1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/PostOrderIterator.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/CodeMetrics.h" 24 #include "llvm/Analysis/GlobalsModRef.h" 25 #include "llvm/Analysis/LoopAccessAnalysis.h" 26 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/Analysis/VectorUtils.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/NoFolder.h" 36 #include "llvm/IR/PatternMatch.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/IR/Verifier.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/GraphWriter.h" 44 #include "llvm/Support/KnownBits.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Transforms/Utils/LoopUtils.h" 47 #include "llvm/Transforms/Vectorize.h" 48 #include <algorithm> 49 #include <memory> 50 51 using namespace llvm; 52 using namespace llvm::PatternMatch; 53 using namespace slpvectorizer; 54 55 #define SV_NAME "slp-vectorizer" 56 #define DEBUG_TYPE "SLP" 57 58 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 59 60 static cl::opt<int> 61 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 62 cl::desc("Only vectorize if you gain more than this " 63 "number ")); 64 65 static cl::opt<bool> 66 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 67 cl::desc("Attempt to vectorize horizontal reductions")); 68 69 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 70 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 71 cl::desc( 72 "Attempt to vectorize horizontal reductions feeding into a store")); 73 74 static cl::opt<int> 75 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 76 cl::desc("Attempt to vectorize for this register size in bits")); 77 78 /// Limits the size of scheduling regions in a block. 79 /// It avoid long compile times for _very_ large blocks where vector 80 /// instructions are spread over a wide range. 81 /// This limit is way higher than needed by real-world functions. 82 static cl::opt<int> 83 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 84 cl::desc("Limit the size of the SLP scheduling region per block")); 85 86 static cl::opt<int> MinVectorRegSizeOption( 87 "slp-min-reg-size", cl::init(128), cl::Hidden, 88 cl::desc("Attempt to vectorize for this register size in bits")); 89 90 static cl::opt<unsigned> RecursionMaxDepth( 91 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 92 cl::desc("Limit the recursion depth when building a vectorizable tree")); 93 94 static cl::opt<unsigned> MinTreeSize( 95 "slp-min-tree-size", cl::init(3), cl::Hidden, 96 cl::desc("Only vectorize small trees if they are fully vectorizable")); 97 98 static cl::opt<bool> 99 ViewSLPTree("view-slp-tree", cl::Hidden, 100 cl::desc("Display the SLP trees with Graphviz")); 101 102 // Limit the number of alias checks. The limit is chosen so that 103 // it has no negative effect on the llvm benchmarks. 104 static const unsigned AliasedCheckLimit = 10; 105 106 // Another limit for the alias checks: The maximum distance between load/store 107 // instructions where alias checks are done. 108 // This limit is useful for very large basic blocks. 109 static const unsigned MaxMemDepDistance = 160; 110 111 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 112 /// regions to be handled. 113 static const int MinScheduleRegionSize = 16; 114 115 /// \brief Predicate for the element types that the SLP vectorizer supports. 116 /// 117 /// The most important thing to filter here are types which are invalid in LLVM 118 /// vectors. We also filter target specific types which have absolutely no 119 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 120 /// avoids spending time checking the cost model and realizing that they will 121 /// be inevitably scalarized. 122 static bool isValidElementType(Type *Ty) { 123 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 124 !Ty->isPPC_FP128Ty(); 125 } 126 127 /// \returns true if all of the instructions in \p VL are in the same block or 128 /// false otherwise. 129 static bool allSameBlock(ArrayRef<Value *> VL) { 130 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 131 if (!I0) 132 return false; 133 BasicBlock *BB = I0->getParent(); 134 for (int i = 1, e = VL.size(); i < e; i++) { 135 Instruction *I = dyn_cast<Instruction>(VL[i]); 136 if (!I) 137 return false; 138 139 if (BB != I->getParent()) 140 return false; 141 } 142 return true; 143 } 144 145 /// \returns True if all of the values in \p VL are constants. 146 static bool allConstant(ArrayRef<Value *> VL) { 147 for (Value *i : VL) 148 if (!isa<Constant>(i)) 149 return false; 150 return true; 151 } 152 153 /// \returns True if all of the values in \p VL are identical. 154 static bool isSplat(ArrayRef<Value *> VL) { 155 for (unsigned i = 1, e = VL.size(); i < e; ++i) 156 if (VL[i] != VL[0]) 157 return false; 158 return true; 159 } 160 161 /// Checks if the vector of instructions can be represented as a shuffle, like: 162 /// %x0 = extractelement <4 x i8> %x, i32 0 163 /// %x3 = extractelement <4 x i8> %x, i32 3 164 /// %y1 = extractelement <4 x i8> %y, i32 1 165 /// %y2 = extractelement <4 x i8> %y, i32 2 166 /// %x0x0 = mul i8 %x0, %x0 167 /// %x3x3 = mul i8 %x3, %x3 168 /// %y1y1 = mul i8 %y1, %y1 169 /// %y2y2 = mul i8 %y2, %y2 170 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 171 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 172 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 173 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 174 /// ret <4 x i8> %ins4 175 /// can be transformed into: 176 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 177 /// i32 6> 178 /// %2 = mul <4 x i8> %1, %1 179 /// ret <4 x i8> %2 180 /// We convert this initially to something like: 181 /// %x0 = extractelement <4 x i8> %x, i32 0 182 /// %x3 = extractelement <4 x i8> %x, i32 3 183 /// %y1 = extractelement <4 x i8> %y, i32 1 184 /// %y2 = extractelement <4 x i8> %y, i32 2 185 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 186 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 187 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 188 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 189 /// %5 = mul <4 x i8> %4, %4 190 /// %6 = extractelement <4 x i8> %5, i32 0 191 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 192 /// %7 = extractelement <4 x i8> %5, i32 1 193 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 194 /// %8 = extractelement <4 x i8> %5, i32 2 195 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 196 /// %9 = extractelement <4 x i8> %5, i32 3 197 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 198 /// ret <4 x i8> %ins4 199 /// InstCombiner transforms this into a shuffle and vector mul 200 static Optional<TargetTransformInfo::ShuffleKind> 201 isShuffle(ArrayRef<Value *> VL) { 202 auto *EI0 = cast<ExtractElementInst>(VL[0]); 203 unsigned Size = EI0->getVectorOperandType()->getVectorNumElements(); 204 Value *Vec1 = nullptr; 205 Value *Vec2 = nullptr; 206 enum ShuffleMode {Unknown, FirstAlternate, SecondAlternate, Permute}; 207 ShuffleMode CommonShuffleMode = Unknown; 208 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 209 auto *EI = cast<ExtractElementInst>(VL[I]); 210 auto *Vec = EI->getVectorOperand(); 211 // All vector operands must have the same number of vector elements. 212 if (Vec->getType()->getVectorNumElements() != Size) 213 return None; 214 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 215 if (!Idx) 216 return None; 217 // Undefined behavior if Idx is negative or >= Size. 218 if (Idx->getValue().uge(Size)) 219 continue; 220 unsigned IntIdx = Idx->getValue().getZExtValue(); 221 // We can extractelement from undef vector. 222 if (isa<UndefValue>(Vec)) 223 continue; 224 // For correct shuffling we have to have at most 2 different vector operands 225 // in all extractelement instructions. 226 if (Vec1 && Vec2 && Vec != Vec1 && Vec != Vec2) 227 return None; 228 if (CommonShuffleMode == Permute) 229 continue; 230 // If the extract index is not the same as the operation number, it is a 231 // permutation. 232 if (IntIdx != I) { 233 CommonShuffleMode = Permute; 234 continue; 235 } 236 // Check the shuffle mode for the current operation. 237 if (!Vec1) 238 Vec1 = Vec; 239 else if (Vec != Vec1) 240 Vec2 = Vec; 241 // Example: shufflevector A, B, <0,5,2,7> 242 // I is odd and IntIdx for A == I - FirstAlternate shuffle. 243 // I is even and IntIdx for B == I - FirstAlternate shuffle. 244 // Example: shufflevector A, B, <4,1,6,3> 245 // I is even and IntIdx for A == I - SecondAlternate shuffle. 246 // I is odd and IntIdx for B == I - SecondAlternate shuffle. 247 const bool IIsEven = I & 1; 248 const bool CurrVecIsA = Vec == Vec1; 249 const bool IIsOdd = !IIsEven; 250 const bool CurrVecIsB = !CurrVecIsA; 251 ShuffleMode CurrentShuffleMode = 252 ((IIsOdd && CurrVecIsA) || (IIsEven && CurrVecIsB)) ? FirstAlternate 253 : SecondAlternate; 254 // Common mode is not set or the same as the shuffle mode of the current 255 // operation - alternate. 256 if (CommonShuffleMode == Unknown) 257 CommonShuffleMode = CurrentShuffleMode; 258 // Common shuffle mode is not the same as the shuffle mode of the current 259 // operation - permutation. 260 if (CommonShuffleMode != CurrentShuffleMode) 261 CommonShuffleMode = Permute; 262 } 263 // If we're not crossing lanes in different vectors, consider it as blending. 264 if ((CommonShuffleMode == FirstAlternate || 265 CommonShuffleMode == SecondAlternate) && 266 Vec2) 267 return TargetTransformInfo::SK_Alternate; 268 // If Vec2 was never used, we have a permutation of a single vector, otherwise 269 // we have permutation of 2 vectors. 270 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 271 : TargetTransformInfo::SK_PermuteSingleSrc; 272 } 273 274 ///\returns Opcode that can be clubbed with \p Op to create an alternate 275 /// sequence which can later be merged as a ShuffleVector instruction. 276 static unsigned getAltOpcode(unsigned Op) { 277 switch (Op) { 278 case Instruction::FAdd: 279 return Instruction::FSub; 280 case Instruction::FSub: 281 return Instruction::FAdd; 282 case Instruction::Add: 283 return Instruction::Sub; 284 case Instruction::Sub: 285 return Instruction::Add; 286 default: 287 return 0; 288 } 289 } 290 291 /// true if the \p Value is odd, false otherwise. 292 static bool isOdd(unsigned Value) { 293 return Value & 1; 294 } 295 296 static bool sameOpcodeOrAlt(unsigned Opcode, unsigned AltOpcode, 297 unsigned CheckedOpcode) { 298 return Opcode == CheckedOpcode || AltOpcode == CheckedOpcode; 299 } 300 301 /// Chooses the correct key for scheduling data. If \p Op has the same (or 302 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 303 /// OpValue. 304 static Value *isOneOf(Value *OpValue, Value *Op) { 305 auto *I = dyn_cast<Instruction>(Op); 306 if (!I) 307 return OpValue; 308 auto *OpInst = cast<Instruction>(OpValue); 309 unsigned OpInstOpcode = OpInst->getOpcode(); 310 unsigned IOpcode = I->getOpcode(); 311 if (sameOpcodeOrAlt(OpInstOpcode, getAltOpcode(OpInstOpcode), IOpcode)) 312 return Op; 313 return OpValue; 314 } 315 316 ///\returns bool representing if Opcode \p Op can be part 317 /// of an alternate sequence which can later be merged as 318 /// a ShuffleVector instruction. 319 static bool canCombineAsAltInst(unsigned Op) { 320 return Op == Instruction::FAdd || Op == Instruction::FSub || 321 Op == Instruction::Sub || Op == Instruction::Add; 322 } 323 324 /// \returns ShuffleVector instruction if instructions in \p VL have 325 /// alternate fadd,fsub / fsub,fadd/add,sub/sub,add sequence. 326 /// (i.e. e.g. opcodes of fadd,fsub,fadd,fsub...) 327 static unsigned isAltInst(ArrayRef<Value *> VL) { 328 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 329 unsigned Opcode = I0->getOpcode(); 330 unsigned AltOpcode = getAltOpcode(Opcode); 331 for (int i = 1, e = VL.size(); i < e; i++) { 332 Instruction *I = dyn_cast<Instruction>(VL[i]); 333 if (!I || I->getOpcode() != (isOdd(i) ? AltOpcode : Opcode)) 334 return 0; 335 } 336 return Instruction::ShuffleVector; 337 } 338 339 /// \returns The opcode if all of the Instructions in \p VL have the same 340 /// opcode, or zero. 341 static unsigned getSameOpcode(ArrayRef<Value *> VL) { 342 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 343 if (!I0) 344 return 0; 345 unsigned Opcode = I0->getOpcode(); 346 for (int i = 1, e = VL.size(); i < e; i++) { 347 Instruction *I = dyn_cast<Instruction>(VL[i]); 348 if (!I || Opcode != I->getOpcode()) { 349 if (canCombineAsAltInst(Opcode) && i == 1) 350 return isAltInst(VL); 351 return 0; 352 } 353 } 354 return Opcode; 355 } 356 357 /// \returns true if all of the values in \p VL have the same type or false 358 /// otherwise. 359 static bool allSameType(ArrayRef<Value *> VL) { 360 Type *Ty = VL[0]->getType(); 361 for (int i = 1, e = VL.size(); i < e; i++) 362 if (VL[i]->getType() != Ty) 363 return false; 364 365 return true; 366 } 367 368 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 369 static bool matchExtractIndex(Instruction *E, unsigned Idx, unsigned Opcode) { 370 assert(Opcode == Instruction::ExtractElement || 371 Opcode == Instruction::ExtractValue); 372 if (Opcode == Instruction::ExtractElement) { 373 ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 374 return CI && CI->getZExtValue() == Idx; 375 } else { 376 ExtractValueInst *EI = cast<ExtractValueInst>(E); 377 return EI->getNumIndices() == 1 && *EI->idx_begin() == Idx; 378 } 379 } 380 381 /// \returns True if in-tree use also needs extract. This refers to 382 /// possible scalar operand in vectorized instruction. 383 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 384 TargetLibraryInfo *TLI) { 385 386 unsigned Opcode = UserInst->getOpcode(); 387 switch (Opcode) { 388 case Instruction::Load: { 389 LoadInst *LI = cast<LoadInst>(UserInst); 390 return (LI->getPointerOperand() == Scalar); 391 } 392 case Instruction::Store: { 393 StoreInst *SI = cast<StoreInst>(UserInst); 394 return (SI->getPointerOperand() == Scalar); 395 } 396 case Instruction::Call: { 397 CallInst *CI = cast<CallInst>(UserInst); 398 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 399 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 400 return (CI->getArgOperand(1) == Scalar); 401 } 402 LLVM_FALLTHROUGH; 403 } 404 default: 405 return false; 406 } 407 } 408 409 /// \returns the AA location that is being access by the instruction. 410 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 411 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 412 return MemoryLocation::get(SI); 413 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 414 return MemoryLocation::get(LI); 415 return MemoryLocation(); 416 } 417 418 /// \returns True if the instruction is not a volatile or atomic load/store. 419 static bool isSimple(Instruction *I) { 420 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 421 return LI->isSimple(); 422 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 423 return SI->isSimple(); 424 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 425 return !MI->isVolatile(); 426 return true; 427 } 428 429 namespace llvm { 430 namespace slpvectorizer { 431 /// Bottom Up SLP Vectorizer. 432 class BoUpSLP { 433 public: 434 typedef SmallVector<Value *, 8> ValueList; 435 typedef SmallVector<Instruction *, 16> InstrList; 436 typedef SmallPtrSet<Value *, 16> ValueSet; 437 typedef SmallVector<StoreInst *, 8> StoreList; 438 typedef MapVector<Value *, SmallVector<Instruction *, 2>> 439 ExtraValueToDebugLocsMap; 440 441 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 442 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 443 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 444 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 445 : NumLoadsWantToKeepOrder(0), NumLoadsWantToChangeOrder(0), F(Func), 446 SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), DB(DB), 447 DL(DL), ORE(ORE), Builder(Se->getContext()) { 448 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 449 // Use the vector register size specified by the target unless overridden 450 // by a command-line option. 451 // TODO: It would be better to limit the vectorization factor based on 452 // data type rather than just register size. For example, x86 AVX has 453 // 256-bit registers, but it does not support integer operations 454 // at that width (that requires AVX2). 455 if (MaxVectorRegSizeOption.getNumOccurrences()) 456 MaxVecRegSize = MaxVectorRegSizeOption; 457 else 458 MaxVecRegSize = TTI->getRegisterBitWidth(true); 459 460 if (MinVectorRegSizeOption.getNumOccurrences()) 461 MinVecRegSize = MinVectorRegSizeOption; 462 else 463 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 464 } 465 466 /// \brief Vectorize the tree that starts with the elements in \p VL. 467 /// Returns the vectorized root. 468 Value *vectorizeTree(); 469 /// Vectorize the tree but with the list of externally used values \p 470 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 471 /// generated extractvalue instructions. 472 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 473 474 /// \returns the cost incurred by unwanted spills and fills, caused by 475 /// holding live values over call sites. 476 int getSpillCost(); 477 478 /// \returns the vectorization cost of the subtree that starts at \p VL. 479 /// A negative number means that this is profitable. 480 int getTreeCost(); 481 482 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 483 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 484 void buildTree(ArrayRef<Value *> Roots, 485 ArrayRef<Value *> UserIgnoreLst = None); 486 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 487 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 488 /// into account (anf updating it, if required) list of externally used 489 /// values stored in \p ExternallyUsedValues. 490 void buildTree(ArrayRef<Value *> Roots, 491 ExtraValueToDebugLocsMap &ExternallyUsedValues, 492 ArrayRef<Value *> UserIgnoreLst = None); 493 494 /// Clear the internal data structures that are created by 'buildTree'. 495 void deleteTree() { 496 VectorizableTree.clear(); 497 ScalarToTreeEntry.clear(); 498 MustGather.clear(); 499 ExternalUses.clear(); 500 NumLoadsWantToKeepOrder = 0; 501 NumLoadsWantToChangeOrder = 0; 502 for (auto &Iter : BlocksSchedules) { 503 BlockScheduling *BS = Iter.second.get(); 504 BS->clear(); 505 } 506 MinBWs.clear(); 507 } 508 509 unsigned getTreeSize() const { return VectorizableTree.size(); } 510 511 /// \brief Perform LICM and CSE on the newly generated gather sequences. 512 void optimizeGatherSequence(); 513 514 /// \returns true if it is beneficial to reverse the vector order. 515 bool shouldReorder() const { 516 return NumLoadsWantToChangeOrder > NumLoadsWantToKeepOrder; 517 } 518 519 /// \return The vector element size in bits to use when vectorizing the 520 /// expression tree ending at \p V. If V is a store, the size is the width of 521 /// the stored value. Otherwise, the size is the width of the largest loaded 522 /// value reaching V. This method is used by the vectorizer to calculate 523 /// vectorization factors. 524 unsigned getVectorElementSize(Value *V); 525 526 /// Compute the minimum type sizes required to represent the entries in a 527 /// vectorizable tree. 528 void computeMinimumValueSizes(); 529 530 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 531 unsigned getMaxVecRegSize() const { 532 return MaxVecRegSize; 533 } 534 535 // \returns minimum vector register size as set by cl::opt. 536 unsigned getMinVecRegSize() const { 537 return MinVecRegSize; 538 } 539 540 /// \brief Check if ArrayType or StructType is isomorphic to some VectorType. 541 /// 542 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 543 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 544 545 /// \returns True if the VectorizableTree is both tiny and not fully 546 /// vectorizable. We do not vectorize such trees. 547 bool isTreeTinyAndNotFullyVectorizable(); 548 549 OptimizationRemarkEmitter *getORE() { return ORE; } 550 551 private: 552 struct TreeEntry; 553 554 /// Checks if all users of \p I are the part of the vectorization tree. 555 bool areAllUsersVectorized(Instruction *I) const; 556 557 /// \returns the cost of the vectorizable entry. 558 int getEntryCost(TreeEntry *E); 559 560 /// This is the recursive part of buildTree. 561 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, int); 562 563 /// \returns True if the ExtractElement/ExtractValue instructions in VL can 564 /// be vectorized to use the original vector (or aggregate "bitcast" to a vector). 565 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue) const; 566 567 /// Vectorize a single entry in the tree. 568 Value *vectorizeTree(TreeEntry *E); 569 570 /// Vectorize a single entry in the tree, starting in \p VL. 571 Value *vectorizeTree(ArrayRef<Value *> VL); 572 573 /// \returns the pointer to the vectorized value if \p VL is already 574 /// vectorized, or NULL. They may happen in cycles. 575 Value *alreadyVectorized(ArrayRef<Value *> VL, Value *OpValue) const; 576 577 /// \returns the scalarization cost for this type. Scalarization in this 578 /// context means the creation of vectors from a group of scalars. 579 int getGatherCost(Type *Ty); 580 581 /// \returns the scalarization cost for this list of values. Assuming that 582 /// this subtree gets vectorized, we may need to extract the values from the 583 /// roots. This method calculates the cost of extracting the values. 584 int getGatherCost(ArrayRef<Value *> VL); 585 586 /// \brief Set the Builder insert point to one after the last instruction in 587 /// the bundle 588 void setInsertPointAfterBundle(ArrayRef<Value *> VL, Value *OpValue); 589 590 /// \returns a vector from a collection of scalars in \p VL. 591 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 592 593 /// \returns whether the VectorizableTree is fully vectorizable and will 594 /// be beneficial even the tree height is tiny. 595 bool isFullyVectorizableTinyTree(); 596 597 /// \reorder commutative operands in alt shuffle if they result in 598 /// vectorized code. 599 void reorderAltShuffleOperands(ArrayRef<Value *> VL, 600 SmallVectorImpl<Value *> &Left, 601 SmallVectorImpl<Value *> &Right); 602 /// \reorder commutative operands to get better probability of 603 /// generating vectorized code. 604 void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 605 SmallVectorImpl<Value *> &Left, 606 SmallVectorImpl<Value *> &Right); 607 struct TreeEntry { 608 TreeEntry(std::vector<TreeEntry> &Container) 609 : Scalars(), VectorizedValue(nullptr), NeedToGather(0), 610 Container(Container) {} 611 612 /// \returns true if the scalars in VL are equal to this entry. 613 bool isSame(ArrayRef<Value *> VL) const { 614 assert(VL.size() == Scalars.size() && "Invalid size"); 615 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 616 } 617 618 /// A vector of scalars. 619 ValueList Scalars; 620 621 /// The Scalars are vectorized into this value. It is initialized to Null. 622 Value *VectorizedValue; 623 624 /// Do we need to gather this sequence ? 625 bool NeedToGather; 626 627 /// Points back to the VectorizableTree. 628 /// 629 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 630 /// to be a pointer and needs to be able to initialize the child iterator. 631 /// Thus we need a reference back to the container to translate the indices 632 /// to entries. 633 std::vector<TreeEntry> &Container; 634 635 /// The TreeEntry index containing the user of this entry. We can actually 636 /// have multiple users so the data structure is not truly a tree. 637 SmallVector<int, 1> UserTreeIndices; 638 }; 639 640 /// Create a new VectorizableTree entry. 641 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized, 642 int &UserTreeIdx) { 643 VectorizableTree.emplace_back(VectorizableTree); 644 int idx = VectorizableTree.size() - 1; 645 TreeEntry *Last = &VectorizableTree[idx]; 646 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 647 Last->NeedToGather = !Vectorized; 648 if (Vectorized) { 649 for (int i = 0, e = VL.size(); i != e; ++i) { 650 assert(!getTreeEntry(VL[i]) && "Scalar already in tree!"); 651 ScalarToTreeEntry[VL[i]] = idx; 652 } 653 } else { 654 MustGather.insert(VL.begin(), VL.end()); 655 } 656 657 if (UserTreeIdx >= 0) 658 Last->UserTreeIndices.push_back(UserTreeIdx); 659 UserTreeIdx = idx; 660 return Last; 661 } 662 663 /// -- Vectorization State -- 664 /// Holds all of the tree entries. 665 std::vector<TreeEntry> VectorizableTree; 666 667 TreeEntry *getTreeEntry(Value *V) { 668 auto I = ScalarToTreeEntry.find(V); 669 if (I != ScalarToTreeEntry.end()) 670 return &VectorizableTree[I->second]; 671 return nullptr; 672 } 673 674 const TreeEntry *getTreeEntry(Value *V) const { 675 auto I = ScalarToTreeEntry.find(V); 676 if (I != ScalarToTreeEntry.end()) 677 return &VectorizableTree[I->second]; 678 return nullptr; 679 } 680 681 /// Maps a specific scalar to its tree entry. 682 SmallDenseMap<Value*, int> ScalarToTreeEntry; 683 684 /// A list of scalars that we found that we need to keep as scalars. 685 ValueSet MustGather; 686 687 /// This POD struct describes one external user in the vectorized tree. 688 struct ExternalUser { 689 ExternalUser (Value *S, llvm::User *U, int L) : 690 Scalar(S), User(U), Lane(L){} 691 // Which scalar in our function. 692 Value *Scalar; 693 // Which user that uses the scalar. 694 llvm::User *User; 695 // Which lane does the scalar belong to. 696 int Lane; 697 }; 698 typedef SmallVector<ExternalUser, 16> UserList; 699 700 /// Checks if two instructions may access the same memory. 701 /// 702 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 703 /// is invariant in the calling loop. 704 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 705 Instruction *Inst2) { 706 707 // First check if the result is already in the cache. 708 AliasCacheKey key = std::make_pair(Inst1, Inst2); 709 Optional<bool> &result = AliasCache[key]; 710 if (result.hasValue()) { 711 return result.getValue(); 712 } 713 MemoryLocation Loc2 = getLocation(Inst2, AA); 714 bool aliased = true; 715 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 716 // Do the alias check. 717 aliased = AA->alias(Loc1, Loc2); 718 } 719 // Store the result in the cache. 720 result = aliased; 721 return aliased; 722 } 723 724 typedef std::pair<Instruction *, Instruction *> AliasCacheKey; 725 726 /// Cache for alias results. 727 /// TODO: consider moving this to the AliasAnalysis itself. 728 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 729 730 /// Removes an instruction from its block and eventually deletes it. 731 /// It's like Instruction::eraseFromParent() except that the actual deletion 732 /// is delayed until BoUpSLP is destructed. 733 /// This is required to ensure that there are no incorrect collisions in the 734 /// AliasCache, which can happen if a new instruction is allocated at the 735 /// same address as a previously deleted instruction. 736 void eraseInstruction(Instruction *I) { 737 I->removeFromParent(); 738 I->dropAllReferences(); 739 DeletedInstructions.emplace_back(I); 740 } 741 742 /// Temporary store for deleted instructions. Instructions will be deleted 743 /// eventually when the BoUpSLP is destructed. 744 SmallVector<unique_value, 8> DeletedInstructions; 745 746 /// A list of values that need to extracted out of the tree. 747 /// This list holds pairs of (Internal Scalar : External User). External User 748 /// can be nullptr, it means that this Internal Scalar will be used later, 749 /// after vectorization. 750 UserList ExternalUses; 751 752 /// Values used only by @llvm.assume calls. 753 SmallPtrSet<const Value *, 32> EphValues; 754 755 /// Holds all of the instructions that we gathered. 756 SetVector<Instruction *> GatherSeq; 757 /// A list of blocks that we are going to CSE. 758 SetVector<BasicBlock *> CSEBlocks; 759 760 /// Contains all scheduling relevant data for an instruction. 761 /// A ScheduleData either represents a single instruction or a member of an 762 /// instruction bundle (= a group of instructions which is combined into a 763 /// vector instruction). 764 struct ScheduleData { 765 766 // The initial value for the dependency counters. It means that the 767 // dependencies are not calculated yet. 768 enum { InvalidDeps = -1 }; 769 770 ScheduleData() 771 : Inst(nullptr), FirstInBundle(nullptr), NextInBundle(nullptr), 772 NextLoadStore(nullptr), SchedulingRegionID(0), SchedulingPriority(0), 773 Dependencies(InvalidDeps), UnscheduledDeps(InvalidDeps), 774 UnscheduledDepsInBundle(InvalidDeps), IsScheduled(false), 775 OpValue(nullptr) {} 776 777 void init(int BlockSchedulingRegionID, Value *OpVal) { 778 FirstInBundle = this; 779 NextInBundle = nullptr; 780 NextLoadStore = nullptr; 781 IsScheduled = false; 782 SchedulingRegionID = BlockSchedulingRegionID; 783 UnscheduledDepsInBundle = UnscheduledDeps; 784 clearDependencies(); 785 OpValue = OpVal; 786 } 787 788 /// Returns true if the dependency information has been calculated. 789 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 790 791 /// Returns true for single instructions and for bundle representatives 792 /// (= the head of a bundle). 793 bool isSchedulingEntity() const { return FirstInBundle == this; } 794 795 /// Returns true if it represents an instruction bundle and not only a 796 /// single instruction. 797 bool isPartOfBundle() const { 798 return NextInBundle != nullptr || FirstInBundle != this; 799 } 800 801 /// Returns true if it is ready for scheduling, i.e. it has no more 802 /// unscheduled depending instructions/bundles. 803 bool isReady() const { 804 assert(isSchedulingEntity() && 805 "can't consider non-scheduling entity for ready list"); 806 return UnscheduledDepsInBundle == 0 && !IsScheduled; 807 } 808 809 /// Modifies the number of unscheduled dependencies, also updating it for 810 /// the whole bundle. 811 int incrementUnscheduledDeps(int Incr) { 812 UnscheduledDeps += Incr; 813 return FirstInBundle->UnscheduledDepsInBundle += Incr; 814 } 815 816 /// Sets the number of unscheduled dependencies to the number of 817 /// dependencies. 818 void resetUnscheduledDeps() { 819 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 820 } 821 822 /// Clears all dependency information. 823 void clearDependencies() { 824 Dependencies = InvalidDeps; 825 resetUnscheduledDeps(); 826 MemoryDependencies.clear(); 827 } 828 829 void dump(raw_ostream &os) const { 830 if (!isSchedulingEntity()) { 831 os << "/ " << *Inst; 832 } else if (NextInBundle) { 833 os << '[' << *Inst; 834 ScheduleData *SD = NextInBundle; 835 while (SD) { 836 os << ';' << *SD->Inst; 837 SD = SD->NextInBundle; 838 } 839 os << ']'; 840 } else { 841 os << *Inst; 842 } 843 } 844 845 Instruction *Inst; 846 847 /// Points to the head in an instruction bundle (and always to this for 848 /// single instructions). 849 ScheduleData *FirstInBundle; 850 851 /// Single linked list of all instructions in a bundle. Null if it is a 852 /// single instruction. 853 ScheduleData *NextInBundle; 854 855 /// Single linked list of all memory instructions (e.g. load, store, call) 856 /// in the block - until the end of the scheduling region. 857 ScheduleData *NextLoadStore; 858 859 /// The dependent memory instructions. 860 /// This list is derived on demand in calculateDependencies(). 861 SmallVector<ScheduleData *, 4> MemoryDependencies; 862 863 /// This ScheduleData is in the current scheduling region if this matches 864 /// the current SchedulingRegionID of BlockScheduling. 865 int SchedulingRegionID; 866 867 /// Used for getting a "good" final ordering of instructions. 868 int SchedulingPriority; 869 870 /// The number of dependencies. Constitutes of the number of users of the 871 /// instruction plus the number of dependent memory instructions (if any). 872 /// This value is calculated on demand. 873 /// If InvalidDeps, the number of dependencies is not calculated yet. 874 /// 875 int Dependencies; 876 877 /// The number of dependencies minus the number of dependencies of scheduled 878 /// instructions. As soon as this is zero, the instruction/bundle gets ready 879 /// for scheduling. 880 /// Note that this is negative as long as Dependencies is not calculated. 881 int UnscheduledDeps; 882 883 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 884 /// single instructions. 885 int UnscheduledDepsInBundle; 886 887 /// True if this instruction is scheduled (or considered as scheduled in the 888 /// dry-run). 889 bool IsScheduled; 890 891 /// Opcode of the current instruction in the schedule data. 892 Value *OpValue; 893 }; 894 895 #ifndef NDEBUG 896 friend inline raw_ostream &operator<<(raw_ostream &os, 897 const BoUpSLP::ScheduleData &SD) { 898 SD.dump(os); 899 return os; 900 } 901 #endif 902 friend struct GraphTraits<BoUpSLP *>; 903 friend struct DOTGraphTraits<BoUpSLP *>; 904 905 /// Contains all scheduling data for a basic block. 906 /// 907 struct BlockScheduling { 908 909 BlockScheduling(BasicBlock *BB) 910 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize), 911 ScheduleStart(nullptr), ScheduleEnd(nullptr), 912 FirstLoadStoreInRegion(nullptr), LastLoadStoreInRegion(nullptr), 913 ScheduleRegionSize(0), 914 ScheduleRegionSizeLimit(ScheduleRegionSizeBudget), 915 // Make sure that the initial SchedulingRegionID is greater than the 916 // initial SchedulingRegionID in ScheduleData (which is 0). 917 SchedulingRegionID(1) {} 918 919 void clear() { 920 ReadyInsts.clear(); 921 ScheduleStart = nullptr; 922 ScheduleEnd = nullptr; 923 FirstLoadStoreInRegion = nullptr; 924 LastLoadStoreInRegion = nullptr; 925 926 // Reduce the maximum schedule region size by the size of the 927 // previous scheduling run. 928 ScheduleRegionSizeLimit -= ScheduleRegionSize; 929 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 930 ScheduleRegionSizeLimit = MinScheduleRegionSize; 931 ScheduleRegionSize = 0; 932 933 // Make a new scheduling region, i.e. all existing ScheduleData is not 934 // in the new region yet. 935 ++SchedulingRegionID; 936 } 937 938 ScheduleData *getScheduleData(Value *V) { 939 ScheduleData *SD = ScheduleDataMap[V]; 940 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 941 return SD; 942 return nullptr; 943 } 944 945 bool isInSchedulingRegion(ScheduleData *SD) { 946 return SD->SchedulingRegionID == SchedulingRegionID; 947 } 948 949 /// Marks an instruction as scheduled and puts all dependent ready 950 /// instructions into the ready-list. 951 template <typename ReadyListType> 952 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 953 SD->IsScheduled = true; 954 DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 955 956 ScheduleData *BundleMember = SD; 957 while (BundleMember) { 958 // Handle the def-use chain dependencies. 959 for (Use &U : BundleMember->Inst->operands()) { 960 ScheduleData *OpDef = getScheduleData(U.get()); 961 if (OpDef && OpDef->hasValidDependencies() && 962 OpDef->incrementUnscheduledDeps(-1) == 0) { 963 // There are no more unscheduled dependencies after decrementing, 964 // so we can put the dependent instruction into the ready list. 965 ScheduleData *DepBundle = OpDef->FirstInBundle; 966 assert(!DepBundle->IsScheduled && 967 "already scheduled bundle gets ready"); 968 ReadyList.insert(DepBundle); 969 DEBUG(dbgs() << "SLP: gets ready (def): " << *DepBundle << "\n"); 970 } 971 } 972 // Handle the memory dependencies. 973 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 974 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 975 // There are no more unscheduled dependencies after decrementing, 976 // so we can put the dependent instruction into the ready list. 977 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 978 assert(!DepBundle->IsScheduled && 979 "already scheduled bundle gets ready"); 980 ReadyList.insert(DepBundle); 981 DEBUG(dbgs() << "SLP: gets ready (mem): " << *DepBundle << "\n"); 982 } 983 } 984 BundleMember = BundleMember->NextInBundle; 985 } 986 } 987 988 /// Put all instructions into the ReadyList which are ready for scheduling. 989 template <typename ReadyListType> 990 void initialFillReadyList(ReadyListType &ReadyList) { 991 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 992 ScheduleData *SD = getScheduleData(I); 993 if (SD->isSchedulingEntity() && SD->isReady()) { 994 ReadyList.insert(SD); 995 DEBUG(dbgs() << "SLP: initially in ready list: " << *I << "\n"); 996 } 997 } 998 } 999 1000 /// Checks if a bundle of instructions can be scheduled, i.e. has no 1001 /// cyclic dependencies. This is only a dry-run, no instructions are 1002 /// actually moved at this stage. 1003 bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, Value *OpValue); 1004 1005 /// Un-bundles a group of instructions. 1006 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 1007 1008 /// Extends the scheduling region so that V is inside the region. 1009 /// \returns true if the region size is within the limit. 1010 bool extendSchedulingRegion(Value *V); 1011 1012 /// Initialize the ScheduleData structures for new instructions in the 1013 /// scheduling region. 1014 void initScheduleData(Instruction *FromI, Instruction *ToI, 1015 ScheduleData *PrevLoadStore, 1016 ScheduleData *NextLoadStore); 1017 1018 /// Updates the dependency information of a bundle and of all instructions/ 1019 /// bundles which depend on the original bundle. 1020 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 1021 BoUpSLP *SLP); 1022 1023 /// Sets all instruction in the scheduling region to un-scheduled. 1024 void resetSchedule(); 1025 1026 BasicBlock *BB; 1027 1028 /// Simple memory allocation for ScheduleData. 1029 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 1030 1031 /// The size of a ScheduleData array in ScheduleDataChunks. 1032 int ChunkSize; 1033 1034 /// The allocator position in the current chunk, which is the last entry 1035 /// of ScheduleDataChunks. 1036 int ChunkPos; 1037 1038 /// Attaches ScheduleData to Instruction. 1039 /// Note that the mapping survives during all vectorization iterations, i.e. 1040 /// ScheduleData structures are recycled. 1041 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 1042 1043 struct ReadyList : SmallVector<ScheduleData *, 8> { 1044 void insert(ScheduleData *SD) { push_back(SD); } 1045 }; 1046 1047 /// The ready-list for scheduling (only used for the dry-run). 1048 ReadyList ReadyInsts; 1049 1050 /// The first instruction of the scheduling region. 1051 Instruction *ScheduleStart; 1052 1053 /// The first instruction _after_ the scheduling region. 1054 Instruction *ScheduleEnd; 1055 1056 /// The first memory accessing instruction in the scheduling region 1057 /// (can be null). 1058 ScheduleData *FirstLoadStoreInRegion; 1059 1060 /// The last memory accessing instruction in the scheduling region 1061 /// (can be null). 1062 ScheduleData *LastLoadStoreInRegion; 1063 1064 /// The current size of the scheduling region. 1065 int ScheduleRegionSize; 1066 1067 /// The maximum size allowed for the scheduling region. 1068 int ScheduleRegionSizeLimit; 1069 1070 /// The ID of the scheduling region. For a new vectorization iteration this 1071 /// is incremented which "removes" all ScheduleData from the region. 1072 int SchedulingRegionID; 1073 }; 1074 1075 /// Attaches the BlockScheduling structures to basic blocks. 1076 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 1077 1078 /// Performs the "real" scheduling. Done before vectorization is actually 1079 /// performed in a basic block. 1080 void scheduleBlock(BlockScheduling *BS); 1081 1082 /// List of users to ignore during scheduling and that don't need extracting. 1083 ArrayRef<Value *> UserIgnoreList; 1084 1085 // Number of load bundles that contain consecutive loads. 1086 int NumLoadsWantToKeepOrder; 1087 1088 // Number of load bundles that contain consecutive loads in reversed order. 1089 int NumLoadsWantToChangeOrder; 1090 1091 // Analysis and block reference. 1092 Function *F; 1093 ScalarEvolution *SE; 1094 TargetTransformInfo *TTI; 1095 TargetLibraryInfo *TLI; 1096 AliasAnalysis *AA; 1097 LoopInfo *LI; 1098 DominatorTree *DT; 1099 AssumptionCache *AC; 1100 DemandedBits *DB; 1101 const DataLayout *DL; 1102 OptimizationRemarkEmitter *ORE; 1103 1104 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 1105 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 1106 /// Instruction builder to construct the vectorized tree. 1107 IRBuilder<> Builder; 1108 1109 /// A map of scalar integer values to the smallest bit width with which they 1110 /// can legally be represented. The values map to (width, signed) pairs, 1111 /// where "width" indicates the minimum bit width and "signed" is True if the 1112 /// value must be signed-extended, rather than zero-extended, back to its 1113 /// original width. 1114 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 1115 }; 1116 } // end namespace slpvectorizer 1117 1118 template <> struct GraphTraits<BoUpSLP *> { 1119 typedef BoUpSLP::TreeEntry TreeEntry; 1120 1121 /// NodeRef has to be a pointer per the GraphWriter. 1122 typedef TreeEntry *NodeRef; 1123 1124 /// \brief Add the VectorizableTree to the index iterator to be able to return 1125 /// TreeEntry pointers. 1126 struct ChildIteratorType 1127 : public iterator_adaptor_base<ChildIteratorType, 1128 SmallVector<int, 1>::iterator> { 1129 1130 std::vector<TreeEntry> &VectorizableTree; 1131 1132 ChildIteratorType(SmallVector<int, 1>::iterator W, 1133 std::vector<TreeEntry> &VT) 1134 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 1135 1136 NodeRef operator*() { return &VectorizableTree[*I]; } 1137 }; 1138 1139 static NodeRef getEntryNode(BoUpSLP &R) { return &R.VectorizableTree[0]; } 1140 1141 static ChildIteratorType child_begin(NodeRef N) { 1142 return {N->UserTreeIndices.begin(), N->Container}; 1143 } 1144 static ChildIteratorType child_end(NodeRef N) { 1145 return {N->UserTreeIndices.end(), N->Container}; 1146 } 1147 1148 /// For the node iterator we just need to turn the TreeEntry iterator into a 1149 /// TreeEntry* iterator so that it dereferences to NodeRef. 1150 typedef pointer_iterator<std::vector<TreeEntry>::iterator> nodes_iterator; 1151 1152 static nodes_iterator nodes_begin(BoUpSLP *R) { 1153 return nodes_iterator(R->VectorizableTree.begin()); 1154 } 1155 static nodes_iterator nodes_end(BoUpSLP *R) { 1156 return nodes_iterator(R->VectorizableTree.end()); 1157 } 1158 1159 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 1160 }; 1161 1162 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 1163 typedef BoUpSLP::TreeEntry TreeEntry; 1164 1165 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 1166 1167 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 1168 std::string Str; 1169 raw_string_ostream OS(Str); 1170 if (isSplat(Entry->Scalars)) { 1171 OS << "<splat> " << *Entry->Scalars[0]; 1172 return Str; 1173 } 1174 for (auto V : Entry->Scalars) { 1175 OS << *V; 1176 if (std::any_of( 1177 R->ExternalUses.begin(), R->ExternalUses.end(), 1178 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 1179 OS << " <extract>"; 1180 OS << "\n"; 1181 } 1182 return Str; 1183 } 1184 1185 static std::string getNodeAttributes(const TreeEntry *Entry, 1186 const BoUpSLP *) { 1187 if (Entry->NeedToGather) 1188 return "color=red"; 1189 return ""; 1190 } 1191 }; 1192 1193 } // end namespace llvm 1194 1195 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1196 ArrayRef<Value *> UserIgnoreLst) { 1197 ExtraValueToDebugLocsMap ExternallyUsedValues; 1198 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 1199 } 1200 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1201 ExtraValueToDebugLocsMap &ExternallyUsedValues, 1202 ArrayRef<Value *> UserIgnoreLst) { 1203 deleteTree(); 1204 UserIgnoreList = UserIgnoreLst; 1205 if (!allSameType(Roots)) 1206 return; 1207 buildTree_rec(Roots, 0, -1); 1208 1209 // Collect the values that we need to extract from the tree. 1210 for (TreeEntry &EIdx : VectorizableTree) { 1211 TreeEntry *Entry = &EIdx; 1212 1213 // No need to handle users of gathered values. 1214 if (Entry->NeedToGather) 1215 continue; 1216 1217 // For each lane: 1218 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 1219 Value *Scalar = Entry->Scalars[Lane]; 1220 1221 // Check if the scalar is externally used as an extra arg. 1222 auto ExtI = ExternallyUsedValues.find(Scalar); 1223 if (ExtI != ExternallyUsedValues.end()) { 1224 DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " << 1225 Lane << " from " << *Scalar << ".\n"); 1226 ExternalUses.emplace_back(Scalar, nullptr, Lane); 1227 continue; 1228 } 1229 for (User *U : Scalar->users()) { 1230 DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 1231 1232 Instruction *UserInst = dyn_cast<Instruction>(U); 1233 if (!UserInst) 1234 continue; 1235 1236 // Skip in-tree scalars that become vectors 1237 if (TreeEntry *UseEntry = getTreeEntry(U)) { 1238 Value *UseScalar = UseEntry->Scalars[0]; 1239 // Some in-tree scalars will remain as scalar in vectorized 1240 // instructions. If that is the case, the one in Lane 0 will 1241 // be used. 1242 if (UseScalar != U || 1243 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 1244 DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 1245 << ".\n"); 1246 assert(!UseEntry->NeedToGather && "Bad state"); 1247 continue; 1248 } 1249 } 1250 1251 // Ignore users in the user ignore list. 1252 if (is_contained(UserIgnoreList, UserInst)) 1253 continue; 1254 1255 DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " << 1256 Lane << " from " << *Scalar << ".\n"); 1257 ExternalUses.push_back(ExternalUser(Scalar, U, Lane)); 1258 } 1259 } 1260 } 1261 } 1262 1263 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 1264 int UserTreeIdx) { 1265 bool isAltShuffle = false; 1266 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 1267 1268 if (Depth == RecursionMaxDepth) { 1269 DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 1270 newTreeEntry(VL, false, UserTreeIdx); 1271 return; 1272 } 1273 1274 // Don't handle vectors. 1275 if (VL[0]->getType()->isVectorTy()) { 1276 DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 1277 newTreeEntry(VL, false, UserTreeIdx); 1278 return; 1279 } 1280 1281 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1282 if (SI->getValueOperand()->getType()->isVectorTy()) { 1283 DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 1284 newTreeEntry(VL, false, UserTreeIdx); 1285 return; 1286 } 1287 unsigned Opcode = getSameOpcode(VL); 1288 1289 // Check that this shuffle vector refers to the alternate 1290 // sequence of opcodes. 1291 if (Opcode == Instruction::ShuffleVector) { 1292 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 1293 unsigned Op = I0->getOpcode(); 1294 if (Op != Instruction::ShuffleVector) 1295 isAltShuffle = true; 1296 } 1297 1298 // If all of the operands are identical or constant we have a simple solution. 1299 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !Opcode) { 1300 DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 1301 newTreeEntry(VL, false, UserTreeIdx); 1302 return; 1303 } 1304 1305 // We now know that this is a vector of instructions of the same type from 1306 // the same block. 1307 1308 // Don't vectorize ephemeral values. 1309 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1310 if (EphValues.count(VL[i])) { 1311 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1312 ") is ephemeral.\n"); 1313 newTreeEntry(VL, false, UserTreeIdx); 1314 return; 1315 } 1316 } 1317 1318 // Check if this is a duplicate of another entry. 1319 if (TreeEntry *E = getTreeEntry(VL[0])) { 1320 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1321 DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n"); 1322 if (E->Scalars[i] != VL[i]) { 1323 DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 1324 newTreeEntry(VL, false, UserTreeIdx); 1325 return; 1326 } 1327 } 1328 // Record the reuse of the tree node. FIXME, currently this is only used to 1329 // properly draw the graph rather than for the actual vectorization. 1330 E->UserTreeIndices.push_back(UserTreeIdx); 1331 DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n"); 1332 return; 1333 } 1334 1335 // Check that none of the instructions in the bundle are already in the tree. 1336 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1337 if (ScalarToTreeEntry.count(VL[i])) { 1338 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1339 ") is already in tree.\n"); 1340 newTreeEntry(VL, false, UserTreeIdx); 1341 return; 1342 } 1343 } 1344 1345 // If any of the scalars is marked as a value that needs to stay scalar then 1346 // we need to gather the scalars. 1347 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1348 if (MustGather.count(VL[i])) { 1349 DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 1350 newTreeEntry(VL, false, UserTreeIdx); 1351 return; 1352 } 1353 } 1354 1355 // Check that all of the users of the scalars that we want to vectorize are 1356 // schedulable. 1357 Instruction *VL0 = cast<Instruction>(VL[0]); 1358 BasicBlock *BB = VL0->getParent(); 1359 1360 if (!DT->isReachableFromEntry(BB)) { 1361 // Don't go into unreachable blocks. They may contain instructions with 1362 // dependency cycles which confuse the final scheduling. 1363 DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 1364 newTreeEntry(VL, false, UserTreeIdx); 1365 return; 1366 } 1367 1368 // Check that every instructions appears once in this bundle. 1369 for (unsigned i = 0, e = VL.size(); i < e; ++i) 1370 for (unsigned j = i+1; j < e; ++j) 1371 if (VL[i] == VL[j]) { 1372 DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 1373 newTreeEntry(VL, false, UserTreeIdx); 1374 return; 1375 } 1376 1377 auto &BSRef = BlocksSchedules[BB]; 1378 if (!BSRef) { 1379 BSRef = llvm::make_unique<BlockScheduling>(BB); 1380 } 1381 BlockScheduling &BS = *BSRef.get(); 1382 1383 if (!BS.tryScheduleBundle(VL, this, VL0)) { 1384 DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 1385 assert((!BS.getScheduleData(VL[0]) || 1386 !BS.getScheduleData(VL[0])->isPartOfBundle()) && 1387 "tryScheduleBundle should cancelScheduling on failure"); 1388 newTreeEntry(VL, false, UserTreeIdx); 1389 return; 1390 } 1391 DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 1392 1393 switch (Opcode) { 1394 case Instruction::PHI: { 1395 PHINode *PH = dyn_cast<PHINode>(VL0); 1396 1397 // Check for terminator values (e.g. invoke). 1398 for (unsigned j = 0; j < VL.size(); ++j) 1399 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1400 TerminatorInst *Term = dyn_cast<TerminatorInst>( 1401 cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i))); 1402 if (Term) { 1403 DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n"); 1404 BS.cancelScheduling(VL, VL0); 1405 newTreeEntry(VL, false, UserTreeIdx); 1406 return; 1407 } 1408 } 1409 1410 newTreeEntry(VL, true, UserTreeIdx); 1411 DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 1412 1413 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1414 ValueList Operands; 1415 // Prepare the operand vector. 1416 for (Value *j : VL) 1417 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 1418 PH->getIncomingBlock(i))); 1419 1420 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1421 } 1422 return; 1423 } 1424 case Instruction::ExtractValue: 1425 case Instruction::ExtractElement: { 1426 bool Reuse = canReuseExtract(VL, VL0); 1427 if (Reuse) { 1428 DEBUG(dbgs() << "SLP: Reusing extract sequence.\n"); 1429 } else { 1430 BS.cancelScheduling(VL, VL0); 1431 } 1432 newTreeEntry(VL, Reuse, UserTreeIdx); 1433 return; 1434 } 1435 case Instruction::Load: { 1436 // Check that a vectorized load would load the same memory as a scalar 1437 // load. 1438 // For example we don't want vectorize loads that are smaller than 8 bit. 1439 // Even though we have a packed struct {<i2, i2, i2, i2>} LLVM treats 1440 // loading/storing it as an i8 struct. If we vectorize loads/stores from 1441 // such a struct we read/write packed bits disagreeing with the 1442 // unvectorized version. 1443 Type *ScalarTy = VL0->getType(); 1444 1445 if (DL->getTypeSizeInBits(ScalarTy) != 1446 DL->getTypeAllocSizeInBits(ScalarTy)) { 1447 BS.cancelScheduling(VL, VL0); 1448 newTreeEntry(VL, false, UserTreeIdx); 1449 DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 1450 return; 1451 } 1452 1453 // Make sure all loads in the bundle are simple - we can't vectorize 1454 // atomic or volatile loads. 1455 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1456 LoadInst *L = cast<LoadInst>(VL[i]); 1457 if (!L->isSimple()) { 1458 BS.cancelScheduling(VL, VL0); 1459 newTreeEntry(VL, false, UserTreeIdx); 1460 DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 1461 return; 1462 } 1463 } 1464 1465 // Check if the loads are consecutive, reversed, or neither. 1466 // TODO: What we really want is to sort the loads, but for now, check 1467 // the two likely directions. 1468 bool Consecutive = true; 1469 bool ReverseConsecutive = true; 1470 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1471 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1472 Consecutive = false; 1473 break; 1474 } else { 1475 ReverseConsecutive = false; 1476 } 1477 } 1478 1479 if (Consecutive) { 1480 ++NumLoadsWantToKeepOrder; 1481 newTreeEntry(VL, true, UserTreeIdx); 1482 DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 1483 return; 1484 } 1485 1486 // If none of the load pairs were consecutive when checked in order, 1487 // check the reverse order. 1488 if (ReverseConsecutive) 1489 for (unsigned i = VL.size() - 1; i > 0; --i) 1490 if (!isConsecutiveAccess(VL[i], VL[i - 1], *DL, *SE)) { 1491 ReverseConsecutive = false; 1492 break; 1493 } 1494 1495 BS.cancelScheduling(VL, VL0); 1496 newTreeEntry(VL, false, UserTreeIdx); 1497 1498 if (ReverseConsecutive) { 1499 ++NumLoadsWantToChangeOrder; 1500 DEBUG(dbgs() << "SLP: Gathering reversed loads.\n"); 1501 } else { 1502 DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 1503 } 1504 return; 1505 } 1506 case Instruction::ZExt: 1507 case Instruction::SExt: 1508 case Instruction::FPToUI: 1509 case Instruction::FPToSI: 1510 case Instruction::FPExt: 1511 case Instruction::PtrToInt: 1512 case Instruction::IntToPtr: 1513 case Instruction::SIToFP: 1514 case Instruction::UIToFP: 1515 case Instruction::Trunc: 1516 case Instruction::FPTrunc: 1517 case Instruction::BitCast: { 1518 Type *SrcTy = VL0->getOperand(0)->getType(); 1519 for (unsigned i = 0; i < VL.size(); ++i) { 1520 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); 1521 if (Ty != SrcTy || !isValidElementType(Ty)) { 1522 BS.cancelScheduling(VL, VL0); 1523 newTreeEntry(VL, false, UserTreeIdx); 1524 DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n"); 1525 return; 1526 } 1527 } 1528 newTreeEntry(VL, true, UserTreeIdx); 1529 DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 1530 1531 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1532 ValueList Operands; 1533 // Prepare the operand vector. 1534 for (Value *j : VL) 1535 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1536 1537 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1538 } 1539 return; 1540 } 1541 case Instruction::ICmp: 1542 case Instruction::FCmp: { 1543 // Check that all of the compares have the same predicate. 1544 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 1545 Type *ComparedTy = VL0->getOperand(0)->getType(); 1546 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1547 CmpInst *Cmp = cast<CmpInst>(VL[i]); 1548 if (Cmp->getPredicate() != P0 || 1549 Cmp->getOperand(0)->getType() != ComparedTy) { 1550 BS.cancelScheduling(VL, VL0); 1551 newTreeEntry(VL, false, UserTreeIdx); 1552 DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n"); 1553 return; 1554 } 1555 } 1556 1557 newTreeEntry(VL, true, UserTreeIdx); 1558 DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 1559 1560 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1561 ValueList Operands; 1562 // Prepare the operand vector. 1563 for (Value *j : VL) 1564 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1565 1566 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1567 } 1568 return; 1569 } 1570 case Instruction::Select: 1571 case Instruction::Add: 1572 case Instruction::FAdd: 1573 case Instruction::Sub: 1574 case Instruction::FSub: 1575 case Instruction::Mul: 1576 case Instruction::FMul: 1577 case Instruction::UDiv: 1578 case Instruction::SDiv: 1579 case Instruction::FDiv: 1580 case Instruction::URem: 1581 case Instruction::SRem: 1582 case Instruction::FRem: 1583 case Instruction::Shl: 1584 case Instruction::LShr: 1585 case Instruction::AShr: 1586 case Instruction::And: 1587 case Instruction::Or: 1588 case Instruction::Xor: { 1589 newTreeEntry(VL, true, UserTreeIdx); 1590 DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); 1591 1592 // Sort operands of the instructions so that each side is more likely to 1593 // have the same opcode. 1594 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 1595 ValueList Left, Right; 1596 reorderInputsAccordingToOpcode(VL, Left, Right); 1597 buildTree_rec(Left, Depth + 1, UserTreeIdx); 1598 buildTree_rec(Right, Depth + 1, UserTreeIdx); 1599 return; 1600 } 1601 1602 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1603 ValueList Operands; 1604 // Prepare the operand vector. 1605 for (Value *j : VL) 1606 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1607 1608 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1609 } 1610 return; 1611 } 1612 case Instruction::GetElementPtr: { 1613 // We don't combine GEPs with complicated (nested) indexing. 1614 for (unsigned j = 0; j < VL.size(); ++j) { 1615 if (cast<Instruction>(VL[j])->getNumOperands() != 2) { 1616 DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 1617 BS.cancelScheduling(VL, VL0); 1618 newTreeEntry(VL, false, UserTreeIdx); 1619 return; 1620 } 1621 } 1622 1623 // We can't combine several GEPs into one vector if they operate on 1624 // different types. 1625 Type *Ty0 = VL0->getOperand(0)->getType(); 1626 for (unsigned j = 0; j < VL.size(); ++j) { 1627 Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType(); 1628 if (Ty0 != CurTy) { 1629 DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n"); 1630 BS.cancelScheduling(VL, VL0); 1631 newTreeEntry(VL, false, UserTreeIdx); 1632 return; 1633 } 1634 } 1635 1636 // We don't combine GEPs with non-constant indexes. 1637 for (unsigned j = 0; j < VL.size(); ++j) { 1638 auto Op = cast<Instruction>(VL[j])->getOperand(1); 1639 if (!isa<ConstantInt>(Op)) { 1640 DEBUG( 1641 dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 1642 BS.cancelScheduling(VL, VL0); 1643 newTreeEntry(VL, false, UserTreeIdx); 1644 return; 1645 } 1646 } 1647 1648 newTreeEntry(VL, true, UserTreeIdx); 1649 DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 1650 for (unsigned i = 0, e = 2; i < e; ++i) { 1651 ValueList Operands; 1652 // Prepare the operand vector. 1653 for (Value *j : VL) 1654 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1655 1656 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1657 } 1658 return; 1659 } 1660 case Instruction::Store: { 1661 // Check if the stores are consecutive or of we need to swizzle them. 1662 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 1663 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1664 BS.cancelScheduling(VL, VL0); 1665 newTreeEntry(VL, false, UserTreeIdx); 1666 DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 1667 return; 1668 } 1669 1670 newTreeEntry(VL, true, UserTreeIdx); 1671 DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 1672 1673 ValueList Operands; 1674 for (Value *j : VL) 1675 Operands.push_back(cast<Instruction>(j)->getOperand(0)); 1676 1677 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1678 return; 1679 } 1680 case Instruction::Call: { 1681 // Check if the calls are all to the same vectorizable intrinsic. 1682 CallInst *CI = cast<CallInst>(VL0); 1683 // Check if this is an Intrinsic call or something that can be 1684 // represented by an intrinsic call 1685 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 1686 if (!isTriviallyVectorizable(ID)) { 1687 BS.cancelScheduling(VL, VL0); 1688 newTreeEntry(VL, false, UserTreeIdx); 1689 DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 1690 return; 1691 } 1692 Function *Int = CI->getCalledFunction(); 1693 Value *A1I = nullptr; 1694 if (hasVectorInstrinsicScalarOpd(ID, 1)) 1695 A1I = CI->getArgOperand(1); 1696 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 1697 CallInst *CI2 = dyn_cast<CallInst>(VL[i]); 1698 if (!CI2 || CI2->getCalledFunction() != Int || 1699 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 1700 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 1701 BS.cancelScheduling(VL, VL0); 1702 newTreeEntry(VL, false, UserTreeIdx); 1703 DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] 1704 << "\n"); 1705 return; 1706 } 1707 // ctlz,cttz and powi are special intrinsics whose second argument 1708 // should be same in order for them to be vectorized. 1709 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 1710 Value *A1J = CI2->getArgOperand(1); 1711 if (A1I != A1J) { 1712 BS.cancelScheduling(VL, VL0); 1713 newTreeEntry(VL, false, UserTreeIdx); 1714 DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 1715 << " argument "<< A1I<<"!=" << A1J 1716 << "\n"); 1717 return; 1718 } 1719 } 1720 // Verify that the bundle operands are identical between the two calls. 1721 if (CI->hasOperandBundles() && 1722 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 1723 CI->op_begin() + CI->getBundleOperandsEndIndex(), 1724 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 1725 BS.cancelScheduling(VL, VL0); 1726 newTreeEntry(VL, false, UserTreeIdx); 1727 DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" << *CI << "!=" 1728 << *VL[i] << '\n'); 1729 return; 1730 } 1731 } 1732 1733 newTreeEntry(VL, true, UserTreeIdx); 1734 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 1735 ValueList Operands; 1736 // Prepare the operand vector. 1737 for (Value *j : VL) { 1738 CallInst *CI2 = dyn_cast<CallInst>(j); 1739 Operands.push_back(CI2->getArgOperand(i)); 1740 } 1741 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1742 } 1743 return; 1744 } 1745 case Instruction::ShuffleVector: { 1746 // If this is not an alternate sequence of opcode like add-sub 1747 // then do not vectorize this instruction. 1748 if (!isAltShuffle) { 1749 BS.cancelScheduling(VL, VL0); 1750 newTreeEntry(VL, false, UserTreeIdx); 1751 DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 1752 return; 1753 } 1754 newTreeEntry(VL, true, UserTreeIdx); 1755 DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 1756 1757 // Reorder operands if reordering would enable vectorization. 1758 if (isa<BinaryOperator>(VL0)) { 1759 ValueList Left, Right; 1760 reorderAltShuffleOperands(VL, Left, Right); 1761 buildTree_rec(Left, Depth + 1, UserTreeIdx); 1762 buildTree_rec(Right, Depth + 1, UserTreeIdx); 1763 return; 1764 } 1765 1766 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1767 ValueList Operands; 1768 // Prepare the operand vector. 1769 for (Value *j : VL) 1770 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1771 1772 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1773 } 1774 return; 1775 } 1776 default: 1777 BS.cancelScheduling(VL, VL0); 1778 newTreeEntry(VL, false, UserTreeIdx); 1779 DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 1780 return; 1781 } 1782 } 1783 1784 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 1785 unsigned N; 1786 Type *EltTy; 1787 auto *ST = dyn_cast<StructType>(T); 1788 if (ST) { 1789 N = ST->getNumElements(); 1790 EltTy = *ST->element_begin(); 1791 } else { 1792 N = cast<ArrayType>(T)->getNumElements(); 1793 EltTy = cast<ArrayType>(T)->getElementType(); 1794 } 1795 if (!isValidElementType(EltTy)) 1796 return 0; 1797 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 1798 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 1799 return 0; 1800 if (ST) { 1801 // Check that struct is homogeneous. 1802 for (const auto *Ty : ST->elements()) 1803 if (Ty != EltTy) 1804 return 0; 1805 } 1806 return N; 1807 } 1808 1809 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue) const { 1810 Instruction *E0 = cast<Instruction>(OpValue); 1811 assert(E0->getOpcode() == Instruction::ExtractElement || 1812 E0->getOpcode() == Instruction::ExtractValue); 1813 assert(E0->getOpcode() == getSameOpcode(VL) && "Invalid opcode"); 1814 // Check if all of the extracts come from the same vector and from the 1815 // correct offset. 1816 Value *Vec = E0->getOperand(0); 1817 1818 // We have to extract from a vector/aggregate with the same number of elements. 1819 unsigned NElts; 1820 if (E0->getOpcode() == Instruction::ExtractValue) { 1821 const DataLayout &DL = E0->getModule()->getDataLayout(); 1822 NElts = canMapToVector(Vec->getType(), DL); 1823 if (!NElts) 1824 return false; 1825 // Check if load can be rewritten as load of vector. 1826 LoadInst *LI = dyn_cast<LoadInst>(Vec); 1827 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 1828 return false; 1829 } else { 1830 NElts = Vec->getType()->getVectorNumElements(); 1831 } 1832 1833 if (NElts != VL.size()) 1834 return false; 1835 1836 // Check that all of the indices extract from the correct offset. 1837 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 1838 Instruction *Inst = cast<Instruction>(VL[I]); 1839 if (!matchExtractIndex(Inst, I, Inst->getOpcode())) 1840 return false; 1841 if (Inst->getOperand(0) != Vec) 1842 return false; 1843 } 1844 1845 return true; 1846 } 1847 1848 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 1849 return I->hasOneUse() || 1850 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 1851 return ScalarToTreeEntry.count(U) > 0; 1852 }); 1853 } 1854 1855 int BoUpSLP::getEntryCost(TreeEntry *E) { 1856 ArrayRef<Value*> VL = E->Scalars; 1857 1858 Type *ScalarTy = VL[0]->getType(); 1859 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1860 ScalarTy = SI->getValueOperand()->getType(); 1861 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 1862 ScalarTy = CI->getOperand(0)->getType(); 1863 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1864 1865 // If we have computed a smaller type for the expression, update VecTy so 1866 // that the costs will be accurate. 1867 if (MinBWs.count(VL[0])) 1868 VecTy = VectorType::get( 1869 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 1870 1871 if (E->NeedToGather) { 1872 if (allConstant(VL)) 1873 return 0; 1874 if (isSplat(VL)) { 1875 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 1876 } 1877 if (getSameOpcode(VL) == Instruction::ExtractElement) { 1878 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 1879 if (ShuffleKind.hasValue()) { 1880 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 1881 for (auto *V : VL) { 1882 // If all users of instruction are going to be vectorized and this 1883 // instruction itself is not going to be vectorized, consider this 1884 // instruction as dead and remove its cost from the final cost of the 1885 // vectorized tree. 1886 if (areAllUsersVectorized(cast<Instruction>(V)) && 1887 !ScalarToTreeEntry.count(V)) { 1888 auto *IO = cast<ConstantInt>( 1889 cast<ExtractElementInst>(V)->getIndexOperand()); 1890 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 1891 IO->getZExtValue()); 1892 } 1893 } 1894 return Cost; 1895 } 1896 } 1897 return getGatherCost(E->Scalars); 1898 } 1899 unsigned Opcode = getSameOpcode(VL); 1900 assert(Opcode && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 1901 Instruction *VL0 = cast<Instruction>(VL[0]); 1902 switch (Opcode) { 1903 case Instruction::PHI: { 1904 return 0; 1905 } 1906 case Instruction::ExtractValue: 1907 case Instruction::ExtractElement: { 1908 if (canReuseExtract(VL, VL0)) { 1909 int DeadCost = 0; 1910 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 1911 Instruction *E = cast<Instruction>(VL[i]); 1912 // If all users are going to be vectorized, instruction can be 1913 // considered as dead. 1914 // The same, if have only one user, it will be vectorized for sure. 1915 if (areAllUsersVectorized(E)) 1916 // Take credit for instruction that will become dead. 1917 DeadCost += 1918 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 1919 } 1920 return -DeadCost; 1921 } 1922 return getGatherCost(VecTy); 1923 } 1924 case Instruction::ZExt: 1925 case Instruction::SExt: 1926 case Instruction::FPToUI: 1927 case Instruction::FPToSI: 1928 case Instruction::FPExt: 1929 case Instruction::PtrToInt: 1930 case Instruction::IntToPtr: 1931 case Instruction::SIToFP: 1932 case Instruction::UIToFP: 1933 case Instruction::Trunc: 1934 case Instruction::FPTrunc: 1935 case Instruction::BitCast: { 1936 Type *SrcTy = VL0->getOperand(0)->getType(); 1937 1938 // Calculate the cost of this instruction. 1939 int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(), 1940 VL0->getType(), SrcTy, VL0); 1941 1942 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 1943 int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy, VL0); 1944 return VecCost - ScalarCost; 1945 } 1946 case Instruction::FCmp: 1947 case Instruction::ICmp: 1948 case Instruction::Select: { 1949 // Calculate the cost of this instruction. 1950 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 1951 int ScalarCost = VecTy->getNumElements() * 1952 TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty(), VL0); 1953 int VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy, VL0); 1954 return VecCost - ScalarCost; 1955 } 1956 case Instruction::Add: 1957 case Instruction::FAdd: 1958 case Instruction::Sub: 1959 case Instruction::FSub: 1960 case Instruction::Mul: 1961 case Instruction::FMul: 1962 case Instruction::UDiv: 1963 case Instruction::SDiv: 1964 case Instruction::FDiv: 1965 case Instruction::URem: 1966 case Instruction::SRem: 1967 case Instruction::FRem: 1968 case Instruction::Shl: 1969 case Instruction::LShr: 1970 case Instruction::AShr: 1971 case Instruction::And: 1972 case Instruction::Or: 1973 case Instruction::Xor: { 1974 // Certain instructions can be cheaper to vectorize if they have a 1975 // constant second vector operand. 1976 TargetTransformInfo::OperandValueKind Op1VK = 1977 TargetTransformInfo::OK_AnyValue; 1978 TargetTransformInfo::OperandValueKind Op2VK = 1979 TargetTransformInfo::OK_UniformConstantValue; 1980 TargetTransformInfo::OperandValueProperties Op1VP = 1981 TargetTransformInfo::OP_None; 1982 TargetTransformInfo::OperandValueProperties Op2VP = 1983 TargetTransformInfo::OP_None; 1984 1985 // If all operands are exactly the same ConstantInt then set the 1986 // operand kind to OK_UniformConstantValue. 1987 // If instead not all operands are constants, then set the operand kind 1988 // to OK_AnyValue. If all operands are constants but not the same, 1989 // then set the operand kind to OK_NonUniformConstantValue. 1990 ConstantInt *CInt = nullptr; 1991 for (unsigned i = 0; i < VL.size(); ++i) { 1992 const Instruction *I = cast<Instruction>(VL[i]); 1993 if (!isa<ConstantInt>(I->getOperand(1))) { 1994 Op2VK = TargetTransformInfo::OK_AnyValue; 1995 break; 1996 } 1997 if (i == 0) { 1998 CInt = cast<ConstantInt>(I->getOperand(1)); 1999 continue; 2000 } 2001 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && 2002 CInt != cast<ConstantInt>(I->getOperand(1))) 2003 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 2004 } 2005 // FIXME: Currently cost of model modification for division by power of 2006 // 2 is handled for X86 and AArch64. Add support for other targets. 2007 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt && 2008 CInt->getValue().isPowerOf2()) 2009 Op2VP = TargetTransformInfo::OP_PowerOf2; 2010 2011 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 2012 int ScalarCost = 2013 VecTy->getNumElements() * 2014 TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, Op2VK, Op1VP, 2015 Op2VP, Operands); 2016 int VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK, 2017 Op1VP, Op2VP, Operands); 2018 return VecCost - ScalarCost; 2019 } 2020 case Instruction::GetElementPtr: { 2021 TargetTransformInfo::OperandValueKind Op1VK = 2022 TargetTransformInfo::OK_AnyValue; 2023 TargetTransformInfo::OperandValueKind Op2VK = 2024 TargetTransformInfo::OK_UniformConstantValue; 2025 2026 int ScalarCost = 2027 VecTy->getNumElements() * 2028 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 2029 int VecCost = 2030 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 2031 2032 return VecCost - ScalarCost; 2033 } 2034 case Instruction::Load: { 2035 // Cost of wide load - cost of scalar loads. 2036 unsigned alignment = dyn_cast<LoadInst>(VL0)->getAlignment(); 2037 int ScalarLdCost = VecTy->getNumElements() * 2038 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0); 2039 int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, 2040 VecTy, alignment, 0, VL0); 2041 return VecLdCost - ScalarLdCost; 2042 } 2043 case Instruction::Store: { 2044 // We know that we can merge the stores. Calculate the cost. 2045 unsigned alignment = dyn_cast<StoreInst>(VL0)->getAlignment(); 2046 int ScalarStCost = VecTy->getNumElements() * 2047 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0); 2048 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, 2049 VecTy, alignment, 0, VL0); 2050 return VecStCost - ScalarStCost; 2051 } 2052 case Instruction::Call: { 2053 CallInst *CI = cast<CallInst>(VL0); 2054 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2055 2056 // Calculate the cost of the scalar and vector calls. 2057 SmallVector<Type*, 4> ScalarTys; 2058 for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) 2059 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 2060 2061 FastMathFlags FMF; 2062 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 2063 FMF = FPMO->getFastMathFlags(); 2064 2065 int ScalarCallCost = VecTy->getNumElements() * 2066 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 2067 2068 SmallVector<Value *, 4> Args(CI->arg_operands()); 2069 int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF, 2070 VecTy->getNumElements()); 2071 2072 DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost 2073 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 2074 << " for " << *CI << "\n"); 2075 2076 return VecCallCost - ScalarCallCost; 2077 } 2078 case Instruction::ShuffleVector: { 2079 TargetTransformInfo::OperandValueKind Op1VK = 2080 TargetTransformInfo::OK_AnyValue; 2081 TargetTransformInfo::OperandValueKind Op2VK = 2082 TargetTransformInfo::OK_AnyValue; 2083 int ScalarCost = 0; 2084 int VecCost = 0; 2085 for (Value *i : VL) { 2086 Instruction *I = cast<Instruction>(i); 2087 if (!I) 2088 break; 2089 ScalarCost += 2090 TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK); 2091 } 2092 // VecCost is equal to sum of the cost of creating 2 vectors 2093 // and the cost of creating shuffle. 2094 Instruction *I0 = cast<Instruction>(VL[0]); 2095 VecCost = 2096 TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK); 2097 Instruction *I1 = cast<Instruction>(VL[1]); 2098 VecCost += 2099 TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK); 2100 VecCost += 2101 TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0); 2102 return VecCost - ScalarCost; 2103 } 2104 default: 2105 llvm_unreachable("Unknown instruction"); 2106 } 2107 } 2108 2109 bool BoUpSLP::isFullyVectorizableTinyTree() { 2110 DEBUG(dbgs() << "SLP: Check whether the tree with height " << 2111 VectorizableTree.size() << " is fully vectorizable .\n"); 2112 2113 // We only handle trees of heights 1 and 2. 2114 if (VectorizableTree.size() == 1 && !VectorizableTree[0].NeedToGather) 2115 return true; 2116 2117 if (VectorizableTree.size() != 2) 2118 return false; 2119 2120 // Handle splat and all-constants stores. 2121 if (!VectorizableTree[0].NeedToGather && 2122 (allConstant(VectorizableTree[1].Scalars) || 2123 isSplat(VectorizableTree[1].Scalars))) 2124 return true; 2125 2126 // Gathering cost would be too much for tiny trees. 2127 if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather) 2128 return false; 2129 2130 return true; 2131 } 2132 2133 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() { 2134 2135 // We can vectorize the tree if its size is greater than or equal to the 2136 // minimum size specified by the MinTreeSize command line option. 2137 if (VectorizableTree.size() >= MinTreeSize) 2138 return false; 2139 2140 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 2141 // can vectorize it if we can prove it fully vectorizable. 2142 if (isFullyVectorizableTinyTree()) 2143 return false; 2144 2145 assert(VectorizableTree.empty() 2146 ? ExternalUses.empty() 2147 : true && "We shouldn't have any external users"); 2148 2149 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 2150 // vectorizable. 2151 return true; 2152 } 2153 2154 int BoUpSLP::getSpillCost() { 2155 // Walk from the bottom of the tree to the top, tracking which values are 2156 // live. When we see a call instruction that is not part of our tree, 2157 // query TTI to see if there is a cost to keeping values live over it 2158 // (for example, if spills and fills are required). 2159 unsigned BundleWidth = VectorizableTree.front().Scalars.size(); 2160 int Cost = 0; 2161 2162 SmallPtrSet<Instruction*, 4> LiveValues; 2163 Instruction *PrevInst = nullptr; 2164 2165 for (const auto &N : VectorizableTree) { 2166 Instruction *Inst = dyn_cast<Instruction>(N.Scalars[0]); 2167 if (!Inst) 2168 continue; 2169 2170 if (!PrevInst) { 2171 PrevInst = Inst; 2172 continue; 2173 } 2174 2175 // Update LiveValues. 2176 LiveValues.erase(PrevInst); 2177 for (auto &J : PrevInst->operands()) { 2178 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 2179 LiveValues.insert(cast<Instruction>(&*J)); 2180 } 2181 2182 DEBUG( 2183 dbgs() << "SLP: #LV: " << LiveValues.size(); 2184 for (auto *X : LiveValues) 2185 dbgs() << " " << X->getName(); 2186 dbgs() << ", Looking at "; 2187 Inst->dump(); 2188 ); 2189 2190 // Now find the sequence of instructions between PrevInst and Inst. 2191 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 2192 PrevInstIt = 2193 PrevInst->getIterator().getReverse(); 2194 while (InstIt != PrevInstIt) { 2195 if (PrevInstIt == PrevInst->getParent()->rend()) { 2196 PrevInstIt = Inst->getParent()->rbegin(); 2197 continue; 2198 } 2199 2200 if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) { 2201 SmallVector<Type*, 4> V; 2202 for (auto *II : LiveValues) 2203 V.push_back(VectorType::get(II->getType(), BundleWidth)); 2204 Cost += TTI->getCostOfKeepingLiveOverCall(V); 2205 } 2206 2207 ++PrevInstIt; 2208 } 2209 2210 PrevInst = Inst; 2211 } 2212 2213 return Cost; 2214 } 2215 2216 int BoUpSLP::getTreeCost() { 2217 int Cost = 0; 2218 DEBUG(dbgs() << "SLP: Calculating cost for tree of size " << 2219 VectorizableTree.size() << ".\n"); 2220 2221 unsigned BundleWidth = VectorizableTree[0].Scalars.size(); 2222 2223 for (TreeEntry &TE : VectorizableTree) { 2224 int C = getEntryCost(&TE); 2225 DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with " 2226 << *TE.Scalars[0] << ".\n"); 2227 Cost += C; 2228 } 2229 2230 SmallSet<Value *, 16> ExtractCostCalculated; 2231 int ExtractCost = 0; 2232 for (ExternalUser &EU : ExternalUses) { 2233 // We only add extract cost once for the same scalar. 2234 if (!ExtractCostCalculated.insert(EU.Scalar).second) 2235 continue; 2236 2237 // Uses by ephemeral values are free (because the ephemeral value will be 2238 // removed prior to code generation, and so the extraction will be 2239 // removed as well). 2240 if (EphValues.count(EU.User)) 2241 continue; 2242 2243 // If we plan to rewrite the tree in a smaller type, we will need to sign 2244 // extend the extracted value back to the original type. Here, we account 2245 // for the extract and the added cost of the sign extend if needed. 2246 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 2247 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 2248 if (MinBWs.count(ScalarRoot)) { 2249 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 2250 auto Extend = 2251 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 2252 VecTy = VectorType::get(MinTy, BundleWidth); 2253 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 2254 VecTy, EU.Lane); 2255 } else { 2256 ExtractCost += 2257 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 2258 } 2259 } 2260 2261 int SpillCost = getSpillCost(); 2262 Cost += SpillCost + ExtractCost; 2263 2264 std::string Str; 2265 { 2266 raw_string_ostream OS(Str); 2267 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 2268 << "SLP: Extract Cost = " << ExtractCost << ".\n" 2269 << "SLP: Total Cost = " << Cost << ".\n"; 2270 } 2271 DEBUG(dbgs() << Str); 2272 2273 if (ViewSLPTree) 2274 ViewGraph(this, "SLP" + F->getName(), false, Str); 2275 2276 return Cost; 2277 } 2278 2279 int BoUpSLP::getGatherCost(Type *Ty) { 2280 int Cost = 0; 2281 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 2282 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 2283 return Cost; 2284 } 2285 2286 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) { 2287 // Find the type of the operands in VL. 2288 Type *ScalarTy = VL[0]->getType(); 2289 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2290 ScalarTy = SI->getValueOperand()->getType(); 2291 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2292 // Find the cost of inserting/extracting values from the vector. 2293 return getGatherCost(VecTy); 2294 } 2295 2296 // Reorder commutative operations in alternate shuffle if the resulting vectors 2297 // are consecutive loads. This would allow us to vectorize the tree. 2298 // If we have something like- 2299 // load a[0] - load b[0] 2300 // load b[1] + load a[1] 2301 // load a[2] - load b[2] 2302 // load a[3] + load b[3] 2303 // Reordering the second load b[1] load a[1] would allow us to vectorize this 2304 // code. 2305 void BoUpSLP::reorderAltShuffleOperands(ArrayRef<Value *> VL, 2306 SmallVectorImpl<Value *> &Left, 2307 SmallVectorImpl<Value *> &Right) { 2308 // Push left and right operands of binary operation into Left and Right 2309 for (Value *i : VL) { 2310 Left.push_back(cast<Instruction>(i)->getOperand(0)); 2311 Right.push_back(cast<Instruction>(i)->getOperand(1)); 2312 } 2313 2314 // Reorder if we have a commutative operation and consecutive access 2315 // are on either side of the alternate instructions. 2316 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2317 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2318 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2319 Instruction *VL1 = cast<Instruction>(VL[j]); 2320 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2321 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2322 std::swap(Left[j], Right[j]); 2323 continue; 2324 } else if (VL2->isCommutative() && 2325 isConsecutiveAccess(L, L1, *DL, *SE)) { 2326 std::swap(Left[j + 1], Right[j + 1]); 2327 continue; 2328 } 2329 // else unchanged 2330 } 2331 } 2332 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2333 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2334 Instruction *VL1 = cast<Instruction>(VL[j]); 2335 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2336 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2337 std::swap(Left[j], Right[j]); 2338 continue; 2339 } else if (VL2->isCommutative() && 2340 isConsecutiveAccess(L, L1, *DL, *SE)) { 2341 std::swap(Left[j + 1], Right[j + 1]); 2342 continue; 2343 } 2344 // else unchanged 2345 } 2346 } 2347 } 2348 } 2349 2350 // Return true if I should be commuted before adding it's left and right 2351 // operands to the arrays Left and Right. 2352 // 2353 // The vectorizer is trying to either have all elements one side being 2354 // instruction with the same opcode to enable further vectorization, or having 2355 // a splat to lower the vectorizing cost. 2356 static bool shouldReorderOperands(int i, Instruction &I, 2357 SmallVectorImpl<Value *> &Left, 2358 SmallVectorImpl<Value *> &Right, 2359 bool AllSameOpcodeLeft, 2360 bool AllSameOpcodeRight, bool SplatLeft, 2361 bool SplatRight) { 2362 Value *VLeft = I.getOperand(0); 2363 Value *VRight = I.getOperand(1); 2364 // If we have "SplatRight", try to see if commuting is needed to preserve it. 2365 if (SplatRight) { 2366 if (VRight == Right[i - 1]) 2367 // Preserve SplatRight 2368 return false; 2369 if (VLeft == Right[i - 1]) { 2370 // Commuting would preserve SplatRight, but we don't want to break 2371 // SplatLeft either, i.e. preserve the original order if possible. 2372 // (FIXME: why do we care?) 2373 if (SplatLeft && VLeft == Left[i - 1]) 2374 return false; 2375 return true; 2376 } 2377 } 2378 // Symmetrically handle Right side. 2379 if (SplatLeft) { 2380 if (VLeft == Left[i - 1]) 2381 // Preserve SplatLeft 2382 return false; 2383 if (VRight == Left[i - 1]) 2384 return true; 2385 } 2386 2387 Instruction *ILeft = dyn_cast<Instruction>(VLeft); 2388 Instruction *IRight = dyn_cast<Instruction>(VRight); 2389 2390 // If we have "AllSameOpcodeRight", try to see if the left operands preserves 2391 // it and not the right, in this case we want to commute. 2392 if (AllSameOpcodeRight) { 2393 unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode(); 2394 if (IRight && RightPrevOpcode == IRight->getOpcode()) 2395 // Do not commute, a match on the right preserves AllSameOpcodeRight 2396 return false; 2397 if (ILeft && RightPrevOpcode == ILeft->getOpcode()) { 2398 // We have a match and may want to commute, but first check if there is 2399 // not also a match on the existing operands on the Left to preserve 2400 // AllSameOpcodeLeft, i.e. preserve the original order if possible. 2401 // (FIXME: why do we care?) 2402 if (AllSameOpcodeLeft && ILeft && 2403 cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode()) 2404 return false; 2405 return true; 2406 } 2407 } 2408 // Symmetrically handle Left side. 2409 if (AllSameOpcodeLeft) { 2410 unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode(); 2411 if (ILeft && LeftPrevOpcode == ILeft->getOpcode()) 2412 return false; 2413 if (IRight && LeftPrevOpcode == IRight->getOpcode()) 2414 return true; 2415 } 2416 return false; 2417 } 2418 2419 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 2420 SmallVectorImpl<Value *> &Left, 2421 SmallVectorImpl<Value *> &Right) { 2422 2423 if (VL.size()) { 2424 // Peel the first iteration out of the loop since there's nothing 2425 // interesting to do anyway and it simplifies the checks in the loop. 2426 auto VLeft = cast<Instruction>(VL[0])->getOperand(0); 2427 auto VRight = cast<Instruction>(VL[0])->getOperand(1); 2428 if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft)) 2429 // Favor having instruction to the right. FIXME: why? 2430 std::swap(VLeft, VRight); 2431 Left.push_back(VLeft); 2432 Right.push_back(VRight); 2433 } 2434 2435 // Keep track if we have instructions with all the same opcode on one side. 2436 bool AllSameOpcodeLeft = isa<Instruction>(Left[0]); 2437 bool AllSameOpcodeRight = isa<Instruction>(Right[0]); 2438 // Keep track if we have one side with all the same value (broadcast). 2439 bool SplatLeft = true; 2440 bool SplatRight = true; 2441 2442 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 2443 Instruction *I = cast<Instruction>(VL[i]); 2444 assert(I->isCommutative() && "Can only process commutative instruction"); 2445 // Commute to favor either a splat or maximizing having the same opcodes on 2446 // one side. 2447 if (shouldReorderOperands(i, *I, Left, Right, AllSameOpcodeLeft, 2448 AllSameOpcodeRight, SplatLeft, SplatRight)) { 2449 Left.push_back(I->getOperand(1)); 2450 Right.push_back(I->getOperand(0)); 2451 } else { 2452 Left.push_back(I->getOperand(0)); 2453 Right.push_back(I->getOperand(1)); 2454 } 2455 // Update Splat* and AllSameOpcode* after the insertion. 2456 SplatRight = SplatRight && (Right[i - 1] == Right[i]); 2457 SplatLeft = SplatLeft && (Left[i - 1] == Left[i]); 2458 AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) && 2459 (cast<Instruction>(Left[i - 1])->getOpcode() == 2460 cast<Instruction>(Left[i])->getOpcode()); 2461 AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) && 2462 (cast<Instruction>(Right[i - 1])->getOpcode() == 2463 cast<Instruction>(Right[i])->getOpcode()); 2464 } 2465 2466 // If one operand end up being broadcast, return this operand order. 2467 if (SplatRight || SplatLeft) 2468 return; 2469 2470 // Finally check if we can get longer vectorizable chain by reordering 2471 // without breaking the good operand order detected above. 2472 // E.g. If we have something like- 2473 // load a[0] load b[0] 2474 // load b[1] load a[1] 2475 // load a[2] load b[2] 2476 // load a[3] load b[3] 2477 // Reordering the second load b[1] load a[1] would allow us to vectorize 2478 // this code and we still retain AllSameOpcode property. 2479 // FIXME: This load reordering might break AllSameOpcode in some rare cases 2480 // such as- 2481 // add a[0],c[0] load b[0] 2482 // add a[1],c[2] load b[1] 2483 // b[2] load b[2] 2484 // add a[3],c[3] load b[3] 2485 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2486 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2487 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2488 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2489 std::swap(Left[j + 1], Right[j + 1]); 2490 continue; 2491 } 2492 } 2493 } 2494 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2495 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2496 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2497 std::swap(Left[j + 1], Right[j + 1]); 2498 continue; 2499 } 2500 } 2501 } 2502 // else unchanged 2503 } 2504 } 2505 2506 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL, Value *OpValue) { 2507 2508 // Get the basic block this bundle is in. All instructions in the bundle 2509 // should be in this block. 2510 auto *Front = cast<Instruction>(OpValue); 2511 auto *BB = Front->getParent(); 2512 const unsigned Opcode = cast<Instruction>(OpValue)->getOpcode(); 2513 const unsigned AltOpcode = getAltOpcode(Opcode); 2514 assert(all_of(make_range(VL.begin(), VL.end()), [=](Value *V) -> bool { 2515 return !sameOpcodeOrAlt(Opcode, AltOpcode, 2516 cast<Instruction>(V)->getOpcode()) || 2517 cast<Instruction>(V)->getParent() == BB; 2518 })); 2519 2520 // The last instruction in the bundle in program order. 2521 Instruction *LastInst = nullptr; 2522 2523 // Find the last instruction. The common case should be that BB has been 2524 // scheduled, and the last instruction is VL.back(). So we start with 2525 // VL.back() and iterate over schedule data until we reach the end of the 2526 // bundle. The end of the bundle is marked by null ScheduleData. 2527 if (BlocksSchedules.count(BB)) { 2528 auto *Bundle = 2529 BlocksSchedules[BB]->getScheduleData(isOneOf(OpValue, VL.back())); 2530 if (Bundle && Bundle->isPartOfBundle()) 2531 for (; Bundle; Bundle = Bundle->NextInBundle) 2532 if (Bundle->OpValue == Bundle->Inst) 2533 LastInst = Bundle->Inst; 2534 } 2535 2536 // LastInst can still be null at this point if there's either not an entry 2537 // for BB in BlocksSchedules or there's no ScheduleData available for 2538 // VL.back(). This can be the case if buildTree_rec aborts for various 2539 // reasons (e.g., the maximum recursion depth is reached, the maximum region 2540 // size is reached, etc.). ScheduleData is initialized in the scheduling 2541 // "dry-run". 2542 // 2543 // If this happens, we can still find the last instruction by brute force. We 2544 // iterate forwards from Front (inclusive) until we either see all 2545 // instructions in the bundle or reach the end of the block. If Front is the 2546 // last instruction in program order, LastInst will be set to Front, and we 2547 // will visit all the remaining instructions in the block. 2548 // 2549 // One of the reasons we exit early from buildTree_rec is to place an upper 2550 // bound on compile-time. Thus, taking an additional compile-time hit here is 2551 // not ideal. However, this should be exceedingly rare since it requires that 2552 // we both exit early from buildTree_rec and that the bundle be out-of-order 2553 // (causing us to iterate all the way to the end of the block). 2554 if (!LastInst) { 2555 SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end()); 2556 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 2557 if (Bundle.erase(&I) && sameOpcodeOrAlt(Opcode, AltOpcode, I.getOpcode())) 2558 LastInst = &I; 2559 if (Bundle.empty()) 2560 break; 2561 } 2562 } 2563 2564 // Set the insertion point after the last instruction in the bundle. Set the 2565 // debug location to Front. 2566 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 2567 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 2568 } 2569 2570 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 2571 Value *Vec = UndefValue::get(Ty); 2572 // Generate the 'InsertElement' instruction. 2573 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 2574 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 2575 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 2576 GatherSeq.insert(Insrt); 2577 CSEBlocks.insert(Insrt->getParent()); 2578 2579 // Add to our 'need-to-extract' list. 2580 if (TreeEntry *E = getTreeEntry(VL[i])) { 2581 // Find which lane we need to extract. 2582 int FoundLane = -1; 2583 for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) { 2584 // Is this the lane of the scalar that we are looking for ? 2585 if (E->Scalars[Lane] == VL[i]) { 2586 FoundLane = Lane; 2587 break; 2588 } 2589 } 2590 assert(FoundLane >= 0 && "Could not find the correct lane"); 2591 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 2592 } 2593 } 2594 } 2595 2596 return Vec; 2597 } 2598 2599 Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL, Value *OpValue) const { 2600 if (const TreeEntry *En = getTreeEntry(OpValue)) { 2601 if (En->isSame(VL) && En->VectorizedValue) 2602 return En->VectorizedValue; 2603 } 2604 return nullptr; 2605 } 2606 2607 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 2608 if (TreeEntry *E = getTreeEntry(VL[0])) 2609 if (E->isSame(VL)) 2610 return vectorizeTree(E); 2611 2612 Type *ScalarTy = VL[0]->getType(); 2613 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2614 ScalarTy = SI->getValueOperand()->getType(); 2615 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2616 2617 return Gather(VL, VecTy); 2618 } 2619 2620 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 2621 IRBuilder<>::InsertPointGuard Guard(Builder); 2622 2623 if (E->VectorizedValue) { 2624 DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 2625 return E->VectorizedValue; 2626 } 2627 2628 Instruction *VL0 = cast<Instruction>(E->Scalars[0]); 2629 Type *ScalarTy = VL0->getType(); 2630 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 2631 ScalarTy = SI->getValueOperand()->getType(); 2632 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 2633 2634 if (E->NeedToGather) { 2635 setInsertPointAfterBundle(E->Scalars, VL0); 2636 auto *V = Gather(E->Scalars, VecTy); 2637 E->VectorizedValue = V; 2638 return V; 2639 } 2640 2641 unsigned Opcode = getSameOpcode(E->Scalars); 2642 2643 switch (Opcode) { 2644 case Instruction::PHI: { 2645 PHINode *PH = dyn_cast<PHINode>(VL0); 2646 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 2647 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2648 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 2649 E->VectorizedValue = NewPhi; 2650 2651 // PHINodes may have multiple entries from the same block. We want to 2652 // visit every block once. 2653 SmallSet<BasicBlock*, 4> VisitedBBs; 2654 2655 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2656 ValueList Operands; 2657 BasicBlock *IBB = PH->getIncomingBlock(i); 2658 2659 if (!VisitedBBs.insert(IBB).second) { 2660 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 2661 continue; 2662 } 2663 2664 // Prepare the operand vector. 2665 for (Value *V : E->Scalars) 2666 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB)); 2667 2668 Builder.SetInsertPoint(IBB->getTerminator()); 2669 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2670 Value *Vec = vectorizeTree(Operands); 2671 NewPhi->addIncoming(Vec, IBB); 2672 } 2673 2674 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 2675 "Invalid number of incoming values"); 2676 return NewPhi; 2677 } 2678 2679 case Instruction::ExtractElement: { 2680 if (canReuseExtract(E->Scalars, VL0)) { 2681 Value *V = VL0->getOperand(0); 2682 E->VectorizedValue = V; 2683 return V; 2684 } 2685 setInsertPointAfterBundle(E->Scalars, VL0); 2686 auto *V = Gather(E->Scalars, VecTy); 2687 E->VectorizedValue = V; 2688 return V; 2689 } 2690 case Instruction::ExtractValue: { 2691 if (canReuseExtract(E->Scalars, VL0)) { 2692 LoadInst *LI = cast<LoadInst>(VL0->getOperand(0)); 2693 Builder.SetInsertPoint(LI); 2694 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 2695 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 2696 LoadInst *V = Builder.CreateAlignedLoad(Ptr, LI->getAlignment()); 2697 E->VectorizedValue = V; 2698 return propagateMetadata(V, E->Scalars); 2699 } 2700 setInsertPointAfterBundle(E->Scalars, VL0); 2701 auto *V = Gather(E->Scalars, VecTy); 2702 E->VectorizedValue = V; 2703 return V; 2704 } 2705 case Instruction::ZExt: 2706 case Instruction::SExt: 2707 case Instruction::FPToUI: 2708 case Instruction::FPToSI: 2709 case Instruction::FPExt: 2710 case Instruction::PtrToInt: 2711 case Instruction::IntToPtr: 2712 case Instruction::SIToFP: 2713 case Instruction::UIToFP: 2714 case Instruction::Trunc: 2715 case Instruction::FPTrunc: 2716 case Instruction::BitCast: { 2717 ValueList INVL; 2718 for (Value *V : E->Scalars) 2719 INVL.push_back(cast<Instruction>(V)->getOperand(0)); 2720 2721 setInsertPointAfterBundle(E->Scalars, VL0); 2722 2723 Value *InVec = vectorizeTree(INVL); 2724 2725 if (Value *V = alreadyVectorized(E->Scalars, VL0)) 2726 return V; 2727 2728 CastInst *CI = dyn_cast<CastInst>(VL0); 2729 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 2730 E->VectorizedValue = V; 2731 ++NumVectorInstructions; 2732 return V; 2733 } 2734 case Instruction::FCmp: 2735 case Instruction::ICmp: { 2736 ValueList LHSV, RHSV; 2737 for (Value *V : E->Scalars) { 2738 LHSV.push_back(cast<Instruction>(V)->getOperand(0)); 2739 RHSV.push_back(cast<Instruction>(V)->getOperand(1)); 2740 } 2741 2742 setInsertPointAfterBundle(E->Scalars, VL0); 2743 2744 Value *L = vectorizeTree(LHSV); 2745 Value *R = vectorizeTree(RHSV); 2746 2747 if (Value *V = alreadyVectorized(E->Scalars, VL0)) 2748 return V; 2749 2750 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2751 Value *V; 2752 if (Opcode == Instruction::FCmp) 2753 V = Builder.CreateFCmp(P0, L, R); 2754 else 2755 V = Builder.CreateICmp(P0, L, R); 2756 2757 E->VectorizedValue = V; 2758 propagateIRFlags(E->VectorizedValue, E->Scalars); 2759 ++NumVectorInstructions; 2760 return V; 2761 } 2762 case Instruction::Select: { 2763 ValueList TrueVec, FalseVec, CondVec; 2764 for (Value *V : E->Scalars) { 2765 CondVec.push_back(cast<Instruction>(V)->getOperand(0)); 2766 TrueVec.push_back(cast<Instruction>(V)->getOperand(1)); 2767 FalseVec.push_back(cast<Instruction>(V)->getOperand(2)); 2768 } 2769 2770 setInsertPointAfterBundle(E->Scalars, VL0); 2771 2772 Value *Cond = vectorizeTree(CondVec); 2773 Value *True = vectorizeTree(TrueVec); 2774 Value *False = vectorizeTree(FalseVec); 2775 2776 if (Value *V = alreadyVectorized(E->Scalars, VL0)) 2777 return V; 2778 2779 Value *V = Builder.CreateSelect(Cond, True, False); 2780 E->VectorizedValue = V; 2781 ++NumVectorInstructions; 2782 return V; 2783 } 2784 case Instruction::Add: 2785 case Instruction::FAdd: 2786 case Instruction::Sub: 2787 case Instruction::FSub: 2788 case Instruction::Mul: 2789 case Instruction::FMul: 2790 case Instruction::UDiv: 2791 case Instruction::SDiv: 2792 case Instruction::FDiv: 2793 case Instruction::URem: 2794 case Instruction::SRem: 2795 case Instruction::FRem: 2796 case Instruction::Shl: 2797 case Instruction::LShr: 2798 case Instruction::AShr: 2799 case Instruction::And: 2800 case Instruction::Or: 2801 case Instruction::Xor: { 2802 ValueList LHSVL, RHSVL; 2803 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) 2804 reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL); 2805 else 2806 for (Value *V : E->Scalars) { 2807 LHSVL.push_back(cast<Instruction>(V)->getOperand(0)); 2808 RHSVL.push_back(cast<Instruction>(V)->getOperand(1)); 2809 } 2810 2811 setInsertPointAfterBundle(E->Scalars, VL0); 2812 2813 Value *LHS = vectorizeTree(LHSVL); 2814 Value *RHS = vectorizeTree(RHSVL); 2815 2816 if (Value *V = alreadyVectorized(E->Scalars, VL0)) 2817 return V; 2818 2819 BinaryOperator *BinOp = cast<BinaryOperator>(VL0); 2820 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS); 2821 E->VectorizedValue = V; 2822 propagateIRFlags(E->VectorizedValue, E->Scalars); 2823 ++NumVectorInstructions; 2824 2825 if (Instruction *I = dyn_cast<Instruction>(V)) 2826 return propagateMetadata(I, E->Scalars); 2827 2828 return V; 2829 } 2830 case Instruction::Load: { 2831 // Loads are inserted at the head of the tree because we don't want to 2832 // sink them all the way down past store instructions. 2833 setInsertPointAfterBundle(E->Scalars, VL0); 2834 2835 LoadInst *LI = cast<LoadInst>(VL0); 2836 Type *ScalarLoadTy = LI->getType(); 2837 unsigned AS = LI->getPointerAddressSpace(); 2838 2839 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 2840 VecTy->getPointerTo(AS)); 2841 2842 // The pointer operand uses an in-tree scalar so we add the new BitCast to 2843 // ExternalUses list to make sure that an extract will be generated in the 2844 // future. 2845 Value *PO = LI->getPointerOperand(); 2846 if (getTreeEntry(PO)) 2847 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0)); 2848 2849 unsigned Alignment = LI->getAlignment(); 2850 LI = Builder.CreateLoad(VecPtr); 2851 if (!Alignment) { 2852 Alignment = DL->getABITypeAlignment(ScalarLoadTy); 2853 } 2854 LI->setAlignment(Alignment); 2855 E->VectorizedValue = LI; 2856 ++NumVectorInstructions; 2857 return propagateMetadata(LI, E->Scalars); 2858 } 2859 case Instruction::Store: { 2860 StoreInst *SI = cast<StoreInst>(VL0); 2861 unsigned Alignment = SI->getAlignment(); 2862 unsigned AS = SI->getPointerAddressSpace(); 2863 2864 ValueList ValueOp; 2865 for (Value *V : E->Scalars) 2866 ValueOp.push_back(cast<StoreInst>(V)->getValueOperand()); 2867 2868 setInsertPointAfterBundle(E->Scalars, VL0); 2869 2870 Value *VecValue = vectorizeTree(ValueOp); 2871 Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(), 2872 VecTy->getPointerTo(AS)); 2873 StoreInst *S = Builder.CreateStore(VecValue, VecPtr); 2874 2875 // The pointer operand uses an in-tree scalar so we add the new BitCast to 2876 // ExternalUses list to make sure that an extract will be generated in the 2877 // future. 2878 Value *PO = SI->getPointerOperand(); 2879 if (getTreeEntry(PO)) 2880 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0)); 2881 2882 if (!Alignment) { 2883 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 2884 } 2885 S->setAlignment(Alignment); 2886 E->VectorizedValue = S; 2887 ++NumVectorInstructions; 2888 return propagateMetadata(S, E->Scalars); 2889 } 2890 case Instruction::GetElementPtr: { 2891 setInsertPointAfterBundle(E->Scalars, VL0); 2892 2893 ValueList Op0VL; 2894 for (Value *V : E->Scalars) 2895 Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0)); 2896 2897 Value *Op0 = vectorizeTree(Op0VL); 2898 2899 std::vector<Value *> OpVecs; 2900 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 2901 ++j) { 2902 ValueList OpVL; 2903 for (Value *V : E->Scalars) 2904 OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j)); 2905 2906 Value *OpVec = vectorizeTree(OpVL); 2907 OpVecs.push_back(OpVec); 2908 } 2909 2910 Value *V = Builder.CreateGEP( 2911 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 2912 E->VectorizedValue = V; 2913 ++NumVectorInstructions; 2914 2915 if (Instruction *I = dyn_cast<Instruction>(V)) 2916 return propagateMetadata(I, E->Scalars); 2917 2918 return V; 2919 } 2920 case Instruction::Call: { 2921 CallInst *CI = cast<CallInst>(VL0); 2922 setInsertPointAfterBundle(E->Scalars, VL0); 2923 Function *FI; 2924 Intrinsic::ID IID = Intrinsic::not_intrinsic; 2925 Value *ScalarArg = nullptr; 2926 if (CI && (FI = CI->getCalledFunction())) { 2927 IID = FI->getIntrinsicID(); 2928 } 2929 std::vector<Value *> OpVecs; 2930 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 2931 ValueList OpVL; 2932 // ctlz,cttz and powi are special intrinsics whose second argument is 2933 // a scalar. This argument should not be vectorized. 2934 if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) { 2935 CallInst *CEI = cast<CallInst>(E->Scalars[0]); 2936 ScalarArg = CEI->getArgOperand(j); 2937 OpVecs.push_back(CEI->getArgOperand(j)); 2938 continue; 2939 } 2940 for (Value *V : E->Scalars) { 2941 CallInst *CEI = cast<CallInst>(V); 2942 OpVL.push_back(CEI->getArgOperand(j)); 2943 } 2944 2945 Value *OpVec = vectorizeTree(OpVL); 2946 DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 2947 OpVecs.push_back(OpVec); 2948 } 2949 2950 Module *M = F->getParent(); 2951 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2952 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 2953 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 2954 SmallVector<OperandBundleDef, 1> OpBundles; 2955 CI->getOperandBundlesAsDefs(OpBundles); 2956 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 2957 2958 // The scalar argument uses an in-tree scalar so we add the new vectorized 2959 // call to ExternalUses list to make sure that an extract will be 2960 // generated in the future. 2961 if (ScalarArg && getTreeEntry(ScalarArg)) 2962 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 2963 2964 E->VectorizedValue = V; 2965 propagateIRFlags(E->VectorizedValue, E->Scalars); 2966 ++NumVectorInstructions; 2967 return V; 2968 } 2969 case Instruction::ShuffleVector: { 2970 ValueList LHSVL, RHSVL; 2971 assert(isa<BinaryOperator>(VL0) && "Invalid Shuffle Vector Operand"); 2972 reorderAltShuffleOperands(E->Scalars, LHSVL, RHSVL); 2973 setInsertPointAfterBundle(E->Scalars, VL0); 2974 2975 Value *LHS = vectorizeTree(LHSVL); 2976 Value *RHS = vectorizeTree(RHSVL); 2977 2978 if (Value *V = alreadyVectorized(E->Scalars, VL0)) 2979 return V; 2980 2981 // Create a vector of LHS op1 RHS 2982 BinaryOperator *BinOp0 = cast<BinaryOperator>(VL0); 2983 Value *V0 = Builder.CreateBinOp(BinOp0->getOpcode(), LHS, RHS); 2984 2985 // Create a vector of LHS op2 RHS 2986 Instruction *VL1 = cast<Instruction>(E->Scalars[1]); 2987 BinaryOperator *BinOp1 = cast<BinaryOperator>(VL1); 2988 Value *V1 = Builder.CreateBinOp(BinOp1->getOpcode(), LHS, RHS); 2989 2990 // Create shuffle to take alternate operations from the vector. 2991 // Also, gather up odd and even scalar ops to propagate IR flags to 2992 // each vector operation. 2993 ValueList OddScalars, EvenScalars; 2994 unsigned e = E->Scalars.size(); 2995 SmallVector<Constant *, 8> Mask(e); 2996 for (unsigned i = 0; i < e; ++i) { 2997 if (isOdd(i)) { 2998 Mask[i] = Builder.getInt32(e + i); 2999 OddScalars.push_back(E->Scalars[i]); 3000 } else { 3001 Mask[i] = Builder.getInt32(i); 3002 EvenScalars.push_back(E->Scalars[i]); 3003 } 3004 } 3005 3006 Value *ShuffleMask = ConstantVector::get(Mask); 3007 propagateIRFlags(V0, EvenScalars); 3008 propagateIRFlags(V1, OddScalars); 3009 3010 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 3011 E->VectorizedValue = V; 3012 ++NumVectorInstructions; 3013 if (Instruction *I = dyn_cast<Instruction>(V)) 3014 return propagateMetadata(I, E->Scalars); 3015 3016 return V; 3017 } 3018 default: 3019 llvm_unreachable("unknown inst"); 3020 } 3021 return nullptr; 3022 } 3023 3024 Value *BoUpSLP::vectorizeTree() { 3025 ExtraValueToDebugLocsMap ExternallyUsedValues; 3026 return vectorizeTree(ExternallyUsedValues); 3027 } 3028 3029 Value * 3030 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3031 3032 // All blocks must be scheduled before any instructions are inserted. 3033 for (auto &BSIter : BlocksSchedules) { 3034 scheduleBlock(BSIter.second.get()); 3035 } 3036 3037 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3038 auto *VectorRoot = vectorizeTree(&VectorizableTree[0]); 3039 3040 // If the vectorized tree can be rewritten in a smaller type, we truncate the 3041 // vectorized root. InstCombine will then rewrite the entire expression. We 3042 // sign extend the extracted values below. 3043 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 3044 if (MinBWs.count(ScalarRoot)) { 3045 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 3046 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 3047 auto BundleWidth = VectorizableTree[0].Scalars.size(); 3048 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 3049 auto *VecTy = VectorType::get(MinTy, BundleWidth); 3050 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 3051 VectorizableTree[0].VectorizedValue = Trunc; 3052 } 3053 3054 DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n"); 3055 3056 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 3057 // specified by ScalarType. 3058 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 3059 if (!MinBWs.count(ScalarRoot)) 3060 return Ex; 3061 if (MinBWs[ScalarRoot].second) 3062 return Builder.CreateSExt(Ex, ScalarType); 3063 return Builder.CreateZExt(Ex, ScalarType); 3064 }; 3065 3066 // Extract all of the elements with the external uses. 3067 for (const auto &ExternalUse : ExternalUses) { 3068 Value *Scalar = ExternalUse.Scalar; 3069 llvm::User *User = ExternalUse.User; 3070 3071 // Skip users that we already RAUW. This happens when one instruction 3072 // has multiple uses of the same value. 3073 if (User && !is_contained(Scalar->users(), User)) 3074 continue; 3075 TreeEntry *E = getTreeEntry(Scalar); 3076 assert(E && "Invalid scalar"); 3077 assert(!E->NeedToGather && "Extracting from a gather list"); 3078 3079 Value *Vec = E->VectorizedValue; 3080 assert(Vec && "Can't find vectorizable value"); 3081 3082 Value *Lane = Builder.getInt32(ExternalUse.Lane); 3083 // If User == nullptr, the Scalar is used as extra arg. Generate 3084 // ExtractElement instruction and update the record for this scalar in 3085 // ExternallyUsedValues. 3086 if (!User) { 3087 assert(ExternallyUsedValues.count(Scalar) && 3088 "Scalar with nullptr as an external user must be registered in " 3089 "ExternallyUsedValues map"); 3090 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 3091 Builder.SetInsertPoint(VecI->getParent(), 3092 std::next(VecI->getIterator())); 3093 } else { 3094 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3095 } 3096 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3097 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3098 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 3099 auto &Locs = ExternallyUsedValues[Scalar]; 3100 ExternallyUsedValues.insert({Ex, Locs}); 3101 ExternallyUsedValues.erase(Scalar); 3102 continue; 3103 } 3104 3105 // Generate extracts for out-of-tree users. 3106 // Find the insertion point for the extractelement lane. 3107 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 3108 if (PHINode *PH = dyn_cast<PHINode>(User)) { 3109 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 3110 if (PH->getIncomingValue(i) == Scalar) { 3111 TerminatorInst *IncomingTerminator = 3112 PH->getIncomingBlock(i)->getTerminator(); 3113 if (isa<CatchSwitchInst>(IncomingTerminator)) { 3114 Builder.SetInsertPoint(VecI->getParent(), 3115 std::next(VecI->getIterator())); 3116 } else { 3117 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 3118 } 3119 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3120 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3121 CSEBlocks.insert(PH->getIncomingBlock(i)); 3122 PH->setOperand(i, Ex); 3123 } 3124 } 3125 } else { 3126 Builder.SetInsertPoint(cast<Instruction>(User)); 3127 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3128 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3129 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 3130 User->replaceUsesOfWith(Scalar, Ex); 3131 } 3132 } else { 3133 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3134 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3135 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3136 CSEBlocks.insert(&F->getEntryBlock()); 3137 User->replaceUsesOfWith(Scalar, Ex); 3138 } 3139 3140 DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 3141 } 3142 3143 // For each vectorized value: 3144 for (TreeEntry &EIdx : VectorizableTree) { 3145 TreeEntry *Entry = &EIdx; 3146 3147 // For each lane: 3148 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3149 Value *Scalar = Entry->Scalars[Lane]; 3150 // No need to handle users of gathered values. 3151 if (Entry->NeedToGather) 3152 continue; 3153 3154 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 3155 3156 Type *Ty = Scalar->getType(); 3157 if (!Ty->isVoidTy()) { 3158 #ifndef NDEBUG 3159 for (User *U : Scalar->users()) { 3160 DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 3161 3162 // It is legal to replace users in the ignorelist by undef. 3163 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 3164 "Replacing out-of-tree value with undef"); 3165 } 3166 #endif 3167 Value *Undef = UndefValue::get(Ty); 3168 Scalar->replaceAllUsesWith(Undef); 3169 } 3170 DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 3171 eraseInstruction(cast<Instruction>(Scalar)); 3172 } 3173 } 3174 3175 Builder.ClearInsertionPoint(); 3176 3177 return VectorizableTree[0].VectorizedValue; 3178 } 3179 3180 void BoUpSLP::optimizeGatherSequence() { 3181 DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 3182 << " gather sequences instructions.\n"); 3183 // LICM InsertElementInst sequences. 3184 for (Instruction *it : GatherSeq) { 3185 InsertElementInst *Insert = dyn_cast<InsertElementInst>(it); 3186 3187 if (!Insert) 3188 continue; 3189 3190 // Check if this block is inside a loop. 3191 Loop *L = LI->getLoopFor(Insert->getParent()); 3192 if (!L) 3193 continue; 3194 3195 // Check if it has a preheader. 3196 BasicBlock *PreHeader = L->getLoopPreheader(); 3197 if (!PreHeader) 3198 continue; 3199 3200 // If the vector or the element that we insert into it are 3201 // instructions that are defined in this basic block then we can't 3202 // hoist this instruction. 3203 Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0)); 3204 Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1)); 3205 if (CurrVec && L->contains(CurrVec)) 3206 continue; 3207 if (NewElem && L->contains(NewElem)) 3208 continue; 3209 3210 // We can hoist this instruction. Move it to the pre-header. 3211 Insert->moveBefore(PreHeader->getTerminator()); 3212 } 3213 3214 // Make a list of all reachable blocks in our CSE queue. 3215 SmallVector<const DomTreeNode *, 8> CSEWorkList; 3216 CSEWorkList.reserve(CSEBlocks.size()); 3217 for (BasicBlock *BB : CSEBlocks) 3218 if (DomTreeNode *N = DT->getNode(BB)) { 3219 assert(DT->isReachableFromEntry(N)); 3220 CSEWorkList.push_back(N); 3221 } 3222 3223 // Sort blocks by domination. This ensures we visit a block after all blocks 3224 // dominating it are visited. 3225 std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), 3226 [this](const DomTreeNode *A, const DomTreeNode *B) { 3227 return DT->properlyDominates(A, B); 3228 }); 3229 3230 // Perform O(N^2) search over the gather sequences and merge identical 3231 // instructions. TODO: We can further optimize this scan if we split the 3232 // instructions into different buckets based on the insert lane. 3233 SmallVector<Instruction *, 16> Visited; 3234 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 3235 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 3236 "Worklist not sorted properly!"); 3237 BasicBlock *BB = (*I)->getBlock(); 3238 // For all instructions in blocks containing gather sequences: 3239 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 3240 Instruction *In = &*it++; 3241 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 3242 continue; 3243 3244 // Check if we can replace this instruction with any of the 3245 // visited instructions. 3246 for (Instruction *v : Visited) { 3247 if (In->isIdenticalTo(v) && 3248 DT->dominates(v->getParent(), In->getParent())) { 3249 In->replaceAllUsesWith(v); 3250 eraseInstruction(In); 3251 In = nullptr; 3252 break; 3253 } 3254 } 3255 if (In) { 3256 assert(!is_contained(Visited, In)); 3257 Visited.push_back(In); 3258 } 3259 } 3260 } 3261 CSEBlocks.clear(); 3262 GatherSeq.clear(); 3263 } 3264 3265 // Groups the instructions to a bundle (which is then a single scheduling entity) 3266 // and schedules instructions until the bundle gets ready. 3267 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, 3268 BoUpSLP *SLP, Value *OpValue) { 3269 if (isa<PHINode>(OpValue)) 3270 return true; 3271 3272 // Initialize the instruction bundle. 3273 Instruction *OldScheduleEnd = ScheduleEnd; 3274 ScheduleData *PrevInBundle = nullptr; 3275 ScheduleData *Bundle = nullptr; 3276 bool ReSchedule = false; 3277 DEBUG(dbgs() << "SLP: bundle: " << *OpValue << "\n"); 3278 3279 // Make sure that the scheduling region contains all 3280 // instructions of the bundle. 3281 for (Value *V : VL) { 3282 if (!extendSchedulingRegion(V)) 3283 return false; 3284 } 3285 3286 for (Value *V : VL) { 3287 ScheduleData *BundleMember = getScheduleData(V); 3288 assert(BundleMember && 3289 "no ScheduleData for bundle member (maybe not in same basic block)"); 3290 if (BundleMember->IsScheduled) { 3291 // A bundle member was scheduled as single instruction before and now 3292 // needs to be scheduled as part of the bundle. We just get rid of the 3293 // existing schedule. 3294 DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 3295 << " was already scheduled\n"); 3296 ReSchedule = true; 3297 } 3298 assert(BundleMember->isSchedulingEntity() && 3299 "bundle member already part of other bundle"); 3300 if (PrevInBundle) { 3301 PrevInBundle->NextInBundle = BundleMember; 3302 } else { 3303 Bundle = BundleMember; 3304 } 3305 BundleMember->UnscheduledDepsInBundle = 0; 3306 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 3307 3308 // Group the instructions to a bundle. 3309 BundleMember->FirstInBundle = Bundle; 3310 PrevInBundle = BundleMember; 3311 } 3312 if (ScheduleEnd != OldScheduleEnd) { 3313 // The scheduling region got new instructions at the lower end (or it is a 3314 // new region for the first bundle). This makes it necessary to 3315 // recalculate all dependencies. 3316 // It is seldom that this needs to be done a second time after adding the 3317 // initial bundle to the region. 3318 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3319 ScheduleData *SD = getScheduleData(I); 3320 SD->clearDependencies(); 3321 } 3322 ReSchedule = true; 3323 } 3324 if (ReSchedule) { 3325 resetSchedule(); 3326 initialFillReadyList(ReadyInsts); 3327 } 3328 3329 DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 3330 << BB->getName() << "\n"); 3331 3332 calculateDependencies(Bundle, true, SLP); 3333 3334 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 3335 // means that there are no cyclic dependencies and we can schedule it. 3336 // Note that's important that we don't "schedule" the bundle yet (see 3337 // cancelScheduling). 3338 while (!Bundle->isReady() && !ReadyInsts.empty()) { 3339 3340 ScheduleData *pickedSD = ReadyInsts.back(); 3341 ReadyInsts.pop_back(); 3342 3343 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 3344 schedule(pickedSD, ReadyInsts); 3345 } 3346 } 3347 if (!Bundle->isReady()) { 3348 cancelScheduling(VL, OpValue); 3349 return false; 3350 } 3351 return true; 3352 } 3353 3354 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 3355 Value *OpValue) { 3356 if (isa<PHINode>(OpValue)) 3357 return; 3358 3359 ScheduleData *Bundle = getScheduleData(OpValue); 3360 DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 3361 assert(!Bundle->IsScheduled && 3362 "Can't cancel bundle which is already scheduled"); 3363 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 3364 "tried to unbundle something which is not a bundle"); 3365 3366 // Un-bundle: make single instructions out of the bundle. 3367 ScheduleData *BundleMember = Bundle; 3368 while (BundleMember) { 3369 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 3370 BundleMember->FirstInBundle = BundleMember; 3371 ScheduleData *Next = BundleMember->NextInBundle; 3372 BundleMember->NextInBundle = nullptr; 3373 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 3374 if (BundleMember->UnscheduledDepsInBundle == 0) { 3375 ReadyInsts.insert(BundleMember); 3376 } 3377 BundleMember = Next; 3378 } 3379 } 3380 3381 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V) { 3382 if (getScheduleData(V)) 3383 return true; 3384 Instruction *I = dyn_cast<Instruction>(V); 3385 assert(I && "bundle member must be an instruction"); 3386 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 3387 if (!ScheduleStart) { 3388 // It's the first instruction in the new region. 3389 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 3390 ScheduleStart = I; 3391 ScheduleEnd = I->getNextNode(); 3392 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 3393 DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 3394 return true; 3395 } 3396 // Search up and down at the same time, because we don't know if the new 3397 // instruction is above or below the existing scheduling region. 3398 BasicBlock::reverse_iterator UpIter = 3399 ++ScheduleStart->getIterator().getReverse(); 3400 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 3401 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 3402 BasicBlock::iterator LowerEnd = BB->end(); 3403 for (;;) { 3404 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 3405 DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 3406 return false; 3407 } 3408 3409 if (UpIter != UpperEnd) { 3410 if (&*UpIter == I) { 3411 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 3412 ScheduleStart = I; 3413 DEBUG(dbgs() << "SLP: extend schedule region start to " << *I << "\n"); 3414 return true; 3415 } 3416 UpIter++; 3417 } 3418 if (DownIter != LowerEnd) { 3419 if (&*DownIter == I) { 3420 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 3421 nullptr); 3422 ScheduleEnd = I->getNextNode(); 3423 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 3424 DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 3425 return true; 3426 } 3427 DownIter++; 3428 } 3429 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 3430 "instruction not found in block"); 3431 } 3432 return true; 3433 } 3434 3435 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 3436 Instruction *ToI, 3437 ScheduleData *PrevLoadStore, 3438 ScheduleData *NextLoadStore) { 3439 ScheduleData *CurrentLoadStore = PrevLoadStore; 3440 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 3441 ScheduleData *SD = ScheduleDataMap[I]; 3442 if (!SD) { 3443 // Allocate a new ScheduleData for the instruction. 3444 if (ChunkPos >= ChunkSize) { 3445 ScheduleDataChunks.push_back( 3446 llvm::make_unique<ScheduleData[]>(ChunkSize)); 3447 ChunkPos = 0; 3448 } 3449 SD = &(ScheduleDataChunks.back()[ChunkPos++]); 3450 ScheduleDataMap[I] = SD; 3451 SD->Inst = I; 3452 } 3453 assert(!isInSchedulingRegion(SD) && 3454 "new ScheduleData already in scheduling region"); 3455 SD->init(SchedulingRegionID, I); 3456 3457 if (I->mayReadOrWriteMemory()) { 3458 // Update the linked list of memory accessing instructions. 3459 if (CurrentLoadStore) { 3460 CurrentLoadStore->NextLoadStore = SD; 3461 } else { 3462 FirstLoadStoreInRegion = SD; 3463 } 3464 CurrentLoadStore = SD; 3465 } 3466 } 3467 if (NextLoadStore) { 3468 if (CurrentLoadStore) 3469 CurrentLoadStore->NextLoadStore = NextLoadStore; 3470 } else { 3471 LastLoadStoreInRegion = CurrentLoadStore; 3472 } 3473 } 3474 3475 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 3476 bool InsertInReadyList, 3477 BoUpSLP *SLP) { 3478 assert(SD->isSchedulingEntity()); 3479 3480 SmallVector<ScheduleData *, 10> WorkList; 3481 WorkList.push_back(SD); 3482 3483 while (!WorkList.empty()) { 3484 ScheduleData *SD = WorkList.back(); 3485 WorkList.pop_back(); 3486 3487 ScheduleData *BundleMember = SD; 3488 while (BundleMember) { 3489 assert(isInSchedulingRegion(BundleMember)); 3490 if (!BundleMember->hasValidDependencies()) { 3491 3492 DEBUG(dbgs() << "SLP: update deps of " << *BundleMember << "\n"); 3493 BundleMember->Dependencies = 0; 3494 BundleMember->resetUnscheduledDeps(); 3495 3496 // Handle def-use chain dependencies. 3497 for (User *U : BundleMember->Inst->users()) { 3498 if (isa<Instruction>(U)) { 3499 ScheduleData *UseSD = getScheduleData(U); 3500 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 3501 BundleMember->Dependencies++; 3502 ScheduleData *DestBundle = UseSD->FirstInBundle; 3503 if (!DestBundle->IsScheduled) 3504 BundleMember->incrementUnscheduledDeps(1); 3505 if (!DestBundle->hasValidDependencies()) 3506 WorkList.push_back(DestBundle); 3507 } 3508 } else { 3509 // I'm not sure if this can ever happen. But we need to be safe. 3510 // This lets the instruction/bundle never be scheduled and 3511 // eventually disable vectorization. 3512 BundleMember->Dependencies++; 3513 BundleMember->incrementUnscheduledDeps(1); 3514 } 3515 } 3516 3517 // Handle the memory dependencies. 3518 ScheduleData *DepDest = BundleMember->NextLoadStore; 3519 if (DepDest) { 3520 Instruction *SrcInst = BundleMember->Inst; 3521 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 3522 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 3523 unsigned numAliased = 0; 3524 unsigned DistToSrc = 1; 3525 3526 while (DepDest) { 3527 assert(isInSchedulingRegion(DepDest)); 3528 3529 // We have two limits to reduce the complexity: 3530 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 3531 // SLP->isAliased (which is the expensive part in this loop). 3532 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 3533 // the whole loop (even if the loop is fast, it's quadratic). 3534 // It's important for the loop break condition (see below) to 3535 // check this limit even between two read-only instructions. 3536 if (DistToSrc >= MaxMemDepDistance || 3537 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 3538 (numAliased >= AliasedCheckLimit || 3539 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 3540 3541 // We increment the counter only if the locations are aliased 3542 // (instead of counting all alias checks). This gives a better 3543 // balance between reduced runtime and accurate dependencies. 3544 numAliased++; 3545 3546 DepDest->MemoryDependencies.push_back(BundleMember); 3547 BundleMember->Dependencies++; 3548 ScheduleData *DestBundle = DepDest->FirstInBundle; 3549 if (!DestBundle->IsScheduled) { 3550 BundleMember->incrementUnscheduledDeps(1); 3551 } 3552 if (!DestBundle->hasValidDependencies()) { 3553 WorkList.push_back(DestBundle); 3554 } 3555 } 3556 DepDest = DepDest->NextLoadStore; 3557 3558 // Example, explaining the loop break condition: Let's assume our 3559 // starting instruction is i0 and MaxMemDepDistance = 3. 3560 // 3561 // +--------v--v--v 3562 // i0,i1,i2,i3,i4,i5,i6,i7,i8 3563 // +--------^--^--^ 3564 // 3565 // MaxMemDepDistance let us stop alias-checking at i3 and we add 3566 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 3567 // Previously we already added dependencies from i3 to i6,i7,i8 3568 // (because of MaxMemDepDistance). As we added a dependency from 3569 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 3570 // and we can abort this loop at i6. 3571 if (DistToSrc >= 2 * MaxMemDepDistance) 3572 break; 3573 DistToSrc++; 3574 } 3575 } 3576 } 3577 BundleMember = BundleMember->NextInBundle; 3578 } 3579 if (InsertInReadyList && SD->isReady()) { 3580 ReadyInsts.push_back(SD); 3581 DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst << "\n"); 3582 } 3583 } 3584 } 3585 3586 void BoUpSLP::BlockScheduling::resetSchedule() { 3587 assert(ScheduleStart && 3588 "tried to reset schedule on block which has not been scheduled"); 3589 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3590 ScheduleData *SD = getScheduleData(I); 3591 assert(isInSchedulingRegion(SD)); 3592 SD->IsScheduled = false; 3593 SD->resetUnscheduledDeps(); 3594 } 3595 ReadyInsts.clear(); 3596 } 3597 3598 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 3599 3600 if (!BS->ScheduleStart) 3601 return; 3602 3603 DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 3604 3605 BS->resetSchedule(); 3606 3607 // For the real scheduling we use a more sophisticated ready-list: it is 3608 // sorted by the original instruction location. This lets the final schedule 3609 // be as close as possible to the original instruction order. 3610 struct ScheduleDataCompare { 3611 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 3612 return SD2->SchedulingPriority < SD1->SchedulingPriority; 3613 } 3614 }; 3615 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 3616 3617 // Ensure that all dependency data is updated and fill the ready-list with 3618 // initial instructions. 3619 int Idx = 0; 3620 int NumToSchedule = 0; 3621 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 3622 I = I->getNextNode()) { 3623 ScheduleData *SD = BS->getScheduleData(I); 3624 assert( 3625 SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr) && 3626 "scheduler and vectorizer have different opinion on what is a bundle"); 3627 SD->FirstInBundle->SchedulingPriority = Idx++; 3628 if (SD->isSchedulingEntity()) { 3629 BS->calculateDependencies(SD, false, this); 3630 NumToSchedule++; 3631 } 3632 } 3633 BS->initialFillReadyList(ReadyInsts); 3634 3635 Instruction *LastScheduledInst = BS->ScheduleEnd; 3636 3637 // Do the "real" scheduling. 3638 while (!ReadyInsts.empty()) { 3639 ScheduleData *picked = *ReadyInsts.begin(); 3640 ReadyInsts.erase(ReadyInsts.begin()); 3641 3642 // Move the scheduled instruction(s) to their dedicated places, if not 3643 // there yet. 3644 ScheduleData *BundleMember = picked; 3645 while (BundleMember) { 3646 Instruction *pickedInst = BundleMember->Inst; 3647 if (LastScheduledInst->getNextNode() != pickedInst) { 3648 BS->BB->getInstList().remove(pickedInst); 3649 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 3650 pickedInst); 3651 } 3652 LastScheduledInst = pickedInst; 3653 BundleMember = BundleMember->NextInBundle; 3654 } 3655 3656 BS->schedule(picked, ReadyInsts); 3657 NumToSchedule--; 3658 } 3659 assert(NumToSchedule == 0 && "could not schedule all instructions"); 3660 3661 // Avoid duplicate scheduling of the block. 3662 BS->ScheduleStart = nullptr; 3663 } 3664 3665 unsigned BoUpSLP::getVectorElementSize(Value *V) { 3666 // If V is a store, just return the width of the stored value without 3667 // traversing the expression tree. This is the common case. 3668 if (auto *Store = dyn_cast<StoreInst>(V)) 3669 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 3670 3671 // If V is not a store, we can traverse the expression tree to find loads 3672 // that feed it. The type of the loaded value may indicate a more suitable 3673 // width than V's type. We want to base the vector element size on the width 3674 // of memory operations where possible. 3675 SmallVector<Instruction *, 16> Worklist; 3676 SmallPtrSet<Instruction *, 16> Visited; 3677 if (auto *I = dyn_cast<Instruction>(V)) 3678 Worklist.push_back(I); 3679 3680 // Traverse the expression tree in bottom-up order looking for loads. If we 3681 // encounter an instruciton we don't yet handle, we give up. 3682 auto MaxWidth = 0u; 3683 auto FoundUnknownInst = false; 3684 while (!Worklist.empty() && !FoundUnknownInst) { 3685 auto *I = Worklist.pop_back_val(); 3686 Visited.insert(I); 3687 3688 // We should only be looking at scalar instructions here. If the current 3689 // instruction has a vector type, give up. 3690 auto *Ty = I->getType(); 3691 if (isa<VectorType>(Ty)) 3692 FoundUnknownInst = true; 3693 3694 // If the current instruction is a load, update MaxWidth to reflect the 3695 // width of the loaded value. 3696 else if (isa<LoadInst>(I)) 3697 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 3698 3699 // Otherwise, we need to visit the operands of the instruction. We only 3700 // handle the interesting cases from buildTree here. If an operand is an 3701 // instruction we haven't yet visited, we add it to the worklist. 3702 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 3703 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 3704 for (Use &U : I->operands()) 3705 if (auto *J = dyn_cast<Instruction>(U.get())) 3706 if (!Visited.count(J)) 3707 Worklist.push_back(J); 3708 } 3709 3710 // If we don't yet handle the instruction, give up. 3711 else 3712 FoundUnknownInst = true; 3713 } 3714 3715 // If we didn't encounter a memory access in the expression tree, or if we 3716 // gave up for some reason, just return the width of V. 3717 if (!MaxWidth || FoundUnknownInst) 3718 return DL->getTypeSizeInBits(V->getType()); 3719 3720 // Otherwise, return the maximum width we found. 3721 return MaxWidth; 3722 } 3723 3724 // Determine if a value V in a vectorizable expression Expr can be demoted to a 3725 // smaller type with a truncation. We collect the values that will be demoted 3726 // in ToDemote and additional roots that require investigating in Roots. 3727 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 3728 SmallVectorImpl<Value *> &ToDemote, 3729 SmallVectorImpl<Value *> &Roots) { 3730 3731 // We can always demote constants. 3732 if (isa<Constant>(V)) { 3733 ToDemote.push_back(V); 3734 return true; 3735 } 3736 3737 // If the value is not an instruction in the expression with only one use, it 3738 // cannot be demoted. 3739 auto *I = dyn_cast<Instruction>(V); 3740 if (!I || !I->hasOneUse() || !Expr.count(I)) 3741 return false; 3742 3743 switch (I->getOpcode()) { 3744 3745 // We can always demote truncations and extensions. Since truncations can 3746 // seed additional demotion, we save the truncated value. 3747 case Instruction::Trunc: 3748 Roots.push_back(I->getOperand(0)); 3749 case Instruction::ZExt: 3750 case Instruction::SExt: 3751 break; 3752 3753 // We can demote certain binary operations if we can demote both of their 3754 // operands. 3755 case Instruction::Add: 3756 case Instruction::Sub: 3757 case Instruction::Mul: 3758 case Instruction::And: 3759 case Instruction::Or: 3760 case Instruction::Xor: 3761 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 3762 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 3763 return false; 3764 break; 3765 3766 // We can demote selects if we can demote their true and false values. 3767 case Instruction::Select: { 3768 SelectInst *SI = cast<SelectInst>(I); 3769 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 3770 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 3771 return false; 3772 break; 3773 } 3774 3775 // We can demote phis if we can demote all their incoming operands. Note that 3776 // we don't need to worry about cycles since we ensure single use above. 3777 case Instruction::PHI: { 3778 PHINode *PN = cast<PHINode>(I); 3779 for (Value *IncValue : PN->incoming_values()) 3780 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 3781 return false; 3782 break; 3783 } 3784 3785 // Otherwise, conservatively give up. 3786 default: 3787 return false; 3788 } 3789 3790 // Record the value that we can demote. 3791 ToDemote.push_back(V); 3792 return true; 3793 } 3794 3795 void BoUpSLP::computeMinimumValueSizes() { 3796 // If there are no external uses, the expression tree must be rooted by a 3797 // store. We can't demote in-memory values, so there is nothing to do here. 3798 if (ExternalUses.empty()) 3799 return; 3800 3801 // We only attempt to truncate integer expressions. 3802 auto &TreeRoot = VectorizableTree[0].Scalars; 3803 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 3804 if (!TreeRootIT) 3805 return; 3806 3807 // If the expression is not rooted by a store, these roots should have 3808 // external uses. We will rely on InstCombine to rewrite the expression in 3809 // the narrower type. However, InstCombine only rewrites single-use values. 3810 // This means that if a tree entry other than a root is used externally, it 3811 // must have multiple uses and InstCombine will not rewrite it. The code 3812 // below ensures that only the roots are used externally. 3813 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 3814 for (auto &EU : ExternalUses) 3815 if (!Expr.erase(EU.Scalar)) 3816 return; 3817 if (!Expr.empty()) 3818 return; 3819 3820 // Collect the scalar values of the vectorizable expression. We will use this 3821 // context to determine which values can be demoted. If we see a truncation, 3822 // we mark it as seeding another demotion. 3823 for (auto &Entry : VectorizableTree) 3824 Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end()); 3825 3826 // Ensure the roots of the vectorizable tree don't form a cycle. They must 3827 // have a single external user that is not in the vectorizable tree. 3828 for (auto *Root : TreeRoot) 3829 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 3830 return; 3831 3832 // Conservatively determine if we can actually truncate the roots of the 3833 // expression. Collect the values that can be demoted in ToDemote and 3834 // additional roots that require investigating in Roots. 3835 SmallVector<Value *, 32> ToDemote; 3836 SmallVector<Value *, 4> Roots; 3837 for (auto *Root : TreeRoot) 3838 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 3839 return; 3840 3841 // The maximum bit width required to represent all the values that can be 3842 // demoted without loss of precision. It would be safe to truncate the roots 3843 // of the expression to this width. 3844 auto MaxBitWidth = 8u; 3845 3846 // We first check if all the bits of the roots are demanded. If they're not, 3847 // we can truncate the roots to this narrower type. 3848 for (auto *Root : TreeRoot) { 3849 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 3850 MaxBitWidth = std::max<unsigned>( 3851 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 3852 } 3853 3854 // True if the roots can be zero-extended back to their original type, rather 3855 // than sign-extended. We know that if the leading bits are not demanded, we 3856 // can safely zero-extend. So we initialize IsKnownPositive to True. 3857 bool IsKnownPositive = true; 3858 3859 // If all the bits of the roots are demanded, we can try a little harder to 3860 // compute a narrower type. This can happen, for example, if the roots are 3861 // getelementptr indices. InstCombine promotes these indices to the pointer 3862 // width. Thus, all their bits are technically demanded even though the 3863 // address computation might be vectorized in a smaller type. 3864 // 3865 // We start by looking at each entry that can be demoted. We compute the 3866 // maximum bit width required to store the scalar by using ValueTracking to 3867 // compute the number of high-order bits we can truncate. 3868 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType())) { 3869 MaxBitWidth = 8u; 3870 3871 // Determine if the sign bit of all the roots is known to be zero. If not, 3872 // IsKnownPositive is set to False. 3873 IsKnownPositive = all_of(TreeRoot, [&](Value *R) { 3874 KnownBits Known = computeKnownBits(R, *DL); 3875 return Known.isNonNegative(); 3876 }); 3877 3878 // Determine the maximum number of bits required to store the scalar 3879 // values. 3880 for (auto *Scalar : ToDemote) { 3881 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, 0, DT); 3882 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 3883 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 3884 } 3885 3886 // If we can't prove that the sign bit is zero, we must add one to the 3887 // maximum bit width to account for the unknown sign bit. This preserves 3888 // the existing sign bit so we can safely sign-extend the root back to the 3889 // original type. Otherwise, if we know the sign bit is zero, we will 3890 // zero-extend the root instead. 3891 // 3892 // FIXME: This is somewhat suboptimal, as there will be cases where adding 3893 // one to the maximum bit width will yield a larger-than-necessary 3894 // type. In general, we need to add an extra bit only if we can't 3895 // prove that the upper bit of the original type is equal to the 3896 // upper bit of the proposed smaller type. If these two bits are the 3897 // same (either zero or one) we know that sign-extending from the 3898 // smaller type will result in the same value. Here, since we can't 3899 // yet prove this, we are just making the proposed smaller type 3900 // larger to ensure correctness. 3901 if (!IsKnownPositive) 3902 ++MaxBitWidth; 3903 } 3904 3905 // Round MaxBitWidth up to the next power-of-two. 3906 if (!isPowerOf2_64(MaxBitWidth)) 3907 MaxBitWidth = NextPowerOf2(MaxBitWidth); 3908 3909 // If the maximum bit width we compute is less than the with of the roots' 3910 // type, we can proceed with the narrowing. Otherwise, do nothing. 3911 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 3912 return; 3913 3914 // If we can truncate the root, we must collect additional values that might 3915 // be demoted as a result. That is, those seeded by truncations we will 3916 // modify. 3917 while (!Roots.empty()) 3918 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 3919 3920 // Finally, map the values we can demote to the maximum bit with we computed. 3921 for (auto *Scalar : ToDemote) 3922 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 3923 } 3924 3925 namespace { 3926 /// The SLPVectorizer Pass. 3927 struct SLPVectorizer : public FunctionPass { 3928 SLPVectorizerPass Impl; 3929 3930 /// Pass identification, replacement for typeid 3931 static char ID; 3932 3933 explicit SLPVectorizer() : FunctionPass(ID) { 3934 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 3935 } 3936 3937 3938 bool doInitialization(Module &M) override { 3939 return false; 3940 } 3941 3942 bool runOnFunction(Function &F) override { 3943 if (skipFunction(F)) 3944 return false; 3945 3946 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 3947 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 3948 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 3949 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 3950 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3951 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 3952 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3953 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3954 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 3955 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 3956 3957 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 3958 } 3959 3960 void getAnalysisUsage(AnalysisUsage &AU) const override { 3961 FunctionPass::getAnalysisUsage(AU); 3962 AU.addRequired<AssumptionCacheTracker>(); 3963 AU.addRequired<ScalarEvolutionWrapperPass>(); 3964 AU.addRequired<AAResultsWrapperPass>(); 3965 AU.addRequired<TargetTransformInfoWrapperPass>(); 3966 AU.addRequired<LoopInfoWrapperPass>(); 3967 AU.addRequired<DominatorTreeWrapperPass>(); 3968 AU.addRequired<DemandedBitsWrapperPass>(); 3969 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 3970 AU.addPreserved<LoopInfoWrapperPass>(); 3971 AU.addPreserved<DominatorTreeWrapperPass>(); 3972 AU.addPreserved<AAResultsWrapperPass>(); 3973 AU.addPreserved<GlobalsAAWrapperPass>(); 3974 AU.setPreservesCFG(); 3975 } 3976 }; 3977 } // end anonymous namespace 3978 3979 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 3980 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 3981 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 3982 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 3983 auto *AA = &AM.getResult<AAManager>(F); 3984 auto *LI = &AM.getResult<LoopAnalysis>(F); 3985 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 3986 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 3987 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 3988 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 3989 3990 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 3991 if (!Changed) 3992 return PreservedAnalyses::all(); 3993 3994 PreservedAnalyses PA; 3995 PA.preserveSet<CFGAnalyses>(); 3996 PA.preserve<AAManager>(); 3997 PA.preserve<GlobalsAA>(); 3998 return PA; 3999 } 4000 4001 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 4002 TargetTransformInfo *TTI_, 4003 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 4004 LoopInfo *LI_, DominatorTree *DT_, 4005 AssumptionCache *AC_, DemandedBits *DB_, 4006 OptimizationRemarkEmitter *ORE_) { 4007 SE = SE_; 4008 TTI = TTI_; 4009 TLI = TLI_; 4010 AA = AA_; 4011 LI = LI_; 4012 DT = DT_; 4013 AC = AC_; 4014 DB = DB_; 4015 DL = &F.getParent()->getDataLayout(); 4016 4017 Stores.clear(); 4018 GEPs.clear(); 4019 bool Changed = false; 4020 4021 // If the target claims to have no vector registers don't attempt 4022 // vectorization. 4023 if (!TTI->getNumberOfRegisters(true)) 4024 return false; 4025 4026 // Don't vectorize when the attribute NoImplicitFloat is used. 4027 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 4028 return false; 4029 4030 DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 4031 4032 // Use the bottom up slp vectorizer to construct chains that start with 4033 // store instructions. 4034 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 4035 4036 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 4037 // delete instructions. 4038 4039 // Scan the blocks in the function in post order. 4040 for (auto BB : post_order(&F.getEntryBlock())) { 4041 collectSeedInstructions(BB); 4042 4043 // Vectorize trees that end at stores. 4044 if (!Stores.empty()) { 4045 DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 4046 << " underlying objects.\n"); 4047 Changed |= vectorizeStoreChains(R); 4048 } 4049 4050 // Vectorize trees that end at reductions. 4051 Changed |= vectorizeChainsInBlock(BB, R); 4052 4053 // Vectorize the index computations of getelementptr instructions. This 4054 // is primarily intended to catch gather-like idioms ending at 4055 // non-consecutive loads. 4056 if (!GEPs.empty()) { 4057 DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 4058 << " underlying objects.\n"); 4059 Changed |= vectorizeGEPIndices(BB, R); 4060 } 4061 } 4062 4063 if (Changed) { 4064 R.optimizeGatherSequence(); 4065 DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 4066 DEBUG(verifyFunction(F)); 4067 } 4068 return Changed; 4069 } 4070 4071 /// \brief Check that the Values in the slice in VL array are still existent in 4072 /// the WeakTrackingVH array. 4073 /// Vectorization of part of the VL array may cause later values in the VL array 4074 /// to become invalid. We track when this has happened in the WeakTrackingVH 4075 /// array. 4076 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, 4077 ArrayRef<WeakTrackingVH> VH, unsigned SliceBegin, 4078 unsigned SliceSize) { 4079 VL = VL.slice(SliceBegin, SliceSize); 4080 VH = VH.slice(SliceBegin, SliceSize); 4081 return !std::equal(VL.begin(), VL.end(), VH.begin()); 4082 } 4083 4084 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 4085 unsigned VecRegSize) { 4086 unsigned ChainLen = Chain.size(); 4087 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 4088 << "\n"); 4089 unsigned Sz = R.getVectorElementSize(Chain[0]); 4090 unsigned VF = VecRegSize / Sz; 4091 4092 if (!isPowerOf2_32(Sz) || VF < 2) 4093 return false; 4094 4095 // Keep track of values that were deleted by vectorizing in the loop below. 4096 SmallVector<WeakTrackingVH, 8> TrackValues(Chain.begin(), Chain.end()); 4097 4098 bool Changed = false; 4099 // Look for profitable vectorizable trees at all offsets, starting at zero. 4100 for (unsigned i = 0, e = ChainLen; i < e; ++i) { 4101 if (i + VF > e) 4102 break; 4103 4104 // Check that a previous iteration of this loop did not delete the Value. 4105 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 4106 continue; 4107 4108 DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 4109 << "\n"); 4110 ArrayRef<Value *> Operands = Chain.slice(i, VF); 4111 4112 R.buildTree(Operands); 4113 if (R.isTreeTinyAndNotFullyVectorizable()) 4114 continue; 4115 4116 R.computeMinimumValueSizes(); 4117 4118 int Cost = R.getTreeCost(); 4119 4120 DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); 4121 if (Cost < -SLPCostThreshold) { 4122 DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 4123 using namespace ore; 4124 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 4125 cast<StoreInst>(Chain[i])) 4126 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 4127 << " and with tree size " 4128 << NV("TreeSize", R.getTreeSize())); 4129 4130 R.vectorizeTree(); 4131 4132 // Move to the next bundle. 4133 i += VF - 1; 4134 Changed = true; 4135 } 4136 } 4137 4138 return Changed; 4139 } 4140 4141 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 4142 BoUpSLP &R) { 4143 SetVector<StoreInst *> Heads, Tails; 4144 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 4145 4146 // We may run into multiple chains that merge into a single chain. We mark the 4147 // stores that we vectorized so that we don't visit the same store twice. 4148 BoUpSLP::ValueSet VectorizedStores; 4149 bool Changed = false; 4150 4151 // Do a quadratic search on all of the given stores and find 4152 // all of the pairs of stores that follow each other. 4153 SmallVector<unsigned, 16> IndexQueue; 4154 for (unsigned i = 0, e = Stores.size(); i < e; ++i) { 4155 IndexQueue.clear(); 4156 // If a store has multiple consecutive store candidates, search Stores 4157 // array according to the sequence: from i+1 to e, then from i-1 to 0. 4158 // This is because usually pairing with immediate succeeding or preceding 4159 // candidate create the best chance to find slp vectorization opportunity. 4160 unsigned j = 0; 4161 for (j = i + 1; j < e; ++j) 4162 IndexQueue.push_back(j); 4163 for (j = i; j > 0; --j) 4164 IndexQueue.push_back(j - 1); 4165 4166 for (auto &k : IndexQueue) { 4167 if (isConsecutiveAccess(Stores[i], Stores[k], *DL, *SE)) { 4168 Tails.insert(Stores[k]); 4169 Heads.insert(Stores[i]); 4170 ConsecutiveChain[Stores[i]] = Stores[k]; 4171 break; 4172 } 4173 } 4174 } 4175 4176 // For stores that start but don't end a link in the chain: 4177 for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end(); 4178 it != e; ++it) { 4179 if (Tails.count(*it)) 4180 continue; 4181 4182 // We found a store instr that starts a chain. Now follow the chain and try 4183 // to vectorize it. 4184 BoUpSLP::ValueList Operands; 4185 StoreInst *I = *it; 4186 // Collect the chain into a list. 4187 while (Tails.count(I) || Heads.count(I)) { 4188 if (VectorizedStores.count(I)) 4189 break; 4190 Operands.push_back(I); 4191 // Move to the next value in the chain. 4192 I = ConsecutiveChain[I]; 4193 } 4194 4195 // FIXME: Is division-by-2 the correct step? Should we assert that the 4196 // register size is a power-of-2? 4197 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); 4198 Size /= 2) { 4199 if (vectorizeStoreChain(Operands, R, Size)) { 4200 // Mark the vectorized stores so that we don't vectorize them again. 4201 VectorizedStores.insert(Operands.begin(), Operands.end()); 4202 Changed = true; 4203 break; 4204 } 4205 } 4206 } 4207 4208 return Changed; 4209 } 4210 4211 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 4212 4213 // Initialize the collections. We will make a single pass over the block. 4214 Stores.clear(); 4215 GEPs.clear(); 4216 4217 // Visit the store and getelementptr instructions in BB and organize them in 4218 // Stores and GEPs according to the underlying objects of their pointer 4219 // operands. 4220 for (Instruction &I : *BB) { 4221 4222 // Ignore store instructions that are volatile or have a pointer operand 4223 // that doesn't point to a scalar type. 4224 if (auto *SI = dyn_cast<StoreInst>(&I)) { 4225 if (!SI->isSimple()) 4226 continue; 4227 if (!isValidElementType(SI->getValueOperand()->getType())) 4228 continue; 4229 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 4230 } 4231 4232 // Ignore getelementptr instructions that have more than one index, a 4233 // constant index, or a pointer operand that doesn't point to a scalar 4234 // type. 4235 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 4236 auto Idx = GEP->idx_begin()->get(); 4237 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 4238 continue; 4239 if (!isValidElementType(Idx->getType())) 4240 continue; 4241 if (GEP->getType()->isVectorTy()) 4242 continue; 4243 GEPs[GetUnderlyingObject(GEP->getPointerOperand(), *DL)].push_back(GEP); 4244 } 4245 } 4246 } 4247 4248 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 4249 if (!A || !B) 4250 return false; 4251 Value *VL[] = { A, B }; 4252 return tryToVectorizeList(VL, R, None, true); 4253 } 4254 4255 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 4256 ArrayRef<Value *> BuildVector, 4257 bool AllowReorder) { 4258 if (VL.size() < 2) 4259 return false; 4260 4261 DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " << VL.size() 4262 << ".\n"); 4263 4264 // Check that all of the parts are scalar instructions of the same type. 4265 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 4266 if (!I0) 4267 return false; 4268 4269 unsigned Opcode0 = I0->getOpcode(); 4270 4271 unsigned Sz = R.getVectorElementSize(I0); 4272 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 4273 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 4274 if (MaxVF < 2) 4275 return false; 4276 4277 for (Value *V : VL) { 4278 Type *Ty = V->getType(); 4279 if (!isValidElementType(Ty)) 4280 return false; 4281 Instruction *Inst = dyn_cast<Instruction>(V); 4282 if (!Inst || Inst->getOpcode() != Opcode0) 4283 return false; 4284 } 4285 4286 bool Changed = false; 4287 4288 // Keep track of values that were deleted by vectorizing in the loop below. 4289 SmallVector<WeakTrackingVH, 8> TrackValues(VL.begin(), VL.end()); 4290 4291 unsigned NextInst = 0, MaxInst = VL.size(); 4292 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; 4293 VF /= 2) { 4294 // No actual vectorization should happen, if number of parts is the same as 4295 // provided vectorization factor (i.e. the scalar type is used for vector 4296 // code during codegen). 4297 auto *VecTy = VectorType::get(VL[0]->getType(), VF); 4298 if (TTI->getNumberOfParts(VecTy) == VF) 4299 continue; 4300 for (unsigned I = NextInst; I < MaxInst; ++I) { 4301 unsigned OpsWidth = 0; 4302 4303 if (I + VF > MaxInst) 4304 OpsWidth = MaxInst - I; 4305 else 4306 OpsWidth = VF; 4307 4308 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 4309 break; 4310 4311 // Check that a previous iteration of this loop did not delete the Value. 4312 if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth)) 4313 continue; 4314 4315 DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 4316 << "\n"); 4317 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 4318 4319 ArrayRef<Value *> BuildVectorSlice; 4320 if (!BuildVector.empty()) 4321 BuildVectorSlice = BuildVector.slice(I, OpsWidth); 4322 4323 R.buildTree(Ops, BuildVectorSlice); 4324 // TODO: check if we can allow reordering for more cases. 4325 if (AllowReorder && R.shouldReorder()) { 4326 // Conceptually, there is nothing actually preventing us from trying to 4327 // reorder a larger list. In fact, we do exactly this when vectorizing 4328 // reductions. However, at this point, we only expect to get here when 4329 // there are exactly two operations. 4330 assert(Ops.size() == 2); 4331 assert(BuildVectorSlice.empty()); 4332 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 4333 R.buildTree(ReorderedOps, None); 4334 } 4335 if (R.isTreeTinyAndNotFullyVectorizable()) 4336 continue; 4337 4338 R.computeMinimumValueSizes(); 4339 int Cost = R.getTreeCost(); 4340 4341 if (Cost < -SLPCostThreshold) { 4342 DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 4343 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 4344 cast<Instruction>(Ops[0])) 4345 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 4346 << " and with tree size " 4347 << ore::NV("TreeSize", R.getTreeSize())); 4348 4349 Value *VectorizedRoot = R.vectorizeTree(); 4350 4351 // Reconstruct the build vector by extracting the vectorized root. This 4352 // way we handle the case where some elements of the vector are 4353 // undefined. 4354 // (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2)) 4355 if (!BuildVectorSlice.empty()) { 4356 // The insert point is the last build vector instruction. The 4357 // vectorized root will precede it. This guarantees that we get an 4358 // instruction. The vectorized tree could have been constant folded. 4359 Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back()); 4360 unsigned VecIdx = 0; 4361 for (auto &V : BuildVectorSlice) { 4362 IRBuilder<NoFolder> Builder(InsertAfter->getParent(), 4363 ++BasicBlock::iterator(InsertAfter)); 4364 Instruction *I = cast<Instruction>(V); 4365 assert(isa<InsertElementInst>(I) || isa<InsertValueInst>(I)); 4366 Instruction *Extract = 4367 cast<Instruction>(Builder.CreateExtractElement( 4368 VectorizedRoot, Builder.getInt32(VecIdx++))); 4369 I->setOperand(1, Extract); 4370 I->removeFromParent(); 4371 I->insertAfter(Extract); 4372 InsertAfter = I; 4373 } 4374 } 4375 // Move to the next bundle. 4376 I += VF - 1; 4377 NextInst = I + 1; 4378 Changed = true; 4379 } 4380 } 4381 } 4382 4383 return Changed; 4384 } 4385 4386 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 4387 if (!I) 4388 return false; 4389 4390 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 4391 return false; 4392 4393 Value *P = I->getParent(); 4394 4395 // Vectorize in current basic block only. 4396 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 4397 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 4398 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 4399 return false; 4400 4401 // Try to vectorize V. 4402 if (tryToVectorizePair(Op0, Op1, R)) 4403 return true; 4404 4405 auto *A = dyn_cast<BinaryOperator>(Op0); 4406 auto *B = dyn_cast<BinaryOperator>(Op1); 4407 // Try to skip B. 4408 if (B && B->hasOneUse()) { 4409 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 4410 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 4411 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 4412 return true; 4413 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 4414 return true; 4415 } 4416 4417 // Try to skip A. 4418 if (A && A->hasOneUse()) { 4419 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 4420 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 4421 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 4422 return true; 4423 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 4424 return true; 4425 } 4426 return false; 4427 } 4428 4429 /// \brief Generate a shuffle mask to be used in a reduction tree. 4430 /// 4431 /// \param VecLen The length of the vector to be reduced. 4432 /// \param NumEltsToRdx The number of elements that should be reduced in the 4433 /// vector. 4434 /// \param IsPairwise Whether the reduction is a pairwise or splitting 4435 /// reduction. A pairwise reduction will generate a mask of 4436 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 4437 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 4438 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 4439 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 4440 bool IsPairwise, bool IsLeft, 4441 IRBuilder<> &Builder) { 4442 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 4443 4444 SmallVector<Constant *, 32> ShuffleMask( 4445 VecLen, UndefValue::get(Builder.getInt32Ty())); 4446 4447 if (IsPairwise) 4448 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 4449 for (unsigned i = 0; i != NumEltsToRdx; ++i) 4450 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 4451 else 4452 // Move the upper half of the vector to the lower half. 4453 for (unsigned i = 0; i != NumEltsToRdx; ++i) 4454 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 4455 4456 return ConstantVector::get(ShuffleMask); 4457 } 4458 4459 namespace { 4460 /// Model horizontal reductions. 4461 /// 4462 /// A horizontal reduction is a tree of reduction operations (currently add and 4463 /// fadd) that has operations that can be put into a vector as its leaf. 4464 /// For example, this tree: 4465 /// 4466 /// mul mul mul mul 4467 /// \ / \ / 4468 /// + + 4469 /// \ / 4470 /// + 4471 /// This tree has "mul" as its reduced values and "+" as its reduction 4472 /// operations. A reduction might be feeding into a store or a binary operation 4473 /// feeding a phi. 4474 /// ... 4475 /// \ / 4476 /// + 4477 /// | 4478 /// phi += 4479 /// 4480 /// Or: 4481 /// ... 4482 /// \ / 4483 /// + 4484 /// | 4485 /// *p = 4486 /// 4487 class HorizontalReduction { 4488 SmallVector<Value *, 16> ReductionOps; 4489 SmallVector<Value *, 32> ReducedVals; 4490 // Use map vector to make stable output. 4491 MapVector<Instruction *, Value *> ExtraArgs; 4492 4493 /// Contains info about operation, like its opcode, left and right operands. 4494 struct OperationData { 4495 /// true if the operation is a reduced value, false if reduction operation. 4496 bool IsReducedValue = false; 4497 /// Opcode of the instruction. 4498 unsigned Opcode = 0; 4499 /// Left operand of the reduction operation. 4500 Value *LHS = nullptr; 4501 /// Right operand of the reduction operation. 4502 Value *RHS = nullptr; 4503 4504 /// Checks if the reduction operation can be vectorized. 4505 bool isVectorizable() const { 4506 return LHS && RHS && 4507 // We currently only support adds. 4508 (Opcode == Instruction::Add || Opcode == Instruction::FAdd); 4509 } 4510 4511 public: 4512 explicit OperationData() = default; 4513 /// Construction for reduced values. They are identified by opcode only and 4514 /// don't have associated LHS/RHS values. 4515 explicit OperationData(Value *V) : IsReducedValue(true) { 4516 if (auto *I = dyn_cast<Instruction>(V)) 4517 Opcode = I->getOpcode(); 4518 } 4519 /// Constructor for binary reduction operations with opcode and its left and 4520 /// right operands. 4521 OperationData(unsigned Opcode, Value *LHS, Value *RHS) 4522 : IsReducedValue(false), Opcode(Opcode), LHS(LHS), RHS(RHS) {} 4523 explicit operator bool() const { return Opcode; } 4524 /// Get the index of the first operand. 4525 unsigned getFirstOperandIndex() const { 4526 assert(!!*this && "The opcode is not set."); 4527 return 0; 4528 } 4529 /// Total number of operands in the reduction operation. 4530 unsigned getNumberOfOperands() const { 4531 assert(!IsReducedValue && !!*this && LHS && RHS && 4532 "Expected reduction operation."); 4533 return 2; 4534 } 4535 /// Expected number of uses for reduction operations/reduced values. 4536 unsigned getRequiredNumberOfUses() const { 4537 assert(!IsReducedValue && !!*this && LHS && RHS && 4538 "Expected reduction operation."); 4539 return 1; 4540 } 4541 /// Checks if instruction is associative and can be vectorized. 4542 bool isAssociative(Instruction *I) const { 4543 assert(!IsReducedValue && *this && LHS && RHS && 4544 "Expected reduction operation."); 4545 return I->isAssociative(); 4546 } 4547 /// Checks if the reduction operation can be vectorized. 4548 bool isVectorizable(Instruction *I) const { 4549 return isVectorizable() && isAssociative(I); 4550 } 4551 4552 /// Checks if two operation data are both a reduction op or both a reduced 4553 /// value. 4554 bool operator==(const OperationData &OD) { 4555 assert(((IsReducedValue != OD.IsReducedValue) || 4556 ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) && 4557 "One of the comparing operations is incorrect."); 4558 return this == &OD || 4559 (IsReducedValue == OD.IsReducedValue && Opcode == OD.Opcode); 4560 } 4561 bool operator!=(const OperationData &OD) { return !(*this == OD); } 4562 void clear() { 4563 IsReducedValue = false; 4564 Opcode = 0; 4565 LHS = nullptr; 4566 RHS = nullptr; 4567 } 4568 /// Get the opcode of the reduction operation. 4569 unsigned getOpcode() const { 4570 assert(isVectorizable() && "Expected vectorizable operation."); 4571 return Opcode; 4572 } 4573 Value *getLHS() const { return LHS; } 4574 Value *getRHS() const { return RHS; } 4575 /// Creates reduction operation with the current opcode. 4576 Value *createOp(IRBuilder<> &Builder, const Twine &Name = "") const { 4577 assert(!IsReducedValue && 4578 (Opcode == Instruction::FAdd || Opcode == Instruction::Add) && 4579 "Expected add|fadd reduction operation."); 4580 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 4581 Name); 4582 } 4583 }; 4584 4585 Instruction *ReductionRoot = nullptr; 4586 4587 /// The operation data of the reduction operation. 4588 OperationData ReductionData; 4589 /// The operation data of the values we perform a reduction on. 4590 OperationData ReducedValueData; 4591 /// Should we model this reduction as a pairwise reduction tree or a tree that 4592 /// splits the vector in halves and adds those halves. 4593 bool IsPairwiseReduction = false; 4594 4595 /// Checks if the ParentStackElem.first should be marked as a reduction 4596 /// operation with an extra argument or as extra argument itself. 4597 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 4598 Value *ExtraArg) { 4599 if (ExtraArgs.count(ParentStackElem.first)) { 4600 ExtraArgs[ParentStackElem.first] = nullptr; 4601 // We ran into something like: 4602 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 4603 // The whole ParentStackElem.first should be considered as an extra value 4604 // in this case. 4605 // Do not perform analysis of remaining operands of ParentStackElem.first 4606 // instruction, this whole instruction is an extra argument. 4607 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 4608 } else { 4609 // We ran into something like: 4610 // ParentStackElem.first += ... + ExtraArg + ... 4611 ExtraArgs[ParentStackElem.first] = ExtraArg; 4612 } 4613 } 4614 4615 static OperationData getOperationData(Value *V) { 4616 if (!V) 4617 return OperationData(); 4618 4619 Value *LHS; 4620 Value *RHS; 4621 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) 4622 return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS); 4623 return OperationData(V); 4624 } 4625 4626 public: 4627 HorizontalReduction() = default; 4628 4629 /// \brief Try to find a reduction tree. 4630 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 4631 assert((!Phi || is_contained(Phi->operands(), B)) && 4632 "Thi phi needs to use the binary operator"); 4633 4634 ReductionData = getOperationData(B); 4635 4636 // We could have a initial reductions that is not an add. 4637 // r *= v1 + v2 + v3 + v4 4638 // In such a case start looking for a tree rooted in the first '+'. 4639 if (Phi) { 4640 if (ReductionData.getLHS() == Phi) { 4641 Phi = nullptr; 4642 B = dyn_cast<Instruction>(ReductionData.getRHS()); 4643 ReductionData = getOperationData(B); 4644 } else if (ReductionData.getRHS() == Phi) { 4645 Phi = nullptr; 4646 B = dyn_cast<Instruction>(ReductionData.getLHS()); 4647 ReductionData = getOperationData(B); 4648 } 4649 } 4650 4651 if (!ReductionData.isVectorizable(B)) 4652 return false; 4653 4654 Type *Ty = B->getType(); 4655 if (!isValidElementType(Ty)) 4656 return false; 4657 4658 ReducedValueData.clear(); 4659 ReductionRoot = B; 4660 4661 // Post order traverse the reduction tree starting at B. We only handle true 4662 // trees containing only binary operators. 4663 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 4664 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); 4665 const unsigned NUses = ReductionData.getRequiredNumberOfUses(); 4666 while (!Stack.empty()) { 4667 Instruction *TreeN = Stack.back().first; 4668 unsigned EdgeToVist = Stack.back().second++; 4669 OperationData OpData = getOperationData(TreeN); 4670 bool IsReducedValue = OpData != ReductionData; 4671 4672 // Postorder vist. 4673 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { 4674 if (IsReducedValue) 4675 ReducedVals.push_back(TreeN); 4676 else { 4677 auto I = ExtraArgs.find(TreeN); 4678 if (I != ExtraArgs.end() && !I->second) { 4679 // Check if TreeN is an extra argument of its parent operation. 4680 if (Stack.size() <= 1) { 4681 // TreeN can't be an extra argument as it is a root reduction 4682 // operation. 4683 return false; 4684 } 4685 // Yes, TreeN is an extra argument, do not add it to a list of 4686 // reduction operations. 4687 // Stack[Stack.size() - 2] always points to the parent operation. 4688 markExtraArg(Stack[Stack.size() - 2], TreeN); 4689 ExtraArgs.erase(TreeN); 4690 } else 4691 ReductionOps.push_back(TreeN); 4692 } 4693 // Retract. 4694 Stack.pop_back(); 4695 continue; 4696 } 4697 4698 // Visit left or right. 4699 Value *NextV = TreeN->getOperand(EdgeToVist); 4700 if (NextV != Phi) { 4701 auto *I = dyn_cast<Instruction>(NextV); 4702 OpData = getOperationData(I); 4703 // Continue analysis if the next operand is a reduction operation or 4704 // (possibly) a reduced value. If the reduced value opcode is not set, 4705 // the first met operation != reduction operation is considered as the 4706 // reduced value class. 4707 if (I && (!ReducedValueData || OpData == ReducedValueData || 4708 OpData == ReductionData)) { 4709 // Only handle trees in the current basic block. 4710 if (I->getParent() != B->getParent()) { 4711 // I is an extra argument for TreeN (its parent operation). 4712 markExtraArg(Stack.back(), I); 4713 continue; 4714 } 4715 4716 // Each tree node needs to have minimal number of users except for the 4717 // ultimate reduction. 4718 if (!I->hasNUses(NUses) && I != B) { 4719 // I is an extra argument for TreeN (its parent operation). 4720 markExtraArg(Stack.back(), I); 4721 continue; 4722 } 4723 4724 if (OpData == ReductionData) { 4725 // We need to be able to reassociate the reduction operations. 4726 if (!OpData.isAssociative(I)) { 4727 // I is an extra argument for TreeN (its parent operation). 4728 markExtraArg(Stack.back(), I); 4729 continue; 4730 } 4731 } else if (ReducedValueData && 4732 ReducedValueData != OpData) { 4733 // Make sure that the opcodes of the operations that we are going to 4734 // reduce match. 4735 // I is an extra argument for TreeN (its parent operation). 4736 markExtraArg(Stack.back(), I); 4737 continue; 4738 } else if (!ReducedValueData) 4739 ReducedValueData = OpData; 4740 4741 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 4742 continue; 4743 } 4744 } 4745 // NextV is an extra argument for TreeN (its parent operation). 4746 markExtraArg(Stack.back(), NextV); 4747 } 4748 return true; 4749 } 4750 4751 /// \brief Attempt to vectorize the tree found by 4752 /// matchAssociativeReduction. 4753 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 4754 if (ReducedVals.empty()) 4755 return false; 4756 4757 // If there is a sufficient number of reduction values, reduce 4758 // to a nearby power-of-2. Can safely generate oversized 4759 // vectors and rely on the backend to split them to legal sizes. 4760 unsigned NumReducedVals = ReducedVals.size(); 4761 if (NumReducedVals < 4) 4762 return false; 4763 4764 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 4765 4766 Value *VectorizedTree = nullptr; 4767 IRBuilder<> Builder(ReductionRoot); 4768 FastMathFlags Unsafe; 4769 Unsafe.setUnsafeAlgebra(); 4770 Builder.setFastMathFlags(Unsafe); 4771 unsigned i = 0; 4772 4773 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 4774 // The same extra argument may be used several time, so log each attempt 4775 // to use it. 4776 for (auto &Pair : ExtraArgs) 4777 ExternallyUsedValues[Pair.second].push_back(Pair.first); 4778 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 4779 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 4780 V.buildTree(VL, ExternallyUsedValues, ReductionOps); 4781 if (V.shouldReorder()) { 4782 SmallVector<Value *, 8> Reversed(VL.rbegin(), VL.rend()); 4783 V.buildTree(Reversed, ExternallyUsedValues, ReductionOps); 4784 } 4785 if (V.isTreeTinyAndNotFullyVectorizable()) 4786 break; 4787 4788 V.computeMinimumValueSizes(); 4789 4790 // Estimate cost. 4791 int Cost = 4792 V.getTreeCost() + getReductionCost(TTI, ReducedVals[i], ReduxWidth); 4793 if (Cost >= -SLPCostThreshold) 4794 break; 4795 4796 DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost 4797 << ". (HorRdx)\n"); 4798 auto *I0 = cast<Instruction>(VL[0]); 4799 V.getORE()->emit( 4800 OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", I0) 4801 << "Vectorized horizontal reduction with cost " 4802 << ore::NV("Cost", Cost) << " and with tree size " 4803 << ore::NV("TreeSize", V.getTreeSize())); 4804 4805 // Vectorize a tree. 4806 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 4807 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 4808 4809 // Emit a reduction. 4810 Value *ReducedSubTree = 4811 emitReduction(VectorizedRoot, Builder, ReduxWidth, ReductionOps, TTI); 4812 if (VectorizedTree) { 4813 Builder.SetCurrentDebugLocation(Loc); 4814 OperationData VectReductionData(ReductionData.getOpcode(), 4815 VectorizedTree, ReducedSubTree); 4816 VectorizedTree = VectReductionData.createOp(Builder, "bin.rdx"); 4817 propagateIRFlags(VectorizedTree, ReductionOps); 4818 } else 4819 VectorizedTree = ReducedSubTree; 4820 i += ReduxWidth; 4821 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 4822 } 4823 4824 if (VectorizedTree) { 4825 // Finish the reduction. 4826 for (; i < NumReducedVals; ++i) { 4827 auto *I = cast<Instruction>(ReducedVals[i]); 4828 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 4829 OperationData VectReductionData(ReductionData.getOpcode(), 4830 VectorizedTree, I); 4831 VectorizedTree = VectReductionData.createOp(Builder); 4832 propagateIRFlags(VectorizedTree, ReductionOps); 4833 } 4834 for (auto &Pair : ExternallyUsedValues) { 4835 assert(!Pair.second.empty() && 4836 "At least one DebugLoc must be inserted"); 4837 // Add each externally used value to the final reduction. 4838 for (auto *I : Pair.second) { 4839 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 4840 OperationData VectReductionData(ReductionData.getOpcode(), 4841 VectorizedTree, Pair.first); 4842 VectorizedTree = VectReductionData.createOp(Builder, "bin.extra"); 4843 propagateIRFlags(VectorizedTree, I); 4844 } 4845 } 4846 // Update users. 4847 ReductionRoot->replaceAllUsesWith(VectorizedTree); 4848 } 4849 return VectorizedTree != nullptr; 4850 } 4851 4852 unsigned numReductionValues() const { 4853 return ReducedVals.size(); 4854 } 4855 4856 private: 4857 /// \brief Calculate the cost of a reduction. 4858 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 4859 unsigned ReduxWidth) { 4860 Type *ScalarTy = FirstReducedVal->getType(); 4861 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 4862 4863 int PairwiseRdxCost = 4864 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 4865 /*IsPairwiseForm=*/true); 4866 int SplittingRdxCost = 4867 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 4868 /*IsPairwiseForm=*/false); 4869 4870 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 4871 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 4872 4873 int ScalarReduxCost = 4874 (ReduxWidth - 1) * 4875 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); 4876 4877 DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 4878 << " for reduction that starts with " << *FirstReducedVal 4879 << " (It is a " 4880 << (IsPairwiseReduction ? "pairwise" : "splitting") 4881 << " reduction)\n"); 4882 4883 return VecReduxCost - ScalarReduxCost; 4884 } 4885 4886 /// \brief Emit a horizontal reduction of the vectorized value. 4887 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 4888 unsigned ReduxWidth, ArrayRef<Value *> RedOps, 4889 const TargetTransformInfo *TTI) { 4890 assert(VectorizedValue && "Need to have a vectorized tree node"); 4891 assert(isPowerOf2_32(ReduxWidth) && 4892 "We only handle power-of-two reductions for now"); 4893 4894 if (!IsPairwiseReduction) 4895 return createSimpleTargetReduction( 4896 Builder, TTI, ReductionData.getOpcode(), VectorizedValue, 4897 TargetTransformInfo::ReductionFlags(), RedOps); 4898 4899 Value *TmpVec = VectorizedValue; 4900 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 4901 Value *LeftMask = 4902 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 4903 Value *RightMask = 4904 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 4905 4906 Value *LeftShuf = Builder.CreateShuffleVector( 4907 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 4908 Value *RightShuf = Builder.CreateShuffleVector( 4909 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 4910 "rdx.shuf.r"); 4911 OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf, 4912 RightShuf); 4913 TmpVec = VectReductionData.createOp(Builder, "bin.rdx"); 4914 propagateIRFlags(TmpVec, RedOps); 4915 } 4916 4917 // The result is in the first element of the vector. 4918 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 4919 } 4920 }; 4921 } // end anonymous namespace 4922 4923 /// \brief Recognize construction of vectors like 4924 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 4925 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 4926 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 4927 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 4928 /// starting from the last insertelement instruction. 4929 /// 4930 /// Returns true if it matches 4931 /// 4932 static bool findBuildVector(InsertElementInst *LastInsertElem, 4933 SmallVectorImpl<Value *> &BuildVector, 4934 SmallVectorImpl<Value *> &BuildVectorOpds) { 4935 Value *V = nullptr; 4936 do { 4937 BuildVector.push_back(LastInsertElem); 4938 BuildVectorOpds.push_back(LastInsertElem->getOperand(1)); 4939 V = LastInsertElem->getOperand(0); 4940 if (isa<UndefValue>(V)) 4941 break; 4942 LastInsertElem = dyn_cast<InsertElementInst>(V); 4943 if (!LastInsertElem || !LastInsertElem->hasOneUse()) 4944 return false; 4945 } while (true); 4946 std::reverse(BuildVector.begin(), BuildVector.end()); 4947 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 4948 return true; 4949 } 4950 4951 /// \brief Like findBuildVector, but looks for construction of aggregate. 4952 /// 4953 /// \return true if it matches. 4954 static bool findBuildAggregate(InsertValueInst *IV, 4955 SmallVectorImpl<Value *> &BuildVector, 4956 SmallVectorImpl<Value *> &BuildVectorOpds) { 4957 Value *V; 4958 do { 4959 BuildVector.push_back(IV); 4960 BuildVectorOpds.push_back(IV->getInsertedValueOperand()); 4961 V = IV->getAggregateOperand(); 4962 if (isa<UndefValue>(V)) 4963 break; 4964 IV = dyn_cast<InsertValueInst>(V); 4965 if (!IV || !IV->hasOneUse()) 4966 return false; 4967 } while (true); 4968 std::reverse(BuildVector.begin(), BuildVector.end()); 4969 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 4970 return true; 4971 } 4972 4973 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 4974 return V->getType() < V2->getType(); 4975 } 4976 4977 /// \brief Try and get a reduction value from a phi node. 4978 /// 4979 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 4980 /// if they come from either \p ParentBB or a containing loop latch. 4981 /// 4982 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 4983 /// if not possible. 4984 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 4985 BasicBlock *ParentBB, LoopInfo *LI) { 4986 // There are situations where the reduction value is not dominated by the 4987 // reduction phi. Vectorizing such cases has been reported to cause 4988 // miscompiles. See PR25787. 4989 auto DominatedReduxValue = [&](Value *R) { 4990 return ( 4991 dyn_cast<Instruction>(R) && 4992 DT->dominates(P->getParent(), dyn_cast<Instruction>(R)->getParent())); 4993 }; 4994 4995 Value *Rdx = nullptr; 4996 4997 // Return the incoming value if it comes from the same BB as the phi node. 4998 if (P->getIncomingBlock(0) == ParentBB) { 4999 Rdx = P->getIncomingValue(0); 5000 } else if (P->getIncomingBlock(1) == ParentBB) { 5001 Rdx = P->getIncomingValue(1); 5002 } 5003 5004 if (Rdx && DominatedReduxValue(Rdx)) 5005 return Rdx; 5006 5007 // Otherwise, check whether we have a loop latch to look at. 5008 Loop *BBL = LI->getLoopFor(ParentBB); 5009 if (!BBL) 5010 return nullptr; 5011 BasicBlock *BBLatch = BBL->getLoopLatch(); 5012 if (!BBLatch) 5013 return nullptr; 5014 5015 // There is a loop latch, return the incoming value if it comes from 5016 // that. This reduction pattern occasionally turns up. 5017 if (P->getIncomingBlock(0) == BBLatch) { 5018 Rdx = P->getIncomingValue(0); 5019 } else if (P->getIncomingBlock(1) == BBLatch) { 5020 Rdx = P->getIncomingValue(1); 5021 } 5022 5023 if (Rdx && DominatedReduxValue(Rdx)) 5024 return Rdx; 5025 5026 return nullptr; 5027 } 5028 5029 /// Attempt to reduce a horizontal reduction. 5030 /// If it is legal to match a horizontal reduction feeding the phi node \a P 5031 /// with reduction operators \a Root (or one of its operands) in a basic block 5032 /// \a BB, then check if it can be done. If horizontal reduction is not found 5033 /// and root instruction is a binary operation, vectorization of the operands is 5034 /// attempted. 5035 /// \returns true if a horizontal reduction was matched and reduced or operands 5036 /// of one of the binary instruction were vectorized. 5037 /// \returns false if a horizontal reduction was not matched (or not possible) 5038 /// or no vectorization of any binary operation feeding \a Root instruction was 5039 /// performed. 5040 static bool tryToVectorizeHorReductionOrInstOperands( 5041 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 5042 TargetTransformInfo *TTI, 5043 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 5044 if (!ShouldVectorizeHor) 5045 return false; 5046 5047 if (!Root) 5048 return false; 5049 5050 if (Root->getParent() != BB || isa<PHINode>(Root)) 5051 return false; 5052 // Start analysis starting from Root instruction. If horizontal reduction is 5053 // found, try to vectorize it. If it is not a horizontal reduction or 5054 // vectorization is not possible or not effective, and currently analyzed 5055 // instruction is a binary operation, try to vectorize the operands, using 5056 // pre-order DFS traversal order. If the operands were not vectorized, repeat 5057 // the same procedure considering each operand as a possible root of the 5058 // horizontal reduction. 5059 // Interrupt the process if the Root instruction itself was vectorized or all 5060 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 5061 SmallVector<std::pair<WeakTrackingVH, unsigned>, 8> Stack(1, {Root, 0}); 5062 SmallSet<Value *, 8> VisitedInstrs; 5063 bool Res = false; 5064 while (!Stack.empty()) { 5065 Value *V; 5066 unsigned Level; 5067 std::tie(V, Level) = Stack.pop_back_val(); 5068 if (!V) 5069 continue; 5070 auto *Inst = dyn_cast<Instruction>(V); 5071 if (!Inst) 5072 continue; 5073 if (auto *BI = dyn_cast<BinaryOperator>(Inst)) { 5074 HorizontalReduction HorRdx; 5075 if (HorRdx.matchAssociativeReduction(P, BI)) { 5076 if (HorRdx.tryToReduce(R, TTI)) { 5077 Res = true; 5078 // Set P to nullptr to avoid re-analysis of phi node in 5079 // matchAssociativeReduction function unless this is the root node. 5080 P = nullptr; 5081 continue; 5082 } 5083 } 5084 if (P) { 5085 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 5086 if (Inst == P) 5087 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 5088 if (!Inst) { 5089 // Set P to nullptr to avoid re-analysis of phi node in 5090 // matchAssociativeReduction function unless this is the root node. 5091 P = nullptr; 5092 continue; 5093 } 5094 } 5095 } 5096 // Set P to nullptr to avoid re-analysis of phi node in 5097 // matchAssociativeReduction function unless this is the root node. 5098 P = nullptr; 5099 if (Vectorize(Inst, R)) { 5100 Res = true; 5101 continue; 5102 } 5103 5104 // Try to vectorize operands. 5105 // Continue analysis for the instruction from the same basic block only to 5106 // save compile time. 5107 if (++Level < RecursionMaxDepth) 5108 for (auto *Op : Inst->operand_values()) 5109 if (VisitedInstrs.insert(Op).second) 5110 if (auto *I = dyn_cast<Instruction>(Op)) 5111 if (!isa<PHINode>(Inst) && I->getParent() == BB) 5112 Stack.emplace_back(Op, Level); 5113 } 5114 return Res; 5115 } 5116 5117 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 5118 BasicBlock *BB, BoUpSLP &R, 5119 TargetTransformInfo *TTI) { 5120 if (!V) 5121 return false; 5122 auto *I = dyn_cast<Instruction>(V); 5123 if (!I) 5124 return false; 5125 5126 if (!isa<BinaryOperator>(I)) 5127 P = nullptr; 5128 // Try to match and vectorize a horizontal reduction. 5129 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 5130 return tryToVectorize(I, R); 5131 }; 5132 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 5133 ExtraVectorization); 5134 } 5135 5136 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 5137 BasicBlock *BB, BoUpSLP &R) { 5138 const DataLayout &DL = BB->getModule()->getDataLayout(); 5139 if (!R.canMapToVector(IVI->getType(), DL)) 5140 return false; 5141 5142 SmallVector<Value *, 16> BuildVector; 5143 SmallVector<Value *, 16> BuildVectorOpds; 5144 if (!findBuildAggregate(IVI, BuildVector, BuildVectorOpds)) 5145 return false; 5146 5147 DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 5148 return tryToVectorizeList(BuildVectorOpds, R, BuildVector, false); 5149 } 5150 5151 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 5152 BasicBlock *BB, BoUpSLP &R) { 5153 SmallVector<Value *, 16> BuildVector; 5154 SmallVector<Value *, 16> BuildVectorOpds; 5155 if (!findBuildVector(IEI, BuildVector, BuildVectorOpds)) 5156 return false; 5157 5158 // Vectorize starting with the build vector operands ignoring the BuildVector 5159 // instructions for the purpose of scheduling and user extraction. 5160 return tryToVectorizeList(BuildVectorOpds, R, BuildVector); 5161 } 5162 5163 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 5164 BoUpSLP &R) { 5165 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 5166 return true; 5167 5168 bool OpsChanged = false; 5169 for (int Idx = 0; Idx < 2; ++Idx) { 5170 OpsChanged |= 5171 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 5172 } 5173 return OpsChanged; 5174 } 5175 5176 bool SLPVectorizerPass::vectorizeSimpleInstructions( 5177 SmallVectorImpl<WeakVH> &Instructions, BasicBlock *BB, BoUpSLP &R) { 5178 bool OpsChanged = false; 5179 for (auto &VH : reverse(Instructions)) { 5180 auto *I = dyn_cast_or_null<Instruction>(VH); 5181 if (!I) 5182 continue; 5183 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 5184 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 5185 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 5186 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 5187 else if (auto *CI = dyn_cast<CmpInst>(I)) 5188 OpsChanged |= vectorizeCmpInst(CI, BB, R); 5189 } 5190 Instructions.clear(); 5191 return OpsChanged; 5192 } 5193 5194 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 5195 bool Changed = false; 5196 SmallVector<Value *, 4> Incoming; 5197 SmallSet<Value *, 16> VisitedInstrs; 5198 5199 bool HaveVectorizedPhiNodes = true; 5200 while (HaveVectorizedPhiNodes) { 5201 HaveVectorizedPhiNodes = false; 5202 5203 // Collect the incoming values from the PHIs. 5204 Incoming.clear(); 5205 for (Instruction &I : *BB) { 5206 PHINode *P = dyn_cast<PHINode>(&I); 5207 if (!P) 5208 break; 5209 5210 if (!VisitedInstrs.count(P)) 5211 Incoming.push_back(P); 5212 } 5213 5214 // Sort by type. 5215 std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc); 5216 5217 // Try to vectorize elements base on their type. 5218 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 5219 E = Incoming.end(); 5220 IncIt != E;) { 5221 5222 // Look for the next elements with the same type. 5223 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 5224 while (SameTypeIt != E && 5225 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 5226 VisitedInstrs.insert(*SameTypeIt); 5227 ++SameTypeIt; 5228 } 5229 5230 // Try to vectorize them. 5231 unsigned NumElts = (SameTypeIt - IncIt); 5232 DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n"); 5233 // The order in which the phi nodes appear in the program does not matter. 5234 // So allow tryToVectorizeList to reorder them if it is beneficial. This 5235 // is done when there are exactly two elements since tryToVectorizeList 5236 // asserts that there are only two values when AllowReorder is true. 5237 bool AllowReorder = NumElts == 2; 5238 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, 5239 None, AllowReorder)) { 5240 // Success start over because instructions might have been changed. 5241 HaveVectorizedPhiNodes = true; 5242 Changed = true; 5243 break; 5244 } 5245 5246 // Start over at the next instruction of a different type (or the end). 5247 IncIt = SameTypeIt; 5248 } 5249 } 5250 5251 VisitedInstrs.clear(); 5252 5253 SmallVector<WeakVH, 8> PostProcessInstructions; 5254 SmallDenseSet<Instruction *, 4> KeyNodes; 5255 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) { 5256 // We may go through BB multiple times so skip the one we have checked. 5257 if (!VisitedInstrs.insert(&*it).second) { 5258 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 5259 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 5260 // We would like to start over since some instructions are deleted 5261 // and the iterator may become invalid value. 5262 Changed = true; 5263 it = BB->begin(); 5264 e = BB->end(); 5265 } 5266 continue; 5267 } 5268 5269 if (isa<DbgInfoIntrinsic>(it)) 5270 continue; 5271 5272 // Try to vectorize reductions that use PHINodes. 5273 if (PHINode *P = dyn_cast<PHINode>(it)) { 5274 // Check that the PHI is a reduction PHI. 5275 if (P->getNumIncomingValues() != 2) 5276 return Changed; 5277 5278 // Try to match and vectorize a horizontal reduction. 5279 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 5280 TTI)) { 5281 Changed = true; 5282 it = BB->begin(); 5283 e = BB->end(); 5284 continue; 5285 } 5286 continue; 5287 } 5288 5289 // Ran into an instruction without users, like terminator, or function call 5290 // with ignored return value, store. Ignore unused instructions (basing on 5291 // instruction type, except for CallInst and InvokeInst). 5292 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 5293 isa<InvokeInst>(it))) { 5294 KeyNodes.insert(&*it); 5295 bool OpsChanged = false; 5296 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 5297 for (auto *V : it->operand_values()) { 5298 // Try to match and vectorize a horizontal reduction. 5299 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 5300 } 5301 } 5302 // Start vectorization of post-process list of instructions from the 5303 // top-tree instructions to try to vectorize as many instructions as 5304 // possible. 5305 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 5306 if (OpsChanged) { 5307 // We would like to start over since some instructions are deleted 5308 // and the iterator may become invalid value. 5309 Changed = true; 5310 it = BB->begin(); 5311 e = BB->end(); 5312 continue; 5313 } 5314 } 5315 5316 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 5317 isa<InsertValueInst>(it)) 5318 PostProcessInstructions.push_back(&*it); 5319 5320 } 5321 5322 return Changed; 5323 } 5324 5325 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 5326 auto Changed = false; 5327 for (auto &Entry : GEPs) { 5328 5329 // If the getelementptr list has fewer than two elements, there's nothing 5330 // to do. 5331 if (Entry.second.size() < 2) 5332 continue; 5333 5334 DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 5335 << Entry.second.size() << ".\n"); 5336 5337 // We process the getelementptr list in chunks of 16 (like we do for 5338 // stores) to minimize compile-time. 5339 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) { 5340 auto Len = std::min<unsigned>(BE - BI, 16); 5341 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 5342 5343 // Initialize a set a candidate getelementptrs. Note that we use a 5344 // SetVector here to preserve program order. If the index computations 5345 // are vectorizable and begin with loads, we want to minimize the chance 5346 // of having to reorder them later. 5347 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 5348 5349 // Some of the candidates may have already been vectorized after we 5350 // initially collected them. If so, the WeakTrackingVHs will have 5351 // nullified the 5352 // values, so remove them from the set of candidates. 5353 Candidates.remove(nullptr); 5354 5355 // Remove from the set of candidates all pairs of getelementptrs with 5356 // constant differences. Such getelementptrs are likely not good 5357 // candidates for vectorization in a bottom-up phase since one can be 5358 // computed from the other. We also ensure all candidate getelementptr 5359 // indices are unique. 5360 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 5361 auto *GEPI = cast<GetElementPtrInst>(GEPList[I]); 5362 if (!Candidates.count(GEPI)) 5363 continue; 5364 auto *SCEVI = SE->getSCEV(GEPList[I]); 5365 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 5366 auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]); 5367 auto *SCEVJ = SE->getSCEV(GEPList[J]); 5368 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 5369 Candidates.remove(GEPList[I]); 5370 Candidates.remove(GEPList[J]); 5371 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 5372 Candidates.remove(GEPList[J]); 5373 } 5374 } 5375 } 5376 5377 // We break out of the above computation as soon as we know there are 5378 // fewer than two candidates remaining. 5379 if (Candidates.size() < 2) 5380 continue; 5381 5382 // Add the single, non-constant index of each candidate to the bundle. We 5383 // ensured the indices met these constraints when we originally collected 5384 // the getelementptrs. 5385 SmallVector<Value *, 16> Bundle(Candidates.size()); 5386 auto BundleIndex = 0u; 5387 for (auto *V : Candidates) { 5388 auto *GEP = cast<GetElementPtrInst>(V); 5389 auto *GEPIdx = GEP->idx_begin()->get(); 5390 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 5391 Bundle[BundleIndex++] = GEPIdx; 5392 } 5393 5394 // Try and vectorize the indices. We are currently only interested in 5395 // gather-like cases of the form: 5396 // 5397 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 5398 // 5399 // where the loads of "a", the loads of "b", and the subtractions can be 5400 // performed in parallel. It's likely that detecting this pattern in a 5401 // bottom-up phase will be simpler and less costly than building a 5402 // full-blown top-down phase beginning at the consecutive loads. 5403 Changed |= tryToVectorizeList(Bundle, R); 5404 } 5405 } 5406 return Changed; 5407 } 5408 5409 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 5410 bool Changed = false; 5411 // Attempt to sort and vectorize each of the store-groups. 5412 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 5413 ++it) { 5414 if (it->second.size() < 2) 5415 continue; 5416 5417 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 5418 << it->second.size() << ".\n"); 5419 5420 // Process the stores in chunks of 16. 5421 // TODO: The limit of 16 inhibits greater vectorization factors. 5422 // For example, AVX2 supports v32i8. Increasing this limit, however, 5423 // may cause a significant compile-time increase. 5424 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) { 5425 unsigned Len = std::min<unsigned>(CE - CI, 16); 5426 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R); 5427 } 5428 } 5429 return Changed; 5430 } 5431 5432 char SLPVectorizer::ID = 0; 5433 static const char lv_name[] = "SLP Vectorizer"; 5434 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 5435 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 5436 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5437 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 5438 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 5439 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5440 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 5441 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 5442 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 5443 5444 namespace llvm { 5445 Pass *createSLPVectorizerPass() { return new SLPVectorizer(); } 5446 } 5447