1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/DenseSet.h" 23 #include "llvm/ADT/MapVector.h" 24 #include "llvm/ADT/None.h" 25 #include "llvm/ADT/Optional.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SetVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/CodeMetrics.h" 37 #include "llvm/Analysis/DemandedBits.h" 38 #include "llvm/Analysis/GlobalsModRef.h" 39 #include "llvm/Analysis/LoopAccessAnalysis.h" 40 #include "llvm/Analysis/LoopInfo.h" 41 #include "llvm/Analysis/MemoryLocation.h" 42 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 43 #include "llvm/Analysis/ScalarEvolution.h" 44 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 45 #include "llvm/Analysis/TargetLibraryInfo.h" 46 #include "llvm/Analysis/TargetTransformInfo.h" 47 #include "llvm/Analysis/ValueTracking.h" 48 #include "llvm/Analysis/VectorUtils.h" 49 #include "llvm/IR/Attributes.h" 50 #include "llvm/IR/BasicBlock.h" 51 #include "llvm/IR/Constant.h" 52 #include "llvm/IR/Constants.h" 53 #include "llvm/IR/DataLayout.h" 54 #include "llvm/IR/DebugLoc.h" 55 #include "llvm/IR/DerivedTypes.h" 56 #include "llvm/IR/Dominators.h" 57 #include "llvm/IR/Function.h" 58 #include "llvm/IR/IRBuilder.h" 59 #include "llvm/IR/InstrTypes.h" 60 #include "llvm/IR/Instruction.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/IR/IntrinsicInst.h" 63 #include "llvm/IR/Intrinsics.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/NoFolder.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PassManager.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/Verifier.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/Casting.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/Compiler.h" 79 #include "llvm/Support/DOTGraphTraits.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/GraphWriter.h" 83 #include "llvm/Support/KnownBits.h" 84 #include "llvm/Support/MathExtras.h" 85 #include "llvm/Support/raw_ostream.h" 86 #include "llvm/Transforms/Utils/LoopUtils.h" 87 #include "llvm/Transforms/Vectorize.h" 88 #include <algorithm> 89 #include <cassert> 90 #include <cstdint> 91 #include <iterator> 92 #include <memory> 93 #include <set> 94 #include <string> 95 #include <tuple> 96 #include <utility> 97 #include <vector> 98 99 using namespace llvm; 100 using namespace llvm::PatternMatch; 101 using namespace slpvectorizer; 102 103 #define SV_NAME "slp-vectorizer" 104 #define DEBUG_TYPE "SLP" 105 106 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 107 108 cl::opt<bool> 109 llvm::RunSLPVectorization("vectorize-slp", cl::init(false), cl::Hidden, 110 cl::desc("Run the SLP vectorization passes")); 111 112 static cl::opt<int> 113 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 114 cl::desc("Only vectorize if you gain more than this " 115 "number ")); 116 117 static cl::opt<bool> 118 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 119 cl::desc("Attempt to vectorize horizontal reductions")); 120 121 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 122 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 123 cl::desc( 124 "Attempt to vectorize horizontal reductions feeding into a store")); 125 126 static cl::opt<int> 127 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 128 cl::desc("Attempt to vectorize for this register size in bits")); 129 130 /// Limits the size of scheduling regions in a block. 131 /// It avoid long compile times for _very_ large blocks where vector 132 /// instructions are spread over a wide range. 133 /// This limit is way higher than needed by real-world functions. 134 static cl::opt<int> 135 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 136 cl::desc("Limit the size of the SLP scheduling region per block")); 137 138 static cl::opt<int> MinVectorRegSizeOption( 139 "slp-min-reg-size", cl::init(128), cl::Hidden, 140 cl::desc("Attempt to vectorize for this register size in bits")); 141 142 static cl::opt<unsigned> RecursionMaxDepth( 143 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 144 cl::desc("Limit the recursion depth when building a vectorizable tree")); 145 146 static cl::opt<unsigned> MinTreeSize( 147 "slp-min-tree-size", cl::init(3), cl::Hidden, 148 cl::desc("Only vectorize small trees if they are fully vectorizable")); 149 150 static cl::opt<bool> 151 ViewSLPTree("view-slp-tree", cl::Hidden, 152 cl::desc("Display the SLP trees with Graphviz")); 153 154 // Limit the number of alias checks. The limit is chosen so that 155 // it has no negative effect on the llvm benchmarks. 156 static const unsigned AliasedCheckLimit = 10; 157 158 // Another limit for the alias checks: The maximum distance between load/store 159 // instructions where alias checks are done. 160 // This limit is useful for very large basic blocks. 161 static const unsigned MaxMemDepDistance = 160; 162 163 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 164 /// regions to be handled. 165 static const int MinScheduleRegionSize = 16; 166 167 /// Predicate for the element types that the SLP vectorizer supports. 168 /// 169 /// The most important thing to filter here are types which are invalid in LLVM 170 /// vectors. We also filter target specific types which have absolutely no 171 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 172 /// avoids spending time checking the cost model and realizing that they will 173 /// be inevitably scalarized. 174 static bool isValidElementType(Type *Ty) { 175 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 176 !Ty->isPPC_FP128Ty(); 177 } 178 179 /// \returns true if all of the instructions in \p VL are in the same block or 180 /// false otherwise. 181 static bool allSameBlock(ArrayRef<Value *> VL) { 182 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 183 if (!I0) 184 return false; 185 BasicBlock *BB = I0->getParent(); 186 for (int i = 1, e = VL.size(); i < e; i++) { 187 Instruction *I = dyn_cast<Instruction>(VL[i]); 188 if (!I) 189 return false; 190 191 if (BB != I->getParent()) 192 return false; 193 } 194 return true; 195 } 196 197 /// \returns True if all of the values in \p VL are constants (but not 198 /// globals/constant expressions). 199 static bool allConstant(ArrayRef<Value *> VL) { 200 // Constant expressions and globals can't be vectorized like normal integer/FP 201 // constants. 202 for (Value *i : VL) 203 if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i)) 204 return false; 205 return true; 206 } 207 208 /// \returns True if all of the values in \p VL are identical. 209 static bool isSplat(ArrayRef<Value *> VL) { 210 for (unsigned i = 1, e = VL.size(); i < e; ++i) 211 if (VL[i] != VL[0]) 212 return false; 213 return true; 214 } 215 216 /// \returns True if \p I is commutative, handles CmpInst as well as Instruction. 217 static bool isCommutative(Instruction *I) { 218 if (auto *IC = dyn_cast<CmpInst>(I)) 219 return IC->isCommutative(); 220 return I->isCommutative(); 221 } 222 223 /// Checks if the vector of instructions can be represented as a shuffle, like: 224 /// %x0 = extractelement <4 x i8> %x, i32 0 225 /// %x3 = extractelement <4 x i8> %x, i32 3 226 /// %y1 = extractelement <4 x i8> %y, i32 1 227 /// %y2 = extractelement <4 x i8> %y, i32 2 228 /// %x0x0 = mul i8 %x0, %x0 229 /// %x3x3 = mul i8 %x3, %x3 230 /// %y1y1 = mul i8 %y1, %y1 231 /// %y2y2 = mul i8 %y2, %y2 232 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 233 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 234 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 235 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 236 /// ret <4 x i8> %ins4 237 /// can be transformed into: 238 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 239 /// i32 6> 240 /// %2 = mul <4 x i8> %1, %1 241 /// ret <4 x i8> %2 242 /// We convert this initially to something like: 243 /// %x0 = extractelement <4 x i8> %x, i32 0 244 /// %x3 = extractelement <4 x i8> %x, i32 3 245 /// %y1 = extractelement <4 x i8> %y, i32 1 246 /// %y2 = extractelement <4 x i8> %y, i32 2 247 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 248 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 249 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 250 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 251 /// %5 = mul <4 x i8> %4, %4 252 /// %6 = extractelement <4 x i8> %5, i32 0 253 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 254 /// %7 = extractelement <4 x i8> %5, i32 1 255 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 256 /// %8 = extractelement <4 x i8> %5, i32 2 257 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 258 /// %9 = extractelement <4 x i8> %5, i32 3 259 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 260 /// ret <4 x i8> %ins4 261 /// InstCombiner transforms this into a shuffle and vector mul 262 /// TODO: Can we split off and reuse the shuffle mask detection from 263 /// TargetTransformInfo::getInstructionThroughput? 264 static Optional<TargetTransformInfo::ShuffleKind> 265 isShuffle(ArrayRef<Value *> VL) { 266 auto *EI0 = cast<ExtractElementInst>(VL[0]); 267 unsigned Size = EI0->getVectorOperandType()->getVectorNumElements(); 268 Value *Vec1 = nullptr; 269 Value *Vec2 = nullptr; 270 enum ShuffleMode { Unknown, Select, Permute }; 271 ShuffleMode CommonShuffleMode = Unknown; 272 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 273 auto *EI = cast<ExtractElementInst>(VL[I]); 274 auto *Vec = EI->getVectorOperand(); 275 // All vector operands must have the same number of vector elements. 276 if (Vec->getType()->getVectorNumElements() != Size) 277 return None; 278 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 279 if (!Idx) 280 return None; 281 // Undefined behavior if Idx is negative or >= Size. 282 if (Idx->getValue().uge(Size)) 283 continue; 284 unsigned IntIdx = Idx->getValue().getZExtValue(); 285 // We can extractelement from undef vector. 286 if (isa<UndefValue>(Vec)) 287 continue; 288 // For correct shuffling we have to have at most 2 different vector operands 289 // in all extractelement instructions. 290 if (!Vec1 || Vec1 == Vec) 291 Vec1 = Vec; 292 else if (!Vec2 || Vec2 == Vec) 293 Vec2 = Vec; 294 else 295 return None; 296 if (CommonShuffleMode == Permute) 297 continue; 298 // If the extract index is not the same as the operation number, it is a 299 // permutation. 300 if (IntIdx != I) { 301 CommonShuffleMode = Permute; 302 continue; 303 } 304 CommonShuffleMode = Select; 305 } 306 // If we're not crossing lanes in different vectors, consider it as blending. 307 if (CommonShuffleMode == Select && Vec2) 308 return TargetTransformInfo::SK_Select; 309 // If Vec2 was never used, we have a permutation of a single vector, otherwise 310 // we have permutation of 2 vectors. 311 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 312 : TargetTransformInfo::SK_PermuteSingleSrc; 313 } 314 315 namespace { 316 317 /// Main data required for vectorization of instructions. 318 struct InstructionsState { 319 /// The very first instruction in the list with the main opcode. 320 Value *OpValue = nullptr; 321 322 /// The main/alternate instruction. 323 Instruction *MainOp = nullptr; 324 Instruction *AltOp = nullptr; 325 326 /// The main/alternate opcodes for the list of instructions. 327 unsigned getOpcode() const { 328 return MainOp ? MainOp->getOpcode() : 0; 329 } 330 331 unsigned getAltOpcode() const { 332 return AltOp ? AltOp->getOpcode() : 0; 333 } 334 335 /// Some of the instructions in the list have alternate opcodes. 336 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 337 338 bool isOpcodeOrAlt(Instruction *I) const { 339 unsigned CheckedOpcode = I->getOpcode(); 340 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 341 } 342 343 InstructionsState() = delete; 344 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 345 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 346 }; 347 348 } // end anonymous namespace 349 350 /// Chooses the correct key for scheduling data. If \p Op has the same (or 351 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 352 /// OpValue. 353 static Value *isOneOf(const InstructionsState &S, Value *Op) { 354 auto *I = dyn_cast<Instruction>(Op); 355 if (I && S.isOpcodeOrAlt(I)) 356 return Op; 357 return S.OpValue; 358 } 359 360 /// \returns analysis of the Instructions in \p VL described in 361 /// InstructionsState, the Opcode that we suppose the whole list 362 /// could be vectorized even if its structure is diverse. 363 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 364 unsigned BaseIndex = 0) { 365 // Make sure these are all Instructions. 366 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 367 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 368 369 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 370 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 371 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 372 unsigned AltOpcode = Opcode; 373 unsigned AltIndex = BaseIndex; 374 375 // Check for one alternate opcode from another BinaryOperator. 376 // TODO - generalize to support all operators (types, calls etc.). 377 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 378 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 379 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 380 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 381 continue; 382 if (Opcode == AltOpcode) { 383 AltOpcode = InstOpcode; 384 AltIndex = Cnt; 385 continue; 386 } 387 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 388 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 389 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 390 if (Ty0 == Ty1) { 391 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 392 continue; 393 if (Opcode == AltOpcode) { 394 AltOpcode = InstOpcode; 395 AltIndex = Cnt; 396 continue; 397 } 398 } 399 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 400 continue; 401 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 402 } 403 404 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 405 cast<Instruction>(VL[AltIndex])); 406 } 407 408 /// \returns true if all of the values in \p VL have the same type or false 409 /// otherwise. 410 static bool allSameType(ArrayRef<Value *> VL) { 411 Type *Ty = VL[0]->getType(); 412 for (int i = 1, e = VL.size(); i < e; i++) 413 if (VL[i]->getType() != Ty) 414 return false; 415 416 return true; 417 } 418 419 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 420 static Optional<unsigned> getExtractIndex(Instruction *E) { 421 unsigned Opcode = E->getOpcode(); 422 assert((Opcode == Instruction::ExtractElement || 423 Opcode == Instruction::ExtractValue) && 424 "Expected extractelement or extractvalue instruction."); 425 if (Opcode == Instruction::ExtractElement) { 426 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 427 if (!CI) 428 return None; 429 return CI->getZExtValue(); 430 } 431 ExtractValueInst *EI = cast<ExtractValueInst>(E); 432 if (EI->getNumIndices() != 1) 433 return None; 434 return *EI->idx_begin(); 435 } 436 437 /// \returns True if in-tree use also needs extract. This refers to 438 /// possible scalar operand in vectorized instruction. 439 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 440 TargetLibraryInfo *TLI) { 441 unsigned Opcode = UserInst->getOpcode(); 442 switch (Opcode) { 443 case Instruction::Load: { 444 LoadInst *LI = cast<LoadInst>(UserInst); 445 return (LI->getPointerOperand() == Scalar); 446 } 447 case Instruction::Store: { 448 StoreInst *SI = cast<StoreInst>(UserInst); 449 return (SI->getPointerOperand() == Scalar); 450 } 451 case Instruction::Call: { 452 CallInst *CI = cast<CallInst>(UserInst); 453 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 454 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 455 if (hasVectorInstrinsicScalarOpd(ID, i)) 456 return (CI->getArgOperand(i) == Scalar); 457 } 458 LLVM_FALLTHROUGH; 459 } 460 default: 461 return false; 462 } 463 } 464 465 /// \returns the AA location that is being access by the instruction. 466 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 467 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 468 return MemoryLocation::get(SI); 469 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 470 return MemoryLocation::get(LI); 471 return MemoryLocation(); 472 } 473 474 /// \returns True if the instruction is not a volatile or atomic load/store. 475 static bool isSimple(Instruction *I) { 476 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 477 return LI->isSimple(); 478 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 479 return SI->isSimple(); 480 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 481 return !MI->isVolatile(); 482 return true; 483 } 484 485 namespace llvm { 486 487 namespace slpvectorizer { 488 489 /// Bottom Up SLP Vectorizer. 490 class BoUpSLP { 491 struct TreeEntry; 492 struct ScheduleData; 493 494 public: 495 using ValueList = SmallVector<Value *, 8>; 496 using InstrList = SmallVector<Instruction *, 16>; 497 using ValueSet = SmallPtrSet<Value *, 16>; 498 using StoreList = SmallVector<StoreInst *, 8>; 499 using ExtraValueToDebugLocsMap = 500 MapVector<Value *, SmallVector<Instruction *, 2>>; 501 502 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 503 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 504 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 505 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 506 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 507 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 508 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 509 // Use the vector register size specified by the target unless overridden 510 // by a command-line option. 511 // TODO: It would be better to limit the vectorization factor based on 512 // data type rather than just register size. For example, x86 AVX has 513 // 256-bit registers, but it does not support integer operations 514 // at that width (that requires AVX2). 515 if (MaxVectorRegSizeOption.getNumOccurrences()) 516 MaxVecRegSize = MaxVectorRegSizeOption; 517 else 518 MaxVecRegSize = TTI->getRegisterBitWidth(true); 519 520 if (MinVectorRegSizeOption.getNumOccurrences()) 521 MinVecRegSize = MinVectorRegSizeOption; 522 else 523 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 524 } 525 526 /// Vectorize the tree that starts with the elements in \p VL. 527 /// Returns the vectorized root. 528 Value *vectorizeTree(); 529 530 /// Vectorize the tree but with the list of externally used values \p 531 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 532 /// generated extractvalue instructions. 533 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 534 535 /// \returns the cost incurred by unwanted spills and fills, caused by 536 /// holding live values over call sites. 537 int getSpillCost() const; 538 539 /// \returns the vectorization cost of the subtree that starts at \p VL. 540 /// A negative number means that this is profitable. 541 int getTreeCost(); 542 543 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 544 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 545 void buildTree(ArrayRef<Value *> Roots, 546 ArrayRef<Value *> UserIgnoreLst = None); 547 548 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 549 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 550 /// into account (anf updating it, if required) list of externally used 551 /// values stored in \p ExternallyUsedValues. 552 void buildTree(ArrayRef<Value *> Roots, 553 ExtraValueToDebugLocsMap &ExternallyUsedValues, 554 ArrayRef<Value *> UserIgnoreLst = None); 555 556 /// Clear the internal data structures that are created by 'buildTree'. 557 void deleteTree() { 558 VectorizableTree.clear(); 559 ScalarToTreeEntry.clear(); 560 MustGather.clear(); 561 ExternalUses.clear(); 562 NumOpsWantToKeepOrder.clear(); 563 NumOpsWantToKeepOriginalOrder = 0; 564 for (auto &Iter : BlocksSchedules) { 565 BlockScheduling *BS = Iter.second.get(); 566 BS->clear(); 567 } 568 MinBWs.clear(); 569 } 570 571 unsigned getTreeSize() const { return VectorizableTree.size(); } 572 573 /// Perform LICM and CSE on the newly generated gather sequences. 574 void optimizeGatherSequence(); 575 576 /// \returns The best order of instructions for vectorization. 577 Optional<ArrayRef<unsigned>> bestOrder() const { 578 auto I = std::max_element( 579 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 580 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 581 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 582 return D1.second < D2.second; 583 }); 584 if (I == NumOpsWantToKeepOrder.end() || 585 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 586 return None; 587 588 return makeArrayRef(I->getFirst()); 589 } 590 591 /// \return The vector element size in bits to use when vectorizing the 592 /// expression tree ending at \p V. If V is a store, the size is the width of 593 /// the stored value. Otherwise, the size is the width of the largest loaded 594 /// value reaching V. This method is used by the vectorizer to calculate 595 /// vectorization factors. 596 unsigned getVectorElementSize(Value *V) const; 597 598 /// Compute the minimum type sizes required to represent the entries in a 599 /// vectorizable tree. 600 void computeMinimumValueSizes(); 601 602 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 603 unsigned getMaxVecRegSize() const { 604 return MaxVecRegSize; 605 } 606 607 // \returns minimum vector register size as set by cl::opt. 608 unsigned getMinVecRegSize() const { 609 return MinVecRegSize; 610 } 611 612 /// Check if ArrayType or StructType is isomorphic to some VectorType. 613 /// 614 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 615 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 616 617 /// \returns True if the VectorizableTree is both tiny and not fully 618 /// vectorizable. We do not vectorize such trees. 619 bool isTreeTinyAndNotFullyVectorizable() const; 620 621 OptimizationRemarkEmitter *getORE() { return ORE; } 622 623 /// This structure holds any data we need about the edges being traversed 624 /// during buildTree_rec(). We keep track of: 625 /// (i) the user TreeEntry index, and 626 /// (ii) the index of the edge. 627 struct EdgeInfo { 628 EdgeInfo() = default; 629 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 630 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 631 /// The user TreeEntry. 632 TreeEntry *UserTE = nullptr; 633 /// The operand index of the use. 634 unsigned EdgeIdx = UINT_MAX; 635 #ifndef NDEBUG 636 friend inline raw_ostream &operator<<(raw_ostream &OS, 637 const BoUpSLP::EdgeInfo &EI) { 638 EI.dump(OS); 639 return OS; 640 } 641 /// Debug print. 642 void dump(raw_ostream &OS) const { 643 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 644 << " EdgeIdx:" << EdgeIdx << "}"; 645 } 646 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 647 #endif 648 }; 649 650 /// A helper data structure to hold the operands of a vector of instructions. 651 /// This supports a fixed vector length for all operand vectors. 652 class VLOperands { 653 /// For each operand we need (i) the value, and (ii) the opcode that it 654 /// would be attached to if the expression was in a left-linearized form. 655 /// This is required to avoid illegal operand reordering. 656 /// For example: 657 /// \verbatim 658 /// 0 Op1 659 /// |/ 660 /// Op1 Op2 Linearized + Op2 661 /// \ / ----------> |/ 662 /// - - 663 /// 664 /// Op1 - Op2 (0 + Op1) - Op2 665 /// \endverbatim 666 /// 667 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 668 /// 669 /// Another way to think of this is to track all the operations across the 670 /// path from the operand all the way to the root of the tree and to 671 /// calculate the operation that corresponds to this path. For example, the 672 /// path from Op2 to the root crosses the RHS of the '-', therefore the 673 /// corresponding operation is a '-' (which matches the one in the 674 /// linearized tree, as shown above). 675 /// 676 /// For lack of a better term, we refer to this operation as Accumulated 677 /// Path Operation (APO). 678 struct OperandData { 679 OperandData() = default; 680 OperandData(Value *V, bool APO, bool IsUsed) 681 : V(V), APO(APO), IsUsed(IsUsed) {} 682 /// The operand value. 683 Value *V = nullptr; 684 /// TreeEntries only allow a single opcode, or an alternate sequence of 685 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 686 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 687 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 688 /// (e.g., Add/Mul) 689 bool APO = false; 690 /// Helper data for the reordering function. 691 bool IsUsed = false; 692 }; 693 694 /// During operand reordering, we are trying to select the operand at lane 695 /// that matches best with the operand at the neighboring lane. Our 696 /// selection is based on the type of value we are looking for. For example, 697 /// if the neighboring lane has a load, we need to look for a load that is 698 /// accessing a consecutive address. These strategies are summarized in the 699 /// 'ReorderingMode' enumerator. 700 enum class ReorderingMode { 701 Load, ///< Matching loads to consecutive memory addresses 702 Opcode, ///< Matching instructions based on opcode (same or alternate) 703 Constant, ///< Matching constants 704 Splat, ///< Matching the same instruction multiple times (broadcast) 705 Failed, ///< We failed to create a vectorizable group 706 }; 707 708 using OperandDataVec = SmallVector<OperandData, 2>; 709 710 /// A vector of operand vectors. 711 SmallVector<OperandDataVec, 4> OpsVec; 712 713 const DataLayout &DL; 714 ScalarEvolution &SE; 715 716 /// \returns the operand data at \p OpIdx and \p Lane. 717 OperandData &getData(unsigned OpIdx, unsigned Lane) { 718 return OpsVec[OpIdx][Lane]; 719 } 720 721 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 722 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 723 return OpsVec[OpIdx][Lane]; 724 } 725 726 /// Clears the used flag for all entries. 727 void clearUsed() { 728 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 729 OpIdx != NumOperands; ++OpIdx) 730 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 731 ++Lane) 732 OpsVec[OpIdx][Lane].IsUsed = false; 733 } 734 735 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 736 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 737 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 738 } 739 740 // Search all operands in Ops[*][Lane] for the one that matches best 741 // Ops[OpIdx][LastLane] and return its opreand index. 742 // If no good match can be found, return None. 743 Optional<unsigned> 744 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 745 ArrayRef<ReorderingMode> ReorderingModes) { 746 unsigned NumOperands = getNumOperands(); 747 748 // The operand of the previous lane at OpIdx. 749 Value *OpLastLane = getData(OpIdx, LastLane).V; 750 751 // Our strategy mode for OpIdx. 752 ReorderingMode RMode = ReorderingModes[OpIdx]; 753 754 // The linearized opcode of the operand at OpIdx, Lane. 755 bool OpIdxAPO = getData(OpIdx, Lane).APO; 756 757 const unsigned BestScore = 2; 758 const unsigned GoodScore = 1; 759 760 // The best operand index and its score. 761 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 762 // are using the score to differentiate between the two. 763 struct BestOpData { 764 Optional<unsigned> Idx = None; 765 unsigned Score = 0; 766 } BestOp; 767 768 // Iterate through all unused operands and look for the best. 769 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 770 // Get the operand at Idx and Lane. 771 OperandData &OpData = getData(Idx, Lane); 772 Value *Op = OpData.V; 773 bool OpAPO = OpData.APO; 774 775 // Skip already selected operands. 776 if (OpData.IsUsed) 777 continue; 778 779 // Skip if we are trying to move the operand to a position with a 780 // different opcode in the linearized tree form. This would break the 781 // semantics. 782 if (OpAPO != OpIdxAPO) 783 continue; 784 785 // Look for an operand that matches the current mode. 786 switch (RMode) { 787 case ReorderingMode::Load: 788 if (isa<LoadInst>(Op)) { 789 // Figure out which is left and right, so that we can check for 790 // consecutive loads 791 bool LeftToRight = Lane > LastLane; 792 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 793 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 794 if (isConsecutiveAccess(cast<LoadInst>(OpLeft), 795 cast<LoadInst>(OpRight), DL, SE)) 796 BestOp.Idx = Idx; 797 } 798 break; 799 case ReorderingMode::Opcode: 800 // We accept both Instructions and Undefs, but with different scores. 801 if ((isa<Instruction>(Op) && isa<Instruction>(OpLastLane) && 802 cast<Instruction>(Op)->getOpcode() == 803 cast<Instruction>(OpLastLane)->getOpcode()) || 804 (isa<UndefValue>(OpLastLane) && isa<Instruction>(Op)) || 805 isa<UndefValue>(Op)) { 806 // An instruction has a higher score than an undef. 807 unsigned Score = (isa<UndefValue>(Op)) ? GoodScore : BestScore; 808 if (Score > BestOp.Score) { 809 BestOp.Idx = Idx; 810 BestOp.Score = Score; 811 } 812 } 813 break; 814 case ReorderingMode::Constant: 815 if (isa<Constant>(Op)) { 816 unsigned Score = (isa<UndefValue>(Op)) ? GoodScore : BestScore; 817 if (Score > BestOp.Score) { 818 BestOp.Idx = Idx; 819 BestOp.Score = Score; 820 } 821 } 822 break; 823 case ReorderingMode::Splat: 824 if (Op == OpLastLane) 825 BestOp.Idx = Idx; 826 break; 827 case ReorderingMode::Failed: 828 return None; 829 } 830 } 831 832 if (BestOp.Idx) { 833 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 834 return BestOp.Idx; 835 } 836 // If we could not find a good match return None. 837 return None; 838 } 839 840 /// Helper for reorderOperandVecs. \Returns the lane that we should start 841 /// reordering from. This is the one which has the least number of operands 842 /// that can freely move about. 843 unsigned getBestLaneToStartReordering() const { 844 unsigned BestLane = 0; 845 unsigned Min = UINT_MAX; 846 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 847 ++Lane) { 848 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 849 if (NumFreeOps < Min) { 850 Min = NumFreeOps; 851 BestLane = Lane; 852 } 853 } 854 return BestLane; 855 } 856 857 /// \Returns the maximum number of operands that are allowed to be reordered 858 /// for \p Lane. This is used as a heuristic for selecting the first lane to 859 /// start operand reordering. 860 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 861 unsigned CntTrue = 0; 862 unsigned NumOperands = getNumOperands(); 863 // Operands with the same APO can be reordered. We therefore need to count 864 // how many of them we have for each APO, like this: Cnt[APO] = x. 865 // Since we only have two APOs, namely true and false, we can avoid using 866 // a map. Instead we can simply count the number of operands that 867 // correspond to one of them (in this case the 'true' APO), and calculate 868 // the other by subtracting it from the total number of operands. 869 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 870 if (getData(OpIdx, Lane).APO) 871 ++CntTrue; 872 unsigned CntFalse = NumOperands - CntTrue; 873 return std::max(CntTrue, CntFalse); 874 } 875 876 /// Go through the instructions in VL and append their operands. 877 void appendOperandsOfVL(ArrayRef<Value *> VL) { 878 assert(!VL.empty() && "Bad VL"); 879 assert((empty() || VL.size() == getNumLanes()) && 880 "Expected same number of lanes"); 881 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 882 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 883 OpsVec.resize(NumOperands); 884 unsigned NumLanes = VL.size(); 885 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 886 OpsVec[OpIdx].resize(NumLanes); 887 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 888 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 889 // Our tree has just 3 nodes: the root and two operands. 890 // It is therefore trivial to get the APO. We only need to check the 891 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 892 // RHS operand. The LHS operand of both add and sub is never attached 893 // to an inversese operation in the linearized form, therefore its APO 894 // is false. The RHS is true only if VL[Lane] is an inverse operation. 895 896 // Since operand reordering is performed on groups of commutative 897 // operations or alternating sequences (e.g., +, -), we can safely 898 // tell the inverse operations by checking commutativity. 899 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 900 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 901 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 902 APO, false}; 903 } 904 } 905 } 906 907 /// \returns the number of operands. 908 unsigned getNumOperands() const { return OpsVec.size(); } 909 910 /// \returns the number of lanes. 911 unsigned getNumLanes() const { return OpsVec[0].size(); } 912 913 /// \returns the operand value at \p OpIdx and \p Lane. 914 Value *getValue(unsigned OpIdx, unsigned Lane) const { 915 return getData(OpIdx, Lane).V; 916 } 917 918 /// \returns true if the data structure is empty. 919 bool empty() const { return OpsVec.empty(); } 920 921 /// Clears the data. 922 void clear() { OpsVec.clear(); } 923 924 /// \Returns true if there are enough operands identical to \p Op to fill 925 /// the whole vector. 926 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 927 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 928 bool OpAPO = getData(OpIdx, Lane).APO; 929 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 930 if (Ln == Lane) 931 continue; 932 // This is set to true if we found a candidate for broadcast at Lane. 933 bool FoundCandidate = false; 934 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 935 OperandData &Data = getData(OpI, Ln); 936 if (Data.APO != OpAPO || Data.IsUsed) 937 continue; 938 if (Data.V == Op) { 939 FoundCandidate = true; 940 Data.IsUsed = true; 941 break; 942 } 943 } 944 if (!FoundCandidate) 945 return false; 946 } 947 return true; 948 } 949 950 public: 951 /// Initialize with all the operands of the instruction vector \p RootVL. 952 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 953 ScalarEvolution &SE) 954 : DL(DL), SE(SE) { 955 // Append all the operands of RootVL. 956 appendOperandsOfVL(RootVL); 957 } 958 959 /// \Returns a value vector with the operands across all lanes for the 960 /// opearnd at \p OpIdx. 961 ValueList getVL(unsigned OpIdx) const { 962 ValueList OpVL(OpsVec[OpIdx].size()); 963 assert(OpsVec[OpIdx].size() == getNumLanes() && 964 "Expected same num of lanes across all operands"); 965 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 966 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 967 return OpVL; 968 } 969 970 // Performs operand reordering for 2 or more operands. 971 // The original operands are in OrigOps[OpIdx][Lane]. 972 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 973 void reorder() { 974 unsigned NumOperands = getNumOperands(); 975 unsigned NumLanes = getNumLanes(); 976 // Each operand has its own mode. We are using this mode to help us select 977 // the instructions for each lane, so that they match best with the ones 978 // we have selected so far. 979 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 980 981 // This is a greedy single-pass algorithm. We are going over each lane 982 // once and deciding on the best order right away with no back-tracking. 983 // However, in order to increase its effectiveness, we start with the lane 984 // that has operands that can move the least. For example, given the 985 // following lanes: 986 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 987 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 988 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 989 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 990 // we will start at Lane 1, since the operands of the subtraction cannot 991 // be reordered. Then we will visit the rest of the lanes in a circular 992 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 993 994 // Find the first lane that we will start our search from. 995 unsigned FirstLane = getBestLaneToStartReordering(); 996 997 // Initialize the modes. 998 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 999 Value *OpLane0 = getValue(OpIdx, FirstLane); 1000 // Keep track if we have instructions with all the same opcode on one 1001 // side. 1002 if (isa<LoadInst>(OpLane0)) 1003 ReorderingModes[OpIdx] = ReorderingMode::Load; 1004 else if (isa<Instruction>(OpLane0)) { 1005 // Check if OpLane0 should be broadcast. 1006 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1007 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1008 else 1009 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1010 } 1011 else if (isa<Constant>(OpLane0)) 1012 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1013 else if (isa<Argument>(OpLane0)) 1014 // Our best hope is a Splat. It may save some cost in some cases. 1015 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1016 else 1017 // NOTE: This should be unreachable. 1018 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1019 } 1020 1021 // If the initial strategy fails for any of the operand indexes, then we 1022 // perform reordering again in a second pass. This helps avoid assigning 1023 // high priority to the failed strategy, and should improve reordering for 1024 // the non-failed operand indexes. 1025 for (int Pass = 0; Pass != 2; ++Pass) { 1026 // Skip the second pass if the first pass did not fail. 1027 bool StrategyFailed = false; 1028 // Mark all operand data as free to use. 1029 clearUsed(); 1030 // We keep the original operand order for the FirstLane, so reorder the 1031 // rest of the lanes. We are visiting the nodes in a circular fashion, 1032 // using FirstLane as the center point and increasing the radius 1033 // distance. 1034 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1035 // Visit the lane on the right and then the lane on the left. 1036 for (int Direction : {+1, -1}) { 1037 int Lane = FirstLane + Direction * Distance; 1038 if (Lane < 0 || Lane >= (int)NumLanes) 1039 continue; 1040 int LastLane = Lane - Direction; 1041 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1042 "Out of bounds"); 1043 // Look for a good match for each operand. 1044 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1045 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1046 Optional<unsigned> BestIdx = 1047 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1048 // By not selecting a value, we allow the operands that follow to 1049 // select a better matching value. We will get a non-null value in 1050 // the next run of getBestOperand(). 1051 if (BestIdx) { 1052 // Swap the current operand with the one returned by 1053 // getBestOperand(). 1054 swap(OpIdx, BestIdx.getValue(), Lane); 1055 } else { 1056 // We failed to find a best operand, set mode to 'Failed'. 1057 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1058 // Enable the second pass. 1059 StrategyFailed = true; 1060 } 1061 } 1062 } 1063 } 1064 // Skip second pass if the strategy did not fail. 1065 if (!StrategyFailed) 1066 break; 1067 } 1068 } 1069 1070 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1071 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1072 switch (RMode) { 1073 case ReorderingMode::Load: 1074 return "Load"; 1075 case ReorderingMode::Opcode: 1076 return "Opcode"; 1077 case ReorderingMode::Constant: 1078 return "Constant"; 1079 case ReorderingMode::Splat: 1080 return "Splat"; 1081 case ReorderingMode::Failed: 1082 return "Failed"; 1083 } 1084 llvm_unreachable("Unimplemented Reordering Type"); 1085 } 1086 1087 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1088 raw_ostream &OS) { 1089 return OS << getModeStr(RMode); 1090 } 1091 1092 /// Debug print. 1093 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1094 printMode(RMode, dbgs()); 1095 } 1096 1097 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1098 return printMode(RMode, OS); 1099 } 1100 1101 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1102 const unsigned Indent = 2; 1103 unsigned Cnt = 0; 1104 for (const OperandDataVec &OpDataVec : OpsVec) { 1105 OS << "Operand " << Cnt++ << "\n"; 1106 for (const OperandData &OpData : OpDataVec) { 1107 OS.indent(Indent) << "{"; 1108 if (Value *V = OpData.V) 1109 OS << *V; 1110 else 1111 OS << "null"; 1112 OS << ", APO:" << OpData.APO << "}\n"; 1113 } 1114 OS << "\n"; 1115 } 1116 return OS; 1117 } 1118 1119 /// Debug print. 1120 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1121 #endif 1122 }; 1123 1124 /// Checks if the instruction is marked for deletion. 1125 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1126 1127 /// Marks values for later deletion. 1128 void eraseInstructions(ArrayRef<Value *> AV); 1129 1130 ~BoUpSLP(); 1131 1132 private: 1133 /// Checks if all users of \p I are the part of the vectorization tree. 1134 bool areAllUsersVectorized(Instruction *I) const; 1135 1136 /// \returns the cost of the vectorizable entry. 1137 int getEntryCost(TreeEntry *E); 1138 1139 /// This is the recursive part of buildTree. 1140 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1141 const EdgeInfo &EI); 1142 1143 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1144 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1145 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1146 /// returns false, setting \p CurrentOrder to either an empty vector or a 1147 /// non-identity permutation that allows to reuse extract instructions. 1148 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1149 SmallVectorImpl<unsigned> &CurrentOrder) const; 1150 1151 /// Vectorize a single entry in the tree. 1152 Value *vectorizeTree(TreeEntry *E); 1153 1154 /// Vectorize a single entry in the tree, starting in \p VL. 1155 Value *vectorizeTree(ArrayRef<Value *> VL); 1156 1157 /// \returns the scalarization cost for this type. Scalarization in this 1158 /// context means the creation of vectors from a group of scalars. 1159 int getGatherCost(Type *Ty, const DenseSet<unsigned> &ShuffledIndices) const; 1160 1161 /// \returns the scalarization cost for this list of values. Assuming that 1162 /// this subtree gets vectorized, we may need to extract the values from the 1163 /// roots. This method calculates the cost of extracting the values. 1164 int getGatherCost(ArrayRef<Value *> VL) const; 1165 1166 /// Set the Builder insert point to one after the last instruction in 1167 /// the bundle 1168 void setInsertPointAfterBundle(TreeEntry *E); 1169 1170 /// \returns a vector from a collection of scalars in \p VL. 1171 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 1172 1173 /// \returns whether the VectorizableTree is fully vectorizable and will 1174 /// be beneficial even the tree height is tiny. 1175 bool isFullyVectorizableTinyTree() const; 1176 1177 /// Reorder commutative or alt operands to get better probability of 1178 /// generating vectorized code. 1179 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1180 SmallVectorImpl<Value *> &Left, 1181 SmallVectorImpl<Value *> &Right, 1182 const DataLayout &DL, 1183 ScalarEvolution &SE); 1184 struct TreeEntry { 1185 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1186 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1187 1188 /// \returns true if the scalars in VL are equal to this entry. 1189 bool isSame(ArrayRef<Value *> VL) const { 1190 if (VL.size() == Scalars.size()) 1191 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1192 return VL.size() == ReuseShuffleIndices.size() && 1193 std::equal( 1194 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 1195 [this](Value *V, unsigned Idx) { return V == Scalars[Idx]; }); 1196 } 1197 1198 /// A vector of scalars. 1199 ValueList Scalars; 1200 1201 /// The Scalars are vectorized into this value. It is initialized to Null. 1202 Value *VectorizedValue = nullptr; 1203 1204 /// Do we need to gather this sequence ? 1205 bool NeedToGather = false; 1206 1207 /// Does this sequence require some shuffling? 1208 SmallVector<unsigned, 4> ReuseShuffleIndices; 1209 1210 /// Does this entry require reordering? 1211 ArrayRef<unsigned> ReorderIndices; 1212 1213 /// Points back to the VectorizableTree. 1214 /// 1215 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1216 /// to be a pointer and needs to be able to initialize the child iterator. 1217 /// Thus we need a reference back to the container to translate the indices 1218 /// to entries. 1219 VecTreeTy &Container; 1220 1221 /// The TreeEntry index containing the user of this entry. We can actually 1222 /// have multiple users so the data structure is not truly a tree. 1223 SmallVector<EdgeInfo, 1> UserTreeIndices; 1224 1225 /// The index of this treeEntry in VectorizableTree. 1226 int Idx = -1; 1227 1228 private: 1229 /// The operands of each instruction in each lane Operands[op_index][lane]. 1230 /// Note: This helps avoid the replication of the code that performs the 1231 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1232 SmallVector<ValueList, 2> Operands; 1233 1234 /// The main/alternate instruction. 1235 Instruction *MainOp = nullptr; 1236 Instruction *AltOp = nullptr; 1237 1238 public: 1239 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1240 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1241 if (Operands.size() < OpIdx + 1) 1242 Operands.resize(OpIdx + 1); 1243 assert(Operands[OpIdx].size() == 0 && "Already resized?"); 1244 Operands[OpIdx].resize(Scalars.size()); 1245 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1246 Operands[OpIdx][Lane] = OpVL[Lane]; 1247 } 1248 1249 /// Set the operands of this bundle in their original order. 1250 void setOperandsInOrder() { 1251 assert(Operands.empty() && "Already initialized?"); 1252 auto *I0 = cast<Instruction>(Scalars[0]); 1253 Operands.resize(I0->getNumOperands()); 1254 unsigned NumLanes = Scalars.size(); 1255 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1256 OpIdx != NumOperands; ++OpIdx) { 1257 Operands[OpIdx].resize(NumLanes); 1258 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1259 auto *I = cast<Instruction>(Scalars[Lane]); 1260 assert(I->getNumOperands() == NumOperands && 1261 "Expected same number of operands"); 1262 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1263 } 1264 } 1265 } 1266 1267 /// \returns the \p OpIdx operand of this TreeEntry. 1268 ValueList &getOperand(unsigned OpIdx) { 1269 assert(OpIdx < Operands.size() && "Off bounds"); 1270 return Operands[OpIdx]; 1271 } 1272 1273 /// \returns the number of operands. 1274 unsigned getNumOperands() const { return Operands.size(); } 1275 1276 /// \return the single \p OpIdx operand. 1277 Value *getSingleOperand(unsigned OpIdx) const { 1278 assert(OpIdx < Operands.size() && "Off bounds"); 1279 assert(!Operands[OpIdx].empty() && "No operand available"); 1280 return Operands[OpIdx][0]; 1281 } 1282 1283 /// Some of the instructions in the list have alternate opcodes. 1284 bool isAltShuffle() const { 1285 return getOpcode() != getAltOpcode(); 1286 } 1287 1288 bool isOpcodeOrAlt(Instruction *I) const { 1289 unsigned CheckedOpcode = I->getOpcode(); 1290 return (getOpcode() == CheckedOpcode || 1291 getAltOpcode() == CheckedOpcode); 1292 } 1293 1294 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1295 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1296 /// \p OpValue. 1297 Value *isOneOf(Value *Op) const { 1298 auto *I = dyn_cast<Instruction>(Op); 1299 if (I && isOpcodeOrAlt(I)) 1300 return Op; 1301 return MainOp; 1302 } 1303 1304 void setOperations(const InstructionsState &S) { 1305 MainOp = S.MainOp; 1306 AltOp = S.AltOp; 1307 } 1308 1309 Instruction *getMainOp() const { 1310 return MainOp; 1311 } 1312 1313 Instruction *getAltOp() const { 1314 return AltOp; 1315 } 1316 1317 /// The main/alternate opcodes for the list of instructions. 1318 unsigned getOpcode() const { 1319 return MainOp ? MainOp->getOpcode() : 0; 1320 } 1321 1322 unsigned getAltOpcode() const { 1323 return AltOp ? AltOp->getOpcode() : 0; 1324 } 1325 1326 /// Update operations state of this entry if reorder occurred. 1327 bool updateStateIfReorder() { 1328 if (ReorderIndices.empty()) 1329 return false; 1330 InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front()); 1331 setOperations(S); 1332 return true; 1333 } 1334 1335 #ifndef NDEBUG 1336 /// Debug printer. 1337 LLVM_DUMP_METHOD void dump() const { 1338 dbgs() << Idx << ".\n"; 1339 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1340 dbgs() << "Operand " << OpI << ":\n"; 1341 for (const Value *V : Operands[OpI]) 1342 dbgs().indent(2) << *V << "\n"; 1343 } 1344 dbgs() << "Scalars: \n"; 1345 for (Value *V : Scalars) 1346 dbgs().indent(2) << *V << "\n"; 1347 dbgs() << "NeedToGather: " << NeedToGather << "\n"; 1348 dbgs() << "MainOp: " << *MainOp << "\n"; 1349 dbgs() << "AltOp: " << *AltOp << "\n"; 1350 dbgs() << "VectorizedValue: "; 1351 if (VectorizedValue) 1352 dbgs() << *VectorizedValue; 1353 else 1354 dbgs() << "NULL"; 1355 dbgs() << "\n"; 1356 dbgs() << "ReuseShuffleIndices: "; 1357 if (ReuseShuffleIndices.empty()) 1358 dbgs() << "Emtpy"; 1359 else 1360 for (unsigned ReuseIdx : ReuseShuffleIndices) 1361 dbgs() << ReuseIdx << ", "; 1362 dbgs() << "\n"; 1363 dbgs() << "ReorderIndices: "; 1364 for (unsigned ReorderIdx : ReorderIndices) 1365 dbgs() << ReorderIdx << ", "; 1366 dbgs() << "\n"; 1367 dbgs() << "UserTreeIndices: "; 1368 for (const auto &EInfo : UserTreeIndices) 1369 dbgs() << EInfo << ", "; 1370 dbgs() << "\n"; 1371 } 1372 #endif 1373 }; 1374 1375 /// Create a new VectorizableTree entry. 1376 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1377 const InstructionsState &S, 1378 const EdgeInfo &UserTreeIdx, 1379 ArrayRef<unsigned> ReuseShuffleIndices = None, 1380 ArrayRef<unsigned> ReorderIndices = None) { 1381 bool Vectorized = (bool)Bundle; 1382 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1383 TreeEntry *Last = VectorizableTree.back().get(); 1384 Last->Idx = VectorizableTree.size() - 1; 1385 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 1386 Last->NeedToGather = !Vectorized; 1387 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1388 ReuseShuffleIndices.end()); 1389 Last->ReorderIndices = ReorderIndices; 1390 Last->setOperations(S); 1391 if (Vectorized) { 1392 for (int i = 0, e = VL.size(); i != e; ++i) { 1393 assert(!getTreeEntry(VL[i]) && "Scalar already in tree!"); 1394 ScalarToTreeEntry[VL[i]] = Last; 1395 } 1396 // Update the scheduler bundle to point to this TreeEntry. 1397 unsigned Lane = 0; 1398 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 1399 BundleMember = BundleMember->NextInBundle) { 1400 BundleMember->TE = Last; 1401 BundleMember->Lane = Lane; 1402 ++Lane; 1403 } 1404 assert((!Bundle.getValue() || Lane == VL.size()) && 1405 "Bundle and VL out of sync"); 1406 } else { 1407 MustGather.insert(VL.begin(), VL.end()); 1408 } 1409 1410 if (UserTreeIdx.UserTE) 1411 Last->UserTreeIndices.push_back(UserTreeIdx); 1412 1413 return Last; 1414 } 1415 1416 /// -- Vectorization State -- 1417 /// Holds all of the tree entries. 1418 TreeEntry::VecTreeTy VectorizableTree; 1419 1420 #ifndef NDEBUG 1421 /// Debug printer. 1422 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1423 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1424 VectorizableTree[Id]->dump(); 1425 dbgs() << "\n"; 1426 } 1427 } 1428 #endif 1429 1430 TreeEntry *getTreeEntry(Value *V) { 1431 auto I = ScalarToTreeEntry.find(V); 1432 if (I != ScalarToTreeEntry.end()) 1433 return I->second; 1434 return nullptr; 1435 } 1436 1437 const TreeEntry *getTreeEntry(Value *V) const { 1438 auto I = ScalarToTreeEntry.find(V); 1439 if (I != ScalarToTreeEntry.end()) 1440 return I->second; 1441 return nullptr; 1442 } 1443 1444 /// Maps a specific scalar to its tree entry. 1445 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 1446 1447 /// A list of scalars that we found that we need to keep as scalars. 1448 ValueSet MustGather; 1449 1450 /// This POD struct describes one external user in the vectorized tree. 1451 struct ExternalUser { 1452 ExternalUser(Value *S, llvm::User *U, int L) 1453 : Scalar(S), User(U), Lane(L) {} 1454 1455 // Which scalar in our function. 1456 Value *Scalar; 1457 1458 // Which user that uses the scalar. 1459 llvm::User *User; 1460 1461 // Which lane does the scalar belong to. 1462 int Lane; 1463 }; 1464 using UserList = SmallVector<ExternalUser, 16>; 1465 1466 /// Checks if two instructions may access the same memory. 1467 /// 1468 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 1469 /// is invariant in the calling loop. 1470 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 1471 Instruction *Inst2) { 1472 // First check if the result is already in the cache. 1473 AliasCacheKey key = std::make_pair(Inst1, Inst2); 1474 Optional<bool> &result = AliasCache[key]; 1475 if (result.hasValue()) { 1476 return result.getValue(); 1477 } 1478 MemoryLocation Loc2 = getLocation(Inst2, AA); 1479 bool aliased = true; 1480 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 1481 // Do the alias check. 1482 aliased = AA->alias(Loc1, Loc2); 1483 } 1484 // Store the result in the cache. 1485 result = aliased; 1486 return aliased; 1487 } 1488 1489 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 1490 1491 /// Cache for alias results. 1492 /// TODO: consider moving this to the AliasAnalysis itself. 1493 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 1494 1495 /// Removes an instruction from its block and eventually deletes it. 1496 /// It's like Instruction::eraseFromParent() except that the actual deletion 1497 /// is delayed until BoUpSLP is destructed. 1498 /// This is required to ensure that there are no incorrect collisions in the 1499 /// AliasCache, which can happen if a new instruction is allocated at the 1500 /// same address as a previously deleted instruction. 1501 void eraseInstruction(Instruction *I) { 1502 DeletedInstructions.insert(I); 1503 } 1504 1505 /// Temporary store for deleted instructions. Instructions will be deleted 1506 /// eventually when the BoUpSLP is destructed. 1507 SmallPtrSet<Instruction *, 8> DeletedInstructions; 1508 1509 /// A list of values that need to extracted out of the tree. 1510 /// This list holds pairs of (Internal Scalar : External User). External User 1511 /// can be nullptr, it means that this Internal Scalar will be used later, 1512 /// after vectorization. 1513 UserList ExternalUses; 1514 1515 /// Values used only by @llvm.assume calls. 1516 SmallPtrSet<const Value *, 32> EphValues; 1517 1518 /// Holds all of the instructions that we gathered. 1519 SetVector<Instruction *> GatherSeq; 1520 1521 /// A list of blocks that we are going to CSE. 1522 SetVector<BasicBlock *> CSEBlocks; 1523 1524 /// Contains all scheduling relevant data for an instruction. 1525 /// A ScheduleData either represents a single instruction or a member of an 1526 /// instruction bundle (= a group of instructions which is combined into a 1527 /// vector instruction). 1528 struct ScheduleData { 1529 // The initial value for the dependency counters. It means that the 1530 // dependencies are not calculated yet. 1531 enum { InvalidDeps = -1 }; 1532 1533 ScheduleData() = default; 1534 1535 void init(int BlockSchedulingRegionID, Value *OpVal) { 1536 FirstInBundle = this; 1537 NextInBundle = nullptr; 1538 NextLoadStore = nullptr; 1539 IsScheduled = false; 1540 SchedulingRegionID = BlockSchedulingRegionID; 1541 UnscheduledDepsInBundle = UnscheduledDeps; 1542 clearDependencies(); 1543 OpValue = OpVal; 1544 TE = nullptr; 1545 Lane = -1; 1546 } 1547 1548 /// Returns true if the dependency information has been calculated. 1549 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 1550 1551 /// Returns true for single instructions and for bundle representatives 1552 /// (= the head of a bundle). 1553 bool isSchedulingEntity() const { return FirstInBundle == this; } 1554 1555 /// Returns true if it represents an instruction bundle and not only a 1556 /// single instruction. 1557 bool isPartOfBundle() const { 1558 return NextInBundle != nullptr || FirstInBundle != this; 1559 } 1560 1561 /// Returns true if it is ready for scheduling, i.e. it has no more 1562 /// unscheduled depending instructions/bundles. 1563 bool isReady() const { 1564 assert(isSchedulingEntity() && 1565 "can't consider non-scheduling entity for ready list"); 1566 return UnscheduledDepsInBundle == 0 && !IsScheduled; 1567 } 1568 1569 /// Modifies the number of unscheduled dependencies, also updating it for 1570 /// the whole bundle. 1571 int incrementUnscheduledDeps(int Incr) { 1572 UnscheduledDeps += Incr; 1573 return FirstInBundle->UnscheduledDepsInBundle += Incr; 1574 } 1575 1576 /// Sets the number of unscheduled dependencies to the number of 1577 /// dependencies. 1578 void resetUnscheduledDeps() { 1579 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 1580 } 1581 1582 /// Clears all dependency information. 1583 void clearDependencies() { 1584 Dependencies = InvalidDeps; 1585 resetUnscheduledDeps(); 1586 MemoryDependencies.clear(); 1587 } 1588 1589 void dump(raw_ostream &os) const { 1590 if (!isSchedulingEntity()) { 1591 os << "/ " << *Inst; 1592 } else if (NextInBundle) { 1593 os << '[' << *Inst; 1594 ScheduleData *SD = NextInBundle; 1595 while (SD) { 1596 os << ';' << *SD->Inst; 1597 SD = SD->NextInBundle; 1598 } 1599 os << ']'; 1600 } else { 1601 os << *Inst; 1602 } 1603 } 1604 1605 Instruction *Inst = nullptr; 1606 1607 /// Points to the head in an instruction bundle (and always to this for 1608 /// single instructions). 1609 ScheduleData *FirstInBundle = nullptr; 1610 1611 /// Single linked list of all instructions in a bundle. Null if it is a 1612 /// single instruction. 1613 ScheduleData *NextInBundle = nullptr; 1614 1615 /// Single linked list of all memory instructions (e.g. load, store, call) 1616 /// in the block - until the end of the scheduling region. 1617 ScheduleData *NextLoadStore = nullptr; 1618 1619 /// The dependent memory instructions. 1620 /// This list is derived on demand in calculateDependencies(). 1621 SmallVector<ScheduleData *, 4> MemoryDependencies; 1622 1623 /// This ScheduleData is in the current scheduling region if this matches 1624 /// the current SchedulingRegionID of BlockScheduling. 1625 int SchedulingRegionID = 0; 1626 1627 /// Used for getting a "good" final ordering of instructions. 1628 int SchedulingPriority = 0; 1629 1630 /// The number of dependencies. Constitutes of the number of users of the 1631 /// instruction plus the number of dependent memory instructions (if any). 1632 /// This value is calculated on demand. 1633 /// If InvalidDeps, the number of dependencies is not calculated yet. 1634 int Dependencies = InvalidDeps; 1635 1636 /// The number of dependencies minus the number of dependencies of scheduled 1637 /// instructions. As soon as this is zero, the instruction/bundle gets ready 1638 /// for scheduling. 1639 /// Note that this is negative as long as Dependencies is not calculated. 1640 int UnscheduledDeps = InvalidDeps; 1641 1642 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 1643 /// single instructions. 1644 int UnscheduledDepsInBundle = InvalidDeps; 1645 1646 /// True if this instruction is scheduled (or considered as scheduled in the 1647 /// dry-run). 1648 bool IsScheduled = false; 1649 1650 /// Opcode of the current instruction in the schedule data. 1651 Value *OpValue = nullptr; 1652 1653 /// The TreeEntry that this instruction corresponds to. 1654 TreeEntry *TE = nullptr; 1655 1656 /// The lane of this node in the TreeEntry. 1657 int Lane = -1; 1658 }; 1659 1660 #ifndef NDEBUG 1661 friend inline raw_ostream &operator<<(raw_ostream &os, 1662 const BoUpSLP::ScheduleData &SD) { 1663 SD.dump(os); 1664 return os; 1665 } 1666 #endif 1667 1668 friend struct GraphTraits<BoUpSLP *>; 1669 friend struct DOTGraphTraits<BoUpSLP *>; 1670 1671 /// Contains all scheduling data for a basic block. 1672 struct BlockScheduling { 1673 BlockScheduling(BasicBlock *BB) 1674 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 1675 1676 void clear() { 1677 ReadyInsts.clear(); 1678 ScheduleStart = nullptr; 1679 ScheduleEnd = nullptr; 1680 FirstLoadStoreInRegion = nullptr; 1681 LastLoadStoreInRegion = nullptr; 1682 1683 // Reduce the maximum schedule region size by the size of the 1684 // previous scheduling run. 1685 ScheduleRegionSizeLimit -= ScheduleRegionSize; 1686 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 1687 ScheduleRegionSizeLimit = MinScheduleRegionSize; 1688 ScheduleRegionSize = 0; 1689 1690 // Make a new scheduling region, i.e. all existing ScheduleData is not 1691 // in the new region yet. 1692 ++SchedulingRegionID; 1693 } 1694 1695 ScheduleData *getScheduleData(Value *V) { 1696 ScheduleData *SD = ScheduleDataMap[V]; 1697 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1698 return SD; 1699 return nullptr; 1700 } 1701 1702 ScheduleData *getScheduleData(Value *V, Value *Key) { 1703 if (V == Key) 1704 return getScheduleData(V); 1705 auto I = ExtraScheduleDataMap.find(V); 1706 if (I != ExtraScheduleDataMap.end()) { 1707 ScheduleData *SD = I->second[Key]; 1708 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1709 return SD; 1710 } 1711 return nullptr; 1712 } 1713 1714 bool isInSchedulingRegion(ScheduleData *SD) { 1715 return SD->SchedulingRegionID == SchedulingRegionID; 1716 } 1717 1718 /// Marks an instruction as scheduled and puts all dependent ready 1719 /// instructions into the ready-list. 1720 template <typename ReadyListType> 1721 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 1722 SD->IsScheduled = true; 1723 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 1724 1725 ScheduleData *BundleMember = SD; 1726 while (BundleMember) { 1727 if (BundleMember->Inst != BundleMember->OpValue) { 1728 BundleMember = BundleMember->NextInBundle; 1729 continue; 1730 } 1731 // Handle the def-use chain dependencies. 1732 1733 // Decrement the unscheduled counter and insert to ready list if ready. 1734 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 1735 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 1736 if (OpDef && OpDef->hasValidDependencies() && 1737 OpDef->incrementUnscheduledDeps(-1) == 0) { 1738 // There are no more unscheduled dependencies after 1739 // decrementing, so we can put the dependent instruction 1740 // into the ready list. 1741 ScheduleData *DepBundle = OpDef->FirstInBundle; 1742 assert(!DepBundle->IsScheduled && 1743 "already scheduled bundle gets ready"); 1744 ReadyList.insert(DepBundle); 1745 LLVM_DEBUG(dbgs() 1746 << "SLP: gets ready (def): " << *DepBundle << "\n"); 1747 } 1748 }); 1749 }; 1750 1751 // If BundleMember is a vector bundle, its operands may have been 1752 // reordered duiring buildTree(). We therefore need to get its operands 1753 // through the TreeEntry. 1754 if (TreeEntry *TE = BundleMember->TE) { 1755 int Lane = BundleMember->Lane; 1756 assert(Lane >= 0 && "Lane not set"); 1757 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 1758 OpIdx != NumOperands; ++OpIdx) 1759 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 1760 DecrUnsched(I); 1761 } else { 1762 // If BundleMember is a stand-alone instruction, no operand reordering 1763 // has taken place, so we directly access its operands. 1764 for (Use &U : BundleMember->Inst->operands()) 1765 if (auto *I = dyn_cast<Instruction>(U.get())) 1766 DecrUnsched(I); 1767 } 1768 // Handle the memory dependencies. 1769 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 1770 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 1771 // There are no more unscheduled dependencies after decrementing, 1772 // so we can put the dependent instruction into the ready list. 1773 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 1774 assert(!DepBundle->IsScheduled && 1775 "already scheduled bundle gets ready"); 1776 ReadyList.insert(DepBundle); 1777 LLVM_DEBUG(dbgs() 1778 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 1779 } 1780 } 1781 BundleMember = BundleMember->NextInBundle; 1782 } 1783 } 1784 1785 void doForAllOpcodes(Value *V, 1786 function_ref<void(ScheduleData *SD)> Action) { 1787 if (ScheduleData *SD = getScheduleData(V)) 1788 Action(SD); 1789 auto I = ExtraScheduleDataMap.find(V); 1790 if (I != ExtraScheduleDataMap.end()) 1791 for (auto &P : I->second) 1792 if (P.second->SchedulingRegionID == SchedulingRegionID) 1793 Action(P.second); 1794 } 1795 1796 /// Put all instructions into the ReadyList which are ready for scheduling. 1797 template <typename ReadyListType> 1798 void initialFillReadyList(ReadyListType &ReadyList) { 1799 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 1800 doForAllOpcodes(I, [&](ScheduleData *SD) { 1801 if (SD->isSchedulingEntity() && SD->isReady()) { 1802 ReadyList.insert(SD); 1803 LLVM_DEBUG(dbgs() 1804 << "SLP: initially in ready list: " << *I << "\n"); 1805 } 1806 }); 1807 } 1808 } 1809 1810 /// Checks if a bundle of instructions can be scheduled, i.e. has no 1811 /// cyclic dependencies. This is only a dry-run, no instructions are 1812 /// actually moved at this stage. 1813 /// \returns the scheduling bundle. The returned Optional value is non-None 1814 /// if \p VL is allowed to be scheduled. 1815 Optional<ScheduleData *> 1816 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 1817 const InstructionsState &S); 1818 1819 /// Un-bundles a group of instructions. 1820 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 1821 1822 /// Allocates schedule data chunk. 1823 ScheduleData *allocateScheduleDataChunks(); 1824 1825 /// Extends the scheduling region so that V is inside the region. 1826 /// \returns true if the region size is within the limit. 1827 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 1828 1829 /// Initialize the ScheduleData structures for new instructions in the 1830 /// scheduling region. 1831 void initScheduleData(Instruction *FromI, Instruction *ToI, 1832 ScheduleData *PrevLoadStore, 1833 ScheduleData *NextLoadStore); 1834 1835 /// Updates the dependency information of a bundle and of all instructions/ 1836 /// bundles which depend on the original bundle. 1837 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 1838 BoUpSLP *SLP); 1839 1840 /// Sets all instruction in the scheduling region to un-scheduled. 1841 void resetSchedule(); 1842 1843 BasicBlock *BB; 1844 1845 /// Simple memory allocation for ScheduleData. 1846 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 1847 1848 /// The size of a ScheduleData array in ScheduleDataChunks. 1849 int ChunkSize; 1850 1851 /// The allocator position in the current chunk, which is the last entry 1852 /// of ScheduleDataChunks. 1853 int ChunkPos; 1854 1855 /// Attaches ScheduleData to Instruction. 1856 /// Note that the mapping survives during all vectorization iterations, i.e. 1857 /// ScheduleData structures are recycled. 1858 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 1859 1860 /// Attaches ScheduleData to Instruction with the leading key. 1861 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 1862 ExtraScheduleDataMap; 1863 1864 struct ReadyList : SmallVector<ScheduleData *, 8> { 1865 void insert(ScheduleData *SD) { push_back(SD); } 1866 }; 1867 1868 /// The ready-list for scheduling (only used for the dry-run). 1869 ReadyList ReadyInsts; 1870 1871 /// The first instruction of the scheduling region. 1872 Instruction *ScheduleStart = nullptr; 1873 1874 /// The first instruction _after_ the scheduling region. 1875 Instruction *ScheduleEnd = nullptr; 1876 1877 /// The first memory accessing instruction in the scheduling region 1878 /// (can be null). 1879 ScheduleData *FirstLoadStoreInRegion = nullptr; 1880 1881 /// The last memory accessing instruction in the scheduling region 1882 /// (can be null). 1883 ScheduleData *LastLoadStoreInRegion = nullptr; 1884 1885 /// The current size of the scheduling region. 1886 int ScheduleRegionSize = 0; 1887 1888 /// The maximum size allowed for the scheduling region. 1889 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 1890 1891 /// The ID of the scheduling region. For a new vectorization iteration this 1892 /// is incremented which "removes" all ScheduleData from the region. 1893 // Make sure that the initial SchedulingRegionID is greater than the 1894 // initial SchedulingRegionID in ScheduleData (which is 0). 1895 int SchedulingRegionID = 1; 1896 }; 1897 1898 /// Attaches the BlockScheduling structures to basic blocks. 1899 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 1900 1901 /// Performs the "real" scheduling. Done before vectorization is actually 1902 /// performed in a basic block. 1903 void scheduleBlock(BlockScheduling *BS); 1904 1905 /// List of users to ignore during scheduling and that don't need extracting. 1906 ArrayRef<Value *> UserIgnoreList; 1907 1908 using OrdersType = SmallVector<unsigned, 4>; 1909 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 1910 /// sorted SmallVectors of unsigned. 1911 struct OrdersTypeDenseMapInfo { 1912 static OrdersType getEmptyKey() { 1913 OrdersType V; 1914 V.push_back(~1U); 1915 return V; 1916 } 1917 1918 static OrdersType getTombstoneKey() { 1919 OrdersType V; 1920 V.push_back(~2U); 1921 return V; 1922 } 1923 1924 static unsigned getHashValue(const OrdersType &V) { 1925 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1926 } 1927 1928 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 1929 return LHS == RHS; 1930 } 1931 }; 1932 1933 /// Contains orders of operations along with the number of bundles that have 1934 /// operations in this order. It stores only those orders that require 1935 /// reordering, if reordering is not required it is counted using \a 1936 /// NumOpsWantToKeepOriginalOrder. 1937 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 1938 /// Number of bundles that do not require reordering. 1939 unsigned NumOpsWantToKeepOriginalOrder = 0; 1940 1941 // Analysis and block reference. 1942 Function *F; 1943 ScalarEvolution *SE; 1944 TargetTransformInfo *TTI; 1945 TargetLibraryInfo *TLI; 1946 AliasAnalysis *AA; 1947 LoopInfo *LI; 1948 DominatorTree *DT; 1949 AssumptionCache *AC; 1950 DemandedBits *DB; 1951 const DataLayout *DL; 1952 OptimizationRemarkEmitter *ORE; 1953 1954 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 1955 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 1956 1957 /// Instruction builder to construct the vectorized tree. 1958 IRBuilder<> Builder; 1959 1960 /// A map of scalar integer values to the smallest bit width with which they 1961 /// can legally be represented. The values map to (width, signed) pairs, 1962 /// where "width" indicates the minimum bit width and "signed" is True if the 1963 /// value must be signed-extended, rather than zero-extended, back to its 1964 /// original width. 1965 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 1966 }; 1967 1968 } // end namespace slpvectorizer 1969 1970 template <> struct GraphTraits<BoUpSLP *> { 1971 using TreeEntry = BoUpSLP::TreeEntry; 1972 1973 /// NodeRef has to be a pointer per the GraphWriter. 1974 using NodeRef = TreeEntry *; 1975 1976 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 1977 1978 /// Add the VectorizableTree to the index iterator to be able to return 1979 /// TreeEntry pointers. 1980 struct ChildIteratorType 1981 : public iterator_adaptor_base< 1982 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 1983 ContainerTy &VectorizableTree; 1984 1985 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 1986 ContainerTy &VT) 1987 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 1988 1989 NodeRef operator*() { return I->UserTE; } 1990 }; 1991 1992 static NodeRef getEntryNode(BoUpSLP &R) { 1993 return R.VectorizableTree[0].get(); 1994 } 1995 1996 static ChildIteratorType child_begin(NodeRef N) { 1997 return {N->UserTreeIndices.begin(), N->Container}; 1998 } 1999 2000 static ChildIteratorType child_end(NodeRef N) { 2001 return {N->UserTreeIndices.end(), N->Container}; 2002 } 2003 2004 /// For the node iterator we just need to turn the TreeEntry iterator into a 2005 /// TreeEntry* iterator so that it dereferences to NodeRef. 2006 class nodes_iterator { 2007 using ItTy = ContainerTy::iterator; 2008 ItTy It; 2009 2010 public: 2011 nodes_iterator(const ItTy &It2) : It(It2) {} 2012 NodeRef operator*() { return It->get(); } 2013 nodes_iterator operator++() { 2014 ++It; 2015 return *this; 2016 } 2017 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2018 }; 2019 2020 static nodes_iterator nodes_begin(BoUpSLP *R) { 2021 return nodes_iterator(R->VectorizableTree.begin()); 2022 } 2023 2024 static nodes_iterator nodes_end(BoUpSLP *R) { 2025 return nodes_iterator(R->VectorizableTree.end()); 2026 } 2027 2028 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2029 }; 2030 2031 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2032 using TreeEntry = BoUpSLP::TreeEntry; 2033 2034 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2035 2036 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2037 std::string Str; 2038 raw_string_ostream OS(Str); 2039 if (isSplat(Entry->Scalars)) { 2040 OS << "<splat> " << *Entry->Scalars[0]; 2041 return Str; 2042 } 2043 for (auto V : Entry->Scalars) { 2044 OS << *V; 2045 if (std::any_of( 2046 R->ExternalUses.begin(), R->ExternalUses.end(), 2047 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 2048 OS << " <extract>"; 2049 OS << "\n"; 2050 } 2051 return Str; 2052 } 2053 2054 static std::string getNodeAttributes(const TreeEntry *Entry, 2055 const BoUpSLP *) { 2056 if (Entry->NeedToGather) 2057 return "color=red"; 2058 return ""; 2059 } 2060 }; 2061 2062 } // end namespace llvm 2063 2064 BoUpSLP::~BoUpSLP() { 2065 for (auto *I : DeletedInstructions) 2066 I->dropAllReferences(); 2067 for (auto *I : DeletedInstructions) { 2068 assert(I->use_empty() && "trying to erase instruction with users."); 2069 I->eraseFromParent(); 2070 } 2071 } 2072 2073 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2074 for (auto *V : AV) { 2075 if (auto *I = dyn_cast<Instruction>(V)) 2076 eraseInstruction(I); 2077 }; 2078 } 2079 2080 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2081 ArrayRef<Value *> UserIgnoreLst) { 2082 ExtraValueToDebugLocsMap ExternallyUsedValues; 2083 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 2084 } 2085 2086 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2087 ExtraValueToDebugLocsMap &ExternallyUsedValues, 2088 ArrayRef<Value *> UserIgnoreLst) { 2089 deleteTree(); 2090 UserIgnoreList = UserIgnoreLst; 2091 if (!allSameType(Roots)) 2092 return; 2093 buildTree_rec(Roots, 0, EdgeInfo()); 2094 2095 // Collect the values that we need to extract from the tree. 2096 for (auto &TEPtr : VectorizableTree) { 2097 TreeEntry *Entry = TEPtr.get(); 2098 2099 // No need to handle users of gathered values. 2100 if (Entry->NeedToGather) 2101 continue; 2102 2103 // For each lane: 2104 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2105 Value *Scalar = Entry->Scalars[Lane]; 2106 int FoundLane = Lane; 2107 if (!Entry->ReuseShuffleIndices.empty()) { 2108 FoundLane = 2109 std::distance(Entry->ReuseShuffleIndices.begin(), 2110 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 2111 } 2112 2113 // Check if the scalar is externally used as an extra arg. 2114 auto ExtI = ExternallyUsedValues.find(Scalar); 2115 if (ExtI != ExternallyUsedValues.end()) { 2116 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 2117 << Lane << " from " << *Scalar << ".\n"); 2118 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 2119 } 2120 for (User *U : Scalar->users()) { 2121 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 2122 2123 Instruction *UserInst = dyn_cast<Instruction>(U); 2124 if (!UserInst) 2125 continue; 2126 2127 // Skip in-tree scalars that become vectors 2128 if (TreeEntry *UseEntry = getTreeEntry(U)) { 2129 Value *UseScalar = UseEntry->Scalars[0]; 2130 // Some in-tree scalars will remain as scalar in vectorized 2131 // instructions. If that is the case, the one in Lane 0 will 2132 // be used. 2133 if (UseScalar != U || 2134 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 2135 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 2136 << ".\n"); 2137 assert(!UseEntry->NeedToGather && "Bad state"); 2138 continue; 2139 } 2140 } 2141 2142 // Ignore users in the user ignore list. 2143 if (is_contained(UserIgnoreList, UserInst)) 2144 continue; 2145 2146 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 2147 << Lane << " from " << *Scalar << ".\n"); 2148 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 2149 } 2150 } 2151 } 2152 } 2153 2154 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 2155 const EdgeInfo &UserTreeIdx) { 2156 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 2157 2158 InstructionsState S = getSameOpcode(VL); 2159 if (Depth == RecursionMaxDepth) { 2160 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 2161 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2162 return; 2163 } 2164 2165 // Don't handle vectors. 2166 if (S.OpValue->getType()->isVectorTy()) { 2167 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 2168 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2169 return; 2170 } 2171 2172 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2173 if (SI->getValueOperand()->getType()->isVectorTy()) { 2174 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 2175 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2176 return; 2177 } 2178 2179 // If all of the operands are identical or constant we have a simple solution. 2180 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 2181 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 2182 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2183 return; 2184 } 2185 2186 // We now know that this is a vector of instructions of the same type from 2187 // the same block. 2188 2189 // Don't vectorize ephemeral values. 2190 for (Value *V : VL) { 2191 if (EphValues.count(V)) { 2192 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2193 << ") is ephemeral.\n"); 2194 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2195 return; 2196 } 2197 } 2198 2199 // Check if this is a duplicate of another entry. 2200 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2201 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 2202 if (!E->isSame(VL)) { 2203 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 2204 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2205 return; 2206 } 2207 // Record the reuse of the tree node. FIXME, currently this is only used to 2208 // properly draw the graph rather than for the actual vectorization. 2209 E->UserTreeIndices.push_back(UserTreeIdx); 2210 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 2211 << ".\n"); 2212 return; 2213 } 2214 2215 // Check that none of the instructions in the bundle are already in the tree. 2216 for (Value *V : VL) { 2217 auto *I = dyn_cast<Instruction>(V); 2218 if (!I) 2219 continue; 2220 if (getTreeEntry(I)) { 2221 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2222 << ") is already in tree.\n"); 2223 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2224 return; 2225 } 2226 } 2227 2228 // If any of the scalars is marked as a value that needs to stay scalar, then 2229 // we need to gather the scalars. 2230 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 2231 for (Value *V : VL) { 2232 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 2233 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 2234 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2235 return; 2236 } 2237 } 2238 2239 // Check that all of the users of the scalars that we want to vectorize are 2240 // schedulable. 2241 auto *VL0 = cast<Instruction>(S.OpValue); 2242 BasicBlock *BB = VL0->getParent(); 2243 2244 if (!DT->isReachableFromEntry(BB)) { 2245 // Don't go into unreachable blocks. They may contain instructions with 2246 // dependency cycles which confuse the final scheduling. 2247 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 2248 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2249 return; 2250 } 2251 2252 // Check that every instruction appears once in this bundle. 2253 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2254 SmallVector<Value *, 4> UniqueValues; 2255 DenseMap<Value *, unsigned> UniquePositions; 2256 for (Value *V : VL) { 2257 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2258 ReuseShuffleIndicies.emplace_back(Res.first->second); 2259 if (Res.second) 2260 UniqueValues.emplace_back(V); 2261 } 2262 size_t NumUniqueScalarValues = UniqueValues.size(); 2263 if (NumUniqueScalarValues == VL.size()) { 2264 ReuseShuffleIndicies.clear(); 2265 } else { 2266 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 2267 if (NumUniqueScalarValues <= 1 || 2268 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 2269 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 2270 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2271 return; 2272 } 2273 VL = UniqueValues; 2274 } 2275 2276 auto &BSRef = BlocksSchedules[BB]; 2277 if (!BSRef) 2278 BSRef = std::make_unique<BlockScheduling>(BB); 2279 2280 BlockScheduling &BS = *BSRef.get(); 2281 2282 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 2283 if (!Bundle) { 2284 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 2285 assert((!BS.getScheduleData(VL0) || 2286 !BS.getScheduleData(VL0)->isPartOfBundle()) && 2287 "tryScheduleBundle should cancelScheduling on failure"); 2288 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2289 ReuseShuffleIndicies); 2290 return; 2291 } 2292 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 2293 2294 unsigned ShuffleOrOp = S.isAltShuffle() ? 2295 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2296 switch (ShuffleOrOp) { 2297 case Instruction::PHI: { 2298 auto *PH = cast<PHINode>(VL0); 2299 2300 // Check for terminator values (e.g. invoke). 2301 for (unsigned j = 0; j < VL.size(); ++j) 2302 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2303 Instruction *Term = dyn_cast<Instruction>( 2304 cast<PHINode>(VL[j])->getIncomingValueForBlock( 2305 PH->getIncomingBlock(i))); 2306 if (Term && Term->isTerminator()) { 2307 LLVM_DEBUG(dbgs() 2308 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 2309 BS.cancelScheduling(VL, VL0); 2310 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2311 ReuseShuffleIndicies); 2312 return; 2313 } 2314 } 2315 2316 TreeEntry *TE = 2317 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 2318 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 2319 2320 // Keeps the reordered operands to avoid code duplication. 2321 SmallVector<ValueList, 2> OperandsVec; 2322 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2323 ValueList Operands; 2324 // Prepare the operand vector. 2325 for (Value *j : VL) 2326 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 2327 PH->getIncomingBlock(i))); 2328 TE->setOperand(i, Operands); 2329 OperandsVec.push_back(Operands); 2330 } 2331 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 2332 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 2333 return; 2334 } 2335 case Instruction::ExtractValue: 2336 case Instruction::ExtractElement: { 2337 OrdersType CurrentOrder; 2338 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 2339 if (Reuse) { 2340 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 2341 ++NumOpsWantToKeepOriginalOrder; 2342 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2343 ReuseShuffleIndicies); 2344 // This is a special case, as it does not gather, but at the same time 2345 // we are not extending buildTree_rec() towards the operands. 2346 ValueList Op0; 2347 Op0.assign(VL.size(), VL0->getOperand(0)); 2348 VectorizableTree.back()->setOperand(0, Op0); 2349 return; 2350 } 2351 if (!CurrentOrder.empty()) { 2352 LLVM_DEBUG({ 2353 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 2354 "with order"; 2355 for (unsigned Idx : CurrentOrder) 2356 dbgs() << " " << Idx; 2357 dbgs() << "\n"; 2358 }); 2359 // Insert new order with initial value 0, if it does not exist, 2360 // otherwise return the iterator to the existing one. 2361 auto StoredCurrentOrderAndNum = 2362 NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 2363 ++StoredCurrentOrderAndNum->getSecond(); 2364 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2365 ReuseShuffleIndicies, 2366 StoredCurrentOrderAndNum->getFirst()); 2367 // This is a special case, as it does not gather, but at the same time 2368 // we are not extending buildTree_rec() towards the operands. 2369 ValueList Op0; 2370 Op0.assign(VL.size(), VL0->getOperand(0)); 2371 VectorizableTree.back()->setOperand(0, Op0); 2372 return; 2373 } 2374 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 2375 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2376 ReuseShuffleIndicies); 2377 BS.cancelScheduling(VL, VL0); 2378 return; 2379 } 2380 case Instruction::Load: { 2381 // Check that a vectorized load would load the same memory as a scalar 2382 // load. For example, we don't want to vectorize loads that are smaller 2383 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 2384 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 2385 // from such a struct, we read/write packed bits disagreeing with the 2386 // unvectorized version. 2387 Type *ScalarTy = VL0->getType(); 2388 2389 if (DL->getTypeSizeInBits(ScalarTy) != 2390 DL->getTypeAllocSizeInBits(ScalarTy)) { 2391 BS.cancelScheduling(VL, VL0); 2392 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2393 ReuseShuffleIndicies); 2394 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 2395 return; 2396 } 2397 2398 // Make sure all loads in the bundle are simple - we can't vectorize 2399 // atomic or volatile loads. 2400 SmallVector<Value *, 4> PointerOps(VL.size()); 2401 auto POIter = PointerOps.begin(); 2402 for (Value *V : VL) { 2403 auto *L = cast<LoadInst>(V); 2404 if (!L->isSimple()) { 2405 BS.cancelScheduling(VL, VL0); 2406 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2407 ReuseShuffleIndicies); 2408 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 2409 return; 2410 } 2411 *POIter = L->getPointerOperand(); 2412 ++POIter; 2413 } 2414 2415 OrdersType CurrentOrder; 2416 // Check the order of pointer operands. 2417 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2418 Value *Ptr0; 2419 Value *PtrN; 2420 if (CurrentOrder.empty()) { 2421 Ptr0 = PointerOps.front(); 2422 PtrN = PointerOps.back(); 2423 } else { 2424 Ptr0 = PointerOps[CurrentOrder.front()]; 2425 PtrN = PointerOps[CurrentOrder.back()]; 2426 } 2427 const SCEV *Scev0 = SE->getSCEV(Ptr0); 2428 const SCEV *ScevN = SE->getSCEV(PtrN); 2429 const auto *Diff = 2430 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 2431 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 2432 // Check that the sorted loads are consecutive. 2433 if (Diff && Diff->getAPInt().getZExtValue() == (VL.size() - 1) * Size) { 2434 if (CurrentOrder.empty()) { 2435 // Original loads are consecutive and does not require reordering. 2436 ++NumOpsWantToKeepOriginalOrder; 2437 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 2438 UserTreeIdx, ReuseShuffleIndicies); 2439 TE->setOperandsInOrder(); 2440 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 2441 } else { 2442 // Need to reorder. 2443 auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 2444 ++I->getSecond(); 2445 TreeEntry *TE = 2446 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2447 ReuseShuffleIndicies, I->getFirst()); 2448 TE->setOperandsInOrder(); 2449 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 2450 } 2451 return; 2452 } 2453 } 2454 2455 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 2456 BS.cancelScheduling(VL, VL0); 2457 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2458 ReuseShuffleIndicies); 2459 return; 2460 } 2461 case Instruction::ZExt: 2462 case Instruction::SExt: 2463 case Instruction::FPToUI: 2464 case Instruction::FPToSI: 2465 case Instruction::FPExt: 2466 case Instruction::PtrToInt: 2467 case Instruction::IntToPtr: 2468 case Instruction::SIToFP: 2469 case Instruction::UIToFP: 2470 case Instruction::Trunc: 2471 case Instruction::FPTrunc: 2472 case Instruction::BitCast: { 2473 Type *SrcTy = VL0->getOperand(0)->getType(); 2474 for (Value *V : VL) { 2475 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 2476 if (Ty != SrcTy || !isValidElementType(Ty)) { 2477 BS.cancelScheduling(VL, VL0); 2478 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2479 ReuseShuffleIndicies); 2480 LLVM_DEBUG(dbgs() 2481 << "SLP: Gathering casts with different src types.\n"); 2482 return; 2483 } 2484 } 2485 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2486 ReuseShuffleIndicies); 2487 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 2488 2489 TE->setOperandsInOrder(); 2490 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2491 ValueList Operands; 2492 // Prepare the operand vector. 2493 for (Value *V : VL) 2494 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2495 2496 buildTree_rec(Operands, Depth + 1, {TE, i}); 2497 } 2498 return; 2499 } 2500 case Instruction::ICmp: 2501 case Instruction::FCmp: { 2502 // Check that all of the compares have the same predicate. 2503 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2504 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 2505 Type *ComparedTy = VL0->getOperand(0)->getType(); 2506 for (Value *V : VL) { 2507 CmpInst *Cmp = cast<CmpInst>(V); 2508 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 2509 Cmp->getOperand(0)->getType() != ComparedTy) { 2510 BS.cancelScheduling(VL, VL0); 2511 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2512 ReuseShuffleIndicies); 2513 LLVM_DEBUG(dbgs() 2514 << "SLP: Gathering cmp with different predicate.\n"); 2515 return; 2516 } 2517 } 2518 2519 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2520 ReuseShuffleIndicies); 2521 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 2522 2523 ValueList Left, Right; 2524 if (cast<CmpInst>(VL0)->isCommutative()) { 2525 // Commutative predicate - collect + sort operands of the instructions 2526 // so that each side is more likely to have the same opcode. 2527 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 2528 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE); 2529 } else { 2530 // Collect operands - commute if it uses the swapped predicate. 2531 for (Value *V : VL) { 2532 auto *Cmp = cast<CmpInst>(V); 2533 Value *LHS = Cmp->getOperand(0); 2534 Value *RHS = Cmp->getOperand(1); 2535 if (Cmp->getPredicate() != P0) 2536 std::swap(LHS, RHS); 2537 Left.push_back(LHS); 2538 Right.push_back(RHS); 2539 } 2540 } 2541 TE->setOperand(0, Left); 2542 TE->setOperand(1, Right); 2543 buildTree_rec(Left, Depth + 1, {TE, 0}); 2544 buildTree_rec(Right, Depth + 1, {TE, 1}); 2545 return; 2546 } 2547 case Instruction::Select: 2548 case Instruction::FNeg: 2549 case Instruction::Add: 2550 case Instruction::FAdd: 2551 case Instruction::Sub: 2552 case Instruction::FSub: 2553 case Instruction::Mul: 2554 case Instruction::FMul: 2555 case Instruction::UDiv: 2556 case Instruction::SDiv: 2557 case Instruction::FDiv: 2558 case Instruction::URem: 2559 case Instruction::SRem: 2560 case Instruction::FRem: 2561 case Instruction::Shl: 2562 case Instruction::LShr: 2563 case Instruction::AShr: 2564 case Instruction::And: 2565 case Instruction::Or: 2566 case Instruction::Xor: { 2567 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2568 ReuseShuffleIndicies); 2569 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 2570 2571 // Sort operands of the instructions so that each side is more likely to 2572 // have the same opcode. 2573 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 2574 ValueList Left, Right; 2575 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE); 2576 TE->setOperand(0, Left); 2577 TE->setOperand(1, Right); 2578 buildTree_rec(Left, Depth + 1, {TE, 0}); 2579 buildTree_rec(Right, Depth + 1, {TE, 1}); 2580 return; 2581 } 2582 2583 TE->setOperandsInOrder(); 2584 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2585 ValueList Operands; 2586 // Prepare the operand vector. 2587 for (Value *j : VL) 2588 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 2589 2590 buildTree_rec(Operands, Depth + 1, {TE, i}); 2591 } 2592 return; 2593 } 2594 case Instruction::GetElementPtr: { 2595 // We don't combine GEPs with complicated (nested) indexing. 2596 for (Value *V : VL) { 2597 if (cast<Instruction>(V)->getNumOperands() != 2) { 2598 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 2599 BS.cancelScheduling(VL, VL0); 2600 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2601 ReuseShuffleIndicies); 2602 return; 2603 } 2604 } 2605 2606 // We can't combine several GEPs into one vector if they operate on 2607 // different types. 2608 Type *Ty0 = VL0->getOperand(0)->getType(); 2609 for (Value *V : VL) { 2610 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 2611 if (Ty0 != CurTy) { 2612 LLVM_DEBUG(dbgs() 2613 << "SLP: not-vectorizable GEP (different types).\n"); 2614 BS.cancelScheduling(VL, VL0); 2615 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2616 ReuseShuffleIndicies); 2617 return; 2618 } 2619 } 2620 2621 // We don't combine GEPs with non-constant indexes. 2622 for (Value *V : VL) { 2623 auto Op = cast<Instruction>(V)->getOperand(1); 2624 if (!isa<ConstantInt>(Op)) { 2625 LLVM_DEBUG(dbgs() 2626 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 2627 BS.cancelScheduling(VL, VL0); 2628 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2629 ReuseShuffleIndicies); 2630 return; 2631 } 2632 } 2633 2634 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2635 ReuseShuffleIndicies); 2636 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 2637 TE->setOperandsInOrder(); 2638 for (unsigned i = 0, e = 2; i < e; ++i) { 2639 ValueList Operands; 2640 // Prepare the operand vector. 2641 for (Value *V : VL) 2642 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2643 2644 buildTree_rec(Operands, Depth + 1, {TE, i}); 2645 } 2646 return; 2647 } 2648 case Instruction::Store: { 2649 // Check if the stores are consecutive or if we need to swizzle them. 2650 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 2651 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 2652 BS.cancelScheduling(VL, VL0); 2653 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2654 ReuseShuffleIndicies); 2655 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 2656 return; 2657 } 2658 2659 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2660 ReuseShuffleIndicies); 2661 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 2662 2663 ValueList Operands; 2664 for (Value *V : VL) 2665 Operands.push_back(cast<Instruction>(V)->getOperand(0)); 2666 TE->setOperandsInOrder(); 2667 buildTree_rec(Operands, Depth + 1, {TE, 0}); 2668 return; 2669 } 2670 case Instruction::Call: { 2671 // Check if the calls are all to the same vectorizable intrinsic. 2672 CallInst *CI = cast<CallInst>(VL0); 2673 // Check if this is an Intrinsic call or something that can be 2674 // represented by an intrinsic call 2675 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2676 if (!isTriviallyVectorizable(ID)) { 2677 BS.cancelScheduling(VL, VL0); 2678 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2679 ReuseShuffleIndicies); 2680 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 2681 return; 2682 } 2683 Function *Int = CI->getCalledFunction(); 2684 unsigned NumArgs = CI->getNumArgOperands(); 2685 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 2686 for (unsigned j = 0; j != NumArgs; ++j) 2687 if (hasVectorInstrinsicScalarOpd(ID, j)) 2688 ScalarArgs[j] = CI->getArgOperand(j); 2689 for (Value *V : VL) { 2690 CallInst *CI2 = dyn_cast<CallInst>(V); 2691 if (!CI2 || CI2->getCalledFunction() != Int || 2692 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 2693 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 2694 BS.cancelScheduling(VL, VL0); 2695 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2696 ReuseShuffleIndicies); 2697 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 2698 << "\n"); 2699 return; 2700 } 2701 // Some intrinsics have scalar arguments and should be same in order for 2702 // them to be vectorized. 2703 for (unsigned j = 0; j != NumArgs; ++j) { 2704 if (hasVectorInstrinsicScalarOpd(ID, j)) { 2705 Value *A1J = CI2->getArgOperand(j); 2706 if (ScalarArgs[j] != A1J) { 2707 BS.cancelScheduling(VL, VL0); 2708 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2709 ReuseShuffleIndicies); 2710 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 2711 << " argument " << ScalarArgs[j] << "!=" << A1J 2712 << "\n"); 2713 return; 2714 } 2715 } 2716 } 2717 // Verify that the bundle operands are identical between the two calls. 2718 if (CI->hasOperandBundles() && 2719 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 2720 CI->op_begin() + CI->getBundleOperandsEndIndex(), 2721 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 2722 BS.cancelScheduling(VL, VL0); 2723 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2724 ReuseShuffleIndicies); 2725 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 2726 << *CI << "!=" << *V << '\n'); 2727 return; 2728 } 2729 } 2730 2731 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2732 ReuseShuffleIndicies); 2733 TE->setOperandsInOrder(); 2734 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 2735 ValueList Operands; 2736 // Prepare the operand vector. 2737 for (Value *V : VL) { 2738 auto *CI2 = cast<CallInst>(V); 2739 Operands.push_back(CI2->getArgOperand(i)); 2740 } 2741 buildTree_rec(Operands, Depth + 1, {TE, i}); 2742 } 2743 return; 2744 } 2745 case Instruction::ShuffleVector: { 2746 // If this is not an alternate sequence of opcode like add-sub 2747 // then do not vectorize this instruction. 2748 if (!S.isAltShuffle()) { 2749 BS.cancelScheduling(VL, VL0); 2750 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2751 ReuseShuffleIndicies); 2752 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 2753 return; 2754 } 2755 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2756 ReuseShuffleIndicies); 2757 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 2758 2759 // Reorder operands if reordering would enable vectorization. 2760 if (isa<BinaryOperator>(VL0)) { 2761 ValueList Left, Right; 2762 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE); 2763 TE->setOperand(0, Left); 2764 TE->setOperand(1, Right); 2765 buildTree_rec(Left, Depth + 1, {TE, 0}); 2766 buildTree_rec(Right, Depth + 1, {TE, 1}); 2767 return; 2768 } 2769 2770 TE->setOperandsInOrder(); 2771 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2772 ValueList Operands; 2773 // Prepare the operand vector. 2774 for (Value *V : VL) 2775 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2776 2777 buildTree_rec(Operands, Depth + 1, {TE, i}); 2778 } 2779 return; 2780 } 2781 default: 2782 BS.cancelScheduling(VL, VL0); 2783 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2784 ReuseShuffleIndicies); 2785 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 2786 return; 2787 } 2788 } 2789 2790 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 2791 unsigned N; 2792 Type *EltTy; 2793 auto *ST = dyn_cast<StructType>(T); 2794 if (ST) { 2795 N = ST->getNumElements(); 2796 EltTy = *ST->element_begin(); 2797 } else { 2798 N = cast<ArrayType>(T)->getNumElements(); 2799 EltTy = cast<ArrayType>(T)->getElementType(); 2800 } 2801 if (!isValidElementType(EltTy)) 2802 return 0; 2803 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 2804 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 2805 return 0; 2806 if (ST) { 2807 // Check that struct is homogeneous. 2808 for (const auto *Ty : ST->elements()) 2809 if (Ty != EltTy) 2810 return 0; 2811 } 2812 return N; 2813 } 2814 2815 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 2816 SmallVectorImpl<unsigned> &CurrentOrder) const { 2817 Instruction *E0 = cast<Instruction>(OpValue); 2818 assert(E0->getOpcode() == Instruction::ExtractElement || 2819 E0->getOpcode() == Instruction::ExtractValue); 2820 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 2821 // Check if all of the extracts come from the same vector and from the 2822 // correct offset. 2823 Value *Vec = E0->getOperand(0); 2824 2825 CurrentOrder.clear(); 2826 2827 // We have to extract from a vector/aggregate with the same number of elements. 2828 unsigned NElts; 2829 if (E0->getOpcode() == Instruction::ExtractValue) { 2830 const DataLayout &DL = E0->getModule()->getDataLayout(); 2831 NElts = canMapToVector(Vec->getType(), DL); 2832 if (!NElts) 2833 return false; 2834 // Check if load can be rewritten as load of vector. 2835 LoadInst *LI = dyn_cast<LoadInst>(Vec); 2836 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 2837 return false; 2838 } else { 2839 NElts = Vec->getType()->getVectorNumElements(); 2840 } 2841 2842 if (NElts != VL.size()) 2843 return false; 2844 2845 // Check that all of the indices extract from the correct offset. 2846 bool ShouldKeepOrder = true; 2847 unsigned E = VL.size(); 2848 // Assign to all items the initial value E + 1 so we can check if the extract 2849 // instruction index was used already. 2850 // Also, later we can check that all the indices are used and we have a 2851 // consecutive access in the extract instructions, by checking that no 2852 // element of CurrentOrder still has value E + 1. 2853 CurrentOrder.assign(E, E + 1); 2854 unsigned I = 0; 2855 for (; I < E; ++I) { 2856 auto *Inst = cast<Instruction>(VL[I]); 2857 if (Inst->getOperand(0) != Vec) 2858 break; 2859 Optional<unsigned> Idx = getExtractIndex(Inst); 2860 if (!Idx) 2861 break; 2862 const unsigned ExtIdx = *Idx; 2863 if (ExtIdx != I) { 2864 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 2865 break; 2866 ShouldKeepOrder = false; 2867 CurrentOrder[ExtIdx] = I; 2868 } else { 2869 if (CurrentOrder[I] != E + 1) 2870 break; 2871 CurrentOrder[I] = I; 2872 } 2873 } 2874 if (I < E) { 2875 CurrentOrder.clear(); 2876 return false; 2877 } 2878 2879 return ShouldKeepOrder; 2880 } 2881 2882 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 2883 return I->hasOneUse() || 2884 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 2885 return ScalarToTreeEntry.count(U) > 0; 2886 }); 2887 } 2888 2889 int BoUpSLP::getEntryCost(TreeEntry *E) { 2890 ArrayRef<Value*> VL = E->Scalars; 2891 2892 Type *ScalarTy = VL[0]->getType(); 2893 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2894 ScalarTy = SI->getValueOperand()->getType(); 2895 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 2896 ScalarTy = CI->getOperand(0)->getType(); 2897 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2898 2899 // If we have computed a smaller type for the expression, update VecTy so 2900 // that the costs will be accurate. 2901 if (MinBWs.count(VL[0])) 2902 VecTy = VectorType::get( 2903 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 2904 2905 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 2906 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 2907 int ReuseShuffleCost = 0; 2908 if (NeedToShuffleReuses) { 2909 ReuseShuffleCost = 2910 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2911 } 2912 if (E->NeedToGather) { 2913 if (allConstant(VL)) 2914 return 0; 2915 if (isSplat(VL)) { 2916 return ReuseShuffleCost + 2917 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 2918 } 2919 if (E->getOpcode() == Instruction::ExtractElement && 2920 allSameType(VL) && allSameBlock(VL)) { 2921 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 2922 if (ShuffleKind.hasValue()) { 2923 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 2924 for (auto *V : VL) { 2925 // If all users of instruction are going to be vectorized and this 2926 // instruction itself is not going to be vectorized, consider this 2927 // instruction as dead and remove its cost from the final cost of the 2928 // vectorized tree. 2929 if (areAllUsersVectorized(cast<Instruction>(V)) && 2930 !ScalarToTreeEntry.count(V)) { 2931 auto *IO = cast<ConstantInt>( 2932 cast<ExtractElementInst>(V)->getIndexOperand()); 2933 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 2934 IO->getZExtValue()); 2935 } 2936 } 2937 return ReuseShuffleCost + Cost; 2938 } 2939 } 2940 return ReuseShuffleCost + getGatherCost(VL); 2941 } 2942 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 2943 Instruction *VL0 = E->getMainOp(); 2944 unsigned ShuffleOrOp = 2945 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 2946 switch (ShuffleOrOp) { 2947 case Instruction::PHI: 2948 return 0; 2949 2950 case Instruction::ExtractValue: 2951 case Instruction::ExtractElement: 2952 if (NeedToShuffleReuses) { 2953 unsigned Idx = 0; 2954 for (unsigned I : E->ReuseShuffleIndices) { 2955 if (ShuffleOrOp == Instruction::ExtractElement) { 2956 auto *IO = cast<ConstantInt>( 2957 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 2958 Idx = IO->getZExtValue(); 2959 ReuseShuffleCost -= TTI->getVectorInstrCost( 2960 Instruction::ExtractElement, VecTy, Idx); 2961 } else { 2962 ReuseShuffleCost -= TTI->getVectorInstrCost( 2963 Instruction::ExtractElement, VecTy, Idx); 2964 ++Idx; 2965 } 2966 } 2967 Idx = ReuseShuffleNumbers; 2968 for (Value *V : VL) { 2969 if (ShuffleOrOp == Instruction::ExtractElement) { 2970 auto *IO = cast<ConstantInt>( 2971 cast<ExtractElementInst>(V)->getIndexOperand()); 2972 Idx = IO->getZExtValue(); 2973 } else { 2974 --Idx; 2975 } 2976 ReuseShuffleCost += 2977 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 2978 } 2979 } 2980 if (!E->NeedToGather) { 2981 int DeadCost = ReuseShuffleCost; 2982 if (!E->ReorderIndices.empty()) { 2983 // TODO: Merge this shuffle with the ReuseShuffleCost. 2984 DeadCost += TTI->getShuffleCost( 2985 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2986 } 2987 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 2988 Instruction *E = cast<Instruction>(VL[i]); 2989 // If all users are going to be vectorized, instruction can be 2990 // considered as dead. 2991 // The same, if have only one user, it will be vectorized for sure. 2992 if (areAllUsersVectorized(E)) { 2993 // Take credit for instruction that will become dead. 2994 if (E->hasOneUse()) { 2995 Instruction *Ext = E->user_back(); 2996 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 2997 all_of(Ext->users(), 2998 [](User *U) { return isa<GetElementPtrInst>(U); })) { 2999 // Use getExtractWithExtendCost() to calculate the cost of 3000 // extractelement/ext pair. 3001 DeadCost -= TTI->getExtractWithExtendCost( 3002 Ext->getOpcode(), Ext->getType(), VecTy, i); 3003 // Add back the cost of s|zext which is subtracted separately. 3004 DeadCost += TTI->getCastInstrCost( 3005 Ext->getOpcode(), Ext->getType(), E->getType(), Ext); 3006 continue; 3007 } 3008 } 3009 DeadCost -= 3010 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 3011 } 3012 } 3013 return DeadCost; 3014 } 3015 return ReuseShuffleCost + getGatherCost(VL); 3016 3017 case Instruction::ZExt: 3018 case Instruction::SExt: 3019 case Instruction::FPToUI: 3020 case Instruction::FPToSI: 3021 case Instruction::FPExt: 3022 case Instruction::PtrToInt: 3023 case Instruction::IntToPtr: 3024 case Instruction::SIToFP: 3025 case Instruction::UIToFP: 3026 case Instruction::Trunc: 3027 case Instruction::FPTrunc: 3028 case Instruction::BitCast: { 3029 Type *SrcTy = VL0->getOperand(0)->getType(); 3030 int ScalarEltCost = 3031 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, VL0); 3032 if (NeedToShuffleReuses) { 3033 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3034 } 3035 3036 // Calculate the cost of this instruction. 3037 int ScalarCost = VL.size() * ScalarEltCost; 3038 3039 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 3040 int VecCost = 0; 3041 // Check if the values are candidates to demote. 3042 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 3043 VecCost = ReuseShuffleCost + 3044 TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, VL0); 3045 } 3046 return VecCost - ScalarCost; 3047 } 3048 case Instruction::FCmp: 3049 case Instruction::ICmp: 3050 case Instruction::Select: { 3051 // Calculate the cost of this instruction. 3052 int ScalarEltCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 3053 Builder.getInt1Ty(), VL0); 3054 if (NeedToShuffleReuses) { 3055 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3056 } 3057 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 3058 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3059 int VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), VecTy, MaskTy, VL0); 3060 return ReuseShuffleCost + VecCost - ScalarCost; 3061 } 3062 case Instruction::FNeg: 3063 case Instruction::Add: 3064 case Instruction::FAdd: 3065 case Instruction::Sub: 3066 case Instruction::FSub: 3067 case Instruction::Mul: 3068 case Instruction::FMul: 3069 case Instruction::UDiv: 3070 case Instruction::SDiv: 3071 case Instruction::FDiv: 3072 case Instruction::URem: 3073 case Instruction::SRem: 3074 case Instruction::FRem: 3075 case Instruction::Shl: 3076 case Instruction::LShr: 3077 case Instruction::AShr: 3078 case Instruction::And: 3079 case Instruction::Or: 3080 case Instruction::Xor: { 3081 // Certain instructions can be cheaper to vectorize if they have a 3082 // constant second vector operand. 3083 TargetTransformInfo::OperandValueKind Op1VK = 3084 TargetTransformInfo::OK_AnyValue; 3085 TargetTransformInfo::OperandValueKind Op2VK = 3086 TargetTransformInfo::OK_UniformConstantValue; 3087 TargetTransformInfo::OperandValueProperties Op1VP = 3088 TargetTransformInfo::OP_None; 3089 TargetTransformInfo::OperandValueProperties Op2VP = 3090 TargetTransformInfo::OP_PowerOf2; 3091 3092 // If all operands are exactly the same ConstantInt then set the 3093 // operand kind to OK_UniformConstantValue. 3094 // If instead not all operands are constants, then set the operand kind 3095 // to OK_AnyValue. If all operands are constants but not the same, 3096 // then set the operand kind to OK_NonUniformConstantValue. 3097 ConstantInt *CInt0 = nullptr; 3098 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3099 const Instruction *I = cast<Instruction>(VL[i]); 3100 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 3101 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 3102 if (!CInt) { 3103 Op2VK = TargetTransformInfo::OK_AnyValue; 3104 Op2VP = TargetTransformInfo::OP_None; 3105 break; 3106 } 3107 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 3108 !CInt->getValue().isPowerOf2()) 3109 Op2VP = TargetTransformInfo::OP_None; 3110 if (i == 0) { 3111 CInt0 = CInt; 3112 continue; 3113 } 3114 if (CInt0 != CInt) 3115 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 3116 } 3117 3118 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 3119 int ScalarEltCost = TTI->getArithmeticInstrCost( 3120 E->getOpcode(), ScalarTy, Op1VK, Op2VK, Op1VP, Op2VP, Operands); 3121 if (NeedToShuffleReuses) { 3122 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3123 } 3124 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3125 int VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, Op1VK, 3126 Op2VK, Op1VP, Op2VP, Operands); 3127 return ReuseShuffleCost + VecCost - ScalarCost; 3128 } 3129 case Instruction::GetElementPtr: { 3130 TargetTransformInfo::OperandValueKind Op1VK = 3131 TargetTransformInfo::OK_AnyValue; 3132 TargetTransformInfo::OperandValueKind Op2VK = 3133 TargetTransformInfo::OK_UniformConstantValue; 3134 3135 int ScalarEltCost = 3136 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 3137 if (NeedToShuffleReuses) { 3138 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3139 } 3140 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3141 int VecCost = 3142 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 3143 return ReuseShuffleCost + VecCost - ScalarCost; 3144 } 3145 case Instruction::Load: { 3146 // Cost of wide load - cost of scalar loads. 3147 unsigned alignment = cast<LoadInst>(VL0)->getAlignment(); 3148 int ScalarEltCost = 3149 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0); 3150 if (NeedToShuffleReuses) { 3151 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3152 } 3153 int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 3154 int VecLdCost = 3155 TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, VL0); 3156 if (!E->ReorderIndices.empty()) { 3157 // TODO: Merge this shuffle with the ReuseShuffleCost. 3158 VecLdCost += TTI->getShuffleCost( 3159 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3160 } 3161 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 3162 } 3163 case Instruction::Store: { 3164 // We know that we can merge the stores. Calculate the cost. 3165 unsigned alignment = cast<StoreInst>(VL0)->getAlignment(); 3166 int ScalarEltCost = 3167 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0); 3168 if (NeedToShuffleReuses) { 3169 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3170 } 3171 int ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 3172 int VecStCost = 3173 TTI->getMemoryOpCost(Instruction::Store, VecTy, alignment, 0, VL0); 3174 return ReuseShuffleCost + VecStCost - ScalarStCost; 3175 } 3176 case Instruction::Call: { 3177 CallInst *CI = cast<CallInst>(VL0); 3178 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3179 3180 // Calculate the cost of the scalar and vector calls. 3181 SmallVector<Type *, 4> ScalarTys; 3182 for (unsigned op = 0, opc = CI->getNumArgOperands(); op != opc; ++op) 3183 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 3184 3185 FastMathFlags FMF; 3186 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3187 FMF = FPMO->getFastMathFlags(); 3188 3189 int ScalarEltCost = 3190 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 3191 if (NeedToShuffleReuses) { 3192 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3193 } 3194 int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 3195 3196 SmallVector<Value *, 4> Args(CI->arg_operands()); 3197 int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF, 3198 VecTy->getNumElements()); 3199 3200 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 3201 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 3202 << " for " << *CI << "\n"); 3203 3204 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 3205 } 3206 case Instruction::ShuffleVector: { 3207 assert(E->isAltShuffle() && 3208 ((Instruction::isBinaryOp(E->getOpcode()) && 3209 Instruction::isBinaryOp(E->getAltOpcode())) || 3210 (Instruction::isCast(E->getOpcode()) && 3211 Instruction::isCast(E->getAltOpcode()))) && 3212 "Invalid Shuffle Vector Operand"); 3213 int ScalarCost = 0; 3214 if (NeedToShuffleReuses) { 3215 for (unsigned Idx : E->ReuseShuffleIndices) { 3216 Instruction *I = cast<Instruction>(VL[Idx]); 3217 ReuseShuffleCost -= TTI->getInstructionCost( 3218 I, TargetTransformInfo::TCK_RecipThroughput); 3219 } 3220 for (Value *V : VL) { 3221 Instruction *I = cast<Instruction>(V); 3222 ReuseShuffleCost += TTI->getInstructionCost( 3223 I, TargetTransformInfo::TCK_RecipThroughput); 3224 } 3225 } 3226 for (Value *V : VL) { 3227 Instruction *I = cast<Instruction>(V); 3228 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 3229 ScalarCost += TTI->getInstructionCost( 3230 I, TargetTransformInfo::TCK_RecipThroughput); 3231 } 3232 // VecCost is equal to sum of the cost of creating 2 vectors 3233 // and the cost of creating shuffle. 3234 int VecCost = 0; 3235 if (Instruction::isBinaryOp(E->getOpcode())) { 3236 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy); 3237 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy); 3238 } else { 3239 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 3240 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 3241 VectorType *Src0Ty = VectorType::get(Src0SclTy, VL.size()); 3242 VectorType *Src1Ty = VectorType::get(Src1SclTy, VL.size()); 3243 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty); 3244 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty); 3245 } 3246 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0); 3247 return ReuseShuffleCost + VecCost - ScalarCost; 3248 } 3249 default: 3250 llvm_unreachable("Unknown instruction"); 3251 } 3252 } 3253 3254 bool BoUpSLP::isFullyVectorizableTinyTree() const { 3255 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 3256 << VectorizableTree.size() << " is fully vectorizable .\n"); 3257 3258 // We only handle trees of heights 1 and 2. 3259 if (VectorizableTree.size() == 1 && !VectorizableTree[0]->NeedToGather) 3260 return true; 3261 3262 if (VectorizableTree.size() != 2) 3263 return false; 3264 3265 // Handle splat and all-constants stores. 3266 if (!VectorizableTree[0]->NeedToGather && 3267 (allConstant(VectorizableTree[1]->Scalars) || 3268 isSplat(VectorizableTree[1]->Scalars))) 3269 return true; 3270 3271 // Gathering cost would be too much for tiny trees. 3272 if (VectorizableTree[0]->NeedToGather || VectorizableTree[1]->NeedToGather) 3273 return false; 3274 3275 return true; 3276 } 3277 3278 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 3279 // We can vectorize the tree if its size is greater than or equal to the 3280 // minimum size specified by the MinTreeSize command line option. 3281 if (VectorizableTree.size() >= MinTreeSize) 3282 return false; 3283 3284 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 3285 // can vectorize it if we can prove it fully vectorizable. 3286 if (isFullyVectorizableTinyTree()) 3287 return false; 3288 3289 assert(VectorizableTree.empty() 3290 ? ExternalUses.empty() 3291 : true && "We shouldn't have any external users"); 3292 3293 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 3294 // vectorizable. 3295 return true; 3296 } 3297 3298 int BoUpSLP::getSpillCost() const { 3299 // Walk from the bottom of the tree to the top, tracking which values are 3300 // live. When we see a call instruction that is not part of our tree, 3301 // query TTI to see if there is a cost to keeping values live over it 3302 // (for example, if spills and fills are required). 3303 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 3304 int Cost = 0; 3305 3306 SmallPtrSet<Instruction*, 4> LiveValues; 3307 Instruction *PrevInst = nullptr; 3308 3309 for (const auto &TEPtr : VectorizableTree) { 3310 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 3311 if (!Inst) 3312 continue; 3313 3314 if (!PrevInst) { 3315 PrevInst = Inst; 3316 continue; 3317 } 3318 3319 // Update LiveValues. 3320 LiveValues.erase(PrevInst); 3321 for (auto &J : PrevInst->operands()) { 3322 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 3323 LiveValues.insert(cast<Instruction>(&*J)); 3324 } 3325 3326 LLVM_DEBUG({ 3327 dbgs() << "SLP: #LV: " << LiveValues.size(); 3328 for (auto *X : LiveValues) 3329 dbgs() << " " << X->getName(); 3330 dbgs() << ", Looking at "; 3331 Inst->dump(); 3332 }); 3333 3334 // Now find the sequence of instructions between PrevInst and Inst. 3335 unsigned NumCalls = 0; 3336 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 3337 PrevInstIt = 3338 PrevInst->getIterator().getReverse(); 3339 while (InstIt != PrevInstIt) { 3340 if (PrevInstIt == PrevInst->getParent()->rend()) { 3341 PrevInstIt = Inst->getParent()->rbegin(); 3342 continue; 3343 } 3344 3345 // Debug informations don't impact spill cost. 3346 if ((isa<CallInst>(&*PrevInstIt) && 3347 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 3348 &*PrevInstIt != PrevInst) 3349 NumCalls++; 3350 3351 ++PrevInstIt; 3352 } 3353 3354 if (NumCalls) { 3355 SmallVector<Type*, 4> V; 3356 for (auto *II : LiveValues) 3357 V.push_back(VectorType::get(II->getType(), BundleWidth)); 3358 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 3359 } 3360 3361 PrevInst = Inst; 3362 } 3363 3364 return Cost; 3365 } 3366 3367 int BoUpSLP::getTreeCost() { 3368 int Cost = 0; 3369 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 3370 << VectorizableTree.size() << ".\n"); 3371 3372 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 3373 3374 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 3375 TreeEntry &TE = *VectorizableTree[I].get(); 3376 3377 // We create duplicate tree entries for gather sequences that have multiple 3378 // uses. However, we should not compute the cost of duplicate sequences. 3379 // For example, if we have a build vector (i.e., insertelement sequence) 3380 // that is used by more than one vector instruction, we only need to 3381 // compute the cost of the insertelement instructions once. The redundant 3382 // instructions will be eliminated by CSE. 3383 // 3384 // We should consider not creating duplicate tree entries for gather 3385 // sequences, and instead add additional edges to the tree representing 3386 // their uses. Since such an approach results in fewer total entries, 3387 // existing heuristics based on tree size may yield different results. 3388 // 3389 if (TE.NeedToGather && 3390 std::any_of( 3391 std::next(VectorizableTree.begin(), I + 1), VectorizableTree.end(), 3392 [TE](const std::unique_ptr<TreeEntry> &EntryPtr) { 3393 return EntryPtr->NeedToGather && EntryPtr->isSame(TE.Scalars); 3394 })) 3395 continue; 3396 3397 int C = getEntryCost(&TE); 3398 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 3399 << " for bundle that starts with " << *TE.Scalars[0] 3400 << ".\n"); 3401 Cost += C; 3402 } 3403 3404 SmallPtrSet<Value *, 16> ExtractCostCalculated; 3405 int ExtractCost = 0; 3406 for (ExternalUser &EU : ExternalUses) { 3407 // We only add extract cost once for the same scalar. 3408 if (!ExtractCostCalculated.insert(EU.Scalar).second) 3409 continue; 3410 3411 // Uses by ephemeral values are free (because the ephemeral value will be 3412 // removed prior to code generation, and so the extraction will be 3413 // removed as well). 3414 if (EphValues.count(EU.User)) 3415 continue; 3416 3417 // If we plan to rewrite the tree in a smaller type, we will need to sign 3418 // extend the extracted value back to the original type. Here, we account 3419 // for the extract and the added cost of the sign extend if needed. 3420 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 3421 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 3422 if (MinBWs.count(ScalarRoot)) { 3423 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 3424 auto Extend = 3425 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 3426 VecTy = VectorType::get(MinTy, BundleWidth); 3427 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 3428 VecTy, EU.Lane); 3429 } else { 3430 ExtractCost += 3431 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 3432 } 3433 } 3434 3435 int SpillCost = getSpillCost(); 3436 Cost += SpillCost + ExtractCost; 3437 3438 std::string Str; 3439 { 3440 raw_string_ostream OS(Str); 3441 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 3442 << "SLP: Extract Cost = " << ExtractCost << ".\n" 3443 << "SLP: Total Cost = " << Cost << ".\n"; 3444 } 3445 LLVM_DEBUG(dbgs() << Str); 3446 3447 if (ViewSLPTree) 3448 ViewGraph(this, "SLP" + F->getName(), false, Str); 3449 3450 return Cost; 3451 } 3452 3453 int BoUpSLP::getGatherCost(Type *Ty, 3454 const DenseSet<unsigned> &ShuffledIndices) const { 3455 int Cost = 0; 3456 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 3457 if (!ShuffledIndices.count(i)) 3458 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 3459 if (!ShuffledIndices.empty()) 3460 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 3461 return Cost; 3462 } 3463 3464 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 3465 // Find the type of the operands in VL. 3466 Type *ScalarTy = VL[0]->getType(); 3467 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3468 ScalarTy = SI->getValueOperand()->getType(); 3469 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 3470 // Find the cost of inserting/extracting values from the vector. 3471 // Check if the same elements are inserted several times and count them as 3472 // shuffle candidates. 3473 DenseSet<unsigned> ShuffledElements; 3474 DenseSet<Value *> UniqueElements; 3475 // Iterate in reverse order to consider insert elements with the high cost. 3476 for (unsigned I = VL.size(); I > 0; --I) { 3477 unsigned Idx = I - 1; 3478 if (!UniqueElements.insert(VL[Idx]).second) 3479 ShuffledElements.insert(Idx); 3480 } 3481 return getGatherCost(VecTy, ShuffledElements); 3482 } 3483 3484 // Perform operand reordering on the instructions in VL and return the reordered 3485 // operands in Left and Right. 3486 void BoUpSLP::reorderInputsAccordingToOpcode( 3487 ArrayRef<Value *> VL, SmallVectorImpl<Value *> &Left, 3488 SmallVectorImpl<Value *> &Right, const DataLayout &DL, 3489 ScalarEvolution &SE) { 3490 if (VL.empty()) 3491 return; 3492 VLOperands Ops(VL, DL, SE); 3493 // Reorder the operands in place. 3494 Ops.reorder(); 3495 Left = Ops.getVL(0); 3496 Right = Ops.getVL(1); 3497 } 3498 3499 void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) { 3500 // Get the basic block this bundle is in. All instructions in the bundle 3501 // should be in this block. 3502 auto *Front = E->getMainOp(); 3503 auto *BB = Front->getParent(); 3504 assert(llvm::all_of(make_range(E->Scalars.begin(), E->Scalars.end()), 3505 [=](Value *V) -> bool { 3506 auto *I = cast<Instruction>(V); 3507 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 3508 })); 3509 3510 // The last instruction in the bundle in program order. 3511 Instruction *LastInst = nullptr; 3512 3513 // Find the last instruction. The common case should be that BB has been 3514 // scheduled, and the last instruction is VL.back(). So we start with 3515 // VL.back() and iterate over schedule data until we reach the end of the 3516 // bundle. The end of the bundle is marked by null ScheduleData. 3517 if (BlocksSchedules.count(BB)) { 3518 auto *Bundle = 3519 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 3520 if (Bundle && Bundle->isPartOfBundle()) 3521 for (; Bundle; Bundle = Bundle->NextInBundle) 3522 if (Bundle->OpValue == Bundle->Inst) 3523 LastInst = Bundle->Inst; 3524 } 3525 3526 // LastInst can still be null at this point if there's either not an entry 3527 // for BB in BlocksSchedules or there's no ScheduleData available for 3528 // VL.back(). This can be the case if buildTree_rec aborts for various 3529 // reasons (e.g., the maximum recursion depth is reached, the maximum region 3530 // size is reached, etc.). ScheduleData is initialized in the scheduling 3531 // "dry-run". 3532 // 3533 // If this happens, we can still find the last instruction by brute force. We 3534 // iterate forwards from Front (inclusive) until we either see all 3535 // instructions in the bundle or reach the end of the block. If Front is the 3536 // last instruction in program order, LastInst will be set to Front, and we 3537 // will visit all the remaining instructions in the block. 3538 // 3539 // One of the reasons we exit early from buildTree_rec is to place an upper 3540 // bound on compile-time. Thus, taking an additional compile-time hit here is 3541 // not ideal. However, this should be exceedingly rare since it requires that 3542 // we both exit early from buildTree_rec and that the bundle be out-of-order 3543 // (causing us to iterate all the way to the end of the block). 3544 if (!LastInst) { 3545 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 3546 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 3547 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 3548 LastInst = &I; 3549 if (Bundle.empty()) 3550 break; 3551 } 3552 } 3553 assert(LastInst && "Failed to find last instruction in bundle"); 3554 3555 // Set the insertion point after the last instruction in the bundle. Set the 3556 // debug location to Front. 3557 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 3558 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 3559 } 3560 3561 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 3562 Value *Vec = UndefValue::get(Ty); 3563 // Generate the 'InsertElement' instruction. 3564 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 3565 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 3566 if (auto *Insrt = dyn_cast<InsertElementInst>(Vec)) { 3567 GatherSeq.insert(Insrt); 3568 CSEBlocks.insert(Insrt->getParent()); 3569 3570 // Add to our 'need-to-extract' list. 3571 if (TreeEntry *E = getTreeEntry(VL[i])) { 3572 // Find which lane we need to extract. 3573 int FoundLane = -1; 3574 for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) { 3575 // Is this the lane of the scalar that we are looking for ? 3576 if (E->Scalars[Lane] == VL[i]) { 3577 FoundLane = Lane; 3578 break; 3579 } 3580 } 3581 assert(FoundLane >= 0 && "Could not find the correct lane"); 3582 if (!E->ReuseShuffleIndices.empty()) { 3583 FoundLane = 3584 std::distance(E->ReuseShuffleIndices.begin(), 3585 llvm::find(E->ReuseShuffleIndices, FoundLane)); 3586 } 3587 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 3588 } 3589 } 3590 } 3591 3592 return Vec; 3593 } 3594 3595 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 3596 InstructionsState S = getSameOpcode(VL); 3597 if (S.getOpcode()) { 3598 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3599 if (E->isSame(VL)) { 3600 Value *V = vectorizeTree(E); 3601 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 3602 // We need to get the vectorized value but without shuffle. 3603 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 3604 V = SV->getOperand(0); 3605 } else { 3606 // Reshuffle to get only unique values. 3607 SmallVector<unsigned, 4> UniqueIdxs; 3608 SmallSet<unsigned, 4> UsedIdxs; 3609 for(unsigned Idx : E->ReuseShuffleIndices) 3610 if (UsedIdxs.insert(Idx).second) 3611 UniqueIdxs.emplace_back(Idx); 3612 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 3613 UniqueIdxs); 3614 } 3615 } 3616 return V; 3617 } 3618 } 3619 } 3620 3621 Type *ScalarTy = S.OpValue->getType(); 3622 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3623 ScalarTy = SI->getValueOperand()->getType(); 3624 3625 // Check that every instruction appears once in this bundle. 3626 SmallVector<unsigned, 4> ReuseShuffleIndicies; 3627 SmallVector<Value *, 4> UniqueValues; 3628 if (VL.size() > 2) { 3629 DenseMap<Value *, unsigned> UniquePositions; 3630 for (Value *V : VL) { 3631 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3632 ReuseShuffleIndicies.emplace_back(Res.first->second); 3633 if (Res.second || isa<Constant>(V)) 3634 UniqueValues.emplace_back(V); 3635 } 3636 // Do not shuffle single element or if number of unique values is not power 3637 // of 2. 3638 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 3639 !llvm::isPowerOf2_32(UniqueValues.size())) 3640 ReuseShuffleIndicies.clear(); 3641 else 3642 VL = UniqueValues; 3643 } 3644 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 3645 3646 Value *V = Gather(VL, VecTy); 3647 if (!ReuseShuffleIndicies.empty()) { 3648 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3649 ReuseShuffleIndicies, "shuffle"); 3650 if (auto *I = dyn_cast<Instruction>(V)) { 3651 GatherSeq.insert(I); 3652 CSEBlocks.insert(I->getParent()); 3653 } 3654 } 3655 return V; 3656 } 3657 3658 static void inversePermutation(ArrayRef<unsigned> Indices, 3659 SmallVectorImpl<unsigned> &Mask) { 3660 Mask.clear(); 3661 const unsigned E = Indices.size(); 3662 Mask.resize(E); 3663 for (unsigned I = 0; I < E; ++I) 3664 Mask[Indices[I]] = I; 3665 } 3666 3667 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 3668 IRBuilder<>::InsertPointGuard Guard(Builder); 3669 3670 if (E->VectorizedValue) { 3671 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 3672 return E->VectorizedValue; 3673 } 3674 3675 Instruction *VL0 = E->getMainOp(); 3676 Type *ScalarTy = VL0->getType(); 3677 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 3678 ScalarTy = SI->getValueOperand()->getType(); 3679 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 3680 3681 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3682 3683 if (E->NeedToGather) { 3684 setInsertPointAfterBundle(E); 3685 auto *V = Gather(E->Scalars, VecTy); 3686 if (NeedToShuffleReuses) { 3687 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3688 E->ReuseShuffleIndices, "shuffle"); 3689 if (auto *I = dyn_cast<Instruction>(V)) { 3690 GatherSeq.insert(I); 3691 CSEBlocks.insert(I->getParent()); 3692 } 3693 } 3694 E->VectorizedValue = V; 3695 return V; 3696 } 3697 3698 unsigned ShuffleOrOp = 3699 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 3700 switch (ShuffleOrOp) { 3701 case Instruction::PHI: { 3702 auto *PH = cast<PHINode>(VL0); 3703 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 3704 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 3705 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 3706 Value *V = NewPhi; 3707 if (NeedToShuffleReuses) { 3708 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3709 E->ReuseShuffleIndices, "shuffle"); 3710 } 3711 E->VectorizedValue = V; 3712 3713 // PHINodes may have multiple entries from the same block. We want to 3714 // visit every block once. 3715 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 3716 3717 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 3718 ValueList Operands; 3719 BasicBlock *IBB = PH->getIncomingBlock(i); 3720 3721 if (!VisitedBBs.insert(IBB).second) { 3722 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 3723 continue; 3724 } 3725 3726 Builder.SetInsertPoint(IBB->getTerminator()); 3727 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 3728 Value *Vec = vectorizeTree(E->getOperand(i)); 3729 NewPhi->addIncoming(Vec, IBB); 3730 } 3731 3732 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 3733 "Invalid number of incoming values"); 3734 return V; 3735 } 3736 3737 case Instruction::ExtractElement: { 3738 if (!E->NeedToGather) { 3739 Value *V = E->getSingleOperand(0); 3740 if (!E->ReorderIndices.empty()) { 3741 OrdersType Mask; 3742 inversePermutation(E->ReorderIndices, Mask); 3743 Builder.SetInsertPoint(VL0); 3744 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), Mask, 3745 "reorder_shuffle"); 3746 } 3747 if (NeedToShuffleReuses) { 3748 // TODO: Merge this shuffle with the ReorderShuffleMask. 3749 if (E->ReorderIndices.empty()) 3750 Builder.SetInsertPoint(VL0); 3751 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3752 E->ReuseShuffleIndices, "shuffle"); 3753 } 3754 E->VectorizedValue = V; 3755 return V; 3756 } 3757 setInsertPointAfterBundle(E); 3758 auto *V = Gather(E->Scalars, VecTy); 3759 if (NeedToShuffleReuses) { 3760 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3761 E->ReuseShuffleIndices, "shuffle"); 3762 if (auto *I = dyn_cast<Instruction>(V)) { 3763 GatherSeq.insert(I); 3764 CSEBlocks.insert(I->getParent()); 3765 } 3766 } 3767 E->VectorizedValue = V; 3768 return V; 3769 } 3770 case Instruction::ExtractValue: { 3771 if (!E->NeedToGather) { 3772 LoadInst *LI = cast<LoadInst>(E->getSingleOperand(0)); 3773 Builder.SetInsertPoint(LI); 3774 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 3775 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 3776 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlignment()); 3777 Value *NewV = propagateMetadata(V, E->Scalars); 3778 if (!E->ReorderIndices.empty()) { 3779 OrdersType Mask; 3780 inversePermutation(E->ReorderIndices, Mask); 3781 NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), Mask, 3782 "reorder_shuffle"); 3783 } 3784 if (NeedToShuffleReuses) { 3785 // TODO: Merge this shuffle with the ReorderShuffleMask. 3786 NewV = Builder.CreateShuffleVector( 3787 NewV, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle"); 3788 } 3789 E->VectorizedValue = NewV; 3790 return NewV; 3791 } 3792 setInsertPointAfterBundle(E); 3793 auto *V = Gather(E->Scalars, VecTy); 3794 if (NeedToShuffleReuses) { 3795 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3796 E->ReuseShuffleIndices, "shuffle"); 3797 if (auto *I = dyn_cast<Instruction>(V)) { 3798 GatherSeq.insert(I); 3799 CSEBlocks.insert(I->getParent()); 3800 } 3801 } 3802 E->VectorizedValue = V; 3803 return V; 3804 } 3805 case Instruction::ZExt: 3806 case Instruction::SExt: 3807 case Instruction::FPToUI: 3808 case Instruction::FPToSI: 3809 case Instruction::FPExt: 3810 case Instruction::PtrToInt: 3811 case Instruction::IntToPtr: 3812 case Instruction::SIToFP: 3813 case Instruction::UIToFP: 3814 case Instruction::Trunc: 3815 case Instruction::FPTrunc: 3816 case Instruction::BitCast: { 3817 setInsertPointAfterBundle(E); 3818 3819 Value *InVec = vectorizeTree(E->getOperand(0)); 3820 3821 if (E->VectorizedValue) { 3822 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3823 return E->VectorizedValue; 3824 } 3825 3826 auto *CI = cast<CastInst>(VL0); 3827 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 3828 if (NeedToShuffleReuses) { 3829 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3830 E->ReuseShuffleIndices, "shuffle"); 3831 } 3832 E->VectorizedValue = V; 3833 ++NumVectorInstructions; 3834 return V; 3835 } 3836 case Instruction::FCmp: 3837 case Instruction::ICmp: { 3838 setInsertPointAfterBundle(E); 3839 3840 Value *L = vectorizeTree(E->getOperand(0)); 3841 Value *R = vectorizeTree(E->getOperand(1)); 3842 3843 if (E->VectorizedValue) { 3844 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3845 return E->VectorizedValue; 3846 } 3847 3848 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 3849 Value *V; 3850 if (E->getOpcode() == Instruction::FCmp) 3851 V = Builder.CreateFCmp(P0, L, R); 3852 else 3853 V = Builder.CreateICmp(P0, L, R); 3854 3855 propagateIRFlags(V, E->Scalars, VL0); 3856 if (NeedToShuffleReuses) { 3857 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3858 E->ReuseShuffleIndices, "shuffle"); 3859 } 3860 E->VectorizedValue = V; 3861 ++NumVectorInstructions; 3862 return V; 3863 } 3864 case Instruction::Select: { 3865 setInsertPointAfterBundle(E); 3866 3867 Value *Cond = vectorizeTree(E->getOperand(0)); 3868 Value *True = vectorizeTree(E->getOperand(1)); 3869 Value *False = vectorizeTree(E->getOperand(2)); 3870 3871 if (E->VectorizedValue) { 3872 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3873 return E->VectorizedValue; 3874 } 3875 3876 Value *V = Builder.CreateSelect(Cond, True, False); 3877 if (NeedToShuffleReuses) { 3878 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3879 E->ReuseShuffleIndices, "shuffle"); 3880 } 3881 E->VectorizedValue = V; 3882 ++NumVectorInstructions; 3883 return V; 3884 } 3885 case Instruction::FNeg: { 3886 setInsertPointAfterBundle(E); 3887 3888 Value *Op = vectorizeTree(E->getOperand(0)); 3889 3890 if (E->VectorizedValue) { 3891 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3892 return E->VectorizedValue; 3893 } 3894 3895 Value *V = Builder.CreateUnOp( 3896 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 3897 propagateIRFlags(V, E->Scalars, VL0); 3898 if (auto *I = dyn_cast<Instruction>(V)) 3899 V = propagateMetadata(I, E->Scalars); 3900 3901 if (NeedToShuffleReuses) { 3902 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3903 E->ReuseShuffleIndices, "shuffle"); 3904 } 3905 E->VectorizedValue = V; 3906 ++NumVectorInstructions; 3907 3908 return V; 3909 } 3910 case Instruction::Add: 3911 case Instruction::FAdd: 3912 case Instruction::Sub: 3913 case Instruction::FSub: 3914 case Instruction::Mul: 3915 case Instruction::FMul: 3916 case Instruction::UDiv: 3917 case Instruction::SDiv: 3918 case Instruction::FDiv: 3919 case Instruction::URem: 3920 case Instruction::SRem: 3921 case Instruction::FRem: 3922 case Instruction::Shl: 3923 case Instruction::LShr: 3924 case Instruction::AShr: 3925 case Instruction::And: 3926 case Instruction::Or: 3927 case Instruction::Xor: { 3928 setInsertPointAfterBundle(E); 3929 3930 Value *LHS = vectorizeTree(E->getOperand(0)); 3931 Value *RHS = vectorizeTree(E->getOperand(1)); 3932 3933 if (E->VectorizedValue) { 3934 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3935 return E->VectorizedValue; 3936 } 3937 3938 Value *V = Builder.CreateBinOp( 3939 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 3940 RHS); 3941 propagateIRFlags(V, E->Scalars, VL0); 3942 if (auto *I = dyn_cast<Instruction>(V)) 3943 V = propagateMetadata(I, E->Scalars); 3944 3945 if (NeedToShuffleReuses) { 3946 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3947 E->ReuseShuffleIndices, "shuffle"); 3948 } 3949 E->VectorizedValue = V; 3950 ++NumVectorInstructions; 3951 3952 return V; 3953 } 3954 case Instruction::Load: { 3955 // Loads are inserted at the head of the tree because we don't want to 3956 // sink them all the way down past store instructions. 3957 bool IsReorder = E->updateStateIfReorder(); 3958 if (IsReorder) 3959 VL0 = E->getMainOp(); 3960 setInsertPointAfterBundle(E); 3961 3962 LoadInst *LI = cast<LoadInst>(VL0); 3963 Type *ScalarLoadTy = LI->getType(); 3964 unsigned AS = LI->getPointerAddressSpace(); 3965 3966 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 3967 VecTy->getPointerTo(AS)); 3968 3969 // The pointer operand uses an in-tree scalar so we add the new BitCast to 3970 // ExternalUses list to make sure that an extract will be generated in the 3971 // future. 3972 Value *PO = LI->getPointerOperand(); 3973 if (getTreeEntry(PO)) 3974 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0)); 3975 3976 unsigned Alignment = LI->getAlignment(); 3977 LI = Builder.CreateLoad(VecTy, VecPtr); 3978 if (!Alignment) { 3979 Alignment = DL->getABITypeAlignment(ScalarLoadTy); 3980 } 3981 LI->setAlignment(Alignment); 3982 Value *V = propagateMetadata(LI, E->Scalars); 3983 if (IsReorder) { 3984 OrdersType Mask; 3985 inversePermutation(E->ReorderIndices, Mask); 3986 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 3987 Mask, "reorder_shuffle"); 3988 } 3989 if (NeedToShuffleReuses) { 3990 // TODO: Merge this shuffle with the ReorderShuffleMask. 3991 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3992 E->ReuseShuffleIndices, "shuffle"); 3993 } 3994 E->VectorizedValue = V; 3995 ++NumVectorInstructions; 3996 return V; 3997 } 3998 case Instruction::Store: { 3999 StoreInst *SI = cast<StoreInst>(VL0); 4000 unsigned Alignment = SI->getAlignment(); 4001 unsigned AS = SI->getPointerAddressSpace(); 4002 4003 setInsertPointAfterBundle(E); 4004 4005 Value *VecValue = vectorizeTree(E->getOperand(0)); 4006 Value *ScalarPtr = SI->getPointerOperand(); 4007 Value *VecPtr = Builder.CreateBitCast(ScalarPtr, VecTy->getPointerTo(AS)); 4008 StoreInst *ST = Builder.CreateStore(VecValue, VecPtr); 4009 4010 // The pointer operand uses an in-tree scalar, so add the new BitCast to 4011 // ExternalUses to make sure that an extract will be generated in the 4012 // future. 4013 if (getTreeEntry(ScalarPtr)) 4014 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 4015 4016 if (!Alignment) 4017 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 4018 4019 ST->setAlignment(Alignment); 4020 Value *V = propagateMetadata(ST, E->Scalars); 4021 if (NeedToShuffleReuses) { 4022 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4023 E->ReuseShuffleIndices, "shuffle"); 4024 } 4025 E->VectorizedValue = V; 4026 ++NumVectorInstructions; 4027 return V; 4028 } 4029 case Instruction::GetElementPtr: { 4030 setInsertPointAfterBundle(E); 4031 4032 Value *Op0 = vectorizeTree(E->getOperand(0)); 4033 4034 std::vector<Value *> OpVecs; 4035 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 4036 ++j) { 4037 Value *OpVec = vectorizeTree(E->getOperand(j)); 4038 OpVecs.push_back(OpVec); 4039 } 4040 4041 Value *V = Builder.CreateGEP( 4042 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 4043 if (Instruction *I = dyn_cast<Instruction>(V)) 4044 V = propagateMetadata(I, E->Scalars); 4045 4046 if (NeedToShuffleReuses) { 4047 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4048 E->ReuseShuffleIndices, "shuffle"); 4049 } 4050 E->VectorizedValue = V; 4051 ++NumVectorInstructions; 4052 4053 return V; 4054 } 4055 case Instruction::Call: { 4056 CallInst *CI = cast<CallInst>(VL0); 4057 setInsertPointAfterBundle(E); 4058 4059 Intrinsic::ID IID = Intrinsic::not_intrinsic; 4060 if (Function *FI = CI->getCalledFunction()) 4061 IID = FI->getIntrinsicID(); 4062 4063 Value *ScalarArg = nullptr; 4064 std::vector<Value *> OpVecs; 4065 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 4066 ValueList OpVL; 4067 // Some intrinsics have scalar arguments. This argument should not be 4068 // vectorized. 4069 if (hasVectorInstrinsicScalarOpd(IID, j)) { 4070 CallInst *CEI = cast<CallInst>(VL0); 4071 ScalarArg = CEI->getArgOperand(j); 4072 OpVecs.push_back(CEI->getArgOperand(j)); 4073 continue; 4074 } 4075 4076 Value *OpVec = vectorizeTree(E->getOperand(j)); 4077 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 4078 OpVecs.push_back(OpVec); 4079 } 4080 4081 Module *M = F->getParent(); 4082 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4083 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 4084 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 4085 SmallVector<OperandBundleDef, 1> OpBundles; 4086 CI->getOperandBundlesAsDefs(OpBundles); 4087 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 4088 4089 // The scalar argument uses an in-tree scalar so we add the new vectorized 4090 // call to ExternalUses list to make sure that an extract will be 4091 // generated in the future. 4092 if (ScalarArg && getTreeEntry(ScalarArg)) 4093 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 4094 4095 propagateIRFlags(V, E->Scalars, VL0); 4096 if (NeedToShuffleReuses) { 4097 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4098 E->ReuseShuffleIndices, "shuffle"); 4099 } 4100 E->VectorizedValue = V; 4101 ++NumVectorInstructions; 4102 return V; 4103 } 4104 case Instruction::ShuffleVector: { 4105 assert(E->isAltShuffle() && 4106 ((Instruction::isBinaryOp(E->getOpcode()) && 4107 Instruction::isBinaryOp(E->getAltOpcode())) || 4108 (Instruction::isCast(E->getOpcode()) && 4109 Instruction::isCast(E->getAltOpcode()))) && 4110 "Invalid Shuffle Vector Operand"); 4111 4112 Value *LHS = nullptr, *RHS = nullptr; 4113 if (Instruction::isBinaryOp(E->getOpcode())) { 4114 setInsertPointAfterBundle(E); 4115 LHS = vectorizeTree(E->getOperand(0)); 4116 RHS = vectorizeTree(E->getOperand(1)); 4117 } else { 4118 setInsertPointAfterBundle(E); 4119 LHS = vectorizeTree(E->getOperand(0)); 4120 } 4121 4122 if (E->VectorizedValue) { 4123 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4124 return E->VectorizedValue; 4125 } 4126 4127 Value *V0, *V1; 4128 if (Instruction::isBinaryOp(E->getOpcode())) { 4129 V0 = Builder.CreateBinOp( 4130 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 4131 V1 = Builder.CreateBinOp( 4132 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 4133 } else { 4134 V0 = Builder.CreateCast( 4135 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 4136 V1 = Builder.CreateCast( 4137 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 4138 } 4139 4140 // Create shuffle to take alternate operations from the vector. 4141 // Also, gather up main and alt scalar ops to propagate IR flags to 4142 // each vector operation. 4143 ValueList OpScalars, AltScalars; 4144 unsigned e = E->Scalars.size(); 4145 SmallVector<Constant *, 8> Mask(e); 4146 for (unsigned i = 0; i < e; ++i) { 4147 auto *OpInst = cast<Instruction>(E->Scalars[i]); 4148 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 4149 if (OpInst->getOpcode() == E->getAltOpcode()) { 4150 Mask[i] = Builder.getInt32(e + i); 4151 AltScalars.push_back(E->Scalars[i]); 4152 } else { 4153 Mask[i] = Builder.getInt32(i); 4154 OpScalars.push_back(E->Scalars[i]); 4155 } 4156 } 4157 4158 Value *ShuffleMask = ConstantVector::get(Mask); 4159 propagateIRFlags(V0, OpScalars); 4160 propagateIRFlags(V1, AltScalars); 4161 4162 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 4163 if (Instruction *I = dyn_cast<Instruction>(V)) 4164 V = propagateMetadata(I, E->Scalars); 4165 if (NeedToShuffleReuses) { 4166 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4167 E->ReuseShuffleIndices, "shuffle"); 4168 } 4169 E->VectorizedValue = V; 4170 ++NumVectorInstructions; 4171 4172 return V; 4173 } 4174 default: 4175 llvm_unreachable("unknown inst"); 4176 } 4177 return nullptr; 4178 } 4179 4180 Value *BoUpSLP::vectorizeTree() { 4181 ExtraValueToDebugLocsMap ExternallyUsedValues; 4182 return vectorizeTree(ExternallyUsedValues); 4183 } 4184 4185 Value * 4186 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 4187 // All blocks must be scheduled before any instructions are inserted. 4188 for (auto &BSIter : BlocksSchedules) { 4189 scheduleBlock(BSIter.second.get()); 4190 } 4191 4192 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4193 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 4194 4195 // If the vectorized tree can be rewritten in a smaller type, we truncate the 4196 // vectorized root. InstCombine will then rewrite the entire expression. We 4197 // sign extend the extracted values below. 4198 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4199 if (MinBWs.count(ScalarRoot)) { 4200 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 4201 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 4202 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 4203 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4204 auto *VecTy = VectorType::get(MinTy, BundleWidth); 4205 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 4206 VectorizableTree[0]->VectorizedValue = Trunc; 4207 } 4208 4209 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 4210 << " values .\n"); 4211 4212 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 4213 // specified by ScalarType. 4214 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 4215 if (!MinBWs.count(ScalarRoot)) 4216 return Ex; 4217 if (MinBWs[ScalarRoot].second) 4218 return Builder.CreateSExt(Ex, ScalarType); 4219 return Builder.CreateZExt(Ex, ScalarType); 4220 }; 4221 4222 // Extract all of the elements with the external uses. 4223 for (const auto &ExternalUse : ExternalUses) { 4224 Value *Scalar = ExternalUse.Scalar; 4225 llvm::User *User = ExternalUse.User; 4226 4227 // Skip users that we already RAUW. This happens when one instruction 4228 // has multiple uses of the same value. 4229 if (User && !is_contained(Scalar->users(), User)) 4230 continue; 4231 TreeEntry *E = getTreeEntry(Scalar); 4232 assert(E && "Invalid scalar"); 4233 assert(!E->NeedToGather && "Extracting from a gather list"); 4234 4235 Value *Vec = E->VectorizedValue; 4236 assert(Vec && "Can't find vectorizable value"); 4237 4238 Value *Lane = Builder.getInt32(ExternalUse.Lane); 4239 // If User == nullptr, the Scalar is used as extra arg. Generate 4240 // ExtractElement instruction and update the record for this scalar in 4241 // ExternallyUsedValues. 4242 if (!User) { 4243 assert(ExternallyUsedValues.count(Scalar) && 4244 "Scalar with nullptr as an external user must be registered in " 4245 "ExternallyUsedValues map"); 4246 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4247 Builder.SetInsertPoint(VecI->getParent(), 4248 std::next(VecI->getIterator())); 4249 } else { 4250 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4251 } 4252 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4253 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4254 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 4255 auto &Locs = ExternallyUsedValues[Scalar]; 4256 ExternallyUsedValues.insert({Ex, Locs}); 4257 ExternallyUsedValues.erase(Scalar); 4258 // Required to update internally referenced instructions. 4259 Scalar->replaceAllUsesWith(Ex); 4260 continue; 4261 } 4262 4263 // Generate extracts for out-of-tree users. 4264 // Find the insertion point for the extractelement lane. 4265 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4266 if (PHINode *PH = dyn_cast<PHINode>(User)) { 4267 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 4268 if (PH->getIncomingValue(i) == Scalar) { 4269 Instruction *IncomingTerminator = 4270 PH->getIncomingBlock(i)->getTerminator(); 4271 if (isa<CatchSwitchInst>(IncomingTerminator)) { 4272 Builder.SetInsertPoint(VecI->getParent(), 4273 std::next(VecI->getIterator())); 4274 } else { 4275 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 4276 } 4277 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4278 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4279 CSEBlocks.insert(PH->getIncomingBlock(i)); 4280 PH->setOperand(i, Ex); 4281 } 4282 } 4283 } else { 4284 Builder.SetInsertPoint(cast<Instruction>(User)); 4285 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4286 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4287 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 4288 User->replaceUsesOfWith(Scalar, Ex); 4289 } 4290 } else { 4291 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4292 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4293 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4294 CSEBlocks.insert(&F->getEntryBlock()); 4295 User->replaceUsesOfWith(Scalar, Ex); 4296 } 4297 4298 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 4299 } 4300 4301 // For each vectorized value: 4302 for (auto &TEPtr : VectorizableTree) { 4303 TreeEntry *Entry = TEPtr.get(); 4304 4305 // No need to handle users of gathered values. 4306 if (Entry->NeedToGather) 4307 continue; 4308 4309 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 4310 4311 // For each lane: 4312 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 4313 Value *Scalar = Entry->Scalars[Lane]; 4314 4315 #ifndef NDEBUG 4316 Type *Ty = Scalar->getType(); 4317 if (!Ty->isVoidTy()) { 4318 for (User *U : Scalar->users()) { 4319 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 4320 4321 // It is legal to delete users in the ignorelist. 4322 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 4323 "Deleting out-of-tree value"); 4324 } 4325 } 4326 #endif 4327 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 4328 eraseInstruction(cast<Instruction>(Scalar)); 4329 } 4330 } 4331 4332 Builder.ClearInsertionPoint(); 4333 4334 return VectorizableTree[0]->VectorizedValue; 4335 } 4336 4337 void BoUpSLP::optimizeGatherSequence() { 4338 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 4339 << " gather sequences instructions.\n"); 4340 // LICM InsertElementInst sequences. 4341 for (Instruction *I : GatherSeq) { 4342 if (isDeleted(I)) 4343 continue; 4344 4345 // Check if this block is inside a loop. 4346 Loop *L = LI->getLoopFor(I->getParent()); 4347 if (!L) 4348 continue; 4349 4350 // Check if it has a preheader. 4351 BasicBlock *PreHeader = L->getLoopPreheader(); 4352 if (!PreHeader) 4353 continue; 4354 4355 // If the vector or the element that we insert into it are 4356 // instructions that are defined in this basic block then we can't 4357 // hoist this instruction. 4358 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 4359 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 4360 if (Op0 && L->contains(Op0)) 4361 continue; 4362 if (Op1 && L->contains(Op1)) 4363 continue; 4364 4365 // We can hoist this instruction. Move it to the pre-header. 4366 I->moveBefore(PreHeader->getTerminator()); 4367 } 4368 4369 // Make a list of all reachable blocks in our CSE queue. 4370 SmallVector<const DomTreeNode *, 8> CSEWorkList; 4371 CSEWorkList.reserve(CSEBlocks.size()); 4372 for (BasicBlock *BB : CSEBlocks) 4373 if (DomTreeNode *N = DT->getNode(BB)) { 4374 assert(DT->isReachableFromEntry(N)); 4375 CSEWorkList.push_back(N); 4376 } 4377 4378 // Sort blocks by domination. This ensures we visit a block after all blocks 4379 // dominating it are visited. 4380 llvm::stable_sort(CSEWorkList, 4381 [this](const DomTreeNode *A, const DomTreeNode *B) { 4382 return DT->properlyDominates(A, B); 4383 }); 4384 4385 // Perform O(N^2) search over the gather sequences and merge identical 4386 // instructions. TODO: We can further optimize this scan if we split the 4387 // instructions into different buckets based on the insert lane. 4388 SmallVector<Instruction *, 16> Visited; 4389 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 4390 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 4391 "Worklist not sorted properly!"); 4392 BasicBlock *BB = (*I)->getBlock(); 4393 // For all instructions in blocks containing gather sequences: 4394 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 4395 Instruction *In = &*it++; 4396 if (isDeleted(In)) 4397 continue; 4398 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 4399 continue; 4400 4401 // Check if we can replace this instruction with any of the 4402 // visited instructions. 4403 for (Instruction *v : Visited) { 4404 if (In->isIdenticalTo(v) && 4405 DT->dominates(v->getParent(), In->getParent())) { 4406 In->replaceAllUsesWith(v); 4407 eraseInstruction(In); 4408 In = nullptr; 4409 break; 4410 } 4411 } 4412 if (In) { 4413 assert(!is_contained(Visited, In)); 4414 Visited.push_back(In); 4415 } 4416 } 4417 } 4418 CSEBlocks.clear(); 4419 GatherSeq.clear(); 4420 } 4421 4422 // Groups the instructions to a bundle (which is then a single scheduling entity) 4423 // and schedules instructions until the bundle gets ready. 4424 Optional<BoUpSLP::ScheduleData *> 4425 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 4426 const InstructionsState &S) { 4427 if (isa<PHINode>(S.OpValue)) 4428 return nullptr; 4429 4430 // Initialize the instruction bundle. 4431 Instruction *OldScheduleEnd = ScheduleEnd; 4432 ScheduleData *PrevInBundle = nullptr; 4433 ScheduleData *Bundle = nullptr; 4434 bool ReSchedule = false; 4435 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 4436 4437 // Make sure that the scheduling region contains all 4438 // instructions of the bundle. 4439 for (Value *V : VL) { 4440 if (!extendSchedulingRegion(V, S)) 4441 return None; 4442 } 4443 4444 for (Value *V : VL) { 4445 ScheduleData *BundleMember = getScheduleData(V); 4446 assert(BundleMember && 4447 "no ScheduleData for bundle member (maybe not in same basic block)"); 4448 if (BundleMember->IsScheduled) { 4449 // A bundle member was scheduled as single instruction before and now 4450 // needs to be scheduled as part of the bundle. We just get rid of the 4451 // existing schedule. 4452 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 4453 << " was already scheduled\n"); 4454 ReSchedule = true; 4455 } 4456 assert(BundleMember->isSchedulingEntity() && 4457 "bundle member already part of other bundle"); 4458 if (PrevInBundle) { 4459 PrevInBundle->NextInBundle = BundleMember; 4460 } else { 4461 Bundle = BundleMember; 4462 } 4463 BundleMember->UnscheduledDepsInBundle = 0; 4464 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 4465 4466 // Group the instructions to a bundle. 4467 BundleMember->FirstInBundle = Bundle; 4468 PrevInBundle = BundleMember; 4469 } 4470 if (ScheduleEnd != OldScheduleEnd) { 4471 // The scheduling region got new instructions at the lower end (or it is a 4472 // new region for the first bundle). This makes it necessary to 4473 // recalculate all dependencies. 4474 // It is seldom that this needs to be done a second time after adding the 4475 // initial bundle to the region. 4476 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 4477 doForAllOpcodes(I, [](ScheduleData *SD) { 4478 SD->clearDependencies(); 4479 }); 4480 } 4481 ReSchedule = true; 4482 } 4483 if (ReSchedule) { 4484 resetSchedule(); 4485 initialFillReadyList(ReadyInsts); 4486 } 4487 assert(Bundle && "Failed to find schedule bundle"); 4488 4489 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 4490 << BB->getName() << "\n"); 4491 4492 calculateDependencies(Bundle, true, SLP); 4493 4494 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 4495 // means that there are no cyclic dependencies and we can schedule it. 4496 // Note that's important that we don't "schedule" the bundle yet (see 4497 // cancelScheduling). 4498 while (!Bundle->isReady() && !ReadyInsts.empty()) { 4499 4500 ScheduleData *pickedSD = ReadyInsts.back(); 4501 ReadyInsts.pop_back(); 4502 4503 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 4504 schedule(pickedSD, ReadyInsts); 4505 } 4506 } 4507 if (!Bundle->isReady()) { 4508 cancelScheduling(VL, S.OpValue); 4509 return None; 4510 } 4511 return Bundle; 4512 } 4513 4514 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 4515 Value *OpValue) { 4516 if (isa<PHINode>(OpValue)) 4517 return; 4518 4519 ScheduleData *Bundle = getScheduleData(OpValue); 4520 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 4521 assert(!Bundle->IsScheduled && 4522 "Can't cancel bundle which is already scheduled"); 4523 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 4524 "tried to unbundle something which is not a bundle"); 4525 4526 // Un-bundle: make single instructions out of the bundle. 4527 ScheduleData *BundleMember = Bundle; 4528 while (BundleMember) { 4529 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 4530 BundleMember->FirstInBundle = BundleMember; 4531 ScheduleData *Next = BundleMember->NextInBundle; 4532 BundleMember->NextInBundle = nullptr; 4533 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 4534 if (BundleMember->UnscheduledDepsInBundle == 0) { 4535 ReadyInsts.insert(BundleMember); 4536 } 4537 BundleMember = Next; 4538 } 4539 } 4540 4541 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 4542 // Allocate a new ScheduleData for the instruction. 4543 if (ChunkPos >= ChunkSize) { 4544 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 4545 ChunkPos = 0; 4546 } 4547 return &(ScheduleDataChunks.back()[ChunkPos++]); 4548 } 4549 4550 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 4551 const InstructionsState &S) { 4552 if (getScheduleData(V, isOneOf(S, V))) 4553 return true; 4554 Instruction *I = dyn_cast<Instruction>(V); 4555 assert(I && "bundle member must be an instruction"); 4556 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 4557 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 4558 ScheduleData *ISD = getScheduleData(I); 4559 if (!ISD) 4560 return false; 4561 assert(isInSchedulingRegion(ISD) && 4562 "ScheduleData not in scheduling region"); 4563 ScheduleData *SD = allocateScheduleDataChunks(); 4564 SD->Inst = I; 4565 SD->init(SchedulingRegionID, S.OpValue); 4566 ExtraScheduleDataMap[I][S.OpValue] = SD; 4567 return true; 4568 }; 4569 if (CheckSheduleForI(I)) 4570 return true; 4571 if (!ScheduleStart) { 4572 // It's the first instruction in the new region. 4573 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 4574 ScheduleStart = I; 4575 ScheduleEnd = I->getNextNode(); 4576 if (isOneOf(S, I) != I) 4577 CheckSheduleForI(I); 4578 assert(ScheduleEnd && "tried to vectorize a terminator?"); 4579 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 4580 return true; 4581 } 4582 // Search up and down at the same time, because we don't know if the new 4583 // instruction is above or below the existing scheduling region. 4584 BasicBlock::reverse_iterator UpIter = 4585 ++ScheduleStart->getIterator().getReverse(); 4586 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 4587 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 4588 BasicBlock::iterator LowerEnd = BB->end(); 4589 while (true) { 4590 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 4591 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 4592 return false; 4593 } 4594 4595 if (UpIter != UpperEnd) { 4596 if (&*UpIter == I) { 4597 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 4598 ScheduleStart = I; 4599 if (isOneOf(S, I) != I) 4600 CheckSheduleForI(I); 4601 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 4602 << "\n"); 4603 return true; 4604 } 4605 ++UpIter; 4606 } 4607 if (DownIter != LowerEnd) { 4608 if (&*DownIter == I) { 4609 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 4610 nullptr); 4611 ScheduleEnd = I->getNextNode(); 4612 if (isOneOf(S, I) != I) 4613 CheckSheduleForI(I); 4614 assert(ScheduleEnd && "tried to vectorize a terminator?"); 4615 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I 4616 << "\n"); 4617 return true; 4618 } 4619 ++DownIter; 4620 } 4621 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 4622 "instruction not found in block"); 4623 } 4624 return true; 4625 } 4626 4627 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 4628 Instruction *ToI, 4629 ScheduleData *PrevLoadStore, 4630 ScheduleData *NextLoadStore) { 4631 ScheduleData *CurrentLoadStore = PrevLoadStore; 4632 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 4633 ScheduleData *SD = ScheduleDataMap[I]; 4634 if (!SD) { 4635 SD = allocateScheduleDataChunks(); 4636 ScheduleDataMap[I] = SD; 4637 SD->Inst = I; 4638 } 4639 assert(!isInSchedulingRegion(SD) && 4640 "new ScheduleData already in scheduling region"); 4641 SD->init(SchedulingRegionID, I); 4642 4643 if (I->mayReadOrWriteMemory() && 4644 (!isa<IntrinsicInst>(I) || 4645 cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) { 4646 // Update the linked list of memory accessing instructions. 4647 if (CurrentLoadStore) { 4648 CurrentLoadStore->NextLoadStore = SD; 4649 } else { 4650 FirstLoadStoreInRegion = SD; 4651 } 4652 CurrentLoadStore = SD; 4653 } 4654 } 4655 if (NextLoadStore) { 4656 if (CurrentLoadStore) 4657 CurrentLoadStore->NextLoadStore = NextLoadStore; 4658 } else { 4659 LastLoadStoreInRegion = CurrentLoadStore; 4660 } 4661 } 4662 4663 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 4664 bool InsertInReadyList, 4665 BoUpSLP *SLP) { 4666 assert(SD->isSchedulingEntity()); 4667 4668 SmallVector<ScheduleData *, 10> WorkList; 4669 WorkList.push_back(SD); 4670 4671 while (!WorkList.empty()) { 4672 ScheduleData *SD = WorkList.back(); 4673 WorkList.pop_back(); 4674 4675 ScheduleData *BundleMember = SD; 4676 while (BundleMember) { 4677 assert(isInSchedulingRegion(BundleMember)); 4678 if (!BundleMember->hasValidDependencies()) { 4679 4680 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 4681 << "\n"); 4682 BundleMember->Dependencies = 0; 4683 BundleMember->resetUnscheduledDeps(); 4684 4685 // Handle def-use chain dependencies. 4686 if (BundleMember->OpValue != BundleMember->Inst) { 4687 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 4688 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 4689 BundleMember->Dependencies++; 4690 ScheduleData *DestBundle = UseSD->FirstInBundle; 4691 if (!DestBundle->IsScheduled) 4692 BundleMember->incrementUnscheduledDeps(1); 4693 if (!DestBundle->hasValidDependencies()) 4694 WorkList.push_back(DestBundle); 4695 } 4696 } else { 4697 for (User *U : BundleMember->Inst->users()) { 4698 if (isa<Instruction>(U)) { 4699 ScheduleData *UseSD = getScheduleData(U); 4700 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 4701 BundleMember->Dependencies++; 4702 ScheduleData *DestBundle = UseSD->FirstInBundle; 4703 if (!DestBundle->IsScheduled) 4704 BundleMember->incrementUnscheduledDeps(1); 4705 if (!DestBundle->hasValidDependencies()) 4706 WorkList.push_back(DestBundle); 4707 } 4708 } else { 4709 // I'm not sure if this can ever happen. But we need to be safe. 4710 // This lets the instruction/bundle never be scheduled and 4711 // eventually disable vectorization. 4712 BundleMember->Dependencies++; 4713 BundleMember->incrementUnscheduledDeps(1); 4714 } 4715 } 4716 } 4717 4718 // Handle the memory dependencies. 4719 ScheduleData *DepDest = BundleMember->NextLoadStore; 4720 if (DepDest) { 4721 Instruction *SrcInst = BundleMember->Inst; 4722 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 4723 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 4724 unsigned numAliased = 0; 4725 unsigned DistToSrc = 1; 4726 4727 while (DepDest) { 4728 assert(isInSchedulingRegion(DepDest)); 4729 4730 // We have two limits to reduce the complexity: 4731 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 4732 // SLP->isAliased (which is the expensive part in this loop). 4733 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 4734 // the whole loop (even if the loop is fast, it's quadratic). 4735 // It's important for the loop break condition (see below) to 4736 // check this limit even between two read-only instructions. 4737 if (DistToSrc >= MaxMemDepDistance || 4738 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 4739 (numAliased >= AliasedCheckLimit || 4740 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 4741 4742 // We increment the counter only if the locations are aliased 4743 // (instead of counting all alias checks). This gives a better 4744 // balance between reduced runtime and accurate dependencies. 4745 numAliased++; 4746 4747 DepDest->MemoryDependencies.push_back(BundleMember); 4748 BundleMember->Dependencies++; 4749 ScheduleData *DestBundle = DepDest->FirstInBundle; 4750 if (!DestBundle->IsScheduled) { 4751 BundleMember->incrementUnscheduledDeps(1); 4752 } 4753 if (!DestBundle->hasValidDependencies()) { 4754 WorkList.push_back(DestBundle); 4755 } 4756 } 4757 DepDest = DepDest->NextLoadStore; 4758 4759 // Example, explaining the loop break condition: Let's assume our 4760 // starting instruction is i0 and MaxMemDepDistance = 3. 4761 // 4762 // +--------v--v--v 4763 // i0,i1,i2,i3,i4,i5,i6,i7,i8 4764 // +--------^--^--^ 4765 // 4766 // MaxMemDepDistance let us stop alias-checking at i3 and we add 4767 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 4768 // Previously we already added dependencies from i3 to i6,i7,i8 4769 // (because of MaxMemDepDistance). As we added a dependency from 4770 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 4771 // and we can abort this loop at i6. 4772 if (DistToSrc >= 2 * MaxMemDepDistance) 4773 break; 4774 DistToSrc++; 4775 } 4776 } 4777 } 4778 BundleMember = BundleMember->NextInBundle; 4779 } 4780 if (InsertInReadyList && SD->isReady()) { 4781 ReadyInsts.push_back(SD); 4782 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 4783 << "\n"); 4784 } 4785 } 4786 } 4787 4788 void BoUpSLP::BlockScheduling::resetSchedule() { 4789 assert(ScheduleStart && 4790 "tried to reset schedule on block which has not been scheduled"); 4791 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 4792 doForAllOpcodes(I, [&](ScheduleData *SD) { 4793 assert(isInSchedulingRegion(SD) && 4794 "ScheduleData not in scheduling region"); 4795 SD->IsScheduled = false; 4796 SD->resetUnscheduledDeps(); 4797 }); 4798 } 4799 ReadyInsts.clear(); 4800 } 4801 4802 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 4803 if (!BS->ScheduleStart) 4804 return; 4805 4806 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 4807 4808 BS->resetSchedule(); 4809 4810 // For the real scheduling we use a more sophisticated ready-list: it is 4811 // sorted by the original instruction location. This lets the final schedule 4812 // be as close as possible to the original instruction order. 4813 struct ScheduleDataCompare { 4814 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 4815 return SD2->SchedulingPriority < SD1->SchedulingPriority; 4816 } 4817 }; 4818 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 4819 4820 // Ensure that all dependency data is updated and fill the ready-list with 4821 // initial instructions. 4822 int Idx = 0; 4823 int NumToSchedule = 0; 4824 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 4825 I = I->getNextNode()) { 4826 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 4827 assert(SD->isPartOfBundle() == 4828 (getTreeEntry(SD->Inst) != nullptr) && 4829 "scheduler and vectorizer bundle mismatch"); 4830 SD->FirstInBundle->SchedulingPriority = Idx++; 4831 if (SD->isSchedulingEntity()) { 4832 BS->calculateDependencies(SD, false, this); 4833 NumToSchedule++; 4834 } 4835 }); 4836 } 4837 BS->initialFillReadyList(ReadyInsts); 4838 4839 Instruction *LastScheduledInst = BS->ScheduleEnd; 4840 4841 // Do the "real" scheduling. 4842 while (!ReadyInsts.empty()) { 4843 ScheduleData *picked = *ReadyInsts.begin(); 4844 ReadyInsts.erase(ReadyInsts.begin()); 4845 4846 // Move the scheduled instruction(s) to their dedicated places, if not 4847 // there yet. 4848 ScheduleData *BundleMember = picked; 4849 while (BundleMember) { 4850 Instruction *pickedInst = BundleMember->Inst; 4851 if (LastScheduledInst->getNextNode() != pickedInst) { 4852 BS->BB->getInstList().remove(pickedInst); 4853 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 4854 pickedInst); 4855 } 4856 LastScheduledInst = pickedInst; 4857 BundleMember = BundleMember->NextInBundle; 4858 } 4859 4860 BS->schedule(picked, ReadyInsts); 4861 NumToSchedule--; 4862 } 4863 assert(NumToSchedule == 0 && "could not schedule all instructions"); 4864 4865 // Avoid duplicate scheduling of the block. 4866 BS->ScheduleStart = nullptr; 4867 } 4868 4869 unsigned BoUpSLP::getVectorElementSize(Value *V) const { 4870 // If V is a store, just return the width of the stored value without 4871 // traversing the expression tree. This is the common case. 4872 if (auto *Store = dyn_cast<StoreInst>(V)) 4873 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 4874 4875 // If V is not a store, we can traverse the expression tree to find loads 4876 // that feed it. The type of the loaded value may indicate a more suitable 4877 // width than V's type. We want to base the vector element size on the width 4878 // of memory operations where possible. 4879 SmallVector<Instruction *, 16> Worklist; 4880 SmallPtrSet<Instruction *, 16> Visited; 4881 if (auto *I = dyn_cast<Instruction>(V)) 4882 Worklist.push_back(I); 4883 4884 // Traverse the expression tree in bottom-up order looking for loads. If we 4885 // encounter an instruction we don't yet handle, we give up. 4886 auto MaxWidth = 0u; 4887 auto FoundUnknownInst = false; 4888 while (!Worklist.empty() && !FoundUnknownInst) { 4889 auto *I = Worklist.pop_back_val(); 4890 Visited.insert(I); 4891 4892 // We should only be looking at scalar instructions here. If the current 4893 // instruction has a vector type, give up. 4894 auto *Ty = I->getType(); 4895 if (isa<VectorType>(Ty)) 4896 FoundUnknownInst = true; 4897 4898 // If the current instruction is a load, update MaxWidth to reflect the 4899 // width of the loaded value. 4900 else if (isa<LoadInst>(I)) 4901 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 4902 4903 // Otherwise, we need to visit the operands of the instruction. We only 4904 // handle the interesting cases from buildTree here. If an operand is an 4905 // instruction we haven't yet visited, we add it to the worklist. 4906 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 4907 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 4908 for (Use &U : I->operands()) 4909 if (auto *J = dyn_cast<Instruction>(U.get())) 4910 if (!Visited.count(J)) 4911 Worklist.push_back(J); 4912 } 4913 4914 // If we don't yet handle the instruction, give up. 4915 else 4916 FoundUnknownInst = true; 4917 } 4918 4919 // If we didn't encounter a memory access in the expression tree, or if we 4920 // gave up for some reason, just return the width of V. 4921 if (!MaxWidth || FoundUnknownInst) 4922 return DL->getTypeSizeInBits(V->getType()); 4923 4924 // Otherwise, return the maximum width we found. 4925 return MaxWidth; 4926 } 4927 4928 // Determine if a value V in a vectorizable expression Expr can be demoted to a 4929 // smaller type with a truncation. We collect the values that will be demoted 4930 // in ToDemote and additional roots that require investigating in Roots. 4931 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 4932 SmallVectorImpl<Value *> &ToDemote, 4933 SmallVectorImpl<Value *> &Roots) { 4934 // We can always demote constants. 4935 if (isa<Constant>(V)) { 4936 ToDemote.push_back(V); 4937 return true; 4938 } 4939 4940 // If the value is not an instruction in the expression with only one use, it 4941 // cannot be demoted. 4942 auto *I = dyn_cast<Instruction>(V); 4943 if (!I || !I->hasOneUse() || !Expr.count(I)) 4944 return false; 4945 4946 switch (I->getOpcode()) { 4947 4948 // We can always demote truncations and extensions. Since truncations can 4949 // seed additional demotion, we save the truncated value. 4950 case Instruction::Trunc: 4951 Roots.push_back(I->getOperand(0)); 4952 break; 4953 case Instruction::ZExt: 4954 case Instruction::SExt: 4955 break; 4956 4957 // We can demote certain binary operations if we can demote both of their 4958 // operands. 4959 case Instruction::Add: 4960 case Instruction::Sub: 4961 case Instruction::Mul: 4962 case Instruction::And: 4963 case Instruction::Or: 4964 case Instruction::Xor: 4965 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 4966 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 4967 return false; 4968 break; 4969 4970 // We can demote selects if we can demote their true and false values. 4971 case Instruction::Select: { 4972 SelectInst *SI = cast<SelectInst>(I); 4973 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 4974 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 4975 return false; 4976 break; 4977 } 4978 4979 // We can demote phis if we can demote all their incoming operands. Note that 4980 // we don't need to worry about cycles since we ensure single use above. 4981 case Instruction::PHI: { 4982 PHINode *PN = cast<PHINode>(I); 4983 for (Value *IncValue : PN->incoming_values()) 4984 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 4985 return false; 4986 break; 4987 } 4988 4989 // Otherwise, conservatively give up. 4990 default: 4991 return false; 4992 } 4993 4994 // Record the value that we can demote. 4995 ToDemote.push_back(V); 4996 return true; 4997 } 4998 4999 void BoUpSLP::computeMinimumValueSizes() { 5000 // If there are no external uses, the expression tree must be rooted by a 5001 // store. We can't demote in-memory values, so there is nothing to do here. 5002 if (ExternalUses.empty()) 5003 return; 5004 5005 // We only attempt to truncate integer expressions. 5006 auto &TreeRoot = VectorizableTree[0]->Scalars; 5007 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 5008 if (!TreeRootIT) 5009 return; 5010 5011 // If the expression is not rooted by a store, these roots should have 5012 // external uses. We will rely on InstCombine to rewrite the expression in 5013 // the narrower type. However, InstCombine only rewrites single-use values. 5014 // This means that if a tree entry other than a root is used externally, it 5015 // must have multiple uses and InstCombine will not rewrite it. The code 5016 // below ensures that only the roots are used externally. 5017 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 5018 for (auto &EU : ExternalUses) 5019 if (!Expr.erase(EU.Scalar)) 5020 return; 5021 if (!Expr.empty()) 5022 return; 5023 5024 // Collect the scalar values of the vectorizable expression. We will use this 5025 // context to determine which values can be demoted. If we see a truncation, 5026 // we mark it as seeding another demotion. 5027 for (auto &EntryPtr : VectorizableTree) 5028 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 5029 5030 // Ensure the roots of the vectorizable tree don't form a cycle. They must 5031 // have a single external user that is not in the vectorizable tree. 5032 for (auto *Root : TreeRoot) 5033 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 5034 return; 5035 5036 // Conservatively determine if we can actually truncate the roots of the 5037 // expression. Collect the values that can be demoted in ToDemote and 5038 // additional roots that require investigating in Roots. 5039 SmallVector<Value *, 32> ToDemote; 5040 SmallVector<Value *, 4> Roots; 5041 for (auto *Root : TreeRoot) 5042 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 5043 return; 5044 5045 // The maximum bit width required to represent all the values that can be 5046 // demoted without loss of precision. It would be safe to truncate the roots 5047 // of the expression to this width. 5048 auto MaxBitWidth = 8u; 5049 5050 // We first check if all the bits of the roots are demanded. If they're not, 5051 // we can truncate the roots to this narrower type. 5052 for (auto *Root : TreeRoot) { 5053 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 5054 MaxBitWidth = std::max<unsigned>( 5055 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 5056 } 5057 5058 // True if the roots can be zero-extended back to their original type, rather 5059 // than sign-extended. We know that if the leading bits are not demanded, we 5060 // can safely zero-extend. So we initialize IsKnownPositive to True. 5061 bool IsKnownPositive = true; 5062 5063 // If all the bits of the roots are demanded, we can try a little harder to 5064 // compute a narrower type. This can happen, for example, if the roots are 5065 // getelementptr indices. InstCombine promotes these indices to the pointer 5066 // width. Thus, all their bits are technically demanded even though the 5067 // address computation might be vectorized in a smaller type. 5068 // 5069 // We start by looking at each entry that can be demoted. We compute the 5070 // maximum bit width required to store the scalar by using ValueTracking to 5071 // compute the number of high-order bits we can truncate. 5072 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 5073 llvm::all_of(TreeRoot, [](Value *R) { 5074 assert(R->hasOneUse() && "Root should have only one use!"); 5075 return isa<GetElementPtrInst>(R->user_back()); 5076 })) { 5077 MaxBitWidth = 8u; 5078 5079 // Determine if the sign bit of all the roots is known to be zero. If not, 5080 // IsKnownPositive is set to False. 5081 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 5082 KnownBits Known = computeKnownBits(R, *DL); 5083 return Known.isNonNegative(); 5084 }); 5085 5086 // Determine the maximum number of bits required to store the scalar 5087 // values. 5088 for (auto *Scalar : ToDemote) { 5089 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 5090 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 5091 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 5092 } 5093 5094 // If we can't prove that the sign bit is zero, we must add one to the 5095 // maximum bit width to account for the unknown sign bit. This preserves 5096 // the existing sign bit so we can safely sign-extend the root back to the 5097 // original type. Otherwise, if we know the sign bit is zero, we will 5098 // zero-extend the root instead. 5099 // 5100 // FIXME: This is somewhat suboptimal, as there will be cases where adding 5101 // one to the maximum bit width will yield a larger-than-necessary 5102 // type. In general, we need to add an extra bit only if we can't 5103 // prove that the upper bit of the original type is equal to the 5104 // upper bit of the proposed smaller type. If these two bits are the 5105 // same (either zero or one) we know that sign-extending from the 5106 // smaller type will result in the same value. Here, since we can't 5107 // yet prove this, we are just making the proposed smaller type 5108 // larger to ensure correctness. 5109 if (!IsKnownPositive) 5110 ++MaxBitWidth; 5111 } 5112 5113 // Round MaxBitWidth up to the next power-of-two. 5114 if (!isPowerOf2_64(MaxBitWidth)) 5115 MaxBitWidth = NextPowerOf2(MaxBitWidth); 5116 5117 // If the maximum bit width we compute is less than the with of the roots' 5118 // type, we can proceed with the narrowing. Otherwise, do nothing. 5119 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 5120 return; 5121 5122 // If we can truncate the root, we must collect additional values that might 5123 // be demoted as a result. That is, those seeded by truncations we will 5124 // modify. 5125 while (!Roots.empty()) 5126 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 5127 5128 // Finally, map the values we can demote to the maximum bit with we computed. 5129 for (auto *Scalar : ToDemote) 5130 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 5131 } 5132 5133 namespace { 5134 5135 /// The SLPVectorizer Pass. 5136 struct SLPVectorizer : public FunctionPass { 5137 SLPVectorizerPass Impl; 5138 5139 /// Pass identification, replacement for typeid 5140 static char ID; 5141 5142 explicit SLPVectorizer() : FunctionPass(ID) { 5143 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 5144 } 5145 5146 bool doInitialization(Module &M) override { 5147 return false; 5148 } 5149 5150 bool runOnFunction(Function &F) override { 5151 if (skipFunction(F)) 5152 return false; 5153 5154 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5155 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 5156 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 5157 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 5158 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 5159 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5160 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5161 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 5162 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 5163 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 5164 5165 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5166 } 5167 5168 void getAnalysisUsage(AnalysisUsage &AU) const override { 5169 FunctionPass::getAnalysisUsage(AU); 5170 AU.addRequired<AssumptionCacheTracker>(); 5171 AU.addRequired<ScalarEvolutionWrapperPass>(); 5172 AU.addRequired<AAResultsWrapperPass>(); 5173 AU.addRequired<TargetTransformInfoWrapperPass>(); 5174 AU.addRequired<LoopInfoWrapperPass>(); 5175 AU.addRequired<DominatorTreeWrapperPass>(); 5176 AU.addRequired<DemandedBitsWrapperPass>(); 5177 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 5178 AU.addPreserved<LoopInfoWrapperPass>(); 5179 AU.addPreserved<DominatorTreeWrapperPass>(); 5180 AU.addPreserved<AAResultsWrapperPass>(); 5181 AU.addPreserved<GlobalsAAWrapperPass>(); 5182 AU.setPreservesCFG(); 5183 } 5184 }; 5185 5186 } // end anonymous namespace 5187 5188 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 5189 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 5190 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 5191 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 5192 auto *AA = &AM.getResult<AAManager>(F); 5193 auto *LI = &AM.getResult<LoopAnalysis>(F); 5194 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 5195 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 5196 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 5197 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 5198 5199 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5200 if (!Changed) 5201 return PreservedAnalyses::all(); 5202 5203 PreservedAnalyses PA; 5204 PA.preserveSet<CFGAnalyses>(); 5205 PA.preserve<AAManager>(); 5206 PA.preserve<GlobalsAA>(); 5207 return PA; 5208 } 5209 5210 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 5211 TargetTransformInfo *TTI_, 5212 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 5213 LoopInfo *LI_, DominatorTree *DT_, 5214 AssumptionCache *AC_, DemandedBits *DB_, 5215 OptimizationRemarkEmitter *ORE_) { 5216 SE = SE_; 5217 TTI = TTI_; 5218 TLI = TLI_; 5219 AA = AA_; 5220 LI = LI_; 5221 DT = DT_; 5222 AC = AC_; 5223 DB = DB_; 5224 DL = &F.getParent()->getDataLayout(); 5225 5226 Stores.clear(); 5227 GEPs.clear(); 5228 bool Changed = false; 5229 5230 // If the target claims to have no vector registers don't attempt 5231 // vectorization. 5232 if (!TTI->getNumberOfRegisters(true)) 5233 return false; 5234 5235 // Don't vectorize when the attribute NoImplicitFloat is used. 5236 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 5237 return false; 5238 5239 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 5240 5241 // Use the bottom up slp vectorizer to construct chains that start with 5242 // store instructions. 5243 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 5244 5245 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 5246 // delete instructions. 5247 5248 // Scan the blocks in the function in post order. 5249 for (auto BB : post_order(&F.getEntryBlock())) { 5250 collectSeedInstructions(BB); 5251 5252 // Vectorize trees that end at stores. 5253 if (!Stores.empty()) { 5254 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 5255 << " underlying objects.\n"); 5256 Changed |= vectorizeStoreChains(R); 5257 } 5258 5259 // Vectorize trees that end at reductions. 5260 Changed |= vectorizeChainsInBlock(BB, R); 5261 5262 // Vectorize the index computations of getelementptr instructions. This 5263 // is primarily intended to catch gather-like idioms ending at 5264 // non-consecutive loads. 5265 if (!GEPs.empty()) { 5266 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 5267 << " underlying objects.\n"); 5268 Changed |= vectorizeGEPIndices(BB, R); 5269 } 5270 } 5271 5272 if (Changed) { 5273 R.optimizeGatherSequence(); 5274 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 5275 LLVM_DEBUG(verifyFunction(F)); 5276 } 5277 return Changed; 5278 } 5279 5280 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 5281 unsigned VecRegSize) { 5282 const unsigned ChainLen = Chain.size(); 5283 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 5284 << "\n"); 5285 const unsigned Sz = R.getVectorElementSize(Chain[0]); 5286 const unsigned VF = VecRegSize / Sz; 5287 5288 if (!isPowerOf2_32(Sz) || VF < 2) 5289 return false; 5290 5291 bool Changed = false; 5292 // Look for profitable vectorizable trees at all offsets, starting at zero. 5293 for (unsigned i = 0, e = ChainLen; i + VF <= e; ++i) { 5294 5295 ArrayRef<Value *> Operands = Chain.slice(i, VF); 5296 // Check that a previous iteration of this loop did not delete the Value. 5297 if (llvm::any_of(Operands, [&R](Value *V) { 5298 auto *I = dyn_cast<Instruction>(V); 5299 return I && R.isDeleted(I); 5300 })) 5301 continue; 5302 5303 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 5304 << "\n"); 5305 5306 R.buildTree(Operands); 5307 if (R.isTreeTinyAndNotFullyVectorizable()) 5308 continue; 5309 5310 R.computeMinimumValueSizes(); 5311 5312 int Cost = R.getTreeCost(); 5313 5314 LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF 5315 << "\n"); 5316 if (Cost < -SLPCostThreshold) { 5317 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 5318 5319 using namespace ore; 5320 5321 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 5322 cast<StoreInst>(Chain[i])) 5323 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 5324 << " and with tree size " 5325 << NV("TreeSize", R.getTreeSize())); 5326 5327 R.vectorizeTree(); 5328 5329 // Move to the next bundle. 5330 i += VF - 1; 5331 Changed = true; 5332 } 5333 } 5334 5335 return Changed; 5336 } 5337 5338 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 5339 BoUpSLP &R) { 5340 SetVector<StoreInst *> Heads; 5341 SmallDenseSet<StoreInst *> Tails; 5342 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 5343 5344 // We may run into multiple chains that merge into a single chain. We mark the 5345 // stores that we vectorized so that we don't visit the same store twice. 5346 BoUpSLP::ValueSet VectorizedStores; 5347 bool Changed = false; 5348 5349 auto &&FindConsecutiveAccess = 5350 [this, &Stores, &Heads, &Tails, &ConsecutiveChain] (int K, int Idx) { 5351 if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) 5352 return false; 5353 5354 Tails.insert(Stores[Idx]); 5355 Heads.insert(Stores[K]); 5356 ConsecutiveChain[Stores[K]] = Stores[Idx]; 5357 return true; 5358 }; 5359 5360 // Do a quadratic search on all of the given stores in reverse order and find 5361 // all of the pairs of stores that follow each other. 5362 int E = Stores.size(); 5363 for (int Idx = E - 1; Idx >= 0; --Idx) { 5364 // If a store has multiple consecutive store candidates, search according 5365 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 5366 // This is because usually pairing with immediate succeeding or preceding 5367 // candidate create the best chance to find slp vectorization opportunity. 5368 for (int Offset = 1, F = std::max(E - Idx, Idx + 1); Offset < F; ++Offset) 5369 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 5370 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 5371 break; 5372 } 5373 5374 // For stores that start but don't end a link in the chain: 5375 for (auto *SI : llvm::reverse(Heads)) { 5376 if (Tails.count(SI)) 5377 continue; 5378 5379 // We found a store instr that starts a chain. Now follow the chain and try 5380 // to vectorize it. 5381 BoUpSLP::ValueList Operands; 5382 StoreInst *I = SI; 5383 // Collect the chain into a list. 5384 while ((Tails.count(I) || Heads.count(I)) && !VectorizedStores.count(I)) { 5385 Operands.push_back(I); 5386 // Move to the next value in the chain. 5387 I = ConsecutiveChain[I]; 5388 } 5389 5390 // FIXME: Is division-by-2 the correct step? Should we assert that the 5391 // register size is a power-of-2? 5392 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); 5393 Size /= 2) { 5394 if (vectorizeStoreChain(Operands, R, Size)) { 5395 // Mark the vectorized stores so that we don't vectorize them again. 5396 VectorizedStores.insert(Operands.begin(), Operands.end()); 5397 Changed = true; 5398 break; 5399 } 5400 } 5401 } 5402 5403 return Changed; 5404 } 5405 5406 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 5407 // Initialize the collections. We will make a single pass over the block. 5408 Stores.clear(); 5409 GEPs.clear(); 5410 5411 // Visit the store and getelementptr instructions in BB and organize them in 5412 // Stores and GEPs according to the underlying objects of their pointer 5413 // operands. 5414 for (Instruction &I : *BB) { 5415 // Ignore store instructions that are volatile or have a pointer operand 5416 // that doesn't point to a scalar type. 5417 if (auto *SI = dyn_cast<StoreInst>(&I)) { 5418 if (!SI->isSimple()) 5419 continue; 5420 if (!isValidElementType(SI->getValueOperand()->getType())) 5421 continue; 5422 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 5423 } 5424 5425 // Ignore getelementptr instructions that have more than one index, a 5426 // constant index, or a pointer operand that doesn't point to a scalar 5427 // type. 5428 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 5429 auto Idx = GEP->idx_begin()->get(); 5430 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 5431 continue; 5432 if (!isValidElementType(Idx->getType())) 5433 continue; 5434 if (GEP->getType()->isVectorTy()) 5435 continue; 5436 GEPs[GEP->getPointerOperand()].push_back(GEP); 5437 } 5438 } 5439 } 5440 5441 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 5442 if (!A || !B) 5443 return false; 5444 Value *VL[] = { A, B }; 5445 return tryToVectorizeList(VL, R, /*UserCost=*/0, true); 5446 } 5447 5448 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 5449 int UserCost, bool AllowReorder) { 5450 if (VL.size() < 2) 5451 return false; 5452 5453 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 5454 << VL.size() << ".\n"); 5455 5456 // Check that all of the parts are scalar instructions of the same type, 5457 // we permit an alternate opcode via InstructionsState. 5458 InstructionsState S = getSameOpcode(VL); 5459 if (!S.getOpcode()) 5460 return false; 5461 5462 Instruction *I0 = cast<Instruction>(S.OpValue); 5463 unsigned Sz = R.getVectorElementSize(I0); 5464 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 5465 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 5466 if (MaxVF < 2) { 5467 R.getORE()->emit([&]() { 5468 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 5469 << "Cannot SLP vectorize list: vectorization factor " 5470 << "less than 2 is not supported"; 5471 }); 5472 return false; 5473 } 5474 5475 for (Value *V : VL) { 5476 Type *Ty = V->getType(); 5477 if (!isValidElementType(Ty)) { 5478 // NOTE: the following will give user internal llvm type name, which may 5479 // not be useful. 5480 R.getORE()->emit([&]() { 5481 std::string type_str; 5482 llvm::raw_string_ostream rso(type_str); 5483 Ty->print(rso); 5484 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 5485 << "Cannot SLP vectorize list: type " 5486 << rso.str() + " is unsupported by vectorizer"; 5487 }); 5488 return false; 5489 } 5490 } 5491 5492 bool Changed = false; 5493 bool CandidateFound = false; 5494 int MinCost = SLPCostThreshold; 5495 5496 unsigned NextInst = 0, MaxInst = VL.size(); 5497 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 5498 // No actual vectorization should happen, if number of parts is the same as 5499 // provided vectorization factor (i.e. the scalar type is used for vector 5500 // code during codegen). 5501 auto *VecTy = VectorType::get(VL[0]->getType(), VF); 5502 if (TTI->getNumberOfParts(VecTy) == VF) 5503 continue; 5504 for (unsigned I = NextInst; I < MaxInst; ++I) { 5505 unsigned OpsWidth = 0; 5506 5507 if (I + VF > MaxInst) 5508 OpsWidth = MaxInst - I; 5509 else 5510 OpsWidth = VF; 5511 5512 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 5513 break; 5514 5515 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 5516 // Check that a previous iteration of this loop did not delete the Value. 5517 if (llvm::any_of(Ops, [&R](Value *V) { 5518 auto *I = dyn_cast<Instruction>(V); 5519 return I && R.isDeleted(I); 5520 })) 5521 continue; 5522 5523 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 5524 << "\n"); 5525 5526 R.buildTree(Ops); 5527 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 5528 // TODO: check if we can allow reordering for more cases. 5529 if (AllowReorder && Order) { 5530 // TODO: reorder tree nodes without tree rebuilding. 5531 // Conceptually, there is nothing actually preventing us from trying to 5532 // reorder a larger list. In fact, we do exactly this when vectorizing 5533 // reductions. However, at this point, we only expect to get here when 5534 // there are exactly two operations. 5535 assert(Ops.size() == 2); 5536 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 5537 R.buildTree(ReorderedOps, None); 5538 } 5539 if (R.isTreeTinyAndNotFullyVectorizable()) 5540 continue; 5541 5542 R.computeMinimumValueSizes(); 5543 int Cost = R.getTreeCost() - UserCost; 5544 CandidateFound = true; 5545 MinCost = std::min(MinCost, Cost); 5546 5547 if (Cost < -SLPCostThreshold) { 5548 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 5549 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 5550 cast<Instruction>(Ops[0])) 5551 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 5552 << " and with tree size " 5553 << ore::NV("TreeSize", R.getTreeSize())); 5554 5555 R.vectorizeTree(); 5556 // Move to the next bundle. 5557 I += VF - 1; 5558 NextInst = I + 1; 5559 Changed = true; 5560 } 5561 } 5562 } 5563 5564 if (!Changed && CandidateFound) { 5565 R.getORE()->emit([&]() { 5566 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 5567 << "List vectorization was possible but not beneficial with cost " 5568 << ore::NV("Cost", MinCost) << " >= " 5569 << ore::NV("Treshold", -SLPCostThreshold); 5570 }); 5571 } else if (!Changed) { 5572 R.getORE()->emit([&]() { 5573 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 5574 << "Cannot SLP vectorize list: vectorization was impossible" 5575 << " with available vectorization factors"; 5576 }); 5577 } 5578 return Changed; 5579 } 5580 5581 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 5582 if (!I) 5583 return false; 5584 5585 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 5586 return false; 5587 5588 Value *P = I->getParent(); 5589 5590 // Vectorize in current basic block only. 5591 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 5592 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 5593 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 5594 return false; 5595 5596 // Try to vectorize V. 5597 if (tryToVectorizePair(Op0, Op1, R)) 5598 return true; 5599 5600 auto *A = dyn_cast<BinaryOperator>(Op0); 5601 auto *B = dyn_cast<BinaryOperator>(Op1); 5602 // Try to skip B. 5603 if (B && B->hasOneUse()) { 5604 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 5605 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 5606 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 5607 return true; 5608 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 5609 return true; 5610 } 5611 5612 // Try to skip A. 5613 if (A && A->hasOneUse()) { 5614 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 5615 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 5616 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 5617 return true; 5618 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 5619 return true; 5620 } 5621 return false; 5622 } 5623 5624 /// Generate a shuffle mask to be used in a reduction tree. 5625 /// 5626 /// \param VecLen The length of the vector to be reduced. 5627 /// \param NumEltsToRdx The number of elements that should be reduced in the 5628 /// vector. 5629 /// \param IsPairwise Whether the reduction is a pairwise or splitting 5630 /// reduction. A pairwise reduction will generate a mask of 5631 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 5632 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 5633 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 5634 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 5635 bool IsPairwise, bool IsLeft, 5636 IRBuilder<> &Builder) { 5637 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 5638 5639 SmallVector<Constant *, 32> ShuffleMask( 5640 VecLen, UndefValue::get(Builder.getInt32Ty())); 5641 5642 if (IsPairwise) 5643 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 5644 for (unsigned i = 0; i != NumEltsToRdx; ++i) 5645 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 5646 else 5647 // Move the upper half of the vector to the lower half. 5648 for (unsigned i = 0; i != NumEltsToRdx; ++i) 5649 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 5650 5651 return ConstantVector::get(ShuffleMask); 5652 } 5653 5654 namespace { 5655 5656 /// Model horizontal reductions. 5657 /// 5658 /// A horizontal reduction is a tree of reduction operations (currently add and 5659 /// fadd) that has operations that can be put into a vector as its leaf. 5660 /// For example, this tree: 5661 /// 5662 /// mul mul mul mul 5663 /// \ / \ / 5664 /// + + 5665 /// \ / 5666 /// + 5667 /// This tree has "mul" as its reduced values and "+" as its reduction 5668 /// operations. A reduction might be feeding into a store or a binary operation 5669 /// feeding a phi. 5670 /// ... 5671 /// \ / 5672 /// + 5673 /// | 5674 /// phi += 5675 /// 5676 /// Or: 5677 /// ... 5678 /// \ / 5679 /// + 5680 /// | 5681 /// *p = 5682 /// 5683 class HorizontalReduction { 5684 using ReductionOpsType = SmallVector<Value *, 16>; 5685 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 5686 ReductionOpsListType ReductionOps; 5687 SmallVector<Value *, 32> ReducedVals; 5688 // Use map vector to make stable output. 5689 MapVector<Instruction *, Value *> ExtraArgs; 5690 5691 /// Kind of the reduction data. 5692 enum ReductionKind { 5693 RK_None, /// Not a reduction. 5694 RK_Arithmetic, /// Binary reduction data. 5695 RK_Min, /// Minimum reduction data. 5696 RK_UMin, /// Unsigned minimum reduction data. 5697 RK_Max, /// Maximum reduction data. 5698 RK_UMax, /// Unsigned maximum reduction data. 5699 }; 5700 5701 /// Contains info about operation, like its opcode, left and right operands. 5702 class OperationData { 5703 /// Opcode of the instruction. 5704 unsigned Opcode = 0; 5705 5706 /// Left operand of the reduction operation. 5707 Value *LHS = nullptr; 5708 5709 /// Right operand of the reduction operation. 5710 Value *RHS = nullptr; 5711 5712 /// Kind of the reduction operation. 5713 ReductionKind Kind = RK_None; 5714 5715 /// True if float point min/max reduction has no NaNs. 5716 bool NoNaN = false; 5717 5718 /// Checks if the reduction operation can be vectorized. 5719 bool isVectorizable() const { 5720 return LHS && RHS && 5721 // We currently only support add/mul/logical && min/max reductions. 5722 ((Kind == RK_Arithmetic && 5723 (Opcode == Instruction::Add || Opcode == Instruction::FAdd || 5724 Opcode == Instruction::Mul || Opcode == Instruction::FMul || 5725 Opcode == Instruction::And || Opcode == Instruction::Or || 5726 Opcode == Instruction::Xor)) || 5727 ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 5728 (Kind == RK_Min || Kind == RK_Max)) || 5729 (Opcode == Instruction::ICmp && 5730 (Kind == RK_UMin || Kind == RK_UMax))); 5731 } 5732 5733 /// Creates reduction operation with the current opcode. 5734 Value *createOp(IRBuilder<> &Builder, const Twine &Name) const { 5735 assert(isVectorizable() && 5736 "Expected add|fadd or min/max reduction operation."); 5737 Value *Cmp = nullptr; 5738 switch (Kind) { 5739 case RK_Arithmetic: 5740 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 5741 Name); 5742 case RK_Min: 5743 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS) 5744 : Builder.CreateFCmpOLT(LHS, RHS); 5745 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 5746 case RK_Max: 5747 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS) 5748 : Builder.CreateFCmpOGT(LHS, RHS); 5749 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 5750 case RK_UMin: 5751 assert(Opcode == Instruction::ICmp && "Expected integer types."); 5752 Cmp = Builder.CreateICmpULT(LHS, RHS); 5753 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 5754 case RK_UMax: 5755 assert(Opcode == Instruction::ICmp && "Expected integer types."); 5756 Cmp = Builder.CreateICmpUGT(LHS, RHS); 5757 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 5758 case RK_None: 5759 break; 5760 } 5761 llvm_unreachable("Unknown reduction operation."); 5762 } 5763 5764 public: 5765 explicit OperationData() = default; 5766 5767 /// Construction for reduced values. They are identified by opcode only and 5768 /// don't have associated LHS/RHS values. 5769 explicit OperationData(Value *V) { 5770 if (auto *I = dyn_cast<Instruction>(V)) 5771 Opcode = I->getOpcode(); 5772 } 5773 5774 /// Constructor for reduction operations with opcode and its left and 5775 /// right operands. 5776 OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind, 5777 bool NoNaN = false) 5778 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) { 5779 assert(Kind != RK_None && "One of the reduction operations is expected."); 5780 } 5781 5782 explicit operator bool() const { return Opcode; } 5783 5784 /// Get the index of the first operand. 5785 unsigned getFirstOperandIndex() const { 5786 assert(!!*this && "The opcode is not set."); 5787 switch (Kind) { 5788 case RK_Min: 5789 case RK_UMin: 5790 case RK_Max: 5791 case RK_UMax: 5792 return 1; 5793 case RK_Arithmetic: 5794 case RK_None: 5795 break; 5796 } 5797 return 0; 5798 } 5799 5800 /// Total number of operands in the reduction operation. 5801 unsigned getNumberOfOperands() const { 5802 assert(Kind != RK_None && !!*this && LHS && RHS && 5803 "Expected reduction operation."); 5804 switch (Kind) { 5805 case RK_Arithmetic: 5806 return 2; 5807 case RK_Min: 5808 case RK_UMin: 5809 case RK_Max: 5810 case RK_UMax: 5811 return 3; 5812 case RK_None: 5813 break; 5814 } 5815 llvm_unreachable("Reduction kind is not set"); 5816 } 5817 5818 /// Checks if the operation has the same parent as \p P. 5819 bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const { 5820 assert(Kind != RK_None && !!*this && LHS && RHS && 5821 "Expected reduction operation."); 5822 if (!IsRedOp) 5823 return I->getParent() == P; 5824 switch (Kind) { 5825 case RK_Arithmetic: 5826 // Arithmetic reduction operation must be used once only. 5827 return I->getParent() == P; 5828 case RK_Min: 5829 case RK_UMin: 5830 case RK_Max: 5831 case RK_UMax: { 5832 // SelectInst must be used twice while the condition op must have single 5833 // use only. 5834 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 5835 return I->getParent() == P && Cmp && Cmp->getParent() == P; 5836 } 5837 case RK_None: 5838 break; 5839 } 5840 llvm_unreachable("Reduction kind is not set"); 5841 } 5842 /// Expected number of uses for reduction operations/reduced values. 5843 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { 5844 assert(Kind != RK_None && !!*this && LHS && RHS && 5845 "Expected reduction operation."); 5846 switch (Kind) { 5847 case RK_Arithmetic: 5848 return I->hasOneUse(); 5849 case RK_Min: 5850 case RK_UMin: 5851 case RK_Max: 5852 case RK_UMax: 5853 return I->hasNUses(2) && 5854 (!IsReductionOp || 5855 cast<SelectInst>(I)->getCondition()->hasOneUse()); 5856 case RK_None: 5857 break; 5858 } 5859 llvm_unreachable("Reduction kind is not set"); 5860 } 5861 5862 /// Initializes the list of reduction operations. 5863 void initReductionOps(ReductionOpsListType &ReductionOps) { 5864 assert(Kind != RK_None && !!*this && LHS && RHS && 5865 "Expected reduction operation."); 5866 switch (Kind) { 5867 case RK_Arithmetic: 5868 ReductionOps.assign(1, ReductionOpsType()); 5869 break; 5870 case RK_Min: 5871 case RK_UMin: 5872 case RK_Max: 5873 case RK_UMax: 5874 ReductionOps.assign(2, ReductionOpsType()); 5875 break; 5876 case RK_None: 5877 llvm_unreachable("Reduction kind is not set"); 5878 } 5879 } 5880 /// Add all reduction operations for the reduction instruction \p I. 5881 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { 5882 assert(Kind != RK_None && !!*this && LHS && RHS && 5883 "Expected reduction operation."); 5884 switch (Kind) { 5885 case RK_Arithmetic: 5886 ReductionOps[0].emplace_back(I); 5887 break; 5888 case RK_Min: 5889 case RK_UMin: 5890 case RK_Max: 5891 case RK_UMax: 5892 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 5893 ReductionOps[1].emplace_back(I); 5894 break; 5895 case RK_None: 5896 llvm_unreachable("Reduction kind is not set"); 5897 } 5898 } 5899 5900 /// Checks if instruction is associative and can be vectorized. 5901 bool isAssociative(Instruction *I) const { 5902 assert(Kind != RK_None && *this && LHS && RHS && 5903 "Expected reduction operation."); 5904 switch (Kind) { 5905 case RK_Arithmetic: 5906 return I->isAssociative(); 5907 case RK_Min: 5908 case RK_Max: 5909 return Opcode == Instruction::ICmp || 5910 cast<Instruction>(I->getOperand(0))->isFast(); 5911 case RK_UMin: 5912 case RK_UMax: 5913 assert(Opcode == Instruction::ICmp && 5914 "Only integer compare operation is expected."); 5915 return true; 5916 case RK_None: 5917 break; 5918 } 5919 llvm_unreachable("Reduction kind is not set"); 5920 } 5921 5922 /// Checks if the reduction operation can be vectorized. 5923 bool isVectorizable(Instruction *I) const { 5924 return isVectorizable() && isAssociative(I); 5925 } 5926 5927 /// Checks if two operation data are both a reduction op or both a reduced 5928 /// value. 5929 bool operator==(const OperationData &OD) { 5930 assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) && 5931 "One of the comparing operations is incorrect."); 5932 return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode); 5933 } 5934 bool operator!=(const OperationData &OD) { return !(*this == OD); } 5935 void clear() { 5936 Opcode = 0; 5937 LHS = nullptr; 5938 RHS = nullptr; 5939 Kind = RK_None; 5940 NoNaN = false; 5941 } 5942 5943 /// Get the opcode of the reduction operation. 5944 unsigned getOpcode() const { 5945 assert(isVectorizable() && "Expected vectorizable operation."); 5946 return Opcode; 5947 } 5948 5949 /// Get kind of reduction data. 5950 ReductionKind getKind() const { return Kind; } 5951 Value *getLHS() const { return LHS; } 5952 Value *getRHS() const { return RHS; } 5953 Type *getConditionType() const { 5954 switch (Kind) { 5955 case RK_Arithmetic: 5956 return nullptr; 5957 case RK_Min: 5958 case RK_Max: 5959 case RK_UMin: 5960 case RK_UMax: 5961 return CmpInst::makeCmpResultType(LHS->getType()); 5962 case RK_None: 5963 break; 5964 } 5965 llvm_unreachable("Reduction kind is not set"); 5966 } 5967 5968 /// Creates reduction operation with the current opcode with the IR flags 5969 /// from \p ReductionOps. 5970 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 5971 const ReductionOpsListType &ReductionOps) const { 5972 assert(isVectorizable() && 5973 "Expected add|fadd or min/max reduction operation."); 5974 auto *Op = createOp(Builder, Name); 5975 switch (Kind) { 5976 case RK_Arithmetic: 5977 propagateIRFlags(Op, ReductionOps[0]); 5978 return Op; 5979 case RK_Min: 5980 case RK_Max: 5981 case RK_UMin: 5982 case RK_UMax: 5983 if (auto *SI = dyn_cast<SelectInst>(Op)) 5984 propagateIRFlags(SI->getCondition(), ReductionOps[0]); 5985 propagateIRFlags(Op, ReductionOps[1]); 5986 return Op; 5987 case RK_None: 5988 break; 5989 } 5990 llvm_unreachable("Unknown reduction operation."); 5991 } 5992 /// Creates reduction operation with the current opcode with the IR flags 5993 /// from \p I. 5994 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 5995 Instruction *I) const { 5996 assert(isVectorizable() && 5997 "Expected add|fadd or min/max reduction operation."); 5998 auto *Op = createOp(Builder, Name); 5999 switch (Kind) { 6000 case RK_Arithmetic: 6001 propagateIRFlags(Op, I); 6002 return Op; 6003 case RK_Min: 6004 case RK_Max: 6005 case RK_UMin: 6006 case RK_UMax: 6007 if (auto *SI = dyn_cast<SelectInst>(Op)) { 6008 propagateIRFlags(SI->getCondition(), 6009 cast<SelectInst>(I)->getCondition()); 6010 } 6011 propagateIRFlags(Op, I); 6012 return Op; 6013 case RK_None: 6014 break; 6015 } 6016 llvm_unreachable("Unknown reduction operation."); 6017 } 6018 6019 TargetTransformInfo::ReductionFlags getFlags() const { 6020 TargetTransformInfo::ReductionFlags Flags; 6021 Flags.NoNaN = NoNaN; 6022 switch (Kind) { 6023 case RK_Arithmetic: 6024 break; 6025 case RK_Min: 6026 Flags.IsSigned = Opcode == Instruction::ICmp; 6027 Flags.IsMaxOp = false; 6028 break; 6029 case RK_Max: 6030 Flags.IsSigned = Opcode == Instruction::ICmp; 6031 Flags.IsMaxOp = true; 6032 break; 6033 case RK_UMin: 6034 Flags.IsSigned = false; 6035 Flags.IsMaxOp = false; 6036 break; 6037 case RK_UMax: 6038 Flags.IsSigned = false; 6039 Flags.IsMaxOp = true; 6040 break; 6041 case RK_None: 6042 llvm_unreachable("Reduction kind is not set"); 6043 } 6044 return Flags; 6045 } 6046 }; 6047 6048 WeakTrackingVH ReductionRoot; 6049 6050 /// The operation data of the reduction operation. 6051 OperationData ReductionData; 6052 6053 /// The operation data of the values we perform a reduction on. 6054 OperationData ReducedValueData; 6055 6056 /// Should we model this reduction as a pairwise reduction tree or a tree that 6057 /// splits the vector in halves and adds those halves. 6058 bool IsPairwiseReduction = false; 6059 6060 /// Checks if the ParentStackElem.first should be marked as a reduction 6061 /// operation with an extra argument or as extra argument itself. 6062 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 6063 Value *ExtraArg) { 6064 if (ExtraArgs.count(ParentStackElem.first)) { 6065 ExtraArgs[ParentStackElem.first] = nullptr; 6066 // We ran into something like: 6067 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 6068 // The whole ParentStackElem.first should be considered as an extra value 6069 // in this case. 6070 // Do not perform analysis of remaining operands of ParentStackElem.first 6071 // instruction, this whole instruction is an extra argument. 6072 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 6073 } else { 6074 // We ran into something like: 6075 // ParentStackElem.first += ... + ExtraArg + ... 6076 ExtraArgs[ParentStackElem.first] = ExtraArg; 6077 } 6078 } 6079 6080 static OperationData getOperationData(Value *V) { 6081 if (!V) 6082 return OperationData(); 6083 6084 Value *LHS; 6085 Value *RHS; 6086 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) { 6087 return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS, 6088 RK_Arithmetic); 6089 } 6090 if (auto *Select = dyn_cast<SelectInst>(V)) { 6091 // Look for a min/max pattern. 6092 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6093 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 6094 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6095 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 6096 } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) || 6097 m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6098 return OperationData( 6099 Instruction::FCmp, LHS, RHS, RK_Min, 6100 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 6101 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6102 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 6103 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6104 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 6105 } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) || 6106 m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6107 return OperationData( 6108 Instruction::FCmp, LHS, RHS, RK_Max, 6109 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 6110 } else { 6111 // Try harder: look for min/max pattern based on instructions producing 6112 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 6113 // During the intermediate stages of SLP, it's very common to have 6114 // pattern like this (since optimizeGatherSequence is run only once 6115 // at the end): 6116 // %1 = extractelement <2 x i32> %a, i32 0 6117 // %2 = extractelement <2 x i32> %a, i32 1 6118 // %cond = icmp sgt i32 %1, %2 6119 // %3 = extractelement <2 x i32> %a, i32 0 6120 // %4 = extractelement <2 x i32> %a, i32 1 6121 // %select = select i1 %cond, i32 %3, i32 %4 6122 CmpInst::Predicate Pred; 6123 Instruction *L1; 6124 Instruction *L2; 6125 6126 LHS = Select->getTrueValue(); 6127 RHS = Select->getFalseValue(); 6128 Value *Cond = Select->getCondition(); 6129 6130 // TODO: Support inverse predicates. 6131 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 6132 if (!isa<ExtractElementInst>(RHS) || 6133 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6134 return OperationData(V); 6135 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 6136 if (!isa<ExtractElementInst>(LHS) || 6137 !L1->isIdenticalTo(cast<Instruction>(LHS))) 6138 return OperationData(V); 6139 } else { 6140 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 6141 return OperationData(V); 6142 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 6143 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 6144 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6145 return OperationData(V); 6146 } 6147 switch (Pred) { 6148 default: 6149 return OperationData(V); 6150 6151 case CmpInst::ICMP_ULT: 6152 case CmpInst::ICMP_ULE: 6153 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 6154 6155 case CmpInst::ICMP_SLT: 6156 case CmpInst::ICMP_SLE: 6157 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 6158 6159 case CmpInst::FCMP_OLT: 6160 case CmpInst::FCMP_OLE: 6161 case CmpInst::FCMP_ULT: 6162 case CmpInst::FCMP_ULE: 6163 return OperationData(Instruction::FCmp, LHS, RHS, RK_Min, 6164 cast<Instruction>(Cond)->hasNoNaNs()); 6165 6166 case CmpInst::ICMP_UGT: 6167 case CmpInst::ICMP_UGE: 6168 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 6169 6170 case CmpInst::ICMP_SGT: 6171 case CmpInst::ICMP_SGE: 6172 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 6173 6174 case CmpInst::FCMP_OGT: 6175 case CmpInst::FCMP_OGE: 6176 case CmpInst::FCMP_UGT: 6177 case CmpInst::FCMP_UGE: 6178 return OperationData(Instruction::FCmp, LHS, RHS, RK_Max, 6179 cast<Instruction>(Cond)->hasNoNaNs()); 6180 } 6181 } 6182 } 6183 return OperationData(V); 6184 } 6185 6186 public: 6187 HorizontalReduction() = default; 6188 6189 /// Try to find a reduction tree. 6190 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 6191 assert((!Phi || is_contained(Phi->operands(), B)) && 6192 "Thi phi needs to use the binary operator"); 6193 6194 ReductionData = getOperationData(B); 6195 6196 // We could have a initial reductions that is not an add. 6197 // r *= v1 + v2 + v3 + v4 6198 // In such a case start looking for a tree rooted in the first '+'. 6199 if (Phi) { 6200 if (ReductionData.getLHS() == Phi) { 6201 Phi = nullptr; 6202 B = dyn_cast<Instruction>(ReductionData.getRHS()); 6203 ReductionData = getOperationData(B); 6204 } else if (ReductionData.getRHS() == Phi) { 6205 Phi = nullptr; 6206 B = dyn_cast<Instruction>(ReductionData.getLHS()); 6207 ReductionData = getOperationData(B); 6208 } 6209 } 6210 6211 if (!ReductionData.isVectorizable(B)) 6212 return false; 6213 6214 Type *Ty = B->getType(); 6215 if (!isValidElementType(Ty)) 6216 return false; 6217 if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy()) 6218 return false; 6219 6220 ReducedValueData.clear(); 6221 ReductionRoot = B; 6222 6223 // Post order traverse the reduction tree starting at B. We only handle true 6224 // trees containing only binary operators. 6225 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 6226 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); 6227 ReductionData.initReductionOps(ReductionOps); 6228 while (!Stack.empty()) { 6229 Instruction *TreeN = Stack.back().first; 6230 unsigned EdgeToVist = Stack.back().second++; 6231 OperationData OpData = getOperationData(TreeN); 6232 bool IsReducedValue = OpData != ReductionData; 6233 6234 // Postorder vist. 6235 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { 6236 if (IsReducedValue) 6237 ReducedVals.push_back(TreeN); 6238 else { 6239 auto I = ExtraArgs.find(TreeN); 6240 if (I != ExtraArgs.end() && !I->second) { 6241 // Check if TreeN is an extra argument of its parent operation. 6242 if (Stack.size() <= 1) { 6243 // TreeN can't be an extra argument as it is a root reduction 6244 // operation. 6245 return false; 6246 } 6247 // Yes, TreeN is an extra argument, do not add it to a list of 6248 // reduction operations. 6249 // Stack[Stack.size() - 2] always points to the parent operation. 6250 markExtraArg(Stack[Stack.size() - 2], TreeN); 6251 ExtraArgs.erase(TreeN); 6252 } else 6253 ReductionData.addReductionOps(TreeN, ReductionOps); 6254 } 6255 // Retract. 6256 Stack.pop_back(); 6257 continue; 6258 } 6259 6260 // Visit left or right. 6261 Value *NextV = TreeN->getOperand(EdgeToVist); 6262 if (NextV != Phi) { 6263 auto *I = dyn_cast<Instruction>(NextV); 6264 OpData = getOperationData(I); 6265 // Continue analysis if the next operand is a reduction operation or 6266 // (possibly) a reduced value. If the reduced value opcode is not set, 6267 // the first met operation != reduction operation is considered as the 6268 // reduced value class. 6269 if (I && (!ReducedValueData || OpData == ReducedValueData || 6270 OpData == ReductionData)) { 6271 const bool IsReductionOperation = OpData == ReductionData; 6272 // Only handle trees in the current basic block. 6273 if (!ReductionData.hasSameParent(I, B->getParent(), 6274 IsReductionOperation)) { 6275 // I is an extra argument for TreeN (its parent operation). 6276 markExtraArg(Stack.back(), I); 6277 continue; 6278 } 6279 6280 // Each tree node needs to have minimal number of users except for the 6281 // ultimate reduction. 6282 if (!ReductionData.hasRequiredNumberOfUses(I, 6283 OpData == ReductionData) && 6284 I != B) { 6285 // I is an extra argument for TreeN (its parent operation). 6286 markExtraArg(Stack.back(), I); 6287 continue; 6288 } 6289 6290 if (IsReductionOperation) { 6291 // We need to be able to reassociate the reduction operations. 6292 if (!OpData.isAssociative(I)) { 6293 // I is an extra argument for TreeN (its parent operation). 6294 markExtraArg(Stack.back(), I); 6295 continue; 6296 } 6297 } else if (ReducedValueData && 6298 ReducedValueData != OpData) { 6299 // Make sure that the opcodes of the operations that we are going to 6300 // reduce match. 6301 // I is an extra argument for TreeN (its parent operation). 6302 markExtraArg(Stack.back(), I); 6303 continue; 6304 } else if (!ReducedValueData) 6305 ReducedValueData = OpData; 6306 6307 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 6308 continue; 6309 } 6310 } 6311 // NextV is an extra argument for TreeN (its parent operation). 6312 markExtraArg(Stack.back(), NextV); 6313 } 6314 return true; 6315 } 6316 6317 /// Attempt to vectorize the tree found by 6318 /// matchAssociativeReduction. 6319 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 6320 if (ReducedVals.empty()) 6321 return false; 6322 6323 // If there is a sufficient number of reduction values, reduce 6324 // to a nearby power-of-2. Can safely generate oversized 6325 // vectors and rely on the backend to split them to legal sizes. 6326 unsigned NumReducedVals = ReducedVals.size(); 6327 if (NumReducedVals < 4) 6328 return false; 6329 6330 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 6331 6332 Value *VectorizedTree = nullptr; 6333 6334 // FIXME: Fast-math-flags should be set based on the instructions in the 6335 // reduction (not all of 'fast' are required). 6336 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 6337 FastMathFlags Unsafe; 6338 Unsafe.setFast(); 6339 Builder.setFastMathFlags(Unsafe); 6340 unsigned i = 0; 6341 6342 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 6343 // The same extra argument may be used several time, so log each attempt 6344 // to use it. 6345 for (auto &Pair : ExtraArgs) { 6346 assert(Pair.first && "DebugLoc must be set."); 6347 ExternallyUsedValues[Pair.second].push_back(Pair.first); 6348 } 6349 // The reduction root is used as the insertion point for new instructions, 6350 // so set it as externally used to prevent it from being deleted. 6351 ExternallyUsedValues[ReductionRoot]; 6352 SmallVector<Value *, 16> IgnoreList; 6353 for (auto &V : ReductionOps) 6354 IgnoreList.append(V.begin(), V.end()); 6355 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 6356 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 6357 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 6358 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 6359 // TODO: Handle orders of size less than number of elements in the vector. 6360 if (Order && Order->size() == VL.size()) { 6361 // TODO: reorder tree nodes without tree rebuilding. 6362 SmallVector<Value *, 4> ReorderedOps(VL.size()); 6363 llvm::transform(*Order, ReorderedOps.begin(), 6364 [VL](const unsigned Idx) { return VL[Idx]; }); 6365 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 6366 } 6367 if (V.isTreeTinyAndNotFullyVectorizable()) 6368 break; 6369 6370 V.computeMinimumValueSizes(); 6371 6372 // Estimate cost. 6373 int TreeCost = V.getTreeCost(); 6374 int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth); 6375 int Cost = TreeCost + ReductionCost; 6376 if (Cost >= -SLPCostThreshold) { 6377 V.getORE()->emit([&]() { 6378 return OptimizationRemarkMissed( 6379 SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0])) 6380 << "Vectorizing horizontal reduction is possible" 6381 << "but not beneficial with cost " 6382 << ore::NV("Cost", Cost) << " and threshold " 6383 << ore::NV("Threshold", -SLPCostThreshold); 6384 }); 6385 break; 6386 } 6387 6388 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 6389 << Cost << ". (HorRdx)\n"); 6390 V.getORE()->emit([&]() { 6391 return OptimizationRemark( 6392 SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0])) 6393 << "Vectorized horizontal reduction with cost " 6394 << ore::NV("Cost", Cost) << " and with tree size " 6395 << ore::NV("TreeSize", V.getTreeSize()); 6396 }); 6397 6398 // Vectorize a tree. 6399 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 6400 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 6401 6402 // Emit a reduction. 6403 Builder.SetInsertPoint(cast<Instruction>(ReductionRoot)); 6404 Value *ReducedSubTree = 6405 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 6406 if (VectorizedTree) { 6407 Builder.SetCurrentDebugLocation(Loc); 6408 OperationData VectReductionData(ReductionData.getOpcode(), 6409 VectorizedTree, ReducedSubTree, 6410 ReductionData.getKind()); 6411 VectorizedTree = 6412 VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 6413 } else 6414 VectorizedTree = ReducedSubTree; 6415 i += ReduxWidth; 6416 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 6417 } 6418 6419 if (VectorizedTree) { 6420 // Finish the reduction. 6421 for (; i < NumReducedVals; ++i) { 6422 auto *I = cast<Instruction>(ReducedVals[i]); 6423 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 6424 OperationData VectReductionData(ReductionData.getOpcode(), 6425 VectorizedTree, I, 6426 ReductionData.getKind()); 6427 VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps); 6428 } 6429 for (auto &Pair : ExternallyUsedValues) { 6430 // Add each externally used value to the final reduction. 6431 for (auto *I : Pair.second) { 6432 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 6433 OperationData VectReductionData(ReductionData.getOpcode(), 6434 VectorizedTree, Pair.first, 6435 ReductionData.getKind()); 6436 VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I); 6437 } 6438 } 6439 // Update users. 6440 ReductionRoot->replaceAllUsesWith(VectorizedTree); 6441 // Mark all scalar reduction ops for deletion, they are replaced by the 6442 // vector reductions. 6443 V.eraseInstructions(IgnoreList); 6444 } 6445 return VectorizedTree != nullptr; 6446 } 6447 6448 unsigned numReductionValues() const { 6449 return ReducedVals.size(); 6450 } 6451 6452 private: 6453 /// Calculate the cost of a reduction. 6454 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 6455 unsigned ReduxWidth) { 6456 Type *ScalarTy = FirstReducedVal->getType(); 6457 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 6458 6459 int PairwiseRdxCost; 6460 int SplittingRdxCost; 6461 switch (ReductionData.getKind()) { 6462 case RK_Arithmetic: 6463 PairwiseRdxCost = 6464 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 6465 /*IsPairwiseForm=*/true); 6466 SplittingRdxCost = 6467 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 6468 /*IsPairwiseForm=*/false); 6469 break; 6470 case RK_Min: 6471 case RK_Max: 6472 case RK_UMin: 6473 case RK_UMax: { 6474 Type *VecCondTy = CmpInst::makeCmpResultType(VecTy); 6475 bool IsUnsigned = ReductionData.getKind() == RK_UMin || 6476 ReductionData.getKind() == RK_UMax; 6477 PairwiseRdxCost = 6478 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 6479 /*IsPairwiseForm=*/true, IsUnsigned); 6480 SplittingRdxCost = 6481 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 6482 /*IsPairwiseForm=*/false, IsUnsigned); 6483 break; 6484 } 6485 case RK_None: 6486 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 6487 } 6488 6489 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 6490 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 6491 6492 int ScalarReduxCost = 0; 6493 switch (ReductionData.getKind()) { 6494 case RK_Arithmetic: 6495 ScalarReduxCost = 6496 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); 6497 break; 6498 case RK_Min: 6499 case RK_Max: 6500 case RK_UMin: 6501 case RK_UMax: 6502 ScalarReduxCost = 6503 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) + 6504 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 6505 CmpInst::makeCmpResultType(ScalarTy)); 6506 break; 6507 case RK_None: 6508 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 6509 } 6510 ScalarReduxCost *= (ReduxWidth - 1); 6511 6512 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 6513 << " for reduction that starts with " << *FirstReducedVal 6514 << " (It is a " 6515 << (IsPairwiseReduction ? "pairwise" : "splitting") 6516 << " reduction)\n"); 6517 6518 return VecReduxCost - ScalarReduxCost; 6519 } 6520 6521 /// Emit a horizontal reduction of the vectorized value. 6522 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 6523 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 6524 assert(VectorizedValue && "Need to have a vectorized tree node"); 6525 assert(isPowerOf2_32(ReduxWidth) && 6526 "We only handle power-of-two reductions for now"); 6527 6528 if (!IsPairwiseReduction) { 6529 // FIXME: The builder should use an FMF guard. It should not be hard-coded 6530 // to 'fast'. 6531 assert(Builder.getFastMathFlags().isFast() && "Expected 'fast' FMF"); 6532 return createSimpleTargetReduction( 6533 Builder, TTI, ReductionData.getOpcode(), VectorizedValue, 6534 ReductionData.getFlags(), ReductionOps.back()); 6535 } 6536 6537 Value *TmpVec = VectorizedValue; 6538 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 6539 Value *LeftMask = 6540 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 6541 Value *RightMask = 6542 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 6543 6544 Value *LeftShuf = Builder.CreateShuffleVector( 6545 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 6546 Value *RightShuf = Builder.CreateShuffleVector( 6547 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 6548 "rdx.shuf.r"); 6549 OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf, 6550 RightShuf, ReductionData.getKind()); 6551 TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 6552 } 6553 6554 // The result is in the first element of the vector. 6555 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 6556 } 6557 }; 6558 6559 } // end anonymous namespace 6560 6561 /// Recognize construction of vectors like 6562 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 6563 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 6564 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 6565 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 6566 /// starting from the last insertelement instruction. 6567 /// 6568 /// Returns true if it matches 6569 static bool findBuildVector(InsertElementInst *LastInsertElem, 6570 TargetTransformInfo *TTI, 6571 SmallVectorImpl<Value *> &BuildVectorOpds, 6572 int &UserCost) { 6573 UserCost = 0; 6574 Value *V = nullptr; 6575 do { 6576 if (auto *CI = dyn_cast<ConstantInt>(LastInsertElem->getOperand(2))) { 6577 UserCost += TTI->getVectorInstrCost(Instruction::InsertElement, 6578 LastInsertElem->getType(), 6579 CI->getZExtValue()); 6580 } 6581 BuildVectorOpds.push_back(LastInsertElem->getOperand(1)); 6582 V = LastInsertElem->getOperand(0); 6583 if (isa<UndefValue>(V)) 6584 break; 6585 LastInsertElem = dyn_cast<InsertElementInst>(V); 6586 if (!LastInsertElem || !LastInsertElem->hasOneUse()) 6587 return false; 6588 } while (true); 6589 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 6590 return true; 6591 } 6592 6593 /// Like findBuildVector, but looks for construction of aggregate. 6594 /// 6595 /// \return true if it matches. 6596 static bool findBuildAggregate(InsertValueInst *IV, 6597 SmallVectorImpl<Value *> &BuildVectorOpds) { 6598 do { 6599 BuildVectorOpds.push_back(IV->getInsertedValueOperand()); 6600 Value *V = IV->getAggregateOperand(); 6601 if (isa<UndefValue>(V)) 6602 break; 6603 IV = dyn_cast<InsertValueInst>(V); 6604 if (!IV || !IV->hasOneUse()) 6605 return false; 6606 } while (true); 6607 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 6608 return true; 6609 } 6610 6611 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 6612 return V->getType() < V2->getType(); 6613 } 6614 6615 /// Try and get a reduction value from a phi node. 6616 /// 6617 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 6618 /// if they come from either \p ParentBB or a containing loop latch. 6619 /// 6620 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 6621 /// if not possible. 6622 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 6623 BasicBlock *ParentBB, LoopInfo *LI) { 6624 // There are situations where the reduction value is not dominated by the 6625 // reduction phi. Vectorizing such cases has been reported to cause 6626 // miscompiles. See PR25787. 6627 auto DominatedReduxValue = [&](Value *R) { 6628 return isa<Instruction>(R) && 6629 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 6630 }; 6631 6632 Value *Rdx = nullptr; 6633 6634 // Return the incoming value if it comes from the same BB as the phi node. 6635 if (P->getIncomingBlock(0) == ParentBB) { 6636 Rdx = P->getIncomingValue(0); 6637 } else if (P->getIncomingBlock(1) == ParentBB) { 6638 Rdx = P->getIncomingValue(1); 6639 } 6640 6641 if (Rdx && DominatedReduxValue(Rdx)) 6642 return Rdx; 6643 6644 // Otherwise, check whether we have a loop latch to look at. 6645 Loop *BBL = LI->getLoopFor(ParentBB); 6646 if (!BBL) 6647 return nullptr; 6648 BasicBlock *BBLatch = BBL->getLoopLatch(); 6649 if (!BBLatch) 6650 return nullptr; 6651 6652 // There is a loop latch, return the incoming value if it comes from 6653 // that. This reduction pattern occasionally turns up. 6654 if (P->getIncomingBlock(0) == BBLatch) { 6655 Rdx = P->getIncomingValue(0); 6656 } else if (P->getIncomingBlock(1) == BBLatch) { 6657 Rdx = P->getIncomingValue(1); 6658 } 6659 6660 if (Rdx && DominatedReduxValue(Rdx)) 6661 return Rdx; 6662 6663 return nullptr; 6664 } 6665 6666 /// Attempt to reduce a horizontal reduction. 6667 /// If it is legal to match a horizontal reduction feeding the phi node \a P 6668 /// with reduction operators \a Root (or one of its operands) in a basic block 6669 /// \a BB, then check if it can be done. If horizontal reduction is not found 6670 /// and root instruction is a binary operation, vectorization of the operands is 6671 /// attempted. 6672 /// \returns true if a horizontal reduction was matched and reduced or operands 6673 /// of one of the binary instruction were vectorized. 6674 /// \returns false if a horizontal reduction was not matched (or not possible) 6675 /// or no vectorization of any binary operation feeding \a Root instruction was 6676 /// performed. 6677 static bool tryToVectorizeHorReductionOrInstOperands( 6678 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 6679 TargetTransformInfo *TTI, 6680 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 6681 if (!ShouldVectorizeHor) 6682 return false; 6683 6684 if (!Root) 6685 return false; 6686 6687 if (Root->getParent() != BB || isa<PHINode>(Root)) 6688 return false; 6689 // Start analysis starting from Root instruction. If horizontal reduction is 6690 // found, try to vectorize it. If it is not a horizontal reduction or 6691 // vectorization is not possible or not effective, and currently analyzed 6692 // instruction is a binary operation, try to vectorize the operands, using 6693 // pre-order DFS traversal order. If the operands were not vectorized, repeat 6694 // the same procedure considering each operand as a possible root of the 6695 // horizontal reduction. 6696 // Interrupt the process if the Root instruction itself was vectorized or all 6697 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 6698 SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0}); 6699 SmallPtrSet<Value *, 8> VisitedInstrs; 6700 bool Res = false; 6701 while (!Stack.empty()) { 6702 Instruction *Inst; 6703 unsigned Level; 6704 std::tie(Inst, Level) = Stack.pop_back_val(); 6705 auto *BI = dyn_cast<BinaryOperator>(Inst); 6706 auto *SI = dyn_cast<SelectInst>(Inst); 6707 if (BI || SI) { 6708 HorizontalReduction HorRdx; 6709 if (HorRdx.matchAssociativeReduction(P, Inst)) { 6710 if (HorRdx.tryToReduce(R, TTI)) { 6711 Res = true; 6712 // Set P to nullptr to avoid re-analysis of phi node in 6713 // matchAssociativeReduction function unless this is the root node. 6714 P = nullptr; 6715 continue; 6716 } 6717 } 6718 if (P && BI) { 6719 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 6720 if (Inst == P) 6721 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 6722 if (!Inst) { 6723 // Set P to nullptr to avoid re-analysis of phi node in 6724 // matchAssociativeReduction function unless this is the root node. 6725 P = nullptr; 6726 continue; 6727 } 6728 } 6729 } 6730 // Set P to nullptr to avoid re-analysis of phi node in 6731 // matchAssociativeReduction function unless this is the root node. 6732 P = nullptr; 6733 if (Vectorize(Inst, R)) { 6734 Res = true; 6735 continue; 6736 } 6737 6738 // Try to vectorize operands. 6739 // Continue analysis for the instruction from the same basic block only to 6740 // save compile time. 6741 if (++Level < RecursionMaxDepth) 6742 for (auto *Op : Inst->operand_values()) 6743 if (VisitedInstrs.insert(Op).second) 6744 if (auto *I = dyn_cast<Instruction>(Op)) 6745 if (!isa<PHINode>(I) && !R.isDeleted(I) && I->getParent() == BB) 6746 Stack.emplace_back(I, Level); 6747 } 6748 return Res; 6749 } 6750 6751 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 6752 BasicBlock *BB, BoUpSLP &R, 6753 TargetTransformInfo *TTI) { 6754 if (!V) 6755 return false; 6756 auto *I = dyn_cast<Instruction>(V); 6757 if (!I) 6758 return false; 6759 6760 if (!isa<BinaryOperator>(I)) 6761 P = nullptr; 6762 // Try to match and vectorize a horizontal reduction. 6763 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 6764 return tryToVectorize(I, R); 6765 }; 6766 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 6767 ExtraVectorization); 6768 } 6769 6770 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 6771 BasicBlock *BB, BoUpSLP &R) { 6772 const DataLayout &DL = BB->getModule()->getDataLayout(); 6773 if (!R.canMapToVector(IVI->getType(), DL)) 6774 return false; 6775 6776 SmallVector<Value *, 16> BuildVectorOpds; 6777 if (!findBuildAggregate(IVI, BuildVectorOpds)) 6778 return false; 6779 6780 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 6781 // Aggregate value is unlikely to be processed in vector register, we need to 6782 // extract scalars into scalar registers, so NeedExtraction is set true. 6783 return tryToVectorizeList(BuildVectorOpds, R); 6784 } 6785 6786 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 6787 BasicBlock *BB, BoUpSLP &R) { 6788 int UserCost; 6789 SmallVector<Value *, 16> BuildVectorOpds; 6790 if (!findBuildVector(IEI, TTI, BuildVectorOpds, UserCost) || 6791 (llvm::all_of(BuildVectorOpds, 6792 [](Value *V) { return isa<ExtractElementInst>(V); }) && 6793 isShuffle(BuildVectorOpds))) 6794 return false; 6795 6796 // Vectorize starting with the build vector operands ignoring the BuildVector 6797 // instructions for the purpose of scheduling and user extraction. 6798 return tryToVectorizeList(BuildVectorOpds, R, UserCost); 6799 } 6800 6801 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 6802 BoUpSLP &R) { 6803 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 6804 return true; 6805 6806 bool OpsChanged = false; 6807 for (int Idx = 0; Idx < 2; ++Idx) { 6808 OpsChanged |= 6809 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 6810 } 6811 return OpsChanged; 6812 } 6813 6814 bool SLPVectorizerPass::vectorizeSimpleInstructions( 6815 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R) { 6816 bool OpsChanged = false; 6817 for (auto *I : reverse(Instructions)) { 6818 if (R.isDeleted(I)) 6819 continue; 6820 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 6821 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 6822 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 6823 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 6824 else if (auto *CI = dyn_cast<CmpInst>(I)) 6825 OpsChanged |= vectorizeCmpInst(CI, BB, R); 6826 } 6827 Instructions.clear(); 6828 return OpsChanged; 6829 } 6830 6831 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 6832 bool Changed = false; 6833 SmallVector<Value *, 4> Incoming; 6834 SmallPtrSet<Value *, 16> VisitedInstrs; 6835 6836 bool HaveVectorizedPhiNodes = true; 6837 while (HaveVectorizedPhiNodes) { 6838 HaveVectorizedPhiNodes = false; 6839 6840 // Collect the incoming values from the PHIs. 6841 Incoming.clear(); 6842 for (Instruction &I : *BB) { 6843 PHINode *P = dyn_cast<PHINode>(&I); 6844 if (!P) 6845 break; 6846 6847 if (!VisitedInstrs.count(P) && !R.isDeleted(P)) 6848 Incoming.push_back(P); 6849 } 6850 6851 // Sort by type. 6852 llvm::stable_sort(Incoming, PhiTypeSorterFunc); 6853 6854 // Try to vectorize elements base on their type. 6855 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 6856 E = Incoming.end(); 6857 IncIt != E;) { 6858 6859 // Look for the next elements with the same type. 6860 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 6861 while (SameTypeIt != E && 6862 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 6863 VisitedInstrs.insert(*SameTypeIt); 6864 ++SameTypeIt; 6865 } 6866 6867 // Try to vectorize them. 6868 unsigned NumElts = (SameTypeIt - IncIt); 6869 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 6870 << NumElts << ")\n"); 6871 // The order in which the phi nodes appear in the program does not matter. 6872 // So allow tryToVectorizeList to reorder them if it is beneficial. This 6873 // is done when there are exactly two elements since tryToVectorizeList 6874 // asserts that there are only two values when AllowReorder is true. 6875 bool AllowReorder = NumElts == 2; 6876 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, 6877 /*UserCost=*/0, AllowReorder)) { 6878 // Success start over because instructions might have been changed. 6879 HaveVectorizedPhiNodes = true; 6880 Changed = true; 6881 break; 6882 } 6883 6884 // Start over at the next instruction of a different type (or the end). 6885 IncIt = SameTypeIt; 6886 } 6887 } 6888 6889 VisitedInstrs.clear(); 6890 6891 SmallVector<Instruction *, 8> PostProcessInstructions; 6892 SmallDenseSet<Instruction *, 4> KeyNodes; 6893 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 6894 // Skip instructions marked for the deletion. 6895 if (R.isDeleted(&*it)) 6896 continue; 6897 // We may go through BB multiple times so skip the one we have checked. 6898 if (!VisitedInstrs.insert(&*it).second) { 6899 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 6900 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 6901 // We would like to start over since some instructions are deleted 6902 // and the iterator may become invalid value. 6903 Changed = true; 6904 it = BB->begin(); 6905 e = BB->end(); 6906 } 6907 continue; 6908 } 6909 6910 if (isa<DbgInfoIntrinsic>(it)) 6911 continue; 6912 6913 // Try to vectorize reductions that use PHINodes. 6914 if (PHINode *P = dyn_cast<PHINode>(it)) { 6915 // Check that the PHI is a reduction PHI. 6916 if (P->getNumIncomingValues() != 2) 6917 return Changed; 6918 6919 // Try to match and vectorize a horizontal reduction. 6920 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 6921 TTI)) { 6922 Changed = true; 6923 it = BB->begin(); 6924 e = BB->end(); 6925 continue; 6926 } 6927 continue; 6928 } 6929 6930 // Ran into an instruction without users, like terminator, or function call 6931 // with ignored return value, store. Ignore unused instructions (basing on 6932 // instruction type, except for CallInst and InvokeInst). 6933 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 6934 isa<InvokeInst>(it))) { 6935 KeyNodes.insert(&*it); 6936 bool OpsChanged = false; 6937 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 6938 for (auto *V : it->operand_values()) { 6939 // Try to match and vectorize a horizontal reduction. 6940 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 6941 } 6942 } 6943 // Start vectorization of post-process list of instructions from the 6944 // top-tree instructions to try to vectorize as many instructions as 6945 // possible. 6946 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 6947 if (OpsChanged) { 6948 // We would like to start over since some instructions are deleted 6949 // and the iterator may become invalid value. 6950 Changed = true; 6951 it = BB->begin(); 6952 e = BB->end(); 6953 continue; 6954 } 6955 } 6956 6957 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 6958 isa<InsertValueInst>(it)) 6959 PostProcessInstructions.push_back(&*it); 6960 } 6961 6962 return Changed; 6963 } 6964 6965 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 6966 auto Changed = false; 6967 for (auto &Entry : GEPs) { 6968 // If the getelementptr list has fewer than two elements, there's nothing 6969 // to do. 6970 if (Entry.second.size() < 2) 6971 continue; 6972 6973 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 6974 << Entry.second.size() << ".\n"); 6975 6976 // We process the getelementptr list in chunks of 16 (like we do for 6977 // stores) to minimize compile-time. 6978 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) { 6979 auto Len = std::min<unsigned>(BE - BI, 16); 6980 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 6981 6982 // Initialize a set a candidate getelementptrs. Note that we use a 6983 // SetVector here to preserve program order. If the index computations 6984 // are vectorizable and begin with loads, we want to minimize the chance 6985 // of having to reorder them later. 6986 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 6987 6988 // Some of the candidates may have already been vectorized after we 6989 // initially collected them. If so, they are marked as deleted, so remove 6990 // them from the set of candidates. 6991 Candidates.remove_if( 6992 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 6993 6994 // Remove from the set of candidates all pairs of getelementptrs with 6995 // constant differences. Such getelementptrs are likely not good 6996 // candidates for vectorization in a bottom-up phase since one can be 6997 // computed from the other. We also ensure all candidate getelementptr 6998 // indices are unique. 6999 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 7000 auto *GEPI = GEPList[I]; 7001 if (!Candidates.count(GEPI)) 7002 continue; 7003 auto *SCEVI = SE->getSCEV(GEPList[I]); 7004 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 7005 auto *GEPJ = GEPList[J]; 7006 auto *SCEVJ = SE->getSCEV(GEPList[J]); 7007 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 7008 Candidates.remove(GEPI); 7009 Candidates.remove(GEPJ); 7010 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 7011 Candidates.remove(GEPJ); 7012 } 7013 } 7014 } 7015 7016 // We break out of the above computation as soon as we know there are 7017 // fewer than two candidates remaining. 7018 if (Candidates.size() < 2) 7019 continue; 7020 7021 // Add the single, non-constant index of each candidate to the bundle. We 7022 // ensured the indices met these constraints when we originally collected 7023 // the getelementptrs. 7024 SmallVector<Value *, 16> Bundle(Candidates.size()); 7025 auto BundleIndex = 0u; 7026 for (auto *V : Candidates) { 7027 auto *GEP = cast<GetElementPtrInst>(V); 7028 auto *GEPIdx = GEP->idx_begin()->get(); 7029 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 7030 Bundle[BundleIndex++] = GEPIdx; 7031 } 7032 7033 // Try and vectorize the indices. We are currently only interested in 7034 // gather-like cases of the form: 7035 // 7036 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 7037 // 7038 // where the loads of "a", the loads of "b", and the subtractions can be 7039 // performed in parallel. It's likely that detecting this pattern in a 7040 // bottom-up phase will be simpler and less costly than building a 7041 // full-blown top-down phase beginning at the consecutive loads. 7042 Changed |= tryToVectorizeList(Bundle, R); 7043 } 7044 } 7045 return Changed; 7046 } 7047 7048 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 7049 bool Changed = false; 7050 // Attempt to sort and vectorize each of the store-groups. 7051 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 7052 ++it) { 7053 if (it->second.size() < 2) 7054 continue; 7055 7056 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 7057 << it->second.size() << ".\n"); 7058 7059 // Process the stores in chunks of 16. 7060 // TODO: The limit of 16 inhibits greater vectorization factors. 7061 // For example, AVX2 supports v32i8. Increasing this limit, however, 7062 // may cause a significant compile-time increase. 7063 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI += 16) { 7064 unsigned Len = std::min<unsigned>(CE - CI, 16); 7065 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R); 7066 } 7067 } 7068 return Changed; 7069 } 7070 7071 char SLPVectorizer::ID = 0; 7072 7073 static const char lv_name[] = "SLP Vectorizer"; 7074 7075 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 7076 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7077 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7078 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7079 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7080 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 7081 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7082 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7083 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 7084 7085 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 7086