst) 1479 continue; 1480 1481 // Skip in-tree scalars that become vectors 1482 if (TreeEntry *UseEntry = getTreeEntry(U)) { 1483 Value *UseScalar = UseEntry->Scalars[0]; 1484 // Some in-tree scalars will remain as scalar in vectorized 1485 // instructions. If that is the case, the one in Lane 0 will 1486 // be used. 1487 if (UseScalar != U || 1488 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 1489 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 1490 << ".\n"); 1491 assert(!UseEntry->NeedToGather && "Bad state"); 1492 continue; 1493 } 1494 } 1495 1496 // Ignore users in the user ignore list. 1497 if (is_contained(UserIgnoreList, UserInst)) 1498 continue; 1499 1500 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 1501 << Lane << " from " << *Scalar << ".\n"); 1502 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 1503 } 1504 } 1505 } 1506 } 1507 1508 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 1509 EdgeInfo UserTreeIdx) { 1510 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 1511 1512 InstructionsState S = getSameOpcode(VL); 1513 if (Depth == RecursionMaxDepth) { 1514 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 1515 newTreeEntry(VL, false, UserTreeIdx); 1516 return; 1517 } 1518 1519 // Don't handle vectors. 1520 if (S.OpValue->getType()->isVectorTy()) { 1521 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 1522 newTreeEntry(VL, false, UserTreeIdx); 1523 return; 1524 } 1525 1526 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 1527 if (SI->getValueOperand()->getType()->isVectorTy()) { 1528 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 1529 newTreeEntry(VL, false, UserTreeIdx); 1530 return; 1531 } 1532 1533 // If all of the operands are identical or constant we have a simple solution. 1534 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 1535 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 1536 newTreeEntry(VL, false, UserTreeIdx); 1537 return; 1538 } 1539 1540 // We now know that this is a vector of instructions of the same type from 1541 // the same block. 1542 1543 // Don't vectorize ephemeral values. 1544 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1545 if (EphValues.count(VL[i])) { 1546 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] 1547 << ") is ephemeral.\n"); 1548 newTreeEntry(VL, false, UserTreeIdx); 1549 return; 1550 } 1551 } 1552 1553 // Check if this is a duplicate of another entry. 1554 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 1555 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 1556 if (!E->isSame(VL)) { 1557 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 1558 newTreeEntry(VL, false, UserTreeIdx); 1559 return; 1560 } 1561 // Record the reuse of the tree node. FIXME, currently this is only used to 1562 // properly draw the graph rather than for the actual vectorization. 1563 E->UserTreeIndices.push_back(UserTreeIdx); 1564 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 1565 << ".\n"); 1566 E->trySetUserTEOperand(UserTreeIdx, VL, None); 1567 return; 1568 } 1569 1570 // Check that none of the instructions in the bundle are already in the tree. 1571 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1572 auto *I = dyn_cast<Instruction>(VL[i]); 1573 if (!I) 1574 continue; 1575 if (getTreeEntry(I)) { 1576 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] 1577 << ") is already in tree.\n"); 1578 newTreeEntry(VL, false, UserTreeIdx); 1579 return; 1580 } 1581 } 1582 1583 // If any of the scalars is marked as a value that needs to stay scalar, then 1584 // we need to gather the scalars. 1585 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 1586 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1587 if (MustGather.count(VL[i]) || is_contained(UserIgnoreList, VL[i])) { 1588 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 1589 newTreeEntry(VL, false, UserTreeIdx); 1590 return; 1591 } 1592 } 1593 1594 // Check that all of the users of the scalars that we want to vectorize are 1595 // schedulable. 1596 auto *VL0 = cast<Instruction>(S.OpValue); 1597 BasicBlock *BB = VL0->getParent(); 1598 1599 if (!DT->isReachableFromEntry(BB)) { 1600 // Don't go into unreachable blocks. They may contain instructions with 1601 // dependency cycles which confuse the final scheduling. 1602 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 1603 newTreeEntry(VL, false, UserTreeIdx); 1604 return; 1605 } 1606 1607 // Check that every instruction appears once in this bundle. 1608 SmallVector<unsigned, 4> ReuseShuffleIndicies; 1609 SmallVector<Value *, 4> UniqueValues; 1610 DenseMap<Value *, unsigned> UniquePositions; 1611 for (Value *V : VL) { 1612 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 1613 ReuseShuffleIndicies.emplace_back(Res.first->second); 1614 if (Res.second) 1615 UniqueValues.emplace_back(V); 1616 } 1617 if (UniqueValues.size() == VL.size()) { 1618 ReuseShuffleIndicies.clear(); 1619 } else { 1620 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 1621 if (UniqueValues.size() <= 1 || !llvm::isPowerOf2_32(UniqueValues.size())) { 1622 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 1623 newTreeEntry(VL, false, UserTreeIdx); 1624 return; 1625 } 1626 VL = UniqueValues; 1627 } 1628 1629 auto &BSRef = BlocksSchedules[BB]; 1630 if (!BSRef) 1631 BSRef = llvm::make_unique<BlockScheduling>(BB); 1632 1633 BlockScheduling &BS = *BSRef.get(); 1634 1635 if (!BS.tryScheduleBundle(VL, this, S)) { 1636 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 1637 assert((!BS.getScheduleData(VL0) || 1638 !BS.getScheduleData(VL0)->isPartOfBundle()) && 1639 "tryScheduleBundle should cancelScheduling on failure"); 1640 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1641 return; 1642 } 1643 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 1644 1645 unsigned ShuffleOrOp = S.isAltShuffle() ? 1646 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 1647 switch (ShuffleOrOp) { 1648 case Instruction::PHI: { 1649 PHINode *PH = dyn_cast<PHINode>(VL0); 1650 1651 // Check for terminator values (e.g. invoke). 1652 for (unsigned j = 0; j < VL.size(); ++j) 1653 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1654 Instruction *Term = dyn_cast<Instruction>( 1655 cast<PHINode>(VL[j])->getIncomingValueForBlock( 1656 PH->getIncomingBlock(i))); 1657 if (Term && Term->isTerminator()) { 1658 LLVM_DEBUG(dbgs() 1659 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 1660 BS.cancelScheduling(VL, VL0); 1661 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1662 return; 1663 } 1664 } 1665 1666 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1667 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 1668 1669 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1670 ValueList Operands; 1671 // Prepare the operand vector. 1672 for (Value *j : VL) 1673 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 1674 PH->getIncomingBlock(i))); 1675 1676 UserTreeIdx.EdgeIdx = i; 1677 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1678 } 1679 return; 1680 } 1681 case Instruction::ExtractValue: 1682 case Instruction::ExtractElement: { 1683 OrdersType CurrentOrder; 1684 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 1685 if (Reuse) { 1686 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 1687 ++NumOpsWantToKeepOriginalOrder; 1688 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, 1689 ReuseShuffleIndicies); 1690 // This is a special case, as it does not gather, but at the same time 1691 // we are not extending buildTree_rec() towards the operands. 1692 ValueList Op0; 1693 Op0.assign(VL.size(), VL0->getOperand(0)); 1694 VectorizableTree.back().setOperand(0, Op0, ReuseShuffleIndicies); 1695 return; 1696 } 1697 if (!CurrentOrder.empty()) { 1698 LLVM_DEBUG({ 1699 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 1700 "with order"; 1701 for (unsigned Idx : CurrentOrder) 1702 dbgs() << " " << Idx; 1703 dbgs() << "\n"; 1704 }); 1705 // Insert new order with initial value 0, if it does not exist, 1706 // otherwise return the iterator to the existing one. 1707 auto StoredCurrentOrderAndNum = 1708 NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 1709 ++StoredCurrentOrderAndNum->getSecond(); 1710 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, ReuseShuffleIndicies, 1711 StoredCurrentOrderAndNum->getFirst()); 1712 // This is a special case, as it does not gather, but at the same time 1713 // we are not extending buildTree_rec() towards the operands. 1714 ValueList Op0; 1715 Op0.assign(VL.size(), VL0->getOperand(0)); 1716 VectorizableTree.back().setOperand(0, Op0, ReuseShuffleIndicies); 1717 return; 1718 } 1719 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 1720 newTreeEntry(VL, /*Vectorized=*/false, UserTreeIdx, ReuseShuffleIndicies); 1721 BS.cancelScheduling(VL, VL0); 1722 return; 1723 } 1724 case Instruction::Load: { 1725 // Check that a vectorized load would load the same memory as a scalar 1726 // load. For example, we don't want to vectorize loads that are smaller 1727 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 1728 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 1729 // from such a struct, we read/write packed bits disagreeing with the 1730 // unvectorized version. 1731 Type *ScalarTy = VL0->getType(); 1732 1733 if (DL->getTypeSizeInBits(ScalarTy) != 1734 DL->getTypeAllocSizeInBits(ScalarTy)) { 1735 BS.cancelScheduling(VL, VL0); 1736 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1737 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 1738 return; 1739 } 1740 1741 // Make sure all loads in the bundle are simple - we can't vectorize 1742 // atomic or volatile loads. 1743 SmallVector<Value *, 4> PointerOps(VL.size()); 1744 auto POIter = PointerOps.begin(); 1745 for (Value *V : VL) { 1746 auto *L = cast<LoadInst>(V); 1747 if (!L->isSimple()) { 1748 BS.cancelScheduling(VL, VL0); 1749 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1750 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 1751 return; 1752 } 1753 *POIter = L->getPointerOperand(); 1754 ++POIter; 1755 } 1756 1757 OrdersType CurrentOrder; 1758 // Check the order of pointer operands. 1759 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 1760 Value *Ptr0; 1761 Value *PtrN; 1762 if (CurrentOrder.empty()) { 1763 Ptr0 = PointerOps.front(); 1764 PtrN = PointerOps.back(); 1765 } else { 1766 Ptr0 = PointerOps[CurrentOrder.front()]; 1767 PtrN = PointerOps[CurrentOrder.back()]; 1768 } 1769 const SCEV *Scev0 = SE->getSCEV(Ptr0); 1770 const SCEV *ScevN = SE->getSCEV(PtrN); 1771 const auto *Diff = 1772 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 1773 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 1774 // Check that the sorted loads are consecutive. 1775 if (Diff && Diff->getAPInt().getZExtValue() == (VL.size() - 1) * Size) { 1776 if (CurrentOrder.empty()) { 1777 // Original loads are consecutive and does not require reordering. 1778 ++NumOpsWantToKeepOriginalOrder; 1779 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, 1780 ReuseShuffleIndicies); 1781 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 1782 } else { 1783 // Need to reorder. 1784 auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 1785 ++I->getSecond(); 1786 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, 1787 ReuseShuffleIndicies, I->getFirst()); 1788 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 1789 } 1790 return; 1791 } 1792 } 1793 1794 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 1795 BS.cancelScheduling(VL, VL0); 1796 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1797 return; 1798 } 1799 case Instruction::ZExt: 1800 case Instruction::SExt: 1801 case Instruction::FPToUI: 1802 case Instruction::FPToSI: 1803 case Instruction::FPExt: 1804 case Instruction::PtrToInt: 1805 case Instruction::IntToPtr: 1806 case Instruction::SIToFP: 1807 case Instruction::UIToFP: 1808 case Instruction::Trunc: 1809 case Instruction::FPTrunc: 1810 case Instruction::BitCast: { 1811 Type *SrcTy = VL0->getOperand(0)->getType(); 1812 for (unsigned i = 0; i < VL.size(); ++i) { 1813 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); 1814 if (Ty != SrcTy || !isValidElementType(Ty)) { 1815 BS.cancelScheduling(VL, VL0); 1816 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1817 LLVM_DEBUG(dbgs() 1818 << "SLP: Gathering casts with different src types.\n"); 1819 return; 1820 } 1821 } 1822 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1823 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 1824 1825 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1826 ValueList Operands; 1827 // Prepare the operand vector. 1828 for (Value *j : VL) 1829 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1830 1831 UserTreeIdx.EdgeIdx = i; 1832 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1833 } 1834 return; 1835 } 1836 case Instruction::ICmp: 1837 case Instruction::FCmp: { 1838 // Check that all of the compares have the same predicate. 1839 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 1840 Type *ComparedTy = VL0->getOperand(0)->getType(); 1841 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1842 CmpInst *Cmp = cast<CmpInst>(VL[i]); 1843 if (Cmp->getPredicate() != P0 || 1844 Cmp->getOperand(0)->getType() != ComparedTy) { 1845 BS.cancelScheduling(VL, VL0); 1846 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1847 LLVM_DEBUG(dbgs() 1848 << "SLP: Gathering cmp with different predicate.\n"); 1849 return; 1850 } 1851 } 1852 1853 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1854 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 1855 1856 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1857 ValueList Operands; 1858 // Prepare the operand vector. 1859 for (Value *j : VL) 1860 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1861 1862 UserTreeIdx.EdgeIdx = i; 1863 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1864 } 1865 return; 1866 } 1867 case Instruction::Select: 1868 case Instruction::Add: 1869 case Instruction::FAdd: 1870 case Instruction::Sub: 1871 case Instruction::FSub: 1872 case Instruction::Mul: 1873 case Instruction::FMul: 1874 case Instruction::UDiv: 1875 case Instruction::SDiv: 1876 case Instruction::FDiv: 1877 case Instruction::URem: 1878 case Instruction::SRem: 1879 case Instruction::FRem: 1880 case Instruction::Shl: 1881 case Instruction::LShr: 1882 case Instruction::AShr: 1883 case Instruction::And: 1884 case Instruction::Or: 1885 case Instruction::Xor: 1886 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1887 LLVM_DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); 1888 1889 // Sort operands of the instructions so that each side is more likely to 1890 // have the same opcode. 1891 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 1892 ValueList Left, Right; 1893 reorderInputsAccordingToOpcode(S, VL, Left, Right); 1894 UserTreeIdx.EdgeIdx = 0; 1895 buildTree_rec(Left, Depth + 1, UserTreeIdx); 1896 UserTreeIdx.EdgeIdx = 1; 1897 buildTree_rec(Right, Depth + 1, UserTreeIdx); 1898 return; 1899 } 1900 1901 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1902 ValueList Operands; 1903 // Prepare the operand vector. 1904 for (Value *j : VL) 1905 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1906 1907 UserTreeIdx.EdgeIdx = i; 1908 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1909 } 1910 return; 1911 1912 case Instruction::GetElementPtr: { 1913 // We don't combine GEPs with complicated (nested) indexing. 1914 for (unsigned j = 0; j < VL.size(); ++j) { 1915 if (cast<Instruction>(VL[j])->getNumOperands() != 2) { 1916 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 1917 BS.cancelScheduling(VL, VL0); 1918 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1919 return; 1920 } 1921 } 1922 1923 // We can't combine several GEPs into one vector if they operate on 1924 // different types. 1925 Type *Ty0 = VL0->getOperand(0)->getType(); 1926 for (unsigned j = 0; j < VL.size(); ++j) { 1927 Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType(); 1928 if (Ty0 != CurTy) { 1929 LLVM_DEBUG(dbgs() 1930 << "SLP: not-vectorizable GEP (different types).\n"); 1931 BS.cancelScheduling(VL, VL0); 1932 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1933 return; 1934 } 1935 } 1936 1937 // We don't combine GEPs with non-constant indexes. 1938 for (unsigned j = 0; j < VL.size(); ++j) { 1939 auto Op = cast<Instruction>(VL[j])->getOperand(1); 1940 if (!isa<ConstantInt>(Op)) { 1941 LLVM_DEBUG(dbgs() 1942 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 1943 BS.cancelScheduling(VL, VL0); 1944 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1945 return; 1946 } 1947 } 1948 1949 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1950 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 1951 for (unsigned i = 0, e = 2; i < e; ++i) { 1952 ValueList Operands; 1953 // Prepare the operand vector. 1954 for (Value *j : VL) 1955 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1956 1957 UserTreeIdx.EdgeIdx = i; 1958 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1959 } 1960 return; 1961 } 1962 case Instruction::Store: { 1963 // Check if the stores are consecutive or of we need to swizzle them. 1964 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 1965 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1966 BS.cancelScheduling(VL, VL0); 1967 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1968 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 1969 return; 1970 } 1971 1972 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1973 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 1974 1975 ValueList Operands; 1976 for (Value *j : VL) 1977 Operands.push_back(cast<Instruction>(j)->getOperand(0)); 1978 1979 UserTreeIdx.EdgeIdx = 0; 1980 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1981 return; 1982 } 1983 case Instruction::Call: { 1984 // Check if the calls are all to the same vectorizable intrinsic. 1985 CallInst *CI = cast<CallInst>(VL0); 1986 // Check if this is an Intrinsic call or something that can be 1987 // represented by an intrinsic call 1988 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 1989 if (!isTriviallyVectorizable(ID)) { 1990 BS.cancelScheduling(VL, VL0); 1991 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1992 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 1993 return; 1994 } 1995 Function *Int = CI->getCalledFunction(); 1996 unsigned NumArgs = CI->getNumArgOperands(); 1997 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 1998 for (unsigned j = 0; j != NumArgs; ++j) 1999 if (hasVectorInstrinsicScalarOpd(ID, j)) 2000 ScalarArgs[j] = CI->getArgOperand(j); 2001 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 2002 CallInst *CI2 = dyn_cast<CallInst>(VL[i]); 2003 if (!CI2 || CI2->getCalledFunction() != Int || 2004 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 2005 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 2006 BS.cancelScheduling(VL, VL0); 2007 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2008 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] 2009 << "\n"); 2010 return; 2011 } 2012 // Some intrinsics have scalar arguments and should be same in order for 2013 // them to be vectorized. 2014 for (unsigned j = 0; j != NumArgs; ++j) { 2015 if (hasVectorInstrinsicScalarOpd(ID, j)) { 2016 Value *A1J = CI2->getArgOperand(j); 2017 if (ScalarArgs[j] != A1J) { 2018 BS.cancelScheduling(VL, VL0); 2019 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2020 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 2021 << " argument " << ScalarArgs[j] << "!=" << A1J 2022 << "\n"); 2023 return; 2024 } 2025 } 2026 } 2027 // Verify that the bundle operands are identical between the two calls. 2028 if (CI->hasOperandBundles() && 2029 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 2030 CI->op_begin() + CI->getBundleOperandsEndIndex(), 2031 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 2032 BS.cancelScheduling(VL, VL0); 2033 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2034 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 2035 << *CI << "!=" << *VL[i] << '\n'); 2036 return; 2037 } 2038 } 2039 2040 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 2041 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 2042 ValueList Operands; 2043 // Prepare the operand vector. 2044 for (Value *j : VL) { 2045 CallInst *CI2 = dyn_cast<CallInst>(j); 2046 Operands.push_back(CI2->getArgOperand(i)); 2047 } 2048 UserTreeIdx.EdgeIdx = i; 2049 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 2050 } 2051 return; 2052 } 2053 case Instruction::ShuffleVector: 2054 // If this is not an alternate sequence of opcode like add-sub 2055 // then do not vectorize this instruction. 2056 if (!S.isAltShuffle()) { 2057 BS.cancelScheduling(VL, VL0); 2058 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2059 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 2060 return; 2061 } 2062 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 2063 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 2064 2065 // Reorder operands if reordering would enable vectorization. 2066 if (isa<BinaryOperator>(VL0)) { 2067 ValueList Left, Right; 2068 reorderInputsAccordingToOpcode(S, VL, Left, Right); 2069 UserTreeIdx.EdgeIdx = 0; 2070 buildTree_rec(Left, Depth + 1, UserTreeIdx); 2071 UserTreeIdx.EdgeIdx = 1; 2072 buildTree_rec(Right, Depth + 1, UserTreeIdx); 2073 return; 2074 } 2075 2076 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2077 ValueList Operands; 2078 // Prepare the operand vector. 2079 for (Value *j : VL) 2080 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 2081 2082 UserTreeIdx.EdgeIdx = i; 2083 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 2084 } 2085 return; 2086 2087 default: 2088 BS.cancelScheduling(VL, VL0); 2089 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2090 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 2091 return; 2092 } 2093 } 2094 2095 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 2096 unsigned N; 2097 Type *EltTy; 2098 auto *ST = dyn_cast<StructType>(T); 2099 if (ST) { 2100 N = ST->getNumElements(); 2101 EltTy = *ST->element_begin(); 2102 } else { 2103 N = cast<ArrayType>(T)->getNumElements(); 2104 EltTy = cast<ArrayType>(T)->getElementType(); 2105 } 2106 if (!isValidElementType(EltTy)) 2107 return 0; 2108 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 2109 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 2110 return 0; 2111 if (ST) { 2112 // Check that struct is homogeneous. 2113 for (const auto *Ty : ST->elements()) 2114 if (Ty != EltTy) 2115 return 0; 2116 } 2117 return N; 2118 } 2119 2120 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 2121 SmallVectorImpl<unsigned> &CurrentOrder) const { 2122 Instruction *E0 = cast<Instruction>(OpValue); 2123 assert(E0->getOpcode() == Instruction::ExtractElement || 2124 E0->getOpcode() == Instruction::ExtractValue); 2125 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 2126 // Check if all of the extracts come from the same vector and from the 2127 // correct offset. 2128 Value *Vec = E0->getOperand(0); 2129 2130 CurrentOrder.clear(); 2131 2132 // We have to extract from a vector/aggregate with the same number of elements. 2133 unsigned NElts; 2134 if (E0->getOpcode() == Instruction::ExtractValue) { 2135 const DataLayout &DL = E0->getModule()->getDataLayout(); 2136 NElts = canMapToVector(Vec->getType(), DL); 2137 if (!NElts) 2138 return false; 2139 // Check if load can be rewritten as load of vector. 2140 LoadInst *LI = dyn_cast<LoadInst>(Vec); 2141 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 2142 return false; 2143 } else { 2144 NElts = Vec->getType()->getVectorNumElements(); 2145 } 2146 2147 if (NElts != VL.size()) 2148 return false; 2149 2150 // Check that all of the indices extract from the correct offset. 2151 bool ShouldKeepOrder = true; 2152 unsigned E = VL.size(); 2153 // Assign to all items the initial value E + 1 so we can check if the extract 2154 // instruction index was used already. 2155 // Also, later we can check that all the indices are used and we have a 2156 // consecutive access in the extract instructions, by checking that no 2157 // element of CurrentOrder still has value E + 1. 2158 CurrentOrder.assign(E, E + 1); 2159 unsigned I = 0; 2160 for (; I < E; ++I) { 2161 auto *Inst = cast<Instruction>(VL[I]); 2162 if (Inst->getOperand(0) != Vec) 2163 break; 2164 Optional<unsigned> Idx = getExtractIndex(Inst); 2165 if (!Idx) 2166 break; 2167 const unsigned ExtIdx = *Idx; 2168 if (ExtIdx != I) { 2169 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 2170 break; 2171 ShouldKeepOrder = false; 2172 CurrentOrder[ExtIdx] = I; 2173 } else { 2174 if (CurrentOrder[I] != E + 1) 2175 break; 2176 CurrentOrder[I] = I; 2177 } 2178 } 2179 if (I < E) { 2180 CurrentOrder.clear(); 2181 return false; 2182 } 2183 2184 return ShouldKeepOrder; 2185 } 2186 2187 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 2188 return I->hasOneUse() || 2189 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 2190 return ScalarToTreeEntry.count(U) > 0; 2191 }); 2192 } 2193 2194 int BoUpSLP::getEntryCost(TreeEntry *E) { 2195 ArrayRef<Value*> VL = E->Scalars; 2196 2197 Type *ScalarTy = VL[0]->getType(); 2198 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2199 ScalarTy = SI->getValueOperand()->getType(); 2200 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 2201 ScalarTy = CI->getOperand(0)->getType(); 2202 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2203 2204 // If we have computed a smaller type for the expression, update VecTy so 2205 // that the costs will be accurate. 2206 if (MinBWs.count(VL[0])) 2207 VecTy = VectorType::get( 2208 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 2209 2210 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 2211 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 2212 int ReuseShuffleCost = 0; 2213 if (NeedToShuffleReuses) { 2214 ReuseShuffleCost = 2215 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2216 } 2217 if (E->NeedToGather) { 2218 if (allConstant(VL)) 2219 return 0; 2220 if (isSplat(VL)) { 2221 return ReuseShuffleCost + 2222 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 2223 } 2224 if (getSameOpcode(VL).getOpcode() == Instruction::ExtractElement && 2225 allSameType(VL) && allSameBlock(VL)) { 2226 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 2227 if (ShuffleKind.hasValue()) { 2228 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 2229 for (auto *V : VL) { 2230 // If all users of instruction are going to be vectorized and this 2231 // instruction itself is not going to be vectorized, consider this 2232 // instruction as dead and remove its cost from the final cost of the 2233 // vectorized tree. 2234 if (areAllUsersVectorized(cast<Instruction>(V)) && 2235 !ScalarToTreeEntry.count(V)) { 2236 auto *IO = cast<ConstantInt>( 2237 cast<ExtractElementInst>(V)->getIndexOperand()); 2238 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 2239 IO->getZExtValue()); 2240 } 2241 } 2242 return ReuseShuffleCost + Cost; 2243 } 2244 } 2245 return ReuseShuffleCost + getGatherCost(VL); 2246 } 2247 InstructionsState S = getSameOpcode(VL); 2248 assert(S.getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 2249 Instruction *VL0 = cast<Instruction>(S.OpValue); 2250 unsigned ShuffleOrOp = S.isAltShuffle() ? 2251 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2252 switch (ShuffleOrOp) { 2253 case Instruction::PHI: 2254 return 0; 2255 2256 case Instruction::ExtractValue: 2257 case Instruction::ExtractElement: 2258 if (NeedToShuffleReuses) { 2259 unsigned Idx = 0; 2260 for (unsigned I : E->ReuseShuffleIndices) { 2261 if (ShuffleOrOp == Instruction::ExtractElement) { 2262 auto *IO = cast<ConstantInt>( 2263 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 2264 Idx = IO->getZExtValue(); 2265 ReuseShuffleCost -= TTI->getVectorInstrCost( 2266 Instruction::ExtractElement, VecTy, Idx); 2267 } else { 2268 ReuseShuffleCost -= TTI->getVectorInstrCost( 2269 Instruction::ExtractElement, VecTy, Idx); 2270 ++Idx; 2271 } 2272 } 2273 Idx = ReuseShuffleNumbers; 2274 for (Value *V : VL) { 2275 if (ShuffleOrOp == Instruction::ExtractElement) { 2276 auto *IO = cast<ConstantInt>( 2277 cast<ExtractElementInst>(V)->getIndexOperand()); 2278 Idx = IO->getZExtValue(); 2279 } else { 2280 --Idx; 2281 } 2282 ReuseShuffleCost += 2283 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 2284 } 2285 } 2286 if (!E->NeedToGather) { 2287 int DeadCost = ReuseShuffleCost; 2288 if (!E->ReorderIndices.empty()) { 2289 // TODO: Merge this shuffle with the ReuseShuffleCost. 2290 DeadCost += TTI->getShuffleCost( 2291 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2292 } 2293 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 2294 Instruction *E = cast<Instruction>(VL[i]); 2295 // If all users are going to be vectorized, instruction can be 2296 // considered as dead. 2297 // The same, if have only one user, it will be vectorized for sure. 2298 if (areAllUsersVectorized(E)) { 2299 // Take credit for instruction that will become dead. 2300 if (E->hasOneUse()) { 2301 Instruction *Ext = E->user_back(); 2302 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 2303 all_of(Ext->users(), 2304 [](User *U) { return isa<GetElementPtrInst>(U); })) { 2305 // Use getExtractWithExtendCost() to calculate the cost of 2306 // extractelement/ext pair. 2307 DeadCost -= TTI->getExtractWithExtendCost( 2308 Ext->getOpcode(), Ext->getType(), VecTy, i); 2309 // Add back the cost of s|zext which is subtracted separately. 2310 DeadCost += TTI->getCastInstrCost( 2311 Ext->getOpcode(), Ext->getType(), E->getType(), Ext); 2312 continue; 2313 } 2314 } 2315 DeadCost -= 2316 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 2317 } 2318 } 2319 return DeadCost; 2320 } 2321 return ReuseShuffleCost + getGatherCost(VL); 2322 2323 case Instruction::ZExt: 2324 case Instruction::SExt: 2325 case Instruction::FPToUI: 2326 case Instruction::FPToSI: 2327 case Instruction::FPExt: 2328 case Instruction::PtrToInt: 2329 case Instruction::IntToPtr: 2330 case Instruction::SIToFP: 2331 case Instruction::UIToFP: 2332 case Instruction::Trunc: 2333 case Instruction::FPTrunc: 2334 case Instruction::BitCast: { 2335 Type *SrcTy = VL0->getOperand(0)->getType(); 2336 int ScalarEltCost = 2337 TTI->getCastInstrCost(S.getOpcode(), ScalarTy, SrcTy, VL0); 2338 if (NeedToShuffleReuses) { 2339 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2340 } 2341 2342 // Calculate the cost of this instruction. 2343 int ScalarCost = VL.size() * ScalarEltCost; 2344 2345 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 2346 int VecCost = 0; 2347 // Check if the values are candidates to demote. 2348 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 2349 VecCost = ReuseShuffleCost + 2350 TTI->getCastInstrCost(S.getOpcode(), VecTy, SrcVecTy, VL0); 2351 } 2352 return VecCost - ScalarCost; 2353 } 2354 case Instruction::FCmp: 2355 case Instruction::ICmp: 2356 case Instruction::Select: { 2357 // Calculate the cost of this instruction. 2358 int ScalarEltCost = TTI->getCmpSelInstrCost(S.getOpcode(), ScalarTy, 2359 Builder.getInt1Ty(), VL0); 2360 if (NeedToShuffleReuses) { 2361 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2362 } 2363 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 2364 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 2365 int VecCost = TTI->getCmpSelInstrCost(S.getOpcode(), VecTy, MaskTy, VL0); 2366 return ReuseShuffleCost + VecCost - ScalarCost; 2367 } 2368 case Instruction::Add: 2369 case Instruction::FAdd: 2370 case Instruction::Sub: 2371 case Instruction::FSub: 2372 case Instruction::Mul: 2373 case Instruction::FMul: 2374 case Instruction::UDiv: 2375 case Instruction::SDiv: 2376 case Instruction::FDiv: 2377 case Instruction::URem: 2378 case Instruction::SRem: 2379 case Instruction::FRem: 2380 case Instruction::Shl: 2381 case Instruction::LShr: 2382 case Instruction::AShr: 2383 case Instruction::And: 2384 case Instruction::Or: 2385 case Instruction::Xor: { 2386 // Certain instructions can be cheaper to vectorize if they have a 2387 // constant second vector operand. 2388 TargetTransformInfo::OperandValueKind Op1VK = 2389 TargetTransformInfo::OK_AnyValue; 2390 TargetTransformInfo::OperandValueKind Op2VK = 2391 TargetTransformInfo::OK_UniformConstantValue; 2392 TargetTransformInfo::OperandValueProperties Op1VP = 2393 TargetTransformInfo::OP_None; 2394 TargetTransformInfo::OperandValueProperties Op2VP = 2395 TargetTransformInfo::OP_PowerOf2; 2396 2397 // If all operands are exactly the same ConstantInt then set the 2398 // operand kind to OK_UniformConstantValue. 2399 // If instead not all operands are constants, then set the operand kind 2400 // to OK_AnyValue. If all operands are constants but not the same, 2401 // then set the operand kind to OK_NonUniformConstantValue. 2402 ConstantInt *CInt0 = nullptr; 2403 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 2404 const Instruction *I = cast<Instruction>(VL[i]); 2405 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(1)); 2406 if (!CInt) { 2407 Op2VK = TargetTransformInfo::OK_AnyValue; 2408 Op2VP = TargetTransformInfo::OP_None; 2409 break; 2410 } 2411 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 2412 !CInt->getValue().isPowerOf2()) 2413 Op2VP = TargetTransformInfo::OP_None; 2414 if (i == 0) { 2415 CInt0 = CInt; 2416 continue; 2417 } 2418 if (CInt0 != CInt) 2419 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 2420 } 2421 2422 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 2423 int ScalarEltCost = TTI->getArithmeticInstrCost( 2424 S.getOpcode(), ScalarTy, Op1VK, Op2VK, Op1VP, Op2VP, Operands); 2425 if (NeedToShuffleReuses) { 2426 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2427 } 2428 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 2429 int VecCost = TTI->getArithmeticInstrCost(S.getOpcode(), VecTy, Op1VK, 2430 Op2VK, Op1VP, Op2VP, Operands); 2431 return ReuseShuffleCost + VecCost - ScalarCost; 2432 } 2433 case Instruction::GetElementPtr: { 2434 TargetTransformInfo::OperandValueKind Op1VK = 2435 TargetTransformInfo::OK_AnyValue; 2436 TargetTransformInfo::OperandValueKind Op2VK = 2437 TargetTransformInfo::OK_UniformConstantValue; 2438 2439 int ScalarEltCost = 2440 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 2441 if (NeedToShuffleReuses) { 2442 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2443 } 2444 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 2445 int VecCost = 2446 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 2447 return ReuseShuffleCost + VecCost - ScalarCost; 2448 } 2449 case Instruction::Load: { 2450 // Cost of wide load - cost of scalar loads. 2451 unsigned alignment = cast<LoadInst>(VL0)->getAlignment(); 2452 int ScalarEltCost = 2453 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0); 2454 if (NeedToShuffleReuses) { 2455 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2456 } 2457 int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 2458 int VecLdCost = 2459 TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, VL0); 2460 if (!E->ReorderIndices.empty()) { 2461 // TODO: Merge this shuffle with the ReuseShuffleCost. 2462 VecLdCost += TTI->getShuffleCost( 2463 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2464 } 2465 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 2466 } 2467 case Instruction::Store: { 2468 // We know that we can merge the stores. Calculate the cost. 2469 unsigned alignment = cast<StoreInst>(VL0)->getAlignment(); 2470 int ScalarEltCost = 2471 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0); 2472 if (NeedToShuffleReuses) { 2473 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2474 } 2475 int ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 2476 int VecStCost = 2477 TTI->getMemoryOpCost(Instruction::Store, VecTy, alignment, 0, VL0); 2478 return ReuseShuffleCost + VecStCost - ScalarStCost; 2479 } 2480 case Instruction::Call: { 2481 CallInst *CI = cast<CallInst>(VL0); 2482 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2483 2484 // Calculate the cost of the scalar and vector calls. 2485 SmallVector<Type *, 4> ScalarTys; 2486 for (unsigned op = 0, opc = CI->getNumArgOperands(); op != opc; ++op) 2487 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 2488 2489 FastMathFlags FMF; 2490 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 2491 FMF = FPMO->getFastMathFlags(); 2492 2493 int ScalarEltCost = 2494 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 2495 if (NeedToShuffleReuses) { 2496 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2497 } 2498 int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 2499 2500 SmallVector<Value *, 4> Args(CI->arg_operands()); 2501 int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF, 2502 VecTy->getNumElements()); 2503 2504 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 2505 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 2506 << " for " << *CI << "\n"); 2507 2508 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 2509 } 2510 case Instruction::ShuffleVector: { 2511 assert(S.isAltShuffle() && 2512 ((Instruction::isBinaryOp(S.getOpcode()) && 2513 Instruction::isBinaryOp(S.getAltOpcode())) || 2514 (Instruction::isCast(S.getOpcode()) && 2515 Instruction::isCast(S.getAltOpcode()))) && 2516 "Invalid Shuffle Vector Operand"); 2517 int ScalarCost = 0; 2518 if (NeedToShuffleReuses) { 2519 for (unsigned Idx : E->ReuseShuffleIndices) { 2520 Instruction *I = cast<Instruction>(VL[Idx]); 2521 ReuseShuffleCost -= TTI->getInstructionCost( 2522 I, TargetTransformInfo::TCK_RecipThroughput); 2523 } 2524 for (Value *V : VL) { 2525 Instruction *I = cast<Instruction>(V); 2526 ReuseShuffleCost += TTI->getInstructionCost( 2527 I, TargetTransformInfo::TCK_RecipThroughput); 2528 } 2529 } 2530 for (Value *i : VL) { 2531 Instruction *I = cast<Instruction>(i); 2532 assert(S.isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 2533 ScalarCost += TTI->getInstructionCost( 2534 I, TargetTransformInfo::TCK_RecipThroughput); 2535 } 2536 // VecCost is equal to sum of the cost of creating 2 vectors 2537 // and the cost of creating shuffle. 2538 int VecCost = 0; 2539 if (Instruction::isBinaryOp(S.getOpcode())) { 2540 VecCost = TTI->getArithmeticInstrCost(S.getOpcode(), VecTy); 2541 VecCost += TTI->getArithmeticInstrCost(S.getAltOpcode(), VecTy); 2542 } else { 2543 Type *Src0SclTy = S.MainOp->getOperand(0)->getType(); 2544 Type *Src1SclTy = S.AltOp->getOperand(0)->getType(); 2545 VectorType *Src0Ty = VectorType::get(Src0SclTy, VL.size()); 2546 VectorType *Src1Ty = VectorType::get(Src1SclTy, VL.size()); 2547 VecCost = TTI->getCastInstrCost(S.getOpcode(), VecTy, Src0Ty); 2548 VecCost += TTI->getCastInstrCost(S.getAltOpcode(), VecTy, Src1Ty); 2549 } 2550 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0); 2551 return ReuseShuffleCost + VecCost - ScalarCost; 2552 } 2553 default: 2554 llvm_unreachable("Unknown instruction"); 2555 } 2556 } 2557 2558 bool BoUpSLP::isFullyVectorizableTinyTree() { 2559 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 2560 << VectorizableTree.size() << " is fully vectorizable .\n"); 2561 2562 // We only handle trees of heights 1 and 2. 2563 if (VectorizableTree.size() == 1 && !VectorizableTree[0].NeedToGather) 2564 return true; 2565 2566 if (VectorizableTree.size() != 2) 2567 return false; 2568 2569 // Handle splat and all-constants stores. 2570 if (!VectorizableTree[0].NeedToGather && 2571 (allConstant(VectorizableTree[1].Scalars) || 2572 isSplat(VectorizableTree[1].Scalars))) 2573 return true; 2574 2575 // Gathering cost would be too much for tiny trees. 2576 if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather) 2577 return false; 2578 2579 return true; 2580 } 2581 2582 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() { 2583 // We can vectorize the tree if its size is greater than or equal to the 2584 // minimum size specified by the MinTreeSize command line option. 2585 if (VectorizableTree.size() >= MinTreeSize) 2586 return false; 2587 2588 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 2589 // can vectorize it if we can prove it fully vectorizable. 2590 if (isFullyVectorizableTinyTree()) 2591 return false; 2592 2593 assert(VectorizableTree.empty() 2594 ? ExternalUses.empty() 2595 : true && "We shouldn't have any external users"); 2596 2597 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 2598 // vectorizable. 2599 return true; 2600 } 2601 2602 int BoUpSLP::getSpillCost() { 2603 // Walk from the bottom of the tree to the top, tracking which values are 2604 // live. When we see a call instruction that is not part of our tree, 2605 // query TTI to see if there is a cost to keeping values live over it 2606 // (for example, if spills and fills are required). 2607 unsigned BundleWidth = VectorizableTree.front().Scalars.size(); 2608 int Cost = 0; 2609 2610 SmallPtrSet<Instruction*, 4> LiveValues; 2611 Instruction *PrevInst = nullptr; 2612 2613 for (const auto &N : VectorizableTree) { 2614 Instruction *Inst = dyn_cast<Instruction>(N.Scalars[0]); 2615 if (!Inst) 2616 continue; 2617 2618 if (!PrevInst) { 2619 PrevInst = Inst; 2620 continue; 2621 } 2622 2623 // Update LiveValues. 2624 LiveValues.erase(PrevInst); 2625 for (auto &J : PrevInst->operands()) { 2626 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 2627 LiveValues.insert(cast<Instruction>(&*J)); 2628 } 2629 2630 LLVM_DEBUG({ 2631 dbgs() << "SLP: #LV: " << LiveValues.size(); 2632 for (auto *X : LiveValues) 2633 dbgs() << " " << X->getName(); 2634 dbgs() << ", Looking at "; 2635 Inst->dump(); 2636 }); 2637 2638 // Now find the sequence of instructions between PrevInst and Inst. 2639 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 2640 PrevInstIt = 2641 PrevInst->getIterator().getReverse(); 2642 while (InstIt != PrevInstIt) { 2643 if (PrevInstIt == PrevInst->getParent()->rend()) { 2644 PrevInstIt = Inst->getParent()->rbegin(); 2645 continue; 2646 } 2647 2648 // Debug informations don't impact spill cost. 2649 if ((isa<CallInst>(&*PrevInstIt) && 2650 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 2651 &*PrevInstIt != PrevInst) { 2652 SmallVector<Type*, 4> V; 2653 for (auto *II : LiveValues) 2654 V.push_back(VectorType::get(II->getType(), BundleWidth)); 2655 Cost += TTI->getCostOfKeepingLiveOverCall(V); 2656 } 2657 2658 ++PrevInstIt; 2659 } 2660 2661 PrevInst = Inst; 2662 } 2663 2664 return Cost; 2665 } 2666 2667 int BoUpSLP::getTreeCost() { 2668 int Cost = 0; 2669 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 2670 << VectorizableTree.size() << ".\n"); 2671 2672 unsigned BundleWidth = VectorizableTree[0].Scalars.size(); 2673 2674 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 2675 TreeEntry &TE = VectorizableTree[I]; 2676 2677 // We create duplicate tree entries for gather sequences that have multiple 2678 // uses. However, we should not compute the cost of duplicate sequences. 2679 // For example, if we have a build vector (i.e., insertelement sequence) 2680 // that is used by more than one vector instruction, we only need to 2681 // compute the cost of the insertelement instructions once. The redundant 2682 // instructions will be eliminated by CSE. 2683 // 2684 // We should consider not creating duplicate tree entries for gather 2685 // sequences, and instead add additional edges to the tree representing 2686 // their uses. Since such an approach results in fewer total entries, 2687 // existing heuristics based on tree size may yield different results. 2688 // 2689 if (TE.NeedToGather && 2690 std::any_of(std::next(VectorizableTree.begin(), I + 1), 2691 VectorizableTree.end(), [TE](TreeEntry &Entry) { 2692 return Entry.NeedToGather && Entry.isSame(TE.Scalars); 2693 })) 2694 continue; 2695 2696 int C = getEntryCost(&TE); 2697 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 2698 << " for bundle that starts with " << *TE.Scalars[0] 2699 << ".\n"); 2700 Cost += C; 2701 } 2702 2703 SmallPtrSet<Value *, 16> ExtractCostCalculated; 2704 int ExtractCost = 0; 2705 for (ExternalUser &EU : ExternalUses) { 2706 // We only add extract cost once for the same scalar. 2707 if (!ExtractCostCalculated.insert(EU.Scalar).second) 2708 continue; 2709 2710 // Uses by ephemeral values are free (because the ephemeral value will be 2711 // removed prior to code generation, and so the extraction will be 2712 // removed as well). 2713 if (EphValues.count(EU.User)) 2714 continue; 2715 2716 // If we plan to rewrite the tree in a smaller type, we will need to sign 2717 // extend the extracted value back to the original type. Here, we account 2718 // for the extract and the added cost of the sign extend if needed. 2719 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 2720 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 2721 if (MinBWs.count(ScalarRoot)) { 2722 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 2723 auto Extend = 2724 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 2725 VecTy = VectorType::get(MinTy, BundleWidth); 2726 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 2727 VecTy, EU.Lane); 2728 } else { 2729 ExtractCost += 2730 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 2731 } 2732 } 2733 2734 int SpillCost = getSpillCost(); 2735 Cost += SpillCost + ExtractCost; 2736 2737 std::string Str; 2738 { 2739 raw_string_ostream OS(Str); 2740 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 2741 << "SLP: Extract Cost = " << ExtractCost << ".\n" 2742 << "SLP: Total Cost = " << Cost << ".\n"; 2743 } 2744 LLVM_DEBUG(dbgs() << Str); 2745 2746 if (ViewSLPTree) 2747 ViewGraph(this, "SLP" + F->getName(), false, Str); 2748 2749 return Cost; 2750 } 2751 2752 int BoUpSLP::getGatherCost(Type *Ty, 2753 const DenseSet<unsigned> &ShuffledIndices) { 2754 int Cost = 0; 2755 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 2756 if (!ShuffledIndices.count(i)) 2757 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 2758 if (!ShuffledIndices.empty()) 2759 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 2760 return Cost; 2761 } 2762 2763 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) { 2764 // Find the type of the operands in VL. 2765 Type *ScalarTy = VL[0]->getType(); 2766 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2767 ScalarTy = SI->getValueOperand()->getType(); 2768 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2769 // Find the cost of inserting/extracting values from the vector. 2770 // Check if the same elements are inserted several times and count them as 2771 // shuffle candidates. 2772 DenseSet<unsigned> ShuffledElements; 2773 DenseSet<Value *> UniqueElements; 2774 // Iterate in reverse order to consider insert elements with the high cost. 2775 for (unsigned I = VL.size(); I > 0; --I) { 2776 unsigned Idx = I - 1; 2777 if (!UniqueElements.insert(VL[Idx]).second) 2778 ShuffledElements.insert(Idx); 2779 } 2780 return getGatherCost(VecTy, ShuffledElements); 2781 } 2782 2783 // Return true if the i'th left and right operands can be commuted. 2784 // 2785 // The vectorizer is trying to either have all elements one side being 2786 // instruction with the same opcode to enable further vectorization, or having 2787 // a splat to lower the vectorizing cost. 2788 static bool shouldReorderOperands(int i, ArrayRef<Value *> Left, 2789 ArrayRef<Value *> Right, 2790 bool AllSameOpcodeLeft, 2791 bool AllSameOpcodeRight, bool SplatLeft, 2792 bool SplatRight) { 2793 Value *PrevLeft = Left[i - 1]; 2794 Value *PrevRight = Right[i - 1]; 2795 Value *CurrLeft = Left[i]; 2796 Value *CurrRight = Right[i]; 2797 2798 // If we have "SplatRight", try to see if commuting is needed to preserve it. 2799 if (SplatRight) { 2800 if (CurrRight == PrevRight) 2801 // Preserve SplatRight 2802 return false; 2803 if (CurrLeft == PrevRight) { 2804 // Commuting would preserve SplatRight, but we don't want to break 2805 // SplatLeft either, i.e. preserve the original order if possible. 2806 // (FIXME: why do we care?) 2807 if (SplatLeft && CurrLeft == PrevLeft) 2808 return false; 2809 return true; 2810 } 2811 } 2812 // Symmetrically handle Right side. 2813 if (SplatLeft) { 2814 if (CurrLeft == PrevLeft) 2815 // Preserve SplatLeft 2816 return false; 2817 if (CurrRight == PrevLeft) 2818 return true; 2819 } 2820 2821 Instruction *ILeft = dyn_cast<Instruction>(CurrLeft); 2822 Instruction *IRight = dyn_cast<Instruction>(CurrRight); 2823 2824 // If we have "AllSameOpcodeRight", try to see if the left operands preserves 2825 // it and not the right, in this case we want to commute. 2826 if (AllSameOpcodeRight) { 2827 unsigned RightPrevOpcode = cast<Instruction>(PrevRight)->getOpcode(); 2828 if (IRight && RightPrevOpcode == IRight->getOpcode()) 2829 // Do not commute, a match on the right preserves AllSameOpcodeRight 2830 return false; 2831 if (ILeft && RightPrevOpcode == ILeft->getOpcode()) { 2832 // We have a match and may want to commute, but first check if there is 2833 // not also a match on the existing operands on the Left to preserve 2834 // AllSameOpcodeLeft, i.e. preserve the original order if possible. 2835 // (FIXME: why do we care?) 2836 if (AllSameOpcodeLeft && ILeft && 2837 cast<Instruction>(PrevLeft)->getOpcode() == ILeft->getOpcode()) 2838 return false; 2839 return true; 2840 } 2841 } 2842 // Symmetrically handle Left side. 2843 if (AllSameOpcodeLeft) { 2844 unsigned LeftPrevOpcode = cast<Instruction>(PrevLeft)->getOpcode(); 2845 if (ILeft && LeftPrevOpcode == ILeft->getOpcode()) 2846 return false; 2847 if (IRight && LeftPrevOpcode == IRight->getOpcode()) 2848 return true; 2849 } 2850 return false; 2851 } 2852 2853 void BoUpSLP::reorderInputsAccordingToOpcode(const InstructionsState &S, 2854 ArrayRef<Value *> VL, 2855 SmallVectorImpl<Value *> &Left, 2856 SmallVectorImpl<Value *> &Right) { 2857 assert(!VL.empty() && Left.empty() && Right.empty() && 2858 "Unexpected instruction/operand lists"); 2859 2860 // Push left and right operands of binary operation into Left and Right 2861 for (Value *V : VL) { 2862 auto *I = cast<Instruction>(V); 2863 assert(S.isOpcodeOrAlt(I) && "Incorrect instruction in vector"); 2864 Left.push_back(I->getOperand(0)); 2865 Right.push_back(I->getOperand(1)); 2866 } 2867 2868 // Keep track if we have instructions with all the same opcode on one side. 2869 bool AllSameOpcodeLeft = isa<Instruction>(Left[0]); 2870 bool AllSameOpcodeRight = isa<Instruction>(Right[0]); 2871 // Keep track if we have one side with all the same value (broadcast). 2872 bool SplatLeft = true; 2873 bool SplatRight = true; 2874 2875 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 2876 Instruction *I = cast<Instruction>(VL[i]); 2877 // Commute to favor either a splat or maximizing having the same opcodes on 2878 // one side. 2879 if (I->isCommutative() && 2880 shouldReorderOperands(i, Left, Right, AllSameOpcodeLeft, 2881 AllSameOpcodeRight, SplatLeft, SplatRight)) 2882 std::swap(Left[i], Right[i]); 2883 2884 // Update Splat* and AllSameOpcode* after the insertion. 2885 SplatRight = SplatRight && (Right[i - 1] == Right[i]); 2886 SplatLeft = SplatLeft && (Left[i - 1] == Left[i]); 2887 AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) && 2888 (cast<Instruction>(Left[i - 1])->getOpcode() == 2889 cast<Instruction>(Left[i])->getOpcode()); 2890 AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) && 2891 (cast<Instruction>(Right[i - 1])->getOpcode() == 2892 cast<Instruction>(Right[i])->getOpcode()); 2893 } 2894 2895 // If one operand end up being broadcast, return this operand order. 2896 if (SplatRight || SplatLeft) 2897 return; 2898 2899 // Finally check if we can get longer vectorizable chain by reordering 2900 // without breaking the good operand order detected above. 2901 // E.g. If we have something like- 2902 // load a[0] - load b[0] 2903 // load b[1] + load a[1] 2904 // load a[2] - load b[2] 2905 // load a[3] + load b[3] 2906 // Reordering the second load b[1] + load a[1] would allow us to vectorize 2907 // this code and we still retain AllSameOpcode property. 2908 // FIXME: This load reordering might break AllSameOpcode in some rare cases 2909 // such as- 2910 // add a[0],c[0] load b[0] 2911 // add a[1],c[2] load b[1] 2912 // b[2] load b[2] 2913 // add a[3],c[3] load b[3] 2914 for (unsigned j = 0, e = VL.size() - 1; j < e; ++j) { 2915 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2916 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2917 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2918 auto *VL1 = cast<Instruction>(VL[j]); 2919 auto *VL2 = cast<Instruction>(VL[j + 1]); 2920 if (VL2->isCommutative()) { 2921 std::swap(Left[j + 1], Right[j + 1]); 2922 continue; 2923 } 2924 if (VL1->isCommutative()) { 2925 std::swap(Left[j], Right[j]); 2926 continue; 2927 } 2928 } 2929 } 2930 } 2931 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2932 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2933 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2934 auto *VL1 = cast<Instruction>(VL[j]); 2935 auto *VL2 = cast<Instruction>(VL[j + 1]); 2936 if (VL2->isCommutative()) { 2937 std::swap(Left[j + 1], Right[j + 1]); 2938 continue; 2939 } 2940 if (VL1->isCommutative()) { 2941 std::swap(Left[j], Right[j]); 2942 continue; 2943 } 2944 } 2945 } 2946 } 2947 // else unchanged 2948 } 2949 } 2950 2951 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL, 2952 const InstructionsState &S) { 2953 // Get the basic block this bundle is in. All instructions in the bundle 2954 // should be in this block. 2955 auto *Front = cast<Instruction>(S.OpValue); 2956 auto *BB = Front->getParent(); 2957 assert(llvm::all_of(make_range(VL.begin(), VL.end()), [=](Value *V) -> bool { 2958 auto *I = cast<Instruction>(V); 2959 return !S.isOpcodeOrAlt(I) || I->getParent() == BB; 2960 })); 2961 2962 // The last instruction in the bundle in program order. 2963 Instruction *LastInst = nullptr; 2964 2965 // Find the last instruction. The common case should be that BB has been 2966 // scheduled, and the last instruction is VL.back(). So we start with 2967 // VL.back() and iterate over schedule data until we reach the end of the 2968 // bundle. The end of the bundle is marked by null ScheduleData. 2969 if (BlocksSchedules.count(BB)) { 2970 auto *Bundle = 2971 BlocksSchedules[BB]->getScheduleData(isOneOf(S, VL.back())); 2972 if (Bundle && Bundle->isPartOfBundle()) 2973 for (; Bundle; Bundle = Bundle->NextInBundle) 2974 if (Bundle->OpValue == Bundle->Inst) 2975 LastInst = Bundle->Inst; 2976 } 2977 2978 // LastInst can still be null at this point if there's either not an entry 2979 // for BB in BlocksSchedules or there's no ScheduleData available for 2980 // VL.back(). This can be the case if buildTree_rec aborts for various 2981 // reasons (e.g., the maximum recursion depth is reached, the maximum region 2982 // size is reached, etc.). ScheduleData is initialized in the scheduling 2983 // "dry-run". 2984 // 2985 // If this happens, we can still find the last instruction by brute force. We 2986 // iterate forwards from Front (inclusive) until we either see all 2987 // instructions in the bundle or reach the end of the block. If Front is the 2988 // last instruction in program order, LastInst will be set to Front, and we 2989 // will visit all the remaining instructions in the block. 2990 // 2991 // One of the reasons we exit early from buildTree_rec is to place an upper 2992 // bound on compile-time. Thus, taking an additional compile-time hit here is 2993 // not ideal. However, this should be exceedingly rare since it requires that 2994 // we both exit early from buildTree_rec and that the bundle be out-of-order 2995 // (causing us to iterate all the way to the end of the block). 2996 if (!LastInst) { 2997 SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end()); 2998 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 2999 if (Bundle.erase(&I) && S.isOpcodeOrAlt(&I)) 3000 LastInst = &I; 3001 if (Bundle.empty()) 3002 break; 3003 } 3004 } 3005 3006 // Set the insertion point after the last instruction in the bundle. Set the 3007 // debug location to Front. 3008 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 3009 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 3010 } 3011 3012 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 3013 Value *Vec = UndefValue::get(Ty); 3014 // Generate the 'InsertElement' instruction. 3015 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 3016 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 3017 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 3018 GatherSeq.insert(Insrt); 3019 CSEBlocks.insert(Insrt->getParent()); 3020 3021 // Add to our 'need-to-extract' list. 3022 if (TreeEntry *E = getTreeEntry(VL[i])) { 3023 // Find which lane we need to extract. 3024 int FoundLane = -1; 3025 for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) { 3026 // Is this the lane of the scalar that we are looking for ? 3027 if (E->Scalars[Lane] == VL[i]) { 3028 FoundLane = Lane; 3029 break; 3030 } 3031 } 3032 assert(FoundLane >= 0 && "Could not find the correct lane"); 3033 if (!E->ReuseShuffleIndices.empty()) { 3034 FoundLane = 3035 std::distance(E->ReuseShuffleIndices.begin(), 3036 llvm::find(E->ReuseShuffleIndices, FoundLane)); 3037 } 3038 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 3039 } 3040 } 3041 } 3042 3043 return Vec; 3044 } 3045 3046 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 3047 InstructionsState S = getSameOpcode(VL); 3048 if (S.getOpcode()) { 3049 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3050 if (E->isSame(VL)) { 3051 Value *V = vectorizeTree(E); 3052 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 3053 // We need to get the vectorized value but without shuffle. 3054 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 3055 V = SV->getOperand(0); 3056 } else { 3057 // Reshuffle to get only unique values. 3058 SmallVector<unsigned, 4> UniqueIdxs; 3059 SmallSet<unsigned, 4> UsedIdxs; 3060 for(unsigned Idx : E->ReuseShuffleIndices) 3061 if (UsedIdxs.insert(Idx).second) 3062 UniqueIdxs.emplace_back(Idx); 3063 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 3064 UniqueIdxs); 3065 } 3066 } 3067 return V; 3068 } 3069 } 3070 } 3071 3072 Type *ScalarTy = S.OpValue->getType(); 3073 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3074 ScalarTy = SI->getValueOperand()->getType(); 3075 3076 // Check that every instruction appears once in this bundle. 3077 SmallVector<unsigned, 4> ReuseShuffleIndicies; 3078 SmallVector<Value *, 4> UniqueValues; 3079 if (VL.size() > 2) { 3080 DenseMap<Value *, unsigned> UniquePositions; 3081 for (Value *V : VL) { 3082 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3083 ReuseShuffleIndicies.emplace_back(Res.first->second); 3084 if (Res.second || isa<Constant>(V)) 3085 UniqueValues.emplace_back(V); 3086 } 3087 // Do not shuffle single element or if number of unique values is not power 3088 // of 2. 3089 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 3090 !llvm::isPowerOf2_32(UniqueValues.size())) 3091 ReuseShuffleIndicies.clear(); 3092 else 3093 VL = UniqueValues; 3094 } 3095 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 3096 3097 Value *V = Gather(VL, VecTy); 3098 if (!ReuseShuffleIndicies.empty()) { 3099 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3100 ReuseShuffleIndicies, "shuffle"); 3101 if (auto *I = dyn_cast<Instruction>(V)) { 3102 GatherSeq.insert(I); 3103 CSEBlocks.insert(I->getParent()); 3104 } 3105 } 3106 return V; 3107 } 3108 3109 static void inversePermutation(ArrayRef<unsigned> Indices, 3110 SmallVectorImpl<unsigned> &Mask) { 3111 Mask.clear(); 3112 const unsigned E = Indices.size(); 3113 Mask.resize(E); 3114 for (unsigned I = 0; I < E; ++I) 3115 Mask[Indices[I]] = I; 3116 } 3117 3118 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 3119 IRBuilder<>::InsertPointGuard Guard(Builder); 3120 3121 if (E->VectorizedValue) { 3122 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 3123 return E->VectorizedValue; 3124 } 3125 3126 InstructionsState S = getSameOpcode(E->Scalars); 3127 Instruction *VL0 = cast<Instruction>(S.OpValue); 3128 Type *ScalarTy = VL0->getType(); 3129 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 3130 ScalarTy = SI->getValueOperand()->getType(); 3131 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 3132 3133 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3134 3135 if (E->NeedToGather) { 3136 setInsertPointAfterBundle(E->Scalars, S); 3137 auto *V = Gather(E->Scalars, VecTy); 3138 if (NeedToShuffleReuses) { 3139 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3140 E->ReuseShuffleIndices, "shuffle"); 3141 if (auto *I = dyn_cast<Instruction>(V)) { 3142 GatherSeq.insert(I); 3143 CSEBlocks.insert(I->getParent()); 3144 } 3145 } 3146 E->VectorizedValue = V; 3147 return V; 3148 } 3149 3150 unsigned ShuffleOrOp = S.isAltShuffle() ? 3151 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 3152 switch (ShuffleOrOp) { 3153 case Instruction::PHI: { 3154 PHINode *PH = dyn_cast<PHINode>(VL0); 3155 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 3156 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 3157 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 3158 Value *V = NewPhi; 3159 if (NeedToShuffleReuses) { 3160 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3161 E->ReuseShuffleIndices, "shuffle"); 3162 } 3163 E->VectorizedValue = V; 3164 3165 // PHINodes may have multiple entries from the same block. We want to 3166 // visit every block once. 3167 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 3168 3169 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 3170 ValueList Operands; 3171 BasicBlock *IBB = PH->getIncomingBlock(i); 3172 3173 if (!VisitedBBs.insert(IBB).second) { 3174 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 3175 continue; 3176 } 3177 3178 Builder.SetInsertPoint(IBB->getTerminator()); 3179 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 3180 Value *Vec = vectorizeTree(E->getOperand(i)); 3181 NewPhi->addIncoming(Vec, IBB); 3182 } 3183 3184 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 3185 "Invalid number of incoming values"); 3186 return V; 3187 } 3188 3189 case Instruction::ExtractElement: { 3190 if (!E->NeedToGather) { 3191 Value *V = E->getSingleOperand(0); 3192 if (!E->ReorderIndices.empty()) { 3193 OrdersType Mask; 3194 inversePermutation(E->ReorderIndices, Mask); 3195 Builder.SetInsertPoint(VL0); 3196 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), Mask, 3197 "reorder_shuffle"); 3198 } 3199 if (NeedToShuffleReuses) { 3200 // TODO: Merge this shuffle with the ReorderShuffleMask. 3201 if (E->ReorderIndices.empty()) 3202 Builder.SetInsertPoint(VL0); 3203 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3204 E->ReuseShuffleIndices, "shuffle"); 3205 } 3206 E->VectorizedValue = V; 3207 return V; 3208 } 3209 setInsertPointAfterBundle(E->Scalars, S); 3210 auto *V = Gather(E->Scalars, VecTy); 3211 if (NeedToShuffleReuses) { 3212 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3213 E->ReuseShuffleIndices, "shuffle"); 3214 if (auto *I = dyn_cast<Instruction>(V)) { 3215 GatherSeq.insert(I); 3216 CSEBlocks.insert(I->getParent()); 3217 } 3218 } 3219 E->VectorizedValue = V; 3220 return V; 3221 } 3222 case Instruction::ExtractValue: { 3223 if (!E->NeedToGather) { 3224 LoadInst *LI = cast<LoadInst>(E->getSingleOperand(0)); 3225 Builder.SetInsertPoint(LI); 3226 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 3227 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 3228 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlignment()); 3229 Value *NewV = propagateMetadata(V, E->Scalars); 3230 if (!E->ReorderIndices.empty()) { 3231 OrdersType Mask; 3232 inversePermutation(E->ReorderIndices, Mask); 3233 NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), Mask, 3234 "reorder_shuffle"); 3235 } 3236 if (NeedToShuffleReuses) { 3237 // TODO: Merge this shuffle with the ReorderShuffleMask. 3238 NewV = Builder.CreateShuffleVector( 3239 NewV, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle"); 3240 } 3241 E->VectorizedValue = NewV; 3242 return NewV; 3243 } 3244 setInsertPointAfterBundle(E->Scalars, S); 3245 auto *V = Gather(E->Scalars, VecTy); 3246 if (NeedToShuffleReuses) { 3247 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3248 E->ReuseShuffleIndices, "shuffle"); 3249 if (auto *I = dyn_cast<Instruction>(V)) { 3250 GatherSeq.insert(I); 3251 CSEBlocks.insert(I->getParent()); 3252 } 3253 } 3254 E->VectorizedValue = V; 3255 return V; 3256 } 3257 case Instruction::ZExt: 3258 case Instruction::SExt: 3259 case Instruction::FPToUI: 3260 case Instruction::FPToSI: 3261 case Instruction::FPExt: 3262 case Instruction::PtrToInt: 3263 case Instruction::IntToPtr: 3264 case Instruction::SIToFP: 3265 case Instruction::UIToFP: 3266 case Instruction::Trunc: 3267 case Instruction::FPTrunc: 3268 case Instruction::BitCast: { 3269 setInsertPointAfterBundle(E->Scalars, S); 3270 3271 Value *InVec = vectorizeTree(E->getOperand(0)); 3272 3273 if (E->VectorizedValue) { 3274 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3275 return E->VectorizedValue; 3276 } 3277 3278 CastInst *CI = dyn_cast<CastInst>(VL0); 3279 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 3280 if (NeedToShuffleReuses) { 3281 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3282 E->ReuseShuffleIndices, "shuffle"); 3283 } 3284 E->VectorizedValue = V; 3285 ++NumVectorInstructions; 3286 return V; 3287 } 3288 case Instruction::FCmp: 3289 case Instruction::ICmp: { 3290 setInsertPointAfterBundle(E->Scalars, S); 3291 3292 Value *L = vectorizeTree(E->getOperand(0)); 3293 Value *R = vectorizeTree(E->getOperand(1)); 3294 3295 if (E->VectorizedValue) { 3296 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3297 return E->VectorizedValue; 3298 } 3299 3300 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 3301 Value *V; 3302 if (S.getOpcode() == Instruction::FCmp) 3303 V = Builder.CreateFCmp(P0, L, R); 3304 else 3305 V = Builder.CreateICmp(P0, L, R); 3306 3307 propagateIRFlags(V, E->Scalars, VL0); 3308 if (NeedToShuffleReuses) { 3309 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3310 E->ReuseShuffleIndices, "shuffle"); 3311 } 3312 E->VectorizedValue = V; 3313 ++NumVectorInstructions; 3314 return V; 3315 } 3316 case Instruction::Select: { 3317 setInsertPointAfterBundle(E->Scalars, S); 3318 3319 Value *Cond = vectorizeTree(E->getOperand(0)); 3320 Value *True = vectorizeTree(E->getOperand(1)); 3321 Value *False = vectorizeTree(E->getOperand(2)); 3322 3323 if (E->VectorizedValue) { 3324 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3325 return E->VectorizedValue; 3326 } 3327 3328 Value *V = Builder.CreateSelect(Cond, True, False); 3329 if (NeedToShuffleReuses) { 3330 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3331 E->ReuseShuffleIndices, "shuffle"); 3332 } 3333 E->VectorizedValue = V; 3334 ++NumVectorInstructions; 3335 return V; 3336 } 3337 case Instruction::Add: 3338 case Instruction::FAdd: 3339 case Instruction::Sub: 3340 case Instruction::FSub: 3341 case Instruction::Mul: 3342 case Instruction::FMul: 3343 case Instruction::UDiv: 3344 case Instruction::SDiv: 3345 case Instruction::FDiv: 3346 case Instruction::URem: 3347 case Instruction::SRem: 3348 case Instruction::FRem: 3349 case Instruction::Shl: 3350 case Instruction::LShr: 3351 case Instruction::AShr: 3352 case Instruction::And: 3353 case Instruction::Or: 3354 case Instruction::Xor: { 3355 setInsertPointAfterBundle(E->Scalars, S); 3356 3357 Value *LHS = vectorizeTree(E->getOperand(0)); 3358 Value *RHS = vectorizeTree(E->getOperand(1)); 3359 3360 if (E->VectorizedValue) { 3361 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3362 return E->VectorizedValue; 3363 } 3364 3365 Value *V = Builder.CreateBinOp( 3366 static_cast<Instruction::BinaryOps>(S.getOpcode()), LHS, RHS); 3367 propagateIRFlags(V, E->Scalars, VL0); 3368 if (auto *I = dyn_cast<Instruction>(V)) 3369 V = propagateMetadata(I, E->Scalars); 3370 3371 if (NeedToShuffleReuses) { 3372 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3373 E->ReuseShuffleIndices, "shuffle"); 3374 } 3375 E->VectorizedValue = V; 3376 ++NumVectorInstructions; 3377 3378 return V; 3379 } 3380 case Instruction::Load: { 3381 // Loads are inserted at the head of the tree because we don't want to 3382 // sink them all the way down past store instructions. 3383 bool IsReorder = !E->ReorderIndices.empty(); 3384 if (IsReorder) { 3385 S = getSameOpcode(E->Scalars, E->ReorderIndices.front()); 3386 VL0 = cast<Instruction>(S.OpValue); 3387 } 3388 setInsertPointAfterBundle(E->Scalars, S); 3389 3390 LoadInst *LI = cast<LoadInst>(VL0); 3391 Type *ScalarLoadTy = LI->getType(); 3392 unsigned AS = LI->getPointerAddressSpace(); 3393 3394 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 3395 VecTy->getPointerTo(AS)); 3396 3397 // The pointer operand uses an in-tree scalar so we add the new BitCast to 3398 // ExternalUses list to make sure that an extract will be generated in the 3399 // future. 3400 Value *PO = LI->getPointerOperand(); 3401 if (getTreeEntry(PO)) 3402 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0)); 3403 3404 unsigned Alignment = LI->getAlignment(); 3405 LI = Builder.CreateLoad(VecTy, VecPtr); 3406 if (!Alignment) { 3407 Alignment = DL->getABITypeAlignment(ScalarLoadTy); 3408 } 3409 LI->setAlignment(Alignment); 3410 Value *V = propagateMetadata(LI, E->Scalars); 3411 if (IsReorder) { 3412 OrdersType Mask; 3413 inversePermutation(E->ReorderIndices, Mask); 3414 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 3415 Mask, "reorder_shuffle"); 3416 } 3417 if (NeedToShuffleReuses) { 3418 // TODO: Merge this shuffle with the ReorderShuffleMask. 3419 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3420 E->ReuseShuffleIndices, "shuffle"); 3421 } 3422 E->VectorizedValue = V; 3423 ++NumVectorInstructions; 3424 return V; 3425 } 3426 case Instruction::Store: { 3427 StoreInst *SI = cast<StoreInst>(VL0); 3428 unsigned Alignment = SI->getAlignment(); 3429 unsigned AS = SI->getPointerAddressSpace(); 3430 3431 setInsertPointAfterBundle(E->Scalars, S); 3432 3433 Value *VecValue = vectorizeTree(E->getOperand(0)); 3434 Value *ScalarPtr = SI->getPointerOperand(); 3435 Value *VecPtr = Builder.CreateBitCast(ScalarPtr, VecTy->getPointerTo(AS)); 3436 StoreInst *ST = Builder.CreateStore(VecValue, VecPtr); 3437 3438 // The pointer operand uses an in-tree scalar, so add the new BitCast to 3439 // ExternalUses to make sure that an extract will be generated in the 3440 // future. 3441 if (getTreeEntry(ScalarPtr)) 3442 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 3443 3444 if (!Alignment) 3445 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 3446 3447 ST->setAlignment(Alignment); 3448 Value *V = propagateMetadata(ST, E->Scalars); 3449 if (NeedToShuffleReuses) { 3450 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3451 E->ReuseShuffleIndices, "shuffle"); 3452 } 3453 E->VectorizedValue = V; 3454 ++NumVectorInstructions; 3455 return V; 3456 } 3457 case Instruction::GetElementPtr: { 3458 setInsertPointAfterBundle(E->Scalars, S); 3459 3460 Value *Op0 = vectorizeTree(E->getOperand(0)); 3461 3462 std::vector<Value *> OpVecs; 3463 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 3464 ++j) { 3465 Value *OpVec = vectorizeTree(E->getOperand(j)); 3466 OpVecs.push_back(OpVec); 3467 } 3468 3469 Value *V = Builder.CreateGEP( 3470 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 3471 if (Instruction *I = dyn_cast<Instruction>(V)) 3472 V = propagateMetadata(I, E->Scalars); 3473 3474 if (NeedToShuffleReuses) { 3475 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3476 E->ReuseShuffleIndices, "shuffle"); 3477 } 3478 E->VectorizedValue = V; 3479 ++NumVectorInstructions; 3480 3481 return V; 3482 } 3483 case Instruction::Call: { 3484 CallInst *CI = cast<CallInst>(VL0); 3485 setInsertPointAfterBundle(E->Scalars, S); 3486 Function *FI; 3487 Intrinsic::ID IID = Intrinsic::not_intrinsic; 3488 Value *ScalarArg = nullptr; 3489 if (CI && (FI = CI->getCalledFunction())) { 3490 IID = FI->getIntrinsicID(); 3491 } 3492 std::vector<Value *> OpVecs; 3493 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 3494 ValueList OpVL; 3495 // Some intrinsics have scalar arguments. This argument should not be 3496 // vectorized. 3497 if (hasVectorInstrinsicScalarOpd(IID, j)) { 3498 CallInst *CEI = cast<CallInst>(VL0); 3499 ScalarArg = CEI->getArgOperand(j); 3500 OpVecs.push_back(CEI->getArgOperand(j)); 3501 continue; 3502 } 3503 3504 Value *OpVec = vectorizeTree(E->getOperand(j)); 3505 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 3506 OpVecs.push_back(OpVec); 3507 } 3508 3509 Module *M = F->getParent(); 3510 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3511 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 3512 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 3513 SmallVector<OperandBundleDef, 1> OpBundles; 3514 CI->getOperandBundlesAsDefs(OpBundles); 3515 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 3516 3517 // The scalar argument uses an in-tree scalar so we add the new vectorized 3518 // call to ExternalUses list to make sure that an extract will be 3519 // generated in the future. 3520 if (ScalarArg && getTreeEntry(ScalarArg)) 3521 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 3522 3523 propagateIRFlags(V, E->Scalars, VL0); 3524 if (NeedToShuffleReuses) { 3525 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3526 E->ReuseShuffleIndices, "shuffle"); 3527 } 3528 E->VectorizedValue = V; 3529 ++NumVectorInstructions; 3530 return V; 3531 } 3532 case Instruction::ShuffleVector: { 3533 assert(S.isAltShuffle() && 3534 ((Instruction::isBinaryOp(S.getOpcode()) && 3535 Instruction::isBinaryOp(S.getAltOpcode())) || 3536 (Instruction::isCast(S.getOpcode()) && 3537 Instruction::isCast(S.getAltOpcode()))) && 3538 "Invalid Shuffle Vector Operand"); 3539 3540 Value *LHS, *RHS; 3541 if (Instruction::isBinaryOp(S.getOpcode())) { 3542 setInsertPointAfterBundle(E->Scalars, S); 3543 LHS = vectorizeTree(E->getOperand(0)); 3544 RHS = vectorizeTree(E->getOperand(1)); 3545 } else { 3546 setInsertPointAfterBundle(E->Scalars, S); 3547 LHS = vectorizeTree(E->getOperand(0)); 3548 } 3549 3550 if (E->VectorizedValue) { 3551 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3552 return E->VectorizedValue; 3553 } 3554 3555 Value *V0, *V1; 3556 if (Instruction::isBinaryOp(S.getOpcode())) { 3557 V0 = Builder.CreateBinOp( 3558 static_cast<Instruction::BinaryOps>(S.getOpcode()), LHS, RHS); 3559 V1 = Builder.CreateBinOp( 3560 static_cast<Instruction::BinaryOps>(S.getAltOpcode()), LHS, RHS); 3561 } else { 3562 V0 = Builder.CreateCast( 3563 static_cast<Instruction::CastOps>(S.getOpcode()), LHS, VecTy); 3564 V1 = Builder.CreateCast( 3565 static_cast<Instruction::CastOps>(S.getAltOpcode()), LHS, VecTy); 3566 } 3567 3568 // Create shuffle to take alternate operations from the vector. 3569 // Also, gather up main and alt scalar ops to propagate IR flags to 3570 // each vector operation. 3571 ValueList OpScalars, AltScalars; 3572 unsigned e = E->Scalars.size(); 3573 SmallVector<Constant *, 8> Mask(e); 3574 for (unsigned i = 0; i < e; ++i) { 3575 auto *OpInst = cast<Instruction>(E->Scalars[i]); 3576 assert(S.isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 3577 if (OpInst->getOpcode() == S.getAltOpcode()) { 3578 Mask[i] = Builder.getInt32(e + i); 3579 AltScalars.push_back(E->Scalars[i]); 3580 } else { 3581 Mask[i] = Builder.getInt32(i); 3582 OpScalars.push_back(E->Scalars[i]); 3583 } 3584 } 3585 3586 Value *ShuffleMask = ConstantVector::get(Mask); 3587 propagateIRFlags(V0, OpScalars); 3588 propagateIRFlags(V1, AltScalars); 3589 3590 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 3591 if (Instruction *I = dyn_cast<Instruction>(V)) 3592 V = propagateMetadata(I, E->Scalars); 3593 if (NeedToShuffleReuses) { 3594 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3595 E->ReuseShuffleIndices, "shuffle"); 3596 } 3597 E->VectorizedValue = V; 3598 ++NumVectorInstructions; 3599 3600 return V; 3601 } 3602 default: 3603 llvm_unreachable("unknown inst"); 3604 } 3605 return nullptr; 3606 } 3607 3608 Value *BoUpSLP::vectorizeTree() { 3609 ExtraValueToDebugLocsMap ExternallyUsedValues; 3610 return vectorizeTree(ExternallyUsedValues); 3611 } 3612 3613 Value * 3614 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3615 // All blocks must be scheduled before any instructions are inserted. 3616 for (auto &BSIter : BlocksSchedules) { 3617 scheduleBlock(BSIter.second.get()); 3618 } 3619 3620 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3621 auto *VectorRoot = vectorizeTree(&VectorizableTree[0]); 3622 3623 // If the vectorized tree can be rewritten in a smaller type, we truncate the 3624 // vectorized root. InstCombine will then rewrite the entire expression. We 3625 // sign extend the extracted values below. 3626 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 3627 if (MinBWs.count(ScalarRoot)) { 3628 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 3629 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 3630 auto BundleWidth = VectorizableTree[0].Scalars.size(); 3631 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 3632 auto *VecTy = VectorType::get(MinTy, BundleWidth); 3633 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 3634 VectorizableTree[0].VectorizedValue = Trunc; 3635 } 3636 3637 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 3638 << " values .\n"); 3639 3640 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 3641 // specified by ScalarType. 3642 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 3643 if (!MinBWs.count(ScalarRoot)) 3644 return Ex; 3645 if (MinBWs[ScalarRoot].second) 3646 return Builder.CreateSExt(Ex, ScalarType); 3647 return Builder.CreateZExt(Ex, ScalarType); 3648 }; 3649 3650 // Extract all of the elements with the external uses. 3651 for (const auto &ExternalUse : ExternalUses) { 3652 Value *Scalar = ExternalUse.Scalar; 3653 llvm::User *User = ExternalUse.User; 3654 3655 // Skip users that we already RAUW. This happens when one instruction 3656 // has multiple uses of the same value. 3657 if (User && !is_contained(Scalar->users(), User)) 3658 continue; 3659 TreeEntry *E = getTreeEntry(Scalar); 3660 assert(E && "Invalid scalar"); 3661 assert(!E->NeedToGather && "Extracting from a gather list"); 3662 3663 Value *Vec = E->VectorizedValue; 3664 assert(Vec && "Can't find vectorizable value"); 3665 3666 Value *Lane = Builder.getInt32(ExternalUse.Lane); 3667 // If User == nullptr, the Scalar is used as extra arg. Generate 3668 // ExtractElement instruction and update the record for this scalar in 3669 // ExternallyUsedValues. 3670 if (!User) { 3671 assert(ExternallyUsedValues.count(Scalar) && 3672 "Scalar with nullptr as an external user must be registered in " 3673 "ExternallyUsedValues map"); 3674 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 3675 Builder.SetInsertPoint(VecI->getParent(), 3676 std::next(VecI->getIterator())); 3677 } else { 3678 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3679 } 3680 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3681 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3682 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 3683 auto &Locs = ExternallyUsedValues[Scalar]; 3684 ExternallyUsedValues.insert({Ex, Locs}); 3685 ExternallyUsedValues.erase(Scalar); 3686 // Required to update internally referenced instructions. 3687 Scalar->replaceAllUsesWith(Ex); 3688 continue; 3689 } 3690 3691 // Generate extracts for out-of-tree users. 3692 // Find the insertion point for the extractelement lane. 3693 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 3694 if (PHINode *PH = dyn_cast<PHINode>(User)) { 3695 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 3696 if (PH->getIncomingValue(i) == Scalar) { 3697 Instruction *IncomingTerminator = 3698 PH->getIncomingBlock(i)->getTerminator(); 3699 if (isa<CatchSwitchInst>(IncomingTerminator)) { 3700 Builder.SetInsertPoint(VecI->getParent(), 3701 std::next(VecI->getIterator())); 3702 } else { 3703 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 3704 } 3705 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3706 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3707 CSEBlocks.insert(PH->getIncomingBlock(i)); 3708 PH->setOperand(i, Ex); 3709 } 3710 } 3711 } else { 3712 Builder.SetInsertPoint(cast<Instruction>(User)); 3713 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3714 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3715 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 3716 User->replaceUsesOfWith(Scalar, Ex); 3717 } 3718 } else { 3719 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3720 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3721 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3722 CSEBlocks.insert(&F->getEntryBlock()); 3723 User->replaceUsesOfWith(Scalar, Ex); 3724 } 3725 3726 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 3727 } 3728 3729 // For each vectorized value: 3730 for (TreeEntry &EIdx : VectorizableTree) { 3731 TreeEntry *Entry = &EIdx; 3732 3733 // No need to handle users of gathered values. 3734 if (Entry->NeedToGather) 3735 continue; 3736 3737 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 3738 3739 // For each lane: 3740 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3741 Value *Scalar = Entry->Scalars[Lane]; 3742 3743 Type *Ty = Scalar->getType(); 3744 if (!Ty->isVoidTy()) { 3745 #ifndef NDEBUG 3746 for (User *U : Scalar->users()) { 3747 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 3748 3749 // It is legal to replace users in the ignorelist by undef. 3750 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 3751 "Replacing out-of-tree value with undef"); 3752 } 3753 #endif 3754 Value *Undef = UndefValue::get(Ty); 3755 Scalar->replaceAllUsesWith(Undef); 3756 } 3757 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 3758 eraseInstruction(cast<Instruction>(Scalar)); 3759 } 3760 } 3761 3762 Builder.ClearInsertionPoint(); 3763 3764 return VectorizableTree[0].VectorizedValue; 3765 } 3766 3767 void BoUpSLP::optimizeGatherSequence() { 3768 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 3769 << " gather sequences instructions.\n"); 3770 // LICM InsertElementInst sequences. 3771 for (Instruction *I : GatherSeq) { 3772 if (!isa<InsertElementInst>(I) && !isa<ShuffleVectorInst>(I)) 3773 continue; 3774 3775 // Check if this block is inside a loop. 3776 Loop *L = LI->getLoopFor(I->getParent()); 3777 if (!L) 3778 continue; 3779 3780 // Check if it has a preheader. 3781 BasicBlock *PreHeader = L->getLoopPreheader(); 3782 if (!PreHeader) 3783 continue; 3784 3785 // If the vector or the element that we insert into it are 3786 // instructions that are defined in this basic block then we can't 3787 // hoist this instruction. 3788 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 3789 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 3790 if (Op0 && L->contains(Op0)) 3791 continue; 3792 if (Op1 && L->contains(Op1)) 3793 continue; 3794 3795 // We can hoist this instruction. Move it to the pre-header. 3796 I->moveBefore(PreHeader->getTerminator()); 3797 } 3798 3799 // Make a list of all reachable blocks in our CSE queue. 3800 SmallVector<const DomTreeNode *, 8> CSEWorkList; 3801 CSEWorkList.reserve(CSEBlocks.size()); 3802 for (BasicBlock *BB : CSEBlocks) 3803 if (DomTreeNode *N = DT->getNode(BB)) { 3804 assert(DT->isReachableFromEntry(N)); 3805 CSEWorkList.push_back(N); 3806 } 3807 3808 // Sort blocks by domination. This ensures we visit a block after all blocks 3809 // dominating it are visited. 3810 std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), 3811 [this](const DomTreeNode *A, const DomTreeNode *B) { 3812 return DT->properlyDominates(A, B); 3813 }); 3814 3815 // Perform O(N^2) search over the gather sequences and merge identical 3816 // instructions. TODO: We can further optimize this scan if we split the 3817 // instructions into different buckets based on the insert lane. 3818 SmallVector<Instruction *, 16> Visited; 3819 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 3820 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 3821 "Worklist not sorted properly!"); 3822 BasicBlock *BB = (*I)->getBlock(); 3823 // For all instructions in blocks containing gather sequences: 3824 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 3825 Instruction *In = &*it++; 3826 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 3827 continue; 3828 3829 // Check if we can replace this instruction with any of the 3830 // visited instructions. 3831 for (Instruction *v : Visited) { 3832 if (In->isIdenticalTo(v) && 3833 DT->dominates(v->getParent(), In->getParent())) { 3834 In->replaceAllUsesWith(v); 3835 eraseInstruction(In); 3836 In = nullptr; 3837 break; 3838 } 3839 } 3840 if (In) { 3841 assert(!is_contained(Visited, In)); 3842 Visited.push_back(In); 3843 } 3844 } 3845 } 3846 CSEBlocks.clear(); 3847 GatherSeq.clear(); 3848 } 3849 3850 // Groups the instructions to a bundle (which is then a single scheduling entity) 3851 // and schedules instructions until the bundle gets ready. 3852 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, 3853 BoUpSLP *SLP, 3854 const InstructionsState &S) { 3855 if (isa<PHINode>(S.OpValue)) 3856 return true; 3857 3858 // Initialize the instruction bundle. 3859 Instruction *OldScheduleEnd = ScheduleEnd; 3860 ScheduleData *PrevInBundle = nullptr; 3861 ScheduleData *Bundle = nullptr; 3862 bool ReSchedule = false; 3863 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 3864 3865 // Make sure that the scheduling region contains all 3866 // instructions of the bundle. 3867 for (Value *V : VL) { 3868 if (!extendSchedulingRegion(V, S)) 3869 return false; 3870 } 3871 3872 for (Value *V : VL) { 3873 ScheduleData *BundleMember = getScheduleData(V); 3874 assert(BundleMember && 3875 "no ScheduleData for bundle member (maybe not in same basic block)"); 3876 if (BundleMember->IsScheduled) { 3877 // A bundle member was scheduled as single instruction before and now 3878 // needs to be scheduled as part of the bundle. We just get rid of the 3879 // existing schedule. 3880 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 3881 << " was already scheduled\n"); 3882 ReSchedule = true; 3883 } 3884 assert(BundleMember->isSchedulingEntity() && 3885 "bundle member already part of other bundle"); 3886 if (PrevInBundle) { 3887 PrevInBundle->NextInBundle = BundleMember; 3888 } else { 3889 Bundle = BundleMember; 3890 } 3891 BundleMember->UnscheduledDepsInBundle = 0; 3892 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 3893 3894 // Group the instructions to a bundle. 3895 BundleMember->FirstInBundle = Bundle; 3896 PrevInBundle = BundleMember; 3897 } 3898 if (ScheduleEnd != OldScheduleEnd) { 3899 // The scheduling region got new instructions at the lower end (or it is a 3900 // new region for the first bundle). This makes it necessary to 3901 // recalculate all dependencies. 3902 // It is seldom that this needs to be done a second time after adding the 3903 // initial bundle to the region. 3904 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3905 doForAllOpcodes(I, [](ScheduleData *SD) { 3906 SD->clearDependencies(); 3907 }); 3908 } 3909 ReSchedule = true; 3910 } 3911 if (ReSchedule) { 3912 resetSchedule(); 3913 initialFillReadyList(ReadyInsts); 3914 } 3915 3916 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 3917 << BB->getName() << "\n"); 3918 3919 calculateDependencies(Bundle, true, SLP); 3920 3921 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 3922 // means that there are no cyclic dependencies and we can schedule it. 3923 // Note that's important that we don't "schedule" the bundle yet (see 3924 // cancelScheduling). 3925 while (!Bundle->isReady() && !ReadyInsts.empty()) { 3926 3927 ScheduleData *pickedSD = ReadyInsts.back(); 3928 ReadyInsts.pop_back(); 3929 3930 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 3931 schedule(pickedSD, ReadyInsts); 3932 } 3933 } 3934 if (!Bundle->isReady()) { 3935 cancelScheduling(VL, S.OpValue); 3936 return false; 3937 } 3938 return true; 3939 } 3940 3941 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 3942 Value *OpValue) { 3943 if (isa<PHINode>(OpValue)) 3944 return; 3945 3946 ScheduleData *Bundle = getScheduleData(OpValue); 3947 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 3948 assert(!Bundle->IsScheduled && 3949 "Can't cancel bundle which is already scheduled"); 3950 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 3951 "tried to unbundle something which is not a bundle"); 3952 3953 // Un-bundle: make single instructions out of the bundle. 3954 ScheduleData *BundleMember = Bundle; 3955 while (BundleMember) { 3956 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 3957 BundleMember->FirstInBundle = BundleMember; 3958 ScheduleData *Next = BundleMember->NextInBundle; 3959 BundleMember->NextInBundle = nullptr; 3960 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 3961 if (BundleMember->UnscheduledDepsInBundle == 0) { 3962 ReadyInsts.insert(BundleMember); 3963 } 3964 BundleMember = Next; 3965 } 3966 } 3967 3968 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 3969 // Allocate a new ScheduleData for the instruction. 3970 if (ChunkPos >= ChunkSize) { 3971 ScheduleDataChunks.push_back(llvm::make_unique<ScheduleData[]>(ChunkSize)); 3972 ChunkPos = 0; 3973 } 3974 return &(ScheduleDataChunks.back()[ChunkPos++]); 3975 } 3976 3977 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 3978 const InstructionsState &S) { 3979 if (getScheduleData(V, isOneOf(S, V))) 3980 return true; 3981 Instruction *I = dyn_cast<Instruction>(V); 3982 assert(I && "bundle member must be an instruction"); 3983 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 3984 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 3985 ScheduleData *ISD = getScheduleData(I); 3986 if (!ISD) 3987 return false; 3988 assert(isInSchedulingRegion(ISD) && 3989 "ScheduleData not in scheduling region"); 3990 ScheduleData *SD = allocateScheduleDataChunks(); 3991 SD->Inst = I; 3992 SD->init(SchedulingRegionID, S.OpValue); 3993 ExtraScheduleDataMap[I][S.OpValue] = SD; 3994 return true; 3995 }; 3996 if (CheckSheduleForI(I)) 3997 return true; 3998 if (!ScheduleStart) { 3999 // It's the first instruction in the new region. 4000 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 4001 ScheduleStart = I; 4002 ScheduleEnd = I->getNextNode(); 4003 if (isOneOf(S, I) != I) 4004 CheckSheduleForI(I); 4005 assert(ScheduleEnd && "tried to vectorize a terminator?"); 4006 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 4007 return true; 4008 } 4009 // Search up and down at the same time, because we don't know if the new 4010 // instruction is above or below the existing scheduling region. 4011 BasicBlock::reverse_iterator UpIter = 4012 ++ScheduleStart->getIterator().getReverse(); 4013 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 4014 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 4015 BasicBlock::iterator LowerEnd = BB->end(); 4016 while (true) { 4017 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 4018 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 4019 return false; 4020 } 4021 4022 if (UpIter != UpperEnd) { 4023 if (&*UpIter == I) { 4024 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 4025 ScheduleStart = I; 4026 if (isOneOf(S, I) != I) 4027 CheckSheduleForI(I); 4028 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 4029 << "\n"); 4030 return true; 4031 } 4032 UpIter++; 4033 } 4034 if (DownIter != LowerEnd) { 4035 if (&*DownIter == I) { 4036 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 4037 nullptr); 4038 ScheduleEnd = I->getNextNode(); 4039 if (isOneOf(S, I) != I) 4040 CheckSheduleForI(I); 4041 assert(ScheduleEnd && "tried to vectorize a terminator?"); 4042 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I 4043 << "\n"); 4044 return true; 4045 } 4046 DownIter++; 4047 } 4048 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 4049 "instruction not found in block"); 4050 } 4051 return true; 4052 } 4053 4054 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 4055 Instruction *ToI, 4056 ScheduleData *PrevLoadStore, 4057 ScheduleData *NextLoadStore) { 4058 ScheduleData *CurrentLoadStore = PrevLoadStore; 4059 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 4060 ScheduleData *SD = ScheduleDataMap[I]; 4061 if (!SD) { 4062 SD = allocateScheduleDataChunks(); 4063 ScheduleDataMap[I] = SD; 4064 SD->Inst = I; 4065 } 4066 assert(!isInSchedulingRegion(SD) && 4067 "new ScheduleData already in scheduling region"); 4068 SD->init(SchedulingRegionID, I); 4069 4070 if (I->mayReadOrWriteMemory() && 4071 (!isa<IntrinsicInst>(I) || 4072 cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) { 4073 // Update the linked list of memory accessing instructions. 4074 if (CurrentLoadStore) { 4075 CurrentLoadStore->NextLoadStore = SD; 4076 } else { 4077 FirstLoadStoreInRegion = SD; 4078 } 4079 CurrentLoadStore = SD; 4080 } 4081 } 4082 if (NextLoadStore) { 4083 if (CurrentLoadStore) 4084 CurrentLoadStore->NextLoadStore = NextLoadStore; 4085 } else { 4086 LastLoadStoreInRegion = CurrentLoadStore; 4087 } 4088 } 4089 4090 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 4091 bool InsertInReadyList, 4092 BoUpSLP *SLP) { 4093 assert(SD->isSchedulingEntity()); 4094 4095 SmallVector<ScheduleData *, 10> WorkList; 4096 WorkList.push_back(SD); 4097 4098 while (!WorkList.empty()) { 4099 ScheduleData *SD = WorkList.back(); 4100 WorkList.pop_back(); 4101 4102 ScheduleData *BundleMember = SD; 4103 while (BundleMember) { 4104 assert(isInSchedulingRegion(BundleMember)); 4105 if (!BundleMember->hasValidDependencies()) { 4106 4107 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 4108 << "\n"); 4109 BundleMember->Dependencies = 0; 4110 BundleMember->resetUnscheduledDeps(); 4111 4112 // Handle def-use chain dependencies. 4113 if (BundleMember->OpValue != BundleMember->Inst) { 4114 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 4115 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 4116 BundleMember->Dependencies++; 4117 ScheduleData *DestBundle = UseSD->FirstInBundle; 4118 if (!DestBundle->IsScheduled) 4119 BundleMember->incrementUnscheduledDeps(1); 4120 if (!DestBundle->hasValidDependencies()) 4121 WorkList.push_back(DestBundle); 4122 } 4123 } else { 4124 for (User *U : BundleMember->Inst->users()) { 4125 if (isa<Instruction>(U)) { 4126 ScheduleData *UseSD = getScheduleData(U); 4127 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 4128 BundleMember->Dependencies++; 4129 ScheduleData *DestBundle = UseSD->FirstInBundle; 4130 if (!DestBundle->IsScheduled) 4131 BundleMember->incrementUnscheduledDeps(1); 4132 if (!DestBundle->hasValidDependencies()) 4133 WorkList.push_back(DestBundle); 4134 } 4135 } else { 4136 // I'm not sure if this can ever happen. But we need to be safe. 4137 // This lets the instruction/bundle never be scheduled and 4138 // eventually disable vectorization. 4139 BundleMember->Dependencies++; 4140 BundleMember->incrementUnscheduledDeps(1); 4141 } 4142 } 4143 } 4144 4145 // Handle the memory dependencies. 4146 ScheduleData *DepDest = BundleMember->NextLoadStore; 4147 if (DepDest) { 4148 Instruction *SrcInst = BundleMember->Inst; 4149 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 4150 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 4151 unsigned numAliased = 0; 4152 unsigned DistToSrc = 1; 4153 4154 while (DepDest) { 4155 assert(isInSchedulingRegion(DepDest)); 4156 4157 // We have two limits to reduce the complexity: 4158 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 4159 // SLP->isAliased (which is the expensive part in this loop). 4160 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 4161 // the whole loop (even if the loop is fast, it's quadratic). 4162 // It's important for the loop break condition (see below) to 4163 // check this limit even between two read-only instructions. 4164 if (DistToSrc >= MaxMemDepDistance || 4165 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 4166 (numAliased >= AliasedCheckLimit || 4167 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 4168 4169 // We increment the counter only if the locations are aliased 4170 // (instead of counting all alias checks). This gives a better 4171 // balance between reduced runtime and accurate dependencies. 4172 numAliased++; 4173 4174 DepDest->MemoryDependencies.push_back(BundleMember); 4175 BundleMember->Dependencies++; 4176 ScheduleData *DestBundle = DepDest->FirstInBundle; 4177 if (!DestBundle->IsScheduled) { 4178 BundleMember->incrementUnscheduledDeps(1); 4179 } 4180 if (!DestBundle->hasValidDependencies()) { 4181 WorkList.push_back(DestBundle); 4182 } 4183 } 4184 DepDest = DepDest->NextLoadStore; 4185 4186 // Example, explaining the loop break condition: Let's assume our 4187 // starting instruction is i0 and MaxMemDepDistance = 3. 4188 // 4189 // +--------v--v--v 4190 // i0,i1,i2,i3,i4,i5,i6,i7,i8 4191 // +--------^--^--^ 4192 // 4193 // MaxMemDepDistance let us stop alias-checking at i3 and we add 4194 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 4195 // Previously we already added dependencies from i3 to i6,i7,i8 4196 // (because of MaxMemDepDistance). As we added a dependency from 4197 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 4198 // and we can abort this loop at i6. 4199 if (DistToSrc >= 2 * MaxMemDepDistance) 4200 break; 4201 DistToSrc++; 4202 } 4203 } 4204 } 4205 BundleMember = BundleMember->NextInBundle; 4206 } 4207 if (InsertInReadyList && SD->isReady()) { 4208 ReadyInsts.push_back(SD); 4209 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 4210 << "\n"); 4211 } 4212 } 4213 } 4214 4215 void BoUpSLP::BlockScheduling::resetSchedule() { 4216 assert(ScheduleStart && 4217 "tried to reset schedule on block which has not been scheduled"); 4218 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 4219 doForAllOpcodes(I, [&](ScheduleData *SD) { 4220 assert(isInSchedulingRegion(SD) && 4221 "ScheduleData not in scheduling region"); 4222 SD->IsScheduled = false; 4223 SD->resetUnscheduledDeps(); 4224 }); 4225 } 4226 ReadyInsts.clear(); 4227 } 4228 4229 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 4230 if (!BS->ScheduleStart) 4231 return; 4232 4233 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 4234 4235 BS->resetSchedule(); 4236 4237 // For the real scheduling we use a more sophisticated ready-list: it is 4238 // sorted by the original instruction location. This lets the final schedule 4239 // be as close as possible to the original instruction order. 4240 struct ScheduleDataCompare { 4241 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 4242 return SD2->SchedulingPriority < SD1->SchedulingPriority; 4243 } 4244 }; 4245 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 4246 4247 // Ensure that all dependency data is updated and fill the ready-list with 4248 // initial instructions. 4249 int Idx = 0; 4250 int NumToSchedule = 0; 4251 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 4252 I = I->getNextNode()) { 4253 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 4254 assert(SD->isPartOfBundle() == 4255 (getTreeEntry(SD->Inst) != nullptr) && 4256 "scheduler and vectorizer bundle mismatch"); 4257 SD->FirstInBundle->SchedulingPriority = Idx++; 4258 if (SD->isSchedulingEntity()) { 4259 BS->calculateDependencies(SD, false, this); 4260 NumToSchedule++; 4261 } 4262 }); 4263 } 4264 BS->initialFillReadyList(ReadyInsts); 4265 4266 Instruction *LastScheduledInst = BS->ScheduleEnd; 4267 4268 // Do the "real" scheduling. 4269 while (!ReadyInsts.empty()) { 4270 ScheduleData *picked = *ReadyInsts.begin(); 4271 ReadyInsts.erase(ReadyInsts.begin()); 4272 4273 // Move the scheduled instruction(s) to their dedicated places, if not 4274 // there yet. 4275 ScheduleData *BundleMember = picked; 4276 while (BundleMember) { 4277 Instruction *pickedInst = BundleMember->Inst; 4278 if (LastScheduledInst->getNextNode() != pickedInst) { 4279 BS->BB->getInstList().remove(pickedInst); 4280 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 4281 pickedInst); 4282 } 4283 LastScheduledInst = pickedInst; 4284 BundleMember = BundleMember->NextInBundle; 4285 } 4286 4287 BS->schedule(picked, ReadyInsts); 4288 NumToSchedule--; 4289 } 4290 assert(NumToSchedule == 0 && "could not schedule all instructions"); 4291 4292 // Avoid duplicate scheduling of the block. 4293 BS->ScheduleStart = nullptr; 4294 } 4295 4296 unsigned BoUpSLP::getVectorElementSize(Value *V) { 4297 // If V is a store, just return the width of the stored value without 4298 // traversing the expression tree. This is the common case. 4299 if (auto *Store = dyn_cast<StoreInst>(V)) 4300 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 4301 4302 // If V is not a store, we can traverse the expression tree to find loads 4303 // that feed it. The type of the loaded value may indicate a more suitable 4304 // width than V's type. We want to base the vector element size on the width 4305 // of memory operations where possible. 4306 SmallVector<Instruction *, 16> Worklist; 4307 SmallPtrSet<Instruction *, 16> Visited; 4308 if (auto *I = dyn_cast<Instruction>(V)) 4309 Worklist.push_back(I); 4310 4311 // Traverse the expression tree in bottom-up order looking for loads. If we 4312 // encounter an instruction we don't yet handle, we give up. 4313 auto MaxWidth = 0u; 4314 auto FoundUnknownInst = false; 4315 while (!Worklist.empty() && !FoundUnknownInst) { 4316 auto *I = Worklist.pop_back_val(); 4317 Visited.insert(I); 4318 4319 // We should only be looking at scalar instructions here. If the current 4320 // instruction has a vector type, give up. 4321 auto *Ty = I->getType(); 4322 if (isa<VectorType>(Ty)) 4323 FoundUnknownInst = true; 4324 4325 // If the current instruction is a load, update MaxWidth to reflect the 4326 // width of the loaded value. 4327 else if (isa<LoadInst>(I)) 4328 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 4329 4330 // Otherwise, we need to visit the operands of the instruction. We only 4331 // handle the interesting cases from buildTree here. If an operand is an 4332 // instruction we haven't yet visited, we add it to the worklist. 4333 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 4334 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 4335 for (Use &U : I->operands()) 4336 if (auto *J = dyn_cast<Instruction>(U.get())) 4337 if (!Visited.count(J)) 4338 Worklist.push_back(J); 4339 } 4340 4341 // If we don't yet handle the instruction, give up. 4342 else 4343 FoundUnknownInst = true; 4344 } 4345 4346 // If we didn't encounter a memory access in the expression tree, or if we 4347 // gave up for some reason, just return the width of V. 4348 if (!MaxWidth || FoundUnknownInst) 4349 return DL->getTypeSizeInBits(V->getType()); 4350 4351 // Otherwise, return the maximum width we found. 4352 return MaxWidth; 4353 } 4354 4355 // Determine if a value V in a vectorizable expression Expr can be demoted to a 4356 // smaller type with a truncation. We collect the values that will be demoted 4357 // in ToDemote and additional roots that require investigating in Roots. 4358 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 4359 SmallVectorImpl<Value *> &ToDemote, 4360 SmallVectorImpl<Value *> &Roots) { 4361 // We can always demote constants. 4362 if (isa<Constant>(V)) { 4363 ToDemote.push_back(V); 4364 return true; 4365 } 4366 4367 // If the value is not an instruction in the expression with only one use, it 4368 // cannot be demoted. 4369 auto *I = dyn_cast<Instruction>(V); 4370 if (!I || !I->hasOneUse() || !Expr.count(I)) 4371 return false; 4372 4373 switch (I->getOpcode()) { 4374 4375 // We can always demote truncations and extensions. Since truncations can 4376 // seed additional demotion, we save the truncated value. 4377 case Instruction::Trunc: 4378 Roots.push_back(I->getOperand(0)); 4379 break; 4380 case Instruction::ZExt: 4381 case Instruction::SExt: 4382 break; 4383 4384 // We can demote certain binary operations if we can demote both of their 4385 // operands. 4386 case Instruction::Add: 4387 case Instruction::Sub: 4388 case Instruction::Mul: 4389 case Instruction::And: 4390 case Instruction::Or: 4391 case Instruction::Xor: 4392 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 4393 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 4394 return false; 4395 break; 4396 4397 // We can demote selects if we can demote their true and false values. 4398 case Instruction::Select: { 4399 SelectInst *SI = cast<SelectInst>(I); 4400 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 4401 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 4402 return false; 4403 break; 4404 } 4405 4406 // We can demote phis if we can demote all their incoming operands. Note that 4407 // we don't need to worry about cycles since we ensure single use above. 4408 case Instruction::PHI: { 4409 PHINode *PN = cast<PHINode>(I); 4410 for (Value *IncValue : PN->incoming_values()) 4411 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 4412 return false; 4413 break; 4414 } 4415 4416 // Otherwise, conservatively give up. 4417 default: 4418 return false; 4419 } 4420 4421 // Record the value that we can demote. 4422 ToDemote.push_back(V); 4423 return true; 4424 } 4425 4426 void BoUpSLP::computeMinimumValueSizes() { 4427 // If there are no external uses, the expression tree must be rooted by a 4428 // store. We can't demote in-memory values, so there is nothing to do here. 4429 if (ExternalUses.empty()) 4430 return; 4431 4432 // We only attempt to truncate integer expressions. 4433 auto &TreeRoot = VectorizableTree[0].Scalars; 4434 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 4435 if (!TreeRootIT) 4436 return; 4437 4438 // If the expression is not rooted by a store, these roots should have 4439 // external uses. We will rely on InstCombine to rewrite the expression in 4440 // the narrower type. However, InstCombine only rewrites single-use values. 4441 // This means that if a tree entry other than a root is used externally, it 4442 // must have multiple uses and InstCombine will not rewrite it. The code 4443 // below ensures that only the roots are used externally. 4444 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 4445 for (auto &EU : ExternalUses) 4446 if (!Expr.erase(EU.Scalar)) 4447 return; 4448 if (!Expr.empty()) 4449 return; 4450 4451 // Collect the scalar values of the vectorizable expression. We will use this 4452 // context to determine which values can be demoted. If we see a truncation, 4453 // we mark it as seeding another demotion. 4454 for (auto &Entry : VectorizableTree) 4455 Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end()); 4456 4457 // Ensure the roots of the vectorizable tree don't form a cycle. They must 4458 // have a single external user that is not in the vectorizable tree. 4459 for (auto *Root : TreeRoot) 4460 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 4461 return; 4462 4463 // Conservatively determine if we can actually truncate the roots of the 4464 // expression. Collect the values that can be demoted in ToDemote and 4465 // additional roots that require investigating in Roots. 4466 SmallVector<Value *, 32> ToDemote; 4467 SmallVector<Value *, 4> Roots; 4468 for (auto *Root : TreeRoot) 4469 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 4470 return; 4471 4472 // The maximum bit width required to represent all the values that can be 4473 // demoted without loss of precision. It would be safe to truncate the roots 4474 // of the expression to this width. 4475 auto MaxBitWidth = 8u; 4476 4477 // We first check if all the bits of the roots are demanded. If they're not, 4478 // we can truncate the roots to this narrower type. 4479 for (auto *Root : TreeRoot) { 4480 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 4481 MaxBitWidth = std::max<unsigned>( 4482 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 4483 } 4484 4485 // True if the roots can be zero-extended back to their original type, rather 4486 // than sign-extended. We know that if the leading bits are not demanded, we 4487 // can safely zero-extend. So we initialize IsKnownPositive to True. 4488 bool IsKnownPositive = true; 4489 4490 // If all the bits of the roots are demanded, we can try a little harder to 4491 // compute a narrower type. This can happen, for example, if the roots are 4492 // getelementptr indices. InstCombine promotes these indices to the pointer 4493 // width. Thus, all their bits are technically demanded even though the 4494 // address computation might be vectorized in a smaller type. 4495 // 4496 // We start by looking at each entry that can be demoted. We compute the 4497 // maximum bit width required to store the scalar by using ValueTracking to 4498 // compute the number of high-order bits we can truncate. 4499 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 4500 llvm::all_of(TreeRoot, [](Value *R) { 4501 assert(R->hasOneUse() && "Root should have only one use!"); 4502 return isa<GetElementPtrInst>(R->user_back()); 4503 })) { 4504 MaxBitWidth = 8u; 4505 4506 // Determine if the sign bit of all the roots is known to be zero. If not, 4507 // IsKnownPositive is set to False. 4508 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 4509 KnownBits Known = computeKnownBits(R, *DL); 4510 return Known.isNonNegative(); 4511 }); 4512 4513 // Determine the maximum number of bits required to store the scalar 4514 // values. 4515 for (auto *Scalar : ToDemote) { 4516 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 4517 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 4518 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 4519 } 4520 4521 // If we can't prove that the sign bit is zero, we must add one to the 4522 // maximum bit width to account for the unknown sign bit. This preserves 4523 // the existing sign bit so we can safely sign-extend the root back to the 4524 // original type. Otherwise, if we know the sign bit is zero, we will 4525 // zero-extend the root instead. 4526 // 4527 // FIXME: This is somewhat suboptimal, as there will be cases where adding 4528 // one to the maximum bit width will yield a larger-than-necessary 4529 // type. In general, we need to add an extra bit only if we can't 4530 // prove that the upper bit of the original type is equal to the 4531 // upper bit of the proposed smaller type. If these two bits are the 4532 // same (either zero or one) we know that sign-extending from the 4533 // smaller type will result in the same value. Here, since we can't 4534 // yet prove this, we are just making the proposed smaller type 4535 // larger to ensure correctness. 4536 if (!IsKnownPositive) 4537 ++MaxBitWidth; 4538 } 4539 4540 // Round MaxBitWidth up to the next power-of-two. 4541 if (!isPowerOf2_64(MaxBitWidth)) 4542 MaxBitWidth = NextPowerOf2(MaxBitWidth); 4543 4544 // If the maximum bit width we compute is less than the with of the roots' 4545 // type, we can proceed with the narrowing. Otherwise, do nothing. 4546 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 4547 return; 4548 4549 // If we can truncate the root, we must collect additional values that might 4550 // be demoted as a result. That is, those seeded by truncations we will 4551 // modify. 4552 while (!Roots.empty()) 4553 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 4554 4555 // Finally, map the values we can demote to the maximum bit with we computed. 4556 for (auto *Scalar : ToDemote) 4557 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 4558 } 4559 4560 namespace { 4561 4562 /// The SLPVectorizer Pass. 4563 struct SLPVectorizer : public FunctionPass { 4564 SLPVectorizerPass Impl; 4565 4566 /// Pass identification, replacement for typeid 4567 static char ID; 4568 4569 explicit SLPVectorizer() : FunctionPass(ID) { 4570 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 4571 } 4572 4573 bool doInitialization(Module &M) override { 4574 return false; 4575 } 4576 4577 bool runOnFunction(Function &F) override { 4578 if (skipFunction(F)) 4579 return false; 4580 4581 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 4582 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 4583 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 4584 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 4585 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 4586 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 4587 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 4588 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 4589 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 4590 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 4591 4592 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 4593 } 4594 4595 void getAnalysisUsage(AnalysisUsage &AU) const override { 4596 FunctionPass::getAnalysisUsage(AU); 4597 AU.addRequired<AssumptionCacheTracker>(); 4598 AU.addRequired<ScalarEvolutionWrapperPass>(); 4599 AU.addRequired<AAResultsWrapperPass>(); 4600 AU.addRequired<TargetTransformInfoWrapperPass>(); 4601 AU.addRequired<LoopInfoWrapperPass>(); 4602 AU.addRequired<DominatorTreeWrapperPass>(); 4603 AU.addRequired<DemandedBitsWrapperPass>(); 4604 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 4605 AU.addPreserved<LoopInfoWrapperPass>(); 4606 AU.addPreserved<DominatorTreeWrapperPass>(); 4607 AU.addPreserved<AAResultsWrapperPass>(); 4608 AU.addPreserved<GlobalsAAWrapperPass>(); 4609 AU.setPreservesCFG(); 4610 } 4611 }; 4612 4613 } // end anonymous namespace 4614 4615 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 4616 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 4617 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 4618 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 4619 auto *AA = &AM.getResult<AAManager>(F); 4620 auto *LI = &AM.getResult<LoopAnalysis>(F); 4621 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 4622 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 4623 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 4624 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4625 4626 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 4627 if (!Changed) 4628 return PreservedAnalyses::all(); 4629 4630 PreservedAnalyses PA; 4631 PA.preserveSet<CFGAnalyses>(); 4632 PA.preserve<AAManager>(); 4633 PA.preserve<GlobalsAA>(); 4634 return PA; 4635 } 4636 4637 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 4638 TargetTransformInfo *TTI_, 4639 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 4640 LoopInfo *LI_, DominatorTree *DT_, 4641 AssumptionCache *AC_, DemandedBits *DB_, 4642 OptimizationRemarkEmitter *ORE_) { 4643 SE = SE_; 4644 TTI = TTI_; 4645 TLI = TLI_; 4646 AA = AA_; 4647 LI = LI_; 4648 DT = DT_; 4649 AC = AC_; 4650 DB = DB_; 4651 DL = &F.getParent()->getDataLayout(); 4652 4653 Stores.clear(); 4654 GEPs.clear(); 4655 bool Changed = false; 4656 4657 // If the target claims to have no vector registers don't attempt 4658 // vectorization. 4659 if (!TTI->getNumberOfRegisters(true)) 4660 return false; 4661 4662 // Don't vectorize when the attribute NoImplicitFloat is used. 4663 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 4664 return false; 4665 4666 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 4667 4668 // Use the bottom up slp vectorizer to construct chains that start with 4669 // store instructions. 4670 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 4671 4672 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 4673 // delete instructions. 4674 4675 // Scan the blocks in the function in post order. 4676 for (auto BB : post_order(&F.getEntryBlock())) { 4677 collectSeedInstructions(BB); 4678 4679 // Vectorize trees that end at stores. 4680 if (!Stores.empty()) { 4681 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 4682 << " underlying objects.\n"); 4683 Changed |= vectorizeStoreChains(R); 4684 } 4685 4686 // Vectorize trees that end at reductions. 4687 Changed |= vectorizeChainsInBlock(BB, R); 4688 4689 // Vectorize the index computations of getelementptr instructions. This 4690 // is primarily intended to catch gather-like idioms ending at 4691 // non-consecutive loads. 4692 if (!GEPs.empty()) { 4693 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 4694 << " underlying objects.\n"); 4695 Changed |= vectorizeGEPIndices(BB, R); 4696 } 4697 } 4698 4699 if (Changed) { 4700 R.optimizeGatherSequence(); 4701 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 4702 LLVM_DEBUG(verifyFunction(F)); 4703 } 4704 return Changed; 4705 } 4706 4707 /// Check that the Values in the slice in VL array are still existent in 4708 /// the WeakTrackingVH array. 4709 /// Vectorization of part of the VL array may cause later values in the VL array 4710 /// to become invalid. We track when this has happened in the WeakTrackingVH 4711 /// array. 4712 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, 4713 ArrayRef<WeakTrackingVH> VH, unsigned SliceBegin, 4714 unsigned SliceSize) { 4715 VL = VL.slice(SliceBegin, SliceSize); 4716 VH = VH.slice(SliceBegin, SliceSize); 4717 return !std::equal(VL.begin(), VL.end(), VH.begin()); 4718 } 4719 4720 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 4721 unsigned VecRegSize) { 4722 const unsigned ChainLen = Chain.size(); 4723 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 4724 << "\n"); 4725 const unsigned Sz = R.getVectorElementSize(Chain[0]); 4726 const unsigned VF = VecRegSize / Sz; 4727 4728 if (!isPowerOf2_32(Sz) || VF < 2) 4729 return false; 4730 4731 // Keep track of values that were deleted by vectorizing in the loop below. 4732 const SmallVector<WeakTrackingVH, 8> TrackValues(Chain.begin(), Chain.end()); 4733 4734 bool Changed = false; 4735 // Look for profitable vectorizable trees at all offsets, starting at zero. 4736 for (unsigned i = 0, e = ChainLen; i + VF <= e; ++i) { 4737 4738 // Check that a previous iteration of this loop did not delete the Value. 4739 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 4740 continue; 4741 4742 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 4743 << "\n"); 4744 ArrayRef<Value *> Operands = Chain.slice(i, VF); 4745 4746 R.buildTree(Operands); 4747 if (R.isTreeTinyAndNotFullyVectorizable()) 4748 continue; 4749 4750 R.computeMinimumValueSizes(); 4751 4752 int Cost = R.getTreeCost(); 4753 4754 LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF 4755 << "\n"); 4756 if (Cost < -SLPCostThreshold) { 4757 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 4758 4759 using namespace ore; 4760 4761 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 4762 cast<StoreInst>(Chain[i])) 4763 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 4764 << " and with tree size " 4765 << NV("TreeSize", R.getTreeSize())); 4766 4767 R.vectorizeTree(); 4768 4769 // Move to the next bundle. 4770 i += VF - 1; 4771 Changed = true; 4772 } 4773 } 4774 4775 return Changed; 4776 } 4777 4778 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 4779 BoUpSLP &R) { 4780 SetVector<StoreInst *> Heads; 4781 SmallDenseSet<StoreInst *> Tails; 4782 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 4783 4784 // We may run into multiple chains that merge into a single chain. We mark the 4785 // stores that we vectorized so that we don't visit the same store twice. 4786 BoUpSLP::ValueSet VectorizedStores; 4787 bool Changed = false; 4788 4789 auto &&FindConsecutiveAccess = 4790 [this, &Stores, &Heads, &Tails, &ConsecutiveChain] (int K, int Idx) { 4791 if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) 4792 return false; 4793 4794 Tails.insert(Stores[Idx]); 4795 Heads.insert(Stores[K]); 4796 ConsecutiveChain[Stores[K]] = Stores[Idx]; 4797 return true; 4798 }; 4799 4800 // Do a quadratic search on all of the given stores in reverse order and find 4801 // all of the pairs of stores that follow each other. 4802 int E = Stores.size(); 4803 for (int Idx = E - 1; Idx >= 0; --Idx) { 4804 // If a store has multiple consecutive store candidates, search according 4805 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 4806 // This is because usually pairing with immediate succeeding or preceding 4807 // candidate create the best chance to find slp vectorization opportunity. 4808 for (int Offset = 1, F = std::max(E - Idx, Idx + 1); Offset < F; ++Offset) 4809 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 4810 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 4811 break; 4812 } 4813 4814 // For stores that start but don't end a link in the chain: 4815 for (auto *SI : llvm::reverse(Heads)) { 4816 if (Tails.count(SI)) 4817 continue; 4818 4819 // We found a store instr that starts a chain. Now follow the chain and try 4820 // to vectorize it. 4821 BoUpSLP::ValueList Operands; 4822 StoreInst *I = SI; 4823 // Collect the chain into a list. 4824 while ((Tails.count(I) || Heads.count(I)) && !VectorizedStores.count(I)) { 4825 Operands.push_back(I); 4826 // Move to the next value in the chain. 4827 I = ConsecutiveChain[I]; 4828 } 4829 4830 // FIXME: Is division-by-2 the correct step? Should we assert that the 4831 // register size is a power-of-2? 4832 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); 4833 Size /= 2) { 4834 if (vectorizeStoreChain(Operands, R, Size)) { 4835 // Mark the vectorized stores so that we don't vectorize them again. 4836 VectorizedStores.insert(Operands.begin(), Operands.end()); 4837 Changed = true; 4838 break; 4839 } 4840 } 4841 } 4842 4843 return Changed; 4844 } 4845 4846 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 4847 // Initialize the collections. We will make a single pass over the block. 4848 Stores.clear(); 4849 GEPs.clear(); 4850 4851 // Visit the store and getelementptr instructions in BB and organize them in 4852 // Stores and GEPs according to the underlying objects of their pointer 4853 // operands. 4854 for (Instruction &I : *BB) { 4855 // Ignore store instructions that are volatile or have a pointer operand 4856 // that doesn't point to a scalar type. 4857 if (auto *SI = dyn_cast<StoreInst>(&I)) { 4858 if (!SI->isSimple()) 4859 continue; 4860 if (!isValidElementType(SI->getValueOperand()->getType())) 4861 continue; 4862 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 4863 } 4864 4865 // Ignore getelementptr instructions that have more than one index, a 4866 // constant index, or a pointer operand that doesn't point to a scalar 4867 // type. 4868 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 4869 auto Idx = GEP->idx_begin()->get(); 4870 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 4871 continue; 4872 if (!isValidElementType(Idx->getType())) 4873 continue; 4874 if (GEP->getType()->isVectorTy()) 4875 continue; 4876 GEPs[GEP->getPointerOperand()].push_back(GEP); 4877 } 4878 } 4879 } 4880 4881 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 4882 if (!A || !B) 4883 return false; 4884 Value *VL[] = { A, B }; 4885 return tryToVectorizeList(VL, R, /*UserCost=*/0, true); 4886 } 4887 4888 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 4889 int UserCost, bool AllowReorder) { 4890 if (VL.size() < 2) 4891 return false; 4892 4893 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 4894 << VL.size() << ".\n"); 4895 4896 // Check that all of the parts are scalar instructions of the same type, 4897 // we permit an alternate opcode via InstructionsState. 4898 InstructionsState S = getSameOpcode(VL); 4899 if (!S.getOpcode()) 4900 return false; 4901 4902 Instruction *I0 = cast<Instruction>(S.OpValue); 4903 unsigned Sz = R.getVectorElementSize(I0); 4904 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 4905 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 4906 if (MaxVF < 2) { 4907 R.getORE()->emit([&]() { 4908 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 4909 << "Cannot SLP vectorize list: vectorization factor " 4910 << "less than 2 is not supported"; 4911 }); 4912 return false; 4913 } 4914 4915 for (Value *V : VL) { 4916 Type *Ty = V->getType(); 4917 if (!isValidElementType(Ty)) { 4918 // NOTE: the following will give user internal llvm type name, which may 4919 // not be useful. 4920 R.getORE()->emit([&]() { 4921 std::string type_str; 4922 llvm::raw_string_ostream rso(type_str); 4923 Ty->print(rso); 4924 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 4925 << "Cannot SLP vectorize list: type " 4926 << rso.str() + " is unsupported by vectorizer"; 4927 }); 4928 return false; 4929 } 4930 } 4931 4932 bool Changed = false; 4933 bool CandidateFound = false; 4934 int MinCost = SLPCostThreshold; 4935 4936 // Keep track of values that were deleted by vectorizing in the loop below. 4937 SmallVector<WeakTrackingVH, 8> TrackValues(VL.begin(), VL.end()); 4938 4939 unsigned NextInst = 0, MaxInst = VL.size(); 4940 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; 4941 VF /= 2) { 4942 // No actual vectorization should happen, if number of parts is the same as 4943 // provided vectorization factor (i.e. the scalar type is used for vector 4944 // code during codegen). 4945 auto *VecTy = VectorType::get(VL[0]->getType(), VF); 4946 if (TTI->getNumberOfParts(VecTy) == VF) 4947 continue; 4948 for (unsigned I = NextInst; I < MaxInst; ++I) { 4949 unsigned OpsWidth = 0; 4950 4951 if (I + VF > MaxInst) 4952 OpsWidth = MaxInst - I; 4953 else 4954 OpsWidth = VF; 4955 4956 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 4957 break; 4958 4959 // Check that a previous iteration of this loop did not delete the Value. 4960 if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth)) 4961 continue; 4962 4963 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 4964 << "\n"); 4965 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 4966 4967 R.buildTree(Ops); 4968 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 4969 // TODO: check if we can allow reordering for more cases. 4970 if (AllowReorder && Order) { 4971 // TODO: reorder tree nodes without tree rebuilding. 4972 // Conceptually, there is nothing actually preventing us from trying to 4973 // reorder a larger list. In fact, we do exactly this when vectorizing 4974 // reductions. However, at this point, we only expect to get here when 4975 // there are exactly two operations. 4976 assert(Ops.size() == 2); 4977 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 4978 R.buildTree(ReorderedOps, None); 4979 } 4980 if (R.isTreeTinyAndNotFullyVectorizable()) 4981 continue; 4982 4983 R.computeMinimumValueSizes(); 4984 int Cost = R.getTreeCost() - UserCost; 4985 CandidateFound = true; 4986 MinCost = std::min(MinCost, Cost); 4987 4988 if (Cost < -SLPCostThreshold) { 4989 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 4990 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 4991 cast<Instruction>(Ops[0])) 4992 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 4993 << " and with tree size " 4994 << ore::NV("TreeSize", R.getTreeSize())); 4995 4996 R.vectorizeTree(); 4997 // Move to the next bundle. 4998 I += VF - 1; 4999 NextInst = I + 1; 5000 Changed = true; 5001 } 5002 } 5003 } 5004 5005 if (!Changed && CandidateFound) { 5006 R.getORE()->emit([&]() { 5007 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 5008 << "List vectorization was possible but not beneficial with cost " 5009 << ore::NV("Cost", MinCost) << " >= " 5010 << ore::NV("Treshold", -SLPCostThreshold); 5011 }); 5012 } else if (!Changed) { 5013 R.getORE()->emit([&]() { 5014 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 5015 << "Cannot SLP vectorize list: vectorization was impossible" 5016 << " with available vectorization factors"; 5017 }); 5018 } 5019 return Changed; 5020 } 5021 5022 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 5023 if (!I) 5024 return false; 5025 5026 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 5027 return false; 5028 5029 Value *P = I->getParent(); 5030 5031 // Vectorize in current basic block only. 5032 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 5033 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 5034 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 5035 return false; 5036 5037 // Try to vectorize V. 5038 if (tryToVectorizePair(Op0, Op1, R)) 5039 return true; 5040 5041 auto *A = dyn_cast<BinaryOperator>(Op0); 5042 auto *B = dyn_cast<BinaryOperator>(Op1); 5043 // Try to skip B. 5044 if (B && B->hasOneUse()) { 5045 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 5046 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 5047 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 5048 return true; 5049 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 5050 return true; 5051 } 5052 5053 // Try to skip A. 5054 if (A && A->hasOneUse()) { 5055 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 5056 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 5057 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 5058 return true; 5059 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 5060 return true; 5061 } 5062 return false; 5063 } 5064 5065 /// Generate a shuffle mask to be used in a reduction tree. 5066 /// 5067 /// \param VecLen The length of the vector to be reduced. 5068 /// \param NumEltsToRdx The number of elements that should be reduced in the 5069 /// vector. 5070 /// \param IsPairwise Whether the reduction is a pairwise or splitting 5071 /// reduction. A pairwise reduction will generate a mask of 5072 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 5073 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 5074 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 5075 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 5076 bool IsPairwise, bool IsLeft, 5077 IRBuilder<> &Builder) { 5078 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 5079 5080 SmallVector<Constant *, 32> ShuffleMask( 5081 VecLen, UndefValue::get(Builder.getInt32Ty())); 5082 5083 if (IsPairwise) 5084 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 5085 for (unsigned i = 0; i != NumEltsToRdx; ++i) 5086 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 5087 else 5088 // Move the upper half of the vector to the lower half. 5089 for (unsigned i = 0; i != NumEltsToRdx; ++i) 5090 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 5091 5092 return ConstantVector::get(ShuffleMask); 5093 } 5094 5095 namespace { 5096 5097 /// Model horizontal reductions. 5098 /// 5099 /// A horizontal reduction is a tree of reduction operations (currently add and 5100 /// fadd) that has operations that can be put into a vector as its leaf. 5101 /// For example, this tree: 5102 /// 5103 /// mul mul mul mul 5104 /// \ / \ / 5105 /// + + 5106 /// \ / 5107 /// + 5108 /// This tree has "mul" as its reduced values and "+" as its reduction 5109 /// operations. A reduction might be feeding into a store or a binary operation 5110 /// feeding a phi. 5111 /// ... 5112 /// \ / 5113 /// + 5114 /// | 5115 /// phi += 5116 /// 5117 /// Or: 5118 /// ... 5119 /// \ / 5120 /// + 5121 /// | 5122 /// *p = 5123 /// 5124 class HorizontalReduction { 5125 using ReductionOpsType = SmallVector<Value *, 16>; 5126 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 5127 ReductionOpsListType ReductionOps; 5128 SmallVector<Value *, 32> ReducedVals; 5129 // Use map vector to make stable output. 5130 MapVector<Instruction *, Value *> ExtraArgs; 5131 5132 /// Kind of the reduction data. 5133 enum ReductionKind { 5134 RK_None, /// Not a reduction. 5135 RK_Arithmetic, /// Binary reduction data. 5136 RK_Min, /// Minimum reduction data. 5137 RK_UMin, /// Unsigned minimum reduction data. 5138 RK_Max, /// Maximum reduction data. 5139 RK_UMax, /// Unsigned maximum reduction data. 5140 }; 5141 5142 /// Contains info about operation, like its opcode, left and right operands. 5143 class OperationData { 5144 /// Opcode of the instruction. 5145 unsigned Opcode = 0; 5146 5147 /// Left operand of the reduction operation. 5148 Value *LHS = nullptr; 5149 5150 /// Right operand of the reduction operation. 5151 Value *RHS = nullptr; 5152 5153 /// Kind of the reduction operation. 5154 ReductionKind Kind = RK_None; 5155 5156 /// True if float point min/max reduction has no NaNs. 5157 bool NoNaN = false; 5158 5159 /// Checks if the reduction operation can be vectorized. 5160 bool isVectorizable() const { 5161 return LHS && RHS && 5162 // We currently only support add/mul/logical && min/max reductions. 5163 ((Kind == RK_Arithmetic && 5164 (Opcode == Instruction::Add || Opcode == Instruction::FAdd || 5165 Opcode == Instruction::Mul || Opcode == Instruction::FMul || 5166 Opcode == Instruction::And || Opcode == Instruction::Or || 5167 Opcode == Instruction::Xor)) || 5168 ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 5169 (Kind == RK_Min || Kind == RK_Max)) || 5170 (Opcode == Instruction::ICmp && 5171 (Kind == RK_UMin || Kind == RK_UMax))); 5172 } 5173 5174 /// Creates reduction operation with the current opcode. 5175 Value *createOp(IRBuilder<> &Builder, const Twine &Name) const { 5176 assert(isVectorizable() && 5177 "Expected add|fadd or min/max reduction operation."); 5178 Value *Cmp; 5179 switch (Kind) { 5180 case RK_Arithmetic: 5181 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 5182 Name); 5183 case RK_Min: 5184 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS) 5185 : Builder.CreateFCmpOLT(LHS, RHS); 5186 break; 5187 case RK_Max: 5188 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS) 5189 : Builder.CreateFCmpOGT(LHS, RHS); 5190 break; 5191 case RK_UMin: 5192 assert(Opcode == Instruction::ICmp && "Expected integer types."); 5193 Cmp = Builder.CreateICmpULT(LHS, RHS); 5194 break; 5195 case RK_UMax: 5196 assert(Opcode == Instruction::ICmp && "Expected integer types."); 5197 Cmp = Builder.CreateICmpUGT(LHS, RHS); 5198 break; 5199 case RK_None: 5200 llvm_unreachable("Unknown reduction operation."); 5201 } 5202 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 5203 } 5204 5205 public: 5206 explicit OperationData() = default; 5207 5208 /// Construction for reduced values. They are identified by opcode only and 5209 /// don't have associated LHS/RHS values. 5210 explicit OperationData(Value *V) { 5211 if (auto *I = dyn_cast<Instruction>(V)) 5212 Opcode = I->getOpcode(); 5213 } 5214 5215 /// Constructor for reduction operations with opcode and its left and 5216 /// right operands. 5217 OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind, 5218 bool NoNaN = false) 5219 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) { 5220 assert(Kind != RK_None && "One of the reduction operations is expected."); 5221 } 5222 5223 explicit operator bool() const { return Opcode; } 5224 5225 /// Get the index of the first operand. 5226 unsigned getFirstOperandIndex() const { 5227 assert(!!*this && "The opcode is not set."); 5228 switch (Kind) { 5229 case RK_Min: 5230 case RK_UMin: 5231 case RK_Max: 5232 case RK_UMax: 5233 return 1; 5234 case RK_Arithmetic: 5235 case RK_None: 5236 break; 5237 } 5238 return 0; 5239 } 5240 5241 /// Total number of operands in the reduction operation. 5242 unsigned getNumberOfOperands() const { 5243 assert(Kind != RK_None && !!*this && LHS && RHS && 5244 "Expected reduction operation."); 5245 switch (Kind) { 5246 case RK_Arithmetic: 5247 return 2; 5248 case RK_Min: 5249 case RK_UMin: 5250 case RK_Max: 5251 case RK_UMax: 5252 return 3; 5253 case RK_None: 5254 break; 5255 } 5256 llvm_unreachable("Reduction kind is not set"); 5257 } 5258 5259 /// Checks if the operation has the same parent as \p P. 5260 bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const { 5261 assert(Kind != RK_None && !!*this && LHS && RHS && 5262 "Expected reduction operation."); 5263 if (!IsRedOp) 5264 return I->getParent() == P; 5265 switch (Kind) { 5266 case RK_Arithmetic: 5267 // Arithmetic reduction operation must be used once only. 5268 return I->getParent() == P; 5269 case RK_Min: 5270 case RK_UMin: 5271 case RK_Max: 5272 case RK_UMax: { 5273 // SelectInst must be used twice while the condition op must have single 5274 // use only. 5275 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 5276 return I->getParent() == P && Cmp && Cmp->getParent() == P; 5277 } 5278 case RK_None: 5279 break; 5280 } 5281 llvm_unreachable("Reduction kind is not set"); 5282 } 5283 /// Expected number of uses for reduction operations/reduced values. 5284 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { 5285 assert(Kind != RK_None && !!*this && LHS && RHS && 5286 "Expected reduction operation."); 5287 switch (Kind) { 5288 case RK_Arithmetic: 5289 return I->hasOneUse(); 5290 case RK_Min: 5291 case RK_UMin: 5292 case RK_Max: 5293 case RK_UMax: 5294 return I->hasNUses(2) && 5295 (!IsReductionOp || 5296 cast<SelectInst>(I)->getCondition()->hasOneUse()); 5297 case RK_None: 5298 break; 5299 } 5300 llvm_unreachable("Reduction kind is not set"); 5301 } 5302 5303 /// Initializes the list of reduction operations. 5304 void initReductionOps(ReductionOpsListType &ReductionOps) { 5305 assert(Kind != RK_None && !!*this && LHS && RHS && 5306 "Expected reduction operation."); 5307 switch (Kind) { 5308 case RK_Arithmetic: 5309 ReductionOps.assign(1, ReductionOpsType()); 5310 break; 5311 case RK_Min: 5312 case RK_UMin: 5313 case RK_Max: 5314 case RK_UMax: 5315 ReductionOps.assign(2, ReductionOpsType()); 5316 break; 5317 case RK_None: 5318 llvm_unreachable("Reduction kind is not set"); 5319 } 5320 } 5321 /// Add all reduction operations for the reduction instruction \p I. 5322 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { 5323 assert(Kind != RK_None && !!*this && LHS && RHS && 5324 "Expected reduction operation."); 5325 switch (Kind) { 5326 case RK_Arithmetic: 5327 ReductionOps[0].emplace_back(I); 5328 break; 5329 case RK_Min: 5330 case RK_UMin: 5331 case RK_Max: 5332 case RK_UMax: 5333 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 5334 ReductionOps[1].emplace_back(I); 5335 break; 5336 case RK_None: 5337 llvm_unreachable("Reduction kind is not set"); 5338 } 5339 } 5340 5341 /// Checks if instruction is associative and can be vectorized. 5342 bool isAssociative(Instruction *I) const { 5343 assert(Kind != RK_None && *this && LHS && RHS && 5344 "Expected reduction operation."); 5345 switch (Kind) { 5346 case RK_Arithmetic: 5347 return I->isAssociative(); 5348 case RK_Min: 5349 case RK_Max: 5350 return Opcode == Instruction::ICmp || 5351 cast<Instruction>(I->getOperand(0))->isFast(); 5352 case RK_UMin: 5353 case RK_UMax: 5354 assert(Opcode == Instruction::ICmp && 5355 "Only integer compare operation is expected."); 5356 return true; 5357 case RK_None: 5358 break; 5359 } 5360 llvm_unreachable("Reduction kind is not set"); 5361 } 5362 5363 /// Checks if the reduction operation can be vectorized. 5364 bool isVectorizable(Instruction *I) const { 5365 return isVectorizable() && isAssociative(I); 5366 } 5367 5368 /// Checks if two operation data are both a reduction op or both a reduced 5369 /// value. 5370 bool operator==(const OperationData &OD) { 5371 assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) && 5372 "One of the comparing operations is incorrect."); 5373 return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode); 5374 } 5375 bool operator!=(const OperationData &OD) { return !(*this == OD); } 5376 void clear() { 5377 Opcode = 0; 5378 LHS = nullptr; 5379 RHS = nullptr; 5380 Kind = RK_None; 5381 NoNaN = false; 5382 } 5383 5384 /// Get the opcode of the reduction operation. 5385 unsigned getOpcode() const { 5386 assert(isVectorizable() && "Expected vectorizable operation."); 5387 return Opcode; 5388 } 5389 5390 /// Get kind of reduction data. 5391 ReductionKind getKind() const { return Kind; } 5392 Value *getLHS() const { return LHS; } 5393 Value *getRHS() const { return RHS; } 5394 Type *getConditionType() const { 5395 switch (Kind) { 5396 case RK_Arithmetic: 5397 return nullptr; 5398 case RK_Min: 5399 case RK_Max: 5400 case RK_UMin: 5401 case RK_UMax: 5402 return CmpInst::makeCmpResultType(LHS->getType()); 5403 case RK_None: 5404 break; 5405 } 5406 llvm_unreachable("Reduction kind is not set"); 5407 } 5408 5409 /// Creates reduction operation with the current opcode with the IR flags 5410 /// from \p ReductionOps. 5411 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 5412 const ReductionOpsListType &ReductionOps) const { 5413 assert(isVectorizable() && 5414 "Expected add|fadd or min/max reduction operation."); 5415 auto *Op = createOp(Builder, Name); 5416 switch (Kind) { 5417 case RK_Arithmetic: 5418 propagateIRFlags(Op, ReductionOps[0]); 5419 return Op; 5420 case RK_Min: 5421 case RK_Max: 5422 case RK_UMin: 5423 case RK_UMax: 5424 if (auto *SI = dyn_cast<SelectInst>(Op)) 5425 propagateIRFlags(SI->getCondition(), ReductionOps[0]); 5426 propagateIRFlags(Op, ReductionOps[1]); 5427 return Op; 5428 case RK_None: 5429 break; 5430 } 5431 llvm_unreachable("Unknown reduction operation."); 5432 } 5433 /// Creates reduction operation with the current opcode with the IR flags 5434 /// from \p I. 5435 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 5436 Instruction *I) const { 5437 assert(isVectorizable() && 5438 "Expected add|fadd or min/max reduction operation."); 5439 auto *Op = createOp(Builder, Name); 5440 switch (Kind) { 5441 case RK_Arithmetic: 5442 propagateIRFlags(Op, I); 5443 return Op; 5444 case RK_Min: 5445 case RK_Max: 5446 case RK_UMin: 5447 case RK_UMax: 5448 if (auto *SI = dyn_cast<SelectInst>(Op)) { 5449 propagateIRFlags(SI->getCondition(), 5450 cast<SelectInst>(I)->getCondition()); 5451 } 5452 propagateIRFlags(Op, I); 5453 return Op; 5454 case RK_None: 5455 break; 5456 } 5457 llvm_unreachable("Unknown reduction operation."); 5458 } 5459 5460 TargetTransformInfo::ReductionFlags getFlags() const { 5461 TargetTransformInfo::ReductionFlags Flags; 5462 Flags.NoNaN = NoNaN; 5463 switch (Kind) { 5464 case RK_Arithmetic: 5465 break; 5466 case RK_Min: 5467 Flags.IsSigned = Opcode == Instruction::ICmp; 5468 Flags.IsMaxOp = false; 5469 break; 5470 case RK_Max: 5471 Flags.IsSigned = Opcode == Instruction::ICmp; 5472 Flags.IsMaxOp = true; 5473 break; 5474 case RK_UMin: 5475 Flags.IsSigned = false; 5476 Flags.IsMaxOp = false; 5477 break; 5478 case RK_UMax: 5479 Flags.IsSigned = false; 5480 Flags.IsMaxOp = true; 5481 break; 5482 case RK_None: 5483 llvm_unreachable("Reduction kind is not set"); 5484 } 5485 return Flags; 5486 } 5487 }; 5488 5489 WeakTrackingVH ReductionRoot; 5490 5491 /// The operation data of the reduction operation. 5492 OperationData ReductionData; 5493 5494 /// The operation data of the values we perform a reduction on. 5495 OperationData ReducedValueData; 5496 5497 /// Should we model this reduction as a pairwise reduction tree or a tree that 5498 /// splits the vector in halves and adds those halves. 5499 bool IsPairwiseReduction = false; 5500 5501 /// Checks if the ParentStackElem.first should be marked as a reduction 5502 /// operation with an extra argument or as extra argument itself. 5503 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 5504 Value *ExtraArg) { 5505 if (ExtraArgs.count(ParentStackElem.first)) { 5506 ExtraArgs[ParentStackElem.first] = nullptr; 5507 // We ran into something like: 5508 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 5509 // The whole ParentStackElem.first should be considered as an extra value 5510 // in this case. 5511 // Do not perform analysis of remaining operands of ParentStackElem.first 5512 // instruction, this whole instruction is an extra argument. 5513 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 5514 } else { 5515 // We ran into something like: 5516 // ParentStackElem.first += ... + ExtraArg + ... 5517 ExtraArgs[ParentStackElem.first] = ExtraArg; 5518 } 5519 } 5520 5521 static OperationData getOperationData(Value *V) { 5522 if (!V) 5523 return OperationData(); 5524 5525 Value *LHS; 5526 Value *RHS; 5527 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) { 5528 return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS, 5529 RK_Arithmetic); 5530 } 5531 if (auto *Select = dyn_cast<SelectInst>(V)) { 5532 // Look for a min/max pattern. 5533 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5534 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 5535 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5536 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 5537 } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) || 5538 m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5539 return OperationData( 5540 Instruction::FCmp, LHS, RHS, RK_Min, 5541 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 5542 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5543 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 5544 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5545 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 5546 } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) || 5547 m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5548 return OperationData( 5549 Instruction::FCmp, LHS, RHS, RK_Max, 5550 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 5551 } else { 5552 // Try harder: look for min/max pattern based on instructions producing 5553 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 5554 // During the intermediate stages of SLP, it's very common to have 5555 // pattern like this (since optimizeGatherSequence is run only once 5556 // at the end): 5557 // %1 = extractelement <2 x i32> %a, i32 0 5558 // %2 = extractelement <2 x i32> %a, i32 1 5559 // %cond = icmp sgt i32 %1, %2 5560 // %3 = extractelement <2 x i32> %a, i32 0 5561 // %4 = extractelement <2 x i32> %a, i32 1 5562 // %select = select i1 %cond, i32 %3, i32 %4 5563 CmpInst::Predicate Pred; 5564 Instruction *L1; 5565 Instruction *L2; 5566 5567 LHS = Select->getTrueValue(); 5568 RHS = Select->getFalseValue(); 5569 Value *Cond = Select->getCondition(); 5570 5571 // TODO: Support inverse predicates. 5572 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 5573 if (!isa<ExtractElementInst>(RHS) || 5574 !L2->isIdenticalTo(cast<Instruction>(RHS))) 5575 return OperationData(V); 5576 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 5577 if (!isa<ExtractElementInst>(LHS) || 5578 !L1->isIdenticalTo(cast<Instruction>(LHS))) 5579 return OperationData(V); 5580 } else { 5581 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 5582 return OperationData(V); 5583 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 5584 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 5585 !L2->isIdenticalTo(cast<Instruction>(RHS))) 5586 return OperationData(V); 5587 } 5588 switch (Pred) { 5589 default: 5590 return OperationData(V); 5591 5592 case CmpInst::ICMP_ULT: 5593 case CmpInst::ICMP_ULE: 5594 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 5595 5596 case CmpInst::ICMP_SLT: 5597 case CmpInst::ICMP_SLE: 5598 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 5599 5600 case CmpInst::FCMP_OLT: 5601 case CmpInst::FCMP_OLE: 5602 case CmpInst::FCMP_ULT: 5603 case CmpInst::FCMP_ULE: 5604 return OperationData(Instruction::FCmp, LHS, RHS, RK_Min, 5605 cast<Instruction>(Cond)->hasNoNaNs()); 5606 5607 case CmpInst::ICMP_UGT: 5608 case CmpInst::ICMP_UGE: 5609 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 5610 5611 case CmpInst::ICMP_SGT: 5612 case CmpInst::ICMP_SGE: 5613 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 5614 5615 case CmpInst::FCMP_OGT: 5616 case CmpInst::FCMP_OGE: 5617 case CmpInst::FCMP_UGT: 5618 case CmpInst::FCMP_UGE: 5619 return OperationData(Instruction::FCmp, LHS, RHS, RK_Max, 5620 cast<Instruction>(Cond)->hasNoNaNs()); 5621 } 5622 } 5623 } 5624 return OperationData(V); 5625 } 5626 5627 public: 5628 HorizontalReduction() = default; 5629 5630 /// Try to find a reduction tree. 5631 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 5632 assert((!Phi || is_contained(Phi->operands(), B)) && 5633 "Thi phi needs to use the binary operator"); 5634 5635 ReductionData = getOperationData(B); 5636 5637 // We could have a initial reductions that is not an add. 5638 // r *= v1 + v2 + v3 + v4 5639 // In such a case start looking for a tree rooted in the first '+'. 5640 if (Phi) { 5641 if (ReductionData.getLHS() == Phi) { 5642 Phi = nullptr; 5643 B = dyn_cast<Instruction>(ReductionData.getRHS()); 5644 ReductionData = getOperationData(B); 5645 } else if (ReductionData.getRHS() == Phi) { 5646 Phi = nullptr; 5647 B = dyn_cast<Instruction>(ReductionData.getLHS()); 5648 ReductionData = getOperationData(B); 5649 } 5650 } 5651 5652 if (!ReductionData.isVectorizable(B)) 5653 return false; 5654 5655 Type *Ty = B->getType(); 5656 if (!isValidElementType(Ty)) 5657 return false; 5658 if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy()) 5659 return false; 5660 5661 ReducedValueData.clear(); 5662 ReductionRoot = B; 5663 5664 // Post order traverse the reduction tree starting at B. We only handle true 5665 // trees containing only binary operators. 5666 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 5667 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); 5668 ReductionData.initReductionOps(ReductionOps); 5669 while (!Stack.empty()) { 5670 Instruction *TreeN = Stack.back().first; 5671 unsigned EdgeToVist = Stack.back().second++; 5672 OperationData OpData = getOperationData(TreeN); 5673 bool IsReducedValue = OpData != ReductionData; 5674 5675 // Postorder vist. 5676 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { 5677 if (IsReducedValue) 5678 ReducedVals.push_back(TreeN); 5679 else { 5680 auto I = ExtraArgs.find(TreeN); 5681 if (I != ExtraArgs.end() && !I->second) { 5682 // Check if TreeN is an extra argument of its parent operation. 5683 if (Stack.size() <= 1) { 5684 // TreeN can't be an extra argument as it is a root reduction 5685 // operation. 5686 return false; 5687 } 5688 // Yes, TreeN is an extra argument, do not add it to a list of 5689 // reduction operations. 5690 // Stack[Stack.size() - 2] always points to the parent operation. 5691 markExtraArg(Stack[Stack.size() - 2], TreeN); 5692 ExtraArgs.erase(TreeN); 5693 } else 5694 ReductionData.addReductionOps(TreeN, ReductionOps); 5695 } 5696 // Retract. 5697 Stack.pop_back(); 5698 continue; 5699 } 5700 5701 // Visit left or right. 5702 Value *NextV = TreeN->getOperand(EdgeToVist); 5703 if (NextV != Phi) { 5704 auto *I = dyn_cast<Instruction>(NextV); 5705 OpData = getOperationData(I); 5706 // Continue analysis if the next operand is a reduction operation or 5707 // (possibly) a reduced value. If the reduced value opcode is not set, 5708 // the first met operation != reduction operation is considered as the 5709 // reduced value class. 5710 if (I && (!ReducedValueData || OpData == ReducedValueData || 5711 OpData == ReductionData)) { 5712 const bool IsReductionOperation = OpData == ReductionData; 5713 // Only handle trees in the current basic block. 5714 if (!ReductionData.hasSameParent(I, B->getParent(), 5715 IsReductionOperation)) { 5716 // I is an extra argument for TreeN (its parent operation). 5717 markExtraArg(Stack.back(), I); 5718 continue; 5719 } 5720 5721 // Each tree node needs to have minimal number of users except for the 5722 // ultimate reduction. 5723 if (!ReductionData.hasRequiredNumberOfUses(I, 5724 OpData == ReductionData) && 5725 I != B) { 5726 // I is an extra argument for TreeN (its parent operation). 5727 markExtraArg(Stack.back(), I); 5728 continue; 5729 } 5730 5731 if (IsReductionOperation) { 5732 // We need to be able to reassociate the reduction operations. 5733 if (!OpData.isAssociative(I)) { 5734 // I is an extra argument for TreeN (its parent operation). 5735 markExtraArg(Stack.back(), I); 5736 continue; 5737 } 5738 } else if (ReducedValueData && 5739 ReducedValueData != OpData) { 5740 // Make sure that the opcodes of the operations that we are going to 5741 // reduce match. 5742 // I is an extra argument for TreeN (its parent operation). 5743 markExtraArg(Stack.back(), I); 5744 continue; 5745 } else if (!ReducedValueData) 5746 ReducedValueData = OpData; 5747 5748 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 5749 continue; 5750 } 5751 } 5752 // NextV is an extra argument for TreeN (its parent operation). 5753 markExtraArg(Stack.back(), NextV); 5754 } 5755 return true; 5756 } 5757 5758 /// Attempt to vectorize the tree found by 5759 /// matchAssociativeReduction. 5760 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 5761 if (ReducedVals.empty()) 5762 return false; 5763 5764 // If there is a sufficient number of reduction values, reduce 5765 // to a nearby power-of-2. Can safely generate oversized 5766 // vectors and rely on the backend to split them to legal sizes. 5767 unsigned NumReducedVals = ReducedVals.size(); 5768 if (NumReducedVals < 4) 5769 return false; 5770 5771 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 5772 5773 Value *VectorizedTree = nullptr; 5774 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 5775 FastMathFlags Unsafe; 5776 Unsafe.setFast(); 5777 Builder.setFastMathFlags(Unsafe); 5778 unsigned i = 0; 5779 5780 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 5781 // The same extra argument may be used several time, so log each attempt 5782 // to use it. 5783 for (auto &Pair : ExtraArgs) { 5784 assert(Pair.first && "DebugLoc must be set."); 5785 ExternallyUsedValues[Pair.second].push_back(Pair.first); 5786 } 5787 // The reduction root is used as the insertion point for new instructions, 5788 // so set it as externally used to prevent it from being deleted. 5789 ExternallyUsedValues[ReductionRoot]; 5790 SmallVector<Value *, 16> IgnoreList; 5791 for (auto &V : ReductionOps) 5792 IgnoreList.append(V.begin(), V.end()); 5793 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 5794 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 5795 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 5796 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 5797 // TODO: Handle orders of size less than number of elements in the vector. 5798 if (Order && Order->size() == VL.size()) { 5799 // TODO: reorder tree nodes without tree rebuilding. 5800 SmallVector<Value *, 4> ReorderedOps(VL.size()); 5801 llvm::transform(*Order, ReorderedOps.begin(), 5802 [VL](const unsigned Idx) { return VL[Idx]; }); 5803 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 5804 } 5805 if (V.isTreeTinyAndNotFullyVectorizable()) 5806 break; 5807 5808 V.computeMinimumValueSizes(); 5809 5810 // Estimate cost. 5811 int TreeCost = V.getTreeCost(); 5812 int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth); 5813 int Cost = TreeCost + ReductionCost; 5814 if (Cost >= -SLPCostThreshold) { 5815 V.getORE()->emit([&]() { 5816 return OptimizationRemarkMissed( 5817 SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0])) 5818 << "Vectorizing horizontal reduction is possible" 5819 << "but not beneficial with cost " 5820 << ore::NV("Cost", Cost) << " and threshold " 5821 << ore::NV("Threshold", -SLPCostThreshold); 5822 }); 5823 break; 5824 } 5825 5826 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 5827 << Cost << ". (HorRdx)\n"); 5828 V.getORE()->emit([&]() { 5829 return OptimizationRemark( 5830 SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0])) 5831 << "Vectorized horizontal reduction with cost " 5832 << ore::NV("Cost", Cost) << " and with tree size " 5833 << ore::NV("TreeSize", V.getTreeSize()); 5834 }); 5835 5836 // Vectorize a tree. 5837 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 5838 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 5839 5840 // Emit a reduction. 5841 Builder.SetInsertPoint(cast<Instruction>(ReductionRoot)); 5842 Value *ReducedSubTree = 5843 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 5844 if (VectorizedTree) { 5845 Builder.SetCurrentDebugLocation(Loc); 5846 OperationData VectReductionData(ReductionData.getOpcode(), 5847 VectorizedTree, ReducedSubTree, 5848 ReductionData.getKind()); 5849 VectorizedTree = 5850 VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 5851 } else 5852 VectorizedTree = ReducedSubTree; 5853 i += ReduxWidth; 5854 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 5855 } 5856 5857 if (VectorizedTree) { 5858 // Finish the reduction. 5859 for (; i < NumReducedVals; ++i) { 5860 auto *I = cast<Instruction>(ReducedVals[i]); 5861 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 5862 OperationData VectReductionData(ReductionData.getOpcode(), 5863 VectorizedTree, I, 5864 ReductionData.getKind()); 5865 VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps); 5866 } 5867 for (auto &Pair : ExternallyUsedValues) { 5868 // Add each externally used value to the final reduction. 5869 for (auto *I : Pair.second) { 5870 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 5871 OperationData VectReductionData(ReductionData.getOpcode(), 5872 VectorizedTree, Pair.first, 5873 ReductionData.getKind()); 5874 VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I); 5875 } 5876 } 5877 // Update users. 5878 ReductionRoot->replaceAllUsesWith(VectorizedTree); 5879 } 5880 return VectorizedTree != nullptr; 5881 } 5882 5883 unsigned numReductionValues() const { 5884 return ReducedVals.size(); 5885 } 5886 5887 private: 5888 /// Calculate the cost of a reduction. 5889 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 5890 unsigned ReduxWidth) { 5891 Type *ScalarTy = FirstReducedVal->getType(); 5892 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 5893 5894 int PairwiseRdxCost; 5895 int SplittingRdxCost; 5896 switch (ReductionData.getKind()) { 5897 case RK_Arithmetic: 5898 PairwiseRdxCost = 5899 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 5900 /*IsPairwiseForm=*/true); 5901 SplittingRdxCost = 5902 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 5903 /*IsPairwiseForm=*/false); 5904 break; 5905 case RK_Min: 5906 case RK_Max: 5907 case RK_UMin: 5908 case RK_UMax: { 5909 Type *VecCondTy = CmpInst::makeCmpResultType(VecTy); 5910 bool IsUnsigned = ReductionData.getKind() == RK_UMin || 5911 ReductionData.getKind() == RK_UMax; 5912 PairwiseRdxCost = 5913 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 5914 /*IsPairwiseForm=*/true, IsUnsigned); 5915 SplittingRdxCost = 5916 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 5917 /*IsPairwiseForm=*/false, IsUnsigned); 5918 break; 5919 } 5920 case RK_None: 5921 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 5922 } 5923 5924 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 5925 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 5926 5927 int ScalarReduxCost; 5928 switch (ReductionData.getKind()) { 5929 case RK_Arithmetic: 5930 ScalarReduxCost = 5931 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); 5932 break; 5933 case RK_Min: 5934 case RK_Max: 5935 case RK_UMin: 5936 case RK_UMax: 5937 ScalarReduxCost = 5938 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) + 5939 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 5940 CmpInst::makeCmpResultType(ScalarTy)); 5941 break; 5942 case RK_None: 5943 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 5944 } 5945 ScalarReduxCost *= (ReduxWidth - 1); 5946 5947 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 5948 << " for reduction that starts with " << *FirstReducedVal 5949 << " (It is a " 5950 << (IsPairwiseReduction ? "pairwise" : "splitting") 5951 << " reduction)\n"); 5952 5953 return VecReduxCost - ScalarReduxCost; 5954 } 5955 5956 /// Emit a horizontal reduction of the vectorized value. 5957 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 5958 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 5959 assert(VectorizedValue && "Need to have a vectorized tree node"); 5960 assert(isPowerOf2_32(ReduxWidth) && 5961 "We only handle power-of-two reductions for now"); 5962 5963 if (!IsPairwiseReduction) 5964 return createSimpleTargetReduction( 5965 Builder, TTI, ReductionData.getOpcode(), VectorizedValue, 5966 ReductionData.getFlags(), FastMathFlags::getFast(), 5967 ReductionOps.back()); 5968 5969 Value *TmpVec = VectorizedValue; 5970 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 5971 Value *LeftMask = 5972 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 5973 Value *RightMask = 5974 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 5975 5976 Value *LeftShuf = Builder.CreateShuffleVector( 5977 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 5978 Value *RightShuf = Builder.CreateShuffleVector( 5979 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 5980 "rdx.shuf.r"); 5981 OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf, 5982 RightShuf, ReductionData.getKind()); 5983 TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 5984 } 5985 5986 // The result is in the first element of the vector. 5987 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 5988 } 5989 }; 5990 5991 } // end anonymous namespace 5992 5993 /// Recognize construction of vectors like 5994 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 5995 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 5996 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 5997 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 5998 /// starting from the last insertelement instruction. 5999 /// 6000 /// Returns true if it matches 6001 static bool findBuildVector(InsertElementInst *LastInsertElem, 6002 TargetTransformInfo *TTI, 6003 SmallVectorImpl<Value *> &BuildVectorOpds, 6004 int &UserCost) { 6005 UserCost = 0; 6006 Value *V = nullptr; 6007 do { 6008 if (auto *CI = dyn_cast<ConstantInt>(LastInsertElem->getOperand(2))) { 6009 UserCost += TTI->getVectorInstrCost(Instruction::InsertElement, 6010 LastInsertElem->getType(), 6011 CI->getZExtValue()); 6012 } 6013 BuildVectorOpds.push_back(LastInsertElem->getOperand(1)); 6014 V = LastInsertElem->getOperand(0); 6015 if (isa<UndefValue>(V)) 6016 break; 6017 LastInsertElem = dyn_cast<InsertElementInst>(V); 6018 if (!LastInsertElem || !LastInsertElem->hasOneUse()) 6019 return false; 6020 } while (true); 6021 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 6022 return true; 6023 } 6024 6025 /// Like findBuildVector, but looks for construction of aggregate. 6026 /// 6027 /// \return true if it matches. 6028 static bool findBuildAggregate(InsertValueInst *IV, 6029 SmallVectorImpl<Value *> &BuildVectorOpds) { 6030 Value *V; 6031 do { 6032 BuildVectorOpds.push_back(IV->getInsertedValueOperand()); 6033 V = IV->getAggregateOperand(); 6034 if (isa<UndefValue>(V)) 6035 break; 6036 IV = dyn_cast<InsertValueInst>(V); 6037 if (!IV || !IV->hasOneUse()) 6038 return false; 6039 } while (true); 6040 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 6041 return true; 6042 } 6043 6044 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 6045 return V->getType() < V2->getType(); 6046 } 6047 6048 /// Try and get a reduction value from a phi node. 6049 /// 6050 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 6051 /// if they come from either \p ParentBB or a containing loop latch. 6052 /// 6053 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 6054 /// if not possible. 6055 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 6056 BasicBlock *ParentBB, LoopInfo *LI) { 6057 // There are situations where the reduction value is not dominated by the 6058 // reduction phi. Vectorizing such cases has been reported to cause 6059 // miscompiles. See PR25787. 6060 auto DominatedReduxValue = [&](Value *R) { 6061 return isa<Instruction>(R) && 6062 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 6063 }; 6064 6065 Value *Rdx = nullptr; 6066 6067 // Return the incoming value if it comes from the same BB as the phi node. 6068 if (P->getIncomingBlock(0) == ParentBB) { 6069 Rdx = P->getIncomingValue(0); 6070 } else if (P->getIncomingBlock(1) == ParentBB) { 6071 Rdx = P->getIncomingValue(1); 6072 } 6073 6074 if (Rdx && DominatedReduxValue(Rdx)) 6075 return Rdx; 6076 6077 // Otherwise, check whether we have a loop latch to look at. 6078 Loop *BBL = LI->getLoopFor(ParentBB); 6079 if (!BBL) 6080 return nullptr; 6081 BasicBlock *BBLatch = BBL->getLoopLatch(); 6082 if (!BBLatch) 6083 return nullptr; 6084 6085 // There is a loop latch, return the incoming value if it comes from 6086 // that. This reduction pattern occasionally turns up. 6087 if (P->getIncomingBlock(0) == BBLatch) { 6088 Rdx = P->getIncomingValue(0); 6089 } else if (P->getIncomingBlock(1) == BBLatch) { 6090 Rdx = P->getIncomingValue(1); 6091 } 6092 6093 if (Rdx && DominatedReduxValue(Rdx)) 6094 return Rdx; 6095 6096 return nullptr; 6097 } 6098 6099 /// Attempt to reduce a horizontal reduction. 6100 /// If it is legal to match a horizontal reduction feeding the phi node \a P 6101 /// with reduction operators \a Root (or one of its operands) in a basic block 6102 /// \a BB, then check if it can be done. If horizontal reduction is not found 6103 /// and root instruction is a binary operation, vectorization of the operands is 6104 /// attempted. 6105 /// \returns true if a horizontal reduction was matched and reduced or operands 6106 /// of one of the binary instruction were vectorized. 6107 /// \returns false if a horizontal reduction was not matched (or not possible) 6108 /// or no vectorization of any binary operation feeding \a Root instruction was 6109 /// performed. 6110 static bool tryToVectorizeHorReductionOrInstOperands( 6111 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 6112 TargetTransformInfo *TTI, 6113 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 6114 if (!ShouldVectorizeHor) 6115 return false; 6116 6117 if (!Root) 6118 return false; 6119 6120 if (Root->getParent() != BB || isa<PHINode>(Root)) 6121 return false; 6122 // Start analysis starting from Root instruction. If horizontal reduction is 6123 // found, try to vectorize it. If it is not a horizontal reduction or 6124 // vectorization is not possible or not effective, and currently analyzed 6125 // instruction is a binary operation, try to vectorize the operands, using 6126 // pre-order DFS traversal order. If the operands were not vectorized, repeat 6127 // the same procedure considering each operand as a possible root of the 6128 // horizontal reduction. 6129 // Interrupt the process if the Root instruction itself was vectorized or all 6130 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 6131 SmallVector<std::pair<WeakTrackingVH, unsigned>, 8> Stack(1, {Root, 0}); 6132 SmallPtrSet<Value *, 8> VisitedInstrs; 6133 bool Res = false; 6134 while (!Stack.empty()) { 6135 Value *V; 6136 unsigned Level; 6137 std::tie(V, Level) = Stack.pop_back_val(); 6138 if (!V) 6139 continue; 6140 auto *Inst = dyn_cast<Instruction>(V); 6141 if (!Inst) 6142 continue; 6143 auto *BI = dyn_cast<BinaryOperator>(Inst); 6144 auto *SI = dyn_cast<SelectInst>(Inst); 6145 if (BI || SI) { 6146 HorizontalReduction HorRdx; 6147 if (HorRdx.matchAssociativeReduction(P, Inst)) { 6148 if (HorRdx.tryToReduce(R, TTI)) { 6149 Res = true; 6150 // Set P to nullptr to avoid re-analysis of phi node in 6151 // matchAssociativeReduction function unless this is the root node. 6152 P = nullptr; 6153 continue; 6154 } 6155 } 6156 if (P && BI) { 6157 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 6158 if (Inst == P) 6159 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 6160 if (!Inst) { 6161 // Set P to nullptr to avoid re-analysis of phi node in 6162 // matchAssociativeReduction function unless this is the root node. 6163 P = nullptr; 6164 continue; 6165 } 6166 } 6167 } 6168 // Set P to nullptr to avoid re-analysis of phi node in 6169 // matchAssociativeReduction function unless this is the root node. 6170 P = nullptr; 6171 if (Vectorize(Inst, R)) { 6172 Res = true; 6173 continue; 6174 } 6175 6176 // Try to vectorize operands. 6177 // Continue analysis for the instruction from the same basic block only to 6178 // save compile time. 6179 if (++Level < RecursionMaxDepth) 6180 for (auto *Op : Inst->operand_values()) 6181 if (VisitedInstrs.insert(Op).second) 6182 if (auto *I = dyn_cast<Instruction>(Op)) 6183 if (!isa<PHINode>(I) && I->getParent() == BB) 6184 Stack.emplace_back(Op, Level); 6185 } 6186 return Res; 6187 } 6188 6189 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 6190 BasicBlock *BB, BoUpSLP &R, 6191 TargetTransformInfo *TTI) { 6192 if (!V) 6193 return false; 6194 auto *I = dyn_cast<Instruction>(V); 6195 if (!I) 6196 return false; 6197 6198 if (!isa<BinaryOperator>(I)) 6199 P = nullptr; 6200 // Try to match and vectorize a horizontal reduction. 6201 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 6202 return tryToVectorize(I, R); 6203 }; 6204 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 6205 ExtraVectorization); 6206 } 6207 6208 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 6209 BasicBlock *BB, BoUpSLP &R) { 6210 const DataLayout &DL = BB->getModule()->getDataLayout(); 6211 if (!R.canMapToVector(IVI->getType(), DL)) 6212 return false; 6213 6214 SmallVector<Value *, 16> BuildVectorOpds; 6215 if (!findBuildAggregate(IVI, BuildVectorOpds)) 6216 return false; 6217 6218 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 6219 // Aggregate value is unlikely to be processed in vector register, we need to 6220 // extract scalars into scalar registers, so NeedExtraction is set true. 6221 return tryToVectorizeList(BuildVectorOpds, R); 6222 } 6223 6224 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 6225 BasicBlock *BB, BoUpSLP &R) { 6226 int UserCost; 6227 SmallVector<Value *, 16> BuildVectorOpds; 6228 if (!findBuildVector(IEI, TTI, BuildVectorOpds, UserCost) || 6229 (llvm::all_of(BuildVectorOpds, 6230 [](Value *V) { return isa<ExtractElementInst>(V); }) && 6231 isShuffle(BuildVectorOpds))) 6232 return false; 6233 6234 // Vectorize starting with the build vector operands ignoring the BuildVector 6235 // instructions for the purpose of scheduling and user extraction. 6236 return tryToVectorizeList(BuildVectorOpds, R, UserCost); 6237 } 6238 6239 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 6240 BoUpSLP &R) { 6241 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 6242 return true; 6243 6244 bool OpsChanged = false; 6245 for (int Idx = 0; Idx < 2; ++Idx) { 6246 OpsChanged |= 6247 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 6248 } 6249 return OpsChanged; 6250 } 6251 6252 bool SLPVectorizerPass::vectorizeSimpleInstructions( 6253 SmallVectorImpl<WeakVH> &Instructions, BasicBlock *BB, BoUpSLP &R) { 6254 bool OpsChanged = false; 6255 for (auto &VH : reverse(Instructions)) { 6256 auto *I = dyn_cast_or_null<Instruction>(VH); 6257 if (!I) 6258 continue; 6259 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 6260 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 6261 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 6262 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 6263 else if (auto *CI = dyn_cast<CmpInst>(I)) 6264 OpsChanged |= vectorizeCmpInst(CI, BB, R); 6265 } 6266 Instructions.clear(); 6267 return OpsChanged; 6268 } 6269 6270 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 6271 bool Changed = false; 6272 SmallVector<Value *, 4> Incoming; 6273 SmallPtrSet<Value *, 16> VisitedInstrs; 6274 6275 bool HaveVectorizedPhiNodes = true; 6276 while (HaveVectorizedPhiNodes) { 6277 HaveVectorizedPhiNodes = false; 6278 6279 // Collect the incoming values from the PHIs. 6280 Incoming.clear(); 6281 for (Instruction &I : *BB) { 6282 PHINode *P = dyn_cast<PHINode>(&I); 6283 if (!P) 6284 break; 6285 6286 if (!VisitedInstrs.count(P)) 6287 Incoming.push_back(P); 6288 } 6289 6290 // Sort by type. 6291 std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc); 6292 6293 // Try to vectorize elements base on their type. 6294 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 6295 E = Incoming.end(); 6296 IncIt != E;) { 6297 6298 // Look for the next elements with the same type. 6299 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 6300 while (SameTypeIt != E && 6301 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 6302 VisitedInstrs.insert(*SameTypeIt); 6303 ++SameTypeIt; 6304 } 6305 6306 // Try to vectorize them. 6307 unsigned NumElts = (SameTypeIt - IncIt); 6308 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 6309 << NumElts << ")\n"); 6310 // The order in which the phi nodes appear in the program does not matter. 6311 // So allow tryToVectorizeList to reorder them if it is beneficial. This 6312 // is done when there are exactly two elements since tryToVectorizeList 6313 // asserts that there are only two values when AllowReorder is true. 6314 bool AllowReorder = NumElts == 2; 6315 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, 6316 /*UserCost=*/0, AllowReorder)) { 6317 // Success start over because instructions might have been changed. 6318 HaveVectorizedPhiNodes = true; 6319 Changed = true; 6320 break; 6321 } 6322 6323 // Start over at the next instruction of a different type (or the end). 6324 IncIt = SameTypeIt; 6325 } 6326 } 6327 6328 VisitedInstrs.clear(); 6329 6330 SmallVector<WeakVH, 8> PostProcessInstructions; 6331 SmallDenseSet<Instruction *, 4> KeyNodes; 6332 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) { 6333 // We may go through BB multiple times so skip the one we have checked. 6334 if (!VisitedInstrs.insert(&*it).second) { 6335 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 6336 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 6337 // We would like to start over since some instructions are deleted 6338 // and the iterator may become invalid value. 6339 Changed = true; 6340 it = BB->begin(); 6341 e = BB->end(); 6342 } 6343 continue; 6344 } 6345 6346 if (isa<DbgInfoIntrinsic>(it)) 6347 continue; 6348 6349 // Try to vectorize reductions that use PHINodes. 6350 if (PHINode *P = dyn_cast<PHINode>(it)) { 6351 // Check that the PHI is a reduction PHI. 6352 if (P->getNumIncomingValues() != 2) 6353 return Changed; 6354 6355 // Try to match and vectorize a horizontal reduction. 6356 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 6357 TTI)) { 6358 Changed = true; 6359 it = BB->begin(); 6360 e = BB->end(); 6361 continue; 6362 } 6363 continue; 6364 } 6365 6366 // Ran into an instruction without users, like terminator, or function call 6367 // with ignored return value, store. Ignore unused instructions (basing on 6368 // instruction type, except for CallInst and InvokeInst). 6369 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 6370 isa<InvokeInst>(it))) { 6371 KeyNodes.insert(&*it); 6372 bool OpsChanged = false; 6373 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 6374 for (auto *V : it->operand_values()) { 6375 // Try to match and vectorize a horizontal reduction. 6376 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 6377 } 6378 } 6379 // Start vectorization of post-process list of instructions from the 6380 // top-tree instructions to try to vectorize as many instructions as 6381 // possible. 6382 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 6383 if (OpsChanged) { 6384 // We would like to start over since some instructions are deleted 6385 // and the iterator may become invalid value. 6386 Changed = true; 6387 it = BB->begin(); 6388 e = BB->end(); 6389 continue; 6390 } 6391 } 6392 6393 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 6394 isa<InsertValueInst>(it)) 6395 PostProcessInstructions.push_back(&*it); 6396 } 6397 6398 return Changed; 6399 } 6400 6401 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 6402 auto Changed = false; 6403 for (auto &Entry : GEPs) { 6404 // If the getelementptr list has fewer than two elements, there's nothing 6405 // to do. 6406 if (Entry.second.size() < 2) 6407 continue; 6408 6409 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 6410 << Entry.second.size() << ".\n"); 6411 6412 // We process the getelementptr list in chunks of 16 (like we do for 6413 // stores) to minimize compile-time. 6414 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) { 6415 auto Len = std::min<unsigned>(BE - BI, 16); 6416 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 6417 6418 // Initialize a set a candidate getelementptrs. Note that we use a 6419 // SetVector here to preserve program order. If the index computations 6420 // are vectorizable and begin with loads, we want to minimize the chance 6421 // of having to reorder them later. 6422 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 6423 6424 // Some of the candidates may have already been vectorized after we 6425 // initially collected them. If so, the WeakTrackingVHs will have 6426 // nullified the 6427 // values, so remove them from the set of candidates. 6428 Candidates.remove(nullptr); 6429 6430 // Remove from the set of candidates all pairs of getelementptrs with 6431 // constant differences. Such getelementptrs are likely not good 6432 // candidates for vectorization in a bottom-up phase since one can be 6433 // computed from the other. We also ensure all candidate getelementptr 6434 // indices are unique. 6435 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 6436 auto *GEPI = cast<GetElementPtrInst>(GEPList[I]); 6437 if (!Candidates.count(GEPI)) 6438 continue; 6439 auto *SCEVI = SE->getSCEV(GEPList[I]); 6440 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 6441 auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]); 6442 auto *SCEVJ = SE->getSCEV(GEPList[J]); 6443 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 6444 Candidates.remove(GEPList[I]); 6445 Candidates.remove(GEPList[J]); 6446 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 6447 Candidates.remove(GEPList[J]); 6448 } 6449 } 6450 } 6451 6452 // We break out of the above computation as soon as we know there are 6453 // fewer than two candidates remaining. 6454 if (Candidates.size() < 2) 6455 continue; 6456 6457 // Add the single, non-constant index of each candidate to the bundle. We 6458 // ensured the indices met these constraints when we originally collected 6459 // the getelementptrs. 6460 SmallVector<Value *, 16> Bundle(Candidates.size()); 6461 auto BundleIndex = 0u; 6462 for (auto *V : Candidates) { 6463 auto *GEP = cast<GetElementPtrInst>(V); 6464 auto *GEPIdx = GEP->idx_begin()->get(); 6465 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 6466 Bundle[BundleIndex++] = GEPIdx; 6467 } 6468 6469 // Try and vectorize the indices. We are currently only interested in 6470 // gather-like cases of the form: 6471 // 6472 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 6473 // 6474 // where the loads of "a", the loads of "b", and the subtractions can be 6475 // performed in parallel. It's likely that detecting this pattern in a 6476 // bottom-up phase will be simpler and less costly than building a 6477 // full-blown top-down phase beginning at the consecutive loads. 6478 Changed |= tryToVectorizeList(Bundle, R); 6479 } 6480 } 6481 return Changed; 6482 } 6483 6484 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 6485 bool Changed = false; 6486 // Attempt to sort and vectorize each of the store-groups. 6487 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 6488 ++it) { 6489 if (it->second.size() < 2) 6490 continue; 6491 6492 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 6493 << it->second.size() << ".\n"); 6494 6495 // Process the stores in chunks of 16. 6496 // TODO: The limit of 16 inhibits greater vectorization factors. 6497 // For example, AVX2 supports v32i8. Increasing this limit, however, 6498 // may cause a significant compile-time increase. 6499 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI += 16) { 6500 unsigned Len = std::min<unsigned>(CE - CI, 16); 6501 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R); 6502 } 6503 } 6504 return Changed; 6505 } 6506 6507 char SLPVectorizer::ID = 0; 6508 6509 static const char lv_name[] = "SLP Vectorizer"; 6510 6511 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 6512 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6513 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6514 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6515 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6516 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6517 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6518 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6519 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 6520 6521 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 6522