1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 11 // stores that can be put together into vector-stores. Next, it attempts to 12 // construct vectorizable tree using the use-def chains. If a profitable tree 13 // was found, the SLP vectorizer performs vectorization on the tree. 14 // 15 // The pass is inspired by the work described in the paper: 16 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 21 #include "llvm/ADT/ArrayRef.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/DenseSet.h" 24 #include "llvm/ADT/MapVector.h" 25 #include "llvm/ADT/None.h" 26 #include "llvm/ADT/Optional.h" 27 #include "llvm/ADT/PostOrderIterator.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/ADT/SetVector.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/ADT/iterator.h" 35 #include "llvm/ADT/iterator_range.h" 36 #include "llvm/Analysis/AliasAnalysis.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/LoopAccessAnalysis.h" 41 #include "llvm/Analysis/LoopInfo.h" 42 #include "llvm/Analysis/MemoryLocation.h" 43 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 44 #include "llvm/Analysis/ScalarEvolution.h" 45 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 46 #include "llvm/Analysis/TargetLibraryInfo.h" 47 #include "llvm/Analysis/TargetTransformInfo.h" 48 #include "llvm/Analysis/ValueTracking.h" 49 #include "llvm/Analysis/VectorUtils.h" 50 #include "llvm/IR/Attributes.h" 51 #include "llvm/IR/BasicBlock.h" 52 #include "llvm/IR/Constant.h" 53 #include "llvm/IR/Constants.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/DebugLoc.h" 56 #include "llvm/IR/DerivedTypes.h" 57 #include "llvm/IR/Dominators.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/IRBuilder.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/NoFolder.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PassManager.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/Verifier.h" 76 #include "llvm/Pass.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Compiler.h" 80 #include "llvm/Support/DOTGraphTraits.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/GraphWriter.h" 84 #include "llvm/Support/KnownBits.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Transforms/Utils/LoopUtils.h" 88 #include "llvm/Transforms/Vectorize.h" 89 #include <algorithm> 90 #include <cassert> 91 #include <cstdint> 92 #include <iterator> 93 #include <memory> 94 #include <set> 95 #include <string> 96 #include <tuple> 97 #include <utility> 98 #include <vector> 99 100 using namespace llvm; 101 using namespace llvm::PatternMatch; 102 using namespace slpvectorizer; 103 104 #define SV_NAME "slp-vectorizer" 105 #define DEBUG_TYPE "SLP" 106 107 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 108 109 static cl::opt<int> 110 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 111 cl::desc("Only vectorize if you gain more than this " 112 "number ")); 113 114 static cl::opt<bool> 115 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 116 cl::desc("Attempt to vectorize horizontal reductions")); 117 118 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 119 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 120 cl::desc( 121 "Attempt to vectorize horizontal reductions feeding into a store")); 122 123 static cl::opt<int> 124 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 125 cl::desc("Attempt to vectorize for this register size in bits")); 126 127 /// Limits the size of scheduling regions in a block. 128 /// It avoid long compile times for _very_ large blocks where vector 129 /// instructions are spread over a wide range. 130 /// This limit is way higher than needed by real-world functions. 131 static cl::opt<int> 132 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 133 cl::desc("Limit the size of the SLP scheduling region per block")); 134 135 static cl::opt<int> MinVectorRegSizeOption( 136 "slp-min-reg-size", cl::init(128), cl::Hidden, 137 cl::desc("Attempt to vectorize for this register size in bits")); 138 139 static cl::opt<unsigned> RecursionMaxDepth( 140 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 141 cl::desc("Limit the recursion depth when building a vectorizable tree")); 142 143 static cl::opt<unsigned> MinTreeSize( 144 "slp-min-tree-size", cl::init(3), cl::Hidden, 145 cl::desc("Only vectorize small trees if they are fully vectorizable")); 146 147 static cl::opt<bool> 148 ViewSLPTree("view-slp-tree", cl::Hidden, 149 cl::desc("Display the SLP trees with Graphviz")); 150 151 // Limit the number of alias checks. The limit is chosen so that 152 // it has no negative effect on the llvm benchmarks. 153 static const unsigned AliasedCheckLimit = 10; 154 155 // Another limit for the alias checks: The maximum distance between load/store 156 // instructions where alias checks are done. 157 // This limit is useful for very large basic blocks. 158 static const unsigned MaxMemDepDistance = 160; 159 160 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 161 /// regions to be handled. 162 static const int MinScheduleRegionSize = 16; 163 164 /// Predicate for the element types that the SLP vectorizer supports. 165 /// 166 /// The most important thing to filter here are types which are invalid in LLVM 167 /// vectors. We also filter target specific types which have absolutely no 168 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 169 /// avoids spending time checking the cost model and realizing that they will 170 /// be inevitably scalarized. 171 static bool isValidElementType(Type *Ty) { 172 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 173 !Ty->isPPC_FP128Ty(); 174 } 175 176 /// \returns true if all of the instructions in \p VL are in the same block or 177 /// false otherwise. 178 static bool allSameBlock(ArrayRef<Value *> VL) { 179 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 180 if (!I0) 181 return false; 182 BasicBlock *BB = I0->getParent(); 183 for (int i = 1, e = VL.size(); i < e; i++) { 184 Instruction *I = dyn_cast<Instruction>(VL[i]); 185 if (!I) 186 return false; 187 188 if (BB != I->getParent()) 189 return false; 190 } 191 return true; 192 } 193 194 /// \returns True if all of the values in \p VL are constants. 195 static bool allConstant(ArrayRef<Value *> VL) { 196 for (Value *i : VL) 197 if (!isa<Constant>(i)) 198 return false; 199 return true; 200 } 201 202 /// \returns True if all of the values in \p VL are identical. 203 static bool isSplat(ArrayRef<Value *> VL) { 204 for (unsigned i = 1, e = VL.size(); i < e; ++i) 205 if (VL[i] != VL[0]) 206 return false; 207 return true; 208 } 209 210 /// Checks if the vector of instructions can be represented as a shuffle, like: 211 /// %x0 = extractelement <4 x i8> %x, i32 0 212 /// %x3 = extractelement <4 x i8> %x, i32 3 213 /// %y1 = extractelement <4 x i8> %y, i32 1 214 /// %y2 = extractelement <4 x i8> %y, i32 2 215 /// %x0x0 = mul i8 %x0, %x0 216 /// %x3x3 = mul i8 %x3, %x3 217 /// %y1y1 = mul i8 %y1, %y1 218 /// %y2y2 = mul i8 %y2, %y2 219 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 220 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 221 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 222 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 223 /// ret <4 x i8> %ins4 224 /// can be transformed into: 225 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 226 /// i32 6> 227 /// %2 = mul <4 x i8> %1, %1 228 /// ret <4 x i8> %2 229 /// We convert this initially to something like: 230 /// %x0 = extractelement <4 x i8> %x, i32 0 231 /// %x3 = extractelement <4 x i8> %x, i32 3 232 /// %y1 = extractelement <4 x i8> %y, i32 1 233 /// %y2 = extractelement <4 x i8> %y, i32 2 234 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 235 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 236 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 237 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 238 /// %5 = mul <4 x i8> %4, %4 239 /// %6 = extractelement <4 x i8> %5, i32 0 240 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 241 /// %7 = extractelement <4 x i8> %5, i32 1 242 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 243 /// %8 = extractelement <4 x i8> %5, i32 2 244 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 245 /// %9 = extractelement <4 x i8> %5, i32 3 246 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 247 /// ret <4 x i8> %ins4 248 /// InstCombiner transforms this into a shuffle and vector mul 249 /// TODO: Can we split off and reuse the shuffle mask detection from 250 /// TargetTransformInfo::getInstructionThroughput? 251 static Optional<TargetTransformInfo::ShuffleKind> 252 isShuffle(ArrayRef<Value *> VL) { 253 auto *EI0 = cast<ExtractElementInst>(VL[0]); 254 unsigned Size = EI0->getVectorOperandType()->getVectorNumElements(); 255 Value *Vec1 = nullptr; 256 Value *Vec2 = nullptr; 257 enum ShuffleMode { Unknown, Select, Permute }; 258 ShuffleMode CommonShuffleMode = Unknown; 259 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 260 auto *EI = cast<ExtractElementInst>(VL[I]); 261 auto *Vec = EI->getVectorOperand(); 262 // All vector operands must have the same number of vector elements. 263 if (Vec->getType()->getVectorNumElements() != Size) 264 return None; 265 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 266 if (!Idx) 267 return None; 268 // Undefined behavior if Idx is negative or >= Size. 269 if (Idx->getValue().uge(Size)) 270 continue; 271 unsigned IntIdx = Idx->getValue().getZExtValue(); 272 // We can extractelement from undef vector. 273 if (isa<UndefValue>(Vec)) 274 continue; 275 // For correct shuffling we have to have at most 2 different vector operands 276 // in all extractelement instructions. 277 if (!Vec1 || Vec1 == Vec) 278 Vec1 = Vec; 279 else if (!Vec2 || Vec2 == Vec) 280 Vec2 = Vec; 281 else 282 return None; 283 if (CommonShuffleMode == Permute) 284 continue; 285 // If the extract index is not the same as the operation number, it is a 286 // permutation. 287 if (IntIdx != I) { 288 CommonShuffleMode = Permute; 289 continue; 290 } 291 CommonShuffleMode = Select; 292 } 293 // If we're not crossing lanes in different vectors, consider it as blending. 294 if (CommonShuffleMode == Select && Vec2) 295 return TargetTransformInfo::SK_Select; 296 // If Vec2 was never used, we have a permutation of a single vector, otherwise 297 // we have permutation of 2 vectors. 298 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 299 : TargetTransformInfo::SK_PermuteSingleSrc; 300 } 301 302 static bool sameOpcodeOrAlt(unsigned Opcode, unsigned AltOpcode, 303 unsigned CheckedOpcode) { 304 return Opcode == CheckedOpcode || AltOpcode == CheckedOpcode; 305 } 306 307 namespace { 308 309 /// Main data required for vectorization of instructions. 310 struct InstructionsState { 311 /// The very first instruction in the list with the main opcode. 312 Value *OpValue = nullptr; 313 314 /// The main/alternate opcodes for the list of instructions. 315 unsigned Opcode = 0; 316 unsigned AltOpcode = 0; 317 318 /// Some of the instructions in the list have alternate opcodes. 319 bool isAltShuffle() const { return Opcode != AltOpcode; } 320 321 InstructionsState() = default; 322 InstructionsState(Value *OpValue, unsigned Opcode, unsigned AltOpcode) 323 : OpValue(OpValue), Opcode(Opcode), AltOpcode(AltOpcode) {} 324 }; 325 326 } // end anonymous namespace 327 328 /// Chooses the correct key for scheduling data. If \p Op has the same (or 329 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 330 /// OpValue. 331 static Value *isOneOf(const InstructionsState &S, Value *Op) { 332 auto *I = dyn_cast<Instruction>(Op); 333 if (I && sameOpcodeOrAlt(S.Opcode, S.AltOpcode, I->getOpcode())) 334 return Op; 335 return S.OpValue; 336 } 337 338 /// \returns analysis of the Instructions in \p VL described in 339 /// InstructionsState, the Opcode that we suppose the whole list 340 /// could be vectorized even if its structure is diverse. 341 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 342 unsigned BaseIndex = 0) { 343 // Make sure these are all Instructions. 344 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 345 return InstructionsState(VL[BaseIndex], 0, 0); 346 347 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 348 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 349 unsigned AltOpcode = Opcode; 350 351 // Check for one alternate opcode from another BinaryOperator. 352 // TODO - can we support other operators (casts etc.)? 353 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 354 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 355 if (!sameOpcodeOrAlt(Opcode, AltOpcode, InstOpcode)) { 356 if (Opcode == AltOpcode && IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 357 AltOpcode = InstOpcode; 358 continue; 359 } 360 return InstructionsState(VL[BaseIndex], 0, 0); 361 } 362 } 363 364 return InstructionsState(VL[BaseIndex], Opcode, AltOpcode); 365 } 366 367 /// \returns true if all of the values in \p VL have the same type or false 368 /// otherwise. 369 static bool allSameType(ArrayRef<Value *> VL) { 370 Type *Ty = VL[0]->getType(); 371 for (int i = 1, e = VL.size(); i < e; i++) 372 if (VL[i]->getType() != Ty) 373 return false; 374 375 return true; 376 } 377 378 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 379 static Optional<unsigned> getExtractIndex(Instruction *E) { 380 unsigned Opcode = E->getOpcode(); 381 assert((Opcode == Instruction::ExtractElement || 382 Opcode == Instruction::ExtractValue) && 383 "Expected extractelement or extractvalue instruction."); 384 if (Opcode == Instruction::ExtractElement) { 385 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 386 if (!CI) 387 return None; 388 return CI->getZExtValue(); 389 } 390 ExtractValueInst *EI = cast<ExtractValueInst>(E); 391 if (EI->getNumIndices() != 1) 392 return None; 393 return *EI->idx_begin(); 394 } 395 396 /// \returns True if in-tree use also needs extract. This refers to 397 /// possible scalar operand in vectorized instruction. 398 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 399 TargetLibraryInfo *TLI) { 400 unsigned Opcode = UserInst->getOpcode(); 401 switch (Opcode) { 402 case Instruction::Load: { 403 LoadInst *LI = cast<LoadInst>(UserInst); 404 return (LI->getPointerOperand() == Scalar); 405 } 406 case Instruction::Store: { 407 StoreInst *SI = cast<StoreInst>(UserInst); 408 return (SI->getPointerOperand() == Scalar); 409 } 410 case Instruction::Call: { 411 CallInst *CI = cast<CallInst>(UserInst); 412 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 413 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 414 return (CI->getArgOperand(1) == Scalar); 415 } 416 LLVM_FALLTHROUGH; 417 } 418 default: 419 return false; 420 } 421 } 422 423 /// \returns the AA location that is being access by the instruction. 424 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 425 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 426 return MemoryLocation::get(SI); 427 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 428 return MemoryLocation::get(LI); 429 return MemoryLocation(); 430 } 431 432 /// \returns True if the instruction is not a volatile or atomic load/store. 433 static bool isSimple(Instruction *I) { 434 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 435 return LI->isSimple(); 436 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 437 return SI->isSimple(); 438 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 439 return !MI->isVolatile(); 440 return true; 441 } 442 443 namespace llvm { 444 445 namespace slpvectorizer { 446 447 /// Bottom Up SLP Vectorizer. 448 class BoUpSLP { 449 public: 450 using ValueList = SmallVector<Value *, 8>; 451 using InstrList = SmallVector<Instruction *, 16>; 452 using ValueSet = SmallPtrSet<Value *, 16>; 453 using StoreList = SmallVector<StoreInst *, 8>; 454 using ExtraValueToDebugLocsMap = 455 MapVector<Value *, SmallVector<Instruction *, 2>>; 456 457 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 458 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 459 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 460 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 461 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 462 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 463 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 464 // Use the vector register size specified by the target unless overridden 465 // by a command-line option. 466 // TODO: It would be better to limit the vectorization factor based on 467 // data type rather than just register size. For example, x86 AVX has 468 // 256-bit registers, but it does not support integer operations 469 // at that width (that requires AVX2). 470 if (MaxVectorRegSizeOption.getNumOccurrences()) 471 MaxVecRegSize = MaxVectorRegSizeOption; 472 else 473 MaxVecRegSize = TTI->getRegisterBitWidth(true); 474 475 if (MinVectorRegSizeOption.getNumOccurrences()) 476 MinVecRegSize = MinVectorRegSizeOption; 477 else 478 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 479 } 480 481 /// Vectorize the tree that starts with the elements in \p VL. 482 /// Returns the vectorized root. 483 Value *vectorizeTree(); 484 485 /// Vectorize the tree but with the list of externally used values \p 486 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 487 /// generated extractvalue instructions. 488 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 489 490 /// \returns the cost incurred by unwanted spills and fills, caused by 491 /// holding live values over call sites. 492 int getSpillCost(); 493 494 /// \returns the vectorization cost of the subtree that starts at \p VL. 495 /// A negative number means that this is profitable. 496 int getTreeCost(); 497 498 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 499 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 500 void buildTree(ArrayRef<Value *> Roots, 501 ArrayRef<Value *> UserIgnoreLst = None); 502 503 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 504 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 505 /// into account (anf updating it, if required) list of externally used 506 /// values stored in \p ExternallyUsedValues. 507 void buildTree(ArrayRef<Value *> Roots, 508 ExtraValueToDebugLocsMap &ExternallyUsedValues, 509 ArrayRef<Value *> UserIgnoreLst = None); 510 511 /// Clear the internal data structures that are created by 'buildTree'. 512 void deleteTree() { 513 VectorizableTree.clear(); 514 ScalarToTreeEntry.clear(); 515 MustGather.clear(); 516 ExternalUses.clear(); 517 NumOpsWantToKeepOrder.clear(); 518 NumOpsWantToKeepOriginalOrder = 0; 519 for (auto &Iter : BlocksSchedules) { 520 BlockScheduling *BS = Iter.second.get(); 521 BS->clear(); 522 } 523 MinBWs.clear(); 524 } 525 526 unsigned getTreeSize() const { return VectorizableTree.size(); } 527 528 /// Perform LICM and CSE on the newly generated gather sequences. 529 void optimizeGatherSequence(); 530 531 /// \returns The best order of instructions for vectorization. 532 Optional<ArrayRef<unsigned>> bestOrder() const { 533 auto I = std::max_element( 534 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 535 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 536 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 537 return D1.second < D2.second; 538 }); 539 if (I == NumOpsWantToKeepOrder.end() || 540 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 541 return None; 542 543 return makeArrayRef(I->getFirst()); 544 } 545 546 /// \return The vector element size in bits to use when vectorizing the 547 /// expression tree ending at \p V. If V is a store, the size is the width of 548 /// the stored value. Otherwise, the size is the width of the largest loaded 549 /// value reaching V. This method is used by the vectorizer to calculate 550 /// vectorization factors. 551 unsigned getVectorElementSize(Value *V); 552 553 /// Compute the minimum type sizes required to represent the entries in a 554 /// vectorizable tree. 555 void computeMinimumValueSizes(); 556 557 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 558 unsigned getMaxVecRegSize() const { 559 return MaxVecRegSize; 560 } 561 562 // \returns minimum vector register size as set by cl::opt. 563 unsigned getMinVecRegSize() const { 564 return MinVecRegSize; 565 } 566 567 /// Check if ArrayType or StructType is isomorphic to some VectorType. 568 /// 569 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 570 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 571 572 /// \returns True if the VectorizableTree is both tiny and not fully 573 /// vectorizable. We do not vectorize such trees. 574 bool isTreeTinyAndNotFullyVectorizable(); 575 576 OptimizationRemarkEmitter *getORE() { return ORE; } 577 578 private: 579 struct TreeEntry; 580 581 /// Checks if all users of \p I are the part of the vectorization tree. 582 bool areAllUsersVectorized(Instruction *I) const; 583 584 /// \returns the cost of the vectorizable entry. 585 int getEntryCost(TreeEntry *E); 586 587 /// This is the recursive part of buildTree. 588 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, int); 589 590 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 591 /// be vectorized to use the original vector (or aggregate "bitcast" to a 592 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 593 /// returns false, setting \p CurrentOrder to either an empty vector or a 594 /// non-identity permutation that allows to reuse extract instructions. 595 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 596 SmallVectorImpl<unsigned> &CurrentOrder) const; 597 598 /// Vectorize a single entry in the tree. 599 Value *vectorizeTree(TreeEntry *E); 600 601 /// Vectorize a single entry in the tree, starting in \p VL. 602 Value *vectorizeTree(ArrayRef<Value *> VL); 603 604 /// \returns the scalarization cost for this type. Scalarization in this 605 /// context means the creation of vectors from a group of scalars. 606 int getGatherCost(Type *Ty, const DenseSet<unsigned> &ShuffledIndices); 607 608 /// \returns the scalarization cost for this list of values. Assuming that 609 /// this subtree gets vectorized, we may need to extract the values from the 610 /// roots. This method calculates the cost of extracting the values. 611 int getGatherCost(ArrayRef<Value *> VL); 612 613 /// Set the Builder insert point to one after the last instruction in 614 /// the bundle 615 void setInsertPointAfterBundle(ArrayRef<Value *> VL, 616 const InstructionsState &S); 617 618 /// \returns a vector from a collection of scalars in \p VL. 619 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 620 621 /// \returns whether the VectorizableTree is fully vectorizable and will 622 /// be beneficial even the tree height is tiny. 623 bool isFullyVectorizableTinyTree(); 624 625 /// \reorder commutative operands in alt shuffle if they result in 626 /// vectorized code. 627 void reorderAltShuffleOperands(const InstructionsState &S, 628 ArrayRef<Value *> VL, 629 SmallVectorImpl<Value *> &Left, 630 SmallVectorImpl<Value *> &Right); 631 632 /// \reorder commutative operands to get better probability of 633 /// generating vectorized code. 634 void reorderInputsAccordingToOpcode(unsigned Opcode, ArrayRef<Value *> VL, 635 SmallVectorImpl<Value *> &Left, 636 SmallVectorImpl<Value *> &Right); 637 struct TreeEntry { 638 TreeEntry(std::vector<TreeEntry> &Container) : Container(Container) {} 639 640 /// \returns true if the scalars in VL are equal to this entry. 641 bool isSame(ArrayRef<Value *> VL) const { 642 if (VL.size() == Scalars.size()) 643 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 644 return VL.size() == ReuseShuffleIndices.size() && 645 std::equal( 646 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 647 [this](Value *V, unsigned Idx) { return V == Scalars[Idx]; }); 648 } 649 650 /// A vector of scalars. 651 ValueList Scalars; 652 653 /// The Scalars are vectorized into this value. It is initialized to Null. 654 Value *VectorizedValue = nullptr; 655 656 /// Do we need to gather this sequence ? 657 bool NeedToGather = false; 658 659 /// Does this sequence require some shuffling? 660 SmallVector<unsigned, 4> ReuseShuffleIndices; 661 662 /// Does this entry require reordering? 663 ArrayRef<unsigned> ReorderIndices; 664 665 /// Points back to the VectorizableTree. 666 /// 667 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 668 /// to be a pointer and needs to be able to initialize the child iterator. 669 /// Thus we need a reference back to the container to translate the indices 670 /// to entries. 671 std::vector<TreeEntry> &Container; 672 673 /// The TreeEntry index containing the user of this entry. We can actually 674 /// have multiple users so the data structure is not truly a tree. 675 SmallVector<int, 1> UserTreeIndices; 676 }; 677 678 /// Create a new VectorizableTree entry. 679 void newTreeEntry(ArrayRef<Value *> VL, bool Vectorized, int &UserTreeIdx, 680 ArrayRef<unsigned> ReuseShuffleIndices = None, 681 ArrayRef<unsigned> ReorderIndices = None) { 682 VectorizableTree.emplace_back(VectorizableTree); 683 int idx = VectorizableTree.size() - 1; 684 TreeEntry *Last = &VectorizableTree[idx]; 685 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 686 Last->NeedToGather = !Vectorized; 687 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 688 ReuseShuffleIndices.end()); 689 Last->ReorderIndices = ReorderIndices; 690 if (Vectorized) { 691 for (int i = 0, e = VL.size(); i != e; ++i) { 692 assert(!getTreeEntry(VL[i]) && "Scalar already in tree!"); 693 ScalarToTreeEntry[VL[i]] = idx; 694 } 695 } else { 696 MustGather.insert(VL.begin(), VL.end()); 697 } 698 699 if (UserTreeIdx >= 0) 700 Last->UserTreeIndices.push_back(UserTreeIdx); 701 UserTreeIdx = idx; 702 } 703 704 /// -- Vectorization State -- 705 /// Holds all of the tree entries. 706 std::vector<TreeEntry> VectorizableTree; 707 708 TreeEntry *getTreeEntry(Value *V) { 709 auto I = ScalarToTreeEntry.find(V); 710 if (I != ScalarToTreeEntry.end()) 711 return &VectorizableTree[I->second]; 712 return nullptr; 713 } 714 715 /// Maps a specific scalar to its tree entry. 716 SmallDenseMap<Value*, int> ScalarToTreeEntry; 717 718 /// A list of scalars that we found that we need to keep as scalars. 719 ValueSet MustGather; 720 721 /// This POD struct describes one external user in the vectorized tree. 722 struct ExternalUser { 723 ExternalUser(Value *S, llvm::User *U, int L) 724 : Scalar(S), User(U), Lane(L) {} 725 726 // Which scalar in our function. 727 Value *Scalar; 728 729 // Which user that uses the scalar. 730 llvm::User *User; 731 732 // Which lane does the scalar belong to. 733 int Lane; 734 }; 735 using UserList = SmallVector<ExternalUser, 16>; 736 737 /// Checks if two instructions may access the same memory. 738 /// 739 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 740 /// is invariant in the calling loop. 741 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 742 Instruction *Inst2) { 743 // First check if the result is already in the cache. 744 AliasCacheKey key = std::make_pair(Inst1, Inst2); 745 Optional<bool> &result = AliasCache[key]; 746 if (result.hasValue()) { 747 return result.getValue(); 748 } 749 MemoryLocation Loc2 = getLocation(Inst2, AA); 750 bool aliased = true; 751 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 752 // Do the alias check. 753 aliased = AA->alias(Loc1, Loc2); 754 } 755 // Store the result in the cache. 756 result = aliased; 757 return aliased; 758 } 759 760 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 761 762 /// Cache for alias results. 763 /// TODO: consider moving this to the AliasAnalysis itself. 764 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 765 766 /// Removes an instruction from its block and eventually deletes it. 767 /// It's like Instruction::eraseFromParent() except that the actual deletion 768 /// is delayed until BoUpSLP is destructed. 769 /// This is required to ensure that there are no incorrect collisions in the 770 /// AliasCache, which can happen if a new instruction is allocated at the 771 /// same address as a previously deleted instruction. 772 void eraseInstruction(Instruction *I) { 773 I->removeFromParent(); 774 I->dropAllReferences(); 775 DeletedInstructions.emplace_back(I); 776 } 777 778 /// Temporary store for deleted instructions. Instructions will be deleted 779 /// eventually when the BoUpSLP is destructed. 780 SmallVector<unique_value, 8> DeletedInstructions; 781 782 /// A list of values that need to extracted out of the tree. 783 /// This list holds pairs of (Internal Scalar : External User). External User 784 /// can be nullptr, it means that this Internal Scalar will be used later, 785 /// after vectorization. 786 UserList ExternalUses; 787 788 /// Values used only by @llvm.assume calls. 789 SmallPtrSet<const Value *, 32> EphValues; 790 791 /// Holds all of the instructions that we gathered. 792 SetVector<Instruction *> GatherSeq; 793 794 /// A list of blocks that we are going to CSE. 795 SetVector<BasicBlock *> CSEBlocks; 796 797 /// Contains all scheduling relevant data for an instruction. 798 /// A ScheduleData either represents a single instruction or a member of an 799 /// instruction bundle (= a group of instructions which is combined into a 800 /// vector instruction). 801 struct ScheduleData { 802 // The initial value for the dependency counters. It means that the 803 // dependencies are not calculated yet. 804 enum { InvalidDeps = -1 }; 805 806 ScheduleData() = default; 807 808 void init(int BlockSchedulingRegionID, Value *OpVal) { 809 FirstInBundle = this; 810 NextInBundle = nullptr; 811 NextLoadStore = nullptr; 812 IsScheduled = false; 813 SchedulingRegionID = BlockSchedulingRegionID; 814 UnscheduledDepsInBundle = UnscheduledDeps; 815 clearDependencies(); 816 OpValue = OpVal; 817 } 818 819 /// Returns true if the dependency information has been calculated. 820 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 821 822 /// Returns true for single instructions and for bundle representatives 823 /// (= the head of a bundle). 824 bool isSchedulingEntity() const { return FirstInBundle == this; } 825 826 /// Returns true if it represents an instruction bundle and not only a 827 /// single instruction. 828 bool isPartOfBundle() const { 829 return NextInBundle != nullptr || FirstInBundle != this; 830 } 831 832 /// Returns true if it is ready for scheduling, i.e. it has no more 833 /// unscheduled depending instructions/bundles. 834 bool isReady() const { 835 assert(isSchedulingEntity() && 836 "can't consider non-scheduling entity for ready list"); 837 return UnscheduledDepsInBundle == 0 && !IsScheduled; 838 } 839 840 /// Modifies the number of unscheduled dependencies, also updating it for 841 /// the whole bundle. 842 int incrementUnscheduledDeps(int Incr) { 843 UnscheduledDeps += Incr; 844 return FirstInBundle->UnscheduledDepsInBundle += Incr; 845 } 846 847 /// Sets the number of unscheduled dependencies to the number of 848 /// dependencies. 849 void resetUnscheduledDeps() { 850 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 851 } 852 853 /// Clears all dependency information. 854 void clearDependencies() { 855 Dependencies = InvalidDeps; 856 resetUnscheduledDeps(); 857 MemoryDependencies.clear(); 858 } 859 860 void dump(raw_ostream &os) const { 861 if (!isSchedulingEntity()) { 862 os << "/ " << *Inst; 863 } else if (NextInBundle) { 864 os << '[' << *Inst; 865 ScheduleData *SD = NextInBundle; 866 while (SD) { 867 os << ';' << *SD->Inst; 868 SD = SD->NextInBundle; 869 } 870 os << ']'; 871 } else { 872 os << *Inst; 873 } 874 } 875 876 Instruction *Inst = nullptr; 877 878 /// Points to the head in an instruction bundle (and always to this for 879 /// single instructions). 880 ScheduleData *FirstInBundle = nullptr; 881 882 /// Single linked list of all instructions in a bundle. Null if it is a 883 /// single instruction. 884 ScheduleData *NextInBundle = nullptr; 885 886 /// Single linked list of all memory instructions (e.g. load, store, call) 887 /// in the block - until the end of the scheduling region. 888 ScheduleData *NextLoadStore = nullptr; 889 890 /// The dependent memory instructions. 891 /// This list is derived on demand in calculateDependencies(). 892 SmallVector<ScheduleData *, 4> MemoryDependencies; 893 894 /// This ScheduleData is in the current scheduling region if this matches 895 /// the current SchedulingRegionID of BlockScheduling. 896 int SchedulingRegionID = 0; 897 898 /// Used for getting a "good" final ordering of instructions. 899 int SchedulingPriority = 0; 900 901 /// The number of dependencies. Constitutes of the number of users of the 902 /// instruction plus the number of dependent memory instructions (if any). 903 /// This value is calculated on demand. 904 /// If InvalidDeps, the number of dependencies is not calculated yet. 905 int Dependencies = InvalidDeps; 906 907 /// The number of dependencies minus the number of dependencies of scheduled 908 /// instructions. As soon as this is zero, the instruction/bundle gets ready 909 /// for scheduling. 910 /// Note that this is negative as long as Dependencies is not calculated. 911 int UnscheduledDeps = InvalidDeps; 912 913 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 914 /// single instructions. 915 int UnscheduledDepsInBundle = InvalidDeps; 916 917 /// True if this instruction is scheduled (or considered as scheduled in the 918 /// dry-run). 919 bool IsScheduled = false; 920 921 /// Opcode of the current instruction in the schedule data. 922 Value *OpValue = nullptr; 923 }; 924 925 #ifndef NDEBUG 926 friend inline raw_ostream &operator<<(raw_ostream &os, 927 const BoUpSLP::ScheduleData &SD) { 928 SD.dump(os); 929 return os; 930 } 931 #endif 932 933 friend struct GraphTraits<BoUpSLP *>; 934 friend struct DOTGraphTraits<BoUpSLP *>; 935 936 /// Contains all scheduling data for a basic block. 937 struct BlockScheduling { 938 BlockScheduling(BasicBlock *BB) 939 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 940 941 void clear() { 942 ReadyInsts.clear(); 943 ScheduleStart = nullptr; 944 ScheduleEnd = nullptr; 945 FirstLoadStoreInRegion = nullptr; 946 LastLoadStoreInRegion = nullptr; 947 948 // Reduce the maximum schedule region size by the size of the 949 // previous scheduling run. 950 ScheduleRegionSizeLimit -= ScheduleRegionSize; 951 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 952 ScheduleRegionSizeLimit = MinScheduleRegionSize; 953 ScheduleRegionSize = 0; 954 955 // Make a new scheduling region, i.e. all existing ScheduleData is not 956 // in the new region yet. 957 ++SchedulingRegionID; 958 } 959 960 ScheduleData *getScheduleData(Value *V) { 961 ScheduleData *SD = ScheduleDataMap[V]; 962 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 963 return SD; 964 return nullptr; 965 } 966 967 ScheduleData *getScheduleData(Value *V, Value *Key) { 968 if (V == Key) 969 return getScheduleData(V); 970 auto I = ExtraScheduleDataMap.find(V); 971 if (I != ExtraScheduleDataMap.end()) { 972 ScheduleData *SD = I->second[Key]; 973 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 974 return SD; 975 } 976 return nullptr; 977 } 978 979 bool isInSchedulingRegion(ScheduleData *SD) { 980 return SD->SchedulingRegionID == SchedulingRegionID; 981 } 982 983 /// Marks an instruction as scheduled and puts all dependent ready 984 /// instructions into the ready-list. 985 template <typename ReadyListType> 986 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 987 SD->IsScheduled = true; 988 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 989 990 ScheduleData *BundleMember = SD; 991 while (BundleMember) { 992 if (BundleMember->Inst != BundleMember->OpValue) { 993 BundleMember = BundleMember->NextInBundle; 994 continue; 995 } 996 // Handle the def-use chain dependencies. 997 for (Use &U : BundleMember->Inst->operands()) { 998 auto *I = dyn_cast<Instruction>(U.get()); 999 if (!I) 1000 continue; 1001 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 1002 if (OpDef && OpDef->hasValidDependencies() && 1003 OpDef->incrementUnscheduledDeps(-1) == 0) { 1004 // There are no more unscheduled dependencies after 1005 // decrementing, so we can put the dependent instruction 1006 // into the ready list. 1007 ScheduleData *DepBundle = OpDef->FirstInBundle; 1008 assert(!DepBundle->IsScheduled && 1009 "already scheduled bundle gets ready"); 1010 ReadyList.insert(DepBundle); 1011 LLVM_DEBUG(dbgs() 1012 << "SLP: gets ready (def): " << *DepBundle << "\n"); 1013 } 1014 }); 1015 } 1016 // Handle the memory dependencies. 1017 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 1018 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 1019 // There are no more unscheduled dependencies after decrementing, 1020 // so we can put the dependent instruction into the ready list. 1021 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 1022 assert(!DepBundle->IsScheduled && 1023 "already scheduled bundle gets ready"); 1024 ReadyList.insert(DepBundle); 1025 LLVM_DEBUG(dbgs() 1026 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 1027 } 1028 } 1029 BundleMember = BundleMember->NextInBundle; 1030 } 1031 } 1032 1033 void doForAllOpcodes(Value *V, 1034 function_ref<void(ScheduleData *SD)> Action) { 1035 if (ScheduleData *SD = getScheduleData(V)) 1036 Action(SD); 1037 auto I = ExtraScheduleDataMap.find(V); 1038 if (I != ExtraScheduleDataMap.end()) 1039 for (auto &P : I->second) 1040 if (P.second->SchedulingRegionID == SchedulingRegionID) 1041 Action(P.second); 1042 } 1043 1044 /// Put all instructions into the ReadyList which are ready for scheduling. 1045 template <typename ReadyListType> 1046 void initialFillReadyList(ReadyListType &ReadyList) { 1047 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 1048 doForAllOpcodes(I, [&](ScheduleData *SD) { 1049 if (SD->isSchedulingEntity() && SD->isReady()) { 1050 ReadyList.insert(SD); 1051 LLVM_DEBUG(dbgs() 1052 << "SLP: initially in ready list: " << *I << "\n"); 1053 } 1054 }); 1055 } 1056 } 1057 1058 /// Checks if a bundle of instructions can be scheduled, i.e. has no 1059 /// cyclic dependencies. This is only a dry-run, no instructions are 1060 /// actually moved at this stage. 1061 bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 1062 const InstructionsState &S); 1063 1064 /// Un-bundles a group of instructions. 1065 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 1066 1067 /// Allocates schedule data chunk. 1068 ScheduleData *allocateScheduleDataChunks(); 1069 1070 /// Extends the scheduling region so that V is inside the region. 1071 /// \returns true if the region size is within the limit. 1072 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 1073 1074 /// Initialize the ScheduleData structures for new instructions in the 1075 /// scheduling region. 1076 void initScheduleData(Instruction *FromI, Instruction *ToI, 1077 ScheduleData *PrevLoadStore, 1078 ScheduleData *NextLoadStore); 1079 1080 /// Updates the dependency information of a bundle and of all instructions/ 1081 /// bundles which depend on the original bundle. 1082 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 1083 BoUpSLP *SLP); 1084 1085 /// Sets all instruction in the scheduling region to un-scheduled. 1086 void resetSchedule(); 1087 1088 BasicBlock *BB; 1089 1090 /// Simple memory allocation for ScheduleData. 1091 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 1092 1093 /// The size of a ScheduleData array in ScheduleDataChunks. 1094 int ChunkSize; 1095 1096 /// The allocator position in the current chunk, which is the last entry 1097 /// of ScheduleDataChunks. 1098 int ChunkPos; 1099 1100 /// Attaches ScheduleData to Instruction. 1101 /// Note that the mapping survives during all vectorization iterations, i.e. 1102 /// ScheduleData structures are recycled. 1103 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 1104 1105 /// Attaches ScheduleData to Instruction with the leading key. 1106 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 1107 ExtraScheduleDataMap; 1108 1109 struct ReadyList : SmallVector<ScheduleData *, 8> { 1110 void insert(ScheduleData *SD) { push_back(SD); } 1111 }; 1112 1113 /// The ready-list for scheduling (only used for the dry-run). 1114 ReadyList ReadyInsts; 1115 1116 /// The first instruction of the scheduling region. 1117 Instruction *ScheduleStart = nullptr; 1118 1119 /// The first instruction _after_ the scheduling region. 1120 Instruction *ScheduleEnd = nullptr; 1121 1122 /// The first memory accessing instruction in the scheduling region 1123 /// (can be null). 1124 ScheduleData *FirstLoadStoreInRegion = nullptr; 1125 1126 /// The last memory accessing instruction in the scheduling region 1127 /// (can be null). 1128 ScheduleData *LastLoadStoreInRegion = nullptr; 1129 1130 /// The current size of the scheduling region. 1131 int ScheduleRegionSize = 0; 1132 1133 /// The maximum size allowed for the scheduling region. 1134 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 1135 1136 /// The ID of the scheduling region. For a new vectorization iteration this 1137 /// is incremented which "removes" all ScheduleData from the region. 1138 // Make sure that the initial SchedulingRegionID is greater than the 1139 // initial SchedulingRegionID in ScheduleData (which is 0). 1140 int SchedulingRegionID = 1; 1141 }; 1142 1143 /// Attaches the BlockScheduling structures to basic blocks. 1144 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 1145 1146 /// Performs the "real" scheduling. Done before vectorization is actually 1147 /// performed in a basic block. 1148 void scheduleBlock(BlockScheduling *BS); 1149 1150 /// List of users to ignore during scheduling and that don't need extracting. 1151 ArrayRef<Value *> UserIgnoreList; 1152 1153 using OrdersType = SmallVector<unsigned, 4>; 1154 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 1155 /// sorted SmallVectors of unsigned. 1156 struct OrdersTypeDenseMapInfo { 1157 static OrdersType getEmptyKey() { 1158 OrdersType V; 1159 V.push_back(~1U); 1160 return V; 1161 } 1162 1163 static OrdersType getTombstoneKey() { 1164 OrdersType V; 1165 V.push_back(~2U); 1166 return V; 1167 } 1168 1169 static unsigned getHashValue(const OrdersType &V) { 1170 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1171 } 1172 1173 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 1174 return LHS == RHS; 1175 } 1176 }; 1177 1178 /// Contains orders of operations along with the number of bundles that have 1179 /// operations in this order. It stores only those orders that require 1180 /// reordering, if reordering is not required it is counted using \a 1181 /// NumOpsWantToKeepOriginalOrder. 1182 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 1183 /// Number of bundles that do not require reordering. 1184 unsigned NumOpsWantToKeepOriginalOrder = 0; 1185 1186 // Analysis and block reference. 1187 Function *F; 1188 ScalarEvolution *SE; 1189 TargetTransformInfo *TTI; 1190 TargetLibraryInfo *TLI; 1191 AliasAnalysis *AA; 1192 LoopInfo *LI; 1193 DominatorTree *DT; 1194 AssumptionCache *AC; 1195 DemandedBits *DB; 1196 const DataLayout *DL; 1197 OptimizationRemarkEmitter *ORE; 1198 1199 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 1200 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 1201 1202 /// Instruction builder to construct the vectorized tree. 1203 IRBuilder<> Builder; 1204 1205 /// A map of scalar integer values to the smallest bit width with which they 1206 /// can legally be represented. The values map to (width, signed) pairs, 1207 /// where "width" indicates the minimum bit width and "signed" is True if the 1208 /// value must be signed-extended, rather than zero-extended, back to its 1209 /// original width. 1210 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 1211 }; 1212 1213 } // end namespace slpvectorizer 1214 1215 template <> struct GraphTraits<BoUpSLP *> { 1216 using TreeEntry = BoUpSLP::TreeEntry; 1217 1218 /// NodeRef has to be a pointer per the GraphWriter. 1219 using NodeRef = TreeEntry *; 1220 1221 /// Add the VectorizableTree to the index iterator to be able to return 1222 /// TreeEntry pointers. 1223 struct ChildIteratorType 1224 : public iterator_adaptor_base<ChildIteratorType, 1225 SmallVector<int, 1>::iterator> { 1226 std::vector<TreeEntry> &VectorizableTree; 1227 1228 ChildIteratorType(SmallVector<int, 1>::iterator W, 1229 std::vector<TreeEntry> &VT) 1230 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 1231 1232 NodeRef operator*() { return &VectorizableTree[*I]; } 1233 }; 1234 1235 static NodeRef getEntryNode(BoUpSLP &R) { return &R.VectorizableTree[0]; } 1236 1237 static ChildIteratorType child_begin(NodeRef N) { 1238 return {N->UserTreeIndices.begin(), N->Container}; 1239 } 1240 1241 static ChildIteratorType child_end(NodeRef N) { 1242 return {N->UserTreeIndices.end(), N->Container}; 1243 } 1244 1245 /// For the node iterator we just need to turn the TreeEntry iterator into a 1246 /// TreeEntry* iterator so that it dereferences to NodeRef. 1247 using nodes_iterator = pointer_iterator<std::vector<TreeEntry>::iterator>; 1248 1249 static nodes_iterator nodes_begin(BoUpSLP *R) { 1250 return nodes_iterator(R->VectorizableTree.begin()); 1251 } 1252 1253 static nodes_iterator nodes_end(BoUpSLP *R) { 1254 return nodes_iterator(R->VectorizableTree.end()); 1255 } 1256 1257 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 1258 }; 1259 1260 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 1261 using TreeEntry = BoUpSLP::TreeEntry; 1262 1263 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 1264 1265 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 1266 std::string Str; 1267 raw_string_ostream OS(Str); 1268 if (isSplat(Entry->Scalars)) { 1269 OS << "<splat> " << *Entry->Scalars[0]; 1270 return Str; 1271 } 1272 for (auto V : Entry->Scalars) { 1273 OS << *V; 1274 if (std::any_of( 1275 R->ExternalUses.begin(), R->ExternalUses.end(), 1276 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 1277 OS << " <extract>"; 1278 OS << "\n"; 1279 } 1280 return Str; 1281 } 1282 1283 static std::string getNodeAttributes(const TreeEntry *Entry, 1284 const BoUpSLP *) { 1285 if (Entry->NeedToGather) 1286 return "color=red"; 1287 return ""; 1288 } 1289 }; 1290 1291 } // end namespace llvm 1292 1293 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1294 ArrayRef<Value *> UserIgnoreLst) { 1295 ExtraValueToDebugLocsMap ExternallyUsedValues; 1296 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 1297 } 1298 1299 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1300 ExtraValueToDebugLocsMap &ExternallyUsedValues, 1301 ArrayRef<Value *> UserIgnoreLst) { 1302 deleteTree(); 1303 UserIgnoreList = UserIgnoreLst; 1304 if (!allSameType(Roots)) 1305 return; 1306 buildTree_rec(Roots, 0, -1); 1307 1308 // Collect the values that we need to extract from the tree. 1309 for (TreeEntry &EIdx : VectorizableTree) { 1310 TreeEntry *Entry = &EIdx; 1311 1312 // No need to handle users of gathered values. 1313 if (Entry->NeedToGather) 1314 continue; 1315 1316 // For each lane: 1317 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 1318 Value *Scalar = Entry->Scalars[Lane]; 1319 int FoundLane = Lane; 1320 if (!Entry->ReuseShuffleIndices.empty()) { 1321 FoundLane = 1322 std::distance(Entry->ReuseShuffleIndices.begin(), 1323 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 1324 } 1325 1326 // Check if the scalar is externally used as an extra arg. 1327 auto ExtI = ExternallyUsedValues.find(Scalar); 1328 if (ExtI != ExternallyUsedValues.end()) { 1329 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 1330 << Lane << " from " << *Scalar << ".\n"); 1331 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 1332 } 1333 for (User *U : Scalar->users()) { 1334 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 1335 1336 Instruction *UserInst = dyn_cast<Instruction>(U); 1337 if (!UserInst) 1338 continue; 1339 1340 // Skip in-tree scalars that become vectors 1341 if (TreeEntry *UseEntry = getTreeEntry(U)) { 1342 Value *UseScalar = UseEntry->Scalars[0]; 1343 // Some in-tree scalars will remain as scalar in vectorized 1344 // instructions. If that is the case, the one in Lane 0 will 1345 // be used. 1346 if (UseScalar != U || 1347 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 1348 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 1349 << ".\n"); 1350 assert(!UseEntry->NeedToGather && "Bad state"); 1351 continue; 1352 } 1353 } 1354 1355 // Ignore users in the user ignore list. 1356 if (is_contained(UserIgnoreList, UserInst)) 1357 continue; 1358 1359 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 1360 << Lane << " from " << *Scalar << ".\n"); 1361 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 1362 } 1363 } 1364 } 1365 } 1366 1367 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 1368 int UserTreeIdx) { 1369 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 1370 1371 InstructionsState S = getSameOpcode(VL); 1372 if (Depth == RecursionMaxDepth) { 1373 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 1374 newTreeEntry(VL, false, UserTreeIdx); 1375 return; 1376 } 1377 1378 // Don't handle vectors. 1379 if (S.OpValue->getType()->isVectorTy()) { 1380 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 1381 newTreeEntry(VL, false, UserTreeIdx); 1382 return; 1383 } 1384 1385 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 1386 if (SI->getValueOperand()->getType()->isVectorTy()) { 1387 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 1388 newTreeEntry(VL, false, UserTreeIdx); 1389 return; 1390 } 1391 1392 // If all of the operands are identical or constant we have a simple solution. 1393 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.Opcode) { 1394 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 1395 newTreeEntry(VL, false, UserTreeIdx); 1396 return; 1397 } 1398 1399 // We now know that this is a vector of instructions of the same type from 1400 // the same block. 1401 1402 // Don't vectorize ephemeral values. 1403 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1404 if (EphValues.count(VL[i])) { 1405 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] 1406 << ") is ephemeral.\n"); 1407 newTreeEntry(VL, false, UserTreeIdx); 1408 return; 1409 } 1410 } 1411 1412 // Check if this is a duplicate of another entry. 1413 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 1414 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 1415 if (!E->isSame(VL)) { 1416 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 1417 newTreeEntry(VL, false, UserTreeIdx); 1418 return; 1419 } 1420 // Record the reuse of the tree node. FIXME, currently this is only used to 1421 // properly draw the graph rather than for the actual vectorization. 1422 E->UserTreeIndices.push_back(UserTreeIdx); 1423 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 1424 << ".\n"); 1425 return; 1426 } 1427 1428 // Check that none of the instructions in the bundle are already in the tree. 1429 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1430 auto *I = dyn_cast<Instruction>(VL[i]); 1431 if (!I) 1432 continue; 1433 if (getTreeEntry(I)) { 1434 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] 1435 << ") is already in tree.\n"); 1436 newTreeEntry(VL, false, UserTreeIdx); 1437 return; 1438 } 1439 } 1440 1441 // If any of the scalars is marked as a value that needs to stay scalar, then 1442 // we need to gather the scalars. 1443 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1444 if (MustGather.count(VL[i])) { 1445 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 1446 newTreeEntry(VL, false, UserTreeIdx); 1447 return; 1448 } 1449 } 1450 1451 // Check that all of the users of the scalars that we want to vectorize are 1452 // schedulable. 1453 auto *VL0 = cast<Instruction>(S.OpValue); 1454 BasicBlock *BB = VL0->getParent(); 1455 1456 if (!DT->isReachableFromEntry(BB)) { 1457 // Don't go into unreachable blocks. They may contain instructions with 1458 // dependency cycles which confuse the final scheduling. 1459 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 1460 newTreeEntry(VL, false, UserTreeIdx); 1461 return; 1462 } 1463 1464 // Check that every instruction appears once in this bundle. 1465 SmallVector<unsigned, 4> ReuseShuffleIndicies; 1466 SmallVector<Value *, 4> UniqueValues; 1467 DenseMap<Value *, unsigned> UniquePositions; 1468 for (Value *V : VL) { 1469 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 1470 ReuseShuffleIndicies.emplace_back(Res.first->second); 1471 if (Res.second) 1472 UniqueValues.emplace_back(V); 1473 } 1474 if (UniqueValues.size() == VL.size()) { 1475 ReuseShuffleIndicies.clear(); 1476 } else { 1477 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 1478 if (UniqueValues.size() <= 1 || !llvm::isPowerOf2_32(UniqueValues.size())) { 1479 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 1480 newTreeEntry(VL, false, UserTreeIdx); 1481 return; 1482 } 1483 VL = UniqueValues; 1484 } 1485 1486 auto &BSRef = BlocksSchedules[BB]; 1487 if (!BSRef) 1488 BSRef = llvm::make_unique<BlockScheduling>(BB); 1489 1490 BlockScheduling &BS = *BSRef.get(); 1491 1492 if (!BS.tryScheduleBundle(VL, this, S)) { 1493 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 1494 assert((!BS.getScheduleData(VL0) || 1495 !BS.getScheduleData(VL0)->isPartOfBundle()) && 1496 "tryScheduleBundle should cancelScheduling on failure"); 1497 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1498 return; 1499 } 1500 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 1501 1502 unsigned ShuffleOrOp = S.isAltShuffle() ? 1503 (unsigned) Instruction::ShuffleVector : S.Opcode; 1504 switch (ShuffleOrOp) { 1505 case Instruction::PHI: { 1506 PHINode *PH = dyn_cast<PHINode>(VL0); 1507 1508 // Check for terminator values (e.g. invoke). 1509 for (unsigned j = 0; j < VL.size(); ++j) 1510 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1511 TerminatorInst *Term = dyn_cast<TerminatorInst>( 1512 cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i))); 1513 if (Term) { 1514 LLVM_DEBUG( 1515 dbgs() 1516 << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n"); 1517 BS.cancelScheduling(VL, VL0); 1518 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1519 return; 1520 } 1521 } 1522 1523 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1524 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 1525 1526 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1527 ValueList Operands; 1528 // Prepare the operand vector. 1529 for (Value *j : VL) 1530 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 1531 PH->getIncomingBlock(i))); 1532 1533 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1534 } 1535 return; 1536 } 1537 case Instruction::ExtractValue: 1538 case Instruction::ExtractElement: { 1539 OrdersType CurrentOrder; 1540 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 1541 if (Reuse) { 1542 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 1543 ++NumOpsWantToKeepOriginalOrder; 1544 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, 1545 ReuseShuffleIndicies); 1546 return; 1547 } 1548 if (!CurrentOrder.empty()) { 1549 LLVM_DEBUG({ 1550 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 1551 "with order"; 1552 for (unsigned Idx : CurrentOrder) 1553 dbgs() << " " << Idx; 1554 dbgs() << "\n"; 1555 }); 1556 // Insert new order with initial value 0, if it does not exist, 1557 // otherwise return the iterator to the existing one. 1558 auto StoredCurrentOrderAndNum = 1559 NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 1560 ++StoredCurrentOrderAndNum->getSecond(); 1561 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, ReuseShuffleIndicies, 1562 StoredCurrentOrderAndNum->getFirst()); 1563 return; 1564 } 1565 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 1566 newTreeEntry(VL, /*Vectorized=*/false, UserTreeIdx, ReuseShuffleIndicies); 1567 BS.cancelScheduling(VL, VL0); 1568 return; 1569 } 1570 case Instruction::Load: { 1571 // Check that a vectorized load would load the same memory as a scalar 1572 // load. For example, we don't want to vectorize loads that are smaller 1573 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 1574 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 1575 // from such a struct, we read/write packed bits disagreeing with the 1576 // unvectorized version. 1577 Type *ScalarTy = VL0->getType(); 1578 1579 if (DL->getTypeSizeInBits(ScalarTy) != 1580 DL->getTypeAllocSizeInBits(ScalarTy)) { 1581 BS.cancelScheduling(VL, VL0); 1582 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1583 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 1584 return; 1585 } 1586 1587 // Make sure all loads in the bundle are simple - we can't vectorize 1588 // atomic or volatile loads. 1589 SmallVector<Value *, 4> PointerOps(VL.size()); 1590 auto POIter = PointerOps.begin(); 1591 for (Value *V : VL) { 1592 auto *L = cast<LoadInst>(V); 1593 if (!L->isSimple()) { 1594 BS.cancelScheduling(VL, VL0); 1595 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1596 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 1597 return; 1598 } 1599 *POIter = L->getPointerOperand(); 1600 ++POIter; 1601 } 1602 1603 OrdersType CurrentOrder; 1604 // Check the order of pointer operands. 1605 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 1606 Value *Ptr0; 1607 Value *PtrN; 1608 if (CurrentOrder.empty()) { 1609 Ptr0 = PointerOps.front(); 1610 PtrN = PointerOps.back(); 1611 } else { 1612 Ptr0 = PointerOps[CurrentOrder.front()]; 1613 PtrN = PointerOps[CurrentOrder.back()]; 1614 } 1615 const SCEV *Scev0 = SE->getSCEV(Ptr0); 1616 const SCEV *ScevN = SE->getSCEV(PtrN); 1617 const auto *Diff = 1618 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 1619 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 1620 // Check that the sorted loads are consecutive. 1621 if (Diff && Diff->getAPInt().getZExtValue() == (VL.size() - 1) * Size) { 1622 if (CurrentOrder.empty()) { 1623 // Original loads are consecutive and does not require reordering. 1624 ++NumOpsWantToKeepOriginalOrder; 1625 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, 1626 ReuseShuffleIndicies); 1627 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 1628 } else { 1629 // Need to reorder. 1630 auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 1631 ++I->getSecond(); 1632 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, 1633 ReuseShuffleIndicies, I->getFirst()); 1634 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 1635 } 1636 return; 1637 } 1638 } 1639 1640 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 1641 BS.cancelScheduling(VL, VL0); 1642 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1643 return; 1644 } 1645 case Instruction::ZExt: 1646 case Instruction::SExt: 1647 case Instruction::FPToUI: 1648 case Instruction::FPToSI: 1649 case Instruction::FPExt: 1650 case Instruction::PtrToInt: 1651 case Instruction::IntToPtr: 1652 case Instruction::SIToFP: 1653 case Instruction::UIToFP: 1654 case Instruction::Trunc: 1655 case Instruction::FPTrunc: 1656 case Instruction::BitCast: { 1657 Type *SrcTy = VL0->getOperand(0)->getType(); 1658 for (unsigned i = 0; i < VL.size(); ++i) { 1659 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); 1660 if (Ty != SrcTy || !isValidElementType(Ty)) { 1661 BS.cancelScheduling(VL, VL0); 1662 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1663 LLVM_DEBUG(dbgs() 1664 << "SLP: Gathering casts with different src types.\n"); 1665 return; 1666 } 1667 } 1668 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1669 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 1670 1671 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1672 ValueList Operands; 1673 // Prepare the operand vector. 1674 for (Value *j : VL) 1675 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1676 1677 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1678 } 1679 return; 1680 } 1681 case Instruction::ICmp: 1682 case Instruction::FCmp: { 1683 // Check that all of the compares have the same predicate. 1684 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 1685 Type *ComparedTy = VL0->getOperand(0)->getType(); 1686 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1687 CmpInst *Cmp = cast<CmpInst>(VL[i]); 1688 if (Cmp->getPredicate() != P0 || 1689 Cmp->getOperand(0)->getType() != ComparedTy) { 1690 BS.cancelScheduling(VL, VL0); 1691 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1692 LLVM_DEBUG(dbgs() 1693 << "SLP: Gathering cmp with different predicate.\n"); 1694 return; 1695 } 1696 } 1697 1698 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1699 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 1700 1701 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1702 ValueList Operands; 1703 // Prepare the operand vector. 1704 for (Value *j : VL) 1705 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1706 1707 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1708 } 1709 return; 1710 } 1711 case Instruction::Select: 1712 case Instruction::Add: 1713 case Instruction::FAdd: 1714 case Instruction::Sub: 1715 case Instruction::FSub: 1716 case Instruction::Mul: 1717 case Instruction::FMul: 1718 case Instruction::UDiv: 1719 case Instruction::SDiv: 1720 case Instruction::FDiv: 1721 case Instruction::URem: 1722 case Instruction::SRem: 1723 case Instruction::FRem: 1724 case Instruction::Shl: 1725 case Instruction::LShr: 1726 case Instruction::AShr: 1727 case Instruction::And: 1728 case Instruction::Or: 1729 case Instruction::Xor: 1730 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1731 LLVM_DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); 1732 1733 // Sort operands of the instructions so that each side is more likely to 1734 // have the same opcode. 1735 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 1736 ValueList Left, Right; 1737 reorderInputsAccordingToOpcode(S.Opcode, VL, Left, Right); 1738 buildTree_rec(Left, Depth + 1, UserTreeIdx); 1739 buildTree_rec(Right, Depth + 1, UserTreeIdx); 1740 return; 1741 } 1742 1743 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1744 ValueList Operands; 1745 // Prepare the operand vector. 1746 for (Value *j : VL) 1747 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1748 1749 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1750 } 1751 return; 1752 1753 case Instruction::GetElementPtr: { 1754 // We don't combine GEPs with complicated (nested) indexing. 1755 for (unsigned j = 0; j < VL.size(); ++j) { 1756 if (cast<Instruction>(VL[j])->getNumOperands() != 2) { 1757 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 1758 BS.cancelScheduling(VL, VL0); 1759 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1760 return; 1761 } 1762 } 1763 1764 // We can't combine several GEPs into one vector if they operate on 1765 // different types. 1766 Type *Ty0 = VL0->getOperand(0)->getType(); 1767 for (unsigned j = 0; j < VL.size(); ++j) { 1768 Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType(); 1769 if (Ty0 != CurTy) { 1770 LLVM_DEBUG(dbgs() 1771 << "SLP: not-vectorizable GEP (different types).\n"); 1772 BS.cancelScheduling(VL, VL0); 1773 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1774 return; 1775 } 1776 } 1777 1778 // We don't combine GEPs with non-constant indexes. 1779 for (unsigned j = 0; j < VL.size(); ++j) { 1780 auto Op = cast<Instruction>(VL[j])->getOperand(1); 1781 if (!isa<ConstantInt>(Op)) { 1782 LLVM_DEBUG(dbgs() 1783 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 1784 BS.cancelScheduling(VL, VL0); 1785 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1786 return; 1787 } 1788 } 1789 1790 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1791 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 1792 for (unsigned i = 0, e = 2; i < e; ++i) { 1793 ValueList Operands; 1794 // Prepare the operand vector. 1795 for (Value *j : VL) 1796 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1797 1798 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1799 } 1800 return; 1801 } 1802 case Instruction::Store: { 1803 // Check if the stores are consecutive or of we need to swizzle them. 1804 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 1805 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1806 BS.cancelScheduling(VL, VL0); 1807 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1808 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 1809 return; 1810 } 1811 1812 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1813 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 1814 1815 ValueList Operands; 1816 for (Value *j : VL) 1817 Operands.push_back(cast<Instruction>(j)->getOperand(0)); 1818 1819 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1820 return; 1821 } 1822 case Instruction::Call: { 1823 // Check if the calls are all to the same vectorizable intrinsic. 1824 CallInst *CI = cast<CallInst>(VL0); 1825 // Check if this is an Intrinsic call or something that can be 1826 // represented by an intrinsic call 1827 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 1828 if (!isTriviallyVectorizable(ID)) { 1829 BS.cancelScheduling(VL, VL0); 1830 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1831 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 1832 return; 1833 } 1834 Function *Int = CI->getCalledFunction(); 1835 Value *A1I = nullptr; 1836 if (hasVectorInstrinsicScalarOpd(ID, 1)) 1837 A1I = CI->getArgOperand(1); 1838 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 1839 CallInst *CI2 = dyn_cast<CallInst>(VL[i]); 1840 if (!CI2 || CI2->getCalledFunction() != Int || 1841 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 1842 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 1843 BS.cancelScheduling(VL, VL0); 1844 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1845 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] 1846 << "\n"); 1847 return; 1848 } 1849 // ctlz,cttz and powi are special intrinsics whose second argument 1850 // should be same in order for them to be vectorized. 1851 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 1852 Value *A1J = CI2->getArgOperand(1); 1853 if (A1I != A1J) { 1854 BS.cancelScheduling(VL, VL0); 1855 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1856 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 1857 << " argument " << A1I << "!=" << A1J << "\n"); 1858 return; 1859 } 1860 } 1861 // Verify that the bundle operands are identical between the two calls. 1862 if (CI->hasOperandBundles() && 1863 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 1864 CI->op_begin() + CI->getBundleOperandsEndIndex(), 1865 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 1866 BS.cancelScheduling(VL, VL0); 1867 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1868 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 1869 << *CI << "!=" << *VL[i] << '\n'); 1870 return; 1871 } 1872 } 1873 1874 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1875 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 1876 ValueList Operands; 1877 // Prepare the operand vector. 1878 for (Value *j : VL) { 1879 CallInst *CI2 = dyn_cast<CallInst>(j); 1880 Operands.push_back(CI2->getArgOperand(i)); 1881 } 1882 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1883 } 1884 return; 1885 } 1886 case Instruction::ShuffleVector: 1887 // If this is not an alternate sequence of opcode like add-sub 1888 // then do not vectorize this instruction. 1889 if (!S.isAltShuffle()) { 1890 BS.cancelScheduling(VL, VL0); 1891 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1892 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 1893 return; 1894 } 1895 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1896 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 1897 1898 // Reorder operands if reordering would enable vectorization. 1899 if (isa<BinaryOperator>(VL0)) { 1900 ValueList Left, Right; 1901 reorderAltShuffleOperands(S, VL, Left, Right); 1902 buildTree_rec(Left, Depth + 1, UserTreeIdx); 1903 buildTree_rec(Right, Depth + 1, UserTreeIdx); 1904 return; 1905 } 1906 1907 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1908 ValueList Operands; 1909 // Prepare the operand vector. 1910 for (Value *j : VL) 1911 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1912 1913 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1914 } 1915 return; 1916 1917 default: 1918 BS.cancelScheduling(VL, VL0); 1919 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1920 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 1921 return; 1922 } 1923 } 1924 1925 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 1926 unsigned N; 1927 Type *EltTy; 1928 auto *ST = dyn_cast<StructType>(T); 1929 if (ST) { 1930 N = ST->getNumElements(); 1931 EltTy = *ST->element_begin(); 1932 } else { 1933 N = cast<ArrayType>(T)->getNumElements(); 1934 EltTy = cast<ArrayType>(T)->getElementType(); 1935 } 1936 if (!isValidElementType(EltTy)) 1937 return 0; 1938 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 1939 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 1940 return 0; 1941 if (ST) { 1942 // Check that struct is homogeneous. 1943 for (const auto *Ty : ST->elements()) 1944 if (Ty != EltTy) 1945 return 0; 1946 } 1947 return N; 1948 } 1949 1950 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1951 SmallVectorImpl<unsigned> &CurrentOrder) const { 1952 Instruction *E0 = cast<Instruction>(OpValue); 1953 assert(E0->getOpcode() == Instruction::ExtractElement || 1954 E0->getOpcode() == Instruction::ExtractValue); 1955 assert(E0->getOpcode() == getSameOpcode(VL).Opcode && "Invalid opcode"); 1956 // Check if all of the extracts come from the same vector and from the 1957 // correct offset. 1958 Value *Vec = E0->getOperand(0); 1959 1960 CurrentOrder.clear(); 1961 1962 // We have to extract from a vector/aggregate with the same number of elements. 1963 unsigned NElts; 1964 if (E0->getOpcode() == Instruction::ExtractValue) { 1965 const DataLayout &DL = E0->getModule()->getDataLayout(); 1966 NElts = canMapToVector(Vec->getType(), DL); 1967 if (!NElts) 1968 return false; 1969 // Check if load can be rewritten as load of vector. 1970 LoadInst *LI = dyn_cast<LoadInst>(Vec); 1971 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 1972 return false; 1973 } else { 1974 NElts = Vec->getType()->getVectorNumElements(); 1975 } 1976 1977 if (NElts != VL.size()) 1978 return false; 1979 1980 // Check that all of the indices extract from the correct offset. 1981 bool ShouldKeepOrder = true; 1982 unsigned E = VL.size(); 1983 // Assign to all items the initial value E + 1 so we can check if the extract 1984 // instruction index was used already. 1985 // Also, later we can check that all the indices are used and we have a 1986 // consecutive access in the extract instructions, by checking that no 1987 // element of CurrentOrder still has value E + 1. 1988 CurrentOrder.assign(E, E + 1); 1989 unsigned I = 0; 1990 for (; I < E; ++I) { 1991 auto *Inst = cast<Instruction>(VL[I]); 1992 if (Inst->getOperand(0) != Vec) 1993 break; 1994 Optional<unsigned> Idx = getExtractIndex(Inst); 1995 if (!Idx) 1996 break; 1997 const unsigned ExtIdx = *Idx; 1998 if (ExtIdx != I) { 1999 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 2000 break; 2001 ShouldKeepOrder = false; 2002 CurrentOrder[ExtIdx] = I; 2003 } else { 2004 if (CurrentOrder[I] != E + 1) 2005 break; 2006 CurrentOrder[I] = I; 2007 } 2008 } 2009 if (I < E) { 2010 CurrentOrder.clear(); 2011 return false; 2012 } 2013 2014 return ShouldKeepOrder; 2015 } 2016 2017 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 2018 return I->hasOneUse() || 2019 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 2020 return ScalarToTreeEntry.count(U) > 0; 2021 }); 2022 } 2023 2024 int BoUpSLP::getEntryCost(TreeEntry *E) { 2025 ArrayRef<Value*> VL = E->Scalars; 2026 2027 Type *ScalarTy = VL[0]->getType(); 2028 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2029 ScalarTy = SI->getValueOperand()->getType(); 2030 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 2031 ScalarTy = CI->getOperand(0)->getType(); 2032 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2033 2034 // If we have computed a smaller type for the expression, update VecTy so 2035 // that the costs will be accurate. 2036 if (MinBWs.count(VL[0])) 2037 VecTy = VectorType::get( 2038 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 2039 2040 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 2041 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 2042 int ReuseShuffleCost = 0; 2043 if (NeedToShuffleReuses) { 2044 ReuseShuffleCost = 2045 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2046 } 2047 if (E->NeedToGather) { 2048 if (allConstant(VL)) 2049 return 0; 2050 if (isSplat(VL)) { 2051 return ReuseShuffleCost + 2052 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 2053 } 2054 if (getSameOpcode(VL).Opcode == Instruction::ExtractElement && 2055 allSameType(VL) && allSameBlock(VL)) { 2056 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 2057 if (ShuffleKind.hasValue()) { 2058 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 2059 for (auto *V : VL) { 2060 // If all users of instruction are going to be vectorized and this 2061 // instruction itself is not going to be vectorized, consider this 2062 // instruction as dead and remove its cost from the final cost of the 2063 // vectorized tree. 2064 if (areAllUsersVectorized(cast<Instruction>(V)) && 2065 !ScalarToTreeEntry.count(V)) { 2066 auto *IO = cast<ConstantInt>( 2067 cast<ExtractElementInst>(V)->getIndexOperand()); 2068 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 2069 IO->getZExtValue()); 2070 } 2071 } 2072 return ReuseShuffleCost + Cost; 2073 } 2074 } 2075 return ReuseShuffleCost + getGatherCost(VL); 2076 } 2077 InstructionsState S = getSameOpcode(VL); 2078 assert(S.Opcode && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 2079 Instruction *VL0 = cast<Instruction>(S.OpValue); 2080 unsigned ShuffleOrOp = S.isAltShuffle() ? 2081 (unsigned) Instruction::ShuffleVector : S.Opcode; 2082 switch (ShuffleOrOp) { 2083 case Instruction::PHI: 2084 return 0; 2085 2086 case Instruction::ExtractValue: 2087 case Instruction::ExtractElement: 2088 if (NeedToShuffleReuses) { 2089 unsigned Idx = 0; 2090 for (unsigned I : E->ReuseShuffleIndices) { 2091 if (ShuffleOrOp == Instruction::ExtractElement) { 2092 auto *IO = cast<ConstantInt>( 2093 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 2094 Idx = IO->getZExtValue(); 2095 ReuseShuffleCost -= TTI->getVectorInstrCost( 2096 Instruction::ExtractElement, VecTy, Idx); 2097 } else { 2098 ReuseShuffleCost -= TTI->getVectorInstrCost( 2099 Instruction::ExtractElement, VecTy, Idx); 2100 ++Idx; 2101 } 2102 } 2103 Idx = ReuseShuffleNumbers; 2104 for (Value *V : VL) { 2105 if (ShuffleOrOp == Instruction::ExtractElement) { 2106 auto *IO = cast<ConstantInt>( 2107 cast<ExtractElementInst>(V)->getIndexOperand()); 2108 Idx = IO->getZExtValue(); 2109 } else { 2110 --Idx; 2111 } 2112 ReuseShuffleCost += 2113 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 2114 } 2115 } 2116 if (!E->NeedToGather) { 2117 int DeadCost = ReuseShuffleCost; 2118 if (!E->ReorderIndices.empty()) { 2119 // TODO: Merge this shuffle with the ReuseShuffleCost. 2120 DeadCost += TTI->getShuffleCost( 2121 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2122 } 2123 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 2124 Instruction *E = cast<Instruction>(VL[i]); 2125 // If all users are going to be vectorized, instruction can be 2126 // considered as dead. 2127 // The same, if have only one user, it will be vectorized for sure. 2128 if (areAllUsersVectorized(E)) { 2129 // Take credit for instruction that will become dead. 2130 if (E->hasOneUse()) { 2131 Instruction *Ext = E->user_back(); 2132 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 2133 all_of(Ext->users(), 2134 [](User *U) { return isa<GetElementPtrInst>(U); })) { 2135 // Use getExtractWithExtendCost() to calculate the cost of 2136 // extractelement/ext pair. 2137 DeadCost -= TTI->getExtractWithExtendCost( 2138 Ext->getOpcode(), Ext->getType(), VecTy, i); 2139 // Add back the cost of s|zext which is subtracted seperately. 2140 DeadCost += TTI->getCastInstrCost( 2141 Ext->getOpcode(), Ext->getType(), E->getType(), Ext); 2142 continue; 2143 } 2144 } 2145 DeadCost -= 2146 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 2147 } 2148 } 2149 return DeadCost; 2150 } 2151 return ReuseShuffleCost + getGatherCost(VL); 2152 2153 case Instruction::ZExt: 2154 case Instruction::SExt: 2155 case Instruction::FPToUI: 2156 case Instruction::FPToSI: 2157 case Instruction::FPExt: 2158 case Instruction::PtrToInt: 2159 case Instruction::IntToPtr: 2160 case Instruction::SIToFP: 2161 case Instruction::UIToFP: 2162 case Instruction::Trunc: 2163 case Instruction::FPTrunc: 2164 case Instruction::BitCast: { 2165 Type *SrcTy = VL0->getOperand(0)->getType(); 2166 if (NeedToShuffleReuses) { 2167 ReuseShuffleCost -= 2168 (ReuseShuffleNumbers - VL.size()) * 2169 TTI->getCastInstrCost(S.Opcode, ScalarTy, SrcTy, VL0); 2170 } 2171 2172 // Calculate the cost of this instruction. 2173 int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(), 2174 VL0->getType(), SrcTy, VL0); 2175 2176 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 2177 int VecCost = 0; 2178 // Check if the values are candidates to demote. 2179 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 2180 VecCost = ReuseShuffleCost + 2181 TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy, VL0); 2182 } 2183 return VecCost - ScalarCost; 2184 } 2185 case Instruction::FCmp: 2186 case Instruction::ICmp: 2187 case Instruction::Select: { 2188 // Calculate the cost of this instruction. 2189 if (NeedToShuffleReuses) { 2190 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * 2191 TTI->getCmpSelInstrCost(S.Opcode, ScalarTy, 2192 Builder.getInt1Ty(), VL0); 2193 } 2194 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 2195 int ScalarCost = VecTy->getNumElements() * 2196 TTI->getCmpSelInstrCost(S.Opcode, ScalarTy, Builder.getInt1Ty(), VL0); 2197 int VecCost = TTI->getCmpSelInstrCost(S.Opcode, VecTy, MaskTy, VL0); 2198 return ReuseShuffleCost + VecCost - ScalarCost; 2199 } 2200 case Instruction::Add: 2201 case Instruction::FAdd: 2202 case Instruction::Sub: 2203 case Instruction::FSub: 2204 case Instruction::Mul: 2205 case Instruction::FMul: 2206 case Instruction::UDiv: 2207 case Instruction::SDiv: 2208 case Instruction::FDiv: 2209 case Instruction::URem: 2210 case Instruction::SRem: 2211 case Instruction::FRem: 2212 case Instruction::Shl: 2213 case Instruction::LShr: 2214 case Instruction::AShr: 2215 case Instruction::And: 2216 case Instruction::Or: 2217 case Instruction::Xor: { 2218 // Certain instructions can be cheaper to vectorize if they have a 2219 // constant second vector operand. 2220 TargetTransformInfo::OperandValueKind Op1VK = 2221 TargetTransformInfo::OK_AnyValue; 2222 TargetTransformInfo::OperandValueKind Op2VK = 2223 TargetTransformInfo::OK_UniformConstantValue; 2224 TargetTransformInfo::OperandValueProperties Op1VP = 2225 TargetTransformInfo::OP_None; 2226 TargetTransformInfo::OperandValueProperties Op2VP = 2227 TargetTransformInfo::OP_PowerOf2; 2228 2229 // If all operands are exactly the same ConstantInt then set the 2230 // operand kind to OK_UniformConstantValue. 2231 // If instead not all operands are constants, then set the operand kind 2232 // to OK_AnyValue. If all operands are constants but not the same, 2233 // then set the operand kind to OK_NonUniformConstantValue. 2234 ConstantInt *CInt0 = nullptr; 2235 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 2236 const Instruction *I = cast<Instruction>(VL[i]); 2237 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(1)); 2238 if (!CInt) { 2239 Op2VK = TargetTransformInfo::OK_AnyValue; 2240 Op2VP = TargetTransformInfo::OP_None; 2241 break; 2242 } 2243 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 2244 !CInt->getValue().isPowerOf2()) 2245 Op2VP = TargetTransformInfo::OP_None; 2246 if (i == 0) { 2247 CInt0 = CInt; 2248 continue; 2249 } 2250 if (CInt0 != CInt) 2251 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 2252 } 2253 2254 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 2255 if (NeedToShuffleReuses) { 2256 ReuseShuffleCost -= 2257 (ReuseShuffleNumbers - VL.size()) * 2258 TTI->getArithmeticInstrCost(S.Opcode, ScalarTy, Op1VK, Op2VK, Op1VP, 2259 Op2VP, Operands); 2260 } 2261 int ScalarCost = 2262 VecTy->getNumElements() * 2263 TTI->getArithmeticInstrCost(S.Opcode, ScalarTy, Op1VK, Op2VK, Op1VP, 2264 Op2VP, Operands); 2265 int VecCost = TTI->getArithmeticInstrCost(S.Opcode, VecTy, Op1VK, Op2VK, 2266 Op1VP, Op2VP, Operands); 2267 return ReuseShuffleCost + VecCost - ScalarCost; 2268 } 2269 case Instruction::GetElementPtr: { 2270 TargetTransformInfo::OperandValueKind Op1VK = 2271 TargetTransformInfo::OK_AnyValue; 2272 TargetTransformInfo::OperandValueKind Op2VK = 2273 TargetTransformInfo::OK_UniformConstantValue; 2274 2275 if (NeedToShuffleReuses) { 2276 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * 2277 TTI->getArithmeticInstrCost(Instruction::Add, 2278 ScalarTy, Op1VK, Op2VK); 2279 } 2280 int ScalarCost = 2281 VecTy->getNumElements() * 2282 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 2283 int VecCost = 2284 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 2285 2286 return ReuseShuffleCost + VecCost - ScalarCost; 2287 } 2288 case Instruction::Load: { 2289 // Cost of wide load - cost of scalar loads. 2290 unsigned alignment = cast<LoadInst>(VL0)->getAlignment(); 2291 if (NeedToShuffleReuses) { 2292 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * 2293 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 2294 alignment, 0, VL0); 2295 } 2296 int ScalarLdCost = VecTy->getNumElements() * 2297 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0); 2298 int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, 2299 VecTy, alignment, 0, VL0); 2300 if (!E->ReorderIndices.empty()) { 2301 // TODO: Merge this shuffle with the ReuseShuffleCost. 2302 VecLdCost += TTI->getShuffleCost( 2303 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2304 } 2305 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 2306 } 2307 case Instruction::Store: { 2308 // We know that we can merge the stores. Calculate the cost. 2309 unsigned alignment = cast<StoreInst>(VL0)->getAlignment(); 2310 if (NeedToShuffleReuses) { 2311 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * 2312 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 2313 alignment, 0, VL0); 2314 } 2315 int ScalarStCost = VecTy->getNumElements() * 2316 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0); 2317 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, 2318 VecTy, alignment, 0, VL0); 2319 return ReuseShuffleCost + VecStCost - ScalarStCost; 2320 } 2321 case Instruction::Call: { 2322 CallInst *CI = cast<CallInst>(VL0); 2323 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2324 2325 // Calculate the cost of the scalar and vector calls. 2326 SmallVector<Type*, 4> ScalarTys; 2327 for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) 2328 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 2329 2330 FastMathFlags FMF; 2331 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 2332 FMF = FPMO->getFastMathFlags(); 2333 2334 if (NeedToShuffleReuses) { 2335 ReuseShuffleCost -= 2336 (ReuseShuffleNumbers - VL.size()) * 2337 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 2338 } 2339 int ScalarCallCost = VecTy->getNumElements() * 2340 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 2341 2342 SmallVector<Value *, 4> Args(CI->arg_operands()); 2343 int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF, 2344 VecTy->getNumElements()); 2345 2346 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 2347 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 2348 << " for " << *CI << "\n"); 2349 2350 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 2351 } 2352 case Instruction::ShuffleVector: { 2353 int ScalarCost = 0; 2354 if (NeedToShuffleReuses) { 2355 for (unsigned Idx : E->ReuseShuffleIndices) { 2356 Instruction *I = cast<Instruction>(VL[Idx]); 2357 if (!I) 2358 continue; 2359 ReuseShuffleCost -= 2360 TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy); 2361 } 2362 for (Value *V : VL) { 2363 Instruction *I = cast<Instruction>(V); 2364 if (!I) 2365 continue; 2366 ReuseShuffleCost += 2367 TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy); 2368 } 2369 } 2370 int VecCost = 0; 2371 for (Value *i : VL) { 2372 Instruction *I = cast<Instruction>(i); 2373 if (!I) 2374 break; 2375 ScalarCost += TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy); 2376 } 2377 // VecCost is equal to sum of the cost of creating 2 vectors 2378 // and the cost of creating shuffle. 2379 Instruction *I0 = cast<Instruction>(VL[0]); 2380 VecCost = TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy); 2381 Instruction *I1 = cast<Instruction>(VL[1]); 2382 VecCost += TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy); 2383 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0); 2384 return ReuseShuffleCost + VecCost - ScalarCost; 2385 } 2386 default: 2387 llvm_unreachable("Unknown instruction"); 2388 } 2389 } 2390 2391 bool BoUpSLP::isFullyVectorizableTinyTree() { 2392 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 2393 << VectorizableTree.size() << " is fully vectorizable .\n"); 2394 2395 // We only handle trees of heights 1 and 2. 2396 if (VectorizableTree.size() == 1 && !VectorizableTree[0].NeedToGather) 2397 return true; 2398 2399 if (VectorizableTree.size() != 2) 2400 return false; 2401 2402 // Handle splat and all-constants stores. 2403 if (!VectorizableTree[0].NeedToGather && 2404 (allConstant(VectorizableTree[1].Scalars) || 2405 isSplat(VectorizableTree[1].Scalars))) 2406 return true; 2407 2408 // Gathering cost would be too much for tiny trees. 2409 if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather) 2410 return false; 2411 2412 return true; 2413 } 2414 2415 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() { 2416 // We can vectorize the tree if its size is greater than or equal to the 2417 // minimum size specified by the MinTreeSize command line option. 2418 if (VectorizableTree.size() >= MinTreeSize) 2419 return false; 2420 2421 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 2422 // can vectorize it if we can prove it fully vectorizable. 2423 if (isFullyVectorizableTinyTree()) 2424 return false; 2425 2426 assert(VectorizableTree.empty() 2427 ? ExternalUses.empty() 2428 : true && "We shouldn't have any external users"); 2429 2430 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 2431 // vectorizable. 2432 return true; 2433 } 2434 2435 int BoUpSLP::getSpillCost() { 2436 // Walk from the bottom of the tree to the top, tracking which values are 2437 // live. When we see a call instruction that is not part of our tree, 2438 // query TTI to see if there is a cost to keeping values live over it 2439 // (for example, if spills and fills are required). 2440 unsigned BundleWidth = VectorizableTree.front().Scalars.size(); 2441 int Cost = 0; 2442 2443 SmallPtrSet<Instruction*, 4> LiveValues; 2444 Instruction *PrevInst = nullptr; 2445 2446 for (const auto &N : VectorizableTree) { 2447 Instruction *Inst = dyn_cast<Instruction>(N.Scalars[0]); 2448 if (!Inst) 2449 continue; 2450 2451 if (!PrevInst) { 2452 PrevInst = Inst; 2453 continue; 2454 } 2455 2456 // Update LiveValues. 2457 LiveValues.erase(PrevInst); 2458 for (auto &J : PrevInst->operands()) { 2459 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 2460 LiveValues.insert(cast<Instruction>(&*J)); 2461 } 2462 2463 LLVM_DEBUG({ 2464 dbgs() << "SLP: #LV: " << LiveValues.size(); 2465 for (auto *X : LiveValues) 2466 dbgs() << " " << X->getName(); 2467 dbgs() << ", Looking at "; 2468 Inst->dump(); 2469 }); 2470 2471 // Now find the sequence of instructions between PrevInst and Inst. 2472 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 2473 PrevInstIt = 2474 PrevInst->getIterator().getReverse(); 2475 while (InstIt != PrevInstIt) { 2476 if (PrevInstIt == PrevInst->getParent()->rend()) { 2477 PrevInstIt = Inst->getParent()->rbegin(); 2478 continue; 2479 } 2480 2481 // Debug informations don't impact spill cost. 2482 if ((isa<CallInst>(&*PrevInstIt) && 2483 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 2484 &*PrevInstIt != PrevInst) { 2485 SmallVector<Type*, 4> V; 2486 for (auto *II : LiveValues) 2487 V.push_back(VectorType::get(II->getType(), BundleWidth)); 2488 Cost += TTI->getCostOfKeepingLiveOverCall(V); 2489 } 2490 2491 ++PrevInstIt; 2492 } 2493 2494 PrevInst = Inst; 2495 } 2496 2497 return Cost; 2498 } 2499 2500 int BoUpSLP::getTreeCost() { 2501 int Cost = 0; 2502 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 2503 << VectorizableTree.size() << ".\n"); 2504 2505 unsigned BundleWidth = VectorizableTree[0].Scalars.size(); 2506 2507 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 2508 TreeEntry &TE = VectorizableTree[I]; 2509 2510 // We create duplicate tree entries for gather sequences that have multiple 2511 // uses. However, we should not compute the cost of duplicate sequences. 2512 // For example, if we have a build vector (i.e., insertelement sequence) 2513 // that is used by more than one vector instruction, we only need to 2514 // compute the cost of the insertelement instructions once. The redundent 2515 // instructions will be eliminated by CSE. 2516 // 2517 // We should consider not creating duplicate tree entries for gather 2518 // sequences, and instead add additional edges to the tree representing 2519 // their uses. Since such an approach results in fewer total entries, 2520 // existing heuristics based on tree size may yeild different results. 2521 // 2522 if (TE.NeedToGather && 2523 std::any_of(std::next(VectorizableTree.begin(), I + 1), 2524 VectorizableTree.end(), [TE](TreeEntry &Entry) { 2525 return Entry.NeedToGather && Entry.isSame(TE.Scalars); 2526 })) 2527 continue; 2528 2529 int C = getEntryCost(&TE); 2530 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 2531 << " for bundle that starts with " << *TE.Scalars[0] 2532 << ".\n"); 2533 Cost += C; 2534 } 2535 2536 SmallPtrSet<Value *, 16> ExtractCostCalculated; 2537 int ExtractCost = 0; 2538 for (ExternalUser &EU : ExternalUses) { 2539 // We only add extract cost once for the same scalar. 2540 if (!ExtractCostCalculated.insert(EU.Scalar).second) 2541 continue; 2542 2543 // Uses by ephemeral values are free (because the ephemeral value will be 2544 // removed prior to code generation, and so the extraction will be 2545 // removed as well). 2546 if (EphValues.count(EU.User)) 2547 continue; 2548 2549 // If we plan to rewrite the tree in a smaller type, we will need to sign 2550 // extend the extracted value back to the original type. Here, we account 2551 // for the extract and the added cost of the sign extend if needed. 2552 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 2553 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 2554 if (MinBWs.count(ScalarRoot)) { 2555 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 2556 auto Extend = 2557 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 2558 VecTy = VectorType::get(MinTy, BundleWidth); 2559 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 2560 VecTy, EU.Lane); 2561 } else { 2562 ExtractCost += 2563 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 2564 } 2565 } 2566 2567 int SpillCost = getSpillCost(); 2568 Cost += SpillCost + ExtractCost; 2569 2570 std::string Str; 2571 { 2572 raw_string_ostream OS(Str); 2573 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 2574 << "SLP: Extract Cost = " << ExtractCost << ".\n" 2575 << "SLP: Total Cost = " << Cost << ".\n"; 2576 } 2577 LLVM_DEBUG(dbgs() << Str); 2578 2579 if (ViewSLPTree) 2580 ViewGraph(this, "SLP" + F->getName(), false, Str); 2581 2582 return Cost; 2583 } 2584 2585 int BoUpSLP::getGatherCost(Type *Ty, 2586 const DenseSet<unsigned> &ShuffledIndices) { 2587 int Cost = 0; 2588 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 2589 if (!ShuffledIndices.count(i)) 2590 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 2591 if (!ShuffledIndices.empty()) 2592 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 2593 return Cost; 2594 } 2595 2596 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) { 2597 // Find the type of the operands in VL. 2598 Type *ScalarTy = VL[0]->getType(); 2599 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2600 ScalarTy = SI->getValueOperand()->getType(); 2601 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2602 // Find the cost of inserting/extracting values from the vector. 2603 // Check if the same elements are inserted several times and count them as 2604 // shuffle candidates. 2605 DenseSet<unsigned> ShuffledElements; 2606 DenseSet<Value *> UniqueElements; 2607 // Iterate in reverse order to consider insert elements with the high cost. 2608 for (unsigned I = VL.size(); I > 0; --I) { 2609 unsigned Idx = I - 1; 2610 if (!UniqueElements.insert(VL[Idx]).second) 2611 ShuffledElements.insert(Idx); 2612 } 2613 return getGatherCost(VecTy, ShuffledElements); 2614 } 2615 2616 // Reorder commutative operations in alternate shuffle if the resulting vectors 2617 // are consecutive loads. This would allow us to vectorize the tree. 2618 // If we have something like- 2619 // load a[0] - load b[0] 2620 // load b[1] + load a[1] 2621 // load a[2] - load b[2] 2622 // load a[3] + load b[3] 2623 // Reordering the second load b[1] load a[1] would allow us to vectorize this 2624 // code. 2625 void BoUpSLP::reorderAltShuffleOperands(const InstructionsState &S, 2626 ArrayRef<Value *> VL, 2627 SmallVectorImpl<Value *> &Left, 2628 SmallVectorImpl<Value *> &Right) { 2629 // Push left and right operands of binary operation into Left and Right 2630 for (Value *V : VL) { 2631 auto *I = cast<Instruction>(V); 2632 assert(sameOpcodeOrAlt(S.Opcode, S.AltOpcode, I->getOpcode()) && 2633 "Incorrect instruction in vector"); 2634 Left.push_back(I->getOperand(0)); 2635 Right.push_back(I->getOperand(1)); 2636 } 2637 2638 // Reorder if we have a commutative operation and consecutive access 2639 // are on either side of the alternate instructions. 2640 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2641 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2642 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2643 Instruction *VL1 = cast<Instruction>(VL[j]); 2644 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2645 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2646 std::swap(Left[j], Right[j]); 2647 continue; 2648 } else if (VL2->isCommutative() && 2649 isConsecutiveAccess(L, L1, *DL, *SE)) { 2650 std::swap(Left[j + 1], Right[j + 1]); 2651 continue; 2652 } 2653 // else unchanged 2654 } 2655 } 2656 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2657 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2658 Instruction *VL1 = cast<Instruction>(VL[j]); 2659 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2660 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2661 std::swap(Left[j], Right[j]); 2662 continue; 2663 } else if (VL2->isCommutative() && 2664 isConsecutiveAccess(L, L1, *DL, *SE)) { 2665 std::swap(Left[j + 1], Right[j + 1]); 2666 continue; 2667 } 2668 // else unchanged 2669 } 2670 } 2671 } 2672 } 2673 2674 // Return true if I should be commuted before adding it's left and right 2675 // operands to the arrays Left and Right. 2676 // 2677 // The vectorizer is trying to either have all elements one side being 2678 // instruction with the same opcode to enable further vectorization, or having 2679 // a splat to lower the vectorizing cost. 2680 static bool shouldReorderOperands( 2681 int i, unsigned Opcode, Instruction &I, ArrayRef<Value *> Left, 2682 ArrayRef<Value *> Right, bool AllSameOpcodeLeft, bool AllSameOpcodeRight, 2683 bool SplatLeft, bool SplatRight, Value *&VLeft, Value *&VRight) { 2684 VLeft = I.getOperand(0); 2685 VRight = I.getOperand(1); 2686 // If we have "SplatRight", try to see if commuting is needed to preserve it. 2687 if (SplatRight) { 2688 if (VRight == Right[i - 1]) 2689 // Preserve SplatRight 2690 return false; 2691 if (VLeft == Right[i - 1]) { 2692 // Commuting would preserve SplatRight, but we don't want to break 2693 // SplatLeft either, i.e. preserve the original order if possible. 2694 // (FIXME: why do we care?) 2695 if (SplatLeft && VLeft == Left[i - 1]) 2696 return false; 2697 return true; 2698 } 2699 } 2700 // Symmetrically handle Right side. 2701 if (SplatLeft) { 2702 if (VLeft == Left[i - 1]) 2703 // Preserve SplatLeft 2704 return false; 2705 if (VRight == Left[i - 1]) 2706 return true; 2707 } 2708 2709 Instruction *ILeft = dyn_cast<Instruction>(VLeft); 2710 Instruction *IRight = dyn_cast<Instruction>(VRight); 2711 2712 // If we have "AllSameOpcodeRight", try to see if the left operands preserves 2713 // it and not the right, in this case we want to commute. 2714 if (AllSameOpcodeRight) { 2715 unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode(); 2716 if (IRight && RightPrevOpcode == IRight->getOpcode()) 2717 // Do not commute, a match on the right preserves AllSameOpcodeRight 2718 return false; 2719 if (ILeft && RightPrevOpcode == ILeft->getOpcode()) { 2720 // We have a match and may want to commute, but first check if there is 2721 // not also a match on the existing operands on the Left to preserve 2722 // AllSameOpcodeLeft, i.e. preserve the original order if possible. 2723 // (FIXME: why do we care?) 2724 if (AllSameOpcodeLeft && ILeft && 2725 cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode()) 2726 return false; 2727 return true; 2728 } 2729 } 2730 // Symmetrically handle Left side. 2731 if (AllSameOpcodeLeft) { 2732 unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode(); 2733 if (ILeft && LeftPrevOpcode == ILeft->getOpcode()) 2734 return false; 2735 if (IRight && LeftPrevOpcode == IRight->getOpcode()) 2736 return true; 2737 } 2738 return false; 2739 } 2740 2741 void BoUpSLP::reorderInputsAccordingToOpcode(unsigned Opcode, 2742 ArrayRef<Value *> VL, 2743 SmallVectorImpl<Value *> &Left, 2744 SmallVectorImpl<Value *> &Right) { 2745 if (!VL.empty()) { 2746 // Peel the first iteration out of the loop since there's nothing 2747 // interesting to do anyway and it simplifies the checks in the loop. 2748 auto *I = cast<Instruction>(VL[0]); 2749 Value *VLeft = I->getOperand(0); 2750 Value *VRight = I->getOperand(1); 2751 if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft)) 2752 // Favor having instruction to the right. FIXME: why? 2753 std::swap(VLeft, VRight); 2754 Left.push_back(VLeft); 2755 Right.push_back(VRight); 2756 } 2757 2758 // Keep track if we have instructions with all the same opcode on one side. 2759 bool AllSameOpcodeLeft = isa<Instruction>(Left[0]); 2760 bool AllSameOpcodeRight = isa<Instruction>(Right[0]); 2761 // Keep track if we have one side with all the same value (broadcast). 2762 bool SplatLeft = true; 2763 bool SplatRight = true; 2764 2765 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 2766 Instruction *I = cast<Instruction>(VL[i]); 2767 assert(((I->getOpcode() == Opcode && I->isCommutative()) || 2768 (I->getOpcode() != Opcode && Instruction::isCommutative(Opcode))) && 2769 "Can only process commutative instruction"); 2770 // Commute to favor either a splat or maximizing having the same opcodes on 2771 // one side. 2772 Value *VLeft; 2773 Value *VRight; 2774 if (shouldReorderOperands(i, Opcode, *I, Left, Right, AllSameOpcodeLeft, 2775 AllSameOpcodeRight, SplatLeft, SplatRight, VLeft, 2776 VRight)) { 2777 Left.push_back(VRight); 2778 Right.push_back(VLeft); 2779 } else { 2780 Left.push_back(VLeft); 2781 Right.push_back(VRight); 2782 } 2783 // Update Splat* and AllSameOpcode* after the insertion. 2784 SplatRight = SplatRight && (Right[i - 1] == Right[i]); 2785 SplatLeft = SplatLeft && (Left[i - 1] == Left[i]); 2786 AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) && 2787 (cast<Instruction>(Left[i - 1])->getOpcode() == 2788 cast<Instruction>(Left[i])->getOpcode()); 2789 AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) && 2790 (cast<Instruction>(Right[i - 1])->getOpcode() == 2791 cast<Instruction>(Right[i])->getOpcode()); 2792 } 2793 2794 // If one operand end up being broadcast, return this operand order. 2795 if (SplatRight || SplatLeft) 2796 return; 2797 2798 // Finally check if we can get longer vectorizable chain by reordering 2799 // without breaking the good operand order detected above. 2800 // E.g. If we have something like- 2801 // load a[0] load b[0] 2802 // load b[1] load a[1] 2803 // load a[2] load b[2] 2804 // load a[3] load b[3] 2805 // Reordering the second load b[1] load a[1] would allow us to vectorize 2806 // this code and we still retain AllSameOpcode property. 2807 // FIXME: This load reordering might break AllSameOpcode in some rare cases 2808 // such as- 2809 // add a[0],c[0] load b[0] 2810 // add a[1],c[2] load b[1] 2811 // b[2] load b[2] 2812 // add a[3],c[3] load b[3] 2813 for (unsigned j = 0, e = VL.size() - 1; j < e; ++j) { 2814 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2815 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2816 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2817 std::swap(Left[j + 1], Right[j + 1]); 2818 continue; 2819 } 2820 } 2821 } 2822 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2823 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2824 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2825 std::swap(Left[j + 1], Right[j + 1]); 2826 continue; 2827 } 2828 } 2829 } 2830 // else unchanged 2831 } 2832 } 2833 2834 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL, 2835 const InstructionsState &S) { 2836 // Get the basic block this bundle is in. All instructions in the bundle 2837 // should be in this block. 2838 auto *Front = cast<Instruction>(S.OpValue); 2839 auto *BB = Front->getParent(); 2840 const unsigned Opcode = S.Opcode; 2841 const unsigned AltOpcode = S.AltOpcode; 2842 assert(llvm::all_of(make_range(VL.begin(), VL.end()), [=](Value *V) -> bool { 2843 return !sameOpcodeOrAlt(Opcode, AltOpcode, 2844 cast<Instruction>(V)->getOpcode()) || 2845 cast<Instruction>(V)->getParent() == BB; 2846 })); 2847 2848 // The last instruction in the bundle in program order. 2849 Instruction *LastInst = nullptr; 2850 2851 // Find the last instruction. The common case should be that BB has been 2852 // scheduled, and the last instruction is VL.back(). So we start with 2853 // VL.back() and iterate over schedule data until we reach the end of the 2854 // bundle. The end of the bundle is marked by null ScheduleData. 2855 if (BlocksSchedules.count(BB)) { 2856 auto *Bundle = 2857 BlocksSchedules[BB]->getScheduleData(isOneOf(S, VL.back())); 2858 if (Bundle && Bundle->isPartOfBundle()) 2859 for (; Bundle; Bundle = Bundle->NextInBundle) 2860 if (Bundle->OpValue == Bundle->Inst) 2861 LastInst = Bundle->Inst; 2862 } 2863 2864 // LastInst can still be null at this point if there's either not an entry 2865 // for BB in BlocksSchedules or there's no ScheduleData available for 2866 // VL.back(). This can be the case if buildTree_rec aborts for various 2867 // reasons (e.g., the maximum recursion depth is reached, the maximum region 2868 // size is reached, etc.). ScheduleData is initialized in the scheduling 2869 // "dry-run". 2870 // 2871 // If this happens, we can still find the last instruction by brute force. We 2872 // iterate forwards from Front (inclusive) until we either see all 2873 // instructions in the bundle or reach the end of the block. If Front is the 2874 // last instruction in program order, LastInst will be set to Front, and we 2875 // will visit all the remaining instructions in the block. 2876 // 2877 // One of the reasons we exit early from buildTree_rec is to place an upper 2878 // bound on compile-time. Thus, taking an additional compile-time hit here is 2879 // not ideal. However, this should be exceedingly rare since it requires that 2880 // we both exit early from buildTree_rec and that the bundle be out-of-order 2881 // (causing us to iterate all the way to the end of the block). 2882 if (!LastInst) { 2883 SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end()); 2884 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 2885 if (Bundle.erase(&I) && sameOpcodeOrAlt(Opcode, AltOpcode, I.getOpcode())) 2886 LastInst = &I; 2887 if (Bundle.empty()) 2888 break; 2889 } 2890 } 2891 2892 // Set the insertion point after the last instruction in the bundle. Set the 2893 // debug location to Front. 2894 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 2895 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 2896 } 2897 2898 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 2899 Value *Vec = UndefValue::get(Ty); 2900 // Generate the 'InsertElement' instruction. 2901 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 2902 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 2903 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 2904 GatherSeq.insert(Insrt); 2905 CSEBlocks.insert(Insrt->getParent()); 2906 2907 // Add to our 'need-to-extract' list. 2908 if (TreeEntry *E = getTreeEntry(VL[i])) { 2909 // Find which lane we need to extract. 2910 int FoundLane = -1; 2911 for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) { 2912 // Is this the lane of the scalar that we are looking for ? 2913 if (E->Scalars[Lane] == VL[i]) { 2914 FoundLane = Lane; 2915 break; 2916 } 2917 } 2918 assert(FoundLane >= 0 && "Could not find the correct lane"); 2919 if (!E->ReuseShuffleIndices.empty()) { 2920 FoundLane = 2921 std::distance(E->ReuseShuffleIndices.begin(), 2922 llvm::find(E->ReuseShuffleIndices, FoundLane)); 2923 } 2924 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 2925 } 2926 } 2927 } 2928 2929 return Vec; 2930 } 2931 2932 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 2933 InstructionsState S = getSameOpcode(VL); 2934 if (S.Opcode) { 2935 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2936 if (E->isSame(VL)) { 2937 Value *V = vectorizeTree(E); 2938 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 2939 // We need to get the vectorized value but without shuffle. 2940 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 2941 V = SV->getOperand(0); 2942 } else { 2943 // Reshuffle to get only unique values. 2944 SmallVector<unsigned, 4> UniqueIdxs; 2945 SmallSet<unsigned, 4> UsedIdxs; 2946 for(unsigned Idx : E->ReuseShuffleIndices) 2947 if (UsedIdxs.insert(Idx).second) 2948 UniqueIdxs.emplace_back(Idx); 2949 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 2950 UniqueIdxs); 2951 } 2952 } 2953 return V; 2954 } 2955 } 2956 } 2957 2958 Type *ScalarTy = S.OpValue->getType(); 2959 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2960 ScalarTy = SI->getValueOperand()->getType(); 2961 2962 // Check that every instruction appears once in this bundle. 2963 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2964 SmallVector<Value *, 4> UniqueValues; 2965 if (VL.size() > 2) { 2966 DenseMap<Value *, unsigned> UniquePositions; 2967 for (Value *V : VL) { 2968 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2969 ReuseShuffleIndicies.emplace_back(Res.first->second); 2970 if (Res.second || isa<Constant>(V)) 2971 UniqueValues.emplace_back(V); 2972 } 2973 // Do not shuffle single element or if number of unique values is not power 2974 // of 2. 2975 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 2976 !llvm::isPowerOf2_32(UniqueValues.size())) 2977 ReuseShuffleIndicies.clear(); 2978 else 2979 VL = UniqueValues; 2980 } 2981 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2982 2983 Value *V = Gather(VL, VecTy); 2984 if (!ReuseShuffleIndicies.empty()) { 2985 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 2986 ReuseShuffleIndicies, "shuffle"); 2987 if (auto *I = dyn_cast<Instruction>(V)) { 2988 GatherSeq.insert(I); 2989 CSEBlocks.insert(I->getParent()); 2990 } 2991 } 2992 return V; 2993 } 2994 2995 static void inversePermutation(ArrayRef<unsigned> Indices, 2996 SmallVectorImpl<unsigned> &Mask) { 2997 Mask.clear(); 2998 const unsigned E = Indices.size(); 2999 Mask.resize(E); 3000 for (unsigned I = 0; I < E; ++I) 3001 Mask[Indices[I]] = I; 3002 } 3003 3004 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 3005 IRBuilder<>::InsertPointGuard Guard(Builder); 3006 3007 if (E->VectorizedValue) { 3008 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 3009 return E->VectorizedValue; 3010 } 3011 3012 InstructionsState S = getSameOpcode(E->Scalars); 3013 Instruction *VL0 = cast<Instruction>(S.OpValue); 3014 Type *ScalarTy = VL0->getType(); 3015 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 3016 ScalarTy = SI->getValueOperand()->getType(); 3017 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 3018 3019 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3020 3021 if (E->NeedToGather) { 3022 setInsertPointAfterBundle(E->Scalars, S); 3023 auto *V = Gather(E->Scalars, VecTy); 3024 if (NeedToShuffleReuses) { 3025 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3026 E->ReuseShuffleIndices, "shuffle"); 3027 if (auto *I = dyn_cast<Instruction>(V)) { 3028 GatherSeq.insert(I); 3029 CSEBlocks.insert(I->getParent()); 3030 } 3031 } 3032 E->VectorizedValue = V; 3033 return V; 3034 } 3035 3036 unsigned ShuffleOrOp = S.isAltShuffle() ? 3037 (unsigned) Instruction::ShuffleVector : S.Opcode; 3038 switch (ShuffleOrOp) { 3039 case Instruction::PHI: { 3040 PHINode *PH = dyn_cast<PHINode>(VL0); 3041 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 3042 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 3043 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 3044 Value *V = NewPhi; 3045 if (NeedToShuffleReuses) { 3046 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3047 E->ReuseShuffleIndices, "shuffle"); 3048 } 3049 E->VectorizedValue = V; 3050 3051 // PHINodes may have multiple entries from the same block. We want to 3052 // visit every block once. 3053 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 3054 3055 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 3056 ValueList Operands; 3057 BasicBlock *IBB = PH->getIncomingBlock(i); 3058 3059 if (!VisitedBBs.insert(IBB).second) { 3060 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 3061 continue; 3062 } 3063 3064 // Prepare the operand vector. 3065 for (Value *V : E->Scalars) 3066 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB)); 3067 3068 Builder.SetInsertPoint(IBB->getTerminator()); 3069 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 3070 Value *Vec = vectorizeTree(Operands); 3071 NewPhi->addIncoming(Vec, IBB); 3072 } 3073 3074 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 3075 "Invalid number of incoming values"); 3076 return V; 3077 } 3078 3079 case Instruction::ExtractElement: { 3080 if (!E->NeedToGather) { 3081 Value *V = VL0->getOperand(0); 3082 if (!E->ReorderIndices.empty()) { 3083 OrdersType Mask; 3084 inversePermutation(E->ReorderIndices, Mask); 3085 Builder.SetInsertPoint(VL0); 3086 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), Mask, 3087 "reorder_shuffle"); 3088 } 3089 if (NeedToShuffleReuses) { 3090 // TODO: Merge this shuffle with the ReorderShuffleMask. 3091 if (!E->ReorderIndices.empty()) 3092 Builder.SetInsertPoint(VL0); 3093 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3094 E->ReuseShuffleIndices, "shuffle"); 3095 } 3096 E->VectorizedValue = V; 3097 return V; 3098 } 3099 setInsertPointAfterBundle(E->Scalars, S); 3100 auto *V = Gather(E->Scalars, VecTy); 3101 if (NeedToShuffleReuses) { 3102 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3103 E->ReuseShuffleIndices, "shuffle"); 3104 if (auto *I = dyn_cast<Instruction>(V)) { 3105 GatherSeq.insert(I); 3106 CSEBlocks.insert(I->getParent()); 3107 } 3108 } 3109 E->VectorizedValue = V; 3110 return V; 3111 } 3112 case Instruction::ExtractValue: { 3113 if (!E->NeedToGather) { 3114 LoadInst *LI = cast<LoadInst>(VL0->getOperand(0)); 3115 Builder.SetInsertPoint(LI); 3116 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 3117 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 3118 LoadInst *V = Builder.CreateAlignedLoad(Ptr, LI->getAlignment()); 3119 Value *NewV = propagateMetadata(V, E->Scalars); 3120 if (!E->ReorderIndices.empty()) { 3121 OrdersType Mask; 3122 inversePermutation(E->ReorderIndices, Mask); 3123 NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), Mask, 3124 "reorder_shuffle"); 3125 } 3126 if (NeedToShuffleReuses) { 3127 // TODO: Merge this shuffle with the ReorderShuffleMask. 3128 NewV = Builder.CreateShuffleVector( 3129 NewV, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle"); 3130 } 3131 E->VectorizedValue = NewV; 3132 return NewV; 3133 } 3134 setInsertPointAfterBundle(E->Scalars, S); 3135 auto *V = Gather(E->Scalars, VecTy); 3136 if (NeedToShuffleReuses) { 3137 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3138 E->ReuseShuffleIndices, "shuffle"); 3139 if (auto *I = dyn_cast<Instruction>(V)) { 3140 GatherSeq.insert(I); 3141 CSEBlocks.insert(I->getParent()); 3142 } 3143 } 3144 E->VectorizedValue = V; 3145 return V; 3146 } 3147 case Instruction::ZExt: 3148 case Instruction::SExt: 3149 case Instruction::FPToUI: 3150 case Instruction::FPToSI: 3151 case Instruction::FPExt: 3152 case Instruction::PtrToInt: 3153 case Instruction::IntToPtr: 3154 case Instruction::SIToFP: 3155 case Instruction::UIToFP: 3156 case Instruction::Trunc: 3157 case Instruction::FPTrunc: 3158 case Instruction::BitCast: { 3159 ValueList INVL; 3160 for (Value *V : E->Scalars) 3161 INVL.push_back(cast<Instruction>(V)->getOperand(0)); 3162 3163 setInsertPointAfterBundle(E->Scalars, S); 3164 3165 Value *InVec = vectorizeTree(INVL); 3166 3167 if (E->VectorizedValue) { 3168 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3169 return E->VectorizedValue; 3170 } 3171 3172 CastInst *CI = dyn_cast<CastInst>(VL0); 3173 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 3174 if (NeedToShuffleReuses) { 3175 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3176 E->ReuseShuffleIndices, "shuffle"); 3177 } 3178 E->VectorizedValue = V; 3179 ++NumVectorInstructions; 3180 return V; 3181 } 3182 case Instruction::FCmp: 3183 case Instruction::ICmp: { 3184 ValueList LHSV, RHSV; 3185 for (Value *V : E->Scalars) { 3186 LHSV.push_back(cast<Instruction>(V)->getOperand(0)); 3187 RHSV.push_back(cast<Instruction>(V)->getOperand(1)); 3188 } 3189 3190 setInsertPointAfterBundle(E->Scalars, S); 3191 3192 Value *L = vectorizeTree(LHSV); 3193 Value *R = vectorizeTree(RHSV); 3194 3195 if (E->VectorizedValue) { 3196 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3197 return E->VectorizedValue; 3198 } 3199 3200 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 3201 Value *V; 3202 if (S.Opcode == Instruction::FCmp) 3203 V = Builder.CreateFCmp(P0, L, R); 3204 else 3205 V = Builder.CreateICmp(P0, L, R); 3206 3207 propagateIRFlags(V, E->Scalars, VL0); 3208 if (NeedToShuffleReuses) { 3209 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3210 E->ReuseShuffleIndices, "shuffle"); 3211 } 3212 E->VectorizedValue = V; 3213 ++NumVectorInstructions; 3214 return V; 3215 } 3216 case Instruction::Select: { 3217 ValueList TrueVec, FalseVec, CondVec; 3218 for (Value *V : E->Scalars) { 3219 CondVec.push_back(cast<Instruction>(V)->getOperand(0)); 3220 TrueVec.push_back(cast<Instruction>(V)->getOperand(1)); 3221 FalseVec.push_back(cast<Instruction>(V)->getOperand(2)); 3222 } 3223 3224 setInsertPointAfterBundle(E->Scalars, S); 3225 3226 Value *Cond = vectorizeTree(CondVec); 3227 Value *True = vectorizeTree(TrueVec); 3228 Value *False = vectorizeTree(FalseVec); 3229 3230 if (E->VectorizedValue) { 3231 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3232 return E->VectorizedValue; 3233 } 3234 3235 Value *V = Builder.CreateSelect(Cond, True, False); 3236 if (NeedToShuffleReuses) { 3237 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3238 E->ReuseShuffleIndices, "shuffle"); 3239 } 3240 E->VectorizedValue = V; 3241 ++NumVectorInstructions; 3242 return V; 3243 } 3244 case Instruction::Add: 3245 case Instruction::FAdd: 3246 case Instruction::Sub: 3247 case Instruction::FSub: 3248 case Instruction::Mul: 3249 case Instruction::FMul: 3250 case Instruction::UDiv: 3251 case Instruction::SDiv: 3252 case Instruction::FDiv: 3253 case Instruction::URem: 3254 case Instruction::SRem: 3255 case Instruction::FRem: 3256 case Instruction::Shl: 3257 case Instruction::LShr: 3258 case Instruction::AShr: 3259 case Instruction::And: 3260 case Instruction::Or: 3261 case Instruction::Xor: { 3262 ValueList LHSVL, RHSVL; 3263 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) 3264 reorderInputsAccordingToOpcode(S.Opcode, E->Scalars, LHSVL, 3265 RHSVL); 3266 else 3267 for (Value *V : E->Scalars) { 3268 auto *I = cast<Instruction>(V); 3269 LHSVL.push_back(I->getOperand(0)); 3270 RHSVL.push_back(I->getOperand(1)); 3271 } 3272 3273 setInsertPointAfterBundle(E->Scalars, S); 3274 3275 Value *LHS = vectorizeTree(LHSVL); 3276 Value *RHS = vectorizeTree(RHSVL); 3277 3278 if (E->VectorizedValue) { 3279 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3280 return E->VectorizedValue; 3281 } 3282 3283 Value *V = Builder.CreateBinOp( 3284 static_cast<Instruction::BinaryOps>(S.Opcode), LHS, RHS); 3285 propagateIRFlags(V, E->Scalars, VL0); 3286 if (auto *I = dyn_cast<Instruction>(V)) 3287 V = propagateMetadata(I, E->Scalars); 3288 3289 if (NeedToShuffleReuses) { 3290 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3291 E->ReuseShuffleIndices, "shuffle"); 3292 } 3293 E->VectorizedValue = V; 3294 ++NumVectorInstructions; 3295 3296 return V; 3297 } 3298 case Instruction::Load: { 3299 // Loads are inserted at the head of the tree because we don't want to 3300 // sink them all the way down past store instructions. 3301 bool IsReorder = !E->ReorderIndices.empty(); 3302 if (IsReorder) { 3303 S = getSameOpcode(E->Scalars, E->ReorderIndices.front()); 3304 VL0 = cast<Instruction>(S.OpValue); 3305 } 3306 setInsertPointAfterBundle(E->Scalars, S); 3307 3308 LoadInst *LI = cast<LoadInst>(VL0); 3309 Type *ScalarLoadTy = LI->getType(); 3310 unsigned AS = LI->getPointerAddressSpace(); 3311 3312 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 3313 VecTy->getPointerTo(AS)); 3314 3315 // The pointer operand uses an in-tree scalar so we add the new BitCast to 3316 // ExternalUses list to make sure that an extract will be generated in the 3317 // future. 3318 Value *PO = LI->getPointerOperand(); 3319 if (getTreeEntry(PO)) 3320 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0)); 3321 3322 unsigned Alignment = LI->getAlignment(); 3323 LI = Builder.CreateLoad(VecPtr); 3324 if (!Alignment) { 3325 Alignment = DL->getABITypeAlignment(ScalarLoadTy); 3326 } 3327 LI->setAlignment(Alignment); 3328 Value *V = propagateMetadata(LI, E->Scalars); 3329 if (IsReorder) { 3330 OrdersType Mask; 3331 inversePermutation(E->ReorderIndices, Mask); 3332 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 3333 Mask, "reorder_shuffle"); 3334 } 3335 if (NeedToShuffleReuses) { 3336 // TODO: Merge this shuffle with the ReorderShuffleMask. 3337 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3338 E->ReuseShuffleIndices, "shuffle"); 3339 } 3340 E->VectorizedValue = V; 3341 ++NumVectorInstructions; 3342 return V; 3343 } 3344 case Instruction::Store: { 3345 StoreInst *SI = cast<StoreInst>(VL0); 3346 unsigned Alignment = SI->getAlignment(); 3347 unsigned AS = SI->getPointerAddressSpace(); 3348 3349 ValueList ScalarStoreValues; 3350 for (Value *V : E->Scalars) 3351 ScalarStoreValues.push_back(cast<StoreInst>(V)->getValueOperand()); 3352 3353 setInsertPointAfterBundle(E->Scalars, S); 3354 3355 Value *VecValue = vectorizeTree(ScalarStoreValues); 3356 Value *ScalarPtr = SI->getPointerOperand(); 3357 Value *VecPtr = Builder.CreateBitCast(ScalarPtr, VecTy->getPointerTo(AS)); 3358 StoreInst *ST = Builder.CreateStore(VecValue, VecPtr); 3359 3360 // The pointer operand uses an in-tree scalar, so add the new BitCast to 3361 // ExternalUses to make sure that an extract will be generated in the 3362 // future. 3363 if (getTreeEntry(ScalarPtr)) 3364 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 3365 3366 if (!Alignment) 3367 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 3368 3369 ST->setAlignment(Alignment); 3370 Value *V = propagateMetadata(ST, E->Scalars); 3371 if (NeedToShuffleReuses) { 3372 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3373 E->ReuseShuffleIndices, "shuffle"); 3374 } 3375 E->VectorizedValue = V; 3376 ++NumVectorInstructions; 3377 return V; 3378 } 3379 case Instruction::GetElementPtr: { 3380 setInsertPointAfterBundle(E->Scalars, S); 3381 3382 ValueList Op0VL; 3383 for (Value *V : E->Scalars) 3384 Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0)); 3385 3386 Value *Op0 = vectorizeTree(Op0VL); 3387 3388 std::vector<Value *> OpVecs; 3389 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 3390 ++j) { 3391 ValueList OpVL; 3392 for (Value *V : E->Scalars) 3393 OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j)); 3394 3395 Value *OpVec = vectorizeTree(OpVL); 3396 OpVecs.push_back(OpVec); 3397 } 3398 3399 Value *V = Builder.CreateGEP( 3400 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 3401 if (Instruction *I = dyn_cast<Instruction>(V)) 3402 V = propagateMetadata(I, E->Scalars); 3403 3404 if (NeedToShuffleReuses) { 3405 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3406 E->ReuseShuffleIndices, "shuffle"); 3407 } 3408 E->VectorizedValue = V; 3409 ++NumVectorInstructions; 3410 3411 return V; 3412 } 3413 case Instruction::Call: { 3414 CallInst *CI = cast<CallInst>(VL0); 3415 setInsertPointAfterBundle(E->Scalars, S); 3416 Function *FI; 3417 Intrinsic::ID IID = Intrinsic::not_intrinsic; 3418 Value *ScalarArg = nullptr; 3419 if (CI && (FI = CI->getCalledFunction())) { 3420 IID = FI->getIntrinsicID(); 3421 } 3422 std::vector<Value *> OpVecs; 3423 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 3424 ValueList OpVL; 3425 // ctlz,cttz and powi are special intrinsics whose second argument is 3426 // a scalar. This argument should not be vectorized. 3427 if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) { 3428 CallInst *CEI = cast<CallInst>(VL0); 3429 ScalarArg = CEI->getArgOperand(j); 3430 OpVecs.push_back(CEI->getArgOperand(j)); 3431 continue; 3432 } 3433 for (Value *V : E->Scalars) { 3434 CallInst *CEI = cast<CallInst>(V); 3435 OpVL.push_back(CEI->getArgOperand(j)); 3436 } 3437 3438 Value *OpVec = vectorizeTree(OpVL); 3439 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 3440 OpVecs.push_back(OpVec); 3441 } 3442 3443 Module *M = F->getParent(); 3444 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3445 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 3446 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 3447 SmallVector<OperandBundleDef, 1> OpBundles; 3448 CI->getOperandBundlesAsDefs(OpBundles); 3449 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 3450 3451 // The scalar argument uses an in-tree scalar so we add the new vectorized 3452 // call to ExternalUses list to make sure that an extract will be 3453 // generated in the future. 3454 if (ScalarArg && getTreeEntry(ScalarArg)) 3455 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 3456 3457 propagateIRFlags(V, E->Scalars, VL0); 3458 if (NeedToShuffleReuses) { 3459 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3460 E->ReuseShuffleIndices, "shuffle"); 3461 } 3462 E->VectorizedValue = V; 3463 ++NumVectorInstructions; 3464 return V; 3465 } 3466 case Instruction::ShuffleVector: { 3467 ValueList LHSVL, RHSVL; 3468 assert(Instruction::isBinaryOp(S.Opcode) && 3469 "Invalid Shuffle Vector Operand"); 3470 reorderAltShuffleOperands(S, E->Scalars, LHSVL, RHSVL); 3471 setInsertPointAfterBundle(E->Scalars, S); 3472 3473 Value *LHS = vectorizeTree(LHSVL); 3474 Value *RHS = vectorizeTree(RHSVL); 3475 3476 if (E->VectorizedValue) { 3477 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3478 return E->VectorizedValue; 3479 } 3480 3481 // Create a vector of LHS op1 RHS 3482 Value *V0 = Builder.CreateBinOp( 3483 static_cast<Instruction::BinaryOps>(S.Opcode), LHS, RHS); 3484 3485 // Create a vector of LHS op2 RHS 3486 Value *V1 = Builder.CreateBinOp( 3487 static_cast<Instruction::BinaryOps>(S.AltOpcode), LHS, RHS); 3488 3489 // Create shuffle to take alternate operations from the vector. 3490 // Also, gather up odd and even scalar ops to propagate IR flags to 3491 // each vector operation. 3492 ValueList OpScalars, AltScalars; 3493 unsigned e = E->Scalars.size(); 3494 SmallVector<Constant *, 8> Mask(e); 3495 for (unsigned i = 0; i < e; ++i) { 3496 auto *OpInst = cast<Instruction>(E->Scalars[i]); 3497 unsigned InstOpcode = OpInst->getOpcode(); 3498 assert(sameOpcodeOrAlt(S.Opcode, S.AltOpcode, InstOpcode) && 3499 "Unexpected main/alternate opcode"); 3500 if (InstOpcode == S.AltOpcode) { 3501 Mask[i] = Builder.getInt32(e + i); 3502 AltScalars.push_back(E->Scalars[i]); 3503 } else { 3504 Mask[i] = Builder.getInt32(i); 3505 OpScalars.push_back(E->Scalars[i]); 3506 } 3507 } 3508 3509 Value *ShuffleMask = ConstantVector::get(Mask); 3510 propagateIRFlags(V0, OpScalars); 3511 propagateIRFlags(V1, AltScalars); 3512 3513 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 3514 if (Instruction *I = dyn_cast<Instruction>(V)) 3515 V = propagateMetadata(I, E->Scalars); 3516 if (NeedToShuffleReuses) { 3517 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3518 E->ReuseShuffleIndices, "shuffle"); 3519 } 3520 E->VectorizedValue = V; 3521 ++NumVectorInstructions; 3522 3523 return V; 3524 } 3525 default: 3526 llvm_unreachable("unknown inst"); 3527 } 3528 return nullptr; 3529 } 3530 3531 Value *BoUpSLP::vectorizeTree() { 3532 ExtraValueToDebugLocsMap ExternallyUsedValues; 3533 return vectorizeTree(ExternallyUsedValues); 3534 } 3535 3536 Value * 3537 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3538 // All blocks must be scheduled before any instructions are inserted. 3539 for (auto &BSIter : BlocksSchedules) { 3540 scheduleBlock(BSIter.second.get()); 3541 } 3542 3543 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3544 auto *VectorRoot = vectorizeTree(&VectorizableTree[0]); 3545 3546 // If the vectorized tree can be rewritten in a smaller type, we truncate the 3547 // vectorized root. InstCombine will then rewrite the entire expression. We 3548 // sign extend the extracted values below. 3549 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 3550 if (MinBWs.count(ScalarRoot)) { 3551 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 3552 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 3553 auto BundleWidth = VectorizableTree[0].Scalars.size(); 3554 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 3555 auto *VecTy = VectorType::get(MinTy, BundleWidth); 3556 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 3557 VectorizableTree[0].VectorizedValue = Trunc; 3558 } 3559 3560 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 3561 << " values .\n"); 3562 3563 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 3564 // specified by ScalarType. 3565 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 3566 if (!MinBWs.count(ScalarRoot)) 3567 return Ex; 3568 if (MinBWs[ScalarRoot].second) 3569 return Builder.CreateSExt(Ex, ScalarType); 3570 return Builder.CreateZExt(Ex, ScalarType); 3571 }; 3572 3573 // Extract all of the elements with the external uses. 3574 for (const auto &ExternalUse : ExternalUses) { 3575 Value *Scalar = ExternalUse.Scalar; 3576 llvm::User *User = ExternalUse.User; 3577 3578 // Skip users that we already RAUW. This happens when one instruction 3579 // has multiple uses of the same value. 3580 if (User && !is_contained(Scalar->users(), User)) 3581 continue; 3582 TreeEntry *E = getTreeEntry(Scalar); 3583 assert(E && "Invalid scalar"); 3584 assert(!E->NeedToGather && "Extracting from a gather list"); 3585 3586 Value *Vec = E->VectorizedValue; 3587 assert(Vec && "Can't find vectorizable value"); 3588 3589 Value *Lane = Builder.getInt32(ExternalUse.Lane); 3590 // If User == nullptr, the Scalar is used as extra arg. Generate 3591 // ExtractElement instruction and update the record for this scalar in 3592 // ExternallyUsedValues. 3593 if (!User) { 3594 assert(ExternallyUsedValues.count(Scalar) && 3595 "Scalar with nullptr as an external user must be registered in " 3596 "ExternallyUsedValues map"); 3597 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 3598 Builder.SetInsertPoint(VecI->getParent(), 3599 std::next(VecI->getIterator())); 3600 } else { 3601 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3602 } 3603 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3604 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3605 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 3606 auto &Locs = ExternallyUsedValues[Scalar]; 3607 ExternallyUsedValues.insert({Ex, Locs}); 3608 ExternallyUsedValues.erase(Scalar); 3609 continue; 3610 } 3611 3612 // Generate extracts for out-of-tree users. 3613 // Find the insertion point for the extractelement lane. 3614 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 3615 if (PHINode *PH = dyn_cast<PHINode>(User)) { 3616 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 3617 if (PH->getIncomingValue(i) == Scalar) { 3618 TerminatorInst *IncomingTerminator = 3619 PH->getIncomingBlock(i)->getTerminator(); 3620 if (isa<CatchSwitchInst>(IncomingTerminator)) { 3621 Builder.SetInsertPoint(VecI->getParent(), 3622 std::next(VecI->getIterator())); 3623 } else { 3624 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 3625 } 3626 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3627 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3628 CSEBlocks.insert(PH->getIncomingBlock(i)); 3629 PH->setOperand(i, Ex); 3630 } 3631 } 3632 } else { 3633 Builder.SetInsertPoint(cast<Instruction>(User)); 3634 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3635 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3636 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 3637 User->replaceUsesOfWith(Scalar, Ex); 3638 } 3639 } else { 3640 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3641 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3642 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3643 CSEBlocks.insert(&F->getEntryBlock()); 3644 User->replaceUsesOfWith(Scalar, Ex); 3645 } 3646 3647 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 3648 } 3649 3650 // For each vectorized value: 3651 for (TreeEntry &EIdx : VectorizableTree) { 3652 TreeEntry *Entry = &EIdx; 3653 3654 // No need to handle users of gathered values. 3655 if (Entry->NeedToGather) 3656 continue; 3657 3658 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 3659 3660 // For each lane: 3661 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3662 Value *Scalar = Entry->Scalars[Lane]; 3663 3664 Type *Ty = Scalar->getType(); 3665 if (!Ty->isVoidTy()) { 3666 #ifndef NDEBUG 3667 for (User *U : Scalar->users()) { 3668 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 3669 3670 // It is legal to replace users in the ignorelist by undef. 3671 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 3672 "Replacing out-of-tree value with undef"); 3673 } 3674 #endif 3675 Value *Undef = UndefValue::get(Ty); 3676 Scalar->replaceAllUsesWith(Undef); 3677 } 3678 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 3679 eraseInstruction(cast<Instruction>(Scalar)); 3680 } 3681 } 3682 3683 Builder.ClearInsertionPoint(); 3684 3685 return VectorizableTree[0].VectorizedValue; 3686 } 3687 3688 void BoUpSLP::optimizeGatherSequence() { 3689 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 3690 << " gather sequences instructions.\n"); 3691 // LICM InsertElementInst sequences. 3692 for (Instruction *I : GatherSeq) { 3693 if (!isa<InsertElementInst>(I) && !isa<ShuffleVectorInst>(I)) 3694 continue; 3695 3696 // Check if this block is inside a loop. 3697 Loop *L = LI->getLoopFor(I->getParent()); 3698 if (!L) 3699 continue; 3700 3701 // Check if it has a preheader. 3702 BasicBlock *PreHeader = L->getLoopPreheader(); 3703 if (!PreHeader) 3704 continue; 3705 3706 // If the vector or the element that we insert into it are 3707 // instructions that are defined in this basic block then we can't 3708 // hoist this instruction. 3709 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 3710 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 3711 if (Op0 && L->contains(Op0)) 3712 continue; 3713 if (Op1 && L->contains(Op1)) 3714 continue; 3715 3716 // We can hoist this instruction. Move it to the pre-header. 3717 I->moveBefore(PreHeader->getTerminator()); 3718 } 3719 3720 // Make a list of all reachable blocks in our CSE queue. 3721 SmallVector<const DomTreeNode *, 8> CSEWorkList; 3722 CSEWorkList.reserve(CSEBlocks.size()); 3723 for (BasicBlock *BB : CSEBlocks) 3724 if (DomTreeNode *N = DT->getNode(BB)) { 3725 assert(DT->isReachableFromEntry(N)); 3726 CSEWorkList.push_back(N); 3727 } 3728 3729 // Sort blocks by domination. This ensures we visit a block after all blocks 3730 // dominating it are visited. 3731 std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), 3732 [this](const DomTreeNode *A, const DomTreeNode *B) { 3733 return DT->properlyDominates(A, B); 3734 }); 3735 3736 // Perform O(N^2) search over the gather sequences and merge identical 3737 // instructions. TODO: We can further optimize this scan if we split the 3738 // instructions into different buckets based on the insert lane. 3739 SmallVector<Instruction *, 16> Visited; 3740 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 3741 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 3742 "Worklist not sorted properly!"); 3743 BasicBlock *BB = (*I)->getBlock(); 3744 // For all instructions in blocks containing gather sequences: 3745 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 3746 Instruction *In = &*it++; 3747 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 3748 continue; 3749 3750 // Check if we can replace this instruction with any of the 3751 // visited instructions. 3752 for (Instruction *v : Visited) { 3753 if (In->isIdenticalTo(v) && 3754 DT->dominates(v->getParent(), In->getParent())) { 3755 In->replaceAllUsesWith(v); 3756 eraseInstruction(In); 3757 In = nullptr; 3758 break; 3759 } 3760 } 3761 if (In) { 3762 assert(!is_contained(Visited, In)); 3763 Visited.push_back(In); 3764 } 3765 } 3766 } 3767 CSEBlocks.clear(); 3768 GatherSeq.clear(); 3769 } 3770 3771 // Groups the instructions to a bundle (which is then a single scheduling entity) 3772 // and schedules instructions until the bundle gets ready. 3773 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, 3774 BoUpSLP *SLP, 3775 const InstructionsState &S) { 3776 if (isa<PHINode>(S.OpValue)) 3777 return true; 3778 3779 // Initialize the instruction bundle. 3780 Instruction *OldScheduleEnd = ScheduleEnd; 3781 ScheduleData *PrevInBundle = nullptr; 3782 ScheduleData *Bundle = nullptr; 3783 bool ReSchedule = false; 3784 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 3785 3786 // Make sure that the scheduling region contains all 3787 // instructions of the bundle. 3788 for (Value *V : VL) { 3789 if (!extendSchedulingRegion(V, S)) 3790 return false; 3791 } 3792 3793 for (Value *V : VL) { 3794 ScheduleData *BundleMember = getScheduleData(V); 3795 assert(BundleMember && 3796 "no ScheduleData for bundle member (maybe not in same basic block)"); 3797 if (BundleMember->IsScheduled) { 3798 // A bundle member was scheduled as single instruction before and now 3799 // needs to be scheduled as part of the bundle. We just get rid of the 3800 // existing schedule. 3801 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 3802 << " was already scheduled\n"); 3803 ReSchedule = true; 3804 } 3805 assert(BundleMember->isSchedulingEntity() && 3806 "bundle member already part of other bundle"); 3807 if (PrevInBundle) { 3808 PrevInBundle->NextInBundle = BundleMember; 3809 } else { 3810 Bundle = BundleMember; 3811 } 3812 BundleMember->UnscheduledDepsInBundle = 0; 3813 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 3814 3815 // Group the instructions to a bundle. 3816 BundleMember->FirstInBundle = Bundle; 3817 PrevInBundle = BundleMember; 3818 } 3819 if (ScheduleEnd != OldScheduleEnd) { 3820 // The scheduling region got new instructions at the lower end (or it is a 3821 // new region for the first bundle). This makes it necessary to 3822 // recalculate all dependencies. 3823 // It is seldom that this needs to be done a second time after adding the 3824 // initial bundle to the region. 3825 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3826 doForAllOpcodes(I, [](ScheduleData *SD) { 3827 SD->clearDependencies(); 3828 }); 3829 } 3830 ReSchedule = true; 3831 } 3832 if (ReSchedule) { 3833 resetSchedule(); 3834 initialFillReadyList(ReadyInsts); 3835 } 3836 3837 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 3838 << BB->getName() << "\n"); 3839 3840 calculateDependencies(Bundle, true, SLP); 3841 3842 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 3843 // means that there are no cyclic dependencies and we can schedule it. 3844 // Note that's important that we don't "schedule" the bundle yet (see 3845 // cancelScheduling). 3846 while (!Bundle->isReady() && !ReadyInsts.empty()) { 3847 3848 ScheduleData *pickedSD = ReadyInsts.back(); 3849 ReadyInsts.pop_back(); 3850 3851 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 3852 schedule(pickedSD, ReadyInsts); 3853 } 3854 } 3855 if (!Bundle->isReady()) { 3856 cancelScheduling(VL, S.OpValue); 3857 return false; 3858 } 3859 return true; 3860 } 3861 3862 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 3863 Value *OpValue) { 3864 if (isa<PHINode>(OpValue)) 3865 return; 3866 3867 ScheduleData *Bundle = getScheduleData(OpValue); 3868 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 3869 assert(!Bundle->IsScheduled && 3870 "Can't cancel bundle which is already scheduled"); 3871 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 3872 "tried to unbundle something which is not a bundle"); 3873 3874 // Un-bundle: make single instructions out of the bundle. 3875 ScheduleData *BundleMember = Bundle; 3876 while (BundleMember) { 3877 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 3878 BundleMember->FirstInBundle = BundleMember; 3879 ScheduleData *Next = BundleMember->NextInBundle; 3880 BundleMember->NextInBundle = nullptr; 3881 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 3882 if (BundleMember->UnscheduledDepsInBundle == 0) { 3883 ReadyInsts.insert(BundleMember); 3884 } 3885 BundleMember = Next; 3886 } 3887 } 3888 3889 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 3890 // Allocate a new ScheduleData for the instruction. 3891 if (ChunkPos >= ChunkSize) { 3892 ScheduleDataChunks.push_back(llvm::make_unique<ScheduleData[]>(ChunkSize)); 3893 ChunkPos = 0; 3894 } 3895 return &(ScheduleDataChunks.back()[ChunkPos++]); 3896 } 3897 3898 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 3899 const InstructionsState &S) { 3900 if (getScheduleData(V, isOneOf(S, V))) 3901 return true; 3902 Instruction *I = dyn_cast<Instruction>(V); 3903 assert(I && "bundle member must be an instruction"); 3904 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 3905 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 3906 ScheduleData *ISD = getScheduleData(I); 3907 if (!ISD) 3908 return false; 3909 assert(isInSchedulingRegion(ISD) && 3910 "ScheduleData not in scheduling region"); 3911 ScheduleData *SD = allocateScheduleDataChunks(); 3912 SD->Inst = I; 3913 SD->init(SchedulingRegionID, S.OpValue); 3914 ExtraScheduleDataMap[I][S.OpValue] = SD; 3915 return true; 3916 }; 3917 if (CheckSheduleForI(I)) 3918 return true; 3919 if (!ScheduleStart) { 3920 // It's the first instruction in the new region. 3921 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 3922 ScheduleStart = I; 3923 ScheduleEnd = I->getNextNode(); 3924 if (isOneOf(S, I) != I) 3925 CheckSheduleForI(I); 3926 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 3927 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 3928 return true; 3929 } 3930 // Search up and down at the same time, because we don't know if the new 3931 // instruction is above or below the existing scheduling region. 3932 BasicBlock::reverse_iterator UpIter = 3933 ++ScheduleStart->getIterator().getReverse(); 3934 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 3935 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 3936 BasicBlock::iterator LowerEnd = BB->end(); 3937 while (true) { 3938 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 3939 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 3940 return false; 3941 } 3942 3943 if (UpIter != UpperEnd) { 3944 if (&*UpIter == I) { 3945 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 3946 ScheduleStart = I; 3947 if (isOneOf(S, I) != I) 3948 CheckSheduleForI(I); 3949 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 3950 << "\n"); 3951 return true; 3952 } 3953 UpIter++; 3954 } 3955 if (DownIter != LowerEnd) { 3956 if (&*DownIter == I) { 3957 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 3958 nullptr); 3959 ScheduleEnd = I->getNextNode(); 3960 if (isOneOf(S, I) != I) 3961 CheckSheduleForI(I); 3962 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 3963 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I 3964 << "\n"); 3965 return true; 3966 } 3967 DownIter++; 3968 } 3969 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 3970 "instruction not found in block"); 3971 } 3972 return true; 3973 } 3974 3975 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 3976 Instruction *ToI, 3977 ScheduleData *PrevLoadStore, 3978 ScheduleData *NextLoadStore) { 3979 ScheduleData *CurrentLoadStore = PrevLoadStore; 3980 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 3981 ScheduleData *SD = ScheduleDataMap[I]; 3982 if (!SD) { 3983 SD = allocateScheduleDataChunks(); 3984 ScheduleDataMap[I] = SD; 3985 SD->Inst = I; 3986 } 3987 assert(!isInSchedulingRegion(SD) && 3988 "new ScheduleData already in scheduling region"); 3989 SD->init(SchedulingRegionID, I); 3990 3991 if (I->mayReadOrWriteMemory() && 3992 (!isa<IntrinsicInst>(I) || 3993 cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) { 3994 // Update the linked list of memory accessing instructions. 3995 if (CurrentLoadStore) { 3996 CurrentLoadStore->NextLoadStore = SD; 3997 } else { 3998 FirstLoadStoreInRegion = SD; 3999 } 4000 CurrentLoadStore = SD; 4001 } 4002 } 4003 if (NextLoadStore) { 4004 if (CurrentLoadStore) 4005 CurrentLoadStore->NextLoadStore = NextLoadStore; 4006 } else { 4007 LastLoadStoreInRegion = CurrentLoadStore; 4008 } 4009 } 4010 4011 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 4012 bool InsertInReadyList, 4013 BoUpSLP *SLP) { 4014 assert(SD->isSchedulingEntity()); 4015 4016 SmallVector<ScheduleData *, 10> WorkList; 4017 WorkList.push_back(SD); 4018 4019 while (!WorkList.empty()) { 4020 ScheduleData *SD = WorkList.back(); 4021 WorkList.pop_back(); 4022 4023 ScheduleData *BundleMember = SD; 4024 while (BundleMember) { 4025 assert(isInSchedulingRegion(BundleMember)); 4026 if (!BundleMember->hasValidDependencies()) { 4027 4028 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 4029 << "\n"); 4030 BundleMember->Dependencies = 0; 4031 BundleMember->resetUnscheduledDeps(); 4032 4033 // Handle def-use chain dependencies. 4034 if (BundleMember->OpValue != BundleMember->Inst) { 4035 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 4036 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 4037 BundleMember->Dependencies++; 4038 ScheduleData *DestBundle = UseSD->FirstInBundle; 4039 if (!DestBundle->IsScheduled) 4040 BundleMember->incrementUnscheduledDeps(1); 4041 if (!DestBundle->hasValidDependencies()) 4042 WorkList.push_back(DestBundle); 4043 } 4044 } else { 4045 for (User *U : BundleMember->Inst->users()) { 4046 if (isa<Instruction>(U)) { 4047 ScheduleData *UseSD = getScheduleData(U); 4048 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 4049 BundleMember->Dependencies++; 4050 ScheduleData *DestBundle = UseSD->FirstInBundle; 4051 if (!DestBundle->IsScheduled) 4052 BundleMember->incrementUnscheduledDeps(1); 4053 if (!DestBundle->hasValidDependencies()) 4054 WorkList.push_back(DestBundle); 4055 } 4056 } else { 4057 // I'm not sure if this can ever happen. But we need to be safe. 4058 // This lets the instruction/bundle never be scheduled and 4059 // eventually disable vectorization. 4060 BundleMember->Dependencies++; 4061 BundleMember->incrementUnscheduledDeps(1); 4062 } 4063 } 4064 } 4065 4066 // Handle the memory dependencies. 4067 ScheduleData *DepDest = BundleMember->NextLoadStore; 4068 if (DepDest) { 4069 Instruction *SrcInst = BundleMember->Inst; 4070 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 4071 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 4072 unsigned numAliased = 0; 4073 unsigned DistToSrc = 1; 4074 4075 while (DepDest) { 4076 assert(isInSchedulingRegion(DepDest)); 4077 4078 // We have two limits to reduce the complexity: 4079 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 4080 // SLP->isAliased (which is the expensive part in this loop). 4081 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 4082 // the whole loop (even if the loop is fast, it's quadratic). 4083 // It's important for the loop break condition (see below) to 4084 // check this limit even between two read-only instructions. 4085 if (DistToSrc >= MaxMemDepDistance || 4086 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 4087 (numAliased >= AliasedCheckLimit || 4088 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 4089 4090 // We increment the counter only if the locations are aliased 4091 // (instead of counting all alias checks). This gives a better 4092 // balance between reduced runtime and accurate dependencies. 4093 numAliased++; 4094 4095 DepDest->MemoryDependencies.push_back(BundleMember); 4096 BundleMember->Dependencies++; 4097 ScheduleData *DestBundle = DepDest->FirstInBundle; 4098 if (!DestBundle->IsScheduled) { 4099 BundleMember->incrementUnscheduledDeps(1); 4100 } 4101 if (!DestBundle->hasValidDependencies()) { 4102 WorkList.push_back(DestBundle); 4103 } 4104 } 4105 DepDest = DepDest->NextLoadStore; 4106 4107 // Example, explaining the loop break condition: Let's assume our 4108 // starting instruction is i0 and MaxMemDepDistance = 3. 4109 // 4110 // +--------v--v--v 4111 // i0,i1,i2,i3,i4,i5,i6,i7,i8 4112 // +--------^--^--^ 4113 // 4114 // MaxMemDepDistance let us stop alias-checking at i3 and we add 4115 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 4116 // Previously we already added dependencies from i3 to i6,i7,i8 4117 // (because of MaxMemDepDistance). As we added a dependency from 4118 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 4119 // and we can abort this loop at i6. 4120 if (DistToSrc >= 2 * MaxMemDepDistance) 4121 break; 4122 DistToSrc++; 4123 } 4124 } 4125 } 4126 BundleMember = BundleMember->NextInBundle; 4127 } 4128 if (InsertInReadyList && SD->isReady()) { 4129 ReadyInsts.push_back(SD); 4130 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 4131 << "\n"); 4132 } 4133 } 4134 } 4135 4136 void BoUpSLP::BlockScheduling::resetSchedule() { 4137 assert(ScheduleStart && 4138 "tried to reset schedule on block which has not been scheduled"); 4139 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 4140 doForAllOpcodes(I, [&](ScheduleData *SD) { 4141 assert(isInSchedulingRegion(SD) && 4142 "ScheduleData not in scheduling region"); 4143 SD->IsScheduled = false; 4144 SD->resetUnscheduledDeps(); 4145 }); 4146 } 4147 ReadyInsts.clear(); 4148 } 4149 4150 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 4151 if (!BS->ScheduleStart) 4152 return; 4153 4154 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 4155 4156 BS->resetSchedule(); 4157 4158 // For the real scheduling we use a more sophisticated ready-list: it is 4159 // sorted by the original instruction location. This lets the final schedule 4160 // be as close as possible to the original instruction order. 4161 struct ScheduleDataCompare { 4162 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 4163 return SD2->SchedulingPriority < SD1->SchedulingPriority; 4164 } 4165 }; 4166 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 4167 4168 // Ensure that all dependency data is updated and fill the ready-list with 4169 // initial instructions. 4170 int Idx = 0; 4171 int NumToSchedule = 0; 4172 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 4173 I = I->getNextNode()) { 4174 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 4175 assert(SD->isPartOfBundle() == 4176 (getTreeEntry(SD->Inst) != nullptr) && 4177 "scheduler and vectorizer bundle mismatch"); 4178 SD->FirstInBundle->SchedulingPriority = Idx++; 4179 if (SD->isSchedulingEntity()) { 4180 BS->calculateDependencies(SD, false, this); 4181 NumToSchedule++; 4182 } 4183 }); 4184 } 4185 BS->initialFillReadyList(ReadyInsts); 4186 4187 Instruction *LastScheduledInst = BS->ScheduleEnd; 4188 4189 // Do the "real" scheduling. 4190 while (!ReadyInsts.empty()) { 4191 ScheduleData *picked = *ReadyInsts.begin(); 4192 ReadyInsts.erase(ReadyInsts.begin()); 4193 4194 // Move the scheduled instruction(s) to their dedicated places, if not 4195 // there yet. 4196 ScheduleData *BundleMember = picked; 4197 while (BundleMember) { 4198 Instruction *pickedInst = BundleMember->Inst; 4199 if (LastScheduledInst->getNextNode() != pickedInst) { 4200 BS->BB->getInstList().remove(pickedInst); 4201 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 4202 pickedInst); 4203 } 4204 LastScheduledInst = pickedInst; 4205 BundleMember = BundleMember->NextInBundle; 4206 } 4207 4208 BS->schedule(picked, ReadyInsts); 4209 NumToSchedule--; 4210 } 4211 assert(NumToSchedule == 0 && "could not schedule all instructions"); 4212 4213 // Avoid duplicate scheduling of the block. 4214 BS->ScheduleStart = nullptr; 4215 } 4216 4217 unsigned BoUpSLP::getVectorElementSize(Value *V) { 4218 // If V is a store, just return the width of the stored value without 4219 // traversing the expression tree. This is the common case. 4220 if (auto *Store = dyn_cast<StoreInst>(V)) 4221 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 4222 4223 // If V is not a store, we can traverse the expression tree to find loads 4224 // that feed it. The type of the loaded value may indicate a more suitable 4225 // width than V's type. We want to base the vector element size on the width 4226 // of memory operations where possible. 4227 SmallVector<Instruction *, 16> Worklist; 4228 SmallPtrSet<Instruction *, 16> Visited; 4229 if (auto *I = dyn_cast<Instruction>(V)) 4230 Worklist.push_back(I); 4231 4232 // Traverse the expression tree in bottom-up order looking for loads. If we 4233 // encounter an instruciton we don't yet handle, we give up. 4234 auto MaxWidth = 0u; 4235 auto FoundUnknownInst = false; 4236 while (!Worklist.empty() && !FoundUnknownInst) { 4237 auto *I = Worklist.pop_back_val(); 4238 Visited.insert(I); 4239 4240 // We should only be looking at scalar instructions here. If the current 4241 // instruction has a vector type, give up. 4242 auto *Ty = I->getType(); 4243 if (isa<VectorType>(Ty)) 4244 FoundUnknownInst = true; 4245 4246 // If the current instruction is a load, update MaxWidth to reflect the 4247 // width of the loaded value. 4248 else if (isa<LoadInst>(I)) 4249 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 4250 4251 // Otherwise, we need to visit the operands of the instruction. We only 4252 // handle the interesting cases from buildTree here. If an operand is an 4253 // instruction we haven't yet visited, we add it to the worklist. 4254 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 4255 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 4256 for (Use &U : I->operands()) 4257 if (auto *J = dyn_cast<Instruction>(U.get())) 4258 if (!Visited.count(J)) 4259 Worklist.push_back(J); 4260 } 4261 4262 // If we don't yet handle the instruction, give up. 4263 else 4264 FoundUnknownInst = true; 4265 } 4266 4267 // If we didn't encounter a memory access in the expression tree, or if we 4268 // gave up for some reason, just return the width of V. 4269 if (!MaxWidth || FoundUnknownInst) 4270 return DL->getTypeSizeInBits(V->getType()); 4271 4272 // Otherwise, return the maximum width we found. 4273 return MaxWidth; 4274 } 4275 4276 // Determine if a value V in a vectorizable expression Expr can be demoted to a 4277 // smaller type with a truncation. We collect the values that will be demoted 4278 // in ToDemote and additional roots that require investigating in Roots. 4279 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 4280 SmallVectorImpl<Value *> &ToDemote, 4281 SmallVectorImpl<Value *> &Roots) { 4282 // We can always demote constants. 4283 if (isa<Constant>(V)) { 4284 ToDemote.push_back(V); 4285 return true; 4286 } 4287 4288 // If the value is not an instruction in the expression with only one use, it 4289 // cannot be demoted. 4290 auto *I = dyn_cast<Instruction>(V); 4291 if (!I || !I->hasOneUse() || !Expr.count(I)) 4292 return false; 4293 4294 switch (I->getOpcode()) { 4295 4296 // We can always demote truncations and extensions. Since truncations can 4297 // seed additional demotion, we save the truncated value. 4298 case Instruction::Trunc: 4299 Roots.push_back(I->getOperand(0)); 4300 break; 4301 case Instruction::ZExt: 4302 case Instruction::SExt: 4303 break; 4304 4305 // We can demote certain binary operations if we can demote both of their 4306 // operands. 4307 case Instruction::Add: 4308 case Instruction::Sub: 4309 case Instruction::Mul: 4310 case Instruction::And: 4311 case Instruction::Or: 4312 case Instruction::Xor: 4313 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 4314 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 4315 return false; 4316 break; 4317 4318 // We can demote selects if we can demote their true and false values. 4319 case Instruction::Select: { 4320 SelectInst *SI = cast<SelectInst>(I); 4321 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 4322 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 4323 return false; 4324 break; 4325 } 4326 4327 // We can demote phis if we can demote all their incoming operands. Note that 4328 // we don't need to worry about cycles since we ensure single use above. 4329 case Instruction::PHI: { 4330 PHINode *PN = cast<PHINode>(I); 4331 for (Value *IncValue : PN->incoming_values()) 4332 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 4333 return false; 4334 break; 4335 } 4336 4337 // Otherwise, conservatively give up. 4338 default: 4339 return false; 4340 } 4341 4342 // Record the value that we can demote. 4343 ToDemote.push_back(V); 4344 return true; 4345 } 4346 4347 void BoUpSLP::computeMinimumValueSizes() { 4348 // If there are no external uses, the expression tree must be rooted by a 4349 // store. We can't demote in-memory values, so there is nothing to do here. 4350 if (ExternalUses.empty()) 4351 return; 4352 4353 // We only attempt to truncate integer expressions. 4354 auto &TreeRoot = VectorizableTree[0].Scalars; 4355 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 4356 if (!TreeRootIT) 4357 return; 4358 4359 // If the expression is not rooted by a store, these roots should have 4360 // external uses. We will rely on InstCombine to rewrite the expression in 4361 // the narrower type. However, InstCombine only rewrites single-use values. 4362 // This means that if a tree entry other than a root is used externally, it 4363 // must have multiple uses and InstCombine will not rewrite it. The code 4364 // below ensures that only the roots are used externally. 4365 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 4366 for (auto &EU : ExternalUses) 4367 if (!Expr.erase(EU.Scalar)) 4368 return; 4369 if (!Expr.empty()) 4370 return; 4371 4372 // Collect the scalar values of the vectorizable expression. We will use this 4373 // context to determine which values can be demoted. If we see a truncation, 4374 // we mark it as seeding another demotion. 4375 for (auto &Entry : VectorizableTree) 4376 Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end()); 4377 4378 // Ensure the roots of the vectorizable tree don't form a cycle. They must 4379 // have a single external user that is not in the vectorizable tree. 4380 for (auto *Root : TreeRoot) 4381 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 4382 return; 4383 4384 // Conservatively determine if we can actually truncate the roots of the 4385 // expression. Collect the values that can be demoted in ToDemote and 4386 // additional roots that require investigating in Roots. 4387 SmallVector<Value *, 32> ToDemote; 4388 SmallVector<Value *, 4> Roots; 4389 for (auto *Root : TreeRoot) 4390 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 4391 return; 4392 4393 // The maximum bit width required to represent all the values that can be 4394 // demoted without loss of precision. It would be safe to truncate the roots 4395 // of the expression to this width. 4396 auto MaxBitWidth = 8u; 4397 4398 // We first check if all the bits of the roots are demanded. If they're not, 4399 // we can truncate the roots to this narrower type. 4400 for (auto *Root : TreeRoot) { 4401 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 4402 MaxBitWidth = std::max<unsigned>( 4403 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 4404 } 4405 4406 // True if the roots can be zero-extended back to their original type, rather 4407 // than sign-extended. We know that if the leading bits are not demanded, we 4408 // can safely zero-extend. So we initialize IsKnownPositive to True. 4409 bool IsKnownPositive = true; 4410 4411 // If all the bits of the roots are demanded, we can try a little harder to 4412 // compute a narrower type. This can happen, for example, if the roots are 4413 // getelementptr indices. InstCombine promotes these indices to the pointer 4414 // width. Thus, all their bits are technically demanded even though the 4415 // address computation might be vectorized in a smaller type. 4416 // 4417 // We start by looking at each entry that can be demoted. We compute the 4418 // maximum bit width required to store the scalar by using ValueTracking to 4419 // compute the number of high-order bits we can truncate. 4420 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 4421 llvm::all_of(TreeRoot, [](Value *R) { 4422 assert(R->hasOneUse() && "Root should have only one use!"); 4423 return isa<GetElementPtrInst>(R->user_back()); 4424 })) { 4425 MaxBitWidth = 8u; 4426 4427 // Determine if the sign bit of all the roots is known to be zero. If not, 4428 // IsKnownPositive is set to False. 4429 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 4430 KnownBits Known = computeKnownBits(R, *DL); 4431 return Known.isNonNegative(); 4432 }); 4433 4434 // Determine the maximum number of bits required to store the scalar 4435 // values. 4436 for (auto *Scalar : ToDemote) { 4437 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 4438 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 4439 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 4440 } 4441 4442 // If we can't prove that the sign bit is zero, we must add one to the 4443 // maximum bit width to account for the unknown sign bit. This preserves 4444 // the existing sign bit so we can safely sign-extend the root back to the 4445 // original type. Otherwise, if we know the sign bit is zero, we will 4446 // zero-extend the root instead. 4447 // 4448 // FIXME: This is somewhat suboptimal, as there will be cases where adding 4449 // one to the maximum bit width will yield a larger-than-necessary 4450 // type. In general, we need to add an extra bit only if we can't 4451 // prove that the upper bit of the original type is equal to the 4452 // upper bit of the proposed smaller type. If these two bits are the 4453 // same (either zero or one) we know that sign-extending from the 4454 // smaller type will result in the same value. Here, since we can't 4455 // yet prove this, we are just making the proposed smaller type 4456 // larger to ensure correctness. 4457 if (!IsKnownPositive) 4458 ++MaxBitWidth; 4459 } 4460 4461 // Round MaxBitWidth up to the next power-of-two. 4462 if (!isPowerOf2_64(MaxBitWidth)) 4463 MaxBitWidth = NextPowerOf2(MaxBitWidth); 4464 4465 // If the maximum bit width we compute is less than the with of the roots' 4466 // type, we can proceed with the narrowing. Otherwise, do nothing. 4467 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 4468 return; 4469 4470 // If we can truncate the root, we must collect additional values that might 4471 // be demoted as a result. That is, those seeded by truncations we will 4472 // modify. 4473 while (!Roots.empty()) 4474 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 4475 4476 // Finally, map the values we can demote to the maximum bit with we computed. 4477 for (auto *Scalar : ToDemote) 4478 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 4479 } 4480 4481 namespace { 4482 4483 /// The SLPVectorizer Pass. 4484 struct SLPVectorizer : public FunctionPass { 4485 SLPVectorizerPass Impl; 4486 4487 /// Pass identification, replacement for typeid 4488 static char ID; 4489 4490 explicit SLPVectorizer() : FunctionPass(ID) { 4491 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 4492 } 4493 4494 bool doInitialization(Module &M) override { 4495 return false; 4496 } 4497 4498 bool runOnFunction(Function &F) override { 4499 if (skipFunction(F)) 4500 return false; 4501 4502 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 4503 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 4504 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 4505 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 4506 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 4507 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 4508 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 4509 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 4510 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 4511 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 4512 4513 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 4514 } 4515 4516 void getAnalysisUsage(AnalysisUsage &AU) const override { 4517 FunctionPass::getAnalysisUsage(AU); 4518 AU.addRequired<AssumptionCacheTracker>(); 4519 AU.addRequired<ScalarEvolutionWrapperPass>(); 4520 AU.addRequired<AAResultsWrapperPass>(); 4521 AU.addRequired<TargetTransformInfoWrapperPass>(); 4522 AU.addRequired<LoopInfoWrapperPass>(); 4523 AU.addRequired<DominatorTreeWrapperPass>(); 4524 AU.addRequired<DemandedBitsWrapperPass>(); 4525 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 4526 AU.addPreserved<LoopInfoWrapperPass>(); 4527 AU.addPreserved<DominatorTreeWrapperPass>(); 4528 AU.addPreserved<AAResultsWrapperPass>(); 4529 AU.addPreserved<GlobalsAAWrapperPass>(); 4530 AU.setPreservesCFG(); 4531 } 4532 }; 4533 4534 } // end anonymous namespace 4535 4536 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 4537 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 4538 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 4539 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 4540 auto *AA = &AM.getResult<AAManager>(F); 4541 auto *LI = &AM.getResult<LoopAnalysis>(F); 4542 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 4543 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 4544 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 4545 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4546 4547 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 4548 if (!Changed) 4549 return PreservedAnalyses::all(); 4550 4551 PreservedAnalyses PA; 4552 PA.preserveSet<CFGAnalyses>(); 4553 PA.preserve<AAManager>(); 4554 PA.preserve<GlobalsAA>(); 4555 return PA; 4556 } 4557 4558 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 4559 TargetTransformInfo *TTI_, 4560 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 4561 LoopInfo *LI_, DominatorTree *DT_, 4562 AssumptionCache *AC_, DemandedBits *DB_, 4563 OptimizationRemarkEmitter *ORE_) { 4564 SE = SE_; 4565 TTI = TTI_; 4566 TLI = TLI_; 4567 AA = AA_; 4568 LI = LI_; 4569 DT = DT_; 4570 AC = AC_; 4571 DB = DB_; 4572 DL = &F.getParent()->getDataLayout(); 4573 4574 Stores.clear(); 4575 GEPs.clear(); 4576 bool Changed = false; 4577 4578 // If the target claims to have no vector registers don't attempt 4579 // vectorization. 4580 if (!TTI->getNumberOfRegisters(true)) 4581 return false; 4582 4583 // Don't vectorize when the attribute NoImplicitFloat is used. 4584 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 4585 return false; 4586 4587 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 4588 4589 // Use the bottom up slp vectorizer to construct chains that start with 4590 // store instructions. 4591 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 4592 4593 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 4594 // delete instructions. 4595 4596 // Scan the blocks in the function in post order. 4597 for (auto BB : post_order(&F.getEntryBlock())) { 4598 collectSeedInstructions(BB); 4599 4600 // Vectorize trees that end at stores. 4601 if (!Stores.empty()) { 4602 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 4603 << " underlying objects.\n"); 4604 Changed |= vectorizeStoreChains(R); 4605 } 4606 4607 // Vectorize trees that end at reductions. 4608 Changed |= vectorizeChainsInBlock(BB, R); 4609 4610 // Vectorize the index computations of getelementptr instructions. This 4611 // is primarily intended to catch gather-like idioms ending at 4612 // non-consecutive loads. 4613 if (!GEPs.empty()) { 4614 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 4615 << " underlying objects.\n"); 4616 Changed |= vectorizeGEPIndices(BB, R); 4617 } 4618 } 4619 4620 if (Changed) { 4621 R.optimizeGatherSequence(); 4622 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 4623 LLVM_DEBUG(verifyFunction(F)); 4624 } 4625 return Changed; 4626 } 4627 4628 /// Check that the Values in the slice in VL array are still existent in 4629 /// the WeakTrackingVH array. 4630 /// Vectorization of part of the VL array may cause later values in the VL array 4631 /// to become invalid. We track when this has happened in the WeakTrackingVH 4632 /// array. 4633 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, 4634 ArrayRef<WeakTrackingVH> VH, unsigned SliceBegin, 4635 unsigned SliceSize) { 4636 VL = VL.slice(SliceBegin, SliceSize); 4637 VH = VH.slice(SliceBegin, SliceSize); 4638 return !std::equal(VL.begin(), VL.end(), VH.begin()); 4639 } 4640 4641 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 4642 unsigned VecRegSize) { 4643 const unsigned ChainLen = Chain.size(); 4644 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 4645 << "\n"); 4646 const unsigned Sz = R.getVectorElementSize(Chain[0]); 4647 const unsigned VF = VecRegSize / Sz; 4648 4649 if (!isPowerOf2_32(Sz) || VF < 2) 4650 return false; 4651 4652 // Keep track of values that were deleted by vectorizing in the loop below. 4653 const SmallVector<WeakTrackingVH, 8> TrackValues(Chain.begin(), Chain.end()); 4654 4655 bool Changed = false; 4656 // Look for profitable vectorizable trees at all offsets, starting at zero. 4657 for (unsigned i = 0, e = ChainLen; i + VF <= e; ++i) { 4658 4659 // Check that a previous iteration of this loop did not delete the Value. 4660 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 4661 continue; 4662 4663 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 4664 << "\n"); 4665 ArrayRef<Value *> Operands = Chain.slice(i, VF); 4666 4667 R.buildTree(Operands); 4668 if (R.isTreeTinyAndNotFullyVectorizable()) 4669 continue; 4670 4671 R.computeMinimumValueSizes(); 4672 4673 int Cost = R.getTreeCost(); 4674 4675 LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF 4676 << "\n"); 4677 if (Cost < -SLPCostThreshold) { 4678 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 4679 4680 using namespace ore; 4681 4682 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 4683 cast<StoreInst>(Chain[i])) 4684 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 4685 << " and with tree size " 4686 << NV("TreeSize", R.getTreeSize())); 4687 4688 R.vectorizeTree(); 4689 4690 // Move to the next bundle. 4691 i += VF - 1; 4692 Changed = true; 4693 } 4694 } 4695 4696 return Changed; 4697 } 4698 4699 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 4700 BoUpSLP &R) { 4701 SetVector<StoreInst *> Heads; 4702 SmallDenseSet<StoreInst *> Tails; 4703 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 4704 4705 // We may run into multiple chains that merge into a single chain. We mark the 4706 // stores that we vectorized so that we don't visit the same store twice. 4707 BoUpSLP::ValueSet VectorizedStores; 4708 bool Changed = false; 4709 4710 // Do a quadratic search on all of the given stores in reverse order and find 4711 // all of the pairs of stores that follow each other. 4712 SmallVector<unsigned, 16> IndexQueue; 4713 unsigned E = Stores.size(); 4714 IndexQueue.resize(E - 1); 4715 for (unsigned I = E; I > 0; --I) { 4716 unsigned Idx = I - 1; 4717 // If a store has multiple consecutive store candidates, search Stores 4718 // array according to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 4719 // This is because usually pairing with immediate succeeding or preceding 4720 // candidate create the best chance to find slp vectorization opportunity. 4721 unsigned Offset = 1; 4722 unsigned Cnt = 0; 4723 for (unsigned J = 0; J < E - 1; ++J, ++Offset) { 4724 if (Idx >= Offset) { 4725 IndexQueue[Cnt] = Idx - Offset; 4726 ++Cnt; 4727 } 4728 if (Idx + Offset < E) { 4729 IndexQueue[Cnt] = Idx + Offset; 4730 ++Cnt; 4731 } 4732 } 4733 4734 for (auto K : IndexQueue) { 4735 if (isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) { 4736 Tails.insert(Stores[Idx]); 4737 Heads.insert(Stores[K]); 4738 ConsecutiveChain[Stores[K]] = Stores[Idx]; 4739 break; 4740 } 4741 } 4742 } 4743 4744 // For stores that start but don't end a link in the chain: 4745 for (auto *SI : llvm::reverse(Heads)) { 4746 if (Tails.count(SI)) 4747 continue; 4748 4749 // We found a store instr that starts a chain. Now follow the chain and try 4750 // to vectorize it. 4751 BoUpSLP::ValueList Operands; 4752 StoreInst *I = SI; 4753 // Collect the chain into a list. 4754 while ((Tails.count(I) || Heads.count(I)) && !VectorizedStores.count(I)) { 4755 Operands.push_back(I); 4756 // Move to the next value in the chain. 4757 I = ConsecutiveChain[I]; 4758 } 4759 4760 // FIXME: Is division-by-2 the correct step? Should we assert that the 4761 // register size is a power-of-2? 4762 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); 4763 Size /= 2) { 4764 if (vectorizeStoreChain(Operands, R, Size)) { 4765 // Mark the vectorized stores so that we don't vectorize them again. 4766 VectorizedStores.insert(Operands.begin(), Operands.end()); 4767 Changed = true; 4768 break; 4769 } 4770 } 4771 } 4772 4773 return Changed; 4774 } 4775 4776 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 4777 // Initialize the collections. We will make a single pass over the block. 4778 Stores.clear(); 4779 GEPs.clear(); 4780 4781 // Visit the store and getelementptr instructions in BB and organize them in 4782 // Stores and GEPs according to the underlying objects of their pointer 4783 // operands. 4784 for (Instruction &I : *BB) { 4785 // Ignore store instructions that are volatile or have a pointer operand 4786 // that doesn't point to a scalar type. 4787 if (auto *SI = dyn_cast<StoreInst>(&I)) { 4788 if (!SI->isSimple()) 4789 continue; 4790 if (!isValidElementType(SI->getValueOperand()->getType())) 4791 continue; 4792 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 4793 } 4794 4795 // Ignore getelementptr instructions that have more than one index, a 4796 // constant index, or a pointer operand that doesn't point to a scalar 4797 // type. 4798 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 4799 auto Idx = GEP->idx_begin()->get(); 4800 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 4801 continue; 4802 if (!isValidElementType(Idx->getType())) 4803 continue; 4804 if (GEP->getType()->isVectorTy()) 4805 continue; 4806 GEPs[GetUnderlyingObject(GEP->getPointerOperand(), *DL)].push_back(GEP); 4807 } 4808 } 4809 } 4810 4811 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 4812 if (!A || !B) 4813 return false; 4814 Value *VL[] = { A, B }; 4815 return tryToVectorizeList(VL, R, /*UserCost=*/0, true); 4816 } 4817 4818 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 4819 int UserCost, bool AllowReorder) { 4820 if (VL.size() < 2) 4821 return false; 4822 4823 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 4824 << VL.size() << ".\n"); 4825 4826 // Check that all of the parts are scalar instructions of the same type, 4827 // we permit an alternate opcode via InstructionsState. 4828 InstructionsState S = getSameOpcode(VL); 4829 if (!S.Opcode) 4830 return false; 4831 4832 Instruction *I0 = cast<Instruction>(S.OpValue); 4833 unsigned Sz = R.getVectorElementSize(I0); 4834 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 4835 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 4836 if (MaxVF < 2) { 4837 R.getORE()->emit([&]() { 4838 return OptimizationRemarkMissed( 4839 SV_NAME, "SmallVF", I0) 4840 << "Cannot SLP vectorize list: vectorization factor " 4841 << "less than 2 is not supported"; 4842 }); 4843 return false; 4844 } 4845 4846 for (Value *V : VL) { 4847 Type *Ty = V->getType(); 4848 if (!isValidElementType(Ty)) { 4849 // NOTE: the following will give user internal llvm type name, which may 4850 // not be useful. 4851 R.getORE()->emit([&]() { 4852 std::string type_str; 4853 llvm::raw_string_ostream rso(type_str); 4854 Ty->print(rso); 4855 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 4856 << "Cannot SLP vectorize list: type " 4857 << rso.str() + " is unsupported by vectorizer"; 4858 }); 4859 return false; 4860 } 4861 } 4862 4863 bool Changed = false; 4864 bool CandidateFound = false; 4865 int MinCost = SLPCostThreshold; 4866 4867 // Keep track of values that were deleted by vectorizing in the loop below. 4868 SmallVector<WeakTrackingVH, 8> TrackValues(VL.begin(), VL.end()); 4869 4870 unsigned NextInst = 0, MaxInst = VL.size(); 4871 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; 4872 VF /= 2) { 4873 // No actual vectorization should happen, if number of parts is the same as 4874 // provided vectorization factor (i.e. the scalar type is used for vector 4875 // code during codegen). 4876 auto *VecTy = VectorType::get(VL[0]->getType(), VF); 4877 if (TTI->getNumberOfParts(VecTy) == VF) 4878 continue; 4879 for (unsigned I = NextInst; I < MaxInst; ++I) { 4880 unsigned OpsWidth = 0; 4881 4882 if (I + VF > MaxInst) 4883 OpsWidth = MaxInst - I; 4884 else 4885 OpsWidth = VF; 4886 4887 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 4888 break; 4889 4890 // Check that a previous iteration of this loop did not delete the Value. 4891 if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth)) 4892 continue; 4893 4894 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 4895 << "\n"); 4896 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 4897 4898 R.buildTree(Ops); 4899 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 4900 // TODO: check if we can allow reordering for more cases. 4901 if (AllowReorder && Order) { 4902 // TODO: reorder tree nodes without tree rebuilding. 4903 // Conceptually, there is nothing actually preventing us from trying to 4904 // reorder a larger list. In fact, we do exactly this when vectorizing 4905 // reductions. However, at this point, we only expect to get here when 4906 // there are exactly two operations. 4907 assert(Ops.size() == 2); 4908 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 4909 R.buildTree(ReorderedOps, None); 4910 } 4911 if (R.isTreeTinyAndNotFullyVectorizable()) 4912 continue; 4913 4914 R.computeMinimumValueSizes(); 4915 int Cost = R.getTreeCost() - UserCost; 4916 CandidateFound = true; 4917 MinCost = std::min(MinCost, Cost); 4918 4919 if (Cost < -SLPCostThreshold) { 4920 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 4921 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 4922 cast<Instruction>(Ops[0])) 4923 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 4924 << " and with tree size " 4925 << ore::NV("TreeSize", R.getTreeSize())); 4926 4927 R.vectorizeTree(); 4928 // Move to the next bundle. 4929 I += VF - 1; 4930 NextInst = I + 1; 4931 Changed = true; 4932 } 4933 } 4934 } 4935 4936 if (!Changed && CandidateFound) { 4937 R.getORE()->emit([&]() { 4938 return OptimizationRemarkMissed( 4939 SV_NAME, "NotBeneficial", I0) 4940 << "List vectorization was possible but not beneficial with cost " 4941 << ore::NV("Cost", MinCost) << " >= " 4942 << ore::NV("Treshold", -SLPCostThreshold); 4943 }); 4944 } else if (!Changed) { 4945 R.getORE()->emit([&]() { 4946 return OptimizationRemarkMissed( 4947 SV_NAME, "NotPossible", I0) 4948 << "Cannot SLP vectorize list: vectorization was impossible" 4949 << " with available vectorization factors"; 4950 }); 4951 } 4952 return Changed; 4953 } 4954 4955 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 4956 if (!I) 4957 return false; 4958 4959 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 4960 return false; 4961 4962 Value *P = I->getParent(); 4963 4964 // Vectorize in current basic block only. 4965 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 4966 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 4967 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 4968 return false; 4969 4970 // Try to vectorize V. 4971 if (tryToVectorizePair(Op0, Op1, R)) 4972 return true; 4973 4974 auto *A = dyn_cast<BinaryOperator>(Op0); 4975 auto *B = dyn_cast<BinaryOperator>(Op1); 4976 // Try to skip B. 4977 if (B && B->hasOneUse()) { 4978 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 4979 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 4980 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 4981 return true; 4982 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 4983 return true; 4984 } 4985 4986 // Try to skip A. 4987 if (A && A->hasOneUse()) { 4988 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 4989 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 4990 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 4991 return true; 4992 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 4993 return true; 4994 } 4995 return false; 4996 } 4997 4998 /// Generate a shuffle mask to be used in a reduction tree. 4999 /// 5000 /// \param VecLen The length of the vector to be reduced. 5001 /// \param NumEltsToRdx The number of elements that should be reduced in the 5002 /// vector. 5003 /// \param IsPairwise Whether the reduction is a pairwise or splitting 5004 /// reduction. A pairwise reduction will generate a mask of 5005 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 5006 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 5007 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 5008 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 5009 bool IsPairwise, bool IsLeft, 5010 IRBuilder<> &Builder) { 5011 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 5012 5013 SmallVector<Constant *, 32> ShuffleMask( 5014 VecLen, UndefValue::get(Builder.getInt32Ty())); 5015 5016 if (IsPairwise) 5017 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 5018 for (unsigned i = 0; i != NumEltsToRdx; ++i) 5019 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 5020 else 5021 // Move the upper half of the vector to the lower half. 5022 for (unsigned i = 0; i != NumEltsToRdx; ++i) 5023 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 5024 5025 return ConstantVector::get(ShuffleMask); 5026 } 5027 5028 namespace { 5029 5030 /// Model horizontal reductions. 5031 /// 5032 /// A horizontal reduction is a tree of reduction operations (currently add and 5033 /// fadd) that has operations that can be put into a vector as its leaf. 5034 /// For example, this tree: 5035 /// 5036 /// mul mul mul mul 5037 /// \ / \ / 5038 /// + + 5039 /// \ / 5040 /// + 5041 /// This tree has "mul" as its reduced values and "+" as its reduction 5042 /// operations. A reduction might be feeding into a store or a binary operation 5043 /// feeding a phi. 5044 /// ... 5045 /// \ / 5046 /// + 5047 /// | 5048 /// phi += 5049 /// 5050 /// Or: 5051 /// ... 5052 /// \ / 5053 /// + 5054 /// | 5055 /// *p = 5056 /// 5057 class HorizontalReduction { 5058 using ReductionOpsType = SmallVector<Value *, 16>; 5059 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 5060 ReductionOpsListType ReductionOps; 5061 SmallVector<Value *, 32> ReducedVals; 5062 // Use map vector to make stable output. 5063 MapVector<Instruction *, Value *> ExtraArgs; 5064 5065 /// Kind of the reduction data. 5066 enum ReductionKind { 5067 RK_None, /// Not a reduction. 5068 RK_Arithmetic, /// Binary reduction data. 5069 RK_Min, /// Minimum reduction data. 5070 RK_UMin, /// Unsigned minimum reduction data. 5071 RK_Max, /// Maximum reduction data. 5072 RK_UMax, /// Unsigned maximum reduction data. 5073 }; 5074 5075 /// Contains info about operation, like its opcode, left and right operands. 5076 class OperationData { 5077 /// Opcode of the instruction. 5078 unsigned Opcode = 0; 5079 5080 /// Left operand of the reduction operation. 5081 Value *LHS = nullptr; 5082 5083 /// Right operand of the reduction operation. 5084 Value *RHS = nullptr; 5085 5086 /// Kind of the reduction operation. 5087 ReductionKind Kind = RK_None; 5088 5089 /// True if float point min/max reduction has no NaNs. 5090 bool NoNaN = false; 5091 5092 /// Checks if the reduction operation can be vectorized. 5093 bool isVectorizable() const { 5094 return LHS && RHS && 5095 // We currently only support adds && min/max reductions. 5096 ((Kind == RK_Arithmetic && 5097 (Opcode == Instruction::Add || Opcode == Instruction::FAdd)) || 5098 ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 5099 (Kind == RK_Min || Kind == RK_Max)) || 5100 (Opcode == Instruction::ICmp && 5101 (Kind == RK_UMin || Kind == RK_UMax))); 5102 } 5103 5104 /// Creates reduction operation with the current opcode. 5105 Value *createOp(IRBuilder<> &Builder, const Twine &Name) const { 5106 assert(isVectorizable() && 5107 "Expected add|fadd or min/max reduction operation."); 5108 Value *Cmp; 5109 switch (Kind) { 5110 case RK_Arithmetic: 5111 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 5112 Name); 5113 case RK_Min: 5114 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS) 5115 : Builder.CreateFCmpOLT(LHS, RHS); 5116 break; 5117 case RK_Max: 5118 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS) 5119 : Builder.CreateFCmpOGT(LHS, RHS); 5120 break; 5121 case RK_UMin: 5122 assert(Opcode == Instruction::ICmp && "Expected integer types."); 5123 Cmp = Builder.CreateICmpULT(LHS, RHS); 5124 break; 5125 case RK_UMax: 5126 assert(Opcode == Instruction::ICmp && "Expected integer types."); 5127 Cmp = Builder.CreateICmpUGT(LHS, RHS); 5128 break; 5129 case RK_None: 5130 llvm_unreachable("Unknown reduction operation."); 5131 } 5132 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 5133 } 5134 5135 public: 5136 explicit OperationData() = default; 5137 5138 /// Construction for reduced values. They are identified by opcode only and 5139 /// don't have associated LHS/RHS values. 5140 explicit OperationData(Value *V) { 5141 if (auto *I = dyn_cast<Instruction>(V)) 5142 Opcode = I->getOpcode(); 5143 } 5144 5145 /// Constructor for reduction operations with opcode and its left and 5146 /// right operands. 5147 OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind, 5148 bool NoNaN = false) 5149 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) { 5150 assert(Kind != RK_None && "One of the reduction operations is expected."); 5151 } 5152 5153 explicit operator bool() const { return Opcode; } 5154 5155 /// Get the index of the first operand. 5156 unsigned getFirstOperandIndex() const { 5157 assert(!!*this && "The opcode is not set."); 5158 switch (Kind) { 5159 case RK_Min: 5160 case RK_UMin: 5161 case RK_Max: 5162 case RK_UMax: 5163 return 1; 5164 case RK_Arithmetic: 5165 case RK_None: 5166 break; 5167 } 5168 return 0; 5169 } 5170 5171 /// Total number of operands in the reduction operation. 5172 unsigned getNumberOfOperands() const { 5173 assert(Kind != RK_None && !!*this && LHS && RHS && 5174 "Expected reduction operation."); 5175 switch (Kind) { 5176 case RK_Arithmetic: 5177 return 2; 5178 case RK_Min: 5179 case RK_UMin: 5180 case RK_Max: 5181 case RK_UMax: 5182 return 3; 5183 case RK_None: 5184 break; 5185 } 5186 llvm_unreachable("Reduction kind is not set"); 5187 } 5188 5189 /// Checks if the operation has the same parent as \p P. 5190 bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const { 5191 assert(Kind != RK_None && !!*this && LHS && RHS && 5192 "Expected reduction operation."); 5193 if (!IsRedOp) 5194 return I->getParent() == P; 5195 switch (Kind) { 5196 case RK_Arithmetic: 5197 // Arithmetic reduction operation must be used once only. 5198 return I->getParent() == P; 5199 case RK_Min: 5200 case RK_UMin: 5201 case RK_Max: 5202 case RK_UMax: { 5203 // SelectInst must be used twice while the condition op must have single 5204 // use only. 5205 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 5206 return I->getParent() == P && Cmp && Cmp->getParent() == P; 5207 } 5208 case RK_None: 5209 break; 5210 } 5211 llvm_unreachable("Reduction kind is not set"); 5212 } 5213 /// Expected number of uses for reduction operations/reduced values. 5214 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { 5215 assert(Kind != RK_None && !!*this && LHS && RHS && 5216 "Expected reduction operation."); 5217 switch (Kind) { 5218 case RK_Arithmetic: 5219 return I->hasOneUse(); 5220 case RK_Min: 5221 case RK_UMin: 5222 case RK_Max: 5223 case RK_UMax: 5224 return I->hasNUses(2) && 5225 (!IsReductionOp || 5226 cast<SelectInst>(I)->getCondition()->hasOneUse()); 5227 case RK_None: 5228 break; 5229 } 5230 llvm_unreachable("Reduction kind is not set"); 5231 } 5232 5233 /// Initializes the list of reduction operations. 5234 void initReductionOps(ReductionOpsListType &ReductionOps) { 5235 assert(Kind != RK_None && !!*this && LHS && RHS && 5236 "Expected reduction operation."); 5237 switch (Kind) { 5238 case RK_Arithmetic: 5239 ReductionOps.assign(1, ReductionOpsType()); 5240 break; 5241 case RK_Min: 5242 case RK_UMin: 5243 case RK_Max: 5244 case RK_UMax: 5245 ReductionOps.assign(2, ReductionOpsType()); 5246 break; 5247 case RK_None: 5248 llvm_unreachable("Reduction kind is not set"); 5249 } 5250 } 5251 /// Add all reduction operations for the reduction instruction \p I. 5252 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { 5253 assert(Kind != RK_None && !!*this && LHS && RHS && 5254 "Expected reduction operation."); 5255 switch (Kind) { 5256 case RK_Arithmetic: 5257 ReductionOps[0].emplace_back(I); 5258 break; 5259 case RK_Min: 5260 case RK_UMin: 5261 case RK_Max: 5262 case RK_UMax: 5263 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 5264 ReductionOps[1].emplace_back(I); 5265 break; 5266 case RK_None: 5267 llvm_unreachable("Reduction kind is not set"); 5268 } 5269 } 5270 5271 /// Checks if instruction is associative and can be vectorized. 5272 bool isAssociative(Instruction *I) const { 5273 assert(Kind != RK_None && *this && LHS && RHS && 5274 "Expected reduction operation."); 5275 switch (Kind) { 5276 case RK_Arithmetic: 5277 return I->isAssociative(); 5278 case RK_Min: 5279 case RK_Max: 5280 return Opcode == Instruction::ICmp || 5281 cast<Instruction>(I->getOperand(0))->isFast(); 5282 case RK_UMin: 5283 case RK_UMax: 5284 assert(Opcode == Instruction::ICmp && 5285 "Only integer compare operation is expected."); 5286 return true; 5287 case RK_None: 5288 break; 5289 } 5290 llvm_unreachable("Reduction kind is not set"); 5291 } 5292 5293 /// Checks if the reduction operation can be vectorized. 5294 bool isVectorizable(Instruction *I) const { 5295 return isVectorizable() && isAssociative(I); 5296 } 5297 5298 /// Checks if two operation data are both a reduction op or both a reduced 5299 /// value. 5300 bool operator==(const OperationData &OD) { 5301 assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) && 5302 "One of the comparing operations is incorrect."); 5303 return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode); 5304 } 5305 bool operator!=(const OperationData &OD) { return !(*this == OD); } 5306 void clear() { 5307 Opcode = 0; 5308 LHS = nullptr; 5309 RHS = nullptr; 5310 Kind = RK_None; 5311 NoNaN = false; 5312 } 5313 5314 /// Get the opcode of the reduction operation. 5315 unsigned getOpcode() const { 5316 assert(isVectorizable() && "Expected vectorizable operation."); 5317 return Opcode; 5318 } 5319 5320 /// Get kind of reduction data. 5321 ReductionKind getKind() const { return Kind; } 5322 Value *getLHS() const { return LHS; } 5323 Value *getRHS() const { return RHS; } 5324 Type *getConditionType() const { 5325 switch (Kind) { 5326 case RK_Arithmetic: 5327 return nullptr; 5328 case RK_Min: 5329 case RK_Max: 5330 case RK_UMin: 5331 case RK_UMax: 5332 return CmpInst::makeCmpResultType(LHS->getType()); 5333 case RK_None: 5334 break; 5335 } 5336 llvm_unreachable("Reduction kind is not set"); 5337 } 5338 5339 /// Creates reduction operation with the current opcode with the IR flags 5340 /// from \p ReductionOps. 5341 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 5342 const ReductionOpsListType &ReductionOps) const { 5343 assert(isVectorizable() && 5344 "Expected add|fadd or min/max reduction operation."); 5345 auto *Op = createOp(Builder, Name); 5346 switch (Kind) { 5347 case RK_Arithmetic: 5348 propagateIRFlags(Op, ReductionOps[0]); 5349 return Op; 5350 case RK_Min: 5351 case RK_Max: 5352 case RK_UMin: 5353 case RK_UMax: 5354 if (auto *SI = dyn_cast<SelectInst>(Op)) 5355 propagateIRFlags(SI->getCondition(), ReductionOps[0]); 5356 propagateIRFlags(Op, ReductionOps[1]); 5357 return Op; 5358 case RK_None: 5359 break; 5360 } 5361 llvm_unreachable("Unknown reduction operation."); 5362 } 5363 /// Creates reduction operation with the current opcode with the IR flags 5364 /// from \p I. 5365 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 5366 Instruction *I) const { 5367 assert(isVectorizable() && 5368 "Expected add|fadd or min/max reduction operation."); 5369 auto *Op = createOp(Builder, Name); 5370 switch (Kind) { 5371 case RK_Arithmetic: 5372 propagateIRFlags(Op, I); 5373 return Op; 5374 case RK_Min: 5375 case RK_Max: 5376 case RK_UMin: 5377 case RK_UMax: 5378 if (auto *SI = dyn_cast<SelectInst>(Op)) { 5379 propagateIRFlags(SI->getCondition(), 5380 cast<SelectInst>(I)->getCondition()); 5381 } 5382 propagateIRFlags(Op, I); 5383 return Op; 5384 case RK_None: 5385 break; 5386 } 5387 llvm_unreachable("Unknown reduction operation."); 5388 } 5389 5390 TargetTransformInfo::ReductionFlags getFlags() const { 5391 TargetTransformInfo::ReductionFlags Flags; 5392 Flags.NoNaN = NoNaN; 5393 switch (Kind) { 5394 case RK_Arithmetic: 5395 break; 5396 case RK_Min: 5397 Flags.IsSigned = Opcode == Instruction::ICmp; 5398 Flags.IsMaxOp = false; 5399 break; 5400 case RK_Max: 5401 Flags.IsSigned = Opcode == Instruction::ICmp; 5402 Flags.IsMaxOp = true; 5403 break; 5404 case RK_UMin: 5405 Flags.IsSigned = false; 5406 Flags.IsMaxOp = false; 5407 break; 5408 case RK_UMax: 5409 Flags.IsSigned = false; 5410 Flags.IsMaxOp = true; 5411 break; 5412 case RK_None: 5413 llvm_unreachable("Reduction kind is not set"); 5414 } 5415 return Flags; 5416 } 5417 }; 5418 5419 Instruction *ReductionRoot = nullptr; 5420 5421 /// The operation data of the reduction operation. 5422 OperationData ReductionData; 5423 5424 /// The operation data of the values we perform a reduction on. 5425 OperationData ReducedValueData; 5426 5427 /// Should we model this reduction as a pairwise reduction tree or a tree that 5428 /// splits the vector in halves and adds those halves. 5429 bool IsPairwiseReduction = false; 5430 5431 /// Checks if the ParentStackElem.first should be marked as a reduction 5432 /// operation with an extra argument or as extra argument itself. 5433 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 5434 Value *ExtraArg) { 5435 if (ExtraArgs.count(ParentStackElem.first)) { 5436 ExtraArgs[ParentStackElem.first] = nullptr; 5437 // We ran into something like: 5438 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 5439 // The whole ParentStackElem.first should be considered as an extra value 5440 // in this case. 5441 // Do not perform analysis of remaining operands of ParentStackElem.first 5442 // instruction, this whole instruction is an extra argument. 5443 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 5444 } else { 5445 // We ran into something like: 5446 // ParentStackElem.first += ... + ExtraArg + ... 5447 ExtraArgs[ParentStackElem.first] = ExtraArg; 5448 } 5449 } 5450 5451 static OperationData getOperationData(Value *V) { 5452 if (!V) 5453 return OperationData(); 5454 5455 Value *LHS; 5456 Value *RHS; 5457 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) { 5458 return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS, 5459 RK_Arithmetic); 5460 } 5461 if (auto *Select = dyn_cast<SelectInst>(V)) { 5462 // Look for a min/max pattern. 5463 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5464 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 5465 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5466 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 5467 } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) || 5468 m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5469 return OperationData( 5470 Instruction::FCmp, LHS, RHS, RK_Min, 5471 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 5472 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5473 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 5474 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5475 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 5476 } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) || 5477 m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5478 return OperationData( 5479 Instruction::FCmp, LHS, RHS, RK_Max, 5480 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 5481 } 5482 } 5483 return OperationData(V); 5484 } 5485 5486 public: 5487 HorizontalReduction() = default; 5488 5489 /// Try to find a reduction tree. 5490 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 5491 assert((!Phi || is_contained(Phi->operands(), B)) && 5492 "Thi phi needs to use the binary operator"); 5493 5494 ReductionData = getOperationData(B); 5495 5496 // We could have a initial reductions that is not an add. 5497 // r *= v1 + v2 + v3 + v4 5498 // In such a case start looking for a tree rooted in the first '+'. 5499 if (Phi) { 5500 if (ReductionData.getLHS() == Phi) { 5501 Phi = nullptr; 5502 B = dyn_cast<Instruction>(ReductionData.getRHS()); 5503 ReductionData = getOperationData(B); 5504 } else if (ReductionData.getRHS() == Phi) { 5505 Phi = nullptr; 5506 B = dyn_cast<Instruction>(ReductionData.getLHS()); 5507 ReductionData = getOperationData(B); 5508 } 5509 } 5510 5511 if (!ReductionData.isVectorizable(B)) 5512 return false; 5513 5514 Type *Ty = B->getType(); 5515 if (!isValidElementType(Ty)) 5516 return false; 5517 5518 ReducedValueData.clear(); 5519 ReductionRoot = B; 5520 5521 // Post order traverse the reduction tree starting at B. We only handle true 5522 // trees containing only binary operators. 5523 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 5524 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); 5525 ReductionData.initReductionOps(ReductionOps); 5526 while (!Stack.empty()) { 5527 Instruction *TreeN = Stack.back().first; 5528 unsigned EdgeToVist = Stack.back().second++; 5529 OperationData OpData = getOperationData(TreeN); 5530 bool IsReducedValue = OpData != ReductionData; 5531 5532 // Postorder vist. 5533 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { 5534 if (IsReducedValue) 5535 ReducedVals.push_back(TreeN); 5536 else { 5537 auto I = ExtraArgs.find(TreeN); 5538 if (I != ExtraArgs.end() && !I->second) { 5539 // Check if TreeN is an extra argument of its parent operation. 5540 if (Stack.size() <= 1) { 5541 // TreeN can't be an extra argument as it is a root reduction 5542 // operation. 5543 return false; 5544 } 5545 // Yes, TreeN is an extra argument, do not add it to a list of 5546 // reduction operations. 5547 // Stack[Stack.size() - 2] always points to the parent operation. 5548 markExtraArg(Stack[Stack.size() - 2], TreeN); 5549 ExtraArgs.erase(TreeN); 5550 } else 5551 ReductionData.addReductionOps(TreeN, ReductionOps); 5552 } 5553 // Retract. 5554 Stack.pop_back(); 5555 continue; 5556 } 5557 5558 // Visit left or right. 5559 Value *NextV = TreeN->getOperand(EdgeToVist); 5560 if (NextV != Phi) { 5561 auto *I = dyn_cast<Instruction>(NextV); 5562 OpData = getOperationData(I); 5563 // Continue analysis if the next operand is a reduction operation or 5564 // (possibly) a reduced value. If the reduced value opcode is not set, 5565 // the first met operation != reduction operation is considered as the 5566 // reduced value class. 5567 if (I && (!ReducedValueData || OpData == ReducedValueData || 5568 OpData == ReductionData)) { 5569 const bool IsReductionOperation = OpData == ReductionData; 5570 // Only handle trees in the current basic block. 5571 if (!ReductionData.hasSameParent(I, B->getParent(), 5572 IsReductionOperation)) { 5573 // I is an extra argument for TreeN (its parent operation). 5574 markExtraArg(Stack.back(), I); 5575 continue; 5576 } 5577 5578 // Each tree node needs to have minimal number of users except for the 5579 // ultimate reduction. 5580 if (!ReductionData.hasRequiredNumberOfUses(I, 5581 OpData == ReductionData) && 5582 I != B) { 5583 // I is an extra argument for TreeN (its parent operation). 5584 markExtraArg(Stack.back(), I); 5585 continue; 5586 } 5587 5588 if (IsReductionOperation) { 5589 // We need to be able to reassociate the reduction operations. 5590 if (!OpData.isAssociative(I)) { 5591 // I is an extra argument for TreeN (its parent operation). 5592 markExtraArg(Stack.back(), I); 5593 continue; 5594 } 5595 } else if (ReducedValueData && 5596 ReducedValueData != OpData) { 5597 // Make sure that the opcodes of the operations that we are going to 5598 // reduce match. 5599 // I is an extra argument for TreeN (its parent operation). 5600 markExtraArg(Stack.back(), I); 5601 continue; 5602 } else if (!ReducedValueData) 5603 ReducedValueData = OpData; 5604 5605 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 5606 continue; 5607 } 5608 } 5609 // NextV is an extra argument for TreeN (its parent operation). 5610 markExtraArg(Stack.back(), NextV); 5611 } 5612 return true; 5613 } 5614 5615 /// Attempt to vectorize the tree found by 5616 /// matchAssociativeReduction. 5617 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 5618 if (ReducedVals.empty()) 5619 return false; 5620 5621 // If there is a sufficient number of reduction values, reduce 5622 // to a nearby power-of-2. Can safely generate oversized 5623 // vectors and rely on the backend to split them to legal sizes. 5624 unsigned NumReducedVals = ReducedVals.size(); 5625 if (NumReducedVals < 4) 5626 return false; 5627 5628 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 5629 5630 Value *VectorizedTree = nullptr; 5631 IRBuilder<> Builder(ReductionRoot); 5632 FastMathFlags Unsafe; 5633 Unsafe.setFast(); 5634 Builder.setFastMathFlags(Unsafe); 5635 unsigned i = 0; 5636 5637 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 5638 // The same extra argument may be used several time, so log each attempt 5639 // to use it. 5640 for (auto &Pair : ExtraArgs) 5641 ExternallyUsedValues[Pair.second].push_back(Pair.first); 5642 SmallVector<Value *, 16> IgnoreList; 5643 for (auto &V : ReductionOps) 5644 IgnoreList.append(V.begin(), V.end()); 5645 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 5646 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 5647 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 5648 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 5649 // TODO: Handle orders of size less than number of elements in the vector. 5650 if (Order && Order->size() == VL.size()) { 5651 // TODO: reorder tree nodes without tree rebuilding. 5652 SmallVector<Value *, 4> ReorderedOps(VL.size()); 5653 llvm::transform(*Order, ReorderedOps.begin(), 5654 [VL](const unsigned Idx) { return VL[Idx]; }); 5655 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 5656 } 5657 if (V.isTreeTinyAndNotFullyVectorizable()) 5658 break; 5659 5660 V.computeMinimumValueSizes(); 5661 5662 // Estimate cost. 5663 int TreeCost = V.getTreeCost(); 5664 int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth); 5665 int Cost = TreeCost + ReductionCost; 5666 if (Cost >= -SLPCostThreshold) { 5667 V.getORE()->emit([&]() { 5668 return OptimizationRemarkMissed( 5669 SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0])) 5670 << "Vectorizing horizontal reduction is possible" 5671 << "but not beneficial with cost " 5672 << ore::NV("Cost", Cost) << " and threshold " 5673 << ore::NV("Threshold", -SLPCostThreshold); 5674 }); 5675 break; 5676 } 5677 5678 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 5679 << Cost << ". (HorRdx)\n"); 5680 V.getORE()->emit([&]() { 5681 return OptimizationRemark( 5682 SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0])) 5683 << "Vectorized horizontal reduction with cost " 5684 << ore::NV("Cost", Cost) << " and with tree size " 5685 << ore::NV("TreeSize", V.getTreeSize()); 5686 }); 5687 5688 // Vectorize a tree. 5689 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 5690 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 5691 5692 // Emit a reduction. 5693 Value *ReducedSubTree = 5694 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 5695 if (VectorizedTree) { 5696 Builder.SetCurrentDebugLocation(Loc); 5697 OperationData VectReductionData(ReductionData.getOpcode(), 5698 VectorizedTree, ReducedSubTree, 5699 ReductionData.getKind()); 5700 VectorizedTree = 5701 VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 5702 } else 5703 VectorizedTree = ReducedSubTree; 5704 i += ReduxWidth; 5705 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 5706 } 5707 5708 if (VectorizedTree) { 5709 // Finish the reduction. 5710 for (; i < NumReducedVals; ++i) { 5711 auto *I = cast<Instruction>(ReducedVals[i]); 5712 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 5713 OperationData VectReductionData(ReductionData.getOpcode(), 5714 VectorizedTree, I, 5715 ReductionData.getKind()); 5716 VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps); 5717 } 5718 for (auto &Pair : ExternallyUsedValues) { 5719 assert(!Pair.second.empty() && 5720 "At least one DebugLoc must be inserted"); 5721 // Add each externally used value to the final reduction. 5722 for (auto *I : Pair.second) { 5723 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 5724 OperationData VectReductionData(ReductionData.getOpcode(), 5725 VectorizedTree, Pair.first, 5726 ReductionData.getKind()); 5727 VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I); 5728 } 5729 } 5730 // Update users. 5731 ReductionRoot->replaceAllUsesWith(VectorizedTree); 5732 } 5733 return VectorizedTree != nullptr; 5734 } 5735 5736 unsigned numReductionValues() const { 5737 return ReducedVals.size(); 5738 } 5739 5740 private: 5741 /// Calculate the cost of a reduction. 5742 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 5743 unsigned ReduxWidth) { 5744 Type *ScalarTy = FirstReducedVal->getType(); 5745 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 5746 5747 int PairwiseRdxCost; 5748 int SplittingRdxCost; 5749 switch (ReductionData.getKind()) { 5750 case RK_Arithmetic: 5751 PairwiseRdxCost = 5752 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 5753 /*IsPairwiseForm=*/true); 5754 SplittingRdxCost = 5755 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 5756 /*IsPairwiseForm=*/false); 5757 break; 5758 case RK_Min: 5759 case RK_Max: 5760 case RK_UMin: 5761 case RK_UMax: { 5762 Type *VecCondTy = CmpInst::makeCmpResultType(VecTy); 5763 bool IsUnsigned = ReductionData.getKind() == RK_UMin || 5764 ReductionData.getKind() == RK_UMax; 5765 PairwiseRdxCost = 5766 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 5767 /*IsPairwiseForm=*/true, IsUnsigned); 5768 SplittingRdxCost = 5769 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 5770 /*IsPairwiseForm=*/false, IsUnsigned); 5771 break; 5772 } 5773 case RK_None: 5774 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 5775 } 5776 5777 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 5778 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 5779 5780 int ScalarReduxCost; 5781 switch (ReductionData.getKind()) { 5782 case RK_Arithmetic: 5783 ScalarReduxCost = 5784 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); 5785 break; 5786 case RK_Min: 5787 case RK_Max: 5788 case RK_UMin: 5789 case RK_UMax: 5790 ScalarReduxCost = 5791 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) + 5792 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 5793 CmpInst::makeCmpResultType(ScalarTy)); 5794 break; 5795 case RK_None: 5796 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 5797 } 5798 ScalarReduxCost *= (ReduxWidth - 1); 5799 5800 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 5801 << " for reduction that starts with " << *FirstReducedVal 5802 << " (It is a " 5803 << (IsPairwiseReduction ? "pairwise" : "splitting") 5804 << " reduction)\n"); 5805 5806 return VecReduxCost - ScalarReduxCost; 5807 } 5808 5809 /// Emit a horizontal reduction of the vectorized value. 5810 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 5811 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 5812 assert(VectorizedValue && "Need to have a vectorized tree node"); 5813 assert(isPowerOf2_32(ReduxWidth) && 5814 "We only handle power-of-two reductions for now"); 5815 5816 if (!IsPairwiseReduction) 5817 return createSimpleTargetReduction( 5818 Builder, TTI, ReductionData.getOpcode(), VectorizedValue, 5819 ReductionData.getFlags(), ReductionOps.back()); 5820 5821 Value *TmpVec = VectorizedValue; 5822 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 5823 Value *LeftMask = 5824 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 5825 Value *RightMask = 5826 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 5827 5828 Value *LeftShuf = Builder.CreateShuffleVector( 5829 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 5830 Value *RightShuf = Builder.CreateShuffleVector( 5831 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 5832 "rdx.shuf.r"); 5833 OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf, 5834 RightShuf, ReductionData.getKind()); 5835 TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 5836 } 5837 5838 // The result is in the first element of the vector. 5839 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 5840 } 5841 }; 5842 5843 } // end anonymous namespace 5844 5845 /// Recognize construction of vectors like 5846 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 5847 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 5848 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 5849 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 5850 /// starting from the last insertelement instruction. 5851 /// 5852 /// Returns true if it matches 5853 static bool findBuildVector(InsertElementInst *LastInsertElem, 5854 TargetTransformInfo *TTI, 5855 SmallVectorImpl<Value *> &BuildVectorOpds, 5856 int &UserCost) { 5857 UserCost = 0; 5858 Value *V = nullptr; 5859 do { 5860 if (auto *CI = dyn_cast<ConstantInt>(LastInsertElem->getOperand(2))) { 5861 UserCost += TTI->getVectorInstrCost(Instruction::InsertElement, 5862 LastInsertElem->getType(), 5863 CI->getZExtValue()); 5864 } 5865 BuildVectorOpds.push_back(LastInsertElem->getOperand(1)); 5866 V = LastInsertElem->getOperand(0); 5867 if (isa<UndefValue>(V)) 5868 break; 5869 LastInsertElem = dyn_cast<InsertElementInst>(V); 5870 if (!LastInsertElem || !LastInsertElem->hasOneUse()) 5871 return false; 5872 } while (true); 5873 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 5874 return true; 5875 } 5876 5877 /// Like findBuildVector, but looks for construction of aggregate. 5878 /// 5879 /// \return true if it matches. 5880 static bool findBuildAggregate(InsertValueInst *IV, 5881 SmallVectorImpl<Value *> &BuildVectorOpds) { 5882 Value *V; 5883 do { 5884 BuildVectorOpds.push_back(IV->getInsertedValueOperand()); 5885 V = IV->getAggregateOperand(); 5886 if (isa<UndefValue>(V)) 5887 break; 5888 IV = dyn_cast<InsertValueInst>(V); 5889 if (!IV || !IV->hasOneUse()) 5890 return false; 5891 } while (true); 5892 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 5893 return true; 5894 } 5895 5896 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 5897 return V->getType() < V2->getType(); 5898 } 5899 5900 /// Try and get a reduction value from a phi node. 5901 /// 5902 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 5903 /// if they come from either \p ParentBB or a containing loop latch. 5904 /// 5905 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 5906 /// if not possible. 5907 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 5908 BasicBlock *ParentBB, LoopInfo *LI) { 5909 // There are situations where the reduction value is not dominated by the 5910 // reduction phi. Vectorizing such cases has been reported to cause 5911 // miscompiles. See PR25787. 5912 auto DominatedReduxValue = [&](Value *R) { 5913 return isa<Instruction>(R) && 5914 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 5915 }; 5916 5917 Value *Rdx = nullptr; 5918 5919 // Return the incoming value if it comes from the same BB as the phi node. 5920 if (P->getIncomingBlock(0) == ParentBB) { 5921 Rdx = P->getIncomingValue(0); 5922 } else if (P->getIncomingBlock(1) == ParentBB) { 5923 Rdx = P->getIncomingValue(1); 5924 } 5925 5926 if (Rdx && DominatedReduxValue(Rdx)) 5927 return Rdx; 5928 5929 // Otherwise, check whether we have a loop latch to look at. 5930 Loop *BBL = LI->getLoopFor(ParentBB); 5931 if (!BBL) 5932 return nullptr; 5933 BasicBlock *BBLatch = BBL->getLoopLatch(); 5934 if (!BBLatch) 5935 return nullptr; 5936 5937 // There is a loop latch, return the incoming value if it comes from 5938 // that. This reduction pattern occasionally turns up. 5939 if (P->getIncomingBlock(0) == BBLatch) { 5940 Rdx = P->getIncomingValue(0); 5941 } else if (P->getIncomingBlock(1) == BBLatch) { 5942 Rdx = P->getIncomingValue(1); 5943 } 5944 5945 if (Rdx && DominatedReduxValue(Rdx)) 5946 return Rdx; 5947 5948 return nullptr; 5949 } 5950 5951 /// Attempt to reduce a horizontal reduction. 5952 /// If it is legal to match a horizontal reduction feeding the phi node \a P 5953 /// with reduction operators \a Root (or one of its operands) in a basic block 5954 /// \a BB, then check if it can be done. If horizontal reduction is not found 5955 /// and root instruction is a binary operation, vectorization of the operands is 5956 /// attempted. 5957 /// \returns true if a horizontal reduction was matched and reduced or operands 5958 /// of one of the binary instruction were vectorized. 5959 /// \returns false if a horizontal reduction was not matched (or not possible) 5960 /// or no vectorization of any binary operation feeding \a Root instruction was 5961 /// performed. 5962 static bool tryToVectorizeHorReductionOrInstOperands( 5963 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 5964 TargetTransformInfo *TTI, 5965 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 5966 if (!ShouldVectorizeHor) 5967 return false; 5968 5969 if (!Root) 5970 return false; 5971 5972 if (Root->getParent() != BB || isa<PHINode>(Root)) 5973 return false; 5974 // Start analysis starting from Root instruction. If horizontal reduction is 5975 // found, try to vectorize it. If it is not a horizontal reduction or 5976 // vectorization is not possible or not effective, and currently analyzed 5977 // instruction is a binary operation, try to vectorize the operands, using 5978 // pre-order DFS traversal order. If the operands were not vectorized, repeat 5979 // the same procedure considering each operand as a possible root of the 5980 // horizontal reduction. 5981 // Interrupt the process if the Root instruction itself was vectorized or all 5982 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 5983 SmallVector<std::pair<WeakTrackingVH, unsigned>, 8> Stack(1, {Root, 0}); 5984 SmallPtrSet<Value *, 8> VisitedInstrs; 5985 bool Res = false; 5986 while (!Stack.empty()) { 5987 Value *V; 5988 unsigned Level; 5989 std::tie(V, Level) = Stack.pop_back_val(); 5990 if (!V) 5991 continue; 5992 auto *Inst = dyn_cast<Instruction>(V); 5993 if (!Inst) 5994 continue; 5995 auto *BI = dyn_cast<BinaryOperator>(Inst); 5996 auto *SI = dyn_cast<SelectInst>(Inst); 5997 if (BI || SI) { 5998 HorizontalReduction HorRdx; 5999 if (HorRdx.matchAssociativeReduction(P, Inst)) { 6000 if (HorRdx.tryToReduce(R, TTI)) { 6001 Res = true; 6002 // Set P to nullptr to avoid re-analysis of phi node in 6003 // matchAssociativeReduction function unless this is the root node. 6004 P = nullptr; 6005 continue; 6006 } 6007 } 6008 if (P && BI) { 6009 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 6010 if (Inst == P) 6011 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 6012 if (!Inst) { 6013 // Set P to nullptr to avoid re-analysis of phi node in 6014 // matchAssociativeReduction function unless this is the root node. 6015 P = nullptr; 6016 continue; 6017 } 6018 } 6019 } 6020 // Set P to nullptr to avoid re-analysis of phi node in 6021 // matchAssociativeReduction function unless this is the root node. 6022 P = nullptr; 6023 if (Vectorize(Inst, R)) { 6024 Res = true; 6025 continue; 6026 } 6027 6028 // Try to vectorize operands. 6029 // Continue analysis for the instruction from the same basic block only to 6030 // save compile time. 6031 if (++Level < RecursionMaxDepth) 6032 for (auto *Op : Inst->operand_values()) 6033 if (VisitedInstrs.insert(Op).second) 6034 if (auto *I = dyn_cast<Instruction>(Op)) 6035 if (!isa<PHINode>(I) && I->getParent() == BB) 6036 Stack.emplace_back(Op, Level); 6037 } 6038 return Res; 6039 } 6040 6041 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 6042 BasicBlock *BB, BoUpSLP &R, 6043 TargetTransformInfo *TTI) { 6044 if (!V) 6045 return false; 6046 auto *I = dyn_cast<Instruction>(V); 6047 if (!I) 6048 return false; 6049 6050 if (!isa<BinaryOperator>(I)) 6051 P = nullptr; 6052 // Try to match and vectorize a horizontal reduction. 6053 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 6054 return tryToVectorize(I, R); 6055 }; 6056 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 6057 ExtraVectorization); 6058 } 6059 6060 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 6061 BasicBlock *BB, BoUpSLP &R) { 6062 const DataLayout &DL = BB->getModule()->getDataLayout(); 6063 if (!R.canMapToVector(IVI->getType(), DL)) 6064 return false; 6065 6066 SmallVector<Value *, 16> BuildVectorOpds; 6067 if (!findBuildAggregate(IVI, BuildVectorOpds)) 6068 return false; 6069 6070 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 6071 // Aggregate value is unlikely to be processed in vector register, we need to 6072 // extract scalars into scalar registers, so NeedExtraction is set true. 6073 return tryToVectorizeList(BuildVectorOpds, R); 6074 } 6075 6076 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 6077 BasicBlock *BB, BoUpSLP &R) { 6078 int UserCost; 6079 SmallVector<Value *, 16> BuildVectorOpds; 6080 if (!findBuildVector(IEI, TTI, BuildVectorOpds, UserCost) || 6081 (llvm::all_of(BuildVectorOpds, 6082 [](Value *V) { return isa<ExtractElementInst>(V); }) && 6083 isShuffle(BuildVectorOpds))) 6084 return false; 6085 6086 // Vectorize starting with the build vector operands ignoring the BuildVector 6087 // instructions for the purpose of scheduling and user extraction. 6088 return tryToVectorizeList(BuildVectorOpds, R, UserCost); 6089 } 6090 6091 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 6092 BoUpSLP &R) { 6093 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 6094 return true; 6095 6096 bool OpsChanged = false; 6097 for (int Idx = 0; Idx < 2; ++Idx) { 6098 OpsChanged |= 6099 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 6100 } 6101 return OpsChanged; 6102 } 6103 6104 bool SLPVectorizerPass::vectorizeSimpleInstructions( 6105 SmallVectorImpl<WeakVH> &Instructions, BasicBlock *BB, BoUpSLP &R) { 6106 bool OpsChanged = false; 6107 for (auto &VH : reverse(Instructions)) { 6108 auto *I = dyn_cast_or_null<Instruction>(VH); 6109 if (!I) 6110 continue; 6111 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 6112 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 6113 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 6114 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 6115 else if (auto *CI = dyn_cast<CmpInst>(I)) 6116 OpsChanged |= vectorizeCmpInst(CI, BB, R); 6117 } 6118 Instructions.clear(); 6119 return OpsChanged; 6120 } 6121 6122 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 6123 bool Changed = false; 6124 SmallVector<Value *, 4> Incoming; 6125 SmallPtrSet<Value *, 16> VisitedInstrs; 6126 6127 bool HaveVectorizedPhiNodes = true; 6128 while (HaveVectorizedPhiNodes) { 6129 HaveVectorizedPhiNodes = false; 6130 6131 // Collect the incoming values from the PHIs. 6132 Incoming.clear(); 6133 for (Instruction &I : *BB) { 6134 PHINode *P = dyn_cast<PHINode>(&I); 6135 if (!P) 6136 break; 6137 6138 if (!VisitedInstrs.count(P)) 6139 Incoming.push_back(P); 6140 } 6141 6142 // Sort by type. 6143 std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc); 6144 6145 // Try to vectorize elements base on their type. 6146 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 6147 E = Incoming.end(); 6148 IncIt != E;) { 6149 6150 // Look for the next elements with the same type. 6151 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 6152 while (SameTypeIt != E && 6153 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 6154 VisitedInstrs.insert(*SameTypeIt); 6155 ++SameTypeIt; 6156 } 6157 6158 // Try to vectorize them. 6159 unsigned NumElts = (SameTypeIt - IncIt); 6160 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 6161 << NumElts << ")\n"); 6162 // The order in which the phi nodes appear in the program does not matter. 6163 // So allow tryToVectorizeList to reorder them if it is beneficial. This 6164 // is done when there are exactly two elements since tryToVectorizeList 6165 // asserts that there are only two values when AllowReorder is true. 6166 bool AllowReorder = NumElts == 2; 6167 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, 6168 /*UserCost=*/0, AllowReorder)) { 6169 // Success start over because instructions might have been changed. 6170 HaveVectorizedPhiNodes = true; 6171 Changed = true; 6172 break; 6173 } 6174 6175 // Start over at the next instruction of a different type (or the end). 6176 IncIt = SameTypeIt; 6177 } 6178 } 6179 6180 VisitedInstrs.clear(); 6181 6182 SmallVector<WeakVH, 8> PostProcessInstructions; 6183 SmallDenseSet<Instruction *, 4> KeyNodes; 6184 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) { 6185 // We may go through BB multiple times so skip the one we have checked. 6186 if (!VisitedInstrs.insert(&*it).second) { 6187 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 6188 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 6189 // We would like to start over since some instructions are deleted 6190 // and the iterator may become invalid value. 6191 Changed = true; 6192 it = BB->begin(); 6193 e = BB->end(); 6194 } 6195 continue; 6196 } 6197 6198 if (isa<DbgInfoIntrinsic>(it)) 6199 continue; 6200 6201 // Try to vectorize reductions that use PHINodes. 6202 if (PHINode *P = dyn_cast<PHINode>(it)) { 6203 // Check that the PHI is a reduction PHI. 6204 if (P->getNumIncomingValues() != 2) 6205 return Changed; 6206 6207 // Try to match and vectorize a horizontal reduction. 6208 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 6209 TTI)) { 6210 Changed = true; 6211 it = BB->begin(); 6212 e = BB->end(); 6213 continue; 6214 } 6215 continue; 6216 } 6217 6218 // Ran into an instruction without users, like terminator, or function call 6219 // with ignored return value, store. Ignore unused instructions (basing on 6220 // instruction type, except for CallInst and InvokeInst). 6221 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 6222 isa<InvokeInst>(it))) { 6223 KeyNodes.insert(&*it); 6224 bool OpsChanged = false; 6225 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 6226 for (auto *V : it->operand_values()) { 6227 // Try to match and vectorize a horizontal reduction. 6228 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 6229 } 6230 } 6231 // Start vectorization of post-process list of instructions from the 6232 // top-tree instructions to try to vectorize as many instructions as 6233 // possible. 6234 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 6235 if (OpsChanged) { 6236 // We would like to start over since some instructions are deleted 6237 // and the iterator may become invalid value. 6238 Changed = true; 6239 it = BB->begin(); 6240 e = BB->end(); 6241 continue; 6242 } 6243 } 6244 6245 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 6246 isa<InsertValueInst>(it)) 6247 PostProcessInstructions.push_back(&*it); 6248 6249 } 6250 6251 return Changed; 6252 } 6253 6254 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 6255 auto Changed = false; 6256 for (auto &Entry : GEPs) { 6257 // If the getelementptr list has fewer than two elements, there's nothing 6258 // to do. 6259 if (Entry.second.size() < 2) 6260 continue; 6261 6262 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 6263 << Entry.second.size() << ".\n"); 6264 6265 // We process the getelementptr list in chunks of 16 (like we do for 6266 // stores) to minimize compile-time. 6267 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) { 6268 auto Len = std::min<unsigned>(BE - BI, 16); 6269 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 6270 6271 // Initialize a set a candidate getelementptrs. Note that we use a 6272 // SetVector here to preserve program order. If the index computations 6273 // are vectorizable and begin with loads, we want to minimize the chance 6274 // of having to reorder them later. 6275 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 6276 6277 // Some of the candidates may have already been vectorized after we 6278 // initially collected them. If so, the WeakTrackingVHs will have 6279 // nullified the 6280 // values, so remove them from the set of candidates. 6281 Candidates.remove(nullptr); 6282 6283 // Remove from the set of candidates all pairs of getelementptrs with 6284 // constant differences. Such getelementptrs are likely not good 6285 // candidates for vectorization in a bottom-up phase since one can be 6286 // computed from the other. We also ensure all candidate getelementptr 6287 // indices are unique. 6288 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 6289 auto *GEPI = cast<GetElementPtrInst>(GEPList[I]); 6290 if (!Candidates.count(GEPI)) 6291 continue; 6292 auto *SCEVI = SE->getSCEV(GEPList[I]); 6293 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 6294 auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]); 6295 auto *SCEVJ = SE->getSCEV(GEPList[J]); 6296 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 6297 Candidates.remove(GEPList[I]); 6298 Candidates.remove(GEPList[J]); 6299 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 6300 Candidates.remove(GEPList[J]); 6301 } 6302 } 6303 } 6304 6305 // We break out of the above computation as soon as we know there are 6306 // fewer than two candidates remaining. 6307 if (Candidates.size() < 2) 6308 continue; 6309 6310 // Add the single, non-constant index of each candidate to the bundle. We 6311 // ensured the indices met these constraints when we originally collected 6312 // the getelementptrs. 6313 SmallVector<Value *, 16> Bundle(Candidates.size()); 6314 auto BundleIndex = 0u; 6315 for (auto *V : Candidates) { 6316 auto *GEP = cast<GetElementPtrInst>(V); 6317 auto *GEPIdx = GEP->idx_begin()->get(); 6318 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 6319 Bundle[BundleIndex++] = GEPIdx; 6320 } 6321 6322 // Try and vectorize the indices. We are currently only interested in 6323 // gather-like cases of the form: 6324 // 6325 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 6326 // 6327 // where the loads of "a", the loads of "b", and the subtractions can be 6328 // performed in parallel. It's likely that detecting this pattern in a 6329 // bottom-up phase will be simpler and less costly than building a 6330 // full-blown top-down phase beginning at the consecutive loads. 6331 Changed |= tryToVectorizeList(Bundle, R); 6332 } 6333 } 6334 return Changed; 6335 } 6336 6337 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 6338 bool Changed = false; 6339 // Attempt to sort and vectorize each of the store-groups. 6340 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 6341 ++it) { 6342 if (it->second.size() < 2) 6343 continue; 6344 6345 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 6346 << it->second.size() << ".\n"); 6347 6348 // Process the stores in chunks of 16. 6349 // TODO: The limit of 16 inhibits greater vectorization factors. 6350 // For example, AVX2 supports v32i8. Increasing this limit, however, 6351 // may cause a significant compile-time increase. 6352 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) { 6353 unsigned Len = std::min<unsigned>(CE - CI, 16); 6354 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R); 6355 } 6356 } 6357 return Changed; 6358 } 6359 6360 char SLPVectorizer::ID = 0; 6361 6362 static const char lv_name[] = "SLP Vectorizer"; 6363 6364 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 6365 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6366 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6367 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6368 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6369 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6370 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6371 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6372 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 6373 6374 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 6375