1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DebugLoc.h" 57 #include "llvm/IR/DerivedTypes.h" 58 #include "llvm/IR/Dominators.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/IRBuilder.h" 61 #include "llvm/IR/InstrTypes.h" 62 #include "llvm/IR/Instruction.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/Intrinsics.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #ifdef EXPENSIVE_CHECKS 75 #include "llvm/IR/Verifier.h" 76 #endif 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/DOTGraphTraits.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/GraphWriter.h" 85 #include "llvm/Support/InstructionCost.h" 86 #include "llvm/Support/KnownBits.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 90 #include "llvm/Transforms/Utils/Local.h" 91 #include "llvm/Transforms/Utils/LoopUtils.h" 92 #include "llvm/Transforms/Vectorize.h" 93 #include <algorithm> 94 #include <cassert> 95 #include <cstdint> 96 #include <iterator> 97 #include <memory> 98 #include <set> 99 #include <string> 100 #include <tuple> 101 #include <utility> 102 #include <vector> 103 104 using namespace llvm; 105 using namespace llvm::PatternMatch; 106 using namespace slpvectorizer; 107 108 #define SV_NAME "slp-vectorizer" 109 #define DEBUG_TYPE "SLP" 110 111 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 112 113 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 114 cl::desc("Run the SLP vectorization passes")); 115 116 static cl::opt<int> 117 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 118 cl::desc("Only vectorize if you gain more than this " 119 "number ")); 120 121 static cl::opt<bool> 122 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 123 cl::desc("Attempt to vectorize horizontal reductions")); 124 125 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 126 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 127 cl::desc( 128 "Attempt to vectorize horizontal reductions feeding into a store")); 129 130 static cl::opt<int> 131 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 132 cl::desc("Attempt to vectorize for this register size in bits")); 133 134 static cl::opt<unsigned> 135 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 136 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 137 138 static cl::opt<int> 139 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 140 cl::desc("Maximum depth of the lookup for consecutive stores.")); 141 142 /// Limits the size of scheduling regions in a block. 143 /// It avoid long compile times for _very_ large blocks where vector 144 /// instructions are spread over a wide range. 145 /// This limit is way higher than needed by real-world functions. 146 static cl::opt<int> 147 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 148 cl::desc("Limit the size of the SLP scheduling region per block")); 149 150 static cl::opt<int> MinVectorRegSizeOption( 151 "slp-min-reg-size", cl::init(128), cl::Hidden, 152 cl::desc("Attempt to vectorize for this register size in bits")); 153 154 static cl::opt<unsigned> RecursionMaxDepth( 155 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 156 cl::desc("Limit the recursion depth when building a vectorizable tree")); 157 158 static cl::opt<unsigned> MinTreeSize( 159 "slp-min-tree-size", cl::init(3), cl::Hidden, 160 cl::desc("Only vectorize small trees if they are fully vectorizable")); 161 162 // The maximum depth that the look-ahead score heuristic will explore. 163 // The higher this value, the higher the compilation time overhead. 164 static cl::opt<int> LookAheadMaxDepth( 165 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 166 cl::desc("The maximum look-ahead depth for operand reordering scores")); 167 168 static cl::opt<bool> 169 ViewSLPTree("view-slp-tree", cl::Hidden, 170 cl::desc("Display the SLP trees with Graphviz")); 171 172 // Limit the number of alias checks. The limit is chosen so that 173 // it has no negative effect on the llvm benchmarks. 174 static const unsigned AliasedCheckLimit = 10; 175 176 // Another limit for the alias checks: The maximum distance between load/store 177 // instructions where alias checks are done. 178 // This limit is useful for very large basic blocks. 179 static const unsigned MaxMemDepDistance = 160; 180 181 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 182 /// regions to be handled. 183 static const int MinScheduleRegionSize = 16; 184 185 /// Predicate for the element types that the SLP vectorizer supports. 186 /// 187 /// The most important thing to filter here are types which are invalid in LLVM 188 /// vectors. We also filter target specific types which have absolutely no 189 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 190 /// avoids spending time checking the cost model and realizing that they will 191 /// be inevitably scalarized. 192 static bool isValidElementType(Type *Ty) { 193 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 194 !Ty->isPPC_FP128Ty(); 195 } 196 197 /// \returns True if the value is a constant (but not globals/constant 198 /// expressions). 199 static bool isConstant(Value *V) { 200 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 201 } 202 203 /// Checks if \p V is one of vector-like instructions, i.e. undef, 204 /// insertelement/extractelement with constant indices for fixed vector type or 205 /// extractvalue instruction. 206 static bool isVectorLikeInstWithConstOps(Value *V) { 207 if (!isa<InsertElementInst, ExtractElementInst>(V) && 208 !isa<ExtractValueInst, UndefValue>(V)) 209 return false; 210 auto *I = dyn_cast<Instruction>(V); 211 if (!I || isa<ExtractValueInst>(I)) 212 return true; 213 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 214 return false; 215 if (isa<ExtractElementInst>(I)) 216 return isConstant(I->getOperand(1)); 217 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 218 return isConstant(I->getOperand(2)); 219 } 220 221 /// \returns true if all of the instructions in \p VL are in the same block or 222 /// false otherwise. 223 static bool allSameBlock(ArrayRef<Value *> VL) { 224 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 225 if (!I0) 226 return false; 227 if (all_of(VL, isVectorLikeInstWithConstOps)) 228 return true; 229 230 BasicBlock *BB = I0->getParent(); 231 for (int I = 1, E = VL.size(); I < E; I++) { 232 auto *II = dyn_cast<Instruction>(VL[I]); 233 if (!II) 234 return false; 235 236 if (BB != II->getParent()) 237 return false; 238 } 239 return true; 240 } 241 242 /// \returns True if all of the values in \p VL are constants (but not 243 /// globals/constant expressions). 244 static bool allConstant(ArrayRef<Value *> VL) { 245 // Constant expressions and globals can't be vectorized like normal integer/FP 246 // constants. 247 return all_of(VL, isConstant); 248 } 249 250 /// \returns True if all of the values in \p VL are identical or some of them 251 /// are UndefValue. 252 static bool isSplat(ArrayRef<Value *> VL) { 253 Value *FirstNonUndef = nullptr; 254 for (Value *V : VL) { 255 if (isa<UndefValue>(V)) 256 continue; 257 if (!FirstNonUndef) { 258 FirstNonUndef = V; 259 continue; 260 } 261 if (V != FirstNonUndef) 262 return false; 263 } 264 return FirstNonUndef != nullptr; 265 } 266 267 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 268 static bool isCommutative(Instruction *I) { 269 if (auto *Cmp = dyn_cast<CmpInst>(I)) 270 return Cmp->isCommutative(); 271 if (auto *BO = dyn_cast<BinaryOperator>(I)) 272 return BO->isCommutative(); 273 // TODO: This should check for generic Instruction::isCommutative(), but 274 // we need to confirm that the caller code correctly handles Intrinsics 275 // for example (does not have 2 operands). 276 return false; 277 } 278 279 /// Checks if the given value is actually an undefined constant vector. 280 static bool isUndefVector(const Value *V) { 281 if (isa<UndefValue>(V)) 282 return true; 283 auto *C = dyn_cast<Constant>(V); 284 if (!C) 285 return false; 286 if (!C->containsUndefOrPoisonElement()) 287 return false; 288 auto *VecTy = dyn_cast<FixedVectorType>(C->getType()); 289 if (!VecTy) 290 return false; 291 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 292 if (Constant *Elem = C->getAggregateElement(I)) 293 if (!isa<UndefValue>(Elem)) 294 return false; 295 } 296 return true; 297 } 298 299 /// Checks if the vector of instructions can be represented as a shuffle, like: 300 /// %x0 = extractelement <4 x i8> %x, i32 0 301 /// %x3 = extractelement <4 x i8> %x, i32 3 302 /// %y1 = extractelement <4 x i8> %y, i32 1 303 /// %y2 = extractelement <4 x i8> %y, i32 2 304 /// %x0x0 = mul i8 %x0, %x0 305 /// %x3x3 = mul i8 %x3, %x3 306 /// %y1y1 = mul i8 %y1, %y1 307 /// %y2y2 = mul i8 %y2, %y2 308 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 309 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 310 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 311 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 312 /// ret <4 x i8> %ins4 313 /// can be transformed into: 314 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 315 /// i32 6> 316 /// %2 = mul <4 x i8> %1, %1 317 /// ret <4 x i8> %2 318 /// We convert this initially to something like: 319 /// %x0 = extractelement <4 x i8> %x, i32 0 320 /// %x3 = extractelement <4 x i8> %x, i32 3 321 /// %y1 = extractelement <4 x i8> %y, i32 1 322 /// %y2 = extractelement <4 x i8> %y, i32 2 323 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 324 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 325 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 326 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 327 /// %5 = mul <4 x i8> %4, %4 328 /// %6 = extractelement <4 x i8> %5, i32 0 329 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 330 /// %7 = extractelement <4 x i8> %5, i32 1 331 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 332 /// %8 = extractelement <4 x i8> %5, i32 2 333 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 334 /// %9 = extractelement <4 x i8> %5, i32 3 335 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 336 /// ret <4 x i8> %ins4 337 /// InstCombiner transforms this into a shuffle and vector mul 338 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 339 /// TODO: Can we split off and reuse the shuffle mask detection from 340 /// TargetTransformInfo::getInstructionThroughput? 341 static Optional<TargetTransformInfo::ShuffleKind> 342 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 343 const auto *It = 344 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); 345 if (It == VL.end()) 346 return None; 347 auto *EI0 = cast<ExtractElementInst>(*It); 348 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 349 return None; 350 unsigned Size = 351 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 352 Value *Vec1 = nullptr; 353 Value *Vec2 = nullptr; 354 enum ShuffleMode { Unknown, Select, Permute }; 355 ShuffleMode CommonShuffleMode = Unknown; 356 Mask.assign(VL.size(), UndefMaskElem); 357 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 358 // Undef can be represented as an undef element in a vector. 359 if (isa<UndefValue>(VL[I])) 360 continue; 361 auto *EI = cast<ExtractElementInst>(VL[I]); 362 if (isa<ScalableVectorType>(EI->getVectorOperandType())) 363 return None; 364 auto *Vec = EI->getVectorOperand(); 365 // We can extractelement from undef or poison vector. 366 if (isUndefVector(Vec)) 367 continue; 368 // All vector operands must have the same number of vector elements. 369 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 370 return None; 371 if (isa<UndefValue>(EI->getIndexOperand())) 372 continue; 373 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 374 if (!Idx) 375 return None; 376 // Undefined behavior if Idx is negative or >= Size. 377 if (Idx->getValue().uge(Size)) 378 continue; 379 unsigned IntIdx = Idx->getValue().getZExtValue(); 380 Mask[I] = IntIdx; 381 // For correct shuffling we have to have at most 2 different vector operands 382 // in all extractelement instructions. 383 if (!Vec1 || Vec1 == Vec) { 384 Vec1 = Vec; 385 } else if (!Vec2 || Vec2 == Vec) { 386 Vec2 = Vec; 387 Mask[I] += Size; 388 } else { 389 return None; 390 } 391 if (CommonShuffleMode == Permute) 392 continue; 393 // If the extract index is not the same as the operation number, it is a 394 // permutation. 395 if (IntIdx != I) { 396 CommonShuffleMode = Permute; 397 continue; 398 } 399 CommonShuffleMode = Select; 400 } 401 // If we're not crossing lanes in different vectors, consider it as blending. 402 if (CommonShuffleMode == Select && Vec2) 403 return TargetTransformInfo::SK_Select; 404 // If Vec2 was never used, we have a permutation of a single vector, otherwise 405 // we have permutation of 2 vectors. 406 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 407 : TargetTransformInfo::SK_PermuteSingleSrc; 408 } 409 410 namespace { 411 412 /// Main data required for vectorization of instructions. 413 struct InstructionsState { 414 /// The very first instruction in the list with the main opcode. 415 Value *OpValue = nullptr; 416 417 /// The main/alternate instruction. 418 Instruction *MainOp = nullptr; 419 Instruction *AltOp = nullptr; 420 421 /// The main/alternate opcodes for the list of instructions. 422 unsigned getOpcode() const { 423 return MainOp ? MainOp->getOpcode() : 0; 424 } 425 426 unsigned getAltOpcode() const { 427 return AltOp ? AltOp->getOpcode() : 0; 428 } 429 430 /// Some of the instructions in the list have alternate opcodes. 431 bool isAltShuffle() const { return AltOp != MainOp; } 432 433 bool isOpcodeOrAlt(Instruction *I) const { 434 unsigned CheckedOpcode = I->getOpcode(); 435 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 436 } 437 438 InstructionsState() = delete; 439 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 440 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 441 }; 442 443 } // end anonymous namespace 444 445 /// Chooses the correct key for scheduling data. If \p Op has the same (or 446 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 447 /// OpValue. 448 static Value *isOneOf(const InstructionsState &S, Value *Op) { 449 auto *I = dyn_cast<Instruction>(Op); 450 if (I && S.isOpcodeOrAlt(I)) 451 return Op; 452 return S.OpValue; 453 } 454 455 /// \returns true if \p Opcode is allowed as part of of the main/alternate 456 /// instruction for SLP vectorization. 457 /// 458 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 459 /// "shuffled out" lane would result in division by zero. 460 static bool isValidForAlternation(unsigned Opcode) { 461 if (Instruction::isIntDivRem(Opcode)) 462 return false; 463 464 return true; 465 } 466 467 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 468 unsigned BaseIndex = 0); 469 470 /// Checks if the provided operands of 2 cmp instructions are compatible, i.e. 471 /// compatible instructions or constants, or just some other regular values. 472 static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0, 473 Value *Op1) { 474 return (isConstant(BaseOp0) && isConstant(Op0)) || 475 (isConstant(BaseOp1) && isConstant(Op1)) || 476 (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) && 477 !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) || 478 getSameOpcode({BaseOp0, Op0}).getOpcode() || 479 getSameOpcode({BaseOp1, Op1}).getOpcode(); 480 } 481 482 /// \returns analysis of the Instructions in \p VL described in 483 /// InstructionsState, the Opcode that we suppose the whole list 484 /// could be vectorized even if its structure is diverse. 485 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 486 unsigned BaseIndex) { 487 // Make sure these are all Instructions. 488 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 489 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 490 491 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 492 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 493 bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]); 494 CmpInst::Predicate BasePred = 495 IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate() 496 : CmpInst::BAD_ICMP_PREDICATE; 497 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 498 unsigned AltOpcode = Opcode; 499 unsigned AltIndex = BaseIndex; 500 501 // Check for one alternate opcode from another BinaryOperator. 502 // TODO - generalize to support all operators (types, calls etc.). 503 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 504 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 505 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 506 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 507 continue; 508 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 509 isValidForAlternation(Opcode)) { 510 AltOpcode = InstOpcode; 511 AltIndex = Cnt; 512 continue; 513 } 514 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 515 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 516 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 517 if (Ty0 == Ty1) { 518 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 519 continue; 520 if (Opcode == AltOpcode) { 521 assert(isValidForAlternation(Opcode) && 522 isValidForAlternation(InstOpcode) && 523 "Cast isn't safe for alternation, logic needs to be updated!"); 524 AltOpcode = InstOpcode; 525 AltIndex = Cnt; 526 continue; 527 } 528 } 529 } else if (IsCmpOp && isa<CmpInst>(VL[Cnt])) { 530 auto *BaseInst = cast<Instruction>(VL[BaseIndex]); 531 auto *Inst = cast<Instruction>(VL[Cnt]); 532 Type *Ty0 = BaseInst->getOperand(0)->getType(); 533 Type *Ty1 = Inst->getOperand(0)->getType(); 534 if (Ty0 == Ty1) { 535 Value *BaseOp0 = BaseInst->getOperand(0); 536 Value *BaseOp1 = BaseInst->getOperand(1); 537 Value *Op0 = Inst->getOperand(0); 538 Value *Op1 = Inst->getOperand(1); 539 CmpInst::Predicate CurrentPred = 540 cast<CmpInst>(VL[Cnt])->getPredicate(); 541 CmpInst::Predicate SwappedCurrentPred = 542 CmpInst::getSwappedPredicate(CurrentPred); 543 // Check for compatible operands. If the corresponding operands are not 544 // compatible - need to perform alternate vectorization. 545 if (InstOpcode == Opcode) { 546 if (BasePred == CurrentPred && 547 areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1)) 548 continue; 549 if (BasePred == SwappedCurrentPred && 550 areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0)) 551 continue; 552 if (E == 2 && 553 (BasePred == CurrentPred || BasePred == SwappedCurrentPred)) 554 continue; 555 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 556 CmpInst::Predicate AltPred = AltInst->getPredicate(); 557 Value *AltOp0 = AltInst->getOperand(0); 558 Value *AltOp1 = AltInst->getOperand(1); 559 // Check if operands are compatible with alternate operands. 560 if (AltPred == CurrentPred && 561 areCompatibleCmpOps(AltOp0, AltOp1, Op0, Op1)) 562 continue; 563 if (AltPred == SwappedCurrentPred && 564 areCompatibleCmpOps(AltOp0, AltOp1, Op1, Op0)) 565 continue; 566 } 567 if (BaseIndex == AltIndex && BasePred != CurrentPred) { 568 assert(isValidForAlternation(Opcode) && 569 isValidForAlternation(InstOpcode) && 570 "Cast isn't safe for alternation, logic needs to be updated!"); 571 AltIndex = Cnt; 572 continue; 573 } 574 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 575 CmpInst::Predicate AltPred = AltInst->getPredicate(); 576 if (BasePred == CurrentPred || BasePred == SwappedCurrentPred || 577 AltPred == CurrentPred || AltPred == SwappedCurrentPred) 578 continue; 579 } 580 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 581 continue; 582 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 583 } 584 585 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 586 cast<Instruction>(VL[AltIndex])); 587 } 588 589 /// \returns true if all of the values in \p VL have the same type or false 590 /// otherwise. 591 static bool allSameType(ArrayRef<Value *> VL) { 592 Type *Ty = VL[0]->getType(); 593 for (int i = 1, e = VL.size(); i < e; i++) 594 if (VL[i]->getType() != Ty) 595 return false; 596 597 return true; 598 } 599 600 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 601 static Optional<unsigned> getExtractIndex(Instruction *E) { 602 unsigned Opcode = E->getOpcode(); 603 assert((Opcode == Instruction::ExtractElement || 604 Opcode == Instruction::ExtractValue) && 605 "Expected extractelement or extractvalue instruction."); 606 if (Opcode == Instruction::ExtractElement) { 607 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 608 if (!CI) 609 return None; 610 return CI->getZExtValue(); 611 } 612 ExtractValueInst *EI = cast<ExtractValueInst>(E); 613 if (EI->getNumIndices() != 1) 614 return None; 615 return *EI->idx_begin(); 616 } 617 618 /// \returns True if in-tree use also needs extract. This refers to 619 /// possible scalar operand in vectorized instruction. 620 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 621 TargetLibraryInfo *TLI) { 622 unsigned Opcode = UserInst->getOpcode(); 623 switch (Opcode) { 624 case Instruction::Load: { 625 LoadInst *LI = cast<LoadInst>(UserInst); 626 return (LI->getPointerOperand() == Scalar); 627 } 628 case Instruction::Store: { 629 StoreInst *SI = cast<StoreInst>(UserInst); 630 return (SI->getPointerOperand() == Scalar); 631 } 632 case Instruction::Call: { 633 CallInst *CI = cast<CallInst>(UserInst); 634 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 635 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 636 if (hasVectorInstrinsicScalarOpd(ID, i)) 637 return (CI->getArgOperand(i) == Scalar); 638 } 639 LLVM_FALLTHROUGH; 640 } 641 default: 642 return false; 643 } 644 } 645 646 /// \returns the AA location that is being access by the instruction. 647 static MemoryLocation getLocation(Instruction *I) { 648 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 649 return MemoryLocation::get(SI); 650 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 651 return MemoryLocation::get(LI); 652 return MemoryLocation(); 653 } 654 655 /// \returns True if the instruction is not a volatile or atomic load/store. 656 static bool isSimple(Instruction *I) { 657 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 658 return LI->isSimple(); 659 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 660 return SI->isSimple(); 661 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 662 return !MI->isVolatile(); 663 return true; 664 } 665 666 /// Shuffles \p Mask in accordance with the given \p SubMask. 667 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 668 if (SubMask.empty()) 669 return; 670 if (Mask.empty()) { 671 Mask.append(SubMask.begin(), SubMask.end()); 672 return; 673 } 674 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 675 int TermValue = std::min(Mask.size(), SubMask.size()); 676 for (int I = 0, E = SubMask.size(); I < E; ++I) { 677 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 678 Mask[SubMask[I]] >= TermValue) 679 continue; 680 NewMask[I] = Mask[SubMask[I]]; 681 } 682 Mask.swap(NewMask); 683 } 684 685 /// Order may have elements assigned special value (size) which is out of 686 /// bounds. Such indices only appear on places which correspond to undef values 687 /// (see canReuseExtract for details) and used in order to avoid undef values 688 /// have effect on operands ordering. 689 /// The first loop below simply finds all unused indices and then the next loop 690 /// nest assigns these indices for undef values positions. 691 /// As an example below Order has two undef positions and they have assigned 692 /// values 3 and 7 respectively: 693 /// before: 6 9 5 4 9 2 1 0 694 /// after: 6 3 5 4 7 2 1 0 695 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 696 const unsigned Sz = Order.size(); 697 SmallBitVector UnusedIndices(Sz, /*t=*/true); 698 SmallBitVector MaskedIndices(Sz); 699 for (unsigned I = 0; I < Sz; ++I) { 700 if (Order[I] < Sz) 701 UnusedIndices.reset(Order[I]); 702 else 703 MaskedIndices.set(I); 704 } 705 if (MaskedIndices.none()) 706 return; 707 assert(UnusedIndices.count() == MaskedIndices.count() && 708 "Non-synced masked/available indices."); 709 int Idx = UnusedIndices.find_first(); 710 int MIdx = MaskedIndices.find_first(); 711 while (MIdx >= 0) { 712 assert(Idx >= 0 && "Indices must be synced."); 713 Order[MIdx] = Idx; 714 Idx = UnusedIndices.find_next(Idx); 715 MIdx = MaskedIndices.find_next(MIdx); 716 } 717 } 718 719 namespace llvm { 720 721 static void inversePermutation(ArrayRef<unsigned> Indices, 722 SmallVectorImpl<int> &Mask) { 723 Mask.clear(); 724 const unsigned E = Indices.size(); 725 Mask.resize(E, UndefMaskElem); 726 for (unsigned I = 0; I < E; ++I) 727 Mask[Indices[I]] = I; 728 } 729 730 /// \returns inserting index of InsertElement or InsertValue instruction, 731 /// using Offset as base offset for index. 732 static Optional<unsigned> getInsertIndex(Value *InsertInst, 733 unsigned Offset = 0) { 734 int Index = Offset; 735 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 736 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 737 auto *VT = cast<FixedVectorType>(IE->getType()); 738 if (CI->getValue().uge(VT->getNumElements())) 739 return None; 740 Index *= VT->getNumElements(); 741 Index += CI->getZExtValue(); 742 return Index; 743 } 744 return None; 745 } 746 747 auto *IV = cast<InsertValueInst>(InsertInst); 748 Type *CurrentType = IV->getType(); 749 for (unsigned I : IV->indices()) { 750 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 751 Index *= ST->getNumElements(); 752 CurrentType = ST->getElementType(I); 753 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 754 Index *= AT->getNumElements(); 755 CurrentType = AT->getElementType(); 756 } else { 757 return None; 758 } 759 Index += I; 760 } 761 return Index; 762 } 763 764 /// Reorders the list of scalars in accordance with the given \p Mask. 765 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 766 ArrayRef<int> Mask) { 767 assert(!Mask.empty() && "Expected non-empty mask."); 768 SmallVector<Value *> Prev(Scalars.size(), 769 UndefValue::get(Scalars.front()->getType())); 770 Prev.swap(Scalars); 771 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 772 if (Mask[I] != UndefMaskElem) 773 Scalars[Mask[I]] = Prev[I]; 774 } 775 776 /// Checks if the provided value does not require scheduling. It does not 777 /// require scheduling if this is not an instruction or it is an instruction 778 /// that does not read/write memory and all operands are either not instructions 779 /// or phi nodes or instructions from different blocks. 780 static bool areAllOperandsNonInsts(Value *V) { 781 auto *I = dyn_cast<Instruction>(V); 782 if (!I) 783 return true; 784 return !mayHaveNonDefUseDependency(*I) && 785 all_of(I->operands(), [I](Value *V) { 786 auto *IO = dyn_cast<Instruction>(V); 787 if (!IO) 788 return true; 789 return isa<PHINode>(IO) || IO->getParent() != I->getParent(); 790 }); 791 } 792 793 /// Checks if the provided value does not require scheduling. It does not 794 /// require scheduling if this is not an instruction or it is an instruction 795 /// that does not read/write memory and all users are phi nodes or instructions 796 /// from the different blocks. 797 static bool isUsedOutsideBlock(Value *V) { 798 auto *I = dyn_cast<Instruction>(V); 799 if (!I) 800 return true; 801 // Limits the number of uses to save compile time. 802 constexpr int UsesLimit = 8; 803 return !I->mayReadOrWriteMemory() && !I->hasNUsesOrMore(UsesLimit) && 804 all_of(I->users(), [I](User *U) { 805 auto *IU = dyn_cast<Instruction>(U); 806 if (!IU) 807 return true; 808 return IU->getParent() != I->getParent() || isa<PHINode>(IU); 809 }); 810 } 811 812 /// Checks if the specified value does not require scheduling. It does not 813 /// require scheduling if all operands and all users do not need to be scheduled 814 /// in the current basic block. 815 static bool doesNotNeedToBeScheduled(Value *V) { 816 return areAllOperandsNonInsts(V) && isUsedOutsideBlock(V); 817 } 818 819 /// Checks if the specified array of instructions does not require scheduling. 820 /// It is so if all either instructions have operands that do not require 821 /// scheduling or their users do not require scheduling since they are phis or 822 /// in other basic blocks. 823 static bool doesNotNeedToSchedule(ArrayRef<Value *> VL) { 824 return !VL.empty() && 825 (all_of(VL, isUsedOutsideBlock) || all_of(VL, areAllOperandsNonInsts)); 826 } 827 828 namespace slpvectorizer { 829 830 /// Bottom Up SLP Vectorizer. 831 class BoUpSLP { 832 struct TreeEntry; 833 struct ScheduleData; 834 835 public: 836 using ValueList = SmallVector<Value *, 8>; 837 using InstrList = SmallVector<Instruction *, 16>; 838 using ValueSet = SmallPtrSet<Value *, 16>; 839 using StoreList = SmallVector<StoreInst *, 8>; 840 using ExtraValueToDebugLocsMap = 841 MapVector<Value *, SmallVector<Instruction *, 2>>; 842 using OrdersType = SmallVector<unsigned, 4>; 843 844 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 845 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 846 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 847 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 848 : BatchAA(*Aa), F(Func), SE(Se), TTI(Tti), TLI(TLi), LI(Li), 849 DT(Dt), AC(AC), DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 850 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 851 // Use the vector register size specified by the target unless overridden 852 // by a command-line option. 853 // TODO: It would be better to limit the vectorization factor based on 854 // data type rather than just register size. For example, x86 AVX has 855 // 256-bit registers, but it does not support integer operations 856 // at that width (that requires AVX2). 857 if (MaxVectorRegSizeOption.getNumOccurrences()) 858 MaxVecRegSize = MaxVectorRegSizeOption; 859 else 860 MaxVecRegSize = 861 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 862 .getFixedSize(); 863 864 if (MinVectorRegSizeOption.getNumOccurrences()) 865 MinVecRegSize = MinVectorRegSizeOption; 866 else 867 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 868 } 869 870 /// Vectorize the tree that starts with the elements in \p VL. 871 /// Returns the vectorized root. 872 Value *vectorizeTree(); 873 874 /// Vectorize the tree but with the list of externally used values \p 875 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 876 /// generated extractvalue instructions. 877 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 878 879 /// \returns the cost incurred by unwanted spills and fills, caused by 880 /// holding live values over call sites. 881 InstructionCost getSpillCost() const; 882 883 /// \returns the vectorization cost of the subtree that starts at \p VL. 884 /// A negative number means that this is profitable. 885 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 886 887 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 888 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 889 void buildTree(ArrayRef<Value *> Roots, 890 ArrayRef<Value *> UserIgnoreLst = None); 891 892 /// Builds external uses of the vectorized scalars, i.e. the list of 893 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 894 /// ExternallyUsedValues contains additional list of external uses to handle 895 /// vectorization of reductions. 896 void 897 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 898 899 /// Clear the internal data structures that are created by 'buildTree'. 900 void deleteTree() { 901 VectorizableTree.clear(); 902 ScalarToTreeEntry.clear(); 903 MustGather.clear(); 904 ExternalUses.clear(); 905 for (auto &Iter : BlocksSchedules) { 906 BlockScheduling *BS = Iter.second.get(); 907 BS->clear(); 908 } 909 MinBWs.clear(); 910 InstrElementSize.clear(); 911 } 912 913 unsigned getTreeSize() const { return VectorizableTree.size(); } 914 915 /// Perform LICM and CSE on the newly generated gather sequences. 916 void optimizeGatherSequence(); 917 918 /// Checks if the specified gather tree entry \p TE can be represented as a 919 /// shuffled vector entry + (possibly) permutation with other gathers. It 920 /// implements the checks only for possibly ordered scalars (Loads, 921 /// ExtractElement, ExtractValue), which can be part of the graph. 922 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 923 924 /// Gets reordering data for the given tree entry. If the entry is vectorized 925 /// - just return ReorderIndices, otherwise check if the scalars can be 926 /// reordered and return the most optimal order. 927 /// \param TopToBottom If true, include the order of vectorized stores and 928 /// insertelement nodes, otherwise skip them. 929 Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom); 930 931 /// Reorders the current graph to the most profitable order starting from the 932 /// root node to the leaf nodes. The best order is chosen only from the nodes 933 /// of the same size (vectorization factor). Smaller nodes are considered 934 /// parts of subgraph with smaller VF and they are reordered independently. We 935 /// can make it because we still need to extend smaller nodes to the wider VF 936 /// and we can merge reordering shuffles with the widening shuffles. 937 void reorderTopToBottom(); 938 939 /// Reorders the current graph to the most profitable order starting from 940 /// leaves to the root. It allows to rotate small subgraphs and reduce the 941 /// number of reshuffles if the leaf nodes use the same order. In this case we 942 /// can merge the orders and just shuffle user node instead of shuffling its 943 /// operands. Plus, even the leaf nodes have different orders, it allows to 944 /// sink reordering in the graph closer to the root node and merge it later 945 /// during analysis. 946 void reorderBottomToTop(bool IgnoreReorder = false); 947 948 /// \return The vector element size in bits to use when vectorizing the 949 /// expression tree ending at \p V. If V is a store, the size is the width of 950 /// the stored value. Otherwise, the size is the width of the largest loaded 951 /// value reaching V. This method is used by the vectorizer to calculate 952 /// vectorization factors. 953 unsigned getVectorElementSize(Value *V); 954 955 /// Compute the minimum type sizes required to represent the entries in a 956 /// vectorizable tree. 957 void computeMinimumValueSizes(); 958 959 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 960 unsigned getMaxVecRegSize() const { 961 return MaxVecRegSize; 962 } 963 964 // \returns minimum vector register size as set by cl::opt. 965 unsigned getMinVecRegSize() const { 966 return MinVecRegSize; 967 } 968 969 unsigned getMinVF(unsigned Sz) const { 970 return std::max(2U, getMinVecRegSize() / Sz); 971 } 972 973 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 974 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 975 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 976 return MaxVF ? MaxVF : UINT_MAX; 977 } 978 979 /// Check if homogeneous aggregate is isomorphic to some VectorType. 980 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 981 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 982 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 983 /// 984 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 985 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 986 987 /// \returns True if the VectorizableTree is both tiny and not fully 988 /// vectorizable. We do not vectorize such trees. 989 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 990 991 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 992 /// can be load combined in the backend. Load combining may not be allowed in 993 /// the IR optimizer, so we do not want to alter the pattern. For example, 994 /// partially transforming a scalar bswap() pattern into vector code is 995 /// effectively impossible for the backend to undo. 996 /// TODO: If load combining is allowed in the IR optimizer, this analysis 997 /// may not be necessary. 998 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 999 1000 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 1001 /// can be load combined in the backend. Load combining may not be allowed in 1002 /// the IR optimizer, so we do not want to alter the pattern. For example, 1003 /// partially transforming a scalar bswap() pattern into vector code is 1004 /// effectively impossible for the backend to undo. 1005 /// TODO: If load combining is allowed in the IR optimizer, this analysis 1006 /// may not be necessary. 1007 bool isLoadCombineCandidate() const; 1008 1009 OptimizationRemarkEmitter *getORE() { return ORE; } 1010 1011 /// This structure holds any data we need about the edges being traversed 1012 /// during buildTree_rec(). We keep track of: 1013 /// (i) the user TreeEntry index, and 1014 /// (ii) the index of the edge. 1015 struct EdgeInfo { 1016 EdgeInfo() = default; 1017 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 1018 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 1019 /// The user TreeEntry. 1020 TreeEntry *UserTE = nullptr; 1021 /// The operand index of the use. 1022 unsigned EdgeIdx = UINT_MAX; 1023 #ifndef NDEBUG 1024 friend inline raw_ostream &operator<<(raw_ostream &OS, 1025 const BoUpSLP::EdgeInfo &EI) { 1026 EI.dump(OS); 1027 return OS; 1028 } 1029 /// Debug print. 1030 void dump(raw_ostream &OS) const { 1031 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 1032 << " EdgeIdx:" << EdgeIdx << "}"; 1033 } 1034 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 1035 #endif 1036 }; 1037 1038 /// A helper data structure to hold the operands of a vector of instructions. 1039 /// This supports a fixed vector length for all operand vectors. 1040 class VLOperands { 1041 /// For each operand we need (i) the value, and (ii) the opcode that it 1042 /// would be attached to if the expression was in a left-linearized form. 1043 /// This is required to avoid illegal operand reordering. 1044 /// For example: 1045 /// \verbatim 1046 /// 0 Op1 1047 /// |/ 1048 /// Op1 Op2 Linearized + Op2 1049 /// \ / ----------> |/ 1050 /// - - 1051 /// 1052 /// Op1 - Op2 (0 + Op1) - Op2 1053 /// \endverbatim 1054 /// 1055 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 1056 /// 1057 /// Another way to think of this is to track all the operations across the 1058 /// path from the operand all the way to the root of the tree and to 1059 /// calculate the operation that corresponds to this path. For example, the 1060 /// path from Op2 to the root crosses the RHS of the '-', therefore the 1061 /// corresponding operation is a '-' (which matches the one in the 1062 /// linearized tree, as shown above). 1063 /// 1064 /// For lack of a better term, we refer to this operation as Accumulated 1065 /// Path Operation (APO). 1066 struct OperandData { 1067 OperandData() = default; 1068 OperandData(Value *V, bool APO, bool IsUsed) 1069 : V(V), APO(APO), IsUsed(IsUsed) {} 1070 /// The operand value. 1071 Value *V = nullptr; 1072 /// TreeEntries only allow a single opcode, or an alternate sequence of 1073 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 1074 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 1075 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 1076 /// (e.g., Add/Mul) 1077 bool APO = false; 1078 /// Helper data for the reordering function. 1079 bool IsUsed = false; 1080 }; 1081 1082 /// During operand reordering, we are trying to select the operand at lane 1083 /// that matches best with the operand at the neighboring lane. Our 1084 /// selection is based on the type of value we are looking for. For example, 1085 /// if the neighboring lane has a load, we need to look for a load that is 1086 /// accessing a consecutive address. These strategies are summarized in the 1087 /// 'ReorderingMode' enumerator. 1088 enum class ReorderingMode { 1089 Load, ///< Matching loads to consecutive memory addresses 1090 Opcode, ///< Matching instructions based on opcode (same or alternate) 1091 Constant, ///< Matching constants 1092 Splat, ///< Matching the same instruction multiple times (broadcast) 1093 Failed, ///< We failed to create a vectorizable group 1094 }; 1095 1096 using OperandDataVec = SmallVector<OperandData, 2>; 1097 1098 /// A vector of operand vectors. 1099 SmallVector<OperandDataVec, 4> OpsVec; 1100 1101 const DataLayout &DL; 1102 ScalarEvolution &SE; 1103 const BoUpSLP &R; 1104 1105 /// \returns the operand data at \p OpIdx and \p Lane. 1106 OperandData &getData(unsigned OpIdx, unsigned Lane) { 1107 return OpsVec[OpIdx][Lane]; 1108 } 1109 1110 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 1111 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 1112 return OpsVec[OpIdx][Lane]; 1113 } 1114 1115 /// Clears the used flag for all entries. 1116 void clearUsed() { 1117 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 1118 OpIdx != NumOperands; ++OpIdx) 1119 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1120 ++Lane) 1121 OpsVec[OpIdx][Lane].IsUsed = false; 1122 } 1123 1124 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 1125 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 1126 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 1127 } 1128 1129 // The hard-coded scores listed here are not very important, though it shall 1130 // be higher for better matches to improve the resulting cost. When 1131 // computing the scores of matching one sub-tree with another, we are 1132 // basically counting the number of values that are matching. So even if all 1133 // scores are set to 1, we would still get a decent matching result. 1134 // However, sometimes we have to break ties. For example we may have to 1135 // choose between matching loads vs matching opcodes. This is what these 1136 // scores are helping us with: they provide the order of preference. Also, 1137 // this is important if the scalar is externally used or used in another 1138 // tree entry node in the different lane. 1139 1140 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 1141 static const int ScoreConsecutiveLoads = 4; 1142 /// The same load multiple times. This should have a better score than 1143 /// `ScoreSplat` because it in x86 for a 2-lane vector we can represent it 1144 /// with `movddup (%reg), xmm0` which has a throughput of 0.5 versus 0.5 for 1145 /// a vector load and 1.0 for a broadcast. 1146 static const int ScoreSplatLoads = 3; 1147 /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]). 1148 static const int ScoreReversedLoads = 3; 1149 /// ExtractElementInst from same vector and consecutive indexes. 1150 static const int ScoreConsecutiveExtracts = 4; 1151 /// ExtractElementInst from same vector and reversed indices. 1152 static const int ScoreReversedExtracts = 3; 1153 /// Constants. 1154 static const int ScoreConstants = 2; 1155 /// Instructions with the same opcode. 1156 static const int ScoreSameOpcode = 2; 1157 /// Instructions with alt opcodes (e.g, add + sub). 1158 static const int ScoreAltOpcodes = 1; 1159 /// Identical instructions (a.k.a. splat or broadcast). 1160 static const int ScoreSplat = 1; 1161 /// Matching with an undef is preferable to failing. 1162 static const int ScoreUndef = 1; 1163 /// Score for failing to find a decent match. 1164 static const int ScoreFail = 0; 1165 /// Score if all users are vectorized. 1166 static const int ScoreAllUserVectorized = 1; 1167 1168 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1169 /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p 1170 /// MainAltOps. 1171 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 1172 ScalarEvolution &SE, int NumLanes, 1173 ArrayRef<Value *> MainAltOps, 1174 const TargetTransformInfo *TTI) { 1175 if (V1 == V2) { 1176 if (isa<LoadInst>(V1)) { 1177 // A broadcast of a load can be cheaper on some targets. 1178 // TODO: For now accept a broadcast load with no other internal uses. 1179 if (TTI->isLegalBroadcastLoad(V1->getType(), NumLanes) && 1180 (int)V1->getNumUses() == NumLanes) 1181 return VLOperands::ScoreSplatLoads; 1182 } 1183 return VLOperands::ScoreSplat; 1184 } 1185 1186 auto *LI1 = dyn_cast<LoadInst>(V1); 1187 auto *LI2 = dyn_cast<LoadInst>(V2); 1188 if (LI1 && LI2) { 1189 if (LI1->getParent() != LI2->getParent()) 1190 return VLOperands::ScoreFail; 1191 1192 Optional<int> Dist = getPointersDiff( 1193 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1194 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1195 if (!Dist || *Dist == 0) 1196 return VLOperands::ScoreFail; 1197 // The distance is too large - still may be profitable to use masked 1198 // loads/gathers. 1199 if (std::abs(*Dist) > NumLanes / 2) 1200 return VLOperands::ScoreAltOpcodes; 1201 // This still will detect consecutive loads, but we might have "holes" 1202 // in some cases. It is ok for non-power-2 vectorization and may produce 1203 // better results. It should not affect current vectorization. 1204 return (*Dist > 0) ? VLOperands::ScoreConsecutiveLoads 1205 : VLOperands::ScoreReversedLoads; 1206 } 1207 1208 auto *C1 = dyn_cast<Constant>(V1); 1209 auto *C2 = dyn_cast<Constant>(V2); 1210 if (C1 && C2) 1211 return VLOperands::ScoreConstants; 1212 1213 // Extracts from consecutive indexes of the same vector better score as 1214 // the extracts could be optimized away. 1215 Value *EV1; 1216 ConstantInt *Ex1Idx; 1217 if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) { 1218 // Undefs are always profitable for extractelements. 1219 if (isa<UndefValue>(V2)) 1220 return VLOperands::ScoreConsecutiveExtracts; 1221 Value *EV2 = nullptr; 1222 ConstantInt *Ex2Idx = nullptr; 1223 if (match(V2, 1224 m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx), 1225 m_Undef())))) { 1226 // Undefs are always profitable for extractelements. 1227 if (!Ex2Idx) 1228 return VLOperands::ScoreConsecutiveExtracts; 1229 if (isUndefVector(EV2) && EV2->getType() == EV1->getType()) 1230 return VLOperands::ScoreConsecutiveExtracts; 1231 if (EV2 == EV1) { 1232 int Idx1 = Ex1Idx->getZExtValue(); 1233 int Idx2 = Ex2Idx->getZExtValue(); 1234 int Dist = Idx2 - Idx1; 1235 // The distance is too large - still may be profitable to use 1236 // shuffles. 1237 if (std::abs(Dist) == 0) 1238 return VLOperands::ScoreSplat; 1239 if (std::abs(Dist) > NumLanes / 2) 1240 return VLOperands::ScoreSameOpcode; 1241 return (Dist > 0) ? VLOperands::ScoreConsecutiveExtracts 1242 : VLOperands::ScoreReversedExtracts; 1243 } 1244 return VLOperands::ScoreAltOpcodes; 1245 } 1246 return VLOperands::ScoreFail; 1247 } 1248 1249 auto *I1 = dyn_cast<Instruction>(V1); 1250 auto *I2 = dyn_cast<Instruction>(V2); 1251 if (I1 && I2) { 1252 if (I1->getParent() != I2->getParent()) 1253 return VLOperands::ScoreFail; 1254 SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end()); 1255 Ops.push_back(I1); 1256 Ops.push_back(I2); 1257 InstructionsState S = getSameOpcode(Ops); 1258 // Note: Only consider instructions with <= 2 operands to avoid 1259 // complexity explosion. 1260 if (S.getOpcode() && 1261 (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() || 1262 !S.isAltShuffle()) && 1263 all_of(Ops, [&S](Value *V) { 1264 return cast<Instruction>(V)->getNumOperands() == 1265 S.MainOp->getNumOperands(); 1266 })) 1267 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 1268 : VLOperands::ScoreSameOpcode; 1269 } 1270 1271 if (isa<UndefValue>(V2)) 1272 return VLOperands::ScoreUndef; 1273 1274 return VLOperands::ScoreFail; 1275 } 1276 1277 /// \param Lane lane of the operands under analysis. 1278 /// \param OpIdx operand index in \p Lane lane we're looking the best 1279 /// candidate for. 1280 /// \param Idx operand index of the current candidate value. 1281 /// \returns The additional score due to possible broadcasting of the 1282 /// elements in the lane. It is more profitable to have power-of-2 unique 1283 /// elements in the lane, it will be vectorized with higher probability 1284 /// after removing duplicates. Currently the SLP vectorizer supports only 1285 /// vectorization of the power-of-2 number of unique scalars. 1286 int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1287 Value *IdxLaneV = getData(Idx, Lane).V; 1288 if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V) 1289 return 0; 1290 SmallPtrSet<Value *, 4> Uniques; 1291 for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) { 1292 if (Ln == Lane) 1293 continue; 1294 Value *OpIdxLnV = getData(OpIdx, Ln).V; 1295 if (!isa<Instruction>(OpIdxLnV)) 1296 return 0; 1297 Uniques.insert(OpIdxLnV); 1298 } 1299 int UniquesCount = Uniques.size(); 1300 int UniquesCntWithIdxLaneV = 1301 Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1; 1302 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1303 int UniquesCntWithOpIdxLaneV = 1304 Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1; 1305 if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV) 1306 return 0; 1307 return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) - 1308 UniquesCntWithOpIdxLaneV) - 1309 (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV); 1310 } 1311 1312 /// \param Lane lane of the operands under analysis. 1313 /// \param OpIdx operand index in \p Lane lane we're looking the best 1314 /// candidate for. 1315 /// \param Idx operand index of the current candidate value. 1316 /// \returns The additional score for the scalar which users are all 1317 /// vectorized. 1318 int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1319 Value *IdxLaneV = getData(Idx, Lane).V; 1320 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1321 // Do not care about number of uses for vector-like instructions 1322 // (extractelement/extractvalue with constant indices), they are extracts 1323 // themselves and already externally used. Vectorization of such 1324 // instructions does not add extra extractelement instruction, just may 1325 // remove it. 1326 if (isVectorLikeInstWithConstOps(IdxLaneV) && 1327 isVectorLikeInstWithConstOps(OpIdxLaneV)) 1328 return VLOperands::ScoreAllUserVectorized; 1329 auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV); 1330 if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV)) 1331 return 0; 1332 return R.areAllUsersVectorized(IdxLaneI, None) 1333 ? VLOperands::ScoreAllUserVectorized 1334 : 0; 1335 } 1336 1337 /// Go through the operands of \p LHS and \p RHS recursively until \p 1338 /// MaxLevel, and return the cummulative score. For example: 1339 /// \verbatim 1340 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1341 /// \ / \ / \ / \ / 1342 /// + + + + 1343 /// G1 G2 G3 G4 1344 /// \endverbatim 1345 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1346 /// each level recursively, accumulating the score. It starts from matching 1347 /// the additions at level 0, then moves on to the loads (level 1). The 1348 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1349 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1350 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1351 /// Please note that the order of the operands does not matter, as we 1352 /// evaluate the score of all profitable combinations of operands. In 1353 /// other words the score of G1 and G4 is the same as G1 and G2. This 1354 /// heuristic is based on ideas described in: 1355 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1356 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1357 /// Luís F. W. Góes 1358 int getScoreAtLevelRec(Value *LHS, Value *RHS, int CurrLevel, int MaxLevel, 1359 ArrayRef<Value *> MainAltOps) { 1360 1361 // Get the shallow score of V1 and V2. 1362 int ShallowScoreAtThisLevel = 1363 getShallowScore(LHS, RHS, DL, SE, getNumLanes(), MainAltOps, R.TTI); 1364 1365 // If reached MaxLevel, 1366 // or if V1 and V2 are not instructions, 1367 // or if they are SPLAT, 1368 // or if they are not consecutive, 1369 // or if profitable to vectorize loads or extractelements, early return 1370 // the current cost. 1371 auto *I1 = dyn_cast<Instruction>(LHS); 1372 auto *I2 = dyn_cast<Instruction>(RHS); 1373 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1374 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1375 (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) || 1376 (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) || 1377 (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) && 1378 ShallowScoreAtThisLevel)) 1379 return ShallowScoreAtThisLevel; 1380 assert(I1 && I2 && "Should have early exited."); 1381 1382 // Contains the I2 operand indexes that got matched with I1 operands. 1383 SmallSet<unsigned, 4> Op2Used; 1384 1385 // Recursion towards the operands of I1 and I2. We are trying all possible 1386 // operand pairs, and keeping track of the best score. 1387 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1388 OpIdx1 != NumOperands1; ++OpIdx1) { 1389 // Try to pair op1I with the best operand of I2. 1390 int MaxTmpScore = 0; 1391 unsigned MaxOpIdx2 = 0; 1392 bool FoundBest = false; 1393 // If I2 is commutative try all combinations. 1394 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1395 unsigned ToIdx = isCommutative(I2) 1396 ? I2->getNumOperands() 1397 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1398 assert(FromIdx <= ToIdx && "Bad index"); 1399 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1400 // Skip operands already paired with OpIdx1. 1401 if (Op2Used.count(OpIdx2)) 1402 continue; 1403 // Recursively calculate the cost at each level 1404 int TmpScore = 1405 getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2), 1406 CurrLevel + 1, MaxLevel, None); 1407 // Look for the best score. 1408 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1409 MaxTmpScore = TmpScore; 1410 MaxOpIdx2 = OpIdx2; 1411 FoundBest = true; 1412 } 1413 } 1414 if (FoundBest) { 1415 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1416 Op2Used.insert(MaxOpIdx2); 1417 ShallowScoreAtThisLevel += MaxTmpScore; 1418 } 1419 } 1420 return ShallowScoreAtThisLevel; 1421 } 1422 1423 /// Score scaling factor for fully compatible instructions but with 1424 /// different number of external uses. Allows better selection of the 1425 /// instructions with less external uses. 1426 static const int ScoreScaleFactor = 10; 1427 1428 /// \Returns the look-ahead score, which tells us how much the sub-trees 1429 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1430 /// score. This helps break ties in an informed way when we cannot decide on 1431 /// the order of the operands by just considering the immediate 1432 /// predecessors. 1433 int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps, 1434 int Lane, unsigned OpIdx, unsigned Idx, 1435 bool &IsUsed) { 1436 int Score = 1437 getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth, MainAltOps); 1438 if (Score) { 1439 int SplatScore = getSplatScore(Lane, OpIdx, Idx); 1440 if (Score <= -SplatScore) { 1441 // Set the minimum score for splat-like sequence to avoid setting 1442 // failed state. 1443 Score = 1; 1444 } else { 1445 Score += SplatScore; 1446 // Scale score to see the difference between different operands 1447 // and similar operands but all vectorized/not all vectorized 1448 // uses. It does not affect actual selection of the best 1449 // compatible operand in general, just allows to select the 1450 // operand with all vectorized uses. 1451 Score *= ScoreScaleFactor; 1452 Score += getExternalUseScore(Lane, OpIdx, Idx); 1453 IsUsed = true; 1454 } 1455 } 1456 return Score; 1457 } 1458 1459 /// Best defined scores per lanes between the passes. Used to choose the 1460 /// best operand (with the highest score) between the passes. 1461 /// The key - {Operand Index, Lane}. 1462 /// The value - the best score between the passes for the lane and the 1463 /// operand. 1464 SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8> 1465 BestScoresPerLanes; 1466 1467 // Search all operands in Ops[*][Lane] for the one that matches best 1468 // Ops[OpIdx][LastLane] and return its opreand index. 1469 // If no good match can be found, return None. 1470 Optional<unsigned> getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1471 ArrayRef<ReorderingMode> ReorderingModes, 1472 ArrayRef<Value *> MainAltOps) { 1473 unsigned NumOperands = getNumOperands(); 1474 1475 // The operand of the previous lane at OpIdx. 1476 Value *OpLastLane = getData(OpIdx, LastLane).V; 1477 1478 // Our strategy mode for OpIdx. 1479 ReorderingMode RMode = ReorderingModes[OpIdx]; 1480 if (RMode == ReorderingMode::Failed) 1481 return None; 1482 1483 // The linearized opcode of the operand at OpIdx, Lane. 1484 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1485 1486 // The best operand index and its score. 1487 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1488 // are using the score to differentiate between the two. 1489 struct BestOpData { 1490 Optional<unsigned> Idx = None; 1491 unsigned Score = 0; 1492 } BestOp; 1493 BestOp.Score = 1494 BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0) 1495 .first->second; 1496 1497 // Track if the operand must be marked as used. If the operand is set to 1498 // Score 1 explicitly (because of non power-of-2 unique scalars, we may 1499 // want to reestimate the operands again on the following iterations). 1500 bool IsUsed = 1501 RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant; 1502 // Iterate through all unused operands and look for the best. 1503 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1504 // Get the operand at Idx and Lane. 1505 OperandData &OpData = getData(Idx, Lane); 1506 Value *Op = OpData.V; 1507 bool OpAPO = OpData.APO; 1508 1509 // Skip already selected operands. 1510 if (OpData.IsUsed) 1511 continue; 1512 1513 // Skip if we are trying to move the operand to a position with a 1514 // different opcode in the linearized tree form. This would break the 1515 // semantics. 1516 if (OpAPO != OpIdxAPO) 1517 continue; 1518 1519 // Look for an operand that matches the current mode. 1520 switch (RMode) { 1521 case ReorderingMode::Load: 1522 case ReorderingMode::Constant: 1523 case ReorderingMode::Opcode: { 1524 bool LeftToRight = Lane > LastLane; 1525 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1526 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1527 int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane, 1528 OpIdx, Idx, IsUsed); 1529 if (Score > static_cast<int>(BestOp.Score)) { 1530 BestOp.Idx = Idx; 1531 BestOp.Score = Score; 1532 BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score; 1533 } 1534 break; 1535 } 1536 case ReorderingMode::Splat: 1537 if (Op == OpLastLane) 1538 BestOp.Idx = Idx; 1539 break; 1540 case ReorderingMode::Failed: 1541 llvm_unreachable("Not expected Failed reordering mode."); 1542 } 1543 } 1544 1545 if (BestOp.Idx) { 1546 getData(BestOp.Idx.getValue(), Lane).IsUsed = IsUsed; 1547 return BestOp.Idx; 1548 } 1549 // If we could not find a good match return None. 1550 return None; 1551 } 1552 1553 /// Helper for reorderOperandVecs. 1554 /// \returns the lane that we should start reordering from. This is the one 1555 /// which has the least number of operands that can freely move about or 1556 /// less profitable because it already has the most optimal set of operands. 1557 unsigned getBestLaneToStartReordering() const { 1558 unsigned Min = UINT_MAX; 1559 unsigned SameOpNumber = 0; 1560 // std::pair<unsigned, unsigned> is used to implement a simple voting 1561 // algorithm and choose the lane with the least number of operands that 1562 // can freely move about or less profitable because it already has the 1563 // most optimal set of operands. The first unsigned is a counter for 1564 // voting, the second unsigned is the counter of lanes with instructions 1565 // with same/alternate opcodes and same parent basic block. 1566 MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap; 1567 // Try to be closer to the original results, if we have multiple lanes 1568 // with same cost. If 2 lanes have the same cost, use the one with the 1569 // lowest index. 1570 for (int I = getNumLanes(); I > 0; --I) { 1571 unsigned Lane = I - 1; 1572 OperandsOrderData NumFreeOpsHash = 1573 getMaxNumOperandsThatCanBeReordered(Lane); 1574 // Compare the number of operands that can move and choose the one with 1575 // the least number. 1576 if (NumFreeOpsHash.NumOfAPOs < Min) { 1577 Min = NumFreeOpsHash.NumOfAPOs; 1578 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1579 HashMap.clear(); 1580 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1581 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1582 NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) { 1583 // Select the most optimal lane in terms of number of operands that 1584 // should be moved around. 1585 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1586 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1587 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1588 NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) { 1589 auto It = HashMap.find(NumFreeOpsHash.Hash); 1590 if (It == HashMap.end()) 1591 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1592 else 1593 ++It->second.first; 1594 } 1595 } 1596 // Select the lane with the minimum counter. 1597 unsigned BestLane = 0; 1598 unsigned CntMin = UINT_MAX; 1599 for (const auto &Data : reverse(HashMap)) { 1600 if (Data.second.first < CntMin) { 1601 CntMin = Data.second.first; 1602 BestLane = Data.second.second; 1603 } 1604 } 1605 return BestLane; 1606 } 1607 1608 /// Data structure that helps to reorder operands. 1609 struct OperandsOrderData { 1610 /// The best number of operands with the same APOs, which can be 1611 /// reordered. 1612 unsigned NumOfAPOs = UINT_MAX; 1613 /// Number of operands with the same/alternate instruction opcode and 1614 /// parent. 1615 unsigned NumOpsWithSameOpcodeParent = 0; 1616 /// Hash for the actual operands ordering. 1617 /// Used to count operands, actually their position id and opcode 1618 /// value. It is used in the voting mechanism to find the lane with the 1619 /// least number of operands that can freely move about or less profitable 1620 /// because it already has the most optimal set of operands. Can be 1621 /// replaced with SmallVector<unsigned> instead but hash code is faster 1622 /// and requires less memory. 1623 unsigned Hash = 0; 1624 }; 1625 /// \returns the maximum number of operands that are allowed to be reordered 1626 /// for \p Lane and the number of compatible instructions(with the same 1627 /// parent/opcode). This is used as a heuristic for selecting the first lane 1628 /// to start operand reordering. 1629 OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1630 unsigned CntTrue = 0; 1631 unsigned NumOperands = getNumOperands(); 1632 // Operands with the same APO can be reordered. We therefore need to count 1633 // how many of them we have for each APO, like this: Cnt[APO] = x. 1634 // Since we only have two APOs, namely true and false, we can avoid using 1635 // a map. Instead we can simply count the number of operands that 1636 // correspond to one of them (in this case the 'true' APO), and calculate 1637 // the other by subtracting it from the total number of operands. 1638 // Operands with the same instruction opcode and parent are more 1639 // profitable since we don't need to move them in many cases, with a high 1640 // probability such lane already can be vectorized effectively. 1641 bool AllUndefs = true; 1642 unsigned NumOpsWithSameOpcodeParent = 0; 1643 Instruction *OpcodeI = nullptr; 1644 BasicBlock *Parent = nullptr; 1645 unsigned Hash = 0; 1646 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1647 const OperandData &OpData = getData(OpIdx, Lane); 1648 if (OpData.APO) 1649 ++CntTrue; 1650 // Use Boyer-Moore majority voting for finding the majority opcode and 1651 // the number of times it occurs. 1652 if (auto *I = dyn_cast<Instruction>(OpData.V)) { 1653 if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() || 1654 I->getParent() != Parent) { 1655 if (NumOpsWithSameOpcodeParent == 0) { 1656 NumOpsWithSameOpcodeParent = 1; 1657 OpcodeI = I; 1658 Parent = I->getParent(); 1659 } else { 1660 --NumOpsWithSameOpcodeParent; 1661 } 1662 } else { 1663 ++NumOpsWithSameOpcodeParent; 1664 } 1665 } 1666 Hash = hash_combine( 1667 Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1))); 1668 AllUndefs = AllUndefs && isa<UndefValue>(OpData.V); 1669 } 1670 if (AllUndefs) 1671 return {}; 1672 OperandsOrderData Data; 1673 Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue); 1674 Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent; 1675 Data.Hash = Hash; 1676 return Data; 1677 } 1678 1679 /// Go through the instructions in VL and append their operands. 1680 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1681 assert(!VL.empty() && "Bad VL"); 1682 assert((empty() || VL.size() == getNumLanes()) && 1683 "Expected same number of lanes"); 1684 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1685 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1686 OpsVec.resize(NumOperands); 1687 unsigned NumLanes = VL.size(); 1688 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1689 OpsVec[OpIdx].resize(NumLanes); 1690 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1691 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1692 // Our tree has just 3 nodes: the root and two operands. 1693 // It is therefore trivial to get the APO. We only need to check the 1694 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1695 // RHS operand. The LHS operand of both add and sub is never attached 1696 // to an inversese operation in the linearized form, therefore its APO 1697 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1698 1699 // Since operand reordering is performed on groups of commutative 1700 // operations or alternating sequences (e.g., +, -), we can safely 1701 // tell the inverse operations by checking commutativity. 1702 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1703 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1704 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1705 APO, false}; 1706 } 1707 } 1708 } 1709 1710 /// \returns the number of operands. 1711 unsigned getNumOperands() const { return OpsVec.size(); } 1712 1713 /// \returns the number of lanes. 1714 unsigned getNumLanes() const { return OpsVec[0].size(); } 1715 1716 /// \returns the operand value at \p OpIdx and \p Lane. 1717 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1718 return getData(OpIdx, Lane).V; 1719 } 1720 1721 /// \returns true if the data structure is empty. 1722 bool empty() const { return OpsVec.empty(); } 1723 1724 /// Clears the data. 1725 void clear() { OpsVec.clear(); } 1726 1727 /// \Returns true if there are enough operands identical to \p Op to fill 1728 /// the whole vector. 1729 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1730 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1731 bool OpAPO = getData(OpIdx, Lane).APO; 1732 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1733 if (Ln == Lane) 1734 continue; 1735 // This is set to true if we found a candidate for broadcast at Lane. 1736 bool FoundCandidate = false; 1737 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1738 OperandData &Data = getData(OpI, Ln); 1739 if (Data.APO != OpAPO || Data.IsUsed) 1740 continue; 1741 if (Data.V == Op) { 1742 FoundCandidate = true; 1743 Data.IsUsed = true; 1744 break; 1745 } 1746 } 1747 if (!FoundCandidate) 1748 return false; 1749 } 1750 return true; 1751 } 1752 1753 public: 1754 /// Initialize with all the operands of the instruction vector \p RootVL. 1755 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1756 ScalarEvolution &SE, const BoUpSLP &R) 1757 : DL(DL), SE(SE), R(R) { 1758 // Append all the operands of RootVL. 1759 appendOperandsOfVL(RootVL); 1760 } 1761 1762 /// \Returns a value vector with the operands across all lanes for the 1763 /// opearnd at \p OpIdx. 1764 ValueList getVL(unsigned OpIdx) const { 1765 ValueList OpVL(OpsVec[OpIdx].size()); 1766 assert(OpsVec[OpIdx].size() == getNumLanes() && 1767 "Expected same num of lanes across all operands"); 1768 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1769 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1770 return OpVL; 1771 } 1772 1773 // Performs operand reordering for 2 or more operands. 1774 // The original operands are in OrigOps[OpIdx][Lane]. 1775 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1776 void reorder() { 1777 unsigned NumOperands = getNumOperands(); 1778 unsigned NumLanes = getNumLanes(); 1779 // Each operand has its own mode. We are using this mode to help us select 1780 // the instructions for each lane, so that they match best with the ones 1781 // we have selected so far. 1782 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1783 1784 // This is a greedy single-pass algorithm. We are going over each lane 1785 // once and deciding on the best order right away with no back-tracking. 1786 // However, in order to increase its effectiveness, we start with the lane 1787 // that has operands that can move the least. For example, given the 1788 // following lanes: 1789 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1790 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1791 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1792 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1793 // we will start at Lane 1, since the operands of the subtraction cannot 1794 // be reordered. Then we will visit the rest of the lanes in a circular 1795 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1796 1797 // Find the first lane that we will start our search from. 1798 unsigned FirstLane = getBestLaneToStartReordering(); 1799 1800 // Initialize the modes. 1801 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1802 Value *OpLane0 = getValue(OpIdx, FirstLane); 1803 // Keep track if we have instructions with all the same opcode on one 1804 // side. 1805 if (isa<LoadInst>(OpLane0)) 1806 ReorderingModes[OpIdx] = ReorderingMode::Load; 1807 else if (isa<Instruction>(OpLane0)) { 1808 // Check if OpLane0 should be broadcast. 1809 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1810 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1811 else 1812 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1813 } 1814 else if (isa<Constant>(OpLane0)) 1815 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1816 else if (isa<Argument>(OpLane0)) 1817 // Our best hope is a Splat. It may save some cost in some cases. 1818 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1819 else 1820 // NOTE: This should be unreachable. 1821 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1822 } 1823 1824 // Check that we don't have same operands. No need to reorder if operands 1825 // are just perfect diamond or shuffled diamond match. Do not do it only 1826 // for possible broadcasts or non-power of 2 number of scalars (just for 1827 // now). 1828 auto &&SkipReordering = [this]() { 1829 SmallPtrSet<Value *, 4> UniqueValues; 1830 ArrayRef<OperandData> Op0 = OpsVec.front(); 1831 for (const OperandData &Data : Op0) 1832 UniqueValues.insert(Data.V); 1833 for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) { 1834 if (any_of(Op, [&UniqueValues](const OperandData &Data) { 1835 return !UniqueValues.contains(Data.V); 1836 })) 1837 return false; 1838 } 1839 // TODO: Check if we can remove a check for non-power-2 number of 1840 // scalars after full support of non-power-2 vectorization. 1841 return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size()); 1842 }; 1843 1844 // If the initial strategy fails for any of the operand indexes, then we 1845 // perform reordering again in a second pass. This helps avoid assigning 1846 // high priority to the failed strategy, and should improve reordering for 1847 // the non-failed operand indexes. 1848 for (int Pass = 0; Pass != 2; ++Pass) { 1849 // Check if no need to reorder operands since they're are perfect or 1850 // shuffled diamond match. 1851 // Need to to do it to avoid extra external use cost counting for 1852 // shuffled matches, which may cause regressions. 1853 if (SkipReordering()) 1854 break; 1855 // Skip the second pass if the first pass did not fail. 1856 bool StrategyFailed = false; 1857 // Mark all operand data as free to use. 1858 clearUsed(); 1859 // We keep the original operand order for the FirstLane, so reorder the 1860 // rest of the lanes. We are visiting the nodes in a circular fashion, 1861 // using FirstLane as the center point and increasing the radius 1862 // distance. 1863 SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands); 1864 for (unsigned I = 0; I < NumOperands; ++I) 1865 MainAltOps[I].push_back(getData(I, FirstLane).V); 1866 1867 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1868 // Visit the lane on the right and then the lane on the left. 1869 for (int Direction : {+1, -1}) { 1870 int Lane = FirstLane + Direction * Distance; 1871 if (Lane < 0 || Lane >= (int)NumLanes) 1872 continue; 1873 int LastLane = Lane - Direction; 1874 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1875 "Out of bounds"); 1876 // Look for a good match for each operand. 1877 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1878 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1879 Optional<unsigned> BestIdx = getBestOperand( 1880 OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]); 1881 // By not selecting a value, we allow the operands that follow to 1882 // select a better matching value. We will get a non-null value in 1883 // the next run of getBestOperand(). 1884 if (BestIdx) { 1885 // Swap the current operand with the one returned by 1886 // getBestOperand(). 1887 swap(OpIdx, BestIdx.getValue(), Lane); 1888 } else { 1889 // We failed to find a best operand, set mode to 'Failed'. 1890 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1891 // Enable the second pass. 1892 StrategyFailed = true; 1893 } 1894 // Try to get the alternate opcode and follow it during analysis. 1895 if (MainAltOps[OpIdx].size() != 2) { 1896 OperandData &AltOp = getData(OpIdx, Lane); 1897 InstructionsState OpS = 1898 getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V}); 1899 if (OpS.getOpcode() && OpS.isAltShuffle()) 1900 MainAltOps[OpIdx].push_back(AltOp.V); 1901 } 1902 } 1903 } 1904 } 1905 // Skip second pass if the strategy did not fail. 1906 if (!StrategyFailed) 1907 break; 1908 } 1909 } 1910 1911 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1912 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1913 switch (RMode) { 1914 case ReorderingMode::Load: 1915 return "Load"; 1916 case ReorderingMode::Opcode: 1917 return "Opcode"; 1918 case ReorderingMode::Constant: 1919 return "Constant"; 1920 case ReorderingMode::Splat: 1921 return "Splat"; 1922 case ReorderingMode::Failed: 1923 return "Failed"; 1924 } 1925 llvm_unreachable("Unimplemented Reordering Type"); 1926 } 1927 1928 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1929 raw_ostream &OS) { 1930 return OS << getModeStr(RMode); 1931 } 1932 1933 /// Debug print. 1934 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1935 printMode(RMode, dbgs()); 1936 } 1937 1938 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1939 return printMode(RMode, OS); 1940 } 1941 1942 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1943 const unsigned Indent = 2; 1944 unsigned Cnt = 0; 1945 for (const OperandDataVec &OpDataVec : OpsVec) { 1946 OS << "Operand " << Cnt++ << "\n"; 1947 for (const OperandData &OpData : OpDataVec) { 1948 OS.indent(Indent) << "{"; 1949 if (Value *V = OpData.V) 1950 OS << *V; 1951 else 1952 OS << "null"; 1953 OS << ", APO:" << OpData.APO << "}\n"; 1954 } 1955 OS << "\n"; 1956 } 1957 return OS; 1958 } 1959 1960 /// Debug print. 1961 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1962 #endif 1963 }; 1964 1965 /// Checks if the instruction is marked for deletion. 1966 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1967 1968 /// Removes an instruction from its block and eventually deletes it. 1969 /// It's like Instruction::eraseFromParent() except that the actual deletion 1970 /// is delayed until BoUpSLP is destructed. 1971 void eraseInstruction(Instruction *I) { 1972 DeletedInstructions.insert(I); 1973 } 1974 1975 ~BoUpSLP(); 1976 1977 private: 1978 /// Check if the operands on the edges \p Edges of the \p UserTE allows 1979 /// reordering (i.e. the operands can be reordered because they have only one 1980 /// user and reordarable). 1981 /// \param ReorderableGathers List of all gather nodes that require reordering 1982 /// (e.g., gather of extractlements or partially vectorizable loads). 1983 /// \param GatherOps List of gather operand nodes for \p UserTE that require 1984 /// reordering, subset of \p NonVectorized. 1985 bool 1986 canReorderOperands(TreeEntry *UserTE, 1987 SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 1988 ArrayRef<TreeEntry *> ReorderableGathers, 1989 SmallVectorImpl<TreeEntry *> &GatherOps); 1990 1991 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 1992 /// if any. If it is not vectorized (gather node), returns nullptr. 1993 TreeEntry *getVectorizedOperand(TreeEntry *UserTE, unsigned OpIdx) { 1994 ArrayRef<Value *> VL = UserTE->getOperand(OpIdx); 1995 TreeEntry *TE = nullptr; 1996 const auto *It = find_if(VL, [this, &TE](Value *V) { 1997 TE = getTreeEntry(V); 1998 return TE; 1999 }); 2000 if (It != VL.end() && TE->isSame(VL)) 2001 return TE; 2002 return nullptr; 2003 } 2004 2005 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 2006 /// if any. If it is not vectorized (gather node), returns nullptr. 2007 const TreeEntry *getVectorizedOperand(const TreeEntry *UserTE, 2008 unsigned OpIdx) const { 2009 return const_cast<BoUpSLP *>(this)->getVectorizedOperand( 2010 const_cast<TreeEntry *>(UserTE), OpIdx); 2011 } 2012 2013 /// Checks if all users of \p I are the part of the vectorization tree. 2014 bool areAllUsersVectorized(Instruction *I, 2015 ArrayRef<Value *> VectorizedVals) const; 2016 2017 /// \returns the cost of the vectorizable entry. 2018 InstructionCost getEntryCost(const TreeEntry *E, 2019 ArrayRef<Value *> VectorizedVals); 2020 2021 /// This is the recursive part of buildTree. 2022 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 2023 const EdgeInfo &EI); 2024 2025 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 2026 /// be vectorized to use the original vector (or aggregate "bitcast" to a 2027 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 2028 /// returns false, setting \p CurrentOrder to either an empty vector or a 2029 /// non-identity permutation that allows to reuse extract instructions. 2030 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 2031 SmallVectorImpl<unsigned> &CurrentOrder) const; 2032 2033 /// Vectorize a single entry in the tree. 2034 Value *vectorizeTree(TreeEntry *E); 2035 2036 /// Vectorize a single entry in the tree, starting in \p VL. 2037 Value *vectorizeTree(ArrayRef<Value *> VL); 2038 2039 /// Create a new vector from a list of scalar values. Produces a sequence 2040 /// which exploits values reused across lanes, and arranges the inserts 2041 /// for ease of later optimization. 2042 Value *createBuildVector(ArrayRef<Value *> VL); 2043 2044 /// \returns the scalarization cost for this type. Scalarization in this 2045 /// context means the creation of vectors from a group of scalars. If \p 2046 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 2047 /// vector elements. 2048 InstructionCost getGatherCost(FixedVectorType *Ty, 2049 const APInt &ShuffledIndices, 2050 bool NeedToShuffle) const; 2051 2052 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 2053 /// tree entries. 2054 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 2055 /// previous tree entries. \p Mask is filled with the shuffle mask. 2056 Optional<TargetTransformInfo::ShuffleKind> 2057 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 2058 SmallVectorImpl<const TreeEntry *> &Entries); 2059 2060 /// \returns the scalarization cost for this list of values. Assuming that 2061 /// this subtree gets vectorized, we may need to extract the values from the 2062 /// roots. This method calculates the cost of extracting the values. 2063 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 2064 2065 /// Set the Builder insert point to one after the last instruction in 2066 /// the bundle 2067 void setInsertPointAfterBundle(const TreeEntry *E); 2068 2069 /// \returns a vector from a collection of scalars in \p VL. 2070 Value *gather(ArrayRef<Value *> VL); 2071 2072 /// \returns whether the VectorizableTree is fully vectorizable and will 2073 /// be beneficial even the tree height is tiny. 2074 bool isFullyVectorizableTinyTree(bool ForReduction) const; 2075 2076 /// Reorder commutative or alt operands to get better probability of 2077 /// generating vectorized code. 2078 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 2079 SmallVectorImpl<Value *> &Left, 2080 SmallVectorImpl<Value *> &Right, 2081 const DataLayout &DL, 2082 ScalarEvolution &SE, 2083 const BoUpSLP &R); 2084 struct TreeEntry { 2085 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 2086 TreeEntry(VecTreeTy &Container) : Container(Container) {} 2087 2088 /// \returns true if the scalars in VL are equal to this entry. 2089 bool isSame(ArrayRef<Value *> VL) const { 2090 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 2091 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 2092 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 2093 return VL.size() == Mask.size() && 2094 std::equal(VL.begin(), VL.end(), Mask.begin(), 2095 [Scalars](Value *V, int Idx) { 2096 return (isa<UndefValue>(V) && 2097 Idx == UndefMaskElem) || 2098 (Idx != UndefMaskElem && V == Scalars[Idx]); 2099 }); 2100 }; 2101 if (!ReorderIndices.empty()) { 2102 // TODO: implement matching if the nodes are just reordered, still can 2103 // treat the vector as the same if the list of scalars matches VL 2104 // directly, without reordering. 2105 SmallVector<int> Mask; 2106 inversePermutation(ReorderIndices, Mask); 2107 if (VL.size() == Scalars.size()) 2108 return IsSame(Scalars, Mask); 2109 if (VL.size() == ReuseShuffleIndices.size()) { 2110 ::addMask(Mask, ReuseShuffleIndices); 2111 return IsSame(Scalars, Mask); 2112 } 2113 return false; 2114 } 2115 return IsSame(Scalars, ReuseShuffleIndices); 2116 } 2117 2118 /// \returns true if current entry has same operands as \p TE. 2119 bool hasEqualOperands(const TreeEntry &TE) const { 2120 if (TE.getNumOperands() != getNumOperands()) 2121 return false; 2122 SmallBitVector Used(getNumOperands()); 2123 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 2124 unsigned PrevCount = Used.count(); 2125 for (unsigned K = 0; K < E; ++K) { 2126 if (Used.test(K)) 2127 continue; 2128 if (getOperand(K) == TE.getOperand(I)) { 2129 Used.set(K); 2130 break; 2131 } 2132 } 2133 // Check if we actually found the matching operand. 2134 if (PrevCount == Used.count()) 2135 return false; 2136 } 2137 return true; 2138 } 2139 2140 /// \return Final vectorization factor for the node. Defined by the total 2141 /// number of vectorized scalars, including those, used several times in the 2142 /// entry and counted in the \a ReuseShuffleIndices, if any. 2143 unsigned getVectorFactor() const { 2144 if (!ReuseShuffleIndices.empty()) 2145 return ReuseShuffleIndices.size(); 2146 return Scalars.size(); 2147 }; 2148 2149 /// A vector of scalars. 2150 ValueList Scalars; 2151 2152 /// The Scalars are vectorized into this value. It is initialized to Null. 2153 Value *VectorizedValue = nullptr; 2154 2155 /// Do we need to gather this sequence or vectorize it 2156 /// (either with vector instruction or with scatter/gather 2157 /// intrinsics for store/load)? 2158 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 2159 EntryState State; 2160 2161 /// Does this sequence require some shuffling? 2162 SmallVector<int, 4> ReuseShuffleIndices; 2163 2164 /// Does this entry require reordering? 2165 SmallVector<unsigned, 4> ReorderIndices; 2166 2167 /// Points back to the VectorizableTree. 2168 /// 2169 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 2170 /// to be a pointer and needs to be able to initialize the child iterator. 2171 /// Thus we need a reference back to the container to translate the indices 2172 /// to entries. 2173 VecTreeTy &Container; 2174 2175 /// The TreeEntry index containing the user of this entry. We can actually 2176 /// have multiple users so the data structure is not truly a tree. 2177 SmallVector<EdgeInfo, 1> UserTreeIndices; 2178 2179 /// The index of this treeEntry in VectorizableTree. 2180 int Idx = -1; 2181 2182 private: 2183 /// The operands of each instruction in each lane Operands[op_index][lane]. 2184 /// Note: This helps avoid the replication of the code that performs the 2185 /// reordering of operands during buildTree_rec() and vectorizeTree(). 2186 SmallVector<ValueList, 2> Operands; 2187 2188 /// The main/alternate instruction. 2189 Instruction *MainOp = nullptr; 2190 Instruction *AltOp = nullptr; 2191 2192 public: 2193 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 2194 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 2195 if (Operands.size() < OpIdx + 1) 2196 Operands.resize(OpIdx + 1); 2197 assert(Operands[OpIdx].empty() && "Already resized?"); 2198 assert(OpVL.size() <= Scalars.size() && 2199 "Number of operands is greater than the number of scalars."); 2200 Operands[OpIdx].resize(OpVL.size()); 2201 copy(OpVL, Operands[OpIdx].begin()); 2202 } 2203 2204 /// Set the operands of this bundle in their original order. 2205 void setOperandsInOrder() { 2206 assert(Operands.empty() && "Already initialized?"); 2207 auto *I0 = cast<Instruction>(Scalars[0]); 2208 Operands.resize(I0->getNumOperands()); 2209 unsigned NumLanes = Scalars.size(); 2210 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 2211 OpIdx != NumOperands; ++OpIdx) { 2212 Operands[OpIdx].resize(NumLanes); 2213 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 2214 auto *I = cast<Instruction>(Scalars[Lane]); 2215 assert(I->getNumOperands() == NumOperands && 2216 "Expected same number of operands"); 2217 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 2218 } 2219 } 2220 } 2221 2222 /// Reorders operands of the node to the given mask \p Mask. 2223 void reorderOperands(ArrayRef<int> Mask) { 2224 for (ValueList &Operand : Operands) 2225 reorderScalars(Operand, Mask); 2226 } 2227 2228 /// \returns the \p OpIdx operand of this TreeEntry. 2229 ValueList &getOperand(unsigned OpIdx) { 2230 assert(OpIdx < Operands.size() && "Off bounds"); 2231 return Operands[OpIdx]; 2232 } 2233 2234 /// \returns the \p OpIdx operand of this TreeEntry. 2235 ArrayRef<Value *> getOperand(unsigned OpIdx) const { 2236 assert(OpIdx < Operands.size() && "Off bounds"); 2237 return Operands[OpIdx]; 2238 } 2239 2240 /// \returns the number of operands. 2241 unsigned getNumOperands() const { return Operands.size(); } 2242 2243 /// \return the single \p OpIdx operand. 2244 Value *getSingleOperand(unsigned OpIdx) const { 2245 assert(OpIdx < Operands.size() && "Off bounds"); 2246 assert(!Operands[OpIdx].empty() && "No operand available"); 2247 return Operands[OpIdx][0]; 2248 } 2249 2250 /// Some of the instructions in the list have alternate opcodes. 2251 bool isAltShuffle() const { return MainOp != AltOp; } 2252 2253 bool isOpcodeOrAlt(Instruction *I) const { 2254 unsigned CheckedOpcode = I->getOpcode(); 2255 return (getOpcode() == CheckedOpcode || 2256 getAltOpcode() == CheckedOpcode); 2257 } 2258 2259 /// Chooses the correct key for scheduling data. If \p Op has the same (or 2260 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 2261 /// \p OpValue. 2262 Value *isOneOf(Value *Op) const { 2263 auto *I = dyn_cast<Instruction>(Op); 2264 if (I && isOpcodeOrAlt(I)) 2265 return Op; 2266 return MainOp; 2267 } 2268 2269 void setOperations(const InstructionsState &S) { 2270 MainOp = S.MainOp; 2271 AltOp = S.AltOp; 2272 } 2273 2274 Instruction *getMainOp() const { 2275 return MainOp; 2276 } 2277 2278 Instruction *getAltOp() const { 2279 return AltOp; 2280 } 2281 2282 /// The main/alternate opcodes for the list of instructions. 2283 unsigned getOpcode() const { 2284 return MainOp ? MainOp->getOpcode() : 0; 2285 } 2286 2287 unsigned getAltOpcode() const { 2288 return AltOp ? AltOp->getOpcode() : 0; 2289 } 2290 2291 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 2292 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 2293 int findLaneForValue(Value *V) const { 2294 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2295 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2296 if (!ReorderIndices.empty()) 2297 FoundLane = ReorderIndices[FoundLane]; 2298 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2299 if (!ReuseShuffleIndices.empty()) { 2300 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2301 find(ReuseShuffleIndices, FoundLane)); 2302 } 2303 return FoundLane; 2304 } 2305 2306 #ifndef NDEBUG 2307 /// Debug printer. 2308 LLVM_DUMP_METHOD void dump() const { 2309 dbgs() << Idx << ".\n"; 2310 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 2311 dbgs() << "Operand " << OpI << ":\n"; 2312 for (const Value *V : Operands[OpI]) 2313 dbgs().indent(2) << *V << "\n"; 2314 } 2315 dbgs() << "Scalars: \n"; 2316 for (Value *V : Scalars) 2317 dbgs().indent(2) << *V << "\n"; 2318 dbgs() << "State: "; 2319 switch (State) { 2320 case Vectorize: 2321 dbgs() << "Vectorize\n"; 2322 break; 2323 case ScatterVectorize: 2324 dbgs() << "ScatterVectorize\n"; 2325 break; 2326 case NeedToGather: 2327 dbgs() << "NeedToGather\n"; 2328 break; 2329 } 2330 dbgs() << "MainOp: "; 2331 if (MainOp) 2332 dbgs() << *MainOp << "\n"; 2333 else 2334 dbgs() << "NULL\n"; 2335 dbgs() << "AltOp: "; 2336 if (AltOp) 2337 dbgs() << *AltOp << "\n"; 2338 else 2339 dbgs() << "NULL\n"; 2340 dbgs() << "VectorizedValue: "; 2341 if (VectorizedValue) 2342 dbgs() << *VectorizedValue << "\n"; 2343 else 2344 dbgs() << "NULL\n"; 2345 dbgs() << "ReuseShuffleIndices: "; 2346 if (ReuseShuffleIndices.empty()) 2347 dbgs() << "Empty"; 2348 else 2349 for (int ReuseIdx : ReuseShuffleIndices) 2350 dbgs() << ReuseIdx << ", "; 2351 dbgs() << "\n"; 2352 dbgs() << "ReorderIndices: "; 2353 for (unsigned ReorderIdx : ReorderIndices) 2354 dbgs() << ReorderIdx << ", "; 2355 dbgs() << "\n"; 2356 dbgs() << "UserTreeIndices: "; 2357 for (const auto &EInfo : UserTreeIndices) 2358 dbgs() << EInfo << ", "; 2359 dbgs() << "\n"; 2360 } 2361 #endif 2362 }; 2363 2364 #ifndef NDEBUG 2365 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 2366 InstructionCost VecCost, 2367 InstructionCost ScalarCost) const { 2368 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 2369 dbgs() << "SLP: Costs:\n"; 2370 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 2371 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 2372 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 2373 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 2374 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 2375 } 2376 #endif 2377 2378 /// Create a new VectorizableTree entry. 2379 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 2380 const InstructionsState &S, 2381 const EdgeInfo &UserTreeIdx, 2382 ArrayRef<int> ReuseShuffleIndices = None, 2383 ArrayRef<unsigned> ReorderIndices = None) { 2384 TreeEntry::EntryState EntryState = 2385 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 2386 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 2387 ReuseShuffleIndices, ReorderIndices); 2388 } 2389 2390 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 2391 TreeEntry::EntryState EntryState, 2392 Optional<ScheduleData *> Bundle, 2393 const InstructionsState &S, 2394 const EdgeInfo &UserTreeIdx, 2395 ArrayRef<int> ReuseShuffleIndices = None, 2396 ArrayRef<unsigned> ReorderIndices = None) { 2397 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 2398 (Bundle && EntryState != TreeEntry::NeedToGather)) && 2399 "Need to vectorize gather entry?"); 2400 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 2401 TreeEntry *Last = VectorizableTree.back().get(); 2402 Last->Idx = VectorizableTree.size() - 1; 2403 Last->State = EntryState; 2404 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 2405 ReuseShuffleIndices.end()); 2406 if (ReorderIndices.empty()) { 2407 Last->Scalars.assign(VL.begin(), VL.end()); 2408 Last->setOperations(S); 2409 } else { 2410 // Reorder scalars and build final mask. 2411 Last->Scalars.assign(VL.size(), nullptr); 2412 transform(ReorderIndices, Last->Scalars.begin(), 2413 [VL](unsigned Idx) -> Value * { 2414 if (Idx >= VL.size()) 2415 return UndefValue::get(VL.front()->getType()); 2416 return VL[Idx]; 2417 }); 2418 InstructionsState S = getSameOpcode(Last->Scalars); 2419 Last->setOperations(S); 2420 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 2421 } 2422 if (Last->State != TreeEntry::NeedToGather) { 2423 for (Value *V : VL) { 2424 assert(!getTreeEntry(V) && "Scalar already in tree!"); 2425 ScalarToTreeEntry[V] = Last; 2426 } 2427 // Update the scheduler bundle to point to this TreeEntry. 2428 ScheduleData *BundleMember = Bundle.getValue(); 2429 assert((BundleMember || isa<PHINode>(S.MainOp) || 2430 isVectorLikeInstWithConstOps(S.MainOp) || 2431 doesNotNeedToSchedule(VL)) && 2432 "Bundle and VL out of sync"); 2433 if (BundleMember) { 2434 for (Value *V : VL) { 2435 if (doesNotNeedToBeScheduled(V)) 2436 continue; 2437 assert(BundleMember && "Unexpected end of bundle."); 2438 BundleMember->TE = Last; 2439 BundleMember = BundleMember->NextInBundle; 2440 } 2441 } 2442 assert(!BundleMember && "Bundle and VL out of sync"); 2443 } else { 2444 MustGather.insert(VL.begin(), VL.end()); 2445 } 2446 2447 if (UserTreeIdx.UserTE) 2448 Last->UserTreeIndices.push_back(UserTreeIdx); 2449 2450 return Last; 2451 } 2452 2453 /// -- Vectorization State -- 2454 /// Holds all of the tree entries. 2455 TreeEntry::VecTreeTy VectorizableTree; 2456 2457 #ifndef NDEBUG 2458 /// Debug printer. 2459 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 2460 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 2461 VectorizableTree[Id]->dump(); 2462 dbgs() << "\n"; 2463 } 2464 } 2465 #endif 2466 2467 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2468 2469 const TreeEntry *getTreeEntry(Value *V) const { 2470 return ScalarToTreeEntry.lookup(V); 2471 } 2472 2473 /// Maps a specific scalar to its tree entry. 2474 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2475 2476 /// Maps a value to the proposed vectorizable size. 2477 SmallDenseMap<Value *, unsigned> InstrElementSize; 2478 2479 /// A list of scalars that we found that we need to keep as scalars. 2480 ValueSet MustGather; 2481 2482 /// This POD struct describes one external user in the vectorized tree. 2483 struct ExternalUser { 2484 ExternalUser(Value *S, llvm::User *U, int L) 2485 : Scalar(S), User(U), Lane(L) {} 2486 2487 // Which scalar in our function. 2488 Value *Scalar; 2489 2490 // Which user that uses the scalar. 2491 llvm::User *User; 2492 2493 // Which lane does the scalar belong to. 2494 int Lane; 2495 }; 2496 using UserList = SmallVector<ExternalUser, 16>; 2497 2498 /// Checks if two instructions may access the same memory. 2499 /// 2500 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2501 /// is invariant in the calling loop. 2502 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2503 Instruction *Inst2) { 2504 // First check if the result is already in the cache. 2505 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2506 Optional<bool> &result = AliasCache[key]; 2507 if (result.hasValue()) { 2508 return result.getValue(); 2509 } 2510 bool aliased = true; 2511 if (Loc1.Ptr && isSimple(Inst1)) 2512 aliased = isModOrRefSet(BatchAA.getModRefInfo(Inst2, Loc1)); 2513 // Store the result in the cache. 2514 result = aliased; 2515 return aliased; 2516 } 2517 2518 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2519 2520 /// Cache for alias results. 2521 /// TODO: consider moving this to the AliasAnalysis itself. 2522 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2523 2524 // Cache for pointerMayBeCaptured calls inside AA. This is preserved 2525 // globally through SLP because we don't perform any action which 2526 // invalidates capture results. 2527 BatchAAResults BatchAA; 2528 2529 /// Temporary store for deleted instructions. Instructions will be deleted 2530 /// eventually when the BoUpSLP is destructed. The deferral is required to 2531 /// ensure that there are no incorrect collisions in the AliasCache, which 2532 /// can happen if a new instruction is allocated at the same address as a 2533 /// previously deleted instruction. 2534 DenseSet<Instruction *> DeletedInstructions; 2535 2536 /// A list of values that need to extracted out of the tree. 2537 /// This list holds pairs of (Internal Scalar : External User). External User 2538 /// can be nullptr, it means that this Internal Scalar will be used later, 2539 /// after vectorization. 2540 UserList ExternalUses; 2541 2542 /// Values used only by @llvm.assume calls. 2543 SmallPtrSet<const Value *, 32> EphValues; 2544 2545 /// Holds all of the instructions that we gathered. 2546 SetVector<Instruction *> GatherShuffleSeq; 2547 2548 /// A list of blocks that we are going to CSE. 2549 SetVector<BasicBlock *> CSEBlocks; 2550 2551 /// Contains all scheduling relevant data for an instruction. 2552 /// A ScheduleData either represents a single instruction or a member of an 2553 /// instruction bundle (= a group of instructions which is combined into a 2554 /// vector instruction). 2555 struct ScheduleData { 2556 // The initial value for the dependency counters. It means that the 2557 // dependencies are not calculated yet. 2558 enum { InvalidDeps = -1 }; 2559 2560 ScheduleData() = default; 2561 2562 void init(int BlockSchedulingRegionID, Value *OpVal) { 2563 FirstInBundle = this; 2564 NextInBundle = nullptr; 2565 NextLoadStore = nullptr; 2566 IsScheduled = false; 2567 SchedulingRegionID = BlockSchedulingRegionID; 2568 clearDependencies(); 2569 OpValue = OpVal; 2570 TE = nullptr; 2571 } 2572 2573 /// Verify basic self consistency properties 2574 void verify() { 2575 if (hasValidDependencies()) { 2576 assert(UnscheduledDeps <= Dependencies && "invariant"); 2577 } else { 2578 assert(UnscheduledDeps == Dependencies && "invariant"); 2579 } 2580 2581 if (IsScheduled) { 2582 assert(isSchedulingEntity() && 2583 "unexpected scheduled state"); 2584 for (const ScheduleData *BundleMember = this; BundleMember; 2585 BundleMember = BundleMember->NextInBundle) { 2586 assert(BundleMember->hasValidDependencies() && 2587 BundleMember->UnscheduledDeps == 0 && 2588 "unexpected scheduled state"); 2589 assert((BundleMember == this || !BundleMember->IsScheduled) && 2590 "only bundle is marked scheduled"); 2591 } 2592 } 2593 2594 assert(Inst->getParent() == FirstInBundle->Inst->getParent() && 2595 "all bundle members must be in same basic block"); 2596 } 2597 2598 /// Returns true if the dependency information has been calculated. 2599 /// Note that depenendency validity can vary between instructions within 2600 /// a single bundle. 2601 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2602 2603 /// Returns true for single instructions and for bundle representatives 2604 /// (= the head of a bundle). 2605 bool isSchedulingEntity() const { return FirstInBundle == this; } 2606 2607 /// Returns true if it represents an instruction bundle and not only a 2608 /// single instruction. 2609 bool isPartOfBundle() const { 2610 return NextInBundle != nullptr || FirstInBundle != this || TE; 2611 } 2612 2613 /// Returns true if it is ready for scheduling, i.e. it has no more 2614 /// unscheduled depending instructions/bundles. 2615 bool isReady() const { 2616 assert(isSchedulingEntity() && 2617 "can't consider non-scheduling entity for ready list"); 2618 return unscheduledDepsInBundle() == 0 && !IsScheduled; 2619 } 2620 2621 /// Modifies the number of unscheduled dependencies for this instruction, 2622 /// and returns the number of remaining dependencies for the containing 2623 /// bundle. 2624 int incrementUnscheduledDeps(int Incr) { 2625 assert(hasValidDependencies() && 2626 "increment of unscheduled deps would be meaningless"); 2627 UnscheduledDeps += Incr; 2628 return FirstInBundle->unscheduledDepsInBundle(); 2629 } 2630 2631 /// Sets the number of unscheduled dependencies to the number of 2632 /// dependencies. 2633 void resetUnscheduledDeps() { 2634 UnscheduledDeps = Dependencies; 2635 } 2636 2637 /// Clears all dependency information. 2638 void clearDependencies() { 2639 Dependencies = InvalidDeps; 2640 resetUnscheduledDeps(); 2641 MemoryDependencies.clear(); 2642 ControlDependencies.clear(); 2643 } 2644 2645 int unscheduledDepsInBundle() const { 2646 assert(isSchedulingEntity() && "only meaningful on the bundle"); 2647 int Sum = 0; 2648 for (const ScheduleData *BundleMember = this; BundleMember; 2649 BundleMember = BundleMember->NextInBundle) { 2650 if (BundleMember->UnscheduledDeps == InvalidDeps) 2651 return InvalidDeps; 2652 Sum += BundleMember->UnscheduledDeps; 2653 } 2654 return Sum; 2655 } 2656 2657 void dump(raw_ostream &os) const { 2658 if (!isSchedulingEntity()) { 2659 os << "/ " << *Inst; 2660 } else if (NextInBundle) { 2661 os << '[' << *Inst; 2662 ScheduleData *SD = NextInBundle; 2663 while (SD) { 2664 os << ';' << *SD->Inst; 2665 SD = SD->NextInBundle; 2666 } 2667 os << ']'; 2668 } else { 2669 os << *Inst; 2670 } 2671 } 2672 2673 Instruction *Inst = nullptr; 2674 2675 /// Opcode of the current instruction in the schedule data. 2676 Value *OpValue = nullptr; 2677 2678 /// The TreeEntry that this instruction corresponds to. 2679 TreeEntry *TE = nullptr; 2680 2681 /// Points to the head in an instruction bundle (and always to this for 2682 /// single instructions). 2683 ScheduleData *FirstInBundle = nullptr; 2684 2685 /// Single linked list of all instructions in a bundle. Null if it is a 2686 /// single instruction. 2687 ScheduleData *NextInBundle = nullptr; 2688 2689 /// Single linked list of all memory instructions (e.g. load, store, call) 2690 /// in the block - until the end of the scheduling region. 2691 ScheduleData *NextLoadStore = nullptr; 2692 2693 /// The dependent memory instructions. 2694 /// This list is derived on demand in calculateDependencies(). 2695 SmallVector<ScheduleData *, 4> MemoryDependencies; 2696 2697 /// List of instructions which this instruction could be control dependent 2698 /// on. Allowing such nodes to be scheduled below this one could introduce 2699 /// a runtime fault which didn't exist in the original program. 2700 /// ex: this is a load or udiv following a readonly call which inf loops 2701 SmallVector<ScheduleData *, 4> ControlDependencies; 2702 2703 /// This ScheduleData is in the current scheduling region if this matches 2704 /// the current SchedulingRegionID of BlockScheduling. 2705 int SchedulingRegionID = 0; 2706 2707 /// Used for getting a "good" final ordering of instructions. 2708 int SchedulingPriority = 0; 2709 2710 /// The number of dependencies. Constitutes of the number of users of the 2711 /// instruction plus the number of dependent memory instructions (if any). 2712 /// This value is calculated on demand. 2713 /// If InvalidDeps, the number of dependencies is not calculated yet. 2714 int Dependencies = InvalidDeps; 2715 2716 /// The number of dependencies minus the number of dependencies of scheduled 2717 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2718 /// for scheduling. 2719 /// Note that this is negative as long as Dependencies is not calculated. 2720 int UnscheduledDeps = InvalidDeps; 2721 2722 /// True if this instruction is scheduled (or considered as scheduled in the 2723 /// dry-run). 2724 bool IsScheduled = false; 2725 }; 2726 2727 #ifndef NDEBUG 2728 friend inline raw_ostream &operator<<(raw_ostream &os, 2729 const BoUpSLP::ScheduleData &SD) { 2730 SD.dump(os); 2731 return os; 2732 } 2733 #endif 2734 2735 friend struct GraphTraits<BoUpSLP *>; 2736 friend struct DOTGraphTraits<BoUpSLP *>; 2737 2738 /// Contains all scheduling data for a basic block. 2739 /// It does not schedules instructions, which are not memory read/write 2740 /// instructions and their operands are either constants, or arguments, or 2741 /// phis, or instructions from others blocks, or their users are phis or from 2742 /// the other blocks. The resulting vector instructions can be placed at the 2743 /// beginning of the basic block without scheduling (if operands does not need 2744 /// to be scheduled) or at the end of the block (if users are outside of the 2745 /// block). It allows to save some compile time and memory used by the 2746 /// compiler. 2747 /// ScheduleData is assigned for each instruction in between the boundaries of 2748 /// the tree entry, even for those, which are not part of the graph. It is 2749 /// required to correctly follow the dependencies between the instructions and 2750 /// their correct scheduling. The ScheduleData is not allocated for the 2751 /// instructions, which do not require scheduling, like phis, nodes with 2752 /// extractelements/insertelements only or nodes with instructions, with 2753 /// uses/operands outside of the block. 2754 struct BlockScheduling { 2755 BlockScheduling(BasicBlock *BB) 2756 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2757 2758 void clear() { 2759 ReadyInsts.clear(); 2760 ScheduleStart = nullptr; 2761 ScheduleEnd = nullptr; 2762 FirstLoadStoreInRegion = nullptr; 2763 LastLoadStoreInRegion = nullptr; 2764 RegionHasStackSave = false; 2765 2766 // Reduce the maximum schedule region size by the size of the 2767 // previous scheduling run. 2768 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2769 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2770 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2771 ScheduleRegionSize = 0; 2772 2773 // Make a new scheduling region, i.e. all existing ScheduleData is not 2774 // in the new region yet. 2775 ++SchedulingRegionID; 2776 } 2777 2778 ScheduleData *getScheduleData(Instruction *I) { 2779 if (BB != I->getParent()) 2780 // Avoid lookup if can't possibly be in map. 2781 return nullptr; 2782 ScheduleData *SD = ScheduleDataMap.lookup(I); 2783 if (SD && isInSchedulingRegion(SD)) 2784 return SD; 2785 return nullptr; 2786 } 2787 2788 ScheduleData *getScheduleData(Value *V) { 2789 if (auto *I = dyn_cast<Instruction>(V)) 2790 return getScheduleData(I); 2791 return nullptr; 2792 } 2793 2794 ScheduleData *getScheduleData(Value *V, Value *Key) { 2795 if (V == Key) 2796 return getScheduleData(V); 2797 auto I = ExtraScheduleDataMap.find(V); 2798 if (I != ExtraScheduleDataMap.end()) { 2799 ScheduleData *SD = I->second.lookup(Key); 2800 if (SD && isInSchedulingRegion(SD)) 2801 return SD; 2802 } 2803 return nullptr; 2804 } 2805 2806 bool isInSchedulingRegion(ScheduleData *SD) const { 2807 return SD->SchedulingRegionID == SchedulingRegionID; 2808 } 2809 2810 /// Marks an instruction as scheduled and puts all dependent ready 2811 /// instructions into the ready-list. 2812 template <typename ReadyListType> 2813 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2814 SD->IsScheduled = true; 2815 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2816 2817 for (ScheduleData *BundleMember = SD; BundleMember; 2818 BundleMember = BundleMember->NextInBundle) { 2819 if (BundleMember->Inst != BundleMember->OpValue) 2820 continue; 2821 2822 // Handle the def-use chain dependencies. 2823 2824 // Decrement the unscheduled counter and insert to ready list if ready. 2825 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2826 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2827 if (OpDef && OpDef->hasValidDependencies() && 2828 OpDef->incrementUnscheduledDeps(-1) == 0) { 2829 // There are no more unscheduled dependencies after 2830 // decrementing, so we can put the dependent instruction 2831 // into the ready list. 2832 ScheduleData *DepBundle = OpDef->FirstInBundle; 2833 assert(!DepBundle->IsScheduled && 2834 "already scheduled bundle gets ready"); 2835 ReadyList.insert(DepBundle); 2836 LLVM_DEBUG(dbgs() 2837 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2838 } 2839 }); 2840 }; 2841 2842 // If BundleMember is a vector bundle, its operands may have been 2843 // reordered during buildTree(). We therefore need to get its operands 2844 // through the TreeEntry. 2845 if (TreeEntry *TE = BundleMember->TE) { 2846 // Need to search for the lane since the tree entry can be reordered. 2847 int Lane = std::distance(TE->Scalars.begin(), 2848 find(TE->Scalars, BundleMember->Inst)); 2849 assert(Lane >= 0 && "Lane not set"); 2850 2851 // Since vectorization tree is being built recursively this assertion 2852 // ensures that the tree entry has all operands set before reaching 2853 // this code. Couple of exceptions known at the moment are extracts 2854 // where their second (immediate) operand is not added. Since 2855 // immediates do not affect scheduler behavior this is considered 2856 // okay. 2857 auto *In = BundleMember->Inst; 2858 assert(In && 2859 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2860 In->getNumOperands() == TE->getNumOperands()) && 2861 "Missed TreeEntry operands?"); 2862 (void)In; // fake use to avoid build failure when assertions disabled 2863 2864 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2865 OpIdx != NumOperands; ++OpIdx) 2866 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2867 DecrUnsched(I); 2868 } else { 2869 // If BundleMember is a stand-alone instruction, no operand reordering 2870 // has taken place, so we directly access its operands. 2871 for (Use &U : BundleMember->Inst->operands()) 2872 if (auto *I = dyn_cast<Instruction>(U.get())) 2873 DecrUnsched(I); 2874 } 2875 // Handle the memory dependencies. 2876 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2877 if (MemoryDepSD->hasValidDependencies() && 2878 MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2879 // There are no more unscheduled dependencies after decrementing, 2880 // so we can put the dependent instruction into the ready list. 2881 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2882 assert(!DepBundle->IsScheduled && 2883 "already scheduled bundle gets ready"); 2884 ReadyList.insert(DepBundle); 2885 LLVM_DEBUG(dbgs() 2886 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2887 } 2888 } 2889 // Handle the control dependencies. 2890 for (ScheduleData *DepSD : BundleMember->ControlDependencies) { 2891 if (DepSD->incrementUnscheduledDeps(-1) == 0) { 2892 // There are no more unscheduled dependencies after decrementing, 2893 // so we can put the dependent instruction into the ready list. 2894 ScheduleData *DepBundle = DepSD->FirstInBundle; 2895 assert(!DepBundle->IsScheduled && 2896 "already scheduled bundle gets ready"); 2897 ReadyList.insert(DepBundle); 2898 LLVM_DEBUG(dbgs() 2899 << "SLP: gets ready (ctl): " << *DepBundle << "\n"); 2900 } 2901 } 2902 2903 } 2904 } 2905 2906 /// Verify basic self consistency properties of the data structure. 2907 void verify() { 2908 if (!ScheduleStart) 2909 return; 2910 2911 assert(ScheduleStart->getParent() == ScheduleEnd->getParent() && 2912 ScheduleStart->comesBefore(ScheduleEnd) && 2913 "Not a valid scheduling region?"); 2914 2915 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2916 auto *SD = getScheduleData(I); 2917 if (!SD) 2918 continue; 2919 assert(isInSchedulingRegion(SD) && 2920 "primary schedule data not in window?"); 2921 assert(isInSchedulingRegion(SD->FirstInBundle) && 2922 "entire bundle in window!"); 2923 (void)SD; 2924 doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); }); 2925 } 2926 2927 for (auto *SD : ReadyInsts) { 2928 assert(SD->isSchedulingEntity() && SD->isReady() && 2929 "item in ready list not ready?"); 2930 (void)SD; 2931 } 2932 } 2933 2934 void doForAllOpcodes(Value *V, 2935 function_ref<void(ScheduleData *SD)> Action) { 2936 if (ScheduleData *SD = getScheduleData(V)) 2937 Action(SD); 2938 auto I = ExtraScheduleDataMap.find(V); 2939 if (I != ExtraScheduleDataMap.end()) 2940 for (auto &P : I->second) 2941 if (isInSchedulingRegion(P.second)) 2942 Action(P.second); 2943 } 2944 2945 /// Put all instructions into the ReadyList which are ready for scheduling. 2946 template <typename ReadyListType> 2947 void initialFillReadyList(ReadyListType &ReadyList) { 2948 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2949 doForAllOpcodes(I, [&](ScheduleData *SD) { 2950 if (SD->isSchedulingEntity() && SD->hasValidDependencies() && 2951 SD->isReady()) { 2952 ReadyList.insert(SD); 2953 LLVM_DEBUG(dbgs() 2954 << "SLP: initially in ready list: " << *SD << "\n"); 2955 } 2956 }); 2957 } 2958 } 2959 2960 /// Build a bundle from the ScheduleData nodes corresponding to the 2961 /// scalar instruction for each lane. 2962 ScheduleData *buildBundle(ArrayRef<Value *> VL); 2963 2964 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2965 /// cyclic dependencies. This is only a dry-run, no instructions are 2966 /// actually moved at this stage. 2967 /// \returns the scheduling bundle. The returned Optional value is non-None 2968 /// if \p VL is allowed to be scheduled. 2969 Optional<ScheduleData *> 2970 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2971 const InstructionsState &S); 2972 2973 /// Un-bundles a group of instructions. 2974 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2975 2976 /// Allocates schedule data chunk. 2977 ScheduleData *allocateScheduleDataChunks(); 2978 2979 /// Extends the scheduling region so that V is inside the region. 2980 /// \returns true if the region size is within the limit. 2981 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2982 2983 /// Initialize the ScheduleData structures for new instructions in the 2984 /// scheduling region. 2985 void initScheduleData(Instruction *FromI, Instruction *ToI, 2986 ScheduleData *PrevLoadStore, 2987 ScheduleData *NextLoadStore); 2988 2989 /// Updates the dependency information of a bundle and of all instructions/ 2990 /// bundles which depend on the original bundle. 2991 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2992 BoUpSLP *SLP); 2993 2994 /// Sets all instruction in the scheduling region to un-scheduled. 2995 void resetSchedule(); 2996 2997 BasicBlock *BB; 2998 2999 /// Simple memory allocation for ScheduleData. 3000 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 3001 3002 /// The size of a ScheduleData array in ScheduleDataChunks. 3003 int ChunkSize; 3004 3005 /// The allocator position in the current chunk, which is the last entry 3006 /// of ScheduleDataChunks. 3007 int ChunkPos; 3008 3009 /// Attaches ScheduleData to Instruction. 3010 /// Note that the mapping survives during all vectorization iterations, i.e. 3011 /// ScheduleData structures are recycled. 3012 DenseMap<Instruction *, ScheduleData *> ScheduleDataMap; 3013 3014 /// Attaches ScheduleData to Instruction with the leading key. 3015 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 3016 ExtraScheduleDataMap; 3017 3018 /// The ready-list for scheduling (only used for the dry-run). 3019 SetVector<ScheduleData *> ReadyInsts; 3020 3021 /// The first instruction of the scheduling region. 3022 Instruction *ScheduleStart = nullptr; 3023 3024 /// The first instruction _after_ the scheduling region. 3025 Instruction *ScheduleEnd = nullptr; 3026 3027 /// The first memory accessing instruction in the scheduling region 3028 /// (can be null). 3029 ScheduleData *FirstLoadStoreInRegion = nullptr; 3030 3031 /// The last memory accessing instruction in the scheduling region 3032 /// (can be null). 3033 ScheduleData *LastLoadStoreInRegion = nullptr; 3034 3035 /// Is there an llvm.stacksave or llvm.stackrestore in the scheduling 3036 /// region? Used to optimize the dependence calculation for the 3037 /// common case where there isn't. 3038 bool RegionHasStackSave = false; 3039 3040 /// The current size of the scheduling region. 3041 int ScheduleRegionSize = 0; 3042 3043 /// The maximum size allowed for the scheduling region. 3044 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 3045 3046 /// The ID of the scheduling region. For a new vectorization iteration this 3047 /// is incremented which "removes" all ScheduleData from the region. 3048 /// Make sure that the initial SchedulingRegionID is greater than the 3049 /// initial SchedulingRegionID in ScheduleData (which is 0). 3050 int SchedulingRegionID = 1; 3051 }; 3052 3053 /// Attaches the BlockScheduling structures to basic blocks. 3054 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 3055 3056 /// Performs the "real" scheduling. Done before vectorization is actually 3057 /// performed in a basic block. 3058 void scheduleBlock(BlockScheduling *BS); 3059 3060 /// List of users to ignore during scheduling and that don't need extracting. 3061 ArrayRef<Value *> UserIgnoreList; 3062 3063 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 3064 /// sorted SmallVectors of unsigned. 3065 struct OrdersTypeDenseMapInfo { 3066 static OrdersType getEmptyKey() { 3067 OrdersType V; 3068 V.push_back(~1U); 3069 return V; 3070 } 3071 3072 static OrdersType getTombstoneKey() { 3073 OrdersType V; 3074 V.push_back(~2U); 3075 return V; 3076 } 3077 3078 static unsigned getHashValue(const OrdersType &V) { 3079 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 3080 } 3081 3082 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 3083 return LHS == RHS; 3084 } 3085 }; 3086 3087 // Analysis and block reference. 3088 Function *F; 3089 ScalarEvolution *SE; 3090 TargetTransformInfo *TTI; 3091 TargetLibraryInfo *TLI; 3092 LoopInfo *LI; 3093 DominatorTree *DT; 3094 AssumptionCache *AC; 3095 DemandedBits *DB; 3096 const DataLayout *DL; 3097 OptimizationRemarkEmitter *ORE; 3098 3099 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 3100 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 3101 3102 /// Instruction builder to construct the vectorized tree. 3103 IRBuilder<> Builder; 3104 3105 /// A map of scalar integer values to the smallest bit width with which they 3106 /// can legally be represented. The values map to (width, signed) pairs, 3107 /// where "width" indicates the minimum bit width and "signed" is True if the 3108 /// value must be signed-extended, rather than zero-extended, back to its 3109 /// original width. 3110 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 3111 }; 3112 3113 } // end namespace slpvectorizer 3114 3115 template <> struct GraphTraits<BoUpSLP *> { 3116 using TreeEntry = BoUpSLP::TreeEntry; 3117 3118 /// NodeRef has to be a pointer per the GraphWriter. 3119 using NodeRef = TreeEntry *; 3120 3121 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 3122 3123 /// Add the VectorizableTree to the index iterator to be able to return 3124 /// TreeEntry pointers. 3125 struct ChildIteratorType 3126 : public iterator_adaptor_base< 3127 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 3128 ContainerTy &VectorizableTree; 3129 3130 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 3131 ContainerTy &VT) 3132 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 3133 3134 NodeRef operator*() { return I->UserTE; } 3135 }; 3136 3137 static NodeRef getEntryNode(BoUpSLP &R) { 3138 return R.VectorizableTree[0].get(); 3139 } 3140 3141 static ChildIteratorType child_begin(NodeRef N) { 3142 return {N->UserTreeIndices.begin(), N->Container}; 3143 } 3144 3145 static ChildIteratorType child_end(NodeRef N) { 3146 return {N->UserTreeIndices.end(), N->Container}; 3147 } 3148 3149 /// For the node iterator we just need to turn the TreeEntry iterator into a 3150 /// TreeEntry* iterator so that it dereferences to NodeRef. 3151 class nodes_iterator { 3152 using ItTy = ContainerTy::iterator; 3153 ItTy It; 3154 3155 public: 3156 nodes_iterator(const ItTy &It2) : It(It2) {} 3157 NodeRef operator*() { return It->get(); } 3158 nodes_iterator operator++() { 3159 ++It; 3160 return *this; 3161 } 3162 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 3163 }; 3164 3165 static nodes_iterator nodes_begin(BoUpSLP *R) { 3166 return nodes_iterator(R->VectorizableTree.begin()); 3167 } 3168 3169 static nodes_iterator nodes_end(BoUpSLP *R) { 3170 return nodes_iterator(R->VectorizableTree.end()); 3171 } 3172 3173 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 3174 }; 3175 3176 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 3177 using TreeEntry = BoUpSLP::TreeEntry; 3178 3179 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3180 3181 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 3182 std::string Str; 3183 raw_string_ostream OS(Str); 3184 if (isSplat(Entry->Scalars)) 3185 OS << "<splat> "; 3186 for (auto V : Entry->Scalars) { 3187 OS << *V; 3188 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 3189 return EU.Scalar == V; 3190 })) 3191 OS << " <extract>"; 3192 OS << "\n"; 3193 } 3194 return Str; 3195 } 3196 3197 static std::string getNodeAttributes(const TreeEntry *Entry, 3198 const BoUpSLP *) { 3199 if (Entry->State == TreeEntry::NeedToGather) 3200 return "color=red"; 3201 return ""; 3202 } 3203 }; 3204 3205 } // end namespace llvm 3206 3207 BoUpSLP::~BoUpSLP() { 3208 SmallVector<WeakTrackingVH> DeadInsts; 3209 for (auto *I : DeletedInstructions) { 3210 for (Use &U : I->operands()) { 3211 auto *Op = dyn_cast<Instruction>(U.get()); 3212 if (Op && !DeletedInstructions.count(Op) && Op->hasOneUser() && 3213 wouldInstructionBeTriviallyDead(Op, TLI)) 3214 DeadInsts.emplace_back(Op); 3215 } 3216 I->dropAllReferences(); 3217 } 3218 for (auto *I : DeletedInstructions) { 3219 assert(I->use_empty() && 3220 "trying to erase instruction with users."); 3221 I->eraseFromParent(); 3222 } 3223 3224 // Cleanup any dead scalar code feeding the vectorized instructions 3225 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI); 3226 3227 #ifdef EXPENSIVE_CHECKS 3228 // If we could guarantee that this call is not extremely slow, we could 3229 // remove the ifdef limitation (see PR47712). 3230 assert(!verifyFunction(*F, &dbgs())); 3231 #endif 3232 } 3233 3234 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 3235 /// contains original mask for the scalars reused in the node. Procedure 3236 /// transform this mask in accordance with the given \p Mask. 3237 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 3238 assert(!Mask.empty() && Reuses.size() == Mask.size() && 3239 "Expected non-empty mask."); 3240 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 3241 Prev.swap(Reuses); 3242 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 3243 if (Mask[I] != UndefMaskElem) 3244 Reuses[Mask[I]] = Prev[I]; 3245 } 3246 3247 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 3248 /// the original order of the scalars. Procedure transforms the provided order 3249 /// in accordance with the given \p Mask. If the resulting \p Order is just an 3250 /// identity order, \p Order is cleared. 3251 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 3252 assert(!Mask.empty() && "Expected non-empty mask."); 3253 SmallVector<int> MaskOrder; 3254 if (Order.empty()) { 3255 MaskOrder.resize(Mask.size()); 3256 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 3257 } else { 3258 inversePermutation(Order, MaskOrder); 3259 } 3260 reorderReuses(MaskOrder, Mask); 3261 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 3262 Order.clear(); 3263 return; 3264 } 3265 Order.assign(Mask.size(), Mask.size()); 3266 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 3267 if (MaskOrder[I] != UndefMaskElem) 3268 Order[MaskOrder[I]] = I; 3269 fixupOrderingIndices(Order); 3270 } 3271 3272 Optional<BoUpSLP::OrdersType> 3273 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 3274 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 3275 unsigned NumScalars = TE.Scalars.size(); 3276 OrdersType CurrentOrder(NumScalars, NumScalars); 3277 SmallVector<int> Positions; 3278 SmallBitVector UsedPositions(NumScalars); 3279 const TreeEntry *STE = nullptr; 3280 // Try to find all gathered scalars that are gets vectorized in other 3281 // vectorize node. Here we can have only one single tree vector node to 3282 // correctly identify order of the gathered scalars. 3283 for (unsigned I = 0; I < NumScalars; ++I) { 3284 Value *V = TE.Scalars[I]; 3285 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 3286 continue; 3287 if (const auto *LocalSTE = getTreeEntry(V)) { 3288 if (!STE) 3289 STE = LocalSTE; 3290 else if (STE != LocalSTE) 3291 // Take the order only from the single vector node. 3292 return None; 3293 unsigned Lane = 3294 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 3295 if (Lane >= NumScalars) 3296 return None; 3297 if (CurrentOrder[Lane] != NumScalars) { 3298 if (Lane != I) 3299 continue; 3300 UsedPositions.reset(CurrentOrder[Lane]); 3301 } 3302 // The partial identity (where only some elements of the gather node are 3303 // in the identity order) is good. 3304 CurrentOrder[Lane] = I; 3305 UsedPositions.set(I); 3306 } 3307 } 3308 // Need to keep the order if we have a vector entry and at least 2 scalars or 3309 // the vectorized entry has just 2 scalars. 3310 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 3311 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 3312 for (unsigned I = 0; I < NumScalars; ++I) 3313 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 3314 return false; 3315 return true; 3316 }; 3317 if (IsIdentityOrder(CurrentOrder)) { 3318 CurrentOrder.clear(); 3319 return CurrentOrder; 3320 } 3321 auto *It = CurrentOrder.begin(); 3322 for (unsigned I = 0; I < NumScalars;) { 3323 if (UsedPositions.test(I)) { 3324 ++I; 3325 continue; 3326 } 3327 if (*It == NumScalars) { 3328 *It = I; 3329 ++I; 3330 } 3331 ++It; 3332 } 3333 return CurrentOrder; 3334 } 3335 return None; 3336 } 3337 3338 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE, 3339 bool TopToBottom) { 3340 // No need to reorder if need to shuffle reuses, still need to shuffle the 3341 // node. 3342 if (!TE.ReuseShuffleIndices.empty()) 3343 return None; 3344 if (TE.State == TreeEntry::Vectorize && 3345 (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) || 3346 (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) && 3347 !TE.isAltShuffle()) 3348 return TE.ReorderIndices; 3349 if (TE.State == TreeEntry::NeedToGather) { 3350 // TODO: add analysis of other gather nodes with extractelement 3351 // instructions and other values/instructions, not only undefs. 3352 if (((TE.getOpcode() == Instruction::ExtractElement && 3353 !TE.isAltShuffle()) || 3354 (all_of(TE.Scalars, 3355 [](Value *V) { 3356 return isa<UndefValue, ExtractElementInst>(V); 3357 }) && 3358 any_of(TE.Scalars, 3359 [](Value *V) { return isa<ExtractElementInst>(V); }))) && 3360 all_of(TE.Scalars, 3361 [](Value *V) { 3362 auto *EE = dyn_cast<ExtractElementInst>(V); 3363 return !EE || isa<FixedVectorType>(EE->getVectorOperandType()); 3364 }) && 3365 allSameType(TE.Scalars)) { 3366 // Check that gather of extractelements can be represented as 3367 // just a shuffle of a single vector. 3368 OrdersType CurrentOrder; 3369 bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder); 3370 if (Reuse || !CurrentOrder.empty()) { 3371 if (!CurrentOrder.empty()) 3372 fixupOrderingIndices(CurrentOrder); 3373 return CurrentOrder; 3374 } 3375 } 3376 if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE)) 3377 return CurrentOrder; 3378 } 3379 return None; 3380 } 3381 3382 void BoUpSLP::reorderTopToBottom() { 3383 // Maps VF to the graph nodes. 3384 DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries; 3385 // ExtractElement gather nodes which can be vectorized and need to handle 3386 // their ordering. 3387 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3388 // Find all reorderable nodes with the given VF. 3389 // Currently the are vectorized stores,loads,extracts + some gathering of 3390 // extracts. 3391 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 3392 const std::unique_ptr<TreeEntry> &TE) { 3393 if (Optional<OrdersType> CurrentOrder = 3394 getReorderingData(*TE, /*TopToBottom=*/true)) { 3395 // Do not include ordering for nodes used in the alt opcode vectorization, 3396 // better to reorder them during bottom-to-top stage. If follow the order 3397 // here, it causes reordering of the whole graph though actually it is 3398 // profitable just to reorder the subgraph that starts from the alternate 3399 // opcode vectorization node. Such nodes already end-up with the shuffle 3400 // instruction and it is just enough to change this shuffle rather than 3401 // rotate the scalars for the whole graph. 3402 unsigned Cnt = 0; 3403 const TreeEntry *UserTE = TE.get(); 3404 while (UserTE && Cnt < RecursionMaxDepth) { 3405 if (UserTE->UserTreeIndices.size() != 1) 3406 break; 3407 if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) { 3408 return EI.UserTE->State == TreeEntry::Vectorize && 3409 EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0; 3410 })) 3411 return; 3412 if (UserTE->UserTreeIndices.empty()) 3413 UserTE = nullptr; 3414 else 3415 UserTE = UserTE->UserTreeIndices.back().UserTE; 3416 ++Cnt; 3417 } 3418 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3419 if (TE->State != TreeEntry::Vectorize) 3420 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3421 } 3422 }); 3423 3424 // Reorder the graph nodes according to their vectorization factor. 3425 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 3426 VF /= 2) { 3427 auto It = VFToOrderedEntries.find(VF); 3428 if (It == VFToOrderedEntries.end()) 3429 continue; 3430 // Try to find the most profitable order. We just are looking for the most 3431 // used order and reorder scalar elements in the nodes according to this 3432 // mostly used order. 3433 ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef(); 3434 // All operands are reordered and used only in this node - propagate the 3435 // most used order to the user node. 3436 MapVector<OrdersType, unsigned, 3437 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3438 OrdersUses; 3439 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3440 for (const TreeEntry *OpTE : OrderedEntries) { 3441 // No need to reorder this nodes, still need to extend and to use shuffle, 3442 // just need to merge reordering shuffle and the reuse shuffle. 3443 if (!OpTE->ReuseShuffleIndices.empty()) 3444 continue; 3445 // Count number of orders uses. 3446 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3447 if (OpTE->State == TreeEntry::NeedToGather) 3448 return GathersToOrders.find(OpTE)->second; 3449 return OpTE->ReorderIndices; 3450 }(); 3451 // Stores actually store the mask, not the order, need to invert. 3452 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3453 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3454 SmallVector<int> Mask; 3455 inversePermutation(Order, Mask); 3456 unsigned E = Order.size(); 3457 OrdersType CurrentOrder(E, E); 3458 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3459 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3460 }); 3461 fixupOrderingIndices(CurrentOrder); 3462 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3463 } else { 3464 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3465 } 3466 } 3467 // Set order of the user node. 3468 if (OrdersUses.empty()) 3469 continue; 3470 // Choose the most used order. 3471 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3472 unsigned Cnt = OrdersUses.front().second; 3473 for (const auto &Pair : drop_begin(OrdersUses)) { 3474 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3475 BestOrder = Pair.first; 3476 Cnt = Pair.second; 3477 } 3478 } 3479 // Set order of the user node. 3480 if (BestOrder.empty()) 3481 continue; 3482 SmallVector<int> Mask; 3483 inversePermutation(BestOrder, Mask); 3484 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3485 unsigned E = BestOrder.size(); 3486 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3487 return I < E ? static_cast<int>(I) : UndefMaskElem; 3488 }); 3489 // Do an actual reordering, if profitable. 3490 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 3491 // Just do the reordering for the nodes with the given VF. 3492 if (TE->Scalars.size() != VF) { 3493 if (TE->ReuseShuffleIndices.size() == VF) { 3494 // Need to reorder the reuses masks of the operands with smaller VF to 3495 // be able to find the match between the graph nodes and scalar 3496 // operands of the given node during vectorization/cost estimation. 3497 assert(all_of(TE->UserTreeIndices, 3498 [VF, &TE](const EdgeInfo &EI) { 3499 return EI.UserTE->Scalars.size() == VF || 3500 EI.UserTE->Scalars.size() == 3501 TE->Scalars.size(); 3502 }) && 3503 "All users must be of VF size."); 3504 // Update ordering of the operands with the smaller VF than the given 3505 // one. 3506 reorderReuses(TE->ReuseShuffleIndices, Mask); 3507 } 3508 continue; 3509 } 3510 if (TE->State == TreeEntry::Vectorize && 3511 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 3512 InsertElementInst>(TE->getMainOp()) && 3513 !TE->isAltShuffle()) { 3514 // Build correct orders for extract{element,value}, loads and 3515 // stores. 3516 reorderOrder(TE->ReorderIndices, Mask); 3517 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 3518 TE->reorderOperands(Mask); 3519 } else { 3520 // Reorder the node and its operands. 3521 TE->reorderOperands(Mask); 3522 assert(TE->ReorderIndices.empty() && 3523 "Expected empty reorder sequence."); 3524 reorderScalars(TE->Scalars, Mask); 3525 } 3526 if (!TE->ReuseShuffleIndices.empty()) { 3527 // Apply reversed order to keep the original ordering of the reused 3528 // elements to avoid extra reorder indices shuffling. 3529 OrdersType CurrentOrder; 3530 reorderOrder(CurrentOrder, MaskOrder); 3531 SmallVector<int> NewReuses; 3532 inversePermutation(CurrentOrder, NewReuses); 3533 addMask(NewReuses, TE->ReuseShuffleIndices); 3534 TE->ReuseShuffleIndices.swap(NewReuses); 3535 } 3536 } 3537 } 3538 } 3539 3540 bool BoUpSLP::canReorderOperands( 3541 TreeEntry *UserTE, SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 3542 ArrayRef<TreeEntry *> ReorderableGathers, 3543 SmallVectorImpl<TreeEntry *> &GatherOps) { 3544 for (unsigned I = 0, E = UserTE->getNumOperands(); I < E; ++I) { 3545 if (any_of(Edges, [I](const std::pair<unsigned, TreeEntry *> &OpData) { 3546 return OpData.first == I && 3547 OpData.second->State == TreeEntry::Vectorize; 3548 })) 3549 continue; 3550 if (TreeEntry *TE = getVectorizedOperand(UserTE, I)) { 3551 // Do not reorder if operand node is used by many user nodes. 3552 if (any_of(TE->UserTreeIndices, 3553 [UserTE](const EdgeInfo &EI) { return EI.UserTE != UserTE; })) 3554 return false; 3555 // Add the node to the list of the ordered nodes with the identity 3556 // order. 3557 Edges.emplace_back(I, TE); 3558 continue; 3559 } 3560 ArrayRef<Value *> VL = UserTE->getOperand(I); 3561 TreeEntry *Gather = nullptr; 3562 if (count_if(ReorderableGathers, [VL, &Gather](TreeEntry *TE) { 3563 assert(TE->State != TreeEntry::Vectorize && 3564 "Only non-vectorized nodes are expected."); 3565 if (TE->isSame(VL)) { 3566 Gather = TE; 3567 return true; 3568 } 3569 return false; 3570 }) > 1) 3571 return false; 3572 if (Gather) 3573 GatherOps.push_back(Gather); 3574 } 3575 return true; 3576 } 3577 3578 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 3579 SetVector<TreeEntry *> OrderedEntries; 3580 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3581 // Find all reorderable leaf nodes with the given VF. 3582 // Currently the are vectorized loads,extracts without alternate operands + 3583 // some gathering of extracts. 3584 SmallVector<TreeEntry *> NonVectorized; 3585 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 3586 &NonVectorized]( 3587 const std::unique_ptr<TreeEntry> &TE) { 3588 if (TE->State != TreeEntry::Vectorize) 3589 NonVectorized.push_back(TE.get()); 3590 if (Optional<OrdersType> CurrentOrder = 3591 getReorderingData(*TE, /*TopToBottom=*/false)) { 3592 OrderedEntries.insert(TE.get()); 3593 if (TE->State != TreeEntry::Vectorize) 3594 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3595 } 3596 }); 3597 3598 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3599 // I.e., if the node has operands, that are reordered, try to make at least 3600 // one operand order in the natural order and reorder others + reorder the 3601 // user node itself. 3602 SmallPtrSet<const TreeEntry *, 4> Visited; 3603 while (!OrderedEntries.empty()) { 3604 // 1. Filter out only reordered nodes. 3605 // 2. If the entry has multiple uses - skip it and jump to the next node. 3606 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3607 SmallVector<TreeEntry *> Filtered; 3608 for (TreeEntry *TE : OrderedEntries) { 3609 if (!(TE->State == TreeEntry::Vectorize || 3610 (TE->State == TreeEntry::NeedToGather && 3611 GathersToOrders.count(TE))) || 3612 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3613 !all_of(drop_begin(TE->UserTreeIndices), 3614 [TE](const EdgeInfo &EI) { 3615 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3616 }) || 3617 !Visited.insert(TE).second) { 3618 Filtered.push_back(TE); 3619 continue; 3620 } 3621 // Build a map between user nodes and their operands order to speedup 3622 // search. The graph currently does not provide this dependency directly. 3623 for (EdgeInfo &EI : TE->UserTreeIndices) { 3624 TreeEntry *UserTE = EI.UserTE; 3625 auto It = Users.find(UserTE); 3626 if (It == Users.end()) 3627 It = Users.insert({UserTE, {}}).first; 3628 It->second.emplace_back(EI.EdgeIdx, TE); 3629 } 3630 } 3631 // Erase filtered entries. 3632 for_each(Filtered, 3633 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3634 for (auto &Data : Users) { 3635 // Check that operands are used only in the User node. 3636 SmallVector<TreeEntry *> GatherOps; 3637 if (!canReorderOperands(Data.first, Data.second, NonVectorized, 3638 GatherOps)) { 3639 for_each(Data.second, 3640 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3641 OrderedEntries.remove(Op.second); 3642 }); 3643 continue; 3644 } 3645 // All operands are reordered and used only in this node - propagate the 3646 // most used order to the user node. 3647 MapVector<OrdersType, unsigned, 3648 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3649 OrdersUses; 3650 // Do the analysis for each tree entry only once, otherwise the order of 3651 // the same node my be considered several times, though might be not 3652 // profitable. 3653 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3654 SmallPtrSet<const TreeEntry *, 4> VisitedUsers; 3655 for (const auto &Op : Data.second) { 3656 TreeEntry *OpTE = Op.second; 3657 if (!VisitedOps.insert(OpTE).second) 3658 continue; 3659 if (!OpTE->ReuseShuffleIndices.empty() || 3660 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3661 continue; 3662 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3663 if (OpTE->State == TreeEntry::NeedToGather) 3664 return GathersToOrders.find(OpTE)->second; 3665 return OpTE->ReorderIndices; 3666 }(); 3667 unsigned NumOps = count_if( 3668 Data.second, [OpTE](const std::pair<unsigned, TreeEntry *> &P) { 3669 return P.second == OpTE; 3670 }); 3671 // Stores actually store the mask, not the order, need to invert. 3672 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3673 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3674 SmallVector<int> Mask; 3675 inversePermutation(Order, Mask); 3676 unsigned E = Order.size(); 3677 OrdersType CurrentOrder(E, E); 3678 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3679 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3680 }); 3681 fixupOrderingIndices(CurrentOrder); 3682 OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second += 3683 NumOps; 3684 } else { 3685 OrdersUses.insert(std::make_pair(Order, 0)).first->second += NumOps; 3686 } 3687 auto Res = OrdersUses.insert(std::make_pair(OrdersType(), 0)); 3688 const auto &&AllowsReordering = [IgnoreReorder, &GathersToOrders]( 3689 const TreeEntry *TE) { 3690 if (!TE->ReorderIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3691 (TE->State == TreeEntry::Vectorize && TE->isAltShuffle()) || 3692 (IgnoreReorder && TE->Idx == 0)) 3693 return true; 3694 if (TE->State == TreeEntry::NeedToGather) { 3695 auto It = GathersToOrders.find(TE); 3696 if (It != GathersToOrders.end()) 3697 return !It->second.empty(); 3698 return true; 3699 } 3700 return false; 3701 }; 3702 for (const EdgeInfo &EI : OpTE->UserTreeIndices) { 3703 TreeEntry *UserTE = EI.UserTE; 3704 if (!VisitedUsers.insert(UserTE).second) 3705 continue; 3706 // May reorder user node if it requires reordering, has reused 3707 // scalars, is an alternate op vectorize node or its op nodes require 3708 // reordering. 3709 if (AllowsReordering(UserTE)) 3710 continue; 3711 // Check if users allow reordering. 3712 // Currently look up just 1 level of operands to avoid increase of 3713 // the compile time. 3714 // Profitable to reorder if definitely more operands allow 3715 // reordering rather than those with natural order. 3716 ArrayRef<std::pair<unsigned, TreeEntry *>> Ops = Users[UserTE]; 3717 if (static_cast<unsigned>(count_if( 3718 Ops, [UserTE, &AllowsReordering]( 3719 const std::pair<unsigned, TreeEntry *> &Op) { 3720 return AllowsReordering(Op.second) && 3721 all_of(Op.second->UserTreeIndices, 3722 [UserTE](const EdgeInfo &EI) { 3723 return EI.UserTE == UserTE; 3724 }); 3725 })) <= Ops.size() / 2) 3726 ++Res.first->second; 3727 } 3728 } 3729 // If no orders - skip current nodes and jump to the next one, if any. 3730 if (OrdersUses.empty()) { 3731 for_each(Data.second, 3732 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3733 OrderedEntries.remove(Op.second); 3734 }); 3735 continue; 3736 } 3737 // Choose the best order. 3738 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3739 unsigned Cnt = OrdersUses.front().second; 3740 for (const auto &Pair : drop_begin(OrdersUses)) { 3741 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3742 BestOrder = Pair.first; 3743 Cnt = Pair.second; 3744 } 3745 } 3746 // Set order of the user node (reordering of operands and user nodes). 3747 if (BestOrder.empty()) { 3748 for_each(Data.second, 3749 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3750 OrderedEntries.remove(Op.second); 3751 }); 3752 continue; 3753 } 3754 // Erase operands from OrderedEntries list and adjust their orders. 3755 VisitedOps.clear(); 3756 SmallVector<int> Mask; 3757 inversePermutation(BestOrder, Mask); 3758 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3759 unsigned E = BestOrder.size(); 3760 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3761 return I < E ? static_cast<int>(I) : UndefMaskElem; 3762 }); 3763 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 3764 TreeEntry *TE = Op.second; 3765 OrderedEntries.remove(TE); 3766 if (!VisitedOps.insert(TE).second) 3767 continue; 3768 if (TE->ReuseShuffleIndices.size() == BestOrder.size()) { 3769 // Just reorder reuses indices. 3770 reorderReuses(TE->ReuseShuffleIndices, Mask); 3771 continue; 3772 } 3773 // Gathers are processed separately. 3774 if (TE->State != TreeEntry::Vectorize) 3775 continue; 3776 assert((BestOrder.size() == TE->ReorderIndices.size() || 3777 TE->ReorderIndices.empty()) && 3778 "Non-matching sizes of user/operand entries."); 3779 reorderOrder(TE->ReorderIndices, Mask); 3780 } 3781 // For gathers just need to reorder its scalars. 3782 for (TreeEntry *Gather : GatherOps) { 3783 assert(Gather->ReorderIndices.empty() && 3784 "Unexpected reordering of gathers."); 3785 if (!Gather->ReuseShuffleIndices.empty()) { 3786 // Just reorder reuses indices. 3787 reorderReuses(Gather->ReuseShuffleIndices, Mask); 3788 continue; 3789 } 3790 reorderScalars(Gather->Scalars, Mask); 3791 OrderedEntries.remove(Gather); 3792 } 3793 // Reorder operands of the user node and set the ordering for the user 3794 // node itself. 3795 if (Data.first->State != TreeEntry::Vectorize || 3796 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 3797 Data.first->getMainOp()) || 3798 Data.first->isAltShuffle()) 3799 Data.first->reorderOperands(Mask); 3800 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 3801 Data.first->isAltShuffle()) { 3802 reorderScalars(Data.first->Scalars, Mask); 3803 reorderOrder(Data.first->ReorderIndices, MaskOrder); 3804 if (Data.first->ReuseShuffleIndices.empty() && 3805 !Data.first->ReorderIndices.empty() && 3806 !Data.first->isAltShuffle()) { 3807 // Insert user node to the list to try to sink reordering deeper in 3808 // the graph. 3809 OrderedEntries.insert(Data.first); 3810 } 3811 } else { 3812 reorderOrder(Data.first->ReorderIndices, Mask); 3813 } 3814 } 3815 } 3816 // If the reordering is unnecessary, just remove the reorder. 3817 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 3818 VectorizableTree.front()->ReuseShuffleIndices.empty()) 3819 VectorizableTree.front()->ReorderIndices.clear(); 3820 } 3821 3822 void BoUpSLP::buildExternalUses( 3823 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3824 // Collect the values that we need to extract from the tree. 3825 for (auto &TEPtr : VectorizableTree) { 3826 TreeEntry *Entry = TEPtr.get(); 3827 3828 // No need to handle users of gathered values. 3829 if (Entry->State == TreeEntry::NeedToGather) 3830 continue; 3831 3832 // For each lane: 3833 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3834 Value *Scalar = Entry->Scalars[Lane]; 3835 int FoundLane = Entry->findLaneForValue(Scalar); 3836 3837 // Check if the scalar is externally used as an extra arg. 3838 auto ExtI = ExternallyUsedValues.find(Scalar); 3839 if (ExtI != ExternallyUsedValues.end()) { 3840 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 3841 << Lane << " from " << *Scalar << ".\n"); 3842 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 3843 } 3844 for (User *U : Scalar->users()) { 3845 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 3846 3847 Instruction *UserInst = dyn_cast<Instruction>(U); 3848 if (!UserInst) 3849 continue; 3850 3851 if (isDeleted(UserInst)) 3852 continue; 3853 3854 // Skip in-tree scalars that become vectors 3855 if (TreeEntry *UseEntry = getTreeEntry(U)) { 3856 Value *UseScalar = UseEntry->Scalars[0]; 3857 // Some in-tree scalars will remain as scalar in vectorized 3858 // instructions. If that is the case, the one in Lane 0 will 3859 // be used. 3860 if (UseScalar != U || 3861 UseEntry->State == TreeEntry::ScatterVectorize || 3862 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 3863 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 3864 << ".\n"); 3865 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 3866 continue; 3867 } 3868 } 3869 3870 // Ignore users in the user ignore list. 3871 if (is_contained(UserIgnoreList, UserInst)) 3872 continue; 3873 3874 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 3875 << Lane << " from " << *Scalar << ".\n"); 3876 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 3877 } 3878 } 3879 } 3880 } 3881 3882 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 3883 ArrayRef<Value *> UserIgnoreLst) { 3884 deleteTree(); 3885 UserIgnoreList = UserIgnoreLst; 3886 if (!allSameType(Roots)) 3887 return; 3888 buildTree_rec(Roots, 0, EdgeInfo()); 3889 } 3890 3891 namespace { 3892 /// Tracks the state we can represent the loads in the given sequence. 3893 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3894 } // anonymous namespace 3895 3896 /// Checks if the given array of loads can be represented as a vectorized, 3897 /// scatter or just simple gather. 3898 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3899 const TargetTransformInfo &TTI, 3900 const DataLayout &DL, ScalarEvolution &SE, 3901 SmallVectorImpl<unsigned> &Order, 3902 SmallVectorImpl<Value *> &PointerOps) { 3903 // Check that a vectorized load would load the same memory as a scalar 3904 // load. For example, we don't want to vectorize loads that are smaller 3905 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3906 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3907 // from such a struct, we read/write packed bits disagreeing with the 3908 // unvectorized version. 3909 Type *ScalarTy = VL0->getType(); 3910 3911 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3912 return LoadsState::Gather; 3913 3914 // Make sure all loads in the bundle are simple - we can't vectorize 3915 // atomic or volatile loads. 3916 PointerOps.clear(); 3917 PointerOps.resize(VL.size()); 3918 auto *POIter = PointerOps.begin(); 3919 for (Value *V : VL) { 3920 auto *L = cast<LoadInst>(V); 3921 if (!L->isSimple()) 3922 return LoadsState::Gather; 3923 *POIter = L->getPointerOperand(); 3924 ++POIter; 3925 } 3926 3927 Order.clear(); 3928 // Check the order of pointer operands. 3929 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 3930 Value *Ptr0; 3931 Value *PtrN; 3932 if (Order.empty()) { 3933 Ptr0 = PointerOps.front(); 3934 PtrN = PointerOps.back(); 3935 } else { 3936 Ptr0 = PointerOps[Order.front()]; 3937 PtrN = PointerOps[Order.back()]; 3938 } 3939 Optional<int> Diff = 3940 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3941 // Check that the sorted loads are consecutive. 3942 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3943 return LoadsState::Vectorize; 3944 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3945 for (Value *V : VL) 3946 CommonAlignment = 3947 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3948 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 3949 CommonAlignment)) 3950 return LoadsState::ScatterVectorize; 3951 } 3952 3953 return LoadsState::Gather; 3954 } 3955 3956 /// \return true if the specified list of values has only one instruction that 3957 /// requires scheduling, false otherwise. 3958 #ifndef NDEBUG 3959 static bool needToScheduleSingleInstruction(ArrayRef<Value *> VL) { 3960 Value *NeedsScheduling = nullptr; 3961 for (Value *V : VL) { 3962 if (doesNotNeedToBeScheduled(V)) 3963 continue; 3964 if (!NeedsScheduling) { 3965 NeedsScheduling = V; 3966 continue; 3967 } 3968 return false; 3969 } 3970 return NeedsScheduling; 3971 } 3972 #endif 3973 3974 /// Generates key/subkey pair for the given value to provide effective sorting 3975 /// of the values and better detection of the vectorizable values sequences. The 3976 /// keys/subkeys can be used for better sorting of the values themselves (keys) 3977 /// and in values subgroups (subkeys). 3978 static std::pair<size_t, size_t> generateKeySubkey( 3979 Value *V, const TargetLibraryInfo *TLI, 3980 function_ref<hash_code(size_t, LoadInst *)> LoadsSubkeyGenerator, 3981 bool AllowAlternate) { 3982 hash_code Key = hash_value(V->getValueID() + 2); 3983 hash_code SubKey = hash_value(0); 3984 // Sort the loads by the distance between the pointers. 3985 if (auto *LI = dyn_cast<LoadInst>(V)) { 3986 Key = hash_combine(hash_value(LI->getParent()), Key); 3987 if (LI->isSimple()) 3988 SubKey = hash_value(LoadsSubkeyGenerator(Key, LI)); 3989 else 3990 SubKey = hash_value(LI); 3991 } else if (isVectorLikeInstWithConstOps(V)) { 3992 // Sort extracts by the vector operands. 3993 if (isa<ExtractElementInst, UndefValue>(V)) 3994 Key = hash_value(Value::UndefValueVal + 1); 3995 if (auto *EI = dyn_cast<ExtractElementInst>(V)) { 3996 if (!isUndefVector(EI->getVectorOperand()) && 3997 !isa<UndefValue>(EI->getIndexOperand())) 3998 SubKey = hash_value(EI->getVectorOperand()); 3999 } 4000 } else if (auto *I = dyn_cast<Instruction>(V)) { 4001 // Sort other instructions just by the opcodes except for CMPInst. 4002 // For CMP also sort by the predicate kind. 4003 if ((isa<BinaryOperator>(I) || isa<CastInst>(I)) && 4004 isValidForAlternation(I->getOpcode())) { 4005 if (AllowAlternate) 4006 Key = hash_value(isa<BinaryOperator>(I) ? 1 : 0); 4007 else 4008 Key = hash_combine(hash_value(I->getOpcode()), Key); 4009 SubKey = hash_combine( 4010 hash_value(I->getOpcode()), hash_value(I->getType()), 4011 hash_value(isa<BinaryOperator>(I) 4012 ? I->getType() 4013 : cast<CastInst>(I)->getOperand(0)->getType())); 4014 } else if (auto *CI = dyn_cast<CmpInst>(I)) { 4015 CmpInst::Predicate Pred = CI->getPredicate(); 4016 if (CI->isCommutative()) 4017 Pred = std::min(Pred, CmpInst::getInversePredicate(Pred)); 4018 CmpInst::Predicate SwapPred = CmpInst::getSwappedPredicate(Pred); 4019 SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(Pred), 4020 hash_value(SwapPred), 4021 hash_value(CI->getOperand(0)->getType())); 4022 } else if (auto *Call = dyn_cast<CallInst>(I)) { 4023 Intrinsic::ID ID = getVectorIntrinsicIDForCall(Call, TLI); 4024 if (isTriviallyVectorizable(ID)) 4025 SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(ID)); 4026 else if (!VFDatabase(*Call).getMappings(*Call).empty()) 4027 SubKey = hash_combine(hash_value(I->getOpcode()), 4028 hash_value(Call->getCalledFunction())); 4029 else 4030 SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(Call)); 4031 for (const CallBase::BundleOpInfo &Op : Call->bundle_op_infos()) 4032 SubKey = hash_combine(hash_value(Op.Begin), hash_value(Op.End), 4033 hash_value(Op.Tag), SubKey); 4034 } else if (auto *Gep = dyn_cast<GetElementPtrInst>(I)) { 4035 if (Gep->getNumOperands() == 2 && isa<ConstantInt>(Gep->getOperand(1))) 4036 SubKey = hash_value(Gep->getPointerOperand()); 4037 else 4038 SubKey = hash_value(Gep); 4039 } else if (BinaryOperator::isIntDivRem(I->getOpcode()) && 4040 !isa<ConstantInt>(I->getOperand(1))) { 4041 // Do not try to vectorize instructions with potentially high cost. 4042 SubKey = hash_value(I); 4043 } else { 4044 SubKey = hash_value(I->getOpcode()); 4045 } 4046 Key = hash_combine(hash_value(I->getParent()), Key); 4047 } 4048 return std::make_pair(Key, SubKey); 4049 } 4050 4051 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 4052 const EdgeInfo &UserTreeIdx) { 4053 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 4054 4055 SmallVector<int> ReuseShuffleIndicies; 4056 SmallVector<Value *> UniqueValues; 4057 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 4058 &UserTreeIdx, 4059 this](const InstructionsState &S) { 4060 // Check that every instruction appears once in this bundle. 4061 DenseMap<Value *, unsigned> UniquePositions; 4062 for (Value *V : VL) { 4063 if (isConstant(V)) { 4064 ReuseShuffleIndicies.emplace_back( 4065 isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size()); 4066 UniqueValues.emplace_back(V); 4067 continue; 4068 } 4069 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 4070 ReuseShuffleIndicies.emplace_back(Res.first->second); 4071 if (Res.second) 4072 UniqueValues.emplace_back(V); 4073 } 4074 size_t NumUniqueScalarValues = UniqueValues.size(); 4075 if (NumUniqueScalarValues == VL.size()) { 4076 ReuseShuffleIndicies.clear(); 4077 } else { 4078 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 4079 if (NumUniqueScalarValues <= 1 || 4080 (UniquePositions.size() == 1 && all_of(UniqueValues, 4081 [](Value *V) { 4082 return isa<UndefValue>(V) || 4083 !isConstant(V); 4084 })) || 4085 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 4086 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 4087 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4088 return false; 4089 } 4090 VL = UniqueValues; 4091 } 4092 return true; 4093 }; 4094 4095 InstructionsState S = getSameOpcode(VL); 4096 if (Depth == RecursionMaxDepth) { 4097 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 4098 if (TryToFindDuplicates(S)) 4099 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4100 ReuseShuffleIndicies); 4101 return; 4102 } 4103 4104 // Don't handle scalable vectors 4105 if (S.getOpcode() == Instruction::ExtractElement && 4106 isa<ScalableVectorType>( 4107 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 4108 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 4109 if (TryToFindDuplicates(S)) 4110 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4111 ReuseShuffleIndicies); 4112 return; 4113 } 4114 4115 // Don't handle vectors. 4116 if (S.OpValue->getType()->isVectorTy() && 4117 !isa<InsertElementInst>(S.OpValue)) { 4118 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 4119 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4120 return; 4121 } 4122 4123 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 4124 if (SI->getValueOperand()->getType()->isVectorTy()) { 4125 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 4126 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4127 return; 4128 } 4129 4130 // If all of the operands are identical or constant we have a simple solution. 4131 // If we deal with insert/extract instructions, they all must have constant 4132 // indices, otherwise we should gather them, not try to vectorize. 4133 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 4134 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 4135 !all_of(VL, isVectorLikeInstWithConstOps))) { 4136 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 4137 if (TryToFindDuplicates(S)) 4138 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4139 ReuseShuffleIndicies); 4140 return; 4141 } 4142 4143 // We now know that this is a vector of instructions of the same type from 4144 // the same block. 4145 4146 // Don't vectorize ephemeral values. 4147 for (Value *V : VL) { 4148 if (EphValues.count(V)) { 4149 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 4150 << ") is ephemeral.\n"); 4151 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4152 return; 4153 } 4154 } 4155 4156 // Check if this is a duplicate of another entry. 4157 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4158 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 4159 if (!E->isSame(VL)) { 4160 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 4161 if (TryToFindDuplicates(S)) 4162 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4163 ReuseShuffleIndicies); 4164 return; 4165 } 4166 // Record the reuse of the tree node. FIXME, currently this is only used to 4167 // properly draw the graph rather than for the actual vectorization. 4168 E->UserTreeIndices.push_back(UserTreeIdx); 4169 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 4170 << ".\n"); 4171 return; 4172 } 4173 4174 // Check that none of the instructions in the bundle are already in the tree. 4175 for (Value *V : VL) { 4176 auto *I = dyn_cast<Instruction>(V); 4177 if (!I) 4178 continue; 4179 if (getTreeEntry(I)) { 4180 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 4181 << ") is already in tree.\n"); 4182 if (TryToFindDuplicates(S)) 4183 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4184 ReuseShuffleIndicies); 4185 return; 4186 } 4187 } 4188 4189 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 4190 for (Value *V : VL) { 4191 if (is_contained(UserIgnoreList, V)) { 4192 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 4193 if (TryToFindDuplicates(S)) 4194 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4195 ReuseShuffleIndicies); 4196 return; 4197 } 4198 } 4199 4200 // Check that all of the users of the scalars that we want to vectorize are 4201 // schedulable. 4202 auto *VL0 = cast<Instruction>(S.OpValue); 4203 BasicBlock *BB = VL0->getParent(); 4204 4205 if (!DT->isReachableFromEntry(BB)) { 4206 // Don't go into unreachable blocks. They may contain instructions with 4207 // dependency cycles which confuse the final scheduling. 4208 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 4209 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4210 return; 4211 } 4212 4213 // Check that every instruction appears once in this bundle. 4214 if (!TryToFindDuplicates(S)) 4215 return; 4216 4217 auto &BSRef = BlocksSchedules[BB]; 4218 if (!BSRef) 4219 BSRef = std::make_unique<BlockScheduling>(BB); 4220 4221 BlockScheduling &BS = *BSRef; 4222 4223 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 4224 #ifdef EXPENSIVE_CHECKS 4225 // Make sure we didn't break any internal invariants 4226 BS.verify(); 4227 #endif 4228 if (!Bundle) { 4229 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 4230 assert((!BS.getScheduleData(VL0) || 4231 !BS.getScheduleData(VL0)->isPartOfBundle()) && 4232 "tryScheduleBundle should cancelScheduling on failure"); 4233 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4234 ReuseShuffleIndicies); 4235 return; 4236 } 4237 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 4238 4239 unsigned ShuffleOrOp = S.isAltShuffle() ? 4240 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 4241 switch (ShuffleOrOp) { 4242 case Instruction::PHI: { 4243 auto *PH = cast<PHINode>(VL0); 4244 4245 // Check for terminator values (e.g. invoke). 4246 for (Value *V : VL) 4247 for (Value *Incoming : cast<PHINode>(V)->incoming_values()) { 4248 Instruction *Term = dyn_cast<Instruction>(Incoming); 4249 if (Term && Term->isTerminator()) { 4250 LLVM_DEBUG(dbgs() 4251 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 4252 BS.cancelScheduling(VL, VL0); 4253 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4254 ReuseShuffleIndicies); 4255 return; 4256 } 4257 } 4258 4259 TreeEntry *TE = 4260 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 4261 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 4262 4263 // Keeps the reordered operands to avoid code duplication. 4264 SmallVector<ValueList, 2> OperandsVec; 4265 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 4266 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 4267 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 4268 TE->setOperand(I, Operands); 4269 OperandsVec.push_back(Operands); 4270 continue; 4271 } 4272 ValueList Operands; 4273 // Prepare the operand vector. 4274 for (Value *V : VL) 4275 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 4276 PH->getIncomingBlock(I))); 4277 TE->setOperand(I, Operands); 4278 OperandsVec.push_back(Operands); 4279 } 4280 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 4281 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 4282 return; 4283 } 4284 case Instruction::ExtractValue: 4285 case Instruction::ExtractElement: { 4286 OrdersType CurrentOrder; 4287 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 4288 if (Reuse) { 4289 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 4290 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4291 ReuseShuffleIndicies); 4292 // This is a special case, as it does not gather, but at the same time 4293 // we are not extending buildTree_rec() towards the operands. 4294 ValueList Op0; 4295 Op0.assign(VL.size(), VL0->getOperand(0)); 4296 VectorizableTree.back()->setOperand(0, Op0); 4297 return; 4298 } 4299 if (!CurrentOrder.empty()) { 4300 LLVM_DEBUG({ 4301 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 4302 "with order"; 4303 for (unsigned Idx : CurrentOrder) 4304 dbgs() << " " << Idx; 4305 dbgs() << "\n"; 4306 }); 4307 fixupOrderingIndices(CurrentOrder); 4308 // Insert new order with initial value 0, if it does not exist, 4309 // otherwise return the iterator to the existing one. 4310 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4311 ReuseShuffleIndicies, CurrentOrder); 4312 // This is a special case, as it does not gather, but at the same time 4313 // we are not extending buildTree_rec() towards the operands. 4314 ValueList Op0; 4315 Op0.assign(VL.size(), VL0->getOperand(0)); 4316 VectorizableTree.back()->setOperand(0, Op0); 4317 return; 4318 } 4319 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 4320 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4321 ReuseShuffleIndicies); 4322 BS.cancelScheduling(VL, VL0); 4323 return; 4324 } 4325 case Instruction::InsertElement: { 4326 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 4327 4328 // Check that we have a buildvector and not a shuffle of 2 or more 4329 // different vectors. 4330 ValueSet SourceVectors; 4331 for (Value *V : VL) { 4332 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 4333 assert(getInsertIndex(V) != None && "Non-constant or undef index?"); 4334 } 4335 4336 if (count_if(VL, [&SourceVectors](Value *V) { 4337 return !SourceVectors.contains(V); 4338 }) >= 2) { 4339 // Found 2nd source vector - cancel. 4340 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 4341 "different source vectors.\n"); 4342 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4343 BS.cancelScheduling(VL, VL0); 4344 return; 4345 } 4346 4347 auto OrdCompare = [](const std::pair<int, int> &P1, 4348 const std::pair<int, int> &P2) { 4349 return P1.first > P2.first; 4350 }; 4351 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 4352 decltype(OrdCompare)> 4353 Indices(OrdCompare); 4354 for (int I = 0, E = VL.size(); I < E; ++I) { 4355 unsigned Idx = *getInsertIndex(VL[I]); 4356 Indices.emplace(Idx, I); 4357 } 4358 OrdersType CurrentOrder(VL.size(), VL.size()); 4359 bool IsIdentity = true; 4360 for (int I = 0, E = VL.size(); I < E; ++I) { 4361 CurrentOrder[Indices.top().second] = I; 4362 IsIdentity &= Indices.top().second == I; 4363 Indices.pop(); 4364 } 4365 if (IsIdentity) 4366 CurrentOrder.clear(); 4367 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4368 None, CurrentOrder); 4369 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 4370 4371 constexpr int NumOps = 2; 4372 ValueList VectorOperands[NumOps]; 4373 for (int I = 0; I < NumOps; ++I) { 4374 for (Value *V : VL) 4375 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 4376 4377 TE->setOperand(I, VectorOperands[I]); 4378 } 4379 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 4380 return; 4381 } 4382 case Instruction::Load: { 4383 // Check that a vectorized load would load the same memory as a scalar 4384 // load. For example, we don't want to vectorize loads that are smaller 4385 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 4386 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 4387 // from such a struct, we read/write packed bits disagreeing with the 4388 // unvectorized version. 4389 SmallVector<Value *> PointerOps; 4390 OrdersType CurrentOrder; 4391 TreeEntry *TE = nullptr; 4392 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 4393 PointerOps)) { 4394 case LoadsState::Vectorize: 4395 if (CurrentOrder.empty()) { 4396 // Original loads are consecutive and does not require reordering. 4397 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4398 ReuseShuffleIndicies); 4399 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 4400 } else { 4401 fixupOrderingIndices(CurrentOrder); 4402 // Need to reorder. 4403 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4404 ReuseShuffleIndicies, CurrentOrder); 4405 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 4406 } 4407 TE->setOperandsInOrder(); 4408 break; 4409 case LoadsState::ScatterVectorize: 4410 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 4411 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 4412 UserTreeIdx, ReuseShuffleIndicies); 4413 TE->setOperandsInOrder(); 4414 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 4415 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 4416 break; 4417 case LoadsState::Gather: 4418 BS.cancelScheduling(VL, VL0); 4419 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4420 ReuseShuffleIndicies); 4421 #ifndef NDEBUG 4422 Type *ScalarTy = VL0->getType(); 4423 if (DL->getTypeSizeInBits(ScalarTy) != 4424 DL->getTypeAllocSizeInBits(ScalarTy)) 4425 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 4426 else if (any_of(VL, [](Value *V) { 4427 return !cast<LoadInst>(V)->isSimple(); 4428 })) 4429 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 4430 else 4431 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 4432 #endif // NDEBUG 4433 break; 4434 } 4435 return; 4436 } 4437 case Instruction::ZExt: 4438 case Instruction::SExt: 4439 case Instruction::FPToUI: 4440 case Instruction::FPToSI: 4441 case Instruction::FPExt: 4442 case Instruction::PtrToInt: 4443 case Instruction::IntToPtr: 4444 case Instruction::SIToFP: 4445 case Instruction::UIToFP: 4446 case Instruction::Trunc: 4447 case Instruction::FPTrunc: 4448 case Instruction::BitCast: { 4449 Type *SrcTy = VL0->getOperand(0)->getType(); 4450 for (Value *V : VL) { 4451 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 4452 if (Ty != SrcTy || !isValidElementType(Ty)) { 4453 BS.cancelScheduling(VL, VL0); 4454 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4455 ReuseShuffleIndicies); 4456 LLVM_DEBUG(dbgs() 4457 << "SLP: Gathering casts with different src types.\n"); 4458 return; 4459 } 4460 } 4461 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4462 ReuseShuffleIndicies); 4463 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 4464 4465 TE->setOperandsInOrder(); 4466 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4467 ValueList Operands; 4468 // Prepare the operand vector. 4469 for (Value *V : VL) 4470 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4471 4472 buildTree_rec(Operands, Depth + 1, {TE, i}); 4473 } 4474 return; 4475 } 4476 case Instruction::ICmp: 4477 case Instruction::FCmp: { 4478 // Check that all of the compares have the same predicate. 4479 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4480 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 4481 Type *ComparedTy = VL0->getOperand(0)->getType(); 4482 for (Value *V : VL) { 4483 CmpInst *Cmp = cast<CmpInst>(V); 4484 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 4485 Cmp->getOperand(0)->getType() != ComparedTy) { 4486 BS.cancelScheduling(VL, VL0); 4487 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4488 ReuseShuffleIndicies); 4489 LLVM_DEBUG(dbgs() 4490 << "SLP: Gathering cmp with different predicate.\n"); 4491 return; 4492 } 4493 } 4494 4495 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4496 ReuseShuffleIndicies); 4497 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 4498 4499 ValueList Left, Right; 4500 if (cast<CmpInst>(VL0)->isCommutative()) { 4501 // Commutative predicate - collect + sort operands of the instructions 4502 // so that each side is more likely to have the same opcode. 4503 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 4504 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4505 } else { 4506 // Collect operands - commute if it uses the swapped predicate. 4507 for (Value *V : VL) { 4508 auto *Cmp = cast<CmpInst>(V); 4509 Value *LHS = Cmp->getOperand(0); 4510 Value *RHS = Cmp->getOperand(1); 4511 if (Cmp->getPredicate() != P0) 4512 std::swap(LHS, RHS); 4513 Left.push_back(LHS); 4514 Right.push_back(RHS); 4515 } 4516 } 4517 TE->setOperand(0, Left); 4518 TE->setOperand(1, Right); 4519 buildTree_rec(Left, Depth + 1, {TE, 0}); 4520 buildTree_rec(Right, Depth + 1, {TE, 1}); 4521 return; 4522 } 4523 case Instruction::Select: 4524 case Instruction::FNeg: 4525 case Instruction::Add: 4526 case Instruction::FAdd: 4527 case Instruction::Sub: 4528 case Instruction::FSub: 4529 case Instruction::Mul: 4530 case Instruction::FMul: 4531 case Instruction::UDiv: 4532 case Instruction::SDiv: 4533 case Instruction::FDiv: 4534 case Instruction::URem: 4535 case Instruction::SRem: 4536 case Instruction::FRem: 4537 case Instruction::Shl: 4538 case Instruction::LShr: 4539 case Instruction::AShr: 4540 case Instruction::And: 4541 case Instruction::Or: 4542 case Instruction::Xor: { 4543 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4544 ReuseShuffleIndicies); 4545 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 4546 4547 // Sort operands of the instructions so that each side is more likely to 4548 // have the same opcode. 4549 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 4550 ValueList Left, Right; 4551 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4552 TE->setOperand(0, Left); 4553 TE->setOperand(1, Right); 4554 buildTree_rec(Left, Depth + 1, {TE, 0}); 4555 buildTree_rec(Right, Depth + 1, {TE, 1}); 4556 return; 4557 } 4558 4559 TE->setOperandsInOrder(); 4560 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4561 ValueList Operands; 4562 // Prepare the operand vector. 4563 for (Value *V : VL) 4564 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4565 4566 buildTree_rec(Operands, Depth + 1, {TE, i}); 4567 } 4568 return; 4569 } 4570 case Instruction::GetElementPtr: { 4571 // We don't combine GEPs with complicated (nested) indexing. 4572 for (Value *V : VL) { 4573 if (cast<Instruction>(V)->getNumOperands() != 2) { 4574 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 4575 BS.cancelScheduling(VL, VL0); 4576 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4577 ReuseShuffleIndicies); 4578 return; 4579 } 4580 } 4581 4582 // We can't combine several GEPs into one vector if they operate on 4583 // different types. 4584 Type *Ty0 = cast<GEPOperator>(VL0)->getSourceElementType(); 4585 for (Value *V : VL) { 4586 Type *CurTy = cast<GEPOperator>(V)->getSourceElementType(); 4587 if (Ty0 != CurTy) { 4588 LLVM_DEBUG(dbgs() 4589 << "SLP: not-vectorizable GEP (different types).\n"); 4590 BS.cancelScheduling(VL, VL0); 4591 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4592 ReuseShuffleIndicies); 4593 return; 4594 } 4595 } 4596 4597 // We don't combine GEPs with non-constant indexes. 4598 Type *Ty1 = VL0->getOperand(1)->getType(); 4599 for (Value *V : VL) { 4600 auto Op = cast<Instruction>(V)->getOperand(1); 4601 if (!isa<ConstantInt>(Op) || 4602 (Op->getType() != Ty1 && 4603 Op->getType()->getScalarSizeInBits() > 4604 DL->getIndexSizeInBits( 4605 V->getType()->getPointerAddressSpace()))) { 4606 LLVM_DEBUG(dbgs() 4607 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 4608 BS.cancelScheduling(VL, VL0); 4609 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4610 ReuseShuffleIndicies); 4611 return; 4612 } 4613 } 4614 4615 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4616 ReuseShuffleIndicies); 4617 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 4618 SmallVector<ValueList, 2> Operands(2); 4619 // Prepare the operand vector for pointer operands. 4620 for (Value *V : VL) 4621 Operands.front().push_back( 4622 cast<GetElementPtrInst>(V)->getPointerOperand()); 4623 TE->setOperand(0, Operands.front()); 4624 // Need to cast all indices to the same type before vectorization to 4625 // avoid crash. 4626 // Required to be able to find correct matches between different gather 4627 // nodes and reuse the vectorized values rather than trying to gather them 4628 // again. 4629 int IndexIdx = 1; 4630 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 4631 Type *Ty = all_of(VL, 4632 [VL0Ty, IndexIdx](Value *V) { 4633 return VL0Ty == cast<GetElementPtrInst>(V) 4634 ->getOperand(IndexIdx) 4635 ->getType(); 4636 }) 4637 ? VL0Ty 4638 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4639 ->getPointerOperandType() 4640 ->getScalarType()); 4641 // Prepare the operand vector. 4642 for (Value *V : VL) { 4643 auto *Op = cast<Instruction>(V)->getOperand(IndexIdx); 4644 auto *CI = cast<ConstantInt>(Op); 4645 Operands.back().push_back(ConstantExpr::getIntegerCast( 4646 CI, Ty, CI->getValue().isSignBitSet())); 4647 } 4648 TE->setOperand(IndexIdx, Operands.back()); 4649 4650 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 4651 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 4652 return; 4653 } 4654 case Instruction::Store: { 4655 // Check if the stores are consecutive or if we need to swizzle them. 4656 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 4657 // Avoid types that are padded when being allocated as scalars, while 4658 // being packed together in a vector (such as i1). 4659 if (DL->getTypeSizeInBits(ScalarTy) != 4660 DL->getTypeAllocSizeInBits(ScalarTy)) { 4661 BS.cancelScheduling(VL, VL0); 4662 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4663 ReuseShuffleIndicies); 4664 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 4665 return; 4666 } 4667 // Make sure all stores in the bundle are simple - we can't vectorize 4668 // atomic or volatile stores. 4669 SmallVector<Value *, 4> PointerOps(VL.size()); 4670 ValueList Operands(VL.size()); 4671 auto POIter = PointerOps.begin(); 4672 auto OIter = Operands.begin(); 4673 for (Value *V : VL) { 4674 auto *SI = cast<StoreInst>(V); 4675 if (!SI->isSimple()) { 4676 BS.cancelScheduling(VL, VL0); 4677 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4678 ReuseShuffleIndicies); 4679 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 4680 return; 4681 } 4682 *POIter = SI->getPointerOperand(); 4683 *OIter = SI->getValueOperand(); 4684 ++POIter; 4685 ++OIter; 4686 } 4687 4688 OrdersType CurrentOrder; 4689 // Check the order of pointer operands. 4690 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 4691 Value *Ptr0; 4692 Value *PtrN; 4693 if (CurrentOrder.empty()) { 4694 Ptr0 = PointerOps.front(); 4695 PtrN = PointerOps.back(); 4696 } else { 4697 Ptr0 = PointerOps[CurrentOrder.front()]; 4698 PtrN = PointerOps[CurrentOrder.back()]; 4699 } 4700 Optional<int> Dist = 4701 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 4702 // Check that the sorted pointer operands are consecutive. 4703 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 4704 if (CurrentOrder.empty()) { 4705 // Original stores are consecutive and does not require reordering. 4706 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 4707 UserTreeIdx, ReuseShuffleIndicies); 4708 TE->setOperandsInOrder(); 4709 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4710 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 4711 } else { 4712 fixupOrderingIndices(CurrentOrder); 4713 TreeEntry *TE = 4714 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4715 ReuseShuffleIndicies, CurrentOrder); 4716 TE->setOperandsInOrder(); 4717 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4718 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 4719 } 4720 return; 4721 } 4722 } 4723 4724 BS.cancelScheduling(VL, VL0); 4725 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4726 ReuseShuffleIndicies); 4727 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 4728 return; 4729 } 4730 case Instruction::Call: { 4731 // Check if the calls are all to the same vectorizable intrinsic or 4732 // library function. 4733 CallInst *CI = cast<CallInst>(VL0); 4734 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4735 4736 VFShape Shape = VFShape::get( 4737 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 4738 false /*HasGlobalPred*/); 4739 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4740 4741 if (!VecFunc && !isTriviallyVectorizable(ID)) { 4742 BS.cancelScheduling(VL, VL0); 4743 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4744 ReuseShuffleIndicies); 4745 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 4746 return; 4747 } 4748 Function *F = CI->getCalledFunction(); 4749 unsigned NumArgs = CI->arg_size(); 4750 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 4751 for (unsigned j = 0; j != NumArgs; ++j) 4752 if (hasVectorInstrinsicScalarOpd(ID, j)) 4753 ScalarArgs[j] = CI->getArgOperand(j); 4754 for (Value *V : VL) { 4755 CallInst *CI2 = dyn_cast<CallInst>(V); 4756 if (!CI2 || CI2->getCalledFunction() != F || 4757 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 4758 (VecFunc && 4759 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 4760 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 4761 BS.cancelScheduling(VL, VL0); 4762 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4763 ReuseShuffleIndicies); 4764 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 4765 << "\n"); 4766 return; 4767 } 4768 // Some intrinsics have scalar arguments and should be same in order for 4769 // them to be vectorized. 4770 for (unsigned j = 0; j != NumArgs; ++j) { 4771 if (hasVectorInstrinsicScalarOpd(ID, j)) { 4772 Value *A1J = CI2->getArgOperand(j); 4773 if (ScalarArgs[j] != A1J) { 4774 BS.cancelScheduling(VL, VL0); 4775 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4776 ReuseShuffleIndicies); 4777 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 4778 << " argument " << ScalarArgs[j] << "!=" << A1J 4779 << "\n"); 4780 return; 4781 } 4782 } 4783 } 4784 // Verify that the bundle operands are identical between the two calls. 4785 if (CI->hasOperandBundles() && 4786 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 4787 CI->op_begin() + CI->getBundleOperandsEndIndex(), 4788 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 4789 BS.cancelScheduling(VL, VL0); 4790 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4791 ReuseShuffleIndicies); 4792 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 4793 << *CI << "!=" << *V << '\n'); 4794 return; 4795 } 4796 } 4797 4798 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4799 ReuseShuffleIndicies); 4800 TE->setOperandsInOrder(); 4801 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 4802 // For scalar operands no need to to create an entry since no need to 4803 // vectorize it. 4804 if (hasVectorInstrinsicScalarOpd(ID, i)) 4805 continue; 4806 ValueList Operands; 4807 // Prepare the operand vector. 4808 for (Value *V : VL) { 4809 auto *CI2 = cast<CallInst>(V); 4810 Operands.push_back(CI2->getArgOperand(i)); 4811 } 4812 buildTree_rec(Operands, Depth + 1, {TE, i}); 4813 } 4814 return; 4815 } 4816 case Instruction::ShuffleVector: { 4817 // If this is not an alternate sequence of opcode like add-sub 4818 // then do not vectorize this instruction. 4819 if (!S.isAltShuffle()) { 4820 BS.cancelScheduling(VL, VL0); 4821 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4822 ReuseShuffleIndicies); 4823 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 4824 return; 4825 } 4826 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4827 ReuseShuffleIndicies); 4828 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 4829 4830 // Reorder operands if reordering would enable vectorization. 4831 auto *CI = dyn_cast<CmpInst>(VL0); 4832 if (isa<BinaryOperator>(VL0) || CI) { 4833 ValueList Left, Right; 4834 if (!CI || all_of(VL, [](Value *V) { 4835 return cast<CmpInst>(V)->isCommutative(); 4836 })) { 4837 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4838 } else { 4839 CmpInst::Predicate P0 = CI->getPredicate(); 4840 CmpInst::Predicate AltP0 = cast<CmpInst>(S.AltOp)->getPredicate(); 4841 assert(P0 != AltP0 && 4842 "Expected different main/alternate predicates."); 4843 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 4844 Value *BaseOp0 = VL0->getOperand(0); 4845 Value *BaseOp1 = VL0->getOperand(1); 4846 // Collect operands - commute if it uses the swapped predicate or 4847 // alternate operation. 4848 for (Value *V : VL) { 4849 auto *Cmp = cast<CmpInst>(V); 4850 Value *LHS = Cmp->getOperand(0); 4851 Value *RHS = Cmp->getOperand(1); 4852 CmpInst::Predicate CurrentPred = Cmp->getPredicate(); 4853 if (P0 == AltP0Swapped) { 4854 if (CI != Cmp && S.AltOp != Cmp && 4855 ((P0 == CurrentPred && 4856 !areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)) || 4857 (AltP0 == CurrentPred && 4858 areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)))) 4859 std::swap(LHS, RHS); 4860 } else if (P0 != CurrentPred && AltP0 != CurrentPred) { 4861 std::swap(LHS, RHS); 4862 } 4863 Left.push_back(LHS); 4864 Right.push_back(RHS); 4865 } 4866 } 4867 TE->setOperand(0, Left); 4868 TE->setOperand(1, Right); 4869 buildTree_rec(Left, Depth + 1, {TE, 0}); 4870 buildTree_rec(Right, Depth + 1, {TE, 1}); 4871 return; 4872 } 4873 4874 TE->setOperandsInOrder(); 4875 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4876 ValueList Operands; 4877 // Prepare the operand vector. 4878 for (Value *V : VL) 4879 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4880 4881 buildTree_rec(Operands, Depth + 1, {TE, i}); 4882 } 4883 return; 4884 } 4885 default: 4886 BS.cancelScheduling(VL, VL0); 4887 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4888 ReuseShuffleIndicies); 4889 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 4890 return; 4891 } 4892 } 4893 4894 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 4895 unsigned N = 1; 4896 Type *EltTy = T; 4897 4898 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 4899 isa<VectorType>(EltTy)) { 4900 if (auto *ST = dyn_cast<StructType>(EltTy)) { 4901 // Check that struct is homogeneous. 4902 for (const auto *Ty : ST->elements()) 4903 if (Ty != *ST->element_begin()) 4904 return 0; 4905 N *= ST->getNumElements(); 4906 EltTy = *ST->element_begin(); 4907 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 4908 N *= AT->getNumElements(); 4909 EltTy = AT->getElementType(); 4910 } else { 4911 auto *VT = cast<FixedVectorType>(EltTy); 4912 N *= VT->getNumElements(); 4913 EltTy = VT->getElementType(); 4914 } 4915 } 4916 4917 if (!isValidElementType(EltTy)) 4918 return 0; 4919 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 4920 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 4921 return 0; 4922 return N; 4923 } 4924 4925 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 4926 SmallVectorImpl<unsigned> &CurrentOrder) const { 4927 const auto *It = find_if(VL, [](Value *V) { 4928 return isa<ExtractElementInst, ExtractValueInst>(V); 4929 }); 4930 assert(It != VL.end() && "Expected at least one extract instruction."); 4931 auto *E0 = cast<Instruction>(*It); 4932 assert(all_of(VL, 4933 [](Value *V) { 4934 return isa<UndefValue, ExtractElementInst, ExtractValueInst>( 4935 V); 4936 }) && 4937 "Invalid opcode"); 4938 // Check if all of the extracts come from the same vector and from the 4939 // correct offset. 4940 Value *Vec = E0->getOperand(0); 4941 4942 CurrentOrder.clear(); 4943 4944 // We have to extract from a vector/aggregate with the same number of elements. 4945 unsigned NElts; 4946 if (E0->getOpcode() == Instruction::ExtractValue) { 4947 const DataLayout &DL = E0->getModule()->getDataLayout(); 4948 NElts = canMapToVector(Vec->getType(), DL); 4949 if (!NElts) 4950 return false; 4951 // Check if load can be rewritten as load of vector. 4952 LoadInst *LI = dyn_cast<LoadInst>(Vec); 4953 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 4954 return false; 4955 } else { 4956 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 4957 } 4958 4959 if (NElts != VL.size()) 4960 return false; 4961 4962 // Check that all of the indices extract from the correct offset. 4963 bool ShouldKeepOrder = true; 4964 unsigned E = VL.size(); 4965 // Assign to all items the initial value E + 1 so we can check if the extract 4966 // instruction index was used already. 4967 // Also, later we can check that all the indices are used and we have a 4968 // consecutive access in the extract instructions, by checking that no 4969 // element of CurrentOrder still has value E + 1. 4970 CurrentOrder.assign(E, E); 4971 unsigned I = 0; 4972 for (; I < E; ++I) { 4973 auto *Inst = dyn_cast<Instruction>(VL[I]); 4974 if (!Inst) 4975 continue; 4976 if (Inst->getOperand(0) != Vec) 4977 break; 4978 if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) 4979 if (isa<UndefValue>(EE->getIndexOperand())) 4980 continue; 4981 Optional<unsigned> Idx = getExtractIndex(Inst); 4982 if (!Idx) 4983 break; 4984 const unsigned ExtIdx = *Idx; 4985 if (ExtIdx != I) { 4986 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E) 4987 break; 4988 ShouldKeepOrder = false; 4989 CurrentOrder[ExtIdx] = I; 4990 } else { 4991 if (CurrentOrder[I] != E) 4992 break; 4993 CurrentOrder[I] = I; 4994 } 4995 } 4996 if (I < E) { 4997 CurrentOrder.clear(); 4998 return false; 4999 } 5000 if (ShouldKeepOrder) 5001 CurrentOrder.clear(); 5002 5003 return ShouldKeepOrder; 5004 } 5005 5006 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 5007 ArrayRef<Value *> VectorizedVals) const { 5008 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 5009 all_of(I->users(), [this](User *U) { 5010 return ScalarToTreeEntry.count(U) > 0 || 5011 isVectorLikeInstWithConstOps(U) || 5012 (isa<ExtractElementInst>(U) && MustGather.contains(U)); 5013 }); 5014 } 5015 5016 static std::pair<InstructionCost, InstructionCost> 5017 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 5018 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 5019 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5020 5021 // Calculate the cost of the scalar and vector calls. 5022 SmallVector<Type *, 4> VecTys; 5023 for (Use &Arg : CI->args()) 5024 VecTys.push_back( 5025 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 5026 FastMathFlags FMF; 5027 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 5028 FMF = FPCI->getFastMathFlags(); 5029 SmallVector<const Value *> Arguments(CI->args()); 5030 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 5031 dyn_cast<IntrinsicInst>(CI)); 5032 auto IntrinsicCost = 5033 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 5034 5035 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 5036 VecTy->getNumElements())), 5037 false /*HasGlobalPred*/); 5038 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 5039 auto LibCost = IntrinsicCost; 5040 if (!CI->isNoBuiltin() && VecFunc) { 5041 // Calculate the cost of the vector library call. 5042 // If the corresponding vector call is cheaper, return its cost. 5043 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 5044 TTI::TCK_RecipThroughput); 5045 } 5046 return {IntrinsicCost, LibCost}; 5047 } 5048 5049 /// Compute the cost of creating a vector of type \p VecTy containing the 5050 /// extracted values from \p VL. 5051 static InstructionCost 5052 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 5053 TargetTransformInfo::ShuffleKind ShuffleKind, 5054 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 5055 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 5056 5057 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 5058 VecTy->getNumElements() < NumOfParts) 5059 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 5060 5061 bool AllConsecutive = true; 5062 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 5063 unsigned Idx = -1; 5064 InstructionCost Cost = 0; 5065 5066 // Process extracts in blocks of EltsPerVector to check if the source vector 5067 // operand can be re-used directly. If not, add the cost of creating a shuffle 5068 // to extract the values into a vector register. 5069 for (auto *V : VL) { 5070 ++Idx; 5071 5072 // Need to exclude undefs from analysis. 5073 if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem) 5074 continue; 5075 5076 // Reached the start of a new vector registers. 5077 if (Idx % EltsPerVector == 0) { 5078 AllConsecutive = true; 5079 continue; 5080 } 5081 5082 // Check all extracts for a vector register on the target directly 5083 // extract values in order. 5084 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 5085 if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) { 5086 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 5087 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 5088 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 5089 } 5090 5091 if (AllConsecutive) 5092 continue; 5093 5094 // Skip all indices, except for the last index per vector block. 5095 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 5096 continue; 5097 5098 // If we have a series of extracts which are not consecutive and hence 5099 // cannot re-use the source vector register directly, compute the shuffle 5100 // cost to extract the a vector with EltsPerVector elements. 5101 Cost += TTI.getShuffleCost( 5102 TargetTransformInfo::SK_PermuteSingleSrc, 5103 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 5104 } 5105 return Cost; 5106 } 5107 5108 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 5109 /// operations operands. 5110 static void 5111 buildShuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 5112 ArrayRef<int> ReusesIndices, 5113 const function_ref<bool(Instruction *)> IsAltOp, 5114 SmallVectorImpl<int> &Mask, 5115 SmallVectorImpl<Value *> *OpScalars = nullptr, 5116 SmallVectorImpl<Value *> *AltScalars = nullptr) { 5117 unsigned Sz = VL.size(); 5118 Mask.assign(Sz, UndefMaskElem); 5119 SmallVector<int> OrderMask; 5120 if (!ReorderIndices.empty()) 5121 inversePermutation(ReorderIndices, OrderMask); 5122 for (unsigned I = 0; I < Sz; ++I) { 5123 unsigned Idx = I; 5124 if (!ReorderIndices.empty()) 5125 Idx = OrderMask[I]; 5126 auto *OpInst = cast<Instruction>(VL[Idx]); 5127 if (IsAltOp(OpInst)) { 5128 Mask[I] = Sz + Idx; 5129 if (AltScalars) 5130 AltScalars->push_back(OpInst); 5131 } else { 5132 Mask[I] = Idx; 5133 if (OpScalars) 5134 OpScalars->push_back(OpInst); 5135 } 5136 } 5137 if (!ReusesIndices.empty()) { 5138 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 5139 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 5140 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 5141 }); 5142 Mask.swap(NewMask); 5143 } 5144 } 5145 5146 /// Checks if the specified instruction \p I is an alternate operation for the 5147 /// given \p MainOp and \p AltOp instructions. 5148 static bool isAlternateInstruction(const Instruction *I, 5149 const Instruction *MainOp, 5150 const Instruction *AltOp) { 5151 if (auto *CI0 = dyn_cast<CmpInst>(MainOp)) { 5152 auto *AltCI0 = cast<CmpInst>(AltOp); 5153 auto *CI = cast<CmpInst>(I); 5154 CmpInst::Predicate P0 = CI0->getPredicate(); 5155 CmpInst::Predicate AltP0 = AltCI0->getPredicate(); 5156 assert(P0 != AltP0 && "Expected different main/alternate predicates."); 5157 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 5158 CmpInst::Predicate CurrentPred = CI->getPredicate(); 5159 if (P0 == AltP0Swapped) 5160 return I == AltCI0 || 5161 (I != MainOp && 5162 !areCompatibleCmpOps(CI0->getOperand(0), CI0->getOperand(1), 5163 CI->getOperand(0), CI->getOperand(1))); 5164 return AltP0 == CurrentPred || AltP0Swapped == CurrentPred; 5165 } 5166 return I->getOpcode() == AltOp->getOpcode(); 5167 } 5168 5169 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 5170 ArrayRef<Value *> VectorizedVals) { 5171 ArrayRef<Value*> VL = E->Scalars; 5172 5173 Type *ScalarTy = VL[0]->getType(); 5174 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 5175 ScalarTy = SI->getValueOperand()->getType(); 5176 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 5177 ScalarTy = CI->getOperand(0)->getType(); 5178 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 5179 ScalarTy = IE->getOperand(1)->getType(); 5180 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 5181 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 5182 5183 // If we have computed a smaller type for the expression, update VecTy so 5184 // that the costs will be accurate. 5185 if (MinBWs.count(VL[0])) 5186 VecTy = FixedVectorType::get( 5187 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 5188 unsigned EntryVF = E->getVectorFactor(); 5189 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 5190 5191 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 5192 // FIXME: it tries to fix a problem with MSVC buildbots. 5193 TargetTransformInfo &TTIRef = *TTI; 5194 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 5195 VectorizedVals, E](InstructionCost &Cost) { 5196 DenseMap<Value *, int> ExtractVectorsTys; 5197 SmallPtrSet<Value *, 4> CheckedExtracts; 5198 for (auto *V : VL) { 5199 if (isa<UndefValue>(V)) 5200 continue; 5201 // If all users of instruction are going to be vectorized and this 5202 // instruction itself is not going to be vectorized, consider this 5203 // instruction as dead and remove its cost from the final cost of the 5204 // vectorized tree. 5205 // Also, avoid adjusting the cost for extractelements with multiple uses 5206 // in different graph entries. 5207 const TreeEntry *VE = getTreeEntry(V); 5208 if (!CheckedExtracts.insert(V).second || 5209 !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 5210 (VE && VE != E)) 5211 continue; 5212 auto *EE = cast<ExtractElementInst>(V); 5213 Optional<unsigned> EEIdx = getExtractIndex(EE); 5214 if (!EEIdx) 5215 continue; 5216 unsigned Idx = *EEIdx; 5217 if (TTIRef.getNumberOfParts(VecTy) != 5218 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 5219 auto It = 5220 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 5221 It->getSecond() = std::min<int>(It->second, Idx); 5222 } 5223 // Take credit for instruction that will become dead. 5224 if (EE->hasOneUse()) { 5225 Instruction *Ext = EE->user_back(); 5226 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5227 all_of(Ext->users(), 5228 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5229 // Use getExtractWithExtendCost() to calculate the cost of 5230 // extractelement/ext pair. 5231 Cost -= 5232 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 5233 EE->getVectorOperandType(), Idx); 5234 // Add back the cost of s|zext which is subtracted separately. 5235 Cost += TTIRef.getCastInstrCost( 5236 Ext->getOpcode(), Ext->getType(), EE->getType(), 5237 TTI::getCastContextHint(Ext), CostKind, Ext); 5238 continue; 5239 } 5240 } 5241 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 5242 EE->getVectorOperandType(), Idx); 5243 } 5244 // Add a cost for subvector extracts/inserts if required. 5245 for (const auto &Data : ExtractVectorsTys) { 5246 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 5247 unsigned NumElts = VecTy->getNumElements(); 5248 if (Data.second % NumElts == 0) 5249 continue; 5250 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 5251 unsigned Idx = (Data.second / NumElts) * NumElts; 5252 unsigned EENumElts = EEVTy->getNumElements(); 5253 if (Idx + NumElts <= EENumElts) { 5254 Cost += 5255 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5256 EEVTy, None, Idx, VecTy); 5257 } else { 5258 // Need to round up the subvector type vectorization factor to avoid a 5259 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 5260 // <= EENumElts. 5261 auto *SubVT = 5262 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 5263 Cost += 5264 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5265 EEVTy, None, Idx, SubVT); 5266 } 5267 } else { 5268 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 5269 VecTy, None, 0, EEVTy); 5270 } 5271 } 5272 }; 5273 if (E->State == TreeEntry::NeedToGather) { 5274 if (allConstant(VL)) 5275 return 0; 5276 if (isa<InsertElementInst>(VL[0])) 5277 return InstructionCost::getInvalid(); 5278 SmallVector<int> Mask; 5279 SmallVector<const TreeEntry *> Entries; 5280 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 5281 isGatherShuffledEntry(E, Mask, Entries); 5282 if (Shuffle.hasValue()) { 5283 InstructionCost GatherCost = 0; 5284 if (ShuffleVectorInst::isIdentityMask(Mask)) { 5285 // Perfect match in the graph, will reuse the previously vectorized 5286 // node. Cost is 0. 5287 LLVM_DEBUG( 5288 dbgs() 5289 << "SLP: perfect diamond match for gather bundle that starts with " 5290 << *VL.front() << ".\n"); 5291 if (NeedToShuffleReuses) 5292 GatherCost = 5293 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5294 FinalVecTy, E->ReuseShuffleIndices); 5295 } else { 5296 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 5297 << " entries for bundle that starts with " 5298 << *VL.front() << ".\n"); 5299 // Detected that instead of gather we can emit a shuffle of single/two 5300 // previously vectorized nodes. Add the cost of the permutation rather 5301 // than gather. 5302 ::addMask(Mask, E->ReuseShuffleIndices); 5303 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 5304 } 5305 return GatherCost; 5306 } 5307 if ((E->getOpcode() == Instruction::ExtractElement || 5308 all_of(E->Scalars, 5309 [](Value *V) { 5310 return isa<ExtractElementInst, UndefValue>(V); 5311 })) && 5312 allSameType(VL)) { 5313 // Check that gather of extractelements can be represented as just a 5314 // shuffle of a single/two vectors the scalars are extracted from. 5315 SmallVector<int> Mask; 5316 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 5317 isFixedVectorShuffle(VL, Mask); 5318 if (ShuffleKind.hasValue()) { 5319 // Found the bunch of extractelement instructions that must be gathered 5320 // into a vector and can be represented as a permutation elements in a 5321 // single input vector or of 2 input vectors. 5322 InstructionCost Cost = 5323 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 5324 AdjustExtractsCost(Cost); 5325 if (NeedToShuffleReuses) 5326 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5327 FinalVecTy, E->ReuseShuffleIndices); 5328 return Cost; 5329 } 5330 } 5331 if (isSplat(VL)) { 5332 // Found the broadcasting of the single scalar, calculate the cost as the 5333 // broadcast. 5334 assert(VecTy == FinalVecTy && 5335 "No reused scalars expected for broadcast."); 5336 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 5337 /*Mask=*/None, /*Index=*/0, 5338 /*SubTp=*/nullptr, /*Args=*/VL); 5339 } 5340 InstructionCost ReuseShuffleCost = 0; 5341 if (NeedToShuffleReuses) 5342 ReuseShuffleCost = TTI->getShuffleCost( 5343 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 5344 // Improve gather cost for gather of loads, if we can group some of the 5345 // loads into vector loads. 5346 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 5347 !E->isAltShuffle()) { 5348 BoUpSLP::ValueSet VectorizedLoads; 5349 unsigned StartIdx = 0; 5350 unsigned VF = VL.size() / 2; 5351 unsigned VectorizedCnt = 0; 5352 unsigned ScatterVectorizeCnt = 0; 5353 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 5354 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 5355 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 5356 Cnt += VF) { 5357 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 5358 if (!VectorizedLoads.count(Slice.front()) && 5359 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 5360 SmallVector<Value *> PointerOps; 5361 OrdersType CurrentOrder; 5362 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 5363 *SE, CurrentOrder, PointerOps); 5364 switch (LS) { 5365 case LoadsState::Vectorize: 5366 case LoadsState::ScatterVectorize: 5367 // Mark the vectorized loads so that we don't vectorize them 5368 // again. 5369 if (LS == LoadsState::Vectorize) 5370 ++VectorizedCnt; 5371 else 5372 ++ScatterVectorizeCnt; 5373 VectorizedLoads.insert(Slice.begin(), Slice.end()); 5374 // If we vectorized initial block, no need to try to vectorize it 5375 // again. 5376 if (Cnt == StartIdx) 5377 StartIdx += VF; 5378 break; 5379 case LoadsState::Gather: 5380 break; 5381 } 5382 } 5383 } 5384 // Check if the whole array was vectorized already - exit. 5385 if (StartIdx >= VL.size()) 5386 break; 5387 // Found vectorizable parts - exit. 5388 if (!VectorizedLoads.empty()) 5389 break; 5390 } 5391 if (!VectorizedLoads.empty()) { 5392 InstructionCost GatherCost = 0; 5393 unsigned NumParts = TTI->getNumberOfParts(VecTy); 5394 bool NeedInsertSubvectorAnalysis = 5395 !NumParts || (VL.size() / VF) > NumParts; 5396 // Get the cost for gathered loads. 5397 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 5398 if (VectorizedLoads.contains(VL[I])) 5399 continue; 5400 GatherCost += getGatherCost(VL.slice(I, VF)); 5401 } 5402 // The cost for vectorized loads. 5403 InstructionCost ScalarsCost = 0; 5404 for (Value *V : VectorizedLoads) { 5405 auto *LI = cast<LoadInst>(V); 5406 ScalarsCost += TTI->getMemoryOpCost( 5407 Instruction::Load, LI->getType(), LI->getAlign(), 5408 LI->getPointerAddressSpace(), CostKind, LI); 5409 } 5410 auto *LI = cast<LoadInst>(E->getMainOp()); 5411 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 5412 Align Alignment = LI->getAlign(); 5413 GatherCost += 5414 VectorizedCnt * 5415 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 5416 LI->getPointerAddressSpace(), CostKind, LI); 5417 GatherCost += ScatterVectorizeCnt * 5418 TTI->getGatherScatterOpCost( 5419 Instruction::Load, LoadTy, LI->getPointerOperand(), 5420 /*VariableMask=*/false, Alignment, CostKind, LI); 5421 if (NeedInsertSubvectorAnalysis) { 5422 // Add the cost for the subvectors insert. 5423 for (int I = VF, E = VL.size(); I < E; I += VF) 5424 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 5425 None, I, LoadTy); 5426 } 5427 return ReuseShuffleCost + GatherCost - ScalarsCost; 5428 } 5429 } 5430 return ReuseShuffleCost + getGatherCost(VL); 5431 } 5432 InstructionCost CommonCost = 0; 5433 SmallVector<int> Mask; 5434 if (!E->ReorderIndices.empty()) { 5435 SmallVector<int> NewMask; 5436 if (E->getOpcode() == Instruction::Store) { 5437 // For stores the order is actually a mask. 5438 NewMask.resize(E->ReorderIndices.size()); 5439 copy(E->ReorderIndices, NewMask.begin()); 5440 } else { 5441 inversePermutation(E->ReorderIndices, NewMask); 5442 } 5443 ::addMask(Mask, NewMask); 5444 } 5445 if (NeedToShuffleReuses) 5446 ::addMask(Mask, E->ReuseShuffleIndices); 5447 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 5448 CommonCost = 5449 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 5450 assert((E->State == TreeEntry::Vectorize || 5451 E->State == TreeEntry::ScatterVectorize) && 5452 "Unhandled state"); 5453 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 5454 Instruction *VL0 = E->getMainOp(); 5455 unsigned ShuffleOrOp = 5456 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 5457 switch (ShuffleOrOp) { 5458 case Instruction::PHI: 5459 return 0; 5460 5461 case Instruction::ExtractValue: 5462 case Instruction::ExtractElement: { 5463 // The common cost of removal ExtractElement/ExtractValue instructions + 5464 // the cost of shuffles, if required to resuffle the original vector. 5465 if (NeedToShuffleReuses) { 5466 unsigned Idx = 0; 5467 for (unsigned I : E->ReuseShuffleIndices) { 5468 if (ShuffleOrOp == Instruction::ExtractElement) { 5469 auto *EE = cast<ExtractElementInst>(VL[I]); 5470 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5471 EE->getVectorOperandType(), 5472 *getExtractIndex(EE)); 5473 } else { 5474 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5475 VecTy, Idx); 5476 ++Idx; 5477 } 5478 } 5479 Idx = EntryVF; 5480 for (Value *V : VL) { 5481 if (ShuffleOrOp == Instruction::ExtractElement) { 5482 auto *EE = cast<ExtractElementInst>(V); 5483 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5484 EE->getVectorOperandType(), 5485 *getExtractIndex(EE)); 5486 } else { 5487 --Idx; 5488 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5489 VecTy, Idx); 5490 } 5491 } 5492 } 5493 if (ShuffleOrOp == Instruction::ExtractValue) { 5494 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 5495 auto *EI = cast<Instruction>(VL[I]); 5496 // Take credit for instruction that will become dead. 5497 if (EI->hasOneUse()) { 5498 Instruction *Ext = EI->user_back(); 5499 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5500 all_of(Ext->users(), 5501 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5502 // Use getExtractWithExtendCost() to calculate the cost of 5503 // extractelement/ext pair. 5504 CommonCost -= TTI->getExtractWithExtendCost( 5505 Ext->getOpcode(), Ext->getType(), VecTy, I); 5506 // Add back the cost of s|zext which is subtracted separately. 5507 CommonCost += TTI->getCastInstrCost( 5508 Ext->getOpcode(), Ext->getType(), EI->getType(), 5509 TTI::getCastContextHint(Ext), CostKind, Ext); 5510 continue; 5511 } 5512 } 5513 CommonCost -= 5514 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 5515 } 5516 } else { 5517 AdjustExtractsCost(CommonCost); 5518 } 5519 return CommonCost; 5520 } 5521 case Instruction::InsertElement: { 5522 assert(E->ReuseShuffleIndices.empty() && 5523 "Unique insertelements only are expected."); 5524 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 5525 5526 unsigned const NumElts = SrcVecTy->getNumElements(); 5527 unsigned const NumScalars = VL.size(); 5528 APInt DemandedElts = APInt::getZero(NumElts); 5529 // TODO: Add support for Instruction::InsertValue. 5530 SmallVector<int> Mask; 5531 if (!E->ReorderIndices.empty()) { 5532 inversePermutation(E->ReorderIndices, Mask); 5533 Mask.append(NumElts - NumScalars, UndefMaskElem); 5534 } else { 5535 Mask.assign(NumElts, UndefMaskElem); 5536 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 5537 } 5538 unsigned Offset = *getInsertIndex(VL0); 5539 bool IsIdentity = true; 5540 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 5541 Mask.swap(PrevMask); 5542 for (unsigned I = 0; I < NumScalars; ++I) { 5543 unsigned InsertIdx = *getInsertIndex(VL[PrevMask[I]]); 5544 DemandedElts.setBit(InsertIdx); 5545 IsIdentity &= InsertIdx - Offset == I; 5546 Mask[InsertIdx - Offset] = I; 5547 } 5548 assert(Offset < NumElts && "Failed to find vector index offset"); 5549 5550 InstructionCost Cost = 0; 5551 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 5552 /*Insert*/ true, /*Extract*/ false); 5553 5554 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 5555 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 5556 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 5557 Cost += TTI->getShuffleCost( 5558 TargetTransformInfo::SK_PermuteSingleSrc, 5559 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 5560 } else if (!IsIdentity) { 5561 auto *FirstInsert = 5562 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 5563 return !is_contained(E->Scalars, 5564 cast<Instruction>(V)->getOperand(0)); 5565 })); 5566 if (isUndefVector(FirstInsert->getOperand(0))) { 5567 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 5568 } else { 5569 SmallVector<int> InsertMask(NumElts); 5570 std::iota(InsertMask.begin(), InsertMask.end(), 0); 5571 for (unsigned I = 0; I < NumElts; I++) { 5572 if (Mask[I] != UndefMaskElem) 5573 InsertMask[Offset + I] = NumElts + I; 5574 } 5575 Cost += 5576 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 5577 } 5578 } 5579 5580 return Cost; 5581 } 5582 case Instruction::ZExt: 5583 case Instruction::SExt: 5584 case Instruction::FPToUI: 5585 case Instruction::FPToSI: 5586 case Instruction::FPExt: 5587 case Instruction::PtrToInt: 5588 case Instruction::IntToPtr: 5589 case Instruction::SIToFP: 5590 case Instruction::UIToFP: 5591 case Instruction::Trunc: 5592 case Instruction::FPTrunc: 5593 case Instruction::BitCast: { 5594 Type *SrcTy = VL0->getOperand(0)->getType(); 5595 InstructionCost ScalarEltCost = 5596 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 5597 TTI::getCastContextHint(VL0), CostKind, VL0); 5598 if (NeedToShuffleReuses) { 5599 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5600 } 5601 5602 // Calculate the cost of this instruction. 5603 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 5604 5605 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 5606 InstructionCost VecCost = 0; 5607 // Check if the values are candidates to demote. 5608 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 5609 VecCost = CommonCost + TTI->getCastInstrCost( 5610 E->getOpcode(), VecTy, SrcVecTy, 5611 TTI::getCastContextHint(VL0), CostKind, VL0); 5612 } 5613 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5614 return VecCost - ScalarCost; 5615 } 5616 case Instruction::FCmp: 5617 case Instruction::ICmp: 5618 case Instruction::Select: { 5619 // Calculate the cost of this instruction. 5620 InstructionCost ScalarEltCost = 5621 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5622 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 5623 if (NeedToShuffleReuses) { 5624 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5625 } 5626 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 5627 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5628 5629 // Check if all entries in VL are either compares or selects with compares 5630 // as condition that have the same predicates. 5631 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 5632 bool First = true; 5633 for (auto *V : VL) { 5634 CmpInst::Predicate CurrentPred; 5635 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 5636 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 5637 !match(V, MatchCmp)) || 5638 (!First && VecPred != CurrentPred)) { 5639 VecPred = CmpInst::BAD_ICMP_PREDICATE; 5640 break; 5641 } 5642 First = false; 5643 VecPred = CurrentPred; 5644 } 5645 5646 InstructionCost VecCost = TTI->getCmpSelInstrCost( 5647 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 5648 // Check if it is possible and profitable to use min/max for selects in 5649 // VL. 5650 // 5651 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 5652 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 5653 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 5654 {VecTy, VecTy}); 5655 InstructionCost IntrinsicCost = 5656 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5657 // If the selects are the only uses of the compares, they will be dead 5658 // and we can adjust the cost by removing their cost. 5659 if (IntrinsicAndUse.second) 5660 IntrinsicCost -= TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, 5661 MaskTy, VecPred, CostKind); 5662 VecCost = std::min(VecCost, IntrinsicCost); 5663 } 5664 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5665 return CommonCost + VecCost - ScalarCost; 5666 } 5667 case Instruction::FNeg: 5668 case Instruction::Add: 5669 case Instruction::FAdd: 5670 case Instruction::Sub: 5671 case Instruction::FSub: 5672 case Instruction::Mul: 5673 case Instruction::FMul: 5674 case Instruction::UDiv: 5675 case Instruction::SDiv: 5676 case Instruction::FDiv: 5677 case Instruction::URem: 5678 case Instruction::SRem: 5679 case Instruction::FRem: 5680 case Instruction::Shl: 5681 case Instruction::LShr: 5682 case Instruction::AShr: 5683 case Instruction::And: 5684 case Instruction::Or: 5685 case Instruction::Xor: { 5686 // Certain instructions can be cheaper to vectorize if they have a 5687 // constant second vector operand. 5688 TargetTransformInfo::OperandValueKind Op1VK = 5689 TargetTransformInfo::OK_AnyValue; 5690 TargetTransformInfo::OperandValueKind Op2VK = 5691 TargetTransformInfo::OK_UniformConstantValue; 5692 TargetTransformInfo::OperandValueProperties Op1VP = 5693 TargetTransformInfo::OP_None; 5694 TargetTransformInfo::OperandValueProperties Op2VP = 5695 TargetTransformInfo::OP_PowerOf2; 5696 5697 // If all operands are exactly the same ConstantInt then set the 5698 // operand kind to OK_UniformConstantValue. 5699 // If instead not all operands are constants, then set the operand kind 5700 // to OK_AnyValue. If all operands are constants but not the same, 5701 // then set the operand kind to OK_NonUniformConstantValue. 5702 ConstantInt *CInt0 = nullptr; 5703 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 5704 const Instruction *I = cast<Instruction>(VL[i]); 5705 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 5706 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 5707 if (!CInt) { 5708 Op2VK = TargetTransformInfo::OK_AnyValue; 5709 Op2VP = TargetTransformInfo::OP_None; 5710 break; 5711 } 5712 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 5713 !CInt->getValue().isPowerOf2()) 5714 Op2VP = TargetTransformInfo::OP_None; 5715 if (i == 0) { 5716 CInt0 = CInt; 5717 continue; 5718 } 5719 if (CInt0 != CInt) 5720 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5721 } 5722 5723 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 5724 InstructionCost ScalarEltCost = 5725 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 5726 Op2VK, Op1VP, Op2VP, Operands, VL0); 5727 if (NeedToShuffleReuses) { 5728 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5729 } 5730 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5731 InstructionCost VecCost = 5732 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 5733 Op2VK, Op1VP, Op2VP, Operands, VL0); 5734 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5735 return CommonCost + VecCost - ScalarCost; 5736 } 5737 case Instruction::GetElementPtr: { 5738 TargetTransformInfo::OperandValueKind Op1VK = 5739 TargetTransformInfo::OK_AnyValue; 5740 TargetTransformInfo::OperandValueKind Op2VK = 5741 TargetTransformInfo::OK_UniformConstantValue; 5742 5743 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 5744 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 5745 if (NeedToShuffleReuses) { 5746 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5747 } 5748 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5749 InstructionCost VecCost = TTI->getArithmeticInstrCost( 5750 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 5751 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5752 return CommonCost + VecCost - ScalarCost; 5753 } 5754 case Instruction::Load: { 5755 // Cost of wide load - cost of scalar loads. 5756 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 5757 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5758 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 5759 if (NeedToShuffleReuses) { 5760 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5761 } 5762 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 5763 InstructionCost VecLdCost; 5764 if (E->State == TreeEntry::Vectorize) { 5765 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 5766 CostKind, VL0); 5767 } else { 5768 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 5769 Align CommonAlignment = Alignment; 5770 for (Value *V : VL) 5771 CommonAlignment = 5772 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 5773 VecLdCost = TTI->getGatherScatterOpCost( 5774 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 5775 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 5776 } 5777 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 5778 return CommonCost + VecLdCost - ScalarLdCost; 5779 } 5780 case Instruction::Store: { 5781 // We know that we can merge the stores. Calculate the cost. 5782 bool IsReorder = !E->ReorderIndices.empty(); 5783 auto *SI = 5784 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 5785 Align Alignment = SI->getAlign(); 5786 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5787 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 5788 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 5789 InstructionCost VecStCost = TTI->getMemoryOpCost( 5790 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 5791 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 5792 return CommonCost + VecStCost - ScalarStCost; 5793 } 5794 case Instruction::Call: { 5795 CallInst *CI = cast<CallInst>(VL0); 5796 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5797 5798 // Calculate the cost of the scalar and vector calls. 5799 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 5800 InstructionCost ScalarEltCost = 5801 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5802 if (NeedToShuffleReuses) { 5803 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5804 } 5805 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 5806 5807 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 5808 InstructionCost VecCallCost = 5809 std::min(VecCallCosts.first, VecCallCosts.second); 5810 5811 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 5812 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 5813 << " for " << *CI << "\n"); 5814 5815 return CommonCost + VecCallCost - ScalarCallCost; 5816 } 5817 case Instruction::ShuffleVector: { 5818 assert(E->isAltShuffle() && 5819 ((Instruction::isBinaryOp(E->getOpcode()) && 5820 Instruction::isBinaryOp(E->getAltOpcode())) || 5821 (Instruction::isCast(E->getOpcode()) && 5822 Instruction::isCast(E->getAltOpcode())) || 5823 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 5824 "Invalid Shuffle Vector Operand"); 5825 InstructionCost ScalarCost = 0; 5826 if (NeedToShuffleReuses) { 5827 for (unsigned Idx : E->ReuseShuffleIndices) { 5828 Instruction *I = cast<Instruction>(VL[Idx]); 5829 CommonCost -= TTI->getInstructionCost(I, CostKind); 5830 } 5831 for (Value *V : VL) { 5832 Instruction *I = cast<Instruction>(V); 5833 CommonCost += TTI->getInstructionCost(I, CostKind); 5834 } 5835 } 5836 for (Value *V : VL) { 5837 Instruction *I = cast<Instruction>(V); 5838 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5839 ScalarCost += TTI->getInstructionCost(I, CostKind); 5840 } 5841 // VecCost is equal to sum of the cost of creating 2 vectors 5842 // and the cost of creating shuffle. 5843 InstructionCost VecCost = 0; 5844 // Try to find the previous shuffle node with the same operands and same 5845 // main/alternate ops. 5846 auto &&TryFindNodeWithEqualOperands = [this, E]() { 5847 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 5848 if (TE.get() == E) 5849 break; 5850 if (TE->isAltShuffle() && 5851 ((TE->getOpcode() == E->getOpcode() && 5852 TE->getAltOpcode() == E->getAltOpcode()) || 5853 (TE->getOpcode() == E->getAltOpcode() && 5854 TE->getAltOpcode() == E->getOpcode())) && 5855 TE->hasEqualOperands(*E)) 5856 return true; 5857 } 5858 return false; 5859 }; 5860 if (TryFindNodeWithEqualOperands()) { 5861 LLVM_DEBUG({ 5862 dbgs() << "SLP: diamond match for alternate node found.\n"; 5863 E->dump(); 5864 }); 5865 // No need to add new vector costs here since we're going to reuse 5866 // same main/alternate vector ops, just do different shuffling. 5867 } else if (Instruction::isBinaryOp(E->getOpcode())) { 5868 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 5869 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 5870 CostKind); 5871 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 5872 VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 5873 Builder.getInt1Ty(), 5874 CI0->getPredicate(), CostKind, VL0); 5875 VecCost += TTI->getCmpSelInstrCost( 5876 E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5877 cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind, 5878 E->getAltOp()); 5879 } else { 5880 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 5881 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 5882 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 5883 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 5884 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 5885 TTI::CastContextHint::None, CostKind); 5886 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 5887 TTI::CastContextHint::None, CostKind); 5888 } 5889 5890 SmallVector<int> Mask; 5891 buildShuffleEntryMask( 5892 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 5893 [E](Instruction *I) { 5894 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5895 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 5896 }, 5897 Mask); 5898 CommonCost = 5899 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask); 5900 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5901 return CommonCost + VecCost - ScalarCost; 5902 } 5903 default: 5904 llvm_unreachable("Unknown instruction"); 5905 } 5906 } 5907 5908 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 5909 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 5910 << VectorizableTree.size() << " is fully vectorizable .\n"); 5911 5912 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 5913 SmallVector<int> Mask; 5914 return TE->State == TreeEntry::NeedToGather && 5915 !any_of(TE->Scalars, 5916 [this](Value *V) { return EphValues.contains(V); }) && 5917 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 5918 TE->Scalars.size() < Limit || 5919 ((TE->getOpcode() == Instruction::ExtractElement || 5920 all_of(TE->Scalars, 5921 [](Value *V) { 5922 return isa<ExtractElementInst, UndefValue>(V); 5923 })) && 5924 isFixedVectorShuffle(TE->Scalars, Mask)) || 5925 (TE->State == TreeEntry::NeedToGather && 5926 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 5927 }; 5928 5929 // We only handle trees of heights 1 and 2. 5930 if (VectorizableTree.size() == 1 && 5931 (VectorizableTree[0]->State == TreeEntry::Vectorize || 5932 (ForReduction && 5933 AreVectorizableGathers(VectorizableTree[0].get(), 5934 VectorizableTree[0]->Scalars.size()) && 5935 VectorizableTree[0]->getVectorFactor() > 2))) 5936 return true; 5937 5938 if (VectorizableTree.size() != 2) 5939 return false; 5940 5941 // Handle splat and all-constants stores. Also try to vectorize tiny trees 5942 // with the second gather nodes if they have less scalar operands rather than 5943 // the initial tree element (may be profitable to shuffle the second gather) 5944 // or they are extractelements, which form shuffle. 5945 SmallVector<int> Mask; 5946 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 5947 AreVectorizableGathers(VectorizableTree[1].get(), 5948 VectorizableTree[0]->Scalars.size())) 5949 return true; 5950 5951 // Gathering cost would be too much for tiny trees. 5952 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 5953 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 5954 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 5955 return false; 5956 5957 return true; 5958 } 5959 5960 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 5961 TargetTransformInfo *TTI, 5962 bool MustMatchOrInst) { 5963 // Look past the root to find a source value. Arbitrarily follow the 5964 // path through operand 0 of any 'or'. Also, peek through optional 5965 // shift-left-by-multiple-of-8-bits. 5966 Value *ZextLoad = Root; 5967 const APInt *ShAmtC; 5968 bool FoundOr = false; 5969 while (!isa<ConstantExpr>(ZextLoad) && 5970 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 5971 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 5972 ShAmtC->urem(8) == 0))) { 5973 auto *BinOp = cast<BinaryOperator>(ZextLoad); 5974 ZextLoad = BinOp->getOperand(0); 5975 if (BinOp->getOpcode() == Instruction::Or) 5976 FoundOr = true; 5977 } 5978 // Check if the input is an extended load of the required or/shift expression. 5979 Value *Load; 5980 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 5981 !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load)) 5982 return false; 5983 5984 // Require that the total load bit width is a legal integer type. 5985 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 5986 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 5987 Type *SrcTy = Load->getType(); 5988 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 5989 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 5990 return false; 5991 5992 // Everything matched - assume that we can fold the whole sequence using 5993 // load combining. 5994 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 5995 << *(cast<Instruction>(Root)) << "\n"); 5996 5997 return true; 5998 } 5999 6000 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 6001 if (RdxKind != RecurKind::Or) 6002 return false; 6003 6004 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 6005 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 6006 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 6007 /* MatchOr */ false); 6008 } 6009 6010 bool BoUpSLP::isLoadCombineCandidate() const { 6011 // Peek through a final sequence of stores and check if all operations are 6012 // likely to be load-combined. 6013 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 6014 for (Value *Scalar : VectorizableTree[0]->Scalars) { 6015 Value *X; 6016 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 6017 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 6018 return false; 6019 } 6020 return true; 6021 } 6022 6023 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 6024 // No need to vectorize inserts of gathered values. 6025 if (VectorizableTree.size() == 2 && 6026 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 6027 VectorizableTree[1]->State == TreeEntry::NeedToGather) 6028 return true; 6029 6030 // We can vectorize the tree if its size is greater than or equal to the 6031 // minimum size specified by the MinTreeSize command line option. 6032 if (VectorizableTree.size() >= MinTreeSize) 6033 return false; 6034 6035 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 6036 // can vectorize it if we can prove it fully vectorizable. 6037 if (isFullyVectorizableTinyTree(ForReduction)) 6038 return false; 6039 6040 assert(VectorizableTree.empty() 6041 ? ExternalUses.empty() 6042 : true && "We shouldn't have any external users"); 6043 6044 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 6045 // vectorizable. 6046 return true; 6047 } 6048 6049 InstructionCost BoUpSLP::getSpillCost() const { 6050 // Walk from the bottom of the tree to the top, tracking which values are 6051 // live. When we see a call instruction that is not part of our tree, 6052 // query TTI to see if there is a cost to keeping values live over it 6053 // (for example, if spills and fills are required). 6054 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 6055 InstructionCost Cost = 0; 6056 6057 SmallPtrSet<Instruction*, 4> LiveValues; 6058 Instruction *PrevInst = nullptr; 6059 6060 // The entries in VectorizableTree are not necessarily ordered by their 6061 // position in basic blocks. Collect them and order them by dominance so later 6062 // instructions are guaranteed to be visited first. For instructions in 6063 // different basic blocks, we only scan to the beginning of the block, so 6064 // their order does not matter, as long as all instructions in a basic block 6065 // are grouped together. Using dominance ensures a deterministic order. 6066 SmallVector<Instruction *, 16> OrderedScalars; 6067 for (const auto &TEPtr : VectorizableTree) { 6068 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 6069 if (!Inst) 6070 continue; 6071 OrderedScalars.push_back(Inst); 6072 } 6073 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 6074 auto *NodeA = DT->getNode(A->getParent()); 6075 auto *NodeB = DT->getNode(B->getParent()); 6076 assert(NodeA && "Should only process reachable instructions"); 6077 assert(NodeB && "Should only process reachable instructions"); 6078 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 6079 "Different nodes should have different DFS numbers"); 6080 if (NodeA != NodeB) 6081 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 6082 return B->comesBefore(A); 6083 }); 6084 6085 for (Instruction *Inst : OrderedScalars) { 6086 if (!PrevInst) { 6087 PrevInst = Inst; 6088 continue; 6089 } 6090 6091 // Update LiveValues. 6092 LiveValues.erase(PrevInst); 6093 for (auto &J : PrevInst->operands()) { 6094 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 6095 LiveValues.insert(cast<Instruction>(&*J)); 6096 } 6097 6098 LLVM_DEBUG({ 6099 dbgs() << "SLP: #LV: " << LiveValues.size(); 6100 for (auto *X : LiveValues) 6101 dbgs() << " " << X->getName(); 6102 dbgs() << ", Looking at "; 6103 Inst->dump(); 6104 }); 6105 6106 // Now find the sequence of instructions between PrevInst and Inst. 6107 unsigned NumCalls = 0; 6108 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 6109 PrevInstIt = 6110 PrevInst->getIterator().getReverse(); 6111 while (InstIt != PrevInstIt) { 6112 if (PrevInstIt == PrevInst->getParent()->rend()) { 6113 PrevInstIt = Inst->getParent()->rbegin(); 6114 continue; 6115 } 6116 6117 // Debug information does not impact spill cost. 6118 if ((isa<CallInst>(&*PrevInstIt) && 6119 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 6120 &*PrevInstIt != PrevInst) 6121 NumCalls++; 6122 6123 ++PrevInstIt; 6124 } 6125 6126 if (NumCalls) { 6127 SmallVector<Type*, 4> V; 6128 for (auto *II : LiveValues) { 6129 auto *ScalarTy = II->getType(); 6130 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 6131 ScalarTy = VectorTy->getElementType(); 6132 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 6133 } 6134 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 6135 } 6136 6137 PrevInst = Inst; 6138 } 6139 6140 return Cost; 6141 } 6142 6143 /// Check if two insertelement instructions are from the same buildvector. 6144 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU, 6145 InsertElementInst *V) { 6146 // Instructions must be from the same basic blocks. 6147 if (VU->getParent() != V->getParent()) 6148 return false; 6149 // Checks if 2 insertelements are from the same buildvector. 6150 if (VU->getType() != V->getType()) 6151 return false; 6152 // Multiple used inserts are separate nodes. 6153 if (!VU->hasOneUse() && !V->hasOneUse()) 6154 return false; 6155 auto *IE1 = VU; 6156 auto *IE2 = V; 6157 // Go through the vector operand of insertelement instructions trying to find 6158 // either VU as the original vector for IE2 or V as the original vector for 6159 // IE1. 6160 do { 6161 if (IE2 == VU || IE1 == V) 6162 return true; 6163 if (IE1) { 6164 if (IE1 != VU && !IE1->hasOneUse()) 6165 IE1 = nullptr; 6166 else 6167 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 6168 } 6169 if (IE2) { 6170 if (IE2 != V && !IE2->hasOneUse()) 6171 IE2 = nullptr; 6172 else 6173 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 6174 } 6175 } while (IE1 || IE2); 6176 return false; 6177 } 6178 6179 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 6180 InstructionCost Cost = 0; 6181 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 6182 << VectorizableTree.size() << ".\n"); 6183 6184 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 6185 6186 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 6187 TreeEntry &TE = *VectorizableTree[I]; 6188 6189 InstructionCost C = getEntryCost(&TE, VectorizedVals); 6190 Cost += C; 6191 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6192 << " for bundle that starts with " << *TE.Scalars[0] 6193 << ".\n" 6194 << "SLP: Current total cost = " << Cost << "\n"); 6195 } 6196 6197 SmallPtrSet<Value *, 16> ExtractCostCalculated; 6198 InstructionCost ExtractCost = 0; 6199 SmallVector<unsigned> VF; 6200 SmallVector<SmallVector<int>> ShuffleMask; 6201 SmallVector<Value *> FirstUsers; 6202 SmallVector<APInt> DemandedElts; 6203 for (ExternalUser &EU : ExternalUses) { 6204 // We only add extract cost once for the same scalar. 6205 if (!isa_and_nonnull<InsertElementInst>(EU.User) && 6206 !ExtractCostCalculated.insert(EU.Scalar).second) 6207 continue; 6208 6209 // Uses by ephemeral values are free (because the ephemeral value will be 6210 // removed prior to code generation, and so the extraction will be 6211 // removed as well). 6212 if (EphValues.count(EU.User)) 6213 continue; 6214 6215 // No extract cost for vector "scalar" 6216 if (isa<FixedVectorType>(EU.Scalar->getType())) 6217 continue; 6218 6219 // Already counted the cost for external uses when tried to adjust the cost 6220 // for extractelements, no need to add it again. 6221 if (isa<ExtractElementInst>(EU.Scalar)) 6222 continue; 6223 6224 // If found user is an insertelement, do not calculate extract cost but try 6225 // to detect it as a final shuffled/identity match. 6226 if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) { 6227 if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) { 6228 Optional<unsigned> InsertIdx = getInsertIndex(VU); 6229 if (InsertIdx) { 6230 auto *It = find_if(FirstUsers, [VU](Value *V) { 6231 return areTwoInsertFromSameBuildVector(VU, 6232 cast<InsertElementInst>(V)); 6233 }); 6234 int VecId = -1; 6235 if (It == FirstUsers.end()) { 6236 VF.push_back(FTy->getNumElements()); 6237 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 6238 // Find the insertvector, vectorized in tree, if any. 6239 Value *Base = VU; 6240 while (isa<InsertElementInst>(Base)) { 6241 // Build the mask for the vectorized insertelement instructions. 6242 if (const TreeEntry *E = getTreeEntry(Base)) { 6243 VU = cast<InsertElementInst>(Base); 6244 do { 6245 int Idx = E->findLaneForValue(Base); 6246 ShuffleMask.back()[Idx] = Idx; 6247 Base = cast<InsertElementInst>(Base)->getOperand(0); 6248 } while (E == getTreeEntry(Base)); 6249 break; 6250 } 6251 Base = cast<InsertElementInst>(Base)->getOperand(0); 6252 } 6253 FirstUsers.push_back(VU); 6254 DemandedElts.push_back(APInt::getZero(VF.back())); 6255 VecId = FirstUsers.size() - 1; 6256 } else { 6257 VecId = std::distance(FirstUsers.begin(), It); 6258 } 6259 ShuffleMask[VecId][*InsertIdx] = EU.Lane; 6260 DemandedElts[VecId].setBit(*InsertIdx); 6261 continue; 6262 } 6263 } 6264 } 6265 6266 // If we plan to rewrite the tree in a smaller type, we will need to sign 6267 // extend the extracted value back to the original type. Here, we account 6268 // for the extract and the added cost of the sign extend if needed. 6269 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 6270 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 6271 if (MinBWs.count(ScalarRoot)) { 6272 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 6273 auto Extend = 6274 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 6275 VecTy = FixedVectorType::get(MinTy, BundleWidth); 6276 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 6277 VecTy, EU.Lane); 6278 } else { 6279 ExtractCost += 6280 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 6281 } 6282 } 6283 6284 InstructionCost SpillCost = getSpillCost(); 6285 Cost += SpillCost + ExtractCost; 6286 if (FirstUsers.size() == 1) { 6287 int Limit = ShuffleMask.front().size() * 2; 6288 if (all_of(ShuffleMask.front(), [Limit](int Idx) { return Idx < Limit; }) && 6289 !ShuffleVectorInst::isIdentityMask(ShuffleMask.front())) { 6290 InstructionCost C = TTI->getShuffleCost( 6291 TTI::SK_PermuteSingleSrc, 6292 cast<FixedVectorType>(FirstUsers.front()->getType()), 6293 ShuffleMask.front()); 6294 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6295 << " for final shuffle of insertelement external users " 6296 << *VectorizableTree.front()->Scalars.front() << ".\n" 6297 << "SLP: Current total cost = " << Cost << "\n"); 6298 Cost += C; 6299 } 6300 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6301 cast<FixedVectorType>(FirstUsers.front()->getType()), 6302 DemandedElts.front(), /*Insert*/ true, /*Extract*/ false); 6303 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6304 << " for insertelements gather.\n" 6305 << "SLP: Current total cost = " << Cost << "\n"); 6306 Cost -= InsertCost; 6307 } else if (FirstUsers.size() >= 2) { 6308 unsigned MaxVF = *std::max_element(VF.begin(), VF.end()); 6309 // Combined masks of the first 2 vectors. 6310 SmallVector<int> CombinedMask(MaxVF, UndefMaskElem); 6311 copy(ShuffleMask.front(), CombinedMask.begin()); 6312 APInt CombinedDemandedElts = DemandedElts.front().zextOrSelf(MaxVF); 6313 auto *VecTy = FixedVectorType::get( 6314 cast<VectorType>(FirstUsers.front()->getType())->getElementType(), 6315 MaxVF); 6316 for (int I = 0, E = ShuffleMask[1].size(); I < E; ++I) { 6317 if (ShuffleMask[1][I] != UndefMaskElem) { 6318 CombinedMask[I] = ShuffleMask[1][I] + MaxVF; 6319 CombinedDemandedElts.setBit(I); 6320 } 6321 } 6322 InstructionCost C = 6323 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6324 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6325 << " for final shuffle of vector node and external " 6326 "insertelement users " 6327 << *VectorizableTree.front()->Scalars.front() << ".\n" 6328 << "SLP: Current total cost = " << Cost << "\n"); 6329 Cost += C; 6330 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6331 VecTy, CombinedDemandedElts, /*Insert*/ true, /*Extract*/ false); 6332 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6333 << " for insertelements gather.\n" 6334 << "SLP: Current total cost = " << Cost << "\n"); 6335 Cost -= InsertCost; 6336 for (int I = 2, E = FirstUsers.size(); I < E; ++I) { 6337 // Other elements - permutation of 2 vectors (the initial one and the 6338 // next Ith incoming vector). 6339 unsigned VF = ShuffleMask[I].size(); 6340 for (unsigned Idx = 0; Idx < VF; ++Idx) { 6341 int Mask = ShuffleMask[I][Idx]; 6342 if (Mask != UndefMaskElem) 6343 CombinedMask[Idx] = MaxVF + Mask; 6344 else if (CombinedMask[Idx] != UndefMaskElem) 6345 CombinedMask[Idx] = Idx; 6346 } 6347 for (unsigned Idx = VF; Idx < MaxVF; ++Idx) 6348 if (CombinedMask[Idx] != UndefMaskElem) 6349 CombinedMask[Idx] = Idx; 6350 InstructionCost C = 6351 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6352 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6353 << " for final shuffle of vector node and external " 6354 "insertelement users " 6355 << *VectorizableTree.front()->Scalars.front() << ".\n" 6356 << "SLP: Current total cost = " << Cost << "\n"); 6357 Cost += C; 6358 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6359 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 6360 /*Insert*/ true, /*Extract*/ false); 6361 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6362 << " for insertelements gather.\n" 6363 << "SLP: Current total cost = " << Cost << "\n"); 6364 Cost -= InsertCost; 6365 } 6366 } 6367 6368 #ifndef NDEBUG 6369 SmallString<256> Str; 6370 { 6371 raw_svector_ostream OS(Str); 6372 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 6373 << "SLP: Extract Cost = " << ExtractCost << ".\n" 6374 << "SLP: Total Cost = " << Cost << ".\n"; 6375 } 6376 LLVM_DEBUG(dbgs() << Str); 6377 if (ViewSLPTree) 6378 ViewGraph(this, "SLP" + F->getName(), false, Str); 6379 #endif 6380 6381 return Cost; 6382 } 6383 6384 Optional<TargetTransformInfo::ShuffleKind> 6385 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 6386 SmallVectorImpl<const TreeEntry *> &Entries) { 6387 // TODO: currently checking only for Scalars in the tree entry, need to count 6388 // reused elements too for better cost estimation. 6389 Mask.assign(TE->Scalars.size(), UndefMaskElem); 6390 Entries.clear(); 6391 // Build a lists of values to tree entries. 6392 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 6393 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 6394 if (EntryPtr.get() == TE) 6395 break; 6396 if (EntryPtr->State != TreeEntry::NeedToGather) 6397 continue; 6398 for (Value *V : EntryPtr->Scalars) 6399 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 6400 } 6401 // Find all tree entries used by the gathered values. If no common entries 6402 // found - not a shuffle. 6403 // Here we build a set of tree nodes for each gathered value and trying to 6404 // find the intersection between these sets. If we have at least one common 6405 // tree node for each gathered value - we have just a permutation of the 6406 // single vector. If we have 2 different sets, we're in situation where we 6407 // have a permutation of 2 input vectors. 6408 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 6409 DenseMap<Value *, int> UsedValuesEntry; 6410 for (Value *V : TE->Scalars) { 6411 if (isa<UndefValue>(V)) 6412 continue; 6413 // Build a list of tree entries where V is used. 6414 SmallPtrSet<const TreeEntry *, 4> VToTEs; 6415 auto It = ValueToTEs.find(V); 6416 if (It != ValueToTEs.end()) 6417 VToTEs = It->second; 6418 if (const TreeEntry *VTE = getTreeEntry(V)) 6419 VToTEs.insert(VTE); 6420 if (VToTEs.empty()) 6421 return None; 6422 if (UsedTEs.empty()) { 6423 // The first iteration, just insert the list of nodes to vector. 6424 UsedTEs.push_back(VToTEs); 6425 } else { 6426 // Need to check if there are any previously used tree nodes which use V. 6427 // If there are no such nodes, consider that we have another one input 6428 // vector. 6429 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 6430 unsigned Idx = 0; 6431 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 6432 // Do we have a non-empty intersection of previously listed tree entries 6433 // and tree entries using current V? 6434 set_intersect(VToTEs, Set); 6435 if (!VToTEs.empty()) { 6436 // Yes, write the new subset and continue analysis for the next 6437 // scalar. 6438 Set.swap(VToTEs); 6439 break; 6440 } 6441 VToTEs = SavedVToTEs; 6442 ++Idx; 6443 } 6444 // No non-empty intersection found - need to add a second set of possible 6445 // source vectors. 6446 if (Idx == UsedTEs.size()) { 6447 // If the number of input vectors is greater than 2 - not a permutation, 6448 // fallback to the regular gather. 6449 if (UsedTEs.size() == 2) 6450 return None; 6451 UsedTEs.push_back(SavedVToTEs); 6452 Idx = UsedTEs.size() - 1; 6453 } 6454 UsedValuesEntry.try_emplace(V, Idx); 6455 } 6456 } 6457 6458 if (UsedTEs.empty()) { 6459 assert(all_of(TE->Scalars, UndefValue::classof) && 6460 "Expected vector of undefs only."); 6461 return None; 6462 } 6463 6464 unsigned VF = 0; 6465 if (UsedTEs.size() == 1) { 6466 // Try to find the perfect match in another gather node at first. 6467 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 6468 return EntryPtr->isSame(TE->Scalars); 6469 }); 6470 if (It != UsedTEs.front().end()) { 6471 Entries.push_back(*It); 6472 std::iota(Mask.begin(), Mask.end(), 0); 6473 return TargetTransformInfo::SK_PermuteSingleSrc; 6474 } 6475 // No perfect match, just shuffle, so choose the first tree node. 6476 Entries.push_back(*UsedTEs.front().begin()); 6477 } else { 6478 // Try to find nodes with the same vector factor. 6479 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 6480 DenseMap<int, const TreeEntry *> VFToTE; 6481 for (const TreeEntry *TE : UsedTEs.front()) 6482 VFToTE.try_emplace(TE->getVectorFactor(), TE); 6483 for (const TreeEntry *TE : UsedTEs.back()) { 6484 auto It = VFToTE.find(TE->getVectorFactor()); 6485 if (It != VFToTE.end()) { 6486 VF = It->first; 6487 Entries.push_back(It->second); 6488 Entries.push_back(TE); 6489 break; 6490 } 6491 } 6492 // No 2 source vectors with the same vector factor - give up and do regular 6493 // gather. 6494 if (Entries.empty()) 6495 return None; 6496 } 6497 6498 // Build a shuffle mask for better cost estimation and vector emission. 6499 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 6500 Value *V = TE->Scalars[I]; 6501 if (isa<UndefValue>(V)) 6502 continue; 6503 unsigned Idx = UsedValuesEntry.lookup(V); 6504 const TreeEntry *VTE = Entries[Idx]; 6505 int FoundLane = VTE->findLaneForValue(V); 6506 Mask[I] = Idx * VF + FoundLane; 6507 // Extra check required by isSingleSourceMaskImpl function (called by 6508 // ShuffleVectorInst::isSingleSourceMask). 6509 if (Mask[I] >= 2 * E) 6510 return None; 6511 } 6512 switch (Entries.size()) { 6513 case 1: 6514 return TargetTransformInfo::SK_PermuteSingleSrc; 6515 case 2: 6516 return TargetTransformInfo::SK_PermuteTwoSrc; 6517 default: 6518 break; 6519 } 6520 return None; 6521 } 6522 6523 InstructionCost BoUpSLP::getGatherCost(FixedVectorType *Ty, 6524 const APInt &ShuffledIndices, 6525 bool NeedToShuffle) const { 6526 InstructionCost Cost = 6527 TTI->getScalarizationOverhead(Ty, ~ShuffledIndices, /*Insert*/ true, 6528 /*Extract*/ false); 6529 if (NeedToShuffle) 6530 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 6531 return Cost; 6532 } 6533 6534 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 6535 // Find the type of the operands in VL. 6536 Type *ScalarTy = VL[0]->getType(); 6537 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 6538 ScalarTy = SI->getValueOperand()->getType(); 6539 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 6540 bool DuplicateNonConst = false; 6541 // Find the cost of inserting/extracting values from the vector. 6542 // Check if the same elements are inserted several times and count them as 6543 // shuffle candidates. 6544 APInt ShuffledElements = APInt::getZero(VL.size()); 6545 DenseSet<Value *> UniqueElements; 6546 // Iterate in reverse order to consider insert elements with the high cost. 6547 for (unsigned I = VL.size(); I > 0; --I) { 6548 unsigned Idx = I - 1; 6549 // No need to shuffle duplicates for constants. 6550 if (isConstant(VL[Idx])) { 6551 ShuffledElements.setBit(Idx); 6552 continue; 6553 } 6554 if (!UniqueElements.insert(VL[Idx]).second) { 6555 DuplicateNonConst = true; 6556 ShuffledElements.setBit(Idx); 6557 } 6558 } 6559 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 6560 } 6561 6562 // Perform operand reordering on the instructions in VL and return the reordered 6563 // operands in Left and Right. 6564 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 6565 SmallVectorImpl<Value *> &Left, 6566 SmallVectorImpl<Value *> &Right, 6567 const DataLayout &DL, 6568 ScalarEvolution &SE, 6569 const BoUpSLP &R) { 6570 if (VL.empty()) 6571 return; 6572 VLOperands Ops(VL, DL, SE, R); 6573 // Reorder the operands in place. 6574 Ops.reorder(); 6575 Left = Ops.getVL(0); 6576 Right = Ops.getVL(1); 6577 } 6578 6579 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 6580 // Get the basic block this bundle is in. All instructions in the bundle 6581 // should be in this block. 6582 auto *Front = E->getMainOp(); 6583 auto *BB = Front->getParent(); 6584 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 6585 auto *I = cast<Instruction>(V); 6586 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 6587 })); 6588 6589 auto &&FindLastInst = [E, Front]() { 6590 Instruction *LastInst = Front; 6591 for (Value *V : E->Scalars) { 6592 auto *I = dyn_cast<Instruction>(V); 6593 if (!I) 6594 continue; 6595 if (LastInst->comesBefore(I)) 6596 LastInst = I; 6597 } 6598 return LastInst; 6599 }; 6600 6601 auto &&FindFirstInst = [E, Front]() { 6602 Instruction *FirstInst = Front; 6603 for (Value *V : E->Scalars) { 6604 auto *I = dyn_cast<Instruction>(V); 6605 if (!I) 6606 continue; 6607 if (I->comesBefore(FirstInst)) 6608 FirstInst = I; 6609 } 6610 return FirstInst; 6611 }; 6612 6613 // Set the insert point to the beginning of the basic block if the entry 6614 // should not be scheduled. 6615 if (E->State != TreeEntry::NeedToGather && 6616 doesNotNeedToSchedule(E->Scalars)) { 6617 BasicBlock::iterator InsertPt; 6618 if (all_of(E->Scalars, isUsedOutsideBlock)) 6619 InsertPt = FindLastInst()->getIterator(); 6620 else 6621 InsertPt = FindFirstInst()->getIterator(); 6622 Builder.SetInsertPoint(BB, InsertPt); 6623 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6624 return; 6625 } 6626 6627 // The last instruction in the bundle in program order. 6628 Instruction *LastInst = nullptr; 6629 6630 // Find the last instruction. The common case should be that BB has been 6631 // scheduled, and the last instruction is VL.back(). So we start with 6632 // VL.back() and iterate over schedule data until we reach the end of the 6633 // bundle. The end of the bundle is marked by null ScheduleData. 6634 if (BlocksSchedules.count(BB)) { 6635 Value *V = E->isOneOf(E->Scalars.back()); 6636 if (doesNotNeedToBeScheduled(V)) 6637 V = *find_if_not(E->Scalars, doesNotNeedToBeScheduled); 6638 auto *Bundle = BlocksSchedules[BB]->getScheduleData(V); 6639 if (Bundle && Bundle->isPartOfBundle()) 6640 for (; Bundle; Bundle = Bundle->NextInBundle) 6641 if (Bundle->OpValue == Bundle->Inst) 6642 LastInst = Bundle->Inst; 6643 } 6644 6645 // LastInst can still be null at this point if there's either not an entry 6646 // for BB in BlocksSchedules or there's no ScheduleData available for 6647 // VL.back(). This can be the case if buildTree_rec aborts for various 6648 // reasons (e.g., the maximum recursion depth is reached, the maximum region 6649 // size is reached, etc.). ScheduleData is initialized in the scheduling 6650 // "dry-run". 6651 // 6652 // If this happens, we can still find the last instruction by brute force. We 6653 // iterate forwards from Front (inclusive) until we either see all 6654 // instructions in the bundle or reach the end of the block. If Front is the 6655 // last instruction in program order, LastInst will be set to Front, and we 6656 // will visit all the remaining instructions in the block. 6657 // 6658 // One of the reasons we exit early from buildTree_rec is to place an upper 6659 // bound on compile-time. Thus, taking an additional compile-time hit here is 6660 // not ideal. However, this should be exceedingly rare since it requires that 6661 // we both exit early from buildTree_rec and that the bundle be out-of-order 6662 // (causing us to iterate all the way to the end of the block). 6663 if (!LastInst) 6664 LastInst = FindLastInst(); 6665 assert(LastInst && "Failed to find last instruction in bundle"); 6666 6667 // Set the insertion point after the last instruction in the bundle. Set the 6668 // debug location to Front. 6669 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 6670 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6671 } 6672 6673 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 6674 // List of instructions/lanes from current block and/or the blocks which are 6675 // part of the current loop. These instructions will be inserted at the end to 6676 // make it possible to optimize loops and hoist invariant instructions out of 6677 // the loops body with better chances for success. 6678 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 6679 SmallSet<int, 4> PostponedIndices; 6680 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 6681 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 6682 SmallPtrSet<BasicBlock *, 4> Visited; 6683 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 6684 InsertBB = InsertBB->getSinglePredecessor(); 6685 return InsertBB && InsertBB == InstBB; 6686 }; 6687 for (int I = 0, E = VL.size(); I < E; ++I) { 6688 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 6689 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 6690 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 6691 PostponedIndices.insert(I).second) 6692 PostponedInsts.emplace_back(Inst, I); 6693 } 6694 6695 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 6696 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 6697 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 6698 if (!InsElt) 6699 return Vec; 6700 GatherShuffleSeq.insert(InsElt); 6701 CSEBlocks.insert(InsElt->getParent()); 6702 // Add to our 'need-to-extract' list. 6703 if (TreeEntry *Entry = getTreeEntry(V)) { 6704 // Find which lane we need to extract. 6705 unsigned FoundLane = Entry->findLaneForValue(V); 6706 ExternalUses.emplace_back(V, InsElt, FoundLane); 6707 } 6708 return Vec; 6709 }; 6710 Value *Val0 = 6711 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 6712 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 6713 Value *Vec = PoisonValue::get(VecTy); 6714 SmallVector<int> NonConsts; 6715 // Insert constant values at first. 6716 for (int I = 0, E = VL.size(); I < E; ++I) { 6717 if (PostponedIndices.contains(I)) 6718 continue; 6719 if (!isConstant(VL[I])) { 6720 NonConsts.push_back(I); 6721 continue; 6722 } 6723 Vec = CreateInsertElement(Vec, VL[I], I); 6724 } 6725 // Insert non-constant values. 6726 for (int I : NonConsts) 6727 Vec = CreateInsertElement(Vec, VL[I], I); 6728 // Append instructions, which are/may be part of the loop, in the end to make 6729 // it possible to hoist non-loop-based instructions. 6730 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 6731 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 6732 6733 return Vec; 6734 } 6735 6736 namespace { 6737 /// Merges shuffle masks and emits final shuffle instruction, if required. 6738 class ShuffleInstructionBuilder { 6739 IRBuilderBase &Builder; 6740 const unsigned VF = 0; 6741 bool IsFinalized = false; 6742 SmallVector<int, 4> Mask; 6743 /// Holds all of the instructions that we gathered. 6744 SetVector<Instruction *> &GatherShuffleSeq; 6745 /// A list of blocks that we are going to CSE. 6746 SetVector<BasicBlock *> &CSEBlocks; 6747 6748 public: 6749 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF, 6750 SetVector<Instruction *> &GatherShuffleSeq, 6751 SetVector<BasicBlock *> &CSEBlocks) 6752 : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq), 6753 CSEBlocks(CSEBlocks) {} 6754 6755 /// Adds a mask, inverting it before applying. 6756 void addInversedMask(ArrayRef<unsigned> SubMask) { 6757 if (SubMask.empty()) 6758 return; 6759 SmallVector<int, 4> NewMask; 6760 inversePermutation(SubMask, NewMask); 6761 addMask(NewMask); 6762 } 6763 6764 /// Functions adds masks, merging them into single one. 6765 void addMask(ArrayRef<unsigned> SubMask) { 6766 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 6767 addMask(NewMask); 6768 } 6769 6770 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 6771 6772 Value *finalize(Value *V) { 6773 IsFinalized = true; 6774 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 6775 if (VF == ValueVF && Mask.empty()) 6776 return V; 6777 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 6778 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 6779 addMask(NormalizedMask); 6780 6781 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 6782 return V; 6783 Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle"); 6784 if (auto *I = dyn_cast<Instruction>(Vec)) { 6785 GatherShuffleSeq.insert(I); 6786 CSEBlocks.insert(I->getParent()); 6787 } 6788 return Vec; 6789 } 6790 6791 ~ShuffleInstructionBuilder() { 6792 assert((IsFinalized || Mask.empty()) && 6793 "Shuffle construction must be finalized."); 6794 } 6795 }; 6796 } // namespace 6797 6798 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 6799 const unsigned VF = VL.size(); 6800 InstructionsState S = getSameOpcode(VL); 6801 if (S.getOpcode()) { 6802 if (TreeEntry *E = getTreeEntry(S.OpValue)) 6803 if (E->isSame(VL)) { 6804 Value *V = vectorizeTree(E); 6805 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 6806 if (!E->ReuseShuffleIndices.empty()) { 6807 // Reshuffle to get only unique values. 6808 // If some of the scalars are duplicated in the vectorization tree 6809 // entry, we do not vectorize them but instead generate a mask for 6810 // the reuses. But if there are several users of the same entry, 6811 // they may have different vectorization factors. This is especially 6812 // important for PHI nodes. In this case, we need to adapt the 6813 // resulting instruction for the user vectorization factor and have 6814 // to reshuffle it again to take only unique elements of the vector. 6815 // Without this code the function incorrectly returns reduced vector 6816 // instruction with the same elements, not with the unique ones. 6817 6818 // block: 6819 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 6820 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 6821 // ... (use %2) 6822 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 6823 // br %block 6824 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 6825 SmallSet<int, 4> UsedIdxs; 6826 int Pos = 0; 6827 int Sz = VL.size(); 6828 for (int Idx : E->ReuseShuffleIndices) { 6829 if (Idx != Sz && Idx != UndefMaskElem && 6830 UsedIdxs.insert(Idx).second) 6831 UniqueIdxs[Idx] = Pos; 6832 ++Pos; 6833 } 6834 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 6835 "less than original vector size."); 6836 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 6837 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 6838 } else { 6839 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 6840 "Expected vectorization factor less " 6841 "than original vector size."); 6842 SmallVector<int> UniformMask(VF, 0); 6843 std::iota(UniformMask.begin(), UniformMask.end(), 0); 6844 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 6845 } 6846 if (auto *I = dyn_cast<Instruction>(V)) { 6847 GatherShuffleSeq.insert(I); 6848 CSEBlocks.insert(I->getParent()); 6849 } 6850 } 6851 return V; 6852 } 6853 } 6854 6855 // Can't vectorize this, so simply build a new vector with each lane 6856 // corresponding to the requested value. 6857 return createBuildVector(VL); 6858 } 6859 Value *BoUpSLP::createBuildVector(ArrayRef<Value *> VL) { 6860 unsigned VF = VL.size(); 6861 // Exploit possible reuse of values across lanes. 6862 SmallVector<int> ReuseShuffleIndicies; 6863 SmallVector<Value *> UniqueValues; 6864 if (VL.size() > 2) { 6865 DenseMap<Value *, unsigned> UniquePositions; 6866 unsigned NumValues = 6867 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 6868 return !isa<UndefValue>(V); 6869 }).base()); 6870 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 6871 int UniqueVals = 0; 6872 for (Value *V : VL.drop_back(VL.size() - VF)) { 6873 if (isa<UndefValue>(V)) { 6874 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 6875 continue; 6876 } 6877 if (isConstant(V)) { 6878 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 6879 UniqueValues.emplace_back(V); 6880 continue; 6881 } 6882 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 6883 ReuseShuffleIndicies.emplace_back(Res.first->second); 6884 if (Res.second) { 6885 UniqueValues.emplace_back(V); 6886 ++UniqueVals; 6887 } 6888 } 6889 if (UniqueVals == 1 && UniqueValues.size() == 1) { 6890 // Emit pure splat vector. 6891 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 6892 UndefMaskElem); 6893 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 6894 ReuseShuffleIndicies.clear(); 6895 UniqueValues.clear(); 6896 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 6897 } 6898 UniqueValues.append(VF - UniqueValues.size(), 6899 PoisonValue::get(VL[0]->getType())); 6900 VL = UniqueValues; 6901 } 6902 6903 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6904 CSEBlocks); 6905 Value *Vec = gather(VL); 6906 if (!ReuseShuffleIndicies.empty()) { 6907 ShuffleBuilder.addMask(ReuseShuffleIndicies); 6908 Vec = ShuffleBuilder.finalize(Vec); 6909 } 6910 return Vec; 6911 } 6912 6913 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 6914 IRBuilder<>::InsertPointGuard Guard(Builder); 6915 6916 if (E->VectorizedValue) { 6917 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 6918 return E->VectorizedValue; 6919 } 6920 6921 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 6922 unsigned VF = E->getVectorFactor(); 6923 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6924 CSEBlocks); 6925 if (E->State == TreeEntry::NeedToGather) { 6926 if (E->getMainOp()) 6927 setInsertPointAfterBundle(E); 6928 Value *Vec; 6929 SmallVector<int> Mask; 6930 SmallVector<const TreeEntry *> Entries; 6931 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 6932 isGatherShuffledEntry(E, Mask, Entries); 6933 if (Shuffle.hasValue()) { 6934 assert((Entries.size() == 1 || Entries.size() == 2) && 6935 "Expected shuffle of 1 or 2 entries."); 6936 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 6937 Entries.back()->VectorizedValue, Mask); 6938 if (auto *I = dyn_cast<Instruction>(Vec)) { 6939 GatherShuffleSeq.insert(I); 6940 CSEBlocks.insert(I->getParent()); 6941 } 6942 } else { 6943 Vec = gather(E->Scalars); 6944 } 6945 if (NeedToShuffleReuses) { 6946 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6947 Vec = ShuffleBuilder.finalize(Vec); 6948 } 6949 E->VectorizedValue = Vec; 6950 return Vec; 6951 } 6952 6953 assert((E->State == TreeEntry::Vectorize || 6954 E->State == TreeEntry::ScatterVectorize) && 6955 "Unhandled state"); 6956 unsigned ShuffleOrOp = 6957 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 6958 Instruction *VL0 = E->getMainOp(); 6959 Type *ScalarTy = VL0->getType(); 6960 if (auto *Store = dyn_cast<StoreInst>(VL0)) 6961 ScalarTy = Store->getValueOperand()->getType(); 6962 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 6963 ScalarTy = IE->getOperand(1)->getType(); 6964 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 6965 switch (ShuffleOrOp) { 6966 case Instruction::PHI: { 6967 assert( 6968 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 6969 "PHI reordering is free."); 6970 auto *PH = cast<PHINode>(VL0); 6971 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 6972 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6973 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 6974 Value *V = NewPhi; 6975 6976 // Adjust insertion point once all PHI's have been generated. 6977 Builder.SetInsertPoint(&*PH->getParent()->getFirstInsertionPt()); 6978 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6979 6980 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6981 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6982 V = ShuffleBuilder.finalize(V); 6983 6984 E->VectorizedValue = V; 6985 6986 // PHINodes may have multiple entries from the same block. We want to 6987 // visit every block once. 6988 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 6989 6990 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 6991 ValueList Operands; 6992 BasicBlock *IBB = PH->getIncomingBlock(i); 6993 6994 if (!VisitedBBs.insert(IBB).second) { 6995 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 6996 continue; 6997 } 6998 6999 Builder.SetInsertPoint(IBB->getTerminator()); 7000 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 7001 Value *Vec = vectorizeTree(E->getOperand(i)); 7002 NewPhi->addIncoming(Vec, IBB); 7003 } 7004 7005 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 7006 "Invalid number of incoming values"); 7007 return V; 7008 } 7009 7010 case Instruction::ExtractElement: { 7011 Value *V = E->getSingleOperand(0); 7012 Builder.SetInsertPoint(VL0); 7013 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7014 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7015 V = ShuffleBuilder.finalize(V); 7016 E->VectorizedValue = V; 7017 return V; 7018 } 7019 case Instruction::ExtractValue: { 7020 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 7021 Builder.SetInsertPoint(LI); 7022 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 7023 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 7024 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 7025 Value *NewV = propagateMetadata(V, E->Scalars); 7026 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7027 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7028 NewV = ShuffleBuilder.finalize(NewV); 7029 E->VectorizedValue = NewV; 7030 return NewV; 7031 } 7032 case Instruction::InsertElement: { 7033 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 7034 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 7035 Value *V = vectorizeTree(E->getOperand(1)); 7036 7037 // Create InsertVector shuffle if necessary 7038 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 7039 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 7040 })); 7041 const unsigned NumElts = 7042 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 7043 const unsigned NumScalars = E->Scalars.size(); 7044 7045 unsigned Offset = *getInsertIndex(VL0); 7046 assert(Offset < NumElts && "Failed to find vector index offset"); 7047 7048 // Create shuffle to resize vector 7049 SmallVector<int> Mask; 7050 if (!E->ReorderIndices.empty()) { 7051 inversePermutation(E->ReorderIndices, Mask); 7052 Mask.append(NumElts - NumScalars, UndefMaskElem); 7053 } else { 7054 Mask.assign(NumElts, UndefMaskElem); 7055 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 7056 } 7057 // Create InsertVector shuffle if necessary 7058 bool IsIdentity = true; 7059 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 7060 Mask.swap(PrevMask); 7061 for (unsigned I = 0; I < NumScalars; ++I) { 7062 Value *Scalar = E->Scalars[PrevMask[I]]; 7063 unsigned InsertIdx = *getInsertIndex(Scalar); 7064 IsIdentity &= InsertIdx - Offset == I; 7065 Mask[InsertIdx - Offset] = I; 7066 } 7067 if (!IsIdentity || NumElts != NumScalars) { 7068 V = Builder.CreateShuffleVector(V, Mask); 7069 if (auto *I = dyn_cast<Instruction>(V)) { 7070 GatherShuffleSeq.insert(I); 7071 CSEBlocks.insert(I->getParent()); 7072 } 7073 } 7074 7075 if ((!IsIdentity || Offset != 0 || 7076 !isUndefVector(FirstInsert->getOperand(0))) && 7077 NumElts != NumScalars) { 7078 SmallVector<int> InsertMask(NumElts); 7079 std::iota(InsertMask.begin(), InsertMask.end(), 0); 7080 for (unsigned I = 0; I < NumElts; I++) { 7081 if (Mask[I] != UndefMaskElem) 7082 InsertMask[Offset + I] = NumElts + I; 7083 } 7084 7085 V = Builder.CreateShuffleVector( 7086 FirstInsert->getOperand(0), V, InsertMask, 7087 cast<Instruction>(E->Scalars.back())->getName()); 7088 if (auto *I = dyn_cast<Instruction>(V)) { 7089 GatherShuffleSeq.insert(I); 7090 CSEBlocks.insert(I->getParent()); 7091 } 7092 } 7093 7094 ++NumVectorInstructions; 7095 E->VectorizedValue = V; 7096 return V; 7097 } 7098 case Instruction::ZExt: 7099 case Instruction::SExt: 7100 case Instruction::FPToUI: 7101 case Instruction::FPToSI: 7102 case Instruction::FPExt: 7103 case Instruction::PtrToInt: 7104 case Instruction::IntToPtr: 7105 case Instruction::SIToFP: 7106 case Instruction::UIToFP: 7107 case Instruction::Trunc: 7108 case Instruction::FPTrunc: 7109 case Instruction::BitCast: { 7110 setInsertPointAfterBundle(E); 7111 7112 Value *InVec = vectorizeTree(E->getOperand(0)); 7113 7114 if (E->VectorizedValue) { 7115 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7116 return E->VectorizedValue; 7117 } 7118 7119 auto *CI = cast<CastInst>(VL0); 7120 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 7121 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7122 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7123 V = ShuffleBuilder.finalize(V); 7124 7125 E->VectorizedValue = V; 7126 ++NumVectorInstructions; 7127 return V; 7128 } 7129 case Instruction::FCmp: 7130 case Instruction::ICmp: { 7131 setInsertPointAfterBundle(E); 7132 7133 Value *L = vectorizeTree(E->getOperand(0)); 7134 Value *R = vectorizeTree(E->getOperand(1)); 7135 7136 if (E->VectorizedValue) { 7137 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7138 return E->VectorizedValue; 7139 } 7140 7141 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 7142 Value *V = Builder.CreateCmp(P0, L, R); 7143 propagateIRFlags(V, E->Scalars, VL0); 7144 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7145 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7146 V = ShuffleBuilder.finalize(V); 7147 7148 E->VectorizedValue = V; 7149 ++NumVectorInstructions; 7150 return V; 7151 } 7152 case Instruction::Select: { 7153 setInsertPointAfterBundle(E); 7154 7155 Value *Cond = vectorizeTree(E->getOperand(0)); 7156 Value *True = vectorizeTree(E->getOperand(1)); 7157 Value *False = vectorizeTree(E->getOperand(2)); 7158 7159 if (E->VectorizedValue) { 7160 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7161 return E->VectorizedValue; 7162 } 7163 7164 Value *V = Builder.CreateSelect(Cond, True, False); 7165 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7166 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7167 V = ShuffleBuilder.finalize(V); 7168 7169 E->VectorizedValue = V; 7170 ++NumVectorInstructions; 7171 return V; 7172 } 7173 case Instruction::FNeg: { 7174 setInsertPointAfterBundle(E); 7175 7176 Value *Op = vectorizeTree(E->getOperand(0)); 7177 7178 if (E->VectorizedValue) { 7179 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7180 return E->VectorizedValue; 7181 } 7182 7183 Value *V = Builder.CreateUnOp( 7184 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 7185 propagateIRFlags(V, E->Scalars, VL0); 7186 if (auto *I = dyn_cast<Instruction>(V)) 7187 V = propagateMetadata(I, E->Scalars); 7188 7189 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7190 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7191 V = ShuffleBuilder.finalize(V); 7192 7193 E->VectorizedValue = V; 7194 ++NumVectorInstructions; 7195 7196 return V; 7197 } 7198 case Instruction::Add: 7199 case Instruction::FAdd: 7200 case Instruction::Sub: 7201 case Instruction::FSub: 7202 case Instruction::Mul: 7203 case Instruction::FMul: 7204 case Instruction::UDiv: 7205 case Instruction::SDiv: 7206 case Instruction::FDiv: 7207 case Instruction::URem: 7208 case Instruction::SRem: 7209 case Instruction::FRem: 7210 case Instruction::Shl: 7211 case Instruction::LShr: 7212 case Instruction::AShr: 7213 case Instruction::And: 7214 case Instruction::Or: 7215 case Instruction::Xor: { 7216 setInsertPointAfterBundle(E); 7217 7218 Value *LHS = vectorizeTree(E->getOperand(0)); 7219 Value *RHS = vectorizeTree(E->getOperand(1)); 7220 7221 if (E->VectorizedValue) { 7222 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7223 return E->VectorizedValue; 7224 } 7225 7226 Value *V = Builder.CreateBinOp( 7227 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 7228 RHS); 7229 propagateIRFlags(V, E->Scalars, VL0); 7230 if (auto *I = dyn_cast<Instruction>(V)) 7231 V = propagateMetadata(I, E->Scalars); 7232 7233 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7234 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7235 V = ShuffleBuilder.finalize(V); 7236 7237 E->VectorizedValue = V; 7238 ++NumVectorInstructions; 7239 7240 return V; 7241 } 7242 case Instruction::Load: { 7243 // Loads are inserted at the head of the tree because we don't want to 7244 // sink them all the way down past store instructions. 7245 setInsertPointAfterBundle(E); 7246 7247 LoadInst *LI = cast<LoadInst>(VL0); 7248 Instruction *NewLI; 7249 unsigned AS = LI->getPointerAddressSpace(); 7250 Value *PO = LI->getPointerOperand(); 7251 if (E->State == TreeEntry::Vectorize) { 7252 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 7253 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 7254 7255 // The pointer operand uses an in-tree scalar so we add the new BitCast 7256 // or LoadInst to ExternalUses list to make sure that an extract will 7257 // be generated in the future. 7258 if (TreeEntry *Entry = getTreeEntry(PO)) { 7259 // Find which lane we need to extract. 7260 unsigned FoundLane = Entry->findLaneForValue(PO); 7261 ExternalUses.emplace_back( 7262 PO, PO != VecPtr ? cast<User>(VecPtr) : NewLI, FoundLane); 7263 } 7264 } else { 7265 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 7266 Value *VecPtr = vectorizeTree(E->getOperand(0)); 7267 // Use the minimum alignment of the gathered loads. 7268 Align CommonAlignment = LI->getAlign(); 7269 for (Value *V : E->Scalars) 7270 CommonAlignment = 7271 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 7272 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 7273 } 7274 Value *V = propagateMetadata(NewLI, E->Scalars); 7275 7276 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7277 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7278 V = ShuffleBuilder.finalize(V); 7279 E->VectorizedValue = V; 7280 ++NumVectorInstructions; 7281 return V; 7282 } 7283 case Instruction::Store: { 7284 auto *SI = cast<StoreInst>(VL0); 7285 unsigned AS = SI->getPointerAddressSpace(); 7286 7287 setInsertPointAfterBundle(E); 7288 7289 Value *VecValue = vectorizeTree(E->getOperand(0)); 7290 ShuffleBuilder.addMask(E->ReorderIndices); 7291 VecValue = ShuffleBuilder.finalize(VecValue); 7292 7293 Value *ScalarPtr = SI->getPointerOperand(); 7294 Value *VecPtr = Builder.CreateBitCast( 7295 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 7296 StoreInst *ST = 7297 Builder.CreateAlignedStore(VecValue, VecPtr, SI->getAlign()); 7298 7299 // The pointer operand uses an in-tree scalar, so add the new BitCast or 7300 // StoreInst to ExternalUses to make sure that an extract will be 7301 // generated in the future. 7302 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 7303 // Find which lane we need to extract. 7304 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 7305 ExternalUses.push_back(ExternalUser( 7306 ScalarPtr, ScalarPtr != VecPtr ? cast<User>(VecPtr) : ST, 7307 FoundLane)); 7308 } 7309 7310 Value *V = propagateMetadata(ST, E->Scalars); 7311 7312 E->VectorizedValue = V; 7313 ++NumVectorInstructions; 7314 return V; 7315 } 7316 case Instruction::GetElementPtr: { 7317 auto *GEP0 = cast<GetElementPtrInst>(VL0); 7318 setInsertPointAfterBundle(E); 7319 7320 Value *Op0 = vectorizeTree(E->getOperand(0)); 7321 7322 SmallVector<Value *> OpVecs; 7323 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 7324 Value *OpVec = vectorizeTree(E->getOperand(J)); 7325 OpVecs.push_back(OpVec); 7326 } 7327 7328 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 7329 if (Instruction *I = dyn_cast<Instruction>(V)) 7330 V = propagateMetadata(I, E->Scalars); 7331 7332 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7333 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7334 V = ShuffleBuilder.finalize(V); 7335 7336 E->VectorizedValue = V; 7337 ++NumVectorInstructions; 7338 7339 return V; 7340 } 7341 case Instruction::Call: { 7342 CallInst *CI = cast<CallInst>(VL0); 7343 setInsertPointAfterBundle(E); 7344 7345 Intrinsic::ID IID = Intrinsic::not_intrinsic; 7346 if (Function *FI = CI->getCalledFunction()) 7347 IID = FI->getIntrinsicID(); 7348 7349 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7350 7351 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 7352 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 7353 VecCallCosts.first <= VecCallCosts.second; 7354 7355 Value *ScalarArg = nullptr; 7356 std::vector<Value *> OpVecs; 7357 SmallVector<Type *, 2> TysForDecl = 7358 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 7359 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 7360 ValueList OpVL; 7361 // Some intrinsics have scalar arguments. This argument should not be 7362 // vectorized. 7363 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 7364 CallInst *CEI = cast<CallInst>(VL0); 7365 ScalarArg = CEI->getArgOperand(j); 7366 OpVecs.push_back(CEI->getArgOperand(j)); 7367 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j)) 7368 TysForDecl.push_back(ScalarArg->getType()); 7369 continue; 7370 } 7371 7372 Value *OpVec = vectorizeTree(E->getOperand(j)); 7373 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 7374 OpVecs.push_back(OpVec); 7375 } 7376 7377 Function *CF; 7378 if (!UseIntrinsic) { 7379 VFShape Shape = 7380 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 7381 VecTy->getNumElements())), 7382 false /*HasGlobalPred*/); 7383 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 7384 } else { 7385 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 7386 } 7387 7388 SmallVector<OperandBundleDef, 1> OpBundles; 7389 CI->getOperandBundlesAsDefs(OpBundles); 7390 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 7391 7392 // The scalar argument uses an in-tree scalar so we add the new vectorized 7393 // call to ExternalUses list to make sure that an extract will be 7394 // generated in the future. 7395 if (ScalarArg) { 7396 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 7397 // Find which lane we need to extract. 7398 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 7399 ExternalUses.push_back( 7400 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 7401 } 7402 } 7403 7404 propagateIRFlags(V, E->Scalars, VL0); 7405 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7406 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7407 V = ShuffleBuilder.finalize(V); 7408 7409 E->VectorizedValue = V; 7410 ++NumVectorInstructions; 7411 return V; 7412 } 7413 case Instruction::ShuffleVector: { 7414 assert(E->isAltShuffle() && 7415 ((Instruction::isBinaryOp(E->getOpcode()) && 7416 Instruction::isBinaryOp(E->getAltOpcode())) || 7417 (Instruction::isCast(E->getOpcode()) && 7418 Instruction::isCast(E->getAltOpcode())) || 7419 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 7420 "Invalid Shuffle Vector Operand"); 7421 7422 Value *LHS = nullptr, *RHS = nullptr; 7423 if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) { 7424 setInsertPointAfterBundle(E); 7425 LHS = vectorizeTree(E->getOperand(0)); 7426 RHS = vectorizeTree(E->getOperand(1)); 7427 } else { 7428 setInsertPointAfterBundle(E); 7429 LHS = vectorizeTree(E->getOperand(0)); 7430 } 7431 7432 if (E->VectorizedValue) { 7433 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7434 return E->VectorizedValue; 7435 } 7436 7437 Value *V0, *V1; 7438 if (Instruction::isBinaryOp(E->getOpcode())) { 7439 V0 = Builder.CreateBinOp( 7440 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 7441 V1 = Builder.CreateBinOp( 7442 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 7443 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 7444 V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS); 7445 auto *AltCI = cast<CmpInst>(E->getAltOp()); 7446 CmpInst::Predicate AltPred = AltCI->getPredicate(); 7447 V1 = Builder.CreateCmp(AltPred, LHS, RHS); 7448 } else { 7449 V0 = Builder.CreateCast( 7450 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 7451 V1 = Builder.CreateCast( 7452 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 7453 } 7454 // Add V0 and V1 to later analysis to try to find and remove matching 7455 // instruction, if any. 7456 for (Value *V : {V0, V1}) { 7457 if (auto *I = dyn_cast<Instruction>(V)) { 7458 GatherShuffleSeq.insert(I); 7459 CSEBlocks.insert(I->getParent()); 7460 } 7461 } 7462 7463 // Create shuffle to take alternate operations from the vector. 7464 // Also, gather up main and alt scalar ops to propagate IR flags to 7465 // each vector operation. 7466 ValueList OpScalars, AltScalars; 7467 SmallVector<int> Mask; 7468 buildShuffleEntryMask( 7469 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 7470 [E](Instruction *I) { 7471 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 7472 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 7473 }, 7474 Mask, &OpScalars, &AltScalars); 7475 7476 propagateIRFlags(V0, OpScalars); 7477 propagateIRFlags(V1, AltScalars); 7478 7479 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 7480 if (auto *I = dyn_cast<Instruction>(V)) { 7481 V = propagateMetadata(I, E->Scalars); 7482 GatherShuffleSeq.insert(I); 7483 CSEBlocks.insert(I->getParent()); 7484 } 7485 V = ShuffleBuilder.finalize(V); 7486 7487 E->VectorizedValue = V; 7488 ++NumVectorInstructions; 7489 7490 return V; 7491 } 7492 default: 7493 llvm_unreachable("unknown inst"); 7494 } 7495 return nullptr; 7496 } 7497 7498 Value *BoUpSLP::vectorizeTree() { 7499 ExtraValueToDebugLocsMap ExternallyUsedValues; 7500 return vectorizeTree(ExternallyUsedValues); 7501 } 7502 7503 Value * 7504 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 7505 // All blocks must be scheduled before any instructions are inserted. 7506 for (auto &BSIter : BlocksSchedules) { 7507 scheduleBlock(BSIter.second.get()); 7508 } 7509 7510 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7511 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 7512 7513 // If the vectorized tree can be rewritten in a smaller type, we truncate the 7514 // vectorized root. InstCombine will then rewrite the entire expression. We 7515 // sign extend the extracted values below. 7516 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 7517 if (MinBWs.count(ScalarRoot)) { 7518 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 7519 // If current instr is a phi and not the last phi, insert it after the 7520 // last phi node. 7521 if (isa<PHINode>(I)) 7522 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 7523 else 7524 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 7525 } 7526 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 7527 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 7528 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 7529 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 7530 VectorizableTree[0]->VectorizedValue = Trunc; 7531 } 7532 7533 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 7534 << " values .\n"); 7535 7536 // Extract all of the elements with the external uses. 7537 for (const auto &ExternalUse : ExternalUses) { 7538 Value *Scalar = ExternalUse.Scalar; 7539 llvm::User *User = ExternalUse.User; 7540 7541 // Skip users that we already RAUW. This happens when one instruction 7542 // has multiple uses of the same value. 7543 if (User && !is_contained(Scalar->users(), User)) 7544 continue; 7545 TreeEntry *E = getTreeEntry(Scalar); 7546 assert(E && "Invalid scalar"); 7547 assert(E->State != TreeEntry::NeedToGather && 7548 "Extracting from a gather list"); 7549 7550 Value *Vec = E->VectorizedValue; 7551 assert(Vec && "Can't find vectorizable value"); 7552 7553 Value *Lane = Builder.getInt32(ExternalUse.Lane); 7554 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 7555 if (Scalar->getType() != Vec->getType()) { 7556 Value *Ex; 7557 // "Reuse" the existing extract to improve final codegen. 7558 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 7559 Ex = Builder.CreateExtractElement(ES->getOperand(0), 7560 ES->getOperand(1)); 7561 } else { 7562 Ex = Builder.CreateExtractElement(Vec, Lane); 7563 } 7564 // If necessary, sign-extend or zero-extend ScalarRoot 7565 // to the larger type. 7566 if (!MinBWs.count(ScalarRoot)) 7567 return Ex; 7568 if (MinBWs[ScalarRoot].second) 7569 return Builder.CreateSExt(Ex, Scalar->getType()); 7570 return Builder.CreateZExt(Ex, Scalar->getType()); 7571 } 7572 assert(isa<FixedVectorType>(Scalar->getType()) && 7573 isa<InsertElementInst>(Scalar) && 7574 "In-tree scalar of vector type is not insertelement?"); 7575 return Vec; 7576 }; 7577 // If User == nullptr, the Scalar is used as extra arg. Generate 7578 // ExtractElement instruction and update the record for this scalar in 7579 // ExternallyUsedValues. 7580 if (!User) { 7581 assert(ExternallyUsedValues.count(Scalar) && 7582 "Scalar with nullptr as an external user must be registered in " 7583 "ExternallyUsedValues map"); 7584 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7585 Builder.SetInsertPoint(VecI->getParent(), 7586 std::next(VecI->getIterator())); 7587 } else { 7588 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7589 } 7590 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7591 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 7592 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 7593 auto It = ExternallyUsedValues.find(Scalar); 7594 assert(It != ExternallyUsedValues.end() && 7595 "Externally used scalar is not found in ExternallyUsedValues"); 7596 NewInstLocs.append(It->second); 7597 ExternallyUsedValues.erase(Scalar); 7598 // Required to update internally referenced instructions. 7599 Scalar->replaceAllUsesWith(NewInst); 7600 continue; 7601 } 7602 7603 // Generate extracts for out-of-tree users. 7604 // Find the insertion point for the extractelement lane. 7605 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7606 if (PHINode *PH = dyn_cast<PHINode>(User)) { 7607 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 7608 if (PH->getIncomingValue(i) == Scalar) { 7609 Instruction *IncomingTerminator = 7610 PH->getIncomingBlock(i)->getTerminator(); 7611 if (isa<CatchSwitchInst>(IncomingTerminator)) { 7612 Builder.SetInsertPoint(VecI->getParent(), 7613 std::next(VecI->getIterator())); 7614 } else { 7615 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 7616 } 7617 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7618 CSEBlocks.insert(PH->getIncomingBlock(i)); 7619 PH->setOperand(i, NewInst); 7620 } 7621 } 7622 } else { 7623 Builder.SetInsertPoint(cast<Instruction>(User)); 7624 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7625 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 7626 User->replaceUsesOfWith(Scalar, NewInst); 7627 } 7628 } else { 7629 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7630 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7631 CSEBlocks.insert(&F->getEntryBlock()); 7632 User->replaceUsesOfWith(Scalar, NewInst); 7633 } 7634 7635 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 7636 } 7637 7638 // For each vectorized value: 7639 for (auto &TEPtr : VectorizableTree) { 7640 TreeEntry *Entry = TEPtr.get(); 7641 7642 // No need to handle users of gathered values. 7643 if (Entry->State == TreeEntry::NeedToGather) 7644 continue; 7645 7646 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 7647 7648 // For each lane: 7649 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 7650 Value *Scalar = Entry->Scalars[Lane]; 7651 7652 #ifndef NDEBUG 7653 Type *Ty = Scalar->getType(); 7654 if (!Ty->isVoidTy()) { 7655 for (User *U : Scalar->users()) { 7656 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 7657 7658 // It is legal to delete users in the ignorelist. 7659 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 7660 (isa_and_nonnull<Instruction>(U) && 7661 isDeleted(cast<Instruction>(U)))) && 7662 "Deleting out-of-tree value"); 7663 } 7664 } 7665 #endif 7666 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 7667 eraseInstruction(cast<Instruction>(Scalar)); 7668 } 7669 } 7670 7671 Builder.ClearInsertionPoint(); 7672 InstrElementSize.clear(); 7673 7674 return VectorizableTree[0]->VectorizedValue; 7675 } 7676 7677 void BoUpSLP::optimizeGatherSequence() { 7678 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size() 7679 << " gather sequences instructions.\n"); 7680 // LICM InsertElementInst sequences. 7681 for (Instruction *I : GatherShuffleSeq) { 7682 if (isDeleted(I)) 7683 continue; 7684 7685 // Check if this block is inside a loop. 7686 Loop *L = LI->getLoopFor(I->getParent()); 7687 if (!L) 7688 continue; 7689 7690 // Check if it has a preheader. 7691 BasicBlock *PreHeader = L->getLoopPreheader(); 7692 if (!PreHeader) 7693 continue; 7694 7695 // If the vector or the element that we insert into it are 7696 // instructions that are defined in this basic block then we can't 7697 // hoist this instruction. 7698 if (any_of(I->operands(), [L](Value *V) { 7699 auto *OpI = dyn_cast<Instruction>(V); 7700 return OpI && L->contains(OpI); 7701 })) 7702 continue; 7703 7704 // We can hoist this instruction. Move it to the pre-header. 7705 I->moveBefore(PreHeader->getTerminator()); 7706 } 7707 7708 // Make a list of all reachable blocks in our CSE queue. 7709 SmallVector<const DomTreeNode *, 8> CSEWorkList; 7710 CSEWorkList.reserve(CSEBlocks.size()); 7711 for (BasicBlock *BB : CSEBlocks) 7712 if (DomTreeNode *N = DT->getNode(BB)) { 7713 assert(DT->isReachableFromEntry(N)); 7714 CSEWorkList.push_back(N); 7715 } 7716 7717 // Sort blocks by domination. This ensures we visit a block after all blocks 7718 // dominating it are visited. 7719 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 7720 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 7721 "Different nodes should have different DFS numbers"); 7722 return A->getDFSNumIn() < B->getDFSNumIn(); 7723 }); 7724 7725 // Less defined shuffles can be replaced by the more defined copies. 7726 // Between two shuffles one is less defined if it has the same vector operands 7727 // and its mask indeces are the same as in the first one or undefs. E.g. 7728 // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0, 7729 // poison, <0, 0, 0, 0>. 7730 auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2, 7731 SmallVectorImpl<int> &NewMask) { 7732 if (I1->getType() != I2->getType()) 7733 return false; 7734 auto *SI1 = dyn_cast<ShuffleVectorInst>(I1); 7735 auto *SI2 = dyn_cast<ShuffleVectorInst>(I2); 7736 if (!SI1 || !SI2) 7737 return I1->isIdenticalTo(I2); 7738 if (SI1->isIdenticalTo(SI2)) 7739 return true; 7740 for (int I = 0, E = SI1->getNumOperands(); I < E; ++I) 7741 if (SI1->getOperand(I) != SI2->getOperand(I)) 7742 return false; 7743 // Check if the second instruction is more defined than the first one. 7744 NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end()); 7745 ArrayRef<int> SM1 = SI1->getShuffleMask(); 7746 // Count trailing undefs in the mask to check the final number of used 7747 // registers. 7748 unsigned LastUndefsCnt = 0; 7749 for (int I = 0, E = NewMask.size(); I < E; ++I) { 7750 if (SM1[I] == UndefMaskElem) 7751 ++LastUndefsCnt; 7752 else 7753 LastUndefsCnt = 0; 7754 if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem && 7755 NewMask[I] != SM1[I]) 7756 return false; 7757 if (NewMask[I] == UndefMaskElem) 7758 NewMask[I] = SM1[I]; 7759 } 7760 // Check if the last undefs actually change the final number of used vector 7761 // registers. 7762 return SM1.size() - LastUndefsCnt > 1 && 7763 TTI->getNumberOfParts(SI1->getType()) == 7764 TTI->getNumberOfParts( 7765 FixedVectorType::get(SI1->getType()->getElementType(), 7766 SM1.size() - LastUndefsCnt)); 7767 }; 7768 // Perform O(N^2) search over the gather/shuffle sequences and merge identical 7769 // instructions. TODO: We can further optimize this scan if we split the 7770 // instructions into different buckets based on the insert lane. 7771 SmallVector<Instruction *, 16> Visited; 7772 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 7773 assert(*I && 7774 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 7775 "Worklist not sorted properly!"); 7776 BasicBlock *BB = (*I)->getBlock(); 7777 // For all instructions in blocks containing gather sequences: 7778 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 7779 if (isDeleted(&In)) 7780 continue; 7781 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 7782 !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In)) 7783 continue; 7784 7785 // Check if we can replace this instruction with any of the 7786 // visited instructions. 7787 bool Replaced = false; 7788 for (Instruction *&V : Visited) { 7789 SmallVector<int> NewMask; 7790 if (IsIdenticalOrLessDefined(&In, V, NewMask) && 7791 DT->dominates(V->getParent(), In.getParent())) { 7792 In.replaceAllUsesWith(V); 7793 eraseInstruction(&In); 7794 if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) 7795 if (!NewMask.empty()) 7796 SI->setShuffleMask(NewMask); 7797 Replaced = true; 7798 break; 7799 } 7800 if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) && 7801 GatherShuffleSeq.contains(V) && 7802 IsIdenticalOrLessDefined(V, &In, NewMask) && 7803 DT->dominates(In.getParent(), V->getParent())) { 7804 In.moveAfter(V); 7805 V->replaceAllUsesWith(&In); 7806 eraseInstruction(V); 7807 if (auto *SI = dyn_cast<ShuffleVectorInst>(&In)) 7808 if (!NewMask.empty()) 7809 SI->setShuffleMask(NewMask); 7810 V = &In; 7811 Replaced = true; 7812 break; 7813 } 7814 } 7815 if (!Replaced) { 7816 assert(!is_contained(Visited, &In)); 7817 Visited.push_back(&In); 7818 } 7819 } 7820 } 7821 CSEBlocks.clear(); 7822 GatherShuffleSeq.clear(); 7823 } 7824 7825 BoUpSLP::ScheduleData * 7826 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) { 7827 ScheduleData *Bundle = nullptr; 7828 ScheduleData *PrevInBundle = nullptr; 7829 for (Value *V : VL) { 7830 if (doesNotNeedToBeScheduled(V)) 7831 continue; 7832 ScheduleData *BundleMember = getScheduleData(V); 7833 assert(BundleMember && 7834 "no ScheduleData for bundle member " 7835 "(maybe not in same basic block)"); 7836 assert(BundleMember->isSchedulingEntity() && 7837 "bundle member already part of other bundle"); 7838 if (PrevInBundle) { 7839 PrevInBundle->NextInBundle = BundleMember; 7840 } else { 7841 Bundle = BundleMember; 7842 } 7843 7844 // Group the instructions to a bundle. 7845 BundleMember->FirstInBundle = Bundle; 7846 PrevInBundle = BundleMember; 7847 } 7848 assert(Bundle && "Failed to find schedule bundle"); 7849 return Bundle; 7850 } 7851 7852 // Groups the instructions to a bundle (which is then a single scheduling entity) 7853 // and schedules instructions until the bundle gets ready. 7854 Optional<BoUpSLP::ScheduleData *> 7855 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 7856 const InstructionsState &S) { 7857 // No need to schedule PHIs, insertelement, extractelement and extractvalue 7858 // instructions. 7859 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue) || 7860 doesNotNeedToSchedule(VL)) 7861 return nullptr; 7862 7863 // Initialize the instruction bundle. 7864 Instruction *OldScheduleEnd = ScheduleEnd; 7865 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 7866 7867 auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule, 7868 ScheduleData *Bundle) { 7869 // The scheduling region got new instructions at the lower end (or it is a 7870 // new region for the first bundle). This makes it necessary to 7871 // recalculate all dependencies. 7872 // It is seldom that this needs to be done a second time after adding the 7873 // initial bundle to the region. 7874 if (ScheduleEnd != OldScheduleEnd) { 7875 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 7876 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 7877 ReSchedule = true; 7878 } 7879 if (Bundle) { 7880 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 7881 << " in block " << BB->getName() << "\n"); 7882 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 7883 } 7884 7885 if (ReSchedule) { 7886 resetSchedule(); 7887 initialFillReadyList(ReadyInsts); 7888 } 7889 7890 // Now try to schedule the new bundle or (if no bundle) just calculate 7891 // dependencies. As soon as the bundle is "ready" it means that there are no 7892 // cyclic dependencies and we can schedule it. Note that's important that we 7893 // don't "schedule" the bundle yet (see cancelScheduling). 7894 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 7895 !ReadyInsts.empty()) { 7896 ScheduleData *Picked = ReadyInsts.pop_back_val(); 7897 assert(Picked->isSchedulingEntity() && Picked->isReady() && 7898 "must be ready to schedule"); 7899 schedule(Picked, ReadyInsts); 7900 } 7901 }; 7902 7903 // Make sure that the scheduling region contains all 7904 // instructions of the bundle. 7905 for (Value *V : VL) { 7906 if (doesNotNeedToBeScheduled(V)) 7907 continue; 7908 if (!extendSchedulingRegion(V, S)) { 7909 // If the scheduling region got new instructions at the lower end (or it 7910 // is a new region for the first bundle). This makes it necessary to 7911 // recalculate all dependencies. 7912 // Otherwise the compiler may crash trying to incorrectly calculate 7913 // dependencies and emit instruction in the wrong order at the actual 7914 // scheduling. 7915 TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr); 7916 return None; 7917 } 7918 } 7919 7920 bool ReSchedule = false; 7921 for (Value *V : VL) { 7922 if (doesNotNeedToBeScheduled(V)) 7923 continue; 7924 ScheduleData *BundleMember = getScheduleData(V); 7925 assert(BundleMember && 7926 "no ScheduleData for bundle member (maybe not in same basic block)"); 7927 7928 // Make sure we don't leave the pieces of the bundle in the ready list when 7929 // whole bundle might not be ready. 7930 ReadyInsts.remove(BundleMember); 7931 7932 if (!BundleMember->IsScheduled) 7933 continue; 7934 // A bundle member was scheduled as single instruction before and now 7935 // needs to be scheduled as part of the bundle. We just get rid of the 7936 // existing schedule. 7937 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 7938 << " was already scheduled\n"); 7939 ReSchedule = true; 7940 } 7941 7942 auto *Bundle = buildBundle(VL); 7943 TryScheduleBundleImpl(ReSchedule, Bundle); 7944 if (!Bundle->isReady()) { 7945 cancelScheduling(VL, S.OpValue); 7946 return None; 7947 } 7948 return Bundle; 7949 } 7950 7951 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 7952 Value *OpValue) { 7953 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue) || 7954 doesNotNeedToSchedule(VL)) 7955 return; 7956 7957 if (doesNotNeedToBeScheduled(OpValue)) 7958 OpValue = *find_if_not(VL, doesNotNeedToBeScheduled); 7959 ScheduleData *Bundle = getScheduleData(OpValue); 7960 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 7961 assert(!Bundle->IsScheduled && 7962 "Can't cancel bundle which is already scheduled"); 7963 assert(Bundle->isSchedulingEntity() && 7964 (Bundle->isPartOfBundle() || needToScheduleSingleInstruction(VL)) && 7965 "tried to unbundle something which is not a bundle"); 7966 7967 // Remove the bundle from the ready list. 7968 if (Bundle->isReady()) 7969 ReadyInsts.remove(Bundle); 7970 7971 // Un-bundle: make single instructions out of the bundle. 7972 ScheduleData *BundleMember = Bundle; 7973 while (BundleMember) { 7974 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 7975 BundleMember->FirstInBundle = BundleMember; 7976 ScheduleData *Next = BundleMember->NextInBundle; 7977 BundleMember->NextInBundle = nullptr; 7978 BundleMember->TE = nullptr; 7979 if (BundleMember->unscheduledDepsInBundle() == 0) { 7980 ReadyInsts.insert(BundleMember); 7981 } 7982 BundleMember = Next; 7983 } 7984 } 7985 7986 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 7987 // Allocate a new ScheduleData for the instruction. 7988 if (ChunkPos >= ChunkSize) { 7989 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 7990 ChunkPos = 0; 7991 } 7992 return &(ScheduleDataChunks.back()[ChunkPos++]); 7993 } 7994 7995 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 7996 const InstructionsState &S) { 7997 if (getScheduleData(V, isOneOf(S, V))) 7998 return true; 7999 Instruction *I = dyn_cast<Instruction>(V); 8000 assert(I && "bundle member must be an instruction"); 8001 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 8002 !doesNotNeedToBeScheduled(I) && 8003 "phi nodes/insertelements/extractelements/extractvalues don't need to " 8004 "be scheduled"); 8005 auto &&CheckScheduleForI = [this, &S](Instruction *I) -> bool { 8006 ScheduleData *ISD = getScheduleData(I); 8007 if (!ISD) 8008 return false; 8009 assert(isInSchedulingRegion(ISD) && 8010 "ScheduleData not in scheduling region"); 8011 ScheduleData *SD = allocateScheduleDataChunks(); 8012 SD->Inst = I; 8013 SD->init(SchedulingRegionID, S.OpValue); 8014 ExtraScheduleDataMap[I][S.OpValue] = SD; 8015 return true; 8016 }; 8017 if (CheckScheduleForI(I)) 8018 return true; 8019 if (!ScheduleStart) { 8020 // It's the first instruction in the new region. 8021 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 8022 ScheduleStart = I; 8023 ScheduleEnd = I->getNextNode(); 8024 if (isOneOf(S, I) != I) 8025 CheckScheduleForI(I); 8026 assert(ScheduleEnd && "tried to vectorize a terminator?"); 8027 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 8028 return true; 8029 } 8030 // Search up and down at the same time, because we don't know if the new 8031 // instruction is above or below the existing scheduling region. 8032 BasicBlock::reverse_iterator UpIter = 8033 ++ScheduleStart->getIterator().getReverse(); 8034 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 8035 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 8036 BasicBlock::iterator LowerEnd = BB->end(); 8037 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 8038 &*DownIter != I) { 8039 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 8040 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 8041 return false; 8042 } 8043 8044 ++UpIter; 8045 ++DownIter; 8046 } 8047 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 8048 assert(I->getParent() == ScheduleStart->getParent() && 8049 "Instruction is in wrong basic block."); 8050 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 8051 ScheduleStart = I; 8052 if (isOneOf(S, I) != I) 8053 CheckScheduleForI(I); 8054 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 8055 << "\n"); 8056 return true; 8057 } 8058 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 8059 "Expected to reach top of the basic block or instruction down the " 8060 "lower end."); 8061 assert(I->getParent() == ScheduleEnd->getParent() && 8062 "Instruction is in wrong basic block."); 8063 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 8064 nullptr); 8065 ScheduleEnd = I->getNextNode(); 8066 if (isOneOf(S, I) != I) 8067 CheckScheduleForI(I); 8068 assert(ScheduleEnd && "tried to vectorize a terminator?"); 8069 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 8070 return true; 8071 } 8072 8073 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 8074 Instruction *ToI, 8075 ScheduleData *PrevLoadStore, 8076 ScheduleData *NextLoadStore) { 8077 ScheduleData *CurrentLoadStore = PrevLoadStore; 8078 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 8079 // No need to allocate data for non-schedulable instructions. 8080 if (doesNotNeedToBeScheduled(I)) 8081 continue; 8082 ScheduleData *SD = ScheduleDataMap.lookup(I); 8083 if (!SD) { 8084 SD = allocateScheduleDataChunks(); 8085 ScheduleDataMap[I] = SD; 8086 SD->Inst = I; 8087 } 8088 assert(!isInSchedulingRegion(SD) && 8089 "new ScheduleData already in scheduling region"); 8090 SD->init(SchedulingRegionID, I); 8091 8092 if (I->mayReadOrWriteMemory() && 8093 (!isa<IntrinsicInst>(I) || 8094 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 8095 cast<IntrinsicInst>(I)->getIntrinsicID() != 8096 Intrinsic::pseudoprobe))) { 8097 // Update the linked list of memory accessing instructions. 8098 if (CurrentLoadStore) { 8099 CurrentLoadStore->NextLoadStore = SD; 8100 } else { 8101 FirstLoadStoreInRegion = SD; 8102 } 8103 CurrentLoadStore = SD; 8104 } 8105 8106 if (match(I, m_Intrinsic<Intrinsic::stacksave>()) || 8107 match(I, m_Intrinsic<Intrinsic::stackrestore>())) 8108 RegionHasStackSave = true; 8109 } 8110 if (NextLoadStore) { 8111 if (CurrentLoadStore) 8112 CurrentLoadStore->NextLoadStore = NextLoadStore; 8113 } else { 8114 LastLoadStoreInRegion = CurrentLoadStore; 8115 } 8116 } 8117 8118 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 8119 bool InsertInReadyList, 8120 BoUpSLP *SLP) { 8121 assert(SD->isSchedulingEntity()); 8122 8123 SmallVector<ScheduleData *, 10> WorkList; 8124 WorkList.push_back(SD); 8125 8126 while (!WorkList.empty()) { 8127 ScheduleData *SD = WorkList.pop_back_val(); 8128 for (ScheduleData *BundleMember = SD; BundleMember; 8129 BundleMember = BundleMember->NextInBundle) { 8130 assert(isInSchedulingRegion(BundleMember)); 8131 if (BundleMember->hasValidDependencies()) 8132 continue; 8133 8134 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 8135 << "\n"); 8136 BundleMember->Dependencies = 0; 8137 BundleMember->resetUnscheduledDeps(); 8138 8139 // Handle def-use chain dependencies. 8140 if (BundleMember->OpValue != BundleMember->Inst) { 8141 if (ScheduleData *UseSD = getScheduleData(BundleMember->Inst)) { 8142 BundleMember->Dependencies++; 8143 ScheduleData *DestBundle = UseSD->FirstInBundle; 8144 if (!DestBundle->IsScheduled) 8145 BundleMember->incrementUnscheduledDeps(1); 8146 if (!DestBundle->hasValidDependencies()) 8147 WorkList.push_back(DestBundle); 8148 } 8149 } else { 8150 for (User *U : BundleMember->Inst->users()) { 8151 if (ScheduleData *UseSD = getScheduleData(cast<Instruction>(U))) { 8152 BundleMember->Dependencies++; 8153 ScheduleData *DestBundle = UseSD->FirstInBundle; 8154 if (!DestBundle->IsScheduled) 8155 BundleMember->incrementUnscheduledDeps(1); 8156 if (!DestBundle->hasValidDependencies()) 8157 WorkList.push_back(DestBundle); 8158 } 8159 } 8160 } 8161 8162 auto makeControlDependent = [&](Instruction *I) { 8163 auto *DepDest = getScheduleData(I); 8164 assert(DepDest && "must be in schedule window"); 8165 DepDest->ControlDependencies.push_back(BundleMember); 8166 BundleMember->Dependencies++; 8167 ScheduleData *DestBundle = DepDest->FirstInBundle; 8168 if (!DestBundle->IsScheduled) 8169 BundleMember->incrementUnscheduledDeps(1); 8170 if (!DestBundle->hasValidDependencies()) 8171 WorkList.push_back(DestBundle); 8172 }; 8173 8174 // Any instruction which isn't safe to speculate at the begining of the 8175 // block is control dependend on any early exit or non-willreturn call 8176 // which proceeds it. 8177 if (!isGuaranteedToTransferExecutionToSuccessor(BundleMember->Inst)) { 8178 for (Instruction *I = BundleMember->Inst->getNextNode(); 8179 I != ScheduleEnd; I = I->getNextNode()) { 8180 if (isSafeToSpeculativelyExecute(I, &*BB->begin())) 8181 continue; 8182 8183 // Add the dependency 8184 makeControlDependent(I); 8185 8186 if (!isGuaranteedToTransferExecutionToSuccessor(I)) 8187 // Everything past here must be control dependent on I. 8188 break; 8189 } 8190 } 8191 8192 if (RegionHasStackSave) { 8193 // If we have an inalloc alloca instruction, it needs to be scheduled 8194 // after any preceeding stacksave. We also need to prevent any alloca 8195 // from reordering above a preceeding stackrestore. 8196 if (match(BundleMember->Inst, m_Intrinsic<Intrinsic::stacksave>()) || 8197 match(BundleMember->Inst, m_Intrinsic<Intrinsic::stackrestore>())) { 8198 for (Instruction *I = BundleMember->Inst->getNextNode(); 8199 I != ScheduleEnd; I = I->getNextNode()) { 8200 if (match(I, m_Intrinsic<Intrinsic::stacksave>()) || 8201 match(I, m_Intrinsic<Intrinsic::stackrestore>())) 8202 // Any allocas past here must be control dependent on I, and I 8203 // must be memory dependend on BundleMember->Inst. 8204 break; 8205 8206 if (!isa<AllocaInst>(I)) 8207 continue; 8208 8209 // Add the dependency 8210 makeControlDependent(I); 8211 } 8212 } 8213 8214 // In addition to the cases handle just above, we need to prevent 8215 // allocas from moving below a stacksave. The stackrestore case 8216 // is currently thought to be conservatism. 8217 if (isa<AllocaInst>(BundleMember->Inst)) { 8218 for (Instruction *I = BundleMember->Inst->getNextNode(); 8219 I != ScheduleEnd; I = I->getNextNode()) { 8220 if (!match(I, m_Intrinsic<Intrinsic::stacksave>()) && 8221 !match(I, m_Intrinsic<Intrinsic::stackrestore>())) 8222 continue; 8223 8224 // Add the dependency 8225 makeControlDependent(I); 8226 break; 8227 } 8228 } 8229 } 8230 8231 // Handle the memory dependencies (if any). 8232 ScheduleData *DepDest = BundleMember->NextLoadStore; 8233 if (!DepDest) 8234 continue; 8235 Instruction *SrcInst = BundleMember->Inst; 8236 assert(SrcInst->mayReadOrWriteMemory() && 8237 "NextLoadStore list for non memory effecting bundle?"); 8238 MemoryLocation SrcLoc = getLocation(SrcInst); 8239 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 8240 unsigned numAliased = 0; 8241 unsigned DistToSrc = 1; 8242 8243 for ( ; DepDest; DepDest = DepDest->NextLoadStore) { 8244 assert(isInSchedulingRegion(DepDest)); 8245 8246 // We have two limits to reduce the complexity: 8247 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 8248 // SLP->isAliased (which is the expensive part in this loop). 8249 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 8250 // the whole loop (even if the loop is fast, it's quadratic). 8251 // It's important for the loop break condition (see below) to 8252 // check this limit even between two read-only instructions. 8253 if (DistToSrc >= MaxMemDepDistance || 8254 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 8255 (numAliased >= AliasedCheckLimit || 8256 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 8257 8258 // We increment the counter only if the locations are aliased 8259 // (instead of counting all alias checks). This gives a better 8260 // balance between reduced runtime and accurate dependencies. 8261 numAliased++; 8262 8263 DepDest->MemoryDependencies.push_back(BundleMember); 8264 BundleMember->Dependencies++; 8265 ScheduleData *DestBundle = DepDest->FirstInBundle; 8266 if (!DestBundle->IsScheduled) { 8267 BundleMember->incrementUnscheduledDeps(1); 8268 } 8269 if (!DestBundle->hasValidDependencies()) { 8270 WorkList.push_back(DestBundle); 8271 } 8272 } 8273 8274 // Example, explaining the loop break condition: Let's assume our 8275 // starting instruction is i0 and MaxMemDepDistance = 3. 8276 // 8277 // +--------v--v--v 8278 // i0,i1,i2,i3,i4,i5,i6,i7,i8 8279 // +--------^--^--^ 8280 // 8281 // MaxMemDepDistance let us stop alias-checking at i3 and we add 8282 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 8283 // Previously we already added dependencies from i3 to i6,i7,i8 8284 // (because of MaxMemDepDistance). As we added a dependency from 8285 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 8286 // and we can abort this loop at i6. 8287 if (DistToSrc >= 2 * MaxMemDepDistance) 8288 break; 8289 DistToSrc++; 8290 } 8291 } 8292 if (InsertInReadyList && SD->isReady()) { 8293 ReadyInsts.insert(SD); 8294 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 8295 << "\n"); 8296 } 8297 } 8298 } 8299 8300 void BoUpSLP::BlockScheduling::resetSchedule() { 8301 assert(ScheduleStart && 8302 "tried to reset schedule on block which has not been scheduled"); 8303 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 8304 doForAllOpcodes(I, [&](ScheduleData *SD) { 8305 assert(isInSchedulingRegion(SD) && 8306 "ScheduleData not in scheduling region"); 8307 SD->IsScheduled = false; 8308 SD->resetUnscheduledDeps(); 8309 }); 8310 } 8311 ReadyInsts.clear(); 8312 } 8313 8314 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 8315 if (!BS->ScheduleStart) 8316 return; 8317 8318 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 8319 8320 // A key point - if we got here, pre-scheduling was able to find a valid 8321 // scheduling of the sub-graph of the scheduling window which consists 8322 // of all vector bundles and their transitive users. As such, we do not 8323 // need to reschedule anything *outside of* that subgraph. 8324 8325 BS->resetSchedule(); 8326 8327 // For the real scheduling we use a more sophisticated ready-list: it is 8328 // sorted by the original instruction location. This lets the final schedule 8329 // be as close as possible to the original instruction order. 8330 // WARNING: If changing this order causes a correctness issue, that means 8331 // there is some missing dependence edge in the schedule data graph. 8332 struct ScheduleDataCompare { 8333 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 8334 return SD2->SchedulingPriority < SD1->SchedulingPriority; 8335 } 8336 }; 8337 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 8338 8339 // Ensure that all dependency data is updated (for nodes in the sub-graph) 8340 // and fill the ready-list with initial instructions. 8341 int Idx = 0; 8342 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 8343 I = I->getNextNode()) { 8344 BS->doForAllOpcodes(I, [this, &Idx, BS](ScheduleData *SD) { 8345 TreeEntry *SDTE = getTreeEntry(SD->Inst); 8346 (void)SDTE; 8347 assert((isVectorLikeInstWithConstOps(SD->Inst) || 8348 SD->isPartOfBundle() == 8349 (SDTE && !doesNotNeedToSchedule(SDTE->Scalars))) && 8350 "scheduler and vectorizer bundle mismatch"); 8351 SD->FirstInBundle->SchedulingPriority = Idx++; 8352 8353 if (SD->isSchedulingEntity() && SD->isPartOfBundle()) 8354 BS->calculateDependencies(SD, false, this); 8355 }); 8356 } 8357 BS->initialFillReadyList(ReadyInsts); 8358 8359 Instruction *LastScheduledInst = BS->ScheduleEnd; 8360 8361 // Do the "real" scheduling. 8362 while (!ReadyInsts.empty()) { 8363 ScheduleData *picked = *ReadyInsts.begin(); 8364 ReadyInsts.erase(ReadyInsts.begin()); 8365 8366 // Move the scheduled instruction(s) to their dedicated places, if not 8367 // there yet. 8368 for (ScheduleData *BundleMember = picked; BundleMember; 8369 BundleMember = BundleMember->NextInBundle) { 8370 Instruction *pickedInst = BundleMember->Inst; 8371 if (pickedInst->getNextNode() != LastScheduledInst) 8372 pickedInst->moveBefore(LastScheduledInst); 8373 LastScheduledInst = pickedInst; 8374 } 8375 8376 BS->schedule(picked, ReadyInsts); 8377 } 8378 8379 // Check that we didn't break any of our invariants. 8380 #ifdef EXPENSIVE_CHECKS 8381 BS->verify(); 8382 #endif 8383 8384 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) 8385 // Check that all schedulable entities got scheduled 8386 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) { 8387 BS->doForAllOpcodes(I, [&](ScheduleData *SD) { 8388 if (SD->isSchedulingEntity() && SD->hasValidDependencies()) { 8389 assert(SD->IsScheduled && "must be scheduled at this point"); 8390 } 8391 }); 8392 } 8393 #endif 8394 8395 // Avoid duplicate scheduling of the block. 8396 BS->ScheduleStart = nullptr; 8397 } 8398 8399 unsigned BoUpSLP::getVectorElementSize(Value *V) { 8400 // If V is a store, just return the width of the stored value (or value 8401 // truncated just before storing) without traversing the expression tree. 8402 // This is the common case. 8403 if (auto *Store = dyn_cast<StoreInst>(V)) { 8404 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 8405 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 8406 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 8407 } 8408 8409 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 8410 return getVectorElementSize(IEI->getOperand(1)); 8411 8412 auto E = InstrElementSize.find(V); 8413 if (E != InstrElementSize.end()) 8414 return E->second; 8415 8416 // If V is not a store, we can traverse the expression tree to find loads 8417 // that feed it. The type of the loaded value may indicate a more suitable 8418 // width than V's type. We want to base the vector element size on the width 8419 // of memory operations where possible. 8420 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 8421 SmallPtrSet<Instruction *, 16> Visited; 8422 if (auto *I = dyn_cast<Instruction>(V)) { 8423 Worklist.emplace_back(I, I->getParent()); 8424 Visited.insert(I); 8425 } 8426 8427 // Traverse the expression tree in bottom-up order looking for loads. If we 8428 // encounter an instruction we don't yet handle, we give up. 8429 auto Width = 0u; 8430 while (!Worklist.empty()) { 8431 Instruction *I; 8432 BasicBlock *Parent; 8433 std::tie(I, Parent) = Worklist.pop_back_val(); 8434 8435 // We should only be looking at scalar instructions here. If the current 8436 // instruction has a vector type, skip. 8437 auto *Ty = I->getType(); 8438 if (isa<VectorType>(Ty)) 8439 continue; 8440 8441 // If the current instruction is a load, update MaxWidth to reflect the 8442 // width of the loaded value. 8443 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 8444 isa<ExtractValueInst>(I)) 8445 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 8446 8447 // Otherwise, we need to visit the operands of the instruction. We only 8448 // handle the interesting cases from buildTree here. If an operand is an 8449 // instruction we haven't yet visited and from the same basic block as the 8450 // user or the use is a PHI node, we add it to the worklist. 8451 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8452 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 8453 isa<UnaryOperator>(I)) { 8454 for (Use &U : I->operands()) 8455 if (auto *J = dyn_cast<Instruction>(U.get())) 8456 if (Visited.insert(J).second && 8457 (isa<PHINode>(I) || J->getParent() == Parent)) 8458 Worklist.emplace_back(J, J->getParent()); 8459 } else { 8460 break; 8461 } 8462 } 8463 8464 // If we didn't encounter a memory access in the expression tree, or if we 8465 // gave up for some reason, just return the width of V. Otherwise, return the 8466 // maximum width we found. 8467 if (!Width) { 8468 if (auto *CI = dyn_cast<CmpInst>(V)) 8469 V = CI->getOperand(0); 8470 Width = DL->getTypeSizeInBits(V->getType()); 8471 } 8472 8473 for (Instruction *I : Visited) 8474 InstrElementSize[I] = Width; 8475 8476 return Width; 8477 } 8478 8479 // Determine if a value V in a vectorizable expression Expr can be demoted to a 8480 // smaller type with a truncation. We collect the values that will be demoted 8481 // in ToDemote and additional roots that require investigating in Roots. 8482 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 8483 SmallVectorImpl<Value *> &ToDemote, 8484 SmallVectorImpl<Value *> &Roots) { 8485 // We can always demote constants. 8486 if (isa<Constant>(V)) { 8487 ToDemote.push_back(V); 8488 return true; 8489 } 8490 8491 // If the value is not an instruction in the expression with only one use, it 8492 // cannot be demoted. 8493 auto *I = dyn_cast<Instruction>(V); 8494 if (!I || !I->hasOneUse() || !Expr.count(I)) 8495 return false; 8496 8497 switch (I->getOpcode()) { 8498 8499 // We can always demote truncations and extensions. Since truncations can 8500 // seed additional demotion, we save the truncated value. 8501 case Instruction::Trunc: 8502 Roots.push_back(I->getOperand(0)); 8503 break; 8504 case Instruction::ZExt: 8505 case Instruction::SExt: 8506 if (isa<ExtractElementInst>(I->getOperand(0)) || 8507 isa<InsertElementInst>(I->getOperand(0))) 8508 return false; 8509 break; 8510 8511 // We can demote certain binary operations if we can demote both of their 8512 // operands. 8513 case Instruction::Add: 8514 case Instruction::Sub: 8515 case Instruction::Mul: 8516 case Instruction::And: 8517 case Instruction::Or: 8518 case Instruction::Xor: 8519 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 8520 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 8521 return false; 8522 break; 8523 8524 // We can demote selects if we can demote their true and false values. 8525 case Instruction::Select: { 8526 SelectInst *SI = cast<SelectInst>(I); 8527 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 8528 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 8529 return false; 8530 break; 8531 } 8532 8533 // We can demote phis if we can demote all their incoming operands. Note that 8534 // we don't need to worry about cycles since we ensure single use above. 8535 case Instruction::PHI: { 8536 PHINode *PN = cast<PHINode>(I); 8537 for (Value *IncValue : PN->incoming_values()) 8538 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 8539 return false; 8540 break; 8541 } 8542 8543 // Otherwise, conservatively give up. 8544 default: 8545 return false; 8546 } 8547 8548 // Record the value that we can demote. 8549 ToDemote.push_back(V); 8550 return true; 8551 } 8552 8553 void BoUpSLP::computeMinimumValueSizes() { 8554 // If there are no external uses, the expression tree must be rooted by a 8555 // store. We can't demote in-memory values, so there is nothing to do here. 8556 if (ExternalUses.empty()) 8557 return; 8558 8559 // We only attempt to truncate integer expressions. 8560 auto &TreeRoot = VectorizableTree[0]->Scalars; 8561 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 8562 if (!TreeRootIT) 8563 return; 8564 8565 // If the expression is not rooted by a store, these roots should have 8566 // external uses. We will rely on InstCombine to rewrite the expression in 8567 // the narrower type. However, InstCombine only rewrites single-use values. 8568 // This means that if a tree entry other than a root is used externally, it 8569 // must have multiple uses and InstCombine will not rewrite it. The code 8570 // below ensures that only the roots are used externally. 8571 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 8572 for (auto &EU : ExternalUses) 8573 if (!Expr.erase(EU.Scalar)) 8574 return; 8575 if (!Expr.empty()) 8576 return; 8577 8578 // Collect the scalar values of the vectorizable expression. We will use this 8579 // context to determine which values can be demoted. If we see a truncation, 8580 // we mark it as seeding another demotion. 8581 for (auto &EntryPtr : VectorizableTree) 8582 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 8583 8584 // Ensure the roots of the vectorizable tree don't form a cycle. They must 8585 // have a single external user that is not in the vectorizable tree. 8586 for (auto *Root : TreeRoot) 8587 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 8588 return; 8589 8590 // Conservatively determine if we can actually truncate the roots of the 8591 // expression. Collect the values that can be demoted in ToDemote and 8592 // additional roots that require investigating in Roots. 8593 SmallVector<Value *, 32> ToDemote; 8594 SmallVector<Value *, 4> Roots; 8595 for (auto *Root : TreeRoot) 8596 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 8597 return; 8598 8599 // The maximum bit width required to represent all the values that can be 8600 // demoted without loss of precision. It would be safe to truncate the roots 8601 // of the expression to this width. 8602 auto MaxBitWidth = 8u; 8603 8604 // We first check if all the bits of the roots are demanded. If they're not, 8605 // we can truncate the roots to this narrower type. 8606 for (auto *Root : TreeRoot) { 8607 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 8608 MaxBitWidth = std::max<unsigned>( 8609 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 8610 } 8611 8612 // True if the roots can be zero-extended back to their original type, rather 8613 // than sign-extended. We know that if the leading bits are not demanded, we 8614 // can safely zero-extend. So we initialize IsKnownPositive to True. 8615 bool IsKnownPositive = true; 8616 8617 // If all the bits of the roots are demanded, we can try a little harder to 8618 // compute a narrower type. This can happen, for example, if the roots are 8619 // getelementptr indices. InstCombine promotes these indices to the pointer 8620 // width. Thus, all their bits are technically demanded even though the 8621 // address computation might be vectorized in a smaller type. 8622 // 8623 // We start by looking at each entry that can be demoted. We compute the 8624 // maximum bit width required to store the scalar by using ValueTracking to 8625 // compute the number of high-order bits we can truncate. 8626 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 8627 llvm::all_of(TreeRoot, [](Value *R) { 8628 assert(R->hasOneUse() && "Root should have only one use!"); 8629 return isa<GetElementPtrInst>(R->user_back()); 8630 })) { 8631 MaxBitWidth = 8u; 8632 8633 // Determine if the sign bit of all the roots is known to be zero. If not, 8634 // IsKnownPositive is set to False. 8635 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 8636 KnownBits Known = computeKnownBits(R, *DL); 8637 return Known.isNonNegative(); 8638 }); 8639 8640 // Determine the maximum number of bits required to store the scalar 8641 // values. 8642 for (auto *Scalar : ToDemote) { 8643 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 8644 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 8645 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 8646 } 8647 8648 // If we can't prove that the sign bit is zero, we must add one to the 8649 // maximum bit width to account for the unknown sign bit. This preserves 8650 // the existing sign bit so we can safely sign-extend the root back to the 8651 // original type. Otherwise, if we know the sign bit is zero, we will 8652 // zero-extend the root instead. 8653 // 8654 // FIXME: This is somewhat suboptimal, as there will be cases where adding 8655 // one to the maximum bit width will yield a larger-than-necessary 8656 // type. In general, we need to add an extra bit only if we can't 8657 // prove that the upper bit of the original type is equal to the 8658 // upper bit of the proposed smaller type. If these two bits are the 8659 // same (either zero or one) we know that sign-extending from the 8660 // smaller type will result in the same value. Here, since we can't 8661 // yet prove this, we are just making the proposed smaller type 8662 // larger to ensure correctness. 8663 if (!IsKnownPositive) 8664 ++MaxBitWidth; 8665 } 8666 8667 // Round MaxBitWidth up to the next power-of-two. 8668 if (!isPowerOf2_64(MaxBitWidth)) 8669 MaxBitWidth = NextPowerOf2(MaxBitWidth); 8670 8671 // If the maximum bit width we compute is less than the with of the roots' 8672 // type, we can proceed with the narrowing. Otherwise, do nothing. 8673 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 8674 return; 8675 8676 // If we can truncate the root, we must collect additional values that might 8677 // be demoted as a result. That is, those seeded by truncations we will 8678 // modify. 8679 while (!Roots.empty()) 8680 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 8681 8682 // Finally, map the values we can demote to the maximum bit with we computed. 8683 for (auto *Scalar : ToDemote) 8684 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 8685 } 8686 8687 namespace { 8688 8689 /// The SLPVectorizer Pass. 8690 struct SLPVectorizer : public FunctionPass { 8691 SLPVectorizerPass Impl; 8692 8693 /// Pass identification, replacement for typeid 8694 static char ID; 8695 8696 explicit SLPVectorizer() : FunctionPass(ID) { 8697 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 8698 } 8699 8700 bool doInitialization(Module &M) override { return false; } 8701 8702 bool runOnFunction(Function &F) override { 8703 if (skipFunction(F)) 8704 return false; 8705 8706 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 8707 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 8708 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 8709 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 8710 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 8711 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 8712 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 8713 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 8714 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 8715 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 8716 8717 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8718 } 8719 8720 void getAnalysisUsage(AnalysisUsage &AU) const override { 8721 FunctionPass::getAnalysisUsage(AU); 8722 AU.addRequired<AssumptionCacheTracker>(); 8723 AU.addRequired<ScalarEvolutionWrapperPass>(); 8724 AU.addRequired<AAResultsWrapperPass>(); 8725 AU.addRequired<TargetTransformInfoWrapperPass>(); 8726 AU.addRequired<LoopInfoWrapperPass>(); 8727 AU.addRequired<DominatorTreeWrapperPass>(); 8728 AU.addRequired<DemandedBitsWrapperPass>(); 8729 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 8730 AU.addRequired<InjectTLIMappingsLegacy>(); 8731 AU.addPreserved<LoopInfoWrapperPass>(); 8732 AU.addPreserved<DominatorTreeWrapperPass>(); 8733 AU.addPreserved<AAResultsWrapperPass>(); 8734 AU.addPreserved<GlobalsAAWrapperPass>(); 8735 AU.setPreservesCFG(); 8736 } 8737 }; 8738 8739 } // end anonymous namespace 8740 8741 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 8742 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 8743 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 8744 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 8745 auto *AA = &AM.getResult<AAManager>(F); 8746 auto *LI = &AM.getResult<LoopAnalysis>(F); 8747 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 8748 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 8749 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 8750 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8751 8752 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8753 if (!Changed) 8754 return PreservedAnalyses::all(); 8755 8756 PreservedAnalyses PA; 8757 PA.preserveSet<CFGAnalyses>(); 8758 return PA; 8759 } 8760 8761 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 8762 TargetTransformInfo *TTI_, 8763 TargetLibraryInfo *TLI_, AAResults *AA_, 8764 LoopInfo *LI_, DominatorTree *DT_, 8765 AssumptionCache *AC_, DemandedBits *DB_, 8766 OptimizationRemarkEmitter *ORE_) { 8767 if (!RunSLPVectorization) 8768 return false; 8769 SE = SE_; 8770 TTI = TTI_; 8771 TLI = TLI_; 8772 AA = AA_; 8773 LI = LI_; 8774 DT = DT_; 8775 AC = AC_; 8776 DB = DB_; 8777 DL = &F.getParent()->getDataLayout(); 8778 8779 Stores.clear(); 8780 GEPs.clear(); 8781 bool Changed = false; 8782 8783 // If the target claims to have no vector registers don't attempt 8784 // vectorization. 8785 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) { 8786 LLVM_DEBUG( 8787 dbgs() << "SLP: Didn't find any vector registers for target, abort.\n"); 8788 return false; 8789 } 8790 8791 // Don't vectorize when the attribute NoImplicitFloat is used. 8792 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 8793 return false; 8794 8795 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 8796 8797 // Use the bottom up slp vectorizer to construct chains that start with 8798 // store instructions. 8799 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 8800 8801 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 8802 // delete instructions. 8803 8804 // Update DFS numbers now so that we can use them for ordering. 8805 DT->updateDFSNumbers(); 8806 8807 // Scan the blocks in the function in post order. 8808 for (auto BB : post_order(&F.getEntryBlock())) { 8809 collectSeedInstructions(BB); 8810 8811 // Vectorize trees that end at stores. 8812 if (!Stores.empty()) { 8813 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 8814 << " underlying objects.\n"); 8815 Changed |= vectorizeStoreChains(R); 8816 } 8817 8818 // Vectorize trees that end at reductions. 8819 Changed |= vectorizeChainsInBlock(BB, R); 8820 8821 // Vectorize the index computations of getelementptr instructions. This 8822 // is primarily intended to catch gather-like idioms ending at 8823 // non-consecutive loads. 8824 if (!GEPs.empty()) { 8825 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 8826 << " underlying objects.\n"); 8827 Changed |= vectorizeGEPIndices(BB, R); 8828 } 8829 } 8830 8831 if (Changed) { 8832 R.optimizeGatherSequence(); 8833 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 8834 } 8835 return Changed; 8836 } 8837 8838 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 8839 unsigned Idx) { 8840 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 8841 << "\n"); 8842 const unsigned Sz = R.getVectorElementSize(Chain[0]); 8843 const unsigned MinVF = R.getMinVecRegSize() / Sz; 8844 unsigned VF = Chain.size(); 8845 8846 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 8847 return false; 8848 8849 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 8850 << "\n"); 8851 8852 R.buildTree(Chain); 8853 if (R.isTreeTinyAndNotFullyVectorizable()) 8854 return false; 8855 if (R.isLoadCombineCandidate()) 8856 return false; 8857 R.reorderTopToBottom(); 8858 R.reorderBottomToTop(); 8859 R.buildExternalUses(); 8860 8861 R.computeMinimumValueSizes(); 8862 8863 InstructionCost Cost = R.getTreeCost(); 8864 8865 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 8866 if (Cost < -SLPCostThreshold) { 8867 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 8868 8869 using namespace ore; 8870 8871 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 8872 cast<StoreInst>(Chain[0])) 8873 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 8874 << " and with tree size " 8875 << NV("TreeSize", R.getTreeSize())); 8876 8877 R.vectorizeTree(); 8878 return true; 8879 } 8880 8881 return false; 8882 } 8883 8884 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 8885 BoUpSLP &R) { 8886 // We may run into multiple chains that merge into a single chain. We mark the 8887 // stores that we vectorized so that we don't visit the same store twice. 8888 BoUpSLP::ValueSet VectorizedStores; 8889 bool Changed = false; 8890 8891 int E = Stores.size(); 8892 SmallBitVector Tails(E, false); 8893 int MaxIter = MaxStoreLookup.getValue(); 8894 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 8895 E, std::make_pair(E, INT_MAX)); 8896 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 8897 int IterCnt; 8898 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 8899 &CheckedPairs, 8900 &ConsecutiveChain](int K, int Idx) { 8901 if (IterCnt >= MaxIter) 8902 return true; 8903 if (CheckedPairs[Idx].test(K)) 8904 return ConsecutiveChain[K].second == 1 && 8905 ConsecutiveChain[K].first == Idx; 8906 ++IterCnt; 8907 CheckedPairs[Idx].set(K); 8908 CheckedPairs[K].set(Idx); 8909 Optional<int> Diff = getPointersDiff( 8910 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 8911 Stores[Idx]->getValueOperand()->getType(), 8912 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 8913 if (!Diff || *Diff == 0) 8914 return false; 8915 int Val = *Diff; 8916 if (Val < 0) { 8917 if (ConsecutiveChain[Idx].second > -Val) { 8918 Tails.set(K); 8919 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 8920 } 8921 return false; 8922 } 8923 if (ConsecutiveChain[K].second <= Val) 8924 return false; 8925 8926 Tails.set(Idx); 8927 ConsecutiveChain[K] = std::make_pair(Idx, Val); 8928 return Val == 1; 8929 }; 8930 // Do a quadratic search on all of the given stores in reverse order and find 8931 // all of the pairs of stores that follow each other. 8932 for (int Idx = E - 1; Idx >= 0; --Idx) { 8933 // If a store has multiple consecutive store candidates, search according 8934 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 8935 // This is because usually pairing with immediate succeeding or preceding 8936 // candidate create the best chance to find slp vectorization opportunity. 8937 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 8938 IterCnt = 0; 8939 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 8940 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 8941 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 8942 break; 8943 } 8944 8945 // Tracks if we tried to vectorize stores starting from the given tail 8946 // already. 8947 SmallBitVector TriedTails(E, false); 8948 // For stores that start but don't end a link in the chain: 8949 for (int Cnt = E; Cnt > 0; --Cnt) { 8950 int I = Cnt - 1; 8951 if (ConsecutiveChain[I].first == E || Tails.test(I)) 8952 continue; 8953 // We found a store instr that starts a chain. Now follow the chain and try 8954 // to vectorize it. 8955 BoUpSLP::ValueList Operands; 8956 // Collect the chain into a list. 8957 while (I != E && !VectorizedStores.count(Stores[I])) { 8958 Operands.push_back(Stores[I]); 8959 Tails.set(I); 8960 if (ConsecutiveChain[I].second != 1) { 8961 // Mark the new end in the chain and go back, if required. It might be 8962 // required if the original stores come in reversed order, for example. 8963 if (ConsecutiveChain[I].first != E && 8964 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 8965 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 8966 TriedTails.set(I); 8967 Tails.reset(ConsecutiveChain[I].first); 8968 if (Cnt < ConsecutiveChain[I].first + 2) 8969 Cnt = ConsecutiveChain[I].first + 2; 8970 } 8971 break; 8972 } 8973 // Move to the next value in the chain. 8974 I = ConsecutiveChain[I].first; 8975 } 8976 assert(!Operands.empty() && "Expected non-empty list of stores."); 8977 8978 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 8979 unsigned EltSize = R.getVectorElementSize(Operands[0]); 8980 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 8981 8982 unsigned MinVF = R.getMinVF(EltSize); 8983 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 8984 MaxElts); 8985 8986 // FIXME: Is division-by-2 the correct step? Should we assert that the 8987 // register size is a power-of-2? 8988 unsigned StartIdx = 0; 8989 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 8990 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 8991 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 8992 if (!VectorizedStores.count(Slice.front()) && 8993 !VectorizedStores.count(Slice.back()) && 8994 vectorizeStoreChain(Slice, R, Cnt)) { 8995 // Mark the vectorized stores so that we don't vectorize them again. 8996 VectorizedStores.insert(Slice.begin(), Slice.end()); 8997 Changed = true; 8998 // If we vectorized initial block, no need to try to vectorize it 8999 // again. 9000 if (Cnt == StartIdx) 9001 StartIdx += Size; 9002 Cnt += Size; 9003 continue; 9004 } 9005 ++Cnt; 9006 } 9007 // Check if the whole array was vectorized already - exit. 9008 if (StartIdx >= Operands.size()) 9009 break; 9010 } 9011 } 9012 9013 return Changed; 9014 } 9015 9016 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 9017 // Initialize the collections. We will make a single pass over the block. 9018 Stores.clear(); 9019 GEPs.clear(); 9020 9021 // Visit the store and getelementptr instructions in BB and organize them in 9022 // Stores and GEPs according to the underlying objects of their pointer 9023 // operands. 9024 for (Instruction &I : *BB) { 9025 // Ignore store instructions that are volatile or have a pointer operand 9026 // that doesn't point to a scalar type. 9027 if (auto *SI = dyn_cast<StoreInst>(&I)) { 9028 if (!SI->isSimple()) 9029 continue; 9030 if (!isValidElementType(SI->getValueOperand()->getType())) 9031 continue; 9032 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 9033 } 9034 9035 // Ignore getelementptr instructions that have more than one index, a 9036 // constant index, or a pointer operand that doesn't point to a scalar 9037 // type. 9038 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 9039 auto Idx = GEP->idx_begin()->get(); 9040 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 9041 continue; 9042 if (!isValidElementType(Idx->getType())) 9043 continue; 9044 if (GEP->getType()->isVectorTy()) 9045 continue; 9046 GEPs[GEP->getPointerOperand()].push_back(GEP); 9047 } 9048 } 9049 } 9050 9051 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 9052 if (!A || !B) 9053 return false; 9054 if (isa<InsertElementInst>(A) || isa<InsertElementInst>(B)) 9055 return false; 9056 Value *VL[] = {A, B}; 9057 return tryToVectorizeList(VL, R); 9058 } 9059 9060 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 9061 bool LimitForRegisterSize) { 9062 if (VL.size() < 2) 9063 return false; 9064 9065 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 9066 << VL.size() << ".\n"); 9067 9068 // Check that all of the parts are instructions of the same type, 9069 // we permit an alternate opcode via InstructionsState. 9070 InstructionsState S = getSameOpcode(VL); 9071 if (!S.getOpcode()) 9072 return false; 9073 9074 Instruction *I0 = cast<Instruction>(S.OpValue); 9075 // Make sure invalid types (including vector type) are rejected before 9076 // determining vectorization factor for scalar instructions. 9077 for (Value *V : VL) { 9078 Type *Ty = V->getType(); 9079 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 9080 // NOTE: the following will give user internal llvm type name, which may 9081 // not be useful. 9082 R.getORE()->emit([&]() { 9083 std::string type_str; 9084 llvm::raw_string_ostream rso(type_str); 9085 Ty->print(rso); 9086 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 9087 << "Cannot SLP vectorize list: type " 9088 << rso.str() + " is unsupported by vectorizer"; 9089 }); 9090 return false; 9091 } 9092 } 9093 9094 unsigned Sz = R.getVectorElementSize(I0); 9095 unsigned MinVF = R.getMinVF(Sz); 9096 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 9097 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 9098 if (MaxVF < 2) { 9099 R.getORE()->emit([&]() { 9100 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 9101 << "Cannot SLP vectorize list: vectorization factor " 9102 << "less than 2 is not supported"; 9103 }); 9104 return false; 9105 } 9106 9107 bool Changed = false; 9108 bool CandidateFound = false; 9109 InstructionCost MinCost = SLPCostThreshold.getValue(); 9110 Type *ScalarTy = VL[0]->getType(); 9111 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 9112 ScalarTy = IE->getOperand(1)->getType(); 9113 9114 unsigned NextInst = 0, MaxInst = VL.size(); 9115 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 9116 // No actual vectorization should happen, if number of parts is the same as 9117 // provided vectorization factor (i.e. the scalar type is used for vector 9118 // code during codegen). 9119 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 9120 if (TTI->getNumberOfParts(VecTy) == VF) 9121 continue; 9122 for (unsigned I = NextInst; I < MaxInst; ++I) { 9123 unsigned OpsWidth = 0; 9124 9125 if (I + VF > MaxInst) 9126 OpsWidth = MaxInst - I; 9127 else 9128 OpsWidth = VF; 9129 9130 if (!isPowerOf2_32(OpsWidth)) 9131 continue; 9132 9133 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 9134 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 9135 break; 9136 9137 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 9138 // Check that a previous iteration of this loop did not delete the Value. 9139 if (llvm::any_of(Ops, [&R](Value *V) { 9140 auto *I = dyn_cast<Instruction>(V); 9141 return I && R.isDeleted(I); 9142 })) 9143 continue; 9144 9145 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 9146 << "\n"); 9147 9148 R.buildTree(Ops); 9149 if (R.isTreeTinyAndNotFullyVectorizable()) 9150 continue; 9151 R.reorderTopToBottom(); 9152 R.reorderBottomToTop(!isa<InsertElementInst>(Ops.front())); 9153 R.buildExternalUses(); 9154 9155 R.computeMinimumValueSizes(); 9156 InstructionCost Cost = R.getTreeCost(); 9157 CandidateFound = true; 9158 MinCost = std::min(MinCost, Cost); 9159 9160 if (Cost < -SLPCostThreshold) { 9161 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 9162 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 9163 cast<Instruction>(Ops[0])) 9164 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 9165 << " and with tree size " 9166 << ore::NV("TreeSize", R.getTreeSize())); 9167 9168 R.vectorizeTree(); 9169 // Move to the next bundle. 9170 I += VF - 1; 9171 NextInst = I + 1; 9172 Changed = true; 9173 } 9174 } 9175 } 9176 9177 if (!Changed && CandidateFound) { 9178 R.getORE()->emit([&]() { 9179 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 9180 << "List vectorization was possible but not beneficial with cost " 9181 << ore::NV("Cost", MinCost) << " >= " 9182 << ore::NV("Treshold", -SLPCostThreshold); 9183 }); 9184 } else if (!Changed) { 9185 R.getORE()->emit([&]() { 9186 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 9187 << "Cannot SLP vectorize list: vectorization was impossible" 9188 << " with available vectorization factors"; 9189 }); 9190 } 9191 return Changed; 9192 } 9193 9194 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 9195 if (!I) 9196 return false; 9197 9198 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 9199 return false; 9200 9201 Value *P = I->getParent(); 9202 9203 // Vectorize in current basic block only. 9204 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 9205 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 9206 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 9207 return false; 9208 9209 // Try to vectorize V. 9210 if (tryToVectorizePair(Op0, Op1, R)) 9211 return true; 9212 9213 auto *A = dyn_cast<BinaryOperator>(Op0); 9214 auto *B = dyn_cast<BinaryOperator>(Op1); 9215 // Try to skip B. 9216 if (B && B->hasOneUse()) { 9217 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 9218 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 9219 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 9220 return true; 9221 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 9222 return true; 9223 } 9224 9225 // Try to skip A. 9226 if (A && A->hasOneUse()) { 9227 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 9228 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 9229 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 9230 return true; 9231 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 9232 return true; 9233 } 9234 return false; 9235 } 9236 9237 namespace { 9238 9239 /// Model horizontal reductions. 9240 /// 9241 /// A horizontal reduction is a tree of reduction instructions that has values 9242 /// that can be put into a vector as its leaves. For example: 9243 /// 9244 /// mul mul mul mul 9245 /// \ / \ / 9246 /// + + 9247 /// \ / 9248 /// + 9249 /// This tree has "mul" as its leaf values and "+" as its reduction 9250 /// instructions. A reduction can feed into a store or a binary operation 9251 /// feeding a phi. 9252 /// ... 9253 /// \ / 9254 /// + 9255 /// | 9256 /// phi += 9257 /// 9258 /// Or: 9259 /// ... 9260 /// \ / 9261 /// + 9262 /// | 9263 /// *p = 9264 /// 9265 class HorizontalReduction { 9266 using ReductionOpsType = SmallVector<Value *, 16>; 9267 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 9268 ReductionOpsListType ReductionOps; 9269 /// List of possibly reduced values. 9270 SmallVector<SmallVector<Value *>> ReducedVals; 9271 /// Maps reduced value to the corresponding reduction operation. 9272 DenseMap<Value *, Instruction *> ReducedValsToOps; 9273 // Use map vector to make stable output. 9274 MapVector<Instruction *, Value *> ExtraArgs; 9275 WeakTrackingVH ReductionRoot; 9276 /// The type of reduction operation. 9277 RecurKind RdxKind; 9278 9279 static bool isCmpSelMinMax(Instruction *I) { 9280 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 9281 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 9282 } 9283 9284 // And/or are potentially poison-safe logical patterns like: 9285 // select x, y, false 9286 // select x, true, y 9287 static bool isBoolLogicOp(Instruction *I) { 9288 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 9289 match(I, m_LogicalOr(m_Value(), m_Value())); 9290 } 9291 9292 /// Checks if instruction is associative and can be vectorized. 9293 static bool isVectorizable(RecurKind Kind, Instruction *I) { 9294 if (Kind == RecurKind::None) 9295 return false; 9296 9297 // Integer ops that map to select instructions or intrinsics are fine. 9298 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 9299 isBoolLogicOp(I)) 9300 return true; 9301 9302 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 9303 // FP min/max are associative except for NaN and -0.0. We do not 9304 // have to rule out -0.0 here because the intrinsic semantics do not 9305 // specify a fixed result for it. 9306 return I->getFastMathFlags().noNaNs(); 9307 } 9308 9309 return I->isAssociative(); 9310 } 9311 9312 static Value *getRdxOperand(Instruction *I, unsigned Index) { 9313 // Poison-safe 'or' takes the form: select X, true, Y 9314 // To make that work with the normal operand processing, we skip the 9315 // true value operand. 9316 // TODO: Change the code and data structures to handle this without a hack. 9317 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 9318 return I->getOperand(2); 9319 return I->getOperand(Index); 9320 } 9321 9322 /// Creates reduction operation with the current opcode. 9323 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 9324 Value *RHS, const Twine &Name, bool UseSelect) { 9325 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 9326 switch (Kind) { 9327 case RecurKind::Or: 9328 if (UseSelect && 9329 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 9330 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 9331 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9332 Name); 9333 case RecurKind::And: 9334 if (UseSelect && 9335 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 9336 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 9337 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9338 Name); 9339 case RecurKind::Add: 9340 case RecurKind::Mul: 9341 case RecurKind::Xor: 9342 case RecurKind::FAdd: 9343 case RecurKind::FMul: 9344 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9345 Name); 9346 case RecurKind::FMax: 9347 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 9348 case RecurKind::FMin: 9349 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 9350 case RecurKind::SMax: 9351 if (UseSelect) { 9352 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 9353 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9354 } 9355 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 9356 case RecurKind::SMin: 9357 if (UseSelect) { 9358 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 9359 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9360 } 9361 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 9362 case RecurKind::UMax: 9363 if (UseSelect) { 9364 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 9365 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9366 } 9367 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 9368 case RecurKind::UMin: 9369 if (UseSelect) { 9370 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 9371 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9372 } 9373 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 9374 default: 9375 llvm_unreachable("Unknown reduction operation."); 9376 } 9377 } 9378 9379 /// Creates reduction operation with the current opcode with the IR flags 9380 /// from \p ReductionOps. 9381 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9382 Value *RHS, const Twine &Name, 9383 const ReductionOpsListType &ReductionOps) { 9384 bool UseSelect = ReductionOps.size() == 2 || 9385 // Logical or/and. 9386 (ReductionOps.size() == 1 && 9387 isa<SelectInst>(ReductionOps.front().front())); 9388 assert((!UseSelect || ReductionOps.size() != 2 || 9389 isa<SelectInst>(ReductionOps[1][0])) && 9390 "Expected cmp + select pairs for reduction"); 9391 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 9392 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9393 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 9394 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 9395 propagateIRFlags(Op, ReductionOps[1]); 9396 return Op; 9397 } 9398 } 9399 propagateIRFlags(Op, ReductionOps[0]); 9400 return Op; 9401 } 9402 9403 /// Creates reduction operation with the current opcode with the IR flags 9404 /// from \p I. 9405 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9406 Value *RHS, const Twine &Name, Value *I) { 9407 auto *SelI = dyn_cast<SelectInst>(I); 9408 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 9409 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9410 if (auto *Sel = dyn_cast<SelectInst>(Op)) 9411 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 9412 } 9413 propagateIRFlags(Op, I); 9414 return Op; 9415 } 9416 9417 static RecurKind getRdxKind(Value *V) { 9418 auto *I = dyn_cast<Instruction>(V); 9419 if (!I) 9420 return RecurKind::None; 9421 if (match(I, m_Add(m_Value(), m_Value()))) 9422 return RecurKind::Add; 9423 if (match(I, m_Mul(m_Value(), m_Value()))) 9424 return RecurKind::Mul; 9425 if (match(I, m_And(m_Value(), m_Value())) || 9426 match(I, m_LogicalAnd(m_Value(), m_Value()))) 9427 return RecurKind::And; 9428 if (match(I, m_Or(m_Value(), m_Value())) || 9429 match(I, m_LogicalOr(m_Value(), m_Value()))) 9430 return RecurKind::Or; 9431 if (match(I, m_Xor(m_Value(), m_Value()))) 9432 return RecurKind::Xor; 9433 if (match(I, m_FAdd(m_Value(), m_Value()))) 9434 return RecurKind::FAdd; 9435 if (match(I, m_FMul(m_Value(), m_Value()))) 9436 return RecurKind::FMul; 9437 9438 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 9439 return RecurKind::FMax; 9440 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 9441 return RecurKind::FMin; 9442 9443 // This matches either cmp+select or intrinsics. SLP is expected to handle 9444 // either form. 9445 // TODO: If we are canonicalizing to intrinsics, we can remove several 9446 // special-case paths that deal with selects. 9447 if (match(I, m_SMax(m_Value(), m_Value()))) 9448 return RecurKind::SMax; 9449 if (match(I, m_SMin(m_Value(), m_Value()))) 9450 return RecurKind::SMin; 9451 if (match(I, m_UMax(m_Value(), m_Value()))) 9452 return RecurKind::UMax; 9453 if (match(I, m_UMin(m_Value(), m_Value()))) 9454 return RecurKind::UMin; 9455 9456 if (auto *Select = dyn_cast<SelectInst>(I)) { 9457 // Try harder: look for min/max pattern based on instructions producing 9458 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 9459 // During the intermediate stages of SLP, it's very common to have 9460 // pattern like this (since optimizeGatherSequence is run only once 9461 // at the end): 9462 // %1 = extractelement <2 x i32> %a, i32 0 9463 // %2 = extractelement <2 x i32> %a, i32 1 9464 // %cond = icmp sgt i32 %1, %2 9465 // %3 = extractelement <2 x i32> %a, i32 0 9466 // %4 = extractelement <2 x i32> %a, i32 1 9467 // %select = select i1 %cond, i32 %3, i32 %4 9468 CmpInst::Predicate Pred; 9469 Instruction *L1; 9470 Instruction *L2; 9471 9472 Value *LHS = Select->getTrueValue(); 9473 Value *RHS = Select->getFalseValue(); 9474 Value *Cond = Select->getCondition(); 9475 9476 // TODO: Support inverse predicates. 9477 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 9478 if (!isa<ExtractElementInst>(RHS) || 9479 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9480 return RecurKind::None; 9481 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 9482 if (!isa<ExtractElementInst>(LHS) || 9483 !L1->isIdenticalTo(cast<Instruction>(LHS))) 9484 return RecurKind::None; 9485 } else { 9486 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 9487 return RecurKind::None; 9488 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 9489 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 9490 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9491 return RecurKind::None; 9492 } 9493 9494 switch (Pred) { 9495 default: 9496 return RecurKind::None; 9497 case CmpInst::ICMP_SGT: 9498 case CmpInst::ICMP_SGE: 9499 return RecurKind::SMax; 9500 case CmpInst::ICMP_SLT: 9501 case CmpInst::ICMP_SLE: 9502 return RecurKind::SMin; 9503 case CmpInst::ICMP_UGT: 9504 case CmpInst::ICMP_UGE: 9505 return RecurKind::UMax; 9506 case CmpInst::ICMP_ULT: 9507 case CmpInst::ICMP_ULE: 9508 return RecurKind::UMin; 9509 } 9510 } 9511 return RecurKind::None; 9512 } 9513 9514 /// Get the index of the first operand. 9515 static unsigned getFirstOperandIndex(Instruction *I) { 9516 return isCmpSelMinMax(I) ? 1 : 0; 9517 } 9518 9519 /// Total number of operands in the reduction operation. 9520 static unsigned getNumberOfOperands(Instruction *I) { 9521 return isCmpSelMinMax(I) ? 3 : 2; 9522 } 9523 9524 /// Checks if the instruction is in basic block \p BB. 9525 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 9526 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 9527 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 9528 auto *Sel = cast<SelectInst>(I); 9529 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 9530 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 9531 } 9532 return I->getParent() == BB; 9533 } 9534 9535 /// Expected number of uses for reduction operations/reduced values. 9536 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 9537 if (IsCmpSelMinMax) { 9538 // SelectInst must be used twice while the condition op must have single 9539 // use only. 9540 if (auto *Sel = dyn_cast<SelectInst>(I)) 9541 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 9542 return I->hasNUses(2); 9543 } 9544 9545 // Arithmetic reduction operation must be used once only. 9546 return I->hasOneUse(); 9547 } 9548 9549 /// Initializes the list of reduction operations. 9550 void initReductionOps(Instruction *I) { 9551 if (isCmpSelMinMax(I)) 9552 ReductionOps.assign(2, ReductionOpsType()); 9553 else 9554 ReductionOps.assign(1, ReductionOpsType()); 9555 } 9556 9557 /// Add all reduction operations for the reduction instruction \p I. 9558 void addReductionOps(Instruction *I) { 9559 if (isCmpSelMinMax(I)) { 9560 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 9561 ReductionOps[1].emplace_back(I); 9562 } else { 9563 ReductionOps[0].emplace_back(I); 9564 } 9565 } 9566 9567 static Value *getLHS(RecurKind Kind, Instruction *I) { 9568 if (Kind == RecurKind::None) 9569 return nullptr; 9570 return I->getOperand(getFirstOperandIndex(I)); 9571 } 9572 static Value *getRHS(RecurKind Kind, Instruction *I) { 9573 if (Kind == RecurKind::None) 9574 return nullptr; 9575 return I->getOperand(getFirstOperandIndex(I) + 1); 9576 } 9577 9578 public: 9579 HorizontalReduction() = default; 9580 9581 /// Try to find a reduction tree. 9582 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst, 9583 ScalarEvolution &SE, const DataLayout &DL, 9584 const TargetLibraryInfo &TLI) { 9585 assert((!Phi || is_contained(Phi->operands(), Inst)) && 9586 "Phi needs to use the binary operator"); 9587 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 9588 isa<IntrinsicInst>(Inst)) && 9589 "Expected binop, select, or intrinsic for reduction matching"); 9590 RdxKind = getRdxKind(Inst); 9591 9592 // We could have a initial reductions that is not an add. 9593 // r *= v1 + v2 + v3 + v4 9594 // In such a case start looking for a tree rooted in the first '+'. 9595 if (Phi) { 9596 if (getLHS(RdxKind, Inst) == Phi) { 9597 Phi = nullptr; 9598 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 9599 if (!Inst) 9600 return false; 9601 RdxKind = getRdxKind(Inst); 9602 } else if (getRHS(RdxKind, Inst) == Phi) { 9603 Phi = nullptr; 9604 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 9605 if (!Inst) 9606 return false; 9607 RdxKind = getRdxKind(Inst); 9608 } 9609 } 9610 9611 if (!isVectorizable(RdxKind, Inst)) 9612 return false; 9613 9614 // Analyze "regular" integer/FP types for reductions - no target-specific 9615 // types or pointers. 9616 Type *Ty = Inst->getType(); 9617 if (!isValidElementType(Ty) || Ty->isPointerTy()) 9618 return false; 9619 9620 // Though the ultimate reduction may have multiple uses, its condition must 9621 // have only single use. 9622 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 9623 if (!Sel->getCondition()->hasOneUse()) 9624 return false; 9625 9626 ReductionRoot = Inst; 9627 9628 // Iterate through all the operands of the possible reduction tree and 9629 // gather all the reduced values, sorting them by their value id. 9630 BasicBlock *BB = Inst->getParent(); 9631 bool IsCmpSelMinMax = isCmpSelMinMax(Inst); 9632 SmallVector<Instruction *> Worklist(1, Inst); 9633 // Checks if the operands of the \p TreeN instruction are also reduction 9634 // operations or should be treated as reduced values or an extra argument, 9635 // which is not part of the reduction. 9636 auto &&CheckOperands = [this, IsCmpSelMinMax, 9637 BB](Instruction *TreeN, 9638 SmallVectorImpl<Value *> &ExtraArgs, 9639 SmallVectorImpl<Value *> &PossibleReducedVals, 9640 SmallVectorImpl<Instruction *> &ReductionOps) { 9641 for (int I = getFirstOperandIndex(TreeN), 9642 End = getNumberOfOperands(TreeN); 9643 I < End; ++I) { 9644 Value *EdgeVal = getRdxOperand(TreeN, I); 9645 ReducedValsToOps.try_emplace(EdgeVal, TreeN); 9646 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 9647 // Edge has wrong parent - mark as an extra argument. 9648 if (EdgeInst && !isVectorLikeInstWithConstOps(EdgeInst) && 9649 !hasSameParent(EdgeInst, BB)) { 9650 ExtraArgs.push_back(EdgeVal); 9651 continue; 9652 } 9653 // If the edge is not an instruction, or it is different from the main 9654 // reduction opcode or has too many uses - possible reduced value. 9655 if (!EdgeInst || getRdxKind(EdgeInst) != RdxKind || 9656 !hasRequiredNumberOfUses(IsCmpSelMinMax, EdgeInst) || 9657 !isVectorizable(getRdxKind(EdgeInst), EdgeInst)) { 9658 PossibleReducedVals.push_back(EdgeVal); 9659 continue; 9660 } 9661 ReductionOps.push_back(EdgeInst); 9662 } 9663 }; 9664 // Try to regroup reduced values so that it gets more profitable to try to 9665 // reduce them. Values are grouped by their value ids, instructions - by 9666 // instruction op id and/or alternate op id, plus do extra analysis for 9667 // loads (grouping them by the distabce between pointers) and cmp 9668 // instructions (grouping them by the predicate). 9669 MapVector<size_t, MapVector<size_t, SmallVector<Value *>>> 9670 PossibleReducedVals; 9671 initReductionOps(Inst); 9672 while (!Worklist.empty()) { 9673 Instruction *TreeN = Worklist.pop_back_val(); 9674 SmallVector<Value *> Args; 9675 SmallVector<Value *> PossibleRedVals; 9676 SmallVector<Instruction *> PossibleReductionOps; 9677 CheckOperands(TreeN, Args, PossibleRedVals, PossibleReductionOps); 9678 // If too many extra args - mark the instruction itself as a reduction 9679 // value, not a reduction operation. 9680 if (Args.size() < 2) { 9681 addReductionOps(TreeN); 9682 // Add extra args. 9683 if (!Args.empty()) { 9684 assert(Args.size() == 1 && "Expected only single argument."); 9685 ExtraArgs[TreeN] = Args.front(); 9686 } 9687 // Add reduction values. The values are sorted for better vectorization 9688 // results. 9689 for (Value *V : PossibleRedVals) { 9690 size_t Key, Idx; 9691 std::tie(Key, Idx) = generateKeySubkey( 9692 V, &TLI, 9693 [&PossibleReducedVals, &DL, &SE](size_t Key, LoadInst *LI) { 9694 for (const auto &LoadData : PossibleReducedVals[Key]) { 9695 auto *RLI = cast<LoadInst>(LoadData.second.front()); 9696 if (getPointersDiff(RLI->getType(), RLI->getPointerOperand(), 9697 LI->getType(), LI->getPointerOperand(), 9698 DL, SE, /*StrictCheck=*/true)) 9699 return hash_value(RLI->getPointerOperand()); 9700 } 9701 return hash_value(LI->getPointerOperand()); 9702 }, 9703 /*AllowAlternate=*/false); 9704 PossibleReducedVals[Key][Idx].push_back(V); 9705 } 9706 Worklist.append(PossibleReductionOps.begin(), 9707 PossibleReductionOps.end()); 9708 } else { 9709 size_t Key, Idx; 9710 std::tie(Key, Idx) = generateKeySubkey( 9711 TreeN, &TLI, 9712 [&PossibleReducedVals, &DL, &SE](size_t Key, LoadInst *LI) { 9713 for (const auto &LoadData : PossibleReducedVals[Key]) { 9714 auto *RLI = cast<LoadInst>(LoadData.second.front()); 9715 if (getPointersDiff(RLI->getType(), RLI->getPointerOperand(), 9716 LI->getType(), LI->getPointerOperand(), DL, 9717 SE, /*StrictCheck=*/true)) 9718 return hash_value(RLI->getPointerOperand()); 9719 } 9720 return hash_value(LI->getPointerOperand()); 9721 }, 9722 /*AllowAlternate=*/false); 9723 PossibleReducedVals[Key][Idx].push_back(TreeN); 9724 } 9725 } 9726 auto PossibleReducedValsVect = PossibleReducedVals.takeVector(); 9727 // Sort values by the total number of values kinds to start the reduction 9728 // from the longest possible reduced values sequences. 9729 for (auto &PossibleReducedVals : PossibleReducedValsVect) { 9730 auto PossibleRedVals = PossibleReducedVals.second.takeVector(); 9731 stable_sort(PossibleRedVals, [](const auto &P1, const auto &P2) { 9732 return P1.second.size() > P2.second.size(); 9733 }); 9734 ReducedVals.emplace_back(); 9735 for (auto &Data : PossibleRedVals) 9736 ReducedVals.back().append(Data.second.rbegin(), Data.second.rend()); 9737 } 9738 // Sort the reduced values by number of same/alternate opcode and/or pointer 9739 // operand. 9740 stable_sort(ReducedVals, [](ArrayRef<Value *> P1, ArrayRef<Value *> P2) { 9741 return P1.size() > P2.size(); 9742 }); 9743 return true; 9744 } 9745 9746 /// Attempt to vectorize the tree found by matchAssociativeReduction. 9747 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 9748 // If there are a sufficient number of reduction values, reduce 9749 // to a nearby power-of-2. We can safely generate oversized 9750 // vectors and rely on the backend to split them to legal sizes. 9751 unsigned NumReducedVals = std::accumulate( 9752 ReducedVals.begin(), ReducedVals.end(), 0, 9753 [](int Num, ArrayRef<Value *> Vals) { return Num + Vals.size(); }); 9754 if (NumReducedVals < 4) 9755 return nullptr; 9756 9757 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 9758 9759 // Track the reduced values in case if they are replaced by extractelement 9760 // because of the vectorization. 9761 DenseMap<Value *, WeakTrackingVH> TrackedVals; 9762 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 9763 // The same extra argument may be used several times, so log each attempt 9764 // to use it. 9765 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 9766 assert(Pair.first && "DebugLoc must be set."); 9767 ExternallyUsedValues[Pair.second].push_back(Pair.first); 9768 TrackedVals.try_emplace(Pair.second, Pair.second); 9769 } 9770 9771 // The compare instruction of a min/max is the insertion point for new 9772 // instructions and may be replaced with a new compare instruction. 9773 auto &&GetCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 9774 assert(isa<SelectInst>(RdxRootInst) && 9775 "Expected min/max reduction to have select root instruction"); 9776 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 9777 assert(isa<Instruction>(ScalarCond) && 9778 "Expected min/max reduction to have compare condition"); 9779 return cast<Instruction>(ScalarCond); 9780 }; 9781 9782 // The reduction root is used as the insertion point for new instructions, 9783 // so set it as externally used to prevent it from being deleted. 9784 ExternallyUsedValues[ReductionRoot]; 9785 SmallVector<Value *> IgnoreList; 9786 for (ReductionOpsType &RdxOps : ReductionOps) 9787 for (Value *RdxOp : RdxOps) { 9788 if (!RdxOp) 9789 continue; 9790 IgnoreList.push_back(RdxOp); 9791 } 9792 9793 // Need to track reduced vals, they may be changed during vectorization of 9794 // subvectors. 9795 for (ArrayRef<Value *> Candidates : ReducedVals) 9796 for (Value *V : Candidates) 9797 TrackedVals.try_emplace(V, V); 9798 9799 DenseMap<Value *, unsigned> VectorizedVals; 9800 Value *VectorizedTree = nullptr; 9801 // Try to vectorize elements based on their type. 9802 for (unsigned I = 0, E = ReducedVals.size(); I < E; ++I) { 9803 ArrayRef<Value *> OrigReducedVals = ReducedVals[I]; 9804 InstructionsState S = getSameOpcode(OrigReducedVals); 9805 SmallVector<Value *> Candidates; 9806 DenseMap<Value *, Value *> TrackedToOrig; 9807 for (unsigned Cnt = 0, Sz = OrigReducedVals.size(); Cnt < Sz; ++Cnt) { 9808 Value *RdxVal = TrackedVals.find(OrigReducedVals[Cnt])->second; 9809 // Check if the reduction value was not overriden by the extractelement 9810 // instruction because of the vectorization and exclude it, if it is not 9811 // compatible with other values. 9812 if (auto *Inst = dyn_cast<Instruction>(RdxVal)) 9813 if (isVectorLikeInstWithConstOps(Inst) && 9814 (!S.getOpcode() || !S.isOpcodeOrAlt(Inst))) 9815 continue; 9816 Candidates.push_back(RdxVal); 9817 TrackedToOrig.try_emplace(RdxVal, OrigReducedVals[Cnt]); 9818 } 9819 bool ShuffledExtracts = false; 9820 // Try to handle shuffled extractelements. 9821 if (S.getOpcode() == Instruction::ExtractElement && !S.isAltShuffle() && 9822 I + 1 < E) { 9823 InstructionsState NextS = getSameOpcode(ReducedVals[I + 1]); 9824 if (NextS.getOpcode() == Instruction::ExtractElement && 9825 !NextS.isAltShuffle()) { 9826 SmallVector<Value *> CommonCandidates(Candidates); 9827 for (Value *RV : ReducedVals[I + 1]) { 9828 Value *RdxVal = TrackedVals.find(RV)->second; 9829 // Check if the reduction value was not overriden by the 9830 // extractelement instruction because of the vectorization and 9831 // exclude it, if it is not compatible with other values. 9832 if (auto *Inst = dyn_cast<Instruction>(RdxVal)) 9833 if (!NextS.getOpcode() || !NextS.isOpcodeOrAlt(Inst)) 9834 continue; 9835 CommonCandidates.push_back(RdxVal); 9836 TrackedToOrig.try_emplace(RdxVal, RV); 9837 } 9838 SmallVector<int> Mask; 9839 if (isFixedVectorShuffle(CommonCandidates, Mask)) { 9840 ++I; 9841 Candidates.swap(CommonCandidates); 9842 ShuffledExtracts = true; 9843 } 9844 } 9845 } 9846 unsigned NumReducedVals = Candidates.size(); 9847 if (NumReducedVals < 4) 9848 continue; 9849 9850 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 9851 unsigned Start = 0; 9852 unsigned Pos = Start; 9853 // Restarts vectorization attempt with lower vector factor. 9854 auto &&AdjustReducedVals = [&Pos, &Start, &ReduxWidth, NumReducedVals]() { 9855 if (ReduxWidth == 4 || Pos >= NumReducedVals - ReduxWidth + 1) { 9856 ++Start; 9857 ReduxWidth = PowerOf2Floor(NumReducedVals - Start) * 2; 9858 } 9859 Pos = Start; 9860 ReduxWidth /= 2; 9861 }; 9862 while (Pos < NumReducedVals - ReduxWidth + 1 && ReduxWidth >= 4) { 9863 ArrayRef<Value *> VL(std::next(Candidates.begin(), Pos), ReduxWidth); 9864 V.buildTree(VL, IgnoreList); 9865 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) { 9866 AdjustReducedVals(); 9867 continue; 9868 } 9869 if (V.isLoadCombineReductionCandidate(RdxKind)) { 9870 AdjustReducedVals(); 9871 continue; 9872 } 9873 V.reorderTopToBottom(); 9874 // No need to reorder the root node at all. 9875 V.reorderBottomToTop(/*IgnoreReorder=*/true); 9876 // Keep extracted other reduction values, if they are used in the 9877 // vectorization trees. 9878 BoUpSLP::ExtraValueToDebugLocsMap LocalExternallyUsedValues( 9879 ExternallyUsedValues); 9880 for (unsigned Cnt = 0, Sz = ReducedVals.size(); Cnt < Sz; ++Cnt) { 9881 if (Cnt == I || (ShuffledExtracts && Cnt == I - 1)) 9882 continue; 9883 for_each(ReducedVals[Cnt], 9884 [&LocalExternallyUsedValues, &TrackedVals](Value *V) { 9885 if (isa<Instruction>(V)) 9886 LocalExternallyUsedValues[TrackedVals[V]]; 9887 }); 9888 } 9889 for (unsigned Cnt = 0; Cnt < NumReducedVals; ++Cnt) { 9890 if (Cnt >= Pos && Cnt < Pos + ReduxWidth) 9891 continue; 9892 if (VectorizedVals.count(Candidates[Cnt])) 9893 continue; 9894 LocalExternallyUsedValues[Candidates[Cnt]]; 9895 } 9896 V.buildExternalUses(LocalExternallyUsedValues); 9897 9898 V.computeMinimumValueSizes(); 9899 9900 // Intersect the fast-math-flags from all reduction operations. 9901 FastMathFlags RdxFMF; 9902 RdxFMF.set(); 9903 for (Value *RdxVal : VL) { 9904 if (auto *FPMO = dyn_cast<FPMathOperator>( 9905 ReducedValsToOps.find(RdxVal)->second)) 9906 RdxFMF &= FPMO->getFastMathFlags(); 9907 } 9908 // Estimate cost. 9909 InstructionCost TreeCost = V.getTreeCost(VL); 9910 InstructionCost ReductionCost = 9911 getReductionCost(TTI, VL[0], ReduxWidth, RdxFMF); 9912 InstructionCost Cost = TreeCost + ReductionCost; 9913 if (!Cost.isValid()) { 9914 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 9915 return nullptr; 9916 } 9917 if (Cost >= -SLPCostThreshold) { 9918 V.getORE()->emit([&]() { 9919 return OptimizationRemarkMissed( 9920 SV_NAME, "HorSLPNotBeneficial", 9921 ReducedValsToOps.find(VL[0])->second) 9922 << "Vectorizing horizontal reduction is possible" 9923 << "but not beneficial with cost " << ore::NV("Cost", Cost) 9924 << " and threshold " 9925 << ore::NV("Threshold", -SLPCostThreshold); 9926 }); 9927 AdjustReducedVals(); 9928 continue; 9929 } 9930 9931 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 9932 << Cost << ". (HorRdx)\n"); 9933 V.getORE()->emit([&]() { 9934 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 9935 ReducedValsToOps.find(VL[0])->second) 9936 << "Vectorized horizontal reduction with cost " 9937 << ore::NV("Cost", Cost) << " and with tree size " 9938 << ore::NV("TreeSize", V.getTreeSize()); 9939 }); 9940 9941 Builder.setFastMathFlags(RdxFMF); 9942 9943 // Vectorize a tree. 9944 Value *VectorizedRoot = V.vectorizeTree(LocalExternallyUsedValues); 9945 9946 // Emit a reduction. If the root is a select (min/max idiom), the insert 9947 // point is the compare condition of that select. 9948 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 9949 if (isCmpSelMinMax(RdxRootInst)) 9950 Builder.SetInsertPoint(GetCmpForMinMaxReduction(RdxRootInst)); 9951 else 9952 Builder.SetInsertPoint(RdxRootInst); 9953 9954 // To prevent poison from leaking across what used to be sequential, 9955 // safe, scalar boolean logic operations, the reduction operand must be 9956 // frozen. 9957 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 9958 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 9959 9960 Value *ReducedSubTree = 9961 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 9962 9963 if (!VectorizedTree) { 9964 // Initialize the final value in the reduction. 9965 VectorizedTree = ReducedSubTree; 9966 } else { 9967 // Update the final value in the reduction. 9968 Builder.SetCurrentDebugLocation( 9969 cast<Instruction>(ReductionOps.front().front())->getDebugLoc()); 9970 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9971 ReducedSubTree, "op.rdx", ReductionOps); 9972 } 9973 // Count vectorized reduced values to exclude them from final reduction. 9974 for (Value *V : VL) 9975 ++VectorizedVals.try_emplace(TrackedToOrig.find(V)->second, 0) 9976 .first->getSecond(); 9977 Pos += ReduxWidth; 9978 Start = Pos; 9979 ReduxWidth = PowerOf2Floor(NumReducedVals - Pos); 9980 } 9981 } 9982 if (VectorizedTree) { 9983 // Finish the reduction. 9984 // Need to add extra arguments and not vectorized possible reduction 9985 // values. 9986 for (unsigned I = 0, E = ReducedVals.size(); I < E; ++I) { 9987 ArrayRef<Value *> Candidates = ReducedVals[I]; 9988 for (Value *RdxVal : Candidates) { 9989 auto It = VectorizedVals.find(RdxVal); 9990 if (It != VectorizedVals.end()) { 9991 --It->getSecond(); 9992 if (It->second == 0) 9993 VectorizedVals.erase(It); 9994 continue; 9995 } 9996 Instruction *RedOp = ReducedValsToOps.find(RdxVal)->second; 9997 Builder.SetCurrentDebugLocation(RedOp->getDebugLoc()); 9998 ReductionOpsListType Ops; 9999 if (auto *Sel = dyn_cast<SelectInst>(RedOp)) 10000 Ops.emplace_back().push_back(Sel->getCondition()); 10001 Ops.emplace_back().push_back(RedOp); 10002 Value *StableRdxVal = RdxVal; 10003 auto TVIt = TrackedVals.find(RdxVal); 10004 if (TVIt != TrackedVals.end()) 10005 StableRdxVal = TVIt->second; 10006 10007 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 10008 StableRdxVal, "op.rdx", RedOp); 10009 } 10010 } 10011 for (auto &Pair : ExternallyUsedValues) { 10012 // Add each externally used value to the final reduction. 10013 for (auto *I : Pair.second) { 10014 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 10015 ReductionOpsListType Ops; 10016 if (auto *Sel = dyn_cast<SelectInst>(I)) 10017 Ops.emplace_back().push_back(Sel->getCondition()); 10018 Ops.emplace_back().push_back(I); 10019 Value *StableRdxVal = Pair.first; 10020 auto TVIt = TrackedVals.find(Pair.first); 10021 if (TVIt != TrackedVals.end()) 10022 StableRdxVal = TVIt->second; 10023 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 10024 StableRdxVal, "op.rdx", Ops); 10025 } 10026 } 10027 10028 ReductionRoot->replaceAllUsesWith(VectorizedTree); 10029 10030 // The original scalar reduction is expected to have no remaining 10031 // uses outside the reduction tree itself. Assert that we got this 10032 // correct, replace internal uses with undef, and mark for eventual 10033 // deletion. 10034 #ifndef NDEBUG 10035 SmallSet<Value *, 4> IgnoreSet; 10036 IgnoreSet.insert(IgnoreList.begin(), IgnoreList.end()); 10037 #endif 10038 for (auto *Ignore : IgnoreList) { 10039 #ifndef NDEBUG 10040 for (auto *U : Ignore->users()) { 10041 assert(IgnoreSet.count(U)); 10042 } 10043 #endif 10044 if (!Ignore->use_empty()) { 10045 Value *Undef = UndefValue::get(Ignore->getType()); 10046 Ignore->replaceAllUsesWith(Undef); 10047 } 10048 V.eraseInstruction(cast<Instruction>(Ignore)); 10049 } 10050 } 10051 return VectorizedTree; 10052 } 10053 10054 unsigned numReductionValues() const { return ReducedVals.size(); } 10055 10056 private: 10057 /// Calculate the cost of a reduction. 10058 InstructionCost getReductionCost(TargetTransformInfo *TTI, 10059 Value *FirstReducedVal, unsigned ReduxWidth, 10060 FastMathFlags FMF) { 10061 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 10062 Type *ScalarTy = FirstReducedVal->getType(); 10063 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 10064 InstructionCost VectorCost, ScalarCost; 10065 switch (RdxKind) { 10066 case RecurKind::Add: 10067 case RecurKind::Mul: 10068 case RecurKind::Or: 10069 case RecurKind::And: 10070 case RecurKind::Xor: 10071 case RecurKind::FAdd: 10072 case RecurKind::FMul: { 10073 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 10074 VectorCost = 10075 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 10076 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 10077 break; 10078 } 10079 case RecurKind::FMax: 10080 case RecurKind::FMin: { 10081 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 10082 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 10083 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 10084 /*IsUnsigned=*/false, CostKind); 10085 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 10086 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 10087 SclCondTy, RdxPred, CostKind) + 10088 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 10089 SclCondTy, RdxPred, CostKind); 10090 break; 10091 } 10092 case RecurKind::SMax: 10093 case RecurKind::SMin: 10094 case RecurKind::UMax: 10095 case RecurKind::UMin: { 10096 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 10097 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 10098 bool IsUnsigned = 10099 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 10100 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned, 10101 CostKind); 10102 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 10103 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 10104 SclCondTy, RdxPred, CostKind) + 10105 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 10106 SclCondTy, RdxPred, CostKind); 10107 break; 10108 } 10109 default: 10110 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 10111 } 10112 10113 // Scalar cost is repeated for N-1 elements. 10114 ScalarCost *= (ReduxWidth - 1); 10115 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 10116 << " for reduction that starts with " << *FirstReducedVal 10117 << " (It is a splitting reduction)\n"); 10118 return VectorCost - ScalarCost; 10119 } 10120 10121 /// Emit a horizontal reduction of the vectorized value. 10122 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 10123 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 10124 assert(VectorizedValue && "Need to have a vectorized tree node"); 10125 assert(isPowerOf2_32(ReduxWidth) && 10126 "We only handle power-of-two reductions for now"); 10127 assert(RdxKind != RecurKind::FMulAdd && 10128 "A call to the llvm.fmuladd intrinsic is not handled yet"); 10129 10130 ++NumVectorInstructions; 10131 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind); 10132 } 10133 }; 10134 10135 } // end anonymous namespace 10136 10137 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 10138 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 10139 return cast<FixedVectorType>(IE->getType())->getNumElements(); 10140 10141 unsigned AggregateSize = 1; 10142 auto *IV = cast<InsertValueInst>(InsertInst); 10143 Type *CurrentType = IV->getType(); 10144 do { 10145 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 10146 for (auto *Elt : ST->elements()) 10147 if (Elt != ST->getElementType(0)) // check homogeneity 10148 return None; 10149 AggregateSize *= ST->getNumElements(); 10150 CurrentType = ST->getElementType(0); 10151 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 10152 AggregateSize *= AT->getNumElements(); 10153 CurrentType = AT->getElementType(); 10154 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 10155 AggregateSize *= VT->getNumElements(); 10156 return AggregateSize; 10157 } else if (CurrentType->isSingleValueType()) { 10158 return AggregateSize; 10159 } else { 10160 return None; 10161 } 10162 } while (true); 10163 } 10164 10165 static void findBuildAggregate_rec(Instruction *LastInsertInst, 10166 TargetTransformInfo *TTI, 10167 SmallVectorImpl<Value *> &BuildVectorOpds, 10168 SmallVectorImpl<Value *> &InsertElts, 10169 unsigned OperandOffset) { 10170 do { 10171 Value *InsertedOperand = LastInsertInst->getOperand(1); 10172 Optional<unsigned> OperandIndex = 10173 getInsertIndex(LastInsertInst, OperandOffset); 10174 if (!OperandIndex) 10175 return; 10176 if (isa<InsertElementInst>(InsertedOperand) || 10177 isa<InsertValueInst>(InsertedOperand)) { 10178 findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 10179 BuildVectorOpds, InsertElts, *OperandIndex); 10180 10181 } else { 10182 BuildVectorOpds[*OperandIndex] = InsertedOperand; 10183 InsertElts[*OperandIndex] = LastInsertInst; 10184 } 10185 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 10186 } while (LastInsertInst != nullptr && 10187 (isa<InsertValueInst>(LastInsertInst) || 10188 isa<InsertElementInst>(LastInsertInst)) && 10189 LastInsertInst->hasOneUse()); 10190 } 10191 10192 /// Recognize construction of vectors like 10193 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 10194 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 10195 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 10196 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 10197 /// starting from the last insertelement or insertvalue instruction. 10198 /// 10199 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 10200 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 10201 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 10202 /// 10203 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 10204 /// 10205 /// \return true if it matches. 10206 static bool findBuildAggregate(Instruction *LastInsertInst, 10207 TargetTransformInfo *TTI, 10208 SmallVectorImpl<Value *> &BuildVectorOpds, 10209 SmallVectorImpl<Value *> &InsertElts) { 10210 10211 assert((isa<InsertElementInst>(LastInsertInst) || 10212 isa<InsertValueInst>(LastInsertInst)) && 10213 "Expected insertelement or insertvalue instruction!"); 10214 10215 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 10216 "Expected empty result vectors!"); 10217 10218 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 10219 if (!AggregateSize) 10220 return false; 10221 BuildVectorOpds.resize(*AggregateSize); 10222 InsertElts.resize(*AggregateSize); 10223 10224 findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 0); 10225 llvm::erase_value(BuildVectorOpds, nullptr); 10226 llvm::erase_value(InsertElts, nullptr); 10227 if (BuildVectorOpds.size() >= 2) 10228 return true; 10229 10230 return false; 10231 } 10232 10233 /// Try and get a reduction value from a phi node. 10234 /// 10235 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 10236 /// if they come from either \p ParentBB or a containing loop latch. 10237 /// 10238 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 10239 /// if not possible. 10240 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 10241 BasicBlock *ParentBB, LoopInfo *LI) { 10242 // There are situations where the reduction value is not dominated by the 10243 // reduction phi. Vectorizing such cases has been reported to cause 10244 // miscompiles. See PR25787. 10245 auto DominatedReduxValue = [&](Value *R) { 10246 return isa<Instruction>(R) && 10247 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 10248 }; 10249 10250 Value *Rdx = nullptr; 10251 10252 // Return the incoming value if it comes from the same BB as the phi node. 10253 if (P->getIncomingBlock(0) == ParentBB) { 10254 Rdx = P->getIncomingValue(0); 10255 } else if (P->getIncomingBlock(1) == ParentBB) { 10256 Rdx = P->getIncomingValue(1); 10257 } 10258 10259 if (Rdx && DominatedReduxValue(Rdx)) 10260 return Rdx; 10261 10262 // Otherwise, check whether we have a loop latch to look at. 10263 Loop *BBL = LI->getLoopFor(ParentBB); 10264 if (!BBL) 10265 return nullptr; 10266 BasicBlock *BBLatch = BBL->getLoopLatch(); 10267 if (!BBLatch) 10268 return nullptr; 10269 10270 // There is a loop latch, return the incoming value if it comes from 10271 // that. This reduction pattern occasionally turns up. 10272 if (P->getIncomingBlock(0) == BBLatch) { 10273 Rdx = P->getIncomingValue(0); 10274 } else if (P->getIncomingBlock(1) == BBLatch) { 10275 Rdx = P->getIncomingValue(1); 10276 } 10277 10278 if (Rdx && DominatedReduxValue(Rdx)) 10279 return Rdx; 10280 10281 return nullptr; 10282 } 10283 10284 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 10285 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 10286 return true; 10287 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 10288 return true; 10289 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 10290 return true; 10291 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 10292 return true; 10293 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 10294 return true; 10295 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 10296 return true; 10297 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 10298 return true; 10299 return false; 10300 } 10301 10302 /// Attempt to reduce a horizontal reduction. 10303 /// If it is legal to match a horizontal reduction feeding the phi node \a P 10304 /// with reduction operators \a Root (or one of its operands) in a basic block 10305 /// \a BB, then check if it can be done. If horizontal reduction is not found 10306 /// and root instruction is a binary operation, vectorization of the operands is 10307 /// attempted. 10308 /// \returns true if a horizontal reduction was matched and reduced or operands 10309 /// of one of the binary instruction were vectorized. 10310 /// \returns false if a horizontal reduction was not matched (or not possible) 10311 /// or no vectorization of any binary operation feeding \a Root instruction was 10312 /// performed. 10313 static bool tryToVectorizeHorReductionOrInstOperands( 10314 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 10315 TargetTransformInfo *TTI, ScalarEvolution &SE, const DataLayout &DL, 10316 const TargetLibraryInfo &TLI, 10317 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 10318 if (!ShouldVectorizeHor) 10319 return false; 10320 10321 if (!Root) 10322 return false; 10323 10324 if (Root->getParent() != BB || isa<PHINode>(Root)) 10325 return false; 10326 // Start analysis starting from Root instruction. If horizontal reduction is 10327 // found, try to vectorize it. If it is not a horizontal reduction or 10328 // vectorization is not possible or not effective, and currently analyzed 10329 // instruction is a binary operation, try to vectorize the operands, using 10330 // pre-order DFS traversal order. If the operands were not vectorized, repeat 10331 // the same procedure considering each operand as a possible root of the 10332 // horizontal reduction. 10333 // Interrupt the process if the Root instruction itself was vectorized or all 10334 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 10335 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 10336 // CmpInsts so we can skip extra attempts in 10337 // tryToVectorizeHorReductionOrInstOperands and save compile time. 10338 std::queue<std::pair<Instruction *, unsigned>> Stack; 10339 Stack.emplace(Root, 0); 10340 SmallPtrSet<Value *, 8> VisitedInstrs; 10341 SmallVector<WeakTrackingVH> PostponedInsts; 10342 bool Res = false; 10343 auto &&TryToReduce = [TTI, &SE, &DL, &P, &R, &TLI](Instruction *Inst, 10344 Value *&B0, 10345 Value *&B1) -> Value * { 10346 bool IsBinop = matchRdxBop(Inst, B0, B1); 10347 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 10348 if (IsBinop || IsSelect) { 10349 HorizontalReduction HorRdx; 10350 if (HorRdx.matchAssociativeReduction(P, Inst, SE, DL, TLI)) 10351 return HorRdx.tryToReduce(R, TTI); 10352 } 10353 return nullptr; 10354 }; 10355 while (!Stack.empty()) { 10356 Instruction *Inst; 10357 unsigned Level; 10358 std::tie(Inst, Level) = Stack.front(); 10359 Stack.pop(); 10360 // Do not try to analyze instruction that has already been vectorized. 10361 // This may happen when we vectorize instruction operands on a previous 10362 // iteration while stack was populated before that happened. 10363 if (R.isDeleted(Inst)) 10364 continue; 10365 Value *B0 = nullptr, *B1 = nullptr; 10366 if (Value *V = TryToReduce(Inst, B0, B1)) { 10367 Res = true; 10368 // Set P to nullptr to avoid re-analysis of phi node in 10369 // matchAssociativeReduction function unless this is the root node. 10370 P = nullptr; 10371 if (auto *I = dyn_cast<Instruction>(V)) { 10372 // Try to find another reduction. 10373 Stack.emplace(I, Level); 10374 continue; 10375 } 10376 } else { 10377 bool IsBinop = B0 && B1; 10378 if (P && IsBinop) { 10379 Inst = dyn_cast<Instruction>(B0); 10380 if (Inst == P) 10381 Inst = dyn_cast<Instruction>(B1); 10382 if (!Inst) { 10383 // Set P to nullptr to avoid re-analysis of phi node in 10384 // matchAssociativeReduction function unless this is the root node. 10385 P = nullptr; 10386 continue; 10387 } 10388 } 10389 // Set P to nullptr to avoid re-analysis of phi node in 10390 // matchAssociativeReduction function unless this is the root node. 10391 P = nullptr; 10392 // Do not try to vectorize CmpInst operands, this is done separately. 10393 // Final attempt for binop args vectorization should happen after the loop 10394 // to try to find reductions. 10395 if (!isa<CmpInst>(Inst)) 10396 PostponedInsts.push_back(Inst); 10397 } 10398 10399 // Try to vectorize operands. 10400 // Continue analysis for the instruction from the same basic block only to 10401 // save compile time. 10402 if (++Level < RecursionMaxDepth) 10403 for (auto *Op : Inst->operand_values()) 10404 if (VisitedInstrs.insert(Op).second) 10405 if (auto *I = dyn_cast<Instruction>(Op)) 10406 // Do not try to vectorize CmpInst operands, this is done 10407 // separately. 10408 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 10409 I->getParent() == BB) 10410 Stack.emplace(I, Level); 10411 } 10412 // Try to vectorized binops where reductions were not found. 10413 for (Value *V : PostponedInsts) 10414 if (auto *Inst = dyn_cast<Instruction>(V)) 10415 if (!R.isDeleted(Inst)) 10416 Res |= Vectorize(Inst, R); 10417 return Res; 10418 } 10419 10420 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 10421 BasicBlock *BB, BoUpSLP &R, 10422 TargetTransformInfo *TTI) { 10423 auto *I = dyn_cast_or_null<Instruction>(V); 10424 if (!I) 10425 return false; 10426 10427 if (!isa<BinaryOperator>(I)) 10428 P = nullptr; 10429 // Try to match and vectorize a horizontal reduction. 10430 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 10431 return tryToVectorize(I, R); 10432 }; 10433 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, *SE, *DL, 10434 *TLI, ExtraVectorization); 10435 } 10436 10437 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 10438 BasicBlock *BB, BoUpSLP &R) { 10439 const DataLayout &DL = BB->getModule()->getDataLayout(); 10440 if (!R.canMapToVector(IVI->getType(), DL)) 10441 return false; 10442 10443 SmallVector<Value *, 16> BuildVectorOpds; 10444 SmallVector<Value *, 16> BuildVectorInsts; 10445 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 10446 return false; 10447 10448 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 10449 // Aggregate value is unlikely to be processed in vector register. 10450 return tryToVectorizeList(BuildVectorOpds, R); 10451 } 10452 10453 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 10454 BasicBlock *BB, BoUpSLP &R) { 10455 SmallVector<Value *, 16> BuildVectorInsts; 10456 SmallVector<Value *, 16> BuildVectorOpds; 10457 SmallVector<int> Mask; 10458 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 10459 (llvm::all_of( 10460 BuildVectorOpds, 10461 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) && 10462 isFixedVectorShuffle(BuildVectorOpds, Mask))) 10463 return false; 10464 10465 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 10466 return tryToVectorizeList(BuildVectorInsts, R); 10467 } 10468 10469 template <typename T> 10470 static bool 10471 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 10472 function_ref<unsigned(T *)> Limit, 10473 function_ref<bool(T *, T *)> Comparator, 10474 function_ref<bool(T *, T *)> AreCompatible, 10475 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper, 10476 bool LimitForRegisterSize) { 10477 bool Changed = false; 10478 // Sort by type, parent, operands. 10479 stable_sort(Incoming, Comparator); 10480 10481 // Try to vectorize elements base on their type. 10482 SmallVector<T *> Candidates; 10483 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 10484 // Look for the next elements with the same type, parent and operand 10485 // kinds. 10486 auto *SameTypeIt = IncIt; 10487 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 10488 ++SameTypeIt; 10489 10490 // Try to vectorize them. 10491 unsigned NumElts = (SameTypeIt - IncIt); 10492 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 10493 << NumElts << ")\n"); 10494 // The vectorization is a 3-state attempt: 10495 // 1. Try to vectorize instructions with the same/alternate opcodes with the 10496 // size of maximal register at first. 10497 // 2. Try to vectorize remaining instructions with the same type, if 10498 // possible. This may result in the better vectorization results rather than 10499 // if we try just to vectorize instructions with the same/alternate opcodes. 10500 // 3. Final attempt to try to vectorize all instructions with the 10501 // same/alternate ops only, this may result in some extra final 10502 // vectorization. 10503 if (NumElts > 1 && 10504 TryToVectorizeHelper(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 10505 // Success start over because instructions might have been changed. 10506 Changed = true; 10507 } else if (NumElts < Limit(*IncIt) && 10508 (Candidates.empty() || 10509 Candidates.front()->getType() == (*IncIt)->getType())) { 10510 Candidates.append(IncIt, std::next(IncIt, NumElts)); 10511 } 10512 // Final attempt to vectorize instructions with the same types. 10513 if (Candidates.size() > 1 && 10514 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 10515 if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) { 10516 // Success start over because instructions might have been changed. 10517 Changed = true; 10518 } else if (LimitForRegisterSize) { 10519 // Try to vectorize using small vectors. 10520 for (auto *It = Candidates.begin(), *End = Candidates.end(); 10521 It != End;) { 10522 auto *SameTypeIt = It; 10523 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 10524 ++SameTypeIt; 10525 unsigned NumElts = (SameTypeIt - It); 10526 if (NumElts > 1 && TryToVectorizeHelper(makeArrayRef(It, NumElts), 10527 /*LimitForRegisterSize=*/false)) 10528 Changed = true; 10529 It = SameTypeIt; 10530 } 10531 } 10532 Candidates.clear(); 10533 } 10534 10535 // Start over at the next instruction of a different type (or the end). 10536 IncIt = SameTypeIt; 10537 } 10538 return Changed; 10539 } 10540 10541 /// Compare two cmp instructions. If IsCompatibility is true, function returns 10542 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding 10543 /// operands. If IsCompatibility is false, function implements strict weak 10544 /// ordering relation between two cmp instructions, returning true if the first 10545 /// instruction is "less" than the second, i.e. its predicate is less than the 10546 /// predicate of the second or the operands IDs are less than the operands IDs 10547 /// of the second cmp instruction. 10548 template <bool IsCompatibility> 10549 static bool compareCmp(Value *V, Value *V2, 10550 function_ref<bool(Instruction *)> IsDeleted) { 10551 auto *CI1 = cast<CmpInst>(V); 10552 auto *CI2 = cast<CmpInst>(V2); 10553 if (IsDeleted(CI2) || !isValidElementType(CI2->getType())) 10554 return false; 10555 if (CI1->getOperand(0)->getType()->getTypeID() < 10556 CI2->getOperand(0)->getType()->getTypeID()) 10557 return !IsCompatibility; 10558 if (CI1->getOperand(0)->getType()->getTypeID() > 10559 CI2->getOperand(0)->getType()->getTypeID()) 10560 return false; 10561 CmpInst::Predicate Pred1 = CI1->getPredicate(); 10562 CmpInst::Predicate Pred2 = CI2->getPredicate(); 10563 CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1); 10564 CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2); 10565 CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1); 10566 CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2); 10567 if (BasePred1 < BasePred2) 10568 return !IsCompatibility; 10569 if (BasePred1 > BasePred2) 10570 return false; 10571 // Compare operands. 10572 bool LEPreds = Pred1 <= Pred2; 10573 bool GEPreds = Pred1 >= Pred2; 10574 for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) { 10575 auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1); 10576 auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1); 10577 if (Op1->getValueID() < Op2->getValueID()) 10578 return !IsCompatibility; 10579 if (Op1->getValueID() > Op2->getValueID()) 10580 return false; 10581 if (auto *I1 = dyn_cast<Instruction>(Op1)) 10582 if (auto *I2 = dyn_cast<Instruction>(Op2)) { 10583 if (I1->getParent() != I2->getParent()) 10584 return false; 10585 InstructionsState S = getSameOpcode({I1, I2}); 10586 if (S.getOpcode()) 10587 continue; 10588 return false; 10589 } 10590 } 10591 return IsCompatibility; 10592 } 10593 10594 bool SLPVectorizerPass::vectorizeSimpleInstructions( 10595 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 10596 bool AtTerminator) { 10597 bool OpsChanged = false; 10598 SmallVector<Instruction *, 4> PostponedCmps; 10599 for (auto *I : reverse(Instructions)) { 10600 if (R.isDeleted(I)) 10601 continue; 10602 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 10603 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 10604 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 10605 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 10606 else if (isa<CmpInst>(I)) 10607 PostponedCmps.push_back(I); 10608 } 10609 if (AtTerminator) { 10610 // Try to find reductions first. 10611 for (Instruction *I : PostponedCmps) { 10612 if (R.isDeleted(I)) 10613 continue; 10614 for (Value *Op : I->operands()) 10615 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 10616 } 10617 // Try to vectorize operands as vector bundles. 10618 for (Instruction *I : PostponedCmps) { 10619 if (R.isDeleted(I)) 10620 continue; 10621 OpsChanged |= tryToVectorize(I, R); 10622 } 10623 // Try to vectorize list of compares. 10624 // Sort by type, compare predicate, etc. 10625 auto &&CompareSorter = [&R](Value *V, Value *V2) { 10626 return compareCmp<false>(V, V2, 10627 [&R](Instruction *I) { return R.isDeleted(I); }); 10628 }; 10629 10630 auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) { 10631 if (V1 == V2) 10632 return true; 10633 return compareCmp<true>(V1, V2, 10634 [&R](Instruction *I) { return R.isDeleted(I); }); 10635 }; 10636 auto Limit = [&R](Value *V) { 10637 unsigned EltSize = R.getVectorElementSize(V); 10638 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10639 }; 10640 10641 SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end()); 10642 OpsChanged |= tryToVectorizeSequence<Value>( 10643 Vals, Limit, CompareSorter, AreCompatibleCompares, 10644 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10645 // Exclude possible reductions from other blocks. 10646 bool ArePossiblyReducedInOtherBlock = 10647 any_of(Candidates, [](Value *V) { 10648 return any_of(V->users(), [V](User *U) { 10649 return isa<SelectInst>(U) && 10650 cast<SelectInst>(U)->getParent() != 10651 cast<Instruction>(V)->getParent(); 10652 }); 10653 }); 10654 if (ArePossiblyReducedInOtherBlock) 10655 return false; 10656 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10657 }, 10658 /*LimitForRegisterSize=*/true); 10659 Instructions.clear(); 10660 } else { 10661 // Insert in reverse order since the PostponedCmps vector was filled in 10662 // reverse order. 10663 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 10664 } 10665 return OpsChanged; 10666 } 10667 10668 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 10669 bool Changed = false; 10670 SmallVector<Value *, 4> Incoming; 10671 SmallPtrSet<Value *, 16> VisitedInstrs; 10672 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 10673 // node. Allows better to identify the chains that can be vectorized in the 10674 // better way. 10675 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 10676 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 10677 assert(isValidElementType(V1->getType()) && 10678 isValidElementType(V2->getType()) && 10679 "Expected vectorizable types only."); 10680 // It is fine to compare type IDs here, since we expect only vectorizable 10681 // types, like ints, floats and pointers, we don't care about other type. 10682 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 10683 return true; 10684 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 10685 return false; 10686 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10687 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10688 if (Opcodes1.size() < Opcodes2.size()) 10689 return true; 10690 if (Opcodes1.size() > Opcodes2.size()) 10691 return false; 10692 Optional<bool> ConstOrder; 10693 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10694 // Undefs are compatible with any other value. 10695 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) { 10696 if (!ConstOrder) 10697 ConstOrder = 10698 !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]); 10699 continue; 10700 } 10701 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10702 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10703 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 10704 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 10705 if (!NodeI1) 10706 return NodeI2 != nullptr; 10707 if (!NodeI2) 10708 return false; 10709 assert((NodeI1 == NodeI2) == 10710 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10711 "Different nodes should have different DFS numbers"); 10712 if (NodeI1 != NodeI2) 10713 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10714 InstructionsState S = getSameOpcode({I1, I2}); 10715 if (S.getOpcode()) 10716 continue; 10717 return I1->getOpcode() < I2->getOpcode(); 10718 } 10719 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) { 10720 if (!ConstOrder) 10721 ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID(); 10722 continue; 10723 } 10724 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 10725 return true; 10726 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 10727 return false; 10728 } 10729 return ConstOrder && *ConstOrder; 10730 }; 10731 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 10732 if (V1 == V2) 10733 return true; 10734 if (V1->getType() != V2->getType()) 10735 return false; 10736 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10737 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10738 if (Opcodes1.size() != Opcodes2.size()) 10739 return false; 10740 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10741 // Undefs are compatible with any other value. 10742 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 10743 continue; 10744 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10745 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10746 if (I1->getParent() != I2->getParent()) 10747 return false; 10748 InstructionsState S = getSameOpcode({I1, I2}); 10749 if (S.getOpcode()) 10750 continue; 10751 return false; 10752 } 10753 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 10754 continue; 10755 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 10756 return false; 10757 } 10758 return true; 10759 }; 10760 auto Limit = [&R](Value *V) { 10761 unsigned EltSize = R.getVectorElementSize(V); 10762 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10763 }; 10764 10765 bool HaveVectorizedPhiNodes = false; 10766 do { 10767 // Collect the incoming values from the PHIs. 10768 Incoming.clear(); 10769 for (Instruction &I : *BB) { 10770 PHINode *P = dyn_cast<PHINode>(&I); 10771 if (!P) 10772 break; 10773 10774 // No need to analyze deleted, vectorized and non-vectorizable 10775 // instructions. 10776 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 10777 isValidElementType(P->getType())) 10778 Incoming.push_back(P); 10779 } 10780 10781 // Find the corresponding non-phi nodes for better matching when trying to 10782 // build the tree. 10783 for (Value *V : Incoming) { 10784 SmallVectorImpl<Value *> &Opcodes = 10785 PHIToOpcodes.try_emplace(V).first->getSecond(); 10786 if (!Opcodes.empty()) 10787 continue; 10788 SmallVector<Value *, 4> Nodes(1, V); 10789 SmallPtrSet<Value *, 4> Visited; 10790 while (!Nodes.empty()) { 10791 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 10792 if (!Visited.insert(PHI).second) 10793 continue; 10794 for (Value *V : PHI->incoming_values()) { 10795 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 10796 Nodes.push_back(PHI1); 10797 continue; 10798 } 10799 Opcodes.emplace_back(V); 10800 } 10801 } 10802 } 10803 10804 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 10805 Incoming, Limit, PHICompare, AreCompatiblePHIs, 10806 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10807 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10808 }, 10809 /*LimitForRegisterSize=*/true); 10810 Changed |= HaveVectorizedPhiNodes; 10811 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 10812 } while (HaveVectorizedPhiNodes); 10813 10814 VisitedInstrs.clear(); 10815 10816 SmallVector<Instruction *, 8> PostProcessInstructions; 10817 SmallDenseSet<Instruction *, 4> KeyNodes; 10818 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 10819 // Skip instructions with scalable type. The num of elements is unknown at 10820 // compile-time for scalable type. 10821 if (isa<ScalableVectorType>(it->getType())) 10822 continue; 10823 10824 // Skip instructions marked for the deletion. 10825 if (R.isDeleted(&*it)) 10826 continue; 10827 // We may go through BB multiple times so skip the one we have checked. 10828 if (!VisitedInstrs.insert(&*it).second) { 10829 if (it->use_empty() && KeyNodes.contains(&*it) && 10830 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10831 it->isTerminator())) { 10832 // We would like to start over since some instructions are deleted 10833 // and the iterator may become invalid value. 10834 Changed = true; 10835 it = BB->begin(); 10836 e = BB->end(); 10837 } 10838 continue; 10839 } 10840 10841 if (isa<DbgInfoIntrinsic>(it)) 10842 continue; 10843 10844 // Try to vectorize reductions that use PHINodes. 10845 if (PHINode *P = dyn_cast<PHINode>(it)) { 10846 // Check that the PHI is a reduction PHI. 10847 if (P->getNumIncomingValues() == 2) { 10848 // Try to match and vectorize a horizontal reduction. 10849 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 10850 TTI)) { 10851 Changed = true; 10852 it = BB->begin(); 10853 e = BB->end(); 10854 continue; 10855 } 10856 } 10857 // Try to vectorize the incoming values of the PHI, to catch reductions 10858 // that feed into PHIs. 10859 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 10860 // Skip if the incoming block is the current BB for now. Also, bypass 10861 // unreachable IR for efficiency and to avoid crashing. 10862 // TODO: Collect the skipped incoming values and try to vectorize them 10863 // after processing BB. 10864 if (BB == P->getIncomingBlock(I) || 10865 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 10866 continue; 10867 10868 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 10869 P->getIncomingBlock(I), R, TTI); 10870 } 10871 continue; 10872 } 10873 10874 // Ran into an instruction without users, like terminator, or function call 10875 // with ignored return value, store. Ignore unused instructions (basing on 10876 // instruction type, except for CallInst and InvokeInst). 10877 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 10878 isa<InvokeInst>(it))) { 10879 KeyNodes.insert(&*it); 10880 bool OpsChanged = false; 10881 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 10882 for (auto *V : it->operand_values()) { 10883 // Try to match and vectorize a horizontal reduction. 10884 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 10885 } 10886 } 10887 // Start vectorization of post-process list of instructions from the 10888 // top-tree instructions to try to vectorize as many instructions as 10889 // possible. 10890 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10891 it->isTerminator()); 10892 if (OpsChanged) { 10893 // We would like to start over since some instructions are deleted 10894 // and the iterator may become invalid value. 10895 Changed = true; 10896 it = BB->begin(); 10897 e = BB->end(); 10898 continue; 10899 } 10900 } 10901 10902 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 10903 isa<InsertValueInst>(it)) 10904 PostProcessInstructions.push_back(&*it); 10905 } 10906 10907 return Changed; 10908 } 10909 10910 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 10911 auto Changed = false; 10912 for (auto &Entry : GEPs) { 10913 // If the getelementptr list has fewer than two elements, there's nothing 10914 // to do. 10915 if (Entry.second.size() < 2) 10916 continue; 10917 10918 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 10919 << Entry.second.size() << ".\n"); 10920 10921 // Process the GEP list in chunks suitable for the target's supported 10922 // vector size. If a vector register can't hold 1 element, we are done. We 10923 // are trying to vectorize the index computations, so the maximum number of 10924 // elements is based on the size of the index expression, rather than the 10925 // size of the GEP itself (the target's pointer size). 10926 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 10927 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 10928 if (MaxVecRegSize < EltSize) 10929 continue; 10930 10931 unsigned MaxElts = MaxVecRegSize / EltSize; 10932 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 10933 auto Len = std::min<unsigned>(BE - BI, MaxElts); 10934 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 10935 10936 // Initialize a set a candidate getelementptrs. Note that we use a 10937 // SetVector here to preserve program order. If the index computations 10938 // are vectorizable and begin with loads, we want to minimize the chance 10939 // of having to reorder them later. 10940 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 10941 10942 // Some of the candidates may have already been vectorized after we 10943 // initially collected them. If so, they are marked as deleted, so remove 10944 // them from the set of candidates. 10945 Candidates.remove_if( 10946 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 10947 10948 // Remove from the set of candidates all pairs of getelementptrs with 10949 // constant differences. Such getelementptrs are likely not good 10950 // candidates for vectorization in a bottom-up phase since one can be 10951 // computed from the other. We also ensure all candidate getelementptr 10952 // indices are unique. 10953 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 10954 auto *GEPI = GEPList[I]; 10955 if (!Candidates.count(GEPI)) 10956 continue; 10957 auto *SCEVI = SE->getSCEV(GEPList[I]); 10958 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 10959 auto *GEPJ = GEPList[J]; 10960 auto *SCEVJ = SE->getSCEV(GEPList[J]); 10961 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 10962 Candidates.remove(GEPI); 10963 Candidates.remove(GEPJ); 10964 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 10965 Candidates.remove(GEPJ); 10966 } 10967 } 10968 } 10969 10970 // We break out of the above computation as soon as we know there are 10971 // fewer than two candidates remaining. 10972 if (Candidates.size() < 2) 10973 continue; 10974 10975 // Add the single, non-constant index of each candidate to the bundle. We 10976 // ensured the indices met these constraints when we originally collected 10977 // the getelementptrs. 10978 SmallVector<Value *, 16> Bundle(Candidates.size()); 10979 auto BundleIndex = 0u; 10980 for (auto *V : Candidates) { 10981 auto *GEP = cast<GetElementPtrInst>(V); 10982 auto *GEPIdx = GEP->idx_begin()->get(); 10983 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 10984 Bundle[BundleIndex++] = GEPIdx; 10985 } 10986 10987 // Try and vectorize the indices. We are currently only interested in 10988 // gather-like cases of the form: 10989 // 10990 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 10991 // 10992 // where the loads of "a", the loads of "b", and the subtractions can be 10993 // performed in parallel. It's likely that detecting this pattern in a 10994 // bottom-up phase will be simpler and less costly than building a 10995 // full-blown top-down phase beginning at the consecutive loads. 10996 Changed |= tryToVectorizeList(Bundle, R); 10997 } 10998 } 10999 return Changed; 11000 } 11001 11002 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 11003 bool Changed = false; 11004 // Sort by type, base pointers and values operand. Value operands must be 11005 // compatible (have the same opcode, same parent), otherwise it is 11006 // definitely not profitable to try to vectorize them. 11007 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 11008 if (V->getPointerOperandType()->getTypeID() < 11009 V2->getPointerOperandType()->getTypeID()) 11010 return true; 11011 if (V->getPointerOperandType()->getTypeID() > 11012 V2->getPointerOperandType()->getTypeID()) 11013 return false; 11014 // UndefValues are compatible with all other values. 11015 if (isa<UndefValue>(V->getValueOperand()) || 11016 isa<UndefValue>(V2->getValueOperand())) 11017 return false; 11018 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 11019 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 11020 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 11021 DT->getNode(I1->getParent()); 11022 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 11023 DT->getNode(I2->getParent()); 11024 assert(NodeI1 && "Should only process reachable instructions"); 11025 assert(NodeI1 && "Should only process reachable instructions"); 11026 assert((NodeI1 == NodeI2) == 11027 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 11028 "Different nodes should have different DFS numbers"); 11029 if (NodeI1 != NodeI2) 11030 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 11031 InstructionsState S = getSameOpcode({I1, I2}); 11032 if (S.getOpcode()) 11033 return false; 11034 return I1->getOpcode() < I2->getOpcode(); 11035 } 11036 if (isa<Constant>(V->getValueOperand()) && 11037 isa<Constant>(V2->getValueOperand())) 11038 return false; 11039 return V->getValueOperand()->getValueID() < 11040 V2->getValueOperand()->getValueID(); 11041 }; 11042 11043 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 11044 if (V1 == V2) 11045 return true; 11046 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 11047 return false; 11048 // Undefs are compatible with any other value. 11049 if (isa<UndefValue>(V1->getValueOperand()) || 11050 isa<UndefValue>(V2->getValueOperand())) 11051 return true; 11052 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 11053 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 11054 if (I1->getParent() != I2->getParent()) 11055 return false; 11056 InstructionsState S = getSameOpcode({I1, I2}); 11057 return S.getOpcode() > 0; 11058 } 11059 if (isa<Constant>(V1->getValueOperand()) && 11060 isa<Constant>(V2->getValueOperand())) 11061 return true; 11062 return V1->getValueOperand()->getValueID() == 11063 V2->getValueOperand()->getValueID(); 11064 }; 11065 auto Limit = [&R, this](StoreInst *SI) { 11066 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 11067 return R.getMinVF(EltSize); 11068 }; 11069 11070 // Attempt to sort and vectorize each of the store-groups. 11071 for (auto &Pair : Stores) { 11072 if (Pair.second.size() < 2) 11073 continue; 11074 11075 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 11076 << Pair.second.size() << ".\n"); 11077 11078 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 11079 continue; 11080 11081 Changed |= tryToVectorizeSequence<StoreInst>( 11082 Pair.second, Limit, StoreSorter, AreCompatibleStores, 11083 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 11084 return vectorizeStores(Candidates, R); 11085 }, 11086 /*LimitForRegisterSize=*/false); 11087 } 11088 return Changed; 11089 } 11090 11091 char SLPVectorizer::ID = 0; 11092 11093 static const char lv_name[] = "SLP Vectorizer"; 11094 11095 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 11096 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 11097 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 11098 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 11099 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 11100 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 11101 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 11102 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 11103 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 11104 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 11105 11106 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 11107