1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DebugLoc.h" 57 #include "llvm/IR/DerivedTypes.h" 58 #include "llvm/IR/Dominators.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/IRBuilder.h" 61 #include "llvm/IR/InstrTypes.h" 62 #include "llvm/IR/Instruction.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/Intrinsics.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/NoFolder.h" 68 #include "llvm/IR/Operator.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/Verifier.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/DOTGraphTraits.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/GraphWriter.h" 85 #include "llvm/Support/InstructionCost.h" 86 #include "llvm/Support/KnownBits.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 static cl::opt<bool> 168 ViewSLPTree("view-slp-tree", cl::Hidden, 169 cl::desc("Display the SLP trees with Graphviz")); 170 171 // Limit the number of alias checks. The limit is chosen so that 172 // it has no negative effect on the llvm benchmarks. 173 static const unsigned AliasedCheckLimit = 10; 174 175 // Another limit for the alias checks: The maximum distance between load/store 176 // instructions where alias checks are done. 177 // This limit is useful for very large basic blocks. 178 static const unsigned MaxMemDepDistance = 160; 179 180 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 181 /// regions to be handled. 182 static const int MinScheduleRegionSize = 16; 183 184 /// Predicate for the element types that the SLP vectorizer supports. 185 /// 186 /// The most important thing to filter here are types which are invalid in LLVM 187 /// vectors. We also filter target specific types which have absolutely no 188 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 189 /// avoids spending time checking the cost model and realizing that they will 190 /// be inevitably scalarized. 191 static bool isValidElementType(Type *Ty) { 192 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 193 !Ty->isPPC_FP128Ty(); 194 } 195 196 /// \returns True if the value is a constant (but not globals/constant 197 /// expressions). 198 static bool isConstant(Value *V) { 199 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 200 } 201 202 /// Checks if \p V is one of vector-like instructions, i.e. undef, 203 /// insertelement/extractelement with constant indices for fixed vector type or 204 /// extractvalue instruction. 205 static bool isVectorLikeInstWithConstOps(Value *V) { 206 if (!isa<InsertElementInst, ExtractElementInst>(V) && 207 !isa<ExtractValueInst, UndefValue>(V)) 208 return false; 209 auto *I = dyn_cast<Instruction>(V); 210 if (!I || isa<ExtractValueInst>(I)) 211 return true; 212 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 213 return false; 214 if (isa<ExtractElementInst>(I)) 215 return isConstant(I->getOperand(1)); 216 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 217 return isConstant(I->getOperand(2)); 218 } 219 220 /// \returns true if all of the instructions in \p VL are in the same block or 221 /// false otherwise. 222 static bool allSameBlock(ArrayRef<Value *> VL) { 223 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 224 if (!I0) 225 return false; 226 if (all_of(VL, isVectorLikeInstWithConstOps)) 227 return true; 228 229 BasicBlock *BB = I0->getParent(); 230 for (int I = 1, E = VL.size(); I < E; I++) { 231 auto *II = dyn_cast<Instruction>(VL[I]); 232 if (!II) 233 return false; 234 235 if (BB != II->getParent()) 236 return false; 237 } 238 return true; 239 } 240 241 /// \returns True if all of the values in \p VL are constants (but not 242 /// globals/constant expressions). 243 static bool allConstant(ArrayRef<Value *> VL) { 244 // Constant expressions and globals can't be vectorized like normal integer/FP 245 // constants. 246 return all_of(VL, isConstant); 247 } 248 249 /// \returns True if all of the values in \p VL are identical or some of them 250 /// are UndefValue. 251 static bool isSplat(ArrayRef<Value *> VL) { 252 Value *FirstNonUndef = nullptr; 253 for (Value *V : VL) { 254 if (isa<UndefValue>(V)) 255 continue; 256 if (!FirstNonUndef) { 257 FirstNonUndef = V; 258 continue; 259 } 260 if (V != FirstNonUndef) 261 return false; 262 } 263 return FirstNonUndef != nullptr; 264 } 265 266 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 267 static bool isCommutative(Instruction *I) { 268 if (auto *Cmp = dyn_cast<CmpInst>(I)) 269 return Cmp->isCommutative(); 270 if (auto *BO = dyn_cast<BinaryOperator>(I)) 271 return BO->isCommutative(); 272 // TODO: This should check for generic Instruction::isCommutative(), but 273 // we need to confirm that the caller code correctly handles Intrinsics 274 // for example (does not have 2 operands). 275 return false; 276 } 277 278 /// Checks if the given value is actually an undefined constant vector. 279 static bool isUndefVector(const Value *V) { 280 if (isa<UndefValue>(V)) 281 return true; 282 auto *C = dyn_cast<Constant>(V); 283 if (!C) 284 return false; 285 if (!C->containsUndefOrPoisonElement()) 286 return false; 287 auto *VecTy = dyn_cast<FixedVectorType>(C->getType()); 288 if (!VecTy) 289 return false; 290 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 291 if (Constant *Elem = C->getAggregateElement(I)) 292 if (!isa<UndefValue>(Elem)) 293 return false; 294 } 295 return true; 296 } 297 298 /// Checks if the vector of instructions can be represented as a shuffle, like: 299 /// %x0 = extractelement <4 x i8> %x, i32 0 300 /// %x3 = extractelement <4 x i8> %x, i32 3 301 /// %y1 = extractelement <4 x i8> %y, i32 1 302 /// %y2 = extractelement <4 x i8> %y, i32 2 303 /// %x0x0 = mul i8 %x0, %x0 304 /// %x3x3 = mul i8 %x3, %x3 305 /// %y1y1 = mul i8 %y1, %y1 306 /// %y2y2 = mul i8 %y2, %y2 307 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 308 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 309 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 310 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 311 /// ret <4 x i8> %ins4 312 /// can be transformed into: 313 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 314 /// i32 6> 315 /// %2 = mul <4 x i8> %1, %1 316 /// ret <4 x i8> %2 317 /// We convert this initially to something like: 318 /// %x0 = extractelement <4 x i8> %x, i32 0 319 /// %x3 = extractelement <4 x i8> %x, i32 3 320 /// %y1 = extractelement <4 x i8> %y, i32 1 321 /// %y2 = extractelement <4 x i8> %y, i32 2 322 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 323 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 324 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 325 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 326 /// %5 = mul <4 x i8> %4, %4 327 /// %6 = extractelement <4 x i8> %5, i32 0 328 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 329 /// %7 = extractelement <4 x i8> %5, i32 1 330 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 331 /// %8 = extractelement <4 x i8> %5, i32 2 332 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 333 /// %9 = extractelement <4 x i8> %5, i32 3 334 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 335 /// ret <4 x i8> %ins4 336 /// InstCombiner transforms this into a shuffle and vector mul 337 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 338 /// TODO: Can we split off and reuse the shuffle mask detection from 339 /// TargetTransformInfo::getInstructionThroughput? 340 static Optional<TargetTransformInfo::ShuffleKind> 341 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 342 const auto *It = 343 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); 344 if (It == VL.end()) 345 return None; 346 auto *EI0 = cast<ExtractElementInst>(*It); 347 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 348 return None; 349 unsigned Size = 350 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 351 Value *Vec1 = nullptr; 352 Value *Vec2 = nullptr; 353 enum ShuffleMode { Unknown, Select, Permute }; 354 ShuffleMode CommonShuffleMode = Unknown; 355 Mask.assign(VL.size(), UndefMaskElem); 356 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 357 // Undef can be represented as an undef element in a vector. 358 if (isa<UndefValue>(VL[I])) 359 continue; 360 auto *EI = cast<ExtractElementInst>(VL[I]); 361 if (isa<ScalableVectorType>(EI->getVectorOperandType())) 362 return None; 363 auto *Vec = EI->getVectorOperand(); 364 // We can extractelement from undef or poison vector. 365 if (isUndefVector(Vec)) 366 continue; 367 // All vector operands must have the same number of vector elements. 368 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 369 return None; 370 if (isa<UndefValue>(EI->getIndexOperand())) 371 continue; 372 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 373 if (!Idx) 374 return None; 375 // Undefined behavior if Idx is negative or >= Size. 376 if (Idx->getValue().uge(Size)) 377 continue; 378 unsigned IntIdx = Idx->getValue().getZExtValue(); 379 Mask[I] = IntIdx; 380 // For correct shuffling we have to have at most 2 different vector operands 381 // in all extractelement instructions. 382 if (!Vec1 || Vec1 == Vec) { 383 Vec1 = Vec; 384 } else if (!Vec2 || Vec2 == Vec) { 385 Vec2 = Vec; 386 Mask[I] += Size; 387 } else { 388 return None; 389 } 390 if (CommonShuffleMode == Permute) 391 continue; 392 // If the extract index is not the same as the operation number, it is a 393 // permutation. 394 if (IntIdx != I) { 395 CommonShuffleMode = Permute; 396 continue; 397 } 398 CommonShuffleMode = Select; 399 } 400 // If we're not crossing lanes in different vectors, consider it as blending. 401 if (CommonShuffleMode == Select && Vec2) 402 return TargetTransformInfo::SK_Select; 403 // If Vec2 was never used, we have a permutation of a single vector, otherwise 404 // we have permutation of 2 vectors. 405 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 406 : TargetTransformInfo::SK_PermuteSingleSrc; 407 } 408 409 namespace { 410 411 /// Main data required for vectorization of instructions. 412 struct InstructionsState { 413 /// The very first instruction in the list with the main opcode. 414 Value *OpValue = nullptr; 415 416 /// The main/alternate instruction. 417 Instruction *MainOp = nullptr; 418 Instruction *AltOp = nullptr; 419 420 /// The main/alternate opcodes for the list of instructions. 421 unsigned getOpcode() const { 422 return MainOp ? MainOp->getOpcode() : 0; 423 } 424 425 unsigned getAltOpcode() const { 426 return AltOp ? AltOp->getOpcode() : 0; 427 } 428 429 /// Some of the instructions in the list have alternate opcodes. 430 bool isAltShuffle() const { return AltOp != MainOp; } 431 432 bool isOpcodeOrAlt(Instruction *I) const { 433 unsigned CheckedOpcode = I->getOpcode(); 434 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 435 } 436 437 InstructionsState() = delete; 438 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 439 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 440 }; 441 442 } // end anonymous namespace 443 444 /// Chooses the correct key for scheduling data. If \p Op has the same (or 445 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 446 /// OpValue. 447 static Value *isOneOf(const InstructionsState &S, Value *Op) { 448 auto *I = dyn_cast<Instruction>(Op); 449 if (I && S.isOpcodeOrAlt(I)) 450 return Op; 451 return S.OpValue; 452 } 453 454 /// \returns true if \p Opcode is allowed as part of of the main/alternate 455 /// instruction for SLP vectorization. 456 /// 457 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 458 /// "shuffled out" lane would result in division by zero. 459 static bool isValidForAlternation(unsigned Opcode) { 460 if (Instruction::isIntDivRem(Opcode)) 461 return false; 462 463 return true; 464 } 465 466 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 467 unsigned BaseIndex = 0); 468 469 /// Checks if the provided operands of 2 cmp instructions are compatible, i.e. 470 /// compatible instructions or constants, or just some other regular values. 471 static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0, 472 Value *Op1) { 473 return (isConstant(BaseOp0) && isConstant(Op0)) || 474 (isConstant(BaseOp1) && isConstant(Op1)) || 475 (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) && 476 !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) || 477 getSameOpcode({BaseOp0, Op0}).getOpcode() || 478 getSameOpcode({BaseOp1, Op1}).getOpcode(); 479 } 480 481 /// \returns analysis of the Instructions in \p VL described in 482 /// InstructionsState, the Opcode that we suppose the whole list 483 /// could be vectorized even if its structure is diverse. 484 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 485 unsigned BaseIndex) { 486 // Make sure these are all Instructions. 487 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 488 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 489 490 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 491 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 492 bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]); 493 CmpInst::Predicate BasePred = 494 IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate() 495 : CmpInst::BAD_ICMP_PREDICATE; 496 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 497 unsigned AltOpcode = Opcode; 498 unsigned AltIndex = BaseIndex; 499 500 // Check for one alternate opcode from another BinaryOperator. 501 // TODO - generalize to support all operators (types, calls etc.). 502 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 503 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 504 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 505 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 506 continue; 507 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 508 isValidForAlternation(Opcode)) { 509 AltOpcode = InstOpcode; 510 AltIndex = Cnt; 511 continue; 512 } 513 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 514 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 515 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 516 if (Ty0 == Ty1) { 517 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 518 continue; 519 if (Opcode == AltOpcode) { 520 assert(isValidForAlternation(Opcode) && 521 isValidForAlternation(InstOpcode) && 522 "Cast isn't safe for alternation, logic needs to be updated!"); 523 AltOpcode = InstOpcode; 524 AltIndex = Cnt; 525 continue; 526 } 527 } 528 } else if (IsCmpOp && isa<CmpInst>(VL[Cnt])) { 529 auto *BaseInst = cast<Instruction>(VL[BaseIndex]); 530 auto *Inst = cast<Instruction>(VL[Cnt]); 531 Type *Ty0 = BaseInst->getOperand(0)->getType(); 532 Type *Ty1 = Inst->getOperand(0)->getType(); 533 if (Ty0 == Ty1) { 534 Value *BaseOp0 = BaseInst->getOperand(0); 535 Value *BaseOp1 = BaseInst->getOperand(1); 536 Value *Op0 = Inst->getOperand(0); 537 Value *Op1 = Inst->getOperand(1); 538 CmpInst::Predicate CurrentPred = 539 cast<CmpInst>(VL[Cnt])->getPredicate(); 540 CmpInst::Predicate SwappedCurrentPred = 541 CmpInst::getSwappedPredicate(CurrentPred); 542 // Check for compatible operands. If the corresponding operands are not 543 // compatible - need to perform alternate vectorization. 544 if (InstOpcode == Opcode) { 545 if (BasePred == CurrentPred && 546 areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1)) 547 continue; 548 if (BasePred == SwappedCurrentPred && 549 areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0)) 550 continue; 551 if (E == 2 && 552 (BasePred == CurrentPred || BasePred == SwappedCurrentPred)) 553 continue; 554 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 555 CmpInst::Predicate AltPred = AltInst->getPredicate(); 556 Value *AltOp0 = AltInst->getOperand(0); 557 Value *AltOp1 = AltInst->getOperand(1); 558 // Check if operands are compatible with alternate operands. 559 if (AltPred == CurrentPred && 560 areCompatibleCmpOps(AltOp0, AltOp1, Op0, Op1)) 561 continue; 562 if (AltPred == SwappedCurrentPred && 563 areCompatibleCmpOps(AltOp0, AltOp1, Op1, Op0)) 564 continue; 565 } 566 if (BaseIndex == AltIndex && BasePred != CurrentPred) { 567 assert(isValidForAlternation(Opcode) && 568 isValidForAlternation(InstOpcode) && 569 "Cast isn't safe for alternation, logic needs to be updated!"); 570 AltIndex = Cnt; 571 continue; 572 } 573 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 574 CmpInst::Predicate AltPred = AltInst->getPredicate(); 575 if (BasePred == CurrentPred || BasePred == SwappedCurrentPred || 576 AltPred == CurrentPred || AltPred == SwappedCurrentPred) 577 continue; 578 } 579 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 580 continue; 581 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 582 } 583 584 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 585 cast<Instruction>(VL[AltIndex])); 586 } 587 588 /// \returns true if all of the values in \p VL have the same type or false 589 /// otherwise. 590 static bool allSameType(ArrayRef<Value *> VL) { 591 Type *Ty = VL[0]->getType(); 592 for (int i = 1, e = VL.size(); i < e; i++) 593 if (VL[i]->getType() != Ty) 594 return false; 595 596 return true; 597 } 598 599 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 600 static Optional<unsigned> getExtractIndex(Instruction *E) { 601 unsigned Opcode = E->getOpcode(); 602 assert((Opcode == Instruction::ExtractElement || 603 Opcode == Instruction::ExtractValue) && 604 "Expected extractelement or extractvalue instruction."); 605 if (Opcode == Instruction::ExtractElement) { 606 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 607 if (!CI) 608 return None; 609 return CI->getZExtValue(); 610 } 611 ExtractValueInst *EI = cast<ExtractValueInst>(E); 612 if (EI->getNumIndices() != 1) 613 return None; 614 return *EI->idx_begin(); 615 } 616 617 /// \returns True if in-tree use also needs extract. This refers to 618 /// possible scalar operand in vectorized instruction. 619 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 620 TargetLibraryInfo *TLI) { 621 unsigned Opcode = UserInst->getOpcode(); 622 switch (Opcode) { 623 case Instruction::Load: { 624 LoadInst *LI = cast<LoadInst>(UserInst); 625 return (LI->getPointerOperand() == Scalar); 626 } 627 case Instruction::Store: { 628 StoreInst *SI = cast<StoreInst>(UserInst); 629 return (SI->getPointerOperand() == Scalar); 630 } 631 case Instruction::Call: { 632 CallInst *CI = cast<CallInst>(UserInst); 633 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 634 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 635 if (hasVectorInstrinsicScalarOpd(ID, i)) 636 return (CI->getArgOperand(i) == Scalar); 637 } 638 LLVM_FALLTHROUGH; 639 } 640 default: 641 return false; 642 } 643 } 644 645 /// \returns the AA location that is being access by the instruction. 646 static MemoryLocation getLocation(Instruction *I) { 647 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 648 return MemoryLocation::get(SI); 649 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 650 return MemoryLocation::get(LI); 651 return MemoryLocation(); 652 } 653 654 /// \returns True if the instruction is not a volatile or atomic load/store. 655 static bool isSimple(Instruction *I) { 656 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 657 return LI->isSimple(); 658 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 659 return SI->isSimple(); 660 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 661 return !MI->isVolatile(); 662 return true; 663 } 664 665 /// Shuffles \p Mask in accordance with the given \p SubMask. 666 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 667 if (SubMask.empty()) 668 return; 669 if (Mask.empty()) { 670 Mask.append(SubMask.begin(), SubMask.end()); 671 return; 672 } 673 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 674 int TermValue = std::min(Mask.size(), SubMask.size()); 675 for (int I = 0, E = SubMask.size(); I < E; ++I) { 676 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 677 Mask[SubMask[I]] >= TermValue) 678 continue; 679 NewMask[I] = Mask[SubMask[I]]; 680 } 681 Mask.swap(NewMask); 682 } 683 684 /// Order may have elements assigned special value (size) which is out of 685 /// bounds. Such indices only appear on places which correspond to undef values 686 /// (see canReuseExtract for details) and used in order to avoid undef values 687 /// have effect on operands ordering. 688 /// The first loop below simply finds all unused indices and then the next loop 689 /// nest assigns these indices for undef values positions. 690 /// As an example below Order has two undef positions and they have assigned 691 /// values 3 and 7 respectively: 692 /// before: 6 9 5 4 9 2 1 0 693 /// after: 6 3 5 4 7 2 1 0 694 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 695 const unsigned Sz = Order.size(); 696 SmallBitVector UnusedIndices(Sz, /*t=*/true); 697 SmallBitVector MaskedIndices(Sz); 698 for (unsigned I = 0; I < Sz; ++I) { 699 if (Order[I] < Sz) 700 UnusedIndices.reset(Order[I]); 701 else 702 MaskedIndices.set(I); 703 } 704 if (MaskedIndices.none()) 705 return; 706 assert(UnusedIndices.count() == MaskedIndices.count() && 707 "Non-synced masked/available indices."); 708 int Idx = UnusedIndices.find_first(); 709 int MIdx = MaskedIndices.find_first(); 710 while (MIdx >= 0) { 711 assert(Idx >= 0 && "Indices must be synced."); 712 Order[MIdx] = Idx; 713 Idx = UnusedIndices.find_next(Idx); 714 MIdx = MaskedIndices.find_next(MIdx); 715 } 716 } 717 718 namespace llvm { 719 720 static void inversePermutation(ArrayRef<unsigned> Indices, 721 SmallVectorImpl<int> &Mask) { 722 Mask.clear(); 723 const unsigned E = Indices.size(); 724 Mask.resize(E, UndefMaskElem); 725 for (unsigned I = 0; I < E; ++I) 726 Mask[Indices[I]] = I; 727 } 728 729 /// \returns inserting index of InsertElement or InsertValue instruction, 730 /// using Offset as base offset for index. 731 static Optional<unsigned> getInsertIndex(Value *InsertInst, 732 unsigned Offset = 0) { 733 int Index = Offset; 734 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 735 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 736 auto *VT = cast<FixedVectorType>(IE->getType()); 737 if (CI->getValue().uge(VT->getNumElements())) 738 return None; 739 Index *= VT->getNumElements(); 740 Index += CI->getZExtValue(); 741 return Index; 742 } 743 return None; 744 } 745 746 auto *IV = cast<InsertValueInst>(InsertInst); 747 Type *CurrentType = IV->getType(); 748 for (unsigned I : IV->indices()) { 749 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 750 Index *= ST->getNumElements(); 751 CurrentType = ST->getElementType(I); 752 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 753 Index *= AT->getNumElements(); 754 CurrentType = AT->getElementType(); 755 } else { 756 return None; 757 } 758 Index += I; 759 } 760 return Index; 761 } 762 763 /// Reorders the list of scalars in accordance with the given \p Mask. 764 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 765 ArrayRef<int> Mask) { 766 assert(!Mask.empty() && "Expected non-empty mask."); 767 SmallVector<Value *> Prev(Scalars.size(), 768 UndefValue::get(Scalars.front()->getType())); 769 Prev.swap(Scalars); 770 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 771 if (Mask[I] != UndefMaskElem) 772 Scalars[Mask[I]] = Prev[I]; 773 } 774 775 namespace slpvectorizer { 776 777 /// Bottom Up SLP Vectorizer. 778 class BoUpSLP { 779 struct TreeEntry; 780 struct ScheduleData; 781 782 public: 783 using ValueList = SmallVector<Value *, 8>; 784 using InstrList = SmallVector<Instruction *, 16>; 785 using ValueSet = SmallPtrSet<Value *, 16>; 786 using StoreList = SmallVector<StoreInst *, 8>; 787 using ExtraValueToDebugLocsMap = 788 MapVector<Value *, SmallVector<Instruction *, 2>>; 789 using OrdersType = SmallVector<unsigned, 4>; 790 791 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 792 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 793 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 794 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 795 : BatchAA(*Aa), F(Func), SE(Se), TTI(Tti), TLI(TLi), LI(Li), 796 DT(Dt), AC(AC), DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 797 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 798 // Use the vector register size specified by the target unless overridden 799 // by a command-line option. 800 // TODO: It would be better to limit the vectorization factor based on 801 // data type rather than just register size. For example, x86 AVX has 802 // 256-bit registers, but it does not support integer operations 803 // at that width (that requires AVX2). 804 if (MaxVectorRegSizeOption.getNumOccurrences()) 805 MaxVecRegSize = MaxVectorRegSizeOption; 806 else 807 MaxVecRegSize = 808 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 809 .getFixedSize(); 810 811 if (MinVectorRegSizeOption.getNumOccurrences()) 812 MinVecRegSize = MinVectorRegSizeOption; 813 else 814 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 815 } 816 817 /// Vectorize the tree that starts with the elements in \p VL. 818 /// Returns the vectorized root. 819 Value *vectorizeTree(); 820 821 /// Vectorize the tree but with the list of externally used values \p 822 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 823 /// generated extractvalue instructions. 824 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 825 826 /// \returns the cost incurred by unwanted spills and fills, caused by 827 /// holding live values over call sites. 828 InstructionCost getSpillCost() const; 829 830 /// \returns the vectorization cost of the subtree that starts at \p VL. 831 /// A negative number means that this is profitable. 832 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 833 834 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 835 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 836 void buildTree(ArrayRef<Value *> Roots, 837 ArrayRef<Value *> UserIgnoreLst = None); 838 839 /// Builds external uses of the vectorized scalars, i.e. the list of 840 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 841 /// ExternallyUsedValues contains additional list of external uses to handle 842 /// vectorization of reductions. 843 void 844 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 845 846 /// Clear the internal data structures that are created by 'buildTree'. 847 void deleteTree() { 848 VectorizableTree.clear(); 849 ScalarToTreeEntry.clear(); 850 MustGather.clear(); 851 ExternalUses.clear(); 852 for (auto &Iter : BlocksSchedules) { 853 BlockScheduling *BS = Iter.second.get(); 854 BS->clear(); 855 } 856 MinBWs.clear(); 857 InstrElementSize.clear(); 858 } 859 860 unsigned getTreeSize() const { return VectorizableTree.size(); } 861 862 /// Perform LICM and CSE on the newly generated gather sequences. 863 void optimizeGatherSequence(); 864 865 /// Checks if the specified gather tree entry \p TE can be represented as a 866 /// shuffled vector entry + (possibly) permutation with other gathers. It 867 /// implements the checks only for possibly ordered scalars (Loads, 868 /// ExtractElement, ExtractValue), which can be part of the graph. 869 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 870 871 /// Gets reordering data for the given tree entry. If the entry is vectorized 872 /// - just return ReorderIndices, otherwise check if the scalars can be 873 /// reordered and return the most optimal order. 874 /// \param TopToBottom If true, include the order of vectorized stores and 875 /// insertelement nodes, otherwise skip them. 876 Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom); 877 878 /// Reorders the current graph to the most profitable order starting from the 879 /// root node to the leaf nodes. The best order is chosen only from the nodes 880 /// of the same size (vectorization factor). Smaller nodes are considered 881 /// parts of subgraph with smaller VF and they are reordered independently. We 882 /// can make it because we still need to extend smaller nodes to the wider VF 883 /// and we can merge reordering shuffles with the widening shuffles. 884 void reorderTopToBottom(); 885 886 /// Reorders the current graph to the most profitable order starting from 887 /// leaves to the root. It allows to rotate small subgraphs and reduce the 888 /// number of reshuffles if the leaf nodes use the same order. In this case we 889 /// can merge the orders and just shuffle user node instead of shuffling its 890 /// operands. Plus, even the leaf nodes have different orders, it allows to 891 /// sink reordering in the graph closer to the root node and merge it later 892 /// during analysis. 893 void reorderBottomToTop(bool IgnoreReorder = false); 894 895 /// \return The vector element size in bits to use when vectorizing the 896 /// expression tree ending at \p V. If V is a store, the size is the width of 897 /// the stored value. Otherwise, the size is the width of the largest loaded 898 /// value reaching V. This method is used by the vectorizer to calculate 899 /// vectorization factors. 900 unsigned getVectorElementSize(Value *V); 901 902 /// Compute the minimum type sizes required to represent the entries in a 903 /// vectorizable tree. 904 void computeMinimumValueSizes(); 905 906 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 907 unsigned getMaxVecRegSize() const { 908 return MaxVecRegSize; 909 } 910 911 // \returns minimum vector register size as set by cl::opt. 912 unsigned getMinVecRegSize() const { 913 return MinVecRegSize; 914 } 915 916 unsigned getMinVF(unsigned Sz) const { 917 return std::max(2U, getMinVecRegSize() / Sz); 918 } 919 920 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 921 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 922 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 923 return MaxVF ? MaxVF : UINT_MAX; 924 } 925 926 /// Check if homogeneous aggregate is isomorphic to some VectorType. 927 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 928 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 929 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 930 /// 931 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 932 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 933 934 /// \returns True if the VectorizableTree is both tiny and not fully 935 /// vectorizable. We do not vectorize such trees. 936 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 937 938 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 939 /// can be load combined in the backend. Load combining may not be allowed in 940 /// the IR optimizer, so we do not want to alter the pattern. For example, 941 /// partially transforming a scalar bswap() pattern into vector code is 942 /// effectively impossible for the backend to undo. 943 /// TODO: If load combining is allowed in the IR optimizer, this analysis 944 /// may not be necessary. 945 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 946 947 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 948 /// can be load combined in the backend. Load combining may not be allowed in 949 /// the IR optimizer, so we do not want to alter the pattern. For example, 950 /// partially transforming a scalar bswap() pattern into vector code is 951 /// effectively impossible for the backend to undo. 952 /// TODO: If load combining is allowed in the IR optimizer, this analysis 953 /// may not be necessary. 954 bool isLoadCombineCandidate() const; 955 956 OptimizationRemarkEmitter *getORE() { return ORE; } 957 958 /// This structure holds any data we need about the edges being traversed 959 /// during buildTree_rec(). We keep track of: 960 /// (i) the user TreeEntry index, and 961 /// (ii) the index of the edge. 962 struct EdgeInfo { 963 EdgeInfo() = default; 964 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 965 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 966 /// The user TreeEntry. 967 TreeEntry *UserTE = nullptr; 968 /// The operand index of the use. 969 unsigned EdgeIdx = UINT_MAX; 970 #ifndef NDEBUG 971 friend inline raw_ostream &operator<<(raw_ostream &OS, 972 const BoUpSLP::EdgeInfo &EI) { 973 EI.dump(OS); 974 return OS; 975 } 976 /// Debug print. 977 void dump(raw_ostream &OS) const { 978 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 979 << " EdgeIdx:" << EdgeIdx << "}"; 980 } 981 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 982 #endif 983 }; 984 985 /// A helper data structure to hold the operands of a vector of instructions. 986 /// This supports a fixed vector length for all operand vectors. 987 class VLOperands { 988 /// For each operand we need (i) the value, and (ii) the opcode that it 989 /// would be attached to if the expression was in a left-linearized form. 990 /// This is required to avoid illegal operand reordering. 991 /// For example: 992 /// \verbatim 993 /// 0 Op1 994 /// |/ 995 /// Op1 Op2 Linearized + Op2 996 /// \ / ----------> |/ 997 /// - - 998 /// 999 /// Op1 - Op2 (0 + Op1) - Op2 1000 /// \endverbatim 1001 /// 1002 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 1003 /// 1004 /// Another way to think of this is to track all the operations across the 1005 /// path from the operand all the way to the root of the tree and to 1006 /// calculate the operation that corresponds to this path. For example, the 1007 /// path from Op2 to the root crosses the RHS of the '-', therefore the 1008 /// corresponding operation is a '-' (which matches the one in the 1009 /// linearized tree, as shown above). 1010 /// 1011 /// For lack of a better term, we refer to this operation as Accumulated 1012 /// Path Operation (APO). 1013 struct OperandData { 1014 OperandData() = default; 1015 OperandData(Value *V, bool APO, bool IsUsed) 1016 : V(V), APO(APO), IsUsed(IsUsed) {} 1017 /// The operand value. 1018 Value *V = nullptr; 1019 /// TreeEntries only allow a single opcode, or an alternate sequence of 1020 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 1021 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 1022 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 1023 /// (e.g., Add/Mul) 1024 bool APO = false; 1025 /// Helper data for the reordering function. 1026 bool IsUsed = false; 1027 }; 1028 1029 /// During operand reordering, we are trying to select the operand at lane 1030 /// that matches best with the operand at the neighboring lane. Our 1031 /// selection is based on the type of value we are looking for. For example, 1032 /// if the neighboring lane has a load, we need to look for a load that is 1033 /// accessing a consecutive address. These strategies are summarized in the 1034 /// 'ReorderingMode' enumerator. 1035 enum class ReorderingMode { 1036 Load, ///< Matching loads to consecutive memory addresses 1037 Opcode, ///< Matching instructions based on opcode (same or alternate) 1038 Constant, ///< Matching constants 1039 Splat, ///< Matching the same instruction multiple times (broadcast) 1040 Failed, ///< We failed to create a vectorizable group 1041 }; 1042 1043 using OperandDataVec = SmallVector<OperandData, 2>; 1044 1045 /// A vector of operand vectors. 1046 SmallVector<OperandDataVec, 4> OpsVec; 1047 1048 const DataLayout &DL; 1049 ScalarEvolution &SE; 1050 const BoUpSLP &R; 1051 1052 /// \returns the operand data at \p OpIdx and \p Lane. 1053 OperandData &getData(unsigned OpIdx, unsigned Lane) { 1054 return OpsVec[OpIdx][Lane]; 1055 } 1056 1057 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 1058 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 1059 return OpsVec[OpIdx][Lane]; 1060 } 1061 1062 /// Clears the used flag for all entries. 1063 void clearUsed() { 1064 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 1065 OpIdx != NumOperands; ++OpIdx) 1066 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1067 ++Lane) 1068 OpsVec[OpIdx][Lane].IsUsed = false; 1069 } 1070 1071 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 1072 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 1073 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 1074 } 1075 1076 // The hard-coded scores listed here are not very important, though it shall 1077 // be higher for better matches to improve the resulting cost. When 1078 // computing the scores of matching one sub-tree with another, we are 1079 // basically counting the number of values that are matching. So even if all 1080 // scores are set to 1, we would still get a decent matching result. 1081 // However, sometimes we have to break ties. For example we may have to 1082 // choose between matching loads vs matching opcodes. This is what these 1083 // scores are helping us with: they provide the order of preference. Also, 1084 // this is important if the scalar is externally used or used in another 1085 // tree entry node in the different lane. 1086 1087 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 1088 static const int ScoreConsecutiveLoads = 4; 1089 /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]). 1090 static const int ScoreReversedLoads = 3; 1091 /// ExtractElementInst from same vector and consecutive indexes. 1092 static const int ScoreConsecutiveExtracts = 4; 1093 /// ExtractElementInst from same vector and reversed indices. 1094 static const int ScoreReversedExtracts = 3; 1095 /// Constants. 1096 static const int ScoreConstants = 2; 1097 /// Instructions with the same opcode. 1098 static const int ScoreSameOpcode = 2; 1099 /// Instructions with alt opcodes (e.g, add + sub). 1100 static const int ScoreAltOpcodes = 1; 1101 /// Identical instructions (a.k.a. splat or broadcast). 1102 static const int ScoreSplat = 1; 1103 /// Matching with an undef is preferable to failing. 1104 static const int ScoreUndef = 1; 1105 /// Score for failing to find a decent match. 1106 static const int ScoreFail = 0; 1107 /// Score if all users are vectorized. 1108 static const int ScoreAllUserVectorized = 1; 1109 1110 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1111 /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p 1112 /// MainAltOps. 1113 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 1114 ScalarEvolution &SE, int NumLanes, 1115 ArrayRef<Value *> MainAltOps) { 1116 if (V1 == V2) 1117 return VLOperands::ScoreSplat; 1118 1119 auto *LI1 = dyn_cast<LoadInst>(V1); 1120 auto *LI2 = dyn_cast<LoadInst>(V2); 1121 if (LI1 && LI2) { 1122 if (LI1->getParent() != LI2->getParent()) 1123 return VLOperands::ScoreFail; 1124 1125 Optional<int> Dist = getPointersDiff( 1126 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1127 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1128 if (!Dist || *Dist == 0) 1129 return VLOperands::ScoreFail; 1130 // The distance is too large - still may be profitable to use masked 1131 // loads/gathers. 1132 if (std::abs(*Dist) > NumLanes / 2) 1133 return VLOperands::ScoreAltOpcodes; 1134 // This still will detect consecutive loads, but we might have "holes" 1135 // in some cases. It is ok for non-power-2 vectorization and may produce 1136 // better results. It should not affect current vectorization. 1137 return (*Dist > 0) ? VLOperands::ScoreConsecutiveLoads 1138 : VLOperands::ScoreReversedLoads; 1139 } 1140 1141 auto *C1 = dyn_cast<Constant>(V1); 1142 auto *C2 = dyn_cast<Constant>(V2); 1143 if (C1 && C2) 1144 return VLOperands::ScoreConstants; 1145 1146 // Extracts from consecutive indexes of the same vector better score as 1147 // the extracts could be optimized away. 1148 Value *EV1; 1149 ConstantInt *Ex1Idx; 1150 if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) { 1151 // Undefs are always profitable for extractelements. 1152 if (isa<UndefValue>(V2)) 1153 return VLOperands::ScoreConsecutiveExtracts; 1154 Value *EV2 = nullptr; 1155 ConstantInt *Ex2Idx = nullptr; 1156 if (match(V2, 1157 m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx), 1158 m_Undef())))) { 1159 // Undefs are always profitable for extractelements. 1160 if (!Ex2Idx) 1161 return VLOperands::ScoreConsecutiveExtracts; 1162 if (isUndefVector(EV2) && EV2->getType() == EV1->getType()) 1163 return VLOperands::ScoreConsecutiveExtracts; 1164 if (EV2 == EV1) { 1165 int Idx1 = Ex1Idx->getZExtValue(); 1166 int Idx2 = Ex2Idx->getZExtValue(); 1167 int Dist = Idx2 - Idx1; 1168 // The distance is too large - still may be profitable to use 1169 // shuffles. 1170 if (std::abs(Dist) == 0) 1171 return VLOperands::ScoreSplat; 1172 if (std::abs(Dist) > NumLanes / 2) 1173 return VLOperands::ScoreSameOpcode; 1174 return (Dist > 0) ? VLOperands::ScoreConsecutiveExtracts 1175 : VLOperands::ScoreReversedExtracts; 1176 } 1177 return VLOperands::ScoreAltOpcodes; 1178 } 1179 return VLOperands::ScoreFail; 1180 } 1181 1182 auto *I1 = dyn_cast<Instruction>(V1); 1183 auto *I2 = dyn_cast<Instruction>(V2); 1184 if (I1 && I2) { 1185 if (I1->getParent() != I2->getParent()) 1186 return VLOperands::ScoreFail; 1187 SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end()); 1188 Ops.push_back(I1); 1189 Ops.push_back(I2); 1190 InstructionsState S = getSameOpcode(Ops); 1191 // Note: Only consider instructions with <= 2 operands to avoid 1192 // complexity explosion. 1193 if (S.getOpcode() && 1194 (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() || 1195 !S.isAltShuffle()) && 1196 all_of(Ops, [&S](Value *V) { 1197 return cast<Instruction>(V)->getNumOperands() == 1198 S.MainOp->getNumOperands(); 1199 })) 1200 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 1201 : VLOperands::ScoreSameOpcode; 1202 } 1203 1204 if (isa<UndefValue>(V2)) 1205 return VLOperands::ScoreUndef; 1206 1207 return VLOperands::ScoreFail; 1208 } 1209 1210 /// \param Lane lane of the operands under analysis. 1211 /// \param OpIdx operand index in \p Lane lane we're looking the best 1212 /// candidate for. 1213 /// \param Idx operand index of the current candidate value. 1214 /// \returns The additional score due to possible broadcasting of the 1215 /// elements in the lane. It is more profitable to have power-of-2 unique 1216 /// elements in the lane, it will be vectorized with higher probability 1217 /// after removing duplicates. Currently the SLP vectorizer supports only 1218 /// vectorization of the power-of-2 number of unique scalars. 1219 int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1220 Value *IdxLaneV = getData(Idx, Lane).V; 1221 if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V) 1222 return 0; 1223 SmallPtrSet<Value *, 4> Uniques; 1224 for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) { 1225 if (Ln == Lane) 1226 continue; 1227 Value *OpIdxLnV = getData(OpIdx, Ln).V; 1228 if (!isa<Instruction>(OpIdxLnV)) 1229 return 0; 1230 Uniques.insert(OpIdxLnV); 1231 } 1232 int UniquesCount = Uniques.size(); 1233 int UniquesCntWithIdxLaneV = 1234 Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1; 1235 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1236 int UniquesCntWithOpIdxLaneV = 1237 Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1; 1238 if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV) 1239 return 0; 1240 return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) - 1241 UniquesCntWithOpIdxLaneV) - 1242 (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV); 1243 } 1244 1245 /// \param Lane lane of the operands under analysis. 1246 /// \param OpIdx operand index in \p Lane lane we're looking the best 1247 /// candidate for. 1248 /// \param Idx operand index of the current candidate value. 1249 /// \returns The additional score for the scalar which users are all 1250 /// vectorized. 1251 int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1252 Value *IdxLaneV = getData(Idx, Lane).V; 1253 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1254 // Do not care about number of uses for vector-like instructions 1255 // (extractelement/extractvalue with constant indices), they are extracts 1256 // themselves and already externally used. Vectorization of such 1257 // instructions does not add extra extractelement instruction, just may 1258 // remove it. 1259 if (isVectorLikeInstWithConstOps(IdxLaneV) && 1260 isVectorLikeInstWithConstOps(OpIdxLaneV)) 1261 return VLOperands::ScoreAllUserVectorized; 1262 auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV); 1263 if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV)) 1264 return 0; 1265 return R.areAllUsersVectorized(IdxLaneI, None) 1266 ? VLOperands::ScoreAllUserVectorized 1267 : 0; 1268 } 1269 1270 /// Go through the operands of \p LHS and \p RHS recursively until \p 1271 /// MaxLevel, and return the cummulative score. For example: 1272 /// \verbatim 1273 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1274 /// \ / \ / \ / \ / 1275 /// + + + + 1276 /// G1 G2 G3 G4 1277 /// \endverbatim 1278 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1279 /// each level recursively, accumulating the score. It starts from matching 1280 /// the additions at level 0, then moves on to the loads (level 1). The 1281 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1282 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1283 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1284 /// Please note that the order of the operands does not matter, as we 1285 /// evaluate the score of all profitable combinations of operands. In 1286 /// other words the score of G1 and G4 is the same as G1 and G2. This 1287 /// heuristic is based on ideas described in: 1288 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1289 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1290 /// Luís F. W. Góes 1291 int getScoreAtLevelRec(Value *LHS, Value *RHS, int CurrLevel, int MaxLevel, 1292 ArrayRef<Value *> MainAltOps) { 1293 1294 // Get the shallow score of V1 and V2. 1295 int ShallowScoreAtThisLevel = 1296 getShallowScore(LHS, RHS, DL, SE, getNumLanes(), MainAltOps); 1297 1298 // If reached MaxLevel, 1299 // or if V1 and V2 are not instructions, 1300 // or if they are SPLAT, 1301 // or if they are not consecutive, 1302 // or if profitable to vectorize loads or extractelements, early return 1303 // the current cost. 1304 auto *I1 = dyn_cast<Instruction>(LHS); 1305 auto *I2 = dyn_cast<Instruction>(RHS); 1306 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1307 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1308 (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) || 1309 (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) || 1310 (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) && 1311 ShallowScoreAtThisLevel)) 1312 return ShallowScoreAtThisLevel; 1313 assert(I1 && I2 && "Should have early exited."); 1314 1315 // Contains the I2 operand indexes that got matched with I1 operands. 1316 SmallSet<unsigned, 4> Op2Used; 1317 1318 // Recursion towards the operands of I1 and I2. We are trying all possible 1319 // operand pairs, and keeping track of the best score. 1320 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1321 OpIdx1 != NumOperands1; ++OpIdx1) { 1322 // Try to pair op1I with the best operand of I2. 1323 int MaxTmpScore = 0; 1324 unsigned MaxOpIdx2 = 0; 1325 bool FoundBest = false; 1326 // If I2 is commutative try all combinations. 1327 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1328 unsigned ToIdx = isCommutative(I2) 1329 ? I2->getNumOperands() 1330 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1331 assert(FromIdx <= ToIdx && "Bad index"); 1332 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1333 // Skip operands already paired with OpIdx1. 1334 if (Op2Used.count(OpIdx2)) 1335 continue; 1336 // Recursively calculate the cost at each level 1337 int TmpScore = 1338 getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2), 1339 CurrLevel + 1, MaxLevel, None); 1340 // Look for the best score. 1341 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1342 MaxTmpScore = TmpScore; 1343 MaxOpIdx2 = OpIdx2; 1344 FoundBest = true; 1345 } 1346 } 1347 if (FoundBest) { 1348 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1349 Op2Used.insert(MaxOpIdx2); 1350 ShallowScoreAtThisLevel += MaxTmpScore; 1351 } 1352 } 1353 return ShallowScoreAtThisLevel; 1354 } 1355 1356 /// Score scaling factor for fully compatible instructions but with 1357 /// different number of external uses. Allows better selection of the 1358 /// instructions with less external uses. 1359 static const int ScoreScaleFactor = 10; 1360 1361 /// \Returns the look-ahead score, which tells us how much the sub-trees 1362 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1363 /// score. This helps break ties in an informed way when we cannot decide on 1364 /// the order of the operands by just considering the immediate 1365 /// predecessors. 1366 int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps, 1367 int Lane, unsigned OpIdx, unsigned Idx, 1368 bool &IsUsed) { 1369 int Score = 1370 getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth, MainAltOps); 1371 if (Score) { 1372 int SplatScore = getSplatScore(Lane, OpIdx, Idx); 1373 if (Score <= -SplatScore) { 1374 // Set the minimum score for splat-like sequence to avoid setting 1375 // failed state. 1376 Score = 1; 1377 } else { 1378 Score += SplatScore; 1379 // Scale score to see the difference between different operands 1380 // and similar operands but all vectorized/not all vectorized 1381 // uses. It does not affect actual selection of the best 1382 // compatible operand in general, just allows to select the 1383 // operand with all vectorized uses. 1384 Score *= ScoreScaleFactor; 1385 Score += getExternalUseScore(Lane, OpIdx, Idx); 1386 IsUsed = true; 1387 } 1388 } 1389 return Score; 1390 } 1391 1392 /// Best defined scores per lanes between the passes. Used to choose the 1393 /// best operand (with the highest score) between the passes. 1394 /// The key - {Operand Index, Lane}. 1395 /// The value - the best score between the passes for the lane and the 1396 /// operand. 1397 SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8> 1398 BestScoresPerLanes; 1399 1400 // Search all operands in Ops[*][Lane] for the one that matches best 1401 // Ops[OpIdx][LastLane] and return its opreand index. 1402 // If no good match can be found, return None. 1403 Optional<unsigned> getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1404 ArrayRef<ReorderingMode> ReorderingModes, 1405 ArrayRef<Value *> MainAltOps) { 1406 unsigned NumOperands = getNumOperands(); 1407 1408 // The operand of the previous lane at OpIdx. 1409 Value *OpLastLane = getData(OpIdx, LastLane).V; 1410 1411 // Our strategy mode for OpIdx. 1412 ReorderingMode RMode = ReorderingModes[OpIdx]; 1413 if (RMode == ReorderingMode::Failed) 1414 return None; 1415 1416 // The linearized opcode of the operand at OpIdx, Lane. 1417 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1418 1419 // The best operand index and its score. 1420 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1421 // are using the score to differentiate between the two. 1422 struct BestOpData { 1423 Optional<unsigned> Idx = None; 1424 unsigned Score = 0; 1425 } BestOp; 1426 BestOp.Score = 1427 BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0) 1428 .first->second; 1429 1430 // Track if the operand must be marked as used. If the operand is set to 1431 // Score 1 explicitly (because of non power-of-2 unique scalars, we may 1432 // want to reestimate the operands again on the following iterations). 1433 bool IsUsed = 1434 RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant; 1435 // Iterate through all unused operands and look for the best. 1436 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1437 // Get the operand at Idx and Lane. 1438 OperandData &OpData = getData(Idx, Lane); 1439 Value *Op = OpData.V; 1440 bool OpAPO = OpData.APO; 1441 1442 // Skip already selected operands. 1443 if (OpData.IsUsed) 1444 continue; 1445 1446 // Skip if we are trying to move the operand to a position with a 1447 // different opcode in the linearized tree form. This would break the 1448 // semantics. 1449 if (OpAPO != OpIdxAPO) 1450 continue; 1451 1452 // Look for an operand that matches the current mode. 1453 switch (RMode) { 1454 case ReorderingMode::Load: 1455 case ReorderingMode::Constant: 1456 case ReorderingMode::Opcode: { 1457 bool LeftToRight = Lane > LastLane; 1458 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1459 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1460 int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane, 1461 OpIdx, Idx, IsUsed); 1462 if (Score > static_cast<int>(BestOp.Score)) { 1463 BestOp.Idx = Idx; 1464 BestOp.Score = Score; 1465 BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score; 1466 } 1467 break; 1468 } 1469 case ReorderingMode::Splat: 1470 if (Op == OpLastLane) 1471 BestOp.Idx = Idx; 1472 break; 1473 case ReorderingMode::Failed: 1474 llvm_unreachable("Not expected Failed reordering mode."); 1475 } 1476 } 1477 1478 if (BestOp.Idx) { 1479 getData(BestOp.Idx.getValue(), Lane).IsUsed = IsUsed; 1480 return BestOp.Idx; 1481 } 1482 // If we could not find a good match return None. 1483 return None; 1484 } 1485 1486 /// Helper for reorderOperandVecs. 1487 /// \returns the lane that we should start reordering from. This is the one 1488 /// which has the least number of operands that can freely move about or 1489 /// less profitable because it already has the most optimal set of operands. 1490 unsigned getBestLaneToStartReordering() const { 1491 unsigned Min = UINT_MAX; 1492 unsigned SameOpNumber = 0; 1493 // std::pair<unsigned, unsigned> is used to implement a simple voting 1494 // algorithm and choose the lane with the least number of operands that 1495 // can freely move about or less profitable because it already has the 1496 // most optimal set of operands. The first unsigned is a counter for 1497 // voting, the second unsigned is the counter of lanes with instructions 1498 // with same/alternate opcodes and same parent basic block. 1499 MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap; 1500 // Try to be closer to the original results, if we have multiple lanes 1501 // with same cost. If 2 lanes have the same cost, use the one with the 1502 // lowest index. 1503 for (int I = getNumLanes(); I > 0; --I) { 1504 unsigned Lane = I - 1; 1505 OperandsOrderData NumFreeOpsHash = 1506 getMaxNumOperandsThatCanBeReordered(Lane); 1507 // Compare the number of operands that can move and choose the one with 1508 // the least number. 1509 if (NumFreeOpsHash.NumOfAPOs < Min) { 1510 Min = NumFreeOpsHash.NumOfAPOs; 1511 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1512 HashMap.clear(); 1513 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1514 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1515 NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) { 1516 // Select the most optimal lane in terms of number of operands that 1517 // should be moved around. 1518 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1519 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1520 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1521 NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) { 1522 auto It = HashMap.find(NumFreeOpsHash.Hash); 1523 if (It == HashMap.end()) 1524 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1525 else 1526 ++It->second.first; 1527 } 1528 } 1529 // Select the lane with the minimum counter. 1530 unsigned BestLane = 0; 1531 unsigned CntMin = UINT_MAX; 1532 for (const auto &Data : reverse(HashMap)) { 1533 if (Data.second.first < CntMin) { 1534 CntMin = Data.second.first; 1535 BestLane = Data.second.second; 1536 } 1537 } 1538 return BestLane; 1539 } 1540 1541 /// Data structure that helps to reorder operands. 1542 struct OperandsOrderData { 1543 /// The best number of operands with the same APOs, which can be 1544 /// reordered. 1545 unsigned NumOfAPOs = UINT_MAX; 1546 /// Number of operands with the same/alternate instruction opcode and 1547 /// parent. 1548 unsigned NumOpsWithSameOpcodeParent = 0; 1549 /// Hash for the actual operands ordering. 1550 /// Used to count operands, actually their position id and opcode 1551 /// value. It is used in the voting mechanism to find the lane with the 1552 /// least number of operands that can freely move about or less profitable 1553 /// because it already has the most optimal set of operands. Can be 1554 /// replaced with SmallVector<unsigned> instead but hash code is faster 1555 /// and requires less memory. 1556 unsigned Hash = 0; 1557 }; 1558 /// \returns the maximum number of operands that are allowed to be reordered 1559 /// for \p Lane and the number of compatible instructions(with the same 1560 /// parent/opcode). This is used as a heuristic for selecting the first lane 1561 /// to start operand reordering. 1562 OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1563 unsigned CntTrue = 0; 1564 unsigned NumOperands = getNumOperands(); 1565 // Operands with the same APO can be reordered. We therefore need to count 1566 // how many of them we have for each APO, like this: Cnt[APO] = x. 1567 // Since we only have two APOs, namely true and false, we can avoid using 1568 // a map. Instead we can simply count the number of operands that 1569 // correspond to one of them (in this case the 'true' APO), and calculate 1570 // the other by subtracting it from the total number of operands. 1571 // Operands with the same instruction opcode and parent are more 1572 // profitable since we don't need to move them in many cases, with a high 1573 // probability such lane already can be vectorized effectively. 1574 bool AllUndefs = true; 1575 unsigned NumOpsWithSameOpcodeParent = 0; 1576 Instruction *OpcodeI = nullptr; 1577 BasicBlock *Parent = nullptr; 1578 unsigned Hash = 0; 1579 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1580 const OperandData &OpData = getData(OpIdx, Lane); 1581 if (OpData.APO) 1582 ++CntTrue; 1583 // Use Boyer-Moore majority voting for finding the majority opcode and 1584 // the number of times it occurs. 1585 if (auto *I = dyn_cast<Instruction>(OpData.V)) { 1586 if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() || 1587 I->getParent() != Parent) { 1588 if (NumOpsWithSameOpcodeParent == 0) { 1589 NumOpsWithSameOpcodeParent = 1; 1590 OpcodeI = I; 1591 Parent = I->getParent(); 1592 } else { 1593 --NumOpsWithSameOpcodeParent; 1594 } 1595 } else { 1596 ++NumOpsWithSameOpcodeParent; 1597 } 1598 } 1599 Hash = hash_combine( 1600 Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1))); 1601 AllUndefs = AllUndefs && isa<UndefValue>(OpData.V); 1602 } 1603 if (AllUndefs) 1604 return {}; 1605 OperandsOrderData Data; 1606 Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue); 1607 Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent; 1608 Data.Hash = Hash; 1609 return Data; 1610 } 1611 1612 /// Go through the instructions in VL and append their operands. 1613 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1614 assert(!VL.empty() && "Bad VL"); 1615 assert((empty() || VL.size() == getNumLanes()) && 1616 "Expected same number of lanes"); 1617 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1618 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1619 OpsVec.resize(NumOperands); 1620 unsigned NumLanes = VL.size(); 1621 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1622 OpsVec[OpIdx].resize(NumLanes); 1623 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1624 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1625 // Our tree has just 3 nodes: the root and two operands. 1626 // It is therefore trivial to get the APO. We only need to check the 1627 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1628 // RHS operand. The LHS operand of both add and sub is never attached 1629 // to an inversese operation in the linearized form, therefore its APO 1630 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1631 1632 // Since operand reordering is performed on groups of commutative 1633 // operations or alternating sequences (e.g., +, -), we can safely 1634 // tell the inverse operations by checking commutativity. 1635 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1636 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1637 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1638 APO, false}; 1639 } 1640 } 1641 } 1642 1643 /// \returns the number of operands. 1644 unsigned getNumOperands() const { return OpsVec.size(); } 1645 1646 /// \returns the number of lanes. 1647 unsigned getNumLanes() const { return OpsVec[0].size(); } 1648 1649 /// \returns the operand value at \p OpIdx and \p Lane. 1650 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1651 return getData(OpIdx, Lane).V; 1652 } 1653 1654 /// \returns true if the data structure is empty. 1655 bool empty() const { return OpsVec.empty(); } 1656 1657 /// Clears the data. 1658 void clear() { OpsVec.clear(); } 1659 1660 /// \Returns true if there are enough operands identical to \p Op to fill 1661 /// the whole vector. 1662 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1663 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1664 bool OpAPO = getData(OpIdx, Lane).APO; 1665 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1666 if (Ln == Lane) 1667 continue; 1668 // This is set to true if we found a candidate for broadcast at Lane. 1669 bool FoundCandidate = false; 1670 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1671 OperandData &Data = getData(OpI, Ln); 1672 if (Data.APO != OpAPO || Data.IsUsed) 1673 continue; 1674 if (Data.V == Op) { 1675 FoundCandidate = true; 1676 Data.IsUsed = true; 1677 break; 1678 } 1679 } 1680 if (!FoundCandidate) 1681 return false; 1682 } 1683 return true; 1684 } 1685 1686 public: 1687 /// Initialize with all the operands of the instruction vector \p RootVL. 1688 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1689 ScalarEvolution &SE, const BoUpSLP &R) 1690 : DL(DL), SE(SE), R(R) { 1691 // Append all the operands of RootVL. 1692 appendOperandsOfVL(RootVL); 1693 } 1694 1695 /// \Returns a value vector with the operands across all lanes for the 1696 /// opearnd at \p OpIdx. 1697 ValueList getVL(unsigned OpIdx) const { 1698 ValueList OpVL(OpsVec[OpIdx].size()); 1699 assert(OpsVec[OpIdx].size() == getNumLanes() && 1700 "Expected same num of lanes across all operands"); 1701 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1702 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1703 return OpVL; 1704 } 1705 1706 // Performs operand reordering for 2 or more operands. 1707 // The original operands are in OrigOps[OpIdx][Lane]. 1708 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1709 void reorder() { 1710 unsigned NumOperands = getNumOperands(); 1711 unsigned NumLanes = getNumLanes(); 1712 // Each operand has its own mode. We are using this mode to help us select 1713 // the instructions for each lane, so that they match best with the ones 1714 // we have selected so far. 1715 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1716 1717 // This is a greedy single-pass algorithm. We are going over each lane 1718 // once and deciding on the best order right away with no back-tracking. 1719 // However, in order to increase its effectiveness, we start with the lane 1720 // that has operands that can move the least. For example, given the 1721 // following lanes: 1722 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1723 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1724 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1725 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1726 // we will start at Lane 1, since the operands of the subtraction cannot 1727 // be reordered. Then we will visit the rest of the lanes in a circular 1728 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1729 1730 // Find the first lane that we will start our search from. 1731 unsigned FirstLane = getBestLaneToStartReordering(); 1732 1733 // Initialize the modes. 1734 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1735 Value *OpLane0 = getValue(OpIdx, FirstLane); 1736 // Keep track if we have instructions with all the same opcode on one 1737 // side. 1738 if (isa<LoadInst>(OpLane0)) 1739 ReorderingModes[OpIdx] = ReorderingMode::Load; 1740 else if (isa<Instruction>(OpLane0)) { 1741 // Check if OpLane0 should be broadcast. 1742 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1743 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1744 else 1745 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1746 } 1747 else if (isa<Constant>(OpLane0)) 1748 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1749 else if (isa<Argument>(OpLane0)) 1750 // Our best hope is a Splat. It may save some cost in some cases. 1751 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1752 else 1753 // NOTE: This should be unreachable. 1754 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1755 } 1756 1757 // Check that we don't have same operands. No need to reorder if operands 1758 // are just perfect diamond or shuffled diamond match. Do not do it only 1759 // for possible broadcasts or non-power of 2 number of scalars (just for 1760 // now). 1761 auto &&SkipReordering = [this]() { 1762 SmallPtrSet<Value *, 4> UniqueValues; 1763 ArrayRef<OperandData> Op0 = OpsVec.front(); 1764 for (const OperandData &Data : Op0) 1765 UniqueValues.insert(Data.V); 1766 for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) { 1767 if (any_of(Op, [&UniqueValues](const OperandData &Data) { 1768 return !UniqueValues.contains(Data.V); 1769 })) 1770 return false; 1771 } 1772 // TODO: Check if we can remove a check for non-power-2 number of 1773 // scalars after full support of non-power-2 vectorization. 1774 return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size()); 1775 }; 1776 1777 // If the initial strategy fails for any of the operand indexes, then we 1778 // perform reordering again in a second pass. This helps avoid assigning 1779 // high priority to the failed strategy, and should improve reordering for 1780 // the non-failed operand indexes. 1781 for (int Pass = 0; Pass != 2; ++Pass) { 1782 // Check if no need to reorder operands since they're are perfect or 1783 // shuffled diamond match. 1784 // Need to to do it to avoid extra external use cost counting for 1785 // shuffled matches, which may cause regressions. 1786 if (SkipReordering()) 1787 break; 1788 // Skip the second pass if the first pass did not fail. 1789 bool StrategyFailed = false; 1790 // Mark all operand data as free to use. 1791 clearUsed(); 1792 // We keep the original operand order for the FirstLane, so reorder the 1793 // rest of the lanes. We are visiting the nodes in a circular fashion, 1794 // using FirstLane as the center point and increasing the radius 1795 // distance. 1796 SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands); 1797 for (unsigned I = 0; I < NumOperands; ++I) 1798 MainAltOps[I].push_back(getData(I, FirstLane).V); 1799 1800 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1801 // Visit the lane on the right and then the lane on the left. 1802 for (int Direction : {+1, -1}) { 1803 int Lane = FirstLane + Direction * Distance; 1804 if (Lane < 0 || Lane >= (int)NumLanes) 1805 continue; 1806 int LastLane = Lane - Direction; 1807 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1808 "Out of bounds"); 1809 // Look for a good match for each operand. 1810 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1811 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1812 Optional<unsigned> BestIdx = getBestOperand( 1813 OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]); 1814 // By not selecting a value, we allow the operands that follow to 1815 // select a better matching value. We will get a non-null value in 1816 // the next run of getBestOperand(). 1817 if (BestIdx) { 1818 // Swap the current operand with the one returned by 1819 // getBestOperand(). 1820 swap(OpIdx, BestIdx.getValue(), Lane); 1821 } else { 1822 // We failed to find a best operand, set mode to 'Failed'. 1823 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1824 // Enable the second pass. 1825 StrategyFailed = true; 1826 } 1827 // Try to get the alternate opcode and follow it during analysis. 1828 if (MainAltOps[OpIdx].size() != 2) { 1829 OperandData &AltOp = getData(OpIdx, Lane); 1830 InstructionsState OpS = 1831 getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V}); 1832 if (OpS.getOpcode() && OpS.isAltShuffle()) 1833 MainAltOps[OpIdx].push_back(AltOp.V); 1834 } 1835 } 1836 } 1837 } 1838 // Skip second pass if the strategy did not fail. 1839 if (!StrategyFailed) 1840 break; 1841 } 1842 } 1843 1844 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1845 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1846 switch (RMode) { 1847 case ReorderingMode::Load: 1848 return "Load"; 1849 case ReorderingMode::Opcode: 1850 return "Opcode"; 1851 case ReorderingMode::Constant: 1852 return "Constant"; 1853 case ReorderingMode::Splat: 1854 return "Splat"; 1855 case ReorderingMode::Failed: 1856 return "Failed"; 1857 } 1858 llvm_unreachable("Unimplemented Reordering Type"); 1859 } 1860 1861 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1862 raw_ostream &OS) { 1863 return OS << getModeStr(RMode); 1864 } 1865 1866 /// Debug print. 1867 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1868 printMode(RMode, dbgs()); 1869 } 1870 1871 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1872 return printMode(RMode, OS); 1873 } 1874 1875 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1876 const unsigned Indent = 2; 1877 unsigned Cnt = 0; 1878 for (const OperandDataVec &OpDataVec : OpsVec) { 1879 OS << "Operand " << Cnt++ << "\n"; 1880 for (const OperandData &OpData : OpDataVec) { 1881 OS.indent(Indent) << "{"; 1882 if (Value *V = OpData.V) 1883 OS << *V; 1884 else 1885 OS << "null"; 1886 OS << ", APO:" << OpData.APO << "}\n"; 1887 } 1888 OS << "\n"; 1889 } 1890 return OS; 1891 } 1892 1893 /// Debug print. 1894 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1895 #endif 1896 }; 1897 1898 /// Checks if the instruction is marked for deletion. 1899 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1900 1901 /// Marks values operands for later deletion by replacing them with Undefs. 1902 void eraseInstructions(ArrayRef<Value *> AV); 1903 1904 ~BoUpSLP(); 1905 1906 private: 1907 /// Check if the operands on the edges \p Edges of the \p UserTE allows 1908 /// reordering (i.e. the operands can be reordered because they have only one 1909 /// user and reordarable). 1910 /// \param NonVectorized List of all gather nodes that require reordering 1911 /// (e.g., gather of extractlements or partially vectorizable loads). 1912 /// \param GatherOps List of gather operand nodes for \p UserTE that require 1913 /// reordering, subset of \p NonVectorized. 1914 bool 1915 canReorderOperands(TreeEntry *UserTE, 1916 SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 1917 ArrayRef<TreeEntry *> ReorderableGathers, 1918 SmallVectorImpl<TreeEntry *> &GatherOps); 1919 1920 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 1921 /// if any. If it is not vectorized (gather node), returns nullptr. 1922 TreeEntry *getVectorizedOperand(TreeEntry *UserTE, unsigned OpIdx) { 1923 ArrayRef<Value *> VL = UserTE->getOperand(OpIdx); 1924 TreeEntry *TE = nullptr; 1925 const auto *It = find_if(VL, [this, &TE](Value *V) { 1926 TE = getTreeEntry(V); 1927 return TE; 1928 }); 1929 if (It != VL.end() && TE->isSame(VL)) 1930 return TE; 1931 return nullptr; 1932 } 1933 1934 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 1935 /// if any. If it is not vectorized (gather node), returns nullptr. 1936 const TreeEntry *getVectorizedOperand(const TreeEntry *UserTE, 1937 unsigned OpIdx) const { 1938 return const_cast<BoUpSLP *>(this)->getVectorizedOperand( 1939 const_cast<TreeEntry *>(UserTE), OpIdx); 1940 } 1941 1942 /// Checks if all users of \p I are the part of the vectorization tree. 1943 bool areAllUsersVectorized(Instruction *I, 1944 ArrayRef<Value *> VectorizedVals) const; 1945 1946 /// \returns the cost of the vectorizable entry. 1947 InstructionCost getEntryCost(const TreeEntry *E, 1948 ArrayRef<Value *> VectorizedVals); 1949 1950 /// This is the recursive part of buildTree. 1951 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1952 const EdgeInfo &EI); 1953 1954 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1955 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1956 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1957 /// returns false, setting \p CurrentOrder to either an empty vector or a 1958 /// non-identity permutation that allows to reuse extract instructions. 1959 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1960 SmallVectorImpl<unsigned> &CurrentOrder) const; 1961 1962 /// Vectorize a single entry in the tree. 1963 Value *vectorizeTree(TreeEntry *E); 1964 1965 /// Vectorize a single entry in the tree, starting in \p VL. 1966 Value *vectorizeTree(ArrayRef<Value *> VL); 1967 1968 /// Create a new vector from a list of scalar values. Produces a sequence 1969 /// which exploits values reused across lanes, and arranges the inserts 1970 /// for ease of later optimization. 1971 Value *createBuildVector(ArrayRef<Value *> VL); 1972 1973 /// \returns the scalarization cost for this type. Scalarization in this 1974 /// context means the creation of vectors from a group of scalars. If \p 1975 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 1976 /// vector elements. 1977 InstructionCost getGatherCost(FixedVectorType *Ty, 1978 const APInt &ShuffledIndices, 1979 bool NeedToShuffle) const; 1980 1981 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 1982 /// tree entries. 1983 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 1984 /// previous tree entries. \p Mask is filled with the shuffle mask. 1985 Optional<TargetTransformInfo::ShuffleKind> 1986 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 1987 SmallVectorImpl<const TreeEntry *> &Entries); 1988 1989 /// \returns the scalarization cost for this list of values. Assuming that 1990 /// this subtree gets vectorized, we may need to extract the values from the 1991 /// roots. This method calculates the cost of extracting the values. 1992 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1993 1994 /// Set the Builder insert point to one after the last instruction in 1995 /// the bundle 1996 void setInsertPointAfterBundle(const TreeEntry *E); 1997 1998 /// \returns a vector from a collection of scalars in \p VL. 1999 Value *gather(ArrayRef<Value *> VL); 2000 2001 /// \returns whether the VectorizableTree is fully vectorizable and will 2002 /// be beneficial even the tree height is tiny. 2003 bool isFullyVectorizableTinyTree(bool ForReduction) const; 2004 2005 /// Reorder commutative or alt operands to get better probability of 2006 /// generating vectorized code. 2007 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 2008 SmallVectorImpl<Value *> &Left, 2009 SmallVectorImpl<Value *> &Right, 2010 const DataLayout &DL, 2011 ScalarEvolution &SE, 2012 const BoUpSLP &R); 2013 struct TreeEntry { 2014 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 2015 TreeEntry(VecTreeTy &Container) : Container(Container) {} 2016 2017 /// \returns true if the scalars in VL are equal to this entry. 2018 bool isSame(ArrayRef<Value *> VL) const { 2019 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 2020 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 2021 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 2022 return VL.size() == Mask.size() && 2023 std::equal(VL.begin(), VL.end(), Mask.begin(), 2024 [Scalars](Value *V, int Idx) { 2025 return (isa<UndefValue>(V) && 2026 Idx == UndefMaskElem) || 2027 (Idx != UndefMaskElem && V == Scalars[Idx]); 2028 }); 2029 }; 2030 if (!ReorderIndices.empty()) { 2031 // TODO: implement matching if the nodes are just reordered, still can 2032 // treat the vector as the same if the list of scalars matches VL 2033 // directly, without reordering. 2034 SmallVector<int> Mask; 2035 inversePermutation(ReorderIndices, Mask); 2036 if (VL.size() == Scalars.size()) 2037 return IsSame(Scalars, Mask); 2038 if (VL.size() == ReuseShuffleIndices.size()) { 2039 ::addMask(Mask, ReuseShuffleIndices); 2040 return IsSame(Scalars, Mask); 2041 } 2042 return false; 2043 } 2044 return IsSame(Scalars, ReuseShuffleIndices); 2045 } 2046 2047 /// \returns true if current entry has same operands as \p TE. 2048 bool hasEqualOperands(const TreeEntry &TE) const { 2049 if (TE.getNumOperands() != getNumOperands()) 2050 return false; 2051 SmallBitVector Used(getNumOperands()); 2052 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 2053 unsigned PrevCount = Used.count(); 2054 for (unsigned K = 0; K < E; ++K) { 2055 if (Used.test(K)) 2056 continue; 2057 if (getOperand(K) == TE.getOperand(I)) { 2058 Used.set(K); 2059 break; 2060 } 2061 } 2062 // Check if we actually found the matching operand. 2063 if (PrevCount == Used.count()) 2064 return false; 2065 } 2066 return true; 2067 } 2068 2069 /// \return Final vectorization factor for the node. Defined by the total 2070 /// number of vectorized scalars, including those, used several times in the 2071 /// entry and counted in the \a ReuseShuffleIndices, if any. 2072 unsigned getVectorFactor() const { 2073 if (!ReuseShuffleIndices.empty()) 2074 return ReuseShuffleIndices.size(); 2075 return Scalars.size(); 2076 }; 2077 2078 /// A vector of scalars. 2079 ValueList Scalars; 2080 2081 /// The Scalars are vectorized into this value. It is initialized to Null. 2082 Value *VectorizedValue = nullptr; 2083 2084 /// Do we need to gather this sequence or vectorize it 2085 /// (either with vector instruction or with scatter/gather 2086 /// intrinsics for store/load)? 2087 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 2088 EntryState State; 2089 2090 /// Does this sequence require some shuffling? 2091 SmallVector<int, 4> ReuseShuffleIndices; 2092 2093 /// Does this entry require reordering? 2094 SmallVector<unsigned, 4> ReorderIndices; 2095 2096 /// Points back to the VectorizableTree. 2097 /// 2098 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 2099 /// to be a pointer and needs to be able to initialize the child iterator. 2100 /// Thus we need a reference back to the container to translate the indices 2101 /// to entries. 2102 VecTreeTy &Container; 2103 2104 /// The TreeEntry index containing the user of this entry. We can actually 2105 /// have multiple users so the data structure is not truly a tree. 2106 SmallVector<EdgeInfo, 1> UserTreeIndices; 2107 2108 /// The index of this treeEntry in VectorizableTree. 2109 int Idx = -1; 2110 2111 private: 2112 /// The operands of each instruction in each lane Operands[op_index][lane]. 2113 /// Note: This helps avoid the replication of the code that performs the 2114 /// reordering of operands during buildTree_rec() and vectorizeTree(). 2115 SmallVector<ValueList, 2> Operands; 2116 2117 /// The main/alternate instruction. 2118 Instruction *MainOp = nullptr; 2119 Instruction *AltOp = nullptr; 2120 2121 public: 2122 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 2123 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 2124 if (Operands.size() < OpIdx + 1) 2125 Operands.resize(OpIdx + 1); 2126 assert(Operands[OpIdx].empty() && "Already resized?"); 2127 assert(OpVL.size() <= Scalars.size() && 2128 "Number of operands is greater than the number of scalars."); 2129 Operands[OpIdx].resize(OpVL.size()); 2130 copy(OpVL, Operands[OpIdx].begin()); 2131 } 2132 2133 /// Set the operands of this bundle in their original order. 2134 void setOperandsInOrder() { 2135 assert(Operands.empty() && "Already initialized?"); 2136 auto *I0 = cast<Instruction>(Scalars[0]); 2137 Operands.resize(I0->getNumOperands()); 2138 unsigned NumLanes = Scalars.size(); 2139 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 2140 OpIdx != NumOperands; ++OpIdx) { 2141 Operands[OpIdx].resize(NumLanes); 2142 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 2143 auto *I = cast<Instruction>(Scalars[Lane]); 2144 assert(I->getNumOperands() == NumOperands && 2145 "Expected same number of operands"); 2146 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 2147 } 2148 } 2149 } 2150 2151 /// Reorders operands of the node to the given mask \p Mask. 2152 void reorderOperands(ArrayRef<int> Mask) { 2153 for (ValueList &Operand : Operands) 2154 reorderScalars(Operand, Mask); 2155 } 2156 2157 /// \returns the \p OpIdx operand of this TreeEntry. 2158 ValueList &getOperand(unsigned OpIdx) { 2159 assert(OpIdx < Operands.size() && "Off bounds"); 2160 return Operands[OpIdx]; 2161 } 2162 2163 /// \returns the \p OpIdx operand of this TreeEntry. 2164 ArrayRef<Value *> getOperand(unsigned OpIdx) const { 2165 assert(OpIdx < Operands.size() && "Off bounds"); 2166 return Operands[OpIdx]; 2167 } 2168 2169 /// \returns the number of operands. 2170 unsigned getNumOperands() const { return Operands.size(); } 2171 2172 /// \return the single \p OpIdx operand. 2173 Value *getSingleOperand(unsigned OpIdx) const { 2174 assert(OpIdx < Operands.size() && "Off bounds"); 2175 assert(!Operands[OpIdx].empty() && "No operand available"); 2176 return Operands[OpIdx][0]; 2177 } 2178 2179 /// Some of the instructions in the list have alternate opcodes. 2180 bool isAltShuffle() const { return MainOp != AltOp; } 2181 2182 bool isOpcodeOrAlt(Instruction *I) const { 2183 unsigned CheckedOpcode = I->getOpcode(); 2184 return (getOpcode() == CheckedOpcode || 2185 getAltOpcode() == CheckedOpcode); 2186 } 2187 2188 /// Chooses the correct key for scheduling data. If \p Op has the same (or 2189 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 2190 /// \p OpValue. 2191 Value *isOneOf(Value *Op) const { 2192 auto *I = dyn_cast<Instruction>(Op); 2193 if (I && isOpcodeOrAlt(I)) 2194 return Op; 2195 return MainOp; 2196 } 2197 2198 void setOperations(const InstructionsState &S) { 2199 MainOp = S.MainOp; 2200 AltOp = S.AltOp; 2201 } 2202 2203 Instruction *getMainOp() const { 2204 return MainOp; 2205 } 2206 2207 Instruction *getAltOp() const { 2208 return AltOp; 2209 } 2210 2211 /// The main/alternate opcodes for the list of instructions. 2212 unsigned getOpcode() const { 2213 return MainOp ? MainOp->getOpcode() : 0; 2214 } 2215 2216 unsigned getAltOpcode() const { 2217 return AltOp ? AltOp->getOpcode() : 0; 2218 } 2219 2220 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 2221 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 2222 int findLaneForValue(Value *V) const { 2223 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2224 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2225 if (!ReorderIndices.empty()) 2226 FoundLane = ReorderIndices[FoundLane]; 2227 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2228 if (!ReuseShuffleIndices.empty()) { 2229 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2230 find(ReuseShuffleIndices, FoundLane)); 2231 } 2232 return FoundLane; 2233 } 2234 2235 #ifndef NDEBUG 2236 /// Debug printer. 2237 LLVM_DUMP_METHOD void dump() const { 2238 dbgs() << Idx << ".\n"; 2239 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 2240 dbgs() << "Operand " << OpI << ":\n"; 2241 for (const Value *V : Operands[OpI]) 2242 dbgs().indent(2) << *V << "\n"; 2243 } 2244 dbgs() << "Scalars: \n"; 2245 for (Value *V : Scalars) 2246 dbgs().indent(2) << *V << "\n"; 2247 dbgs() << "State: "; 2248 switch (State) { 2249 case Vectorize: 2250 dbgs() << "Vectorize\n"; 2251 break; 2252 case ScatterVectorize: 2253 dbgs() << "ScatterVectorize\n"; 2254 break; 2255 case NeedToGather: 2256 dbgs() << "NeedToGather\n"; 2257 break; 2258 } 2259 dbgs() << "MainOp: "; 2260 if (MainOp) 2261 dbgs() << *MainOp << "\n"; 2262 else 2263 dbgs() << "NULL\n"; 2264 dbgs() << "AltOp: "; 2265 if (AltOp) 2266 dbgs() << *AltOp << "\n"; 2267 else 2268 dbgs() << "NULL\n"; 2269 dbgs() << "VectorizedValue: "; 2270 if (VectorizedValue) 2271 dbgs() << *VectorizedValue << "\n"; 2272 else 2273 dbgs() << "NULL\n"; 2274 dbgs() << "ReuseShuffleIndices: "; 2275 if (ReuseShuffleIndices.empty()) 2276 dbgs() << "Empty"; 2277 else 2278 for (int ReuseIdx : ReuseShuffleIndices) 2279 dbgs() << ReuseIdx << ", "; 2280 dbgs() << "\n"; 2281 dbgs() << "ReorderIndices: "; 2282 for (unsigned ReorderIdx : ReorderIndices) 2283 dbgs() << ReorderIdx << ", "; 2284 dbgs() << "\n"; 2285 dbgs() << "UserTreeIndices: "; 2286 for (const auto &EInfo : UserTreeIndices) 2287 dbgs() << EInfo << ", "; 2288 dbgs() << "\n"; 2289 } 2290 #endif 2291 }; 2292 2293 #ifndef NDEBUG 2294 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 2295 InstructionCost VecCost, 2296 InstructionCost ScalarCost) const { 2297 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 2298 dbgs() << "SLP: Costs:\n"; 2299 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 2300 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 2301 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 2302 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 2303 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 2304 } 2305 #endif 2306 2307 /// Create a new VectorizableTree entry. 2308 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 2309 const InstructionsState &S, 2310 const EdgeInfo &UserTreeIdx, 2311 ArrayRef<int> ReuseShuffleIndices = None, 2312 ArrayRef<unsigned> ReorderIndices = None) { 2313 TreeEntry::EntryState EntryState = 2314 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 2315 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 2316 ReuseShuffleIndices, ReorderIndices); 2317 } 2318 2319 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 2320 TreeEntry::EntryState EntryState, 2321 Optional<ScheduleData *> Bundle, 2322 const InstructionsState &S, 2323 const EdgeInfo &UserTreeIdx, 2324 ArrayRef<int> ReuseShuffleIndices = None, 2325 ArrayRef<unsigned> ReorderIndices = None) { 2326 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 2327 (Bundle && EntryState != TreeEntry::NeedToGather)) && 2328 "Need to vectorize gather entry?"); 2329 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 2330 TreeEntry *Last = VectorizableTree.back().get(); 2331 Last->Idx = VectorizableTree.size() - 1; 2332 Last->State = EntryState; 2333 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 2334 ReuseShuffleIndices.end()); 2335 if (ReorderIndices.empty()) { 2336 Last->Scalars.assign(VL.begin(), VL.end()); 2337 Last->setOperations(S); 2338 } else { 2339 // Reorder scalars and build final mask. 2340 Last->Scalars.assign(VL.size(), nullptr); 2341 transform(ReorderIndices, Last->Scalars.begin(), 2342 [VL](unsigned Idx) -> Value * { 2343 if (Idx >= VL.size()) 2344 return UndefValue::get(VL.front()->getType()); 2345 return VL[Idx]; 2346 }); 2347 InstructionsState S = getSameOpcode(Last->Scalars); 2348 Last->setOperations(S); 2349 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 2350 } 2351 if (Last->State != TreeEntry::NeedToGather) { 2352 for (Value *V : VL) { 2353 assert(!getTreeEntry(V) && "Scalar already in tree!"); 2354 ScalarToTreeEntry[V] = Last; 2355 } 2356 // Update the scheduler bundle to point to this TreeEntry. 2357 unsigned Lane = 0; 2358 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 2359 BundleMember = BundleMember->NextInBundle) { 2360 BundleMember->TE = Last; 2361 BundleMember->Lane = Lane; 2362 ++Lane; 2363 } 2364 assert((!Bundle.getValue() || Lane == VL.size()) && 2365 "Bundle and VL out of sync"); 2366 } else { 2367 MustGather.insert(VL.begin(), VL.end()); 2368 } 2369 2370 if (UserTreeIdx.UserTE) 2371 Last->UserTreeIndices.push_back(UserTreeIdx); 2372 2373 return Last; 2374 } 2375 2376 /// -- Vectorization State -- 2377 /// Holds all of the tree entries. 2378 TreeEntry::VecTreeTy VectorizableTree; 2379 2380 #ifndef NDEBUG 2381 /// Debug printer. 2382 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 2383 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 2384 VectorizableTree[Id]->dump(); 2385 dbgs() << "\n"; 2386 } 2387 } 2388 #endif 2389 2390 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2391 2392 const TreeEntry *getTreeEntry(Value *V) const { 2393 return ScalarToTreeEntry.lookup(V); 2394 } 2395 2396 /// Maps a specific scalar to its tree entry. 2397 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2398 2399 /// Maps a value to the proposed vectorizable size. 2400 SmallDenseMap<Value *, unsigned> InstrElementSize; 2401 2402 /// A list of scalars that we found that we need to keep as scalars. 2403 ValueSet MustGather; 2404 2405 /// This POD struct describes one external user in the vectorized tree. 2406 struct ExternalUser { 2407 ExternalUser(Value *S, llvm::User *U, int L) 2408 : Scalar(S), User(U), Lane(L) {} 2409 2410 // Which scalar in our function. 2411 Value *Scalar; 2412 2413 // Which user that uses the scalar. 2414 llvm::User *User; 2415 2416 // Which lane does the scalar belong to. 2417 int Lane; 2418 }; 2419 using UserList = SmallVector<ExternalUser, 16>; 2420 2421 /// Checks if two instructions may access the same memory. 2422 /// 2423 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2424 /// is invariant in the calling loop. 2425 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2426 Instruction *Inst2) { 2427 // First check if the result is already in the cache. 2428 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2429 Optional<bool> &result = AliasCache[key]; 2430 if (result.hasValue()) { 2431 return result.getValue(); 2432 } 2433 bool aliased = true; 2434 if (Loc1.Ptr && isSimple(Inst1)) 2435 aliased = isModOrRefSet(BatchAA.getModRefInfo(Inst2, Loc1)); 2436 // Store the result in the cache. 2437 result = aliased; 2438 return aliased; 2439 } 2440 2441 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2442 2443 /// Cache for alias results. 2444 /// TODO: consider moving this to the AliasAnalysis itself. 2445 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2446 2447 // Cache for pointerMayBeCaptured calls inside AA. This is preserved 2448 // globally through SLP because we don't perform any action which 2449 // invalidates capture results. 2450 BatchAAResults BatchAA; 2451 2452 /// Removes an instruction from its block and eventually deletes it. 2453 /// It's like Instruction::eraseFromParent() except that the actual deletion 2454 /// is delayed until BoUpSLP is destructed. 2455 /// This is required to ensure that there are no incorrect collisions in the 2456 /// AliasCache, which can happen if a new instruction is allocated at the 2457 /// same address as a previously deleted instruction. 2458 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 2459 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 2460 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 2461 } 2462 2463 /// Temporary store for deleted instructions. Instructions will be deleted 2464 /// eventually when the BoUpSLP is destructed. 2465 DenseMap<Instruction *, bool> DeletedInstructions; 2466 2467 /// A list of values that need to extracted out of the tree. 2468 /// This list holds pairs of (Internal Scalar : External User). External User 2469 /// can be nullptr, it means that this Internal Scalar will be used later, 2470 /// after vectorization. 2471 UserList ExternalUses; 2472 2473 /// Values used only by @llvm.assume calls. 2474 SmallPtrSet<const Value *, 32> EphValues; 2475 2476 /// Holds all of the instructions that we gathered. 2477 SetVector<Instruction *> GatherShuffleSeq; 2478 2479 /// A list of blocks that we are going to CSE. 2480 SetVector<BasicBlock *> CSEBlocks; 2481 2482 /// Contains all scheduling relevant data for an instruction. 2483 /// A ScheduleData either represents a single instruction or a member of an 2484 /// instruction bundle (= a group of instructions which is combined into a 2485 /// vector instruction). 2486 struct ScheduleData { 2487 // The initial value for the dependency counters. It means that the 2488 // dependencies are not calculated yet. 2489 enum { InvalidDeps = -1 }; 2490 2491 ScheduleData() = default; 2492 2493 void init(int BlockSchedulingRegionID, Value *OpVal) { 2494 FirstInBundle = this; 2495 NextInBundle = nullptr; 2496 NextLoadStore = nullptr; 2497 IsScheduled = false; 2498 SchedulingRegionID = BlockSchedulingRegionID; 2499 clearDependencies(); 2500 OpValue = OpVal; 2501 TE = nullptr; 2502 Lane = -1; 2503 } 2504 2505 /// Verify basic self consistency properties 2506 void verify() { 2507 if (hasValidDependencies()) { 2508 assert(UnscheduledDeps <= Dependencies && "invariant"); 2509 } else { 2510 assert(UnscheduledDeps == Dependencies && "invariant"); 2511 } 2512 2513 if (IsScheduled) { 2514 assert(isSchedulingEntity() && 2515 "unexpected scheduled state"); 2516 for (const ScheduleData *BundleMember = this; BundleMember; 2517 BundleMember = BundleMember->NextInBundle) { 2518 assert(BundleMember->hasValidDependencies() && 2519 BundleMember->UnscheduledDeps == 0 && 2520 "unexpected scheduled state"); 2521 assert((BundleMember == this || !BundleMember->IsScheduled) && 2522 "only bundle is marked scheduled"); 2523 } 2524 } 2525 2526 assert(Inst->getParent() == FirstInBundle->Inst->getParent() && 2527 "all bundle members must be in same basic block"); 2528 } 2529 2530 /// Returns true if the dependency information has been calculated. 2531 /// Note that depenendency validity can vary between instructions within 2532 /// a single bundle. 2533 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2534 2535 /// Returns true for single instructions and for bundle representatives 2536 /// (= the head of a bundle). 2537 bool isSchedulingEntity() const { return FirstInBundle == this; } 2538 2539 /// Returns true if it represents an instruction bundle and not only a 2540 /// single instruction. 2541 bool isPartOfBundle() const { 2542 return NextInBundle != nullptr || FirstInBundle != this; 2543 } 2544 2545 /// Returns true if it is ready for scheduling, i.e. it has no more 2546 /// unscheduled depending instructions/bundles. 2547 bool isReady() const { 2548 assert(isSchedulingEntity() && 2549 "can't consider non-scheduling entity for ready list"); 2550 return unscheduledDepsInBundle() == 0 && !IsScheduled; 2551 } 2552 2553 /// Modifies the number of unscheduled dependencies for this instruction, 2554 /// and returns the number of remaining dependencies for the containing 2555 /// bundle. 2556 int incrementUnscheduledDeps(int Incr) { 2557 assert(hasValidDependencies() && 2558 "increment of unscheduled deps would be meaningless"); 2559 UnscheduledDeps += Incr; 2560 return FirstInBundle->unscheduledDepsInBundle(); 2561 } 2562 2563 /// Sets the number of unscheduled dependencies to the number of 2564 /// dependencies. 2565 void resetUnscheduledDeps() { 2566 UnscheduledDeps = Dependencies; 2567 } 2568 2569 /// Clears all dependency information. 2570 void clearDependencies() { 2571 Dependencies = InvalidDeps; 2572 resetUnscheduledDeps(); 2573 MemoryDependencies.clear(); 2574 } 2575 2576 int unscheduledDepsInBundle() const { 2577 assert(isSchedulingEntity() && "only meaningful on the bundle"); 2578 int Sum = 0; 2579 for (const ScheduleData *BundleMember = this; BundleMember; 2580 BundleMember = BundleMember->NextInBundle) { 2581 if (BundleMember->UnscheduledDeps == InvalidDeps) 2582 return InvalidDeps; 2583 Sum += BundleMember->UnscheduledDeps; 2584 } 2585 return Sum; 2586 } 2587 2588 void dump(raw_ostream &os) const { 2589 if (!isSchedulingEntity()) { 2590 os << "/ " << *Inst; 2591 } else if (NextInBundle) { 2592 os << '[' << *Inst; 2593 ScheduleData *SD = NextInBundle; 2594 while (SD) { 2595 os << ';' << *SD->Inst; 2596 SD = SD->NextInBundle; 2597 } 2598 os << ']'; 2599 } else { 2600 os << *Inst; 2601 } 2602 } 2603 2604 Instruction *Inst = nullptr; 2605 2606 /// Opcode of the current instruction in the schedule data. 2607 Value *OpValue = nullptr; 2608 2609 /// The TreeEntry that this instruction corresponds to. 2610 TreeEntry *TE = nullptr; 2611 2612 /// Points to the head in an instruction bundle (and always to this for 2613 /// single instructions). 2614 ScheduleData *FirstInBundle = nullptr; 2615 2616 /// Single linked list of all instructions in a bundle. Null if it is a 2617 /// single instruction. 2618 ScheduleData *NextInBundle = nullptr; 2619 2620 /// Single linked list of all memory instructions (e.g. load, store, call) 2621 /// in the block - until the end of the scheduling region. 2622 ScheduleData *NextLoadStore = nullptr; 2623 2624 /// The dependent memory instructions. 2625 /// This list is derived on demand in calculateDependencies(). 2626 SmallVector<ScheduleData *, 4> MemoryDependencies; 2627 2628 /// This ScheduleData is in the current scheduling region if this matches 2629 /// the current SchedulingRegionID of BlockScheduling. 2630 int SchedulingRegionID = 0; 2631 2632 /// Used for getting a "good" final ordering of instructions. 2633 int SchedulingPriority = 0; 2634 2635 /// The number of dependencies. Constitutes of the number of users of the 2636 /// instruction plus the number of dependent memory instructions (if any). 2637 /// This value is calculated on demand. 2638 /// If InvalidDeps, the number of dependencies is not calculated yet. 2639 int Dependencies = InvalidDeps; 2640 2641 /// The number of dependencies minus the number of dependencies of scheduled 2642 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2643 /// for scheduling. 2644 /// Note that this is negative as long as Dependencies is not calculated. 2645 int UnscheduledDeps = InvalidDeps; 2646 2647 /// The lane of this node in the TreeEntry. 2648 int Lane = -1; 2649 2650 /// True if this instruction is scheduled (or considered as scheduled in the 2651 /// dry-run). 2652 bool IsScheduled = false; 2653 }; 2654 2655 #ifndef NDEBUG 2656 friend inline raw_ostream &operator<<(raw_ostream &os, 2657 const BoUpSLP::ScheduleData &SD) { 2658 SD.dump(os); 2659 return os; 2660 } 2661 #endif 2662 2663 friend struct GraphTraits<BoUpSLP *>; 2664 friend struct DOTGraphTraits<BoUpSLP *>; 2665 2666 /// Contains all scheduling data for a basic block. 2667 struct BlockScheduling { 2668 BlockScheduling(BasicBlock *BB) 2669 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2670 2671 void clear() { 2672 ReadyInsts.clear(); 2673 ScheduleStart = nullptr; 2674 ScheduleEnd = nullptr; 2675 FirstLoadStoreInRegion = nullptr; 2676 LastLoadStoreInRegion = nullptr; 2677 2678 // Reduce the maximum schedule region size by the size of the 2679 // previous scheduling run. 2680 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2681 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2682 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2683 ScheduleRegionSize = 0; 2684 2685 // Make a new scheduling region, i.e. all existing ScheduleData is not 2686 // in the new region yet. 2687 ++SchedulingRegionID; 2688 } 2689 2690 ScheduleData *getScheduleData(Instruction *I) { 2691 if (BB != I->getParent()) 2692 // Avoid lookup if can't possibly be in map. 2693 return nullptr; 2694 ScheduleData *SD = ScheduleDataMap[I]; 2695 if (SD && isInSchedulingRegion(SD)) 2696 return SD; 2697 return nullptr; 2698 } 2699 2700 ScheduleData *getScheduleData(Value *V) { 2701 if (auto *I = dyn_cast<Instruction>(V)) 2702 return getScheduleData(I); 2703 return nullptr; 2704 } 2705 2706 ScheduleData *getScheduleData(Value *V, Value *Key) { 2707 if (V == Key) 2708 return getScheduleData(V); 2709 auto I = ExtraScheduleDataMap.find(V); 2710 if (I != ExtraScheduleDataMap.end()) { 2711 ScheduleData *SD = I->second[Key]; 2712 if (SD && isInSchedulingRegion(SD)) 2713 return SD; 2714 } 2715 return nullptr; 2716 } 2717 2718 bool isInSchedulingRegion(ScheduleData *SD) const { 2719 return SD->SchedulingRegionID == SchedulingRegionID; 2720 } 2721 2722 /// Marks an instruction as scheduled and puts all dependent ready 2723 /// instructions into the ready-list. 2724 template <typename ReadyListType> 2725 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2726 SD->IsScheduled = true; 2727 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2728 2729 for (ScheduleData *BundleMember = SD; BundleMember; 2730 BundleMember = BundleMember->NextInBundle) { 2731 if (BundleMember->Inst != BundleMember->OpValue) 2732 continue; 2733 2734 // Handle the def-use chain dependencies. 2735 2736 // Decrement the unscheduled counter and insert to ready list if ready. 2737 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2738 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2739 if (OpDef && OpDef->hasValidDependencies() && 2740 OpDef->incrementUnscheduledDeps(-1) == 0) { 2741 // There are no more unscheduled dependencies after 2742 // decrementing, so we can put the dependent instruction 2743 // into the ready list. 2744 ScheduleData *DepBundle = OpDef->FirstInBundle; 2745 assert(!DepBundle->IsScheduled && 2746 "already scheduled bundle gets ready"); 2747 ReadyList.insert(DepBundle); 2748 LLVM_DEBUG(dbgs() 2749 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2750 } 2751 }); 2752 }; 2753 2754 // If BundleMember is a vector bundle, its operands may have been 2755 // reordered during buildTree(). We therefore need to get its operands 2756 // through the TreeEntry. 2757 if (TreeEntry *TE = BundleMember->TE) { 2758 int Lane = BundleMember->Lane; 2759 assert(Lane >= 0 && "Lane not set"); 2760 2761 // Since vectorization tree is being built recursively this assertion 2762 // ensures that the tree entry has all operands set before reaching 2763 // this code. Couple of exceptions known at the moment are extracts 2764 // where their second (immediate) operand is not added. Since 2765 // immediates do not affect scheduler behavior this is considered 2766 // okay. 2767 auto *In = TE->getMainOp(); 2768 assert(In && 2769 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2770 In->getNumOperands() == TE->getNumOperands()) && 2771 "Missed TreeEntry operands?"); 2772 (void)In; // fake use to avoid build failure when assertions disabled 2773 2774 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2775 OpIdx != NumOperands; ++OpIdx) 2776 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2777 DecrUnsched(I); 2778 } else { 2779 // If BundleMember is a stand-alone instruction, no operand reordering 2780 // has taken place, so we directly access its operands. 2781 for (Use &U : BundleMember->Inst->operands()) 2782 if (auto *I = dyn_cast<Instruction>(U.get())) 2783 DecrUnsched(I); 2784 } 2785 // Handle the memory dependencies. 2786 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2787 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2788 // There are no more unscheduled dependencies after decrementing, 2789 // so we can put the dependent instruction into the ready list. 2790 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2791 assert(!DepBundle->IsScheduled && 2792 "already scheduled bundle gets ready"); 2793 ReadyList.insert(DepBundle); 2794 LLVM_DEBUG(dbgs() 2795 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2796 } 2797 } 2798 } 2799 } 2800 2801 /// Verify basic self consistency properties of the data structure. 2802 void verify() { 2803 if (!ScheduleStart) 2804 return; 2805 2806 assert(ScheduleStart->getParent() == ScheduleEnd->getParent() && 2807 ScheduleStart->comesBefore(ScheduleEnd) && 2808 "Not a valid scheduling region?"); 2809 2810 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2811 auto *SD = getScheduleData(I); 2812 assert(SD && "primary scheduledata must exist in window"); 2813 assert(isInSchedulingRegion(SD) && 2814 "primary schedule data not in window?"); 2815 assert(isInSchedulingRegion(SD->FirstInBundle) && 2816 "entire bundle in window!"); 2817 (void)SD; 2818 doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); }); 2819 } 2820 2821 for (auto *SD : ReadyInsts) { 2822 assert(SD->isSchedulingEntity() && SD->isReady() && 2823 "item in ready list not ready?"); 2824 (void)SD; 2825 } 2826 } 2827 2828 void doForAllOpcodes(Value *V, 2829 function_ref<void(ScheduleData *SD)> Action) { 2830 if (ScheduleData *SD = getScheduleData(V)) 2831 Action(SD); 2832 auto I = ExtraScheduleDataMap.find(V); 2833 if (I != ExtraScheduleDataMap.end()) 2834 for (auto &P : I->second) 2835 if (isInSchedulingRegion(P.second)) 2836 Action(P.second); 2837 } 2838 2839 /// Put all instructions into the ReadyList which are ready for scheduling. 2840 template <typename ReadyListType> 2841 void initialFillReadyList(ReadyListType &ReadyList) { 2842 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2843 doForAllOpcodes(I, [&](ScheduleData *SD) { 2844 if (SD->isSchedulingEntity() && SD->isReady()) { 2845 ReadyList.insert(SD); 2846 LLVM_DEBUG(dbgs() 2847 << "SLP: initially in ready list: " << *SD << "\n"); 2848 } 2849 }); 2850 } 2851 } 2852 2853 /// Build a bundle from the ScheduleData nodes corresponding to the 2854 /// scalar instruction for each lane. 2855 ScheduleData *buildBundle(ArrayRef<Value *> VL); 2856 2857 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2858 /// cyclic dependencies. This is only a dry-run, no instructions are 2859 /// actually moved at this stage. 2860 /// \returns the scheduling bundle. The returned Optional value is non-None 2861 /// if \p VL is allowed to be scheduled. 2862 Optional<ScheduleData *> 2863 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2864 const InstructionsState &S); 2865 2866 /// Un-bundles a group of instructions. 2867 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2868 2869 /// Allocates schedule data chunk. 2870 ScheduleData *allocateScheduleDataChunks(); 2871 2872 /// Extends the scheduling region so that V is inside the region. 2873 /// \returns true if the region size is within the limit. 2874 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2875 2876 /// Initialize the ScheduleData structures for new instructions in the 2877 /// scheduling region. 2878 void initScheduleData(Instruction *FromI, Instruction *ToI, 2879 ScheduleData *PrevLoadStore, 2880 ScheduleData *NextLoadStore); 2881 2882 /// Updates the dependency information of a bundle and of all instructions/ 2883 /// bundles which depend on the original bundle. 2884 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2885 BoUpSLP *SLP); 2886 2887 /// Sets all instruction in the scheduling region to un-scheduled. 2888 void resetSchedule(); 2889 2890 BasicBlock *BB; 2891 2892 /// Simple memory allocation for ScheduleData. 2893 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2894 2895 /// The size of a ScheduleData array in ScheduleDataChunks. 2896 int ChunkSize; 2897 2898 /// The allocator position in the current chunk, which is the last entry 2899 /// of ScheduleDataChunks. 2900 int ChunkPos; 2901 2902 /// Attaches ScheduleData to Instruction. 2903 /// Note that the mapping survives during all vectorization iterations, i.e. 2904 /// ScheduleData structures are recycled. 2905 DenseMap<Instruction *, ScheduleData *> ScheduleDataMap; 2906 2907 /// Attaches ScheduleData to Instruction with the leading key. 2908 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2909 ExtraScheduleDataMap; 2910 2911 /// The ready-list for scheduling (only used for the dry-run). 2912 SetVector<ScheduleData *> ReadyInsts; 2913 2914 /// The first instruction of the scheduling region. 2915 Instruction *ScheduleStart = nullptr; 2916 2917 /// The first instruction _after_ the scheduling region. 2918 Instruction *ScheduleEnd = nullptr; 2919 2920 /// The first memory accessing instruction in the scheduling region 2921 /// (can be null). 2922 ScheduleData *FirstLoadStoreInRegion = nullptr; 2923 2924 /// The last memory accessing instruction in the scheduling region 2925 /// (can be null). 2926 ScheduleData *LastLoadStoreInRegion = nullptr; 2927 2928 /// The current size of the scheduling region. 2929 int ScheduleRegionSize = 0; 2930 2931 /// The maximum size allowed for the scheduling region. 2932 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2933 2934 /// The ID of the scheduling region. For a new vectorization iteration this 2935 /// is incremented which "removes" all ScheduleData from the region. 2936 /// Make sure that the initial SchedulingRegionID is greater than the 2937 /// initial SchedulingRegionID in ScheduleData (which is 0). 2938 int SchedulingRegionID = 1; 2939 }; 2940 2941 /// Attaches the BlockScheduling structures to basic blocks. 2942 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2943 2944 /// Performs the "real" scheduling. Done before vectorization is actually 2945 /// performed in a basic block. 2946 void scheduleBlock(BlockScheduling *BS); 2947 2948 /// List of users to ignore during scheduling and that don't need extracting. 2949 ArrayRef<Value *> UserIgnoreList; 2950 2951 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2952 /// sorted SmallVectors of unsigned. 2953 struct OrdersTypeDenseMapInfo { 2954 static OrdersType getEmptyKey() { 2955 OrdersType V; 2956 V.push_back(~1U); 2957 return V; 2958 } 2959 2960 static OrdersType getTombstoneKey() { 2961 OrdersType V; 2962 V.push_back(~2U); 2963 return V; 2964 } 2965 2966 static unsigned getHashValue(const OrdersType &V) { 2967 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2968 } 2969 2970 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2971 return LHS == RHS; 2972 } 2973 }; 2974 2975 // Analysis and block reference. 2976 Function *F; 2977 ScalarEvolution *SE; 2978 TargetTransformInfo *TTI; 2979 TargetLibraryInfo *TLI; 2980 LoopInfo *LI; 2981 DominatorTree *DT; 2982 AssumptionCache *AC; 2983 DemandedBits *DB; 2984 const DataLayout *DL; 2985 OptimizationRemarkEmitter *ORE; 2986 2987 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2988 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2989 2990 /// Instruction builder to construct the vectorized tree. 2991 IRBuilder<> Builder; 2992 2993 /// A map of scalar integer values to the smallest bit width with which they 2994 /// can legally be represented. The values map to (width, signed) pairs, 2995 /// where "width" indicates the minimum bit width and "signed" is True if the 2996 /// value must be signed-extended, rather than zero-extended, back to its 2997 /// original width. 2998 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2999 }; 3000 3001 } // end namespace slpvectorizer 3002 3003 template <> struct GraphTraits<BoUpSLP *> { 3004 using TreeEntry = BoUpSLP::TreeEntry; 3005 3006 /// NodeRef has to be a pointer per the GraphWriter. 3007 using NodeRef = TreeEntry *; 3008 3009 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 3010 3011 /// Add the VectorizableTree to the index iterator to be able to return 3012 /// TreeEntry pointers. 3013 struct ChildIteratorType 3014 : public iterator_adaptor_base< 3015 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 3016 ContainerTy &VectorizableTree; 3017 3018 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 3019 ContainerTy &VT) 3020 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 3021 3022 NodeRef operator*() { return I->UserTE; } 3023 }; 3024 3025 static NodeRef getEntryNode(BoUpSLP &R) { 3026 return R.VectorizableTree[0].get(); 3027 } 3028 3029 static ChildIteratorType child_begin(NodeRef N) { 3030 return {N->UserTreeIndices.begin(), N->Container}; 3031 } 3032 3033 static ChildIteratorType child_end(NodeRef N) { 3034 return {N->UserTreeIndices.end(), N->Container}; 3035 } 3036 3037 /// For the node iterator we just need to turn the TreeEntry iterator into a 3038 /// TreeEntry* iterator so that it dereferences to NodeRef. 3039 class nodes_iterator { 3040 using ItTy = ContainerTy::iterator; 3041 ItTy It; 3042 3043 public: 3044 nodes_iterator(const ItTy &It2) : It(It2) {} 3045 NodeRef operator*() { return It->get(); } 3046 nodes_iterator operator++() { 3047 ++It; 3048 return *this; 3049 } 3050 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 3051 }; 3052 3053 static nodes_iterator nodes_begin(BoUpSLP *R) { 3054 return nodes_iterator(R->VectorizableTree.begin()); 3055 } 3056 3057 static nodes_iterator nodes_end(BoUpSLP *R) { 3058 return nodes_iterator(R->VectorizableTree.end()); 3059 } 3060 3061 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 3062 }; 3063 3064 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 3065 using TreeEntry = BoUpSLP::TreeEntry; 3066 3067 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3068 3069 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 3070 std::string Str; 3071 raw_string_ostream OS(Str); 3072 if (isSplat(Entry->Scalars)) 3073 OS << "<splat> "; 3074 for (auto V : Entry->Scalars) { 3075 OS << *V; 3076 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 3077 return EU.Scalar == V; 3078 })) 3079 OS << " <extract>"; 3080 OS << "\n"; 3081 } 3082 return Str; 3083 } 3084 3085 static std::string getNodeAttributes(const TreeEntry *Entry, 3086 const BoUpSLP *) { 3087 if (Entry->State == TreeEntry::NeedToGather) 3088 return "color=red"; 3089 return ""; 3090 } 3091 }; 3092 3093 } // end namespace llvm 3094 3095 BoUpSLP::~BoUpSLP() { 3096 for (const auto &Pair : DeletedInstructions) { 3097 // Replace operands of ignored instructions with Undefs in case if they were 3098 // marked for deletion. 3099 if (Pair.getSecond()) { 3100 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 3101 Pair.getFirst()->replaceAllUsesWith(Undef); 3102 } 3103 Pair.getFirst()->dropAllReferences(); 3104 } 3105 for (const auto &Pair : DeletedInstructions) { 3106 assert(Pair.getFirst()->use_empty() && 3107 "trying to erase instruction with users."); 3108 Pair.getFirst()->eraseFromParent(); 3109 } 3110 #ifdef EXPENSIVE_CHECKS 3111 // If we could guarantee that this call is not extremely slow, we could 3112 // remove the ifdef limitation (see PR47712). 3113 assert(!verifyFunction(*F, &dbgs())); 3114 #endif 3115 } 3116 3117 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 3118 for (auto *V : AV) { 3119 if (auto *I = dyn_cast<Instruction>(V)) 3120 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 3121 }; 3122 } 3123 3124 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 3125 /// contains original mask for the scalars reused in the node. Procedure 3126 /// transform this mask in accordance with the given \p Mask. 3127 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 3128 assert(!Mask.empty() && Reuses.size() == Mask.size() && 3129 "Expected non-empty mask."); 3130 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 3131 Prev.swap(Reuses); 3132 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 3133 if (Mask[I] != UndefMaskElem) 3134 Reuses[Mask[I]] = Prev[I]; 3135 } 3136 3137 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 3138 /// the original order of the scalars. Procedure transforms the provided order 3139 /// in accordance with the given \p Mask. If the resulting \p Order is just an 3140 /// identity order, \p Order is cleared. 3141 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 3142 assert(!Mask.empty() && "Expected non-empty mask."); 3143 SmallVector<int> MaskOrder; 3144 if (Order.empty()) { 3145 MaskOrder.resize(Mask.size()); 3146 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 3147 } else { 3148 inversePermutation(Order, MaskOrder); 3149 } 3150 reorderReuses(MaskOrder, Mask); 3151 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 3152 Order.clear(); 3153 return; 3154 } 3155 Order.assign(Mask.size(), Mask.size()); 3156 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 3157 if (MaskOrder[I] != UndefMaskElem) 3158 Order[MaskOrder[I]] = I; 3159 fixupOrderingIndices(Order); 3160 } 3161 3162 Optional<BoUpSLP::OrdersType> 3163 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 3164 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 3165 unsigned NumScalars = TE.Scalars.size(); 3166 OrdersType CurrentOrder(NumScalars, NumScalars); 3167 SmallVector<int> Positions; 3168 SmallBitVector UsedPositions(NumScalars); 3169 const TreeEntry *STE = nullptr; 3170 // Try to find all gathered scalars that are gets vectorized in other 3171 // vectorize node. Here we can have only one single tree vector node to 3172 // correctly identify order of the gathered scalars. 3173 for (unsigned I = 0; I < NumScalars; ++I) { 3174 Value *V = TE.Scalars[I]; 3175 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 3176 continue; 3177 if (const auto *LocalSTE = getTreeEntry(V)) { 3178 if (!STE) 3179 STE = LocalSTE; 3180 else if (STE != LocalSTE) 3181 // Take the order only from the single vector node. 3182 return None; 3183 unsigned Lane = 3184 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 3185 if (Lane >= NumScalars) 3186 return None; 3187 if (CurrentOrder[Lane] != NumScalars) { 3188 if (Lane != I) 3189 continue; 3190 UsedPositions.reset(CurrentOrder[Lane]); 3191 } 3192 // The partial identity (where only some elements of the gather node are 3193 // in the identity order) is good. 3194 CurrentOrder[Lane] = I; 3195 UsedPositions.set(I); 3196 } 3197 } 3198 // Need to keep the order if we have a vector entry and at least 2 scalars or 3199 // the vectorized entry has just 2 scalars. 3200 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 3201 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 3202 for (unsigned I = 0; I < NumScalars; ++I) 3203 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 3204 return false; 3205 return true; 3206 }; 3207 if (IsIdentityOrder(CurrentOrder)) { 3208 CurrentOrder.clear(); 3209 return CurrentOrder; 3210 } 3211 auto *It = CurrentOrder.begin(); 3212 for (unsigned I = 0; I < NumScalars;) { 3213 if (UsedPositions.test(I)) { 3214 ++I; 3215 continue; 3216 } 3217 if (*It == NumScalars) { 3218 *It = I; 3219 ++I; 3220 } 3221 ++It; 3222 } 3223 return CurrentOrder; 3224 } 3225 return None; 3226 } 3227 3228 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE, 3229 bool TopToBottom) { 3230 // No need to reorder if need to shuffle reuses, still need to shuffle the 3231 // node. 3232 if (!TE.ReuseShuffleIndices.empty()) 3233 return None; 3234 if (TE.State == TreeEntry::Vectorize && 3235 (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) || 3236 (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) && 3237 !TE.isAltShuffle()) 3238 return TE.ReorderIndices; 3239 if (TE.State == TreeEntry::NeedToGather) { 3240 // TODO: add analysis of other gather nodes with extractelement 3241 // instructions and other values/instructions, not only undefs. 3242 if (((TE.getOpcode() == Instruction::ExtractElement && 3243 !TE.isAltShuffle()) || 3244 (all_of(TE.Scalars, 3245 [](Value *V) { 3246 return isa<UndefValue, ExtractElementInst>(V); 3247 }) && 3248 any_of(TE.Scalars, 3249 [](Value *V) { return isa<ExtractElementInst>(V); }))) && 3250 all_of(TE.Scalars, 3251 [](Value *V) { 3252 auto *EE = dyn_cast<ExtractElementInst>(V); 3253 return !EE || isa<FixedVectorType>(EE->getVectorOperandType()); 3254 }) && 3255 allSameType(TE.Scalars)) { 3256 // Check that gather of extractelements can be represented as 3257 // just a shuffle of a single vector. 3258 OrdersType CurrentOrder; 3259 bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder); 3260 if (Reuse || !CurrentOrder.empty()) { 3261 if (!CurrentOrder.empty()) 3262 fixupOrderingIndices(CurrentOrder); 3263 return CurrentOrder; 3264 } 3265 } 3266 if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE)) 3267 return CurrentOrder; 3268 } 3269 return None; 3270 } 3271 3272 void BoUpSLP::reorderTopToBottom() { 3273 // Maps VF to the graph nodes. 3274 DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries; 3275 // ExtractElement gather nodes which can be vectorized and need to handle 3276 // their ordering. 3277 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3278 // Find all reorderable nodes with the given VF. 3279 // Currently the are vectorized stores,loads,extracts + some gathering of 3280 // extracts. 3281 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 3282 const std::unique_ptr<TreeEntry> &TE) { 3283 if (Optional<OrdersType> CurrentOrder = 3284 getReorderingData(*TE.get(), /*TopToBottom=*/true)) { 3285 // Do not include ordering for nodes used in the alt opcode vectorization, 3286 // better to reorder them during bottom-to-top stage. If follow the order 3287 // here, it causes reordering of the whole graph though actually it is 3288 // profitable just to reorder the subgraph that starts from the alternate 3289 // opcode vectorization node. Such nodes already end-up with the shuffle 3290 // instruction and it is just enough to change this shuffle rather than 3291 // rotate the scalars for the whole graph. 3292 unsigned Cnt = 0; 3293 const TreeEntry *UserTE = TE.get(); 3294 while (UserTE && Cnt < RecursionMaxDepth) { 3295 if (UserTE->UserTreeIndices.size() != 1) 3296 break; 3297 if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) { 3298 return EI.UserTE->State == TreeEntry::Vectorize && 3299 EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0; 3300 })) 3301 return; 3302 if (UserTE->UserTreeIndices.empty()) 3303 UserTE = nullptr; 3304 else 3305 UserTE = UserTE->UserTreeIndices.back().UserTE; 3306 ++Cnt; 3307 } 3308 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3309 if (TE->State != TreeEntry::Vectorize) 3310 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3311 } 3312 }); 3313 3314 // Reorder the graph nodes according to their vectorization factor. 3315 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 3316 VF /= 2) { 3317 auto It = VFToOrderedEntries.find(VF); 3318 if (It == VFToOrderedEntries.end()) 3319 continue; 3320 // Try to find the most profitable order. We just are looking for the most 3321 // used order and reorder scalar elements in the nodes according to this 3322 // mostly used order. 3323 ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef(); 3324 // All operands are reordered and used only in this node - propagate the 3325 // most used order to the user node. 3326 MapVector<OrdersType, unsigned, 3327 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3328 OrdersUses; 3329 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3330 for (const TreeEntry *OpTE : OrderedEntries) { 3331 // No need to reorder this nodes, still need to extend and to use shuffle, 3332 // just need to merge reordering shuffle and the reuse shuffle. 3333 if (!OpTE->ReuseShuffleIndices.empty()) 3334 continue; 3335 // Count number of orders uses. 3336 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3337 if (OpTE->State == TreeEntry::NeedToGather) 3338 return GathersToOrders.find(OpTE)->second; 3339 return OpTE->ReorderIndices; 3340 }(); 3341 // Stores actually store the mask, not the order, need to invert. 3342 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3343 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3344 SmallVector<int> Mask; 3345 inversePermutation(Order, Mask); 3346 unsigned E = Order.size(); 3347 OrdersType CurrentOrder(E, E); 3348 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3349 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3350 }); 3351 fixupOrderingIndices(CurrentOrder); 3352 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3353 } else { 3354 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3355 } 3356 } 3357 // Set order of the user node. 3358 if (OrdersUses.empty()) 3359 continue; 3360 // Choose the most used order. 3361 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3362 unsigned Cnt = OrdersUses.front().second; 3363 for (const auto &Pair : drop_begin(OrdersUses)) { 3364 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3365 BestOrder = Pair.first; 3366 Cnt = Pair.second; 3367 } 3368 } 3369 // Set order of the user node. 3370 if (BestOrder.empty()) 3371 continue; 3372 SmallVector<int> Mask; 3373 inversePermutation(BestOrder, Mask); 3374 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3375 unsigned E = BestOrder.size(); 3376 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3377 return I < E ? static_cast<int>(I) : UndefMaskElem; 3378 }); 3379 // Do an actual reordering, if profitable. 3380 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 3381 // Just do the reordering for the nodes with the given VF. 3382 if (TE->Scalars.size() != VF) { 3383 if (TE->ReuseShuffleIndices.size() == VF) { 3384 // Need to reorder the reuses masks of the operands with smaller VF to 3385 // be able to find the match between the graph nodes and scalar 3386 // operands of the given node during vectorization/cost estimation. 3387 assert(all_of(TE->UserTreeIndices, 3388 [VF, &TE](const EdgeInfo &EI) { 3389 return EI.UserTE->Scalars.size() == VF || 3390 EI.UserTE->Scalars.size() == 3391 TE->Scalars.size(); 3392 }) && 3393 "All users must be of VF size."); 3394 // Update ordering of the operands with the smaller VF than the given 3395 // one. 3396 reorderReuses(TE->ReuseShuffleIndices, Mask); 3397 } 3398 continue; 3399 } 3400 if (TE->State == TreeEntry::Vectorize && 3401 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 3402 InsertElementInst>(TE->getMainOp()) && 3403 !TE->isAltShuffle()) { 3404 // Build correct orders for extract{element,value}, loads and 3405 // stores. 3406 reorderOrder(TE->ReorderIndices, Mask); 3407 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 3408 TE->reorderOperands(Mask); 3409 } else { 3410 // Reorder the node and its operands. 3411 TE->reorderOperands(Mask); 3412 assert(TE->ReorderIndices.empty() && 3413 "Expected empty reorder sequence."); 3414 reorderScalars(TE->Scalars, Mask); 3415 } 3416 if (!TE->ReuseShuffleIndices.empty()) { 3417 // Apply reversed order to keep the original ordering of the reused 3418 // elements to avoid extra reorder indices shuffling. 3419 OrdersType CurrentOrder; 3420 reorderOrder(CurrentOrder, MaskOrder); 3421 SmallVector<int> NewReuses; 3422 inversePermutation(CurrentOrder, NewReuses); 3423 addMask(NewReuses, TE->ReuseShuffleIndices); 3424 TE->ReuseShuffleIndices.swap(NewReuses); 3425 } 3426 } 3427 } 3428 } 3429 3430 bool BoUpSLP::canReorderOperands( 3431 TreeEntry *UserTE, SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 3432 ArrayRef<TreeEntry *> ReorderableGathers, 3433 SmallVectorImpl<TreeEntry *> &GatherOps) { 3434 for (unsigned I = 0, E = UserTE->getNumOperands(); I < E; ++I) { 3435 if (any_of(Edges, [I](const std::pair<unsigned, TreeEntry *> &OpData) { 3436 return OpData.first == I && 3437 OpData.second->State == TreeEntry::Vectorize; 3438 })) 3439 continue; 3440 if (TreeEntry *TE = getVectorizedOperand(UserTE, I)) { 3441 // Do not reorder if operand node is used by many user nodes. 3442 if (any_of(TE->UserTreeIndices, 3443 [UserTE](const EdgeInfo &EI) { return EI.UserTE != UserTE; })) 3444 return false; 3445 // Add the node to the list of the ordered nodes with the identity 3446 // order. 3447 Edges.emplace_back(I, TE); 3448 continue; 3449 } 3450 ArrayRef<Value *> VL = UserTE->getOperand(I); 3451 TreeEntry *Gather = nullptr; 3452 if (count_if(ReorderableGathers, [VL, &Gather](TreeEntry *TE) { 3453 assert(TE->State != TreeEntry::Vectorize && 3454 "Only non-vectorized nodes are expected."); 3455 if (TE->isSame(VL)) { 3456 Gather = TE; 3457 return true; 3458 } 3459 return false; 3460 }) > 1) 3461 return false; 3462 if (Gather) 3463 GatherOps.push_back(Gather); 3464 } 3465 return true; 3466 } 3467 3468 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 3469 SetVector<TreeEntry *> OrderedEntries; 3470 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3471 // Find all reorderable leaf nodes with the given VF. 3472 // Currently the are vectorized loads,extracts without alternate operands + 3473 // some gathering of extracts. 3474 SmallVector<TreeEntry *> NonVectorized; 3475 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 3476 &NonVectorized]( 3477 const std::unique_ptr<TreeEntry> &TE) { 3478 if (TE->State != TreeEntry::Vectorize) 3479 NonVectorized.push_back(TE.get()); 3480 if (Optional<OrdersType> CurrentOrder = 3481 getReorderingData(*TE.get(), /*TopToBottom=*/false)) { 3482 OrderedEntries.insert(TE.get()); 3483 if (TE->State != TreeEntry::Vectorize) 3484 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3485 } 3486 }); 3487 3488 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3489 // I.e., if the node has operands, that are reordered, try to make at least 3490 // one operand order in the natural order and reorder others + reorder the 3491 // user node itself. 3492 SmallPtrSet<const TreeEntry *, 4> Visited; 3493 while (!OrderedEntries.empty()) { 3494 // 1. Filter out only reordered nodes. 3495 // 2. If the entry has multiple uses - skip it and jump to the next node. 3496 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3497 SmallVector<TreeEntry *> Filtered; 3498 for (TreeEntry *TE : OrderedEntries) { 3499 if (!(TE->State == TreeEntry::Vectorize || 3500 (TE->State == TreeEntry::NeedToGather && 3501 GathersToOrders.count(TE))) || 3502 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3503 !all_of(drop_begin(TE->UserTreeIndices), 3504 [TE](const EdgeInfo &EI) { 3505 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3506 }) || 3507 !Visited.insert(TE).second) { 3508 Filtered.push_back(TE); 3509 continue; 3510 } 3511 // Build a map between user nodes and their operands order to speedup 3512 // search. The graph currently does not provide this dependency directly. 3513 for (EdgeInfo &EI : TE->UserTreeIndices) { 3514 TreeEntry *UserTE = EI.UserTE; 3515 auto It = Users.find(UserTE); 3516 if (It == Users.end()) 3517 It = Users.insert({UserTE, {}}).first; 3518 It->second.emplace_back(EI.EdgeIdx, TE); 3519 } 3520 } 3521 // Erase filtered entries. 3522 for_each(Filtered, 3523 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3524 for (auto &Data : Users) { 3525 // Check that operands are used only in the User node. 3526 SmallVector<TreeEntry *> GatherOps; 3527 if (!canReorderOperands(Data.first, Data.second, NonVectorized, 3528 GatherOps)) { 3529 for_each(Data.second, 3530 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3531 OrderedEntries.remove(Op.second); 3532 }); 3533 continue; 3534 } 3535 // All operands are reordered and used only in this node - propagate the 3536 // most used order to the user node. 3537 MapVector<OrdersType, unsigned, 3538 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3539 OrdersUses; 3540 // Do the analysis for each tree entry only once, otherwise the order of 3541 // the same node my be considered several times, though might be not 3542 // profitable. 3543 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3544 SmallPtrSet<const TreeEntry *, 4> VisitedUsers; 3545 for (const auto &Op : Data.second) { 3546 TreeEntry *OpTE = Op.second; 3547 if (!VisitedOps.insert(OpTE).second) 3548 continue; 3549 if (!OpTE->ReuseShuffleIndices.empty() || 3550 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3551 continue; 3552 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3553 if (OpTE->State == TreeEntry::NeedToGather) 3554 return GathersToOrders.find(OpTE)->second; 3555 return OpTE->ReorderIndices; 3556 }(); 3557 unsigned NumOps = count_if( 3558 Data.second, [OpTE](const std::pair<unsigned, TreeEntry *> &P) { 3559 return P.second == OpTE; 3560 }); 3561 // Stores actually store the mask, not the order, need to invert. 3562 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3563 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3564 SmallVector<int> Mask; 3565 inversePermutation(Order, Mask); 3566 unsigned E = Order.size(); 3567 OrdersType CurrentOrder(E, E); 3568 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3569 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3570 }); 3571 fixupOrderingIndices(CurrentOrder); 3572 OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second += 3573 NumOps; 3574 } else { 3575 OrdersUses.insert(std::make_pair(Order, 0)).first->second += NumOps; 3576 } 3577 auto Res = OrdersUses.insert(std::make_pair(OrdersType(), 0)); 3578 const auto &&AllowsReordering = [IgnoreReorder, &GathersToOrders]( 3579 const TreeEntry *TE) { 3580 if (!TE->ReorderIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3581 (TE->State == TreeEntry::Vectorize && TE->isAltShuffle()) || 3582 (IgnoreReorder && TE->Idx == 0)) 3583 return true; 3584 if (TE->State == TreeEntry::NeedToGather) { 3585 auto It = GathersToOrders.find(TE); 3586 if (It != GathersToOrders.end()) 3587 return !It->second.empty(); 3588 return true; 3589 } 3590 return false; 3591 }; 3592 for (const EdgeInfo &EI : OpTE->UserTreeIndices) { 3593 TreeEntry *UserTE = EI.UserTE; 3594 if (!VisitedUsers.insert(UserTE).second) 3595 continue; 3596 // May reorder user node if it requires reordering, has reused 3597 // scalars, is an alternate op vectorize node or its op nodes require 3598 // reordering. 3599 if (AllowsReordering(UserTE)) 3600 continue; 3601 // Check if users allow reordering. 3602 // Currently look up just 1 level of operands to avoid increase of 3603 // the compile time. 3604 // Profitable to reorder if definitely more operands allow 3605 // reordering rather than those with natural order. 3606 ArrayRef<std::pair<unsigned, TreeEntry *>> Ops = Users[UserTE]; 3607 if (static_cast<unsigned>(count_if( 3608 Ops, [UserTE, &AllowsReordering]( 3609 const std::pair<unsigned, TreeEntry *> &Op) { 3610 return AllowsReordering(Op.second) && 3611 all_of(Op.second->UserTreeIndices, 3612 [UserTE](const EdgeInfo &EI) { 3613 return EI.UserTE == UserTE; 3614 }); 3615 })) <= Ops.size() / 2) 3616 ++Res.first->second; 3617 } 3618 } 3619 // If no orders - skip current nodes and jump to the next one, if any. 3620 if (OrdersUses.empty()) { 3621 for_each(Data.second, 3622 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3623 OrderedEntries.remove(Op.second); 3624 }); 3625 continue; 3626 } 3627 // Choose the best order. 3628 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3629 unsigned Cnt = OrdersUses.front().second; 3630 for (const auto &Pair : drop_begin(OrdersUses)) { 3631 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3632 BestOrder = Pair.first; 3633 Cnt = Pair.second; 3634 } 3635 } 3636 // Set order of the user node (reordering of operands and user nodes). 3637 if (BestOrder.empty()) { 3638 for_each(Data.second, 3639 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3640 OrderedEntries.remove(Op.second); 3641 }); 3642 continue; 3643 } 3644 // Erase operands from OrderedEntries list and adjust their orders. 3645 VisitedOps.clear(); 3646 SmallVector<int> Mask; 3647 inversePermutation(BestOrder, Mask); 3648 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3649 unsigned E = BestOrder.size(); 3650 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3651 return I < E ? static_cast<int>(I) : UndefMaskElem; 3652 }); 3653 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 3654 TreeEntry *TE = Op.second; 3655 OrderedEntries.remove(TE); 3656 if (!VisitedOps.insert(TE).second) 3657 continue; 3658 if (TE->ReuseShuffleIndices.size() == BestOrder.size()) { 3659 // Just reorder reuses indices. 3660 reorderReuses(TE->ReuseShuffleIndices, Mask); 3661 continue; 3662 } 3663 // Gathers are processed separately. 3664 if (TE->State != TreeEntry::Vectorize) 3665 continue; 3666 assert((BestOrder.size() == TE->ReorderIndices.size() || 3667 TE->ReorderIndices.empty()) && 3668 "Non-matching sizes of user/operand entries."); 3669 reorderOrder(TE->ReorderIndices, Mask); 3670 } 3671 // For gathers just need to reorder its scalars. 3672 for (TreeEntry *Gather : GatherOps) { 3673 assert(Gather->ReorderIndices.empty() && 3674 "Unexpected reordering of gathers."); 3675 if (!Gather->ReuseShuffleIndices.empty()) { 3676 // Just reorder reuses indices. 3677 reorderReuses(Gather->ReuseShuffleIndices, Mask); 3678 continue; 3679 } 3680 reorderScalars(Gather->Scalars, Mask); 3681 OrderedEntries.remove(Gather); 3682 } 3683 // Reorder operands of the user node and set the ordering for the user 3684 // node itself. 3685 if (Data.first->State != TreeEntry::Vectorize || 3686 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 3687 Data.first->getMainOp()) || 3688 Data.first->isAltShuffle()) 3689 Data.first->reorderOperands(Mask); 3690 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 3691 Data.first->isAltShuffle()) { 3692 reorderScalars(Data.first->Scalars, Mask); 3693 reorderOrder(Data.first->ReorderIndices, MaskOrder); 3694 if (Data.first->ReuseShuffleIndices.empty() && 3695 !Data.first->ReorderIndices.empty() && 3696 !Data.first->isAltShuffle()) { 3697 // Insert user node to the list to try to sink reordering deeper in 3698 // the graph. 3699 OrderedEntries.insert(Data.first); 3700 } 3701 } else { 3702 reorderOrder(Data.first->ReorderIndices, Mask); 3703 } 3704 } 3705 } 3706 // If the reordering is unnecessary, just remove the reorder. 3707 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 3708 VectorizableTree.front()->ReuseShuffleIndices.empty()) 3709 VectorizableTree.front()->ReorderIndices.clear(); 3710 } 3711 3712 void BoUpSLP::buildExternalUses( 3713 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3714 // Collect the values that we need to extract from the tree. 3715 for (auto &TEPtr : VectorizableTree) { 3716 TreeEntry *Entry = TEPtr.get(); 3717 3718 // No need to handle users of gathered values. 3719 if (Entry->State == TreeEntry::NeedToGather) 3720 continue; 3721 3722 // For each lane: 3723 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3724 Value *Scalar = Entry->Scalars[Lane]; 3725 int FoundLane = Entry->findLaneForValue(Scalar); 3726 3727 // Check if the scalar is externally used as an extra arg. 3728 auto ExtI = ExternallyUsedValues.find(Scalar); 3729 if (ExtI != ExternallyUsedValues.end()) { 3730 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 3731 << Lane << " from " << *Scalar << ".\n"); 3732 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 3733 } 3734 for (User *U : Scalar->users()) { 3735 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 3736 3737 Instruction *UserInst = dyn_cast<Instruction>(U); 3738 if (!UserInst) 3739 continue; 3740 3741 if (isDeleted(UserInst)) 3742 continue; 3743 3744 // Skip in-tree scalars that become vectors 3745 if (TreeEntry *UseEntry = getTreeEntry(U)) { 3746 Value *UseScalar = UseEntry->Scalars[0]; 3747 // Some in-tree scalars will remain as scalar in vectorized 3748 // instructions. If that is the case, the one in Lane 0 will 3749 // be used. 3750 if (UseScalar != U || 3751 UseEntry->State == TreeEntry::ScatterVectorize || 3752 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 3753 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 3754 << ".\n"); 3755 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 3756 continue; 3757 } 3758 } 3759 3760 // Ignore users in the user ignore list. 3761 if (is_contained(UserIgnoreList, UserInst)) 3762 continue; 3763 3764 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 3765 << Lane << " from " << *Scalar << ".\n"); 3766 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 3767 } 3768 } 3769 } 3770 } 3771 3772 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 3773 ArrayRef<Value *> UserIgnoreLst) { 3774 deleteTree(); 3775 UserIgnoreList = UserIgnoreLst; 3776 if (!allSameType(Roots)) 3777 return; 3778 buildTree_rec(Roots, 0, EdgeInfo()); 3779 } 3780 3781 namespace { 3782 /// Tracks the state we can represent the loads in the given sequence. 3783 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3784 } // anonymous namespace 3785 3786 /// Checks if the given array of loads can be represented as a vectorized, 3787 /// scatter or just simple gather. 3788 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3789 const TargetTransformInfo &TTI, 3790 const DataLayout &DL, ScalarEvolution &SE, 3791 SmallVectorImpl<unsigned> &Order, 3792 SmallVectorImpl<Value *> &PointerOps) { 3793 // Check that a vectorized load would load the same memory as a scalar 3794 // load. For example, we don't want to vectorize loads that are smaller 3795 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3796 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3797 // from such a struct, we read/write packed bits disagreeing with the 3798 // unvectorized version. 3799 Type *ScalarTy = VL0->getType(); 3800 3801 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3802 return LoadsState::Gather; 3803 3804 // Make sure all loads in the bundle are simple - we can't vectorize 3805 // atomic or volatile loads. 3806 PointerOps.clear(); 3807 PointerOps.resize(VL.size()); 3808 auto *POIter = PointerOps.begin(); 3809 for (Value *V : VL) { 3810 auto *L = cast<LoadInst>(V); 3811 if (!L->isSimple()) 3812 return LoadsState::Gather; 3813 *POIter = L->getPointerOperand(); 3814 ++POIter; 3815 } 3816 3817 Order.clear(); 3818 // Check the order of pointer operands. 3819 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 3820 Value *Ptr0; 3821 Value *PtrN; 3822 if (Order.empty()) { 3823 Ptr0 = PointerOps.front(); 3824 PtrN = PointerOps.back(); 3825 } else { 3826 Ptr0 = PointerOps[Order.front()]; 3827 PtrN = PointerOps[Order.back()]; 3828 } 3829 Optional<int> Diff = 3830 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3831 // Check that the sorted loads are consecutive. 3832 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3833 return LoadsState::Vectorize; 3834 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3835 for (Value *V : VL) 3836 CommonAlignment = 3837 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3838 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 3839 CommonAlignment)) 3840 return LoadsState::ScatterVectorize; 3841 } 3842 3843 return LoadsState::Gather; 3844 } 3845 3846 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 3847 const EdgeInfo &UserTreeIdx) { 3848 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 3849 3850 SmallVector<int> ReuseShuffleIndicies; 3851 SmallVector<Value *> UniqueValues; 3852 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 3853 &UserTreeIdx, 3854 this](const InstructionsState &S) { 3855 // Check that every instruction appears once in this bundle. 3856 DenseMap<Value *, unsigned> UniquePositions; 3857 for (Value *V : VL) { 3858 if (isConstant(V)) { 3859 ReuseShuffleIndicies.emplace_back( 3860 isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size()); 3861 UniqueValues.emplace_back(V); 3862 continue; 3863 } 3864 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3865 ReuseShuffleIndicies.emplace_back(Res.first->second); 3866 if (Res.second) 3867 UniqueValues.emplace_back(V); 3868 } 3869 size_t NumUniqueScalarValues = UniqueValues.size(); 3870 if (NumUniqueScalarValues == VL.size()) { 3871 ReuseShuffleIndicies.clear(); 3872 } else { 3873 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 3874 if (NumUniqueScalarValues <= 1 || 3875 (UniquePositions.size() == 1 && all_of(UniqueValues, 3876 [](Value *V) { 3877 return isa<UndefValue>(V) || 3878 !isConstant(V); 3879 })) || 3880 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 3881 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 3882 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3883 return false; 3884 } 3885 VL = UniqueValues; 3886 } 3887 return true; 3888 }; 3889 3890 InstructionsState S = getSameOpcode(VL); 3891 if (Depth == RecursionMaxDepth) { 3892 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 3893 if (TryToFindDuplicates(S)) 3894 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3895 ReuseShuffleIndicies); 3896 return; 3897 } 3898 3899 // Don't handle scalable vectors 3900 if (S.getOpcode() == Instruction::ExtractElement && 3901 isa<ScalableVectorType>( 3902 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 3903 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 3904 if (TryToFindDuplicates(S)) 3905 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3906 ReuseShuffleIndicies); 3907 return; 3908 } 3909 3910 // Don't handle vectors. 3911 if (S.OpValue->getType()->isVectorTy() && 3912 !isa<InsertElementInst>(S.OpValue)) { 3913 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 3914 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3915 return; 3916 } 3917 3918 // Avoid attempting to schedule allocas; there are unmodeled dependencies 3919 // for "static" alloca status and for reordering with stacksave calls. 3920 for (Value *V : VL) { 3921 if (isa<AllocaInst>(V)) { 3922 LLVM_DEBUG(dbgs() << "SLP: Gathering due to alloca.\n"); 3923 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3924 return; 3925 } 3926 } 3927 3928 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3929 if (SI->getValueOperand()->getType()->isVectorTy()) { 3930 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 3931 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3932 return; 3933 } 3934 3935 // If all of the operands are identical or constant we have a simple solution. 3936 // If we deal with insert/extract instructions, they all must have constant 3937 // indices, otherwise we should gather them, not try to vectorize. 3938 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 3939 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 3940 !all_of(VL, isVectorLikeInstWithConstOps))) { 3941 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 3942 if (TryToFindDuplicates(S)) 3943 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3944 ReuseShuffleIndicies); 3945 return; 3946 } 3947 3948 // We now know that this is a vector of instructions of the same type from 3949 // the same block. 3950 3951 // Don't vectorize ephemeral values. 3952 for (Value *V : VL) { 3953 if (EphValues.count(V)) { 3954 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3955 << ") is ephemeral.\n"); 3956 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3957 return; 3958 } 3959 } 3960 3961 // Check if this is a duplicate of another entry. 3962 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3963 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 3964 if (!E->isSame(VL)) { 3965 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 3966 if (TryToFindDuplicates(S)) 3967 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3968 ReuseShuffleIndicies); 3969 return; 3970 } 3971 // Record the reuse of the tree node. FIXME, currently this is only used to 3972 // properly draw the graph rather than for the actual vectorization. 3973 E->UserTreeIndices.push_back(UserTreeIdx); 3974 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 3975 << ".\n"); 3976 return; 3977 } 3978 3979 // Check that none of the instructions in the bundle are already in the tree. 3980 for (Value *V : VL) { 3981 auto *I = dyn_cast<Instruction>(V); 3982 if (!I) 3983 continue; 3984 if (getTreeEntry(I)) { 3985 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3986 << ") is already in tree.\n"); 3987 if (TryToFindDuplicates(S)) 3988 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3989 ReuseShuffleIndicies); 3990 return; 3991 } 3992 } 3993 3994 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 3995 for (Value *V : VL) { 3996 if (is_contained(UserIgnoreList, V)) { 3997 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 3998 if (TryToFindDuplicates(S)) 3999 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4000 ReuseShuffleIndicies); 4001 return; 4002 } 4003 } 4004 4005 // Check that all of the users of the scalars that we want to vectorize are 4006 // schedulable. 4007 auto *VL0 = cast<Instruction>(S.OpValue); 4008 BasicBlock *BB = VL0->getParent(); 4009 4010 if (!DT->isReachableFromEntry(BB)) { 4011 // Don't go into unreachable blocks. They may contain instructions with 4012 // dependency cycles which confuse the final scheduling. 4013 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 4014 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4015 return; 4016 } 4017 4018 // Check that every instruction appears once in this bundle. 4019 if (!TryToFindDuplicates(S)) 4020 return; 4021 4022 auto &BSRef = BlocksSchedules[BB]; 4023 if (!BSRef) 4024 BSRef = std::make_unique<BlockScheduling>(BB); 4025 4026 BlockScheduling &BS = *BSRef.get(); 4027 4028 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 4029 #ifdef EXPENSIVE_CHECKS 4030 // Make sure we didn't break any internal invariants 4031 BS.verify(); 4032 #endif 4033 if (!Bundle) { 4034 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 4035 assert((!BS.getScheduleData(VL0) || 4036 !BS.getScheduleData(VL0)->isPartOfBundle()) && 4037 "tryScheduleBundle should cancelScheduling on failure"); 4038 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4039 ReuseShuffleIndicies); 4040 return; 4041 } 4042 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 4043 4044 unsigned ShuffleOrOp = S.isAltShuffle() ? 4045 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 4046 switch (ShuffleOrOp) { 4047 case Instruction::PHI: { 4048 auto *PH = cast<PHINode>(VL0); 4049 4050 // Check for terminator values (e.g. invoke). 4051 for (Value *V : VL) 4052 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 4053 Instruction *Term = dyn_cast<Instruction>( 4054 cast<PHINode>(V)->getIncomingValueForBlock( 4055 PH->getIncomingBlock(I))); 4056 if (Term && Term->isTerminator()) { 4057 LLVM_DEBUG(dbgs() 4058 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 4059 BS.cancelScheduling(VL, VL0); 4060 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4061 ReuseShuffleIndicies); 4062 return; 4063 } 4064 } 4065 4066 TreeEntry *TE = 4067 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 4068 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 4069 4070 // Keeps the reordered operands to avoid code duplication. 4071 SmallVector<ValueList, 2> OperandsVec; 4072 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 4073 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 4074 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 4075 TE->setOperand(I, Operands); 4076 OperandsVec.push_back(Operands); 4077 continue; 4078 } 4079 ValueList Operands; 4080 // Prepare the operand vector. 4081 for (Value *V : VL) 4082 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 4083 PH->getIncomingBlock(I))); 4084 TE->setOperand(I, Operands); 4085 OperandsVec.push_back(Operands); 4086 } 4087 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 4088 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 4089 return; 4090 } 4091 case Instruction::ExtractValue: 4092 case Instruction::ExtractElement: { 4093 OrdersType CurrentOrder; 4094 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 4095 if (Reuse) { 4096 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 4097 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4098 ReuseShuffleIndicies); 4099 // This is a special case, as it does not gather, but at the same time 4100 // we are not extending buildTree_rec() towards the operands. 4101 ValueList Op0; 4102 Op0.assign(VL.size(), VL0->getOperand(0)); 4103 VectorizableTree.back()->setOperand(0, Op0); 4104 return; 4105 } 4106 if (!CurrentOrder.empty()) { 4107 LLVM_DEBUG({ 4108 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 4109 "with order"; 4110 for (unsigned Idx : CurrentOrder) 4111 dbgs() << " " << Idx; 4112 dbgs() << "\n"; 4113 }); 4114 fixupOrderingIndices(CurrentOrder); 4115 // Insert new order with initial value 0, if it does not exist, 4116 // otherwise return the iterator to the existing one. 4117 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4118 ReuseShuffleIndicies, CurrentOrder); 4119 // This is a special case, as it does not gather, but at the same time 4120 // we are not extending buildTree_rec() towards the operands. 4121 ValueList Op0; 4122 Op0.assign(VL.size(), VL0->getOperand(0)); 4123 VectorizableTree.back()->setOperand(0, Op0); 4124 return; 4125 } 4126 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 4127 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4128 ReuseShuffleIndicies); 4129 BS.cancelScheduling(VL, VL0); 4130 return; 4131 } 4132 case Instruction::InsertElement: { 4133 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 4134 4135 // Check that we have a buildvector and not a shuffle of 2 or more 4136 // different vectors. 4137 ValueSet SourceVectors; 4138 for (Value *V : VL) { 4139 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 4140 assert(getInsertIndex(V) != None && "Non-constant or undef index?"); 4141 } 4142 4143 if (count_if(VL, [&SourceVectors](Value *V) { 4144 return !SourceVectors.contains(V); 4145 }) >= 2) { 4146 // Found 2nd source vector - cancel. 4147 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 4148 "different source vectors.\n"); 4149 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4150 BS.cancelScheduling(VL, VL0); 4151 return; 4152 } 4153 4154 auto OrdCompare = [](const std::pair<int, int> &P1, 4155 const std::pair<int, int> &P2) { 4156 return P1.first > P2.first; 4157 }; 4158 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 4159 decltype(OrdCompare)> 4160 Indices(OrdCompare); 4161 for (int I = 0, E = VL.size(); I < E; ++I) { 4162 unsigned Idx = *getInsertIndex(VL[I]); 4163 Indices.emplace(Idx, I); 4164 } 4165 OrdersType CurrentOrder(VL.size(), VL.size()); 4166 bool IsIdentity = true; 4167 for (int I = 0, E = VL.size(); I < E; ++I) { 4168 CurrentOrder[Indices.top().second] = I; 4169 IsIdentity &= Indices.top().second == I; 4170 Indices.pop(); 4171 } 4172 if (IsIdentity) 4173 CurrentOrder.clear(); 4174 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4175 None, CurrentOrder); 4176 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 4177 4178 constexpr int NumOps = 2; 4179 ValueList VectorOperands[NumOps]; 4180 for (int I = 0; I < NumOps; ++I) { 4181 for (Value *V : VL) 4182 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 4183 4184 TE->setOperand(I, VectorOperands[I]); 4185 } 4186 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 4187 return; 4188 } 4189 case Instruction::Load: { 4190 // Check that a vectorized load would load the same memory as a scalar 4191 // load. For example, we don't want to vectorize loads that are smaller 4192 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 4193 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 4194 // from such a struct, we read/write packed bits disagreeing with the 4195 // unvectorized version. 4196 SmallVector<Value *> PointerOps; 4197 OrdersType CurrentOrder; 4198 TreeEntry *TE = nullptr; 4199 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 4200 PointerOps)) { 4201 case LoadsState::Vectorize: 4202 if (CurrentOrder.empty()) { 4203 // Original loads are consecutive and does not require reordering. 4204 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4205 ReuseShuffleIndicies); 4206 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 4207 } else { 4208 fixupOrderingIndices(CurrentOrder); 4209 // Need to reorder. 4210 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4211 ReuseShuffleIndicies, CurrentOrder); 4212 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 4213 } 4214 TE->setOperandsInOrder(); 4215 break; 4216 case LoadsState::ScatterVectorize: 4217 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 4218 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 4219 UserTreeIdx, ReuseShuffleIndicies); 4220 TE->setOperandsInOrder(); 4221 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 4222 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 4223 break; 4224 case LoadsState::Gather: 4225 BS.cancelScheduling(VL, VL0); 4226 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4227 ReuseShuffleIndicies); 4228 #ifndef NDEBUG 4229 Type *ScalarTy = VL0->getType(); 4230 if (DL->getTypeSizeInBits(ScalarTy) != 4231 DL->getTypeAllocSizeInBits(ScalarTy)) 4232 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 4233 else if (any_of(VL, [](Value *V) { 4234 return !cast<LoadInst>(V)->isSimple(); 4235 })) 4236 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 4237 else 4238 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 4239 #endif // NDEBUG 4240 break; 4241 } 4242 return; 4243 } 4244 case Instruction::ZExt: 4245 case Instruction::SExt: 4246 case Instruction::FPToUI: 4247 case Instruction::FPToSI: 4248 case Instruction::FPExt: 4249 case Instruction::PtrToInt: 4250 case Instruction::IntToPtr: 4251 case Instruction::SIToFP: 4252 case Instruction::UIToFP: 4253 case Instruction::Trunc: 4254 case Instruction::FPTrunc: 4255 case Instruction::BitCast: { 4256 Type *SrcTy = VL0->getOperand(0)->getType(); 4257 for (Value *V : VL) { 4258 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 4259 if (Ty != SrcTy || !isValidElementType(Ty)) { 4260 BS.cancelScheduling(VL, VL0); 4261 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4262 ReuseShuffleIndicies); 4263 LLVM_DEBUG(dbgs() 4264 << "SLP: Gathering casts with different src types.\n"); 4265 return; 4266 } 4267 } 4268 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4269 ReuseShuffleIndicies); 4270 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 4271 4272 TE->setOperandsInOrder(); 4273 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4274 ValueList Operands; 4275 // Prepare the operand vector. 4276 for (Value *V : VL) 4277 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4278 4279 buildTree_rec(Operands, Depth + 1, {TE, i}); 4280 } 4281 return; 4282 } 4283 case Instruction::ICmp: 4284 case Instruction::FCmp: { 4285 // Check that all of the compares have the same predicate. 4286 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4287 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 4288 Type *ComparedTy = VL0->getOperand(0)->getType(); 4289 for (Value *V : VL) { 4290 CmpInst *Cmp = cast<CmpInst>(V); 4291 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 4292 Cmp->getOperand(0)->getType() != ComparedTy) { 4293 BS.cancelScheduling(VL, VL0); 4294 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4295 ReuseShuffleIndicies); 4296 LLVM_DEBUG(dbgs() 4297 << "SLP: Gathering cmp with different predicate.\n"); 4298 return; 4299 } 4300 } 4301 4302 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4303 ReuseShuffleIndicies); 4304 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 4305 4306 ValueList Left, Right; 4307 if (cast<CmpInst>(VL0)->isCommutative()) { 4308 // Commutative predicate - collect + sort operands of the instructions 4309 // so that each side is more likely to have the same opcode. 4310 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 4311 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4312 } else { 4313 // Collect operands - commute if it uses the swapped predicate. 4314 for (Value *V : VL) { 4315 auto *Cmp = cast<CmpInst>(V); 4316 Value *LHS = Cmp->getOperand(0); 4317 Value *RHS = Cmp->getOperand(1); 4318 if (Cmp->getPredicate() != P0) 4319 std::swap(LHS, RHS); 4320 Left.push_back(LHS); 4321 Right.push_back(RHS); 4322 } 4323 } 4324 TE->setOperand(0, Left); 4325 TE->setOperand(1, Right); 4326 buildTree_rec(Left, Depth + 1, {TE, 0}); 4327 buildTree_rec(Right, Depth + 1, {TE, 1}); 4328 return; 4329 } 4330 case Instruction::Select: 4331 case Instruction::FNeg: 4332 case Instruction::Add: 4333 case Instruction::FAdd: 4334 case Instruction::Sub: 4335 case Instruction::FSub: 4336 case Instruction::Mul: 4337 case Instruction::FMul: 4338 case Instruction::UDiv: 4339 case Instruction::SDiv: 4340 case Instruction::FDiv: 4341 case Instruction::URem: 4342 case Instruction::SRem: 4343 case Instruction::FRem: 4344 case Instruction::Shl: 4345 case Instruction::LShr: 4346 case Instruction::AShr: 4347 case Instruction::And: 4348 case Instruction::Or: 4349 case Instruction::Xor: { 4350 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4351 ReuseShuffleIndicies); 4352 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 4353 4354 // Sort operands of the instructions so that each side is more likely to 4355 // have the same opcode. 4356 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 4357 ValueList Left, Right; 4358 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4359 TE->setOperand(0, Left); 4360 TE->setOperand(1, Right); 4361 buildTree_rec(Left, Depth + 1, {TE, 0}); 4362 buildTree_rec(Right, Depth + 1, {TE, 1}); 4363 return; 4364 } 4365 4366 TE->setOperandsInOrder(); 4367 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4368 ValueList Operands; 4369 // Prepare the operand vector. 4370 for (Value *V : VL) 4371 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4372 4373 buildTree_rec(Operands, Depth + 1, {TE, i}); 4374 } 4375 return; 4376 } 4377 case Instruction::GetElementPtr: { 4378 // We don't combine GEPs with complicated (nested) indexing. 4379 for (Value *V : VL) { 4380 if (cast<Instruction>(V)->getNumOperands() != 2) { 4381 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 4382 BS.cancelScheduling(VL, VL0); 4383 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4384 ReuseShuffleIndicies); 4385 return; 4386 } 4387 } 4388 4389 // We can't combine several GEPs into one vector if they operate on 4390 // different types. 4391 Type *Ty0 = cast<GEPOperator>(VL0)->getSourceElementType(); 4392 for (Value *V : VL) { 4393 Type *CurTy = cast<GEPOperator>(V)->getSourceElementType(); 4394 if (Ty0 != CurTy) { 4395 LLVM_DEBUG(dbgs() 4396 << "SLP: not-vectorizable GEP (different types).\n"); 4397 BS.cancelScheduling(VL, VL0); 4398 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4399 ReuseShuffleIndicies); 4400 return; 4401 } 4402 } 4403 4404 // We don't combine GEPs with non-constant indexes. 4405 Type *Ty1 = VL0->getOperand(1)->getType(); 4406 for (Value *V : VL) { 4407 auto Op = cast<Instruction>(V)->getOperand(1); 4408 if (!isa<ConstantInt>(Op) || 4409 (Op->getType() != Ty1 && 4410 Op->getType()->getScalarSizeInBits() > 4411 DL->getIndexSizeInBits( 4412 V->getType()->getPointerAddressSpace()))) { 4413 LLVM_DEBUG(dbgs() 4414 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 4415 BS.cancelScheduling(VL, VL0); 4416 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4417 ReuseShuffleIndicies); 4418 return; 4419 } 4420 } 4421 4422 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4423 ReuseShuffleIndicies); 4424 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 4425 SmallVector<ValueList, 2> Operands(2); 4426 // Prepare the operand vector for pointer operands. 4427 for (Value *V : VL) 4428 Operands.front().push_back( 4429 cast<GetElementPtrInst>(V)->getPointerOperand()); 4430 TE->setOperand(0, Operands.front()); 4431 // Need to cast all indices to the same type before vectorization to 4432 // avoid crash. 4433 // Required to be able to find correct matches between different gather 4434 // nodes and reuse the vectorized values rather than trying to gather them 4435 // again. 4436 int IndexIdx = 1; 4437 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 4438 Type *Ty = all_of(VL, 4439 [VL0Ty, IndexIdx](Value *V) { 4440 return VL0Ty == cast<GetElementPtrInst>(V) 4441 ->getOperand(IndexIdx) 4442 ->getType(); 4443 }) 4444 ? VL0Ty 4445 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4446 ->getPointerOperandType() 4447 ->getScalarType()); 4448 // Prepare the operand vector. 4449 for (Value *V : VL) { 4450 auto *Op = cast<Instruction>(V)->getOperand(IndexIdx); 4451 auto *CI = cast<ConstantInt>(Op); 4452 Operands.back().push_back(ConstantExpr::getIntegerCast( 4453 CI, Ty, CI->getValue().isSignBitSet())); 4454 } 4455 TE->setOperand(IndexIdx, Operands.back()); 4456 4457 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 4458 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 4459 return; 4460 } 4461 case Instruction::Store: { 4462 // Check if the stores are consecutive or if we need to swizzle them. 4463 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 4464 // Avoid types that are padded when being allocated as scalars, while 4465 // being packed together in a vector (such as i1). 4466 if (DL->getTypeSizeInBits(ScalarTy) != 4467 DL->getTypeAllocSizeInBits(ScalarTy)) { 4468 BS.cancelScheduling(VL, VL0); 4469 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4470 ReuseShuffleIndicies); 4471 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 4472 return; 4473 } 4474 // Make sure all stores in the bundle are simple - we can't vectorize 4475 // atomic or volatile stores. 4476 SmallVector<Value *, 4> PointerOps(VL.size()); 4477 ValueList Operands(VL.size()); 4478 auto POIter = PointerOps.begin(); 4479 auto OIter = Operands.begin(); 4480 for (Value *V : VL) { 4481 auto *SI = cast<StoreInst>(V); 4482 if (!SI->isSimple()) { 4483 BS.cancelScheduling(VL, VL0); 4484 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4485 ReuseShuffleIndicies); 4486 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 4487 return; 4488 } 4489 *POIter = SI->getPointerOperand(); 4490 *OIter = SI->getValueOperand(); 4491 ++POIter; 4492 ++OIter; 4493 } 4494 4495 OrdersType CurrentOrder; 4496 // Check the order of pointer operands. 4497 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 4498 Value *Ptr0; 4499 Value *PtrN; 4500 if (CurrentOrder.empty()) { 4501 Ptr0 = PointerOps.front(); 4502 PtrN = PointerOps.back(); 4503 } else { 4504 Ptr0 = PointerOps[CurrentOrder.front()]; 4505 PtrN = PointerOps[CurrentOrder.back()]; 4506 } 4507 Optional<int> Dist = 4508 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 4509 // Check that the sorted pointer operands are consecutive. 4510 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 4511 if (CurrentOrder.empty()) { 4512 // Original stores are consecutive and does not require reordering. 4513 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 4514 UserTreeIdx, ReuseShuffleIndicies); 4515 TE->setOperandsInOrder(); 4516 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4517 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 4518 } else { 4519 fixupOrderingIndices(CurrentOrder); 4520 TreeEntry *TE = 4521 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4522 ReuseShuffleIndicies, CurrentOrder); 4523 TE->setOperandsInOrder(); 4524 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4525 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 4526 } 4527 return; 4528 } 4529 } 4530 4531 BS.cancelScheduling(VL, VL0); 4532 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4533 ReuseShuffleIndicies); 4534 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 4535 return; 4536 } 4537 case Instruction::Call: { 4538 // Check if the calls are all to the same vectorizable intrinsic or 4539 // library function. 4540 CallInst *CI = cast<CallInst>(VL0); 4541 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4542 4543 VFShape Shape = VFShape::get( 4544 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 4545 false /*HasGlobalPred*/); 4546 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4547 4548 if (!VecFunc && !isTriviallyVectorizable(ID)) { 4549 BS.cancelScheduling(VL, VL0); 4550 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4551 ReuseShuffleIndicies); 4552 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 4553 return; 4554 } 4555 Function *F = CI->getCalledFunction(); 4556 unsigned NumArgs = CI->arg_size(); 4557 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 4558 for (unsigned j = 0; j != NumArgs; ++j) 4559 if (hasVectorInstrinsicScalarOpd(ID, j)) 4560 ScalarArgs[j] = CI->getArgOperand(j); 4561 for (Value *V : VL) { 4562 CallInst *CI2 = dyn_cast<CallInst>(V); 4563 if (!CI2 || CI2->getCalledFunction() != F || 4564 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 4565 (VecFunc && 4566 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 4567 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 4568 BS.cancelScheduling(VL, VL0); 4569 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4570 ReuseShuffleIndicies); 4571 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 4572 << "\n"); 4573 return; 4574 } 4575 // Some intrinsics have scalar arguments and should be same in order for 4576 // them to be vectorized. 4577 for (unsigned j = 0; j != NumArgs; ++j) { 4578 if (hasVectorInstrinsicScalarOpd(ID, j)) { 4579 Value *A1J = CI2->getArgOperand(j); 4580 if (ScalarArgs[j] != A1J) { 4581 BS.cancelScheduling(VL, VL0); 4582 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4583 ReuseShuffleIndicies); 4584 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 4585 << " argument " << ScalarArgs[j] << "!=" << A1J 4586 << "\n"); 4587 return; 4588 } 4589 } 4590 } 4591 // Verify that the bundle operands are identical between the two calls. 4592 if (CI->hasOperandBundles() && 4593 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 4594 CI->op_begin() + CI->getBundleOperandsEndIndex(), 4595 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 4596 BS.cancelScheduling(VL, VL0); 4597 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4598 ReuseShuffleIndicies); 4599 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 4600 << *CI << "!=" << *V << '\n'); 4601 return; 4602 } 4603 } 4604 4605 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4606 ReuseShuffleIndicies); 4607 TE->setOperandsInOrder(); 4608 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 4609 // For scalar operands no need to to create an entry since no need to 4610 // vectorize it. 4611 if (hasVectorInstrinsicScalarOpd(ID, i)) 4612 continue; 4613 ValueList Operands; 4614 // Prepare the operand vector. 4615 for (Value *V : VL) { 4616 auto *CI2 = cast<CallInst>(V); 4617 Operands.push_back(CI2->getArgOperand(i)); 4618 } 4619 buildTree_rec(Operands, Depth + 1, {TE, i}); 4620 } 4621 return; 4622 } 4623 case Instruction::ShuffleVector: { 4624 // If this is not an alternate sequence of opcode like add-sub 4625 // then do not vectorize this instruction. 4626 if (!S.isAltShuffle()) { 4627 BS.cancelScheduling(VL, VL0); 4628 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4629 ReuseShuffleIndicies); 4630 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 4631 return; 4632 } 4633 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4634 ReuseShuffleIndicies); 4635 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 4636 4637 // Reorder operands if reordering would enable vectorization. 4638 auto *CI = dyn_cast<CmpInst>(VL0); 4639 if (isa<BinaryOperator>(VL0) || CI) { 4640 ValueList Left, Right; 4641 if (!CI || all_of(VL, [](Value *V) { 4642 return cast<CmpInst>(V)->isCommutative(); 4643 })) { 4644 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4645 } else { 4646 CmpInst::Predicate P0 = CI->getPredicate(); 4647 CmpInst::Predicate AltP0 = cast<CmpInst>(S.AltOp)->getPredicate(); 4648 assert(P0 != AltP0 && 4649 "Expected different main/alternate predicates."); 4650 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 4651 Value *BaseOp0 = VL0->getOperand(0); 4652 Value *BaseOp1 = VL0->getOperand(1); 4653 // Collect operands - commute if it uses the swapped predicate or 4654 // alternate operation. 4655 for (Value *V : VL) { 4656 auto *Cmp = cast<CmpInst>(V); 4657 Value *LHS = Cmp->getOperand(0); 4658 Value *RHS = Cmp->getOperand(1); 4659 CmpInst::Predicate CurrentPred = Cmp->getPredicate(); 4660 if (P0 == AltP0Swapped) { 4661 if (CI != Cmp && S.AltOp != Cmp && 4662 ((P0 == CurrentPred && 4663 !areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)) || 4664 (AltP0 == CurrentPred && 4665 areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)))) 4666 std::swap(LHS, RHS); 4667 } else if (P0 != CurrentPred && AltP0 != CurrentPred) { 4668 std::swap(LHS, RHS); 4669 } 4670 Left.push_back(LHS); 4671 Right.push_back(RHS); 4672 } 4673 } 4674 TE->setOperand(0, Left); 4675 TE->setOperand(1, Right); 4676 buildTree_rec(Left, Depth + 1, {TE, 0}); 4677 buildTree_rec(Right, Depth + 1, {TE, 1}); 4678 return; 4679 } 4680 4681 TE->setOperandsInOrder(); 4682 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4683 ValueList Operands; 4684 // Prepare the operand vector. 4685 for (Value *V : VL) 4686 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4687 4688 buildTree_rec(Operands, Depth + 1, {TE, i}); 4689 } 4690 return; 4691 } 4692 default: 4693 BS.cancelScheduling(VL, VL0); 4694 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4695 ReuseShuffleIndicies); 4696 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 4697 return; 4698 } 4699 } 4700 4701 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 4702 unsigned N = 1; 4703 Type *EltTy = T; 4704 4705 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 4706 isa<VectorType>(EltTy)) { 4707 if (auto *ST = dyn_cast<StructType>(EltTy)) { 4708 // Check that struct is homogeneous. 4709 for (const auto *Ty : ST->elements()) 4710 if (Ty != *ST->element_begin()) 4711 return 0; 4712 N *= ST->getNumElements(); 4713 EltTy = *ST->element_begin(); 4714 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 4715 N *= AT->getNumElements(); 4716 EltTy = AT->getElementType(); 4717 } else { 4718 auto *VT = cast<FixedVectorType>(EltTy); 4719 N *= VT->getNumElements(); 4720 EltTy = VT->getElementType(); 4721 } 4722 } 4723 4724 if (!isValidElementType(EltTy)) 4725 return 0; 4726 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 4727 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 4728 return 0; 4729 return N; 4730 } 4731 4732 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 4733 SmallVectorImpl<unsigned> &CurrentOrder) const { 4734 const auto *It = find_if(VL, [](Value *V) { 4735 return isa<ExtractElementInst, ExtractValueInst>(V); 4736 }); 4737 assert(It != VL.end() && "Expected at least one extract instruction."); 4738 auto *E0 = cast<Instruction>(*It); 4739 assert(all_of(VL, 4740 [](Value *V) { 4741 return isa<UndefValue, ExtractElementInst, ExtractValueInst>( 4742 V); 4743 }) && 4744 "Invalid opcode"); 4745 // Check if all of the extracts come from the same vector and from the 4746 // correct offset. 4747 Value *Vec = E0->getOperand(0); 4748 4749 CurrentOrder.clear(); 4750 4751 // We have to extract from a vector/aggregate with the same number of elements. 4752 unsigned NElts; 4753 if (E0->getOpcode() == Instruction::ExtractValue) { 4754 const DataLayout &DL = E0->getModule()->getDataLayout(); 4755 NElts = canMapToVector(Vec->getType(), DL); 4756 if (!NElts) 4757 return false; 4758 // Check if load can be rewritten as load of vector. 4759 LoadInst *LI = dyn_cast<LoadInst>(Vec); 4760 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 4761 return false; 4762 } else { 4763 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 4764 } 4765 4766 if (NElts != VL.size()) 4767 return false; 4768 4769 // Check that all of the indices extract from the correct offset. 4770 bool ShouldKeepOrder = true; 4771 unsigned E = VL.size(); 4772 // Assign to all items the initial value E + 1 so we can check if the extract 4773 // instruction index was used already. 4774 // Also, later we can check that all the indices are used and we have a 4775 // consecutive access in the extract instructions, by checking that no 4776 // element of CurrentOrder still has value E + 1. 4777 CurrentOrder.assign(E, E); 4778 unsigned I = 0; 4779 for (; I < E; ++I) { 4780 auto *Inst = dyn_cast<Instruction>(VL[I]); 4781 if (!Inst) 4782 continue; 4783 if (Inst->getOperand(0) != Vec) 4784 break; 4785 if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) 4786 if (isa<UndefValue>(EE->getIndexOperand())) 4787 continue; 4788 Optional<unsigned> Idx = getExtractIndex(Inst); 4789 if (!Idx) 4790 break; 4791 const unsigned ExtIdx = *Idx; 4792 if (ExtIdx != I) { 4793 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E) 4794 break; 4795 ShouldKeepOrder = false; 4796 CurrentOrder[ExtIdx] = I; 4797 } else { 4798 if (CurrentOrder[I] != E) 4799 break; 4800 CurrentOrder[I] = I; 4801 } 4802 } 4803 if (I < E) { 4804 CurrentOrder.clear(); 4805 return false; 4806 } 4807 if (ShouldKeepOrder) 4808 CurrentOrder.clear(); 4809 4810 return ShouldKeepOrder; 4811 } 4812 4813 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 4814 ArrayRef<Value *> VectorizedVals) const { 4815 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 4816 all_of(I->users(), [this](User *U) { 4817 return ScalarToTreeEntry.count(U) > 0 || 4818 isVectorLikeInstWithConstOps(U) || 4819 (isa<ExtractElementInst>(U) && MustGather.contains(U)); 4820 }); 4821 } 4822 4823 static std::pair<InstructionCost, InstructionCost> 4824 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 4825 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 4826 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4827 4828 // Calculate the cost of the scalar and vector calls. 4829 SmallVector<Type *, 4> VecTys; 4830 for (Use &Arg : CI->args()) 4831 VecTys.push_back( 4832 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 4833 FastMathFlags FMF; 4834 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 4835 FMF = FPCI->getFastMathFlags(); 4836 SmallVector<const Value *> Arguments(CI->args()); 4837 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 4838 dyn_cast<IntrinsicInst>(CI)); 4839 auto IntrinsicCost = 4840 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 4841 4842 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4843 VecTy->getNumElements())), 4844 false /*HasGlobalPred*/); 4845 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4846 auto LibCost = IntrinsicCost; 4847 if (!CI->isNoBuiltin() && VecFunc) { 4848 // Calculate the cost of the vector library call. 4849 // If the corresponding vector call is cheaper, return its cost. 4850 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 4851 TTI::TCK_RecipThroughput); 4852 } 4853 return {IntrinsicCost, LibCost}; 4854 } 4855 4856 /// Compute the cost of creating a vector of type \p VecTy containing the 4857 /// extracted values from \p VL. 4858 static InstructionCost 4859 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 4860 TargetTransformInfo::ShuffleKind ShuffleKind, 4861 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 4862 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 4863 4864 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 4865 VecTy->getNumElements() < NumOfParts) 4866 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 4867 4868 bool AllConsecutive = true; 4869 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 4870 unsigned Idx = -1; 4871 InstructionCost Cost = 0; 4872 4873 // Process extracts in blocks of EltsPerVector to check if the source vector 4874 // operand can be re-used directly. If not, add the cost of creating a shuffle 4875 // to extract the values into a vector register. 4876 for (auto *V : VL) { 4877 ++Idx; 4878 4879 // Need to exclude undefs from analysis. 4880 if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem) 4881 continue; 4882 4883 // Reached the start of a new vector registers. 4884 if (Idx % EltsPerVector == 0) { 4885 AllConsecutive = true; 4886 continue; 4887 } 4888 4889 // Check all extracts for a vector register on the target directly 4890 // extract values in order. 4891 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 4892 if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) { 4893 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 4894 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 4895 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 4896 } 4897 4898 if (AllConsecutive) 4899 continue; 4900 4901 // Skip all indices, except for the last index per vector block. 4902 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 4903 continue; 4904 4905 // If we have a series of extracts which are not consecutive and hence 4906 // cannot re-use the source vector register directly, compute the shuffle 4907 // cost to extract the a vector with EltsPerVector elements. 4908 Cost += TTI.getShuffleCost( 4909 TargetTransformInfo::SK_PermuteSingleSrc, 4910 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 4911 } 4912 return Cost; 4913 } 4914 4915 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 4916 /// operations operands. 4917 static void 4918 buildShuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 4919 ArrayRef<int> ReusesIndices, 4920 const function_ref<bool(Instruction *)> IsAltOp, 4921 SmallVectorImpl<int> &Mask, 4922 SmallVectorImpl<Value *> *OpScalars = nullptr, 4923 SmallVectorImpl<Value *> *AltScalars = nullptr) { 4924 unsigned Sz = VL.size(); 4925 Mask.assign(Sz, UndefMaskElem); 4926 SmallVector<int> OrderMask; 4927 if (!ReorderIndices.empty()) 4928 inversePermutation(ReorderIndices, OrderMask); 4929 for (unsigned I = 0; I < Sz; ++I) { 4930 unsigned Idx = I; 4931 if (!ReorderIndices.empty()) 4932 Idx = OrderMask[I]; 4933 auto *OpInst = cast<Instruction>(VL[Idx]); 4934 if (IsAltOp(OpInst)) { 4935 Mask[I] = Sz + Idx; 4936 if (AltScalars) 4937 AltScalars->push_back(OpInst); 4938 } else { 4939 Mask[I] = Idx; 4940 if (OpScalars) 4941 OpScalars->push_back(OpInst); 4942 } 4943 } 4944 if (!ReusesIndices.empty()) { 4945 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 4946 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 4947 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 4948 }); 4949 Mask.swap(NewMask); 4950 } 4951 } 4952 4953 /// Checks if the specified instruction \p I is an alternate operation for the 4954 /// given \p MainOp and \p AltOp instructions. 4955 static bool isAlternateInstruction(const Instruction *I, 4956 const Instruction *MainOp, 4957 const Instruction *AltOp) { 4958 if (auto *CI0 = dyn_cast<CmpInst>(MainOp)) { 4959 auto *AltCI0 = cast<CmpInst>(AltOp); 4960 auto *CI = cast<CmpInst>(I); 4961 CmpInst::Predicate P0 = CI0->getPredicate(); 4962 CmpInst::Predicate AltP0 = AltCI0->getPredicate(); 4963 assert(P0 != AltP0 && "Expected different main/alternate predicates."); 4964 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 4965 CmpInst::Predicate CurrentPred = CI->getPredicate(); 4966 if (P0 == AltP0Swapped) 4967 return I == AltCI0 || 4968 (I != MainOp && 4969 !areCompatibleCmpOps(CI0->getOperand(0), CI0->getOperand(1), 4970 CI->getOperand(0), CI->getOperand(1))); 4971 return AltP0 == CurrentPred || AltP0Swapped == CurrentPred; 4972 } 4973 return I->getOpcode() == AltOp->getOpcode(); 4974 } 4975 4976 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 4977 ArrayRef<Value *> VectorizedVals) { 4978 ArrayRef<Value*> VL = E->Scalars; 4979 4980 Type *ScalarTy = VL[0]->getType(); 4981 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4982 ScalarTy = SI->getValueOperand()->getType(); 4983 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 4984 ScalarTy = CI->getOperand(0)->getType(); 4985 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 4986 ScalarTy = IE->getOperand(1)->getType(); 4987 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4988 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 4989 4990 // If we have computed a smaller type for the expression, update VecTy so 4991 // that the costs will be accurate. 4992 if (MinBWs.count(VL[0])) 4993 VecTy = FixedVectorType::get( 4994 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 4995 unsigned EntryVF = E->getVectorFactor(); 4996 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 4997 4998 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4999 // FIXME: it tries to fix a problem with MSVC buildbots. 5000 TargetTransformInfo &TTIRef = *TTI; 5001 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 5002 VectorizedVals, E](InstructionCost &Cost) { 5003 DenseMap<Value *, int> ExtractVectorsTys; 5004 SmallPtrSet<Value *, 4> CheckedExtracts; 5005 for (auto *V : VL) { 5006 if (isa<UndefValue>(V)) 5007 continue; 5008 // If all users of instruction are going to be vectorized and this 5009 // instruction itself is not going to be vectorized, consider this 5010 // instruction as dead and remove its cost from the final cost of the 5011 // vectorized tree. 5012 // Also, avoid adjusting the cost for extractelements with multiple uses 5013 // in different graph entries. 5014 const TreeEntry *VE = getTreeEntry(V); 5015 if (!CheckedExtracts.insert(V).second || 5016 !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 5017 (VE && VE != E)) 5018 continue; 5019 auto *EE = cast<ExtractElementInst>(V); 5020 Optional<unsigned> EEIdx = getExtractIndex(EE); 5021 if (!EEIdx) 5022 continue; 5023 unsigned Idx = *EEIdx; 5024 if (TTIRef.getNumberOfParts(VecTy) != 5025 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 5026 auto It = 5027 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 5028 It->getSecond() = std::min<int>(It->second, Idx); 5029 } 5030 // Take credit for instruction that will become dead. 5031 if (EE->hasOneUse()) { 5032 Instruction *Ext = EE->user_back(); 5033 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5034 all_of(Ext->users(), 5035 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5036 // Use getExtractWithExtendCost() to calculate the cost of 5037 // extractelement/ext pair. 5038 Cost -= 5039 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 5040 EE->getVectorOperandType(), Idx); 5041 // Add back the cost of s|zext which is subtracted separately. 5042 Cost += TTIRef.getCastInstrCost( 5043 Ext->getOpcode(), Ext->getType(), EE->getType(), 5044 TTI::getCastContextHint(Ext), CostKind, Ext); 5045 continue; 5046 } 5047 } 5048 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 5049 EE->getVectorOperandType(), Idx); 5050 } 5051 // Add a cost for subvector extracts/inserts if required. 5052 for (const auto &Data : ExtractVectorsTys) { 5053 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 5054 unsigned NumElts = VecTy->getNumElements(); 5055 if (Data.second % NumElts == 0) 5056 continue; 5057 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 5058 unsigned Idx = (Data.second / NumElts) * NumElts; 5059 unsigned EENumElts = EEVTy->getNumElements(); 5060 if (Idx + NumElts <= EENumElts) { 5061 Cost += 5062 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5063 EEVTy, None, Idx, VecTy); 5064 } else { 5065 // Need to round up the subvector type vectorization factor to avoid a 5066 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 5067 // <= EENumElts. 5068 auto *SubVT = 5069 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 5070 Cost += 5071 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5072 EEVTy, None, Idx, SubVT); 5073 } 5074 } else { 5075 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 5076 VecTy, None, 0, EEVTy); 5077 } 5078 } 5079 }; 5080 if (E->State == TreeEntry::NeedToGather) { 5081 if (allConstant(VL)) 5082 return 0; 5083 if (isa<InsertElementInst>(VL[0])) 5084 return InstructionCost::getInvalid(); 5085 SmallVector<int> Mask; 5086 SmallVector<const TreeEntry *> Entries; 5087 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 5088 isGatherShuffledEntry(E, Mask, Entries); 5089 if (Shuffle.hasValue()) { 5090 InstructionCost GatherCost = 0; 5091 if (ShuffleVectorInst::isIdentityMask(Mask)) { 5092 // Perfect match in the graph, will reuse the previously vectorized 5093 // node. Cost is 0. 5094 LLVM_DEBUG( 5095 dbgs() 5096 << "SLP: perfect diamond match for gather bundle that starts with " 5097 << *VL.front() << ".\n"); 5098 if (NeedToShuffleReuses) 5099 GatherCost = 5100 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5101 FinalVecTy, E->ReuseShuffleIndices); 5102 } else { 5103 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 5104 << " entries for bundle that starts with " 5105 << *VL.front() << ".\n"); 5106 // Detected that instead of gather we can emit a shuffle of single/two 5107 // previously vectorized nodes. Add the cost of the permutation rather 5108 // than gather. 5109 ::addMask(Mask, E->ReuseShuffleIndices); 5110 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 5111 } 5112 return GatherCost; 5113 } 5114 if ((E->getOpcode() == Instruction::ExtractElement || 5115 all_of(E->Scalars, 5116 [](Value *V) { 5117 return isa<ExtractElementInst, UndefValue>(V); 5118 })) && 5119 allSameType(VL)) { 5120 // Check that gather of extractelements can be represented as just a 5121 // shuffle of a single/two vectors the scalars are extracted from. 5122 SmallVector<int> Mask; 5123 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 5124 isFixedVectorShuffle(VL, Mask); 5125 if (ShuffleKind.hasValue()) { 5126 // Found the bunch of extractelement instructions that must be gathered 5127 // into a vector and can be represented as a permutation elements in a 5128 // single input vector or of 2 input vectors. 5129 InstructionCost Cost = 5130 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 5131 AdjustExtractsCost(Cost); 5132 if (NeedToShuffleReuses) 5133 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5134 FinalVecTy, E->ReuseShuffleIndices); 5135 return Cost; 5136 } 5137 } 5138 if (isSplat(VL)) { 5139 // Found the broadcasting of the single scalar, calculate the cost as the 5140 // broadcast. 5141 assert(VecTy == FinalVecTy && 5142 "No reused scalars expected for broadcast."); 5143 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy); 5144 } 5145 InstructionCost ReuseShuffleCost = 0; 5146 if (NeedToShuffleReuses) 5147 ReuseShuffleCost = TTI->getShuffleCost( 5148 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 5149 // Improve gather cost for gather of loads, if we can group some of the 5150 // loads into vector loads. 5151 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 5152 !E->isAltShuffle()) { 5153 BoUpSLP::ValueSet VectorizedLoads; 5154 unsigned StartIdx = 0; 5155 unsigned VF = VL.size() / 2; 5156 unsigned VectorizedCnt = 0; 5157 unsigned ScatterVectorizeCnt = 0; 5158 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 5159 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 5160 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 5161 Cnt += VF) { 5162 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 5163 if (!VectorizedLoads.count(Slice.front()) && 5164 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 5165 SmallVector<Value *> PointerOps; 5166 OrdersType CurrentOrder; 5167 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 5168 *SE, CurrentOrder, PointerOps); 5169 switch (LS) { 5170 case LoadsState::Vectorize: 5171 case LoadsState::ScatterVectorize: 5172 // Mark the vectorized loads so that we don't vectorize them 5173 // again. 5174 if (LS == LoadsState::Vectorize) 5175 ++VectorizedCnt; 5176 else 5177 ++ScatterVectorizeCnt; 5178 VectorizedLoads.insert(Slice.begin(), Slice.end()); 5179 // If we vectorized initial block, no need to try to vectorize it 5180 // again. 5181 if (Cnt == StartIdx) 5182 StartIdx += VF; 5183 break; 5184 case LoadsState::Gather: 5185 break; 5186 } 5187 } 5188 } 5189 // Check if the whole array was vectorized already - exit. 5190 if (StartIdx >= VL.size()) 5191 break; 5192 // Found vectorizable parts - exit. 5193 if (!VectorizedLoads.empty()) 5194 break; 5195 } 5196 if (!VectorizedLoads.empty()) { 5197 InstructionCost GatherCost = 0; 5198 unsigned NumParts = TTI->getNumberOfParts(VecTy); 5199 bool NeedInsertSubvectorAnalysis = 5200 !NumParts || (VL.size() / VF) > NumParts; 5201 // Get the cost for gathered loads. 5202 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 5203 if (VectorizedLoads.contains(VL[I])) 5204 continue; 5205 GatherCost += getGatherCost(VL.slice(I, VF)); 5206 } 5207 // The cost for vectorized loads. 5208 InstructionCost ScalarsCost = 0; 5209 for (Value *V : VectorizedLoads) { 5210 auto *LI = cast<LoadInst>(V); 5211 ScalarsCost += TTI->getMemoryOpCost( 5212 Instruction::Load, LI->getType(), LI->getAlign(), 5213 LI->getPointerAddressSpace(), CostKind, LI); 5214 } 5215 auto *LI = cast<LoadInst>(E->getMainOp()); 5216 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 5217 Align Alignment = LI->getAlign(); 5218 GatherCost += 5219 VectorizedCnt * 5220 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 5221 LI->getPointerAddressSpace(), CostKind, LI); 5222 GatherCost += ScatterVectorizeCnt * 5223 TTI->getGatherScatterOpCost( 5224 Instruction::Load, LoadTy, LI->getPointerOperand(), 5225 /*VariableMask=*/false, Alignment, CostKind, LI); 5226 if (NeedInsertSubvectorAnalysis) { 5227 // Add the cost for the subvectors insert. 5228 for (int I = VF, E = VL.size(); I < E; I += VF) 5229 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 5230 None, I, LoadTy); 5231 } 5232 return ReuseShuffleCost + GatherCost - ScalarsCost; 5233 } 5234 } 5235 return ReuseShuffleCost + getGatherCost(VL); 5236 } 5237 InstructionCost CommonCost = 0; 5238 SmallVector<int> Mask; 5239 if (!E->ReorderIndices.empty()) { 5240 SmallVector<int> NewMask; 5241 if (E->getOpcode() == Instruction::Store) { 5242 // For stores the order is actually a mask. 5243 NewMask.resize(E->ReorderIndices.size()); 5244 copy(E->ReorderIndices, NewMask.begin()); 5245 } else { 5246 inversePermutation(E->ReorderIndices, NewMask); 5247 } 5248 ::addMask(Mask, NewMask); 5249 } 5250 if (NeedToShuffleReuses) 5251 ::addMask(Mask, E->ReuseShuffleIndices); 5252 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 5253 CommonCost = 5254 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 5255 assert((E->State == TreeEntry::Vectorize || 5256 E->State == TreeEntry::ScatterVectorize) && 5257 "Unhandled state"); 5258 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 5259 Instruction *VL0 = E->getMainOp(); 5260 unsigned ShuffleOrOp = 5261 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 5262 switch (ShuffleOrOp) { 5263 case Instruction::PHI: 5264 return 0; 5265 5266 case Instruction::ExtractValue: 5267 case Instruction::ExtractElement: { 5268 // The common cost of removal ExtractElement/ExtractValue instructions + 5269 // the cost of shuffles, if required to resuffle the original vector. 5270 if (NeedToShuffleReuses) { 5271 unsigned Idx = 0; 5272 for (unsigned I : E->ReuseShuffleIndices) { 5273 if (ShuffleOrOp == Instruction::ExtractElement) { 5274 auto *EE = cast<ExtractElementInst>(VL[I]); 5275 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5276 EE->getVectorOperandType(), 5277 *getExtractIndex(EE)); 5278 } else { 5279 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5280 VecTy, Idx); 5281 ++Idx; 5282 } 5283 } 5284 Idx = EntryVF; 5285 for (Value *V : VL) { 5286 if (ShuffleOrOp == Instruction::ExtractElement) { 5287 auto *EE = cast<ExtractElementInst>(V); 5288 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5289 EE->getVectorOperandType(), 5290 *getExtractIndex(EE)); 5291 } else { 5292 --Idx; 5293 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5294 VecTy, Idx); 5295 } 5296 } 5297 } 5298 if (ShuffleOrOp == Instruction::ExtractValue) { 5299 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 5300 auto *EI = cast<Instruction>(VL[I]); 5301 // Take credit for instruction that will become dead. 5302 if (EI->hasOneUse()) { 5303 Instruction *Ext = EI->user_back(); 5304 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5305 all_of(Ext->users(), 5306 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5307 // Use getExtractWithExtendCost() to calculate the cost of 5308 // extractelement/ext pair. 5309 CommonCost -= TTI->getExtractWithExtendCost( 5310 Ext->getOpcode(), Ext->getType(), VecTy, I); 5311 // Add back the cost of s|zext which is subtracted separately. 5312 CommonCost += TTI->getCastInstrCost( 5313 Ext->getOpcode(), Ext->getType(), EI->getType(), 5314 TTI::getCastContextHint(Ext), CostKind, Ext); 5315 continue; 5316 } 5317 } 5318 CommonCost -= 5319 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 5320 } 5321 } else { 5322 AdjustExtractsCost(CommonCost); 5323 } 5324 return CommonCost; 5325 } 5326 case Instruction::InsertElement: { 5327 assert(E->ReuseShuffleIndices.empty() && 5328 "Unique insertelements only are expected."); 5329 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 5330 5331 unsigned const NumElts = SrcVecTy->getNumElements(); 5332 unsigned const NumScalars = VL.size(); 5333 APInt DemandedElts = APInt::getZero(NumElts); 5334 // TODO: Add support for Instruction::InsertValue. 5335 SmallVector<int> Mask; 5336 if (!E->ReorderIndices.empty()) { 5337 inversePermutation(E->ReorderIndices, Mask); 5338 Mask.append(NumElts - NumScalars, UndefMaskElem); 5339 } else { 5340 Mask.assign(NumElts, UndefMaskElem); 5341 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 5342 } 5343 unsigned Offset = *getInsertIndex(VL0); 5344 bool IsIdentity = true; 5345 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 5346 Mask.swap(PrevMask); 5347 for (unsigned I = 0; I < NumScalars; ++I) { 5348 unsigned InsertIdx = *getInsertIndex(VL[PrevMask[I]]); 5349 DemandedElts.setBit(InsertIdx); 5350 IsIdentity &= InsertIdx - Offset == I; 5351 Mask[InsertIdx - Offset] = I; 5352 } 5353 assert(Offset < NumElts && "Failed to find vector index offset"); 5354 5355 InstructionCost Cost = 0; 5356 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 5357 /*Insert*/ true, /*Extract*/ false); 5358 5359 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 5360 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 5361 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 5362 Cost += TTI->getShuffleCost( 5363 TargetTransformInfo::SK_PermuteSingleSrc, 5364 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 5365 } else if (!IsIdentity) { 5366 auto *FirstInsert = 5367 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 5368 return !is_contained(E->Scalars, 5369 cast<Instruction>(V)->getOperand(0)); 5370 })); 5371 if (isUndefVector(FirstInsert->getOperand(0))) { 5372 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 5373 } else { 5374 SmallVector<int> InsertMask(NumElts); 5375 std::iota(InsertMask.begin(), InsertMask.end(), 0); 5376 for (unsigned I = 0; I < NumElts; I++) { 5377 if (Mask[I] != UndefMaskElem) 5378 InsertMask[Offset + I] = NumElts + I; 5379 } 5380 Cost += 5381 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 5382 } 5383 } 5384 5385 return Cost; 5386 } 5387 case Instruction::ZExt: 5388 case Instruction::SExt: 5389 case Instruction::FPToUI: 5390 case Instruction::FPToSI: 5391 case Instruction::FPExt: 5392 case Instruction::PtrToInt: 5393 case Instruction::IntToPtr: 5394 case Instruction::SIToFP: 5395 case Instruction::UIToFP: 5396 case Instruction::Trunc: 5397 case Instruction::FPTrunc: 5398 case Instruction::BitCast: { 5399 Type *SrcTy = VL0->getOperand(0)->getType(); 5400 InstructionCost ScalarEltCost = 5401 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 5402 TTI::getCastContextHint(VL0), CostKind, VL0); 5403 if (NeedToShuffleReuses) { 5404 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5405 } 5406 5407 // Calculate the cost of this instruction. 5408 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 5409 5410 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 5411 InstructionCost VecCost = 0; 5412 // Check if the values are candidates to demote. 5413 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 5414 VecCost = CommonCost + TTI->getCastInstrCost( 5415 E->getOpcode(), VecTy, SrcVecTy, 5416 TTI::getCastContextHint(VL0), CostKind, VL0); 5417 } 5418 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5419 return VecCost - ScalarCost; 5420 } 5421 case Instruction::FCmp: 5422 case Instruction::ICmp: 5423 case Instruction::Select: { 5424 // Calculate the cost of this instruction. 5425 InstructionCost ScalarEltCost = 5426 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5427 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 5428 if (NeedToShuffleReuses) { 5429 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5430 } 5431 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 5432 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5433 5434 // Check if all entries in VL are either compares or selects with compares 5435 // as condition that have the same predicates. 5436 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 5437 bool First = true; 5438 for (auto *V : VL) { 5439 CmpInst::Predicate CurrentPred; 5440 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 5441 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 5442 !match(V, MatchCmp)) || 5443 (!First && VecPred != CurrentPred)) { 5444 VecPred = CmpInst::BAD_ICMP_PREDICATE; 5445 break; 5446 } 5447 First = false; 5448 VecPred = CurrentPred; 5449 } 5450 5451 InstructionCost VecCost = TTI->getCmpSelInstrCost( 5452 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 5453 // Check if it is possible and profitable to use min/max for selects in 5454 // VL. 5455 // 5456 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 5457 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 5458 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 5459 {VecTy, VecTy}); 5460 InstructionCost IntrinsicCost = 5461 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5462 // If the selects are the only uses of the compares, they will be dead 5463 // and we can adjust the cost by removing their cost. 5464 if (IntrinsicAndUse.second) 5465 IntrinsicCost -= TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, 5466 MaskTy, VecPred, CostKind); 5467 VecCost = std::min(VecCost, IntrinsicCost); 5468 } 5469 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5470 return CommonCost + VecCost - ScalarCost; 5471 } 5472 case Instruction::FNeg: 5473 case Instruction::Add: 5474 case Instruction::FAdd: 5475 case Instruction::Sub: 5476 case Instruction::FSub: 5477 case Instruction::Mul: 5478 case Instruction::FMul: 5479 case Instruction::UDiv: 5480 case Instruction::SDiv: 5481 case Instruction::FDiv: 5482 case Instruction::URem: 5483 case Instruction::SRem: 5484 case Instruction::FRem: 5485 case Instruction::Shl: 5486 case Instruction::LShr: 5487 case Instruction::AShr: 5488 case Instruction::And: 5489 case Instruction::Or: 5490 case Instruction::Xor: { 5491 // Certain instructions can be cheaper to vectorize if they have a 5492 // constant second vector operand. 5493 TargetTransformInfo::OperandValueKind Op1VK = 5494 TargetTransformInfo::OK_AnyValue; 5495 TargetTransformInfo::OperandValueKind Op2VK = 5496 TargetTransformInfo::OK_UniformConstantValue; 5497 TargetTransformInfo::OperandValueProperties Op1VP = 5498 TargetTransformInfo::OP_None; 5499 TargetTransformInfo::OperandValueProperties Op2VP = 5500 TargetTransformInfo::OP_PowerOf2; 5501 5502 // If all operands are exactly the same ConstantInt then set the 5503 // operand kind to OK_UniformConstantValue. 5504 // If instead not all operands are constants, then set the operand kind 5505 // to OK_AnyValue. If all operands are constants but not the same, 5506 // then set the operand kind to OK_NonUniformConstantValue. 5507 ConstantInt *CInt0 = nullptr; 5508 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 5509 const Instruction *I = cast<Instruction>(VL[i]); 5510 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 5511 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 5512 if (!CInt) { 5513 Op2VK = TargetTransformInfo::OK_AnyValue; 5514 Op2VP = TargetTransformInfo::OP_None; 5515 break; 5516 } 5517 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 5518 !CInt->getValue().isPowerOf2()) 5519 Op2VP = TargetTransformInfo::OP_None; 5520 if (i == 0) { 5521 CInt0 = CInt; 5522 continue; 5523 } 5524 if (CInt0 != CInt) 5525 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5526 } 5527 5528 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 5529 InstructionCost ScalarEltCost = 5530 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 5531 Op2VK, Op1VP, Op2VP, Operands, VL0); 5532 if (NeedToShuffleReuses) { 5533 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5534 } 5535 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5536 InstructionCost VecCost = 5537 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 5538 Op2VK, Op1VP, Op2VP, Operands, VL0); 5539 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5540 return CommonCost + VecCost - ScalarCost; 5541 } 5542 case Instruction::GetElementPtr: { 5543 TargetTransformInfo::OperandValueKind Op1VK = 5544 TargetTransformInfo::OK_AnyValue; 5545 TargetTransformInfo::OperandValueKind Op2VK = 5546 TargetTransformInfo::OK_UniformConstantValue; 5547 5548 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 5549 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 5550 if (NeedToShuffleReuses) { 5551 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5552 } 5553 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5554 InstructionCost VecCost = TTI->getArithmeticInstrCost( 5555 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 5556 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5557 return CommonCost + VecCost - ScalarCost; 5558 } 5559 case Instruction::Load: { 5560 // Cost of wide load - cost of scalar loads. 5561 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 5562 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5563 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 5564 if (NeedToShuffleReuses) { 5565 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5566 } 5567 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 5568 InstructionCost VecLdCost; 5569 if (E->State == TreeEntry::Vectorize) { 5570 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 5571 CostKind, VL0); 5572 } else { 5573 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 5574 Align CommonAlignment = Alignment; 5575 for (Value *V : VL) 5576 CommonAlignment = 5577 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 5578 VecLdCost = TTI->getGatherScatterOpCost( 5579 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 5580 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 5581 } 5582 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 5583 return CommonCost + VecLdCost - ScalarLdCost; 5584 } 5585 case Instruction::Store: { 5586 // We know that we can merge the stores. Calculate the cost. 5587 bool IsReorder = !E->ReorderIndices.empty(); 5588 auto *SI = 5589 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 5590 Align Alignment = SI->getAlign(); 5591 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5592 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 5593 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 5594 InstructionCost VecStCost = TTI->getMemoryOpCost( 5595 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 5596 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 5597 return CommonCost + VecStCost - ScalarStCost; 5598 } 5599 case Instruction::Call: { 5600 CallInst *CI = cast<CallInst>(VL0); 5601 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5602 5603 // Calculate the cost of the scalar and vector calls. 5604 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 5605 InstructionCost ScalarEltCost = 5606 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5607 if (NeedToShuffleReuses) { 5608 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5609 } 5610 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 5611 5612 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 5613 InstructionCost VecCallCost = 5614 std::min(VecCallCosts.first, VecCallCosts.second); 5615 5616 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 5617 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 5618 << " for " << *CI << "\n"); 5619 5620 return CommonCost + VecCallCost - ScalarCallCost; 5621 } 5622 case Instruction::ShuffleVector: { 5623 assert(E->isAltShuffle() && 5624 ((Instruction::isBinaryOp(E->getOpcode()) && 5625 Instruction::isBinaryOp(E->getAltOpcode())) || 5626 (Instruction::isCast(E->getOpcode()) && 5627 Instruction::isCast(E->getAltOpcode())) || 5628 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 5629 "Invalid Shuffle Vector Operand"); 5630 InstructionCost ScalarCost = 0; 5631 if (NeedToShuffleReuses) { 5632 for (unsigned Idx : E->ReuseShuffleIndices) { 5633 Instruction *I = cast<Instruction>(VL[Idx]); 5634 CommonCost -= TTI->getInstructionCost(I, CostKind); 5635 } 5636 for (Value *V : VL) { 5637 Instruction *I = cast<Instruction>(V); 5638 CommonCost += TTI->getInstructionCost(I, CostKind); 5639 } 5640 } 5641 for (Value *V : VL) { 5642 Instruction *I = cast<Instruction>(V); 5643 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5644 ScalarCost += TTI->getInstructionCost(I, CostKind); 5645 } 5646 // VecCost is equal to sum of the cost of creating 2 vectors 5647 // and the cost of creating shuffle. 5648 InstructionCost VecCost = 0; 5649 // Try to find the previous shuffle node with the same operands and same 5650 // main/alternate ops. 5651 auto &&TryFindNodeWithEqualOperands = [this, E]() { 5652 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 5653 if (TE.get() == E) 5654 break; 5655 if (TE->isAltShuffle() && 5656 ((TE->getOpcode() == E->getOpcode() && 5657 TE->getAltOpcode() == E->getAltOpcode()) || 5658 (TE->getOpcode() == E->getAltOpcode() && 5659 TE->getAltOpcode() == E->getOpcode())) && 5660 TE->hasEqualOperands(*E)) 5661 return true; 5662 } 5663 return false; 5664 }; 5665 if (TryFindNodeWithEqualOperands()) { 5666 LLVM_DEBUG({ 5667 dbgs() << "SLP: diamond match for alternate node found.\n"; 5668 E->dump(); 5669 }); 5670 // No need to add new vector costs here since we're going to reuse 5671 // same main/alternate vector ops, just do different shuffling. 5672 } else if (Instruction::isBinaryOp(E->getOpcode())) { 5673 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 5674 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 5675 CostKind); 5676 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 5677 VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 5678 Builder.getInt1Ty(), 5679 CI0->getPredicate(), CostKind, VL0); 5680 VecCost += TTI->getCmpSelInstrCost( 5681 E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5682 cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind, 5683 E->getAltOp()); 5684 } else { 5685 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 5686 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 5687 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 5688 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 5689 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 5690 TTI::CastContextHint::None, CostKind); 5691 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 5692 TTI::CastContextHint::None, CostKind); 5693 } 5694 5695 SmallVector<int> Mask; 5696 buildShuffleEntryMask( 5697 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 5698 [E](Instruction *I) { 5699 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5700 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 5701 }, 5702 Mask); 5703 CommonCost = 5704 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask); 5705 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5706 return CommonCost + VecCost - ScalarCost; 5707 } 5708 default: 5709 llvm_unreachable("Unknown instruction"); 5710 } 5711 } 5712 5713 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 5714 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 5715 << VectorizableTree.size() << " is fully vectorizable .\n"); 5716 5717 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 5718 SmallVector<int> Mask; 5719 return TE->State == TreeEntry::NeedToGather && 5720 !any_of(TE->Scalars, 5721 [this](Value *V) { return EphValues.contains(V); }) && 5722 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 5723 TE->Scalars.size() < Limit || 5724 ((TE->getOpcode() == Instruction::ExtractElement || 5725 all_of(TE->Scalars, 5726 [](Value *V) { 5727 return isa<ExtractElementInst, UndefValue>(V); 5728 })) && 5729 isFixedVectorShuffle(TE->Scalars, Mask)) || 5730 (TE->State == TreeEntry::NeedToGather && 5731 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 5732 }; 5733 5734 // We only handle trees of heights 1 and 2. 5735 if (VectorizableTree.size() == 1 && 5736 (VectorizableTree[0]->State == TreeEntry::Vectorize || 5737 (ForReduction && 5738 AreVectorizableGathers(VectorizableTree[0].get(), 5739 VectorizableTree[0]->Scalars.size()) && 5740 VectorizableTree[0]->getVectorFactor() > 2))) 5741 return true; 5742 5743 if (VectorizableTree.size() != 2) 5744 return false; 5745 5746 // Handle splat and all-constants stores. Also try to vectorize tiny trees 5747 // with the second gather nodes if they have less scalar operands rather than 5748 // the initial tree element (may be profitable to shuffle the second gather) 5749 // or they are extractelements, which form shuffle. 5750 SmallVector<int> Mask; 5751 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 5752 AreVectorizableGathers(VectorizableTree[1].get(), 5753 VectorizableTree[0]->Scalars.size())) 5754 return true; 5755 5756 // Gathering cost would be too much for tiny trees. 5757 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 5758 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 5759 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 5760 return false; 5761 5762 return true; 5763 } 5764 5765 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 5766 TargetTransformInfo *TTI, 5767 bool MustMatchOrInst) { 5768 // Look past the root to find a source value. Arbitrarily follow the 5769 // path through operand 0 of any 'or'. Also, peek through optional 5770 // shift-left-by-multiple-of-8-bits. 5771 Value *ZextLoad = Root; 5772 const APInt *ShAmtC; 5773 bool FoundOr = false; 5774 while (!isa<ConstantExpr>(ZextLoad) && 5775 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 5776 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 5777 ShAmtC->urem(8) == 0))) { 5778 auto *BinOp = cast<BinaryOperator>(ZextLoad); 5779 ZextLoad = BinOp->getOperand(0); 5780 if (BinOp->getOpcode() == Instruction::Or) 5781 FoundOr = true; 5782 } 5783 // Check if the input is an extended load of the required or/shift expression. 5784 Value *Load; 5785 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 5786 !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load)) 5787 return false; 5788 5789 // Require that the total load bit width is a legal integer type. 5790 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 5791 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 5792 Type *SrcTy = Load->getType(); 5793 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 5794 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 5795 return false; 5796 5797 // Everything matched - assume that we can fold the whole sequence using 5798 // load combining. 5799 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 5800 << *(cast<Instruction>(Root)) << "\n"); 5801 5802 return true; 5803 } 5804 5805 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 5806 if (RdxKind != RecurKind::Or) 5807 return false; 5808 5809 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5810 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 5811 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 5812 /* MatchOr */ false); 5813 } 5814 5815 bool BoUpSLP::isLoadCombineCandidate() const { 5816 // Peek through a final sequence of stores and check if all operations are 5817 // likely to be load-combined. 5818 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5819 for (Value *Scalar : VectorizableTree[0]->Scalars) { 5820 Value *X; 5821 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 5822 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 5823 return false; 5824 } 5825 return true; 5826 } 5827 5828 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 5829 // No need to vectorize inserts of gathered values. 5830 if (VectorizableTree.size() == 2 && 5831 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 5832 VectorizableTree[1]->State == TreeEntry::NeedToGather) 5833 return true; 5834 5835 // We can vectorize the tree if its size is greater than or equal to the 5836 // minimum size specified by the MinTreeSize command line option. 5837 if (VectorizableTree.size() >= MinTreeSize) 5838 return false; 5839 5840 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 5841 // can vectorize it if we can prove it fully vectorizable. 5842 if (isFullyVectorizableTinyTree(ForReduction)) 5843 return false; 5844 5845 assert(VectorizableTree.empty() 5846 ? ExternalUses.empty() 5847 : true && "We shouldn't have any external users"); 5848 5849 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 5850 // vectorizable. 5851 return true; 5852 } 5853 5854 InstructionCost BoUpSLP::getSpillCost() const { 5855 // Walk from the bottom of the tree to the top, tracking which values are 5856 // live. When we see a call instruction that is not part of our tree, 5857 // query TTI to see if there is a cost to keeping values live over it 5858 // (for example, if spills and fills are required). 5859 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 5860 InstructionCost Cost = 0; 5861 5862 SmallPtrSet<Instruction*, 4> LiveValues; 5863 Instruction *PrevInst = nullptr; 5864 5865 // The entries in VectorizableTree are not necessarily ordered by their 5866 // position in basic blocks. Collect them and order them by dominance so later 5867 // instructions are guaranteed to be visited first. For instructions in 5868 // different basic blocks, we only scan to the beginning of the block, so 5869 // their order does not matter, as long as all instructions in a basic block 5870 // are grouped together. Using dominance ensures a deterministic order. 5871 SmallVector<Instruction *, 16> OrderedScalars; 5872 for (const auto &TEPtr : VectorizableTree) { 5873 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 5874 if (!Inst) 5875 continue; 5876 OrderedScalars.push_back(Inst); 5877 } 5878 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 5879 auto *NodeA = DT->getNode(A->getParent()); 5880 auto *NodeB = DT->getNode(B->getParent()); 5881 assert(NodeA && "Should only process reachable instructions"); 5882 assert(NodeB && "Should only process reachable instructions"); 5883 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 5884 "Different nodes should have different DFS numbers"); 5885 if (NodeA != NodeB) 5886 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 5887 return B->comesBefore(A); 5888 }); 5889 5890 for (Instruction *Inst : OrderedScalars) { 5891 if (!PrevInst) { 5892 PrevInst = Inst; 5893 continue; 5894 } 5895 5896 // Update LiveValues. 5897 LiveValues.erase(PrevInst); 5898 for (auto &J : PrevInst->operands()) { 5899 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 5900 LiveValues.insert(cast<Instruction>(&*J)); 5901 } 5902 5903 LLVM_DEBUG({ 5904 dbgs() << "SLP: #LV: " << LiveValues.size(); 5905 for (auto *X : LiveValues) 5906 dbgs() << " " << X->getName(); 5907 dbgs() << ", Looking at "; 5908 Inst->dump(); 5909 }); 5910 5911 // Now find the sequence of instructions between PrevInst and Inst. 5912 unsigned NumCalls = 0; 5913 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 5914 PrevInstIt = 5915 PrevInst->getIterator().getReverse(); 5916 while (InstIt != PrevInstIt) { 5917 if (PrevInstIt == PrevInst->getParent()->rend()) { 5918 PrevInstIt = Inst->getParent()->rbegin(); 5919 continue; 5920 } 5921 5922 // Debug information does not impact spill cost. 5923 if ((isa<CallInst>(&*PrevInstIt) && 5924 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 5925 &*PrevInstIt != PrevInst) 5926 NumCalls++; 5927 5928 ++PrevInstIt; 5929 } 5930 5931 if (NumCalls) { 5932 SmallVector<Type*, 4> V; 5933 for (auto *II : LiveValues) { 5934 auto *ScalarTy = II->getType(); 5935 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 5936 ScalarTy = VectorTy->getElementType(); 5937 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 5938 } 5939 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 5940 } 5941 5942 PrevInst = Inst; 5943 } 5944 5945 return Cost; 5946 } 5947 5948 /// Check if two insertelement instructions are from the same buildvector. 5949 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU, 5950 InsertElementInst *V) { 5951 // Instructions must be from the same basic blocks. 5952 if (VU->getParent() != V->getParent()) 5953 return false; 5954 // Checks if 2 insertelements are from the same buildvector. 5955 if (VU->getType() != V->getType()) 5956 return false; 5957 // Multiple used inserts are separate nodes. 5958 if (!VU->hasOneUse() && !V->hasOneUse()) 5959 return false; 5960 auto *IE1 = VU; 5961 auto *IE2 = V; 5962 // Go through the vector operand of insertelement instructions trying to find 5963 // either VU as the original vector for IE2 or V as the original vector for 5964 // IE1. 5965 do { 5966 if (IE2 == VU || IE1 == V) 5967 return true; 5968 if (IE1) { 5969 if (IE1 != VU && !IE1->hasOneUse()) 5970 IE1 = nullptr; 5971 else 5972 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 5973 } 5974 if (IE2) { 5975 if (IE2 != V && !IE2->hasOneUse()) 5976 IE2 = nullptr; 5977 else 5978 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 5979 } 5980 } while (IE1 || IE2); 5981 return false; 5982 } 5983 5984 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 5985 InstructionCost Cost = 0; 5986 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 5987 << VectorizableTree.size() << ".\n"); 5988 5989 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 5990 5991 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 5992 TreeEntry &TE = *VectorizableTree[I].get(); 5993 5994 InstructionCost C = getEntryCost(&TE, VectorizedVals); 5995 Cost += C; 5996 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5997 << " for bundle that starts with " << *TE.Scalars[0] 5998 << ".\n" 5999 << "SLP: Current total cost = " << Cost << "\n"); 6000 } 6001 6002 SmallPtrSet<Value *, 16> ExtractCostCalculated; 6003 InstructionCost ExtractCost = 0; 6004 SmallVector<unsigned> VF; 6005 SmallVector<SmallVector<int>> ShuffleMask; 6006 SmallVector<Value *> FirstUsers; 6007 SmallVector<APInt> DemandedElts; 6008 for (ExternalUser &EU : ExternalUses) { 6009 // We only add extract cost once for the same scalar. 6010 if (!isa_and_nonnull<InsertElementInst>(EU.User) && 6011 !ExtractCostCalculated.insert(EU.Scalar).second) 6012 continue; 6013 6014 // Uses by ephemeral values are free (because the ephemeral value will be 6015 // removed prior to code generation, and so the extraction will be 6016 // removed as well). 6017 if (EphValues.count(EU.User)) 6018 continue; 6019 6020 // No extract cost for vector "scalar" 6021 if (isa<FixedVectorType>(EU.Scalar->getType())) 6022 continue; 6023 6024 // Already counted the cost for external uses when tried to adjust the cost 6025 // for extractelements, no need to add it again. 6026 if (isa<ExtractElementInst>(EU.Scalar)) 6027 continue; 6028 6029 // If found user is an insertelement, do not calculate extract cost but try 6030 // to detect it as a final shuffled/identity match. 6031 if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) { 6032 if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) { 6033 Optional<unsigned> InsertIdx = getInsertIndex(VU); 6034 if (InsertIdx) { 6035 auto *It = find_if(FirstUsers, [VU](Value *V) { 6036 return areTwoInsertFromSameBuildVector(VU, 6037 cast<InsertElementInst>(V)); 6038 }); 6039 int VecId = -1; 6040 if (It == FirstUsers.end()) { 6041 VF.push_back(FTy->getNumElements()); 6042 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 6043 // Find the insertvector, vectorized in tree, if any. 6044 Value *Base = VU; 6045 while (isa<InsertElementInst>(Base)) { 6046 // Build the mask for the vectorized insertelement instructions. 6047 if (const TreeEntry *E = getTreeEntry(Base)) { 6048 VU = cast<InsertElementInst>(Base); 6049 do { 6050 int Idx = E->findLaneForValue(Base); 6051 ShuffleMask.back()[Idx] = Idx; 6052 Base = cast<InsertElementInst>(Base)->getOperand(0); 6053 } while (E == getTreeEntry(Base)); 6054 break; 6055 } 6056 Base = cast<InsertElementInst>(Base)->getOperand(0); 6057 } 6058 FirstUsers.push_back(VU); 6059 DemandedElts.push_back(APInt::getZero(VF.back())); 6060 VecId = FirstUsers.size() - 1; 6061 } else { 6062 VecId = std::distance(FirstUsers.begin(), It); 6063 } 6064 ShuffleMask[VecId][*InsertIdx] = EU.Lane; 6065 DemandedElts[VecId].setBit(*InsertIdx); 6066 continue; 6067 } 6068 } 6069 } 6070 6071 // If we plan to rewrite the tree in a smaller type, we will need to sign 6072 // extend the extracted value back to the original type. Here, we account 6073 // for the extract and the added cost of the sign extend if needed. 6074 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 6075 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 6076 if (MinBWs.count(ScalarRoot)) { 6077 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 6078 auto Extend = 6079 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 6080 VecTy = FixedVectorType::get(MinTy, BundleWidth); 6081 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 6082 VecTy, EU.Lane); 6083 } else { 6084 ExtractCost += 6085 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 6086 } 6087 } 6088 6089 InstructionCost SpillCost = getSpillCost(); 6090 Cost += SpillCost + ExtractCost; 6091 if (FirstUsers.size() == 1) { 6092 int Limit = ShuffleMask.front().size() * 2; 6093 if (all_of(ShuffleMask.front(), [Limit](int Idx) { return Idx < Limit; }) && 6094 !ShuffleVectorInst::isIdentityMask(ShuffleMask.front())) { 6095 InstructionCost C = TTI->getShuffleCost( 6096 TTI::SK_PermuteSingleSrc, 6097 cast<FixedVectorType>(FirstUsers.front()->getType()), 6098 ShuffleMask.front()); 6099 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6100 << " for final shuffle of insertelement external users " 6101 << *VectorizableTree.front()->Scalars.front() << ".\n" 6102 << "SLP: Current total cost = " << Cost << "\n"); 6103 Cost += C; 6104 } 6105 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6106 cast<FixedVectorType>(FirstUsers.front()->getType()), 6107 DemandedElts.front(), /*Insert*/ true, /*Extract*/ false); 6108 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6109 << " for insertelements gather.\n" 6110 << "SLP: Current total cost = " << Cost << "\n"); 6111 Cost -= InsertCost; 6112 } else if (FirstUsers.size() >= 2) { 6113 unsigned MaxVF = *std::max_element(VF.begin(), VF.end()); 6114 // Combined masks of the first 2 vectors. 6115 SmallVector<int> CombinedMask(MaxVF, UndefMaskElem); 6116 copy(ShuffleMask.front(), CombinedMask.begin()); 6117 APInt CombinedDemandedElts = DemandedElts.front().zextOrSelf(MaxVF); 6118 auto *VecTy = FixedVectorType::get( 6119 cast<VectorType>(FirstUsers.front()->getType())->getElementType(), 6120 MaxVF); 6121 for (int I = 0, E = ShuffleMask[1].size(); I < E; ++I) { 6122 if (ShuffleMask[1][I] != UndefMaskElem) { 6123 CombinedMask[I] = ShuffleMask[1][I] + MaxVF; 6124 CombinedDemandedElts.setBit(I); 6125 } 6126 } 6127 InstructionCost C = 6128 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6129 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6130 << " for final shuffle of vector node and external " 6131 "insertelement users " 6132 << *VectorizableTree.front()->Scalars.front() << ".\n" 6133 << "SLP: Current total cost = " << Cost << "\n"); 6134 Cost += C; 6135 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6136 VecTy, CombinedDemandedElts, /*Insert*/ true, /*Extract*/ false); 6137 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6138 << " for insertelements gather.\n" 6139 << "SLP: Current total cost = " << Cost << "\n"); 6140 Cost -= InsertCost; 6141 for (int I = 2, E = FirstUsers.size(); I < E; ++I) { 6142 // Other elements - permutation of 2 vectors (the initial one and the 6143 // next Ith incoming vector). 6144 unsigned VF = ShuffleMask[I].size(); 6145 for (unsigned Idx = 0; Idx < VF; ++Idx) { 6146 int Mask = ShuffleMask[I][Idx]; 6147 if (Mask != UndefMaskElem) 6148 CombinedMask[Idx] = MaxVF + Mask; 6149 else if (CombinedMask[Idx] != UndefMaskElem) 6150 CombinedMask[Idx] = Idx; 6151 } 6152 for (unsigned Idx = VF; Idx < MaxVF; ++Idx) 6153 if (CombinedMask[Idx] != UndefMaskElem) 6154 CombinedMask[Idx] = Idx; 6155 InstructionCost C = 6156 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6157 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6158 << " for final shuffle of vector node and external " 6159 "insertelement users " 6160 << *VectorizableTree.front()->Scalars.front() << ".\n" 6161 << "SLP: Current total cost = " << Cost << "\n"); 6162 Cost += C; 6163 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6164 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 6165 /*Insert*/ true, /*Extract*/ false); 6166 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6167 << " for insertelements gather.\n" 6168 << "SLP: Current total cost = " << Cost << "\n"); 6169 Cost -= InsertCost; 6170 } 6171 } 6172 6173 #ifndef NDEBUG 6174 SmallString<256> Str; 6175 { 6176 raw_svector_ostream OS(Str); 6177 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 6178 << "SLP: Extract Cost = " << ExtractCost << ".\n" 6179 << "SLP: Total Cost = " << Cost << ".\n"; 6180 } 6181 LLVM_DEBUG(dbgs() << Str); 6182 if (ViewSLPTree) 6183 ViewGraph(this, "SLP" + F->getName(), false, Str); 6184 #endif 6185 6186 return Cost; 6187 } 6188 6189 Optional<TargetTransformInfo::ShuffleKind> 6190 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 6191 SmallVectorImpl<const TreeEntry *> &Entries) { 6192 // TODO: currently checking only for Scalars in the tree entry, need to count 6193 // reused elements too for better cost estimation. 6194 Mask.assign(TE->Scalars.size(), UndefMaskElem); 6195 Entries.clear(); 6196 // Build a lists of values to tree entries. 6197 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 6198 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 6199 if (EntryPtr.get() == TE) 6200 break; 6201 if (EntryPtr->State != TreeEntry::NeedToGather) 6202 continue; 6203 for (Value *V : EntryPtr->Scalars) 6204 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 6205 } 6206 // Find all tree entries used by the gathered values. If no common entries 6207 // found - not a shuffle. 6208 // Here we build a set of tree nodes for each gathered value and trying to 6209 // find the intersection between these sets. If we have at least one common 6210 // tree node for each gathered value - we have just a permutation of the 6211 // single vector. If we have 2 different sets, we're in situation where we 6212 // have a permutation of 2 input vectors. 6213 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 6214 DenseMap<Value *, int> UsedValuesEntry; 6215 for (Value *V : TE->Scalars) { 6216 if (isa<UndefValue>(V)) 6217 continue; 6218 // Build a list of tree entries where V is used. 6219 SmallPtrSet<const TreeEntry *, 4> VToTEs; 6220 auto It = ValueToTEs.find(V); 6221 if (It != ValueToTEs.end()) 6222 VToTEs = It->second; 6223 if (const TreeEntry *VTE = getTreeEntry(V)) 6224 VToTEs.insert(VTE); 6225 if (VToTEs.empty()) 6226 return None; 6227 if (UsedTEs.empty()) { 6228 // The first iteration, just insert the list of nodes to vector. 6229 UsedTEs.push_back(VToTEs); 6230 } else { 6231 // Need to check if there are any previously used tree nodes which use V. 6232 // If there are no such nodes, consider that we have another one input 6233 // vector. 6234 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 6235 unsigned Idx = 0; 6236 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 6237 // Do we have a non-empty intersection of previously listed tree entries 6238 // and tree entries using current V? 6239 set_intersect(VToTEs, Set); 6240 if (!VToTEs.empty()) { 6241 // Yes, write the new subset and continue analysis for the next 6242 // scalar. 6243 Set.swap(VToTEs); 6244 break; 6245 } 6246 VToTEs = SavedVToTEs; 6247 ++Idx; 6248 } 6249 // No non-empty intersection found - need to add a second set of possible 6250 // source vectors. 6251 if (Idx == UsedTEs.size()) { 6252 // If the number of input vectors is greater than 2 - not a permutation, 6253 // fallback to the regular gather. 6254 if (UsedTEs.size() == 2) 6255 return None; 6256 UsedTEs.push_back(SavedVToTEs); 6257 Idx = UsedTEs.size() - 1; 6258 } 6259 UsedValuesEntry.try_emplace(V, Idx); 6260 } 6261 } 6262 6263 unsigned VF = 0; 6264 if (UsedTEs.size() == 1) { 6265 // Try to find the perfect match in another gather node at first. 6266 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 6267 return EntryPtr->isSame(TE->Scalars); 6268 }); 6269 if (It != UsedTEs.front().end()) { 6270 Entries.push_back(*It); 6271 std::iota(Mask.begin(), Mask.end(), 0); 6272 return TargetTransformInfo::SK_PermuteSingleSrc; 6273 } 6274 // No perfect match, just shuffle, so choose the first tree node. 6275 Entries.push_back(*UsedTEs.front().begin()); 6276 } else { 6277 // Try to find nodes with the same vector factor. 6278 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 6279 DenseMap<int, const TreeEntry *> VFToTE; 6280 for (const TreeEntry *TE : UsedTEs.front()) 6281 VFToTE.try_emplace(TE->getVectorFactor(), TE); 6282 for (const TreeEntry *TE : UsedTEs.back()) { 6283 auto It = VFToTE.find(TE->getVectorFactor()); 6284 if (It != VFToTE.end()) { 6285 VF = It->first; 6286 Entries.push_back(It->second); 6287 Entries.push_back(TE); 6288 break; 6289 } 6290 } 6291 // No 2 source vectors with the same vector factor - give up and do regular 6292 // gather. 6293 if (Entries.empty()) 6294 return None; 6295 } 6296 6297 // Build a shuffle mask for better cost estimation and vector emission. 6298 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 6299 Value *V = TE->Scalars[I]; 6300 if (isa<UndefValue>(V)) 6301 continue; 6302 unsigned Idx = UsedValuesEntry.lookup(V); 6303 const TreeEntry *VTE = Entries[Idx]; 6304 int FoundLane = VTE->findLaneForValue(V); 6305 Mask[I] = Idx * VF + FoundLane; 6306 // Extra check required by isSingleSourceMaskImpl function (called by 6307 // ShuffleVectorInst::isSingleSourceMask). 6308 if (Mask[I] >= 2 * E) 6309 return None; 6310 } 6311 switch (Entries.size()) { 6312 case 1: 6313 return TargetTransformInfo::SK_PermuteSingleSrc; 6314 case 2: 6315 return TargetTransformInfo::SK_PermuteTwoSrc; 6316 default: 6317 break; 6318 } 6319 return None; 6320 } 6321 6322 InstructionCost BoUpSLP::getGatherCost(FixedVectorType *Ty, 6323 const APInt &ShuffledIndices, 6324 bool NeedToShuffle) const { 6325 InstructionCost Cost = 6326 TTI->getScalarizationOverhead(Ty, ~ShuffledIndices, /*Insert*/ true, 6327 /*Extract*/ false); 6328 if (NeedToShuffle) 6329 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 6330 return Cost; 6331 } 6332 6333 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 6334 // Find the type of the operands in VL. 6335 Type *ScalarTy = VL[0]->getType(); 6336 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 6337 ScalarTy = SI->getValueOperand()->getType(); 6338 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 6339 bool DuplicateNonConst = false; 6340 // Find the cost of inserting/extracting values from the vector. 6341 // Check if the same elements are inserted several times and count them as 6342 // shuffle candidates. 6343 APInt ShuffledElements = APInt::getZero(VL.size()); 6344 DenseSet<Value *> UniqueElements; 6345 // Iterate in reverse order to consider insert elements with the high cost. 6346 for (unsigned I = VL.size(); I > 0; --I) { 6347 unsigned Idx = I - 1; 6348 // No need to shuffle duplicates for constants. 6349 if (isConstant(VL[Idx])) { 6350 ShuffledElements.setBit(Idx); 6351 continue; 6352 } 6353 if (!UniqueElements.insert(VL[Idx]).second) { 6354 DuplicateNonConst = true; 6355 ShuffledElements.setBit(Idx); 6356 } 6357 } 6358 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 6359 } 6360 6361 // Perform operand reordering on the instructions in VL and return the reordered 6362 // operands in Left and Right. 6363 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 6364 SmallVectorImpl<Value *> &Left, 6365 SmallVectorImpl<Value *> &Right, 6366 const DataLayout &DL, 6367 ScalarEvolution &SE, 6368 const BoUpSLP &R) { 6369 if (VL.empty()) 6370 return; 6371 VLOperands Ops(VL, DL, SE, R); 6372 // Reorder the operands in place. 6373 Ops.reorder(); 6374 Left = Ops.getVL(0); 6375 Right = Ops.getVL(1); 6376 } 6377 6378 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 6379 // Get the basic block this bundle is in. All instructions in the bundle 6380 // should be in this block. 6381 auto *Front = E->getMainOp(); 6382 auto *BB = Front->getParent(); 6383 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 6384 auto *I = cast<Instruction>(V); 6385 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 6386 })); 6387 6388 // The last instruction in the bundle in program order. 6389 Instruction *LastInst = nullptr; 6390 6391 // Find the last instruction. The common case should be that BB has been 6392 // scheduled, and the last instruction is VL.back(). So we start with 6393 // VL.back() and iterate over schedule data until we reach the end of the 6394 // bundle. The end of the bundle is marked by null ScheduleData. 6395 if (BlocksSchedules.count(BB)) { 6396 auto *Bundle = 6397 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 6398 if (Bundle && Bundle->isPartOfBundle()) 6399 for (; Bundle; Bundle = Bundle->NextInBundle) 6400 if (Bundle->OpValue == Bundle->Inst) 6401 LastInst = Bundle->Inst; 6402 } 6403 6404 // LastInst can still be null at this point if there's either not an entry 6405 // for BB in BlocksSchedules or there's no ScheduleData available for 6406 // VL.back(). This can be the case if buildTree_rec aborts for various 6407 // reasons (e.g., the maximum recursion depth is reached, the maximum region 6408 // size is reached, etc.). ScheduleData is initialized in the scheduling 6409 // "dry-run". 6410 // 6411 // If this happens, we can still find the last instruction by brute force. We 6412 // iterate forwards from Front (inclusive) until we either see all 6413 // instructions in the bundle or reach the end of the block. If Front is the 6414 // last instruction in program order, LastInst will be set to Front, and we 6415 // will visit all the remaining instructions in the block. 6416 // 6417 // One of the reasons we exit early from buildTree_rec is to place an upper 6418 // bound on compile-time. Thus, taking an additional compile-time hit here is 6419 // not ideal. However, this should be exceedingly rare since it requires that 6420 // we both exit early from buildTree_rec and that the bundle be out-of-order 6421 // (causing us to iterate all the way to the end of the block). 6422 if (!LastInst) { 6423 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 6424 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 6425 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 6426 LastInst = &I; 6427 if (Bundle.empty()) 6428 break; 6429 } 6430 } 6431 assert(LastInst && "Failed to find last instruction in bundle"); 6432 6433 // Set the insertion point after the last instruction in the bundle. Set the 6434 // debug location to Front. 6435 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 6436 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6437 } 6438 6439 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 6440 // List of instructions/lanes from current block and/or the blocks which are 6441 // part of the current loop. These instructions will be inserted at the end to 6442 // make it possible to optimize loops and hoist invariant instructions out of 6443 // the loops body with better chances for success. 6444 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 6445 SmallSet<int, 4> PostponedIndices; 6446 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 6447 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 6448 SmallPtrSet<BasicBlock *, 4> Visited; 6449 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 6450 InsertBB = InsertBB->getSinglePredecessor(); 6451 return InsertBB && InsertBB == InstBB; 6452 }; 6453 for (int I = 0, E = VL.size(); I < E; ++I) { 6454 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 6455 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 6456 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 6457 PostponedIndices.insert(I).second) 6458 PostponedInsts.emplace_back(Inst, I); 6459 } 6460 6461 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 6462 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 6463 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 6464 if (!InsElt) 6465 return Vec; 6466 GatherShuffleSeq.insert(InsElt); 6467 CSEBlocks.insert(InsElt->getParent()); 6468 // Add to our 'need-to-extract' list. 6469 if (TreeEntry *Entry = getTreeEntry(V)) { 6470 // Find which lane we need to extract. 6471 unsigned FoundLane = Entry->findLaneForValue(V); 6472 ExternalUses.emplace_back(V, InsElt, FoundLane); 6473 } 6474 return Vec; 6475 }; 6476 Value *Val0 = 6477 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 6478 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 6479 Value *Vec = PoisonValue::get(VecTy); 6480 SmallVector<int> NonConsts; 6481 // Insert constant values at first. 6482 for (int I = 0, E = VL.size(); I < E; ++I) { 6483 if (PostponedIndices.contains(I)) 6484 continue; 6485 if (!isConstant(VL[I])) { 6486 NonConsts.push_back(I); 6487 continue; 6488 } 6489 Vec = CreateInsertElement(Vec, VL[I], I); 6490 } 6491 // Insert non-constant values. 6492 for (int I : NonConsts) 6493 Vec = CreateInsertElement(Vec, VL[I], I); 6494 // Append instructions, which are/may be part of the loop, in the end to make 6495 // it possible to hoist non-loop-based instructions. 6496 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 6497 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 6498 6499 return Vec; 6500 } 6501 6502 namespace { 6503 /// Merges shuffle masks and emits final shuffle instruction, if required. 6504 class ShuffleInstructionBuilder { 6505 IRBuilderBase &Builder; 6506 const unsigned VF = 0; 6507 bool IsFinalized = false; 6508 SmallVector<int, 4> Mask; 6509 /// Holds all of the instructions that we gathered. 6510 SetVector<Instruction *> &GatherShuffleSeq; 6511 /// A list of blocks that we are going to CSE. 6512 SetVector<BasicBlock *> &CSEBlocks; 6513 6514 public: 6515 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF, 6516 SetVector<Instruction *> &GatherShuffleSeq, 6517 SetVector<BasicBlock *> &CSEBlocks) 6518 : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq), 6519 CSEBlocks(CSEBlocks) {} 6520 6521 /// Adds a mask, inverting it before applying. 6522 void addInversedMask(ArrayRef<unsigned> SubMask) { 6523 if (SubMask.empty()) 6524 return; 6525 SmallVector<int, 4> NewMask; 6526 inversePermutation(SubMask, NewMask); 6527 addMask(NewMask); 6528 } 6529 6530 /// Functions adds masks, merging them into single one. 6531 void addMask(ArrayRef<unsigned> SubMask) { 6532 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 6533 addMask(NewMask); 6534 } 6535 6536 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 6537 6538 Value *finalize(Value *V) { 6539 IsFinalized = true; 6540 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 6541 if (VF == ValueVF && Mask.empty()) 6542 return V; 6543 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 6544 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 6545 addMask(NormalizedMask); 6546 6547 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 6548 return V; 6549 Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle"); 6550 if (auto *I = dyn_cast<Instruction>(Vec)) { 6551 GatherShuffleSeq.insert(I); 6552 CSEBlocks.insert(I->getParent()); 6553 } 6554 return Vec; 6555 } 6556 6557 ~ShuffleInstructionBuilder() { 6558 assert((IsFinalized || Mask.empty()) && 6559 "Shuffle construction must be finalized."); 6560 } 6561 }; 6562 } // namespace 6563 6564 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 6565 const unsigned VF = VL.size(); 6566 InstructionsState S = getSameOpcode(VL); 6567 if (S.getOpcode()) { 6568 if (TreeEntry *E = getTreeEntry(S.OpValue)) 6569 if (E->isSame(VL)) { 6570 Value *V = vectorizeTree(E); 6571 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 6572 if (!E->ReuseShuffleIndices.empty()) { 6573 // Reshuffle to get only unique values. 6574 // If some of the scalars are duplicated in the vectorization tree 6575 // entry, we do not vectorize them but instead generate a mask for 6576 // the reuses. But if there are several users of the same entry, 6577 // they may have different vectorization factors. This is especially 6578 // important for PHI nodes. In this case, we need to adapt the 6579 // resulting instruction for the user vectorization factor and have 6580 // to reshuffle it again to take only unique elements of the vector. 6581 // Without this code the function incorrectly returns reduced vector 6582 // instruction with the same elements, not with the unique ones. 6583 6584 // block: 6585 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 6586 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 6587 // ... (use %2) 6588 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 6589 // br %block 6590 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 6591 SmallSet<int, 4> UsedIdxs; 6592 int Pos = 0; 6593 int Sz = VL.size(); 6594 for (int Idx : E->ReuseShuffleIndices) { 6595 if (Idx != Sz && Idx != UndefMaskElem && 6596 UsedIdxs.insert(Idx).second) 6597 UniqueIdxs[Idx] = Pos; 6598 ++Pos; 6599 } 6600 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 6601 "less than original vector size."); 6602 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 6603 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 6604 } else { 6605 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 6606 "Expected vectorization factor less " 6607 "than original vector size."); 6608 SmallVector<int> UniformMask(VF, 0); 6609 std::iota(UniformMask.begin(), UniformMask.end(), 0); 6610 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 6611 } 6612 if (auto *I = dyn_cast<Instruction>(V)) { 6613 GatherShuffleSeq.insert(I); 6614 CSEBlocks.insert(I->getParent()); 6615 } 6616 } 6617 return V; 6618 } 6619 } 6620 6621 // Can't vectorize this, so simply build a new vector with each lane 6622 // corresponding to the requested value. 6623 return createBuildVector(VL); 6624 } 6625 Value *BoUpSLP::createBuildVector(ArrayRef<Value *> VL) { 6626 unsigned VF = VL.size(); 6627 // Exploit possible reuse of values across lanes. 6628 SmallVector<int> ReuseShuffleIndicies; 6629 SmallVector<Value *> UniqueValues; 6630 if (VL.size() > 2) { 6631 DenseMap<Value *, unsigned> UniquePositions; 6632 unsigned NumValues = 6633 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 6634 return !isa<UndefValue>(V); 6635 }).base()); 6636 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 6637 int UniqueVals = 0; 6638 for (Value *V : VL.drop_back(VL.size() - VF)) { 6639 if (isa<UndefValue>(V)) { 6640 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 6641 continue; 6642 } 6643 if (isConstant(V)) { 6644 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 6645 UniqueValues.emplace_back(V); 6646 continue; 6647 } 6648 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 6649 ReuseShuffleIndicies.emplace_back(Res.first->second); 6650 if (Res.second) { 6651 UniqueValues.emplace_back(V); 6652 ++UniqueVals; 6653 } 6654 } 6655 if (UniqueVals == 1 && UniqueValues.size() == 1) { 6656 // Emit pure splat vector. 6657 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 6658 UndefMaskElem); 6659 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 6660 ReuseShuffleIndicies.clear(); 6661 UniqueValues.clear(); 6662 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 6663 } 6664 UniqueValues.append(VF - UniqueValues.size(), 6665 PoisonValue::get(VL[0]->getType())); 6666 VL = UniqueValues; 6667 } 6668 6669 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6670 CSEBlocks); 6671 Value *Vec = gather(VL); 6672 if (!ReuseShuffleIndicies.empty()) { 6673 ShuffleBuilder.addMask(ReuseShuffleIndicies); 6674 Vec = ShuffleBuilder.finalize(Vec); 6675 } 6676 return Vec; 6677 } 6678 6679 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 6680 IRBuilder<>::InsertPointGuard Guard(Builder); 6681 6682 if (E->VectorizedValue) { 6683 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 6684 return E->VectorizedValue; 6685 } 6686 6687 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 6688 unsigned VF = E->getVectorFactor(); 6689 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6690 CSEBlocks); 6691 if (E->State == TreeEntry::NeedToGather) { 6692 if (E->getMainOp()) 6693 setInsertPointAfterBundle(E); 6694 Value *Vec; 6695 SmallVector<int> Mask; 6696 SmallVector<const TreeEntry *> Entries; 6697 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 6698 isGatherShuffledEntry(E, Mask, Entries); 6699 if (Shuffle.hasValue()) { 6700 assert((Entries.size() == 1 || Entries.size() == 2) && 6701 "Expected shuffle of 1 or 2 entries."); 6702 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 6703 Entries.back()->VectorizedValue, Mask); 6704 if (auto *I = dyn_cast<Instruction>(Vec)) { 6705 GatherShuffleSeq.insert(I); 6706 CSEBlocks.insert(I->getParent()); 6707 } 6708 } else { 6709 Vec = gather(E->Scalars); 6710 } 6711 if (NeedToShuffleReuses) { 6712 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6713 Vec = ShuffleBuilder.finalize(Vec); 6714 } 6715 E->VectorizedValue = Vec; 6716 return Vec; 6717 } 6718 6719 assert((E->State == TreeEntry::Vectorize || 6720 E->State == TreeEntry::ScatterVectorize) && 6721 "Unhandled state"); 6722 unsigned ShuffleOrOp = 6723 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 6724 Instruction *VL0 = E->getMainOp(); 6725 Type *ScalarTy = VL0->getType(); 6726 if (auto *Store = dyn_cast<StoreInst>(VL0)) 6727 ScalarTy = Store->getValueOperand()->getType(); 6728 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 6729 ScalarTy = IE->getOperand(1)->getType(); 6730 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 6731 switch (ShuffleOrOp) { 6732 case Instruction::PHI: { 6733 assert( 6734 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 6735 "PHI reordering is free."); 6736 auto *PH = cast<PHINode>(VL0); 6737 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 6738 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6739 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 6740 Value *V = NewPhi; 6741 6742 // Adjust insertion point once all PHI's have been generated. 6743 Builder.SetInsertPoint(&*PH->getParent()->getFirstInsertionPt()); 6744 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6745 6746 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6747 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6748 V = ShuffleBuilder.finalize(V); 6749 6750 E->VectorizedValue = V; 6751 6752 // PHINodes may have multiple entries from the same block. We want to 6753 // visit every block once. 6754 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 6755 6756 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 6757 ValueList Operands; 6758 BasicBlock *IBB = PH->getIncomingBlock(i); 6759 6760 if (!VisitedBBs.insert(IBB).second) { 6761 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 6762 continue; 6763 } 6764 6765 Builder.SetInsertPoint(IBB->getTerminator()); 6766 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6767 Value *Vec = vectorizeTree(E->getOperand(i)); 6768 NewPhi->addIncoming(Vec, IBB); 6769 } 6770 6771 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 6772 "Invalid number of incoming values"); 6773 return V; 6774 } 6775 6776 case Instruction::ExtractElement: { 6777 Value *V = E->getSingleOperand(0); 6778 Builder.SetInsertPoint(VL0); 6779 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6780 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6781 V = ShuffleBuilder.finalize(V); 6782 E->VectorizedValue = V; 6783 return V; 6784 } 6785 case Instruction::ExtractValue: { 6786 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 6787 Builder.SetInsertPoint(LI); 6788 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 6789 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 6790 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 6791 Value *NewV = propagateMetadata(V, E->Scalars); 6792 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6793 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6794 NewV = ShuffleBuilder.finalize(NewV); 6795 E->VectorizedValue = NewV; 6796 return NewV; 6797 } 6798 case Instruction::InsertElement: { 6799 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 6800 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 6801 Value *V = vectorizeTree(E->getOperand(1)); 6802 6803 // Create InsertVector shuffle if necessary 6804 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 6805 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 6806 })); 6807 const unsigned NumElts = 6808 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 6809 const unsigned NumScalars = E->Scalars.size(); 6810 6811 unsigned Offset = *getInsertIndex(VL0); 6812 assert(Offset < NumElts && "Failed to find vector index offset"); 6813 6814 // Create shuffle to resize vector 6815 SmallVector<int> Mask; 6816 if (!E->ReorderIndices.empty()) { 6817 inversePermutation(E->ReorderIndices, Mask); 6818 Mask.append(NumElts - NumScalars, UndefMaskElem); 6819 } else { 6820 Mask.assign(NumElts, UndefMaskElem); 6821 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 6822 } 6823 // Create InsertVector shuffle if necessary 6824 bool IsIdentity = true; 6825 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 6826 Mask.swap(PrevMask); 6827 for (unsigned I = 0; I < NumScalars; ++I) { 6828 Value *Scalar = E->Scalars[PrevMask[I]]; 6829 unsigned InsertIdx = *getInsertIndex(Scalar); 6830 IsIdentity &= InsertIdx - Offset == I; 6831 Mask[InsertIdx - Offset] = I; 6832 } 6833 if (!IsIdentity || NumElts != NumScalars) { 6834 V = Builder.CreateShuffleVector(V, Mask); 6835 if (auto *I = dyn_cast<Instruction>(V)) { 6836 GatherShuffleSeq.insert(I); 6837 CSEBlocks.insert(I->getParent()); 6838 } 6839 } 6840 6841 if ((!IsIdentity || Offset != 0 || 6842 !isUndefVector(FirstInsert->getOperand(0))) && 6843 NumElts != NumScalars) { 6844 SmallVector<int> InsertMask(NumElts); 6845 std::iota(InsertMask.begin(), InsertMask.end(), 0); 6846 for (unsigned I = 0; I < NumElts; I++) { 6847 if (Mask[I] != UndefMaskElem) 6848 InsertMask[Offset + I] = NumElts + I; 6849 } 6850 6851 V = Builder.CreateShuffleVector( 6852 FirstInsert->getOperand(0), V, InsertMask, 6853 cast<Instruction>(E->Scalars.back())->getName()); 6854 if (auto *I = dyn_cast<Instruction>(V)) { 6855 GatherShuffleSeq.insert(I); 6856 CSEBlocks.insert(I->getParent()); 6857 } 6858 } 6859 6860 ++NumVectorInstructions; 6861 E->VectorizedValue = V; 6862 return V; 6863 } 6864 case Instruction::ZExt: 6865 case Instruction::SExt: 6866 case Instruction::FPToUI: 6867 case Instruction::FPToSI: 6868 case Instruction::FPExt: 6869 case Instruction::PtrToInt: 6870 case Instruction::IntToPtr: 6871 case Instruction::SIToFP: 6872 case Instruction::UIToFP: 6873 case Instruction::Trunc: 6874 case Instruction::FPTrunc: 6875 case Instruction::BitCast: { 6876 setInsertPointAfterBundle(E); 6877 6878 Value *InVec = vectorizeTree(E->getOperand(0)); 6879 6880 if (E->VectorizedValue) { 6881 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6882 return E->VectorizedValue; 6883 } 6884 6885 auto *CI = cast<CastInst>(VL0); 6886 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 6887 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6888 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6889 V = ShuffleBuilder.finalize(V); 6890 6891 E->VectorizedValue = V; 6892 ++NumVectorInstructions; 6893 return V; 6894 } 6895 case Instruction::FCmp: 6896 case Instruction::ICmp: { 6897 setInsertPointAfterBundle(E); 6898 6899 Value *L = vectorizeTree(E->getOperand(0)); 6900 Value *R = vectorizeTree(E->getOperand(1)); 6901 6902 if (E->VectorizedValue) { 6903 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6904 return E->VectorizedValue; 6905 } 6906 6907 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 6908 Value *V = Builder.CreateCmp(P0, L, R); 6909 propagateIRFlags(V, E->Scalars, VL0); 6910 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6911 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6912 V = ShuffleBuilder.finalize(V); 6913 6914 E->VectorizedValue = V; 6915 ++NumVectorInstructions; 6916 return V; 6917 } 6918 case Instruction::Select: { 6919 setInsertPointAfterBundle(E); 6920 6921 Value *Cond = vectorizeTree(E->getOperand(0)); 6922 Value *True = vectorizeTree(E->getOperand(1)); 6923 Value *False = vectorizeTree(E->getOperand(2)); 6924 6925 if (E->VectorizedValue) { 6926 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6927 return E->VectorizedValue; 6928 } 6929 6930 Value *V = Builder.CreateSelect(Cond, True, False); 6931 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6932 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6933 V = ShuffleBuilder.finalize(V); 6934 6935 E->VectorizedValue = V; 6936 ++NumVectorInstructions; 6937 return V; 6938 } 6939 case Instruction::FNeg: { 6940 setInsertPointAfterBundle(E); 6941 6942 Value *Op = vectorizeTree(E->getOperand(0)); 6943 6944 if (E->VectorizedValue) { 6945 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6946 return E->VectorizedValue; 6947 } 6948 6949 Value *V = Builder.CreateUnOp( 6950 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 6951 propagateIRFlags(V, E->Scalars, VL0); 6952 if (auto *I = dyn_cast<Instruction>(V)) 6953 V = propagateMetadata(I, E->Scalars); 6954 6955 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6956 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6957 V = ShuffleBuilder.finalize(V); 6958 6959 E->VectorizedValue = V; 6960 ++NumVectorInstructions; 6961 6962 return V; 6963 } 6964 case Instruction::Add: 6965 case Instruction::FAdd: 6966 case Instruction::Sub: 6967 case Instruction::FSub: 6968 case Instruction::Mul: 6969 case Instruction::FMul: 6970 case Instruction::UDiv: 6971 case Instruction::SDiv: 6972 case Instruction::FDiv: 6973 case Instruction::URem: 6974 case Instruction::SRem: 6975 case Instruction::FRem: 6976 case Instruction::Shl: 6977 case Instruction::LShr: 6978 case Instruction::AShr: 6979 case Instruction::And: 6980 case Instruction::Or: 6981 case Instruction::Xor: { 6982 setInsertPointAfterBundle(E); 6983 6984 Value *LHS = vectorizeTree(E->getOperand(0)); 6985 Value *RHS = vectorizeTree(E->getOperand(1)); 6986 6987 if (E->VectorizedValue) { 6988 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6989 return E->VectorizedValue; 6990 } 6991 6992 Value *V = Builder.CreateBinOp( 6993 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 6994 RHS); 6995 propagateIRFlags(V, E->Scalars, VL0); 6996 if (auto *I = dyn_cast<Instruction>(V)) 6997 V = propagateMetadata(I, E->Scalars); 6998 6999 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7000 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7001 V = ShuffleBuilder.finalize(V); 7002 7003 E->VectorizedValue = V; 7004 ++NumVectorInstructions; 7005 7006 return V; 7007 } 7008 case Instruction::Load: { 7009 // Loads are inserted at the head of the tree because we don't want to 7010 // sink them all the way down past store instructions. 7011 setInsertPointAfterBundle(E); 7012 7013 LoadInst *LI = cast<LoadInst>(VL0); 7014 Instruction *NewLI; 7015 unsigned AS = LI->getPointerAddressSpace(); 7016 Value *PO = LI->getPointerOperand(); 7017 if (E->State == TreeEntry::Vectorize) { 7018 7019 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 7020 7021 // The pointer operand uses an in-tree scalar so we add the new BitCast 7022 // to ExternalUses list to make sure that an extract will be generated 7023 // in the future. 7024 if (TreeEntry *Entry = getTreeEntry(PO)) { 7025 // Find which lane we need to extract. 7026 unsigned FoundLane = Entry->findLaneForValue(PO); 7027 ExternalUses.emplace_back(PO, cast<User>(VecPtr), FoundLane); 7028 } 7029 7030 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 7031 } else { 7032 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 7033 Value *VecPtr = vectorizeTree(E->getOperand(0)); 7034 // Use the minimum alignment of the gathered loads. 7035 Align CommonAlignment = LI->getAlign(); 7036 for (Value *V : E->Scalars) 7037 CommonAlignment = 7038 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 7039 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 7040 } 7041 Value *V = propagateMetadata(NewLI, E->Scalars); 7042 7043 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7044 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7045 V = ShuffleBuilder.finalize(V); 7046 E->VectorizedValue = V; 7047 ++NumVectorInstructions; 7048 return V; 7049 } 7050 case Instruction::Store: { 7051 auto *SI = cast<StoreInst>(VL0); 7052 unsigned AS = SI->getPointerAddressSpace(); 7053 7054 setInsertPointAfterBundle(E); 7055 7056 Value *VecValue = vectorizeTree(E->getOperand(0)); 7057 ShuffleBuilder.addMask(E->ReorderIndices); 7058 VecValue = ShuffleBuilder.finalize(VecValue); 7059 7060 Value *ScalarPtr = SI->getPointerOperand(); 7061 Value *VecPtr = Builder.CreateBitCast( 7062 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 7063 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 7064 SI->getAlign()); 7065 7066 // The pointer operand uses an in-tree scalar, so add the new BitCast to 7067 // ExternalUses to make sure that an extract will be generated in the 7068 // future. 7069 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 7070 // Find which lane we need to extract. 7071 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 7072 ExternalUses.push_back( 7073 ExternalUser(ScalarPtr, cast<User>(VecPtr), FoundLane)); 7074 } 7075 7076 Value *V = propagateMetadata(ST, E->Scalars); 7077 7078 E->VectorizedValue = V; 7079 ++NumVectorInstructions; 7080 return V; 7081 } 7082 case Instruction::GetElementPtr: { 7083 auto *GEP0 = cast<GetElementPtrInst>(VL0); 7084 setInsertPointAfterBundle(E); 7085 7086 Value *Op0 = vectorizeTree(E->getOperand(0)); 7087 7088 SmallVector<Value *> OpVecs; 7089 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 7090 Value *OpVec = vectorizeTree(E->getOperand(J)); 7091 OpVecs.push_back(OpVec); 7092 } 7093 7094 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 7095 if (Instruction *I = dyn_cast<Instruction>(V)) 7096 V = propagateMetadata(I, E->Scalars); 7097 7098 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7099 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7100 V = ShuffleBuilder.finalize(V); 7101 7102 E->VectorizedValue = V; 7103 ++NumVectorInstructions; 7104 7105 return V; 7106 } 7107 case Instruction::Call: { 7108 CallInst *CI = cast<CallInst>(VL0); 7109 setInsertPointAfterBundle(E); 7110 7111 Intrinsic::ID IID = Intrinsic::not_intrinsic; 7112 if (Function *FI = CI->getCalledFunction()) 7113 IID = FI->getIntrinsicID(); 7114 7115 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7116 7117 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 7118 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 7119 VecCallCosts.first <= VecCallCosts.second; 7120 7121 Value *ScalarArg = nullptr; 7122 std::vector<Value *> OpVecs; 7123 SmallVector<Type *, 2> TysForDecl = 7124 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 7125 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 7126 ValueList OpVL; 7127 // Some intrinsics have scalar arguments. This argument should not be 7128 // vectorized. 7129 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 7130 CallInst *CEI = cast<CallInst>(VL0); 7131 ScalarArg = CEI->getArgOperand(j); 7132 OpVecs.push_back(CEI->getArgOperand(j)); 7133 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j)) 7134 TysForDecl.push_back(ScalarArg->getType()); 7135 continue; 7136 } 7137 7138 Value *OpVec = vectorizeTree(E->getOperand(j)); 7139 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 7140 OpVecs.push_back(OpVec); 7141 } 7142 7143 Function *CF; 7144 if (!UseIntrinsic) { 7145 VFShape Shape = 7146 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 7147 VecTy->getNumElements())), 7148 false /*HasGlobalPred*/); 7149 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 7150 } else { 7151 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 7152 } 7153 7154 SmallVector<OperandBundleDef, 1> OpBundles; 7155 CI->getOperandBundlesAsDefs(OpBundles); 7156 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 7157 7158 // The scalar argument uses an in-tree scalar so we add the new vectorized 7159 // call to ExternalUses list to make sure that an extract will be 7160 // generated in the future. 7161 if (ScalarArg) { 7162 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 7163 // Find which lane we need to extract. 7164 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 7165 ExternalUses.push_back( 7166 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 7167 } 7168 } 7169 7170 propagateIRFlags(V, E->Scalars, VL0); 7171 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7172 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7173 V = ShuffleBuilder.finalize(V); 7174 7175 E->VectorizedValue = V; 7176 ++NumVectorInstructions; 7177 return V; 7178 } 7179 case Instruction::ShuffleVector: { 7180 assert(E->isAltShuffle() && 7181 ((Instruction::isBinaryOp(E->getOpcode()) && 7182 Instruction::isBinaryOp(E->getAltOpcode())) || 7183 (Instruction::isCast(E->getOpcode()) && 7184 Instruction::isCast(E->getAltOpcode())) || 7185 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 7186 "Invalid Shuffle Vector Operand"); 7187 7188 Value *LHS = nullptr, *RHS = nullptr; 7189 if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) { 7190 setInsertPointAfterBundle(E); 7191 LHS = vectorizeTree(E->getOperand(0)); 7192 RHS = vectorizeTree(E->getOperand(1)); 7193 } else { 7194 setInsertPointAfterBundle(E); 7195 LHS = vectorizeTree(E->getOperand(0)); 7196 } 7197 7198 if (E->VectorizedValue) { 7199 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7200 return E->VectorizedValue; 7201 } 7202 7203 Value *V0, *V1; 7204 if (Instruction::isBinaryOp(E->getOpcode())) { 7205 V0 = Builder.CreateBinOp( 7206 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 7207 V1 = Builder.CreateBinOp( 7208 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 7209 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 7210 V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS); 7211 auto *AltCI = cast<CmpInst>(E->getAltOp()); 7212 CmpInst::Predicate AltPred = AltCI->getPredicate(); 7213 V1 = Builder.CreateCmp(AltPred, LHS, RHS); 7214 } else { 7215 V0 = Builder.CreateCast( 7216 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 7217 V1 = Builder.CreateCast( 7218 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 7219 } 7220 // Add V0 and V1 to later analysis to try to find and remove matching 7221 // instruction, if any. 7222 for (Value *V : {V0, V1}) { 7223 if (auto *I = dyn_cast<Instruction>(V)) { 7224 GatherShuffleSeq.insert(I); 7225 CSEBlocks.insert(I->getParent()); 7226 } 7227 } 7228 7229 // Create shuffle to take alternate operations from the vector. 7230 // Also, gather up main and alt scalar ops to propagate IR flags to 7231 // each vector operation. 7232 ValueList OpScalars, AltScalars; 7233 SmallVector<int> Mask; 7234 buildShuffleEntryMask( 7235 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 7236 [E](Instruction *I) { 7237 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 7238 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 7239 }, 7240 Mask, &OpScalars, &AltScalars); 7241 7242 propagateIRFlags(V0, OpScalars); 7243 propagateIRFlags(V1, AltScalars); 7244 7245 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 7246 if (auto *I = dyn_cast<Instruction>(V)) { 7247 V = propagateMetadata(I, E->Scalars); 7248 GatherShuffleSeq.insert(I); 7249 CSEBlocks.insert(I->getParent()); 7250 } 7251 V = ShuffleBuilder.finalize(V); 7252 7253 E->VectorizedValue = V; 7254 ++NumVectorInstructions; 7255 7256 return V; 7257 } 7258 default: 7259 llvm_unreachable("unknown inst"); 7260 } 7261 return nullptr; 7262 } 7263 7264 Value *BoUpSLP::vectorizeTree() { 7265 ExtraValueToDebugLocsMap ExternallyUsedValues; 7266 return vectorizeTree(ExternallyUsedValues); 7267 } 7268 7269 Value * 7270 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 7271 // All blocks must be scheduled before any instructions are inserted. 7272 for (auto &BSIter : BlocksSchedules) { 7273 scheduleBlock(BSIter.second.get()); 7274 } 7275 7276 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7277 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 7278 7279 // If the vectorized tree can be rewritten in a smaller type, we truncate the 7280 // vectorized root. InstCombine will then rewrite the entire expression. We 7281 // sign extend the extracted values below. 7282 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 7283 if (MinBWs.count(ScalarRoot)) { 7284 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 7285 // If current instr is a phi and not the last phi, insert it after the 7286 // last phi node. 7287 if (isa<PHINode>(I)) 7288 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 7289 else 7290 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 7291 } 7292 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 7293 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 7294 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 7295 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 7296 VectorizableTree[0]->VectorizedValue = Trunc; 7297 } 7298 7299 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 7300 << " values .\n"); 7301 7302 // Extract all of the elements with the external uses. 7303 for (const auto &ExternalUse : ExternalUses) { 7304 Value *Scalar = ExternalUse.Scalar; 7305 llvm::User *User = ExternalUse.User; 7306 7307 // Skip users that we already RAUW. This happens when one instruction 7308 // has multiple uses of the same value. 7309 if (User && !is_contained(Scalar->users(), User)) 7310 continue; 7311 TreeEntry *E = getTreeEntry(Scalar); 7312 assert(E && "Invalid scalar"); 7313 assert(E->State != TreeEntry::NeedToGather && 7314 "Extracting from a gather list"); 7315 7316 Value *Vec = E->VectorizedValue; 7317 assert(Vec && "Can't find vectorizable value"); 7318 7319 Value *Lane = Builder.getInt32(ExternalUse.Lane); 7320 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 7321 if (Scalar->getType() != Vec->getType()) { 7322 Value *Ex; 7323 // "Reuse" the existing extract to improve final codegen. 7324 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 7325 Ex = Builder.CreateExtractElement(ES->getOperand(0), 7326 ES->getOperand(1)); 7327 } else { 7328 Ex = Builder.CreateExtractElement(Vec, Lane); 7329 } 7330 // If necessary, sign-extend or zero-extend ScalarRoot 7331 // to the larger type. 7332 if (!MinBWs.count(ScalarRoot)) 7333 return Ex; 7334 if (MinBWs[ScalarRoot].second) 7335 return Builder.CreateSExt(Ex, Scalar->getType()); 7336 return Builder.CreateZExt(Ex, Scalar->getType()); 7337 } 7338 assert(isa<FixedVectorType>(Scalar->getType()) && 7339 isa<InsertElementInst>(Scalar) && 7340 "In-tree scalar of vector type is not insertelement?"); 7341 return Vec; 7342 }; 7343 // If User == nullptr, the Scalar is used as extra arg. Generate 7344 // ExtractElement instruction and update the record for this scalar in 7345 // ExternallyUsedValues. 7346 if (!User) { 7347 assert(ExternallyUsedValues.count(Scalar) && 7348 "Scalar with nullptr as an external user must be registered in " 7349 "ExternallyUsedValues map"); 7350 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7351 Builder.SetInsertPoint(VecI->getParent(), 7352 std::next(VecI->getIterator())); 7353 } else { 7354 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7355 } 7356 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7357 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 7358 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 7359 auto It = ExternallyUsedValues.find(Scalar); 7360 assert(It != ExternallyUsedValues.end() && 7361 "Externally used scalar is not found in ExternallyUsedValues"); 7362 NewInstLocs.append(It->second); 7363 ExternallyUsedValues.erase(Scalar); 7364 // Required to update internally referenced instructions. 7365 Scalar->replaceAllUsesWith(NewInst); 7366 continue; 7367 } 7368 7369 // Generate extracts for out-of-tree users. 7370 // Find the insertion point for the extractelement lane. 7371 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7372 if (PHINode *PH = dyn_cast<PHINode>(User)) { 7373 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 7374 if (PH->getIncomingValue(i) == Scalar) { 7375 Instruction *IncomingTerminator = 7376 PH->getIncomingBlock(i)->getTerminator(); 7377 if (isa<CatchSwitchInst>(IncomingTerminator)) { 7378 Builder.SetInsertPoint(VecI->getParent(), 7379 std::next(VecI->getIterator())); 7380 } else { 7381 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 7382 } 7383 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7384 CSEBlocks.insert(PH->getIncomingBlock(i)); 7385 PH->setOperand(i, NewInst); 7386 } 7387 } 7388 } else { 7389 Builder.SetInsertPoint(cast<Instruction>(User)); 7390 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7391 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 7392 User->replaceUsesOfWith(Scalar, NewInst); 7393 } 7394 } else { 7395 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7396 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7397 CSEBlocks.insert(&F->getEntryBlock()); 7398 User->replaceUsesOfWith(Scalar, NewInst); 7399 } 7400 7401 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 7402 } 7403 7404 // For each vectorized value: 7405 for (auto &TEPtr : VectorizableTree) { 7406 TreeEntry *Entry = TEPtr.get(); 7407 7408 // No need to handle users of gathered values. 7409 if (Entry->State == TreeEntry::NeedToGather) 7410 continue; 7411 7412 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 7413 7414 // For each lane: 7415 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 7416 Value *Scalar = Entry->Scalars[Lane]; 7417 7418 #ifndef NDEBUG 7419 Type *Ty = Scalar->getType(); 7420 if (!Ty->isVoidTy()) { 7421 for (User *U : Scalar->users()) { 7422 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 7423 7424 // It is legal to delete users in the ignorelist. 7425 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 7426 (isa_and_nonnull<Instruction>(U) && 7427 isDeleted(cast<Instruction>(U)))) && 7428 "Deleting out-of-tree value"); 7429 } 7430 } 7431 #endif 7432 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 7433 eraseInstruction(cast<Instruction>(Scalar)); 7434 } 7435 } 7436 7437 Builder.ClearInsertionPoint(); 7438 InstrElementSize.clear(); 7439 7440 return VectorizableTree[0]->VectorizedValue; 7441 } 7442 7443 void BoUpSLP::optimizeGatherSequence() { 7444 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size() 7445 << " gather sequences instructions.\n"); 7446 // LICM InsertElementInst sequences. 7447 for (Instruction *I : GatherShuffleSeq) { 7448 if (isDeleted(I)) 7449 continue; 7450 7451 // Check if this block is inside a loop. 7452 Loop *L = LI->getLoopFor(I->getParent()); 7453 if (!L) 7454 continue; 7455 7456 // Check if it has a preheader. 7457 BasicBlock *PreHeader = L->getLoopPreheader(); 7458 if (!PreHeader) 7459 continue; 7460 7461 // If the vector or the element that we insert into it are 7462 // instructions that are defined in this basic block then we can't 7463 // hoist this instruction. 7464 if (any_of(I->operands(), [L](Value *V) { 7465 auto *OpI = dyn_cast<Instruction>(V); 7466 return OpI && L->contains(OpI); 7467 })) 7468 continue; 7469 7470 // We can hoist this instruction. Move it to the pre-header. 7471 I->moveBefore(PreHeader->getTerminator()); 7472 } 7473 7474 // Make a list of all reachable blocks in our CSE queue. 7475 SmallVector<const DomTreeNode *, 8> CSEWorkList; 7476 CSEWorkList.reserve(CSEBlocks.size()); 7477 for (BasicBlock *BB : CSEBlocks) 7478 if (DomTreeNode *N = DT->getNode(BB)) { 7479 assert(DT->isReachableFromEntry(N)); 7480 CSEWorkList.push_back(N); 7481 } 7482 7483 // Sort blocks by domination. This ensures we visit a block after all blocks 7484 // dominating it are visited. 7485 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 7486 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 7487 "Different nodes should have different DFS numbers"); 7488 return A->getDFSNumIn() < B->getDFSNumIn(); 7489 }); 7490 7491 // Less defined shuffles can be replaced by the more defined copies. 7492 // Between two shuffles one is less defined if it has the same vector operands 7493 // and its mask indeces are the same as in the first one or undefs. E.g. 7494 // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0, 7495 // poison, <0, 0, 0, 0>. 7496 auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2, 7497 SmallVectorImpl<int> &NewMask) { 7498 if (I1->getType() != I2->getType()) 7499 return false; 7500 auto *SI1 = dyn_cast<ShuffleVectorInst>(I1); 7501 auto *SI2 = dyn_cast<ShuffleVectorInst>(I2); 7502 if (!SI1 || !SI2) 7503 return I1->isIdenticalTo(I2); 7504 if (SI1->isIdenticalTo(SI2)) 7505 return true; 7506 for (int I = 0, E = SI1->getNumOperands(); I < E; ++I) 7507 if (SI1->getOperand(I) != SI2->getOperand(I)) 7508 return false; 7509 // Check if the second instruction is more defined than the first one. 7510 NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end()); 7511 ArrayRef<int> SM1 = SI1->getShuffleMask(); 7512 // Count trailing undefs in the mask to check the final number of used 7513 // registers. 7514 unsigned LastUndefsCnt = 0; 7515 for (int I = 0, E = NewMask.size(); I < E; ++I) { 7516 if (SM1[I] == UndefMaskElem) 7517 ++LastUndefsCnt; 7518 else 7519 LastUndefsCnt = 0; 7520 if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem && 7521 NewMask[I] != SM1[I]) 7522 return false; 7523 if (NewMask[I] == UndefMaskElem) 7524 NewMask[I] = SM1[I]; 7525 } 7526 // Check if the last undefs actually change the final number of used vector 7527 // registers. 7528 return SM1.size() - LastUndefsCnt > 1 && 7529 TTI->getNumberOfParts(SI1->getType()) == 7530 TTI->getNumberOfParts( 7531 FixedVectorType::get(SI1->getType()->getElementType(), 7532 SM1.size() - LastUndefsCnt)); 7533 }; 7534 // Perform O(N^2) search over the gather/shuffle sequences and merge identical 7535 // instructions. TODO: We can further optimize this scan if we split the 7536 // instructions into different buckets based on the insert lane. 7537 SmallVector<Instruction *, 16> Visited; 7538 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 7539 assert(*I && 7540 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 7541 "Worklist not sorted properly!"); 7542 BasicBlock *BB = (*I)->getBlock(); 7543 // For all instructions in blocks containing gather sequences: 7544 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 7545 if (isDeleted(&In)) 7546 continue; 7547 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 7548 !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In)) 7549 continue; 7550 7551 // Check if we can replace this instruction with any of the 7552 // visited instructions. 7553 bool Replaced = false; 7554 for (Instruction *&V : Visited) { 7555 SmallVector<int> NewMask; 7556 if (IsIdenticalOrLessDefined(&In, V, NewMask) && 7557 DT->dominates(V->getParent(), In.getParent())) { 7558 In.replaceAllUsesWith(V); 7559 eraseInstruction(&In); 7560 if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) 7561 if (!NewMask.empty()) 7562 SI->setShuffleMask(NewMask); 7563 Replaced = true; 7564 break; 7565 } 7566 if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) && 7567 GatherShuffleSeq.contains(V) && 7568 IsIdenticalOrLessDefined(V, &In, NewMask) && 7569 DT->dominates(In.getParent(), V->getParent())) { 7570 In.moveAfter(V); 7571 V->replaceAllUsesWith(&In); 7572 eraseInstruction(V); 7573 if (auto *SI = dyn_cast<ShuffleVectorInst>(&In)) 7574 if (!NewMask.empty()) 7575 SI->setShuffleMask(NewMask); 7576 V = &In; 7577 Replaced = true; 7578 break; 7579 } 7580 } 7581 if (!Replaced) { 7582 assert(!is_contained(Visited, &In)); 7583 Visited.push_back(&In); 7584 } 7585 } 7586 } 7587 CSEBlocks.clear(); 7588 GatherShuffleSeq.clear(); 7589 } 7590 7591 BoUpSLP::ScheduleData * 7592 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) { 7593 ScheduleData *Bundle = nullptr; 7594 ScheduleData *PrevInBundle = nullptr; 7595 for (Value *V : VL) { 7596 ScheduleData *BundleMember = getScheduleData(V); 7597 assert(BundleMember && 7598 "no ScheduleData for bundle member " 7599 "(maybe not in same basic block)"); 7600 assert(BundleMember->isSchedulingEntity() && 7601 "bundle member already part of other bundle"); 7602 if (PrevInBundle) { 7603 PrevInBundle->NextInBundle = BundleMember; 7604 } else { 7605 Bundle = BundleMember; 7606 } 7607 7608 // Group the instructions to a bundle. 7609 BundleMember->FirstInBundle = Bundle; 7610 PrevInBundle = BundleMember; 7611 } 7612 assert(Bundle && "Failed to find schedule bundle"); 7613 return Bundle; 7614 } 7615 7616 // Groups the instructions to a bundle (which is then a single scheduling entity) 7617 // and schedules instructions until the bundle gets ready. 7618 Optional<BoUpSLP::ScheduleData *> 7619 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 7620 const InstructionsState &S) { 7621 // No need to schedule PHIs, insertelement, extractelement and extractvalue 7622 // instructions. 7623 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue)) 7624 return nullptr; 7625 7626 // Initialize the instruction bundle. 7627 Instruction *OldScheduleEnd = ScheduleEnd; 7628 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 7629 7630 auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule, 7631 ScheduleData *Bundle) { 7632 // The scheduling region got new instructions at the lower end (or it is a 7633 // new region for the first bundle). This makes it necessary to 7634 // recalculate all dependencies. 7635 // It is seldom that this needs to be done a second time after adding the 7636 // initial bundle to the region. 7637 if (ScheduleEnd != OldScheduleEnd) { 7638 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 7639 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 7640 ReSchedule = true; 7641 } 7642 if (Bundle) { 7643 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 7644 << " in block " << BB->getName() << "\n"); 7645 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 7646 } 7647 7648 if (ReSchedule) { 7649 resetSchedule(); 7650 initialFillReadyList(ReadyInsts); 7651 } 7652 7653 // Now try to schedule the new bundle or (if no bundle) just calculate 7654 // dependencies. As soon as the bundle is "ready" it means that there are no 7655 // cyclic dependencies and we can schedule it. Note that's important that we 7656 // don't "schedule" the bundle yet (see cancelScheduling). 7657 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 7658 !ReadyInsts.empty()) { 7659 ScheduleData *Picked = ReadyInsts.pop_back_val(); 7660 assert(Picked->isSchedulingEntity() && Picked->isReady() && 7661 "must be ready to schedule"); 7662 schedule(Picked, ReadyInsts); 7663 } 7664 }; 7665 7666 // Make sure that the scheduling region contains all 7667 // instructions of the bundle. 7668 for (Value *V : VL) { 7669 if (!extendSchedulingRegion(V, S)) { 7670 // If the scheduling region got new instructions at the lower end (or it 7671 // is a new region for the first bundle). This makes it necessary to 7672 // recalculate all dependencies. 7673 // Otherwise the compiler may crash trying to incorrectly calculate 7674 // dependencies and emit instruction in the wrong order at the actual 7675 // scheduling. 7676 TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr); 7677 return None; 7678 } 7679 } 7680 7681 bool ReSchedule = false; 7682 for (Value *V : VL) { 7683 ScheduleData *BundleMember = getScheduleData(V); 7684 assert(BundleMember && 7685 "no ScheduleData for bundle member (maybe not in same basic block)"); 7686 7687 // Make sure we don't leave the pieces of the bundle in the ready list when 7688 // whole bundle might not be ready. 7689 ReadyInsts.remove(BundleMember); 7690 7691 if (!BundleMember->IsScheduled) 7692 continue; 7693 // A bundle member was scheduled as single instruction before and now 7694 // needs to be scheduled as part of the bundle. We just get rid of the 7695 // existing schedule. 7696 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 7697 << " was already scheduled\n"); 7698 ReSchedule = true; 7699 } 7700 7701 auto *Bundle = buildBundle(VL); 7702 TryScheduleBundleImpl(ReSchedule, Bundle); 7703 if (!Bundle->isReady()) { 7704 cancelScheduling(VL, S.OpValue); 7705 return None; 7706 } 7707 return Bundle; 7708 } 7709 7710 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 7711 Value *OpValue) { 7712 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue)) 7713 return; 7714 7715 ScheduleData *Bundle = getScheduleData(OpValue); 7716 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 7717 assert(!Bundle->IsScheduled && 7718 "Can't cancel bundle which is already scheduled"); 7719 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 7720 "tried to unbundle something which is not a bundle"); 7721 7722 // Remove the bundle from the ready list. 7723 if (Bundle->isReady()) 7724 ReadyInsts.remove(Bundle); 7725 7726 // Un-bundle: make single instructions out of the bundle. 7727 ScheduleData *BundleMember = Bundle; 7728 while (BundleMember) { 7729 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 7730 BundleMember->FirstInBundle = BundleMember; 7731 ScheduleData *Next = BundleMember->NextInBundle; 7732 BundleMember->NextInBundle = nullptr; 7733 if (BundleMember->unscheduledDepsInBundle() == 0) { 7734 ReadyInsts.insert(BundleMember); 7735 } 7736 BundleMember = Next; 7737 } 7738 } 7739 7740 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 7741 // Allocate a new ScheduleData for the instruction. 7742 if (ChunkPos >= ChunkSize) { 7743 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 7744 ChunkPos = 0; 7745 } 7746 return &(ScheduleDataChunks.back()[ChunkPos++]); 7747 } 7748 7749 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 7750 const InstructionsState &S) { 7751 if (getScheduleData(V, isOneOf(S, V))) 7752 return true; 7753 Instruction *I = dyn_cast<Instruction>(V); 7754 assert(I && "bundle member must be an instruction"); 7755 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 7756 "phi nodes/insertelements/extractelements/extractvalues don't need to " 7757 "be scheduled"); 7758 auto &&CheckScheduleForI = [this, &S](Instruction *I) -> bool { 7759 ScheduleData *ISD = getScheduleData(I); 7760 if (!ISD) 7761 return false; 7762 assert(isInSchedulingRegion(ISD) && 7763 "ScheduleData not in scheduling region"); 7764 ScheduleData *SD = allocateScheduleDataChunks(); 7765 SD->Inst = I; 7766 SD->init(SchedulingRegionID, S.OpValue); 7767 ExtraScheduleDataMap[I][S.OpValue] = SD; 7768 return true; 7769 }; 7770 if (CheckScheduleForI(I)) 7771 return true; 7772 if (!ScheduleStart) { 7773 // It's the first instruction in the new region. 7774 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 7775 ScheduleStart = I; 7776 ScheduleEnd = I->getNextNode(); 7777 if (isOneOf(S, I) != I) 7778 CheckScheduleForI(I); 7779 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7780 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 7781 return true; 7782 } 7783 // Search up and down at the same time, because we don't know if the new 7784 // instruction is above or below the existing scheduling region. 7785 BasicBlock::reverse_iterator UpIter = 7786 ++ScheduleStart->getIterator().getReverse(); 7787 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 7788 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 7789 BasicBlock::iterator LowerEnd = BB->end(); 7790 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 7791 &*DownIter != I) { 7792 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 7793 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 7794 return false; 7795 } 7796 7797 ++UpIter; 7798 ++DownIter; 7799 } 7800 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 7801 assert(I->getParent() == ScheduleStart->getParent() && 7802 "Instruction is in wrong basic block."); 7803 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 7804 ScheduleStart = I; 7805 if (isOneOf(S, I) != I) 7806 CheckScheduleForI(I); 7807 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 7808 << "\n"); 7809 return true; 7810 } 7811 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 7812 "Expected to reach top of the basic block or instruction down the " 7813 "lower end."); 7814 assert(I->getParent() == ScheduleEnd->getParent() && 7815 "Instruction is in wrong basic block."); 7816 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 7817 nullptr); 7818 ScheduleEnd = I->getNextNode(); 7819 if (isOneOf(S, I) != I) 7820 CheckScheduleForI(I); 7821 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7822 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 7823 return true; 7824 } 7825 7826 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 7827 Instruction *ToI, 7828 ScheduleData *PrevLoadStore, 7829 ScheduleData *NextLoadStore) { 7830 ScheduleData *CurrentLoadStore = PrevLoadStore; 7831 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 7832 ScheduleData *SD = ScheduleDataMap[I]; 7833 if (!SD) { 7834 SD = allocateScheduleDataChunks(); 7835 ScheduleDataMap[I] = SD; 7836 SD->Inst = I; 7837 } 7838 assert(!isInSchedulingRegion(SD) && 7839 "new ScheduleData already in scheduling region"); 7840 SD->init(SchedulingRegionID, I); 7841 7842 if (I->mayReadOrWriteMemory() && 7843 (!isa<IntrinsicInst>(I) || 7844 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 7845 cast<IntrinsicInst>(I)->getIntrinsicID() != 7846 Intrinsic::pseudoprobe))) { 7847 // Update the linked list of memory accessing instructions. 7848 if (CurrentLoadStore) { 7849 CurrentLoadStore->NextLoadStore = SD; 7850 } else { 7851 FirstLoadStoreInRegion = SD; 7852 } 7853 CurrentLoadStore = SD; 7854 } 7855 } 7856 if (NextLoadStore) { 7857 if (CurrentLoadStore) 7858 CurrentLoadStore->NextLoadStore = NextLoadStore; 7859 } else { 7860 LastLoadStoreInRegion = CurrentLoadStore; 7861 } 7862 } 7863 7864 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 7865 bool InsertInReadyList, 7866 BoUpSLP *SLP) { 7867 assert(SD->isSchedulingEntity()); 7868 7869 SmallVector<ScheduleData *, 10> WorkList; 7870 WorkList.push_back(SD); 7871 7872 while (!WorkList.empty()) { 7873 ScheduleData *SD = WorkList.pop_back_val(); 7874 for (ScheduleData *BundleMember = SD; BundleMember; 7875 BundleMember = BundleMember->NextInBundle) { 7876 assert(isInSchedulingRegion(BundleMember)); 7877 if (BundleMember->hasValidDependencies()) 7878 continue; 7879 7880 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 7881 << "\n"); 7882 BundleMember->Dependencies = 0; 7883 BundleMember->resetUnscheduledDeps(); 7884 7885 // Handle def-use chain dependencies. 7886 if (BundleMember->OpValue != BundleMember->Inst) { 7887 if (ScheduleData *UseSD = getScheduleData(BundleMember->Inst)) { 7888 BundleMember->Dependencies++; 7889 ScheduleData *DestBundle = UseSD->FirstInBundle; 7890 if (!DestBundle->IsScheduled) 7891 BundleMember->incrementUnscheduledDeps(1); 7892 if (!DestBundle->hasValidDependencies()) 7893 WorkList.push_back(DestBundle); 7894 } 7895 } else { 7896 for (User *U : BundleMember->Inst->users()) { 7897 if (ScheduleData *UseSD = getScheduleData(cast<Instruction>(U))) { 7898 BundleMember->Dependencies++; 7899 ScheduleData *DestBundle = UseSD->FirstInBundle; 7900 if (!DestBundle->IsScheduled) 7901 BundleMember->incrementUnscheduledDeps(1); 7902 if (!DestBundle->hasValidDependencies()) 7903 WorkList.push_back(DestBundle); 7904 } 7905 } 7906 } 7907 7908 // Handle the memory dependencies (if any). 7909 ScheduleData *DepDest = BundleMember->NextLoadStore; 7910 if (!DepDest) 7911 continue; 7912 Instruction *SrcInst = BundleMember->Inst; 7913 assert(SrcInst->mayReadOrWriteMemory() && 7914 "NextLoadStore list for non memory effecting bundle?"); 7915 MemoryLocation SrcLoc = getLocation(SrcInst); 7916 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 7917 unsigned numAliased = 0; 7918 unsigned DistToSrc = 1; 7919 7920 for ( ; DepDest; DepDest = DepDest->NextLoadStore) { 7921 assert(isInSchedulingRegion(DepDest)); 7922 7923 // We have two limits to reduce the complexity: 7924 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 7925 // SLP->isAliased (which is the expensive part in this loop). 7926 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 7927 // the whole loop (even if the loop is fast, it's quadratic). 7928 // It's important for the loop break condition (see below) to 7929 // check this limit even between two read-only instructions. 7930 if (DistToSrc >= MaxMemDepDistance || 7931 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 7932 (numAliased >= AliasedCheckLimit || 7933 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 7934 7935 // We increment the counter only if the locations are aliased 7936 // (instead of counting all alias checks). This gives a better 7937 // balance between reduced runtime and accurate dependencies. 7938 numAliased++; 7939 7940 DepDest->MemoryDependencies.push_back(BundleMember); 7941 BundleMember->Dependencies++; 7942 ScheduleData *DestBundle = DepDest->FirstInBundle; 7943 if (!DestBundle->IsScheduled) { 7944 BundleMember->incrementUnscheduledDeps(1); 7945 } 7946 if (!DestBundle->hasValidDependencies()) { 7947 WorkList.push_back(DestBundle); 7948 } 7949 } 7950 7951 // Example, explaining the loop break condition: Let's assume our 7952 // starting instruction is i0 and MaxMemDepDistance = 3. 7953 // 7954 // +--------v--v--v 7955 // i0,i1,i2,i3,i4,i5,i6,i7,i8 7956 // +--------^--^--^ 7957 // 7958 // MaxMemDepDistance let us stop alias-checking at i3 and we add 7959 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 7960 // Previously we already added dependencies from i3 to i6,i7,i8 7961 // (because of MaxMemDepDistance). As we added a dependency from 7962 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 7963 // and we can abort this loop at i6. 7964 if (DistToSrc >= 2 * MaxMemDepDistance) 7965 break; 7966 DistToSrc++; 7967 } 7968 } 7969 if (InsertInReadyList && SD->isReady()) { 7970 ReadyInsts.insert(SD); 7971 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 7972 << "\n"); 7973 } 7974 } 7975 } 7976 7977 void BoUpSLP::BlockScheduling::resetSchedule() { 7978 assert(ScheduleStart && 7979 "tried to reset schedule on block which has not been scheduled"); 7980 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 7981 doForAllOpcodes(I, [&](ScheduleData *SD) { 7982 assert(isInSchedulingRegion(SD) && 7983 "ScheduleData not in scheduling region"); 7984 SD->IsScheduled = false; 7985 SD->resetUnscheduledDeps(); 7986 }); 7987 } 7988 ReadyInsts.clear(); 7989 } 7990 7991 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 7992 if (!BS->ScheduleStart) 7993 return; 7994 7995 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 7996 7997 BS->resetSchedule(); 7998 7999 // For the real scheduling we use a more sophisticated ready-list: it is 8000 // sorted by the original instruction location. This lets the final schedule 8001 // be as close as possible to the original instruction order. 8002 struct ScheduleDataCompare { 8003 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 8004 return SD2->SchedulingPriority < SD1->SchedulingPriority; 8005 } 8006 }; 8007 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 8008 8009 // Ensure that all dependency data is updated and fill the ready-list with 8010 // initial instructions. 8011 int Idx = 0; 8012 int NumToSchedule = 0; 8013 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 8014 I = I->getNextNode()) { 8015 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 8016 assert((isVectorLikeInstWithConstOps(SD->Inst) || 8017 SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr)) && 8018 "scheduler and vectorizer bundle mismatch"); 8019 SD->FirstInBundle->SchedulingPriority = Idx++; 8020 if (SD->isSchedulingEntity()) { 8021 BS->calculateDependencies(SD, false, this); 8022 NumToSchedule++; 8023 } 8024 }); 8025 } 8026 BS->initialFillReadyList(ReadyInsts); 8027 8028 Instruction *LastScheduledInst = BS->ScheduleEnd; 8029 8030 // Do the "real" scheduling. 8031 while (!ReadyInsts.empty()) { 8032 ScheduleData *picked = *ReadyInsts.begin(); 8033 ReadyInsts.erase(ReadyInsts.begin()); 8034 8035 // Move the scheduled instruction(s) to their dedicated places, if not 8036 // there yet. 8037 for (ScheduleData *BundleMember = picked; BundleMember; 8038 BundleMember = BundleMember->NextInBundle) { 8039 Instruction *pickedInst = BundleMember->Inst; 8040 if (pickedInst->getNextNode() != LastScheduledInst) 8041 pickedInst->moveBefore(LastScheduledInst); 8042 LastScheduledInst = pickedInst; 8043 } 8044 8045 BS->schedule(picked, ReadyInsts); 8046 NumToSchedule--; 8047 } 8048 assert(NumToSchedule == 0 && "could not schedule all instructions"); 8049 8050 // Check that we didn't break any of our invariants. 8051 #ifdef EXPENSIVE_CHECKS 8052 BS->verify(); 8053 #endif 8054 8055 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) 8056 // Check that all schedulable entities got scheduled 8057 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) { 8058 BS->doForAllOpcodes(I, [&](ScheduleData *SD) { 8059 if (SD->isSchedulingEntity() && SD->hasValidDependencies()) { 8060 assert(SD->IsScheduled && "must be scheduled at this point"); 8061 } 8062 }); 8063 } 8064 #endif 8065 8066 // Avoid duplicate scheduling of the block. 8067 BS->ScheduleStart = nullptr; 8068 } 8069 8070 unsigned BoUpSLP::getVectorElementSize(Value *V) { 8071 // If V is a store, just return the width of the stored value (or value 8072 // truncated just before storing) without traversing the expression tree. 8073 // This is the common case. 8074 if (auto *Store = dyn_cast<StoreInst>(V)) { 8075 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 8076 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 8077 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 8078 } 8079 8080 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 8081 return getVectorElementSize(IEI->getOperand(1)); 8082 8083 auto E = InstrElementSize.find(V); 8084 if (E != InstrElementSize.end()) 8085 return E->second; 8086 8087 // If V is not a store, we can traverse the expression tree to find loads 8088 // that feed it. The type of the loaded value may indicate a more suitable 8089 // width than V's type. We want to base the vector element size on the width 8090 // of memory operations where possible. 8091 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 8092 SmallPtrSet<Instruction *, 16> Visited; 8093 if (auto *I = dyn_cast<Instruction>(V)) { 8094 Worklist.emplace_back(I, I->getParent()); 8095 Visited.insert(I); 8096 } 8097 8098 // Traverse the expression tree in bottom-up order looking for loads. If we 8099 // encounter an instruction we don't yet handle, we give up. 8100 auto Width = 0u; 8101 while (!Worklist.empty()) { 8102 Instruction *I; 8103 BasicBlock *Parent; 8104 std::tie(I, Parent) = Worklist.pop_back_val(); 8105 8106 // We should only be looking at scalar instructions here. If the current 8107 // instruction has a vector type, skip. 8108 auto *Ty = I->getType(); 8109 if (isa<VectorType>(Ty)) 8110 continue; 8111 8112 // If the current instruction is a load, update MaxWidth to reflect the 8113 // width of the loaded value. 8114 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 8115 isa<ExtractValueInst>(I)) 8116 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 8117 8118 // Otherwise, we need to visit the operands of the instruction. We only 8119 // handle the interesting cases from buildTree here. If an operand is an 8120 // instruction we haven't yet visited and from the same basic block as the 8121 // user or the use is a PHI node, we add it to the worklist. 8122 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8123 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 8124 isa<UnaryOperator>(I)) { 8125 for (Use &U : I->operands()) 8126 if (auto *J = dyn_cast<Instruction>(U.get())) 8127 if (Visited.insert(J).second && 8128 (isa<PHINode>(I) || J->getParent() == Parent)) 8129 Worklist.emplace_back(J, J->getParent()); 8130 } else { 8131 break; 8132 } 8133 } 8134 8135 // If we didn't encounter a memory access in the expression tree, or if we 8136 // gave up for some reason, just return the width of V. Otherwise, return the 8137 // maximum width we found. 8138 if (!Width) { 8139 if (auto *CI = dyn_cast<CmpInst>(V)) 8140 V = CI->getOperand(0); 8141 Width = DL->getTypeSizeInBits(V->getType()); 8142 } 8143 8144 for (Instruction *I : Visited) 8145 InstrElementSize[I] = Width; 8146 8147 return Width; 8148 } 8149 8150 // Determine if a value V in a vectorizable expression Expr can be demoted to a 8151 // smaller type with a truncation. We collect the values that will be demoted 8152 // in ToDemote and additional roots that require investigating in Roots. 8153 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 8154 SmallVectorImpl<Value *> &ToDemote, 8155 SmallVectorImpl<Value *> &Roots) { 8156 // We can always demote constants. 8157 if (isa<Constant>(V)) { 8158 ToDemote.push_back(V); 8159 return true; 8160 } 8161 8162 // If the value is not an instruction in the expression with only one use, it 8163 // cannot be demoted. 8164 auto *I = dyn_cast<Instruction>(V); 8165 if (!I || !I->hasOneUse() || !Expr.count(I)) 8166 return false; 8167 8168 switch (I->getOpcode()) { 8169 8170 // We can always demote truncations and extensions. Since truncations can 8171 // seed additional demotion, we save the truncated value. 8172 case Instruction::Trunc: 8173 Roots.push_back(I->getOperand(0)); 8174 break; 8175 case Instruction::ZExt: 8176 case Instruction::SExt: 8177 if (isa<ExtractElementInst>(I->getOperand(0)) || 8178 isa<InsertElementInst>(I->getOperand(0))) 8179 return false; 8180 break; 8181 8182 // We can demote certain binary operations if we can demote both of their 8183 // operands. 8184 case Instruction::Add: 8185 case Instruction::Sub: 8186 case Instruction::Mul: 8187 case Instruction::And: 8188 case Instruction::Or: 8189 case Instruction::Xor: 8190 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 8191 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 8192 return false; 8193 break; 8194 8195 // We can demote selects if we can demote their true and false values. 8196 case Instruction::Select: { 8197 SelectInst *SI = cast<SelectInst>(I); 8198 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 8199 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 8200 return false; 8201 break; 8202 } 8203 8204 // We can demote phis if we can demote all their incoming operands. Note that 8205 // we don't need to worry about cycles since we ensure single use above. 8206 case Instruction::PHI: { 8207 PHINode *PN = cast<PHINode>(I); 8208 for (Value *IncValue : PN->incoming_values()) 8209 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 8210 return false; 8211 break; 8212 } 8213 8214 // Otherwise, conservatively give up. 8215 default: 8216 return false; 8217 } 8218 8219 // Record the value that we can demote. 8220 ToDemote.push_back(V); 8221 return true; 8222 } 8223 8224 void BoUpSLP::computeMinimumValueSizes() { 8225 // If there are no external uses, the expression tree must be rooted by a 8226 // store. We can't demote in-memory values, so there is nothing to do here. 8227 if (ExternalUses.empty()) 8228 return; 8229 8230 // We only attempt to truncate integer expressions. 8231 auto &TreeRoot = VectorizableTree[0]->Scalars; 8232 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 8233 if (!TreeRootIT) 8234 return; 8235 8236 // If the expression is not rooted by a store, these roots should have 8237 // external uses. We will rely on InstCombine to rewrite the expression in 8238 // the narrower type. However, InstCombine only rewrites single-use values. 8239 // This means that if a tree entry other than a root is used externally, it 8240 // must have multiple uses and InstCombine will not rewrite it. The code 8241 // below ensures that only the roots are used externally. 8242 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 8243 for (auto &EU : ExternalUses) 8244 if (!Expr.erase(EU.Scalar)) 8245 return; 8246 if (!Expr.empty()) 8247 return; 8248 8249 // Collect the scalar values of the vectorizable expression. We will use this 8250 // context to determine which values can be demoted. If we see a truncation, 8251 // we mark it as seeding another demotion. 8252 for (auto &EntryPtr : VectorizableTree) 8253 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 8254 8255 // Ensure the roots of the vectorizable tree don't form a cycle. They must 8256 // have a single external user that is not in the vectorizable tree. 8257 for (auto *Root : TreeRoot) 8258 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 8259 return; 8260 8261 // Conservatively determine if we can actually truncate the roots of the 8262 // expression. Collect the values that can be demoted in ToDemote and 8263 // additional roots that require investigating in Roots. 8264 SmallVector<Value *, 32> ToDemote; 8265 SmallVector<Value *, 4> Roots; 8266 for (auto *Root : TreeRoot) 8267 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 8268 return; 8269 8270 // The maximum bit width required to represent all the values that can be 8271 // demoted without loss of precision. It would be safe to truncate the roots 8272 // of the expression to this width. 8273 auto MaxBitWidth = 8u; 8274 8275 // We first check if all the bits of the roots are demanded. If they're not, 8276 // we can truncate the roots to this narrower type. 8277 for (auto *Root : TreeRoot) { 8278 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 8279 MaxBitWidth = std::max<unsigned>( 8280 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 8281 } 8282 8283 // True if the roots can be zero-extended back to their original type, rather 8284 // than sign-extended. We know that if the leading bits are not demanded, we 8285 // can safely zero-extend. So we initialize IsKnownPositive to True. 8286 bool IsKnownPositive = true; 8287 8288 // If all the bits of the roots are demanded, we can try a little harder to 8289 // compute a narrower type. This can happen, for example, if the roots are 8290 // getelementptr indices. InstCombine promotes these indices to the pointer 8291 // width. Thus, all their bits are technically demanded even though the 8292 // address computation might be vectorized in a smaller type. 8293 // 8294 // We start by looking at each entry that can be demoted. We compute the 8295 // maximum bit width required to store the scalar by using ValueTracking to 8296 // compute the number of high-order bits we can truncate. 8297 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 8298 llvm::all_of(TreeRoot, [](Value *R) { 8299 assert(R->hasOneUse() && "Root should have only one use!"); 8300 return isa<GetElementPtrInst>(R->user_back()); 8301 })) { 8302 MaxBitWidth = 8u; 8303 8304 // Determine if the sign bit of all the roots is known to be zero. If not, 8305 // IsKnownPositive is set to False. 8306 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 8307 KnownBits Known = computeKnownBits(R, *DL); 8308 return Known.isNonNegative(); 8309 }); 8310 8311 // Determine the maximum number of bits required to store the scalar 8312 // values. 8313 for (auto *Scalar : ToDemote) { 8314 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 8315 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 8316 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 8317 } 8318 8319 // If we can't prove that the sign bit is zero, we must add one to the 8320 // maximum bit width to account for the unknown sign bit. This preserves 8321 // the existing sign bit so we can safely sign-extend the root back to the 8322 // original type. Otherwise, if we know the sign bit is zero, we will 8323 // zero-extend the root instead. 8324 // 8325 // FIXME: This is somewhat suboptimal, as there will be cases where adding 8326 // one to the maximum bit width will yield a larger-than-necessary 8327 // type. In general, we need to add an extra bit only if we can't 8328 // prove that the upper bit of the original type is equal to the 8329 // upper bit of the proposed smaller type. If these two bits are the 8330 // same (either zero or one) we know that sign-extending from the 8331 // smaller type will result in the same value. Here, since we can't 8332 // yet prove this, we are just making the proposed smaller type 8333 // larger to ensure correctness. 8334 if (!IsKnownPositive) 8335 ++MaxBitWidth; 8336 } 8337 8338 // Round MaxBitWidth up to the next power-of-two. 8339 if (!isPowerOf2_64(MaxBitWidth)) 8340 MaxBitWidth = NextPowerOf2(MaxBitWidth); 8341 8342 // If the maximum bit width we compute is less than the with of the roots' 8343 // type, we can proceed with the narrowing. Otherwise, do nothing. 8344 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 8345 return; 8346 8347 // If we can truncate the root, we must collect additional values that might 8348 // be demoted as a result. That is, those seeded by truncations we will 8349 // modify. 8350 while (!Roots.empty()) 8351 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 8352 8353 // Finally, map the values we can demote to the maximum bit with we computed. 8354 for (auto *Scalar : ToDemote) 8355 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 8356 } 8357 8358 namespace { 8359 8360 /// The SLPVectorizer Pass. 8361 struct SLPVectorizer : public FunctionPass { 8362 SLPVectorizerPass Impl; 8363 8364 /// Pass identification, replacement for typeid 8365 static char ID; 8366 8367 explicit SLPVectorizer() : FunctionPass(ID) { 8368 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 8369 } 8370 8371 bool doInitialization(Module &M) override { return false; } 8372 8373 bool runOnFunction(Function &F) override { 8374 if (skipFunction(F)) 8375 return false; 8376 8377 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 8378 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 8379 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 8380 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 8381 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 8382 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 8383 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 8384 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 8385 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 8386 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 8387 8388 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8389 } 8390 8391 void getAnalysisUsage(AnalysisUsage &AU) const override { 8392 FunctionPass::getAnalysisUsage(AU); 8393 AU.addRequired<AssumptionCacheTracker>(); 8394 AU.addRequired<ScalarEvolutionWrapperPass>(); 8395 AU.addRequired<AAResultsWrapperPass>(); 8396 AU.addRequired<TargetTransformInfoWrapperPass>(); 8397 AU.addRequired<LoopInfoWrapperPass>(); 8398 AU.addRequired<DominatorTreeWrapperPass>(); 8399 AU.addRequired<DemandedBitsWrapperPass>(); 8400 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 8401 AU.addRequired<InjectTLIMappingsLegacy>(); 8402 AU.addPreserved<LoopInfoWrapperPass>(); 8403 AU.addPreserved<DominatorTreeWrapperPass>(); 8404 AU.addPreserved<AAResultsWrapperPass>(); 8405 AU.addPreserved<GlobalsAAWrapperPass>(); 8406 AU.setPreservesCFG(); 8407 } 8408 }; 8409 8410 } // end anonymous namespace 8411 8412 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 8413 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 8414 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 8415 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 8416 auto *AA = &AM.getResult<AAManager>(F); 8417 auto *LI = &AM.getResult<LoopAnalysis>(F); 8418 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 8419 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 8420 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 8421 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8422 8423 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8424 if (!Changed) 8425 return PreservedAnalyses::all(); 8426 8427 PreservedAnalyses PA; 8428 PA.preserveSet<CFGAnalyses>(); 8429 return PA; 8430 } 8431 8432 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 8433 TargetTransformInfo *TTI_, 8434 TargetLibraryInfo *TLI_, AAResults *AA_, 8435 LoopInfo *LI_, DominatorTree *DT_, 8436 AssumptionCache *AC_, DemandedBits *DB_, 8437 OptimizationRemarkEmitter *ORE_) { 8438 if (!RunSLPVectorization) 8439 return false; 8440 SE = SE_; 8441 TTI = TTI_; 8442 TLI = TLI_; 8443 AA = AA_; 8444 LI = LI_; 8445 DT = DT_; 8446 AC = AC_; 8447 DB = DB_; 8448 DL = &F.getParent()->getDataLayout(); 8449 8450 Stores.clear(); 8451 GEPs.clear(); 8452 bool Changed = false; 8453 8454 // If the target claims to have no vector registers don't attempt 8455 // vectorization. 8456 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) { 8457 LLVM_DEBUG( 8458 dbgs() << "SLP: Didn't find any vector registers for target, abort.\n"); 8459 return false; 8460 } 8461 8462 // Don't vectorize when the attribute NoImplicitFloat is used. 8463 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 8464 return false; 8465 8466 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 8467 8468 // Use the bottom up slp vectorizer to construct chains that start with 8469 // store instructions. 8470 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 8471 8472 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 8473 // delete instructions. 8474 8475 // Update DFS numbers now so that we can use them for ordering. 8476 DT->updateDFSNumbers(); 8477 8478 // Scan the blocks in the function in post order. 8479 for (auto BB : post_order(&F.getEntryBlock())) { 8480 collectSeedInstructions(BB); 8481 8482 // Vectorize trees that end at stores. 8483 if (!Stores.empty()) { 8484 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 8485 << " underlying objects.\n"); 8486 Changed |= vectorizeStoreChains(R); 8487 } 8488 8489 // Vectorize trees that end at reductions. 8490 Changed |= vectorizeChainsInBlock(BB, R); 8491 8492 // Vectorize the index computations of getelementptr instructions. This 8493 // is primarily intended to catch gather-like idioms ending at 8494 // non-consecutive loads. 8495 if (!GEPs.empty()) { 8496 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 8497 << " underlying objects.\n"); 8498 Changed |= vectorizeGEPIndices(BB, R); 8499 } 8500 } 8501 8502 if (Changed) { 8503 R.optimizeGatherSequence(); 8504 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 8505 } 8506 return Changed; 8507 } 8508 8509 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 8510 unsigned Idx) { 8511 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 8512 << "\n"); 8513 const unsigned Sz = R.getVectorElementSize(Chain[0]); 8514 const unsigned MinVF = R.getMinVecRegSize() / Sz; 8515 unsigned VF = Chain.size(); 8516 8517 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 8518 return false; 8519 8520 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 8521 << "\n"); 8522 8523 R.buildTree(Chain); 8524 if (R.isTreeTinyAndNotFullyVectorizable()) 8525 return false; 8526 if (R.isLoadCombineCandidate()) 8527 return false; 8528 R.reorderTopToBottom(); 8529 R.reorderBottomToTop(); 8530 R.buildExternalUses(); 8531 8532 R.computeMinimumValueSizes(); 8533 8534 InstructionCost Cost = R.getTreeCost(); 8535 8536 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 8537 if (Cost < -SLPCostThreshold) { 8538 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 8539 8540 using namespace ore; 8541 8542 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 8543 cast<StoreInst>(Chain[0])) 8544 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 8545 << " and with tree size " 8546 << NV("TreeSize", R.getTreeSize())); 8547 8548 R.vectorizeTree(); 8549 return true; 8550 } 8551 8552 return false; 8553 } 8554 8555 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 8556 BoUpSLP &R) { 8557 // We may run into multiple chains that merge into a single chain. We mark the 8558 // stores that we vectorized so that we don't visit the same store twice. 8559 BoUpSLP::ValueSet VectorizedStores; 8560 bool Changed = false; 8561 8562 int E = Stores.size(); 8563 SmallBitVector Tails(E, false); 8564 int MaxIter = MaxStoreLookup.getValue(); 8565 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 8566 E, std::make_pair(E, INT_MAX)); 8567 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 8568 int IterCnt; 8569 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 8570 &CheckedPairs, 8571 &ConsecutiveChain](int K, int Idx) { 8572 if (IterCnt >= MaxIter) 8573 return true; 8574 if (CheckedPairs[Idx].test(K)) 8575 return ConsecutiveChain[K].second == 1 && 8576 ConsecutiveChain[K].first == Idx; 8577 ++IterCnt; 8578 CheckedPairs[Idx].set(K); 8579 CheckedPairs[K].set(Idx); 8580 Optional<int> Diff = getPointersDiff( 8581 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 8582 Stores[Idx]->getValueOperand()->getType(), 8583 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 8584 if (!Diff || *Diff == 0) 8585 return false; 8586 int Val = *Diff; 8587 if (Val < 0) { 8588 if (ConsecutiveChain[Idx].second > -Val) { 8589 Tails.set(K); 8590 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 8591 } 8592 return false; 8593 } 8594 if (ConsecutiveChain[K].second <= Val) 8595 return false; 8596 8597 Tails.set(Idx); 8598 ConsecutiveChain[K] = std::make_pair(Idx, Val); 8599 return Val == 1; 8600 }; 8601 // Do a quadratic search on all of the given stores in reverse order and find 8602 // all of the pairs of stores that follow each other. 8603 for (int Idx = E - 1; Idx >= 0; --Idx) { 8604 // If a store has multiple consecutive store candidates, search according 8605 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 8606 // This is because usually pairing with immediate succeeding or preceding 8607 // candidate create the best chance to find slp vectorization opportunity. 8608 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 8609 IterCnt = 0; 8610 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 8611 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 8612 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 8613 break; 8614 } 8615 8616 // Tracks if we tried to vectorize stores starting from the given tail 8617 // already. 8618 SmallBitVector TriedTails(E, false); 8619 // For stores that start but don't end a link in the chain: 8620 for (int Cnt = E; Cnt > 0; --Cnt) { 8621 int I = Cnt - 1; 8622 if (ConsecutiveChain[I].first == E || Tails.test(I)) 8623 continue; 8624 // We found a store instr that starts a chain. Now follow the chain and try 8625 // to vectorize it. 8626 BoUpSLP::ValueList Operands; 8627 // Collect the chain into a list. 8628 while (I != E && !VectorizedStores.count(Stores[I])) { 8629 Operands.push_back(Stores[I]); 8630 Tails.set(I); 8631 if (ConsecutiveChain[I].second != 1) { 8632 // Mark the new end in the chain and go back, if required. It might be 8633 // required if the original stores come in reversed order, for example. 8634 if (ConsecutiveChain[I].first != E && 8635 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 8636 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 8637 TriedTails.set(I); 8638 Tails.reset(ConsecutiveChain[I].first); 8639 if (Cnt < ConsecutiveChain[I].first + 2) 8640 Cnt = ConsecutiveChain[I].first + 2; 8641 } 8642 break; 8643 } 8644 // Move to the next value in the chain. 8645 I = ConsecutiveChain[I].first; 8646 } 8647 assert(!Operands.empty() && "Expected non-empty list of stores."); 8648 8649 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 8650 unsigned EltSize = R.getVectorElementSize(Operands[0]); 8651 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 8652 8653 unsigned MinVF = R.getMinVF(EltSize); 8654 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 8655 MaxElts); 8656 8657 // FIXME: Is division-by-2 the correct step? Should we assert that the 8658 // register size is a power-of-2? 8659 unsigned StartIdx = 0; 8660 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 8661 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 8662 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 8663 if (!VectorizedStores.count(Slice.front()) && 8664 !VectorizedStores.count(Slice.back()) && 8665 vectorizeStoreChain(Slice, R, Cnt)) { 8666 // Mark the vectorized stores so that we don't vectorize them again. 8667 VectorizedStores.insert(Slice.begin(), Slice.end()); 8668 Changed = true; 8669 // If we vectorized initial block, no need to try to vectorize it 8670 // again. 8671 if (Cnt == StartIdx) 8672 StartIdx += Size; 8673 Cnt += Size; 8674 continue; 8675 } 8676 ++Cnt; 8677 } 8678 // Check if the whole array was vectorized already - exit. 8679 if (StartIdx >= Operands.size()) 8680 break; 8681 } 8682 } 8683 8684 return Changed; 8685 } 8686 8687 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 8688 // Initialize the collections. We will make a single pass over the block. 8689 Stores.clear(); 8690 GEPs.clear(); 8691 8692 // Visit the store and getelementptr instructions in BB and organize them in 8693 // Stores and GEPs according to the underlying objects of their pointer 8694 // operands. 8695 for (Instruction &I : *BB) { 8696 // Ignore store instructions that are volatile or have a pointer operand 8697 // that doesn't point to a scalar type. 8698 if (auto *SI = dyn_cast<StoreInst>(&I)) { 8699 if (!SI->isSimple()) 8700 continue; 8701 if (!isValidElementType(SI->getValueOperand()->getType())) 8702 continue; 8703 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 8704 } 8705 8706 // Ignore getelementptr instructions that have more than one index, a 8707 // constant index, or a pointer operand that doesn't point to a scalar 8708 // type. 8709 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 8710 auto Idx = GEP->idx_begin()->get(); 8711 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 8712 continue; 8713 if (!isValidElementType(Idx->getType())) 8714 continue; 8715 if (GEP->getType()->isVectorTy()) 8716 continue; 8717 GEPs[GEP->getPointerOperand()].push_back(GEP); 8718 } 8719 } 8720 } 8721 8722 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 8723 if (!A || !B) 8724 return false; 8725 if (isa<InsertElementInst>(A) || isa<InsertElementInst>(B)) 8726 return false; 8727 Value *VL[] = {A, B}; 8728 return tryToVectorizeList(VL, R); 8729 } 8730 8731 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 8732 bool LimitForRegisterSize) { 8733 if (VL.size() < 2) 8734 return false; 8735 8736 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 8737 << VL.size() << ".\n"); 8738 8739 // Check that all of the parts are instructions of the same type, 8740 // we permit an alternate opcode via InstructionsState. 8741 InstructionsState S = getSameOpcode(VL); 8742 if (!S.getOpcode()) 8743 return false; 8744 8745 Instruction *I0 = cast<Instruction>(S.OpValue); 8746 // Make sure invalid types (including vector type) are rejected before 8747 // determining vectorization factor for scalar instructions. 8748 for (Value *V : VL) { 8749 Type *Ty = V->getType(); 8750 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 8751 // NOTE: the following will give user internal llvm type name, which may 8752 // not be useful. 8753 R.getORE()->emit([&]() { 8754 std::string type_str; 8755 llvm::raw_string_ostream rso(type_str); 8756 Ty->print(rso); 8757 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 8758 << "Cannot SLP vectorize list: type " 8759 << rso.str() + " is unsupported by vectorizer"; 8760 }); 8761 return false; 8762 } 8763 } 8764 8765 unsigned Sz = R.getVectorElementSize(I0); 8766 unsigned MinVF = R.getMinVF(Sz); 8767 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 8768 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 8769 if (MaxVF < 2) { 8770 R.getORE()->emit([&]() { 8771 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 8772 << "Cannot SLP vectorize list: vectorization factor " 8773 << "less than 2 is not supported"; 8774 }); 8775 return false; 8776 } 8777 8778 bool Changed = false; 8779 bool CandidateFound = false; 8780 InstructionCost MinCost = SLPCostThreshold.getValue(); 8781 Type *ScalarTy = VL[0]->getType(); 8782 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 8783 ScalarTy = IE->getOperand(1)->getType(); 8784 8785 unsigned NextInst = 0, MaxInst = VL.size(); 8786 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 8787 // No actual vectorization should happen, if number of parts is the same as 8788 // provided vectorization factor (i.e. the scalar type is used for vector 8789 // code during codegen). 8790 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 8791 if (TTI->getNumberOfParts(VecTy) == VF) 8792 continue; 8793 for (unsigned I = NextInst; I < MaxInst; ++I) { 8794 unsigned OpsWidth = 0; 8795 8796 if (I + VF > MaxInst) 8797 OpsWidth = MaxInst - I; 8798 else 8799 OpsWidth = VF; 8800 8801 if (!isPowerOf2_32(OpsWidth)) 8802 continue; 8803 8804 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 8805 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 8806 break; 8807 8808 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 8809 // Check that a previous iteration of this loop did not delete the Value. 8810 if (llvm::any_of(Ops, [&R](Value *V) { 8811 auto *I = dyn_cast<Instruction>(V); 8812 return I && R.isDeleted(I); 8813 })) 8814 continue; 8815 8816 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 8817 << "\n"); 8818 8819 R.buildTree(Ops); 8820 if (R.isTreeTinyAndNotFullyVectorizable()) 8821 continue; 8822 R.reorderTopToBottom(); 8823 R.reorderBottomToTop(!isa<InsertElementInst>(Ops.front())); 8824 R.buildExternalUses(); 8825 8826 R.computeMinimumValueSizes(); 8827 InstructionCost Cost = R.getTreeCost(); 8828 CandidateFound = true; 8829 MinCost = std::min(MinCost, Cost); 8830 8831 if (Cost < -SLPCostThreshold) { 8832 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 8833 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 8834 cast<Instruction>(Ops[0])) 8835 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 8836 << " and with tree size " 8837 << ore::NV("TreeSize", R.getTreeSize())); 8838 8839 R.vectorizeTree(); 8840 // Move to the next bundle. 8841 I += VF - 1; 8842 NextInst = I + 1; 8843 Changed = true; 8844 } 8845 } 8846 } 8847 8848 if (!Changed && CandidateFound) { 8849 R.getORE()->emit([&]() { 8850 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 8851 << "List vectorization was possible but not beneficial with cost " 8852 << ore::NV("Cost", MinCost) << " >= " 8853 << ore::NV("Treshold", -SLPCostThreshold); 8854 }); 8855 } else if (!Changed) { 8856 R.getORE()->emit([&]() { 8857 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 8858 << "Cannot SLP vectorize list: vectorization was impossible" 8859 << " with available vectorization factors"; 8860 }); 8861 } 8862 return Changed; 8863 } 8864 8865 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 8866 if (!I) 8867 return false; 8868 8869 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 8870 return false; 8871 8872 Value *P = I->getParent(); 8873 8874 // Vectorize in current basic block only. 8875 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 8876 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 8877 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 8878 return false; 8879 8880 // Try to vectorize V. 8881 if (tryToVectorizePair(Op0, Op1, R)) 8882 return true; 8883 8884 auto *A = dyn_cast<BinaryOperator>(Op0); 8885 auto *B = dyn_cast<BinaryOperator>(Op1); 8886 // Try to skip B. 8887 if (B && B->hasOneUse()) { 8888 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 8889 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 8890 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 8891 return true; 8892 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 8893 return true; 8894 } 8895 8896 // Try to skip A. 8897 if (A && A->hasOneUse()) { 8898 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 8899 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 8900 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 8901 return true; 8902 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 8903 return true; 8904 } 8905 return false; 8906 } 8907 8908 namespace { 8909 8910 /// Model horizontal reductions. 8911 /// 8912 /// A horizontal reduction is a tree of reduction instructions that has values 8913 /// that can be put into a vector as its leaves. For example: 8914 /// 8915 /// mul mul mul mul 8916 /// \ / \ / 8917 /// + + 8918 /// \ / 8919 /// + 8920 /// This tree has "mul" as its leaf values and "+" as its reduction 8921 /// instructions. A reduction can feed into a store or a binary operation 8922 /// feeding a phi. 8923 /// ... 8924 /// \ / 8925 /// + 8926 /// | 8927 /// phi += 8928 /// 8929 /// Or: 8930 /// ... 8931 /// \ / 8932 /// + 8933 /// | 8934 /// *p = 8935 /// 8936 class HorizontalReduction { 8937 using ReductionOpsType = SmallVector<Value *, 16>; 8938 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 8939 ReductionOpsListType ReductionOps; 8940 SmallVector<Value *, 32> ReducedVals; 8941 // Use map vector to make stable output. 8942 MapVector<Instruction *, Value *> ExtraArgs; 8943 WeakTrackingVH ReductionRoot; 8944 /// The type of reduction operation. 8945 RecurKind RdxKind; 8946 8947 const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max(); 8948 8949 static bool isCmpSelMinMax(Instruction *I) { 8950 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 8951 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 8952 } 8953 8954 // And/or are potentially poison-safe logical patterns like: 8955 // select x, y, false 8956 // select x, true, y 8957 static bool isBoolLogicOp(Instruction *I) { 8958 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 8959 match(I, m_LogicalOr(m_Value(), m_Value())); 8960 } 8961 8962 /// Checks if instruction is associative and can be vectorized. 8963 static bool isVectorizable(RecurKind Kind, Instruction *I) { 8964 if (Kind == RecurKind::None) 8965 return false; 8966 8967 // Integer ops that map to select instructions or intrinsics are fine. 8968 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 8969 isBoolLogicOp(I)) 8970 return true; 8971 8972 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 8973 // FP min/max are associative except for NaN and -0.0. We do not 8974 // have to rule out -0.0 here because the intrinsic semantics do not 8975 // specify a fixed result for it. 8976 return I->getFastMathFlags().noNaNs(); 8977 } 8978 8979 return I->isAssociative(); 8980 } 8981 8982 static Value *getRdxOperand(Instruction *I, unsigned Index) { 8983 // Poison-safe 'or' takes the form: select X, true, Y 8984 // To make that work with the normal operand processing, we skip the 8985 // true value operand. 8986 // TODO: Change the code and data structures to handle this without a hack. 8987 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 8988 return I->getOperand(2); 8989 return I->getOperand(Index); 8990 } 8991 8992 /// Checks if the ParentStackElem.first should be marked as a reduction 8993 /// operation with an extra argument or as extra argument itself. 8994 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 8995 Value *ExtraArg) { 8996 if (ExtraArgs.count(ParentStackElem.first)) { 8997 ExtraArgs[ParentStackElem.first] = nullptr; 8998 // We ran into something like: 8999 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 9000 // The whole ParentStackElem.first should be considered as an extra value 9001 // in this case. 9002 // Do not perform analysis of remaining operands of ParentStackElem.first 9003 // instruction, this whole instruction is an extra argument. 9004 ParentStackElem.second = INVALID_OPERAND_INDEX; 9005 } else { 9006 // We ran into something like: 9007 // ParentStackElem.first += ... + ExtraArg + ... 9008 ExtraArgs[ParentStackElem.first] = ExtraArg; 9009 } 9010 } 9011 9012 /// Creates reduction operation with the current opcode. 9013 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 9014 Value *RHS, const Twine &Name, bool UseSelect) { 9015 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 9016 switch (Kind) { 9017 case RecurKind::Or: 9018 if (UseSelect && 9019 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 9020 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 9021 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9022 Name); 9023 case RecurKind::And: 9024 if (UseSelect && 9025 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 9026 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 9027 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9028 Name); 9029 case RecurKind::Add: 9030 case RecurKind::Mul: 9031 case RecurKind::Xor: 9032 case RecurKind::FAdd: 9033 case RecurKind::FMul: 9034 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9035 Name); 9036 case RecurKind::FMax: 9037 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 9038 case RecurKind::FMin: 9039 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 9040 case RecurKind::SMax: 9041 if (UseSelect) { 9042 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 9043 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9044 } 9045 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 9046 case RecurKind::SMin: 9047 if (UseSelect) { 9048 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 9049 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9050 } 9051 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 9052 case RecurKind::UMax: 9053 if (UseSelect) { 9054 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 9055 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9056 } 9057 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 9058 case RecurKind::UMin: 9059 if (UseSelect) { 9060 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 9061 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9062 } 9063 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 9064 default: 9065 llvm_unreachable("Unknown reduction operation."); 9066 } 9067 } 9068 9069 /// Creates reduction operation with the current opcode with the IR flags 9070 /// from \p ReductionOps. 9071 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9072 Value *RHS, const Twine &Name, 9073 const ReductionOpsListType &ReductionOps) { 9074 bool UseSelect = ReductionOps.size() == 2 || 9075 // Logical or/and. 9076 (ReductionOps.size() == 1 && 9077 isa<SelectInst>(ReductionOps.front().front())); 9078 assert((!UseSelect || ReductionOps.size() != 2 || 9079 isa<SelectInst>(ReductionOps[1][0])) && 9080 "Expected cmp + select pairs for reduction"); 9081 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 9082 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9083 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 9084 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 9085 propagateIRFlags(Op, ReductionOps[1]); 9086 return Op; 9087 } 9088 } 9089 propagateIRFlags(Op, ReductionOps[0]); 9090 return Op; 9091 } 9092 9093 /// Creates reduction operation with the current opcode with the IR flags 9094 /// from \p I. 9095 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9096 Value *RHS, const Twine &Name, Instruction *I) { 9097 auto *SelI = dyn_cast<SelectInst>(I); 9098 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 9099 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9100 if (auto *Sel = dyn_cast<SelectInst>(Op)) 9101 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 9102 } 9103 propagateIRFlags(Op, I); 9104 return Op; 9105 } 9106 9107 static RecurKind getRdxKind(Instruction *I) { 9108 assert(I && "Expected instruction for reduction matching"); 9109 if (match(I, m_Add(m_Value(), m_Value()))) 9110 return RecurKind::Add; 9111 if (match(I, m_Mul(m_Value(), m_Value()))) 9112 return RecurKind::Mul; 9113 if (match(I, m_And(m_Value(), m_Value())) || 9114 match(I, m_LogicalAnd(m_Value(), m_Value()))) 9115 return RecurKind::And; 9116 if (match(I, m_Or(m_Value(), m_Value())) || 9117 match(I, m_LogicalOr(m_Value(), m_Value()))) 9118 return RecurKind::Or; 9119 if (match(I, m_Xor(m_Value(), m_Value()))) 9120 return RecurKind::Xor; 9121 if (match(I, m_FAdd(m_Value(), m_Value()))) 9122 return RecurKind::FAdd; 9123 if (match(I, m_FMul(m_Value(), m_Value()))) 9124 return RecurKind::FMul; 9125 9126 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 9127 return RecurKind::FMax; 9128 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 9129 return RecurKind::FMin; 9130 9131 // This matches either cmp+select or intrinsics. SLP is expected to handle 9132 // either form. 9133 // TODO: If we are canonicalizing to intrinsics, we can remove several 9134 // special-case paths that deal with selects. 9135 if (match(I, m_SMax(m_Value(), m_Value()))) 9136 return RecurKind::SMax; 9137 if (match(I, m_SMin(m_Value(), m_Value()))) 9138 return RecurKind::SMin; 9139 if (match(I, m_UMax(m_Value(), m_Value()))) 9140 return RecurKind::UMax; 9141 if (match(I, m_UMin(m_Value(), m_Value()))) 9142 return RecurKind::UMin; 9143 9144 if (auto *Select = dyn_cast<SelectInst>(I)) { 9145 // Try harder: look for min/max pattern based on instructions producing 9146 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 9147 // During the intermediate stages of SLP, it's very common to have 9148 // pattern like this (since optimizeGatherSequence is run only once 9149 // at the end): 9150 // %1 = extractelement <2 x i32> %a, i32 0 9151 // %2 = extractelement <2 x i32> %a, i32 1 9152 // %cond = icmp sgt i32 %1, %2 9153 // %3 = extractelement <2 x i32> %a, i32 0 9154 // %4 = extractelement <2 x i32> %a, i32 1 9155 // %select = select i1 %cond, i32 %3, i32 %4 9156 CmpInst::Predicate Pred; 9157 Instruction *L1; 9158 Instruction *L2; 9159 9160 Value *LHS = Select->getTrueValue(); 9161 Value *RHS = Select->getFalseValue(); 9162 Value *Cond = Select->getCondition(); 9163 9164 // TODO: Support inverse predicates. 9165 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 9166 if (!isa<ExtractElementInst>(RHS) || 9167 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9168 return RecurKind::None; 9169 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 9170 if (!isa<ExtractElementInst>(LHS) || 9171 !L1->isIdenticalTo(cast<Instruction>(LHS))) 9172 return RecurKind::None; 9173 } else { 9174 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 9175 return RecurKind::None; 9176 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 9177 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 9178 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9179 return RecurKind::None; 9180 } 9181 9182 switch (Pred) { 9183 default: 9184 return RecurKind::None; 9185 case CmpInst::ICMP_SGT: 9186 case CmpInst::ICMP_SGE: 9187 return RecurKind::SMax; 9188 case CmpInst::ICMP_SLT: 9189 case CmpInst::ICMP_SLE: 9190 return RecurKind::SMin; 9191 case CmpInst::ICMP_UGT: 9192 case CmpInst::ICMP_UGE: 9193 return RecurKind::UMax; 9194 case CmpInst::ICMP_ULT: 9195 case CmpInst::ICMP_ULE: 9196 return RecurKind::UMin; 9197 } 9198 } 9199 return RecurKind::None; 9200 } 9201 9202 /// Get the index of the first operand. 9203 static unsigned getFirstOperandIndex(Instruction *I) { 9204 return isCmpSelMinMax(I) ? 1 : 0; 9205 } 9206 9207 /// Total number of operands in the reduction operation. 9208 static unsigned getNumberOfOperands(Instruction *I) { 9209 return isCmpSelMinMax(I) ? 3 : 2; 9210 } 9211 9212 /// Checks if the instruction is in basic block \p BB. 9213 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 9214 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 9215 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 9216 auto *Sel = cast<SelectInst>(I); 9217 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 9218 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 9219 } 9220 return I->getParent() == BB; 9221 } 9222 9223 /// Expected number of uses for reduction operations/reduced values. 9224 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 9225 if (IsCmpSelMinMax) { 9226 // SelectInst must be used twice while the condition op must have single 9227 // use only. 9228 if (auto *Sel = dyn_cast<SelectInst>(I)) 9229 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 9230 return I->hasNUses(2); 9231 } 9232 9233 // Arithmetic reduction operation must be used once only. 9234 return I->hasOneUse(); 9235 } 9236 9237 /// Initializes the list of reduction operations. 9238 void initReductionOps(Instruction *I) { 9239 if (isCmpSelMinMax(I)) 9240 ReductionOps.assign(2, ReductionOpsType()); 9241 else 9242 ReductionOps.assign(1, ReductionOpsType()); 9243 } 9244 9245 /// Add all reduction operations for the reduction instruction \p I. 9246 void addReductionOps(Instruction *I) { 9247 if (isCmpSelMinMax(I)) { 9248 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 9249 ReductionOps[1].emplace_back(I); 9250 } else { 9251 ReductionOps[0].emplace_back(I); 9252 } 9253 } 9254 9255 static Value *getLHS(RecurKind Kind, Instruction *I) { 9256 if (Kind == RecurKind::None) 9257 return nullptr; 9258 return I->getOperand(getFirstOperandIndex(I)); 9259 } 9260 static Value *getRHS(RecurKind Kind, Instruction *I) { 9261 if (Kind == RecurKind::None) 9262 return nullptr; 9263 return I->getOperand(getFirstOperandIndex(I) + 1); 9264 } 9265 9266 public: 9267 HorizontalReduction() = default; 9268 9269 /// Try to find a reduction tree. 9270 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) { 9271 assert((!Phi || is_contained(Phi->operands(), Inst)) && 9272 "Phi needs to use the binary operator"); 9273 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 9274 isa<IntrinsicInst>(Inst)) && 9275 "Expected binop, select, or intrinsic for reduction matching"); 9276 RdxKind = getRdxKind(Inst); 9277 9278 // We could have a initial reductions that is not an add. 9279 // r *= v1 + v2 + v3 + v4 9280 // In such a case start looking for a tree rooted in the first '+'. 9281 if (Phi) { 9282 if (getLHS(RdxKind, Inst) == Phi) { 9283 Phi = nullptr; 9284 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 9285 if (!Inst) 9286 return false; 9287 RdxKind = getRdxKind(Inst); 9288 } else if (getRHS(RdxKind, Inst) == Phi) { 9289 Phi = nullptr; 9290 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 9291 if (!Inst) 9292 return false; 9293 RdxKind = getRdxKind(Inst); 9294 } 9295 } 9296 9297 if (!isVectorizable(RdxKind, Inst)) 9298 return false; 9299 9300 // Analyze "regular" integer/FP types for reductions - no target-specific 9301 // types or pointers. 9302 Type *Ty = Inst->getType(); 9303 if (!isValidElementType(Ty) || Ty->isPointerTy()) 9304 return false; 9305 9306 // Though the ultimate reduction may have multiple uses, its condition must 9307 // have only single use. 9308 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 9309 if (!Sel->getCondition()->hasOneUse()) 9310 return false; 9311 9312 ReductionRoot = Inst; 9313 9314 // The opcode for leaf values that we perform a reduction on. 9315 // For example: load(x) + load(y) + load(z) + fptoui(w) 9316 // The leaf opcode for 'w' does not match, so we don't include it as a 9317 // potential candidate for the reduction. 9318 unsigned LeafOpcode = 0; 9319 9320 // Post-order traverse the reduction tree starting at Inst. We only handle 9321 // true trees containing binary operators or selects. 9322 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 9323 Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst))); 9324 initReductionOps(Inst); 9325 while (!Stack.empty()) { 9326 Instruction *TreeN = Stack.back().first; 9327 unsigned EdgeToVisit = Stack.back().second++; 9328 const RecurKind TreeRdxKind = getRdxKind(TreeN); 9329 bool IsReducedValue = TreeRdxKind != RdxKind; 9330 9331 // Postorder visit. 9332 if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) { 9333 if (IsReducedValue) 9334 ReducedVals.push_back(TreeN); 9335 else { 9336 auto ExtraArgsIter = ExtraArgs.find(TreeN); 9337 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 9338 // Check if TreeN is an extra argument of its parent operation. 9339 if (Stack.size() <= 1) { 9340 // TreeN can't be an extra argument as it is a root reduction 9341 // operation. 9342 return false; 9343 } 9344 // Yes, TreeN is an extra argument, do not add it to a list of 9345 // reduction operations. 9346 // Stack[Stack.size() - 2] always points to the parent operation. 9347 markExtraArg(Stack[Stack.size() - 2], TreeN); 9348 ExtraArgs.erase(TreeN); 9349 } else 9350 addReductionOps(TreeN); 9351 } 9352 // Retract. 9353 Stack.pop_back(); 9354 continue; 9355 } 9356 9357 // Visit operands. 9358 Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit); 9359 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 9360 if (!EdgeInst) { 9361 // Edge value is not a reduction instruction or a leaf instruction. 9362 // (It may be a constant, function argument, or something else.) 9363 markExtraArg(Stack.back(), EdgeVal); 9364 continue; 9365 } 9366 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 9367 // Continue analysis if the next operand is a reduction operation or 9368 // (possibly) a leaf value. If the leaf value opcode is not set, 9369 // the first met operation != reduction operation is considered as the 9370 // leaf opcode. 9371 // Only handle trees in the current basic block. 9372 // Each tree node needs to have minimal number of users except for the 9373 // ultimate reduction. 9374 const bool IsRdxInst = EdgeRdxKind == RdxKind; 9375 if (EdgeInst != Phi && EdgeInst != Inst && 9376 hasSameParent(EdgeInst, Inst->getParent()) && 9377 hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) && 9378 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 9379 if (IsRdxInst) { 9380 // We need to be able to reassociate the reduction operations. 9381 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 9382 // I is an extra argument for TreeN (its parent operation). 9383 markExtraArg(Stack.back(), EdgeInst); 9384 continue; 9385 } 9386 } else if (!LeafOpcode) { 9387 LeafOpcode = EdgeInst->getOpcode(); 9388 } 9389 Stack.push_back( 9390 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 9391 continue; 9392 } 9393 // I is an extra argument for TreeN (its parent operation). 9394 markExtraArg(Stack.back(), EdgeInst); 9395 } 9396 return true; 9397 } 9398 9399 /// Attempt to vectorize the tree found by matchAssociativeReduction. 9400 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 9401 // If there are a sufficient number of reduction values, reduce 9402 // to a nearby power-of-2. We can safely generate oversized 9403 // vectors and rely on the backend to split them to legal sizes. 9404 unsigned NumReducedVals = ReducedVals.size(); 9405 if (NumReducedVals < 4) 9406 return nullptr; 9407 9408 // Intersect the fast-math-flags from all reduction operations. 9409 FastMathFlags RdxFMF; 9410 RdxFMF.set(); 9411 for (ReductionOpsType &RdxOp : ReductionOps) { 9412 for (Value *RdxVal : RdxOp) { 9413 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 9414 RdxFMF &= FPMO->getFastMathFlags(); 9415 } 9416 } 9417 9418 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 9419 Builder.setFastMathFlags(RdxFMF); 9420 9421 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 9422 // The same extra argument may be used several times, so log each attempt 9423 // to use it. 9424 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 9425 assert(Pair.first && "DebugLoc must be set."); 9426 ExternallyUsedValues[Pair.second].push_back(Pair.first); 9427 } 9428 9429 // The compare instruction of a min/max is the insertion point for new 9430 // instructions and may be replaced with a new compare instruction. 9431 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 9432 assert(isa<SelectInst>(RdxRootInst) && 9433 "Expected min/max reduction to have select root instruction"); 9434 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 9435 assert(isa<Instruction>(ScalarCond) && 9436 "Expected min/max reduction to have compare condition"); 9437 return cast<Instruction>(ScalarCond); 9438 }; 9439 9440 // The reduction root is used as the insertion point for new instructions, 9441 // so set it as externally used to prevent it from being deleted. 9442 ExternallyUsedValues[ReductionRoot]; 9443 SmallVector<Value *, 16> IgnoreList; 9444 for (ReductionOpsType &RdxOp : ReductionOps) 9445 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 9446 9447 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 9448 if (NumReducedVals > ReduxWidth) { 9449 // In the loop below, we are building a tree based on a window of 9450 // 'ReduxWidth' values. 9451 // If the operands of those values have common traits (compare predicate, 9452 // constant operand, etc), then we want to group those together to 9453 // minimize the cost of the reduction. 9454 9455 // TODO: This should be extended to count common operands for 9456 // compares and binops. 9457 9458 // Step 1: Count the number of times each compare predicate occurs. 9459 SmallDenseMap<unsigned, unsigned> PredCountMap; 9460 for (Value *RdxVal : ReducedVals) { 9461 CmpInst::Predicate Pred; 9462 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 9463 ++PredCountMap[Pred]; 9464 } 9465 // Step 2: Sort the values so the most common predicates come first. 9466 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 9467 CmpInst::Predicate PredA, PredB; 9468 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 9469 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 9470 return PredCountMap[PredA] > PredCountMap[PredB]; 9471 } 9472 return false; 9473 }); 9474 } 9475 9476 Value *VectorizedTree = nullptr; 9477 unsigned i = 0; 9478 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 9479 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 9480 V.buildTree(VL, IgnoreList); 9481 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) 9482 break; 9483 if (V.isLoadCombineReductionCandidate(RdxKind)) 9484 break; 9485 V.reorderTopToBottom(); 9486 V.reorderBottomToTop(/*IgnoreReorder=*/true); 9487 V.buildExternalUses(ExternallyUsedValues); 9488 9489 // For a poison-safe boolean logic reduction, do not replace select 9490 // instructions with logic ops. All reduced values will be frozen (see 9491 // below) to prevent leaking poison. 9492 if (isa<SelectInst>(ReductionRoot) && 9493 isBoolLogicOp(cast<Instruction>(ReductionRoot)) && 9494 NumReducedVals != ReduxWidth) 9495 break; 9496 9497 V.computeMinimumValueSizes(); 9498 9499 // Estimate cost. 9500 InstructionCost TreeCost = 9501 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth)); 9502 InstructionCost ReductionCost = 9503 getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF); 9504 InstructionCost Cost = TreeCost + ReductionCost; 9505 if (!Cost.isValid()) { 9506 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 9507 return nullptr; 9508 } 9509 if (Cost >= -SLPCostThreshold) { 9510 V.getORE()->emit([&]() { 9511 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 9512 cast<Instruction>(VL[0])) 9513 << "Vectorizing horizontal reduction is possible" 9514 << "but not beneficial with cost " << ore::NV("Cost", Cost) 9515 << " and threshold " 9516 << ore::NV("Threshold", -SLPCostThreshold); 9517 }); 9518 break; 9519 } 9520 9521 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 9522 << Cost << ". (HorRdx)\n"); 9523 V.getORE()->emit([&]() { 9524 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 9525 cast<Instruction>(VL[0])) 9526 << "Vectorized horizontal reduction with cost " 9527 << ore::NV("Cost", Cost) << " and with tree size " 9528 << ore::NV("TreeSize", V.getTreeSize()); 9529 }); 9530 9531 // Vectorize a tree. 9532 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 9533 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 9534 9535 // Emit a reduction. If the root is a select (min/max idiom), the insert 9536 // point is the compare condition of that select. 9537 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 9538 if (isCmpSelMinMax(RdxRootInst)) 9539 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 9540 else 9541 Builder.SetInsertPoint(RdxRootInst); 9542 9543 // To prevent poison from leaking across what used to be sequential, safe, 9544 // scalar boolean logic operations, the reduction operand must be frozen. 9545 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 9546 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 9547 9548 Value *ReducedSubTree = 9549 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 9550 9551 if (!VectorizedTree) { 9552 // Initialize the final value in the reduction. 9553 VectorizedTree = ReducedSubTree; 9554 } else { 9555 // Update the final value in the reduction. 9556 Builder.SetCurrentDebugLocation(Loc); 9557 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9558 ReducedSubTree, "op.rdx", ReductionOps); 9559 } 9560 i += ReduxWidth; 9561 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 9562 } 9563 9564 if (VectorizedTree) { 9565 // Finish the reduction. 9566 for (; i < NumReducedVals; ++i) { 9567 auto *I = cast<Instruction>(ReducedVals[i]); 9568 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9569 VectorizedTree = 9570 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 9571 } 9572 for (auto &Pair : ExternallyUsedValues) { 9573 // Add each externally used value to the final reduction. 9574 for (auto *I : Pair.second) { 9575 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9576 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9577 Pair.first, "op.extra", I); 9578 } 9579 } 9580 9581 ReductionRoot->replaceAllUsesWith(VectorizedTree); 9582 9583 // Mark all scalar reduction ops for deletion, they are replaced by the 9584 // vector reductions. 9585 V.eraseInstructions(IgnoreList); 9586 } 9587 return VectorizedTree; 9588 } 9589 9590 unsigned numReductionValues() const { return ReducedVals.size(); } 9591 9592 private: 9593 /// Calculate the cost of a reduction. 9594 InstructionCost getReductionCost(TargetTransformInfo *TTI, 9595 Value *FirstReducedVal, unsigned ReduxWidth, 9596 FastMathFlags FMF) { 9597 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 9598 Type *ScalarTy = FirstReducedVal->getType(); 9599 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 9600 InstructionCost VectorCost, ScalarCost; 9601 switch (RdxKind) { 9602 case RecurKind::Add: 9603 case RecurKind::Mul: 9604 case RecurKind::Or: 9605 case RecurKind::And: 9606 case RecurKind::Xor: 9607 case RecurKind::FAdd: 9608 case RecurKind::FMul: { 9609 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 9610 VectorCost = 9611 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 9612 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 9613 break; 9614 } 9615 case RecurKind::FMax: 9616 case RecurKind::FMin: { 9617 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9618 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9619 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 9620 /*IsUnsigned=*/false, CostKind); 9621 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9622 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 9623 SclCondTy, RdxPred, CostKind) + 9624 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9625 SclCondTy, RdxPred, CostKind); 9626 break; 9627 } 9628 case RecurKind::SMax: 9629 case RecurKind::SMin: 9630 case RecurKind::UMax: 9631 case RecurKind::UMin: { 9632 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9633 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9634 bool IsUnsigned = 9635 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 9636 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned, 9637 CostKind); 9638 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9639 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 9640 SclCondTy, RdxPred, CostKind) + 9641 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9642 SclCondTy, RdxPred, CostKind); 9643 break; 9644 } 9645 default: 9646 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 9647 } 9648 9649 // Scalar cost is repeated for N-1 elements. 9650 ScalarCost *= (ReduxWidth - 1); 9651 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 9652 << " for reduction that starts with " << *FirstReducedVal 9653 << " (It is a splitting reduction)\n"); 9654 return VectorCost - ScalarCost; 9655 } 9656 9657 /// Emit a horizontal reduction of the vectorized value. 9658 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 9659 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 9660 assert(VectorizedValue && "Need to have a vectorized tree node"); 9661 assert(isPowerOf2_32(ReduxWidth) && 9662 "We only handle power-of-two reductions for now"); 9663 assert(RdxKind != RecurKind::FMulAdd && 9664 "A call to the llvm.fmuladd intrinsic is not handled yet"); 9665 9666 ++NumVectorInstructions; 9667 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind); 9668 } 9669 }; 9670 9671 } // end anonymous namespace 9672 9673 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 9674 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 9675 return cast<FixedVectorType>(IE->getType())->getNumElements(); 9676 9677 unsigned AggregateSize = 1; 9678 auto *IV = cast<InsertValueInst>(InsertInst); 9679 Type *CurrentType = IV->getType(); 9680 do { 9681 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 9682 for (auto *Elt : ST->elements()) 9683 if (Elt != ST->getElementType(0)) // check homogeneity 9684 return None; 9685 AggregateSize *= ST->getNumElements(); 9686 CurrentType = ST->getElementType(0); 9687 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 9688 AggregateSize *= AT->getNumElements(); 9689 CurrentType = AT->getElementType(); 9690 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 9691 AggregateSize *= VT->getNumElements(); 9692 return AggregateSize; 9693 } else if (CurrentType->isSingleValueType()) { 9694 return AggregateSize; 9695 } else { 9696 return None; 9697 } 9698 } while (true); 9699 } 9700 9701 static void findBuildAggregate_rec(Instruction *LastInsertInst, 9702 TargetTransformInfo *TTI, 9703 SmallVectorImpl<Value *> &BuildVectorOpds, 9704 SmallVectorImpl<Value *> &InsertElts, 9705 unsigned OperandOffset) { 9706 do { 9707 Value *InsertedOperand = LastInsertInst->getOperand(1); 9708 Optional<unsigned> OperandIndex = 9709 getInsertIndex(LastInsertInst, OperandOffset); 9710 if (!OperandIndex) 9711 return; 9712 if (isa<InsertElementInst>(InsertedOperand) || 9713 isa<InsertValueInst>(InsertedOperand)) { 9714 findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 9715 BuildVectorOpds, InsertElts, *OperandIndex); 9716 9717 } else { 9718 BuildVectorOpds[*OperandIndex] = InsertedOperand; 9719 InsertElts[*OperandIndex] = LastInsertInst; 9720 } 9721 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 9722 } while (LastInsertInst != nullptr && 9723 (isa<InsertValueInst>(LastInsertInst) || 9724 isa<InsertElementInst>(LastInsertInst)) && 9725 LastInsertInst->hasOneUse()); 9726 } 9727 9728 /// Recognize construction of vectors like 9729 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 9730 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 9731 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 9732 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 9733 /// starting from the last insertelement or insertvalue instruction. 9734 /// 9735 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 9736 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 9737 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 9738 /// 9739 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 9740 /// 9741 /// \return true if it matches. 9742 static bool findBuildAggregate(Instruction *LastInsertInst, 9743 TargetTransformInfo *TTI, 9744 SmallVectorImpl<Value *> &BuildVectorOpds, 9745 SmallVectorImpl<Value *> &InsertElts) { 9746 9747 assert((isa<InsertElementInst>(LastInsertInst) || 9748 isa<InsertValueInst>(LastInsertInst)) && 9749 "Expected insertelement or insertvalue instruction!"); 9750 9751 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 9752 "Expected empty result vectors!"); 9753 9754 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 9755 if (!AggregateSize) 9756 return false; 9757 BuildVectorOpds.resize(*AggregateSize); 9758 InsertElts.resize(*AggregateSize); 9759 9760 findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 0); 9761 llvm::erase_value(BuildVectorOpds, nullptr); 9762 llvm::erase_value(InsertElts, nullptr); 9763 if (BuildVectorOpds.size() >= 2) 9764 return true; 9765 9766 return false; 9767 } 9768 9769 /// Try and get a reduction value from a phi node. 9770 /// 9771 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 9772 /// if they come from either \p ParentBB or a containing loop latch. 9773 /// 9774 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 9775 /// if not possible. 9776 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 9777 BasicBlock *ParentBB, LoopInfo *LI) { 9778 // There are situations where the reduction value is not dominated by the 9779 // reduction phi. Vectorizing such cases has been reported to cause 9780 // miscompiles. See PR25787. 9781 auto DominatedReduxValue = [&](Value *R) { 9782 return isa<Instruction>(R) && 9783 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 9784 }; 9785 9786 Value *Rdx = nullptr; 9787 9788 // Return the incoming value if it comes from the same BB as the phi node. 9789 if (P->getIncomingBlock(0) == ParentBB) { 9790 Rdx = P->getIncomingValue(0); 9791 } else if (P->getIncomingBlock(1) == ParentBB) { 9792 Rdx = P->getIncomingValue(1); 9793 } 9794 9795 if (Rdx && DominatedReduxValue(Rdx)) 9796 return Rdx; 9797 9798 // Otherwise, check whether we have a loop latch to look at. 9799 Loop *BBL = LI->getLoopFor(ParentBB); 9800 if (!BBL) 9801 return nullptr; 9802 BasicBlock *BBLatch = BBL->getLoopLatch(); 9803 if (!BBLatch) 9804 return nullptr; 9805 9806 // There is a loop latch, return the incoming value if it comes from 9807 // that. This reduction pattern occasionally turns up. 9808 if (P->getIncomingBlock(0) == BBLatch) { 9809 Rdx = P->getIncomingValue(0); 9810 } else if (P->getIncomingBlock(1) == BBLatch) { 9811 Rdx = P->getIncomingValue(1); 9812 } 9813 9814 if (Rdx && DominatedReduxValue(Rdx)) 9815 return Rdx; 9816 9817 return nullptr; 9818 } 9819 9820 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 9821 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 9822 return true; 9823 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 9824 return true; 9825 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 9826 return true; 9827 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 9828 return true; 9829 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 9830 return true; 9831 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 9832 return true; 9833 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 9834 return true; 9835 return false; 9836 } 9837 9838 /// Attempt to reduce a horizontal reduction. 9839 /// If it is legal to match a horizontal reduction feeding the phi node \a P 9840 /// with reduction operators \a Root (or one of its operands) in a basic block 9841 /// \a BB, then check if it can be done. If horizontal reduction is not found 9842 /// and root instruction is a binary operation, vectorization of the operands is 9843 /// attempted. 9844 /// \returns true if a horizontal reduction was matched and reduced or operands 9845 /// of one of the binary instruction were vectorized. 9846 /// \returns false if a horizontal reduction was not matched (or not possible) 9847 /// or no vectorization of any binary operation feeding \a Root instruction was 9848 /// performed. 9849 static bool tryToVectorizeHorReductionOrInstOperands( 9850 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 9851 TargetTransformInfo *TTI, 9852 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 9853 if (!ShouldVectorizeHor) 9854 return false; 9855 9856 if (!Root) 9857 return false; 9858 9859 if (Root->getParent() != BB || isa<PHINode>(Root)) 9860 return false; 9861 // Start analysis starting from Root instruction. If horizontal reduction is 9862 // found, try to vectorize it. If it is not a horizontal reduction or 9863 // vectorization is not possible or not effective, and currently analyzed 9864 // instruction is a binary operation, try to vectorize the operands, using 9865 // pre-order DFS traversal order. If the operands were not vectorized, repeat 9866 // the same procedure considering each operand as a possible root of the 9867 // horizontal reduction. 9868 // Interrupt the process if the Root instruction itself was vectorized or all 9869 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 9870 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 9871 // CmpInsts so we can skip extra attempts in 9872 // tryToVectorizeHorReductionOrInstOperands and save compile time. 9873 std::queue<std::pair<Instruction *, unsigned>> Stack; 9874 Stack.emplace(Root, 0); 9875 SmallPtrSet<Value *, 8> VisitedInstrs; 9876 SmallVector<WeakTrackingVH> PostponedInsts; 9877 bool Res = false; 9878 auto &&TryToReduce = [TTI, &P, &R](Instruction *Inst, Value *&B0, 9879 Value *&B1) -> Value * { 9880 bool IsBinop = matchRdxBop(Inst, B0, B1); 9881 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 9882 if (IsBinop || IsSelect) { 9883 HorizontalReduction HorRdx; 9884 if (HorRdx.matchAssociativeReduction(P, Inst)) 9885 return HorRdx.tryToReduce(R, TTI); 9886 } 9887 return nullptr; 9888 }; 9889 while (!Stack.empty()) { 9890 Instruction *Inst; 9891 unsigned Level; 9892 std::tie(Inst, Level) = Stack.front(); 9893 Stack.pop(); 9894 // Do not try to analyze instruction that has already been vectorized. 9895 // This may happen when we vectorize instruction operands on a previous 9896 // iteration while stack was populated before that happened. 9897 if (R.isDeleted(Inst)) 9898 continue; 9899 Value *B0 = nullptr, *B1 = nullptr; 9900 if (Value *V = TryToReduce(Inst, B0, B1)) { 9901 Res = true; 9902 // Set P to nullptr to avoid re-analysis of phi node in 9903 // matchAssociativeReduction function unless this is the root node. 9904 P = nullptr; 9905 if (auto *I = dyn_cast<Instruction>(V)) { 9906 // Try to find another reduction. 9907 Stack.emplace(I, Level); 9908 continue; 9909 } 9910 } else { 9911 bool IsBinop = B0 && B1; 9912 if (P && IsBinop) { 9913 Inst = dyn_cast<Instruction>(B0); 9914 if (Inst == P) 9915 Inst = dyn_cast<Instruction>(B1); 9916 if (!Inst) { 9917 // Set P to nullptr to avoid re-analysis of phi node in 9918 // matchAssociativeReduction function unless this is the root node. 9919 P = nullptr; 9920 continue; 9921 } 9922 } 9923 // Set P to nullptr to avoid re-analysis of phi node in 9924 // matchAssociativeReduction function unless this is the root node. 9925 P = nullptr; 9926 // Do not try to vectorize CmpInst operands, this is done separately. 9927 // Final attempt for binop args vectorization should happen after the loop 9928 // to try to find reductions. 9929 if (!isa<CmpInst>(Inst)) 9930 PostponedInsts.push_back(Inst); 9931 } 9932 9933 // Try to vectorize operands. 9934 // Continue analysis for the instruction from the same basic block only to 9935 // save compile time. 9936 if (++Level < RecursionMaxDepth) 9937 for (auto *Op : Inst->operand_values()) 9938 if (VisitedInstrs.insert(Op).second) 9939 if (auto *I = dyn_cast<Instruction>(Op)) 9940 // Do not try to vectorize CmpInst operands, this is done 9941 // separately. 9942 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 9943 I->getParent() == BB) 9944 Stack.emplace(I, Level); 9945 } 9946 // Try to vectorized binops where reductions were not found. 9947 for (Value *V : PostponedInsts) 9948 if (auto *Inst = dyn_cast<Instruction>(V)) 9949 if (!R.isDeleted(Inst)) 9950 Res |= Vectorize(Inst, R); 9951 return Res; 9952 } 9953 9954 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 9955 BasicBlock *BB, BoUpSLP &R, 9956 TargetTransformInfo *TTI) { 9957 auto *I = dyn_cast_or_null<Instruction>(V); 9958 if (!I) 9959 return false; 9960 9961 if (!isa<BinaryOperator>(I)) 9962 P = nullptr; 9963 // Try to match and vectorize a horizontal reduction. 9964 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 9965 return tryToVectorize(I, R); 9966 }; 9967 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 9968 ExtraVectorization); 9969 } 9970 9971 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 9972 BasicBlock *BB, BoUpSLP &R) { 9973 const DataLayout &DL = BB->getModule()->getDataLayout(); 9974 if (!R.canMapToVector(IVI->getType(), DL)) 9975 return false; 9976 9977 SmallVector<Value *, 16> BuildVectorOpds; 9978 SmallVector<Value *, 16> BuildVectorInsts; 9979 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 9980 return false; 9981 9982 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 9983 // Aggregate value is unlikely to be processed in vector register. 9984 return tryToVectorizeList(BuildVectorOpds, R); 9985 } 9986 9987 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 9988 BasicBlock *BB, BoUpSLP &R) { 9989 SmallVector<Value *, 16> BuildVectorInsts; 9990 SmallVector<Value *, 16> BuildVectorOpds; 9991 SmallVector<int> Mask; 9992 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 9993 (llvm::all_of( 9994 BuildVectorOpds, 9995 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) && 9996 isFixedVectorShuffle(BuildVectorOpds, Mask))) 9997 return false; 9998 9999 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 10000 return tryToVectorizeList(BuildVectorInsts, R); 10001 } 10002 10003 template <typename T> 10004 static bool 10005 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 10006 function_ref<unsigned(T *)> Limit, 10007 function_ref<bool(T *, T *)> Comparator, 10008 function_ref<bool(T *, T *)> AreCompatible, 10009 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper, 10010 bool LimitForRegisterSize) { 10011 bool Changed = false; 10012 // Sort by type, parent, operands. 10013 stable_sort(Incoming, Comparator); 10014 10015 // Try to vectorize elements base on their type. 10016 SmallVector<T *> Candidates; 10017 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 10018 // Look for the next elements with the same type, parent and operand 10019 // kinds. 10020 auto *SameTypeIt = IncIt; 10021 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 10022 ++SameTypeIt; 10023 10024 // Try to vectorize them. 10025 unsigned NumElts = (SameTypeIt - IncIt); 10026 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 10027 << NumElts << ")\n"); 10028 // The vectorization is a 3-state attempt: 10029 // 1. Try to vectorize instructions with the same/alternate opcodes with the 10030 // size of maximal register at first. 10031 // 2. Try to vectorize remaining instructions with the same type, if 10032 // possible. This may result in the better vectorization results rather than 10033 // if we try just to vectorize instructions with the same/alternate opcodes. 10034 // 3. Final attempt to try to vectorize all instructions with the 10035 // same/alternate ops only, this may result in some extra final 10036 // vectorization. 10037 if (NumElts > 1 && 10038 TryToVectorizeHelper(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 10039 // Success start over because instructions might have been changed. 10040 Changed = true; 10041 } else if (NumElts < Limit(*IncIt) && 10042 (Candidates.empty() || 10043 Candidates.front()->getType() == (*IncIt)->getType())) { 10044 Candidates.append(IncIt, std::next(IncIt, NumElts)); 10045 } 10046 // Final attempt to vectorize instructions with the same types. 10047 if (Candidates.size() > 1 && 10048 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 10049 if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) { 10050 // Success start over because instructions might have been changed. 10051 Changed = true; 10052 } else if (LimitForRegisterSize) { 10053 // Try to vectorize using small vectors. 10054 for (auto *It = Candidates.begin(), *End = Candidates.end(); 10055 It != End;) { 10056 auto *SameTypeIt = It; 10057 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 10058 ++SameTypeIt; 10059 unsigned NumElts = (SameTypeIt - It); 10060 if (NumElts > 1 && TryToVectorizeHelper(makeArrayRef(It, NumElts), 10061 /*LimitForRegisterSize=*/false)) 10062 Changed = true; 10063 It = SameTypeIt; 10064 } 10065 } 10066 Candidates.clear(); 10067 } 10068 10069 // Start over at the next instruction of a different type (or the end). 10070 IncIt = SameTypeIt; 10071 } 10072 return Changed; 10073 } 10074 10075 /// Compare two cmp instructions. If IsCompatibility is true, function returns 10076 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding 10077 /// operands. If IsCompatibility is false, function implements strict weak 10078 /// ordering relation between two cmp instructions, returning true if the first 10079 /// instruction is "less" than the second, i.e. its predicate is less than the 10080 /// predicate of the second or the operands IDs are less than the operands IDs 10081 /// of the second cmp instruction. 10082 template <bool IsCompatibility> 10083 static bool compareCmp(Value *V, Value *V2, 10084 function_ref<bool(Instruction *)> IsDeleted) { 10085 auto *CI1 = cast<CmpInst>(V); 10086 auto *CI2 = cast<CmpInst>(V2); 10087 if (IsDeleted(CI2) || !isValidElementType(CI2->getType())) 10088 return false; 10089 if (CI1->getOperand(0)->getType()->getTypeID() < 10090 CI2->getOperand(0)->getType()->getTypeID()) 10091 return !IsCompatibility; 10092 if (CI1->getOperand(0)->getType()->getTypeID() > 10093 CI2->getOperand(0)->getType()->getTypeID()) 10094 return false; 10095 CmpInst::Predicate Pred1 = CI1->getPredicate(); 10096 CmpInst::Predicate Pred2 = CI2->getPredicate(); 10097 CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1); 10098 CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2); 10099 CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1); 10100 CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2); 10101 if (BasePred1 < BasePred2) 10102 return !IsCompatibility; 10103 if (BasePred1 > BasePred2) 10104 return false; 10105 // Compare operands. 10106 bool LEPreds = Pred1 <= Pred2; 10107 bool GEPreds = Pred1 >= Pred2; 10108 for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) { 10109 auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1); 10110 auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1); 10111 if (Op1->getValueID() < Op2->getValueID()) 10112 return !IsCompatibility; 10113 if (Op1->getValueID() > Op2->getValueID()) 10114 return false; 10115 if (auto *I1 = dyn_cast<Instruction>(Op1)) 10116 if (auto *I2 = dyn_cast<Instruction>(Op2)) { 10117 if (I1->getParent() != I2->getParent()) 10118 return false; 10119 InstructionsState S = getSameOpcode({I1, I2}); 10120 if (S.getOpcode()) 10121 continue; 10122 return false; 10123 } 10124 } 10125 return IsCompatibility; 10126 } 10127 10128 bool SLPVectorizerPass::vectorizeSimpleInstructions( 10129 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 10130 bool AtTerminator) { 10131 bool OpsChanged = false; 10132 SmallVector<Instruction *, 4> PostponedCmps; 10133 for (auto *I : reverse(Instructions)) { 10134 if (R.isDeleted(I)) 10135 continue; 10136 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 10137 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 10138 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 10139 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 10140 else if (isa<CmpInst>(I)) 10141 PostponedCmps.push_back(I); 10142 } 10143 if (AtTerminator) { 10144 // Try to find reductions first. 10145 for (Instruction *I : PostponedCmps) { 10146 if (R.isDeleted(I)) 10147 continue; 10148 for (Value *Op : I->operands()) 10149 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 10150 } 10151 // Try to vectorize operands as vector bundles. 10152 for (Instruction *I : PostponedCmps) { 10153 if (R.isDeleted(I)) 10154 continue; 10155 OpsChanged |= tryToVectorize(I, R); 10156 } 10157 // Try to vectorize list of compares. 10158 // Sort by type, compare predicate, etc. 10159 auto &&CompareSorter = [&R](Value *V, Value *V2) { 10160 return compareCmp<false>(V, V2, 10161 [&R](Instruction *I) { return R.isDeleted(I); }); 10162 }; 10163 10164 auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) { 10165 if (V1 == V2) 10166 return true; 10167 return compareCmp<true>(V1, V2, 10168 [&R](Instruction *I) { return R.isDeleted(I); }); 10169 }; 10170 auto Limit = [&R](Value *V) { 10171 unsigned EltSize = R.getVectorElementSize(V); 10172 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10173 }; 10174 10175 SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end()); 10176 OpsChanged |= tryToVectorizeSequence<Value>( 10177 Vals, Limit, CompareSorter, AreCompatibleCompares, 10178 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10179 // Exclude possible reductions from other blocks. 10180 bool ArePossiblyReducedInOtherBlock = 10181 any_of(Candidates, [](Value *V) { 10182 return any_of(V->users(), [V](User *U) { 10183 return isa<SelectInst>(U) && 10184 cast<SelectInst>(U)->getParent() != 10185 cast<Instruction>(V)->getParent(); 10186 }); 10187 }); 10188 if (ArePossiblyReducedInOtherBlock) 10189 return false; 10190 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10191 }, 10192 /*LimitForRegisterSize=*/true); 10193 Instructions.clear(); 10194 } else { 10195 // Insert in reverse order since the PostponedCmps vector was filled in 10196 // reverse order. 10197 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 10198 } 10199 return OpsChanged; 10200 } 10201 10202 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 10203 bool Changed = false; 10204 SmallVector<Value *, 4> Incoming; 10205 SmallPtrSet<Value *, 16> VisitedInstrs; 10206 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 10207 // node. Allows better to identify the chains that can be vectorized in the 10208 // better way. 10209 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 10210 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 10211 assert(isValidElementType(V1->getType()) && 10212 isValidElementType(V2->getType()) && 10213 "Expected vectorizable types only."); 10214 // It is fine to compare type IDs here, since we expect only vectorizable 10215 // types, like ints, floats and pointers, we don't care about other type. 10216 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 10217 return true; 10218 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 10219 return false; 10220 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10221 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10222 if (Opcodes1.size() < Opcodes2.size()) 10223 return true; 10224 if (Opcodes1.size() > Opcodes2.size()) 10225 return false; 10226 Optional<bool> ConstOrder; 10227 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10228 // Undefs are compatible with any other value. 10229 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) { 10230 if (!ConstOrder) 10231 ConstOrder = 10232 !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]); 10233 continue; 10234 } 10235 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10236 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10237 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 10238 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 10239 if (!NodeI1) 10240 return NodeI2 != nullptr; 10241 if (!NodeI2) 10242 return false; 10243 assert((NodeI1 == NodeI2) == 10244 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10245 "Different nodes should have different DFS numbers"); 10246 if (NodeI1 != NodeI2) 10247 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10248 InstructionsState S = getSameOpcode({I1, I2}); 10249 if (S.getOpcode()) 10250 continue; 10251 return I1->getOpcode() < I2->getOpcode(); 10252 } 10253 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) { 10254 if (!ConstOrder) 10255 ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID(); 10256 continue; 10257 } 10258 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 10259 return true; 10260 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 10261 return false; 10262 } 10263 return ConstOrder && *ConstOrder; 10264 }; 10265 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 10266 if (V1 == V2) 10267 return true; 10268 if (V1->getType() != V2->getType()) 10269 return false; 10270 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10271 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10272 if (Opcodes1.size() != Opcodes2.size()) 10273 return false; 10274 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10275 // Undefs are compatible with any other value. 10276 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 10277 continue; 10278 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10279 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10280 if (I1->getParent() != I2->getParent()) 10281 return false; 10282 InstructionsState S = getSameOpcode({I1, I2}); 10283 if (S.getOpcode()) 10284 continue; 10285 return false; 10286 } 10287 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 10288 continue; 10289 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 10290 return false; 10291 } 10292 return true; 10293 }; 10294 auto Limit = [&R](Value *V) { 10295 unsigned EltSize = R.getVectorElementSize(V); 10296 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10297 }; 10298 10299 bool HaveVectorizedPhiNodes = false; 10300 do { 10301 // Collect the incoming values from the PHIs. 10302 Incoming.clear(); 10303 for (Instruction &I : *BB) { 10304 PHINode *P = dyn_cast<PHINode>(&I); 10305 if (!P) 10306 break; 10307 10308 // No need to analyze deleted, vectorized and non-vectorizable 10309 // instructions. 10310 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 10311 isValidElementType(P->getType())) 10312 Incoming.push_back(P); 10313 } 10314 10315 // Find the corresponding non-phi nodes for better matching when trying to 10316 // build the tree. 10317 for (Value *V : Incoming) { 10318 SmallVectorImpl<Value *> &Opcodes = 10319 PHIToOpcodes.try_emplace(V).first->getSecond(); 10320 if (!Opcodes.empty()) 10321 continue; 10322 SmallVector<Value *, 4> Nodes(1, V); 10323 SmallPtrSet<Value *, 4> Visited; 10324 while (!Nodes.empty()) { 10325 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 10326 if (!Visited.insert(PHI).second) 10327 continue; 10328 for (Value *V : PHI->incoming_values()) { 10329 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 10330 Nodes.push_back(PHI1); 10331 continue; 10332 } 10333 Opcodes.emplace_back(V); 10334 } 10335 } 10336 } 10337 10338 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 10339 Incoming, Limit, PHICompare, AreCompatiblePHIs, 10340 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10341 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10342 }, 10343 /*LimitForRegisterSize=*/true); 10344 Changed |= HaveVectorizedPhiNodes; 10345 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 10346 } while (HaveVectorizedPhiNodes); 10347 10348 VisitedInstrs.clear(); 10349 10350 SmallVector<Instruction *, 8> PostProcessInstructions; 10351 SmallDenseSet<Instruction *, 4> KeyNodes; 10352 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 10353 // Skip instructions with scalable type. The num of elements is unknown at 10354 // compile-time for scalable type. 10355 if (isa<ScalableVectorType>(it->getType())) 10356 continue; 10357 10358 // Skip instructions marked for the deletion. 10359 if (R.isDeleted(&*it)) 10360 continue; 10361 // We may go through BB multiple times so skip the one we have checked. 10362 if (!VisitedInstrs.insert(&*it).second) { 10363 if (it->use_empty() && KeyNodes.contains(&*it) && 10364 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10365 it->isTerminator())) { 10366 // We would like to start over since some instructions are deleted 10367 // and the iterator may become invalid value. 10368 Changed = true; 10369 it = BB->begin(); 10370 e = BB->end(); 10371 } 10372 continue; 10373 } 10374 10375 if (isa<DbgInfoIntrinsic>(it)) 10376 continue; 10377 10378 // Try to vectorize reductions that use PHINodes. 10379 if (PHINode *P = dyn_cast<PHINode>(it)) { 10380 // Check that the PHI is a reduction PHI. 10381 if (P->getNumIncomingValues() == 2) { 10382 // Try to match and vectorize a horizontal reduction. 10383 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 10384 TTI)) { 10385 Changed = true; 10386 it = BB->begin(); 10387 e = BB->end(); 10388 continue; 10389 } 10390 } 10391 // Try to vectorize the incoming values of the PHI, to catch reductions 10392 // that feed into PHIs. 10393 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 10394 // Skip if the incoming block is the current BB for now. Also, bypass 10395 // unreachable IR for efficiency and to avoid crashing. 10396 // TODO: Collect the skipped incoming values and try to vectorize them 10397 // after processing BB. 10398 if (BB == P->getIncomingBlock(I) || 10399 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 10400 continue; 10401 10402 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 10403 P->getIncomingBlock(I), R, TTI); 10404 } 10405 continue; 10406 } 10407 10408 // Ran into an instruction without users, like terminator, or function call 10409 // with ignored return value, store. Ignore unused instructions (basing on 10410 // instruction type, except for CallInst and InvokeInst). 10411 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 10412 isa<InvokeInst>(it))) { 10413 KeyNodes.insert(&*it); 10414 bool OpsChanged = false; 10415 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 10416 for (auto *V : it->operand_values()) { 10417 // Try to match and vectorize a horizontal reduction. 10418 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 10419 } 10420 } 10421 // Start vectorization of post-process list of instructions from the 10422 // top-tree instructions to try to vectorize as many instructions as 10423 // possible. 10424 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10425 it->isTerminator()); 10426 if (OpsChanged) { 10427 // We would like to start over since some instructions are deleted 10428 // and the iterator may become invalid value. 10429 Changed = true; 10430 it = BB->begin(); 10431 e = BB->end(); 10432 continue; 10433 } 10434 } 10435 10436 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 10437 isa<InsertValueInst>(it)) 10438 PostProcessInstructions.push_back(&*it); 10439 } 10440 10441 return Changed; 10442 } 10443 10444 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 10445 auto Changed = false; 10446 for (auto &Entry : GEPs) { 10447 // If the getelementptr list has fewer than two elements, there's nothing 10448 // to do. 10449 if (Entry.second.size() < 2) 10450 continue; 10451 10452 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 10453 << Entry.second.size() << ".\n"); 10454 10455 // Process the GEP list in chunks suitable for the target's supported 10456 // vector size. If a vector register can't hold 1 element, we are done. We 10457 // are trying to vectorize the index computations, so the maximum number of 10458 // elements is based on the size of the index expression, rather than the 10459 // size of the GEP itself (the target's pointer size). 10460 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 10461 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 10462 if (MaxVecRegSize < EltSize) 10463 continue; 10464 10465 unsigned MaxElts = MaxVecRegSize / EltSize; 10466 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 10467 auto Len = std::min<unsigned>(BE - BI, MaxElts); 10468 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 10469 10470 // Initialize a set a candidate getelementptrs. Note that we use a 10471 // SetVector here to preserve program order. If the index computations 10472 // are vectorizable and begin with loads, we want to minimize the chance 10473 // of having to reorder them later. 10474 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 10475 10476 // Some of the candidates may have already been vectorized after we 10477 // initially collected them. If so, they are marked as deleted, so remove 10478 // them from the set of candidates. 10479 Candidates.remove_if( 10480 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 10481 10482 // Remove from the set of candidates all pairs of getelementptrs with 10483 // constant differences. Such getelementptrs are likely not good 10484 // candidates for vectorization in a bottom-up phase since one can be 10485 // computed from the other. We also ensure all candidate getelementptr 10486 // indices are unique. 10487 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 10488 auto *GEPI = GEPList[I]; 10489 if (!Candidates.count(GEPI)) 10490 continue; 10491 auto *SCEVI = SE->getSCEV(GEPList[I]); 10492 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 10493 auto *GEPJ = GEPList[J]; 10494 auto *SCEVJ = SE->getSCEV(GEPList[J]); 10495 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 10496 Candidates.remove(GEPI); 10497 Candidates.remove(GEPJ); 10498 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 10499 Candidates.remove(GEPJ); 10500 } 10501 } 10502 } 10503 10504 // We break out of the above computation as soon as we know there are 10505 // fewer than two candidates remaining. 10506 if (Candidates.size() < 2) 10507 continue; 10508 10509 // Add the single, non-constant index of each candidate to the bundle. We 10510 // ensured the indices met these constraints when we originally collected 10511 // the getelementptrs. 10512 SmallVector<Value *, 16> Bundle(Candidates.size()); 10513 auto BundleIndex = 0u; 10514 for (auto *V : Candidates) { 10515 auto *GEP = cast<GetElementPtrInst>(V); 10516 auto *GEPIdx = GEP->idx_begin()->get(); 10517 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 10518 Bundle[BundleIndex++] = GEPIdx; 10519 } 10520 10521 // Try and vectorize the indices. We are currently only interested in 10522 // gather-like cases of the form: 10523 // 10524 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 10525 // 10526 // where the loads of "a", the loads of "b", and the subtractions can be 10527 // performed in parallel. It's likely that detecting this pattern in a 10528 // bottom-up phase will be simpler and less costly than building a 10529 // full-blown top-down phase beginning at the consecutive loads. 10530 Changed |= tryToVectorizeList(Bundle, R); 10531 } 10532 } 10533 return Changed; 10534 } 10535 10536 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 10537 bool Changed = false; 10538 // Sort by type, base pointers and values operand. Value operands must be 10539 // compatible (have the same opcode, same parent), otherwise it is 10540 // definitely not profitable to try to vectorize them. 10541 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 10542 if (V->getPointerOperandType()->getTypeID() < 10543 V2->getPointerOperandType()->getTypeID()) 10544 return true; 10545 if (V->getPointerOperandType()->getTypeID() > 10546 V2->getPointerOperandType()->getTypeID()) 10547 return false; 10548 // UndefValues are compatible with all other values. 10549 if (isa<UndefValue>(V->getValueOperand()) || 10550 isa<UndefValue>(V2->getValueOperand())) 10551 return false; 10552 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 10553 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10554 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 10555 DT->getNode(I1->getParent()); 10556 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 10557 DT->getNode(I2->getParent()); 10558 assert(NodeI1 && "Should only process reachable instructions"); 10559 assert(NodeI1 && "Should only process reachable instructions"); 10560 assert((NodeI1 == NodeI2) == 10561 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10562 "Different nodes should have different DFS numbers"); 10563 if (NodeI1 != NodeI2) 10564 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10565 InstructionsState S = getSameOpcode({I1, I2}); 10566 if (S.getOpcode()) 10567 return false; 10568 return I1->getOpcode() < I2->getOpcode(); 10569 } 10570 if (isa<Constant>(V->getValueOperand()) && 10571 isa<Constant>(V2->getValueOperand())) 10572 return false; 10573 return V->getValueOperand()->getValueID() < 10574 V2->getValueOperand()->getValueID(); 10575 }; 10576 10577 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 10578 if (V1 == V2) 10579 return true; 10580 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 10581 return false; 10582 // Undefs are compatible with any other value. 10583 if (isa<UndefValue>(V1->getValueOperand()) || 10584 isa<UndefValue>(V2->getValueOperand())) 10585 return true; 10586 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 10587 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10588 if (I1->getParent() != I2->getParent()) 10589 return false; 10590 InstructionsState S = getSameOpcode({I1, I2}); 10591 return S.getOpcode() > 0; 10592 } 10593 if (isa<Constant>(V1->getValueOperand()) && 10594 isa<Constant>(V2->getValueOperand())) 10595 return true; 10596 return V1->getValueOperand()->getValueID() == 10597 V2->getValueOperand()->getValueID(); 10598 }; 10599 auto Limit = [&R, this](StoreInst *SI) { 10600 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 10601 return R.getMinVF(EltSize); 10602 }; 10603 10604 // Attempt to sort and vectorize each of the store-groups. 10605 for (auto &Pair : Stores) { 10606 if (Pair.second.size() < 2) 10607 continue; 10608 10609 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 10610 << Pair.second.size() << ".\n"); 10611 10612 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 10613 continue; 10614 10615 Changed |= tryToVectorizeSequence<StoreInst>( 10616 Pair.second, Limit, StoreSorter, AreCompatibleStores, 10617 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 10618 return vectorizeStores(Candidates, R); 10619 }, 10620 /*LimitForRegisterSize=*/false); 10621 } 10622 return Changed; 10623 } 10624 10625 char SLPVectorizer::ID = 0; 10626 10627 static const char lv_name[] = "SLP Vectorizer"; 10628 10629 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 10630 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 10631 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 10632 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 10633 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 10634 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 10635 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 10636 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 10637 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 10638 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 10639 10640 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 10641