1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DerivedTypes.h" 57 #include "llvm/IR/Dominators.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/IRBuilder.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #ifdef EXPENSIVE_CHECKS 74 #include "llvm/IR/Verifier.h" 75 #endif 76 #include "llvm/Pass.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Compiler.h" 80 #include "llvm/Support/DOTGraphTraits.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/GraphWriter.h" 84 #include "llvm/Support/InstructionCost.h" 85 #include "llvm/Support/KnownBits.h" 86 #include "llvm/Support/MathExtras.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 89 #include "llvm/Transforms/Utils/Local.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 static cl::opt<bool> 168 ViewSLPTree("view-slp-tree", cl::Hidden, 169 cl::desc("Display the SLP trees with Graphviz")); 170 171 // Limit the number of alias checks. The limit is chosen so that 172 // it has no negative effect on the llvm benchmarks. 173 static const unsigned AliasedCheckLimit = 10; 174 175 // Another limit for the alias checks: The maximum distance between load/store 176 // instructions where alias checks are done. 177 // This limit is useful for very large basic blocks. 178 static const unsigned MaxMemDepDistance = 160; 179 180 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 181 /// regions to be handled. 182 static const int MinScheduleRegionSize = 16; 183 184 /// Predicate for the element types that the SLP vectorizer supports. 185 /// 186 /// The most important thing to filter here are types which are invalid in LLVM 187 /// vectors. We also filter target specific types which have absolutely no 188 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 189 /// avoids spending time checking the cost model and realizing that they will 190 /// be inevitably scalarized. 191 static bool isValidElementType(Type *Ty) { 192 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 193 !Ty->isPPC_FP128Ty(); 194 } 195 196 /// \returns True if the value is a constant (but not globals/constant 197 /// expressions). 198 static bool isConstant(Value *V) { 199 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 200 } 201 202 /// Checks if \p V is one of vector-like instructions, i.e. undef, 203 /// insertelement/extractelement with constant indices for fixed vector type or 204 /// extractvalue instruction. 205 static bool isVectorLikeInstWithConstOps(Value *V) { 206 if (!isa<InsertElementInst, ExtractElementInst>(V) && 207 !isa<ExtractValueInst, UndefValue>(V)) 208 return false; 209 auto *I = dyn_cast<Instruction>(V); 210 if (!I || isa<ExtractValueInst>(I)) 211 return true; 212 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 213 return false; 214 if (isa<ExtractElementInst>(I)) 215 return isConstant(I->getOperand(1)); 216 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 217 return isConstant(I->getOperand(2)); 218 } 219 220 /// \returns true if all of the instructions in \p VL are in the same block or 221 /// false otherwise. 222 static bool allSameBlock(ArrayRef<Value *> VL) { 223 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 224 if (!I0) 225 return false; 226 if (all_of(VL, isVectorLikeInstWithConstOps)) 227 return true; 228 229 BasicBlock *BB = I0->getParent(); 230 for (int I = 1, E = VL.size(); I < E; I++) { 231 auto *II = dyn_cast<Instruction>(VL[I]); 232 if (!II) 233 return false; 234 235 if (BB != II->getParent()) 236 return false; 237 } 238 return true; 239 } 240 241 /// \returns True if all of the values in \p VL are constants (but not 242 /// globals/constant expressions). 243 static bool allConstant(ArrayRef<Value *> VL) { 244 // Constant expressions and globals can't be vectorized like normal integer/FP 245 // constants. 246 return all_of(VL, isConstant); 247 } 248 249 /// \returns True if all of the values in \p VL are identical or some of them 250 /// are UndefValue. 251 static bool isSplat(ArrayRef<Value *> VL) { 252 Value *FirstNonUndef = nullptr; 253 for (Value *V : VL) { 254 if (isa<UndefValue>(V)) 255 continue; 256 if (!FirstNonUndef) { 257 FirstNonUndef = V; 258 continue; 259 } 260 if (V != FirstNonUndef) 261 return false; 262 } 263 return FirstNonUndef != nullptr; 264 } 265 266 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 267 static bool isCommutative(Instruction *I) { 268 if (auto *Cmp = dyn_cast<CmpInst>(I)) 269 return Cmp->isCommutative(); 270 if (auto *BO = dyn_cast<BinaryOperator>(I)) 271 return BO->isCommutative(); 272 // TODO: This should check for generic Instruction::isCommutative(), but 273 // we need to confirm that the caller code correctly handles Intrinsics 274 // for example (does not have 2 operands). 275 return false; 276 } 277 278 /// Checks if the given value is actually an undefined constant vector. 279 static bool isUndefVector(const Value *V) { 280 if (isa<UndefValue>(V)) 281 return true; 282 auto *C = dyn_cast<Constant>(V); 283 if (!C) 284 return false; 285 if (!C->containsUndefOrPoisonElement()) 286 return false; 287 auto *VecTy = dyn_cast<FixedVectorType>(C->getType()); 288 if (!VecTy) 289 return false; 290 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 291 if (Constant *Elem = C->getAggregateElement(I)) 292 if (!isa<UndefValue>(Elem)) 293 return false; 294 } 295 return true; 296 } 297 298 /// Checks if the vector of instructions can be represented as a shuffle, like: 299 /// %x0 = extractelement <4 x i8> %x, i32 0 300 /// %x3 = extractelement <4 x i8> %x, i32 3 301 /// %y1 = extractelement <4 x i8> %y, i32 1 302 /// %y2 = extractelement <4 x i8> %y, i32 2 303 /// %x0x0 = mul i8 %x0, %x0 304 /// %x3x3 = mul i8 %x3, %x3 305 /// %y1y1 = mul i8 %y1, %y1 306 /// %y2y2 = mul i8 %y2, %y2 307 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 308 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 309 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 310 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 311 /// ret <4 x i8> %ins4 312 /// can be transformed into: 313 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 314 /// i32 6> 315 /// %2 = mul <4 x i8> %1, %1 316 /// ret <4 x i8> %2 317 /// We convert this initially to something like: 318 /// %x0 = extractelement <4 x i8> %x, i32 0 319 /// %x3 = extractelement <4 x i8> %x, i32 3 320 /// %y1 = extractelement <4 x i8> %y, i32 1 321 /// %y2 = extractelement <4 x i8> %y, i32 2 322 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 323 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 324 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 325 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 326 /// %5 = mul <4 x i8> %4, %4 327 /// %6 = extractelement <4 x i8> %5, i32 0 328 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 329 /// %7 = extractelement <4 x i8> %5, i32 1 330 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 331 /// %8 = extractelement <4 x i8> %5, i32 2 332 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 333 /// %9 = extractelement <4 x i8> %5, i32 3 334 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 335 /// ret <4 x i8> %ins4 336 /// InstCombiner transforms this into a shuffle and vector mul 337 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 338 /// TODO: Can we split off and reuse the shuffle mask detection from 339 /// TargetTransformInfo::getInstructionThroughput? 340 static Optional<TargetTransformInfo::ShuffleKind> 341 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 342 const auto *It = 343 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); 344 if (It == VL.end()) 345 return None; 346 auto *EI0 = cast<ExtractElementInst>(*It); 347 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 348 return None; 349 unsigned Size = 350 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 351 Value *Vec1 = nullptr; 352 Value *Vec2 = nullptr; 353 enum ShuffleMode { Unknown, Select, Permute }; 354 ShuffleMode CommonShuffleMode = Unknown; 355 Mask.assign(VL.size(), UndefMaskElem); 356 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 357 // Undef can be represented as an undef element in a vector. 358 if (isa<UndefValue>(VL[I])) 359 continue; 360 auto *EI = cast<ExtractElementInst>(VL[I]); 361 if (isa<ScalableVectorType>(EI->getVectorOperandType())) 362 return None; 363 auto *Vec = EI->getVectorOperand(); 364 // We can extractelement from undef or poison vector. 365 if (isUndefVector(Vec)) 366 continue; 367 // All vector operands must have the same number of vector elements. 368 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 369 return None; 370 if (isa<UndefValue>(EI->getIndexOperand())) 371 continue; 372 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 373 if (!Idx) 374 return None; 375 // Undefined behavior if Idx is negative or >= Size. 376 if (Idx->getValue().uge(Size)) 377 continue; 378 unsigned IntIdx = Idx->getValue().getZExtValue(); 379 Mask[I] = IntIdx; 380 // For correct shuffling we have to have at most 2 different vector operands 381 // in all extractelement instructions. 382 if (!Vec1 || Vec1 == Vec) { 383 Vec1 = Vec; 384 } else if (!Vec2 || Vec2 == Vec) { 385 Vec2 = Vec; 386 Mask[I] += Size; 387 } else { 388 return None; 389 } 390 if (CommonShuffleMode == Permute) 391 continue; 392 // If the extract index is not the same as the operation number, it is a 393 // permutation. 394 if (IntIdx != I) { 395 CommonShuffleMode = Permute; 396 continue; 397 } 398 CommonShuffleMode = Select; 399 } 400 // If we're not crossing lanes in different vectors, consider it as blending. 401 if (CommonShuffleMode == Select && Vec2) 402 return TargetTransformInfo::SK_Select; 403 // If Vec2 was never used, we have a permutation of a single vector, otherwise 404 // we have permutation of 2 vectors. 405 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 406 : TargetTransformInfo::SK_PermuteSingleSrc; 407 } 408 409 namespace { 410 411 /// Main data required for vectorization of instructions. 412 struct InstructionsState { 413 /// The very first instruction in the list with the main opcode. 414 Value *OpValue = nullptr; 415 416 /// The main/alternate instruction. 417 Instruction *MainOp = nullptr; 418 Instruction *AltOp = nullptr; 419 420 /// The main/alternate opcodes for the list of instructions. 421 unsigned getOpcode() const { 422 return MainOp ? MainOp->getOpcode() : 0; 423 } 424 425 unsigned getAltOpcode() const { 426 return AltOp ? AltOp->getOpcode() : 0; 427 } 428 429 /// Some of the instructions in the list have alternate opcodes. 430 bool isAltShuffle() const { return AltOp != MainOp; } 431 432 bool isOpcodeOrAlt(Instruction *I) const { 433 unsigned CheckedOpcode = I->getOpcode(); 434 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 435 } 436 437 InstructionsState() = delete; 438 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 439 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 440 }; 441 442 } // end anonymous namespace 443 444 /// Chooses the correct key for scheduling data. If \p Op has the same (or 445 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 446 /// OpValue. 447 static Value *isOneOf(const InstructionsState &S, Value *Op) { 448 auto *I = dyn_cast<Instruction>(Op); 449 if (I && S.isOpcodeOrAlt(I)) 450 return Op; 451 return S.OpValue; 452 } 453 454 /// \returns true if \p Opcode is allowed as part of of the main/alternate 455 /// instruction for SLP vectorization. 456 /// 457 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 458 /// "shuffled out" lane would result in division by zero. 459 static bool isValidForAlternation(unsigned Opcode) { 460 if (Instruction::isIntDivRem(Opcode)) 461 return false; 462 463 return true; 464 } 465 466 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 467 unsigned BaseIndex = 0); 468 469 /// Checks if the provided operands of 2 cmp instructions are compatible, i.e. 470 /// compatible instructions or constants, or just some other regular values. 471 static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0, 472 Value *Op1) { 473 return (isConstant(BaseOp0) && isConstant(Op0)) || 474 (isConstant(BaseOp1) && isConstant(Op1)) || 475 (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) && 476 !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) || 477 getSameOpcode({BaseOp0, Op0}).getOpcode() || 478 getSameOpcode({BaseOp1, Op1}).getOpcode(); 479 } 480 481 /// \returns analysis of the Instructions in \p VL described in 482 /// InstructionsState, the Opcode that we suppose the whole list 483 /// could be vectorized even if its structure is diverse. 484 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 485 unsigned BaseIndex) { 486 // Make sure these are all Instructions. 487 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 488 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 489 490 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 491 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 492 bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]); 493 CmpInst::Predicate BasePred = 494 IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate() 495 : CmpInst::BAD_ICMP_PREDICATE; 496 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 497 unsigned AltOpcode = Opcode; 498 unsigned AltIndex = BaseIndex; 499 500 // Check for one alternate opcode from another BinaryOperator. 501 // TODO - generalize to support all operators (types, calls etc.). 502 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 503 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 504 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 505 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 506 continue; 507 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 508 isValidForAlternation(Opcode)) { 509 AltOpcode = InstOpcode; 510 AltIndex = Cnt; 511 continue; 512 } 513 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 514 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 515 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 516 if (Ty0 == Ty1) { 517 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 518 continue; 519 if (Opcode == AltOpcode) { 520 assert(isValidForAlternation(Opcode) && 521 isValidForAlternation(InstOpcode) && 522 "Cast isn't safe for alternation, logic needs to be updated!"); 523 AltOpcode = InstOpcode; 524 AltIndex = Cnt; 525 continue; 526 } 527 } 528 } else if (IsCmpOp && isa<CmpInst>(VL[Cnt])) { 529 auto *BaseInst = cast<Instruction>(VL[BaseIndex]); 530 auto *Inst = cast<Instruction>(VL[Cnt]); 531 Type *Ty0 = BaseInst->getOperand(0)->getType(); 532 Type *Ty1 = Inst->getOperand(0)->getType(); 533 if (Ty0 == Ty1) { 534 Value *BaseOp0 = BaseInst->getOperand(0); 535 Value *BaseOp1 = BaseInst->getOperand(1); 536 Value *Op0 = Inst->getOperand(0); 537 Value *Op1 = Inst->getOperand(1); 538 CmpInst::Predicate CurrentPred = 539 cast<CmpInst>(VL[Cnt])->getPredicate(); 540 CmpInst::Predicate SwappedCurrentPred = 541 CmpInst::getSwappedPredicate(CurrentPred); 542 // Check for compatible operands. If the corresponding operands are not 543 // compatible - need to perform alternate vectorization. 544 if (InstOpcode == Opcode) { 545 if (BasePred == CurrentPred && 546 areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1)) 547 continue; 548 if (BasePred == SwappedCurrentPred && 549 areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0)) 550 continue; 551 if (E == 2 && 552 (BasePred == CurrentPred || BasePred == SwappedCurrentPred)) 553 continue; 554 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 555 CmpInst::Predicate AltPred = AltInst->getPredicate(); 556 Value *AltOp0 = AltInst->getOperand(0); 557 Value *AltOp1 = AltInst->getOperand(1); 558 // Check if operands are compatible with alternate operands. 559 if (AltPred == CurrentPred && 560 areCompatibleCmpOps(AltOp0, AltOp1, Op0, Op1)) 561 continue; 562 if (AltPred == SwappedCurrentPred && 563 areCompatibleCmpOps(AltOp0, AltOp1, Op1, Op0)) 564 continue; 565 } 566 if (BaseIndex == AltIndex && BasePred != CurrentPred) { 567 assert(isValidForAlternation(Opcode) && 568 isValidForAlternation(InstOpcode) && 569 "Cast isn't safe for alternation, logic needs to be updated!"); 570 AltIndex = Cnt; 571 continue; 572 } 573 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 574 CmpInst::Predicate AltPred = AltInst->getPredicate(); 575 if (BasePred == CurrentPred || BasePred == SwappedCurrentPred || 576 AltPred == CurrentPred || AltPred == SwappedCurrentPred) 577 continue; 578 } 579 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 580 continue; 581 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 582 } 583 584 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 585 cast<Instruction>(VL[AltIndex])); 586 } 587 588 /// \returns true if all of the values in \p VL have the same type or false 589 /// otherwise. 590 static bool allSameType(ArrayRef<Value *> VL) { 591 Type *Ty = VL[0]->getType(); 592 for (int i = 1, e = VL.size(); i < e; i++) 593 if (VL[i]->getType() != Ty) 594 return false; 595 596 return true; 597 } 598 599 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 600 static Optional<unsigned> getExtractIndex(Instruction *E) { 601 unsigned Opcode = E->getOpcode(); 602 assert((Opcode == Instruction::ExtractElement || 603 Opcode == Instruction::ExtractValue) && 604 "Expected extractelement or extractvalue instruction."); 605 if (Opcode == Instruction::ExtractElement) { 606 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 607 if (!CI) 608 return None; 609 return CI->getZExtValue(); 610 } 611 ExtractValueInst *EI = cast<ExtractValueInst>(E); 612 if (EI->getNumIndices() != 1) 613 return None; 614 return *EI->idx_begin(); 615 } 616 617 /// \returns True if in-tree use also needs extract. This refers to 618 /// possible scalar operand in vectorized instruction. 619 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 620 TargetLibraryInfo *TLI) { 621 unsigned Opcode = UserInst->getOpcode(); 622 switch (Opcode) { 623 case Instruction::Load: { 624 LoadInst *LI = cast<LoadInst>(UserInst); 625 return (LI->getPointerOperand() == Scalar); 626 } 627 case Instruction::Store: { 628 StoreInst *SI = cast<StoreInst>(UserInst); 629 return (SI->getPointerOperand() == Scalar); 630 } 631 case Instruction::Call: { 632 CallInst *CI = cast<CallInst>(UserInst); 633 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 634 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 635 if (hasVectorInstrinsicScalarOpd(ID, i)) 636 return (CI->getArgOperand(i) == Scalar); 637 } 638 LLVM_FALLTHROUGH; 639 } 640 default: 641 return false; 642 } 643 } 644 645 /// \returns the AA location that is being access by the instruction. 646 static MemoryLocation getLocation(Instruction *I) { 647 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 648 return MemoryLocation::get(SI); 649 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 650 return MemoryLocation::get(LI); 651 return MemoryLocation(); 652 } 653 654 /// \returns True if the instruction is not a volatile or atomic load/store. 655 static bool isSimple(Instruction *I) { 656 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 657 return LI->isSimple(); 658 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 659 return SI->isSimple(); 660 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 661 return !MI->isVolatile(); 662 return true; 663 } 664 665 /// Shuffles \p Mask in accordance with the given \p SubMask. 666 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 667 if (SubMask.empty()) 668 return; 669 if (Mask.empty()) { 670 Mask.append(SubMask.begin(), SubMask.end()); 671 return; 672 } 673 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 674 int TermValue = std::min(Mask.size(), SubMask.size()); 675 for (int I = 0, E = SubMask.size(); I < E; ++I) { 676 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 677 Mask[SubMask[I]] >= TermValue) 678 continue; 679 NewMask[I] = Mask[SubMask[I]]; 680 } 681 Mask.swap(NewMask); 682 } 683 684 /// Order may have elements assigned special value (size) which is out of 685 /// bounds. Such indices only appear on places which correspond to undef values 686 /// (see canReuseExtract for details) and used in order to avoid undef values 687 /// have effect on operands ordering. 688 /// The first loop below simply finds all unused indices and then the next loop 689 /// nest assigns these indices for undef values positions. 690 /// As an example below Order has two undef positions and they have assigned 691 /// values 3 and 7 respectively: 692 /// before: 6 9 5 4 9 2 1 0 693 /// after: 6 3 5 4 7 2 1 0 694 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 695 const unsigned Sz = Order.size(); 696 SmallBitVector UnusedIndices(Sz, /*t=*/true); 697 SmallBitVector MaskedIndices(Sz); 698 for (unsigned I = 0; I < Sz; ++I) { 699 if (Order[I] < Sz) 700 UnusedIndices.reset(Order[I]); 701 else 702 MaskedIndices.set(I); 703 } 704 if (MaskedIndices.none()) 705 return; 706 assert(UnusedIndices.count() == MaskedIndices.count() && 707 "Non-synced masked/available indices."); 708 int Idx = UnusedIndices.find_first(); 709 int MIdx = MaskedIndices.find_first(); 710 while (MIdx >= 0) { 711 assert(Idx >= 0 && "Indices must be synced."); 712 Order[MIdx] = Idx; 713 Idx = UnusedIndices.find_next(Idx); 714 MIdx = MaskedIndices.find_next(MIdx); 715 } 716 } 717 718 namespace llvm { 719 720 static void inversePermutation(ArrayRef<unsigned> Indices, 721 SmallVectorImpl<int> &Mask) { 722 Mask.clear(); 723 const unsigned E = Indices.size(); 724 Mask.resize(E, UndefMaskElem); 725 for (unsigned I = 0; I < E; ++I) 726 Mask[Indices[I]] = I; 727 } 728 729 /// \returns inserting index of InsertElement or InsertValue instruction, 730 /// using Offset as base offset for index. 731 static Optional<unsigned> getInsertIndex(Value *InsertInst, 732 unsigned Offset = 0) { 733 int Index = Offset; 734 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 735 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 736 auto *VT = cast<FixedVectorType>(IE->getType()); 737 if (CI->getValue().uge(VT->getNumElements())) 738 return None; 739 Index *= VT->getNumElements(); 740 Index += CI->getZExtValue(); 741 return Index; 742 } 743 return None; 744 } 745 746 auto *IV = cast<InsertValueInst>(InsertInst); 747 Type *CurrentType = IV->getType(); 748 for (unsigned I : IV->indices()) { 749 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 750 Index *= ST->getNumElements(); 751 CurrentType = ST->getElementType(I); 752 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 753 Index *= AT->getNumElements(); 754 CurrentType = AT->getElementType(); 755 } else { 756 return None; 757 } 758 Index += I; 759 } 760 return Index; 761 } 762 763 /// Reorders the list of scalars in accordance with the given \p Mask. 764 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 765 ArrayRef<int> Mask) { 766 assert(!Mask.empty() && "Expected non-empty mask."); 767 SmallVector<Value *> Prev(Scalars.size(), 768 UndefValue::get(Scalars.front()->getType())); 769 Prev.swap(Scalars); 770 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 771 if (Mask[I] != UndefMaskElem) 772 Scalars[Mask[I]] = Prev[I]; 773 } 774 775 /// Checks if the provided value does not require scheduling. It does not 776 /// require scheduling if this is not an instruction or it is an instruction 777 /// that does not read/write memory and all operands are either not instructions 778 /// or phi nodes or instructions from different blocks. 779 static bool areAllOperandsNonInsts(Value *V) { 780 auto *I = dyn_cast<Instruction>(V); 781 if (!I) 782 return true; 783 return !mayHaveNonDefUseDependency(*I) && 784 all_of(I->operands(), [I](Value *V) { 785 auto *IO = dyn_cast<Instruction>(V); 786 if (!IO) 787 return true; 788 return isa<PHINode>(IO) || IO->getParent() != I->getParent(); 789 }); 790 } 791 792 /// Checks if the provided value does not require scheduling. It does not 793 /// require scheduling if this is not an instruction or it is an instruction 794 /// that does not read/write memory and all users are phi nodes or instructions 795 /// from the different blocks. 796 static bool isUsedOutsideBlock(Value *V) { 797 auto *I = dyn_cast<Instruction>(V); 798 if (!I) 799 return true; 800 // Limits the number of uses to save compile time. 801 constexpr int UsesLimit = 8; 802 return !I->mayReadOrWriteMemory() && !I->hasNUsesOrMore(UsesLimit) && 803 all_of(I->users(), [I](User *U) { 804 auto *IU = dyn_cast<Instruction>(U); 805 if (!IU) 806 return true; 807 return IU->getParent() != I->getParent() || isa<PHINode>(IU); 808 }); 809 } 810 811 /// Checks if the specified value does not require scheduling. It does not 812 /// require scheduling if all operands and all users do not need to be scheduled 813 /// in the current basic block. 814 static bool doesNotNeedToBeScheduled(Value *V) { 815 return areAllOperandsNonInsts(V) && isUsedOutsideBlock(V); 816 } 817 818 /// Checks if the specified array of instructions does not require scheduling. 819 /// It is so if all either instructions have operands that do not require 820 /// scheduling or their users do not require scheduling since they are phis or 821 /// in other basic blocks. 822 static bool doesNotNeedToSchedule(ArrayRef<Value *> VL) { 823 return !VL.empty() && 824 (all_of(VL, isUsedOutsideBlock) || all_of(VL, areAllOperandsNonInsts)); 825 } 826 827 namespace slpvectorizer { 828 829 /// Bottom Up SLP Vectorizer. 830 class BoUpSLP { 831 struct TreeEntry; 832 struct ScheduleData; 833 834 public: 835 using ValueList = SmallVector<Value *, 8>; 836 using InstrList = SmallVector<Instruction *, 16>; 837 using ValueSet = SmallPtrSet<Value *, 16>; 838 using StoreList = SmallVector<StoreInst *, 8>; 839 using ExtraValueToDebugLocsMap = 840 MapVector<Value *, SmallVector<Instruction *, 2>>; 841 using OrdersType = SmallVector<unsigned, 4>; 842 843 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 844 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 845 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 846 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 847 : BatchAA(*Aa), F(Func), SE(Se), TTI(Tti), TLI(TLi), LI(Li), 848 DT(Dt), AC(AC), DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 849 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 850 // Use the vector register size specified by the target unless overridden 851 // by a command-line option. 852 // TODO: It would be better to limit the vectorization factor based on 853 // data type rather than just register size. For example, x86 AVX has 854 // 256-bit registers, but it does not support integer operations 855 // at that width (that requires AVX2). 856 if (MaxVectorRegSizeOption.getNumOccurrences()) 857 MaxVecRegSize = MaxVectorRegSizeOption; 858 else 859 MaxVecRegSize = 860 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 861 .getFixedSize(); 862 863 if (MinVectorRegSizeOption.getNumOccurrences()) 864 MinVecRegSize = MinVectorRegSizeOption; 865 else 866 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 867 } 868 869 /// Vectorize the tree that starts with the elements in \p VL. 870 /// Returns the vectorized root. 871 Value *vectorizeTree(); 872 873 /// Vectorize the tree but with the list of externally used values \p 874 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 875 /// generated extractvalue instructions. 876 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 877 878 /// \returns the cost incurred by unwanted spills and fills, caused by 879 /// holding live values over call sites. 880 InstructionCost getSpillCost() const; 881 882 /// \returns the vectorization cost of the subtree that starts at \p VL. 883 /// A negative number means that this is profitable. 884 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 885 886 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 887 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 888 void buildTree(ArrayRef<Value *> Roots, 889 ArrayRef<Value *> UserIgnoreLst = None); 890 891 /// Builds external uses of the vectorized scalars, i.e. the list of 892 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 893 /// ExternallyUsedValues contains additional list of external uses to handle 894 /// vectorization of reductions. 895 void 896 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 897 898 /// Clear the internal data structures that are created by 'buildTree'. 899 void deleteTree() { 900 VectorizableTree.clear(); 901 ScalarToTreeEntry.clear(); 902 MustGather.clear(); 903 ExternalUses.clear(); 904 for (auto &Iter : BlocksSchedules) { 905 BlockScheduling *BS = Iter.second.get(); 906 BS->clear(); 907 } 908 MinBWs.clear(); 909 InstrElementSize.clear(); 910 } 911 912 unsigned getTreeSize() const { return VectorizableTree.size(); } 913 914 /// Perform LICM and CSE on the newly generated gather sequences. 915 void optimizeGatherSequence(); 916 917 /// Checks if the specified gather tree entry \p TE can be represented as a 918 /// shuffled vector entry + (possibly) permutation with other gathers. It 919 /// implements the checks only for possibly ordered scalars (Loads, 920 /// ExtractElement, ExtractValue), which can be part of the graph. 921 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 922 923 /// Gets reordering data for the given tree entry. If the entry is vectorized 924 /// - just return ReorderIndices, otherwise check if the scalars can be 925 /// reordered and return the most optimal order. 926 /// \param TopToBottom If true, include the order of vectorized stores and 927 /// insertelement nodes, otherwise skip them. 928 Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom); 929 930 /// Reorders the current graph to the most profitable order starting from the 931 /// root node to the leaf nodes. The best order is chosen only from the nodes 932 /// of the same size (vectorization factor). Smaller nodes are considered 933 /// parts of subgraph with smaller VF and they are reordered independently. We 934 /// can make it because we still need to extend smaller nodes to the wider VF 935 /// and we can merge reordering shuffles with the widening shuffles. 936 void reorderTopToBottom(); 937 938 /// Reorders the current graph to the most profitable order starting from 939 /// leaves to the root. It allows to rotate small subgraphs and reduce the 940 /// number of reshuffles if the leaf nodes use the same order. In this case we 941 /// can merge the orders and just shuffle user node instead of shuffling its 942 /// operands. Plus, even the leaf nodes have different orders, it allows to 943 /// sink reordering in the graph closer to the root node and merge it later 944 /// during analysis. 945 void reorderBottomToTop(bool IgnoreReorder = false); 946 947 /// \return The vector element size in bits to use when vectorizing the 948 /// expression tree ending at \p V. If V is a store, the size is the width of 949 /// the stored value. Otherwise, the size is the width of the largest loaded 950 /// value reaching V. This method is used by the vectorizer to calculate 951 /// vectorization factors. 952 unsigned getVectorElementSize(Value *V); 953 954 /// Compute the minimum type sizes required to represent the entries in a 955 /// vectorizable tree. 956 void computeMinimumValueSizes(); 957 958 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 959 unsigned getMaxVecRegSize() const { 960 return MaxVecRegSize; 961 } 962 963 // \returns minimum vector register size as set by cl::opt. 964 unsigned getMinVecRegSize() const { 965 return MinVecRegSize; 966 } 967 968 unsigned getMinVF(unsigned Sz) const { 969 return std::max(2U, getMinVecRegSize() / Sz); 970 } 971 972 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 973 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 974 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 975 return MaxVF ? MaxVF : UINT_MAX; 976 } 977 978 /// Check if homogeneous aggregate is isomorphic to some VectorType. 979 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 980 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 981 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 982 /// 983 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 984 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 985 986 /// \returns True if the VectorizableTree is both tiny and not fully 987 /// vectorizable. We do not vectorize such trees. 988 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 989 990 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 991 /// can be load combined in the backend. Load combining may not be allowed in 992 /// the IR optimizer, so we do not want to alter the pattern. For example, 993 /// partially transforming a scalar bswap() pattern into vector code is 994 /// effectively impossible for the backend to undo. 995 /// TODO: If load combining is allowed in the IR optimizer, this analysis 996 /// may not be necessary. 997 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 998 999 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 1000 /// can be load combined in the backend. Load combining may not be allowed in 1001 /// the IR optimizer, so we do not want to alter the pattern. For example, 1002 /// partially transforming a scalar bswap() pattern into vector code is 1003 /// effectively impossible for the backend to undo. 1004 /// TODO: If load combining is allowed in the IR optimizer, this analysis 1005 /// may not be necessary. 1006 bool isLoadCombineCandidate() const; 1007 1008 OptimizationRemarkEmitter *getORE() { return ORE; } 1009 1010 /// This structure holds any data we need about the edges being traversed 1011 /// during buildTree_rec(). We keep track of: 1012 /// (i) the user TreeEntry index, and 1013 /// (ii) the index of the edge. 1014 struct EdgeInfo { 1015 EdgeInfo() = default; 1016 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 1017 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 1018 /// The user TreeEntry. 1019 TreeEntry *UserTE = nullptr; 1020 /// The operand index of the use. 1021 unsigned EdgeIdx = UINT_MAX; 1022 #ifndef NDEBUG 1023 friend inline raw_ostream &operator<<(raw_ostream &OS, 1024 const BoUpSLP::EdgeInfo &EI) { 1025 EI.dump(OS); 1026 return OS; 1027 } 1028 /// Debug print. 1029 void dump(raw_ostream &OS) const { 1030 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 1031 << " EdgeIdx:" << EdgeIdx << "}"; 1032 } 1033 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 1034 #endif 1035 }; 1036 1037 /// A helper data structure to hold the operands of a vector of instructions. 1038 /// This supports a fixed vector length for all operand vectors. 1039 class VLOperands { 1040 /// For each operand we need (i) the value, and (ii) the opcode that it 1041 /// would be attached to if the expression was in a left-linearized form. 1042 /// This is required to avoid illegal operand reordering. 1043 /// For example: 1044 /// \verbatim 1045 /// 0 Op1 1046 /// |/ 1047 /// Op1 Op2 Linearized + Op2 1048 /// \ / ----------> |/ 1049 /// - - 1050 /// 1051 /// Op1 - Op2 (0 + Op1) - Op2 1052 /// \endverbatim 1053 /// 1054 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 1055 /// 1056 /// Another way to think of this is to track all the operations across the 1057 /// path from the operand all the way to the root of the tree and to 1058 /// calculate the operation that corresponds to this path. For example, the 1059 /// path from Op2 to the root crosses the RHS of the '-', therefore the 1060 /// corresponding operation is a '-' (which matches the one in the 1061 /// linearized tree, as shown above). 1062 /// 1063 /// For lack of a better term, we refer to this operation as Accumulated 1064 /// Path Operation (APO). 1065 struct OperandData { 1066 OperandData() = default; 1067 OperandData(Value *V, bool APO, bool IsUsed) 1068 : V(V), APO(APO), IsUsed(IsUsed) {} 1069 /// The operand value. 1070 Value *V = nullptr; 1071 /// TreeEntries only allow a single opcode, or an alternate sequence of 1072 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 1073 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 1074 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 1075 /// (e.g., Add/Mul) 1076 bool APO = false; 1077 /// Helper data for the reordering function. 1078 bool IsUsed = false; 1079 }; 1080 1081 /// During operand reordering, we are trying to select the operand at lane 1082 /// that matches best with the operand at the neighboring lane. Our 1083 /// selection is based on the type of value we are looking for. For example, 1084 /// if the neighboring lane has a load, we need to look for a load that is 1085 /// accessing a consecutive address. These strategies are summarized in the 1086 /// 'ReorderingMode' enumerator. 1087 enum class ReorderingMode { 1088 Load, ///< Matching loads to consecutive memory addresses 1089 Opcode, ///< Matching instructions based on opcode (same or alternate) 1090 Constant, ///< Matching constants 1091 Splat, ///< Matching the same instruction multiple times (broadcast) 1092 Failed, ///< We failed to create a vectorizable group 1093 }; 1094 1095 using OperandDataVec = SmallVector<OperandData, 2>; 1096 1097 /// A vector of operand vectors. 1098 SmallVector<OperandDataVec, 4> OpsVec; 1099 1100 const DataLayout &DL; 1101 ScalarEvolution &SE; 1102 const BoUpSLP &R; 1103 1104 /// \returns the operand data at \p OpIdx and \p Lane. 1105 OperandData &getData(unsigned OpIdx, unsigned Lane) { 1106 return OpsVec[OpIdx][Lane]; 1107 } 1108 1109 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 1110 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 1111 return OpsVec[OpIdx][Lane]; 1112 } 1113 1114 /// Clears the used flag for all entries. 1115 void clearUsed() { 1116 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 1117 OpIdx != NumOperands; ++OpIdx) 1118 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1119 ++Lane) 1120 OpsVec[OpIdx][Lane].IsUsed = false; 1121 } 1122 1123 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 1124 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 1125 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 1126 } 1127 1128 // The hard-coded scores listed here are not very important, though it shall 1129 // be higher for better matches to improve the resulting cost. When 1130 // computing the scores of matching one sub-tree with another, we are 1131 // basically counting the number of values that are matching. So even if all 1132 // scores are set to 1, we would still get a decent matching result. 1133 // However, sometimes we have to break ties. For example we may have to 1134 // choose between matching loads vs matching opcodes. This is what these 1135 // scores are helping us with: they provide the order of preference. Also, 1136 // this is important if the scalar is externally used or used in another 1137 // tree entry node in the different lane. 1138 1139 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 1140 static const int ScoreConsecutiveLoads = 4; 1141 /// The same load multiple times. This should have a better score than 1142 /// `ScoreSplat` because it in x86 for a 2-lane vector we can represent it 1143 /// with `movddup (%reg), xmm0` which has a throughput of 0.5 versus 0.5 for 1144 /// a vector load and 1.0 for a broadcast. 1145 static const int ScoreSplatLoads = 3; 1146 /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]). 1147 static const int ScoreReversedLoads = 3; 1148 /// ExtractElementInst from same vector and consecutive indexes. 1149 static const int ScoreConsecutiveExtracts = 4; 1150 /// ExtractElementInst from same vector and reversed indices. 1151 static const int ScoreReversedExtracts = 3; 1152 /// Constants. 1153 static const int ScoreConstants = 2; 1154 /// Instructions with the same opcode. 1155 static const int ScoreSameOpcode = 2; 1156 /// Instructions with alt opcodes (e.g, add + sub). 1157 static const int ScoreAltOpcodes = 1; 1158 /// Identical instructions (a.k.a. splat or broadcast). 1159 static const int ScoreSplat = 1; 1160 /// Matching with an undef is preferable to failing. 1161 static const int ScoreUndef = 1; 1162 /// Score for failing to find a decent match. 1163 static const int ScoreFail = 0; 1164 /// Score if all users are vectorized. 1165 static const int ScoreAllUserVectorized = 1; 1166 1167 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1168 /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p 1169 /// MainAltOps. 1170 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 1171 ScalarEvolution &SE, int NumLanes, 1172 ArrayRef<Value *> MainAltOps, 1173 const TargetTransformInfo *TTI) { 1174 if (V1 == V2) { 1175 if (isa<LoadInst>(V1)) { 1176 // A broadcast of a load can be cheaper on some targets. 1177 // TODO: For now accept a broadcast load with no other internal uses. 1178 if (TTI->isLegalBroadcastLoad(V1->getType(), NumLanes) && 1179 (int)V1->getNumUses() == NumLanes) 1180 return VLOperands::ScoreSplatLoads; 1181 } 1182 return VLOperands::ScoreSplat; 1183 } 1184 1185 auto *LI1 = dyn_cast<LoadInst>(V1); 1186 auto *LI2 = dyn_cast<LoadInst>(V2); 1187 if (LI1 && LI2) { 1188 if (LI1->getParent() != LI2->getParent()) 1189 return VLOperands::ScoreFail; 1190 1191 Optional<int> Dist = getPointersDiff( 1192 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1193 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1194 if (!Dist || *Dist == 0) 1195 return VLOperands::ScoreFail; 1196 // The distance is too large - still may be profitable to use masked 1197 // loads/gathers. 1198 if (std::abs(*Dist) > NumLanes / 2) 1199 return VLOperands::ScoreAltOpcodes; 1200 // This still will detect consecutive loads, but we might have "holes" 1201 // in some cases. It is ok for non-power-2 vectorization and may produce 1202 // better results. It should not affect current vectorization. 1203 return (*Dist > 0) ? VLOperands::ScoreConsecutiveLoads 1204 : VLOperands::ScoreReversedLoads; 1205 } 1206 1207 auto *C1 = dyn_cast<Constant>(V1); 1208 auto *C2 = dyn_cast<Constant>(V2); 1209 if (C1 && C2) 1210 return VLOperands::ScoreConstants; 1211 1212 // Extracts from consecutive indexes of the same vector better score as 1213 // the extracts could be optimized away. 1214 Value *EV1; 1215 ConstantInt *Ex1Idx; 1216 if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) { 1217 // Undefs are always profitable for extractelements. 1218 if (isa<UndefValue>(V2)) 1219 return VLOperands::ScoreConsecutiveExtracts; 1220 Value *EV2 = nullptr; 1221 ConstantInt *Ex2Idx = nullptr; 1222 if (match(V2, 1223 m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx), 1224 m_Undef())))) { 1225 // Undefs are always profitable for extractelements. 1226 if (!Ex2Idx) 1227 return VLOperands::ScoreConsecutiveExtracts; 1228 if (isUndefVector(EV2) && EV2->getType() == EV1->getType()) 1229 return VLOperands::ScoreConsecutiveExtracts; 1230 if (EV2 == EV1) { 1231 int Idx1 = Ex1Idx->getZExtValue(); 1232 int Idx2 = Ex2Idx->getZExtValue(); 1233 int Dist = Idx2 - Idx1; 1234 // The distance is too large - still may be profitable to use 1235 // shuffles. 1236 if (std::abs(Dist) == 0) 1237 return VLOperands::ScoreSplat; 1238 if (std::abs(Dist) > NumLanes / 2) 1239 return VLOperands::ScoreSameOpcode; 1240 return (Dist > 0) ? VLOperands::ScoreConsecutiveExtracts 1241 : VLOperands::ScoreReversedExtracts; 1242 } 1243 return VLOperands::ScoreAltOpcodes; 1244 } 1245 return VLOperands::ScoreFail; 1246 } 1247 1248 auto *I1 = dyn_cast<Instruction>(V1); 1249 auto *I2 = dyn_cast<Instruction>(V2); 1250 if (I1 && I2) { 1251 if (I1->getParent() != I2->getParent()) 1252 return VLOperands::ScoreFail; 1253 SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end()); 1254 Ops.push_back(I1); 1255 Ops.push_back(I2); 1256 InstructionsState S = getSameOpcode(Ops); 1257 // Note: Only consider instructions with <= 2 operands to avoid 1258 // complexity explosion. 1259 if (S.getOpcode() && 1260 (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() || 1261 !S.isAltShuffle()) && 1262 all_of(Ops, [&S](Value *V) { 1263 return cast<Instruction>(V)->getNumOperands() == 1264 S.MainOp->getNumOperands(); 1265 })) 1266 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 1267 : VLOperands::ScoreSameOpcode; 1268 } 1269 1270 if (isa<UndefValue>(V2)) 1271 return VLOperands::ScoreUndef; 1272 1273 return VLOperands::ScoreFail; 1274 } 1275 1276 /// \param Lane lane of the operands under analysis. 1277 /// \param OpIdx operand index in \p Lane lane we're looking the best 1278 /// candidate for. 1279 /// \param Idx operand index of the current candidate value. 1280 /// \returns The additional score due to possible broadcasting of the 1281 /// elements in the lane. It is more profitable to have power-of-2 unique 1282 /// elements in the lane, it will be vectorized with higher probability 1283 /// after removing duplicates. Currently the SLP vectorizer supports only 1284 /// vectorization of the power-of-2 number of unique scalars. 1285 int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1286 Value *IdxLaneV = getData(Idx, Lane).V; 1287 if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V) 1288 return 0; 1289 SmallPtrSet<Value *, 4> Uniques; 1290 for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) { 1291 if (Ln == Lane) 1292 continue; 1293 Value *OpIdxLnV = getData(OpIdx, Ln).V; 1294 if (!isa<Instruction>(OpIdxLnV)) 1295 return 0; 1296 Uniques.insert(OpIdxLnV); 1297 } 1298 int UniquesCount = Uniques.size(); 1299 int UniquesCntWithIdxLaneV = 1300 Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1; 1301 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1302 int UniquesCntWithOpIdxLaneV = 1303 Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1; 1304 if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV) 1305 return 0; 1306 return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) - 1307 UniquesCntWithOpIdxLaneV) - 1308 (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV); 1309 } 1310 1311 /// \param Lane lane of the operands under analysis. 1312 /// \param OpIdx operand index in \p Lane lane we're looking the best 1313 /// candidate for. 1314 /// \param Idx operand index of the current candidate value. 1315 /// \returns The additional score for the scalar which users are all 1316 /// vectorized. 1317 int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1318 Value *IdxLaneV = getData(Idx, Lane).V; 1319 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1320 // Do not care about number of uses for vector-like instructions 1321 // (extractelement/extractvalue with constant indices), they are extracts 1322 // themselves and already externally used. Vectorization of such 1323 // instructions does not add extra extractelement instruction, just may 1324 // remove it. 1325 if (isVectorLikeInstWithConstOps(IdxLaneV) && 1326 isVectorLikeInstWithConstOps(OpIdxLaneV)) 1327 return VLOperands::ScoreAllUserVectorized; 1328 auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV); 1329 if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV)) 1330 return 0; 1331 return R.areAllUsersVectorized(IdxLaneI, None) 1332 ? VLOperands::ScoreAllUserVectorized 1333 : 0; 1334 } 1335 1336 /// Go through the operands of \p LHS and \p RHS recursively until \p 1337 /// MaxLevel, and return the cummulative score. For example: 1338 /// \verbatim 1339 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1340 /// \ / \ / \ / \ / 1341 /// + + + + 1342 /// G1 G2 G3 G4 1343 /// \endverbatim 1344 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1345 /// each level recursively, accumulating the score. It starts from matching 1346 /// the additions at level 0, then moves on to the loads (level 1). The 1347 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1348 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1349 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1350 /// Please note that the order of the operands does not matter, as we 1351 /// evaluate the score of all profitable combinations of operands. In 1352 /// other words the score of G1 and G4 is the same as G1 and G2. This 1353 /// heuristic is based on ideas described in: 1354 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1355 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1356 /// Luís F. W. Góes 1357 int getScoreAtLevelRec(Value *LHS, Value *RHS, int CurrLevel, int MaxLevel, 1358 ArrayRef<Value *> MainAltOps) { 1359 1360 // Get the shallow score of V1 and V2. 1361 int ShallowScoreAtThisLevel = 1362 getShallowScore(LHS, RHS, DL, SE, getNumLanes(), MainAltOps, R.TTI); 1363 1364 // If reached MaxLevel, 1365 // or if V1 and V2 are not instructions, 1366 // or if they are SPLAT, 1367 // or if they are not consecutive, 1368 // or if profitable to vectorize loads or extractelements, early return 1369 // the current cost. 1370 auto *I1 = dyn_cast<Instruction>(LHS); 1371 auto *I2 = dyn_cast<Instruction>(RHS); 1372 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1373 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1374 (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) || 1375 (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) || 1376 (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) && 1377 ShallowScoreAtThisLevel)) 1378 return ShallowScoreAtThisLevel; 1379 assert(I1 && I2 && "Should have early exited."); 1380 1381 // Contains the I2 operand indexes that got matched with I1 operands. 1382 SmallSet<unsigned, 4> Op2Used; 1383 1384 // Recursion towards the operands of I1 and I2. We are trying all possible 1385 // operand pairs, and keeping track of the best score. 1386 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1387 OpIdx1 != NumOperands1; ++OpIdx1) { 1388 // Try to pair op1I with the best operand of I2. 1389 int MaxTmpScore = 0; 1390 unsigned MaxOpIdx2 = 0; 1391 bool FoundBest = false; 1392 // If I2 is commutative try all combinations. 1393 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1394 unsigned ToIdx = isCommutative(I2) 1395 ? I2->getNumOperands() 1396 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1397 assert(FromIdx <= ToIdx && "Bad index"); 1398 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1399 // Skip operands already paired with OpIdx1. 1400 if (Op2Used.count(OpIdx2)) 1401 continue; 1402 // Recursively calculate the cost at each level 1403 int TmpScore = 1404 getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2), 1405 CurrLevel + 1, MaxLevel, None); 1406 // Look for the best score. 1407 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1408 MaxTmpScore = TmpScore; 1409 MaxOpIdx2 = OpIdx2; 1410 FoundBest = true; 1411 } 1412 } 1413 if (FoundBest) { 1414 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1415 Op2Used.insert(MaxOpIdx2); 1416 ShallowScoreAtThisLevel += MaxTmpScore; 1417 } 1418 } 1419 return ShallowScoreAtThisLevel; 1420 } 1421 1422 /// Score scaling factor for fully compatible instructions but with 1423 /// different number of external uses. Allows better selection of the 1424 /// instructions with less external uses. 1425 static const int ScoreScaleFactor = 10; 1426 1427 /// \Returns the look-ahead score, which tells us how much the sub-trees 1428 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1429 /// score. This helps break ties in an informed way when we cannot decide on 1430 /// the order of the operands by just considering the immediate 1431 /// predecessors. 1432 int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps, 1433 int Lane, unsigned OpIdx, unsigned Idx, 1434 bool &IsUsed) { 1435 int Score = 1436 getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth, MainAltOps); 1437 if (Score) { 1438 int SplatScore = getSplatScore(Lane, OpIdx, Idx); 1439 if (Score <= -SplatScore) { 1440 // Set the minimum score for splat-like sequence to avoid setting 1441 // failed state. 1442 Score = 1; 1443 } else { 1444 Score += SplatScore; 1445 // Scale score to see the difference between different operands 1446 // and similar operands but all vectorized/not all vectorized 1447 // uses. It does not affect actual selection of the best 1448 // compatible operand in general, just allows to select the 1449 // operand with all vectorized uses. 1450 Score *= ScoreScaleFactor; 1451 Score += getExternalUseScore(Lane, OpIdx, Idx); 1452 IsUsed = true; 1453 } 1454 } 1455 return Score; 1456 } 1457 1458 /// Best defined scores per lanes between the passes. Used to choose the 1459 /// best operand (with the highest score) between the passes. 1460 /// The key - {Operand Index, Lane}. 1461 /// The value - the best score between the passes for the lane and the 1462 /// operand. 1463 SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8> 1464 BestScoresPerLanes; 1465 1466 // Search all operands in Ops[*][Lane] for the one that matches best 1467 // Ops[OpIdx][LastLane] and return its opreand index. 1468 // If no good match can be found, return None. 1469 Optional<unsigned> getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1470 ArrayRef<ReorderingMode> ReorderingModes, 1471 ArrayRef<Value *> MainAltOps) { 1472 unsigned NumOperands = getNumOperands(); 1473 1474 // The operand of the previous lane at OpIdx. 1475 Value *OpLastLane = getData(OpIdx, LastLane).V; 1476 1477 // Our strategy mode for OpIdx. 1478 ReorderingMode RMode = ReorderingModes[OpIdx]; 1479 if (RMode == ReorderingMode::Failed) 1480 return None; 1481 1482 // The linearized opcode of the operand at OpIdx, Lane. 1483 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1484 1485 // The best operand index and its score. 1486 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1487 // are using the score to differentiate between the two. 1488 struct BestOpData { 1489 Optional<unsigned> Idx = None; 1490 unsigned Score = 0; 1491 } BestOp; 1492 BestOp.Score = 1493 BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0) 1494 .first->second; 1495 1496 // Track if the operand must be marked as used. If the operand is set to 1497 // Score 1 explicitly (because of non power-of-2 unique scalars, we may 1498 // want to reestimate the operands again on the following iterations). 1499 bool IsUsed = 1500 RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant; 1501 // Iterate through all unused operands and look for the best. 1502 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1503 // Get the operand at Idx and Lane. 1504 OperandData &OpData = getData(Idx, Lane); 1505 Value *Op = OpData.V; 1506 bool OpAPO = OpData.APO; 1507 1508 // Skip already selected operands. 1509 if (OpData.IsUsed) 1510 continue; 1511 1512 // Skip if we are trying to move the operand to a position with a 1513 // different opcode in the linearized tree form. This would break the 1514 // semantics. 1515 if (OpAPO != OpIdxAPO) 1516 continue; 1517 1518 // Look for an operand that matches the current mode. 1519 switch (RMode) { 1520 case ReorderingMode::Load: 1521 case ReorderingMode::Constant: 1522 case ReorderingMode::Opcode: { 1523 bool LeftToRight = Lane > LastLane; 1524 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1525 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1526 int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane, 1527 OpIdx, Idx, IsUsed); 1528 if (Score > static_cast<int>(BestOp.Score)) { 1529 BestOp.Idx = Idx; 1530 BestOp.Score = Score; 1531 BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score; 1532 } 1533 break; 1534 } 1535 case ReorderingMode::Splat: 1536 if (Op == OpLastLane) 1537 BestOp.Idx = Idx; 1538 break; 1539 case ReorderingMode::Failed: 1540 llvm_unreachable("Not expected Failed reordering mode."); 1541 } 1542 } 1543 1544 if (BestOp.Idx) { 1545 getData(BestOp.Idx.getValue(), Lane).IsUsed = IsUsed; 1546 return BestOp.Idx; 1547 } 1548 // If we could not find a good match return None. 1549 return None; 1550 } 1551 1552 /// Helper for reorderOperandVecs. 1553 /// \returns the lane that we should start reordering from. This is the one 1554 /// which has the least number of operands that can freely move about or 1555 /// less profitable because it already has the most optimal set of operands. 1556 unsigned getBestLaneToStartReordering() const { 1557 unsigned Min = UINT_MAX; 1558 unsigned SameOpNumber = 0; 1559 // std::pair<unsigned, unsigned> is used to implement a simple voting 1560 // algorithm and choose the lane with the least number of operands that 1561 // can freely move about or less profitable because it already has the 1562 // most optimal set of operands. The first unsigned is a counter for 1563 // voting, the second unsigned is the counter of lanes with instructions 1564 // with same/alternate opcodes and same parent basic block. 1565 MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap; 1566 // Try to be closer to the original results, if we have multiple lanes 1567 // with same cost. If 2 lanes have the same cost, use the one with the 1568 // lowest index. 1569 for (int I = getNumLanes(); I > 0; --I) { 1570 unsigned Lane = I - 1; 1571 OperandsOrderData NumFreeOpsHash = 1572 getMaxNumOperandsThatCanBeReordered(Lane); 1573 // Compare the number of operands that can move and choose the one with 1574 // the least number. 1575 if (NumFreeOpsHash.NumOfAPOs < Min) { 1576 Min = NumFreeOpsHash.NumOfAPOs; 1577 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1578 HashMap.clear(); 1579 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1580 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1581 NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) { 1582 // Select the most optimal lane in terms of number of operands that 1583 // should be moved around. 1584 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1585 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1586 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1587 NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) { 1588 auto It = HashMap.find(NumFreeOpsHash.Hash); 1589 if (It == HashMap.end()) 1590 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1591 else 1592 ++It->second.first; 1593 } 1594 } 1595 // Select the lane with the minimum counter. 1596 unsigned BestLane = 0; 1597 unsigned CntMin = UINT_MAX; 1598 for (const auto &Data : reverse(HashMap)) { 1599 if (Data.second.first < CntMin) { 1600 CntMin = Data.second.first; 1601 BestLane = Data.second.second; 1602 } 1603 } 1604 return BestLane; 1605 } 1606 1607 /// Data structure that helps to reorder operands. 1608 struct OperandsOrderData { 1609 /// The best number of operands with the same APOs, which can be 1610 /// reordered. 1611 unsigned NumOfAPOs = UINT_MAX; 1612 /// Number of operands with the same/alternate instruction opcode and 1613 /// parent. 1614 unsigned NumOpsWithSameOpcodeParent = 0; 1615 /// Hash for the actual operands ordering. 1616 /// Used to count operands, actually their position id and opcode 1617 /// value. It is used in the voting mechanism to find the lane with the 1618 /// least number of operands that can freely move about or less profitable 1619 /// because it already has the most optimal set of operands. Can be 1620 /// replaced with SmallVector<unsigned> instead but hash code is faster 1621 /// and requires less memory. 1622 unsigned Hash = 0; 1623 }; 1624 /// \returns the maximum number of operands that are allowed to be reordered 1625 /// for \p Lane and the number of compatible instructions(with the same 1626 /// parent/opcode). This is used as a heuristic for selecting the first lane 1627 /// to start operand reordering. 1628 OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1629 unsigned CntTrue = 0; 1630 unsigned NumOperands = getNumOperands(); 1631 // Operands with the same APO can be reordered. We therefore need to count 1632 // how many of them we have for each APO, like this: Cnt[APO] = x. 1633 // Since we only have two APOs, namely true and false, we can avoid using 1634 // a map. Instead we can simply count the number of operands that 1635 // correspond to one of them (in this case the 'true' APO), and calculate 1636 // the other by subtracting it from the total number of operands. 1637 // Operands with the same instruction opcode and parent are more 1638 // profitable since we don't need to move them in many cases, with a high 1639 // probability such lane already can be vectorized effectively. 1640 bool AllUndefs = true; 1641 unsigned NumOpsWithSameOpcodeParent = 0; 1642 Instruction *OpcodeI = nullptr; 1643 BasicBlock *Parent = nullptr; 1644 unsigned Hash = 0; 1645 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1646 const OperandData &OpData = getData(OpIdx, Lane); 1647 if (OpData.APO) 1648 ++CntTrue; 1649 // Use Boyer-Moore majority voting for finding the majority opcode and 1650 // the number of times it occurs. 1651 if (auto *I = dyn_cast<Instruction>(OpData.V)) { 1652 if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() || 1653 I->getParent() != Parent) { 1654 if (NumOpsWithSameOpcodeParent == 0) { 1655 NumOpsWithSameOpcodeParent = 1; 1656 OpcodeI = I; 1657 Parent = I->getParent(); 1658 } else { 1659 --NumOpsWithSameOpcodeParent; 1660 } 1661 } else { 1662 ++NumOpsWithSameOpcodeParent; 1663 } 1664 } 1665 Hash = hash_combine( 1666 Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1))); 1667 AllUndefs = AllUndefs && isa<UndefValue>(OpData.V); 1668 } 1669 if (AllUndefs) 1670 return {}; 1671 OperandsOrderData Data; 1672 Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue); 1673 Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent; 1674 Data.Hash = Hash; 1675 return Data; 1676 } 1677 1678 /// Go through the instructions in VL and append their operands. 1679 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1680 assert(!VL.empty() && "Bad VL"); 1681 assert((empty() || VL.size() == getNumLanes()) && 1682 "Expected same number of lanes"); 1683 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1684 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1685 OpsVec.resize(NumOperands); 1686 unsigned NumLanes = VL.size(); 1687 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1688 OpsVec[OpIdx].resize(NumLanes); 1689 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1690 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1691 // Our tree has just 3 nodes: the root and two operands. 1692 // It is therefore trivial to get the APO. We only need to check the 1693 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1694 // RHS operand. The LHS operand of both add and sub is never attached 1695 // to an inversese operation in the linearized form, therefore its APO 1696 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1697 1698 // Since operand reordering is performed on groups of commutative 1699 // operations or alternating sequences (e.g., +, -), we can safely 1700 // tell the inverse operations by checking commutativity. 1701 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1702 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1703 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1704 APO, false}; 1705 } 1706 } 1707 } 1708 1709 /// \returns the number of operands. 1710 unsigned getNumOperands() const { return OpsVec.size(); } 1711 1712 /// \returns the number of lanes. 1713 unsigned getNumLanes() const { return OpsVec[0].size(); } 1714 1715 /// \returns the operand value at \p OpIdx and \p Lane. 1716 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1717 return getData(OpIdx, Lane).V; 1718 } 1719 1720 /// \returns true if the data structure is empty. 1721 bool empty() const { return OpsVec.empty(); } 1722 1723 /// Clears the data. 1724 void clear() { OpsVec.clear(); } 1725 1726 /// \Returns true if there are enough operands identical to \p Op to fill 1727 /// the whole vector. 1728 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1729 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1730 bool OpAPO = getData(OpIdx, Lane).APO; 1731 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1732 if (Ln == Lane) 1733 continue; 1734 // This is set to true if we found a candidate for broadcast at Lane. 1735 bool FoundCandidate = false; 1736 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1737 OperandData &Data = getData(OpI, Ln); 1738 if (Data.APO != OpAPO || Data.IsUsed) 1739 continue; 1740 if (Data.V == Op) { 1741 FoundCandidate = true; 1742 Data.IsUsed = true; 1743 break; 1744 } 1745 } 1746 if (!FoundCandidate) 1747 return false; 1748 } 1749 return true; 1750 } 1751 1752 public: 1753 /// Initialize with all the operands of the instruction vector \p RootVL. 1754 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1755 ScalarEvolution &SE, const BoUpSLP &R) 1756 : DL(DL), SE(SE), R(R) { 1757 // Append all the operands of RootVL. 1758 appendOperandsOfVL(RootVL); 1759 } 1760 1761 /// \Returns a value vector with the operands across all lanes for the 1762 /// opearnd at \p OpIdx. 1763 ValueList getVL(unsigned OpIdx) const { 1764 ValueList OpVL(OpsVec[OpIdx].size()); 1765 assert(OpsVec[OpIdx].size() == getNumLanes() && 1766 "Expected same num of lanes across all operands"); 1767 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1768 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1769 return OpVL; 1770 } 1771 1772 // Performs operand reordering for 2 or more operands. 1773 // The original operands are in OrigOps[OpIdx][Lane]. 1774 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1775 void reorder() { 1776 unsigned NumOperands = getNumOperands(); 1777 unsigned NumLanes = getNumLanes(); 1778 // Each operand has its own mode. We are using this mode to help us select 1779 // the instructions for each lane, so that they match best with the ones 1780 // we have selected so far. 1781 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1782 1783 // This is a greedy single-pass algorithm. We are going over each lane 1784 // once and deciding on the best order right away with no back-tracking. 1785 // However, in order to increase its effectiveness, we start with the lane 1786 // that has operands that can move the least. For example, given the 1787 // following lanes: 1788 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1789 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1790 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1791 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1792 // we will start at Lane 1, since the operands of the subtraction cannot 1793 // be reordered. Then we will visit the rest of the lanes in a circular 1794 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1795 1796 // Find the first lane that we will start our search from. 1797 unsigned FirstLane = getBestLaneToStartReordering(); 1798 1799 // Initialize the modes. 1800 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1801 Value *OpLane0 = getValue(OpIdx, FirstLane); 1802 // Keep track if we have instructions with all the same opcode on one 1803 // side. 1804 if (isa<LoadInst>(OpLane0)) 1805 ReorderingModes[OpIdx] = ReorderingMode::Load; 1806 else if (isa<Instruction>(OpLane0)) { 1807 // Check if OpLane0 should be broadcast. 1808 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1809 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1810 else 1811 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1812 } 1813 else if (isa<Constant>(OpLane0)) 1814 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1815 else if (isa<Argument>(OpLane0)) 1816 // Our best hope is a Splat. It may save some cost in some cases. 1817 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1818 else 1819 // NOTE: This should be unreachable. 1820 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1821 } 1822 1823 // Check that we don't have same operands. No need to reorder if operands 1824 // are just perfect diamond or shuffled diamond match. Do not do it only 1825 // for possible broadcasts or non-power of 2 number of scalars (just for 1826 // now). 1827 auto &&SkipReordering = [this]() { 1828 SmallPtrSet<Value *, 4> UniqueValues; 1829 ArrayRef<OperandData> Op0 = OpsVec.front(); 1830 for (const OperandData &Data : Op0) 1831 UniqueValues.insert(Data.V); 1832 for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) { 1833 if (any_of(Op, [&UniqueValues](const OperandData &Data) { 1834 return !UniqueValues.contains(Data.V); 1835 })) 1836 return false; 1837 } 1838 // TODO: Check if we can remove a check for non-power-2 number of 1839 // scalars after full support of non-power-2 vectorization. 1840 return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size()); 1841 }; 1842 1843 // If the initial strategy fails for any of the operand indexes, then we 1844 // perform reordering again in a second pass. This helps avoid assigning 1845 // high priority to the failed strategy, and should improve reordering for 1846 // the non-failed operand indexes. 1847 for (int Pass = 0; Pass != 2; ++Pass) { 1848 // Check if no need to reorder operands since they're are perfect or 1849 // shuffled diamond match. 1850 // Need to to do it to avoid extra external use cost counting for 1851 // shuffled matches, which may cause regressions. 1852 if (SkipReordering()) 1853 break; 1854 // Skip the second pass if the first pass did not fail. 1855 bool StrategyFailed = false; 1856 // Mark all operand data as free to use. 1857 clearUsed(); 1858 // We keep the original operand order for the FirstLane, so reorder the 1859 // rest of the lanes. We are visiting the nodes in a circular fashion, 1860 // using FirstLane as the center point and increasing the radius 1861 // distance. 1862 SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands); 1863 for (unsigned I = 0; I < NumOperands; ++I) 1864 MainAltOps[I].push_back(getData(I, FirstLane).V); 1865 1866 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1867 // Visit the lane on the right and then the lane on the left. 1868 for (int Direction : {+1, -1}) { 1869 int Lane = FirstLane + Direction * Distance; 1870 if (Lane < 0 || Lane >= (int)NumLanes) 1871 continue; 1872 int LastLane = Lane - Direction; 1873 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1874 "Out of bounds"); 1875 // Look for a good match for each operand. 1876 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1877 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1878 Optional<unsigned> BestIdx = getBestOperand( 1879 OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]); 1880 // By not selecting a value, we allow the operands that follow to 1881 // select a better matching value. We will get a non-null value in 1882 // the next run of getBestOperand(). 1883 if (BestIdx) { 1884 // Swap the current operand with the one returned by 1885 // getBestOperand(). 1886 swap(OpIdx, BestIdx.getValue(), Lane); 1887 } else { 1888 // We failed to find a best operand, set mode to 'Failed'. 1889 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1890 // Enable the second pass. 1891 StrategyFailed = true; 1892 } 1893 // Try to get the alternate opcode and follow it during analysis. 1894 if (MainAltOps[OpIdx].size() != 2) { 1895 OperandData &AltOp = getData(OpIdx, Lane); 1896 InstructionsState OpS = 1897 getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V}); 1898 if (OpS.getOpcode() && OpS.isAltShuffle()) 1899 MainAltOps[OpIdx].push_back(AltOp.V); 1900 } 1901 } 1902 } 1903 } 1904 // Skip second pass if the strategy did not fail. 1905 if (!StrategyFailed) 1906 break; 1907 } 1908 } 1909 1910 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1911 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1912 switch (RMode) { 1913 case ReorderingMode::Load: 1914 return "Load"; 1915 case ReorderingMode::Opcode: 1916 return "Opcode"; 1917 case ReorderingMode::Constant: 1918 return "Constant"; 1919 case ReorderingMode::Splat: 1920 return "Splat"; 1921 case ReorderingMode::Failed: 1922 return "Failed"; 1923 } 1924 llvm_unreachable("Unimplemented Reordering Type"); 1925 } 1926 1927 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1928 raw_ostream &OS) { 1929 return OS << getModeStr(RMode); 1930 } 1931 1932 /// Debug print. 1933 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1934 printMode(RMode, dbgs()); 1935 } 1936 1937 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1938 return printMode(RMode, OS); 1939 } 1940 1941 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1942 const unsigned Indent = 2; 1943 unsigned Cnt = 0; 1944 for (const OperandDataVec &OpDataVec : OpsVec) { 1945 OS << "Operand " << Cnt++ << "\n"; 1946 for (const OperandData &OpData : OpDataVec) { 1947 OS.indent(Indent) << "{"; 1948 if (Value *V = OpData.V) 1949 OS << *V; 1950 else 1951 OS << "null"; 1952 OS << ", APO:" << OpData.APO << "}\n"; 1953 } 1954 OS << "\n"; 1955 } 1956 return OS; 1957 } 1958 1959 /// Debug print. 1960 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1961 #endif 1962 }; 1963 1964 /// Checks if the instruction is marked for deletion. 1965 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1966 1967 /// Removes an instruction from its block and eventually deletes it. 1968 /// It's like Instruction::eraseFromParent() except that the actual deletion 1969 /// is delayed until BoUpSLP is destructed. 1970 void eraseInstruction(Instruction *I) { 1971 DeletedInstructions.insert(I); 1972 } 1973 1974 ~BoUpSLP(); 1975 1976 private: 1977 /// Check if the operands on the edges \p Edges of the \p UserTE allows 1978 /// reordering (i.e. the operands can be reordered because they have only one 1979 /// user and reordarable). 1980 /// \param ReorderableGathers List of all gather nodes that require reordering 1981 /// (e.g., gather of extractlements or partially vectorizable loads). 1982 /// \param GatherOps List of gather operand nodes for \p UserTE that require 1983 /// reordering, subset of \p NonVectorized. 1984 bool 1985 canReorderOperands(TreeEntry *UserTE, 1986 SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 1987 ArrayRef<TreeEntry *> ReorderableGathers, 1988 SmallVectorImpl<TreeEntry *> &GatherOps); 1989 1990 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 1991 /// if any. If it is not vectorized (gather node), returns nullptr. 1992 TreeEntry *getVectorizedOperand(TreeEntry *UserTE, unsigned OpIdx) { 1993 ArrayRef<Value *> VL = UserTE->getOperand(OpIdx); 1994 TreeEntry *TE = nullptr; 1995 const auto *It = find_if(VL, [this, &TE](Value *V) { 1996 TE = getTreeEntry(V); 1997 return TE; 1998 }); 1999 if (It != VL.end() && TE->isSame(VL)) 2000 return TE; 2001 return nullptr; 2002 } 2003 2004 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 2005 /// if any. If it is not vectorized (gather node), returns nullptr. 2006 const TreeEntry *getVectorizedOperand(const TreeEntry *UserTE, 2007 unsigned OpIdx) const { 2008 return const_cast<BoUpSLP *>(this)->getVectorizedOperand( 2009 const_cast<TreeEntry *>(UserTE), OpIdx); 2010 } 2011 2012 /// Checks if all users of \p I are the part of the vectorization tree. 2013 bool areAllUsersVectorized(Instruction *I, 2014 ArrayRef<Value *> VectorizedVals) const; 2015 2016 /// \returns the cost of the vectorizable entry. 2017 InstructionCost getEntryCost(const TreeEntry *E, 2018 ArrayRef<Value *> VectorizedVals); 2019 2020 /// This is the recursive part of buildTree. 2021 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 2022 const EdgeInfo &EI); 2023 2024 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 2025 /// be vectorized to use the original vector (or aggregate "bitcast" to a 2026 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 2027 /// returns false, setting \p CurrentOrder to either an empty vector or a 2028 /// non-identity permutation that allows to reuse extract instructions. 2029 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 2030 SmallVectorImpl<unsigned> &CurrentOrder) const; 2031 2032 /// Vectorize a single entry in the tree. 2033 Value *vectorizeTree(TreeEntry *E); 2034 2035 /// Vectorize a single entry in the tree, starting in \p VL. 2036 Value *vectorizeTree(ArrayRef<Value *> VL); 2037 2038 /// Create a new vector from a list of scalar values. Produces a sequence 2039 /// which exploits values reused across lanes, and arranges the inserts 2040 /// for ease of later optimization. 2041 Value *createBuildVector(ArrayRef<Value *> VL); 2042 2043 /// \returns the scalarization cost for this type. Scalarization in this 2044 /// context means the creation of vectors from a group of scalars. If \p 2045 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 2046 /// vector elements. 2047 InstructionCost getGatherCost(FixedVectorType *Ty, 2048 const APInt &ShuffledIndices, 2049 bool NeedToShuffle) const; 2050 2051 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 2052 /// tree entries. 2053 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 2054 /// previous tree entries. \p Mask is filled with the shuffle mask. 2055 Optional<TargetTransformInfo::ShuffleKind> 2056 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 2057 SmallVectorImpl<const TreeEntry *> &Entries); 2058 2059 /// \returns the scalarization cost for this list of values. Assuming that 2060 /// this subtree gets vectorized, we may need to extract the values from the 2061 /// roots. This method calculates the cost of extracting the values. 2062 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 2063 2064 /// Set the Builder insert point to one after the last instruction in 2065 /// the bundle 2066 void setInsertPointAfterBundle(const TreeEntry *E); 2067 2068 /// \returns a vector from a collection of scalars in \p VL. 2069 Value *gather(ArrayRef<Value *> VL); 2070 2071 /// \returns whether the VectorizableTree is fully vectorizable and will 2072 /// be beneficial even the tree height is tiny. 2073 bool isFullyVectorizableTinyTree(bool ForReduction) const; 2074 2075 /// Reorder commutative or alt operands to get better probability of 2076 /// generating vectorized code. 2077 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 2078 SmallVectorImpl<Value *> &Left, 2079 SmallVectorImpl<Value *> &Right, 2080 const DataLayout &DL, 2081 ScalarEvolution &SE, 2082 const BoUpSLP &R); 2083 struct TreeEntry { 2084 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 2085 TreeEntry(VecTreeTy &Container) : Container(Container) {} 2086 2087 /// \returns true if the scalars in VL are equal to this entry. 2088 bool isSame(ArrayRef<Value *> VL) const { 2089 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 2090 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 2091 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 2092 return VL.size() == Mask.size() && 2093 std::equal(VL.begin(), VL.end(), Mask.begin(), 2094 [Scalars](Value *V, int Idx) { 2095 return (isa<UndefValue>(V) && 2096 Idx == UndefMaskElem) || 2097 (Idx != UndefMaskElem && V == Scalars[Idx]); 2098 }); 2099 }; 2100 if (!ReorderIndices.empty()) { 2101 // TODO: implement matching if the nodes are just reordered, still can 2102 // treat the vector as the same if the list of scalars matches VL 2103 // directly, without reordering. 2104 SmallVector<int> Mask; 2105 inversePermutation(ReorderIndices, Mask); 2106 if (VL.size() == Scalars.size()) 2107 return IsSame(Scalars, Mask); 2108 if (VL.size() == ReuseShuffleIndices.size()) { 2109 ::addMask(Mask, ReuseShuffleIndices); 2110 return IsSame(Scalars, Mask); 2111 } 2112 return false; 2113 } 2114 return IsSame(Scalars, ReuseShuffleIndices); 2115 } 2116 2117 /// \returns true if current entry has same operands as \p TE. 2118 bool hasEqualOperands(const TreeEntry &TE) const { 2119 if (TE.getNumOperands() != getNumOperands()) 2120 return false; 2121 SmallBitVector Used(getNumOperands()); 2122 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 2123 unsigned PrevCount = Used.count(); 2124 for (unsigned K = 0; K < E; ++K) { 2125 if (Used.test(K)) 2126 continue; 2127 if (getOperand(K) == TE.getOperand(I)) { 2128 Used.set(K); 2129 break; 2130 } 2131 } 2132 // Check if we actually found the matching operand. 2133 if (PrevCount == Used.count()) 2134 return false; 2135 } 2136 return true; 2137 } 2138 2139 /// \return Final vectorization factor for the node. Defined by the total 2140 /// number of vectorized scalars, including those, used several times in the 2141 /// entry and counted in the \a ReuseShuffleIndices, if any. 2142 unsigned getVectorFactor() const { 2143 if (!ReuseShuffleIndices.empty()) 2144 return ReuseShuffleIndices.size(); 2145 return Scalars.size(); 2146 }; 2147 2148 /// A vector of scalars. 2149 ValueList Scalars; 2150 2151 /// The Scalars are vectorized into this value. It is initialized to Null. 2152 Value *VectorizedValue = nullptr; 2153 2154 /// Do we need to gather this sequence or vectorize it 2155 /// (either with vector instruction or with scatter/gather 2156 /// intrinsics for store/load)? 2157 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 2158 EntryState State; 2159 2160 /// Does this sequence require some shuffling? 2161 SmallVector<int, 4> ReuseShuffleIndices; 2162 2163 /// Does this entry require reordering? 2164 SmallVector<unsigned, 4> ReorderIndices; 2165 2166 /// Points back to the VectorizableTree. 2167 /// 2168 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 2169 /// to be a pointer and needs to be able to initialize the child iterator. 2170 /// Thus we need a reference back to the container to translate the indices 2171 /// to entries. 2172 VecTreeTy &Container; 2173 2174 /// The TreeEntry index containing the user of this entry. We can actually 2175 /// have multiple users so the data structure is not truly a tree. 2176 SmallVector<EdgeInfo, 1> UserTreeIndices; 2177 2178 /// The index of this treeEntry in VectorizableTree. 2179 int Idx = -1; 2180 2181 private: 2182 /// The operands of each instruction in each lane Operands[op_index][lane]. 2183 /// Note: This helps avoid the replication of the code that performs the 2184 /// reordering of operands during buildTree_rec() and vectorizeTree(). 2185 SmallVector<ValueList, 2> Operands; 2186 2187 /// The main/alternate instruction. 2188 Instruction *MainOp = nullptr; 2189 Instruction *AltOp = nullptr; 2190 2191 public: 2192 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 2193 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 2194 if (Operands.size() < OpIdx + 1) 2195 Operands.resize(OpIdx + 1); 2196 assert(Operands[OpIdx].empty() && "Already resized?"); 2197 assert(OpVL.size() <= Scalars.size() && 2198 "Number of operands is greater than the number of scalars."); 2199 Operands[OpIdx].resize(OpVL.size()); 2200 copy(OpVL, Operands[OpIdx].begin()); 2201 } 2202 2203 /// Set the operands of this bundle in their original order. 2204 void setOperandsInOrder() { 2205 assert(Operands.empty() && "Already initialized?"); 2206 auto *I0 = cast<Instruction>(Scalars[0]); 2207 Operands.resize(I0->getNumOperands()); 2208 unsigned NumLanes = Scalars.size(); 2209 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 2210 OpIdx != NumOperands; ++OpIdx) { 2211 Operands[OpIdx].resize(NumLanes); 2212 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 2213 auto *I = cast<Instruction>(Scalars[Lane]); 2214 assert(I->getNumOperands() == NumOperands && 2215 "Expected same number of operands"); 2216 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 2217 } 2218 } 2219 } 2220 2221 /// Reorders operands of the node to the given mask \p Mask. 2222 void reorderOperands(ArrayRef<int> Mask) { 2223 for (ValueList &Operand : Operands) 2224 reorderScalars(Operand, Mask); 2225 } 2226 2227 /// \returns the \p OpIdx operand of this TreeEntry. 2228 ValueList &getOperand(unsigned OpIdx) { 2229 assert(OpIdx < Operands.size() && "Off bounds"); 2230 return Operands[OpIdx]; 2231 } 2232 2233 /// \returns the \p OpIdx operand of this TreeEntry. 2234 ArrayRef<Value *> getOperand(unsigned OpIdx) const { 2235 assert(OpIdx < Operands.size() && "Off bounds"); 2236 return Operands[OpIdx]; 2237 } 2238 2239 /// \returns the number of operands. 2240 unsigned getNumOperands() const { return Operands.size(); } 2241 2242 /// \return the single \p OpIdx operand. 2243 Value *getSingleOperand(unsigned OpIdx) const { 2244 assert(OpIdx < Operands.size() && "Off bounds"); 2245 assert(!Operands[OpIdx].empty() && "No operand available"); 2246 return Operands[OpIdx][0]; 2247 } 2248 2249 /// Some of the instructions in the list have alternate opcodes. 2250 bool isAltShuffle() const { return MainOp != AltOp; } 2251 2252 bool isOpcodeOrAlt(Instruction *I) const { 2253 unsigned CheckedOpcode = I->getOpcode(); 2254 return (getOpcode() == CheckedOpcode || 2255 getAltOpcode() == CheckedOpcode); 2256 } 2257 2258 /// Chooses the correct key for scheduling data. If \p Op has the same (or 2259 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 2260 /// \p OpValue. 2261 Value *isOneOf(Value *Op) const { 2262 auto *I = dyn_cast<Instruction>(Op); 2263 if (I && isOpcodeOrAlt(I)) 2264 return Op; 2265 return MainOp; 2266 } 2267 2268 void setOperations(const InstructionsState &S) { 2269 MainOp = S.MainOp; 2270 AltOp = S.AltOp; 2271 } 2272 2273 Instruction *getMainOp() const { 2274 return MainOp; 2275 } 2276 2277 Instruction *getAltOp() const { 2278 return AltOp; 2279 } 2280 2281 /// The main/alternate opcodes for the list of instructions. 2282 unsigned getOpcode() const { 2283 return MainOp ? MainOp->getOpcode() : 0; 2284 } 2285 2286 unsigned getAltOpcode() const { 2287 return AltOp ? AltOp->getOpcode() : 0; 2288 } 2289 2290 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 2291 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 2292 int findLaneForValue(Value *V) const { 2293 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2294 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2295 if (!ReorderIndices.empty()) 2296 FoundLane = ReorderIndices[FoundLane]; 2297 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2298 if (!ReuseShuffleIndices.empty()) { 2299 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2300 find(ReuseShuffleIndices, FoundLane)); 2301 } 2302 return FoundLane; 2303 } 2304 2305 #ifndef NDEBUG 2306 /// Debug printer. 2307 LLVM_DUMP_METHOD void dump() const { 2308 dbgs() << Idx << ".\n"; 2309 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 2310 dbgs() << "Operand " << OpI << ":\n"; 2311 for (const Value *V : Operands[OpI]) 2312 dbgs().indent(2) << *V << "\n"; 2313 } 2314 dbgs() << "Scalars: \n"; 2315 for (Value *V : Scalars) 2316 dbgs().indent(2) << *V << "\n"; 2317 dbgs() << "State: "; 2318 switch (State) { 2319 case Vectorize: 2320 dbgs() << "Vectorize\n"; 2321 break; 2322 case ScatterVectorize: 2323 dbgs() << "ScatterVectorize\n"; 2324 break; 2325 case NeedToGather: 2326 dbgs() << "NeedToGather\n"; 2327 break; 2328 } 2329 dbgs() << "MainOp: "; 2330 if (MainOp) 2331 dbgs() << *MainOp << "\n"; 2332 else 2333 dbgs() << "NULL\n"; 2334 dbgs() << "AltOp: "; 2335 if (AltOp) 2336 dbgs() << *AltOp << "\n"; 2337 else 2338 dbgs() << "NULL\n"; 2339 dbgs() << "VectorizedValue: "; 2340 if (VectorizedValue) 2341 dbgs() << *VectorizedValue << "\n"; 2342 else 2343 dbgs() << "NULL\n"; 2344 dbgs() << "ReuseShuffleIndices: "; 2345 if (ReuseShuffleIndices.empty()) 2346 dbgs() << "Empty"; 2347 else 2348 for (int ReuseIdx : ReuseShuffleIndices) 2349 dbgs() << ReuseIdx << ", "; 2350 dbgs() << "\n"; 2351 dbgs() << "ReorderIndices: "; 2352 for (unsigned ReorderIdx : ReorderIndices) 2353 dbgs() << ReorderIdx << ", "; 2354 dbgs() << "\n"; 2355 dbgs() << "UserTreeIndices: "; 2356 for (const auto &EInfo : UserTreeIndices) 2357 dbgs() << EInfo << ", "; 2358 dbgs() << "\n"; 2359 } 2360 #endif 2361 }; 2362 2363 #ifndef NDEBUG 2364 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 2365 InstructionCost VecCost, 2366 InstructionCost ScalarCost) const { 2367 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 2368 dbgs() << "SLP: Costs:\n"; 2369 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 2370 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 2371 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 2372 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 2373 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 2374 } 2375 #endif 2376 2377 /// Create a new VectorizableTree entry. 2378 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 2379 const InstructionsState &S, 2380 const EdgeInfo &UserTreeIdx, 2381 ArrayRef<int> ReuseShuffleIndices = None, 2382 ArrayRef<unsigned> ReorderIndices = None) { 2383 TreeEntry::EntryState EntryState = 2384 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 2385 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 2386 ReuseShuffleIndices, ReorderIndices); 2387 } 2388 2389 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 2390 TreeEntry::EntryState EntryState, 2391 Optional<ScheduleData *> Bundle, 2392 const InstructionsState &S, 2393 const EdgeInfo &UserTreeIdx, 2394 ArrayRef<int> ReuseShuffleIndices = None, 2395 ArrayRef<unsigned> ReorderIndices = None) { 2396 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 2397 (Bundle && EntryState != TreeEntry::NeedToGather)) && 2398 "Need to vectorize gather entry?"); 2399 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 2400 TreeEntry *Last = VectorizableTree.back().get(); 2401 Last->Idx = VectorizableTree.size() - 1; 2402 Last->State = EntryState; 2403 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 2404 ReuseShuffleIndices.end()); 2405 if (ReorderIndices.empty()) { 2406 Last->Scalars.assign(VL.begin(), VL.end()); 2407 Last->setOperations(S); 2408 } else { 2409 // Reorder scalars and build final mask. 2410 Last->Scalars.assign(VL.size(), nullptr); 2411 transform(ReorderIndices, Last->Scalars.begin(), 2412 [VL](unsigned Idx) -> Value * { 2413 if (Idx >= VL.size()) 2414 return UndefValue::get(VL.front()->getType()); 2415 return VL[Idx]; 2416 }); 2417 InstructionsState S = getSameOpcode(Last->Scalars); 2418 Last->setOperations(S); 2419 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 2420 } 2421 if (Last->State != TreeEntry::NeedToGather) { 2422 for (Value *V : VL) { 2423 assert(!getTreeEntry(V) && "Scalar already in tree!"); 2424 ScalarToTreeEntry[V] = Last; 2425 } 2426 // Update the scheduler bundle to point to this TreeEntry. 2427 ScheduleData *BundleMember = Bundle.getValue(); 2428 assert((BundleMember || isa<PHINode>(S.MainOp) || 2429 isVectorLikeInstWithConstOps(S.MainOp) || 2430 doesNotNeedToSchedule(VL)) && 2431 "Bundle and VL out of sync"); 2432 if (BundleMember) { 2433 for (Value *V : VL) { 2434 if (doesNotNeedToBeScheduled(V)) 2435 continue; 2436 assert(BundleMember && "Unexpected end of bundle."); 2437 BundleMember->TE = Last; 2438 BundleMember = BundleMember->NextInBundle; 2439 } 2440 } 2441 assert(!BundleMember && "Bundle and VL out of sync"); 2442 } else { 2443 MustGather.insert(VL.begin(), VL.end()); 2444 } 2445 2446 if (UserTreeIdx.UserTE) 2447 Last->UserTreeIndices.push_back(UserTreeIdx); 2448 2449 return Last; 2450 } 2451 2452 /// -- Vectorization State -- 2453 /// Holds all of the tree entries. 2454 TreeEntry::VecTreeTy VectorizableTree; 2455 2456 #ifndef NDEBUG 2457 /// Debug printer. 2458 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 2459 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 2460 VectorizableTree[Id]->dump(); 2461 dbgs() << "\n"; 2462 } 2463 } 2464 #endif 2465 2466 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2467 2468 const TreeEntry *getTreeEntry(Value *V) const { 2469 return ScalarToTreeEntry.lookup(V); 2470 } 2471 2472 /// Maps a specific scalar to its tree entry. 2473 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2474 2475 /// Maps a value to the proposed vectorizable size. 2476 SmallDenseMap<Value *, unsigned> InstrElementSize; 2477 2478 /// A list of scalars that we found that we need to keep as scalars. 2479 ValueSet MustGather; 2480 2481 /// This POD struct describes one external user in the vectorized tree. 2482 struct ExternalUser { 2483 ExternalUser(Value *S, llvm::User *U, int L) 2484 : Scalar(S), User(U), Lane(L) {} 2485 2486 // Which scalar in our function. 2487 Value *Scalar; 2488 2489 // Which user that uses the scalar. 2490 llvm::User *User; 2491 2492 // Which lane does the scalar belong to. 2493 int Lane; 2494 }; 2495 using UserList = SmallVector<ExternalUser, 16>; 2496 2497 /// Checks if two instructions may access the same memory. 2498 /// 2499 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2500 /// is invariant in the calling loop. 2501 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2502 Instruction *Inst2) { 2503 // First check if the result is already in the cache. 2504 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2505 Optional<bool> &result = AliasCache[key]; 2506 if (result.hasValue()) { 2507 return result.getValue(); 2508 } 2509 bool aliased = true; 2510 if (Loc1.Ptr && isSimple(Inst1)) 2511 aliased = isModOrRefSet(BatchAA.getModRefInfo(Inst2, Loc1)); 2512 // Store the result in the cache. 2513 result = aliased; 2514 return aliased; 2515 } 2516 2517 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2518 2519 /// Cache for alias results. 2520 /// TODO: consider moving this to the AliasAnalysis itself. 2521 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2522 2523 // Cache for pointerMayBeCaptured calls inside AA. This is preserved 2524 // globally through SLP because we don't perform any action which 2525 // invalidates capture results. 2526 BatchAAResults BatchAA; 2527 2528 /// Temporary store for deleted instructions. Instructions will be deleted 2529 /// eventually when the BoUpSLP is destructed. The deferral is required to 2530 /// ensure that there are no incorrect collisions in the AliasCache, which 2531 /// can happen if a new instruction is allocated at the same address as a 2532 /// previously deleted instruction. 2533 DenseSet<Instruction *> DeletedInstructions; 2534 2535 /// A list of values that need to extracted out of the tree. 2536 /// This list holds pairs of (Internal Scalar : External User). External User 2537 /// can be nullptr, it means that this Internal Scalar will be used later, 2538 /// after vectorization. 2539 UserList ExternalUses; 2540 2541 /// Values used only by @llvm.assume calls. 2542 SmallPtrSet<const Value *, 32> EphValues; 2543 2544 /// Holds all of the instructions that we gathered. 2545 SetVector<Instruction *> GatherShuffleSeq; 2546 2547 /// A list of blocks that we are going to CSE. 2548 SetVector<BasicBlock *> CSEBlocks; 2549 2550 /// Contains all scheduling relevant data for an instruction. 2551 /// A ScheduleData either represents a single instruction or a member of an 2552 /// instruction bundle (= a group of instructions which is combined into a 2553 /// vector instruction). 2554 struct ScheduleData { 2555 // The initial value for the dependency counters. It means that the 2556 // dependencies are not calculated yet. 2557 enum { InvalidDeps = -1 }; 2558 2559 ScheduleData() = default; 2560 2561 void init(int BlockSchedulingRegionID, Value *OpVal) { 2562 FirstInBundle = this; 2563 NextInBundle = nullptr; 2564 NextLoadStore = nullptr; 2565 IsScheduled = false; 2566 SchedulingRegionID = BlockSchedulingRegionID; 2567 clearDependencies(); 2568 OpValue = OpVal; 2569 TE = nullptr; 2570 } 2571 2572 /// Verify basic self consistency properties 2573 void verify() { 2574 if (hasValidDependencies()) { 2575 assert(UnscheduledDeps <= Dependencies && "invariant"); 2576 } else { 2577 assert(UnscheduledDeps == Dependencies && "invariant"); 2578 } 2579 2580 if (IsScheduled) { 2581 assert(isSchedulingEntity() && 2582 "unexpected scheduled state"); 2583 for (const ScheduleData *BundleMember = this; BundleMember; 2584 BundleMember = BundleMember->NextInBundle) { 2585 assert(BundleMember->hasValidDependencies() && 2586 BundleMember->UnscheduledDeps == 0 && 2587 "unexpected scheduled state"); 2588 assert((BundleMember == this || !BundleMember->IsScheduled) && 2589 "only bundle is marked scheduled"); 2590 } 2591 } 2592 2593 assert(Inst->getParent() == FirstInBundle->Inst->getParent() && 2594 "all bundle members must be in same basic block"); 2595 } 2596 2597 /// Returns true if the dependency information has been calculated. 2598 /// Note that depenendency validity can vary between instructions within 2599 /// a single bundle. 2600 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2601 2602 /// Returns true for single instructions and for bundle representatives 2603 /// (= the head of a bundle). 2604 bool isSchedulingEntity() const { return FirstInBundle == this; } 2605 2606 /// Returns true if it represents an instruction bundle and not only a 2607 /// single instruction. 2608 bool isPartOfBundle() const { 2609 return NextInBundle != nullptr || FirstInBundle != this || TE; 2610 } 2611 2612 /// Returns true if it is ready for scheduling, i.e. it has no more 2613 /// unscheduled depending instructions/bundles. 2614 bool isReady() const { 2615 assert(isSchedulingEntity() && 2616 "can't consider non-scheduling entity for ready list"); 2617 return unscheduledDepsInBundle() == 0 && !IsScheduled; 2618 } 2619 2620 /// Modifies the number of unscheduled dependencies for this instruction, 2621 /// and returns the number of remaining dependencies for the containing 2622 /// bundle. 2623 int incrementUnscheduledDeps(int Incr) { 2624 assert(hasValidDependencies() && 2625 "increment of unscheduled deps would be meaningless"); 2626 UnscheduledDeps += Incr; 2627 return FirstInBundle->unscheduledDepsInBundle(); 2628 } 2629 2630 /// Sets the number of unscheduled dependencies to the number of 2631 /// dependencies. 2632 void resetUnscheduledDeps() { 2633 UnscheduledDeps = Dependencies; 2634 } 2635 2636 /// Clears all dependency information. 2637 void clearDependencies() { 2638 Dependencies = InvalidDeps; 2639 resetUnscheduledDeps(); 2640 MemoryDependencies.clear(); 2641 ControlDependencies.clear(); 2642 } 2643 2644 int unscheduledDepsInBundle() const { 2645 assert(isSchedulingEntity() && "only meaningful on the bundle"); 2646 int Sum = 0; 2647 for (const ScheduleData *BundleMember = this; BundleMember; 2648 BundleMember = BundleMember->NextInBundle) { 2649 if (BundleMember->UnscheduledDeps == InvalidDeps) 2650 return InvalidDeps; 2651 Sum += BundleMember->UnscheduledDeps; 2652 } 2653 return Sum; 2654 } 2655 2656 void dump(raw_ostream &os) const { 2657 if (!isSchedulingEntity()) { 2658 os << "/ " << *Inst; 2659 } else if (NextInBundle) { 2660 os << '[' << *Inst; 2661 ScheduleData *SD = NextInBundle; 2662 while (SD) { 2663 os << ';' << *SD->Inst; 2664 SD = SD->NextInBundle; 2665 } 2666 os << ']'; 2667 } else { 2668 os << *Inst; 2669 } 2670 } 2671 2672 Instruction *Inst = nullptr; 2673 2674 /// Opcode of the current instruction in the schedule data. 2675 Value *OpValue = nullptr; 2676 2677 /// The TreeEntry that this instruction corresponds to. 2678 TreeEntry *TE = nullptr; 2679 2680 /// Points to the head in an instruction bundle (and always to this for 2681 /// single instructions). 2682 ScheduleData *FirstInBundle = nullptr; 2683 2684 /// Single linked list of all instructions in a bundle. Null if it is a 2685 /// single instruction. 2686 ScheduleData *NextInBundle = nullptr; 2687 2688 /// Single linked list of all memory instructions (e.g. load, store, call) 2689 /// in the block - until the end of the scheduling region. 2690 ScheduleData *NextLoadStore = nullptr; 2691 2692 /// The dependent memory instructions. 2693 /// This list is derived on demand in calculateDependencies(). 2694 SmallVector<ScheduleData *, 4> MemoryDependencies; 2695 2696 /// List of instructions which this instruction could be control dependent 2697 /// on. Allowing such nodes to be scheduled below this one could introduce 2698 /// a runtime fault which didn't exist in the original program. 2699 /// ex: this is a load or udiv following a readonly call which inf loops 2700 SmallVector<ScheduleData *, 4> ControlDependencies; 2701 2702 /// This ScheduleData is in the current scheduling region if this matches 2703 /// the current SchedulingRegionID of BlockScheduling. 2704 int SchedulingRegionID = 0; 2705 2706 /// Used for getting a "good" final ordering of instructions. 2707 int SchedulingPriority = 0; 2708 2709 /// The number of dependencies. Constitutes of the number of users of the 2710 /// instruction plus the number of dependent memory instructions (if any). 2711 /// This value is calculated on demand. 2712 /// If InvalidDeps, the number of dependencies is not calculated yet. 2713 int Dependencies = InvalidDeps; 2714 2715 /// The number of dependencies minus the number of dependencies of scheduled 2716 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2717 /// for scheduling. 2718 /// Note that this is negative as long as Dependencies is not calculated. 2719 int UnscheduledDeps = InvalidDeps; 2720 2721 /// True if this instruction is scheduled (or considered as scheduled in the 2722 /// dry-run). 2723 bool IsScheduled = false; 2724 }; 2725 2726 #ifndef NDEBUG 2727 friend inline raw_ostream &operator<<(raw_ostream &os, 2728 const BoUpSLP::ScheduleData &SD) { 2729 SD.dump(os); 2730 return os; 2731 } 2732 #endif 2733 2734 friend struct GraphTraits<BoUpSLP *>; 2735 friend struct DOTGraphTraits<BoUpSLP *>; 2736 2737 /// Contains all scheduling data for a basic block. 2738 /// It does not schedules instructions, which are not memory read/write 2739 /// instructions and their operands are either constants, or arguments, or 2740 /// phis, or instructions from others blocks, or their users are phis or from 2741 /// the other blocks. The resulting vector instructions can be placed at the 2742 /// beginning of the basic block without scheduling (if operands does not need 2743 /// to be scheduled) or at the end of the block (if users are outside of the 2744 /// block). It allows to save some compile time and memory used by the 2745 /// compiler. 2746 /// ScheduleData is assigned for each instruction in between the boundaries of 2747 /// the tree entry, even for those, which are not part of the graph. It is 2748 /// required to correctly follow the dependencies between the instructions and 2749 /// their correct scheduling. The ScheduleData is not allocated for the 2750 /// instructions, which do not require scheduling, like phis, nodes with 2751 /// extractelements/insertelements only or nodes with instructions, with 2752 /// uses/operands outside of the block. 2753 struct BlockScheduling { 2754 BlockScheduling(BasicBlock *BB) 2755 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2756 2757 void clear() { 2758 ReadyInsts.clear(); 2759 ScheduleStart = nullptr; 2760 ScheduleEnd = nullptr; 2761 FirstLoadStoreInRegion = nullptr; 2762 LastLoadStoreInRegion = nullptr; 2763 RegionHasStackSave = false; 2764 2765 // Reduce the maximum schedule region size by the size of the 2766 // previous scheduling run. 2767 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2768 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2769 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2770 ScheduleRegionSize = 0; 2771 2772 // Make a new scheduling region, i.e. all existing ScheduleData is not 2773 // in the new region yet. 2774 ++SchedulingRegionID; 2775 } 2776 2777 ScheduleData *getScheduleData(Instruction *I) { 2778 if (BB != I->getParent()) 2779 // Avoid lookup if can't possibly be in map. 2780 return nullptr; 2781 ScheduleData *SD = ScheduleDataMap.lookup(I); 2782 if (SD && isInSchedulingRegion(SD)) 2783 return SD; 2784 return nullptr; 2785 } 2786 2787 ScheduleData *getScheduleData(Value *V) { 2788 if (auto *I = dyn_cast<Instruction>(V)) 2789 return getScheduleData(I); 2790 return nullptr; 2791 } 2792 2793 ScheduleData *getScheduleData(Value *V, Value *Key) { 2794 if (V == Key) 2795 return getScheduleData(V); 2796 auto I = ExtraScheduleDataMap.find(V); 2797 if (I != ExtraScheduleDataMap.end()) { 2798 ScheduleData *SD = I->second.lookup(Key); 2799 if (SD && isInSchedulingRegion(SD)) 2800 return SD; 2801 } 2802 return nullptr; 2803 } 2804 2805 bool isInSchedulingRegion(ScheduleData *SD) const { 2806 return SD->SchedulingRegionID == SchedulingRegionID; 2807 } 2808 2809 /// Marks an instruction as scheduled and puts all dependent ready 2810 /// instructions into the ready-list. 2811 template <typename ReadyListType> 2812 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2813 SD->IsScheduled = true; 2814 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2815 2816 for (ScheduleData *BundleMember = SD; BundleMember; 2817 BundleMember = BundleMember->NextInBundle) { 2818 if (BundleMember->Inst != BundleMember->OpValue) 2819 continue; 2820 2821 // Handle the def-use chain dependencies. 2822 2823 // Decrement the unscheduled counter and insert to ready list if ready. 2824 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2825 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2826 if (OpDef && OpDef->hasValidDependencies() && 2827 OpDef->incrementUnscheduledDeps(-1) == 0) { 2828 // There are no more unscheduled dependencies after 2829 // decrementing, so we can put the dependent instruction 2830 // into the ready list. 2831 ScheduleData *DepBundle = OpDef->FirstInBundle; 2832 assert(!DepBundle->IsScheduled && 2833 "already scheduled bundle gets ready"); 2834 ReadyList.insert(DepBundle); 2835 LLVM_DEBUG(dbgs() 2836 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2837 } 2838 }); 2839 }; 2840 2841 // If BundleMember is a vector bundle, its operands may have been 2842 // reordered during buildTree(). We therefore need to get its operands 2843 // through the TreeEntry. 2844 if (TreeEntry *TE = BundleMember->TE) { 2845 // Need to search for the lane since the tree entry can be reordered. 2846 int Lane = std::distance(TE->Scalars.begin(), 2847 find(TE->Scalars, BundleMember->Inst)); 2848 assert(Lane >= 0 && "Lane not set"); 2849 2850 // Since vectorization tree is being built recursively this assertion 2851 // ensures that the tree entry has all operands set before reaching 2852 // this code. Couple of exceptions known at the moment are extracts 2853 // where their second (immediate) operand is not added. Since 2854 // immediates do not affect scheduler behavior this is considered 2855 // okay. 2856 auto *In = BundleMember->Inst; 2857 assert(In && 2858 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2859 In->getNumOperands() == TE->getNumOperands()) && 2860 "Missed TreeEntry operands?"); 2861 (void)In; // fake use to avoid build failure when assertions disabled 2862 2863 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2864 OpIdx != NumOperands; ++OpIdx) 2865 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2866 DecrUnsched(I); 2867 } else { 2868 // If BundleMember is a stand-alone instruction, no operand reordering 2869 // has taken place, so we directly access its operands. 2870 for (Use &U : BundleMember->Inst->operands()) 2871 if (auto *I = dyn_cast<Instruction>(U.get())) 2872 DecrUnsched(I); 2873 } 2874 // Handle the memory dependencies. 2875 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2876 if (MemoryDepSD->hasValidDependencies() && 2877 MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2878 // There are no more unscheduled dependencies after decrementing, 2879 // so we can put the dependent instruction into the ready list. 2880 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2881 assert(!DepBundle->IsScheduled && 2882 "already scheduled bundle gets ready"); 2883 ReadyList.insert(DepBundle); 2884 LLVM_DEBUG(dbgs() 2885 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2886 } 2887 } 2888 // Handle the control dependencies. 2889 for (ScheduleData *DepSD : BundleMember->ControlDependencies) { 2890 if (DepSD->incrementUnscheduledDeps(-1) == 0) { 2891 // There are no more unscheduled dependencies after decrementing, 2892 // so we can put the dependent instruction into the ready list. 2893 ScheduleData *DepBundle = DepSD->FirstInBundle; 2894 assert(!DepBundle->IsScheduled && 2895 "already scheduled bundle gets ready"); 2896 ReadyList.insert(DepBundle); 2897 LLVM_DEBUG(dbgs() 2898 << "SLP: gets ready (ctl): " << *DepBundle << "\n"); 2899 } 2900 } 2901 2902 } 2903 } 2904 2905 /// Verify basic self consistency properties of the data structure. 2906 void verify() { 2907 if (!ScheduleStart) 2908 return; 2909 2910 assert(ScheduleStart->getParent() == ScheduleEnd->getParent() && 2911 ScheduleStart->comesBefore(ScheduleEnd) && 2912 "Not a valid scheduling region?"); 2913 2914 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2915 auto *SD = getScheduleData(I); 2916 if (!SD) 2917 continue; 2918 assert(isInSchedulingRegion(SD) && 2919 "primary schedule data not in window?"); 2920 assert(isInSchedulingRegion(SD->FirstInBundle) && 2921 "entire bundle in window!"); 2922 (void)SD; 2923 doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); }); 2924 } 2925 2926 for (auto *SD : ReadyInsts) { 2927 assert(SD->isSchedulingEntity() && SD->isReady() && 2928 "item in ready list not ready?"); 2929 (void)SD; 2930 } 2931 } 2932 2933 void doForAllOpcodes(Value *V, 2934 function_ref<void(ScheduleData *SD)> Action) { 2935 if (ScheduleData *SD = getScheduleData(V)) 2936 Action(SD); 2937 auto I = ExtraScheduleDataMap.find(V); 2938 if (I != ExtraScheduleDataMap.end()) 2939 for (auto &P : I->second) 2940 if (isInSchedulingRegion(P.second)) 2941 Action(P.second); 2942 } 2943 2944 /// Put all instructions into the ReadyList which are ready for scheduling. 2945 template <typename ReadyListType> 2946 void initialFillReadyList(ReadyListType &ReadyList) { 2947 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2948 doForAllOpcodes(I, [&](ScheduleData *SD) { 2949 if (SD->isSchedulingEntity() && SD->hasValidDependencies() && 2950 SD->isReady()) { 2951 ReadyList.insert(SD); 2952 LLVM_DEBUG(dbgs() 2953 << "SLP: initially in ready list: " << *SD << "\n"); 2954 } 2955 }); 2956 } 2957 } 2958 2959 /// Build a bundle from the ScheduleData nodes corresponding to the 2960 /// scalar instruction for each lane. 2961 ScheduleData *buildBundle(ArrayRef<Value *> VL); 2962 2963 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2964 /// cyclic dependencies. This is only a dry-run, no instructions are 2965 /// actually moved at this stage. 2966 /// \returns the scheduling bundle. The returned Optional value is non-None 2967 /// if \p VL is allowed to be scheduled. 2968 Optional<ScheduleData *> 2969 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2970 const InstructionsState &S); 2971 2972 /// Un-bundles a group of instructions. 2973 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2974 2975 /// Allocates schedule data chunk. 2976 ScheduleData *allocateScheduleDataChunks(); 2977 2978 /// Extends the scheduling region so that V is inside the region. 2979 /// \returns true if the region size is within the limit. 2980 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2981 2982 /// Initialize the ScheduleData structures for new instructions in the 2983 /// scheduling region. 2984 void initScheduleData(Instruction *FromI, Instruction *ToI, 2985 ScheduleData *PrevLoadStore, 2986 ScheduleData *NextLoadStore); 2987 2988 /// Updates the dependency information of a bundle and of all instructions/ 2989 /// bundles which depend on the original bundle. 2990 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2991 BoUpSLP *SLP); 2992 2993 /// Sets all instruction in the scheduling region to un-scheduled. 2994 void resetSchedule(); 2995 2996 BasicBlock *BB; 2997 2998 /// Simple memory allocation for ScheduleData. 2999 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 3000 3001 /// The size of a ScheduleData array in ScheduleDataChunks. 3002 int ChunkSize; 3003 3004 /// The allocator position in the current chunk, which is the last entry 3005 /// of ScheduleDataChunks. 3006 int ChunkPos; 3007 3008 /// Attaches ScheduleData to Instruction. 3009 /// Note that the mapping survives during all vectorization iterations, i.e. 3010 /// ScheduleData structures are recycled. 3011 DenseMap<Instruction *, ScheduleData *> ScheduleDataMap; 3012 3013 /// Attaches ScheduleData to Instruction with the leading key. 3014 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 3015 ExtraScheduleDataMap; 3016 3017 /// The ready-list for scheduling (only used for the dry-run). 3018 SetVector<ScheduleData *> ReadyInsts; 3019 3020 /// The first instruction of the scheduling region. 3021 Instruction *ScheduleStart = nullptr; 3022 3023 /// The first instruction _after_ the scheduling region. 3024 Instruction *ScheduleEnd = nullptr; 3025 3026 /// The first memory accessing instruction in the scheduling region 3027 /// (can be null). 3028 ScheduleData *FirstLoadStoreInRegion = nullptr; 3029 3030 /// The last memory accessing instruction in the scheduling region 3031 /// (can be null). 3032 ScheduleData *LastLoadStoreInRegion = nullptr; 3033 3034 /// Is there an llvm.stacksave or llvm.stackrestore in the scheduling 3035 /// region? Used to optimize the dependence calculation for the 3036 /// common case where there isn't. 3037 bool RegionHasStackSave = false; 3038 3039 /// The current size of the scheduling region. 3040 int ScheduleRegionSize = 0; 3041 3042 /// The maximum size allowed for the scheduling region. 3043 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 3044 3045 /// The ID of the scheduling region. For a new vectorization iteration this 3046 /// is incremented which "removes" all ScheduleData from the region. 3047 /// Make sure that the initial SchedulingRegionID is greater than the 3048 /// initial SchedulingRegionID in ScheduleData (which is 0). 3049 int SchedulingRegionID = 1; 3050 }; 3051 3052 /// Attaches the BlockScheduling structures to basic blocks. 3053 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 3054 3055 /// Performs the "real" scheduling. Done before vectorization is actually 3056 /// performed in a basic block. 3057 void scheduleBlock(BlockScheduling *BS); 3058 3059 /// List of users to ignore during scheduling and that don't need extracting. 3060 ArrayRef<Value *> UserIgnoreList; 3061 3062 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 3063 /// sorted SmallVectors of unsigned. 3064 struct OrdersTypeDenseMapInfo { 3065 static OrdersType getEmptyKey() { 3066 OrdersType V; 3067 V.push_back(~1U); 3068 return V; 3069 } 3070 3071 static OrdersType getTombstoneKey() { 3072 OrdersType V; 3073 V.push_back(~2U); 3074 return V; 3075 } 3076 3077 static unsigned getHashValue(const OrdersType &V) { 3078 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 3079 } 3080 3081 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 3082 return LHS == RHS; 3083 } 3084 }; 3085 3086 // Analysis and block reference. 3087 Function *F; 3088 ScalarEvolution *SE; 3089 TargetTransformInfo *TTI; 3090 TargetLibraryInfo *TLI; 3091 LoopInfo *LI; 3092 DominatorTree *DT; 3093 AssumptionCache *AC; 3094 DemandedBits *DB; 3095 const DataLayout *DL; 3096 OptimizationRemarkEmitter *ORE; 3097 3098 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 3099 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 3100 3101 /// Instruction builder to construct the vectorized tree. 3102 IRBuilder<> Builder; 3103 3104 /// A map of scalar integer values to the smallest bit width with which they 3105 /// can legally be represented. The values map to (width, signed) pairs, 3106 /// where "width" indicates the minimum bit width and "signed" is True if the 3107 /// value must be signed-extended, rather than zero-extended, back to its 3108 /// original width. 3109 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 3110 }; 3111 3112 } // end namespace slpvectorizer 3113 3114 template <> struct GraphTraits<BoUpSLP *> { 3115 using TreeEntry = BoUpSLP::TreeEntry; 3116 3117 /// NodeRef has to be a pointer per the GraphWriter. 3118 using NodeRef = TreeEntry *; 3119 3120 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 3121 3122 /// Add the VectorizableTree to the index iterator to be able to return 3123 /// TreeEntry pointers. 3124 struct ChildIteratorType 3125 : public iterator_adaptor_base< 3126 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 3127 ContainerTy &VectorizableTree; 3128 3129 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 3130 ContainerTy &VT) 3131 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 3132 3133 NodeRef operator*() { return I->UserTE; } 3134 }; 3135 3136 static NodeRef getEntryNode(BoUpSLP &R) { 3137 return R.VectorizableTree[0].get(); 3138 } 3139 3140 static ChildIteratorType child_begin(NodeRef N) { 3141 return {N->UserTreeIndices.begin(), N->Container}; 3142 } 3143 3144 static ChildIteratorType child_end(NodeRef N) { 3145 return {N->UserTreeIndices.end(), N->Container}; 3146 } 3147 3148 /// For the node iterator we just need to turn the TreeEntry iterator into a 3149 /// TreeEntry* iterator so that it dereferences to NodeRef. 3150 class nodes_iterator { 3151 using ItTy = ContainerTy::iterator; 3152 ItTy It; 3153 3154 public: 3155 nodes_iterator(const ItTy &It2) : It(It2) {} 3156 NodeRef operator*() { return It->get(); } 3157 nodes_iterator operator++() { 3158 ++It; 3159 return *this; 3160 } 3161 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 3162 }; 3163 3164 static nodes_iterator nodes_begin(BoUpSLP *R) { 3165 return nodes_iterator(R->VectorizableTree.begin()); 3166 } 3167 3168 static nodes_iterator nodes_end(BoUpSLP *R) { 3169 return nodes_iterator(R->VectorizableTree.end()); 3170 } 3171 3172 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 3173 }; 3174 3175 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 3176 using TreeEntry = BoUpSLP::TreeEntry; 3177 3178 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3179 3180 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 3181 std::string Str; 3182 raw_string_ostream OS(Str); 3183 if (isSplat(Entry->Scalars)) 3184 OS << "<splat> "; 3185 for (auto V : Entry->Scalars) { 3186 OS << *V; 3187 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 3188 return EU.Scalar == V; 3189 })) 3190 OS << " <extract>"; 3191 OS << "\n"; 3192 } 3193 return Str; 3194 } 3195 3196 static std::string getNodeAttributes(const TreeEntry *Entry, 3197 const BoUpSLP *) { 3198 if (Entry->State == TreeEntry::NeedToGather) 3199 return "color=red"; 3200 return ""; 3201 } 3202 }; 3203 3204 } // end namespace llvm 3205 3206 BoUpSLP::~BoUpSLP() { 3207 SmallVector<WeakTrackingVH> DeadInsts; 3208 for (auto *I : DeletedInstructions) { 3209 for (Use &U : I->operands()) { 3210 auto *Op = dyn_cast<Instruction>(U.get()); 3211 if (Op && !DeletedInstructions.count(Op) && Op->hasOneUser() && 3212 wouldInstructionBeTriviallyDead(Op, TLI)) 3213 DeadInsts.emplace_back(Op); 3214 } 3215 I->dropAllReferences(); 3216 } 3217 for (auto *I : DeletedInstructions) { 3218 assert(I->use_empty() && 3219 "trying to erase instruction with users."); 3220 I->eraseFromParent(); 3221 } 3222 3223 // Cleanup any dead scalar code feeding the vectorized instructions 3224 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI); 3225 3226 #ifdef EXPENSIVE_CHECKS 3227 // If we could guarantee that this call is not extremely slow, we could 3228 // remove the ifdef limitation (see PR47712). 3229 assert(!verifyFunction(*F, &dbgs())); 3230 #endif 3231 } 3232 3233 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 3234 /// contains original mask for the scalars reused in the node. Procedure 3235 /// transform this mask in accordance with the given \p Mask. 3236 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 3237 assert(!Mask.empty() && Reuses.size() == Mask.size() && 3238 "Expected non-empty mask."); 3239 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 3240 Prev.swap(Reuses); 3241 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 3242 if (Mask[I] != UndefMaskElem) 3243 Reuses[Mask[I]] = Prev[I]; 3244 } 3245 3246 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 3247 /// the original order of the scalars. Procedure transforms the provided order 3248 /// in accordance with the given \p Mask. If the resulting \p Order is just an 3249 /// identity order, \p Order is cleared. 3250 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 3251 assert(!Mask.empty() && "Expected non-empty mask."); 3252 SmallVector<int> MaskOrder; 3253 if (Order.empty()) { 3254 MaskOrder.resize(Mask.size()); 3255 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 3256 } else { 3257 inversePermutation(Order, MaskOrder); 3258 } 3259 reorderReuses(MaskOrder, Mask); 3260 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 3261 Order.clear(); 3262 return; 3263 } 3264 Order.assign(Mask.size(), Mask.size()); 3265 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 3266 if (MaskOrder[I] != UndefMaskElem) 3267 Order[MaskOrder[I]] = I; 3268 fixupOrderingIndices(Order); 3269 } 3270 3271 Optional<BoUpSLP::OrdersType> 3272 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 3273 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 3274 unsigned NumScalars = TE.Scalars.size(); 3275 OrdersType CurrentOrder(NumScalars, NumScalars); 3276 SmallVector<int> Positions; 3277 SmallBitVector UsedPositions(NumScalars); 3278 const TreeEntry *STE = nullptr; 3279 // Try to find all gathered scalars that are gets vectorized in other 3280 // vectorize node. Here we can have only one single tree vector node to 3281 // correctly identify order of the gathered scalars. 3282 for (unsigned I = 0; I < NumScalars; ++I) { 3283 Value *V = TE.Scalars[I]; 3284 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 3285 continue; 3286 if (const auto *LocalSTE = getTreeEntry(V)) { 3287 if (!STE) 3288 STE = LocalSTE; 3289 else if (STE != LocalSTE) 3290 // Take the order only from the single vector node. 3291 return None; 3292 unsigned Lane = 3293 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 3294 if (Lane >= NumScalars) 3295 return None; 3296 if (CurrentOrder[Lane] != NumScalars) { 3297 if (Lane != I) 3298 continue; 3299 UsedPositions.reset(CurrentOrder[Lane]); 3300 } 3301 // The partial identity (where only some elements of the gather node are 3302 // in the identity order) is good. 3303 CurrentOrder[Lane] = I; 3304 UsedPositions.set(I); 3305 } 3306 } 3307 // Need to keep the order if we have a vector entry and at least 2 scalars or 3308 // the vectorized entry has just 2 scalars. 3309 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 3310 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 3311 for (unsigned I = 0; I < NumScalars; ++I) 3312 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 3313 return false; 3314 return true; 3315 }; 3316 if (IsIdentityOrder(CurrentOrder)) { 3317 CurrentOrder.clear(); 3318 return CurrentOrder; 3319 } 3320 auto *It = CurrentOrder.begin(); 3321 for (unsigned I = 0; I < NumScalars;) { 3322 if (UsedPositions.test(I)) { 3323 ++I; 3324 continue; 3325 } 3326 if (*It == NumScalars) { 3327 *It = I; 3328 ++I; 3329 } 3330 ++It; 3331 } 3332 return CurrentOrder; 3333 } 3334 return None; 3335 } 3336 3337 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE, 3338 bool TopToBottom) { 3339 // No need to reorder if need to shuffle reuses, still need to shuffle the 3340 // node. 3341 if (!TE.ReuseShuffleIndices.empty()) 3342 return None; 3343 if (TE.State == TreeEntry::Vectorize && 3344 (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) || 3345 (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) && 3346 !TE.isAltShuffle()) 3347 return TE.ReorderIndices; 3348 if (TE.State == TreeEntry::NeedToGather) { 3349 // TODO: add analysis of other gather nodes with extractelement 3350 // instructions and other values/instructions, not only undefs. 3351 if (((TE.getOpcode() == Instruction::ExtractElement && 3352 !TE.isAltShuffle()) || 3353 (all_of(TE.Scalars, 3354 [](Value *V) { 3355 return isa<UndefValue, ExtractElementInst>(V); 3356 }) && 3357 any_of(TE.Scalars, 3358 [](Value *V) { return isa<ExtractElementInst>(V); }))) && 3359 all_of(TE.Scalars, 3360 [](Value *V) { 3361 auto *EE = dyn_cast<ExtractElementInst>(V); 3362 return !EE || isa<FixedVectorType>(EE->getVectorOperandType()); 3363 }) && 3364 allSameType(TE.Scalars)) { 3365 // Check that gather of extractelements can be represented as 3366 // just a shuffle of a single vector. 3367 OrdersType CurrentOrder; 3368 bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder); 3369 if (Reuse || !CurrentOrder.empty()) { 3370 if (!CurrentOrder.empty()) 3371 fixupOrderingIndices(CurrentOrder); 3372 return CurrentOrder; 3373 } 3374 } 3375 if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE)) 3376 return CurrentOrder; 3377 } 3378 return None; 3379 } 3380 3381 void BoUpSLP::reorderTopToBottom() { 3382 // Maps VF to the graph nodes. 3383 DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries; 3384 // ExtractElement gather nodes which can be vectorized and need to handle 3385 // their ordering. 3386 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3387 // Find all reorderable nodes with the given VF. 3388 // Currently the are vectorized stores,loads,extracts + some gathering of 3389 // extracts. 3390 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 3391 const std::unique_ptr<TreeEntry> &TE) { 3392 if (Optional<OrdersType> CurrentOrder = 3393 getReorderingData(*TE, /*TopToBottom=*/true)) { 3394 // Do not include ordering for nodes used in the alt opcode vectorization, 3395 // better to reorder them during bottom-to-top stage. If follow the order 3396 // here, it causes reordering of the whole graph though actually it is 3397 // profitable just to reorder the subgraph that starts from the alternate 3398 // opcode vectorization node. Such nodes already end-up with the shuffle 3399 // instruction and it is just enough to change this shuffle rather than 3400 // rotate the scalars for the whole graph. 3401 unsigned Cnt = 0; 3402 const TreeEntry *UserTE = TE.get(); 3403 while (UserTE && Cnt < RecursionMaxDepth) { 3404 if (UserTE->UserTreeIndices.size() != 1) 3405 break; 3406 if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) { 3407 return EI.UserTE->State == TreeEntry::Vectorize && 3408 EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0; 3409 })) 3410 return; 3411 if (UserTE->UserTreeIndices.empty()) 3412 UserTE = nullptr; 3413 else 3414 UserTE = UserTE->UserTreeIndices.back().UserTE; 3415 ++Cnt; 3416 } 3417 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3418 if (TE->State != TreeEntry::Vectorize) 3419 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3420 } 3421 }); 3422 3423 // Reorder the graph nodes according to their vectorization factor. 3424 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 3425 VF /= 2) { 3426 auto It = VFToOrderedEntries.find(VF); 3427 if (It == VFToOrderedEntries.end()) 3428 continue; 3429 // Try to find the most profitable order. We just are looking for the most 3430 // used order and reorder scalar elements in the nodes according to this 3431 // mostly used order. 3432 ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef(); 3433 // All operands are reordered and used only in this node - propagate the 3434 // most used order to the user node. 3435 MapVector<OrdersType, unsigned, 3436 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3437 OrdersUses; 3438 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3439 for (const TreeEntry *OpTE : OrderedEntries) { 3440 // No need to reorder this nodes, still need to extend and to use shuffle, 3441 // just need to merge reordering shuffle and the reuse shuffle. 3442 if (!OpTE->ReuseShuffleIndices.empty()) 3443 continue; 3444 // Count number of orders uses. 3445 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3446 if (OpTE->State == TreeEntry::NeedToGather) 3447 return GathersToOrders.find(OpTE)->second; 3448 return OpTE->ReorderIndices; 3449 }(); 3450 // Stores actually store the mask, not the order, need to invert. 3451 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3452 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3453 SmallVector<int> Mask; 3454 inversePermutation(Order, Mask); 3455 unsigned E = Order.size(); 3456 OrdersType CurrentOrder(E, E); 3457 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3458 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3459 }); 3460 fixupOrderingIndices(CurrentOrder); 3461 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3462 } else { 3463 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3464 } 3465 } 3466 // Set order of the user node. 3467 if (OrdersUses.empty()) 3468 continue; 3469 // Choose the most used order. 3470 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3471 unsigned Cnt = OrdersUses.front().second; 3472 for (const auto &Pair : drop_begin(OrdersUses)) { 3473 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3474 BestOrder = Pair.first; 3475 Cnt = Pair.second; 3476 } 3477 } 3478 // Set order of the user node. 3479 if (BestOrder.empty()) 3480 continue; 3481 SmallVector<int> Mask; 3482 inversePermutation(BestOrder, Mask); 3483 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3484 unsigned E = BestOrder.size(); 3485 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3486 return I < E ? static_cast<int>(I) : UndefMaskElem; 3487 }); 3488 // Do an actual reordering, if profitable. 3489 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 3490 // Just do the reordering for the nodes with the given VF. 3491 if (TE->Scalars.size() != VF) { 3492 if (TE->ReuseShuffleIndices.size() == VF) { 3493 // Need to reorder the reuses masks of the operands with smaller VF to 3494 // be able to find the match between the graph nodes and scalar 3495 // operands of the given node during vectorization/cost estimation. 3496 assert(all_of(TE->UserTreeIndices, 3497 [VF, &TE](const EdgeInfo &EI) { 3498 return EI.UserTE->Scalars.size() == VF || 3499 EI.UserTE->Scalars.size() == 3500 TE->Scalars.size(); 3501 }) && 3502 "All users must be of VF size."); 3503 // Update ordering of the operands with the smaller VF than the given 3504 // one. 3505 reorderReuses(TE->ReuseShuffleIndices, Mask); 3506 } 3507 continue; 3508 } 3509 if (TE->State == TreeEntry::Vectorize && 3510 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 3511 InsertElementInst>(TE->getMainOp()) && 3512 !TE->isAltShuffle()) { 3513 // Build correct orders for extract{element,value}, loads and 3514 // stores. 3515 reorderOrder(TE->ReorderIndices, Mask); 3516 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 3517 TE->reorderOperands(Mask); 3518 } else { 3519 // Reorder the node and its operands. 3520 TE->reorderOperands(Mask); 3521 assert(TE->ReorderIndices.empty() && 3522 "Expected empty reorder sequence."); 3523 reorderScalars(TE->Scalars, Mask); 3524 } 3525 if (!TE->ReuseShuffleIndices.empty()) { 3526 // Apply reversed order to keep the original ordering of the reused 3527 // elements to avoid extra reorder indices shuffling. 3528 OrdersType CurrentOrder; 3529 reorderOrder(CurrentOrder, MaskOrder); 3530 SmallVector<int> NewReuses; 3531 inversePermutation(CurrentOrder, NewReuses); 3532 addMask(NewReuses, TE->ReuseShuffleIndices); 3533 TE->ReuseShuffleIndices.swap(NewReuses); 3534 } 3535 } 3536 } 3537 } 3538 3539 bool BoUpSLP::canReorderOperands( 3540 TreeEntry *UserTE, SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 3541 ArrayRef<TreeEntry *> ReorderableGathers, 3542 SmallVectorImpl<TreeEntry *> &GatherOps) { 3543 for (unsigned I = 0, E = UserTE->getNumOperands(); I < E; ++I) { 3544 if (any_of(Edges, [I](const std::pair<unsigned, TreeEntry *> &OpData) { 3545 return OpData.first == I && 3546 OpData.second->State == TreeEntry::Vectorize; 3547 })) 3548 continue; 3549 if (TreeEntry *TE = getVectorizedOperand(UserTE, I)) { 3550 // Do not reorder if operand node is used by many user nodes. 3551 if (any_of(TE->UserTreeIndices, 3552 [UserTE](const EdgeInfo &EI) { return EI.UserTE != UserTE; })) 3553 return false; 3554 // Add the node to the list of the ordered nodes with the identity 3555 // order. 3556 Edges.emplace_back(I, TE); 3557 continue; 3558 } 3559 ArrayRef<Value *> VL = UserTE->getOperand(I); 3560 TreeEntry *Gather = nullptr; 3561 if (count_if(ReorderableGathers, [VL, &Gather](TreeEntry *TE) { 3562 assert(TE->State != TreeEntry::Vectorize && 3563 "Only non-vectorized nodes are expected."); 3564 if (TE->isSame(VL)) { 3565 Gather = TE; 3566 return true; 3567 } 3568 return false; 3569 }) > 1) 3570 return false; 3571 if (Gather) 3572 GatherOps.push_back(Gather); 3573 } 3574 return true; 3575 } 3576 3577 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 3578 SetVector<TreeEntry *> OrderedEntries; 3579 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3580 // Find all reorderable leaf nodes with the given VF. 3581 // Currently the are vectorized loads,extracts without alternate operands + 3582 // some gathering of extracts. 3583 SmallVector<TreeEntry *> NonVectorized; 3584 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 3585 &NonVectorized]( 3586 const std::unique_ptr<TreeEntry> &TE) { 3587 if (TE->State != TreeEntry::Vectorize) 3588 NonVectorized.push_back(TE.get()); 3589 if (Optional<OrdersType> CurrentOrder = 3590 getReorderingData(*TE, /*TopToBottom=*/false)) { 3591 OrderedEntries.insert(TE.get()); 3592 if (TE->State != TreeEntry::Vectorize) 3593 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3594 } 3595 }); 3596 3597 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3598 // I.e., if the node has operands, that are reordered, try to make at least 3599 // one operand order in the natural order and reorder others + reorder the 3600 // user node itself. 3601 SmallPtrSet<const TreeEntry *, 4> Visited; 3602 while (!OrderedEntries.empty()) { 3603 // 1. Filter out only reordered nodes. 3604 // 2. If the entry has multiple uses - skip it and jump to the next node. 3605 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3606 SmallVector<TreeEntry *> Filtered; 3607 for (TreeEntry *TE : OrderedEntries) { 3608 if (!(TE->State == TreeEntry::Vectorize || 3609 (TE->State == TreeEntry::NeedToGather && 3610 GathersToOrders.count(TE))) || 3611 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3612 !all_of(drop_begin(TE->UserTreeIndices), 3613 [TE](const EdgeInfo &EI) { 3614 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3615 }) || 3616 !Visited.insert(TE).second) { 3617 Filtered.push_back(TE); 3618 continue; 3619 } 3620 // Build a map between user nodes and their operands order to speedup 3621 // search. The graph currently does not provide this dependency directly. 3622 for (EdgeInfo &EI : TE->UserTreeIndices) { 3623 TreeEntry *UserTE = EI.UserTE; 3624 auto It = Users.find(UserTE); 3625 if (It == Users.end()) 3626 It = Users.insert({UserTE, {}}).first; 3627 It->second.emplace_back(EI.EdgeIdx, TE); 3628 } 3629 } 3630 // Erase filtered entries. 3631 for_each(Filtered, 3632 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3633 for (auto &Data : Users) { 3634 // Check that operands are used only in the User node. 3635 SmallVector<TreeEntry *> GatherOps; 3636 if (!canReorderOperands(Data.first, Data.second, NonVectorized, 3637 GatherOps)) { 3638 for_each(Data.second, 3639 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3640 OrderedEntries.remove(Op.second); 3641 }); 3642 continue; 3643 } 3644 // All operands are reordered and used only in this node - propagate the 3645 // most used order to the user node. 3646 MapVector<OrdersType, unsigned, 3647 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3648 OrdersUses; 3649 // Do the analysis for each tree entry only once, otherwise the order of 3650 // the same node my be considered several times, though might be not 3651 // profitable. 3652 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3653 SmallPtrSet<const TreeEntry *, 4> VisitedUsers; 3654 for (const auto &Op : Data.second) { 3655 TreeEntry *OpTE = Op.second; 3656 if (!VisitedOps.insert(OpTE).second) 3657 continue; 3658 if (!OpTE->ReuseShuffleIndices.empty() || 3659 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3660 continue; 3661 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3662 if (OpTE->State == TreeEntry::NeedToGather) 3663 return GathersToOrders.find(OpTE)->second; 3664 return OpTE->ReorderIndices; 3665 }(); 3666 unsigned NumOps = count_if( 3667 Data.second, [OpTE](const std::pair<unsigned, TreeEntry *> &P) { 3668 return P.second == OpTE; 3669 }); 3670 // Stores actually store the mask, not the order, need to invert. 3671 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3672 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3673 SmallVector<int> Mask; 3674 inversePermutation(Order, Mask); 3675 unsigned E = Order.size(); 3676 OrdersType CurrentOrder(E, E); 3677 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3678 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3679 }); 3680 fixupOrderingIndices(CurrentOrder); 3681 OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second += 3682 NumOps; 3683 } else { 3684 OrdersUses.insert(std::make_pair(Order, 0)).first->second += NumOps; 3685 } 3686 auto Res = OrdersUses.insert(std::make_pair(OrdersType(), 0)); 3687 const auto &&AllowsReordering = [IgnoreReorder, &GathersToOrders]( 3688 const TreeEntry *TE) { 3689 if (!TE->ReorderIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3690 (TE->State == TreeEntry::Vectorize && TE->isAltShuffle()) || 3691 (IgnoreReorder && TE->Idx == 0)) 3692 return true; 3693 if (TE->State == TreeEntry::NeedToGather) { 3694 auto It = GathersToOrders.find(TE); 3695 if (It != GathersToOrders.end()) 3696 return !It->second.empty(); 3697 return true; 3698 } 3699 return false; 3700 }; 3701 for (const EdgeInfo &EI : OpTE->UserTreeIndices) { 3702 TreeEntry *UserTE = EI.UserTE; 3703 if (!VisitedUsers.insert(UserTE).second) 3704 continue; 3705 // May reorder user node if it requires reordering, has reused 3706 // scalars, is an alternate op vectorize node or its op nodes require 3707 // reordering. 3708 if (AllowsReordering(UserTE)) 3709 continue; 3710 // Check if users allow reordering. 3711 // Currently look up just 1 level of operands to avoid increase of 3712 // the compile time. 3713 // Profitable to reorder if definitely more operands allow 3714 // reordering rather than those with natural order. 3715 ArrayRef<std::pair<unsigned, TreeEntry *>> Ops = Users[UserTE]; 3716 if (static_cast<unsigned>(count_if( 3717 Ops, [UserTE, &AllowsReordering]( 3718 const std::pair<unsigned, TreeEntry *> &Op) { 3719 return AllowsReordering(Op.second) && 3720 all_of(Op.second->UserTreeIndices, 3721 [UserTE](const EdgeInfo &EI) { 3722 return EI.UserTE == UserTE; 3723 }); 3724 })) <= Ops.size() / 2) 3725 ++Res.first->second; 3726 } 3727 } 3728 // If no orders - skip current nodes and jump to the next one, if any. 3729 if (OrdersUses.empty()) { 3730 for_each(Data.second, 3731 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3732 OrderedEntries.remove(Op.second); 3733 }); 3734 continue; 3735 } 3736 // Choose the best order. 3737 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3738 unsigned Cnt = OrdersUses.front().second; 3739 for (const auto &Pair : drop_begin(OrdersUses)) { 3740 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3741 BestOrder = Pair.first; 3742 Cnt = Pair.second; 3743 } 3744 } 3745 // Set order of the user node (reordering of operands and user nodes). 3746 if (BestOrder.empty()) { 3747 for_each(Data.second, 3748 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3749 OrderedEntries.remove(Op.second); 3750 }); 3751 continue; 3752 } 3753 // Erase operands from OrderedEntries list and adjust their orders. 3754 VisitedOps.clear(); 3755 SmallVector<int> Mask; 3756 inversePermutation(BestOrder, Mask); 3757 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3758 unsigned E = BestOrder.size(); 3759 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3760 return I < E ? static_cast<int>(I) : UndefMaskElem; 3761 }); 3762 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 3763 TreeEntry *TE = Op.second; 3764 OrderedEntries.remove(TE); 3765 if (!VisitedOps.insert(TE).second) 3766 continue; 3767 if (TE->ReuseShuffleIndices.size() == BestOrder.size()) { 3768 // Just reorder reuses indices. 3769 reorderReuses(TE->ReuseShuffleIndices, Mask); 3770 continue; 3771 } 3772 // Gathers are processed separately. 3773 if (TE->State != TreeEntry::Vectorize) 3774 continue; 3775 assert((BestOrder.size() == TE->ReorderIndices.size() || 3776 TE->ReorderIndices.empty()) && 3777 "Non-matching sizes of user/operand entries."); 3778 reorderOrder(TE->ReorderIndices, Mask); 3779 } 3780 // For gathers just need to reorder its scalars. 3781 for (TreeEntry *Gather : GatherOps) { 3782 assert(Gather->ReorderIndices.empty() && 3783 "Unexpected reordering of gathers."); 3784 if (!Gather->ReuseShuffleIndices.empty()) { 3785 // Just reorder reuses indices. 3786 reorderReuses(Gather->ReuseShuffleIndices, Mask); 3787 continue; 3788 } 3789 reorderScalars(Gather->Scalars, Mask); 3790 OrderedEntries.remove(Gather); 3791 } 3792 // Reorder operands of the user node and set the ordering for the user 3793 // node itself. 3794 if (Data.first->State != TreeEntry::Vectorize || 3795 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 3796 Data.first->getMainOp()) || 3797 Data.first->isAltShuffle()) 3798 Data.first->reorderOperands(Mask); 3799 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 3800 Data.first->isAltShuffle()) { 3801 reorderScalars(Data.first->Scalars, Mask); 3802 reorderOrder(Data.first->ReorderIndices, MaskOrder); 3803 if (Data.first->ReuseShuffleIndices.empty() && 3804 !Data.first->ReorderIndices.empty() && 3805 !Data.first->isAltShuffle()) { 3806 // Insert user node to the list to try to sink reordering deeper in 3807 // the graph. 3808 OrderedEntries.insert(Data.first); 3809 } 3810 } else { 3811 reorderOrder(Data.first->ReorderIndices, Mask); 3812 } 3813 } 3814 } 3815 // If the reordering is unnecessary, just remove the reorder. 3816 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 3817 VectorizableTree.front()->ReuseShuffleIndices.empty()) 3818 VectorizableTree.front()->ReorderIndices.clear(); 3819 } 3820 3821 void BoUpSLP::buildExternalUses( 3822 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3823 // Collect the values that we need to extract from the tree. 3824 for (auto &TEPtr : VectorizableTree) { 3825 TreeEntry *Entry = TEPtr.get(); 3826 3827 // No need to handle users of gathered values. 3828 if (Entry->State == TreeEntry::NeedToGather) 3829 continue; 3830 3831 // For each lane: 3832 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3833 Value *Scalar = Entry->Scalars[Lane]; 3834 int FoundLane = Entry->findLaneForValue(Scalar); 3835 3836 // Check if the scalar is externally used as an extra arg. 3837 auto ExtI = ExternallyUsedValues.find(Scalar); 3838 if (ExtI != ExternallyUsedValues.end()) { 3839 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 3840 << Lane << " from " << *Scalar << ".\n"); 3841 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 3842 } 3843 for (User *U : Scalar->users()) { 3844 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 3845 3846 Instruction *UserInst = dyn_cast<Instruction>(U); 3847 if (!UserInst) 3848 continue; 3849 3850 if (isDeleted(UserInst)) 3851 continue; 3852 3853 // Skip in-tree scalars that become vectors 3854 if (TreeEntry *UseEntry = getTreeEntry(U)) { 3855 Value *UseScalar = UseEntry->Scalars[0]; 3856 // Some in-tree scalars will remain as scalar in vectorized 3857 // instructions. If that is the case, the one in Lane 0 will 3858 // be used. 3859 if (UseScalar != U || 3860 UseEntry->State == TreeEntry::ScatterVectorize || 3861 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 3862 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 3863 << ".\n"); 3864 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 3865 continue; 3866 } 3867 } 3868 3869 // Ignore users in the user ignore list. 3870 if (is_contained(UserIgnoreList, UserInst)) 3871 continue; 3872 3873 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 3874 << Lane << " from " << *Scalar << ".\n"); 3875 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 3876 } 3877 } 3878 } 3879 } 3880 3881 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 3882 ArrayRef<Value *> UserIgnoreLst) { 3883 deleteTree(); 3884 UserIgnoreList = UserIgnoreLst; 3885 if (!allSameType(Roots)) 3886 return; 3887 buildTree_rec(Roots, 0, EdgeInfo()); 3888 } 3889 3890 namespace { 3891 /// Tracks the state we can represent the loads in the given sequence. 3892 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3893 } // anonymous namespace 3894 3895 /// Checks if the given array of loads can be represented as a vectorized, 3896 /// scatter or just simple gather. 3897 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3898 const TargetTransformInfo &TTI, 3899 const DataLayout &DL, ScalarEvolution &SE, 3900 SmallVectorImpl<unsigned> &Order, 3901 SmallVectorImpl<Value *> &PointerOps) { 3902 // Check that a vectorized load would load the same memory as a scalar 3903 // load. For example, we don't want to vectorize loads that are smaller 3904 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3905 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3906 // from such a struct, we read/write packed bits disagreeing with the 3907 // unvectorized version. 3908 Type *ScalarTy = VL0->getType(); 3909 3910 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3911 return LoadsState::Gather; 3912 3913 // Make sure all loads in the bundle are simple - we can't vectorize 3914 // atomic or volatile loads. 3915 PointerOps.clear(); 3916 PointerOps.resize(VL.size()); 3917 auto *POIter = PointerOps.begin(); 3918 for (Value *V : VL) { 3919 auto *L = cast<LoadInst>(V); 3920 if (!L->isSimple()) 3921 return LoadsState::Gather; 3922 *POIter = L->getPointerOperand(); 3923 ++POIter; 3924 } 3925 3926 Order.clear(); 3927 // Check the order of pointer operands. 3928 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 3929 Value *Ptr0; 3930 Value *PtrN; 3931 if (Order.empty()) { 3932 Ptr0 = PointerOps.front(); 3933 PtrN = PointerOps.back(); 3934 } else { 3935 Ptr0 = PointerOps[Order.front()]; 3936 PtrN = PointerOps[Order.back()]; 3937 } 3938 Optional<int> Diff = 3939 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3940 // Check that the sorted loads are consecutive. 3941 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3942 return LoadsState::Vectorize; 3943 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3944 for (Value *V : VL) 3945 CommonAlignment = 3946 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3947 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 3948 CommonAlignment)) 3949 return LoadsState::ScatterVectorize; 3950 } 3951 3952 return LoadsState::Gather; 3953 } 3954 3955 /// \return true if the specified list of values has only one instruction that 3956 /// requires scheduling, false otherwise. 3957 #ifndef NDEBUG 3958 static bool needToScheduleSingleInstruction(ArrayRef<Value *> VL) { 3959 Value *NeedsScheduling = nullptr; 3960 for (Value *V : VL) { 3961 if (doesNotNeedToBeScheduled(V)) 3962 continue; 3963 if (!NeedsScheduling) { 3964 NeedsScheduling = V; 3965 continue; 3966 } 3967 return false; 3968 } 3969 return NeedsScheduling; 3970 } 3971 #endif 3972 3973 /// Generates key/subkey pair for the given value to provide effective sorting 3974 /// of the values and better detection of the vectorizable values sequences. The 3975 /// keys/subkeys can be used for better sorting of the values themselves (keys) 3976 /// and in values subgroups (subkeys). 3977 static std::pair<size_t, size_t> generateKeySubkey( 3978 Value *V, const TargetLibraryInfo *TLI, 3979 function_ref<hash_code(size_t, LoadInst *)> LoadsSubkeyGenerator, 3980 bool AllowAlternate) { 3981 hash_code Key = hash_value(V->getValueID() + 2); 3982 hash_code SubKey = hash_value(0); 3983 // Sort the loads by the distance between the pointers. 3984 if (auto *LI = dyn_cast<LoadInst>(V)) { 3985 Key = hash_combine(hash_value(LI->getParent()), Key); 3986 if (LI->isSimple()) 3987 SubKey = hash_value(LoadsSubkeyGenerator(Key, LI)); 3988 else 3989 SubKey = hash_value(LI); 3990 } else if (isVectorLikeInstWithConstOps(V)) { 3991 // Sort extracts by the vector operands. 3992 if (isa<ExtractElementInst, UndefValue>(V)) 3993 Key = hash_value(Value::UndefValueVal + 1); 3994 if (auto *EI = dyn_cast<ExtractElementInst>(V)) { 3995 if (!isUndefVector(EI->getVectorOperand()) && 3996 !isa<UndefValue>(EI->getIndexOperand())) 3997 SubKey = hash_value(EI->getVectorOperand()); 3998 } 3999 } else if (auto *I = dyn_cast<Instruction>(V)) { 4000 // Sort other instructions just by the opcodes except for CMPInst. 4001 // For CMP also sort by the predicate kind. 4002 if ((isa<BinaryOperator>(I) || isa<CastInst>(I)) && 4003 isValidForAlternation(I->getOpcode())) { 4004 if (AllowAlternate) 4005 Key = hash_value(isa<BinaryOperator>(I) ? 1 : 0); 4006 else 4007 Key = hash_combine(hash_value(I->getOpcode()), Key); 4008 SubKey = hash_combine( 4009 hash_value(I->getOpcode()), hash_value(I->getType()), 4010 hash_value(isa<BinaryOperator>(I) 4011 ? I->getType() 4012 : cast<CastInst>(I)->getOperand(0)->getType())); 4013 } else if (auto *CI = dyn_cast<CmpInst>(I)) { 4014 CmpInst::Predicate Pred = CI->getPredicate(); 4015 if (CI->isCommutative()) 4016 Pred = std::min(Pred, CmpInst::getInversePredicate(Pred)); 4017 CmpInst::Predicate SwapPred = CmpInst::getSwappedPredicate(Pred); 4018 SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(Pred), 4019 hash_value(SwapPred), 4020 hash_value(CI->getOperand(0)->getType())); 4021 } else if (auto *Call = dyn_cast<CallInst>(I)) { 4022 Intrinsic::ID ID = getVectorIntrinsicIDForCall(Call, TLI); 4023 if (isTriviallyVectorizable(ID)) 4024 SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(ID)); 4025 else if (!VFDatabase(*Call).getMappings(*Call).empty()) 4026 SubKey = hash_combine(hash_value(I->getOpcode()), 4027 hash_value(Call->getCalledFunction())); 4028 else 4029 SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(Call)); 4030 for (const CallBase::BundleOpInfo &Op : Call->bundle_op_infos()) 4031 SubKey = hash_combine(hash_value(Op.Begin), hash_value(Op.End), 4032 hash_value(Op.Tag), SubKey); 4033 } else if (auto *Gep = dyn_cast<GetElementPtrInst>(I)) { 4034 if (Gep->getNumOperands() == 2 && isa<ConstantInt>(Gep->getOperand(1))) 4035 SubKey = hash_value(Gep->getPointerOperand()); 4036 else 4037 SubKey = hash_value(Gep); 4038 } else if (BinaryOperator::isIntDivRem(I->getOpcode()) && 4039 !isa<ConstantInt>(I->getOperand(1))) { 4040 // Do not try to vectorize instructions with potentially high cost. 4041 SubKey = hash_value(I); 4042 } else { 4043 SubKey = hash_value(I->getOpcode()); 4044 } 4045 Key = hash_combine(hash_value(I->getParent()), Key); 4046 } 4047 return std::make_pair(Key, SubKey); 4048 } 4049 4050 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 4051 const EdgeInfo &UserTreeIdx) { 4052 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 4053 4054 SmallVector<int> ReuseShuffleIndicies; 4055 SmallVector<Value *> UniqueValues; 4056 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 4057 &UserTreeIdx, 4058 this](const InstructionsState &S) { 4059 // Check that every instruction appears once in this bundle. 4060 DenseMap<Value *, unsigned> UniquePositions; 4061 for (Value *V : VL) { 4062 if (isConstant(V)) { 4063 ReuseShuffleIndicies.emplace_back( 4064 isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size()); 4065 UniqueValues.emplace_back(V); 4066 continue; 4067 } 4068 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 4069 ReuseShuffleIndicies.emplace_back(Res.first->second); 4070 if (Res.second) 4071 UniqueValues.emplace_back(V); 4072 } 4073 size_t NumUniqueScalarValues = UniqueValues.size(); 4074 if (NumUniqueScalarValues == VL.size()) { 4075 ReuseShuffleIndicies.clear(); 4076 } else { 4077 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 4078 if (NumUniqueScalarValues <= 1 || 4079 (UniquePositions.size() == 1 && all_of(UniqueValues, 4080 [](Value *V) { 4081 return isa<UndefValue>(V) || 4082 !isConstant(V); 4083 })) || 4084 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 4085 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 4086 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4087 return false; 4088 } 4089 VL = UniqueValues; 4090 } 4091 return true; 4092 }; 4093 4094 InstructionsState S = getSameOpcode(VL); 4095 if (Depth == RecursionMaxDepth) { 4096 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 4097 if (TryToFindDuplicates(S)) 4098 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4099 ReuseShuffleIndicies); 4100 return; 4101 } 4102 4103 // Don't handle scalable vectors 4104 if (S.getOpcode() == Instruction::ExtractElement && 4105 isa<ScalableVectorType>( 4106 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 4107 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 4108 if (TryToFindDuplicates(S)) 4109 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4110 ReuseShuffleIndicies); 4111 return; 4112 } 4113 4114 // Don't handle vectors. 4115 if (S.OpValue->getType()->isVectorTy() && 4116 !isa<InsertElementInst>(S.OpValue)) { 4117 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 4118 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4119 return; 4120 } 4121 4122 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 4123 if (SI->getValueOperand()->getType()->isVectorTy()) { 4124 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 4125 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4126 return; 4127 } 4128 4129 // If all of the operands are identical or constant we have a simple solution. 4130 // If we deal with insert/extract instructions, they all must have constant 4131 // indices, otherwise we should gather them, not try to vectorize. 4132 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 4133 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 4134 !all_of(VL, isVectorLikeInstWithConstOps))) { 4135 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 4136 if (TryToFindDuplicates(S)) 4137 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4138 ReuseShuffleIndicies); 4139 return; 4140 } 4141 4142 // We now know that this is a vector of instructions of the same type from 4143 // the same block. 4144 4145 // Don't vectorize ephemeral values. 4146 for (Value *V : VL) { 4147 if (EphValues.count(V)) { 4148 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 4149 << ") is ephemeral.\n"); 4150 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4151 return; 4152 } 4153 } 4154 4155 // Check if this is a duplicate of another entry. 4156 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4157 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 4158 if (!E->isSame(VL)) { 4159 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 4160 if (TryToFindDuplicates(S)) 4161 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4162 ReuseShuffleIndicies); 4163 return; 4164 } 4165 // Record the reuse of the tree node. FIXME, currently this is only used to 4166 // properly draw the graph rather than for the actual vectorization. 4167 E->UserTreeIndices.push_back(UserTreeIdx); 4168 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 4169 << ".\n"); 4170 return; 4171 } 4172 4173 // Check that none of the instructions in the bundle are already in the tree. 4174 for (Value *V : VL) { 4175 auto *I = dyn_cast<Instruction>(V); 4176 if (!I) 4177 continue; 4178 if (getTreeEntry(I)) { 4179 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 4180 << ") is already in tree.\n"); 4181 if (TryToFindDuplicates(S)) 4182 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4183 ReuseShuffleIndicies); 4184 return; 4185 } 4186 } 4187 4188 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 4189 for (Value *V : VL) { 4190 if (is_contained(UserIgnoreList, V)) { 4191 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 4192 if (TryToFindDuplicates(S)) 4193 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4194 ReuseShuffleIndicies); 4195 return; 4196 } 4197 } 4198 4199 // Check that all of the users of the scalars that we want to vectorize are 4200 // schedulable. 4201 auto *VL0 = cast<Instruction>(S.OpValue); 4202 BasicBlock *BB = VL0->getParent(); 4203 4204 if (!DT->isReachableFromEntry(BB)) { 4205 // Don't go into unreachable blocks. They may contain instructions with 4206 // dependency cycles which confuse the final scheduling. 4207 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 4208 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4209 return; 4210 } 4211 4212 // Check that every instruction appears once in this bundle. 4213 if (!TryToFindDuplicates(S)) 4214 return; 4215 4216 auto &BSRef = BlocksSchedules[BB]; 4217 if (!BSRef) 4218 BSRef = std::make_unique<BlockScheduling>(BB); 4219 4220 BlockScheduling &BS = *BSRef; 4221 4222 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 4223 #ifdef EXPENSIVE_CHECKS 4224 // Make sure we didn't break any internal invariants 4225 BS.verify(); 4226 #endif 4227 if (!Bundle) { 4228 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 4229 assert((!BS.getScheduleData(VL0) || 4230 !BS.getScheduleData(VL0)->isPartOfBundle()) && 4231 "tryScheduleBundle should cancelScheduling on failure"); 4232 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4233 ReuseShuffleIndicies); 4234 return; 4235 } 4236 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 4237 4238 unsigned ShuffleOrOp = S.isAltShuffle() ? 4239 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 4240 switch (ShuffleOrOp) { 4241 case Instruction::PHI: { 4242 auto *PH = cast<PHINode>(VL0); 4243 4244 // Check for terminator values (e.g. invoke). 4245 for (Value *V : VL) 4246 for (Value *Incoming : cast<PHINode>(V)->incoming_values()) { 4247 Instruction *Term = dyn_cast<Instruction>(Incoming); 4248 if (Term && Term->isTerminator()) { 4249 LLVM_DEBUG(dbgs() 4250 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 4251 BS.cancelScheduling(VL, VL0); 4252 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4253 ReuseShuffleIndicies); 4254 return; 4255 } 4256 } 4257 4258 TreeEntry *TE = 4259 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 4260 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 4261 4262 // Keeps the reordered operands to avoid code duplication. 4263 SmallVector<ValueList, 2> OperandsVec; 4264 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 4265 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 4266 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 4267 TE->setOperand(I, Operands); 4268 OperandsVec.push_back(Operands); 4269 continue; 4270 } 4271 ValueList Operands; 4272 // Prepare the operand vector. 4273 for (Value *V : VL) 4274 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 4275 PH->getIncomingBlock(I))); 4276 TE->setOperand(I, Operands); 4277 OperandsVec.push_back(Operands); 4278 } 4279 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 4280 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 4281 return; 4282 } 4283 case Instruction::ExtractValue: 4284 case Instruction::ExtractElement: { 4285 OrdersType CurrentOrder; 4286 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 4287 if (Reuse) { 4288 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 4289 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4290 ReuseShuffleIndicies); 4291 // This is a special case, as it does not gather, but at the same time 4292 // we are not extending buildTree_rec() towards the operands. 4293 ValueList Op0; 4294 Op0.assign(VL.size(), VL0->getOperand(0)); 4295 VectorizableTree.back()->setOperand(0, Op0); 4296 return; 4297 } 4298 if (!CurrentOrder.empty()) { 4299 LLVM_DEBUG({ 4300 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 4301 "with order"; 4302 for (unsigned Idx : CurrentOrder) 4303 dbgs() << " " << Idx; 4304 dbgs() << "\n"; 4305 }); 4306 fixupOrderingIndices(CurrentOrder); 4307 // Insert new order with initial value 0, if it does not exist, 4308 // otherwise return the iterator to the existing one. 4309 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4310 ReuseShuffleIndicies, CurrentOrder); 4311 // This is a special case, as it does not gather, but at the same time 4312 // we are not extending buildTree_rec() towards the operands. 4313 ValueList Op0; 4314 Op0.assign(VL.size(), VL0->getOperand(0)); 4315 VectorizableTree.back()->setOperand(0, Op0); 4316 return; 4317 } 4318 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 4319 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4320 ReuseShuffleIndicies); 4321 BS.cancelScheduling(VL, VL0); 4322 return; 4323 } 4324 case Instruction::InsertElement: { 4325 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 4326 4327 // Check that we have a buildvector and not a shuffle of 2 or more 4328 // different vectors. 4329 ValueSet SourceVectors; 4330 for (Value *V : VL) { 4331 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 4332 assert(getInsertIndex(V) != None && "Non-constant or undef index?"); 4333 } 4334 4335 if (count_if(VL, [&SourceVectors](Value *V) { 4336 return !SourceVectors.contains(V); 4337 }) >= 2) { 4338 // Found 2nd source vector - cancel. 4339 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 4340 "different source vectors.\n"); 4341 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4342 BS.cancelScheduling(VL, VL0); 4343 return; 4344 } 4345 4346 auto OrdCompare = [](const std::pair<int, int> &P1, 4347 const std::pair<int, int> &P2) { 4348 return P1.first > P2.first; 4349 }; 4350 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 4351 decltype(OrdCompare)> 4352 Indices(OrdCompare); 4353 for (int I = 0, E = VL.size(); I < E; ++I) { 4354 unsigned Idx = *getInsertIndex(VL[I]); 4355 Indices.emplace(Idx, I); 4356 } 4357 OrdersType CurrentOrder(VL.size(), VL.size()); 4358 bool IsIdentity = true; 4359 for (int I = 0, E = VL.size(); I < E; ++I) { 4360 CurrentOrder[Indices.top().second] = I; 4361 IsIdentity &= Indices.top().second == I; 4362 Indices.pop(); 4363 } 4364 if (IsIdentity) 4365 CurrentOrder.clear(); 4366 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4367 None, CurrentOrder); 4368 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 4369 4370 constexpr int NumOps = 2; 4371 ValueList VectorOperands[NumOps]; 4372 for (int I = 0; I < NumOps; ++I) { 4373 for (Value *V : VL) 4374 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 4375 4376 TE->setOperand(I, VectorOperands[I]); 4377 } 4378 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 4379 return; 4380 } 4381 case Instruction::Load: { 4382 // Check that a vectorized load would load the same memory as a scalar 4383 // load. For example, we don't want to vectorize loads that are smaller 4384 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 4385 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 4386 // from such a struct, we read/write packed bits disagreeing with the 4387 // unvectorized version. 4388 SmallVector<Value *> PointerOps; 4389 OrdersType CurrentOrder; 4390 TreeEntry *TE = nullptr; 4391 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 4392 PointerOps)) { 4393 case LoadsState::Vectorize: 4394 if (CurrentOrder.empty()) { 4395 // Original loads are consecutive and does not require reordering. 4396 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4397 ReuseShuffleIndicies); 4398 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 4399 } else { 4400 fixupOrderingIndices(CurrentOrder); 4401 // Need to reorder. 4402 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4403 ReuseShuffleIndicies, CurrentOrder); 4404 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 4405 } 4406 TE->setOperandsInOrder(); 4407 break; 4408 case LoadsState::ScatterVectorize: 4409 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 4410 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 4411 UserTreeIdx, ReuseShuffleIndicies); 4412 TE->setOperandsInOrder(); 4413 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 4414 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 4415 break; 4416 case LoadsState::Gather: 4417 BS.cancelScheduling(VL, VL0); 4418 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4419 ReuseShuffleIndicies); 4420 #ifndef NDEBUG 4421 Type *ScalarTy = VL0->getType(); 4422 if (DL->getTypeSizeInBits(ScalarTy) != 4423 DL->getTypeAllocSizeInBits(ScalarTy)) 4424 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 4425 else if (any_of(VL, [](Value *V) { 4426 return !cast<LoadInst>(V)->isSimple(); 4427 })) 4428 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 4429 else 4430 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 4431 #endif // NDEBUG 4432 break; 4433 } 4434 return; 4435 } 4436 case Instruction::ZExt: 4437 case Instruction::SExt: 4438 case Instruction::FPToUI: 4439 case Instruction::FPToSI: 4440 case Instruction::FPExt: 4441 case Instruction::PtrToInt: 4442 case Instruction::IntToPtr: 4443 case Instruction::SIToFP: 4444 case Instruction::UIToFP: 4445 case Instruction::Trunc: 4446 case Instruction::FPTrunc: 4447 case Instruction::BitCast: { 4448 Type *SrcTy = VL0->getOperand(0)->getType(); 4449 for (Value *V : VL) { 4450 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 4451 if (Ty != SrcTy || !isValidElementType(Ty)) { 4452 BS.cancelScheduling(VL, VL0); 4453 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4454 ReuseShuffleIndicies); 4455 LLVM_DEBUG(dbgs() 4456 << "SLP: Gathering casts with different src types.\n"); 4457 return; 4458 } 4459 } 4460 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4461 ReuseShuffleIndicies); 4462 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 4463 4464 TE->setOperandsInOrder(); 4465 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4466 ValueList Operands; 4467 // Prepare the operand vector. 4468 for (Value *V : VL) 4469 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4470 4471 buildTree_rec(Operands, Depth + 1, {TE, i}); 4472 } 4473 return; 4474 } 4475 case Instruction::ICmp: 4476 case Instruction::FCmp: { 4477 // Check that all of the compares have the same predicate. 4478 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4479 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 4480 Type *ComparedTy = VL0->getOperand(0)->getType(); 4481 for (Value *V : VL) { 4482 CmpInst *Cmp = cast<CmpInst>(V); 4483 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 4484 Cmp->getOperand(0)->getType() != ComparedTy) { 4485 BS.cancelScheduling(VL, VL0); 4486 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4487 ReuseShuffleIndicies); 4488 LLVM_DEBUG(dbgs() 4489 << "SLP: Gathering cmp with different predicate.\n"); 4490 return; 4491 } 4492 } 4493 4494 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4495 ReuseShuffleIndicies); 4496 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 4497 4498 ValueList Left, Right; 4499 if (cast<CmpInst>(VL0)->isCommutative()) { 4500 // Commutative predicate - collect + sort operands of the instructions 4501 // so that each side is more likely to have the same opcode. 4502 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 4503 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4504 } else { 4505 // Collect operands - commute if it uses the swapped predicate. 4506 for (Value *V : VL) { 4507 auto *Cmp = cast<CmpInst>(V); 4508 Value *LHS = Cmp->getOperand(0); 4509 Value *RHS = Cmp->getOperand(1); 4510 if (Cmp->getPredicate() != P0) 4511 std::swap(LHS, RHS); 4512 Left.push_back(LHS); 4513 Right.push_back(RHS); 4514 } 4515 } 4516 TE->setOperand(0, Left); 4517 TE->setOperand(1, Right); 4518 buildTree_rec(Left, Depth + 1, {TE, 0}); 4519 buildTree_rec(Right, Depth + 1, {TE, 1}); 4520 return; 4521 } 4522 case Instruction::Select: 4523 case Instruction::FNeg: 4524 case Instruction::Add: 4525 case Instruction::FAdd: 4526 case Instruction::Sub: 4527 case Instruction::FSub: 4528 case Instruction::Mul: 4529 case Instruction::FMul: 4530 case Instruction::UDiv: 4531 case Instruction::SDiv: 4532 case Instruction::FDiv: 4533 case Instruction::URem: 4534 case Instruction::SRem: 4535 case Instruction::FRem: 4536 case Instruction::Shl: 4537 case Instruction::LShr: 4538 case Instruction::AShr: 4539 case Instruction::And: 4540 case Instruction::Or: 4541 case Instruction::Xor: { 4542 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4543 ReuseShuffleIndicies); 4544 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 4545 4546 // Sort operands of the instructions so that each side is more likely to 4547 // have the same opcode. 4548 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 4549 ValueList Left, Right; 4550 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4551 TE->setOperand(0, Left); 4552 TE->setOperand(1, Right); 4553 buildTree_rec(Left, Depth + 1, {TE, 0}); 4554 buildTree_rec(Right, Depth + 1, {TE, 1}); 4555 return; 4556 } 4557 4558 TE->setOperandsInOrder(); 4559 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4560 ValueList Operands; 4561 // Prepare the operand vector. 4562 for (Value *V : VL) 4563 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4564 4565 buildTree_rec(Operands, Depth + 1, {TE, i}); 4566 } 4567 return; 4568 } 4569 case Instruction::GetElementPtr: { 4570 // We don't combine GEPs with complicated (nested) indexing. 4571 for (Value *V : VL) { 4572 if (cast<Instruction>(V)->getNumOperands() != 2) { 4573 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 4574 BS.cancelScheduling(VL, VL0); 4575 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4576 ReuseShuffleIndicies); 4577 return; 4578 } 4579 } 4580 4581 // We can't combine several GEPs into one vector if they operate on 4582 // different types. 4583 Type *Ty0 = cast<GEPOperator>(VL0)->getSourceElementType(); 4584 for (Value *V : VL) { 4585 Type *CurTy = cast<GEPOperator>(V)->getSourceElementType(); 4586 if (Ty0 != CurTy) { 4587 LLVM_DEBUG(dbgs() 4588 << "SLP: not-vectorizable GEP (different types).\n"); 4589 BS.cancelScheduling(VL, VL0); 4590 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4591 ReuseShuffleIndicies); 4592 return; 4593 } 4594 } 4595 4596 // We don't combine GEPs with non-constant indexes. 4597 Type *Ty1 = VL0->getOperand(1)->getType(); 4598 for (Value *V : VL) { 4599 auto Op = cast<Instruction>(V)->getOperand(1); 4600 if (!isa<ConstantInt>(Op) || 4601 (Op->getType() != Ty1 && 4602 Op->getType()->getScalarSizeInBits() > 4603 DL->getIndexSizeInBits( 4604 V->getType()->getPointerAddressSpace()))) { 4605 LLVM_DEBUG(dbgs() 4606 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 4607 BS.cancelScheduling(VL, VL0); 4608 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4609 ReuseShuffleIndicies); 4610 return; 4611 } 4612 } 4613 4614 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4615 ReuseShuffleIndicies); 4616 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 4617 SmallVector<ValueList, 2> Operands(2); 4618 // Prepare the operand vector for pointer operands. 4619 for (Value *V : VL) 4620 Operands.front().push_back( 4621 cast<GetElementPtrInst>(V)->getPointerOperand()); 4622 TE->setOperand(0, Operands.front()); 4623 // Need to cast all indices to the same type before vectorization to 4624 // avoid crash. 4625 // Required to be able to find correct matches between different gather 4626 // nodes and reuse the vectorized values rather than trying to gather them 4627 // again. 4628 int IndexIdx = 1; 4629 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 4630 Type *Ty = all_of(VL, 4631 [VL0Ty, IndexIdx](Value *V) { 4632 return VL0Ty == cast<GetElementPtrInst>(V) 4633 ->getOperand(IndexIdx) 4634 ->getType(); 4635 }) 4636 ? VL0Ty 4637 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4638 ->getPointerOperandType() 4639 ->getScalarType()); 4640 // Prepare the operand vector. 4641 for (Value *V : VL) { 4642 auto *Op = cast<Instruction>(V)->getOperand(IndexIdx); 4643 auto *CI = cast<ConstantInt>(Op); 4644 Operands.back().push_back(ConstantExpr::getIntegerCast( 4645 CI, Ty, CI->getValue().isSignBitSet())); 4646 } 4647 TE->setOperand(IndexIdx, Operands.back()); 4648 4649 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 4650 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 4651 return; 4652 } 4653 case Instruction::Store: { 4654 // Check if the stores are consecutive or if we need to swizzle them. 4655 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 4656 // Avoid types that are padded when being allocated as scalars, while 4657 // being packed together in a vector (such as i1). 4658 if (DL->getTypeSizeInBits(ScalarTy) != 4659 DL->getTypeAllocSizeInBits(ScalarTy)) { 4660 BS.cancelScheduling(VL, VL0); 4661 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4662 ReuseShuffleIndicies); 4663 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 4664 return; 4665 } 4666 // Make sure all stores in the bundle are simple - we can't vectorize 4667 // atomic or volatile stores. 4668 SmallVector<Value *, 4> PointerOps(VL.size()); 4669 ValueList Operands(VL.size()); 4670 auto POIter = PointerOps.begin(); 4671 auto OIter = Operands.begin(); 4672 for (Value *V : VL) { 4673 auto *SI = cast<StoreInst>(V); 4674 if (!SI->isSimple()) { 4675 BS.cancelScheduling(VL, VL0); 4676 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4677 ReuseShuffleIndicies); 4678 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 4679 return; 4680 } 4681 *POIter = SI->getPointerOperand(); 4682 *OIter = SI->getValueOperand(); 4683 ++POIter; 4684 ++OIter; 4685 } 4686 4687 OrdersType CurrentOrder; 4688 // Check the order of pointer operands. 4689 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 4690 Value *Ptr0; 4691 Value *PtrN; 4692 if (CurrentOrder.empty()) { 4693 Ptr0 = PointerOps.front(); 4694 PtrN = PointerOps.back(); 4695 } else { 4696 Ptr0 = PointerOps[CurrentOrder.front()]; 4697 PtrN = PointerOps[CurrentOrder.back()]; 4698 } 4699 Optional<int> Dist = 4700 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 4701 // Check that the sorted pointer operands are consecutive. 4702 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 4703 if (CurrentOrder.empty()) { 4704 // Original stores are consecutive and does not require reordering. 4705 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 4706 UserTreeIdx, ReuseShuffleIndicies); 4707 TE->setOperandsInOrder(); 4708 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4709 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 4710 } else { 4711 fixupOrderingIndices(CurrentOrder); 4712 TreeEntry *TE = 4713 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4714 ReuseShuffleIndicies, CurrentOrder); 4715 TE->setOperandsInOrder(); 4716 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4717 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 4718 } 4719 return; 4720 } 4721 } 4722 4723 BS.cancelScheduling(VL, VL0); 4724 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4725 ReuseShuffleIndicies); 4726 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 4727 return; 4728 } 4729 case Instruction::Call: { 4730 // Check if the calls are all to the same vectorizable intrinsic or 4731 // library function. 4732 CallInst *CI = cast<CallInst>(VL0); 4733 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4734 4735 VFShape Shape = VFShape::get( 4736 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 4737 false /*HasGlobalPred*/); 4738 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4739 4740 if (!VecFunc && !isTriviallyVectorizable(ID)) { 4741 BS.cancelScheduling(VL, VL0); 4742 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4743 ReuseShuffleIndicies); 4744 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 4745 return; 4746 } 4747 Function *F = CI->getCalledFunction(); 4748 unsigned NumArgs = CI->arg_size(); 4749 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 4750 for (unsigned j = 0; j != NumArgs; ++j) 4751 if (hasVectorInstrinsicScalarOpd(ID, j)) 4752 ScalarArgs[j] = CI->getArgOperand(j); 4753 for (Value *V : VL) { 4754 CallInst *CI2 = dyn_cast<CallInst>(V); 4755 if (!CI2 || CI2->getCalledFunction() != F || 4756 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 4757 (VecFunc && 4758 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 4759 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 4760 BS.cancelScheduling(VL, VL0); 4761 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4762 ReuseShuffleIndicies); 4763 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 4764 << "\n"); 4765 return; 4766 } 4767 // Some intrinsics have scalar arguments and should be same in order for 4768 // them to be vectorized. 4769 for (unsigned j = 0; j != NumArgs; ++j) { 4770 if (hasVectorInstrinsicScalarOpd(ID, j)) { 4771 Value *A1J = CI2->getArgOperand(j); 4772 if (ScalarArgs[j] != A1J) { 4773 BS.cancelScheduling(VL, VL0); 4774 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4775 ReuseShuffleIndicies); 4776 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 4777 << " argument " << ScalarArgs[j] << "!=" << A1J 4778 << "\n"); 4779 return; 4780 } 4781 } 4782 } 4783 // Verify that the bundle operands are identical between the two calls. 4784 if (CI->hasOperandBundles() && 4785 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 4786 CI->op_begin() + CI->getBundleOperandsEndIndex(), 4787 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 4788 BS.cancelScheduling(VL, VL0); 4789 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4790 ReuseShuffleIndicies); 4791 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 4792 << *CI << "!=" << *V << '\n'); 4793 return; 4794 } 4795 } 4796 4797 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4798 ReuseShuffleIndicies); 4799 TE->setOperandsInOrder(); 4800 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 4801 // For scalar operands no need to to create an entry since no need to 4802 // vectorize it. 4803 if (hasVectorInstrinsicScalarOpd(ID, i)) 4804 continue; 4805 ValueList Operands; 4806 // Prepare the operand vector. 4807 for (Value *V : VL) { 4808 auto *CI2 = cast<CallInst>(V); 4809 Operands.push_back(CI2->getArgOperand(i)); 4810 } 4811 buildTree_rec(Operands, Depth + 1, {TE, i}); 4812 } 4813 return; 4814 } 4815 case Instruction::ShuffleVector: { 4816 // If this is not an alternate sequence of opcode like add-sub 4817 // then do not vectorize this instruction. 4818 if (!S.isAltShuffle()) { 4819 BS.cancelScheduling(VL, VL0); 4820 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4821 ReuseShuffleIndicies); 4822 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 4823 return; 4824 } 4825 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4826 ReuseShuffleIndicies); 4827 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 4828 4829 // Reorder operands if reordering would enable vectorization. 4830 auto *CI = dyn_cast<CmpInst>(VL0); 4831 if (isa<BinaryOperator>(VL0) || CI) { 4832 ValueList Left, Right; 4833 if (!CI || all_of(VL, [](Value *V) { 4834 return cast<CmpInst>(V)->isCommutative(); 4835 })) { 4836 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4837 } else { 4838 CmpInst::Predicate P0 = CI->getPredicate(); 4839 CmpInst::Predicate AltP0 = cast<CmpInst>(S.AltOp)->getPredicate(); 4840 assert(P0 != AltP0 && 4841 "Expected different main/alternate predicates."); 4842 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 4843 Value *BaseOp0 = VL0->getOperand(0); 4844 Value *BaseOp1 = VL0->getOperand(1); 4845 // Collect operands - commute if it uses the swapped predicate or 4846 // alternate operation. 4847 for (Value *V : VL) { 4848 auto *Cmp = cast<CmpInst>(V); 4849 Value *LHS = Cmp->getOperand(0); 4850 Value *RHS = Cmp->getOperand(1); 4851 CmpInst::Predicate CurrentPred = Cmp->getPredicate(); 4852 if (P0 == AltP0Swapped) { 4853 if (CI != Cmp && S.AltOp != Cmp && 4854 ((P0 == CurrentPred && 4855 !areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)) || 4856 (AltP0 == CurrentPred && 4857 areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)))) 4858 std::swap(LHS, RHS); 4859 } else if (P0 != CurrentPred && AltP0 != CurrentPred) { 4860 std::swap(LHS, RHS); 4861 } 4862 Left.push_back(LHS); 4863 Right.push_back(RHS); 4864 } 4865 } 4866 TE->setOperand(0, Left); 4867 TE->setOperand(1, Right); 4868 buildTree_rec(Left, Depth + 1, {TE, 0}); 4869 buildTree_rec(Right, Depth + 1, {TE, 1}); 4870 return; 4871 } 4872 4873 TE->setOperandsInOrder(); 4874 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4875 ValueList Operands; 4876 // Prepare the operand vector. 4877 for (Value *V : VL) 4878 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4879 4880 buildTree_rec(Operands, Depth + 1, {TE, i}); 4881 } 4882 return; 4883 } 4884 default: 4885 BS.cancelScheduling(VL, VL0); 4886 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4887 ReuseShuffleIndicies); 4888 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 4889 return; 4890 } 4891 } 4892 4893 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 4894 unsigned N = 1; 4895 Type *EltTy = T; 4896 4897 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 4898 isa<VectorType>(EltTy)) { 4899 if (auto *ST = dyn_cast<StructType>(EltTy)) { 4900 // Check that struct is homogeneous. 4901 for (const auto *Ty : ST->elements()) 4902 if (Ty != *ST->element_begin()) 4903 return 0; 4904 N *= ST->getNumElements(); 4905 EltTy = *ST->element_begin(); 4906 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 4907 N *= AT->getNumElements(); 4908 EltTy = AT->getElementType(); 4909 } else { 4910 auto *VT = cast<FixedVectorType>(EltTy); 4911 N *= VT->getNumElements(); 4912 EltTy = VT->getElementType(); 4913 } 4914 } 4915 4916 if (!isValidElementType(EltTy)) 4917 return 0; 4918 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 4919 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 4920 return 0; 4921 return N; 4922 } 4923 4924 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 4925 SmallVectorImpl<unsigned> &CurrentOrder) const { 4926 const auto *It = find_if(VL, [](Value *V) { 4927 return isa<ExtractElementInst, ExtractValueInst>(V); 4928 }); 4929 assert(It != VL.end() && "Expected at least one extract instruction."); 4930 auto *E0 = cast<Instruction>(*It); 4931 assert(all_of(VL, 4932 [](Value *V) { 4933 return isa<UndefValue, ExtractElementInst, ExtractValueInst>( 4934 V); 4935 }) && 4936 "Invalid opcode"); 4937 // Check if all of the extracts come from the same vector and from the 4938 // correct offset. 4939 Value *Vec = E0->getOperand(0); 4940 4941 CurrentOrder.clear(); 4942 4943 // We have to extract from a vector/aggregate with the same number of elements. 4944 unsigned NElts; 4945 if (E0->getOpcode() == Instruction::ExtractValue) { 4946 const DataLayout &DL = E0->getModule()->getDataLayout(); 4947 NElts = canMapToVector(Vec->getType(), DL); 4948 if (!NElts) 4949 return false; 4950 // Check if load can be rewritten as load of vector. 4951 LoadInst *LI = dyn_cast<LoadInst>(Vec); 4952 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 4953 return false; 4954 } else { 4955 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 4956 } 4957 4958 if (NElts != VL.size()) 4959 return false; 4960 4961 // Check that all of the indices extract from the correct offset. 4962 bool ShouldKeepOrder = true; 4963 unsigned E = VL.size(); 4964 // Assign to all items the initial value E + 1 so we can check if the extract 4965 // instruction index was used already. 4966 // Also, later we can check that all the indices are used and we have a 4967 // consecutive access in the extract instructions, by checking that no 4968 // element of CurrentOrder still has value E + 1. 4969 CurrentOrder.assign(E, E); 4970 unsigned I = 0; 4971 for (; I < E; ++I) { 4972 auto *Inst = dyn_cast<Instruction>(VL[I]); 4973 if (!Inst) 4974 continue; 4975 if (Inst->getOperand(0) != Vec) 4976 break; 4977 if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) 4978 if (isa<UndefValue>(EE->getIndexOperand())) 4979 continue; 4980 Optional<unsigned> Idx = getExtractIndex(Inst); 4981 if (!Idx) 4982 break; 4983 const unsigned ExtIdx = *Idx; 4984 if (ExtIdx != I) { 4985 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E) 4986 break; 4987 ShouldKeepOrder = false; 4988 CurrentOrder[ExtIdx] = I; 4989 } else { 4990 if (CurrentOrder[I] != E) 4991 break; 4992 CurrentOrder[I] = I; 4993 } 4994 } 4995 if (I < E) { 4996 CurrentOrder.clear(); 4997 return false; 4998 } 4999 if (ShouldKeepOrder) 5000 CurrentOrder.clear(); 5001 5002 return ShouldKeepOrder; 5003 } 5004 5005 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 5006 ArrayRef<Value *> VectorizedVals) const { 5007 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 5008 all_of(I->users(), [this](User *U) { 5009 return ScalarToTreeEntry.count(U) > 0 || 5010 isVectorLikeInstWithConstOps(U) || 5011 (isa<ExtractElementInst>(U) && MustGather.contains(U)); 5012 }); 5013 } 5014 5015 static std::pair<InstructionCost, InstructionCost> 5016 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 5017 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 5018 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5019 5020 // Calculate the cost of the scalar and vector calls. 5021 SmallVector<Type *, 4> VecTys; 5022 for (Use &Arg : CI->args()) 5023 VecTys.push_back( 5024 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 5025 FastMathFlags FMF; 5026 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 5027 FMF = FPCI->getFastMathFlags(); 5028 SmallVector<const Value *> Arguments(CI->args()); 5029 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 5030 dyn_cast<IntrinsicInst>(CI)); 5031 auto IntrinsicCost = 5032 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 5033 5034 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 5035 VecTy->getNumElements())), 5036 false /*HasGlobalPred*/); 5037 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 5038 auto LibCost = IntrinsicCost; 5039 if (!CI->isNoBuiltin() && VecFunc) { 5040 // Calculate the cost of the vector library call. 5041 // If the corresponding vector call is cheaper, return its cost. 5042 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 5043 TTI::TCK_RecipThroughput); 5044 } 5045 return {IntrinsicCost, LibCost}; 5046 } 5047 5048 /// Compute the cost of creating a vector of type \p VecTy containing the 5049 /// extracted values from \p VL. 5050 static InstructionCost 5051 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 5052 TargetTransformInfo::ShuffleKind ShuffleKind, 5053 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 5054 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 5055 5056 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 5057 VecTy->getNumElements() < NumOfParts) 5058 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 5059 5060 bool AllConsecutive = true; 5061 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 5062 unsigned Idx = -1; 5063 InstructionCost Cost = 0; 5064 5065 // Process extracts in blocks of EltsPerVector to check if the source vector 5066 // operand can be re-used directly. If not, add the cost of creating a shuffle 5067 // to extract the values into a vector register. 5068 for (auto *V : VL) { 5069 ++Idx; 5070 5071 // Need to exclude undefs from analysis. 5072 if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem) 5073 continue; 5074 5075 // Reached the start of a new vector registers. 5076 if (Idx % EltsPerVector == 0) { 5077 AllConsecutive = true; 5078 continue; 5079 } 5080 5081 // Check all extracts for a vector register on the target directly 5082 // extract values in order. 5083 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 5084 if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) { 5085 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 5086 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 5087 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 5088 } 5089 5090 if (AllConsecutive) 5091 continue; 5092 5093 // Skip all indices, except for the last index per vector block. 5094 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 5095 continue; 5096 5097 // If we have a series of extracts which are not consecutive and hence 5098 // cannot re-use the source vector register directly, compute the shuffle 5099 // cost to extract the a vector with EltsPerVector elements. 5100 Cost += TTI.getShuffleCost( 5101 TargetTransformInfo::SK_PermuteSingleSrc, 5102 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 5103 } 5104 return Cost; 5105 } 5106 5107 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 5108 /// operations operands. 5109 static void 5110 buildShuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 5111 ArrayRef<int> ReusesIndices, 5112 const function_ref<bool(Instruction *)> IsAltOp, 5113 SmallVectorImpl<int> &Mask, 5114 SmallVectorImpl<Value *> *OpScalars = nullptr, 5115 SmallVectorImpl<Value *> *AltScalars = nullptr) { 5116 unsigned Sz = VL.size(); 5117 Mask.assign(Sz, UndefMaskElem); 5118 SmallVector<int> OrderMask; 5119 if (!ReorderIndices.empty()) 5120 inversePermutation(ReorderIndices, OrderMask); 5121 for (unsigned I = 0; I < Sz; ++I) { 5122 unsigned Idx = I; 5123 if (!ReorderIndices.empty()) 5124 Idx = OrderMask[I]; 5125 auto *OpInst = cast<Instruction>(VL[Idx]); 5126 if (IsAltOp(OpInst)) { 5127 Mask[I] = Sz + Idx; 5128 if (AltScalars) 5129 AltScalars->push_back(OpInst); 5130 } else { 5131 Mask[I] = Idx; 5132 if (OpScalars) 5133 OpScalars->push_back(OpInst); 5134 } 5135 } 5136 if (!ReusesIndices.empty()) { 5137 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 5138 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 5139 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 5140 }); 5141 Mask.swap(NewMask); 5142 } 5143 } 5144 5145 /// Checks if the specified instruction \p I is an alternate operation for the 5146 /// given \p MainOp and \p AltOp instructions. 5147 static bool isAlternateInstruction(const Instruction *I, 5148 const Instruction *MainOp, 5149 const Instruction *AltOp) { 5150 if (auto *CI0 = dyn_cast<CmpInst>(MainOp)) { 5151 auto *AltCI0 = cast<CmpInst>(AltOp); 5152 auto *CI = cast<CmpInst>(I); 5153 CmpInst::Predicate P0 = CI0->getPredicate(); 5154 CmpInst::Predicate AltP0 = AltCI0->getPredicate(); 5155 assert(P0 != AltP0 && "Expected different main/alternate predicates."); 5156 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 5157 CmpInst::Predicate CurrentPred = CI->getPredicate(); 5158 if (P0 == AltP0Swapped) 5159 return I == AltCI0 || 5160 (I != MainOp && 5161 !areCompatibleCmpOps(CI0->getOperand(0), CI0->getOperand(1), 5162 CI->getOperand(0), CI->getOperand(1))); 5163 return AltP0 == CurrentPred || AltP0Swapped == CurrentPred; 5164 } 5165 return I->getOpcode() == AltOp->getOpcode(); 5166 } 5167 5168 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 5169 ArrayRef<Value *> VectorizedVals) { 5170 ArrayRef<Value*> VL = E->Scalars; 5171 5172 Type *ScalarTy = VL[0]->getType(); 5173 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 5174 ScalarTy = SI->getValueOperand()->getType(); 5175 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 5176 ScalarTy = CI->getOperand(0)->getType(); 5177 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 5178 ScalarTy = IE->getOperand(1)->getType(); 5179 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 5180 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 5181 5182 // If we have computed a smaller type for the expression, update VecTy so 5183 // that the costs will be accurate. 5184 if (MinBWs.count(VL[0])) 5185 VecTy = FixedVectorType::get( 5186 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 5187 unsigned EntryVF = E->getVectorFactor(); 5188 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 5189 5190 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 5191 // FIXME: it tries to fix a problem with MSVC buildbots. 5192 TargetTransformInfo &TTIRef = *TTI; 5193 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 5194 VectorizedVals, E](InstructionCost &Cost) { 5195 DenseMap<Value *, int> ExtractVectorsTys; 5196 SmallPtrSet<Value *, 4> CheckedExtracts; 5197 for (auto *V : VL) { 5198 if (isa<UndefValue>(V)) 5199 continue; 5200 // If all users of instruction are going to be vectorized and this 5201 // instruction itself is not going to be vectorized, consider this 5202 // instruction as dead and remove its cost from the final cost of the 5203 // vectorized tree. 5204 // Also, avoid adjusting the cost for extractelements with multiple uses 5205 // in different graph entries. 5206 const TreeEntry *VE = getTreeEntry(V); 5207 if (!CheckedExtracts.insert(V).second || 5208 !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 5209 (VE && VE != E)) 5210 continue; 5211 auto *EE = cast<ExtractElementInst>(V); 5212 Optional<unsigned> EEIdx = getExtractIndex(EE); 5213 if (!EEIdx) 5214 continue; 5215 unsigned Idx = *EEIdx; 5216 if (TTIRef.getNumberOfParts(VecTy) != 5217 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 5218 auto It = 5219 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 5220 It->getSecond() = std::min<int>(It->second, Idx); 5221 } 5222 // Take credit for instruction that will become dead. 5223 if (EE->hasOneUse()) { 5224 Instruction *Ext = EE->user_back(); 5225 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5226 all_of(Ext->users(), 5227 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5228 // Use getExtractWithExtendCost() to calculate the cost of 5229 // extractelement/ext pair. 5230 Cost -= 5231 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 5232 EE->getVectorOperandType(), Idx); 5233 // Add back the cost of s|zext which is subtracted separately. 5234 Cost += TTIRef.getCastInstrCost( 5235 Ext->getOpcode(), Ext->getType(), EE->getType(), 5236 TTI::getCastContextHint(Ext), CostKind, Ext); 5237 continue; 5238 } 5239 } 5240 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 5241 EE->getVectorOperandType(), Idx); 5242 } 5243 // Add a cost for subvector extracts/inserts if required. 5244 for (const auto &Data : ExtractVectorsTys) { 5245 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 5246 unsigned NumElts = VecTy->getNumElements(); 5247 if (Data.second % NumElts == 0) 5248 continue; 5249 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 5250 unsigned Idx = (Data.second / NumElts) * NumElts; 5251 unsigned EENumElts = EEVTy->getNumElements(); 5252 if (Idx + NumElts <= EENumElts) { 5253 Cost += 5254 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5255 EEVTy, None, Idx, VecTy); 5256 } else { 5257 // Need to round up the subvector type vectorization factor to avoid a 5258 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 5259 // <= EENumElts. 5260 auto *SubVT = 5261 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 5262 Cost += 5263 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5264 EEVTy, None, Idx, SubVT); 5265 } 5266 } else { 5267 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 5268 VecTy, None, 0, EEVTy); 5269 } 5270 } 5271 }; 5272 if (E->State == TreeEntry::NeedToGather) { 5273 if (allConstant(VL)) 5274 return 0; 5275 if (isa<InsertElementInst>(VL[0])) 5276 return InstructionCost::getInvalid(); 5277 SmallVector<int> Mask; 5278 SmallVector<const TreeEntry *> Entries; 5279 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 5280 isGatherShuffledEntry(E, Mask, Entries); 5281 if (Shuffle.hasValue()) { 5282 InstructionCost GatherCost = 0; 5283 if (ShuffleVectorInst::isIdentityMask(Mask)) { 5284 // Perfect match in the graph, will reuse the previously vectorized 5285 // node. Cost is 0. 5286 LLVM_DEBUG( 5287 dbgs() 5288 << "SLP: perfect diamond match for gather bundle that starts with " 5289 << *VL.front() << ".\n"); 5290 if (NeedToShuffleReuses) 5291 GatherCost = 5292 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5293 FinalVecTy, E->ReuseShuffleIndices); 5294 } else { 5295 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 5296 << " entries for bundle that starts with " 5297 << *VL.front() << ".\n"); 5298 // Detected that instead of gather we can emit a shuffle of single/two 5299 // previously vectorized nodes. Add the cost of the permutation rather 5300 // than gather. 5301 ::addMask(Mask, E->ReuseShuffleIndices); 5302 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 5303 } 5304 return GatherCost; 5305 } 5306 if ((E->getOpcode() == Instruction::ExtractElement || 5307 all_of(E->Scalars, 5308 [](Value *V) { 5309 return isa<ExtractElementInst, UndefValue>(V); 5310 })) && 5311 allSameType(VL)) { 5312 // Check that gather of extractelements can be represented as just a 5313 // shuffle of a single/two vectors the scalars are extracted from. 5314 SmallVector<int> Mask; 5315 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 5316 isFixedVectorShuffle(VL, Mask); 5317 if (ShuffleKind.hasValue()) { 5318 // Found the bunch of extractelement instructions that must be gathered 5319 // into a vector and can be represented as a permutation elements in a 5320 // single input vector or of 2 input vectors. 5321 InstructionCost Cost = 5322 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 5323 AdjustExtractsCost(Cost); 5324 if (NeedToShuffleReuses) 5325 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5326 FinalVecTy, E->ReuseShuffleIndices); 5327 return Cost; 5328 } 5329 } 5330 if (isSplat(VL)) { 5331 // Found the broadcasting of the single scalar, calculate the cost as the 5332 // broadcast. 5333 assert(VecTy == FinalVecTy && 5334 "No reused scalars expected for broadcast."); 5335 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 5336 /*Mask=*/None, /*Index=*/0, 5337 /*SubTp=*/nullptr, /*Args=*/VL); 5338 } 5339 InstructionCost ReuseShuffleCost = 0; 5340 if (NeedToShuffleReuses) 5341 ReuseShuffleCost = TTI->getShuffleCost( 5342 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 5343 // Improve gather cost for gather of loads, if we can group some of the 5344 // loads into vector loads. 5345 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 5346 !E->isAltShuffle()) { 5347 BoUpSLP::ValueSet VectorizedLoads; 5348 unsigned StartIdx = 0; 5349 unsigned VF = VL.size() / 2; 5350 unsigned VectorizedCnt = 0; 5351 unsigned ScatterVectorizeCnt = 0; 5352 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 5353 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 5354 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 5355 Cnt += VF) { 5356 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 5357 if (!VectorizedLoads.count(Slice.front()) && 5358 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 5359 SmallVector<Value *> PointerOps; 5360 OrdersType CurrentOrder; 5361 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 5362 *SE, CurrentOrder, PointerOps); 5363 switch (LS) { 5364 case LoadsState::Vectorize: 5365 case LoadsState::ScatterVectorize: 5366 // Mark the vectorized loads so that we don't vectorize them 5367 // again. 5368 if (LS == LoadsState::Vectorize) 5369 ++VectorizedCnt; 5370 else 5371 ++ScatterVectorizeCnt; 5372 VectorizedLoads.insert(Slice.begin(), Slice.end()); 5373 // If we vectorized initial block, no need to try to vectorize it 5374 // again. 5375 if (Cnt == StartIdx) 5376 StartIdx += VF; 5377 break; 5378 case LoadsState::Gather: 5379 break; 5380 } 5381 } 5382 } 5383 // Check if the whole array was vectorized already - exit. 5384 if (StartIdx >= VL.size()) 5385 break; 5386 // Found vectorizable parts - exit. 5387 if (!VectorizedLoads.empty()) 5388 break; 5389 } 5390 if (!VectorizedLoads.empty()) { 5391 InstructionCost GatherCost = 0; 5392 unsigned NumParts = TTI->getNumberOfParts(VecTy); 5393 bool NeedInsertSubvectorAnalysis = 5394 !NumParts || (VL.size() / VF) > NumParts; 5395 // Get the cost for gathered loads. 5396 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 5397 if (VectorizedLoads.contains(VL[I])) 5398 continue; 5399 GatherCost += getGatherCost(VL.slice(I, VF)); 5400 } 5401 // The cost for vectorized loads. 5402 InstructionCost ScalarsCost = 0; 5403 for (Value *V : VectorizedLoads) { 5404 auto *LI = cast<LoadInst>(V); 5405 ScalarsCost += TTI->getMemoryOpCost( 5406 Instruction::Load, LI->getType(), LI->getAlign(), 5407 LI->getPointerAddressSpace(), CostKind, LI); 5408 } 5409 auto *LI = cast<LoadInst>(E->getMainOp()); 5410 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 5411 Align Alignment = LI->getAlign(); 5412 GatherCost += 5413 VectorizedCnt * 5414 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 5415 LI->getPointerAddressSpace(), CostKind, LI); 5416 GatherCost += ScatterVectorizeCnt * 5417 TTI->getGatherScatterOpCost( 5418 Instruction::Load, LoadTy, LI->getPointerOperand(), 5419 /*VariableMask=*/false, Alignment, CostKind, LI); 5420 if (NeedInsertSubvectorAnalysis) { 5421 // Add the cost for the subvectors insert. 5422 for (int I = VF, E = VL.size(); I < E; I += VF) 5423 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 5424 None, I, LoadTy); 5425 } 5426 return ReuseShuffleCost + GatherCost - ScalarsCost; 5427 } 5428 } 5429 return ReuseShuffleCost + getGatherCost(VL); 5430 } 5431 InstructionCost CommonCost = 0; 5432 SmallVector<int> Mask; 5433 if (!E->ReorderIndices.empty()) { 5434 SmallVector<int> NewMask; 5435 if (E->getOpcode() == Instruction::Store) { 5436 // For stores the order is actually a mask. 5437 NewMask.resize(E->ReorderIndices.size()); 5438 copy(E->ReorderIndices, NewMask.begin()); 5439 } else { 5440 inversePermutation(E->ReorderIndices, NewMask); 5441 } 5442 ::addMask(Mask, NewMask); 5443 } 5444 if (NeedToShuffleReuses) 5445 ::addMask(Mask, E->ReuseShuffleIndices); 5446 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 5447 CommonCost = 5448 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 5449 assert((E->State == TreeEntry::Vectorize || 5450 E->State == TreeEntry::ScatterVectorize) && 5451 "Unhandled state"); 5452 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 5453 Instruction *VL0 = E->getMainOp(); 5454 unsigned ShuffleOrOp = 5455 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 5456 switch (ShuffleOrOp) { 5457 case Instruction::PHI: 5458 return 0; 5459 5460 case Instruction::ExtractValue: 5461 case Instruction::ExtractElement: { 5462 // The common cost of removal ExtractElement/ExtractValue instructions + 5463 // the cost of shuffles, if required to resuffle the original vector. 5464 if (NeedToShuffleReuses) { 5465 unsigned Idx = 0; 5466 for (unsigned I : E->ReuseShuffleIndices) { 5467 if (ShuffleOrOp == Instruction::ExtractElement) { 5468 auto *EE = cast<ExtractElementInst>(VL[I]); 5469 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5470 EE->getVectorOperandType(), 5471 *getExtractIndex(EE)); 5472 } else { 5473 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5474 VecTy, Idx); 5475 ++Idx; 5476 } 5477 } 5478 Idx = EntryVF; 5479 for (Value *V : VL) { 5480 if (ShuffleOrOp == Instruction::ExtractElement) { 5481 auto *EE = cast<ExtractElementInst>(V); 5482 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5483 EE->getVectorOperandType(), 5484 *getExtractIndex(EE)); 5485 } else { 5486 --Idx; 5487 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5488 VecTy, Idx); 5489 } 5490 } 5491 } 5492 if (ShuffleOrOp == Instruction::ExtractValue) { 5493 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 5494 auto *EI = cast<Instruction>(VL[I]); 5495 // Take credit for instruction that will become dead. 5496 if (EI->hasOneUse()) { 5497 Instruction *Ext = EI->user_back(); 5498 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5499 all_of(Ext->users(), 5500 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5501 // Use getExtractWithExtendCost() to calculate the cost of 5502 // extractelement/ext pair. 5503 CommonCost -= TTI->getExtractWithExtendCost( 5504 Ext->getOpcode(), Ext->getType(), VecTy, I); 5505 // Add back the cost of s|zext which is subtracted separately. 5506 CommonCost += TTI->getCastInstrCost( 5507 Ext->getOpcode(), Ext->getType(), EI->getType(), 5508 TTI::getCastContextHint(Ext), CostKind, Ext); 5509 continue; 5510 } 5511 } 5512 CommonCost -= 5513 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 5514 } 5515 } else { 5516 AdjustExtractsCost(CommonCost); 5517 } 5518 return CommonCost; 5519 } 5520 case Instruction::InsertElement: { 5521 assert(E->ReuseShuffleIndices.empty() && 5522 "Unique insertelements only are expected."); 5523 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 5524 5525 unsigned const NumElts = SrcVecTy->getNumElements(); 5526 unsigned const NumScalars = VL.size(); 5527 APInt DemandedElts = APInt::getZero(NumElts); 5528 // TODO: Add support for Instruction::InsertValue. 5529 SmallVector<int> Mask; 5530 if (!E->ReorderIndices.empty()) { 5531 inversePermutation(E->ReorderIndices, Mask); 5532 Mask.append(NumElts - NumScalars, UndefMaskElem); 5533 } else { 5534 Mask.assign(NumElts, UndefMaskElem); 5535 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 5536 } 5537 unsigned Offset = *getInsertIndex(VL0); 5538 bool IsIdentity = true; 5539 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 5540 Mask.swap(PrevMask); 5541 for (unsigned I = 0; I < NumScalars; ++I) { 5542 unsigned InsertIdx = *getInsertIndex(VL[PrevMask[I]]); 5543 DemandedElts.setBit(InsertIdx); 5544 IsIdentity &= InsertIdx - Offset == I; 5545 Mask[InsertIdx - Offset] = I; 5546 } 5547 assert(Offset < NumElts && "Failed to find vector index offset"); 5548 5549 InstructionCost Cost = 0; 5550 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 5551 /*Insert*/ true, /*Extract*/ false); 5552 5553 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 5554 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 5555 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 5556 Cost += TTI->getShuffleCost( 5557 TargetTransformInfo::SK_PermuteSingleSrc, 5558 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 5559 } else if (!IsIdentity) { 5560 auto *FirstInsert = 5561 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 5562 return !is_contained(E->Scalars, 5563 cast<Instruction>(V)->getOperand(0)); 5564 })); 5565 if (isUndefVector(FirstInsert->getOperand(0))) { 5566 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 5567 } else { 5568 SmallVector<int> InsertMask(NumElts); 5569 std::iota(InsertMask.begin(), InsertMask.end(), 0); 5570 for (unsigned I = 0; I < NumElts; I++) { 5571 if (Mask[I] != UndefMaskElem) 5572 InsertMask[Offset + I] = NumElts + I; 5573 } 5574 Cost += 5575 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 5576 } 5577 } 5578 5579 return Cost; 5580 } 5581 case Instruction::ZExt: 5582 case Instruction::SExt: 5583 case Instruction::FPToUI: 5584 case Instruction::FPToSI: 5585 case Instruction::FPExt: 5586 case Instruction::PtrToInt: 5587 case Instruction::IntToPtr: 5588 case Instruction::SIToFP: 5589 case Instruction::UIToFP: 5590 case Instruction::Trunc: 5591 case Instruction::FPTrunc: 5592 case Instruction::BitCast: { 5593 Type *SrcTy = VL0->getOperand(0)->getType(); 5594 InstructionCost ScalarEltCost = 5595 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 5596 TTI::getCastContextHint(VL0), CostKind, VL0); 5597 if (NeedToShuffleReuses) { 5598 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5599 } 5600 5601 // Calculate the cost of this instruction. 5602 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 5603 5604 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 5605 InstructionCost VecCost = 0; 5606 // Check if the values are candidates to demote. 5607 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 5608 VecCost = CommonCost + TTI->getCastInstrCost( 5609 E->getOpcode(), VecTy, SrcVecTy, 5610 TTI::getCastContextHint(VL0), CostKind, VL0); 5611 } 5612 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5613 return VecCost - ScalarCost; 5614 } 5615 case Instruction::FCmp: 5616 case Instruction::ICmp: 5617 case Instruction::Select: { 5618 // Calculate the cost of this instruction. 5619 InstructionCost ScalarEltCost = 5620 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5621 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 5622 if (NeedToShuffleReuses) { 5623 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5624 } 5625 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 5626 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5627 5628 // Check if all entries in VL are either compares or selects with compares 5629 // as condition that have the same predicates. 5630 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 5631 bool First = true; 5632 for (auto *V : VL) { 5633 CmpInst::Predicate CurrentPred; 5634 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 5635 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 5636 !match(V, MatchCmp)) || 5637 (!First && VecPred != CurrentPred)) { 5638 VecPred = CmpInst::BAD_ICMP_PREDICATE; 5639 break; 5640 } 5641 First = false; 5642 VecPred = CurrentPred; 5643 } 5644 5645 InstructionCost VecCost = TTI->getCmpSelInstrCost( 5646 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 5647 // Check if it is possible and profitable to use min/max for selects in 5648 // VL. 5649 // 5650 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 5651 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 5652 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 5653 {VecTy, VecTy}); 5654 InstructionCost IntrinsicCost = 5655 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5656 // If the selects are the only uses of the compares, they will be dead 5657 // and we can adjust the cost by removing their cost. 5658 if (IntrinsicAndUse.second) 5659 IntrinsicCost -= TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, 5660 MaskTy, VecPred, CostKind); 5661 VecCost = std::min(VecCost, IntrinsicCost); 5662 } 5663 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5664 return CommonCost + VecCost - ScalarCost; 5665 } 5666 case Instruction::FNeg: 5667 case Instruction::Add: 5668 case Instruction::FAdd: 5669 case Instruction::Sub: 5670 case Instruction::FSub: 5671 case Instruction::Mul: 5672 case Instruction::FMul: 5673 case Instruction::UDiv: 5674 case Instruction::SDiv: 5675 case Instruction::FDiv: 5676 case Instruction::URem: 5677 case Instruction::SRem: 5678 case Instruction::FRem: 5679 case Instruction::Shl: 5680 case Instruction::LShr: 5681 case Instruction::AShr: 5682 case Instruction::And: 5683 case Instruction::Or: 5684 case Instruction::Xor: { 5685 // Certain instructions can be cheaper to vectorize if they have a 5686 // constant second vector operand. 5687 TargetTransformInfo::OperandValueKind Op1VK = 5688 TargetTransformInfo::OK_AnyValue; 5689 TargetTransformInfo::OperandValueKind Op2VK = 5690 TargetTransformInfo::OK_UniformConstantValue; 5691 TargetTransformInfo::OperandValueProperties Op1VP = 5692 TargetTransformInfo::OP_None; 5693 TargetTransformInfo::OperandValueProperties Op2VP = 5694 TargetTransformInfo::OP_PowerOf2; 5695 5696 // If all operands are exactly the same ConstantInt then set the 5697 // operand kind to OK_UniformConstantValue. 5698 // If instead not all operands are constants, then set the operand kind 5699 // to OK_AnyValue. If all operands are constants but not the same, 5700 // then set the operand kind to OK_NonUniformConstantValue. 5701 ConstantInt *CInt0 = nullptr; 5702 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 5703 const Instruction *I = cast<Instruction>(VL[i]); 5704 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 5705 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 5706 if (!CInt) { 5707 Op2VK = TargetTransformInfo::OK_AnyValue; 5708 Op2VP = TargetTransformInfo::OP_None; 5709 break; 5710 } 5711 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 5712 !CInt->getValue().isPowerOf2()) 5713 Op2VP = TargetTransformInfo::OP_None; 5714 if (i == 0) { 5715 CInt0 = CInt; 5716 continue; 5717 } 5718 if (CInt0 != CInt) 5719 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5720 } 5721 5722 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 5723 InstructionCost ScalarEltCost = 5724 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 5725 Op2VK, Op1VP, Op2VP, Operands, VL0); 5726 if (NeedToShuffleReuses) { 5727 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5728 } 5729 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5730 InstructionCost VecCost = 5731 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 5732 Op2VK, Op1VP, Op2VP, Operands, VL0); 5733 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5734 return CommonCost + VecCost - ScalarCost; 5735 } 5736 case Instruction::GetElementPtr: { 5737 TargetTransformInfo::OperandValueKind Op1VK = 5738 TargetTransformInfo::OK_AnyValue; 5739 TargetTransformInfo::OperandValueKind Op2VK = 5740 TargetTransformInfo::OK_UniformConstantValue; 5741 5742 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 5743 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 5744 if (NeedToShuffleReuses) { 5745 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5746 } 5747 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5748 InstructionCost VecCost = TTI->getArithmeticInstrCost( 5749 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 5750 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5751 return CommonCost + VecCost - ScalarCost; 5752 } 5753 case Instruction::Load: { 5754 // Cost of wide load - cost of scalar loads. 5755 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 5756 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5757 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 5758 if (NeedToShuffleReuses) { 5759 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5760 } 5761 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 5762 InstructionCost VecLdCost; 5763 if (E->State == TreeEntry::Vectorize) { 5764 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 5765 CostKind, VL0); 5766 } else { 5767 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 5768 Align CommonAlignment = Alignment; 5769 for (Value *V : VL) 5770 CommonAlignment = 5771 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 5772 VecLdCost = TTI->getGatherScatterOpCost( 5773 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 5774 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 5775 } 5776 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 5777 return CommonCost + VecLdCost - ScalarLdCost; 5778 } 5779 case Instruction::Store: { 5780 // We know that we can merge the stores. Calculate the cost. 5781 bool IsReorder = !E->ReorderIndices.empty(); 5782 auto *SI = 5783 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 5784 Align Alignment = SI->getAlign(); 5785 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5786 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 5787 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 5788 InstructionCost VecStCost = TTI->getMemoryOpCost( 5789 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 5790 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 5791 return CommonCost + VecStCost - ScalarStCost; 5792 } 5793 case Instruction::Call: { 5794 CallInst *CI = cast<CallInst>(VL0); 5795 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5796 5797 // Calculate the cost of the scalar and vector calls. 5798 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 5799 InstructionCost ScalarEltCost = 5800 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5801 if (NeedToShuffleReuses) { 5802 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5803 } 5804 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 5805 5806 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 5807 InstructionCost VecCallCost = 5808 std::min(VecCallCosts.first, VecCallCosts.second); 5809 5810 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 5811 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 5812 << " for " << *CI << "\n"); 5813 5814 return CommonCost + VecCallCost - ScalarCallCost; 5815 } 5816 case Instruction::ShuffleVector: { 5817 assert(E->isAltShuffle() && 5818 ((Instruction::isBinaryOp(E->getOpcode()) && 5819 Instruction::isBinaryOp(E->getAltOpcode())) || 5820 (Instruction::isCast(E->getOpcode()) && 5821 Instruction::isCast(E->getAltOpcode())) || 5822 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 5823 "Invalid Shuffle Vector Operand"); 5824 InstructionCost ScalarCost = 0; 5825 if (NeedToShuffleReuses) { 5826 for (unsigned Idx : E->ReuseShuffleIndices) { 5827 Instruction *I = cast<Instruction>(VL[Idx]); 5828 CommonCost -= TTI->getInstructionCost(I, CostKind); 5829 } 5830 for (Value *V : VL) { 5831 Instruction *I = cast<Instruction>(V); 5832 CommonCost += TTI->getInstructionCost(I, CostKind); 5833 } 5834 } 5835 for (Value *V : VL) { 5836 Instruction *I = cast<Instruction>(V); 5837 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5838 ScalarCost += TTI->getInstructionCost(I, CostKind); 5839 } 5840 // VecCost is equal to sum of the cost of creating 2 vectors 5841 // and the cost of creating shuffle. 5842 InstructionCost VecCost = 0; 5843 // Try to find the previous shuffle node with the same operands and same 5844 // main/alternate ops. 5845 auto &&TryFindNodeWithEqualOperands = [this, E]() { 5846 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 5847 if (TE.get() == E) 5848 break; 5849 if (TE->isAltShuffle() && 5850 ((TE->getOpcode() == E->getOpcode() && 5851 TE->getAltOpcode() == E->getAltOpcode()) || 5852 (TE->getOpcode() == E->getAltOpcode() && 5853 TE->getAltOpcode() == E->getOpcode())) && 5854 TE->hasEqualOperands(*E)) 5855 return true; 5856 } 5857 return false; 5858 }; 5859 if (TryFindNodeWithEqualOperands()) { 5860 LLVM_DEBUG({ 5861 dbgs() << "SLP: diamond match for alternate node found.\n"; 5862 E->dump(); 5863 }); 5864 // No need to add new vector costs here since we're going to reuse 5865 // same main/alternate vector ops, just do different shuffling. 5866 } else if (Instruction::isBinaryOp(E->getOpcode())) { 5867 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 5868 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 5869 CostKind); 5870 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 5871 VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 5872 Builder.getInt1Ty(), 5873 CI0->getPredicate(), CostKind, VL0); 5874 VecCost += TTI->getCmpSelInstrCost( 5875 E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5876 cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind, 5877 E->getAltOp()); 5878 } else { 5879 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 5880 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 5881 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 5882 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 5883 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 5884 TTI::CastContextHint::None, CostKind); 5885 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 5886 TTI::CastContextHint::None, CostKind); 5887 } 5888 5889 SmallVector<int> Mask; 5890 buildShuffleEntryMask( 5891 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 5892 [E](Instruction *I) { 5893 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5894 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 5895 }, 5896 Mask); 5897 CommonCost = 5898 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask); 5899 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5900 return CommonCost + VecCost - ScalarCost; 5901 } 5902 default: 5903 llvm_unreachable("Unknown instruction"); 5904 } 5905 } 5906 5907 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 5908 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 5909 << VectorizableTree.size() << " is fully vectorizable .\n"); 5910 5911 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 5912 SmallVector<int> Mask; 5913 return TE->State == TreeEntry::NeedToGather && 5914 !any_of(TE->Scalars, 5915 [this](Value *V) { return EphValues.contains(V); }) && 5916 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 5917 TE->Scalars.size() < Limit || 5918 ((TE->getOpcode() == Instruction::ExtractElement || 5919 all_of(TE->Scalars, 5920 [](Value *V) { 5921 return isa<ExtractElementInst, UndefValue>(V); 5922 })) && 5923 isFixedVectorShuffle(TE->Scalars, Mask)) || 5924 (TE->State == TreeEntry::NeedToGather && 5925 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 5926 }; 5927 5928 // We only handle trees of heights 1 and 2. 5929 if (VectorizableTree.size() == 1 && 5930 (VectorizableTree[0]->State == TreeEntry::Vectorize || 5931 (ForReduction && 5932 AreVectorizableGathers(VectorizableTree[0].get(), 5933 VectorizableTree[0]->Scalars.size()) && 5934 VectorizableTree[0]->getVectorFactor() > 2))) 5935 return true; 5936 5937 if (VectorizableTree.size() != 2) 5938 return false; 5939 5940 // Handle splat and all-constants stores. Also try to vectorize tiny trees 5941 // with the second gather nodes if they have less scalar operands rather than 5942 // the initial tree element (may be profitable to shuffle the second gather) 5943 // or they are extractelements, which form shuffle. 5944 SmallVector<int> Mask; 5945 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 5946 AreVectorizableGathers(VectorizableTree[1].get(), 5947 VectorizableTree[0]->Scalars.size())) 5948 return true; 5949 5950 // Gathering cost would be too much for tiny trees. 5951 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 5952 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 5953 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 5954 return false; 5955 5956 return true; 5957 } 5958 5959 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 5960 TargetTransformInfo *TTI, 5961 bool MustMatchOrInst) { 5962 // Look past the root to find a source value. Arbitrarily follow the 5963 // path through operand 0 of any 'or'. Also, peek through optional 5964 // shift-left-by-multiple-of-8-bits. 5965 Value *ZextLoad = Root; 5966 const APInt *ShAmtC; 5967 bool FoundOr = false; 5968 while (!isa<ConstantExpr>(ZextLoad) && 5969 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 5970 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 5971 ShAmtC->urem(8) == 0))) { 5972 auto *BinOp = cast<BinaryOperator>(ZextLoad); 5973 ZextLoad = BinOp->getOperand(0); 5974 if (BinOp->getOpcode() == Instruction::Or) 5975 FoundOr = true; 5976 } 5977 // Check if the input is an extended load of the required or/shift expression. 5978 Value *Load; 5979 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 5980 !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load)) 5981 return false; 5982 5983 // Require that the total load bit width is a legal integer type. 5984 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 5985 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 5986 Type *SrcTy = Load->getType(); 5987 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 5988 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 5989 return false; 5990 5991 // Everything matched - assume that we can fold the whole sequence using 5992 // load combining. 5993 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 5994 << *(cast<Instruction>(Root)) << "\n"); 5995 5996 return true; 5997 } 5998 5999 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 6000 if (RdxKind != RecurKind::Or) 6001 return false; 6002 6003 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 6004 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 6005 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 6006 /* MatchOr */ false); 6007 } 6008 6009 bool BoUpSLP::isLoadCombineCandidate() const { 6010 // Peek through a final sequence of stores and check if all operations are 6011 // likely to be load-combined. 6012 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 6013 for (Value *Scalar : VectorizableTree[0]->Scalars) { 6014 Value *X; 6015 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 6016 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 6017 return false; 6018 } 6019 return true; 6020 } 6021 6022 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 6023 // No need to vectorize inserts of gathered values. 6024 if (VectorizableTree.size() == 2 && 6025 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 6026 VectorizableTree[1]->State == TreeEntry::NeedToGather) 6027 return true; 6028 6029 // We can vectorize the tree if its size is greater than or equal to the 6030 // minimum size specified by the MinTreeSize command line option. 6031 if (VectorizableTree.size() >= MinTreeSize) 6032 return false; 6033 6034 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 6035 // can vectorize it if we can prove it fully vectorizable. 6036 if (isFullyVectorizableTinyTree(ForReduction)) 6037 return false; 6038 6039 assert(VectorizableTree.empty() 6040 ? ExternalUses.empty() 6041 : true && "We shouldn't have any external users"); 6042 6043 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 6044 // vectorizable. 6045 return true; 6046 } 6047 6048 InstructionCost BoUpSLP::getSpillCost() const { 6049 // Walk from the bottom of the tree to the top, tracking which values are 6050 // live. When we see a call instruction that is not part of our tree, 6051 // query TTI to see if there is a cost to keeping values live over it 6052 // (for example, if spills and fills are required). 6053 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 6054 InstructionCost Cost = 0; 6055 6056 SmallPtrSet<Instruction*, 4> LiveValues; 6057 Instruction *PrevInst = nullptr; 6058 6059 // The entries in VectorizableTree are not necessarily ordered by their 6060 // position in basic blocks. Collect them and order them by dominance so later 6061 // instructions are guaranteed to be visited first. For instructions in 6062 // different basic blocks, we only scan to the beginning of the block, so 6063 // their order does not matter, as long as all instructions in a basic block 6064 // are grouped together. Using dominance ensures a deterministic order. 6065 SmallVector<Instruction *, 16> OrderedScalars; 6066 for (const auto &TEPtr : VectorizableTree) { 6067 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 6068 if (!Inst) 6069 continue; 6070 OrderedScalars.push_back(Inst); 6071 } 6072 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 6073 auto *NodeA = DT->getNode(A->getParent()); 6074 auto *NodeB = DT->getNode(B->getParent()); 6075 assert(NodeA && "Should only process reachable instructions"); 6076 assert(NodeB && "Should only process reachable instructions"); 6077 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 6078 "Different nodes should have different DFS numbers"); 6079 if (NodeA != NodeB) 6080 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 6081 return B->comesBefore(A); 6082 }); 6083 6084 for (Instruction *Inst : OrderedScalars) { 6085 if (!PrevInst) { 6086 PrevInst = Inst; 6087 continue; 6088 } 6089 6090 // Update LiveValues. 6091 LiveValues.erase(PrevInst); 6092 for (auto &J : PrevInst->operands()) { 6093 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 6094 LiveValues.insert(cast<Instruction>(&*J)); 6095 } 6096 6097 LLVM_DEBUG({ 6098 dbgs() << "SLP: #LV: " << LiveValues.size(); 6099 for (auto *X : LiveValues) 6100 dbgs() << " " << X->getName(); 6101 dbgs() << ", Looking at "; 6102 Inst->dump(); 6103 }); 6104 6105 // Now find the sequence of instructions between PrevInst and Inst. 6106 unsigned NumCalls = 0; 6107 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 6108 PrevInstIt = 6109 PrevInst->getIterator().getReverse(); 6110 while (InstIt != PrevInstIt) { 6111 if (PrevInstIt == PrevInst->getParent()->rend()) { 6112 PrevInstIt = Inst->getParent()->rbegin(); 6113 continue; 6114 } 6115 6116 // Debug information does not impact spill cost. 6117 if ((isa<CallInst>(&*PrevInstIt) && 6118 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 6119 &*PrevInstIt != PrevInst) 6120 NumCalls++; 6121 6122 ++PrevInstIt; 6123 } 6124 6125 if (NumCalls) { 6126 SmallVector<Type*, 4> V; 6127 for (auto *II : LiveValues) { 6128 auto *ScalarTy = II->getType(); 6129 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 6130 ScalarTy = VectorTy->getElementType(); 6131 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 6132 } 6133 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 6134 } 6135 6136 PrevInst = Inst; 6137 } 6138 6139 return Cost; 6140 } 6141 6142 /// Check if two insertelement instructions are from the same buildvector. 6143 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU, 6144 InsertElementInst *V) { 6145 // Instructions must be from the same basic blocks. 6146 if (VU->getParent() != V->getParent()) 6147 return false; 6148 // Checks if 2 insertelements are from the same buildvector. 6149 if (VU->getType() != V->getType()) 6150 return false; 6151 // Multiple used inserts are separate nodes. 6152 if (!VU->hasOneUse() && !V->hasOneUse()) 6153 return false; 6154 auto *IE1 = VU; 6155 auto *IE2 = V; 6156 // Go through the vector operand of insertelement instructions trying to find 6157 // either VU as the original vector for IE2 or V as the original vector for 6158 // IE1. 6159 do { 6160 if (IE2 == VU || IE1 == V) 6161 return true; 6162 if (IE1) { 6163 if (IE1 != VU && !IE1->hasOneUse()) 6164 IE1 = nullptr; 6165 else 6166 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 6167 } 6168 if (IE2) { 6169 if (IE2 != V && !IE2->hasOneUse()) 6170 IE2 = nullptr; 6171 else 6172 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 6173 } 6174 } while (IE1 || IE2); 6175 return false; 6176 } 6177 6178 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 6179 InstructionCost Cost = 0; 6180 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 6181 << VectorizableTree.size() << ".\n"); 6182 6183 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 6184 6185 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 6186 TreeEntry &TE = *VectorizableTree[I]; 6187 6188 InstructionCost C = getEntryCost(&TE, VectorizedVals); 6189 Cost += C; 6190 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6191 << " for bundle that starts with " << *TE.Scalars[0] 6192 << ".\n" 6193 << "SLP: Current total cost = " << Cost << "\n"); 6194 } 6195 6196 SmallPtrSet<Value *, 16> ExtractCostCalculated; 6197 InstructionCost ExtractCost = 0; 6198 SmallVector<unsigned> VF; 6199 SmallVector<SmallVector<int>> ShuffleMask; 6200 SmallVector<Value *> FirstUsers; 6201 SmallVector<APInt> DemandedElts; 6202 for (ExternalUser &EU : ExternalUses) { 6203 // We only add extract cost once for the same scalar. 6204 if (!isa_and_nonnull<InsertElementInst>(EU.User) && 6205 !ExtractCostCalculated.insert(EU.Scalar).second) 6206 continue; 6207 6208 // Uses by ephemeral values are free (because the ephemeral value will be 6209 // removed prior to code generation, and so the extraction will be 6210 // removed as well). 6211 if (EphValues.count(EU.User)) 6212 continue; 6213 6214 // No extract cost for vector "scalar" 6215 if (isa<FixedVectorType>(EU.Scalar->getType())) 6216 continue; 6217 6218 // Already counted the cost for external uses when tried to adjust the cost 6219 // for extractelements, no need to add it again. 6220 if (isa<ExtractElementInst>(EU.Scalar)) 6221 continue; 6222 6223 // If found user is an insertelement, do not calculate extract cost but try 6224 // to detect it as a final shuffled/identity match. 6225 if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) { 6226 if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) { 6227 Optional<unsigned> InsertIdx = getInsertIndex(VU); 6228 if (InsertIdx) { 6229 auto *It = find_if(FirstUsers, [VU](Value *V) { 6230 return areTwoInsertFromSameBuildVector(VU, 6231 cast<InsertElementInst>(V)); 6232 }); 6233 int VecId = -1; 6234 if (It == FirstUsers.end()) { 6235 VF.push_back(FTy->getNumElements()); 6236 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 6237 // Find the insertvector, vectorized in tree, if any. 6238 Value *Base = VU; 6239 while (isa<InsertElementInst>(Base)) { 6240 // Build the mask for the vectorized insertelement instructions. 6241 if (const TreeEntry *E = getTreeEntry(Base)) { 6242 VU = cast<InsertElementInst>(Base); 6243 do { 6244 int Idx = E->findLaneForValue(Base); 6245 ShuffleMask.back()[Idx] = Idx; 6246 Base = cast<InsertElementInst>(Base)->getOperand(0); 6247 } while (E == getTreeEntry(Base)); 6248 break; 6249 } 6250 Base = cast<InsertElementInst>(Base)->getOperand(0); 6251 } 6252 FirstUsers.push_back(VU); 6253 DemandedElts.push_back(APInt::getZero(VF.back())); 6254 VecId = FirstUsers.size() - 1; 6255 } else { 6256 VecId = std::distance(FirstUsers.begin(), It); 6257 } 6258 ShuffleMask[VecId][*InsertIdx] = EU.Lane; 6259 DemandedElts[VecId].setBit(*InsertIdx); 6260 continue; 6261 } 6262 } 6263 } 6264 6265 // If we plan to rewrite the tree in a smaller type, we will need to sign 6266 // extend the extracted value back to the original type. Here, we account 6267 // for the extract and the added cost of the sign extend if needed. 6268 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 6269 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 6270 if (MinBWs.count(ScalarRoot)) { 6271 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 6272 auto Extend = 6273 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 6274 VecTy = FixedVectorType::get(MinTy, BundleWidth); 6275 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 6276 VecTy, EU.Lane); 6277 } else { 6278 ExtractCost += 6279 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 6280 } 6281 } 6282 6283 InstructionCost SpillCost = getSpillCost(); 6284 Cost += SpillCost + ExtractCost; 6285 if (FirstUsers.size() == 1) { 6286 int Limit = ShuffleMask.front().size() * 2; 6287 if (all_of(ShuffleMask.front(), [Limit](int Idx) { return Idx < Limit; }) && 6288 !ShuffleVectorInst::isIdentityMask(ShuffleMask.front())) { 6289 InstructionCost C = TTI->getShuffleCost( 6290 TTI::SK_PermuteSingleSrc, 6291 cast<FixedVectorType>(FirstUsers.front()->getType()), 6292 ShuffleMask.front()); 6293 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6294 << " for final shuffle of insertelement external users " 6295 << *VectorizableTree.front()->Scalars.front() << ".\n" 6296 << "SLP: Current total cost = " << Cost << "\n"); 6297 Cost += C; 6298 } 6299 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6300 cast<FixedVectorType>(FirstUsers.front()->getType()), 6301 DemandedElts.front(), /*Insert*/ true, /*Extract*/ false); 6302 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6303 << " for insertelements gather.\n" 6304 << "SLP: Current total cost = " << Cost << "\n"); 6305 Cost -= InsertCost; 6306 } else if (FirstUsers.size() >= 2) { 6307 unsigned MaxVF = *std::max_element(VF.begin(), VF.end()); 6308 // Combined masks of the first 2 vectors. 6309 SmallVector<int> CombinedMask(MaxVF, UndefMaskElem); 6310 copy(ShuffleMask.front(), CombinedMask.begin()); 6311 APInt CombinedDemandedElts = DemandedElts.front().zextOrSelf(MaxVF); 6312 auto *VecTy = FixedVectorType::get( 6313 cast<VectorType>(FirstUsers.front()->getType())->getElementType(), 6314 MaxVF); 6315 for (int I = 0, E = ShuffleMask[1].size(); I < E; ++I) { 6316 if (ShuffleMask[1][I] != UndefMaskElem) { 6317 CombinedMask[I] = ShuffleMask[1][I] + MaxVF; 6318 CombinedDemandedElts.setBit(I); 6319 } 6320 } 6321 InstructionCost C = 6322 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6323 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6324 << " for final shuffle of vector node and external " 6325 "insertelement users " 6326 << *VectorizableTree.front()->Scalars.front() << ".\n" 6327 << "SLP: Current total cost = " << Cost << "\n"); 6328 Cost += C; 6329 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6330 VecTy, CombinedDemandedElts, /*Insert*/ true, /*Extract*/ false); 6331 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6332 << " for insertelements gather.\n" 6333 << "SLP: Current total cost = " << Cost << "\n"); 6334 Cost -= InsertCost; 6335 for (int I = 2, E = FirstUsers.size(); I < E; ++I) { 6336 // Other elements - permutation of 2 vectors (the initial one and the 6337 // next Ith incoming vector). 6338 unsigned VF = ShuffleMask[I].size(); 6339 for (unsigned Idx = 0; Idx < VF; ++Idx) { 6340 int Mask = ShuffleMask[I][Idx]; 6341 if (Mask != UndefMaskElem) 6342 CombinedMask[Idx] = MaxVF + Mask; 6343 else if (CombinedMask[Idx] != UndefMaskElem) 6344 CombinedMask[Idx] = Idx; 6345 } 6346 for (unsigned Idx = VF; Idx < MaxVF; ++Idx) 6347 if (CombinedMask[Idx] != UndefMaskElem) 6348 CombinedMask[Idx] = Idx; 6349 InstructionCost C = 6350 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6351 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6352 << " for final shuffle of vector node and external " 6353 "insertelement users " 6354 << *VectorizableTree.front()->Scalars.front() << ".\n" 6355 << "SLP: Current total cost = " << Cost << "\n"); 6356 Cost += C; 6357 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6358 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 6359 /*Insert*/ true, /*Extract*/ false); 6360 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6361 << " for insertelements gather.\n" 6362 << "SLP: Current total cost = " << Cost << "\n"); 6363 Cost -= InsertCost; 6364 } 6365 } 6366 6367 #ifndef NDEBUG 6368 SmallString<256> Str; 6369 { 6370 raw_svector_ostream OS(Str); 6371 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 6372 << "SLP: Extract Cost = " << ExtractCost << ".\n" 6373 << "SLP: Total Cost = " << Cost << ".\n"; 6374 } 6375 LLVM_DEBUG(dbgs() << Str); 6376 if (ViewSLPTree) 6377 ViewGraph(this, "SLP" + F->getName(), false, Str); 6378 #endif 6379 6380 return Cost; 6381 } 6382 6383 Optional<TargetTransformInfo::ShuffleKind> 6384 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 6385 SmallVectorImpl<const TreeEntry *> &Entries) { 6386 // TODO: currently checking only for Scalars in the tree entry, need to count 6387 // reused elements too for better cost estimation. 6388 Mask.assign(TE->Scalars.size(), UndefMaskElem); 6389 Entries.clear(); 6390 // Build a lists of values to tree entries. 6391 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 6392 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 6393 if (EntryPtr.get() == TE) 6394 break; 6395 if (EntryPtr->State != TreeEntry::NeedToGather) 6396 continue; 6397 for (Value *V : EntryPtr->Scalars) 6398 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 6399 } 6400 // Find all tree entries used by the gathered values. If no common entries 6401 // found - not a shuffle. 6402 // Here we build a set of tree nodes for each gathered value and trying to 6403 // find the intersection between these sets. If we have at least one common 6404 // tree node for each gathered value - we have just a permutation of the 6405 // single vector. If we have 2 different sets, we're in situation where we 6406 // have a permutation of 2 input vectors. 6407 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 6408 DenseMap<Value *, int> UsedValuesEntry; 6409 for (Value *V : TE->Scalars) { 6410 if (isa<UndefValue>(V)) 6411 continue; 6412 // Build a list of tree entries where V is used. 6413 SmallPtrSet<const TreeEntry *, 4> VToTEs; 6414 auto It = ValueToTEs.find(V); 6415 if (It != ValueToTEs.end()) 6416 VToTEs = It->second; 6417 if (const TreeEntry *VTE = getTreeEntry(V)) 6418 VToTEs.insert(VTE); 6419 if (VToTEs.empty()) 6420 return None; 6421 if (UsedTEs.empty()) { 6422 // The first iteration, just insert the list of nodes to vector. 6423 UsedTEs.push_back(VToTEs); 6424 } else { 6425 // Need to check if there are any previously used tree nodes which use V. 6426 // If there are no such nodes, consider that we have another one input 6427 // vector. 6428 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 6429 unsigned Idx = 0; 6430 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 6431 // Do we have a non-empty intersection of previously listed tree entries 6432 // and tree entries using current V? 6433 set_intersect(VToTEs, Set); 6434 if (!VToTEs.empty()) { 6435 // Yes, write the new subset and continue analysis for the next 6436 // scalar. 6437 Set.swap(VToTEs); 6438 break; 6439 } 6440 VToTEs = SavedVToTEs; 6441 ++Idx; 6442 } 6443 // No non-empty intersection found - need to add a second set of possible 6444 // source vectors. 6445 if (Idx == UsedTEs.size()) { 6446 // If the number of input vectors is greater than 2 - not a permutation, 6447 // fallback to the regular gather. 6448 if (UsedTEs.size() == 2) 6449 return None; 6450 UsedTEs.push_back(SavedVToTEs); 6451 Idx = UsedTEs.size() - 1; 6452 } 6453 UsedValuesEntry.try_emplace(V, Idx); 6454 } 6455 } 6456 6457 if (UsedTEs.empty()) { 6458 assert(all_of(TE->Scalars, UndefValue::classof) && 6459 "Expected vector of undefs only."); 6460 return None; 6461 } 6462 6463 unsigned VF = 0; 6464 if (UsedTEs.size() == 1) { 6465 // Try to find the perfect match in another gather node at first. 6466 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 6467 return EntryPtr->isSame(TE->Scalars); 6468 }); 6469 if (It != UsedTEs.front().end()) { 6470 Entries.push_back(*It); 6471 std::iota(Mask.begin(), Mask.end(), 0); 6472 return TargetTransformInfo::SK_PermuteSingleSrc; 6473 } 6474 // No perfect match, just shuffle, so choose the first tree node. 6475 Entries.push_back(*UsedTEs.front().begin()); 6476 } else { 6477 // Try to find nodes with the same vector factor. 6478 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 6479 DenseMap<int, const TreeEntry *> VFToTE; 6480 for (const TreeEntry *TE : UsedTEs.front()) 6481 VFToTE.try_emplace(TE->getVectorFactor(), TE); 6482 for (const TreeEntry *TE : UsedTEs.back()) { 6483 auto It = VFToTE.find(TE->getVectorFactor()); 6484 if (It != VFToTE.end()) { 6485 VF = It->first; 6486 Entries.push_back(It->second); 6487 Entries.push_back(TE); 6488 break; 6489 } 6490 } 6491 // No 2 source vectors with the same vector factor - give up and do regular 6492 // gather. 6493 if (Entries.empty()) 6494 return None; 6495 } 6496 6497 // Build a shuffle mask for better cost estimation and vector emission. 6498 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 6499 Value *V = TE->Scalars[I]; 6500 if (isa<UndefValue>(V)) 6501 continue; 6502 unsigned Idx = UsedValuesEntry.lookup(V); 6503 const TreeEntry *VTE = Entries[Idx]; 6504 int FoundLane = VTE->findLaneForValue(V); 6505 Mask[I] = Idx * VF + FoundLane; 6506 // Extra check required by isSingleSourceMaskImpl function (called by 6507 // ShuffleVectorInst::isSingleSourceMask). 6508 if (Mask[I] >= 2 * E) 6509 return None; 6510 } 6511 switch (Entries.size()) { 6512 case 1: 6513 return TargetTransformInfo::SK_PermuteSingleSrc; 6514 case 2: 6515 return TargetTransformInfo::SK_PermuteTwoSrc; 6516 default: 6517 break; 6518 } 6519 return None; 6520 } 6521 6522 InstructionCost BoUpSLP::getGatherCost(FixedVectorType *Ty, 6523 const APInt &ShuffledIndices, 6524 bool NeedToShuffle) const { 6525 InstructionCost Cost = 6526 TTI->getScalarizationOverhead(Ty, ~ShuffledIndices, /*Insert*/ true, 6527 /*Extract*/ false); 6528 if (NeedToShuffle) 6529 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 6530 return Cost; 6531 } 6532 6533 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 6534 // Find the type of the operands in VL. 6535 Type *ScalarTy = VL[0]->getType(); 6536 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 6537 ScalarTy = SI->getValueOperand()->getType(); 6538 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 6539 bool DuplicateNonConst = false; 6540 // Find the cost of inserting/extracting values from the vector. 6541 // Check if the same elements are inserted several times and count them as 6542 // shuffle candidates. 6543 APInt ShuffledElements = APInt::getZero(VL.size()); 6544 DenseSet<Value *> UniqueElements; 6545 // Iterate in reverse order to consider insert elements with the high cost. 6546 for (unsigned I = VL.size(); I > 0; --I) { 6547 unsigned Idx = I - 1; 6548 // No need to shuffle duplicates for constants. 6549 if (isConstant(VL[Idx])) { 6550 ShuffledElements.setBit(Idx); 6551 continue; 6552 } 6553 if (!UniqueElements.insert(VL[Idx]).second) { 6554 DuplicateNonConst = true; 6555 ShuffledElements.setBit(Idx); 6556 } 6557 } 6558 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 6559 } 6560 6561 // Perform operand reordering on the instructions in VL and return the reordered 6562 // operands in Left and Right. 6563 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 6564 SmallVectorImpl<Value *> &Left, 6565 SmallVectorImpl<Value *> &Right, 6566 const DataLayout &DL, 6567 ScalarEvolution &SE, 6568 const BoUpSLP &R) { 6569 if (VL.empty()) 6570 return; 6571 VLOperands Ops(VL, DL, SE, R); 6572 // Reorder the operands in place. 6573 Ops.reorder(); 6574 Left = Ops.getVL(0); 6575 Right = Ops.getVL(1); 6576 } 6577 6578 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 6579 // Get the basic block this bundle is in. All instructions in the bundle 6580 // should be in this block. 6581 auto *Front = E->getMainOp(); 6582 auto *BB = Front->getParent(); 6583 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 6584 auto *I = cast<Instruction>(V); 6585 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 6586 })); 6587 6588 auto &&FindLastInst = [E, Front]() { 6589 Instruction *LastInst = Front; 6590 for (Value *V : E->Scalars) { 6591 auto *I = dyn_cast<Instruction>(V); 6592 if (!I) 6593 continue; 6594 if (LastInst->comesBefore(I)) 6595 LastInst = I; 6596 } 6597 return LastInst; 6598 }; 6599 6600 auto &&FindFirstInst = [E, Front]() { 6601 Instruction *FirstInst = Front; 6602 for (Value *V : E->Scalars) { 6603 auto *I = dyn_cast<Instruction>(V); 6604 if (!I) 6605 continue; 6606 if (I->comesBefore(FirstInst)) 6607 FirstInst = I; 6608 } 6609 return FirstInst; 6610 }; 6611 6612 // Set the insert point to the beginning of the basic block if the entry 6613 // should not be scheduled. 6614 if (E->State != TreeEntry::NeedToGather && 6615 doesNotNeedToSchedule(E->Scalars)) { 6616 BasicBlock::iterator InsertPt; 6617 if (all_of(E->Scalars, isUsedOutsideBlock)) 6618 InsertPt = FindLastInst()->getIterator(); 6619 else 6620 InsertPt = FindFirstInst()->getIterator(); 6621 Builder.SetInsertPoint(BB, InsertPt); 6622 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6623 return; 6624 } 6625 6626 // The last instruction in the bundle in program order. 6627 Instruction *LastInst = nullptr; 6628 6629 // Find the last instruction. The common case should be that BB has been 6630 // scheduled, and the last instruction is VL.back(). So we start with 6631 // VL.back() and iterate over schedule data until we reach the end of the 6632 // bundle. The end of the bundle is marked by null ScheduleData. 6633 if (BlocksSchedules.count(BB)) { 6634 Value *V = E->isOneOf(E->Scalars.back()); 6635 if (doesNotNeedToBeScheduled(V)) 6636 V = *find_if_not(E->Scalars, doesNotNeedToBeScheduled); 6637 auto *Bundle = BlocksSchedules[BB]->getScheduleData(V); 6638 if (Bundle && Bundle->isPartOfBundle()) 6639 for (; Bundle; Bundle = Bundle->NextInBundle) 6640 if (Bundle->OpValue == Bundle->Inst) 6641 LastInst = Bundle->Inst; 6642 } 6643 6644 // LastInst can still be null at this point if there's either not an entry 6645 // for BB in BlocksSchedules or there's no ScheduleData available for 6646 // VL.back(). This can be the case if buildTree_rec aborts for various 6647 // reasons (e.g., the maximum recursion depth is reached, the maximum region 6648 // size is reached, etc.). ScheduleData is initialized in the scheduling 6649 // "dry-run". 6650 // 6651 // If this happens, we can still find the last instruction by brute force. We 6652 // iterate forwards from Front (inclusive) until we either see all 6653 // instructions in the bundle or reach the end of the block. If Front is the 6654 // last instruction in program order, LastInst will be set to Front, and we 6655 // will visit all the remaining instructions in the block. 6656 // 6657 // One of the reasons we exit early from buildTree_rec is to place an upper 6658 // bound on compile-time. Thus, taking an additional compile-time hit here is 6659 // not ideal. However, this should be exceedingly rare since it requires that 6660 // we both exit early from buildTree_rec and that the bundle be out-of-order 6661 // (causing us to iterate all the way to the end of the block). 6662 if (!LastInst) 6663 LastInst = FindLastInst(); 6664 assert(LastInst && "Failed to find last instruction in bundle"); 6665 6666 // Set the insertion point after the last instruction in the bundle. Set the 6667 // debug location to Front. 6668 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 6669 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6670 } 6671 6672 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 6673 // List of instructions/lanes from current block and/or the blocks which are 6674 // part of the current loop. These instructions will be inserted at the end to 6675 // make it possible to optimize loops and hoist invariant instructions out of 6676 // the loops body with better chances for success. 6677 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 6678 SmallSet<int, 4> PostponedIndices; 6679 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 6680 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 6681 SmallPtrSet<BasicBlock *, 4> Visited; 6682 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 6683 InsertBB = InsertBB->getSinglePredecessor(); 6684 return InsertBB && InsertBB == InstBB; 6685 }; 6686 for (int I = 0, E = VL.size(); I < E; ++I) { 6687 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 6688 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 6689 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 6690 PostponedIndices.insert(I).second) 6691 PostponedInsts.emplace_back(Inst, I); 6692 } 6693 6694 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 6695 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 6696 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 6697 if (!InsElt) 6698 return Vec; 6699 GatherShuffleSeq.insert(InsElt); 6700 CSEBlocks.insert(InsElt->getParent()); 6701 // Add to our 'need-to-extract' list. 6702 if (TreeEntry *Entry = getTreeEntry(V)) { 6703 // Find which lane we need to extract. 6704 unsigned FoundLane = Entry->findLaneForValue(V); 6705 ExternalUses.emplace_back(V, InsElt, FoundLane); 6706 } 6707 return Vec; 6708 }; 6709 Value *Val0 = 6710 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 6711 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 6712 Value *Vec = PoisonValue::get(VecTy); 6713 SmallVector<int> NonConsts; 6714 // Insert constant values at first. 6715 for (int I = 0, E = VL.size(); I < E; ++I) { 6716 if (PostponedIndices.contains(I)) 6717 continue; 6718 if (!isConstant(VL[I])) { 6719 NonConsts.push_back(I); 6720 continue; 6721 } 6722 Vec = CreateInsertElement(Vec, VL[I], I); 6723 } 6724 // Insert non-constant values. 6725 for (int I : NonConsts) 6726 Vec = CreateInsertElement(Vec, VL[I], I); 6727 // Append instructions, which are/may be part of the loop, in the end to make 6728 // it possible to hoist non-loop-based instructions. 6729 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 6730 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 6731 6732 return Vec; 6733 } 6734 6735 namespace { 6736 /// Merges shuffle masks and emits final shuffle instruction, if required. 6737 class ShuffleInstructionBuilder { 6738 IRBuilderBase &Builder; 6739 const unsigned VF = 0; 6740 bool IsFinalized = false; 6741 SmallVector<int, 4> Mask; 6742 /// Holds all of the instructions that we gathered. 6743 SetVector<Instruction *> &GatherShuffleSeq; 6744 /// A list of blocks that we are going to CSE. 6745 SetVector<BasicBlock *> &CSEBlocks; 6746 6747 public: 6748 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF, 6749 SetVector<Instruction *> &GatherShuffleSeq, 6750 SetVector<BasicBlock *> &CSEBlocks) 6751 : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq), 6752 CSEBlocks(CSEBlocks) {} 6753 6754 /// Adds a mask, inverting it before applying. 6755 void addInversedMask(ArrayRef<unsigned> SubMask) { 6756 if (SubMask.empty()) 6757 return; 6758 SmallVector<int, 4> NewMask; 6759 inversePermutation(SubMask, NewMask); 6760 addMask(NewMask); 6761 } 6762 6763 /// Functions adds masks, merging them into single one. 6764 void addMask(ArrayRef<unsigned> SubMask) { 6765 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 6766 addMask(NewMask); 6767 } 6768 6769 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 6770 6771 Value *finalize(Value *V) { 6772 IsFinalized = true; 6773 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 6774 if (VF == ValueVF && Mask.empty()) 6775 return V; 6776 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 6777 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 6778 addMask(NormalizedMask); 6779 6780 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 6781 return V; 6782 Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle"); 6783 if (auto *I = dyn_cast<Instruction>(Vec)) { 6784 GatherShuffleSeq.insert(I); 6785 CSEBlocks.insert(I->getParent()); 6786 } 6787 return Vec; 6788 } 6789 6790 ~ShuffleInstructionBuilder() { 6791 assert((IsFinalized || Mask.empty()) && 6792 "Shuffle construction must be finalized."); 6793 } 6794 }; 6795 } // namespace 6796 6797 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 6798 const unsigned VF = VL.size(); 6799 InstructionsState S = getSameOpcode(VL); 6800 if (S.getOpcode()) { 6801 if (TreeEntry *E = getTreeEntry(S.OpValue)) 6802 if (E->isSame(VL)) { 6803 Value *V = vectorizeTree(E); 6804 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 6805 if (!E->ReuseShuffleIndices.empty()) { 6806 // Reshuffle to get only unique values. 6807 // If some of the scalars are duplicated in the vectorization tree 6808 // entry, we do not vectorize them but instead generate a mask for 6809 // the reuses. But if there are several users of the same entry, 6810 // they may have different vectorization factors. This is especially 6811 // important for PHI nodes. In this case, we need to adapt the 6812 // resulting instruction for the user vectorization factor and have 6813 // to reshuffle it again to take only unique elements of the vector. 6814 // Without this code the function incorrectly returns reduced vector 6815 // instruction with the same elements, not with the unique ones. 6816 6817 // block: 6818 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 6819 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 6820 // ... (use %2) 6821 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 6822 // br %block 6823 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 6824 SmallSet<int, 4> UsedIdxs; 6825 int Pos = 0; 6826 int Sz = VL.size(); 6827 for (int Idx : E->ReuseShuffleIndices) { 6828 if (Idx != Sz && Idx != UndefMaskElem && 6829 UsedIdxs.insert(Idx).second) 6830 UniqueIdxs[Idx] = Pos; 6831 ++Pos; 6832 } 6833 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 6834 "less than original vector size."); 6835 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 6836 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 6837 } else { 6838 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 6839 "Expected vectorization factor less " 6840 "than original vector size."); 6841 SmallVector<int> UniformMask(VF, 0); 6842 std::iota(UniformMask.begin(), UniformMask.end(), 0); 6843 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 6844 } 6845 if (auto *I = dyn_cast<Instruction>(V)) { 6846 GatherShuffleSeq.insert(I); 6847 CSEBlocks.insert(I->getParent()); 6848 } 6849 } 6850 return V; 6851 } 6852 } 6853 6854 // Can't vectorize this, so simply build a new vector with each lane 6855 // corresponding to the requested value. 6856 return createBuildVector(VL); 6857 } 6858 Value *BoUpSLP::createBuildVector(ArrayRef<Value *> VL) { 6859 unsigned VF = VL.size(); 6860 // Exploit possible reuse of values across lanes. 6861 SmallVector<int> ReuseShuffleIndicies; 6862 SmallVector<Value *> UniqueValues; 6863 if (VL.size() > 2) { 6864 DenseMap<Value *, unsigned> UniquePositions; 6865 unsigned NumValues = 6866 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 6867 return !isa<UndefValue>(V); 6868 }).base()); 6869 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 6870 int UniqueVals = 0; 6871 for (Value *V : VL.drop_back(VL.size() - VF)) { 6872 if (isa<UndefValue>(V)) { 6873 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 6874 continue; 6875 } 6876 if (isConstant(V)) { 6877 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 6878 UniqueValues.emplace_back(V); 6879 continue; 6880 } 6881 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 6882 ReuseShuffleIndicies.emplace_back(Res.first->second); 6883 if (Res.second) { 6884 UniqueValues.emplace_back(V); 6885 ++UniqueVals; 6886 } 6887 } 6888 if (UniqueVals == 1 && UniqueValues.size() == 1) { 6889 // Emit pure splat vector. 6890 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 6891 UndefMaskElem); 6892 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 6893 ReuseShuffleIndicies.clear(); 6894 UniqueValues.clear(); 6895 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 6896 } 6897 UniqueValues.append(VF - UniqueValues.size(), 6898 PoisonValue::get(VL[0]->getType())); 6899 VL = UniqueValues; 6900 } 6901 6902 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6903 CSEBlocks); 6904 Value *Vec = gather(VL); 6905 if (!ReuseShuffleIndicies.empty()) { 6906 ShuffleBuilder.addMask(ReuseShuffleIndicies); 6907 Vec = ShuffleBuilder.finalize(Vec); 6908 } 6909 return Vec; 6910 } 6911 6912 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 6913 IRBuilder<>::InsertPointGuard Guard(Builder); 6914 6915 if (E->VectorizedValue) { 6916 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 6917 return E->VectorizedValue; 6918 } 6919 6920 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 6921 unsigned VF = E->getVectorFactor(); 6922 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6923 CSEBlocks); 6924 if (E->State == TreeEntry::NeedToGather) { 6925 if (E->getMainOp()) 6926 setInsertPointAfterBundle(E); 6927 Value *Vec; 6928 SmallVector<int> Mask; 6929 SmallVector<const TreeEntry *> Entries; 6930 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 6931 isGatherShuffledEntry(E, Mask, Entries); 6932 if (Shuffle.hasValue()) { 6933 assert((Entries.size() == 1 || Entries.size() == 2) && 6934 "Expected shuffle of 1 or 2 entries."); 6935 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 6936 Entries.back()->VectorizedValue, Mask); 6937 if (auto *I = dyn_cast<Instruction>(Vec)) { 6938 GatherShuffleSeq.insert(I); 6939 CSEBlocks.insert(I->getParent()); 6940 } 6941 } else { 6942 Vec = gather(E->Scalars); 6943 } 6944 if (NeedToShuffleReuses) { 6945 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6946 Vec = ShuffleBuilder.finalize(Vec); 6947 } 6948 E->VectorizedValue = Vec; 6949 return Vec; 6950 } 6951 6952 assert((E->State == TreeEntry::Vectorize || 6953 E->State == TreeEntry::ScatterVectorize) && 6954 "Unhandled state"); 6955 unsigned ShuffleOrOp = 6956 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 6957 Instruction *VL0 = E->getMainOp(); 6958 Type *ScalarTy = VL0->getType(); 6959 if (auto *Store = dyn_cast<StoreInst>(VL0)) 6960 ScalarTy = Store->getValueOperand()->getType(); 6961 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 6962 ScalarTy = IE->getOperand(1)->getType(); 6963 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 6964 switch (ShuffleOrOp) { 6965 case Instruction::PHI: { 6966 assert( 6967 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 6968 "PHI reordering is free."); 6969 auto *PH = cast<PHINode>(VL0); 6970 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 6971 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6972 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 6973 Value *V = NewPhi; 6974 6975 // Adjust insertion point once all PHI's have been generated. 6976 Builder.SetInsertPoint(&*PH->getParent()->getFirstInsertionPt()); 6977 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6978 6979 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6980 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6981 V = ShuffleBuilder.finalize(V); 6982 6983 E->VectorizedValue = V; 6984 6985 // PHINodes may have multiple entries from the same block. We want to 6986 // visit every block once. 6987 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 6988 6989 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 6990 ValueList Operands; 6991 BasicBlock *IBB = PH->getIncomingBlock(i); 6992 6993 if (!VisitedBBs.insert(IBB).second) { 6994 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 6995 continue; 6996 } 6997 6998 Builder.SetInsertPoint(IBB->getTerminator()); 6999 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 7000 Value *Vec = vectorizeTree(E->getOperand(i)); 7001 NewPhi->addIncoming(Vec, IBB); 7002 } 7003 7004 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 7005 "Invalid number of incoming values"); 7006 return V; 7007 } 7008 7009 case Instruction::ExtractElement: { 7010 Value *V = E->getSingleOperand(0); 7011 Builder.SetInsertPoint(VL0); 7012 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7013 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7014 V = ShuffleBuilder.finalize(V); 7015 E->VectorizedValue = V; 7016 return V; 7017 } 7018 case Instruction::ExtractValue: { 7019 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 7020 Builder.SetInsertPoint(LI); 7021 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 7022 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 7023 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 7024 Value *NewV = propagateMetadata(V, E->Scalars); 7025 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7026 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7027 NewV = ShuffleBuilder.finalize(NewV); 7028 E->VectorizedValue = NewV; 7029 return NewV; 7030 } 7031 case Instruction::InsertElement: { 7032 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 7033 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 7034 Value *V = vectorizeTree(E->getOperand(1)); 7035 7036 // Create InsertVector shuffle if necessary 7037 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 7038 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 7039 })); 7040 const unsigned NumElts = 7041 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 7042 const unsigned NumScalars = E->Scalars.size(); 7043 7044 unsigned Offset = *getInsertIndex(VL0); 7045 assert(Offset < NumElts && "Failed to find vector index offset"); 7046 7047 // Create shuffle to resize vector 7048 SmallVector<int> Mask; 7049 if (!E->ReorderIndices.empty()) { 7050 inversePermutation(E->ReorderIndices, Mask); 7051 Mask.append(NumElts - NumScalars, UndefMaskElem); 7052 } else { 7053 Mask.assign(NumElts, UndefMaskElem); 7054 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 7055 } 7056 // Create InsertVector shuffle if necessary 7057 bool IsIdentity = true; 7058 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 7059 Mask.swap(PrevMask); 7060 for (unsigned I = 0; I < NumScalars; ++I) { 7061 Value *Scalar = E->Scalars[PrevMask[I]]; 7062 unsigned InsertIdx = *getInsertIndex(Scalar); 7063 IsIdentity &= InsertIdx - Offset == I; 7064 Mask[InsertIdx - Offset] = I; 7065 } 7066 if (!IsIdentity || NumElts != NumScalars) { 7067 V = Builder.CreateShuffleVector(V, Mask); 7068 if (auto *I = dyn_cast<Instruction>(V)) { 7069 GatherShuffleSeq.insert(I); 7070 CSEBlocks.insert(I->getParent()); 7071 } 7072 } 7073 7074 if ((!IsIdentity || Offset != 0 || 7075 !isUndefVector(FirstInsert->getOperand(0))) && 7076 NumElts != NumScalars) { 7077 SmallVector<int> InsertMask(NumElts); 7078 std::iota(InsertMask.begin(), InsertMask.end(), 0); 7079 for (unsigned I = 0; I < NumElts; I++) { 7080 if (Mask[I] != UndefMaskElem) 7081 InsertMask[Offset + I] = NumElts + I; 7082 } 7083 7084 V = Builder.CreateShuffleVector( 7085 FirstInsert->getOperand(0), V, InsertMask, 7086 cast<Instruction>(E->Scalars.back())->getName()); 7087 if (auto *I = dyn_cast<Instruction>(V)) { 7088 GatherShuffleSeq.insert(I); 7089 CSEBlocks.insert(I->getParent()); 7090 } 7091 } 7092 7093 ++NumVectorInstructions; 7094 E->VectorizedValue = V; 7095 return V; 7096 } 7097 case Instruction::ZExt: 7098 case Instruction::SExt: 7099 case Instruction::FPToUI: 7100 case Instruction::FPToSI: 7101 case Instruction::FPExt: 7102 case Instruction::PtrToInt: 7103 case Instruction::IntToPtr: 7104 case Instruction::SIToFP: 7105 case Instruction::UIToFP: 7106 case Instruction::Trunc: 7107 case Instruction::FPTrunc: 7108 case Instruction::BitCast: { 7109 setInsertPointAfterBundle(E); 7110 7111 Value *InVec = vectorizeTree(E->getOperand(0)); 7112 7113 if (E->VectorizedValue) { 7114 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7115 return E->VectorizedValue; 7116 } 7117 7118 auto *CI = cast<CastInst>(VL0); 7119 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 7120 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7121 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7122 V = ShuffleBuilder.finalize(V); 7123 7124 E->VectorizedValue = V; 7125 ++NumVectorInstructions; 7126 return V; 7127 } 7128 case Instruction::FCmp: 7129 case Instruction::ICmp: { 7130 setInsertPointAfterBundle(E); 7131 7132 Value *L = vectorizeTree(E->getOperand(0)); 7133 Value *R = vectorizeTree(E->getOperand(1)); 7134 7135 if (E->VectorizedValue) { 7136 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7137 return E->VectorizedValue; 7138 } 7139 7140 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 7141 Value *V = Builder.CreateCmp(P0, L, R); 7142 propagateIRFlags(V, E->Scalars, VL0); 7143 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7144 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7145 V = ShuffleBuilder.finalize(V); 7146 7147 E->VectorizedValue = V; 7148 ++NumVectorInstructions; 7149 return V; 7150 } 7151 case Instruction::Select: { 7152 setInsertPointAfterBundle(E); 7153 7154 Value *Cond = vectorizeTree(E->getOperand(0)); 7155 Value *True = vectorizeTree(E->getOperand(1)); 7156 Value *False = vectorizeTree(E->getOperand(2)); 7157 7158 if (E->VectorizedValue) { 7159 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7160 return E->VectorizedValue; 7161 } 7162 7163 Value *V = Builder.CreateSelect(Cond, True, False); 7164 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7165 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7166 V = ShuffleBuilder.finalize(V); 7167 7168 E->VectorizedValue = V; 7169 ++NumVectorInstructions; 7170 return V; 7171 } 7172 case Instruction::FNeg: { 7173 setInsertPointAfterBundle(E); 7174 7175 Value *Op = vectorizeTree(E->getOperand(0)); 7176 7177 if (E->VectorizedValue) { 7178 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7179 return E->VectorizedValue; 7180 } 7181 7182 Value *V = Builder.CreateUnOp( 7183 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 7184 propagateIRFlags(V, E->Scalars, VL0); 7185 if (auto *I = dyn_cast<Instruction>(V)) 7186 V = propagateMetadata(I, E->Scalars); 7187 7188 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7189 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7190 V = ShuffleBuilder.finalize(V); 7191 7192 E->VectorizedValue = V; 7193 ++NumVectorInstructions; 7194 7195 return V; 7196 } 7197 case Instruction::Add: 7198 case Instruction::FAdd: 7199 case Instruction::Sub: 7200 case Instruction::FSub: 7201 case Instruction::Mul: 7202 case Instruction::FMul: 7203 case Instruction::UDiv: 7204 case Instruction::SDiv: 7205 case Instruction::FDiv: 7206 case Instruction::URem: 7207 case Instruction::SRem: 7208 case Instruction::FRem: 7209 case Instruction::Shl: 7210 case Instruction::LShr: 7211 case Instruction::AShr: 7212 case Instruction::And: 7213 case Instruction::Or: 7214 case Instruction::Xor: { 7215 setInsertPointAfterBundle(E); 7216 7217 Value *LHS = vectorizeTree(E->getOperand(0)); 7218 Value *RHS = vectorizeTree(E->getOperand(1)); 7219 7220 if (E->VectorizedValue) { 7221 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7222 return E->VectorizedValue; 7223 } 7224 7225 Value *V = Builder.CreateBinOp( 7226 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 7227 RHS); 7228 propagateIRFlags(V, E->Scalars, VL0); 7229 if (auto *I = dyn_cast<Instruction>(V)) 7230 V = propagateMetadata(I, E->Scalars); 7231 7232 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7233 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7234 V = ShuffleBuilder.finalize(V); 7235 7236 E->VectorizedValue = V; 7237 ++NumVectorInstructions; 7238 7239 return V; 7240 } 7241 case Instruction::Load: { 7242 // Loads are inserted at the head of the tree because we don't want to 7243 // sink them all the way down past store instructions. 7244 setInsertPointAfterBundle(E); 7245 7246 LoadInst *LI = cast<LoadInst>(VL0); 7247 Instruction *NewLI; 7248 unsigned AS = LI->getPointerAddressSpace(); 7249 Value *PO = LI->getPointerOperand(); 7250 if (E->State == TreeEntry::Vectorize) { 7251 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 7252 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 7253 7254 // The pointer operand uses an in-tree scalar so we add the new BitCast 7255 // or LoadInst to ExternalUses list to make sure that an extract will 7256 // be generated in the future. 7257 if (TreeEntry *Entry = getTreeEntry(PO)) { 7258 // Find which lane we need to extract. 7259 unsigned FoundLane = Entry->findLaneForValue(PO); 7260 ExternalUses.emplace_back( 7261 PO, PO != VecPtr ? cast<User>(VecPtr) : NewLI, FoundLane); 7262 } 7263 } else { 7264 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 7265 Value *VecPtr = vectorizeTree(E->getOperand(0)); 7266 // Use the minimum alignment of the gathered loads. 7267 Align CommonAlignment = LI->getAlign(); 7268 for (Value *V : E->Scalars) 7269 CommonAlignment = 7270 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 7271 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 7272 } 7273 Value *V = propagateMetadata(NewLI, E->Scalars); 7274 7275 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7276 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7277 V = ShuffleBuilder.finalize(V); 7278 E->VectorizedValue = V; 7279 ++NumVectorInstructions; 7280 return V; 7281 } 7282 case Instruction::Store: { 7283 auto *SI = cast<StoreInst>(VL0); 7284 unsigned AS = SI->getPointerAddressSpace(); 7285 7286 setInsertPointAfterBundle(E); 7287 7288 Value *VecValue = vectorizeTree(E->getOperand(0)); 7289 ShuffleBuilder.addMask(E->ReorderIndices); 7290 VecValue = ShuffleBuilder.finalize(VecValue); 7291 7292 Value *ScalarPtr = SI->getPointerOperand(); 7293 Value *VecPtr = Builder.CreateBitCast( 7294 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 7295 StoreInst *ST = 7296 Builder.CreateAlignedStore(VecValue, VecPtr, SI->getAlign()); 7297 7298 // The pointer operand uses an in-tree scalar, so add the new BitCast or 7299 // StoreInst to ExternalUses to make sure that an extract will be 7300 // generated in the future. 7301 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 7302 // Find which lane we need to extract. 7303 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 7304 ExternalUses.push_back(ExternalUser( 7305 ScalarPtr, ScalarPtr != VecPtr ? cast<User>(VecPtr) : ST, 7306 FoundLane)); 7307 } 7308 7309 Value *V = propagateMetadata(ST, E->Scalars); 7310 7311 E->VectorizedValue = V; 7312 ++NumVectorInstructions; 7313 return V; 7314 } 7315 case Instruction::GetElementPtr: { 7316 auto *GEP0 = cast<GetElementPtrInst>(VL0); 7317 setInsertPointAfterBundle(E); 7318 7319 Value *Op0 = vectorizeTree(E->getOperand(0)); 7320 7321 SmallVector<Value *> OpVecs; 7322 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 7323 Value *OpVec = vectorizeTree(E->getOperand(J)); 7324 OpVecs.push_back(OpVec); 7325 } 7326 7327 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 7328 if (Instruction *I = dyn_cast<Instruction>(V)) 7329 V = propagateMetadata(I, E->Scalars); 7330 7331 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7332 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7333 V = ShuffleBuilder.finalize(V); 7334 7335 E->VectorizedValue = V; 7336 ++NumVectorInstructions; 7337 7338 return V; 7339 } 7340 case Instruction::Call: { 7341 CallInst *CI = cast<CallInst>(VL0); 7342 setInsertPointAfterBundle(E); 7343 7344 Intrinsic::ID IID = Intrinsic::not_intrinsic; 7345 if (Function *FI = CI->getCalledFunction()) 7346 IID = FI->getIntrinsicID(); 7347 7348 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7349 7350 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 7351 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 7352 VecCallCosts.first <= VecCallCosts.second; 7353 7354 Value *ScalarArg = nullptr; 7355 std::vector<Value *> OpVecs; 7356 SmallVector<Type *, 2> TysForDecl = 7357 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 7358 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 7359 ValueList OpVL; 7360 // Some intrinsics have scalar arguments. This argument should not be 7361 // vectorized. 7362 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 7363 CallInst *CEI = cast<CallInst>(VL0); 7364 ScalarArg = CEI->getArgOperand(j); 7365 OpVecs.push_back(CEI->getArgOperand(j)); 7366 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j)) 7367 TysForDecl.push_back(ScalarArg->getType()); 7368 continue; 7369 } 7370 7371 Value *OpVec = vectorizeTree(E->getOperand(j)); 7372 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 7373 OpVecs.push_back(OpVec); 7374 } 7375 7376 Function *CF; 7377 if (!UseIntrinsic) { 7378 VFShape Shape = 7379 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 7380 VecTy->getNumElements())), 7381 false /*HasGlobalPred*/); 7382 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 7383 } else { 7384 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 7385 } 7386 7387 SmallVector<OperandBundleDef, 1> OpBundles; 7388 CI->getOperandBundlesAsDefs(OpBundles); 7389 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 7390 7391 // The scalar argument uses an in-tree scalar so we add the new vectorized 7392 // call to ExternalUses list to make sure that an extract will be 7393 // generated in the future. 7394 if (ScalarArg) { 7395 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 7396 // Find which lane we need to extract. 7397 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 7398 ExternalUses.push_back( 7399 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 7400 } 7401 } 7402 7403 propagateIRFlags(V, E->Scalars, VL0); 7404 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7405 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7406 V = ShuffleBuilder.finalize(V); 7407 7408 E->VectorizedValue = V; 7409 ++NumVectorInstructions; 7410 return V; 7411 } 7412 case Instruction::ShuffleVector: { 7413 assert(E->isAltShuffle() && 7414 ((Instruction::isBinaryOp(E->getOpcode()) && 7415 Instruction::isBinaryOp(E->getAltOpcode())) || 7416 (Instruction::isCast(E->getOpcode()) && 7417 Instruction::isCast(E->getAltOpcode())) || 7418 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 7419 "Invalid Shuffle Vector Operand"); 7420 7421 Value *LHS = nullptr, *RHS = nullptr; 7422 if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) { 7423 setInsertPointAfterBundle(E); 7424 LHS = vectorizeTree(E->getOperand(0)); 7425 RHS = vectorizeTree(E->getOperand(1)); 7426 } else { 7427 setInsertPointAfterBundle(E); 7428 LHS = vectorizeTree(E->getOperand(0)); 7429 } 7430 7431 if (E->VectorizedValue) { 7432 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7433 return E->VectorizedValue; 7434 } 7435 7436 Value *V0, *V1; 7437 if (Instruction::isBinaryOp(E->getOpcode())) { 7438 V0 = Builder.CreateBinOp( 7439 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 7440 V1 = Builder.CreateBinOp( 7441 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 7442 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 7443 V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS); 7444 auto *AltCI = cast<CmpInst>(E->getAltOp()); 7445 CmpInst::Predicate AltPred = AltCI->getPredicate(); 7446 V1 = Builder.CreateCmp(AltPred, LHS, RHS); 7447 } else { 7448 V0 = Builder.CreateCast( 7449 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 7450 V1 = Builder.CreateCast( 7451 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 7452 } 7453 // Add V0 and V1 to later analysis to try to find and remove matching 7454 // instruction, if any. 7455 for (Value *V : {V0, V1}) { 7456 if (auto *I = dyn_cast<Instruction>(V)) { 7457 GatherShuffleSeq.insert(I); 7458 CSEBlocks.insert(I->getParent()); 7459 } 7460 } 7461 7462 // Create shuffle to take alternate operations from the vector. 7463 // Also, gather up main and alt scalar ops to propagate IR flags to 7464 // each vector operation. 7465 ValueList OpScalars, AltScalars; 7466 SmallVector<int> Mask; 7467 buildShuffleEntryMask( 7468 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 7469 [E](Instruction *I) { 7470 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 7471 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 7472 }, 7473 Mask, &OpScalars, &AltScalars); 7474 7475 propagateIRFlags(V0, OpScalars); 7476 propagateIRFlags(V1, AltScalars); 7477 7478 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 7479 if (auto *I = dyn_cast<Instruction>(V)) { 7480 V = propagateMetadata(I, E->Scalars); 7481 GatherShuffleSeq.insert(I); 7482 CSEBlocks.insert(I->getParent()); 7483 } 7484 V = ShuffleBuilder.finalize(V); 7485 7486 E->VectorizedValue = V; 7487 ++NumVectorInstructions; 7488 7489 return V; 7490 } 7491 default: 7492 llvm_unreachable("unknown inst"); 7493 } 7494 return nullptr; 7495 } 7496 7497 Value *BoUpSLP::vectorizeTree() { 7498 ExtraValueToDebugLocsMap ExternallyUsedValues; 7499 return vectorizeTree(ExternallyUsedValues); 7500 } 7501 7502 Value * 7503 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 7504 // All blocks must be scheduled before any instructions are inserted. 7505 for (auto &BSIter : BlocksSchedules) { 7506 scheduleBlock(BSIter.second.get()); 7507 } 7508 7509 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7510 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 7511 7512 // If the vectorized tree can be rewritten in a smaller type, we truncate the 7513 // vectorized root. InstCombine will then rewrite the entire expression. We 7514 // sign extend the extracted values below. 7515 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 7516 if (MinBWs.count(ScalarRoot)) { 7517 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 7518 // If current instr is a phi and not the last phi, insert it after the 7519 // last phi node. 7520 if (isa<PHINode>(I)) 7521 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 7522 else 7523 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 7524 } 7525 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 7526 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 7527 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 7528 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 7529 VectorizableTree[0]->VectorizedValue = Trunc; 7530 } 7531 7532 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 7533 << " values .\n"); 7534 7535 // Extract all of the elements with the external uses. 7536 for (const auto &ExternalUse : ExternalUses) { 7537 Value *Scalar = ExternalUse.Scalar; 7538 llvm::User *User = ExternalUse.User; 7539 7540 // Skip users that we already RAUW. This happens when one instruction 7541 // has multiple uses of the same value. 7542 if (User && !is_contained(Scalar->users(), User)) 7543 continue; 7544 TreeEntry *E = getTreeEntry(Scalar); 7545 assert(E && "Invalid scalar"); 7546 assert(E->State != TreeEntry::NeedToGather && 7547 "Extracting from a gather list"); 7548 7549 Value *Vec = E->VectorizedValue; 7550 assert(Vec && "Can't find vectorizable value"); 7551 7552 Value *Lane = Builder.getInt32(ExternalUse.Lane); 7553 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 7554 if (Scalar->getType() != Vec->getType()) { 7555 Value *Ex; 7556 // "Reuse" the existing extract to improve final codegen. 7557 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 7558 Ex = Builder.CreateExtractElement(ES->getOperand(0), 7559 ES->getOperand(1)); 7560 } else { 7561 Ex = Builder.CreateExtractElement(Vec, Lane); 7562 } 7563 // If necessary, sign-extend or zero-extend ScalarRoot 7564 // to the larger type. 7565 if (!MinBWs.count(ScalarRoot)) 7566 return Ex; 7567 if (MinBWs[ScalarRoot].second) 7568 return Builder.CreateSExt(Ex, Scalar->getType()); 7569 return Builder.CreateZExt(Ex, Scalar->getType()); 7570 } 7571 assert(isa<FixedVectorType>(Scalar->getType()) && 7572 isa<InsertElementInst>(Scalar) && 7573 "In-tree scalar of vector type is not insertelement?"); 7574 return Vec; 7575 }; 7576 // If User == nullptr, the Scalar is used as extra arg. Generate 7577 // ExtractElement instruction and update the record for this scalar in 7578 // ExternallyUsedValues. 7579 if (!User) { 7580 assert(ExternallyUsedValues.count(Scalar) && 7581 "Scalar with nullptr as an external user must be registered in " 7582 "ExternallyUsedValues map"); 7583 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7584 Builder.SetInsertPoint(VecI->getParent(), 7585 std::next(VecI->getIterator())); 7586 } else { 7587 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7588 } 7589 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7590 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 7591 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 7592 auto It = ExternallyUsedValues.find(Scalar); 7593 assert(It != ExternallyUsedValues.end() && 7594 "Externally used scalar is not found in ExternallyUsedValues"); 7595 NewInstLocs.append(It->second); 7596 ExternallyUsedValues.erase(Scalar); 7597 // Required to update internally referenced instructions. 7598 Scalar->replaceAllUsesWith(NewInst); 7599 continue; 7600 } 7601 7602 // Generate extracts for out-of-tree users. 7603 // Find the insertion point for the extractelement lane. 7604 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7605 if (PHINode *PH = dyn_cast<PHINode>(User)) { 7606 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 7607 if (PH->getIncomingValue(i) == Scalar) { 7608 Instruction *IncomingTerminator = 7609 PH->getIncomingBlock(i)->getTerminator(); 7610 if (isa<CatchSwitchInst>(IncomingTerminator)) { 7611 Builder.SetInsertPoint(VecI->getParent(), 7612 std::next(VecI->getIterator())); 7613 } else { 7614 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 7615 } 7616 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7617 CSEBlocks.insert(PH->getIncomingBlock(i)); 7618 PH->setOperand(i, NewInst); 7619 } 7620 } 7621 } else { 7622 Builder.SetInsertPoint(cast<Instruction>(User)); 7623 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7624 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 7625 User->replaceUsesOfWith(Scalar, NewInst); 7626 } 7627 } else { 7628 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7629 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7630 CSEBlocks.insert(&F->getEntryBlock()); 7631 User->replaceUsesOfWith(Scalar, NewInst); 7632 } 7633 7634 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 7635 } 7636 7637 // For each vectorized value: 7638 for (auto &TEPtr : VectorizableTree) { 7639 TreeEntry *Entry = TEPtr.get(); 7640 7641 // No need to handle users of gathered values. 7642 if (Entry->State == TreeEntry::NeedToGather) 7643 continue; 7644 7645 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 7646 7647 // For each lane: 7648 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 7649 Value *Scalar = Entry->Scalars[Lane]; 7650 7651 #ifndef NDEBUG 7652 Type *Ty = Scalar->getType(); 7653 if (!Ty->isVoidTy()) { 7654 for (User *U : Scalar->users()) { 7655 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 7656 7657 // It is legal to delete users in the ignorelist. 7658 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 7659 (isa_and_nonnull<Instruction>(U) && 7660 isDeleted(cast<Instruction>(U)))) && 7661 "Deleting out-of-tree value"); 7662 } 7663 } 7664 #endif 7665 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 7666 eraseInstruction(cast<Instruction>(Scalar)); 7667 } 7668 } 7669 7670 Builder.ClearInsertionPoint(); 7671 InstrElementSize.clear(); 7672 7673 return VectorizableTree[0]->VectorizedValue; 7674 } 7675 7676 void BoUpSLP::optimizeGatherSequence() { 7677 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size() 7678 << " gather sequences instructions.\n"); 7679 // LICM InsertElementInst sequences. 7680 for (Instruction *I : GatherShuffleSeq) { 7681 if (isDeleted(I)) 7682 continue; 7683 7684 // Check if this block is inside a loop. 7685 Loop *L = LI->getLoopFor(I->getParent()); 7686 if (!L) 7687 continue; 7688 7689 // Check if it has a preheader. 7690 BasicBlock *PreHeader = L->getLoopPreheader(); 7691 if (!PreHeader) 7692 continue; 7693 7694 // If the vector or the element that we insert into it are 7695 // instructions that are defined in this basic block then we can't 7696 // hoist this instruction. 7697 if (any_of(I->operands(), [L](Value *V) { 7698 auto *OpI = dyn_cast<Instruction>(V); 7699 return OpI && L->contains(OpI); 7700 })) 7701 continue; 7702 7703 // We can hoist this instruction. Move it to the pre-header. 7704 I->moveBefore(PreHeader->getTerminator()); 7705 } 7706 7707 // Make a list of all reachable blocks in our CSE queue. 7708 SmallVector<const DomTreeNode *, 8> CSEWorkList; 7709 CSEWorkList.reserve(CSEBlocks.size()); 7710 for (BasicBlock *BB : CSEBlocks) 7711 if (DomTreeNode *N = DT->getNode(BB)) { 7712 assert(DT->isReachableFromEntry(N)); 7713 CSEWorkList.push_back(N); 7714 } 7715 7716 // Sort blocks by domination. This ensures we visit a block after all blocks 7717 // dominating it are visited. 7718 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 7719 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 7720 "Different nodes should have different DFS numbers"); 7721 return A->getDFSNumIn() < B->getDFSNumIn(); 7722 }); 7723 7724 // Less defined shuffles can be replaced by the more defined copies. 7725 // Between two shuffles one is less defined if it has the same vector operands 7726 // and its mask indeces are the same as in the first one or undefs. E.g. 7727 // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0, 7728 // poison, <0, 0, 0, 0>. 7729 auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2, 7730 SmallVectorImpl<int> &NewMask) { 7731 if (I1->getType() != I2->getType()) 7732 return false; 7733 auto *SI1 = dyn_cast<ShuffleVectorInst>(I1); 7734 auto *SI2 = dyn_cast<ShuffleVectorInst>(I2); 7735 if (!SI1 || !SI2) 7736 return I1->isIdenticalTo(I2); 7737 if (SI1->isIdenticalTo(SI2)) 7738 return true; 7739 for (int I = 0, E = SI1->getNumOperands(); I < E; ++I) 7740 if (SI1->getOperand(I) != SI2->getOperand(I)) 7741 return false; 7742 // Check if the second instruction is more defined than the first one. 7743 NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end()); 7744 ArrayRef<int> SM1 = SI1->getShuffleMask(); 7745 // Count trailing undefs in the mask to check the final number of used 7746 // registers. 7747 unsigned LastUndefsCnt = 0; 7748 for (int I = 0, E = NewMask.size(); I < E; ++I) { 7749 if (SM1[I] == UndefMaskElem) 7750 ++LastUndefsCnt; 7751 else 7752 LastUndefsCnt = 0; 7753 if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem && 7754 NewMask[I] != SM1[I]) 7755 return false; 7756 if (NewMask[I] == UndefMaskElem) 7757 NewMask[I] = SM1[I]; 7758 } 7759 // Check if the last undefs actually change the final number of used vector 7760 // registers. 7761 return SM1.size() - LastUndefsCnt > 1 && 7762 TTI->getNumberOfParts(SI1->getType()) == 7763 TTI->getNumberOfParts( 7764 FixedVectorType::get(SI1->getType()->getElementType(), 7765 SM1.size() - LastUndefsCnt)); 7766 }; 7767 // Perform O(N^2) search over the gather/shuffle sequences and merge identical 7768 // instructions. TODO: We can further optimize this scan if we split the 7769 // instructions into different buckets based on the insert lane. 7770 SmallVector<Instruction *, 16> Visited; 7771 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 7772 assert(*I && 7773 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 7774 "Worklist not sorted properly!"); 7775 BasicBlock *BB = (*I)->getBlock(); 7776 // For all instructions in blocks containing gather sequences: 7777 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 7778 if (isDeleted(&In)) 7779 continue; 7780 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 7781 !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In)) 7782 continue; 7783 7784 // Check if we can replace this instruction with any of the 7785 // visited instructions. 7786 bool Replaced = false; 7787 for (Instruction *&V : Visited) { 7788 SmallVector<int> NewMask; 7789 if (IsIdenticalOrLessDefined(&In, V, NewMask) && 7790 DT->dominates(V->getParent(), In.getParent())) { 7791 In.replaceAllUsesWith(V); 7792 eraseInstruction(&In); 7793 if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) 7794 if (!NewMask.empty()) 7795 SI->setShuffleMask(NewMask); 7796 Replaced = true; 7797 break; 7798 } 7799 if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) && 7800 GatherShuffleSeq.contains(V) && 7801 IsIdenticalOrLessDefined(V, &In, NewMask) && 7802 DT->dominates(In.getParent(), V->getParent())) { 7803 In.moveAfter(V); 7804 V->replaceAllUsesWith(&In); 7805 eraseInstruction(V); 7806 if (auto *SI = dyn_cast<ShuffleVectorInst>(&In)) 7807 if (!NewMask.empty()) 7808 SI->setShuffleMask(NewMask); 7809 V = &In; 7810 Replaced = true; 7811 break; 7812 } 7813 } 7814 if (!Replaced) { 7815 assert(!is_contained(Visited, &In)); 7816 Visited.push_back(&In); 7817 } 7818 } 7819 } 7820 CSEBlocks.clear(); 7821 GatherShuffleSeq.clear(); 7822 } 7823 7824 BoUpSLP::ScheduleData * 7825 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) { 7826 ScheduleData *Bundle = nullptr; 7827 ScheduleData *PrevInBundle = nullptr; 7828 for (Value *V : VL) { 7829 if (doesNotNeedToBeScheduled(V)) 7830 continue; 7831 ScheduleData *BundleMember = getScheduleData(V); 7832 assert(BundleMember && 7833 "no ScheduleData for bundle member " 7834 "(maybe not in same basic block)"); 7835 assert(BundleMember->isSchedulingEntity() && 7836 "bundle member already part of other bundle"); 7837 if (PrevInBundle) { 7838 PrevInBundle->NextInBundle = BundleMember; 7839 } else { 7840 Bundle = BundleMember; 7841 } 7842 7843 // Group the instructions to a bundle. 7844 BundleMember->FirstInBundle = Bundle; 7845 PrevInBundle = BundleMember; 7846 } 7847 assert(Bundle && "Failed to find schedule bundle"); 7848 return Bundle; 7849 } 7850 7851 // Groups the instructions to a bundle (which is then a single scheduling entity) 7852 // and schedules instructions until the bundle gets ready. 7853 Optional<BoUpSLP::ScheduleData *> 7854 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 7855 const InstructionsState &S) { 7856 // No need to schedule PHIs, insertelement, extractelement and extractvalue 7857 // instructions. 7858 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue) || 7859 doesNotNeedToSchedule(VL)) 7860 return nullptr; 7861 7862 // Initialize the instruction bundle. 7863 Instruction *OldScheduleEnd = ScheduleEnd; 7864 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 7865 7866 auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule, 7867 ScheduleData *Bundle) { 7868 // The scheduling region got new instructions at the lower end (or it is a 7869 // new region for the first bundle). This makes it necessary to 7870 // recalculate all dependencies. 7871 // It is seldom that this needs to be done a second time after adding the 7872 // initial bundle to the region. 7873 if (ScheduleEnd != OldScheduleEnd) { 7874 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 7875 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 7876 ReSchedule = true; 7877 } 7878 if (Bundle) { 7879 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 7880 << " in block " << BB->getName() << "\n"); 7881 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 7882 } 7883 7884 if (ReSchedule) { 7885 resetSchedule(); 7886 initialFillReadyList(ReadyInsts); 7887 } 7888 7889 // Now try to schedule the new bundle or (if no bundle) just calculate 7890 // dependencies. As soon as the bundle is "ready" it means that there are no 7891 // cyclic dependencies and we can schedule it. Note that's important that we 7892 // don't "schedule" the bundle yet (see cancelScheduling). 7893 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 7894 !ReadyInsts.empty()) { 7895 ScheduleData *Picked = ReadyInsts.pop_back_val(); 7896 assert(Picked->isSchedulingEntity() && Picked->isReady() && 7897 "must be ready to schedule"); 7898 schedule(Picked, ReadyInsts); 7899 } 7900 }; 7901 7902 // Make sure that the scheduling region contains all 7903 // instructions of the bundle. 7904 for (Value *V : VL) { 7905 if (doesNotNeedToBeScheduled(V)) 7906 continue; 7907 if (!extendSchedulingRegion(V, S)) { 7908 // If the scheduling region got new instructions at the lower end (or it 7909 // is a new region for the first bundle). This makes it necessary to 7910 // recalculate all dependencies. 7911 // Otherwise the compiler may crash trying to incorrectly calculate 7912 // dependencies and emit instruction in the wrong order at the actual 7913 // scheduling. 7914 TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr); 7915 return None; 7916 } 7917 } 7918 7919 bool ReSchedule = false; 7920 for (Value *V : VL) { 7921 if (doesNotNeedToBeScheduled(V)) 7922 continue; 7923 ScheduleData *BundleMember = getScheduleData(V); 7924 assert(BundleMember && 7925 "no ScheduleData for bundle member (maybe not in same basic block)"); 7926 7927 // Make sure we don't leave the pieces of the bundle in the ready list when 7928 // whole bundle might not be ready. 7929 ReadyInsts.remove(BundleMember); 7930 7931 if (!BundleMember->IsScheduled) 7932 continue; 7933 // A bundle member was scheduled as single instruction before and now 7934 // needs to be scheduled as part of the bundle. We just get rid of the 7935 // existing schedule. 7936 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 7937 << " was already scheduled\n"); 7938 ReSchedule = true; 7939 } 7940 7941 auto *Bundle = buildBundle(VL); 7942 TryScheduleBundleImpl(ReSchedule, Bundle); 7943 if (!Bundle->isReady()) { 7944 cancelScheduling(VL, S.OpValue); 7945 return None; 7946 } 7947 return Bundle; 7948 } 7949 7950 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 7951 Value *OpValue) { 7952 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue) || 7953 doesNotNeedToSchedule(VL)) 7954 return; 7955 7956 if (doesNotNeedToBeScheduled(OpValue)) 7957 OpValue = *find_if_not(VL, doesNotNeedToBeScheduled); 7958 ScheduleData *Bundle = getScheduleData(OpValue); 7959 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 7960 assert(!Bundle->IsScheduled && 7961 "Can't cancel bundle which is already scheduled"); 7962 assert(Bundle->isSchedulingEntity() && 7963 (Bundle->isPartOfBundle() || needToScheduleSingleInstruction(VL)) && 7964 "tried to unbundle something which is not a bundle"); 7965 7966 // Remove the bundle from the ready list. 7967 if (Bundle->isReady()) 7968 ReadyInsts.remove(Bundle); 7969 7970 // Un-bundle: make single instructions out of the bundle. 7971 ScheduleData *BundleMember = Bundle; 7972 while (BundleMember) { 7973 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 7974 BundleMember->FirstInBundle = BundleMember; 7975 ScheduleData *Next = BundleMember->NextInBundle; 7976 BundleMember->NextInBundle = nullptr; 7977 BundleMember->TE = nullptr; 7978 if (BundleMember->unscheduledDepsInBundle() == 0) { 7979 ReadyInsts.insert(BundleMember); 7980 } 7981 BundleMember = Next; 7982 } 7983 } 7984 7985 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 7986 // Allocate a new ScheduleData for the instruction. 7987 if (ChunkPos >= ChunkSize) { 7988 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 7989 ChunkPos = 0; 7990 } 7991 return &(ScheduleDataChunks.back()[ChunkPos++]); 7992 } 7993 7994 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 7995 const InstructionsState &S) { 7996 if (getScheduleData(V, isOneOf(S, V))) 7997 return true; 7998 Instruction *I = dyn_cast<Instruction>(V); 7999 assert(I && "bundle member must be an instruction"); 8000 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 8001 !doesNotNeedToBeScheduled(I) && 8002 "phi nodes/insertelements/extractelements/extractvalues don't need to " 8003 "be scheduled"); 8004 auto &&CheckScheduleForI = [this, &S](Instruction *I) -> bool { 8005 ScheduleData *ISD = getScheduleData(I); 8006 if (!ISD) 8007 return false; 8008 assert(isInSchedulingRegion(ISD) && 8009 "ScheduleData not in scheduling region"); 8010 ScheduleData *SD = allocateScheduleDataChunks(); 8011 SD->Inst = I; 8012 SD->init(SchedulingRegionID, S.OpValue); 8013 ExtraScheduleDataMap[I][S.OpValue] = SD; 8014 return true; 8015 }; 8016 if (CheckScheduleForI(I)) 8017 return true; 8018 if (!ScheduleStart) { 8019 // It's the first instruction in the new region. 8020 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 8021 ScheduleStart = I; 8022 ScheduleEnd = I->getNextNode(); 8023 if (isOneOf(S, I) != I) 8024 CheckScheduleForI(I); 8025 assert(ScheduleEnd && "tried to vectorize a terminator?"); 8026 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 8027 return true; 8028 } 8029 // Search up and down at the same time, because we don't know if the new 8030 // instruction is above or below the existing scheduling region. 8031 BasicBlock::reverse_iterator UpIter = 8032 ++ScheduleStart->getIterator().getReverse(); 8033 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 8034 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 8035 BasicBlock::iterator LowerEnd = BB->end(); 8036 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 8037 &*DownIter != I) { 8038 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 8039 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 8040 return false; 8041 } 8042 8043 ++UpIter; 8044 ++DownIter; 8045 } 8046 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 8047 assert(I->getParent() == ScheduleStart->getParent() && 8048 "Instruction is in wrong basic block."); 8049 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 8050 ScheduleStart = I; 8051 if (isOneOf(S, I) != I) 8052 CheckScheduleForI(I); 8053 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 8054 << "\n"); 8055 return true; 8056 } 8057 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 8058 "Expected to reach top of the basic block or instruction down the " 8059 "lower end."); 8060 assert(I->getParent() == ScheduleEnd->getParent() && 8061 "Instruction is in wrong basic block."); 8062 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 8063 nullptr); 8064 ScheduleEnd = I->getNextNode(); 8065 if (isOneOf(S, I) != I) 8066 CheckScheduleForI(I); 8067 assert(ScheduleEnd && "tried to vectorize a terminator?"); 8068 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 8069 return true; 8070 } 8071 8072 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 8073 Instruction *ToI, 8074 ScheduleData *PrevLoadStore, 8075 ScheduleData *NextLoadStore) { 8076 ScheduleData *CurrentLoadStore = PrevLoadStore; 8077 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 8078 // No need to allocate data for non-schedulable instructions. 8079 if (doesNotNeedToBeScheduled(I)) 8080 continue; 8081 ScheduleData *SD = ScheduleDataMap.lookup(I); 8082 if (!SD) { 8083 SD = allocateScheduleDataChunks(); 8084 ScheduleDataMap[I] = SD; 8085 SD->Inst = I; 8086 } 8087 assert(!isInSchedulingRegion(SD) && 8088 "new ScheduleData already in scheduling region"); 8089 SD->init(SchedulingRegionID, I); 8090 8091 if (I->mayReadOrWriteMemory() && 8092 (!isa<IntrinsicInst>(I) || 8093 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 8094 cast<IntrinsicInst>(I)->getIntrinsicID() != 8095 Intrinsic::pseudoprobe))) { 8096 // Update the linked list of memory accessing instructions. 8097 if (CurrentLoadStore) { 8098 CurrentLoadStore->NextLoadStore = SD; 8099 } else { 8100 FirstLoadStoreInRegion = SD; 8101 } 8102 CurrentLoadStore = SD; 8103 } 8104 8105 if (match(I, m_Intrinsic<Intrinsic::stacksave>()) || 8106 match(I, m_Intrinsic<Intrinsic::stackrestore>())) 8107 RegionHasStackSave = true; 8108 } 8109 if (NextLoadStore) { 8110 if (CurrentLoadStore) 8111 CurrentLoadStore->NextLoadStore = NextLoadStore; 8112 } else { 8113 LastLoadStoreInRegion = CurrentLoadStore; 8114 } 8115 } 8116 8117 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 8118 bool InsertInReadyList, 8119 BoUpSLP *SLP) { 8120 assert(SD->isSchedulingEntity()); 8121 8122 SmallVector<ScheduleData *, 10> WorkList; 8123 WorkList.push_back(SD); 8124 8125 while (!WorkList.empty()) { 8126 ScheduleData *SD = WorkList.pop_back_val(); 8127 for (ScheduleData *BundleMember = SD; BundleMember; 8128 BundleMember = BundleMember->NextInBundle) { 8129 assert(isInSchedulingRegion(BundleMember)); 8130 if (BundleMember->hasValidDependencies()) 8131 continue; 8132 8133 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 8134 << "\n"); 8135 BundleMember->Dependencies = 0; 8136 BundleMember->resetUnscheduledDeps(); 8137 8138 // Handle def-use chain dependencies. 8139 if (BundleMember->OpValue != BundleMember->Inst) { 8140 if (ScheduleData *UseSD = getScheduleData(BundleMember->Inst)) { 8141 BundleMember->Dependencies++; 8142 ScheduleData *DestBundle = UseSD->FirstInBundle; 8143 if (!DestBundle->IsScheduled) 8144 BundleMember->incrementUnscheduledDeps(1); 8145 if (!DestBundle->hasValidDependencies()) 8146 WorkList.push_back(DestBundle); 8147 } 8148 } else { 8149 for (User *U : BundleMember->Inst->users()) { 8150 if (ScheduleData *UseSD = getScheduleData(cast<Instruction>(U))) { 8151 BundleMember->Dependencies++; 8152 ScheduleData *DestBundle = UseSD->FirstInBundle; 8153 if (!DestBundle->IsScheduled) 8154 BundleMember->incrementUnscheduledDeps(1); 8155 if (!DestBundle->hasValidDependencies()) 8156 WorkList.push_back(DestBundle); 8157 } 8158 } 8159 } 8160 8161 auto makeControlDependent = [&](Instruction *I) { 8162 auto *DepDest = getScheduleData(I); 8163 assert(DepDest && "must be in schedule window"); 8164 DepDest->ControlDependencies.push_back(BundleMember); 8165 BundleMember->Dependencies++; 8166 ScheduleData *DestBundle = DepDest->FirstInBundle; 8167 if (!DestBundle->IsScheduled) 8168 BundleMember->incrementUnscheduledDeps(1); 8169 if (!DestBundle->hasValidDependencies()) 8170 WorkList.push_back(DestBundle); 8171 }; 8172 8173 // Any instruction which isn't safe to speculate at the begining of the 8174 // block is control dependend on any early exit or non-willreturn call 8175 // which proceeds it. 8176 if (!isGuaranteedToTransferExecutionToSuccessor(BundleMember->Inst)) { 8177 for (Instruction *I = BundleMember->Inst->getNextNode(); 8178 I != ScheduleEnd; I = I->getNextNode()) { 8179 if (isSafeToSpeculativelyExecute(I, &*BB->begin())) 8180 continue; 8181 8182 // Add the dependency 8183 makeControlDependent(I); 8184 8185 if (!isGuaranteedToTransferExecutionToSuccessor(I)) 8186 // Everything past here must be control dependent on I. 8187 break; 8188 } 8189 } 8190 8191 if (RegionHasStackSave) { 8192 // If we have an inalloc alloca instruction, it needs to be scheduled 8193 // after any preceeding stacksave. We also need to prevent any alloca 8194 // from reordering above a preceeding stackrestore. 8195 if (match(BundleMember->Inst, m_Intrinsic<Intrinsic::stacksave>()) || 8196 match(BundleMember->Inst, m_Intrinsic<Intrinsic::stackrestore>())) { 8197 for (Instruction *I = BundleMember->Inst->getNextNode(); 8198 I != ScheduleEnd; I = I->getNextNode()) { 8199 if (match(I, m_Intrinsic<Intrinsic::stacksave>()) || 8200 match(I, m_Intrinsic<Intrinsic::stackrestore>())) 8201 // Any allocas past here must be control dependent on I, and I 8202 // must be memory dependend on BundleMember->Inst. 8203 break; 8204 8205 if (!isa<AllocaInst>(I)) 8206 continue; 8207 8208 // Add the dependency 8209 makeControlDependent(I); 8210 } 8211 } 8212 8213 // In addition to the cases handle just above, we need to prevent 8214 // allocas from moving below a stacksave. The stackrestore case 8215 // is currently thought to be conservatism. 8216 if (isa<AllocaInst>(BundleMember->Inst)) { 8217 for (Instruction *I = BundleMember->Inst->getNextNode(); 8218 I != ScheduleEnd; I = I->getNextNode()) { 8219 if (!match(I, m_Intrinsic<Intrinsic::stacksave>()) && 8220 !match(I, m_Intrinsic<Intrinsic::stackrestore>())) 8221 continue; 8222 8223 // Add the dependency 8224 makeControlDependent(I); 8225 break; 8226 } 8227 } 8228 } 8229 8230 // Handle the memory dependencies (if any). 8231 ScheduleData *DepDest = BundleMember->NextLoadStore; 8232 if (!DepDest) 8233 continue; 8234 Instruction *SrcInst = BundleMember->Inst; 8235 assert(SrcInst->mayReadOrWriteMemory() && 8236 "NextLoadStore list for non memory effecting bundle?"); 8237 MemoryLocation SrcLoc = getLocation(SrcInst); 8238 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 8239 unsigned numAliased = 0; 8240 unsigned DistToSrc = 1; 8241 8242 for ( ; DepDest; DepDest = DepDest->NextLoadStore) { 8243 assert(isInSchedulingRegion(DepDest)); 8244 8245 // We have two limits to reduce the complexity: 8246 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 8247 // SLP->isAliased (which is the expensive part in this loop). 8248 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 8249 // the whole loop (even if the loop is fast, it's quadratic). 8250 // It's important for the loop break condition (see below) to 8251 // check this limit even between two read-only instructions. 8252 if (DistToSrc >= MaxMemDepDistance || 8253 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 8254 (numAliased >= AliasedCheckLimit || 8255 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 8256 8257 // We increment the counter only if the locations are aliased 8258 // (instead of counting all alias checks). This gives a better 8259 // balance between reduced runtime and accurate dependencies. 8260 numAliased++; 8261 8262 DepDest->MemoryDependencies.push_back(BundleMember); 8263 BundleMember->Dependencies++; 8264 ScheduleData *DestBundle = DepDest->FirstInBundle; 8265 if (!DestBundle->IsScheduled) { 8266 BundleMember->incrementUnscheduledDeps(1); 8267 } 8268 if (!DestBundle->hasValidDependencies()) { 8269 WorkList.push_back(DestBundle); 8270 } 8271 } 8272 8273 // Example, explaining the loop break condition: Let's assume our 8274 // starting instruction is i0 and MaxMemDepDistance = 3. 8275 // 8276 // +--------v--v--v 8277 // i0,i1,i2,i3,i4,i5,i6,i7,i8 8278 // +--------^--^--^ 8279 // 8280 // MaxMemDepDistance let us stop alias-checking at i3 and we add 8281 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 8282 // Previously we already added dependencies from i3 to i6,i7,i8 8283 // (because of MaxMemDepDistance). As we added a dependency from 8284 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 8285 // and we can abort this loop at i6. 8286 if (DistToSrc >= 2 * MaxMemDepDistance) 8287 break; 8288 DistToSrc++; 8289 } 8290 } 8291 if (InsertInReadyList && SD->isReady()) { 8292 ReadyInsts.insert(SD); 8293 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 8294 << "\n"); 8295 } 8296 } 8297 } 8298 8299 void BoUpSLP::BlockScheduling::resetSchedule() { 8300 assert(ScheduleStart && 8301 "tried to reset schedule on block which has not been scheduled"); 8302 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 8303 doForAllOpcodes(I, [&](ScheduleData *SD) { 8304 assert(isInSchedulingRegion(SD) && 8305 "ScheduleData not in scheduling region"); 8306 SD->IsScheduled = false; 8307 SD->resetUnscheduledDeps(); 8308 }); 8309 } 8310 ReadyInsts.clear(); 8311 } 8312 8313 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 8314 if (!BS->ScheduleStart) 8315 return; 8316 8317 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 8318 8319 // A key point - if we got here, pre-scheduling was able to find a valid 8320 // scheduling of the sub-graph of the scheduling window which consists 8321 // of all vector bundles and their transitive users. As such, we do not 8322 // need to reschedule anything *outside of* that subgraph. 8323 8324 BS->resetSchedule(); 8325 8326 // For the real scheduling we use a more sophisticated ready-list: it is 8327 // sorted by the original instruction location. This lets the final schedule 8328 // be as close as possible to the original instruction order. 8329 // WARNING: If changing this order causes a correctness issue, that means 8330 // there is some missing dependence edge in the schedule data graph. 8331 struct ScheduleDataCompare { 8332 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 8333 return SD2->SchedulingPriority < SD1->SchedulingPriority; 8334 } 8335 }; 8336 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 8337 8338 // Ensure that all dependency data is updated (for nodes in the sub-graph) 8339 // and fill the ready-list with initial instructions. 8340 int Idx = 0; 8341 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 8342 I = I->getNextNode()) { 8343 BS->doForAllOpcodes(I, [this, &Idx, BS](ScheduleData *SD) { 8344 TreeEntry *SDTE = getTreeEntry(SD->Inst); 8345 (void)SDTE; 8346 assert((isVectorLikeInstWithConstOps(SD->Inst) || 8347 SD->isPartOfBundle() == 8348 (SDTE && !doesNotNeedToSchedule(SDTE->Scalars))) && 8349 "scheduler and vectorizer bundle mismatch"); 8350 SD->FirstInBundle->SchedulingPriority = Idx++; 8351 8352 if (SD->isSchedulingEntity() && SD->isPartOfBundle()) 8353 BS->calculateDependencies(SD, false, this); 8354 }); 8355 } 8356 BS->initialFillReadyList(ReadyInsts); 8357 8358 Instruction *LastScheduledInst = BS->ScheduleEnd; 8359 8360 // Do the "real" scheduling. 8361 while (!ReadyInsts.empty()) { 8362 ScheduleData *picked = *ReadyInsts.begin(); 8363 ReadyInsts.erase(ReadyInsts.begin()); 8364 8365 // Move the scheduled instruction(s) to their dedicated places, if not 8366 // there yet. 8367 for (ScheduleData *BundleMember = picked; BundleMember; 8368 BundleMember = BundleMember->NextInBundle) { 8369 Instruction *pickedInst = BundleMember->Inst; 8370 if (pickedInst->getNextNode() != LastScheduledInst) 8371 pickedInst->moveBefore(LastScheduledInst); 8372 LastScheduledInst = pickedInst; 8373 } 8374 8375 BS->schedule(picked, ReadyInsts); 8376 } 8377 8378 // Check that we didn't break any of our invariants. 8379 #ifdef EXPENSIVE_CHECKS 8380 BS->verify(); 8381 #endif 8382 8383 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) 8384 // Check that all schedulable entities got scheduled 8385 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) { 8386 BS->doForAllOpcodes(I, [&](ScheduleData *SD) { 8387 if (SD->isSchedulingEntity() && SD->hasValidDependencies()) { 8388 assert(SD->IsScheduled && "must be scheduled at this point"); 8389 } 8390 }); 8391 } 8392 #endif 8393 8394 // Avoid duplicate scheduling of the block. 8395 BS->ScheduleStart = nullptr; 8396 } 8397 8398 unsigned BoUpSLP::getVectorElementSize(Value *V) { 8399 // If V is a store, just return the width of the stored value (or value 8400 // truncated just before storing) without traversing the expression tree. 8401 // This is the common case. 8402 if (auto *Store = dyn_cast<StoreInst>(V)) { 8403 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 8404 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 8405 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 8406 } 8407 8408 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 8409 return getVectorElementSize(IEI->getOperand(1)); 8410 8411 auto E = InstrElementSize.find(V); 8412 if (E != InstrElementSize.end()) 8413 return E->second; 8414 8415 // If V is not a store, we can traverse the expression tree to find loads 8416 // that feed it. The type of the loaded value may indicate a more suitable 8417 // width than V's type. We want to base the vector element size on the width 8418 // of memory operations where possible. 8419 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 8420 SmallPtrSet<Instruction *, 16> Visited; 8421 if (auto *I = dyn_cast<Instruction>(V)) { 8422 Worklist.emplace_back(I, I->getParent()); 8423 Visited.insert(I); 8424 } 8425 8426 // Traverse the expression tree in bottom-up order looking for loads. If we 8427 // encounter an instruction we don't yet handle, we give up. 8428 auto Width = 0u; 8429 while (!Worklist.empty()) { 8430 Instruction *I; 8431 BasicBlock *Parent; 8432 std::tie(I, Parent) = Worklist.pop_back_val(); 8433 8434 // We should only be looking at scalar instructions here. If the current 8435 // instruction has a vector type, skip. 8436 auto *Ty = I->getType(); 8437 if (isa<VectorType>(Ty)) 8438 continue; 8439 8440 // If the current instruction is a load, update MaxWidth to reflect the 8441 // width of the loaded value. 8442 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 8443 isa<ExtractValueInst>(I)) 8444 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 8445 8446 // Otherwise, we need to visit the operands of the instruction. We only 8447 // handle the interesting cases from buildTree here. If an operand is an 8448 // instruction we haven't yet visited and from the same basic block as the 8449 // user or the use is a PHI node, we add it to the worklist. 8450 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8451 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 8452 isa<UnaryOperator>(I)) { 8453 for (Use &U : I->operands()) 8454 if (auto *J = dyn_cast<Instruction>(U.get())) 8455 if (Visited.insert(J).second && 8456 (isa<PHINode>(I) || J->getParent() == Parent)) 8457 Worklist.emplace_back(J, J->getParent()); 8458 } else { 8459 break; 8460 } 8461 } 8462 8463 // If we didn't encounter a memory access in the expression tree, or if we 8464 // gave up for some reason, just return the width of V. Otherwise, return the 8465 // maximum width we found. 8466 if (!Width) { 8467 if (auto *CI = dyn_cast<CmpInst>(V)) 8468 V = CI->getOperand(0); 8469 Width = DL->getTypeSizeInBits(V->getType()); 8470 } 8471 8472 for (Instruction *I : Visited) 8473 InstrElementSize[I] = Width; 8474 8475 return Width; 8476 } 8477 8478 // Determine if a value V in a vectorizable expression Expr can be demoted to a 8479 // smaller type with a truncation. We collect the values that will be demoted 8480 // in ToDemote and additional roots that require investigating in Roots. 8481 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 8482 SmallVectorImpl<Value *> &ToDemote, 8483 SmallVectorImpl<Value *> &Roots) { 8484 // We can always demote constants. 8485 if (isa<Constant>(V)) { 8486 ToDemote.push_back(V); 8487 return true; 8488 } 8489 8490 // If the value is not an instruction in the expression with only one use, it 8491 // cannot be demoted. 8492 auto *I = dyn_cast<Instruction>(V); 8493 if (!I || !I->hasOneUse() || !Expr.count(I)) 8494 return false; 8495 8496 switch (I->getOpcode()) { 8497 8498 // We can always demote truncations and extensions. Since truncations can 8499 // seed additional demotion, we save the truncated value. 8500 case Instruction::Trunc: 8501 Roots.push_back(I->getOperand(0)); 8502 break; 8503 case Instruction::ZExt: 8504 case Instruction::SExt: 8505 if (isa<ExtractElementInst>(I->getOperand(0)) || 8506 isa<InsertElementInst>(I->getOperand(0))) 8507 return false; 8508 break; 8509 8510 // We can demote certain binary operations if we can demote both of their 8511 // operands. 8512 case Instruction::Add: 8513 case Instruction::Sub: 8514 case Instruction::Mul: 8515 case Instruction::And: 8516 case Instruction::Or: 8517 case Instruction::Xor: 8518 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 8519 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 8520 return false; 8521 break; 8522 8523 // We can demote selects if we can demote their true and false values. 8524 case Instruction::Select: { 8525 SelectInst *SI = cast<SelectInst>(I); 8526 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 8527 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 8528 return false; 8529 break; 8530 } 8531 8532 // We can demote phis if we can demote all their incoming operands. Note that 8533 // we don't need to worry about cycles since we ensure single use above. 8534 case Instruction::PHI: { 8535 PHINode *PN = cast<PHINode>(I); 8536 for (Value *IncValue : PN->incoming_values()) 8537 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 8538 return false; 8539 break; 8540 } 8541 8542 // Otherwise, conservatively give up. 8543 default: 8544 return false; 8545 } 8546 8547 // Record the value that we can demote. 8548 ToDemote.push_back(V); 8549 return true; 8550 } 8551 8552 void BoUpSLP::computeMinimumValueSizes() { 8553 // If there are no external uses, the expression tree must be rooted by a 8554 // store. We can't demote in-memory values, so there is nothing to do here. 8555 if (ExternalUses.empty()) 8556 return; 8557 8558 // We only attempt to truncate integer expressions. 8559 auto &TreeRoot = VectorizableTree[0]->Scalars; 8560 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 8561 if (!TreeRootIT) 8562 return; 8563 8564 // If the expression is not rooted by a store, these roots should have 8565 // external uses. We will rely on InstCombine to rewrite the expression in 8566 // the narrower type. However, InstCombine only rewrites single-use values. 8567 // This means that if a tree entry other than a root is used externally, it 8568 // must have multiple uses and InstCombine will not rewrite it. The code 8569 // below ensures that only the roots are used externally. 8570 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 8571 for (auto &EU : ExternalUses) 8572 if (!Expr.erase(EU.Scalar)) 8573 return; 8574 if (!Expr.empty()) 8575 return; 8576 8577 // Collect the scalar values of the vectorizable expression. We will use this 8578 // context to determine which values can be demoted. If we see a truncation, 8579 // we mark it as seeding another demotion. 8580 for (auto &EntryPtr : VectorizableTree) 8581 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 8582 8583 // Ensure the roots of the vectorizable tree don't form a cycle. They must 8584 // have a single external user that is not in the vectorizable tree. 8585 for (auto *Root : TreeRoot) 8586 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 8587 return; 8588 8589 // Conservatively determine if we can actually truncate the roots of the 8590 // expression. Collect the values that can be demoted in ToDemote and 8591 // additional roots that require investigating in Roots. 8592 SmallVector<Value *, 32> ToDemote; 8593 SmallVector<Value *, 4> Roots; 8594 for (auto *Root : TreeRoot) 8595 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 8596 return; 8597 8598 // The maximum bit width required to represent all the values that can be 8599 // demoted without loss of precision. It would be safe to truncate the roots 8600 // of the expression to this width. 8601 auto MaxBitWidth = 8u; 8602 8603 // We first check if all the bits of the roots are demanded. If they're not, 8604 // we can truncate the roots to this narrower type. 8605 for (auto *Root : TreeRoot) { 8606 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 8607 MaxBitWidth = std::max<unsigned>( 8608 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 8609 } 8610 8611 // True if the roots can be zero-extended back to their original type, rather 8612 // than sign-extended. We know that if the leading bits are not demanded, we 8613 // can safely zero-extend. So we initialize IsKnownPositive to True. 8614 bool IsKnownPositive = true; 8615 8616 // If all the bits of the roots are demanded, we can try a little harder to 8617 // compute a narrower type. This can happen, for example, if the roots are 8618 // getelementptr indices. InstCombine promotes these indices to the pointer 8619 // width. Thus, all their bits are technically demanded even though the 8620 // address computation might be vectorized in a smaller type. 8621 // 8622 // We start by looking at each entry that can be demoted. We compute the 8623 // maximum bit width required to store the scalar by using ValueTracking to 8624 // compute the number of high-order bits we can truncate. 8625 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 8626 llvm::all_of(TreeRoot, [](Value *R) { 8627 assert(R->hasOneUse() && "Root should have only one use!"); 8628 return isa<GetElementPtrInst>(R->user_back()); 8629 })) { 8630 MaxBitWidth = 8u; 8631 8632 // Determine if the sign bit of all the roots is known to be zero. If not, 8633 // IsKnownPositive is set to False. 8634 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 8635 KnownBits Known = computeKnownBits(R, *DL); 8636 return Known.isNonNegative(); 8637 }); 8638 8639 // Determine the maximum number of bits required to store the scalar 8640 // values. 8641 for (auto *Scalar : ToDemote) { 8642 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 8643 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 8644 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 8645 } 8646 8647 // If we can't prove that the sign bit is zero, we must add one to the 8648 // maximum bit width to account for the unknown sign bit. This preserves 8649 // the existing sign bit so we can safely sign-extend the root back to the 8650 // original type. Otherwise, if we know the sign bit is zero, we will 8651 // zero-extend the root instead. 8652 // 8653 // FIXME: This is somewhat suboptimal, as there will be cases where adding 8654 // one to the maximum bit width will yield a larger-than-necessary 8655 // type. In general, we need to add an extra bit only if we can't 8656 // prove that the upper bit of the original type is equal to the 8657 // upper bit of the proposed smaller type. If these two bits are the 8658 // same (either zero or one) we know that sign-extending from the 8659 // smaller type will result in the same value. Here, since we can't 8660 // yet prove this, we are just making the proposed smaller type 8661 // larger to ensure correctness. 8662 if (!IsKnownPositive) 8663 ++MaxBitWidth; 8664 } 8665 8666 // Round MaxBitWidth up to the next power-of-two. 8667 if (!isPowerOf2_64(MaxBitWidth)) 8668 MaxBitWidth = NextPowerOf2(MaxBitWidth); 8669 8670 // If the maximum bit width we compute is less than the with of the roots' 8671 // type, we can proceed with the narrowing. Otherwise, do nothing. 8672 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 8673 return; 8674 8675 // If we can truncate the root, we must collect additional values that might 8676 // be demoted as a result. That is, those seeded by truncations we will 8677 // modify. 8678 while (!Roots.empty()) 8679 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 8680 8681 // Finally, map the values we can demote to the maximum bit with we computed. 8682 for (auto *Scalar : ToDemote) 8683 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 8684 } 8685 8686 namespace { 8687 8688 /// The SLPVectorizer Pass. 8689 struct SLPVectorizer : public FunctionPass { 8690 SLPVectorizerPass Impl; 8691 8692 /// Pass identification, replacement for typeid 8693 static char ID; 8694 8695 explicit SLPVectorizer() : FunctionPass(ID) { 8696 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 8697 } 8698 8699 bool doInitialization(Module &M) override { return false; } 8700 8701 bool runOnFunction(Function &F) override { 8702 if (skipFunction(F)) 8703 return false; 8704 8705 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 8706 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 8707 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 8708 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 8709 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 8710 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 8711 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 8712 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 8713 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 8714 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 8715 8716 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8717 } 8718 8719 void getAnalysisUsage(AnalysisUsage &AU) const override { 8720 FunctionPass::getAnalysisUsage(AU); 8721 AU.addRequired<AssumptionCacheTracker>(); 8722 AU.addRequired<ScalarEvolutionWrapperPass>(); 8723 AU.addRequired<AAResultsWrapperPass>(); 8724 AU.addRequired<TargetTransformInfoWrapperPass>(); 8725 AU.addRequired<LoopInfoWrapperPass>(); 8726 AU.addRequired<DominatorTreeWrapperPass>(); 8727 AU.addRequired<DemandedBitsWrapperPass>(); 8728 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 8729 AU.addRequired<InjectTLIMappingsLegacy>(); 8730 AU.addPreserved<LoopInfoWrapperPass>(); 8731 AU.addPreserved<DominatorTreeWrapperPass>(); 8732 AU.addPreserved<AAResultsWrapperPass>(); 8733 AU.addPreserved<GlobalsAAWrapperPass>(); 8734 AU.setPreservesCFG(); 8735 } 8736 }; 8737 8738 } // end anonymous namespace 8739 8740 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 8741 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 8742 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 8743 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 8744 auto *AA = &AM.getResult<AAManager>(F); 8745 auto *LI = &AM.getResult<LoopAnalysis>(F); 8746 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 8747 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 8748 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 8749 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8750 8751 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8752 if (!Changed) 8753 return PreservedAnalyses::all(); 8754 8755 PreservedAnalyses PA; 8756 PA.preserveSet<CFGAnalyses>(); 8757 return PA; 8758 } 8759 8760 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 8761 TargetTransformInfo *TTI_, 8762 TargetLibraryInfo *TLI_, AAResults *AA_, 8763 LoopInfo *LI_, DominatorTree *DT_, 8764 AssumptionCache *AC_, DemandedBits *DB_, 8765 OptimizationRemarkEmitter *ORE_) { 8766 if (!RunSLPVectorization) 8767 return false; 8768 SE = SE_; 8769 TTI = TTI_; 8770 TLI = TLI_; 8771 AA = AA_; 8772 LI = LI_; 8773 DT = DT_; 8774 AC = AC_; 8775 DB = DB_; 8776 DL = &F.getParent()->getDataLayout(); 8777 8778 Stores.clear(); 8779 GEPs.clear(); 8780 bool Changed = false; 8781 8782 // If the target claims to have no vector registers don't attempt 8783 // vectorization. 8784 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) { 8785 LLVM_DEBUG( 8786 dbgs() << "SLP: Didn't find any vector registers for target, abort.\n"); 8787 return false; 8788 } 8789 8790 // Don't vectorize when the attribute NoImplicitFloat is used. 8791 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 8792 return false; 8793 8794 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 8795 8796 // Use the bottom up slp vectorizer to construct chains that start with 8797 // store instructions. 8798 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 8799 8800 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 8801 // delete instructions. 8802 8803 // Update DFS numbers now so that we can use them for ordering. 8804 DT->updateDFSNumbers(); 8805 8806 // Scan the blocks in the function in post order. 8807 for (auto BB : post_order(&F.getEntryBlock())) { 8808 collectSeedInstructions(BB); 8809 8810 // Vectorize trees that end at stores. 8811 if (!Stores.empty()) { 8812 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 8813 << " underlying objects.\n"); 8814 Changed |= vectorizeStoreChains(R); 8815 } 8816 8817 // Vectorize trees that end at reductions. 8818 Changed |= vectorizeChainsInBlock(BB, R); 8819 8820 // Vectorize the index computations of getelementptr instructions. This 8821 // is primarily intended to catch gather-like idioms ending at 8822 // non-consecutive loads. 8823 if (!GEPs.empty()) { 8824 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 8825 << " underlying objects.\n"); 8826 Changed |= vectorizeGEPIndices(BB, R); 8827 } 8828 } 8829 8830 if (Changed) { 8831 R.optimizeGatherSequence(); 8832 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 8833 } 8834 return Changed; 8835 } 8836 8837 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 8838 unsigned Idx) { 8839 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 8840 << "\n"); 8841 const unsigned Sz = R.getVectorElementSize(Chain[0]); 8842 const unsigned MinVF = R.getMinVecRegSize() / Sz; 8843 unsigned VF = Chain.size(); 8844 8845 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 8846 return false; 8847 8848 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 8849 << "\n"); 8850 8851 R.buildTree(Chain); 8852 if (R.isTreeTinyAndNotFullyVectorizable()) 8853 return false; 8854 if (R.isLoadCombineCandidate()) 8855 return false; 8856 R.reorderTopToBottom(); 8857 R.reorderBottomToTop(); 8858 R.buildExternalUses(); 8859 8860 R.computeMinimumValueSizes(); 8861 8862 InstructionCost Cost = R.getTreeCost(); 8863 8864 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 8865 if (Cost < -SLPCostThreshold) { 8866 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 8867 8868 using namespace ore; 8869 8870 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 8871 cast<StoreInst>(Chain[0])) 8872 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 8873 << " and with tree size " 8874 << NV("TreeSize", R.getTreeSize())); 8875 8876 R.vectorizeTree(); 8877 return true; 8878 } 8879 8880 return false; 8881 } 8882 8883 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 8884 BoUpSLP &R) { 8885 // We may run into multiple chains that merge into a single chain. We mark the 8886 // stores that we vectorized so that we don't visit the same store twice. 8887 BoUpSLP::ValueSet VectorizedStores; 8888 bool Changed = false; 8889 8890 int E = Stores.size(); 8891 SmallBitVector Tails(E, false); 8892 int MaxIter = MaxStoreLookup.getValue(); 8893 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 8894 E, std::make_pair(E, INT_MAX)); 8895 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 8896 int IterCnt; 8897 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 8898 &CheckedPairs, 8899 &ConsecutiveChain](int K, int Idx) { 8900 if (IterCnt >= MaxIter) 8901 return true; 8902 if (CheckedPairs[Idx].test(K)) 8903 return ConsecutiveChain[K].second == 1 && 8904 ConsecutiveChain[K].first == Idx; 8905 ++IterCnt; 8906 CheckedPairs[Idx].set(K); 8907 CheckedPairs[K].set(Idx); 8908 Optional<int> Diff = getPointersDiff( 8909 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 8910 Stores[Idx]->getValueOperand()->getType(), 8911 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 8912 if (!Diff || *Diff == 0) 8913 return false; 8914 int Val = *Diff; 8915 if (Val < 0) { 8916 if (ConsecutiveChain[Idx].second > -Val) { 8917 Tails.set(K); 8918 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 8919 } 8920 return false; 8921 } 8922 if (ConsecutiveChain[K].second <= Val) 8923 return false; 8924 8925 Tails.set(Idx); 8926 ConsecutiveChain[K] = std::make_pair(Idx, Val); 8927 return Val == 1; 8928 }; 8929 // Do a quadratic search on all of the given stores in reverse order and find 8930 // all of the pairs of stores that follow each other. 8931 for (int Idx = E - 1; Idx >= 0; --Idx) { 8932 // If a store has multiple consecutive store candidates, search according 8933 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 8934 // This is because usually pairing with immediate succeeding or preceding 8935 // candidate create the best chance to find slp vectorization opportunity. 8936 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 8937 IterCnt = 0; 8938 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 8939 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 8940 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 8941 break; 8942 } 8943 8944 // Tracks if we tried to vectorize stores starting from the given tail 8945 // already. 8946 SmallBitVector TriedTails(E, false); 8947 // For stores that start but don't end a link in the chain: 8948 for (int Cnt = E; Cnt > 0; --Cnt) { 8949 int I = Cnt - 1; 8950 if (ConsecutiveChain[I].first == E || Tails.test(I)) 8951 continue; 8952 // We found a store instr that starts a chain. Now follow the chain and try 8953 // to vectorize it. 8954 BoUpSLP::ValueList Operands; 8955 // Collect the chain into a list. 8956 while (I != E && !VectorizedStores.count(Stores[I])) { 8957 Operands.push_back(Stores[I]); 8958 Tails.set(I); 8959 if (ConsecutiveChain[I].second != 1) { 8960 // Mark the new end in the chain and go back, if required. It might be 8961 // required if the original stores come in reversed order, for example. 8962 if (ConsecutiveChain[I].first != E && 8963 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 8964 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 8965 TriedTails.set(I); 8966 Tails.reset(ConsecutiveChain[I].first); 8967 if (Cnt < ConsecutiveChain[I].first + 2) 8968 Cnt = ConsecutiveChain[I].first + 2; 8969 } 8970 break; 8971 } 8972 // Move to the next value in the chain. 8973 I = ConsecutiveChain[I].first; 8974 } 8975 assert(!Operands.empty() && "Expected non-empty list of stores."); 8976 8977 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 8978 unsigned EltSize = R.getVectorElementSize(Operands[0]); 8979 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 8980 8981 unsigned MinVF = R.getMinVF(EltSize); 8982 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 8983 MaxElts); 8984 8985 // FIXME: Is division-by-2 the correct step? Should we assert that the 8986 // register size is a power-of-2? 8987 unsigned StartIdx = 0; 8988 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 8989 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 8990 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 8991 if (!VectorizedStores.count(Slice.front()) && 8992 !VectorizedStores.count(Slice.back()) && 8993 vectorizeStoreChain(Slice, R, Cnt)) { 8994 // Mark the vectorized stores so that we don't vectorize them again. 8995 VectorizedStores.insert(Slice.begin(), Slice.end()); 8996 Changed = true; 8997 // If we vectorized initial block, no need to try to vectorize it 8998 // again. 8999 if (Cnt == StartIdx) 9000 StartIdx += Size; 9001 Cnt += Size; 9002 continue; 9003 } 9004 ++Cnt; 9005 } 9006 // Check if the whole array was vectorized already - exit. 9007 if (StartIdx >= Operands.size()) 9008 break; 9009 } 9010 } 9011 9012 return Changed; 9013 } 9014 9015 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 9016 // Initialize the collections. We will make a single pass over the block. 9017 Stores.clear(); 9018 GEPs.clear(); 9019 9020 // Visit the store and getelementptr instructions in BB and organize them in 9021 // Stores and GEPs according to the underlying objects of their pointer 9022 // operands. 9023 for (Instruction &I : *BB) { 9024 // Ignore store instructions that are volatile or have a pointer operand 9025 // that doesn't point to a scalar type. 9026 if (auto *SI = dyn_cast<StoreInst>(&I)) { 9027 if (!SI->isSimple()) 9028 continue; 9029 if (!isValidElementType(SI->getValueOperand()->getType())) 9030 continue; 9031 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 9032 } 9033 9034 // Ignore getelementptr instructions that have more than one index, a 9035 // constant index, or a pointer operand that doesn't point to a scalar 9036 // type. 9037 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 9038 auto Idx = GEP->idx_begin()->get(); 9039 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 9040 continue; 9041 if (!isValidElementType(Idx->getType())) 9042 continue; 9043 if (GEP->getType()->isVectorTy()) 9044 continue; 9045 GEPs[GEP->getPointerOperand()].push_back(GEP); 9046 } 9047 } 9048 } 9049 9050 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 9051 if (!A || !B) 9052 return false; 9053 if (isa<InsertElementInst>(A) || isa<InsertElementInst>(B)) 9054 return false; 9055 Value *VL[] = {A, B}; 9056 return tryToVectorizeList(VL, R); 9057 } 9058 9059 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 9060 bool LimitForRegisterSize) { 9061 if (VL.size() < 2) 9062 return false; 9063 9064 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 9065 << VL.size() << ".\n"); 9066 9067 // Check that all of the parts are instructions of the same type, 9068 // we permit an alternate opcode via InstructionsState. 9069 InstructionsState S = getSameOpcode(VL); 9070 if (!S.getOpcode()) 9071 return false; 9072 9073 Instruction *I0 = cast<Instruction>(S.OpValue); 9074 // Make sure invalid types (including vector type) are rejected before 9075 // determining vectorization factor for scalar instructions. 9076 for (Value *V : VL) { 9077 Type *Ty = V->getType(); 9078 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 9079 // NOTE: the following will give user internal llvm type name, which may 9080 // not be useful. 9081 R.getORE()->emit([&]() { 9082 std::string type_str; 9083 llvm::raw_string_ostream rso(type_str); 9084 Ty->print(rso); 9085 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 9086 << "Cannot SLP vectorize list: type " 9087 << rso.str() + " is unsupported by vectorizer"; 9088 }); 9089 return false; 9090 } 9091 } 9092 9093 unsigned Sz = R.getVectorElementSize(I0); 9094 unsigned MinVF = R.getMinVF(Sz); 9095 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 9096 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 9097 if (MaxVF < 2) { 9098 R.getORE()->emit([&]() { 9099 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 9100 << "Cannot SLP vectorize list: vectorization factor " 9101 << "less than 2 is not supported"; 9102 }); 9103 return false; 9104 } 9105 9106 bool Changed = false; 9107 bool CandidateFound = false; 9108 InstructionCost MinCost = SLPCostThreshold.getValue(); 9109 Type *ScalarTy = VL[0]->getType(); 9110 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 9111 ScalarTy = IE->getOperand(1)->getType(); 9112 9113 unsigned NextInst = 0, MaxInst = VL.size(); 9114 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 9115 // No actual vectorization should happen, if number of parts is the same as 9116 // provided vectorization factor (i.e. the scalar type is used for vector 9117 // code during codegen). 9118 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 9119 if (TTI->getNumberOfParts(VecTy) == VF) 9120 continue; 9121 for (unsigned I = NextInst; I < MaxInst; ++I) { 9122 unsigned OpsWidth = 0; 9123 9124 if (I + VF > MaxInst) 9125 OpsWidth = MaxInst - I; 9126 else 9127 OpsWidth = VF; 9128 9129 if (!isPowerOf2_32(OpsWidth)) 9130 continue; 9131 9132 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 9133 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 9134 break; 9135 9136 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 9137 // Check that a previous iteration of this loop did not delete the Value. 9138 if (llvm::any_of(Ops, [&R](Value *V) { 9139 auto *I = dyn_cast<Instruction>(V); 9140 return I && R.isDeleted(I); 9141 })) 9142 continue; 9143 9144 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 9145 << "\n"); 9146 9147 R.buildTree(Ops); 9148 if (R.isTreeTinyAndNotFullyVectorizable()) 9149 continue; 9150 R.reorderTopToBottom(); 9151 R.reorderBottomToTop(!isa<InsertElementInst>(Ops.front())); 9152 R.buildExternalUses(); 9153 9154 R.computeMinimumValueSizes(); 9155 InstructionCost Cost = R.getTreeCost(); 9156 CandidateFound = true; 9157 MinCost = std::min(MinCost, Cost); 9158 9159 if (Cost < -SLPCostThreshold) { 9160 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 9161 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 9162 cast<Instruction>(Ops[0])) 9163 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 9164 << " and with tree size " 9165 << ore::NV("TreeSize", R.getTreeSize())); 9166 9167 R.vectorizeTree(); 9168 // Move to the next bundle. 9169 I += VF - 1; 9170 NextInst = I + 1; 9171 Changed = true; 9172 } 9173 } 9174 } 9175 9176 if (!Changed && CandidateFound) { 9177 R.getORE()->emit([&]() { 9178 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 9179 << "List vectorization was possible but not beneficial with cost " 9180 << ore::NV("Cost", MinCost) << " >= " 9181 << ore::NV("Treshold", -SLPCostThreshold); 9182 }); 9183 } else if (!Changed) { 9184 R.getORE()->emit([&]() { 9185 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 9186 << "Cannot SLP vectorize list: vectorization was impossible" 9187 << " with available vectorization factors"; 9188 }); 9189 } 9190 return Changed; 9191 } 9192 9193 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 9194 if (!I) 9195 return false; 9196 9197 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 9198 return false; 9199 9200 Value *P = I->getParent(); 9201 9202 // Vectorize in current basic block only. 9203 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 9204 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 9205 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 9206 return false; 9207 9208 // Try to vectorize V. 9209 if (tryToVectorizePair(Op0, Op1, R)) 9210 return true; 9211 9212 auto *A = dyn_cast<BinaryOperator>(Op0); 9213 auto *B = dyn_cast<BinaryOperator>(Op1); 9214 // Try to skip B. 9215 if (B && B->hasOneUse()) { 9216 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 9217 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 9218 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 9219 return true; 9220 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 9221 return true; 9222 } 9223 9224 // Try to skip A. 9225 if (A && A->hasOneUse()) { 9226 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 9227 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 9228 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 9229 return true; 9230 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 9231 return true; 9232 } 9233 return false; 9234 } 9235 9236 namespace { 9237 9238 /// Model horizontal reductions. 9239 /// 9240 /// A horizontal reduction is a tree of reduction instructions that has values 9241 /// that can be put into a vector as its leaves. For example: 9242 /// 9243 /// mul mul mul mul 9244 /// \ / \ / 9245 /// + + 9246 /// \ / 9247 /// + 9248 /// This tree has "mul" as its leaf values and "+" as its reduction 9249 /// instructions. A reduction can feed into a store or a binary operation 9250 /// feeding a phi. 9251 /// ... 9252 /// \ / 9253 /// + 9254 /// | 9255 /// phi += 9256 /// 9257 /// Or: 9258 /// ... 9259 /// \ / 9260 /// + 9261 /// | 9262 /// *p = 9263 /// 9264 class HorizontalReduction { 9265 using ReductionOpsType = SmallVector<Value *, 16>; 9266 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 9267 ReductionOpsListType ReductionOps; 9268 /// List of possibly reduced values. 9269 SmallVector<SmallVector<Value *>> ReducedVals; 9270 /// Maps reduced value to the corresponding reduction operation. 9271 DenseMap<Value *, Instruction *> ReducedValsToOps; 9272 // Use map vector to make stable output. 9273 MapVector<Instruction *, Value *> ExtraArgs; 9274 WeakTrackingVH ReductionRoot; 9275 /// The type of reduction operation. 9276 RecurKind RdxKind; 9277 9278 static bool isCmpSelMinMax(Instruction *I) { 9279 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 9280 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 9281 } 9282 9283 // And/or are potentially poison-safe logical patterns like: 9284 // select x, y, false 9285 // select x, true, y 9286 static bool isBoolLogicOp(Instruction *I) { 9287 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 9288 match(I, m_LogicalOr(m_Value(), m_Value())); 9289 } 9290 9291 /// Checks if instruction is associative and can be vectorized. 9292 static bool isVectorizable(RecurKind Kind, Instruction *I) { 9293 if (Kind == RecurKind::None) 9294 return false; 9295 9296 // Integer ops that map to select instructions or intrinsics are fine. 9297 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 9298 isBoolLogicOp(I)) 9299 return true; 9300 9301 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 9302 // FP min/max are associative except for NaN and -0.0. We do not 9303 // have to rule out -0.0 here because the intrinsic semantics do not 9304 // specify a fixed result for it. 9305 return I->getFastMathFlags().noNaNs(); 9306 } 9307 9308 return I->isAssociative(); 9309 } 9310 9311 static Value *getRdxOperand(Instruction *I, unsigned Index) { 9312 // Poison-safe 'or' takes the form: select X, true, Y 9313 // To make that work with the normal operand processing, we skip the 9314 // true value operand. 9315 // TODO: Change the code and data structures to handle this without a hack. 9316 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 9317 return I->getOperand(2); 9318 return I->getOperand(Index); 9319 } 9320 9321 /// Creates reduction operation with the current opcode. 9322 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 9323 Value *RHS, const Twine &Name, bool UseSelect) { 9324 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 9325 switch (Kind) { 9326 case RecurKind::Or: 9327 if (UseSelect && 9328 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 9329 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 9330 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9331 Name); 9332 case RecurKind::And: 9333 if (UseSelect && 9334 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 9335 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 9336 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9337 Name); 9338 case RecurKind::Add: 9339 case RecurKind::Mul: 9340 case RecurKind::Xor: 9341 case RecurKind::FAdd: 9342 case RecurKind::FMul: 9343 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9344 Name); 9345 case RecurKind::FMax: 9346 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 9347 case RecurKind::FMin: 9348 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 9349 case RecurKind::SMax: 9350 if (UseSelect) { 9351 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 9352 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9353 } 9354 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 9355 case RecurKind::SMin: 9356 if (UseSelect) { 9357 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 9358 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9359 } 9360 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 9361 case RecurKind::UMax: 9362 if (UseSelect) { 9363 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 9364 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9365 } 9366 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 9367 case RecurKind::UMin: 9368 if (UseSelect) { 9369 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 9370 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9371 } 9372 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 9373 default: 9374 llvm_unreachable("Unknown reduction operation."); 9375 } 9376 } 9377 9378 /// Creates reduction operation with the current opcode with the IR flags 9379 /// from \p ReductionOps. 9380 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9381 Value *RHS, const Twine &Name, 9382 const ReductionOpsListType &ReductionOps) { 9383 bool UseSelect = ReductionOps.size() == 2 || 9384 // Logical or/and. 9385 (ReductionOps.size() == 1 && 9386 isa<SelectInst>(ReductionOps.front().front())); 9387 assert((!UseSelect || ReductionOps.size() != 2 || 9388 isa<SelectInst>(ReductionOps[1][0])) && 9389 "Expected cmp + select pairs for reduction"); 9390 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 9391 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9392 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 9393 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 9394 propagateIRFlags(Op, ReductionOps[1]); 9395 return Op; 9396 } 9397 } 9398 propagateIRFlags(Op, ReductionOps[0]); 9399 return Op; 9400 } 9401 9402 /// Creates reduction operation with the current opcode with the IR flags 9403 /// from \p I. 9404 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9405 Value *RHS, const Twine &Name, Value *I) { 9406 auto *SelI = dyn_cast<SelectInst>(I); 9407 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 9408 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9409 if (auto *Sel = dyn_cast<SelectInst>(Op)) 9410 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 9411 } 9412 propagateIRFlags(Op, I); 9413 return Op; 9414 } 9415 9416 static RecurKind getRdxKind(Value *V) { 9417 auto *I = dyn_cast<Instruction>(V); 9418 if (!I) 9419 return RecurKind::None; 9420 if (match(I, m_Add(m_Value(), m_Value()))) 9421 return RecurKind::Add; 9422 if (match(I, m_Mul(m_Value(), m_Value()))) 9423 return RecurKind::Mul; 9424 if (match(I, m_And(m_Value(), m_Value())) || 9425 match(I, m_LogicalAnd(m_Value(), m_Value()))) 9426 return RecurKind::And; 9427 if (match(I, m_Or(m_Value(), m_Value())) || 9428 match(I, m_LogicalOr(m_Value(), m_Value()))) 9429 return RecurKind::Or; 9430 if (match(I, m_Xor(m_Value(), m_Value()))) 9431 return RecurKind::Xor; 9432 if (match(I, m_FAdd(m_Value(), m_Value()))) 9433 return RecurKind::FAdd; 9434 if (match(I, m_FMul(m_Value(), m_Value()))) 9435 return RecurKind::FMul; 9436 9437 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 9438 return RecurKind::FMax; 9439 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 9440 return RecurKind::FMin; 9441 9442 // This matches either cmp+select or intrinsics. SLP is expected to handle 9443 // either form. 9444 // TODO: If we are canonicalizing to intrinsics, we can remove several 9445 // special-case paths that deal with selects. 9446 if (match(I, m_SMax(m_Value(), m_Value()))) 9447 return RecurKind::SMax; 9448 if (match(I, m_SMin(m_Value(), m_Value()))) 9449 return RecurKind::SMin; 9450 if (match(I, m_UMax(m_Value(), m_Value()))) 9451 return RecurKind::UMax; 9452 if (match(I, m_UMin(m_Value(), m_Value()))) 9453 return RecurKind::UMin; 9454 9455 if (auto *Select = dyn_cast<SelectInst>(I)) { 9456 // Try harder: look for min/max pattern based on instructions producing 9457 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 9458 // During the intermediate stages of SLP, it's very common to have 9459 // pattern like this (since optimizeGatherSequence is run only once 9460 // at the end): 9461 // %1 = extractelement <2 x i32> %a, i32 0 9462 // %2 = extractelement <2 x i32> %a, i32 1 9463 // %cond = icmp sgt i32 %1, %2 9464 // %3 = extractelement <2 x i32> %a, i32 0 9465 // %4 = extractelement <2 x i32> %a, i32 1 9466 // %select = select i1 %cond, i32 %3, i32 %4 9467 CmpInst::Predicate Pred; 9468 Instruction *L1; 9469 Instruction *L2; 9470 9471 Value *LHS = Select->getTrueValue(); 9472 Value *RHS = Select->getFalseValue(); 9473 Value *Cond = Select->getCondition(); 9474 9475 // TODO: Support inverse predicates. 9476 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 9477 if (!isa<ExtractElementInst>(RHS) || 9478 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9479 return RecurKind::None; 9480 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 9481 if (!isa<ExtractElementInst>(LHS) || 9482 !L1->isIdenticalTo(cast<Instruction>(LHS))) 9483 return RecurKind::None; 9484 } else { 9485 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 9486 return RecurKind::None; 9487 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 9488 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 9489 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9490 return RecurKind::None; 9491 } 9492 9493 switch (Pred) { 9494 default: 9495 return RecurKind::None; 9496 case CmpInst::ICMP_SGT: 9497 case CmpInst::ICMP_SGE: 9498 return RecurKind::SMax; 9499 case CmpInst::ICMP_SLT: 9500 case CmpInst::ICMP_SLE: 9501 return RecurKind::SMin; 9502 case CmpInst::ICMP_UGT: 9503 case CmpInst::ICMP_UGE: 9504 return RecurKind::UMax; 9505 case CmpInst::ICMP_ULT: 9506 case CmpInst::ICMP_ULE: 9507 return RecurKind::UMin; 9508 } 9509 } 9510 return RecurKind::None; 9511 } 9512 9513 /// Get the index of the first operand. 9514 static unsigned getFirstOperandIndex(Instruction *I) { 9515 return isCmpSelMinMax(I) ? 1 : 0; 9516 } 9517 9518 /// Total number of operands in the reduction operation. 9519 static unsigned getNumberOfOperands(Instruction *I) { 9520 return isCmpSelMinMax(I) ? 3 : 2; 9521 } 9522 9523 /// Checks if the instruction is in basic block \p BB. 9524 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 9525 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 9526 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 9527 auto *Sel = cast<SelectInst>(I); 9528 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 9529 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 9530 } 9531 return I->getParent() == BB; 9532 } 9533 9534 /// Expected number of uses for reduction operations/reduced values. 9535 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 9536 if (IsCmpSelMinMax) { 9537 // SelectInst must be used twice while the condition op must have single 9538 // use only. 9539 if (auto *Sel = dyn_cast<SelectInst>(I)) 9540 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 9541 return I->hasNUses(2); 9542 } 9543 9544 // Arithmetic reduction operation must be used once only. 9545 return I->hasOneUse(); 9546 } 9547 9548 /// Initializes the list of reduction operations. 9549 void initReductionOps(Instruction *I) { 9550 if (isCmpSelMinMax(I)) 9551 ReductionOps.assign(2, ReductionOpsType()); 9552 else 9553 ReductionOps.assign(1, ReductionOpsType()); 9554 } 9555 9556 /// Add all reduction operations for the reduction instruction \p I. 9557 void addReductionOps(Instruction *I) { 9558 if (isCmpSelMinMax(I)) { 9559 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 9560 ReductionOps[1].emplace_back(I); 9561 } else { 9562 ReductionOps[0].emplace_back(I); 9563 } 9564 } 9565 9566 static Value *getLHS(RecurKind Kind, Instruction *I) { 9567 if (Kind == RecurKind::None) 9568 return nullptr; 9569 return I->getOperand(getFirstOperandIndex(I)); 9570 } 9571 static Value *getRHS(RecurKind Kind, Instruction *I) { 9572 if (Kind == RecurKind::None) 9573 return nullptr; 9574 return I->getOperand(getFirstOperandIndex(I) + 1); 9575 } 9576 9577 public: 9578 HorizontalReduction() = default; 9579 9580 /// Try to find a reduction tree. 9581 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst, 9582 ScalarEvolution &SE, const DataLayout &DL, 9583 const TargetLibraryInfo &TLI) { 9584 assert((!Phi || is_contained(Phi->operands(), Inst)) && 9585 "Phi needs to use the binary operator"); 9586 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 9587 isa<IntrinsicInst>(Inst)) && 9588 "Expected binop, select, or intrinsic for reduction matching"); 9589 RdxKind = getRdxKind(Inst); 9590 9591 // We could have a initial reductions that is not an add. 9592 // r *= v1 + v2 + v3 + v4 9593 // In such a case start looking for a tree rooted in the first '+'. 9594 if (Phi) { 9595 if (getLHS(RdxKind, Inst) == Phi) { 9596 Phi = nullptr; 9597 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 9598 if (!Inst) 9599 return false; 9600 RdxKind = getRdxKind(Inst); 9601 } else if (getRHS(RdxKind, Inst) == Phi) { 9602 Phi = nullptr; 9603 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 9604 if (!Inst) 9605 return false; 9606 RdxKind = getRdxKind(Inst); 9607 } 9608 } 9609 9610 if (!isVectorizable(RdxKind, Inst)) 9611 return false; 9612 9613 // Analyze "regular" integer/FP types for reductions - no target-specific 9614 // types or pointers. 9615 Type *Ty = Inst->getType(); 9616 if (!isValidElementType(Ty) || Ty->isPointerTy()) 9617 return false; 9618 9619 // Though the ultimate reduction may have multiple uses, its condition must 9620 // have only single use. 9621 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 9622 if (!Sel->getCondition()->hasOneUse()) 9623 return false; 9624 9625 ReductionRoot = Inst; 9626 9627 // Iterate through all the operands of the possible reduction tree and 9628 // gather all the reduced values, sorting them by their value id. 9629 BasicBlock *BB = Inst->getParent(); 9630 bool IsCmpSelMinMax = isCmpSelMinMax(Inst); 9631 SmallVector<Instruction *> Worklist(1, Inst); 9632 // Checks if the operands of the \p TreeN instruction are also reduction 9633 // operations or should be treated as reduced values or an extra argument, 9634 // which is not part of the reduction. 9635 auto &&CheckOperands = [this, IsCmpSelMinMax, 9636 BB](Instruction *TreeN, 9637 SmallVectorImpl<Value *> &ExtraArgs, 9638 SmallVectorImpl<Value *> &PossibleReducedVals, 9639 SmallVectorImpl<Instruction *> &ReductionOps) { 9640 for (int I = getFirstOperandIndex(TreeN), 9641 End = getNumberOfOperands(TreeN); 9642 I < End; ++I) { 9643 Value *EdgeVal = getRdxOperand(TreeN, I); 9644 ReducedValsToOps.try_emplace(EdgeVal, TreeN); 9645 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 9646 // Edge has wrong parent - mark as an extra argument. 9647 if (EdgeInst && !isVectorLikeInstWithConstOps(EdgeInst) && 9648 !hasSameParent(EdgeInst, BB)) { 9649 ExtraArgs.push_back(EdgeVal); 9650 continue; 9651 } 9652 // If the edge is not an instruction, or it is different from the main 9653 // reduction opcode or has too many uses - possible reduced value. 9654 if (!EdgeInst || getRdxKind(EdgeInst) != RdxKind || 9655 !hasRequiredNumberOfUses(IsCmpSelMinMax, EdgeInst) || 9656 !isVectorizable(getRdxKind(EdgeInst), EdgeInst)) { 9657 PossibleReducedVals.push_back(EdgeVal); 9658 continue; 9659 } 9660 ReductionOps.push_back(EdgeInst); 9661 } 9662 }; 9663 // Try to regroup reduced values so that it gets more profitable to try to 9664 // reduce them. Values are grouped by their value ids, instructions - by 9665 // instruction op id and/or alternate op id, plus do extra analysis for 9666 // loads (grouping them by the distabce between pointers) and cmp 9667 // instructions (grouping them by the predicate). 9668 MapVector<size_t, MapVector<size_t, SmallVector<Value *>>> 9669 PossibleReducedVals; 9670 initReductionOps(Inst); 9671 while (!Worklist.empty()) { 9672 Instruction *TreeN = Worklist.pop_back_val(); 9673 SmallVector<Value *> Args; 9674 SmallVector<Value *> PossibleRedVals; 9675 SmallVector<Instruction *> PossibleReductionOps; 9676 CheckOperands(TreeN, Args, PossibleRedVals, PossibleReductionOps); 9677 // If too many extra args - mark the instruction itself as a reduction 9678 // value, not a reduction operation. 9679 if (Args.size() < 2) { 9680 addReductionOps(TreeN); 9681 // Add extra args. 9682 if (!Args.empty()) { 9683 assert(Args.size() == 1 && "Expected only single argument."); 9684 ExtraArgs[TreeN] = Args.front(); 9685 } 9686 // Add reduction values. The values are sorted for better vectorization 9687 // results. 9688 for (Value *V : PossibleRedVals) { 9689 size_t Key, Idx; 9690 std::tie(Key, Idx) = generateKeySubkey( 9691 V, &TLI, 9692 [&PossibleReducedVals, &DL, &SE](size_t Key, LoadInst *LI) { 9693 for (const auto &LoadData : PossibleReducedVals[Key]) { 9694 auto *RLI = cast<LoadInst>(LoadData.second.front()); 9695 if (getPointersDiff(RLI->getType(), RLI->getPointerOperand(), 9696 LI->getType(), LI->getPointerOperand(), 9697 DL, SE, /*StrictCheck=*/true)) 9698 return hash_value(RLI->getPointerOperand()); 9699 } 9700 return hash_value(LI->getPointerOperand()); 9701 }, 9702 /*AllowAlternate=*/false); 9703 PossibleReducedVals[Key][Idx].push_back(V); 9704 } 9705 Worklist.append(PossibleReductionOps.begin(), 9706 PossibleReductionOps.end()); 9707 } else { 9708 size_t Key, Idx; 9709 std::tie(Key, Idx) = generateKeySubkey( 9710 TreeN, &TLI, 9711 [&PossibleReducedVals, &DL, &SE](size_t Key, LoadInst *LI) { 9712 for (const auto &LoadData : PossibleReducedVals[Key]) { 9713 auto *RLI = cast<LoadInst>(LoadData.second.front()); 9714 if (getPointersDiff(RLI->getType(), RLI->getPointerOperand(), 9715 LI->getType(), LI->getPointerOperand(), DL, 9716 SE, /*StrictCheck=*/true)) 9717 return hash_value(RLI->getPointerOperand()); 9718 } 9719 return hash_value(LI->getPointerOperand()); 9720 }, 9721 /*AllowAlternate=*/false); 9722 PossibleReducedVals[Key][Idx].push_back(TreeN); 9723 } 9724 } 9725 auto PossibleReducedValsVect = PossibleReducedVals.takeVector(); 9726 // Sort values by the total number of values kinds to start the reduction 9727 // from the longest possible reduced values sequences. 9728 for (auto &PossibleReducedVals : PossibleReducedValsVect) { 9729 auto PossibleRedVals = PossibleReducedVals.second.takeVector(); 9730 stable_sort(PossibleRedVals, [](const auto &P1, const auto &P2) { 9731 return P1.second.size() > P2.second.size(); 9732 }); 9733 ReducedVals.emplace_back(); 9734 for (auto &Data : PossibleRedVals) 9735 ReducedVals.back().append(Data.second.rbegin(), Data.second.rend()); 9736 } 9737 // Sort the reduced values by number of same/alternate opcode and/or pointer 9738 // operand. 9739 stable_sort(ReducedVals, [](ArrayRef<Value *> P1, ArrayRef<Value *> P2) { 9740 return P1.size() > P2.size(); 9741 }); 9742 return true; 9743 } 9744 9745 /// Attempt to vectorize the tree found by matchAssociativeReduction. 9746 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 9747 // If there are a sufficient number of reduction values, reduce 9748 // to a nearby power-of-2. We can safely generate oversized 9749 // vectors and rely on the backend to split them to legal sizes. 9750 unsigned NumReducedVals = std::accumulate( 9751 ReducedVals.begin(), ReducedVals.end(), 0, 9752 [](int Num, ArrayRef<Value *> Vals) { return Num + Vals.size(); }); 9753 if (NumReducedVals < 4) 9754 return nullptr; 9755 9756 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 9757 9758 // Track the reduced values in case if they are replaced by extractelement 9759 // because of the vectorization. 9760 DenseMap<Value *, WeakTrackingVH> TrackedVals; 9761 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 9762 // The same extra argument may be used several times, so log each attempt 9763 // to use it. 9764 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 9765 assert(Pair.first && "DebugLoc must be set."); 9766 ExternallyUsedValues[Pair.second].push_back(Pair.first); 9767 TrackedVals.try_emplace(Pair.second, Pair.second); 9768 } 9769 9770 // The compare instruction of a min/max is the insertion point for new 9771 // instructions and may be replaced with a new compare instruction. 9772 auto &&GetCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 9773 assert(isa<SelectInst>(RdxRootInst) && 9774 "Expected min/max reduction to have select root instruction"); 9775 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 9776 assert(isa<Instruction>(ScalarCond) && 9777 "Expected min/max reduction to have compare condition"); 9778 return cast<Instruction>(ScalarCond); 9779 }; 9780 9781 // The reduction root is used as the insertion point for new instructions, 9782 // so set it as externally used to prevent it from being deleted. 9783 ExternallyUsedValues[ReductionRoot]; 9784 SmallVector<Value *> IgnoreList; 9785 for (ReductionOpsType &RdxOps : ReductionOps) 9786 for (Value *RdxOp : RdxOps) { 9787 if (!RdxOp) 9788 continue; 9789 IgnoreList.push_back(RdxOp); 9790 } 9791 9792 // Need to track reduced vals, they may be changed during vectorization of 9793 // subvectors. 9794 for (ArrayRef<Value *> Candidates : ReducedVals) 9795 for (Value *V : Candidates) 9796 TrackedVals.try_emplace(V, V); 9797 9798 DenseMap<Value *, unsigned> VectorizedVals; 9799 Value *VectorizedTree = nullptr; 9800 // Try to vectorize elements based on their type. 9801 for (unsigned I = 0, E = ReducedVals.size(); I < E; ++I) { 9802 ArrayRef<Value *> OrigReducedVals = ReducedVals[I]; 9803 InstructionsState S = getSameOpcode(OrigReducedVals); 9804 SmallVector<Value *> Candidates; 9805 DenseMap<Value *, Value *> TrackedToOrig; 9806 for (unsigned Cnt = 0, Sz = OrigReducedVals.size(); Cnt < Sz; ++Cnt) { 9807 Value *RdxVal = TrackedVals.find(OrigReducedVals[Cnt])->second; 9808 // Check if the reduction value was not overriden by the extractelement 9809 // instruction because of the vectorization and exclude it, if it is not 9810 // compatible with other values. 9811 if (auto *Inst = dyn_cast<Instruction>(RdxVal)) 9812 if (isVectorLikeInstWithConstOps(Inst) && 9813 (!S.getOpcode() || !S.isOpcodeOrAlt(Inst))) 9814 continue; 9815 Candidates.push_back(RdxVal); 9816 TrackedToOrig.try_emplace(RdxVal, OrigReducedVals[Cnt]); 9817 } 9818 bool ShuffledExtracts = false; 9819 // Try to handle shuffled extractelements. 9820 if (S.getOpcode() == Instruction::ExtractElement && !S.isAltShuffle() && 9821 I + 1 < E) { 9822 InstructionsState NextS = getSameOpcode(ReducedVals[I + 1]); 9823 if (NextS.getOpcode() == Instruction::ExtractElement && 9824 !NextS.isAltShuffle()) { 9825 SmallVector<Value *> CommonCandidates(Candidates); 9826 for (Value *RV : ReducedVals[I + 1]) { 9827 Value *RdxVal = TrackedVals.find(RV)->second; 9828 // Check if the reduction value was not overriden by the 9829 // extractelement instruction because of the vectorization and 9830 // exclude it, if it is not compatible with other values. 9831 if (auto *Inst = dyn_cast<Instruction>(RdxVal)) 9832 if (!NextS.getOpcode() || !NextS.isOpcodeOrAlt(Inst)) 9833 continue; 9834 CommonCandidates.push_back(RdxVal); 9835 TrackedToOrig.try_emplace(RdxVal, RV); 9836 } 9837 SmallVector<int> Mask; 9838 if (isFixedVectorShuffle(CommonCandidates, Mask)) { 9839 ++I; 9840 Candidates.swap(CommonCandidates); 9841 ShuffledExtracts = true; 9842 } 9843 } 9844 } 9845 unsigned NumReducedVals = Candidates.size(); 9846 if (NumReducedVals < 4) 9847 continue; 9848 9849 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 9850 unsigned Start = 0; 9851 unsigned Pos = Start; 9852 // Restarts vectorization attempt with lower vector factor. 9853 auto &&AdjustReducedVals = [&Pos, &Start, &ReduxWidth, NumReducedVals]() { 9854 if (ReduxWidth == 4 || Pos >= NumReducedVals - ReduxWidth + 1) { 9855 ++Start; 9856 ReduxWidth = PowerOf2Floor(NumReducedVals - Start) * 2; 9857 } 9858 Pos = Start; 9859 ReduxWidth /= 2; 9860 }; 9861 while (Pos < NumReducedVals - ReduxWidth + 1 && ReduxWidth >= 4) { 9862 ArrayRef<Value *> VL(std::next(Candidates.begin(), Pos), ReduxWidth); 9863 V.buildTree(VL, IgnoreList); 9864 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) { 9865 AdjustReducedVals(); 9866 continue; 9867 } 9868 if (V.isLoadCombineReductionCandidate(RdxKind)) { 9869 AdjustReducedVals(); 9870 continue; 9871 } 9872 V.reorderTopToBottom(); 9873 // No need to reorder the root node at all. 9874 V.reorderBottomToTop(/*IgnoreReorder=*/true); 9875 // Keep extracted other reduction values, if they are used in the 9876 // vectorization trees. 9877 BoUpSLP::ExtraValueToDebugLocsMap LocalExternallyUsedValues( 9878 ExternallyUsedValues); 9879 for (unsigned Cnt = 0, Sz = ReducedVals.size(); Cnt < Sz; ++Cnt) { 9880 if (Cnt == I || (ShuffledExtracts && Cnt == I - 1)) 9881 continue; 9882 for_each(ReducedVals[Cnt], 9883 [&LocalExternallyUsedValues, &TrackedVals](Value *V) { 9884 if (isa<Instruction>(V)) 9885 LocalExternallyUsedValues[TrackedVals[V]]; 9886 }); 9887 } 9888 for (unsigned Cnt = 0; Cnt < NumReducedVals; ++Cnt) { 9889 if (Cnt >= Pos && Cnt < Pos + ReduxWidth) 9890 continue; 9891 if (VectorizedVals.count(Candidates[Cnt])) 9892 continue; 9893 LocalExternallyUsedValues[Candidates[Cnt]]; 9894 } 9895 V.buildExternalUses(LocalExternallyUsedValues); 9896 9897 V.computeMinimumValueSizes(); 9898 9899 // Intersect the fast-math-flags from all reduction operations. 9900 FastMathFlags RdxFMF; 9901 RdxFMF.set(); 9902 for (Value *RdxVal : VL) { 9903 if (auto *FPMO = dyn_cast<FPMathOperator>( 9904 ReducedValsToOps.find(RdxVal)->second)) 9905 RdxFMF &= FPMO->getFastMathFlags(); 9906 } 9907 // Estimate cost. 9908 InstructionCost TreeCost = V.getTreeCost(VL); 9909 InstructionCost ReductionCost = 9910 getReductionCost(TTI, VL[0], ReduxWidth, RdxFMF); 9911 InstructionCost Cost = TreeCost + ReductionCost; 9912 if (!Cost.isValid()) { 9913 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 9914 return nullptr; 9915 } 9916 if (Cost >= -SLPCostThreshold) { 9917 V.getORE()->emit([&]() { 9918 return OptimizationRemarkMissed( 9919 SV_NAME, "HorSLPNotBeneficial", 9920 ReducedValsToOps.find(VL[0])->second) 9921 << "Vectorizing horizontal reduction is possible" 9922 << "but not beneficial with cost " << ore::NV("Cost", Cost) 9923 << " and threshold " 9924 << ore::NV("Threshold", -SLPCostThreshold); 9925 }); 9926 AdjustReducedVals(); 9927 continue; 9928 } 9929 9930 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 9931 << Cost << ". (HorRdx)\n"); 9932 V.getORE()->emit([&]() { 9933 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 9934 ReducedValsToOps.find(VL[0])->second) 9935 << "Vectorized horizontal reduction with cost " 9936 << ore::NV("Cost", Cost) << " and with tree size " 9937 << ore::NV("TreeSize", V.getTreeSize()); 9938 }); 9939 9940 Builder.setFastMathFlags(RdxFMF); 9941 9942 // Vectorize a tree. 9943 Value *VectorizedRoot = V.vectorizeTree(LocalExternallyUsedValues); 9944 9945 // Emit a reduction. If the root is a select (min/max idiom), the insert 9946 // point is the compare condition of that select. 9947 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 9948 if (isCmpSelMinMax(RdxRootInst)) 9949 Builder.SetInsertPoint(GetCmpForMinMaxReduction(RdxRootInst)); 9950 else 9951 Builder.SetInsertPoint(RdxRootInst); 9952 9953 // To prevent poison from leaking across what used to be sequential, 9954 // safe, scalar boolean logic operations, the reduction operand must be 9955 // frozen. 9956 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 9957 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 9958 9959 Value *ReducedSubTree = 9960 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 9961 9962 if (!VectorizedTree) { 9963 // Initialize the final value in the reduction. 9964 VectorizedTree = ReducedSubTree; 9965 } else { 9966 // Update the final value in the reduction. 9967 Builder.SetCurrentDebugLocation( 9968 cast<Instruction>(ReductionOps.front().front())->getDebugLoc()); 9969 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9970 ReducedSubTree, "op.rdx", ReductionOps); 9971 } 9972 // Count vectorized reduced values to exclude them from final reduction. 9973 for (Value *V : VL) 9974 ++VectorizedVals.try_emplace(TrackedToOrig.find(V)->second, 0) 9975 .first->getSecond(); 9976 Pos += ReduxWidth; 9977 Start = Pos; 9978 ReduxWidth = PowerOf2Floor(NumReducedVals - Pos); 9979 } 9980 } 9981 if (VectorizedTree) { 9982 // Finish the reduction. 9983 // Need to add extra arguments and not vectorized possible reduction 9984 // values. 9985 for (unsigned I = 0, E = ReducedVals.size(); I < E; ++I) { 9986 ArrayRef<Value *> Candidates = ReducedVals[I]; 9987 for (Value *RdxVal : Candidates) { 9988 auto It = VectorizedVals.find(RdxVal); 9989 if (It != VectorizedVals.end()) { 9990 --It->getSecond(); 9991 if (It->second == 0) 9992 VectorizedVals.erase(It); 9993 continue; 9994 } 9995 Instruction *RedOp = ReducedValsToOps.find(RdxVal)->second; 9996 Builder.SetCurrentDebugLocation(RedOp->getDebugLoc()); 9997 ReductionOpsListType Ops; 9998 if (auto *Sel = dyn_cast<SelectInst>(RedOp)) 9999 Ops.emplace_back().push_back(Sel->getCondition()); 10000 Ops.emplace_back().push_back(RedOp); 10001 Value *StableRdxVal = RdxVal; 10002 auto TVIt = TrackedVals.find(RdxVal); 10003 if (TVIt != TrackedVals.end()) 10004 StableRdxVal = TVIt->second; 10005 10006 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 10007 StableRdxVal, "op.rdx", RedOp); 10008 } 10009 } 10010 for (auto &Pair : ExternallyUsedValues) { 10011 // Add each externally used value to the final reduction. 10012 for (auto *I : Pair.second) { 10013 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 10014 ReductionOpsListType Ops; 10015 if (auto *Sel = dyn_cast<SelectInst>(I)) 10016 Ops.emplace_back().push_back(Sel->getCondition()); 10017 Ops.emplace_back().push_back(I); 10018 Value *StableRdxVal = Pair.first; 10019 auto TVIt = TrackedVals.find(Pair.first); 10020 if (TVIt != TrackedVals.end()) 10021 StableRdxVal = TVIt->second; 10022 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 10023 StableRdxVal, "op.rdx", Ops); 10024 } 10025 } 10026 10027 ReductionRoot->replaceAllUsesWith(VectorizedTree); 10028 10029 // The original scalar reduction is expected to have no remaining 10030 // uses outside the reduction tree itself. Assert that we got this 10031 // correct, replace internal uses with undef, and mark for eventual 10032 // deletion. 10033 #ifndef NDEBUG 10034 SmallSet<Value *, 4> IgnoreSet; 10035 IgnoreSet.insert(IgnoreList.begin(), IgnoreList.end()); 10036 #endif 10037 for (auto *Ignore : IgnoreList) { 10038 #ifndef NDEBUG 10039 for (auto *U : Ignore->users()) { 10040 assert(IgnoreSet.count(U)); 10041 } 10042 #endif 10043 if (!Ignore->use_empty()) { 10044 Value *Undef = UndefValue::get(Ignore->getType()); 10045 Ignore->replaceAllUsesWith(Undef); 10046 } 10047 V.eraseInstruction(cast<Instruction>(Ignore)); 10048 } 10049 } 10050 return VectorizedTree; 10051 } 10052 10053 unsigned numReductionValues() const { return ReducedVals.size(); } 10054 10055 private: 10056 /// Calculate the cost of a reduction. 10057 InstructionCost getReductionCost(TargetTransformInfo *TTI, 10058 Value *FirstReducedVal, unsigned ReduxWidth, 10059 FastMathFlags FMF) { 10060 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 10061 Type *ScalarTy = FirstReducedVal->getType(); 10062 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 10063 InstructionCost VectorCost, ScalarCost; 10064 switch (RdxKind) { 10065 case RecurKind::Add: 10066 case RecurKind::Mul: 10067 case RecurKind::Or: 10068 case RecurKind::And: 10069 case RecurKind::Xor: 10070 case RecurKind::FAdd: 10071 case RecurKind::FMul: { 10072 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 10073 VectorCost = 10074 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 10075 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 10076 break; 10077 } 10078 case RecurKind::FMax: 10079 case RecurKind::FMin: { 10080 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 10081 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 10082 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 10083 /*IsUnsigned=*/false, CostKind); 10084 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 10085 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 10086 SclCondTy, RdxPred, CostKind) + 10087 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 10088 SclCondTy, RdxPred, CostKind); 10089 break; 10090 } 10091 case RecurKind::SMax: 10092 case RecurKind::SMin: 10093 case RecurKind::UMax: 10094 case RecurKind::UMin: { 10095 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 10096 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 10097 bool IsUnsigned = 10098 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 10099 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned, 10100 CostKind); 10101 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 10102 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 10103 SclCondTy, RdxPred, CostKind) + 10104 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 10105 SclCondTy, RdxPred, CostKind); 10106 break; 10107 } 10108 default: 10109 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 10110 } 10111 10112 // Scalar cost is repeated for N-1 elements. 10113 ScalarCost *= (ReduxWidth - 1); 10114 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 10115 << " for reduction that starts with " << *FirstReducedVal 10116 << " (It is a splitting reduction)\n"); 10117 return VectorCost - ScalarCost; 10118 } 10119 10120 /// Emit a horizontal reduction of the vectorized value. 10121 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 10122 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 10123 assert(VectorizedValue && "Need to have a vectorized tree node"); 10124 assert(isPowerOf2_32(ReduxWidth) && 10125 "We only handle power-of-two reductions for now"); 10126 assert(RdxKind != RecurKind::FMulAdd && 10127 "A call to the llvm.fmuladd intrinsic is not handled yet"); 10128 10129 ++NumVectorInstructions; 10130 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind); 10131 } 10132 }; 10133 10134 } // end anonymous namespace 10135 10136 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 10137 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 10138 return cast<FixedVectorType>(IE->getType())->getNumElements(); 10139 10140 unsigned AggregateSize = 1; 10141 auto *IV = cast<InsertValueInst>(InsertInst); 10142 Type *CurrentType = IV->getType(); 10143 do { 10144 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 10145 for (auto *Elt : ST->elements()) 10146 if (Elt != ST->getElementType(0)) // check homogeneity 10147 return None; 10148 AggregateSize *= ST->getNumElements(); 10149 CurrentType = ST->getElementType(0); 10150 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 10151 AggregateSize *= AT->getNumElements(); 10152 CurrentType = AT->getElementType(); 10153 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 10154 AggregateSize *= VT->getNumElements(); 10155 return AggregateSize; 10156 } else if (CurrentType->isSingleValueType()) { 10157 return AggregateSize; 10158 } else { 10159 return None; 10160 } 10161 } while (true); 10162 } 10163 10164 static void findBuildAggregate_rec(Instruction *LastInsertInst, 10165 TargetTransformInfo *TTI, 10166 SmallVectorImpl<Value *> &BuildVectorOpds, 10167 SmallVectorImpl<Value *> &InsertElts, 10168 unsigned OperandOffset) { 10169 do { 10170 Value *InsertedOperand = LastInsertInst->getOperand(1); 10171 Optional<unsigned> OperandIndex = 10172 getInsertIndex(LastInsertInst, OperandOffset); 10173 if (!OperandIndex) 10174 return; 10175 if (isa<InsertElementInst>(InsertedOperand) || 10176 isa<InsertValueInst>(InsertedOperand)) { 10177 findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 10178 BuildVectorOpds, InsertElts, *OperandIndex); 10179 10180 } else { 10181 BuildVectorOpds[*OperandIndex] = InsertedOperand; 10182 InsertElts[*OperandIndex] = LastInsertInst; 10183 } 10184 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 10185 } while (LastInsertInst != nullptr && 10186 (isa<InsertValueInst>(LastInsertInst) || 10187 isa<InsertElementInst>(LastInsertInst)) && 10188 LastInsertInst->hasOneUse()); 10189 } 10190 10191 /// Recognize construction of vectors like 10192 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 10193 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 10194 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 10195 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 10196 /// starting from the last insertelement or insertvalue instruction. 10197 /// 10198 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 10199 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 10200 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 10201 /// 10202 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 10203 /// 10204 /// \return true if it matches. 10205 static bool findBuildAggregate(Instruction *LastInsertInst, 10206 TargetTransformInfo *TTI, 10207 SmallVectorImpl<Value *> &BuildVectorOpds, 10208 SmallVectorImpl<Value *> &InsertElts) { 10209 10210 assert((isa<InsertElementInst>(LastInsertInst) || 10211 isa<InsertValueInst>(LastInsertInst)) && 10212 "Expected insertelement or insertvalue instruction!"); 10213 10214 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 10215 "Expected empty result vectors!"); 10216 10217 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 10218 if (!AggregateSize) 10219 return false; 10220 BuildVectorOpds.resize(*AggregateSize); 10221 InsertElts.resize(*AggregateSize); 10222 10223 findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 0); 10224 llvm::erase_value(BuildVectorOpds, nullptr); 10225 llvm::erase_value(InsertElts, nullptr); 10226 if (BuildVectorOpds.size() >= 2) 10227 return true; 10228 10229 return false; 10230 } 10231 10232 /// Try and get a reduction value from a phi node. 10233 /// 10234 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 10235 /// if they come from either \p ParentBB or a containing loop latch. 10236 /// 10237 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 10238 /// if not possible. 10239 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 10240 BasicBlock *ParentBB, LoopInfo *LI) { 10241 // There are situations where the reduction value is not dominated by the 10242 // reduction phi. Vectorizing such cases has been reported to cause 10243 // miscompiles. See PR25787. 10244 auto DominatedReduxValue = [&](Value *R) { 10245 return isa<Instruction>(R) && 10246 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 10247 }; 10248 10249 Value *Rdx = nullptr; 10250 10251 // Return the incoming value if it comes from the same BB as the phi node. 10252 if (P->getIncomingBlock(0) == ParentBB) { 10253 Rdx = P->getIncomingValue(0); 10254 } else if (P->getIncomingBlock(1) == ParentBB) { 10255 Rdx = P->getIncomingValue(1); 10256 } 10257 10258 if (Rdx && DominatedReduxValue(Rdx)) 10259 return Rdx; 10260 10261 // Otherwise, check whether we have a loop latch to look at. 10262 Loop *BBL = LI->getLoopFor(ParentBB); 10263 if (!BBL) 10264 return nullptr; 10265 BasicBlock *BBLatch = BBL->getLoopLatch(); 10266 if (!BBLatch) 10267 return nullptr; 10268 10269 // There is a loop latch, return the incoming value if it comes from 10270 // that. This reduction pattern occasionally turns up. 10271 if (P->getIncomingBlock(0) == BBLatch) { 10272 Rdx = P->getIncomingValue(0); 10273 } else if (P->getIncomingBlock(1) == BBLatch) { 10274 Rdx = P->getIncomingValue(1); 10275 } 10276 10277 if (Rdx && DominatedReduxValue(Rdx)) 10278 return Rdx; 10279 10280 return nullptr; 10281 } 10282 10283 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 10284 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 10285 return true; 10286 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 10287 return true; 10288 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 10289 return true; 10290 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 10291 return true; 10292 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 10293 return true; 10294 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 10295 return true; 10296 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 10297 return true; 10298 return false; 10299 } 10300 10301 /// Attempt to reduce a horizontal reduction. 10302 /// If it is legal to match a horizontal reduction feeding the phi node \a P 10303 /// with reduction operators \a Root (or one of its operands) in a basic block 10304 /// \a BB, then check if it can be done. If horizontal reduction is not found 10305 /// and root instruction is a binary operation, vectorization of the operands is 10306 /// attempted. 10307 /// \returns true if a horizontal reduction was matched and reduced or operands 10308 /// of one of the binary instruction were vectorized. 10309 /// \returns false if a horizontal reduction was not matched (or not possible) 10310 /// or no vectorization of any binary operation feeding \a Root instruction was 10311 /// performed. 10312 static bool tryToVectorizeHorReductionOrInstOperands( 10313 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 10314 TargetTransformInfo *TTI, ScalarEvolution &SE, const DataLayout &DL, 10315 const TargetLibraryInfo &TLI, 10316 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 10317 if (!ShouldVectorizeHor) 10318 return false; 10319 10320 if (!Root) 10321 return false; 10322 10323 if (Root->getParent() != BB || isa<PHINode>(Root)) 10324 return false; 10325 // Start analysis starting from Root instruction. If horizontal reduction is 10326 // found, try to vectorize it. If it is not a horizontal reduction or 10327 // vectorization is not possible or not effective, and currently analyzed 10328 // instruction is a binary operation, try to vectorize the operands, using 10329 // pre-order DFS traversal order. If the operands were not vectorized, repeat 10330 // the same procedure considering each operand as a possible root of the 10331 // horizontal reduction. 10332 // Interrupt the process if the Root instruction itself was vectorized or all 10333 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 10334 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 10335 // CmpInsts so we can skip extra attempts in 10336 // tryToVectorizeHorReductionOrInstOperands and save compile time. 10337 std::queue<std::pair<Instruction *, unsigned>> Stack; 10338 Stack.emplace(Root, 0); 10339 SmallPtrSet<Value *, 8> VisitedInstrs; 10340 SmallVector<WeakTrackingVH> PostponedInsts; 10341 bool Res = false; 10342 auto &&TryToReduce = [TTI, &SE, &DL, &P, &R, &TLI](Instruction *Inst, 10343 Value *&B0, 10344 Value *&B1) -> Value * { 10345 bool IsBinop = matchRdxBop(Inst, B0, B1); 10346 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 10347 if (IsBinop || IsSelect) { 10348 HorizontalReduction HorRdx; 10349 if (HorRdx.matchAssociativeReduction(P, Inst, SE, DL, TLI)) 10350 return HorRdx.tryToReduce(R, TTI); 10351 } 10352 return nullptr; 10353 }; 10354 while (!Stack.empty()) { 10355 Instruction *Inst; 10356 unsigned Level; 10357 std::tie(Inst, Level) = Stack.front(); 10358 Stack.pop(); 10359 // Do not try to analyze instruction that has already been vectorized. 10360 // This may happen when we vectorize instruction operands on a previous 10361 // iteration while stack was populated before that happened. 10362 if (R.isDeleted(Inst)) 10363 continue; 10364 Value *B0 = nullptr, *B1 = nullptr; 10365 if (Value *V = TryToReduce(Inst, B0, B1)) { 10366 Res = true; 10367 // Set P to nullptr to avoid re-analysis of phi node in 10368 // matchAssociativeReduction function unless this is the root node. 10369 P = nullptr; 10370 if (auto *I = dyn_cast<Instruction>(V)) { 10371 // Try to find another reduction. 10372 Stack.emplace(I, Level); 10373 continue; 10374 } 10375 } else { 10376 bool IsBinop = B0 && B1; 10377 if (P && IsBinop) { 10378 Inst = dyn_cast<Instruction>(B0); 10379 if (Inst == P) 10380 Inst = dyn_cast<Instruction>(B1); 10381 if (!Inst) { 10382 // Set P to nullptr to avoid re-analysis of phi node in 10383 // matchAssociativeReduction function unless this is the root node. 10384 P = nullptr; 10385 continue; 10386 } 10387 } 10388 // Set P to nullptr to avoid re-analysis of phi node in 10389 // matchAssociativeReduction function unless this is the root node. 10390 P = nullptr; 10391 // Do not try to vectorize CmpInst operands, this is done separately. 10392 // Final attempt for binop args vectorization should happen after the loop 10393 // to try to find reductions. 10394 if (!isa<CmpInst>(Inst)) 10395 PostponedInsts.push_back(Inst); 10396 } 10397 10398 // Try to vectorize operands. 10399 // Continue analysis for the instruction from the same basic block only to 10400 // save compile time. 10401 if (++Level < RecursionMaxDepth) 10402 for (auto *Op : Inst->operand_values()) 10403 if (VisitedInstrs.insert(Op).second) 10404 if (auto *I = dyn_cast<Instruction>(Op)) 10405 // Do not try to vectorize CmpInst operands, this is done 10406 // separately. 10407 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 10408 I->getParent() == BB) 10409 Stack.emplace(I, Level); 10410 } 10411 // Try to vectorized binops where reductions were not found. 10412 for (Value *V : PostponedInsts) 10413 if (auto *Inst = dyn_cast<Instruction>(V)) 10414 if (!R.isDeleted(Inst)) 10415 Res |= Vectorize(Inst, R); 10416 return Res; 10417 } 10418 10419 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 10420 BasicBlock *BB, BoUpSLP &R, 10421 TargetTransformInfo *TTI) { 10422 auto *I = dyn_cast_or_null<Instruction>(V); 10423 if (!I) 10424 return false; 10425 10426 if (!isa<BinaryOperator>(I)) 10427 P = nullptr; 10428 // Try to match and vectorize a horizontal reduction. 10429 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 10430 return tryToVectorize(I, R); 10431 }; 10432 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, *SE, *DL, 10433 *TLI, ExtraVectorization); 10434 } 10435 10436 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 10437 BasicBlock *BB, BoUpSLP &R) { 10438 const DataLayout &DL = BB->getModule()->getDataLayout(); 10439 if (!R.canMapToVector(IVI->getType(), DL)) 10440 return false; 10441 10442 SmallVector<Value *, 16> BuildVectorOpds; 10443 SmallVector<Value *, 16> BuildVectorInsts; 10444 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 10445 return false; 10446 10447 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 10448 // Aggregate value is unlikely to be processed in vector register. 10449 return tryToVectorizeList(BuildVectorOpds, R); 10450 } 10451 10452 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 10453 BasicBlock *BB, BoUpSLP &R) { 10454 SmallVector<Value *, 16> BuildVectorInsts; 10455 SmallVector<Value *, 16> BuildVectorOpds; 10456 SmallVector<int> Mask; 10457 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 10458 (llvm::all_of( 10459 BuildVectorOpds, 10460 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) && 10461 isFixedVectorShuffle(BuildVectorOpds, Mask))) 10462 return false; 10463 10464 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 10465 return tryToVectorizeList(BuildVectorInsts, R); 10466 } 10467 10468 template <typename T> 10469 static bool 10470 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 10471 function_ref<unsigned(T *)> Limit, 10472 function_ref<bool(T *, T *)> Comparator, 10473 function_ref<bool(T *, T *)> AreCompatible, 10474 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper, 10475 bool LimitForRegisterSize) { 10476 bool Changed = false; 10477 // Sort by type, parent, operands. 10478 stable_sort(Incoming, Comparator); 10479 10480 // Try to vectorize elements base on their type. 10481 SmallVector<T *> Candidates; 10482 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 10483 // Look for the next elements with the same type, parent and operand 10484 // kinds. 10485 auto *SameTypeIt = IncIt; 10486 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 10487 ++SameTypeIt; 10488 10489 // Try to vectorize them. 10490 unsigned NumElts = (SameTypeIt - IncIt); 10491 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 10492 << NumElts << ")\n"); 10493 // The vectorization is a 3-state attempt: 10494 // 1. Try to vectorize instructions with the same/alternate opcodes with the 10495 // size of maximal register at first. 10496 // 2. Try to vectorize remaining instructions with the same type, if 10497 // possible. This may result in the better vectorization results rather than 10498 // if we try just to vectorize instructions with the same/alternate opcodes. 10499 // 3. Final attempt to try to vectorize all instructions with the 10500 // same/alternate ops only, this may result in some extra final 10501 // vectorization. 10502 if (NumElts > 1 && 10503 TryToVectorizeHelper(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 10504 // Success start over because instructions might have been changed. 10505 Changed = true; 10506 } else if (NumElts < Limit(*IncIt) && 10507 (Candidates.empty() || 10508 Candidates.front()->getType() == (*IncIt)->getType())) { 10509 Candidates.append(IncIt, std::next(IncIt, NumElts)); 10510 } 10511 // Final attempt to vectorize instructions with the same types. 10512 if (Candidates.size() > 1 && 10513 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 10514 if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) { 10515 // Success start over because instructions might have been changed. 10516 Changed = true; 10517 } else if (LimitForRegisterSize) { 10518 // Try to vectorize using small vectors. 10519 for (auto *It = Candidates.begin(), *End = Candidates.end(); 10520 It != End;) { 10521 auto *SameTypeIt = It; 10522 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 10523 ++SameTypeIt; 10524 unsigned NumElts = (SameTypeIt - It); 10525 if (NumElts > 1 && TryToVectorizeHelper(makeArrayRef(It, NumElts), 10526 /*LimitForRegisterSize=*/false)) 10527 Changed = true; 10528 It = SameTypeIt; 10529 } 10530 } 10531 Candidates.clear(); 10532 } 10533 10534 // Start over at the next instruction of a different type (or the end). 10535 IncIt = SameTypeIt; 10536 } 10537 return Changed; 10538 } 10539 10540 /// Compare two cmp instructions. If IsCompatibility is true, function returns 10541 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding 10542 /// operands. If IsCompatibility is false, function implements strict weak 10543 /// ordering relation between two cmp instructions, returning true if the first 10544 /// instruction is "less" than the second, i.e. its predicate is less than the 10545 /// predicate of the second or the operands IDs are less than the operands IDs 10546 /// of the second cmp instruction. 10547 template <bool IsCompatibility> 10548 static bool compareCmp(Value *V, Value *V2, 10549 function_ref<bool(Instruction *)> IsDeleted) { 10550 auto *CI1 = cast<CmpInst>(V); 10551 auto *CI2 = cast<CmpInst>(V2); 10552 if (IsDeleted(CI2) || !isValidElementType(CI2->getType())) 10553 return false; 10554 if (CI1->getOperand(0)->getType()->getTypeID() < 10555 CI2->getOperand(0)->getType()->getTypeID()) 10556 return !IsCompatibility; 10557 if (CI1->getOperand(0)->getType()->getTypeID() > 10558 CI2->getOperand(0)->getType()->getTypeID()) 10559 return false; 10560 CmpInst::Predicate Pred1 = CI1->getPredicate(); 10561 CmpInst::Predicate Pred2 = CI2->getPredicate(); 10562 CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1); 10563 CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2); 10564 CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1); 10565 CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2); 10566 if (BasePred1 < BasePred2) 10567 return !IsCompatibility; 10568 if (BasePred1 > BasePred2) 10569 return false; 10570 // Compare operands. 10571 bool LEPreds = Pred1 <= Pred2; 10572 bool GEPreds = Pred1 >= Pred2; 10573 for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) { 10574 auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1); 10575 auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1); 10576 if (Op1->getValueID() < Op2->getValueID()) 10577 return !IsCompatibility; 10578 if (Op1->getValueID() > Op2->getValueID()) 10579 return false; 10580 if (auto *I1 = dyn_cast<Instruction>(Op1)) 10581 if (auto *I2 = dyn_cast<Instruction>(Op2)) { 10582 if (I1->getParent() != I2->getParent()) 10583 return false; 10584 InstructionsState S = getSameOpcode({I1, I2}); 10585 if (S.getOpcode()) 10586 continue; 10587 return false; 10588 } 10589 } 10590 return IsCompatibility; 10591 } 10592 10593 bool SLPVectorizerPass::vectorizeSimpleInstructions( 10594 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 10595 bool AtTerminator) { 10596 bool OpsChanged = false; 10597 SmallVector<Instruction *, 4> PostponedCmps; 10598 for (auto *I : reverse(Instructions)) { 10599 if (R.isDeleted(I)) 10600 continue; 10601 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 10602 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 10603 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 10604 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 10605 else if (isa<CmpInst>(I)) 10606 PostponedCmps.push_back(I); 10607 } 10608 if (AtTerminator) { 10609 // Try to find reductions first. 10610 for (Instruction *I : PostponedCmps) { 10611 if (R.isDeleted(I)) 10612 continue; 10613 for (Value *Op : I->operands()) 10614 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 10615 } 10616 // Try to vectorize operands as vector bundles. 10617 for (Instruction *I : PostponedCmps) { 10618 if (R.isDeleted(I)) 10619 continue; 10620 OpsChanged |= tryToVectorize(I, R); 10621 } 10622 // Try to vectorize list of compares. 10623 // Sort by type, compare predicate, etc. 10624 auto &&CompareSorter = [&R](Value *V, Value *V2) { 10625 return compareCmp<false>(V, V2, 10626 [&R](Instruction *I) { return R.isDeleted(I); }); 10627 }; 10628 10629 auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) { 10630 if (V1 == V2) 10631 return true; 10632 return compareCmp<true>(V1, V2, 10633 [&R](Instruction *I) { return R.isDeleted(I); }); 10634 }; 10635 auto Limit = [&R](Value *V) { 10636 unsigned EltSize = R.getVectorElementSize(V); 10637 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10638 }; 10639 10640 SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end()); 10641 OpsChanged |= tryToVectorizeSequence<Value>( 10642 Vals, Limit, CompareSorter, AreCompatibleCompares, 10643 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10644 // Exclude possible reductions from other blocks. 10645 bool ArePossiblyReducedInOtherBlock = 10646 any_of(Candidates, [](Value *V) { 10647 return any_of(V->users(), [V](User *U) { 10648 return isa<SelectInst>(U) && 10649 cast<SelectInst>(U)->getParent() != 10650 cast<Instruction>(V)->getParent(); 10651 }); 10652 }); 10653 if (ArePossiblyReducedInOtherBlock) 10654 return false; 10655 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10656 }, 10657 /*LimitForRegisterSize=*/true); 10658 Instructions.clear(); 10659 } else { 10660 // Insert in reverse order since the PostponedCmps vector was filled in 10661 // reverse order. 10662 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 10663 } 10664 return OpsChanged; 10665 } 10666 10667 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 10668 bool Changed = false; 10669 SmallVector<Value *, 4> Incoming; 10670 SmallPtrSet<Value *, 16> VisitedInstrs; 10671 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 10672 // node. Allows better to identify the chains that can be vectorized in the 10673 // better way. 10674 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 10675 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 10676 assert(isValidElementType(V1->getType()) && 10677 isValidElementType(V2->getType()) && 10678 "Expected vectorizable types only."); 10679 // It is fine to compare type IDs here, since we expect only vectorizable 10680 // types, like ints, floats and pointers, we don't care about other type. 10681 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 10682 return true; 10683 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 10684 return false; 10685 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10686 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10687 if (Opcodes1.size() < Opcodes2.size()) 10688 return true; 10689 if (Opcodes1.size() > Opcodes2.size()) 10690 return false; 10691 Optional<bool> ConstOrder; 10692 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10693 // Undefs are compatible with any other value. 10694 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) { 10695 if (!ConstOrder) 10696 ConstOrder = 10697 !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]); 10698 continue; 10699 } 10700 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10701 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10702 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 10703 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 10704 if (!NodeI1) 10705 return NodeI2 != nullptr; 10706 if (!NodeI2) 10707 return false; 10708 assert((NodeI1 == NodeI2) == 10709 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10710 "Different nodes should have different DFS numbers"); 10711 if (NodeI1 != NodeI2) 10712 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10713 InstructionsState S = getSameOpcode({I1, I2}); 10714 if (S.getOpcode()) 10715 continue; 10716 return I1->getOpcode() < I2->getOpcode(); 10717 } 10718 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) { 10719 if (!ConstOrder) 10720 ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID(); 10721 continue; 10722 } 10723 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 10724 return true; 10725 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 10726 return false; 10727 } 10728 return ConstOrder && *ConstOrder; 10729 }; 10730 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 10731 if (V1 == V2) 10732 return true; 10733 if (V1->getType() != V2->getType()) 10734 return false; 10735 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10736 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10737 if (Opcodes1.size() != Opcodes2.size()) 10738 return false; 10739 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10740 // Undefs are compatible with any other value. 10741 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 10742 continue; 10743 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10744 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10745 if (I1->getParent() != I2->getParent()) 10746 return false; 10747 InstructionsState S = getSameOpcode({I1, I2}); 10748 if (S.getOpcode()) 10749 continue; 10750 return false; 10751 } 10752 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 10753 continue; 10754 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 10755 return false; 10756 } 10757 return true; 10758 }; 10759 auto Limit = [&R](Value *V) { 10760 unsigned EltSize = R.getVectorElementSize(V); 10761 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10762 }; 10763 10764 bool HaveVectorizedPhiNodes = false; 10765 do { 10766 // Collect the incoming values from the PHIs. 10767 Incoming.clear(); 10768 for (Instruction &I : *BB) { 10769 PHINode *P = dyn_cast<PHINode>(&I); 10770 if (!P) 10771 break; 10772 10773 // No need to analyze deleted, vectorized and non-vectorizable 10774 // instructions. 10775 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 10776 isValidElementType(P->getType())) 10777 Incoming.push_back(P); 10778 } 10779 10780 // Find the corresponding non-phi nodes for better matching when trying to 10781 // build the tree. 10782 for (Value *V : Incoming) { 10783 SmallVectorImpl<Value *> &Opcodes = 10784 PHIToOpcodes.try_emplace(V).first->getSecond(); 10785 if (!Opcodes.empty()) 10786 continue; 10787 SmallVector<Value *, 4> Nodes(1, V); 10788 SmallPtrSet<Value *, 4> Visited; 10789 while (!Nodes.empty()) { 10790 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 10791 if (!Visited.insert(PHI).second) 10792 continue; 10793 for (Value *V : PHI->incoming_values()) { 10794 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 10795 Nodes.push_back(PHI1); 10796 continue; 10797 } 10798 Opcodes.emplace_back(V); 10799 } 10800 } 10801 } 10802 10803 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 10804 Incoming, Limit, PHICompare, AreCompatiblePHIs, 10805 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10806 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10807 }, 10808 /*LimitForRegisterSize=*/true); 10809 Changed |= HaveVectorizedPhiNodes; 10810 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 10811 } while (HaveVectorizedPhiNodes); 10812 10813 VisitedInstrs.clear(); 10814 10815 SmallVector<Instruction *, 8> PostProcessInstructions; 10816 SmallDenseSet<Instruction *, 4> KeyNodes; 10817 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 10818 // Skip instructions with scalable type. The num of elements is unknown at 10819 // compile-time for scalable type. 10820 if (isa<ScalableVectorType>(it->getType())) 10821 continue; 10822 10823 // Skip instructions marked for the deletion. 10824 if (R.isDeleted(&*it)) 10825 continue; 10826 // We may go through BB multiple times so skip the one we have checked. 10827 if (!VisitedInstrs.insert(&*it).second) { 10828 if (it->use_empty() && KeyNodes.contains(&*it) && 10829 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10830 it->isTerminator())) { 10831 // We would like to start over since some instructions are deleted 10832 // and the iterator may become invalid value. 10833 Changed = true; 10834 it = BB->begin(); 10835 e = BB->end(); 10836 } 10837 continue; 10838 } 10839 10840 if (isa<DbgInfoIntrinsic>(it)) 10841 continue; 10842 10843 // Try to vectorize reductions that use PHINodes. 10844 if (PHINode *P = dyn_cast<PHINode>(it)) { 10845 // Check that the PHI is a reduction PHI. 10846 if (P->getNumIncomingValues() == 2) { 10847 // Try to match and vectorize a horizontal reduction. 10848 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 10849 TTI)) { 10850 Changed = true; 10851 it = BB->begin(); 10852 e = BB->end(); 10853 continue; 10854 } 10855 } 10856 // Try to vectorize the incoming values of the PHI, to catch reductions 10857 // that feed into PHIs. 10858 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 10859 // Skip if the incoming block is the current BB for now. Also, bypass 10860 // unreachable IR for efficiency and to avoid crashing. 10861 // TODO: Collect the skipped incoming values and try to vectorize them 10862 // after processing BB. 10863 if (BB == P->getIncomingBlock(I) || 10864 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 10865 continue; 10866 10867 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 10868 P->getIncomingBlock(I), R, TTI); 10869 } 10870 continue; 10871 } 10872 10873 // Ran into an instruction without users, like terminator, or function call 10874 // with ignored return value, store. Ignore unused instructions (basing on 10875 // instruction type, except for CallInst and InvokeInst). 10876 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 10877 isa<InvokeInst>(it))) { 10878 KeyNodes.insert(&*it); 10879 bool OpsChanged = false; 10880 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 10881 for (auto *V : it->operand_values()) { 10882 // Try to match and vectorize a horizontal reduction. 10883 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 10884 } 10885 } 10886 // Start vectorization of post-process list of instructions from the 10887 // top-tree instructions to try to vectorize as many instructions as 10888 // possible. 10889 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10890 it->isTerminator()); 10891 if (OpsChanged) { 10892 // We would like to start over since some instructions are deleted 10893 // and the iterator may become invalid value. 10894 Changed = true; 10895 it = BB->begin(); 10896 e = BB->end(); 10897 continue; 10898 } 10899 } 10900 10901 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 10902 isa<InsertValueInst>(it)) 10903 PostProcessInstructions.push_back(&*it); 10904 } 10905 10906 return Changed; 10907 } 10908 10909 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 10910 auto Changed = false; 10911 for (auto &Entry : GEPs) { 10912 // If the getelementptr list has fewer than two elements, there's nothing 10913 // to do. 10914 if (Entry.second.size() < 2) 10915 continue; 10916 10917 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 10918 << Entry.second.size() << ".\n"); 10919 10920 // Process the GEP list in chunks suitable for the target's supported 10921 // vector size. If a vector register can't hold 1 element, we are done. We 10922 // are trying to vectorize the index computations, so the maximum number of 10923 // elements is based on the size of the index expression, rather than the 10924 // size of the GEP itself (the target's pointer size). 10925 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 10926 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 10927 if (MaxVecRegSize < EltSize) 10928 continue; 10929 10930 unsigned MaxElts = MaxVecRegSize / EltSize; 10931 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 10932 auto Len = std::min<unsigned>(BE - BI, MaxElts); 10933 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 10934 10935 // Initialize a set a candidate getelementptrs. Note that we use a 10936 // SetVector here to preserve program order. If the index computations 10937 // are vectorizable and begin with loads, we want to minimize the chance 10938 // of having to reorder them later. 10939 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 10940 10941 // Some of the candidates may have already been vectorized after we 10942 // initially collected them. If so, they are marked as deleted, so remove 10943 // them from the set of candidates. 10944 Candidates.remove_if( 10945 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 10946 10947 // Remove from the set of candidates all pairs of getelementptrs with 10948 // constant differences. Such getelementptrs are likely not good 10949 // candidates for vectorization in a bottom-up phase since one can be 10950 // computed from the other. We also ensure all candidate getelementptr 10951 // indices are unique. 10952 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 10953 auto *GEPI = GEPList[I]; 10954 if (!Candidates.count(GEPI)) 10955 continue; 10956 auto *SCEVI = SE->getSCEV(GEPList[I]); 10957 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 10958 auto *GEPJ = GEPList[J]; 10959 auto *SCEVJ = SE->getSCEV(GEPList[J]); 10960 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 10961 Candidates.remove(GEPI); 10962 Candidates.remove(GEPJ); 10963 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 10964 Candidates.remove(GEPJ); 10965 } 10966 } 10967 } 10968 10969 // We break out of the above computation as soon as we know there are 10970 // fewer than two candidates remaining. 10971 if (Candidates.size() < 2) 10972 continue; 10973 10974 // Add the single, non-constant index of each candidate to the bundle. We 10975 // ensured the indices met these constraints when we originally collected 10976 // the getelementptrs. 10977 SmallVector<Value *, 16> Bundle(Candidates.size()); 10978 auto BundleIndex = 0u; 10979 for (auto *V : Candidates) { 10980 auto *GEP = cast<GetElementPtrInst>(V); 10981 auto *GEPIdx = GEP->idx_begin()->get(); 10982 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 10983 Bundle[BundleIndex++] = GEPIdx; 10984 } 10985 10986 // Try and vectorize the indices. We are currently only interested in 10987 // gather-like cases of the form: 10988 // 10989 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 10990 // 10991 // where the loads of "a", the loads of "b", and the subtractions can be 10992 // performed in parallel. It's likely that detecting this pattern in a 10993 // bottom-up phase will be simpler and less costly than building a 10994 // full-blown top-down phase beginning at the consecutive loads. 10995 Changed |= tryToVectorizeList(Bundle, R); 10996 } 10997 } 10998 return Changed; 10999 } 11000 11001 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 11002 bool Changed = false; 11003 // Sort by type, base pointers and values operand. Value operands must be 11004 // compatible (have the same opcode, same parent), otherwise it is 11005 // definitely not profitable to try to vectorize them. 11006 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 11007 if (V->getPointerOperandType()->getTypeID() < 11008 V2->getPointerOperandType()->getTypeID()) 11009 return true; 11010 if (V->getPointerOperandType()->getTypeID() > 11011 V2->getPointerOperandType()->getTypeID()) 11012 return false; 11013 // UndefValues are compatible with all other values. 11014 if (isa<UndefValue>(V->getValueOperand()) || 11015 isa<UndefValue>(V2->getValueOperand())) 11016 return false; 11017 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 11018 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 11019 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 11020 DT->getNode(I1->getParent()); 11021 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 11022 DT->getNode(I2->getParent()); 11023 assert(NodeI1 && "Should only process reachable instructions"); 11024 assert(NodeI1 && "Should only process reachable instructions"); 11025 assert((NodeI1 == NodeI2) == 11026 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 11027 "Different nodes should have different DFS numbers"); 11028 if (NodeI1 != NodeI2) 11029 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 11030 InstructionsState S = getSameOpcode({I1, I2}); 11031 if (S.getOpcode()) 11032 return false; 11033 return I1->getOpcode() < I2->getOpcode(); 11034 } 11035 if (isa<Constant>(V->getValueOperand()) && 11036 isa<Constant>(V2->getValueOperand())) 11037 return false; 11038 return V->getValueOperand()->getValueID() < 11039 V2->getValueOperand()->getValueID(); 11040 }; 11041 11042 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 11043 if (V1 == V2) 11044 return true; 11045 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 11046 return false; 11047 // Undefs are compatible with any other value. 11048 if (isa<UndefValue>(V1->getValueOperand()) || 11049 isa<UndefValue>(V2->getValueOperand())) 11050 return true; 11051 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 11052 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 11053 if (I1->getParent() != I2->getParent()) 11054 return false; 11055 InstructionsState S = getSameOpcode({I1, I2}); 11056 return S.getOpcode() > 0; 11057 } 11058 if (isa<Constant>(V1->getValueOperand()) && 11059 isa<Constant>(V2->getValueOperand())) 11060 return true; 11061 return V1->getValueOperand()->getValueID() == 11062 V2->getValueOperand()->getValueID(); 11063 }; 11064 auto Limit = [&R, this](StoreInst *SI) { 11065 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 11066 return R.getMinVF(EltSize); 11067 }; 11068 11069 // Attempt to sort and vectorize each of the store-groups. 11070 for (auto &Pair : Stores) { 11071 if (Pair.second.size() < 2) 11072 continue; 11073 11074 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 11075 << Pair.second.size() << ".\n"); 11076 11077 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 11078 continue; 11079 11080 Changed |= tryToVectorizeSequence<StoreInst>( 11081 Pair.second, Limit, StoreSorter, AreCompatibleStores, 11082 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 11083 return vectorizeStores(Candidates, R); 11084 }, 11085 /*LimitForRegisterSize=*/false); 11086 } 11087 return Changed; 11088 } 11089 11090 char SLPVectorizer::ID = 0; 11091 11092 static const char lv_name[] = "SLP Vectorizer"; 11093 11094 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 11095 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 11096 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 11097 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 11098 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 11099 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 11100 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 11101 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 11102 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 11103 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 11104 11105 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 11106