1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DebugLoc.h" 57 #include "llvm/IR/DerivedTypes.h" 58 #include "llvm/IR/Dominators.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/IRBuilder.h" 61 #include "llvm/IR/InstrTypes.h" 62 #include "llvm/IR/Instruction.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/Intrinsics.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/NoFolder.h" 68 #include "llvm/IR/Operator.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/Verifier.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/DOTGraphTraits.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/GraphWriter.h" 85 #include "llvm/Support/InstructionCost.h" 86 #include "llvm/Support/KnownBits.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 // The Look-ahead heuristic goes through the users of the bundle to calculate 168 // the users cost in getExternalUsesCost(). To avoid compilation time increase 169 // we limit the number of users visited to this value. 170 static cl::opt<unsigned> LookAheadUsersBudget( 171 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 172 cl::desc("The maximum number of users to visit while visiting the " 173 "predecessors. This prevents compilation time increase.")); 174 175 static cl::opt<bool> 176 ViewSLPTree("view-slp-tree", cl::Hidden, 177 cl::desc("Display the SLP trees with Graphviz")); 178 179 // Limit the number of alias checks. The limit is chosen so that 180 // it has no negative effect on the llvm benchmarks. 181 static const unsigned AliasedCheckLimit = 10; 182 183 // Another limit for the alias checks: The maximum distance between load/store 184 // instructions where alias checks are done. 185 // This limit is useful for very large basic blocks. 186 static const unsigned MaxMemDepDistance = 160; 187 188 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 189 /// regions to be handled. 190 static const int MinScheduleRegionSize = 16; 191 192 /// Predicate for the element types that the SLP vectorizer supports. 193 /// 194 /// The most important thing to filter here are types which are invalid in LLVM 195 /// vectors. We also filter target specific types which have absolutely no 196 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 197 /// avoids spending time checking the cost model and realizing that they will 198 /// be inevitably scalarized. 199 static bool isValidElementType(Type *Ty) { 200 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 201 !Ty->isPPC_FP128Ty(); 202 } 203 204 /// \returns True if the value is a constant (but not globals/constant 205 /// expressions). 206 static bool isConstant(Value *V) { 207 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 208 } 209 210 /// Checks if \p V is one of vector-like instructions, i.e. undef, 211 /// insertelement/extractelement with constant indices for fixed vector type or 212 /// extractvalue instruction. 213 static bool isVectorLikeInstWithConstOps(Value *V) { 214 if (!isa<InsertElementInst, ExtractElementInst>(V) && 215 !isa<ExtractValueInst, UndefValue>(V)) 216 return false; 217 auto *I = dyn_cast<Instruction>(V); 218 if (!I || isa<ExtractValueInst>(I)) 219 return true; 220 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 221 return false; 222 if (isa<ExtractElementInst>(I)) 223 return isConstant(I->getOperand(1)); 224 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 225 return isConstant(I->getOperand(2)); 226 } 227 228 /// \returns true if all of the instructions in \p VL are in the same block or 229 /// false otherwise. 230 static bool allSameBlock(ArrayRef<Value *> VL) { 231 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 232 if (!I0) 233 return false; 234 if (all_of(VL, isVectorLikeInstWithConstOps)) 235 return true; 236 237 BasicBlock *BB = I0->getParent(); 238 for (int I = 1, E = VL.size(); I < E; I++) { 239 auto *II = dyn_cast<Instruction>(VL[I]); 240 if (!II) 241 return false; 242 243 if (BB != II->getParent()) 244 return false; 245 } 246 return true; 247 } 248 249 /// \returns True if all of the values in \p VL are constants (but not 250 /// globals/constant expressions). 251 static bool allConstant(ArrayRef<Value *> VL) { 252 // Constant expressions and globals can't be vectorized like normal integer/FP 253 // constants. 254 return all_of(VL, isConstant); 255 } 256 257 /// \returns True if all of the values in \p VL are identical or some of them 258 /// are UndefValue. 259 static bool isSplat(ArrayRef<Value *> VL) { 260 Value *FirstNonUndef = nullptr; 261 for (Value *V : VL) { 262 if (isa<UndefValue>(V)) 263 continue; 264 if (!FirstNonUndef) { 265 FirstNonUndef = V; 266 continue; 267 } 268 if (V != FirstNonUndef) 269 return false; 270 } 271 return FirstNonUndef != nullptr; 272 } 273 274 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 275 static bool isCommutative(Instruction *I) { 276 if (auto *Cmp = dyn_cast<CmpInst>(I)) 277 return Cmp->isCommutative(); 278 if (auto *BO = dyn_cast<BinaryOperator>(I)) 279 return BO->isCommutative(); 280 // TODO: This should check for generic Instruction::isCommutative(), but 281 // we need to confirm that the caller code correctly handles Intrinsics 282 // for example (does not have 2 operands). 283 return false; 284 } 285 286 /// Checks if the given value is actually an undefined constant vector. 287 static bool isUndefVector(const Value *V) { 288 if (isa<UndefValue>(V)) 289 return true; 290 auto *C = dyn_cast<Constant>(V); 291 if (!C) 292 return false; 293 if (!C->containsUndefOrPoisonElement()) 294 return false; 295 auto *VecTy = dyn_cast<FixedVectorType>(C->getType()); 296 if (!VecTy) 297 return false; 298 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 299 if (Constant *Elem = C->getAggregateElement(I)) 300 if (!isa<UndefValue>(Elem)) 301 return false; 302 } 303 return true; 304 } 305 306 /// Checks if the vector of instructions can be represented as a shuffle, like: 307 /// %x0 = extractelement <4 x i8> %x, i32 0 308 /// %x3 = extractelement <4 x i8> %x, i32 3 309 /// %y1 = extractelement <4 x i8> %y, i32 1 310 /// %y2 = extractelement <4 x i8> %y, i32 2 311 /// %x0x0 = mul i8 %x0, %x0 312 /// %x3x3 = mul i8 %x3, %x3 313 /// %y1y1 = mul i8 %y1, %y1 314 /// %y2y2 = mul i8 %y2, %y2 315 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 316 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 317 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 318 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 319 /// ret <4 x i8> %ins4 320 /// can be transformed into: 321 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 322 /// i32 6> 323 /// %2 = mul <4 x i8> %1, %1 324 /// ret <4 x i8> %2 325 /// We convert this initially to something like: 326 /// %x0 = extractelement <4 x i8> %x, i32 0 327 /// %x3 = extractelement <4 x i8> %x, i32 3 328 /// %y1 = extractelement <4 x i8> %y, i32 1 329 /// %y2 = extractelement <4 x i8> %y, i32 2 330 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 331 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 332 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 333 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 334 /// %5 = mul <4 x i8> %4, %4 335 /// %6 = extractelement <4 x i8> %5, i32 0 336 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 337 /// %7 = extractelement <4 x i8> %5, i32 1 338 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 339 /// %8 = extractelement <4 x i8> %5, i32 2 340 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 341 /// %9 = extractelement <4 x i8> %5, i32 3 342 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 343 /// ret <4 x i8> %ins4 344 /// InstCombiner transforms this into a shuffle and vector mul 345 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 346 /// TODO: Can we split off and reuse the shuffle mask detection from 347 /// TargetTransformInfo::getInstructionThroughput? 348 static Optional<TargetTransformInfo::ShuffleKind> 349 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 350 const auto *It = 351 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); 352 if (It == VL.end()) 353 return None; 354 auto *EI0 = cast<ExtractElementInst>(*It); 355 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 356 return None; 357 unsigned Size = 358 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 359 Value *Vec1 = nullptr; 360 Value *Vec2 = nullptr; 361 enum ShuffleMode { Unknown, Select, Permute }; 362 ShuffleMode CommonShuffleMode = Unknown; 363 Mask.assign(VL.size(), UndefMaskElem); 364 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 365 // Undef can be represented as an undef element in a vector. 366 if (isa<UndefValue>(VL[I])) 367 continue; 368 auto *EI = cast<ExtractElementInst>(VL[I]); 369 if (isa<ScalableVectorType>(EI->getVectorOperandType())) 370 return None; 371 auto *Vec = EI->getVectorOperand(); 372 // We can extractelement from undef or poison vector. 373 if (isUndefVector(Vec)) 374 continue; 375 // All vector operands must have the same number of vector elements. 376 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 377 return None; 378 if (isa<UndefValue>(EI->getIndexOperand())) 379 continue; 380 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 381 if (!Idx) 382 return None; 383 // Undefined behavior if Idx is negative or >= Size. 384 if (Idx->getValue().uge(Size)) 385 continue; 386 unsigned IntIdx = Idx->getValue().getZExtValue(); 387 Mask[I] = IntIdx; 388 // For correct shuffling we have to have at most 2 different vector operands 389 // in all extractelement instructions. 390 if (!Vec1 || Vec1 == Vec) { 391 Vec1 = Vec; 392 } else if (!Vec2 || Vec2 == Vec) { 393 Vec2 = Vec; 394 Mask[I] += Size; 395 } else { 396 return None; 397 } 398 if (CommonShuffleMode == Permute) 399 continue; 400 // If the extract index is not the same as the operation number, it is a 401 // permutation. 402 if (IntIdx != I) { 403 CommonShuffleMode = Permute; 404 continue; 405 } 406 CommonShuffleMode = Select; 407 } 408 // If we're not crossing lanes in different vectors, consider it as blending. 409 if (CommonShuffleMode == Select && Vec2) 410 return TargetTransformInfo::SK_Select; 411 // If Vec2 was never used, we have a permutation of a single vector, otherwise 412 // we have permutation of 2 vectors. 413 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 414 : TargetTransformInfo::SK_PermuteSingleSrc; 415 } 416 417 namespace { 418 419 /// Main data required for vectorization of instructions. 420 struct InstructionsState { 421 /// The very first instruction in the list with the main opcode. 422 Value *OpValue = nullptr; 423 424 /// The main/alternate instruction. 425 Instruction *MainOp = nullptr; 426 Instruction *AltOp = nullptr; 427 428 /// The main/alternate opcodes for the list of instructions. 429 unsigned getOpcode() const { 430 return MainOp ? MainOp->getOpcode() : 0; 431 } 432 433 unsigned getAltOpcode() const { 434 return AltOp ? AltOp->getOpcode() : 0; 435 } 436 437 /// Some of the instructions in the list have alternate opcodes. 438 bool isAltShuffle() const { return AltOp != MainOp; } 439 440 bool isOpcodeOrAlt(Instruction *I) const { 441 unsigned CheckedOpcode = I->getOpcode(); 442 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 443 } 444 445 InstructionsState() = delete; 446 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 447 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 448 }; 449 450 } // end anonymous namespace 451 452 /// Chooses the correct key for scheduling data. If \p Op has the same (or 453 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 454 /// OpValue. 455 static Value *isOneOf(const InstructionsState &S, Value *Op) { 456 auto *I = dyn_cast<Instruction>(Op); 457 if (I && S.isOpcodeOrAlt(I)) 458 return Op; 459 return S.OpValue; 460 } 461 462 /// \returns true if \p Opcode is allowed as part of of the main/alternate 463 /// instruction for SLP vectorization. 464 /// 465 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 466 /// "shuffled out" lane would result in division by zero. 467 static bool isValidForAlternation(unsigned Opcode) { 468 if (Instruction::isIntDivRem(Opcode)) 469 return false; 470 471 return true; 472 } 473 474 /// \returns analysis of the Instructions in \p VL described in 475 /// InstructionsState, the Opcode that we suppose the whole list 476 /// could be vectorized even if its structure is diverse. 477 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 478 unsigned BaseIndex = 0) { 479 // Make sure these are all Instructions. 480 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 481 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 482 483 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 484 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 485 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 486 unsigned AltOpcode = Opcode; 487 unsigned AltIndex = BaseIndex; 488 489 // Check for one alternate opcode from another BinaryOperator. 490 // TODO - generalize to support all operators (types, calls etc.). 491 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 492 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 493 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 494 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 495 continue; 496 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 497 isValidForAlternation(Opcode)) { 498 AltOpcode = InstOpcode; 499 AltIndex = Cnt; 500 continue; 501 } 502 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 503 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 504 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 505 if (Ty0 == Ty1) { 506 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 507 continue; 508 if (Opcode == AltOpcode) { 509 assert(isValidForAlternation(Opcode) && 510 isValidForAlternation(InstOpcode) && 511 "Cast isn't safe for alternation, logic needs to be updated!"); 512 AltOpcode = InstOpcode; 513 AltIndex = Cnt; 514 continue; 515 } 516 } 517 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 518 continue; 519 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 520 } 521 522 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 523 cast<Instruction>(VL[AltIndex])); 524 } 525 526 /// \returns true if all of the values in \p VL have the same type or false 527 /// otherwise. 528 static bool allSameType(ArrayRef<Value *> VL) { 529 Type *Ty = VL[0]->getType(); 530 for (int i = 1, e = VL.size(); i < e; i++) 531 if (VL[i]->getType() != Ty) 532 return false; 533 534 return true; 535 } 536 537 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 538 static Optional<unsigned> getExtractIndex(Instruction *E) { 539 unsigned Opcode = E->getOpcode(); 540 assert((Opcode == Instruction::ExtractElement || 541 Opcode == Instruction::ExtractValue) && 542 "Expected extractelement or extractvalue instruction."); 543 if (Opcode == Instruction::ExtractElement) { 544 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 545 if (!CI) 546 return None; 547 return CI->getZExtValue(); 548 } 549 ExtractValueInst *EI = cast<ExtractValueInst>(E); 550 if (EI->getNumIndices() != 1) 551 return None; 552 return *EI->idx_begin(); 553 } 554 555 /// \returns True if in-tree use also needs extract. This refers to 556 /// possible scalar operand in vectorized instruction. 557 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 558 TargetLibraryInfo *TLI) { 559 unsigned Opcode = UserInst->getOpcode(); 560 switch (Opcode) { 561 case Instruction::Load: { 562 LoadInst *LI = cast<LoadInst>(UserInst); 563 return (LI->getPointerOperand() == Scalar); 564 } 565 case Instruction::Store: { 566 StoreInst *SI = cast<StoreInst>(UserInst); 567 return (SI->getPointerOperand() == Scalar); 568 } 569 case Instruction::Call: { 570 CallInst *CI = cast<CallInst>(UserInst); 571 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 572 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 573 if (hasVectorInstrinsicScalarOpd(ID, i)) 574 return (CI->getArgOperand(i) == Scalar); 575 } 576 LLVM_FALLTHROUGH; 577 } 578 default: 579 return false; 580 } 581 } 582 583 /// \returns the AA location that is being access by the instruction. 584 static MemoryLocation getLocation(Instruction *I, AAResults *AA) { 585 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 586 return MemoryLocation::get(SI); 587 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 588 return MemoryLocation::get(LI); 589 return MemoryLocation(); 590 } 591 592 /// \returns True if the instruction is not a volatile or atomic load/store. 593 static bool isSimple(Instruction *I) { 594 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 595 return LI->isSimple(); 596 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 597 return SI->isSimple(); 598 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 599 return !MI->isVolatile(); 600 return true; 601 } 602 603 /// Shuffles \p Mask in accordance with the given \p SubMask. 604 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 605 if (SubMask.empty()) 606 return; 607 if (Mask.empty()) { 608 Mask.append(SubMask.begin(), SubMask.end()); 609 return; 610 } 611 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 612 int TermValue = std::min(Mask.size(), SubMask.size()); 613 for (int I = 0, E = SubMask.size(); I < E; ++I) { 614 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 615 Mask[SubMask[I]] >= TermValue) 616 continue; 617 NewMask[I] = Mask[SubMask[I]]; 618 } 619 Mask.swap(NewMask); 620 } 621 622 /// Order may have elements assigned special value (size) which is out of 623 /// bounds. Such indices only appear on places which correspond to undef values 624 /// (see canReuseExtract for details) and used in order to avoid undef values 625 /// have effect on operands ordering. 626 /// The first loop below simply finds all unused indices and then the next loop 627 /// nest assigns these indices for undef values positions. 628 /// As an example below Order has two undef positions and they have assigned 629 /// values 3 and 7 respectively: 630 /// before: 6 9 5 4 9 2 1 0 631 /// after: 6 3 5 4 7 2 1 0 632 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 633 const unsigned Sz = Order.size(); 634 SmallBitVector UnusedIndices(Sz, /*t=*/true); 635 SmallBitVector MaskedIndices(Sz); 636 for (unsigned I = 0; I < Sz; ++I) { 637 if (Order[I] < Sz) 638 UnusedIndices.reset(Order[I]); 639 else 640 MaskedIndices.set(I); 641 } 642 if (MaskedIndices.none()) 643 return; 644 assert(UnusedIndices.count() == MaskedIndices.count() && 645 "Non-synced masked/available indices."); 646 int Idx = UnusedIndices.find_first(); 647 int MIdx = MaskedIndices.find_first(); 648 while (MIdx >= 0) { 649 assert(Idx >= 0 && "Indices must be synced."); 650 Order[MIdx] = Idx; 651 Idx = UnusedIndices.find_next(Idx); 652 MIdx = MaskedIndices.find_next(MIdx); 653 } 654 } 655 656 namespace llvm { 657 658 static void inversePermutation(ArrayRef<unsigned> Indices, 659 SmallVectorImpl<int> &Mask) { 660 Mask.clear(); 661 const unsigned E = Indices.size(); 662 Mask.resize(E, UndefMaskElem); 663 for (unsigned I = 0; I < E; ++I) 664 Mask[Indices[I]] = I; 665 } 666 667 /// \returns inserting index of InsertElement or InsertValue instruction, 668 /// using Offset as base offset for index. 669 static Optional<int> getInsertIndex(Value *InsertInst, unsigned Offset) { 670 int Index = Offset; 671 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 672 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 673 auto *VT = cast<FixedVectorType>(IE->getType()); 674 if (CI->getValue().uge(VT->getNumElements())) 675 return UndefMaskElem; 676 Index *= VT->getNumElements(); 677 Index += CI->getZExtValue(); 678 return Index; 679 } 680 if (isa<UndefValue>(IE->getOperand(2))) 681 return UndefMaskElem; 682 return None; 683 } 684 685 auto *IV = cast<InsertValueInst>(InsertInst); 686 Type *CurrentType = IV->getType(); 687 for (unsigned I : IV->indices()) { 688 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 689 Index *= ST->getNumElements(); 690 CurrentType = ST->getElementType(I); 691 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 692 Index *= AT->getNumElements(); 693 CurrentType = AT->getElementType(); 694 } else { 695 return None; 696 } 697 Index += I; 698 } 699 return Index; 700 } 701 702 /// Reorders the list of scalars in accordance with the given \p Order and then 703 /// the \p Mask. \p Order - is the original order of the scalars, need to 704 /// reorder scalars into an unordered state at first according to the given 705 /// order. Then the ordered scalars are shuffled once again in accordance with 706 /// the provided mask. 707 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 708 ArrayRef<int> Mask) { 709 assert(!Mask.empty() && "Expected non-empty mask."); 710 SmallVector<Value *> Prev(Scalars.size(), 711 UndefValue::get(Scalars.front()->getType())); 712 Prev.swap(Scalars); 713 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 714 if (Mask[I] != UndefMaskElem) 715 Scalars[Mask[I]] = Prev[I]; 716 } 717 718 namespace slpvectorizer { 719 720 /// Bottom Up SLP Vectorizer. 721 class BoUpSLP { 722 struct TreeEntry; 723 struct ScheduleData; 724 725 public: 726 using ValueList = SmallVector<Value *, 8>; 727 using InstrList = SmallVector<Instruction *, 16>; 728 using ValueSet = SmallPtrSet<Value *, 16>; 729 using StoreList = SmallVector<StoreInst *, 8>; 730 using ExtraValueToDebugLocsMap = 731 MapVector<Value *, SmallVector<Instruction *, 2>>; 732 using OrdersType = SmallVector<unsigned, 4>; 733 734 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 735 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 736 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 737 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 738 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 739 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 740 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 741 // Use the vector register size specified by the target unless overridden 742 // by a command-line option. 743 // TODO: It would be better to limit the vectorization factor based on 744 // data type rather than just register size. For example, x86 AVX has 745 // 256-bit registers, but it does not support integer operations 746 // at that width (that requires AVX2). 747 if (MaxVectorRegSizeOption.getNumOccurrences()) 748 MaxVecRegSize = MaxVectorRegSizeOption; 749 else 750 MaxVecRegSize = 751 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 752 .getFixedSize(); 753 754 if (MinVectorRegSizeOption.getNumOccurrences()) 755 MinVecRegSize = MinVectorRegSizeOption; 756 else 757 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 758 } 759 760 /// Vectorize the tree that starts with the elements in \p VL. 761 /// Returns the vectorized root. 762 Value *vectorizeTree(); 763 764 /// Vectorize the tree but with the list of externally used values \p 765 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 766 /// generated extractvalue instructions. 767 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 768 769 /// \returns the cost incurred by unwanted spills and fills, caused by 770 /// holding live values over call sites. 771 InstructionCost getSpillCost() const; 772 773 /// \returns the vectorization cost of the subtree that starts at \p VL. 774 /// A negative number means that this is profitable. 775 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 776 777 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 778 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 779 void buildTree(ArrayRef<Value *> Roots, 780 ArrayRef<Value *> UserIgnoreLst = None); 781 782 /// Builds external uses of the vectorized scalars, i.e. the list of 783 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 784 /// ExternallyUsedValues contains additional list of external uses to handle 785 /// vectorization of reductions. 786 void 787 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 788 789 /// Clear the internal data structures that are created by 'buildTree'. 790 void deleteTree() { 791 VectorizableTree.clear(); 792 ScalarToTreeEntry.clear(); 793 MustGather.clear(); 794 ExternalUses.clear(); 795 for (auto &Iter : BlocksSchedules) { 796 BlockScheduling *BS = Iter.second.get(); 797 BS->clear(); 798 } 799 MinBWs.clear(); 800 InstrElementSize.clear(); 801 } 802 803 unsigned getTreeSize() const { return VectorizableTree.size(); } 804 805 /// Perform LICM and CSE on the newly generated gather sequences. 806 void optimizeGatherSequence(); 807 808 /// Checks if the specified gather tree entry \p TE can be represented as a 809 /// shuffled vector entry + (possibly) permutation with other gathers. It 810 /// implements the checks only for possibly ordered scalars (Loads, 811 /// ExtractElement, ExtractValue), which can be part of the graph. 812 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 813 814 /// Gets reordering data for the given tree entry. If the entry is vectorized 815 /// - just return ReorderIndices, otherwise check if the scalars can be 816 /// reordered and return the most optimal order. 817 /// \param TopToBottom If true, include the order of vectorized stores and 818 /// insertelement nodes, otherwise skip them. 819 Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom); 820 821 /// Reorders the current graph to the most profitable order starting from the 822 /// root node to the leaf nodes. The best order is chosen only from the nodes 823 /// of the same size (vectorization factor). Smaller nodes are considered 824 /// parts of subgraph with smaller VF and they are reordered independently. We 825 /// can make it because we still need to extend smaller nodes to the wider VF 826 /// and we can merge reordering shuffles with the widening shuffles. 827 void reorderTopToBottom(); 828 829 /// Reorders the current graph to the most profitable order starting from 830 /// leaves to the root. It allows to rotate small subgraphs and reduce the 831 /// number of reshuffles if the leaf nodes use the same order. In this case we 832 /// can merge the orders and just shuffle user node instead of shuffling its 833 /// operands. Plus, even the leaf nodes have different orders, it allows to 834 /// sink reordering in the graph closer to the root node and merge it later 835 /// during analysis. 836 void reorderBottomToTop(bool IgnoreReorder = false); 837 838 /// \return The vector element size in bits to use when vectorizing the 839 /// expression tree ending at \p V. If V is a store, the size is the width of 840 /// the stored value. Otherwise, the size is the width of the largest loaded 841 /// value reaching V. This method is used by the vectorizer to calculate 842 /// vectorization factors. 843 unsigned getVectorElementSize(Value *V); 844 845 /// Compute the minimum type sizes required to represent the entries in a 846 /// vectorizable tree. 847 void computeMinimumValueSizes(); 848 849 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 850 unsigned getMaxVecRegSize() const { 851 return MaxVecRegSize; 852 } 853 854 // \returns minimum vector register size as set by cl::opt. 855 unsigned getMinVecRegSize() const { 856 return MinVecRegSize; 857 } 858 859 unsigned getMinVF(unsigned Sz) const { 860 return std::max(2U, getMinVecRegSize() / Sz); 861 } 862 863 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 864 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 865 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 866 return MaxVF ? MaxVF : UINT_MAX; 867 } 868 869 /// Check if homogeneous aggregate is isomorphic to some VectorType. 870 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 871 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 872 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 873 /// 874 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 875 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 876 877 /// \returns True if the VectorizableTree is both tiny and not fully 878 /// vectorizable. We do not vectorize such trees. 879 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 880 881 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 882 /// can be load combined in the backend. Load combining may not be allowed in 883 /// the IR optimizer, so we do not want to alter the pattern. For example, 884 /// partially transforming a scalar bswap() pattern into vector code is 885 /// effectively impossible for the backend to undo. 886 /// TODO: If load combining is allowed in the IR optimizer, this analysis 887 /// may not be necessary. 888 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 889 890 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 891 /// can be load combined in the backend. Load combining may not be allowed in 892 /// the IR optimizer, so we do not want to alter the pattern. For example, 893 /// partially transforming a scalar bswap() pattern into vector code is 894 /// effectively impossible for the backend to undo. 895 /// TODO: If load combining is allowed in the IR optimizer, this analysis 896 /// may not be necessary. 897 bool isLoadCombineCandidate() const; 898 899 OptimizationRemarkEmitter *getORE() { return ORE; } 900 901 /// This structure holds any data we need about the edges being traversed 902 /// during buildTree_rec(). We keep track of: 903 /// (i) the user TreeEntry index, and 904 /// (ii) the index of the edge. 905 struct EdgeInfo { 906 EdgeInfo() = default; 907 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 908 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 909 /// The user TreeEntry. 910 TreeEntry *UserTE = nullptr; 911 /// The operand index of the use. 912 unsigned EdgeIdx = UINT_MAX; 913 #ifndef NDEBUG 914 friend inline raw_ostream &operator<<(raw_ostream &OS, 915 const BoUpSLP::EdgeInfo &EI) { 916 EI.dump(OS); 917 return OS; 918 } 919 /// Debug print. 920 void dump(raw_ostream &OS) const { 921 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 922 << " EdgeIdx:" << EdgeIdx << "}"; 923 } 924 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 925 #endif 926 }; 927 928 /// A helper data structure to hold the operands of a vector of instructions. 929 /// This supports a fixed vector length for all operand vectors. 930 class VLOperands { 931 /// For each operand we need (i) the value, and (ii) the opcode that it 932 /// would be attached to if the expression was in a left-linearized form. 933 /// This is required to avoid illegal operand reordering. 934 /// For example: 935 /// \verbatim 936 /// 0 Op1 937 /// |/ 938 /// Op1 Op2 Linearized + Op2 939 /// \ / ----------> |/ 940 /// - - 941 /// 942 /// Op1 - Op2 (0 + Op1) - Op2 943 /// \endverbatim 944 /// 945 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 946 /// 947 /// Another way to think of this is to track all the operations across the 948 /// path from the operand all the way to the root of the tree and to 949 /// calculate the operation that corresponds to this path. For example, the 950 /// path from Op2 to the root crosses the RHS of the '-', therefore the 951 /// corresponding operation is a '-' (which matches the one in the 952 /// linearized tree, as shown above). 953 /// 954 /// For lack of a better term, we refer to this operation as Accumulated 955 /// Path Operation (APO). 956 struct OperandData { 957 OperandData() = default; 958 OperandData(Value *V, bool APO, bool IsUsed) 959 : V(V), APO(APO), IsUsed(IsUsed) {} 960 /// The operand value. 961 Value *V = nullptr; 962 /// TreeEntries only allow a single opcode, or an alternate sequence of 963 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 964 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 965 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 966 /// (e.g., Add/Mul) 967 bool APO = false; 968 /// Helper data for the reordering function. 969 bool IsUsed = false; 970 }; 971 972 /// During operand reordering, we are trying to select the operand at lane 973 /// that matches best with the operand at the neighboring lane. Our 974 /// selection is based on the type of value we are looking for. For example, 975 /// if the neighboring lane has a load, we need to look for a load that is 976 /// accessing a consecutive address. These strategies are summarized in the 977 /// 'ReorderingMode' enumerator. 978 enum class ReorderingMode { 979 Load, ///< Matching loads to consecutive memory addresses 980 Opcode, ///< Matching instructions based on opcode (same or alternate) 981 Constant, ///< Matching constants 982 Splat, ///< Matching the same instruction multiple times (broadcast) 983 Failed, ///< We failed to create a vectorizable group 984 }; 985 986 using OperandDataVec = SmallVector<OperandData, 2>; 987 988 /// A vector of operand vectors. 989 SmallVector<OperandDataVec, 4> OpsVec; 990 991 const DataLayout &DL; 992 ScalarEvolution &SE; 993 const BoUpSLP &R; 994 995 /// \returns the operand data at \p OpIdx and \p Lane. 996 OperandData &getData(unsigned OpIdx, unsigned Lane) { 997 return OpsVec[OpIdx][Lane]; 998 } 999 1000 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 1001 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 1002 return OpsVec[OpIdx][Lane]; 1003 } 1004 1005 /// Clears the used flag for all entries. 1006 void clearUsed() { 1007 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 1008 OpIdx != NumOperands; ++OpIdx) 1009 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1010 ++Lane) 1011 OpsVec[OpIdx][Lane].IsUsed = false; 1012 } 1013 1014 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 1015 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 1016 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 1017 } 1018 1019 // The hard-coded scores listed here are not very important, though it shall 1020 // be higher for better matches to improve the resulting cost. When 1021 // computing the scores of matching one sub-tree with another, we are 1022 // basically counting the number of values that are matching. So even if all 1023 // scores are set to 1, we would still get a decent matching result. 1024 // However, sometimes we have to break ties. For example we may have to 1025 // choose between matching loads vs matching opcodes. This is what these 1026 // scores are helping us with: they provide the order of preference. Also, 1027 // this is important if the scalar is externally used or used in another 1028 // tree entry node in the different lane. 1029 1030 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 1031 static const int ScoreConsecutiveLoads = 4; 1032 /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]). 1033 static const int ScoreReversedLoads = 3; 1034 /// ExtractElementInst from same vector and consecutive indexes. 1035 static const int ScoreConsecutiveExtracts = 4; 1036 /// ExtractElementInst from same vector and reversed indices. 1037 static const int ScoreReversedExtracts = 3; 1038 /// Constants. 1039 static const int ScoreConstants = 2; 1040 /// Instructions with the same opcode. 1041 static const int ScoreSameOpcode = 2; 1042 /// Instructions with alt opcodes (e.g, add + sub). 1043 static const int ScoreAltOpcodes = 1; 1044 /// Identical instructions (a.k.a. splat or broadcast). 1045 static const int ScoreSplat = 1; 1046 /// Matching with an undef is preferable to failing. 1047 static const int ScoreUndef = 1; 1048 /// Score for failing to find a decent match. 1049 static const int ScoreFail = 0; 1050 /// User exteranl to the vectorized code. 1051 static const int ExternalUseCost = 1; 1052 /// The user is internal but in a different lane. 1053 static const int UserInDiffLaneCost = ExternalUseCost; 1054 1055 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1056 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 1057 ScalarEvolution &SE, int NumLanes) { 1058 if (V1 == V2) 1059 return VLOperands::ScoreSplat; 1060 1061 auto *LI1 = dyn_cast<LoadInst>(V1); 1062 auto *LI2 = dyn_cast<LoadInst>(V2); 1063 if (LI1 && LI2) { 1064 if (LI1->getParent() != LI2->getParent()) 1065 return VLOperands::ScoreFail; 1066 1067 Optional<int> Dist = getPointersDiff( 1068 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1069 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1070 if (!Dist) 1071 return VLOperands::ScoreFail; 1072 // The distance is too large - still may be profitable to use masked 1073 // loads/gathers. 1074 if (std::abs(*Dist) > NumLanes / 2) 1075 return VLOperands::ScoreAltOpcodes; 1076 // This still will detect consecutive loads, but we might have "holes" 1077 // in some cases. It is ok for non-power-2 vectorization and may produce 1078 // better results. It should not affect current vectorization. 1079 return (*Dist > 0) ? VLOperands::ScoreConsecutiveLoads 1080 : VLOperands::ScoreReversedLoads; 1081 } 1082 1083 auto *C1 = dyn_cast<Constant>(V1); 1084 auto *C2 = dyn_cast<Constant>(V2); 1085 if (C1 && C2) 1086 return VLOperands::ScoreConstants; 1087 1088 // Extracts from consecutive indexes of the same vector better score as 1089 // the extracts could be optimized away. 1090 Value *EV1; 1091 ConstantInt *Ex1Idx; 1092 if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) { 1093 // Undefs are always profitable for extractelements. 1094 if (isa<UndefValue>(V2)) 1095 return VLOperands::ScoreConsecutiveExtracts; 1096 Value *EV2 = nullptr; 1097 ConstantInt *Ex2Idx = nullptr; 1098 if (match(V2, 1099 m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx), 1100 m_Undef())))) { 1101 // Undefs are always profitable for extractelements. 1102 if (!Ex2Idx) 1103 return VLOperands::ScoreConsecutiveExtracts; 1104 if (isUndefVector(EV2) && EV2->getType() == EV1->getType()) 1105 return VLOperands::ScoreConsecutiveExtracts; 1106 if (EV2 == EV1) { 1107 int Idx1 = Ex1Idx->getZExtValue(); 1108 int Idx2 = Ex2Idx->getZExtValue(); 1109 int Dist = Idx2 - Idx1; 1110 // The distance is too large - still may be profitable to use 1111 // shuffles. 1112 if (std::abs(Dist) > NumLanes / 2) 1113 return VLOperands::ScoreAltOpcodes; 1114 return (Dist > 0) ? VLOperands::ScoreConsecutiveExtracts 1115 : VLOperands::ScoreReversedExtracts; 1116 } 1117 } 1118 } 1119 1120 auto *I1 = dyn_cast<Instruction>(V1); 1121 auto *I2 = dyn_cast<Instruction>(V2); 1122 if (I1 && I2) { 1123 if (I1->getParent() != I2->getParent()) 1124 return VLOperands::ScoreFail; 1125 InstructionsState S = getSameOpcode({I1, I2}); 1126 // Note: Only consider instructions with <= 2 operands to avoid 1127 // complexity explosion. 1128 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 1129 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 1130 : VLOperands::ScoreSameOpcode; 1131 } 1132 1133 if (isa<UndefValue>(V2)) 1134 return VLOperands::ScoreUndef; 1135 1136 return VLOperands::ScoreFail; 1137 } 1138 1139 /// Holds the values and their lanes that are taking part in the look-ahead 1140 /// score calculation. This is used in the external uses cost calculation. 1141 /// Need to hold all the lanes in case of splat/broadcast at least to 1142 /// correctly check for the use in the different lane. 1143 SmallDenseMap<Value *, SmallSet<int, 4>> InLookAheadValues; 1144 1145 /// \returns the additional cost due to uses of \p LHS and \p RHS that are 1146 /// either external to the vectorized code, or require shuffling. 1147 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 1148 const std::pair<Value *, int> &RHS) { 1149 int Cost = 0; 1150 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 1151 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 1152 Value *V = Values[Idx].first; 1153 if (isa<Constant>(V)) { 1154 // Since this is a function pass, it doesn't make semantic sense to 1155 // walk the users of a subclass of Constant. The users could be in 1156 // another function, or even another module that happens to be in 1157 // the same LLVMContext. 1158 continue; 1159 } 1160 1161 // Calculate the absolute lane, using the minimum relative lane of LHS 1162 // and RHS as base and Idx as the offset. 1163 int Ln = std::min(LHS.second, RHS.second) + Idx; 1164 assert(Ln >= 0 && "Bad lane calculation"); 1165 unsigned UsersBudget = LookAheadUsersBudget; 1166 for (User *U : V->users()) { 1167 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 1168 // The user is in the VectorizableTree. Check if we need to insert. 1169 int UserLn = UserTE->findLaneForValue(U); 1170 assert(UserLn >= 0 && "Bad lane"); 1171 // If the values are different, check just the line of the current 1172 // value. If the values are the same, need to add UserInDiffLaneCost 1173 // only if UserLn does not match both line numbers. 1174 if ((LHS.first != RHS.first && UserLn != Ln) || 1175 (LHS.first == RHS.first && UserLn != LHS.second && 1176 UserLn != RHS.second)) { 1177 Cost += UserInDiffLaneCost; 1178 break; 1179 } 1180 } else { 1181 // Check if the user is in the look-ahead code. 1182 auto It2 = InLookAheadValues.find(U); 1183 if (It2 != InLookAheadValues.end()) { 1184 // The user is in the look-ahead code. Check the lane. 1185 if (!It2->getSecond().contains(Ln)) { 1186 Cost += UserInDiffLaneCost; 1187 break; 1188 } 1189 } else { 1190 // The user is neither in SLP tree nor in the look-ahead code. 1191 Cost += ExternalUseCost; 1192 break; 1193 } 1194 } 1195 // Limit the number of visited uses to cap compilation time. 1196 if (--UsersBudget == 0) 1197 break; 1198 } 1199 } 1200 return Cost; 1201 } 1202 1203 /// Go through the operands of \p LHS and \p RHS recursively until \p 1204 /// MaxLevel, and return the cummulative score. For example: 1205 /// \verbatim 1206 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1207 /// \ / \ / \ / \ / 1208 /// + + + + 1209 /// G1 G2 G3 G4 1210 /// \endverbatim 1211 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1212 /// each level recursively, accumulating the score. It starts from matching 1213 /// the additions at level 0, then moves on to the loads (level 1). The 1214 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1215 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1216 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1217 /// Please note that the order of the operands does not matter, as we 1218 /// evaluate the score of all profitable combinations of operands. In 1219 /// other words the score of G1 and G4 is the same as G1 and G2. This 1220 /// heuristic is based on ideas described in: 1221 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1222 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1223 /// Luís F. W. Góes 1224 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 1225 const std::pair<Value *, int> &RHS, int CurrLevel, 1226 int MaxLevel) { 1227 1228 Value *V1 = LHS.first; 1229 Value *V2 = RHS.first; 1230 // Get the shallow score of V1 and V2. 1231 int ShallowScoreAtThisLevel = std::max( 1232 (int)ScoreFail, getShallowScore(V1, V2, DL, SE, getNumLanes()) - 1233 getExternalUsesCost(LHS, RHS)); 1234 int Lane1 = LHS.second; 1235 int Lane2 = RHS.second; 1236 1237 // If reached MaxLevel, 1238 // or if V1 and V2 are not instructions, 1239 // or if they are SPLAT, 1240 // or if they are not consecutive, 1241 // or if profitable to vectorize loads or extractelements, early return 1242 // the current cost. 1243 auto *I1 = dyn_cast<Instruction>(V1); 1244 auto *I2 = dyn_cast<Instruction>(V2); 1245 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1246 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1247 (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) || 1248 (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) && 1249 ShallowScoreAtThisLevel)) 1250 return ShallowScoreAtThisLevel; 1251 assert(I1 && I2 && "Should have early exited."); 1252 1253 // Keep track of in-tree values for determining the external-use cost. 1254 InLookAheadValues[V1].insert(Lane1); 1255 InLookAheadValues[V2].insert(Lane2); 1256 1257 // Contains the I2 operand indexes that got matched with I1 operands. 1258 SmallSet<unsigned, 4> Op2Used; 1259 1260 // Recursion towards the operands of I1 and I2. We are trying all possible 1261 // operand pairs, and keeping track of the best score. 1262 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1263 OpIdx1 != NumOperands1; ++OpIdx1) { 1264 // Try to pair op1I with the best operand of I2. 1265 int MaxTmpScore = 0; 1266 unsigned MaxOpIdx2 = 0; 1267 bool FoundBest = false; 1268 // If I2 is commutative try all combinations. 1269 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1270 unsigned ToIdx = isCommutative(I2) 1271 ? I2->getNumOperands() 1272 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1273 assert(FromIdx <= ToIdx && "Bad index"); 1274 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1275 // Skip operands already paired with OpIdx1. 1276 if (Op2Used.count(OpIdx2)) 1277 continue; 1278 // Recursively calculate the cost at each level 1279 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 1280 {I2->getOperand(OpIdx2), Lane2}, 1281 CurrLevel + 1, MaxLevel); 1282 // Look for the best score. 1283 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1284 MaxTmpScore = TmpScore; 1285 MaxOpIdx2 = OpIdx2; 1286 FoundBest = true; 1287 } 1288 } 1289 if (FoundBest) { 1290 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1291 Op2Used.insert(MaxOpIdx2); 1292 ShallowScoreAtThisLevel += MaxTmpScore; 1293 } 1294 } 1295 return ShallowScoreAtThisLevel; 1296 } 1297 1298 /// \Returns the look-ahead score, which tells us how much the sub-trees 1299 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1300 /// score. This helps break ties in an informed way when we cannot decide on 1301 /// the order of the operands by just considering the immediate 1302 /// predecessors. 1303 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1304 const std::pair<Value *, int> &RHS) { 1305 InLookAheadValues.clear(); 1306 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1307 } 1308 1309 // Search all operands in Ops[*][Lane] for the one that matches best 1310 // Ops[OpIdx][LastLane] and return its opreand index. 1311 // If no good match can be found, return None. 1312 Optional<unsigned> 1313 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1314 ArrayRef<ReorderingMode> ReorderingModes) { 1315 unsigned NumOperands = getNumOperands(); 1316 1317 // The operand of the previous lane at OpIdx. 1318 Value *OpLastLane = getData(OpIdx, LastLane).V; 1319 1320 // Our strategy mode for OpIdx. 1321 ReorderingMode RMode = ReorderingModes[OpIdx]; 1322 1323 // The linearized opcode of the operand at OpIdx, Lane. 1324 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1325 1326 // The best operand index and its score. 1327 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1328 // are using the score to differentiate between the two. 1329 struct BestOpData { 1330 Optional<unsigned> Idx = None; 1331 unsigned Score = 0; 1332 } BestOp; 1333 1334 // Iterate through all unused operands and look for the best. 1335 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1336 // Get the operand at Idx and Lane. 1337 OperandData &OpData = getData(Idx, Lane); 1338 Value *Op = OpData.V; 1339 bool OpAPO = OpData.APO; 1340 1341 // Skip already selected operands. 1342 if (OpData.IsUsed) 1343 continue; 1344 1345 // Skip if we are trying to move the operand to a position with a 1346 // different opcode in the linearized tree form. This would break the 1347 // semantics. 1348 if (OpAPO != OpIdxAPO) 1349 continue; 1350 1351 // Look for an operand that matches the current mode. 1352 switch (RMode) { 1353 case ReorderingMode::Load: 1354 case ReorderingMode::Constant: 1355 case ReorderingMode::Opcode: { 1356 bool LeftToRight = Lane > LastLane; 1357 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1358 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1359 unsigned Score = 1360 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1361 if (Score > BestOp.Score) { 1362 BestOp.Idx = Idx; 1363 BestOp.Score = Score; 1364 } 1365 break; 1366 } 1367 case ReorderingMode::Splat: 1368 if (Op == OpLastLane) 1369 BestOp.Idx = Idx; 1370 break; 1371 case ReorderingMode::Failed: 1372 return None; 1373 } 1374 } 1375 1376 if (BestOp.Idx) { 1377 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1378 return BestOp.Idx; 1379 } 1380 // If we could not find a good match return None. 1381 return None; 1382 } 1383 1384 /// Helper for reorderOperandVecs. 1385 /// \returns the lane that we should start reordering from. This is the one 1386 /// which has the least number of operands that can freely move about or 1387 /// less profitable because it already has the most optimal set of operands. 1388 unsigned getBestLaneToStartReordering() const { 1389 unsigned Min = UINT_MAX; 1390 unsigned SameOpNumber = 0; 1391 // std::pair<unsigned, unsigned> is used to implement a simple voting 1392 // algorithm and choose the lane with the least number of operands that 1393 // can freely move about or less profitable because it already has the 1394 // most optimal set of operands. The first unsigned is a counter for 1395 // voting, the second unsigned is the counter of lanes with instructions 1396 // with same/alternate opcodes and same parent basic block. 1397 MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap; 1398 // Try to be closer to the original results, if we have multiple lanes 1399 // with same cost. If 2 lanes have the same cost, use the one with the 1400 // lowest index. 1401 for (int I = getNumLanes(); I > 0; --I) { 1402 unsigned Lane = I - 1; 1403 OperandsOrderData NumFreeOpsHash = 1404 getMaxNumOperandsThatCanBeReordered(Lane); 1405 // Compare the number of operands that can move and choose the one with 1406 // the least number. 1407 if (NumFreeOpsHash.NumOfAPOs < Min) { 1408 Min = NumFreeOpsHash.NumOfAPOs; 1409 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1410 HashMap.clear(); 1411 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1412 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1413 NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) { 1414 // Select the most optimal lane in terms of number of operands that 1415 // should be moved around. 1416 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1417 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1418 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1419 NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) { 1420 auto It = HashMap.find(NumFreeOpsHash.Hash); 1421 if (It == HashMap.end()) 1422 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1423 else 1424 ++It->second.first; 1425 } 1426 } 1427 // Select the lane with the minimum counter. 1428 unsigned BestLane = 0; 1429 unsigned CntMin = UINT_MAX; 1430 for (const auto &Data : reverse(HashMap)) { 1431 if (Data.second.first < CntMin) { 1432 CntMin = Data.second.first; 1433 BestLane = Data.second.second; 1434 } 1435 } 1436 return BestLane; 1437 } 1438 1439 /// Data structure that helps to reorder operands. 1440 struct OperandsOrderData { 1441 /// The best number of operands with the same APOs, which can be 1442 /// reordered. 1443 unsigned NumOfAPOs = UINT_MAX; 1444 /// Number of operands with the same/alternate instruction opcode and 1445 /// parent. 1446 unsigned NumOpsWithSameOpcodeParent = 0; 1447 /// Hash for the actual operands ordering. 1448 /// Used to count operands, actually their position id and opcode 1449 /// value. It is used in the voting mechanism to find the lane with the 1450 /// least number of operands that can freely move about or less profitable 1451 /// because it already has the most optimal set of operands. Can be 1452 /// replaced with SmallVector<unsigned> instead but hash code is faster 1453 /// and requires less memory. 1454 unsigned Hash = 0; 1455 }; 1456 /// \returns the maximum number of operands that are allowed to be reordered 1457 /// for \p Lane and the number of compatible instructions(with the same 1458 /// parent/opcode). This is used as a heuristic for selecting the first lane 1459 /// to start operand reordering. 1460 OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1461 unsigned CntTrue = 0; 1462 unsigned NumOperands = getNumOperands(); 1463 // Operands with the same APO can be reordered. We therefore need to count 1464 // how many of them we have for each APO, like this: Cnt[APO] = x. 1465 // Since we only have two APOs, namely true and false, we can avoid using 1466 // a map. Instead we can simply count the number of operands that 1467 // correspond to one of them (in this case the 'true' APO), and calculate 1468 // the other by subtracting it from the total number of operands. 1469 // Operands with the same instruction opcode and parent are more 1470 // profitable since we don't need to move them in many cases, with a high 1471 // probability such lane already can be vectorized effectively. 1472 bool AllUndefs = true; 1473 unsigned NumOpsWithSameOpcodeParent = 0; 1474 Instruction *OpcodeI = nullptr; 1475 BasicBlock *Parent = nullptr; 1476 unsigned Hash = 0; 1477 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1478 const OperandData &OpData = getData(OpIdx, Lane); 1479 if (OpData.APO) 1480 ++CntTrue; 1481 // Use Boyer-Moore majority voting for finding the majority opcode and 1482 // the number of times it occurs. 1483 if (auto *I = dyn_cast<Instruction>(OpData.V)) { 1484 if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() || 1485 I->getParent() != Parent) { 1486 if (NumOpsWithSameOpcodeParent == 0) { 1487 NumOpsWithSameOpcodeParent = 1; 1488 OpcodeI = I; 1489 Parent = I->getParent(); 1490 } else { 1491 --NumOpsWithSameOpcodeParent; 1492 } 1493 } else { 1494 ++NumOpsWithSameOpcodeParent; 1495 } 1496 } 1497 Hash = hash_combine( 1498 Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1))); 1499 AllUndefs = AllUndefs && isa<UndefValue>(OpData.V); 1500 } 1501 if (AllUndefs) 1502 return {}; 1503 OperandsOrderData Data; 1504 Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue); 1505 Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent; 1506 Data.Hash = Hash; 1507 return Data; 1508 } 1509 1510 /// Go through the instructions in VL and append their operands. 1511 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1512 assert(!VL.empty() && "Bad VL"); 1513 assert((empty() || VL.size() == getNumLanes()) && 1514 "Expected same number of lanes"); 1515 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1516 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1517 OpsVec.resize(NumOperands); 1518 unsigned NumLanes = VL.size(); 1519 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1520 OpsVec[OpIdx].resize(NumLanes); 1521 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1522 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1523 // Our tree has just 3 nodes: the root and two operands. 1524 // It is therefore trivial to get the APO. We only need to check the 1525 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1526 // RHS operand. The LHS operand of both add and sub is never attached 1527 // to an inversese operation in the linearized form, therefore its APO 1528 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1529 1530 // Since operand reordering is performed on groups of commutative 1531 // operations or alternating sequences (e.g., +, -), we can safely 1532 // tell the inverse operations by checking commutativity. 1533 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1534 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1535 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1536 APO, false}; 1537 } 1538 } 1539 } 1540 1541 /// \returns the number of operands. 1542 unsigned getNumOperands() const { return OpsVec.size(); } 1543 1544 /// \returns the number of lanes. 1545 unsigned getNumLanes() const { return OpsVec[0].size(); } 1546 1547 /// \returns the operand value at \p OpIdx and \p Lane. 1548 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1549 return getData(OpIdx, Lane).V; 1550 } 1551 1552 /// \returns true if the data structure is empty. 1553 bool empty() const { return OpsVec.empty(); } 1554 1555 /// Clears the data. 1556 void clear() { OpsVec.clear(); } 1557 1558 /// \Returns true if there are enough operands identical to \p Op to fill 1559 /// the whole vector. 1560 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1561 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1562 bool OpAPO = getData(OpIdx, Lane).APO; 1563 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1564 if (Ln == Lane) 1565 continue; 1566 // This is set to true if we found a candidate for broadcast at Lane. 1567 bool FoundCandidate = false; 1568 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1569 OperandData &Data = getData(OpI, Ln); 1570 if (Data.APO != OpAPO || Data.IsUsed) 1571 continue; 1572 if (Data.V == Op) { 1573 FoundCandidate = true; 1574 Data.IsUsed = true; 1575 break; 1576 } 1577 } 1578 if (!FoundCandidate) 1579 return false; 1580 } 1581 return true; 1582 } 1583 1584 public: 1585 /// Initialize with all the operands of the instruction vector \p RootVL. 1586 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1587 ScalarEvolution &SE, const BoUpSLP &R) 1588 : DL(DL), SE(SE), R(R) { 1589 // Append all the operands of RootVL. 1590 appendOperandsOfVL(RootVL); 1591 } 1592 1593 /// \Returns a value vector with the operands across all lanes for the 1594 /// opearnd at \p OpIdx. 1595 ValueList getVL(unsigned OpIdx) const { 1596 ValueList OpVL(OpsVec[OpIdx].size()); 1597 assert(OpsVec[OpIdx].size() == getNumLanes() && 1598 "Expected same num of lanes across all operands"); 1599 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1600 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1601 return OpVL; 1602 } 1603 1604 // Performs operand reordering for 2 or more operands. 1605 // The original operands are in OrigOps[OpIdx][Lane]. 1606 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1607 void reorder() { 1608 unsigned NumOperands = getNumOperands(); 1609 unsigned NumLanes = getNumLanes(); 1610 // Each operand has its own mode. We are using this mode to help us select 1611 // the instructions for each lane, so that they match best with the ones 1612 // we have selected so far. 1613 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1614 1615 // This is a greedy single-pass algorithm. We are going over each lane 1616 // once and deciding on the best order right away with no back-tracking. 1617 // However, in order to increase its effectiveness, we start with the lane 1618 // that has operands that can move the least. For example, given the 1619 // following lanes: 1620 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1621 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1622 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1623 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1624 // we will start at Lane 1, since the operands of the subtraction cannot 1625 // be reordered. Then we will visit the rest of the lanes in a circular 1626 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1627 1628 // Find the first lane that we will start our search from. 1629 unsigned FirstLane = getBestLaneToStartReordering(); 1630 1631 // Initialize the modes. 1632 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1633 Value *OpLane0 = getValue(OpIdx, FirstLane); 1634 // Keep track if we have instructions with all the same opcode on one 1635 // side. 1636 if (isa<LoadInst>(OpLane0)) 1637 ReorderingModes[OpIdx] = ReorderingMode::Load; 1638 else if (isa<Instruction>(OpLane0)) { 1639 // Check if OpLane0 should be broadcast. 1640 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1641 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1642 else 1643 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1644 } 1645 else if (isa<Constant>(OpLane0)) 1646 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1647 else if (isa<Argument>(OpLane0)) 1648 // Our best hope is a Splat. It may save some cost in some cases. 1649 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1650 else 1651 // NOTE: This should be unreachable. 1652 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1653 } 1654 1655 // Check that we don't have same operands. No need to reorder if operands 1656 // are just perfect diamond or shuffled diamond match. Do not do it only 1657 // for possible broadcasts or non-power of 2 number of scalars (just for 1658 // now). 1659 auto &&SkipReordering = [this]() { 1660 SmallPtrSet<Value *, 4> UniqueValues; 1661 ArrayRef<OperandData> Op0 = OpsVec.front(); 1662 for (const OperandData &Data : Op0) 1663 UniqueValues.insert(Data.V); 1664 for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) { 1665 if (any_of(Op, [&UniqueValues](const OperandData &Data) { 1666 return !UniqueValues.contains(Data.V); 1667 })) 1668 return false; 1669 } 1670 // TODO: Check if we can remove a check for non-power-2 number of 1671 // scalars after full support of non-power-2 vectorization. 1672 return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size()); 1673 }; 1674 1675 // If the initial strategy fails for any of the operand indexes, then we 1676 // perform reordering again in a second pass. This helps avoid assigning 1677 // high priority to the failed strategy, and should improve reordering for 1678 // the non-failed operand indexes. 1679 for (int Pass = 0; Pass != 2; ++Pass) { 1680 // Check if no need to reorder operands since they're are perfect or 1681 // shuffled diamond match. 1682 // Need to to do it to avoid extra external use cost counting for 1683 // shuffled matches, which may cause regressions. 1684 if (SkipReordering()) 1685 break; 1686 // Skip the second pass if the first pass did not fail. 1687 bool StrategyFailed = false; 1688 // Mark all operand data as free to use. 1689 clearUsed(); 1690 // We keep the original operand order for the FirstLane, so reorder the 1691 // rest of the lanes. We are visiting the nodes in a circular fashion, 1692 // using FirstLane as the center point and increasing the radius 1693 // distance. 1694 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1695 // Visit the lane on the right and then the lane on the left. 1696 for (int Direction : {+1, -1}) { 1697 int Lane = FirstLane + Direction * Distance; 1698 if (Lane < 0 || Lane >= (int)NumLanes) 1699 continue; 1700 int LastLane = Lane - Direction; 1701 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1702 "Out of bounds"); 1703 // Look for a good match for each operand. 1704 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1705 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1706 Optional<unsigned> BestIdx = 1707 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1708 // By not selecting a value, we allow the operands that follow to 1709 // select a better matching value. We will get a non-null value in 1710 // the next run of getBestOperand(). 1711 if (BestIdx) { 1712 // Swap the current operand with the one returned by 1713 // getBestOperand(). 1714 swap(OpIdx, BestIdx.getValue(), Lane); 1715 } else { 1716 // We failed to find a best operand, set mode to 'Failed'. 1717 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1718 // Enable the second pass. 1719 StrategyFailed = true; 1720 } 1721 } 1722 } 1723 } 1724 // Skip second pass if the strategy did not fail. 1725 if (!StrategyFailed) 1726 break; 1727 } 1728 } 1729 1730 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1731 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1732 switch (RMode) { 1733 case ReorderingMode::Load: 1734 return "Load"; 1735 case ReorderingMode::Opcode: 1736 return "Opcode"; 1737 case ReorderingMode::Constant: 1738 return "Constant"; 1739 case ReorderingMode::Splat: 1740 return "Splat"; 1741 case ReorderingMode::Failed: 1742 return "Failed"; 1743 } 1744 llvm_unreachable("Unimplemented Reordering Type"); 1745 } 1746 1747 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1748 raw_ostream &OS) { 1749 return OS << getModeStr(RMode); 1750 } 1751 1752 /// Debug print. 1753 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1754 printMode(RMode, dbgs()); 1755 } 1756 1757 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1758 return printMode(RMode, OS); 1759 } 1760 1761 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1762 const unsigned Indent = 2; 1763 unsigned Cnt = 0; 1764 for (const OperandDataVec &OpDataVec : OpsVec) { 1765 OS << "Operand " << Cnt++ << "\n"; 1766 for (const OperandData &OpData : OpDataVec) { 1767 OS.indent(Indent) << "{"; 1768 if (Value *V = OpData.V) 1769 OS << *V; 1770 else 1771 OS << "null"; 1772 OS << ", APO:" << OpData.APO << "}\n"; 1773 } 1774 OS << "\n"; 1775 } 1776 return OS; 1777 } 1778 1779 /// Debug print. 1780 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1781 #endif 1782 }; 1783 1784 /// Checks if the instruction is marked for deletion. 1785 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1786 1787 /// Marks values operands for later deletion by replacing them with Undefs. 1788 void eraseInstructions(ArrayRef<Value *> AV); 1789 1790 ~BoUpSLP(); 1791 1792 private: 1793 /// Checks if all users of \p I are the part of the vectorization tree. 1794 bool areAllUsersVectorized(Instruction *I, 1795 ArrayRef<Value *> VectorizedVals) const; 1796 1797 /// \returns the cost of the vectorizable entry. 1798 InstructionCost getEntryCost(const TreeEntry *E, 1799 ArrayRef<Value *> VectorizedVals); 1800 1801 /// This is the recursive part of buildTree. 1802 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1803 const EdgeInfo &EI); 1804 1805 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1806 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1807 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1808 /// returns false, setting \p CurrentOrder to either an empty vector or a 1809 /// non-identity permutation that allows to reuse extract instructions. 1810 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1811 SmallVectorImpl<unsigned> &CurrentOrder) const; 1812 1813 /// Vectorize a single entry in the tree. 1814 Value *vectorizeTree(TreeEntry *E); 1815 1816 /// Vectorize a single entry in the tree, starting in \p VL. 1817 Value *vectorizeTree(ArrayRef<Value *> VL); 1818 1819 /// \returns the scalarization cost for this type. Scalarization in this 1820 /// context means the creation of vectors from a group of scalars. If \p 1821 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 1822 /// vector elements. 1823 InstructionCost getGatherCost(FixedVectorType *Ty, 1824 const DenseSet<unsigned> &ShuffledIndices, 1825 bool NeedToShuffle) const; 1826 1827 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 1828 /// tree entries. 1829 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 1830 /// previous tree entries. \p Mask is filled with the shuffle mask. 1831 Optional<TargetTransformInfo::ShuffleKind> 1832 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 1833 SmallVectorImpl<const TreeEntry *> &Entries); 1834 1835 /// \returns the scalarization cost for this list of values. Assuming that 1836 /// this subtree gets vectorized, we may need to extract the values from the 1837 /// roots. This method calculates the cost of extracting the values. 1838 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1839 1840 /// Set the Builder insert point to one after the last instruction in 1841 /// the bundle 1842 void setInsertPointAfterBundle(const TreeEntry *E); 1843 1844 /// \returns a vector from a collection of scalars in \p VL. 1845 Value *gather(ArrayRef<Value *> VL); 1846 1847 /// \returns whether the VectorizableTree is fully vectorizable and will 1848 /// be beneficial even the tree height is tiny. 1849 bool isFullyVectorizableTinyTree(bool ForReduction) const; 1850 1851 /// Reorder commutative or alt operands to get better probability of 1852 /// generating vectorized code. 1853 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1854 SmallVectorImpl<Value *> &Left, 1855 SmallVectorImpl<Value *> &Right, 1856 const DataLayout &DL, 1857 ScalarEvolution &SE, 1858 const BoUpSLP &R); 1859 struct TreeEntry { 1860 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1861 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1862 1863 /// \returns true if the scalars in VL are equal to this entry. 1864 bool isSame(ArrayRef<Value *> VL) const { 1865 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 1866 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 1867 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1868 return VL.size() == Mask.size() && 1869 std::equal(VL.begin(), VL.end(), Mask.begin(), 1870 [Scalars](Value *V, int Idx) { 1871 return (isa<UndefValue>(V) && 1872 Idx == UndefMaskElem) || 1873 (Idx != UndefMaskElem && V == Scalars[Idx]); 1874 }); 1875 }; 1876 if (!ReorderIndices.empty()) { 1877 // TODO: implement matching if the nodes are just reordered, still can 1878 // treat the vector as the same if the list of scalars matches VL 1879 // directly, without reordering. 1880 SmallVector<int> Mask; 1881 inversePermutation(ReorderIndices, Mask); 1882 if (VL.size() == Scalars.size()) 1883 return IsSame(Scalars, Mask); 1884 if (VL.size() == ReuseShuffleIndices.size()) { 1885 ::addMask(Mask, ReuseShuffleIndices); 1886 return IsSame(Scalars, Mask); 1887 } 1888 return false; 1889 } 1890 return IsSame(Scalars, ReuseShuffleIndices); 1891 } 1892 1893 /// \returns true if current entry has same operands as \p TE. 1894 bool hasEqualOperands(const TreeEntry &TE) const { 1895 if (TE.getNumOperands() != getNumOperands()) 1896 return false; 1897 SmallBitVector Used(getNumOperands()); 1898 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 1899 unsigned PrevCount = Used.count(); 1900 for (unsigned K = 0; K < E; ++K) { 1901 if (Used.test(K)) 1902 continue; 1903 if (getOperand(K) == TE.getOperand(I)) { 1904 Used.set(K); 1905 break; 1906 } 1907 } 1908 // Check if we actually found the matching operand. 1909 if (PrevCount == Used.count()) 1910 return false; 1911 } 1912 return true; 1913 } 1914 1915 /// \return Final vectorization factor for the node. Defined by the total 1916 /// number of vectorized scalars, including those, used several times in the 1917 /// entry and counted in the \a ReuseShuffleIndices, if any. 1918 unsigned getVectorFactor() const { 1919 if (!ReuseShuffleIndices.empty()) 1920 return ReuseShuffleIndices.size(); 1921 return Scalars.size(); 1922 }; 1923 1924 /// A vector of scalars. 1925 ValueList Scalars; 1926 1927 /// The Scalars are vectorized into this value. It is initialized to Null. 1928 Value *VectorizedValue = nullptr; 1929 1930 /// Do we need to gather this sequence or vectorize it 1931 /// (either with vector instruction or with scatter/gather 1932 /// intrinsics for store/load)? 1933 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 1934 EntryState State; 1935 1936 /// Does this sequence require some shuffling? 1937 SmallVector<int, 4> ReuseShuffleIndices; 1938 1939 /// Does this entry require reordering? 1940 SmallVector<unsigned, 4> ReorderIndices; 1941 1942 /// Points back to the VectorizableTree. 1943 /// 1944 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1945 /// to be a pointer and needs to be able to initialize the child iterator. 1946 /// Thus we need a reference back to the container to translate the indices 1947 /// to entries. 1948 VecTreeTy &Container; 1949 1950 /// The TreeEntry index containing the user of this entry. We can actually 1951 /// have multiple users so the data structure is not truly a tree. 1952 SmallVector<EdgeInfo, 1> UserTreeIndices; 1953 1954 /// The index of this treeEntry in VectorizableTree. 1955 int Idx = -1; 1956 1957 private: 1958 /// The operands of each instruction in each lane Operands[op_index][lane]. 1959 /// Note: This helps avoid the replication of the code that performs the 1960 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1961 SmallVector<ValueList, 2> Operands; 1962 1963 /// The main/alternate instruction. 1964 Instruction *MainOp = nullptr; 1965 Instruction *AltOp = nullptr; 1966 1967 public: 1968 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1969 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1970 if (Operands.size() < OpIdx + 1) 1971 Operands.resize(OpIdx + 1); 1972 assert(Operands[OpIdx].empty() && "Already resized?"); 1973 assert(OpVL.size() <= Scalars.size() && 1974 "Number of operands is greater than the number of scalars."); 1975 Operands[OpIdx].resize(OpVL.size()); 1976 copy(OpVL, Operands[OpIdx].begin()); 1977 } 1978 1979 /// Set the operands of this bundle in their original order. 1980 void setOperandsInOrder() { 1981 assert(Operands.empty() && "Already initialized?"); 1982 auto *I0 = cast<Instruction>(Scalars[0]); 1983 Operands.resize(I0->getNumOperands()); 1984 unsigned NumLanes = Scalars.size(); 1985 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1986 OpIdx != NumOperands; ++OpIdx) { 1987 Operands[OpIdx].resize(NumLanes); 1988 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1989 auto *I = cast<Instruction>(Scalars[Lane]); 1990 assert(I->getNumOperands() == NumOperands && 1991 "Expected same number of operands"); 1992 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1993 } 1994 } 1995 } 1996 1997 /// Reorders operands of the node to the given mask \p Mask. 1998 void reorderOperands(ArrayRef<int> Mask) { 1999 for (ValueList &Operand : Operands) 2000 reorderScalars(Operand, Mask); 2001 } 2002 2003 /// \returns the \p OpIdx operand of this TreeEntry. 2004 ValueList &getOperand(unsigned OpIdx) { 2005 assert(OpIdx < Operands.size() && "Off bounds"); 2006 return Operands[OpIdx]; 2007 } 2008 2009 /// \returns the \p OpIdx operand of this TreeEntry. 2010 ArrayRef<Value *> getOperand(unsigned OpIdx) const { 2011 assert(OpIdx < Operands.size() && "Off bounds"); 2012 return Operands[OpIdx]; 2013 } 2014 2015 /// \returns the number of operands. 2016 unsigned getNumOperands() const { return Operands.size(); } 2017 2018 /// \return the single \p OpIdx operand. 2019 Value *getSingleOperand(unsigned OpIdx) const { 2020 assert(OpIdx < Operands.size() && "Off bounds"); 2021 assert(!Operands[OpIdx].empty() && "No operand available"); 2022 return Operands[OpIdx][0]; 2023 } 2024 2025 /// Some of the instructions in the list have alternate opcodes. 2026 bool isAltShuffle() const { return MainOp != AltOp; } 2027 2028 bool isOpcodeOrAlt(Instruction *I) const { 2029 unsigned CheckedOpcode = I->getOpcode(); 2030 return (getOpcode() == CheckedOpcode || 2031 getAltOpcode() == CheckedOpcode); 2032 } 2033 2034 /// Chooses the correct key for scheduling data. If \p Op has the same (or 2035 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 2036 /// \p OpValue. 2037 Value *isOneOf(Value *Op) const { 2038 auto *I = dyn_cast<Instruction>(Op); 2039 if (I && isOpcodeOrAlt(I)) 2040 return Op; 2041 return MainOp; 2042 } 2043 2044 void setOperations(const InstructionsState &S) { 2045 MainOp = S.MainOp; 2046 AltOp = S.AltOp; 2047 } 2048 2049 Instruction *getMainOp() const { 2050 return MainOp; 2051 } 2052 2053 Instruction *getAltOp() const { 2054 return AltOp; 2055 } 2056 2057 /// The main/alternate opcodes for the list of instructions. 2058 unsigned getOpcode() const { 2059 return MainOp ? MainOp->getOpcode() : 0; 2060 } 2061 2062 unsigned getAltOpcode() const { 2063 return AltOp ? AltOp->getOpcode() : 0; 2064 } 2065 2066 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 2067 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 2068 int findLaneForValue(Value *V) const { 2069 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2070 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2071 if (!ReorderIndices.empty()) 2072 FoundLane = ReorderIndices[FoundLane]; 2073 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2074 if (!ReuseShuffleIndices.empty()) { 2075 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2076 find(ReuseShuffleIndices, FoundLane)); 2077 } 2078 return FoundLane; 2079 } 2080 2081 #ifndef NDEBUG 2082 /// Debug printer. 2083 LLVM_DUMP_METHOD void dump() const { 2084 dbgs() << Idx << ".\n"; 2085 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 2086 dbgs() << "Operand " << OpI << ":\n"; 2087 for (const Value *V : Operands[OpI]) 2088 dbgs().indent(2) << *V << "\n"; 2089 } 2090 dbgs() << "Scalars: \n"; 2091 for (Value *V : Scalars) 2092 dbgs().indent(2) << *V << "\n"; 2093 dbgs() << "State: "; 2094 switch (State) { 2095 case Vectorize: 2096 dbgs() << "Vectorize\n"; 2097 break; 2098 case ScatterVectorize: 2099 dbgs() << "ScatterVectorize\n"; 2100 break; 2101 case NeedToGather: 2102 dbgs() << "NeedToGather\n"; 2103 break; 2104 } 2105 dbgs() << "MainOp: "; 2106 if (MainOp) 2107 dbgs() << *MainOp << "\n"; 2108 else 2109 dbgs() << "NULL\n"; 2110 dbgs() << "AltOp: "; 2111 if (AltOp) 2112 dbgs() << *AltOp << "\n"; 2113 else 2114 dbgs() << "NULL\n"; 2115 dbgs() << "VectorizedValue: "; 2116 if (VectorizedValue) 2117 dbgs() << *VectorizedValue << "\n"; 2118 else 2119 dbgs() << "NULL\n"; 2120 dbgs() << "ReuseShuffleIndices: "; 2121 if (ReuseShuffleIndices.empty()) 2122 dbgs() << "Empty"; 2123 else 2124 for (int ReuseIdx : ReuseShuffleIndices) 2125 dbgs() << ReuseIdx << ", "; 2126 dbgs() << "\n"; 2127 dbgs() << "ReorderIndices: "; 2128 for (unsigned ReorderIdx : ReorderIndices) 2129 dbgs() << ReorderIdx << ", "; 2130 dbgs() << "\n"; 2131 dbgs() << "UserTreeIndices: "; 2132 for (const auto &EInfo : UserTreeIndices) 2133 dbgs() << EInfo << ", "; 2134 dbgs() << "\n"; 2135 } 2136 #endif 2137 }; 2138 2139 #ifndef NDEBUG 2140 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 2141 InstructionCost VecCost, 2142 InstructionCost ScalarCost) const { 2143 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 2144 dbgs() << "SLP: Costs:\n"; 2145 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 2146 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 2147 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 2148 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 2149 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 2150 } 2151 #endif 2152 2153 /// Create a new VectorizableTree entry. 2154 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 2155 const InstructionsState &S, 2156 const EdgeInfo &UserTreeIdx, 2157 ArrayRef<int> ReuseShuffleIndices = None, 2158 ArrayRef<unsigned> ReorderIndices = None) { 2159 TreeEntry::EntryState EntryState = 2160 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 2161 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 2162 ReuseShuffleIndices, ReorderIndices); 2163 } 2164 2165 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 2166 TreeEntry::EntryState EntryState, 2167 Optional<ScheduleData *> Bundle, 2168 const InstructionsState &S, 2169 const EdgeInfo &UserTreeIdx, 2170 ArrayRef<int> ReuseShuffleIndices = None, 2171 ArrayRef<unsigned> ReorderIndices = None) { 2172 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 2173 (Bundle && EntryState != TreeEntry::NeedToGather)) && 2174 "Need to vectorize gather entry?"); 2175 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 2176 TreeEntry *Last = VectorizableTree.back().get(); 2177 Last->Idx = VectorizableTree.size() - 1; 2178 Last->State = EntryState; 2179 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 2180 ReuseShuffleIndices.end()); 2181 if (ReorderIndices.empty()) { 2182 Last->Scalars.assign(VL.begin(), VL.end()); 2183 Last->setOperations(S); 2184 } else { 2185 // Reorder scalars and build final mask. 2186 Last->Scalars.assign(VL.size(), nullptr); 2187 transform(ReorderIndices, Last->Scalars.begin(), 2188 [VL](unsigned Idx) -> Value * { 2189 if (Idx >= VL.size()) 2190 return UndefValue::get(VL.front()->getType()); 2191 return VL[Idx]; 2192 }); 2193 InstructionsState S = getSameOpcode(Last->Scalars); 2194 Last->setOperations(S); 2195 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 2196 } 2197 if (Last->State != TreeEntry::NeedToGather) { 2198 for (Value *V : VL) { 2199 assert(!getTreeEntry(V) && "Scalar already in tree!"); 2200 ScalarToTreeEntry[V] = Last; 2201 } 2202 // Update the scheduler bundle to point to this TreeEntry. 2203 unsigned Lane = 0; 2204 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 2205 BundleMember = BundleMember->NextInBundle) { 2206 BundleMember->TE = Last; 2207 BundleMember->Lane = Lane; 2208 ++Lane; 2209 } 2210 assert((!Bundle.getValue() || Lane == VL.size()) && 2211 "Bundle and VL out of sync"); 2212 } else { 2213 MustGather.insert(VL.begin(), VL.end()); 2214 } 2215 2216 if (UserTreeIdx.UserTE) 2217 Last->UserTreeIndices.push_back(UserTreeIdx); 2218 2219 return Last; 2220 } 2221 2222 /// -- Vectorization State -- 2223 /// Holds all of the tree entries. 2224 TreeEntry::VecTreeTy VectorizableTree; 2225 2226 #ifndef NDEBUG 2227 /// Debug printer. 2228 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 2229 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 2230 VectorizableTree[Id]->dump(); 2231 dbgs() << "\n"; 2232 } 2233 } 2234 #endif 2235 2236 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2237 2238 const TreeEntry *getTreeEntry(Value *V) const { 2239 return ScalarToTreeEntry.lookup(V); 2240 } 2241 2242 /// Maps a specific scalar to its tree entry. 2243 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2244 2245 /// Maps a value to the proposed vectorizable size. 2246 SmallDenseMap<Value *, unsigned> InstrElementSize; 2247 2248 /// A list of scalars that we found that we need to keep as scalars. 2249 ValueSet MustGather; 2250 2251 /// This POD struct describes one external user in the vectorized tree. 2252 struct ExternalUser { 2253 ExternalUser(Value *S, llvm::User *U, int L) 2254 : Scalar(S), User(U), Lane(L) {} 2255 2256 // Which scalar in our function. 2257 Value *Scalar; 2258 2259 // Which user that uses the scalar. 2260 llvm::User *User; 2261 2262 // Which lane does the scalar belong to. 2263 int Lane; 2264 }; 2265 using UserList = SmallVector<ExternalUser, 16>; 2266 2267 /// Checks if two instructions may access the same memory. 2268 /// 2269 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2270 /// is invariant in the calling loop. 2271 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2272 Instruction *Inst2) { 2273 // First check if the result is already in the cache. 2274 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2275 Optional<bool> &result = AliasCache[key]; 2276 if (result.hasValue()) { 2277 return result.getValue(); 2278 } 2279 bool aliased = true; 2280 if (Loc1.Ptr && isSimple(Inst1)) 2281 aliased = isModOrRefSet(AA->getModRefInfo(Inst2, Loc1)); 2282 // Store the result in the cache. 2283 result = aliased; 2284 return aliased; 2285 } 2286 2287 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2288 2289 /// Cache for alias results. 2290 /// TODO: consider moving this to the AliasAnalysis itself. 2291 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2292 2293 /// Removes an instruction from its block and eventually deletes it. 2294 /// It's like Instruction::eraseFromParent() except that the actual deletion 2295 /// is delayed until BoUpSLP is destructed. 2296 /// This is required to ensure that there are no incorrect collisions in the 2297 /// AliasCache, which can happen if a new instruction is allocated at the 2298 /// same address as a previously deleted instruction. 2299 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 2300 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 2301 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 2302 } 2303 2304 /// Temporary store for deleted instructions. Instructions will be deleted 2305 /// eventually when the BoUpSLP is destructed. 2306 DenseMap<Instruction *, bool> DeletedInstructions; 2307 2308 /// A list of values that need to extracted out of the tree. 2309 /// This list holds pairs of (Internal Scalar : External User). External User 2310 /// can be nullptr, it means that this Internal Scalar will be used later, 2311 /// after vectorization. 2312 UserList ExternalUses; 2313 2314 /// Values used only by @llvm.assume calls. 2315 SmallPtrSet<const Value *, 32> EphValues; 2316 2317 /// Holds all of the instructions that we gathered. 2318 SetVector<Instruction *> GatherShuffleSeq; 2319 2320 /// A list of blocks that we are going to CSE. 2321 SetVector<BasicBlock *> CSEBlocks; 2322 2323 /// Contains all scheduling relevant data for an instruction. 2324 /// A ScheduleData either represents a single instruction or a member of an 2325 /// instruction bundle (= a group of instructions which is combined into a 2326 /// vector instruction). 2327 struct ScheduleData { 2328 // The initial value for the dependency counters. It means that the 2329 // dependencies are not calculated yet. 2330 enum { InvalidDeps = -1 }; 2331 2332 ScheduleData() = default; 2333 2334 void init(int BlockSchedulingRegionID, Value *OpVal) { 2335 FirstInBundle = this; 2336 NextInBundle = nullptr; 2337 NextLoadStore = nullptr; 2338 IsScheduled = false; 2339 SchedulingRegionID = BlockSchedulingRegionID; 2340 UnscheduledDepsInBundle = UnscheduledDeps; 2341 clearDependencies(); 2342 OpValue = OpVal; 2343 TE = nullptr; 2344 Lane = -1; 2345 } 2346 2347 /// Returns true if the dependency information has been calculated. 2348 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2349 2350 /// Returns true for single instructions and for bundle representatives 2351 /// (= the head of a bundle). 2352 bool isSchedulingEntity() const { return FirstInBundle == this; } 2353 2354 /// Returns true if it represents an instruction bundle and not only a 2355 /// single instruction. 2356 bool isPartOfBundle() const { 2357 return NextInBundle != nullptr || FirstInBundle != this; 2358 } 2359 2360 /// Returns true if it is ready for scheduling, i.e. it has no more 2361 /// unscheduled depending instructions/bundles. 2362 bool isReady() const { 2363 assert(isSchedulingEntity() && 2364 "can't consider non-scheduling entity for ready list"); 2365 return UnscheduledDepsInBundle == 0 && !IsScheduled; 2366 } 2367 2368 /// Modifies the number of unscheduled dependencies, also updating it for 2369 /// the whole bundle. 2370 int incrementUnscheduledDeps(int Incr) { 2371 UnscheduledDeps += Incr; 2372 return FirstInBundle->UnscheduledDepsInBundle += Incr; 2373 } 2374 2375 /// Sets the number of unscheduled dependencies to the number of 2376 /// dependencies. 2377 void resetUnscheduledDeps() { 2378 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 2379 } 2380 2381 /// Clears all dependency information. 2382 void clearDependencies() { 2383 Dependencies = InvalidDeps; 2384 resetUnscheduledDeps(); 2385 MemoryDependencies.clear(); 2386 } 2387 2388 void dump(raw_ostream &os) const { 2389 if (!isSchedulingEntity()) { 2390 os << "/ " << *Inst; 2391 } else if (NextInBundle) { 2392 os << '[' << *Inst; 2393 ScheduleData *SD = NextInBundle; 2394 while (SD) { 2395 os << ';' << *SD->Inst; 2396 SD = SD->NextInBundle; 2397 } 2398 os << ']'; 2399 } else { 2400 os << *Inst; 2401 } 2402 } 2403 2404 Instruction *Inst = nullptr; 2405 2406 /// Points to the head in an instruction bundle (and always to this for 2407 /// single instructions). 2408 ScheduleData *FirstInBundle = nullptr; 2409 2410 /// Single linked list of all instructions in a bundle. Null if it is a 2411 /// single instruction. 2412 ScheduleData *NextInBundle = nullptr; 2413 2414 /// Single linked list of all memory instructions (e.g. load, store, call) 2415 /// in the block - until the end of the scheduling region. 2416 ScheduleData *NextLoadStore = nullptr; 2417 2418 /// The dependent memory instructions. 2419 /// This list is derived on demand in calculateDependencies(). 2420 SmallVector<ScheduleData *, 4> MemoryDependencies; 2421 2422 /// This ScheduleData is in the current scheduling region if this matches 2423 /// the current SchedulingRegionID of BlockScheduling. 2424 int SchedulingRegionID = 0; 2425 2426 /// Used for getting a "good" final ordering of instructions. 2427 int SchedulingPriority = 0; 2428 2429 /// The number of dependencies. Constitutes of the number of users of the 2430 /// instruction plus the number of dependent memory instructions (if any). 2431 /// This value is calculated on demand. 2432 /// If InvalidDeps, the number of dependencies is not calculated yet. 2433 int Dependencies = InvalidDeps; 2434 2435 /// The number of dependencies minus the number of dependencies of scheduled 2436 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2437 /// for scheduling. 2438 /// Note that this is negative as long as Dependencies is not calculated. 2439 int UnscheduledDeps = InvalidDeps; 2440 2441 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 2442 /// single instructions. 2443 int UnscheduledDepsInBundle = InvalidDeps; 2444 2445 /// True if this instruction is scheduled (or considered as scheduled in the 2446 /// dry-run). 2447 bool IsScheduled = false; 2448 2449 /// Opcode of the current instruction in the schedule data. 2450 Value *OpValue = nullptr; 2451 2452 /// The TreeEntry that this instruction corresponds to. 2453 TreeEntry *TE = nullptr; 2454 2455 /// The lane of this node in the TreeEntry. 2456 int Lane = -1; 2457 }; 2458 2459 #ifndef NDEBUG 2460 friend inline raw_ostream &operator<<(raw_ostream &os, 2461 const BoUpSLP::ScheduleData &SD) { 2462 SD.dump(os); 2463 return os; 2464 } 2465 #endif 2466 2467 friend struct GraphTraits<BoUpSLP *>; 2468 friend struct DOTGraphTraits<BoUpSLP *>; 2469 2470 /// Contains all scheduling data for a basic block. 2471 struct BlockScheduling { 2472 BlockScheduling(BasicBlock *BB) 2473 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2474 2475 void clear() { 2476 ReadyInsts.clear(); 2477 ScheduleStart = nullptr; 2478 ScheduleEnd = nullptr; 2479 FirstLoadStoreInRegion = nullptr; 2480 LastLoadStoreInRegion = nullptr; 2481 2482 // Reduce the maximum schedule region size by the size of the 2483 // previous scheduling run. 2484 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2485 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2486 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2487 ScheduleRegionSize = 0; 2488 2489 // Make a new scheduling region, i.e. all existing ScheduleData is not 2490 // in the new region yet. 2491 ++SchedulingRegionID; 2492 } 2493 2494 ScheduleData *getScheduleData(Value *V) { 2495 ScheduleData *SD = ScheduleDataMap[V]; 2496 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2497 return SD; 2498 return nullptr; 2499 } 2500 2501 ScheduleData *getScheduleData(Value *V, Value *Key) { 2502 if (V == Key) 2503 return getScheduleData(V); 2504 auto I = ExtraScheduleDataMap.find(V); 2505 if (I != ExtraScheduleDataMap.end()) { 2506 ScheduleData *SD = I->second[Key]; 2507 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2508 return SD; 2509 } 2510 return nullptr; 2511 } 2512 2513 bool isInSchedulingRegion(ScheduleData *SD) const { 2514 return SD->SchedulingRegionID == SchedulingRegionID; 2515 } 2516 2517 /// Marks an instruction as scheduled and puts all dependent ready 2518 /// instructions into the ready-list. 2519 template <typename ReadyListType> 2520 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2521 SD->IsScheduled = true; 2522 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2523 2524 ScheduleData *BundleMember = SD; 2525 while (BundleMember) { 2526 if (BundleMember->Inst != BundleMember->OpValue) { 2527 BundleMember = BundleMember->NextInBundle; 2528 continue; 2529 } 2530 // Handle the def-use chain dependencies. 2531 2532 // Decrement the unscheduled counter and insert to ready list if ready. 2533 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2534 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2535 if (OpDef && OpDef->hasValidDependencies() && 2536 OpDef->incrementUnscheduledDeps(-1) == 0) { 2537 // There are no more unscheduled dependencies after 2538 // decrementing, so we can put the dependent instruction 2539 // into the ready list. 2540 ScheduleData *DepBundle = OpDef->FirstInBundle; 2541 assert(!DepBundle->IsScheduled && 2542 "already scheduled bundle gets ready"); 2543 ReadyList.insert(DepBundle); 2544 LLVM_DEBUG(dbgs() 2545 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2546 } 2547 }); 2548 }; 2549 2550 // If BundleMember is a vector bundle, its operands may have been 2551 // reordered duiring buildTree(). We therefore need to get its operands 2552 // through the TreeEntry. 2553 if (TreeEntry *TE = BundleMember->TE) { 2554 int Lane = BundleMember->Lane; 2555 assert(Lane >= 0 && "Lane not set"); 2556 2557 // Since vectorization tree is being built recursively this assertion 2558 // ensures that the tree entry has all operands set before reaching 2559 // this code. Couple of exceptions known at the moment are extracts 2560 // where their second (immediate) operand is not added. Since 2561 // immediates do not affect scheduler behavior this is considered 2562 // okay. 2563 auto *In = TE->getMainOp(); 2564 assert(In && 2565 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2566 In->getNumOperands() == TE->getNumOperands()) && 2567 "Missed TreeEntry operands?"); 2568 (void)In; // fake use to avoid build failure when assertions disabled 2569 2570 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2571 OpIdx != NumOperands; ++OpIdx) 2572 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2573 DecrUnsched(I); 2574 } else { 2575 // If BundleMember is a stand-alone instruction, no operand reordering 2576 // has taken place, so we directly access its operands. 2577 for (Use &U : BundleMember->Inst->operands()) 2578 if (auto *I = dyn_cast<Instruction>(U.get())) 2579 DecrUnsched(I); 2580 } 2581 // Handle the memory dependencies. 2582 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2583 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2584 // There are no more unscheduled dependencies after decrementing, 2585 // so we can put the dependent instruction into the ready list. 2586 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2587 assert(!DepBundle->IsScheduled && 2588 "already scheduled bundle gets ready"); 2589 ReadyList.insert(DepBundle); 2590 LLVM_DEBUG(dbgs() 2591 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2592 } 2593 } 2594 BundleMember = BundleMember->NextInBundle; 2595 } 2596 } 2597 2598 void doForAllOpcodes(Value *V, 2599 function_ref<void(ScheduleData *SD)> Action) { 2600 if (ScheduleData *SD = getScheduleData(V)) 2601 Action(SD); 2602 auto I = ExtraScheduleDataMap.find(V); 2603 if (I != ExtraScheduleDataMap.end()) 2604 for (auto &P : I->second) 2605 if (P.second->SchedulingRegionID == SchedulingRegionID) 2606 Action(P.second); 2607 } 2608 2609 /// Put all instructions into the ReadyList which are ready for scheduling. 2610 template <typename ReadyListType> 2611 void initialFillReadyList(ReadyListType &ReadyList) { 2612 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2613 doForAllOpcodes(I, [&](ScheduleData *SD) { 2614 if (SD->isSchedulingEntity() && SD->isReady()) { 2615 ReadyList.insert(SD); 2616 LLVM_DEBUG(dbgs() 2617 << "SLP: initially in ready list: " << *I << "\n"); 2618 } 2619 }); 2620 } 2621 } 2622 2623 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2624 /// cyclic dependencies. This is only a dry-run, no instructions are 2625 /// actually moved at this stage. 2626 /// \returns the scheduling bundle. The returned Optional value is non-None 2627 /// if \p VL is allowed to be scheduled. 2628 Optional<ScheduleData *> 2629 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2630 const InstructionsState &S); 2631 2632 /// Un-bundles a group of instructions. 2633 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2634 2635 /// Allocates schedule data chunk. 2636 ScheduleData *allocateScheduleDataChunks(); 2637 2638 /// Extends the scheduling region so that V is inside the region. 2639 /// \returns true if the region size is within the limit. 2640 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2641 2642 /// Initialize the ScheduleData structures for new instructions in the 2643 /// scheduling region. 2644 void initScheduleData(Instruction *FromI, Instruction *ToI, 2645 ScheduleData *PrevLoadStore, 2646 ScheduleData *NextLoadStore); 2647 2648 /// Updates the dependency information of a bundle and of all instructions/ 2649 /// bundles which depend on the original bundle. 2650 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2651 BoUpSLP *SLP); 2652 2653 /// Sets all instruction in the scheduling region to un-scheduled. 2654 void resetSchedule(); 2655 2656 BasicBlock *BB; 2657 2658 /// Simple memory allocation for ScheduleData. 2659 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2660 2661 /// The size of a ScheduleData array in ScheduleDataChunks. 2662 int ChunkSize; 2663 2664 /// The allocator position in the current chunk, which is the last entry 2665 /// of ScheduleDataChunks. 2666 int ChunkPos; 2667 2668 /// Attaches ScheduleData to Instruction. 2669 /// Note that the mapping survives during all vectorization iterations, i.e. 2670 /// ScheduleData structures are recycled. 2671 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2672 2673 /// Attaches ScheduleData to Instruction with the leading key. 2674 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2675 ExtraScheduleDataMap; 2676 2677 struct ReadyList : SmallVector<ScheduleData *, 8> { 2678 void insert(ScheduleData *SD) { push_back(SD); } 2679 }; 2680 2681 /// The ready-list for scheduling (only used for the dry-run). 2682 ReadyList ReadyInsts; 2683 2684 /// The first instruction of the scheduling region. 2685 Instruction *ScheduleStart = nullptr; 2686 2687 /// The first instruction _after_ the scheduling region. 2688 Instruction *ScheduleEnd = nullptr; 2689 2690 /// The first memory accessing instruction in the scheduling region 2691 /// (can be null). 2692 ScheduleData *FirstLoadStoreInRegion = nullptr; 2693 2694 /// The last memory accessing instruction in the scheduling region 2695 /// (can be null). 2696 ScheduleData *LastLoadStoreInRegion = nullptr; 2697 2698 /// The current size of the scheduling region. 2699 int ScheduleRegionSize = 0; 2700 2701 /// The maximum size allowed for the scheduling region. 2702 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2703 2704 /// The ID of the scheduling region. For a new vectorization iteration this 2705 /// is incremented which "removes" all ScheduleData from the region. 2706 // Make sure that the initial SchedulingRegionID is greater than the 2707 // initial SchedulingRegionID in ScheduleData (which is 0). 2708 int SchedulingRegionID = 1; 2709 }; 2710 2711 /// Attaches the BlockScheduling structures to basic blocks. 2712 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2713 2714 /// Performs the "real" scheduling. Done before vectorization is actually 2715 /// performed in a basic block. 2716 void scheduleBlock(BlockScheduling *BS); 2717 2718 /// List of users to ignore during scheduling and that don't need extracting. 2719 ArrayRef<Value *> UserIgnoreList; 2720 2721 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2722 /// sorted SmallVectors of unsigned. 2723 struct OrdersTypeDenseMapInfo { 2724 static OrdersType getEmptyKey() { 2725 OrdersType V; 2726 V.push_back(~1U); 2727 return V; 2728 } 2729 2730 static OrdersType getTombstoneKey() { 2731 OrdersType V; 2732 V.push_back(~2U); 2733 return V; 2734 } 2735 2736 static unsigned getHashValue(const OrdersType &V) { 2737 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2738 } 2739 2740 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2741 return LHS == RHS; 2742 } 2743 }; 2744 2745 // Analysis and block reference. 2746 Function *F; 2747 ScalarEvolution *SE; 2748 TargetTransformInfo *TTI; 2749 TargetLibraryInfo *TLI; 2750 AAResults *AA; 2751 LoopInfo *LI; 2752 DominatorTree *DT; 2753 AssumptionCache *AC; 2754 DemandedBits *DB; 2755 const DataLayout *DL; 2756 OptimizationRemarkEmitter *ORE; 2757 2758 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2759 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2760 2761 /// Instruction builder to construct the vectorized tree. 2762 IRBuilder<> Builder; 2763 2764 /// A map of scalar integer values to the smallest bit width with which they 2765 /// can legally be represented. The values map to (width, signed) pairs, 2766 /// where "width" indicates the minimum bit width and "signed" is True if the 2767 /// value must be signed-extended, rather than zero-extended, back to its 2768 /// original width. 2769 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2770 }; 2771 2772 } // end namespace slpvectorizer 2773 2774 template <> struct GraphTraits<BoUpSLP *> { 2775 using TreeEntry = BoUpSLP::TreeEntry; 2776 2777 /// NodeRef has to be a pointer per the GraphWriter. 2778 using NodeRef = TreeEntry *; 2779 2780 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2781 2782 /// Add the VectorizableTree to the index iterator to be able to return 2783 /// TreeEntry pointers. 2784 struct ChildIteratorType 2785 : public iterator_adaptor_base< 2786 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2787 ContainerTy &VectorizableTree; 2788 2789 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2790 ContainerTy &VT) 2791 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2792 2793 NodeRef operator*() { return I->UserTE; } 2794 }; 2795 2796 static NodeRef getEntryNode(BoUpSLP &R) { 2797 return R.VectorizableTree[0].get(); 2798 } 2799 2800 static ChildIteratorType child_begin(NodeRef N) { 2801 return {N->UserTreeIndices.begin(), N->Container}; 2802 } 2803 2804 static ChildIteratorType child_end(NodeRef N) { 2805 return {N->UserTreeIndices.end(), N->Container}; 2806 } 2807 2808 /// For the node iterator we just need to turn the TreeEntry iterator into a 2809 /// TreeEntry* iterator so that it dereferences to NodeRef. 2810 class nodes_iterator { 2811 using ItTy = ContainerTy::iterator; 2812 ItTy It; 2813 2814 public: 2815 nodes_iterator(const ItTy &It2) : It(It2) {} 2816 NodeRef operator*() { return It->get(); } 2817 nodes_iterator operator++() { 2818 ++It; 2819 return *this; 2820 } 2821 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2822 }; 2823 2824 static nodes_iterator nodes_begin(BoUpSLP *R) { 2825 return nodes_iterator(R->VectorizableTree.begin()); 2826 } 2827 2828 static nodes_iterator nodes_end(BoUpSLP *R) { 2829 return nodes_iterator(R->VectorizableTree.end()); 2830 } 2831 2832 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2833 }; 2834 2835 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2836 using TreeEntry = BoUpSLP::TreeEntry; 2837 2838 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2839 2840 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2841 std::string Str; 2842 raw_string_ostream OS(Str); 2843 if (isSplat(Entry->Scalars)) 2844 OS << "<splat> "; 2845 for (auto V : Entry->Scalars) { 2846 OS << *V; 2847 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 2848 return EU.Scalar == V; 2849 })) 2850 OS << " <extract>"; 2851 OS << "\n"; 2852 } 2853 return Str; 2854 } 2855 2856 static std::string getNodeAttributes(const TreeEntry *Entry, 2857 const BoUpSLP *) { 2858 if (Entry->State == TreeEntry::NeedToGather) 2859 return "color=red"; 2860 return ""; 2861 } 2862 }; 2863 2864 } // end namespace llvm 2865 2866 BoUpSLP::~BoUpSLP() { 2867 for (const auto &Pair : DeletedInstructions) { 2868 // Replace operands of ignored instructions with Undefs in case if they were 2869 // marked for deletion. 2870 if (Pair.getSecond()) { 2871 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2872 Pair.getFirst()->replaceAllUsesWith(Undef); 2873 } 2874 Pair.getFirst()->dropAllReferences(); 2875 } 2876 for (const auto &Pair : DeletedInstructions) { 2877 assert(Pair.getFirst()->use_empty() && 2878 "trying to erase instruction with users."); 2879 Pair.getFirst()->eraseFromParent(); 2880 } 2881 #ifdef EXPENSIVE_CHECKS 2882 // If we could guarantee that this call is not extremely slow, we could 2883 // remove the ifdef limitation (see PR47712). 2884 assert(!verifyFunction(*F, &dbgs())); 2885 #endif 2886 } 2887 2888 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2889 for (auto *V : AV) { 2890 if (auto *I = dyn_cast<Instruction>(V)) 2891 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 2892 }; 2893 } 2894 2895 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 2896 /// contains original mask for the scalars reused in the node. Procedure 2897 /// transform this mask in accordance with the given \p Mask. 2898 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 2899 assert(!Mask.empty() && Reuses.size() == Mask.size() && 2900 "Expected non-empty mask."); 2901 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 2902 Prev.swap(Reuses); 2903 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 2904 if (Mask[I] != UndefMaskElem) 2905 Reuses[Mask[I]] = Prev[I]; 2906 } 2907 2908 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 2909 /// the original order of the scalars. Procedure transforms the provided order 2910 /// in accordance with the given \p Mask. If the resulting \p Order is just an 2911 /// identity order, \p Order is cleared. 2912 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 2913 assert(!Mask.empty() && "Expected non-empty mask."); 2914 SmallVector<int> MaskOrder; 2915 if (Order.empty()) { 2916 MaskOrder.resize(Mask.size()); 2917 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 2918 } else { 2919 inversePermutation(Order, MaskOrder); 2920 } 2921 reorderReuses(MaskOrder, Mask); 2922 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 2923 Order.clear(); 2924 return; 2925 } 2926 Order.assign(Mask.size(), Mask.size()); 2927 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 2928 if (MaskOrder[I] != UndefMaskElem) 2929 Order[MaskOrder[I]] = I; 2930 fixupOrderingIndices(Order); 2931 } 2932 2933 Optional<BoUpSLP::OrdersType> 2934 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 2935 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 2936 unsigned NumScalars = TE.Scalars.size(); 2937 OrdersType CurrentOrder(NumScalars, NumScalars); 2938 SmallVector<int> Positions; 2939 SmallBitVector UsedPositions(NumScalars); 2940 const TreeEntry *STE = nullptr; 2941 // Try to find all gathered scalars that are gets vectorized in other 2942 // vectorize node. Here we can have only one single tree vector node to 2943 // correctly identify order of the gathered scalars. 2944 for (unsigned I = 0; I < NumScalars; ++I) { 2945 Value *V = TE.Scalars[I]; 2946 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 2947 continue; 2948 if (const auto *LocalSTE = getTreeEntry(V)) { 2949 if (!STE) 2950 STE = LocalSTE; 2951 else if (STE != LocalSTE) 2952 // Take the order only from the single vector node. 2953 return None; 2954 unsigned Lane = 2955 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 2956 if (Lane >= NumScalars) 2957 return None; 2958 if (CurrentOrder[Lane] != NumScalars) { 2959 if (Lane != I) 2960 continue; 2961 UsedPositions.reset(CurrentOrder[Lane]); 2962 } 2963 // The partial identity (where only some elements of the gather node are 2964 // in the identity order) is good. 2965 CurrentOrder[Lane] = I; 2966 UsedPositions.set(I); 2967 } 2968 } 2969 // Need to keep the order if we have a vector entry and at least 2 scalars or 2970 // the vectorized entry has just 2 scalars. 2971 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 2972 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 2973 for (unsigned I = 0; I < NumScalars; ++I) 2974 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 2975 return false; 2976 return true; 2977 }; 2978 if (IsIdentityOrder(CurrentOrder)) { 2979 CurrentOrder.clear(); 2980 return CurrentOrder; 2981 } 2982 auto *It = CurrentOrder.begin(); 2983 for (unsigned I = 0; I < NumScalars;) { 2984 if (UsedPositions.test(I)) { 2985 ++I; 2986 continue; 2987 } 2988 if (*It == NumScalars) { 2989 *It = I; 2990 ++I; 2991 } 2992 ++It; 2993 } 2994 return CurrentOrder; 2995 } 2996 return None; 2997 } 2998 2999 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE, 3000 bool TopToBottom) { 3001 // No need to reorder if need to shuffle reuses, still need to shuffle the 3002 // node. 3003 if (!TE.ReuseShuffleIndices.empty()) 3004 return None; 3005 if (TE.State == TreeEntry::Vectorize && 3006 (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) || 3007 (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) && 3008 !TE.isAltShuffle()) 3009 return TE.ReorderIndices; 3010 if (TE.State == TreeEntry::NeedToGather) { 3011 // TODO: add analysis of other gather nodes with extractelement 3012 // instructions and other values/instructions, not only undefs. 3013 if (((TE.getOpcode() == Instruction::ExtractElement && 3014 !TE.isAltShuffle()) || 3015 (all_of(TE.Scalars, 3016 [](Value *V) { 3017 return isa<UndefValue, ExtractElementInst>(V); 3018 }) && 3019 any_of(TE.Scalars, 3020 [](Value *V) { return isa<ExtractElementInst>(V); }))) && 3021 all_of(TE.Scalars, 3022 [](Value *V) { 3023 auto *EE = dyn_cast<ExtractElementInst>(V); 3024 return !EE || isa<FixedVectorType>(EE->getVectorOperandType()); 3025 }) && 3026 allSameType(TE.Scalars)) { 3027 // Check that gather of extractelements can be represented as 3028 // just a shuffle of a single vector. 3029 OrdersType CurrentOrder; 3030 bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder); 3031 if (Reuse || !CurrentOrder.empty()) { 3032 if (!CurrentOrder.empty()) 3033 fixupOrderingIndices(CurrentOrder); 3034 return CurrentOrder; 3035 } 3036 } 3037 if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE)) 3038 return CurrentOrder; 3039 } 3040 return None; 3041 } 3042 3043 void BoUpSLP::reorderTopToBottom() { 3044 // Maps VF to the graph nodes. 3045 DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries; 3046 // ExtractElement gather nodes which can be vectorized and need to handle 3047 // their ordering. 3048 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3049 // Find all reorderable nodes with the given VF. 3050 // Currently the are vectorized stores,loads,extracts + some gathering of 3051 // extracts. 3052 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 3053 const std::unique_ptr<TreeEntry> &TE) { 3054 if (Optional<OrdersType> CurrentOrder = 3055 getReorderingData(*TE.get(), /*TopToBottom=*/true)) { 3056 // Do not include ordering for nodes used in the alt opcode vectorization, 3057 // better to reorder them during bottom-to-top stage. If follow the order 3058 // here, it causes reordering of the whole graph though actually it is 3059 // profitable just to reorder the subgraph that starts from the alternate 3060 // opcode vectorization node. Such nodes already end-up with the shuffle 3061 // instruction and it is just enough to change this shuffle rather than 3062 // rotate the scalars for the whole graph. 3063 unsigned Cnt = 0; 3064 const TreeEntry *UserTE = TE.get(); 3065 while (UserTE && Cnt < RecursionMaxDepth) { 3066 if (UserTE->UserTreeIndices.size() != 1) 3067 break; 3068 if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) { 3069 return EI.UserTE->State == TreeEntry::Vectorize && 3070 EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0; 3071 })) 3072 return; 3073 if (UserTE->UserTreeIndices.empty()) 3074 UserTE = nullptr; 3075 else 3076 UserTE = UserTE->UserTreeIndices.back().UserTE; 3077 ++Cnt; 3078 } 3079 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3080 if (TE->State != TreeEntry::Vectorize) 3081 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3082 } 3083 }); 3084 3085 // Reorder the graph nodes according to their vectorization factor. 3086 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 3087 VF /= 2) { 3088 auto It = VFToOrderedEntries.find(VF); 3089 if (It == VFToOrderedEntries.end()) 3090 continue; 3091 // Try to find the most profitable order. We just are looking for the most 3092 // used order and reorder scalar elements in the nodes according to this 3093 // mostly used order. 3094 ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef(); 3095 // All operands are reordered and used only in this node - propagate the 3096 // most used order to the user node. 3097 MapVector<OrdersType, unsigned, 3098 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3099 OrdersUses; 3100 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3101 for (const TreeEntry *OpTE : OrderedEntries) { 3102 // No need to reorder this nodes, still need to extend and to use shuffle, 3103 // just need to merge reordering shuffle and the reuse shuffle. 3104 if (!OpTE->ReuseShuffleIndices.empty()) 3105 continue; 3106 // Count number of orders uses. 3107 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3108 if (OpTE->State == TreeEntry::NeedToGather) 3109 return GathersToOrders.find(OpTE)->second; 3110 return OpTE->ReorderIndices; 3111 }(); 3112 // Stores actually store the mask, not the order, need to invert. 3113 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3114 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3115 SmallVector<int> Mask; 3116 inversePermutation(Order, Mask); 3117 unsigned E = Order.size(); 3118 OrdersType CurrentOrder(E, E); 3119 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3120 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3121 }); 3122 fixupOrderingIndices(CurrentOrder); 3123 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3124 } else { 3125 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3126 } 3127 } 3128 // Set order of the user node. 3129 if (OrdersUses.empty()) 3130 continue; 3131 // Choose the most used order. 3132 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3133 unsigned Cnt = OrdersUses.front().second; 3134 for (const auto &Pair : drop_begin(OrdersUses)) { 3135 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3136 BestOrder = Pair.first; 3137 Cnt = Pair.second; 3138 } 3139 } 3140 // Set order of the user node. 3141 if (BestOrder.empty()) 3142 continue; 3143 SmallVector<int> Mask; 3144 inversePermutation(BestOrder, Mask); 3145 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3146 unsigned E = BestOrder.size(); 3147 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3148 return I < E ? static_cast<int>(I) : UndefMaskElem; 3149 }); 3150 // Do an actual reordering, if profitable. 3151 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 3152 // Just do the reordering for the nodes with the given VF. 3153 if (TE->Scalars.size() != VF) { 3154 if (TE->ReuseShuffleIndices.size() == VF) { 3155 // Need to reorder the reuses masks of the operands with smaller VF to 3156 // be able to find the match between the graph nodes and scalar 3157 // operands of the given node during vectorization/cost estimation. 3158 assert(all_of(TE->UserTreeIndices, 3159 [VF, &TE](const EdgeInfo &EI) { 3160 return EI.UserTE->Scalars.size() == VF || 3161 EI.UserTE->Scalars.size() == 3162 TE->Scalars.size(); 3163 }) && 3164 "All users must be of VF size."); 3165 // Update ordering of the operands with the smaller VF than the given 3166 // one. 3167 reorderReuses(TE->ReuseShuffleIndices, Mask); 3168 } 3169 continue; 3170 } 3171 if (TE->State == TreeEntry::Vectorize && 3172 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 3173 InsertElementInst>(TE->getMainOp()) && 3174 !TE->isAltShuffle()) { 3175 // Build correct orders for extract{element,value}, loads and 3176 // stores. 3177 reorderOrder(TE->ReorderIndices, Mask); 3178 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 3179 TE->reorderOperands(Mask); 3180 } else { 3181 // Reorder the node and its operands. 3182 TE->reorderOperands(Mask); 3183 assert(TE->ReorderIndices.empty() && 3184 "Expected empty reorder sequence."); 3185 reorderScalars(TE->Scalars, Mask); 3186 } 3187 if (!TE->ReuseShuffleIndices.empty()) { 3188 // Apply reversed order to keep the original ordering of the reused 3189 // elements to avoid extra reorder indices shuffling. 3190 OrdersType CurrentOrder; 3191 reorderOrder(CurrentOrder, MaskOrder); 3192 SmallVector<int> NewReuses; 3193 inversePermutation(CurrentOrder, NewReuses); 3194 addMask(NewReuses, TE->ReuseShuffleIndices); 3195 TE->ReuseShuffleIndices.swap(NewReuses); 3196 } 3197 } 3198 } 3199 } 3200 3201 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 3202 SetVector<TreeEntry *> OrderedEntries; 3203 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3204 // Find all reorderable leaf nodes with the given VF. 3205 // Currently the are vectorized loads,extracts without alternate operands + 3206 // some gathering of extracts. 3207 SmallVector<TreeEntry *> NonVectorized; 3208 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 3209 &NonVectorized]( 3210 const std::unique_ptr<TreeEntry> &TE) { 3211 if (TE->State != TreeEntry::Vectorize) 3212 NonVectorized.push_back(TE.get()); 3213 if (Optional<OrdersType> CurrentOrder = 3214 getReorderingData(*TE.get(), /*TopToBottom=*/false)) { 3215 OrderedEntries.insert(TE.get()); 3216 if (TE->State != TreeEntry::Vectorize) 3217 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3218 } 3219 }); 3220 3221 // Checks if the operands of the users are reordarable and have only single 3222 // use. 3223 auto &&CheckOperands = 3224 [this, &NonVectorized](const auto &Data, 3225 SmallVectorImpl<TreeEntry *> &GatherOps) { 3226 for (unsigned I = 0, E = Data.first->getNumOperands(); I < E; ++I) { 3227 if (any_of(Data.second, 3228 [I](const std::pair<unsigned, TreeEntry *> &OpData) { 3229 return OpData.first == I && 3230 OpData.second->State == TreeEntry::Vectorize; 3231 })) 3232 continue; 3233 ArrayRef<Value *> VL = Data.first->getOperand(I); 3234 const TreeEntry *TE = nullptr; 3235 const auto *It = find_if(VL, [this, &TE](Value *V) { 3236 TE = getTreeEntry(V); 3237 return TE; 3238 }); 3239 if (It != VL.end() && TE->isSame(VL)) 3240 return false; 3241 TreeEntry *Gather = nullptr; 3242 if (count_if(NonVectorized, [VL, &Gather](TreeEntry *TE) { 3243 assert(TE->State != TreeEntry::Vectorize && 3244 "Only non-vectorized nodes are expected."); 3245 if (TE->isSame(VL)) { 3246 Gather = TE; 3247 return true; 3248 } 3249 return false; 3250 }) > 1) 3251 return false; 3252 if (Gather) 3253 GatherOps.push_back(Gather); 3254 } 3255 return true; 3256 }; 3257 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3258 // I.e., if the node has operands, that are reordered, try to make at least 3259 // one operand order in the natural order and reorder others + reorder the 3260 // user node itself. 3261 SmallPtrSet<const TreeEntry *, 4> Visited; 3262 while (!OrderedEntries.empty()) { 3263 // 1. Filter out only reordered nodes. 3264 // 2. If the entry has multiple uses - skip it and jump to the next node. 3265 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3266 SmallVector<TreeEntry *> Filtered; 3267 for (TreeEntry *TE : OrderedEntries) { 3268 if (!(TE->State == TreeEntry::Vectorize || 3269 (TE->State == TreeEntry::NeedToGather && 3270 GathersToOrders.count(TE))) || 3271 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3272 !all_of(drop_begin(TE->UserTreeIndices), 3273 [TE](const EdgeInfo &EI) { 3274 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3275 }) || 3276 !Visited.insert(TE).second) { 3277 Filtered.push_back(TE); 3278 continue; 3279 } 3280 // Build a map between user nodes and their operands order to speedup 3281 // search. The graph currently does not provide this dependency directly. 3282 for (EdgeInfo &EI : TE->UserTreeIndices) { 3283 TreeEntry *UserTE = EI.UserTE; 3284 auto It = Users.find(UserTE); 3285 if (It == Users.end()) 3286 It = Users.insert({UserTE, {}}).first; 3287 It->second.emplace_back(EI.EdgeIdx, TE); 3288 } 3289 } 3290 // Erase filtered entries. 3291 for_each(Filtered, 3292 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3293 for (const auto &Data : Users) { 3294 // Check that operands are used only in the User node. 3295 SmallVector<TreeEntry *> GatherOps; 3296 if (!CheckOperands(Data, GatherOps)) { 3297 for_each(Data.second, 3298 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3299 OrderedEntries.remove(Op.second); 3300 }); 3301 continue; 3302 } 3303 // All operands are reordered and used only in this node - propagate the 3304 // most used order to the user node. 3305 MapVector<OrdersType, unsigned, 3306 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3307 OrdersUses; 3308 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3309 for (const auto &Op : Data.second) { 3310 TreeEntry *OpTE = Op.second; 3311 if (!OpTE->ReuseShuffleIndices.empty() || 3312 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3313 continue; 3314 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3315 if (OpTE->State == TreeEntry::NeedToGather) 3316 return GathersToOrders.find(OpTE)->second; 3317 return OpTE->ReorderIndices; 3318 }(); 3319 // Stores actually store the mask, not the order, need to invert. 3320 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3321 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3322 SmallVector<int> Mask; 3323 inversePermutation(Order, Mask); 3324 unsigned E = Order.size(); 3325 OrdersType CurrentOrder(E, E); 3326 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3327 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3328 }); 3329 fixupOrderingIndices(CurrentOrder); 3330 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3331 } else { 3332 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3333 } 3334 if (VisitedOps.insert(OpTE).second) 3335 OrdersUses.insert(std::make_pair(OrdersType(), 0)).first->second += 3336 OpTE->UserTreeIndices.size(); 3337 assert(OrdersUses[{}] > 0 && "Counter cannot be less than 0."); 3338 --OrdersUses[{}]; 3339 } 3340 // If no orders - skip current nodes and jump to the next one, if any. 3341 if (OrdersUses.empty()) { 3342 for_each(Data.second, 3343 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3344 OrderedEntries.remove(Op.second); 3345 }); 3346 continue; 3347 } 3348 // Choose the best order. 3349 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3350 unsigned Cnt = OrdersUses.front().second; 3351 for (const auto &Pair : drop_begin(OrdersUses)) { 3352 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3353 BestOrder = Pair.first; 3354 Cnt = Pair.second; 3355 } 3356 } 3357 // Set order of the user node (reordering of operands and user nodes). 3358 if (BestOrder.empty()) { 3359 for_each(Data.second, 3360 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3361 OrderedEntries.remove(Op.second); 3362 }); 3363 continue; 3364 } 3365 // Erase operands from OrderedEntries list and adjust their orders. 3366 VisitedOps.clear(); 3367 SmallVector<int> Mask; 3368 inversePermutation(BestOrder, Mask); 3369 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3370 unsigned E = BestOrder.size(); 3371 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3372 return I < E ? static_cast<int>(I) : UndefMaskElem; 3373 }); 3374 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 3375 TreeEntry *TE = Op.second; 3376 OrderedEntries.remove(TE); 3377 if (!VisitedOps.insert(TE).second) 3378 continue; 3379 if (!TE->ReuseShuffleIndices.empty() && TE->ReorderIndices.empty()) { 3380 // Just reorder reuses indices. 3381 reorderReuses(TE->ReuseShuffleIndices, Mask); 3382 continue; 3383 } 3384 // Gathers are processed separately. 3385 if (TE->State != TreeEntry::Vectorize) 3386 continue; 3387 assert((BestOrder.size() == TE->ReorderIndices.size() || 3388 TE->ReorderIndices.empty()) && 3389 "Non-matching sizes of user/operand entries."); 3390 reorderOrder(TE->ReorderIndices, Mask); 3391 } 3392 // For gathers just need to reorder its scalars. 3393 for (TreeEntry *Gather : GatherOps) { 3394 assert(Gather->ReorderIndices.empty() && 3395 "Unexpected reordering of gathers."); 3396 if (!Gather->ReuseShuffleIndices.empty()) { 3397 // Just reorder reuses indices. 3398 reorderReuses(Gather->ReuseShuffleIndices, Mask); 3399 continue; 3400 } 3401 reorderScalars(Gather->Scalars, Mask); 3402 OrderedEntries.remove(Gather); 3403 } 3404 // Reorder operands of the user node and set the ordering for the user 3405 // node itself. 3406 if (Data.first->State != TreeEntry::Vectorize || 3407 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 3408 Data.first->getMainOp()) || 3409 Data.first->isAltShuffle()) 3410 Data.first->reorderOperands(Mask); 3411 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 3412 Data.first->isAltShuffle()) { 3413 reorderScalars(Data.first->Scalars, Mask); 3414 reorderOrder(Data.first->ReorderIndices, MaskOrder); 3415 if (Data.first->ReuseShuffleIndices.empty() && 3416 !Data.first->ReorderIndices.empty() && 3417 !Data.first->isAltShuffle()) { 3418 // Insert user node to the list to try to sink reordering deeper in 3419 // the graph. 3420 OrderedEntries.insert(Data.first); 3421 } 3422 } else { 3423 reorderOrder(Data.first->ReorderIndices, Mask); 3424 } 3425 } 3426 } 3427 // If the reordering is unnecessary, just remove the reorder. 3428 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 3429 VectorizableTree.front()->ReuseShuffleIndices.empty()) 3430 VectorizableTree.front()->ReorderIndices.clear(); 3431 } 3432 3433 void BoUpSLP::buildExternalUses( 3434 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3435 // Collect the values that we need to extract from the tree. 3436 for (auto &TEPtr : VectorizableTree) { 3437 TreeEntry *Entry = TEPtr.get(); 3438 3439 // No need to handle users of gathered values. 3440 if (Entry->State == TreeEntry::NeedToGather) 3441 continue; 3442 3443 // For each lane: 3444 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3445 Value *Scalar = Entry->Scalars[Lane]; 3446 int FoundLane = Entry->findLaneForValue(Scalar); 3447 3448 // Check if the scalar is externally used as an extra arg. 3449 auto ExtI = ExternallyUsedValues.find(Scalar); 3450 if (ExtI != ExternallyUsedValues.end()) { 3451 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 3452 << Lane << " from " << *Scalar << ".\n"); 3453 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 3454 } 3455 for (User *U : Scalar->users()) { 3456 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 3457 3458 Instruction *UserInst = dyn_cast<Instruction>(U); 3459 if (!UserInst) 3460 continue; 3461 3462 if (isDeleted(UserInst)) 3463 continue; 3464 3465 // Skip in-tree scalars that become vectors 3466 if (TreeEntry *UseEntry = getTreeEntry(U)) { 3467 Value *UseScalar = UseEntry->Scalars[0]; 3468 // Some in-tree scalars will remain as scalar in vectorized 3469 // instructions. If that is the case, the one in Lane 0 will 3470 // be used. 3471 if (UseScalar != U || 3472 UseEntry->State == TreeEntry::ScatterVectorize || 3473 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 3474 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 3475 << ".\n"); 3476 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 3477 continue; 3478 } 3479 } 3480 3481 // Ignore users in the user ignore list. 3482 if (is_contained(UserIgnoreList, UserInst)) 3483 continue; 3484 3485 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 3486 << Lane << " from " << *Scalar << ".\n"); 3487 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 3488 } 3489 } 3490 } 3491 } 3492 3493 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 3494 ArrayRef<Value *> UserIgnoreLst) { 3495 deleteTree(); 3496 UserIgnoreList = UserIgnoreLst; 3497 if (!allSameType(Roots)) 3498 return; 3499 buildTree_rec(Roots, 0, EdgeInfo()); 3500 } 3501 3502 namespace { 3503 /// Tracks the state we can represent the loads in the given sequence. 3504 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3505 } // anonymous namespace 3506 3507 /// Checks if the given array of loads can be represented as a vectorized, 3508 /// scatter or just simple gather. 3509 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3510 const TargetTransformInfo &TTI, 3511 const DataLayout &DL, ScalarEvolution &SE, 3512 SmallVectorImpl<unsigned> &Order, 3513 SmallVectorImpl<Value *> &PointerOps) { 3514 // Check that a vectorized load would load the same memory as a scalar 3515 // load. For example, we don't want to vectorize loads that are smaller 3516 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3517 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3518 // from such a struct, we read/write packed bits disagreeing with the 3519 // unvectorized version. 3520 Type *ScalarTy = VL0->getType(); 3521 3522 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3523 return LoadsState::Gather; 3524 3525 // Make sure all loads in the bundle are simple - we can't vectorize 3526 // atomic or volatile loads. 3527 PointerOps.clear(); 3528 PointerOps.resize(VL.size()); 3529 auto *POIter = PointerOps.begin(); 3530 for (Value *V : VL) { 3531 auto *L = cast<LoadInst>(V); 3532 if (!L->isSimple()) 3533 return LoadsState::Gather; 3534 *POIter = L->getPointerOperand(); 3535 ++POIter; 3536 } 3537 3538 Order.clear(); 3539 // Check the order of pointer operands. 3540 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 3541 Value *Ptr0; 3542 Value *PtrN; 3543 if (Order.empty()) { 3544 Ptr0 = PointerOps.front(); 3545 PtrN = PointerOps.back(); 3546 } else { 3547 Ptr0 = PointerOps[Order.front()]; 3548 PtrN = PointerOps[Order.back()]; 3549 } 3550 Optional<int> Diff = 3551 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3552 // Check that the sorted loads are consecutive. 3553 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3554 return LoadsState::Vectorize; 3555 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3556 for (Value *V : VL) 3557 CommonAlignment = 3558 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3559 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 3560 CommonAlignment)) 3561 return LoadsState::ScatterVectorize; 3562 } 3563 3564 return LoadsState::Gather; 3565 } 3566 3567 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 3568 const EdgeInfo &UserTreeIdx) { 3569 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 3570 3571 SmallVector<int> ReuseShuffleIndicies; 3572 SmallVector<Value *> UniqueValues; 3573 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 3574 &UserTreeIdx, 3575 this](const InstructionsState &S) { 3576 // Check that every instruction appears once in this bundle. 3577 DenseMap<Value *, unsigned> UniquePositions; 3578 for (Value *V : VL) { 3579 if (isConstant(V)) { 3580 ReuseShuffleIndicies.emplace_back( 3581 isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size()); 3582 UniqueValues.emplace_back(V); 3583 continue; 3584 } 3585 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3586 ReuseShuffleIndicies.emplace_back(Res.first->second); 3587 if (Res.second) 3588 UniqueValues.emplace_back(V); 3589 } 3590 size_t NumUniqueScalarValues = UniqueValues.size(); 3591 if (NumUniqueScalarValues == VL.size()) { 3592 ReuseShuffleIndicies.clear(); 3593 } else { 3594 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 3595 if (NumUniqueScalarValues <= 1 || 3596 (UniquePositions.size() == 1 && all_of(UniqueValues, 3597 [](Value *V) { 3598 return isa<UndefValue>(V) || 3599 !isConstant(V); 3600 })) || 3601 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 3602 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 3603 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3604 return false; 3605 } 3606 VL = UniqueValues; 3607 } 3608 return true; 3609 }; 3610 3611 InstructionsState S = getSameOpcode(VL); 3612 if (Depth == RecursionMaxDepth) { 3613 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 3614 if (TryToFindDuplicates(S)) 3615 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3616 ReuseShuffleIndicies); 3617 return; 3618 } 3619 3620 // Don't handle scalable vectors 3621 if (S.getOpcode() == Instruction::ExtractElement && 3622 isa<ScalableVectorType>( 3623 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 3624 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 3625 if (TryToFindDuplicates(S)) 3626 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3627 ReuseShuffleIndicies); 3628 return; 3629 } 3630 3631 // Don't handle vectors. 3632 if (S.OpValue->getType()->isVectorTy() && 3633 !isa<InsertElementInst>(S.OpValue)) { 3634 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 3635 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3636 return; 3637 } 3638 3639 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3640 if (SI->getValueOperand()->getType()->isVectorTy()) { 3641 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 3642 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3643 return; 3644 } 3645 3646 // If all of the operands are identical or constant we have a simple solution. 3647 // If we deal with insert/extract instructions, they all must have constant 3648 // indices, otherwise we should gather them, not try to vectorize. 3649 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 3650 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 3651 !all_of(VL, isVectorLikeInstWithConstOps))) { 3652 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 3653 if (TryToFindDuplicates(S)) 3654 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3655 ReuseShuffleIndicies); 3656 return; 3657 } 3658 3659 // We now know that this is a vector of instructions of the same type from 3660 // the same block. 3661 3662 // Don't vectorize ephemeral values. 3663 for (Value *V : VL) { 3664 if (EphValues.count(V)) { 3665 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3666 << ") is ephemeral.\n"); 3667 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3668 return; 3669 } 3670 } 3671 3672 // Check if this is a duplicate of another entry. 3673 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3674 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 3675 if (!E->isSame(VL)) { 3676 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 3677 if (TryToFindDuplicates(S)) 3678 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3679 ReuseShuffleIndicies); 3680 return; 3681 } 3682 // Record the reuse of the tree node. FIXME, currently this is only used to 3683 // properly draw the graph rather than for the actual vectorization. 3684 E->UserTreeIndices.push_back(UserTreeIdx); 3685 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 3686 << ".\n"); 3687 return; 3688 } 3689 3690 // Check that none of the instructions in the bundle are already in the tree. 3691 for (Value *V : VL) { 3692 auto *I = dyn_cast<Instruction>(V); 3693 if (!I) 3694 continue; 3695 if (getTreeEntry(I)) { 3696 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3697 << ") is already in tree.\n"); 3698 if (TryToFindDuplicates(S)) 3699 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3700 ReuseShuffleIndicies); 3701 return; 3702 } 3703 } 3704 3705 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 3706 for (Value *V : VL) { 3707 if (is_contained(UserIgnoreList, V)) { 3708 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 3709 if (TryToFindDuplicates(S)) 3710 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3711 ReuseShuffleIndicies); 3712 return; 3713 } 3714 } 3715 3716 // Check that all of the users of the scalars that we want to vectorize are 3717 // schedulable. 3718 auto *VL0 = cast<Instruction>(S.OpValue); 3719 BasicBlock *BB = VL0->getParent(); 3720 3721 if (!DT->isReachableFromEntry(BB)) { 3722 // Don't go into unreachable blocks. They may contain instructions with 3723 // dependency cycles which confuse the final scheduling. 3724 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 3725 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3726 return; 3727 } 3728 3729 // Check that every instruction appears once in this bundle. 3730 if (!TryToFindDuplicates(S)) 3731 return; 3732 3733 auto &BSRef = BlocksSchedules[BB]; 3734 if (!BSRef) 3735 BSRef = std::make_unique<BlockScheduling>(BB); 3736 3737 BlockScheduling &BS = *BSRef.get(); 3738 3739 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 3740 if (!Bundle) { 3741 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 3742 assert((!BS.getScheduleData(VL0) || 3743 !BS.getScheduleData(VL0)->isPartOfBundle()) && 3744 "tryScheduleBundle should cancelScheduling on failure"); 3745 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3746 ReuseShuffleIndicies); 3747 return; 3748 } 3749 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 3750 3751 unsigned ShuffleOrOp = S.isAltShuffle() ? 3752 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 3753 switch (ShuffleOrOp) { 3754 case Instruction::PHI: { 3755 auto *PH = cast<PHINode>(VL0); 3756 3757 // Check for terminator values (e.g. invoke). 3758 for (Value *V : VL) 3759 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3760 Instruction *Term = dyn_cast<Instruction>( 3761 cast<PHINode>(V)->getIncomingValueForBlock( 3762 PH->getIncomingBlock(I))); 3763 if (Term && Term->isTerminator()) { 3764 LLVM_DEBUG(dbgs() 3765 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 3766 BS.cancelScheduling(VL, VL0); 3767 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3768 ReuseShuffleIndicies); 3769 return; 3770 } 3771 } 3772 3773 TreeEntry *TE = 3774 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 3775 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 3776 3777 // Keeps the reordered operands to avoid code duplication. 3778 SmallVector<ValueList, 2> OperandsVec; 3779 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3780 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 3781 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 3782 TE->setOperand(I, Operands); 3783 OperandsVec.push_back(Operands); 3784 continue; 3785 } 3786 ValueList Operands; 3787 // Prepare the operand vector. 3788 for (Value *V : VL) 3789 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 3790 PH->getIncomingBlock(I))); 3791 TE->setOperand(I, Operands); 3792 OperandsVec.push_back(Operands); 3793 } 3794 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 3795 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 3796 return; 3797 } 3798 case Instruction::ExtractValue: 3799 case Instruction::ExtractElement: { 3800 OrdersType CurrentOrder; 3801 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 3802 if (Reuse) { 3803 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 3804 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3805 ReuseShuffleIndicies); 3806 // This is a special case, as it does not gather, but at the same time 3807 // we are not extending buildTree_rec() towards the operands. 3808 ValueList Op0; 3809 Op0.assign(VL.size(), VL0->getOperand(0)); 3810 VectorizableTree.back()->setOperand(0, Op0); 3811 return; 3812 } 3813 if (!CurrentOrder.empty()) { 3814 LLVM_DEBUG({ 3815 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 3816 "with order"; 3817 for (unsigned Idx : CurrentOrder) 3818 dbgs() << " " << Idx; 3819 dbgs() << "\n"; 3820 }); 3821 fixupOrderingIndices(CurrentOrder); 3822 // Insert new order with initial value 0, if it does not exist, 3823 // otherwise return the iterator to the existing one. 3824 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3825 ReuseShuffleIndicies, CurrentOrder); 3826 // This is a special case, as it does not gather, but at the same time 3827 // we are not extending buildTree_rec() towards the operands. 3828 ValueList Op0; 3829 Op0.assign(VL.size(), VL0->getOperand(0)); 3830 VectorizableTree.back()->setOperand(0, Op0); 3831 return; 3832 } 3833 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 3834 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3835 ReuseShuffleIndicies); 3836 BS.cancelScheduling(VL, VL0); 3837 return; 3838 } 3839 case Instruction::InsertElement: { 3840 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 3841 3842 // Check that we have a buildvector and not a shuffle of 2 or more 3843 // different vectors. 3844 ValueSet SourceVectors; 3845 int MinIdx = std::numeric_limits<int>::max(); 3846 for (Value *V : VL) { 3847 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 3848 Optional<int> Idx = *getInsertIndex(V, 0); 3849 if (!Idx || *Idx == UndefMaskElem) 3850 continue; 3851 MinIdx = std::min(MinIdx, *Idx); 3852 } 3853 3854 if (count_if(VL, [&SourceVectors](Value *V) { 3855 return !SourceVectors.contains(V); 3856 }) >= 2) { 3857 // Found 2nd source vector - cancel. 3858 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 3859 "different source vectors.\n"); 3860 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3861 BS.cancelScheduling(VL, VL0); 3862 return; 3863 } 3864 3865 auto OrdCompare = [](const std::pair<int, int> &P1, 3866 const std::pair<int, int> &P2) { 3867 return P1.first > P2.first; 3868 }; 3869 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 3870 decltype(OrdCompare)> 3871 Indices(OrdCompare); 3872 for (int I = 0, E = VL.size(); I < E; ++I) { 3873 Optional<int> Idx = *getInsertIndex(VL[I], 0); 3874 if (!Idx || *Idx == UndefMaskElem) 3875 continue; 3876 Indices.emplace(*Idx, I); 3877 } 3878 OrdersType CurrentOrder(VL.size(), VL.size()); 3879 bool IsIdentity = true; 3880 for (int I = 0, E = VL.size(); I < E; ++I) { 3881 CurrentOrder[Indices.top().second] = I; 3882 IsIdentity &= Indices.top().second == I; 3883 Indices.pop(); 3884 } 3885 if (IsIdentity) 3886 CurrentOrder.clear(); 3887 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3888 None, CurrentOrder); 3889 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 3890 3891 constexpr int NumOps = 2; 3892 ValueList VectorOperands[NumOps]; 3893 for (int I = 0; I < NumOps; ++I) { 3894 for (Value *V : VL) 3895 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 3896 3897 TE->setOperand(I, VectorOperands[I]); 3898 } 3899 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 3900 return; 3901 } 3902 case Instruction::Load: { 3903 // Check that a vectorized load would load the same memory as a scalar 3904 // load. For example, we don't want to vectorize loads that are smaller 3905 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3906 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3907 // from such a struct, we read/write packed bits disagreeing with the 3908 // unvectorized version. 3909 SmallVector<Value *> PointerOps; 3910 OrdersType CurrentOrder; 3911 TreeEntry *TE = nullptr; 3912 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 3913 PointerOps)) { 3914 case LoadsState::Vectorize: 3915 if (CurrentOrder.empty()) { 3916 // Original loads are consecutive and does not require reordering. 3917 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3918 ReuseShuffleIndicies); 3919 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 3920 } else { 3921 fixupOrderingIndices(CurrentOrder); 3922 // Need to reorder. 3923 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3924 ReuseShuffleIndicies, CurrentOrder); 3925 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 3926 } 3927 TE->setOperandsInOrder(); 3928 break; 3929 case LoadsState::ScatterVectorize: 3930 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 3931 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 3932 UserTreeIdx, ReuseShuffleIndicies); 3933 TE->setOperandsInOrder(); 3934 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 3935 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 3936 break; 3937 case LoadsState::Gather: 3938 BS.cancelScheduling(VL, VL0); 3939 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3940 ReuseShuffleIndicies); 3941 #ifndef NDEBUG 3942 Type *ScalarTy = VL0->getType(); 3943 if (DL->getTypeSizeInBits(ScalarTy) != 3944 DL->getTypeAllocSizeInBits(ScalarTy)) 3945 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 3946 else if (any_of(VL, [](Value *V) { 3947 return !cast<LoadInst>(V)->isSimple(); 3948 })) 3949 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 3950 else 3951 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 3952 #endif // NDEBUG 3953 break; 3954 } 3955 return; 3956 } 3957 case Instruction::ZExt: 3958 case Instruction::SExt: 3959 case Instruction::FPToUI: 3960 case Instruction::FPToSI: 3961 case Instruction::FPExt: 3962 case Instruction::PtrToInt: 3963 case Instruction::IntToPtr: 3964 case Instruction::SIToFP: 3965 case Instruction::UIToFP: 3966 case Instruction::Trunc: 3967 case Instruction::FPTrunc: 3968 case Instruction::BitCast: { 3969 Type *SrcTy = VL0->getOperand(0)->getType(); 3970 for (Value *V : VL) { 3971 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 3972 if (Ty != SrcTy || !isValidElementType(Ty)) { 3973 BS.cancelScheduling(VL, VL0); 3974 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3975 ReuseShuffleIndicies); 3976 LLVM_DEBUG(dbgs() 3977 << "SLP: Gathering casts with different src types.\n"); 3978 return; 3979 } 3980 } 3981 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3982 ReuseShuffleIndicies); 3983 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 3984 3985 TE->setOperandsInOrder(); 3986 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3987 ValueList Operands; 3988 // Prepare the operand vector. 3989 for (Value *V : VL) 3990 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3991 3992 buildTree_rec(Operands, Depth + 1, {TE, i}); 3993 } 3994 return; 3995 } 3996 case Instruction::ICmp: 3997 case Instruction::FCmp: { 3998 // Check that all of the compares have the same predicate. 3999 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4000 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 4001 Type *ComparedTy = VL0->getOperand(0)->getType(); 4002 for (Value *V : VL) { 4003 CmpInst *Cmp = cast<CmpInst>(V); 4004 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 4005 Cmp->getOperand(0)->getType() != ComparedTy) { 4006 BS.cancelScheduling(VL, VL0); 4007 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4008 ReuseShuffleIndicies); 4009 LLVM_DEBUG(dbgs() 4010 << "SLP: Gathering cmp with different predicate.\n"); 4011 return; 4012 } 4013 } 4014 4015 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4016 ReuseShuffleIndicies); 4017 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 4018 4019 ValueList Left, Right; 4020 if (cast<CmpInst>(VL0)->isCommutative()) { 4021 // Commutative predicate - collect + sort operands of the instructions 4022 // so that each side is more likely to have the same opcode. 4023 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 4024 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4025 } else { 4026 // Collect operands - commute if it uses the swapped predicate. 4027 for (Value *V : VL) { 4028 auto *Cmp = cast<CmpInst>(V); 4029 Value *LHS = Cmp->getOperand(0); 4030 Value *RHS = Cmp->getOperand(1); 4031 if (Cmp->getPredicate() != P0) 4032 std::swap(LHS, RHS); 4033 Left.push_back(LHS); 4034 Right.push_back(RHS); 4035 } 4036 } 4037 TE->setOperand(0, Left); 4038 TE->setOperand(1, Right); 4039 buildTree_rec(Left, Depth + 1, {TE, 0}); 4040 buildTree_rec(Right, Depth + 1, {TE, 1}); 4041 return; 4042 } 4043 case Instruction::Select: 4044 case Instruction::FNeg: 4045 case Instruction::Add: 4046 case Instruction::FAdd: 4047 case Instruction::Sub: 4048 case Instruction::FSub: 4049 case Instruction::Mul: 4050 case Instruction::FMul: 4051 case Instruction::UDiv: 4052 case Instruction::SDiv: 4053 case Instruction::FDiv: 4054 case Instruction::URem: 4055 case Instruction::SRem: 4056 case Instruction::FRem: 4057 case Instruction::Shl: 4058 case Instruction::LShr: 4059 case Instruction::AShr: 4060 case Instruction::And: 4061 case Instruction::Or: 4062 case Instruction::Xor: { 4063 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4064 ReuseShuffleIndicies); 4065 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 4066 4067 // Sort operands of the instructions so that each side is more likely to 4068 // have the same opcode. 4069 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 4070 ValueList Left, Right; 4071 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4072 TE->setOperand(0, Left); 4073 TE->setOperand(1, Right); 4074 buildTree_rec(Left, Depth + 1, {TE, 0}); 4075 buildTree_rec(Right, Depth + 1, {TE, 1}); 4076 return; 4077 } 4078 4079 TE->setOperandsInOrder(); 4080 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4081 ValueList Operands; 4082 // Prepare the operand vector. 4083 for (Value *V : VL) 4084 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4085 4086 buildTree_rec(Operands, Depth + 1, {TE, i}); 4087 } 4088 return; 4089 } 4090 case Instruction::GetElementPtr: { 4091 // We don't combine GEPs with complicated (nested) indexing. 4092 for (Value *V : VL) { 4093 if (cast<Instruction>(V)->getNumOperands() != 2) { 4094 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 4095 BS.cancelScheduling(VL, VL0); 4096 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4097 ReuseShuffleIndicies); 4098 return; 4099 } 4100 } 4101 4102 // We can't combine several GEPs into one vector if they operate on 4103 // different types. 4104 Type *Ty0 = VL0->getOperand(0)->getType(); 4105 for (Value *V : VL) { 4106 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 4107 if (Ty0 != CurTy) { 4108 LLVM_DEBUG(dbgs() 4109 << "SLP: not-vectorizable GEP (different types).\n"); 4110 BS.cancelScheduling(VL, VL0); 4111 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4112 ReuseShuffleIndicies); 4113 return; 4114 } 4115 } 4116 4117 // We don't combine GEPs with non-constant indexes. 4118 Type *Ty1 = VL0->getOperand(1)->getType(); 4119 for (Value *V : VL) { 4120 auto Op = cast<Instruction>(V)->getOperand(1); 4121 if (!isa<ConstantInt>(Op) || 4122 (Op->getType() != Ty1 && 4123 Op->getType()->getScalarSizeInBits() > 4124 DL->getIndexSizeInBits( 4125 V->getType()->getPointerAddressSpace()))) { 4126 LLVM_DEBUG(dbgs() 4127 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 4128 BS.cancelScheduling(VL, VL0); 4129 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4130 ReuseShuffleIndicies); 4131 return; 4132 } 4133 } 4134 4135 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4136 ReuseShuffleIndicies); 4137 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 4138 SmallVector<ValueList, 2> Operands(2); 4139 // Prepare the operand vector for pointer operands. 4140 for (Value *V : VL) 4141 Operands.front().push_back( 4142 cast<GetElementPtrInst>(V)->getPointerOperand()); 4143 TE->setOperand(0, Operands.front()); 4144 // Need to cast all indices to the same type before vectorization to 4145 // avoid crash. 4146 // Required to be able to find correct matches between different gather 4147 // nodes and reuse the vectorized values rather than trying to gather them 4148 // again. 4149 int IndexIdx = 1; 4150 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 4151 Type *Ty = all_of(VL, 4152 [VL0Ty, IndexIdx](Value *V) { 4153 return VL0Ty == cast<GetElementPtrInst>(V) 4154 ->getOperand(IndexIdx) 4155 ->getType(); 4156 }) 4157 ? VL0Ty 4158 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4159 ->getPointerOperandType() 4160 ->getScalarType()); 4161 // Prepare the operand vector. 4162 for (Value *V : VL) { 4163 auto *Op = cast<Instruction>(V)->getOperand(IndexIdx); 4164 auto *CI = cast<ConstantInt>(Op); 4165 Operands.back().push_back(ConstantExpr::getIntegerCast( 4166 CI, Ty, CI->getValue().isSignBitSet())); 4167 } 4168 TE->setOperand(IndexIdx, Operands.back()); 4169 4170 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 4171 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 4172 return; 4173 } 4174 case Instruction::Store: { 4175 // Check if the stores are consecutive or if we need to swizzle them. 4176 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 4177 // Avoid types that are padded when being allocated as scalars, while 4178 // being packed together in a vector (such as i1). 4179 if (DL->getTypeSizeInBits(ScalarTy) != 4180 DL->getTypeAllocSizeInBits(ScalarTy)) { 4181 BS.cancelScheduling(VL, VL0); 4182 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4183 ReuseShuffleIndicies); 4184 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 4185 return; 4186 } 4187 // Make sure all stores in the bundle are simple - we can't vectorize 4188 // atomic or volatile stores. 4189 SmallVector<Value *, 4> PointerOps(VL.size()); 4190 ValueList Operands(VL.size()); 4191 auto POIter = PointerOps.begin(); 4192 auto OIter = Operands.begin(); 4193 for (Value *V : VL) { 4194 auto *SI = cast<StoreInst>(V); 4195 if (!SI->isSimple()) { 4196 BS.cancelScheduling(VL, VL0); 4197 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4198 ReuseShuffleIndicies); 4199 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 4200 return; 4201 } 4202 *POIter = SI->getPointerOperand(); 4203 *OIter = SI->getValueOperand(); 4204 ++POIter; 4205 ++OIter; 4206 } 4207 4208 OrdersType CurrentOrder; 4209 // Check the order of pointer operands. 4210 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 4211 Value *Ptr0; 4212 Value *PtrN; 4213 if (CurrentOrder.empty()) { 4214 Ptr0 = PointerOps.front(); 4215 PtrN = PointerOps.back(); 4216 } else { 4217 Ptr0 = PointerOps[CurrentOrder.front()]; 4218 PtrN = PointerOps[CurrentOrder.back()]; 4219 } 4220 Optional<int> Dist = 4221 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 4222 // Check that the sorted pointer operands are consecutive. 4223 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 4224 if (CurrentOrder.empty()) { 4225 // Original stores are consecutive and does not require reordering. 4226 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 4227 UserTreeIdx, ReuseShuffleIndicies); 4228 TE->setOperandsInOrder(); 4229 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4230 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 4231 } else { 4232 fixupOrderingIndices(CurrentOrder); 4233 TreeEntry *TE = 4234 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4235 ReuseShuffleIndicies, CurrentOrder); 4236 TE->setOperandsInOrder(); 4237 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4238 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 4239 } 4240 return; 4241 } 4242 } 4243 4244 BS.cancelScheduling(VL, VL0); 4245 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4246 ReuseShuffleIndicies); 4247 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 4248 return; 4249 } 4250 case Instruction::Call: { 4251 // Check if the calls are all to the same vectorizable intrinsic or 4252 // library function. 4253 CallInst *CI = cast<CallInst>(VL0); 4254 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4255 4256 VFShape Shape = VFShape::get( 4257 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 4258 false /*HasGlobalPred*/); 4259 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4260 4261 if (!VecFunc && !isTriviallyVectorizable(ID)) { 4262 BS.cancelScheduling(VL, VL0); 4263 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4264 ReuseShuffleIndicies); 4265 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 4266 return; 4267 } 4268 Function *F = CI->getCalledFunction(); 4269 unsigned NumArgs = CI->arg_size(); 4270 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 4271 for (unsigned j = 0; j != NumArgs; ++j) 4272 if (hasVectorInstrinsicScalarOpd(ID, j)) 4273 ScalarArgs[j] = CI->getArgOperand(j); 4274 for (Value *V : VL) { 4275 CallInst *CI2 = dyn_cast<CallInst>(V); 4276 if (!CI2 || CI2->getCalledFunction() != F || 4277 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 4278 (VecFunc && 4279 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 4280 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 4281 BS.cancelScheduling(VL, VL0); 4282 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4283 ReuseShuffleIndicies); 4284 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 4285 << "\n"); 4286 return; 4287 } 4288 // Some intrinsics have scalar arguments and should be same in order for 4289 // them to be vectorized. 4290 for (unsigned j = 0; j != NumArgs; ++j) { 4291 if (hasVectorInstrinsicScalarOpd(ID, j)) { 4292 Value *A1J = CI2->getArgOperand(j); 4293 if (ScalarArgs[j] != A1J) { 4294 BS.cancelScheduling(VL, VL0); 4295 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4296 ReuseShuffleIndicies); 4297 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 4298 << " argument " << ScalarArgs[j] << "!=" << A1J 4299 << "\n"); 4300 return; 4301 } 4302 } 4303 } 4304 // Verify that the bundle operands are identical between the two calls. 4305 if (CI->hasOperandBundles() && 4306 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 4307 CI->op_begin() + CI->getBundleOperandsEndIndex(), 4308 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 4309 BS.cancelScheduling(VL, VL0); 4310 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4311 ReuseShuffleIndicies); 4312 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 4313 << *CI << "!=" << *V << '\n'); 4314 return; 4315 } 4316 } 4317 4318 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4319 ReuseShuffleIndicies); 4320 TE->setOperandsInOrder(); 4321 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 4322 // For scalar operands no need to to create an entry since no need to 4323 // vectorize it. 4324 if (hasVectorInstrinsicScalarOpd(ID, i)) 4325 continue; 4326 ValueList Operands; 4327 // Prepare the operand vector. 4328 for (Value *V : VL) { 4329 auto *CI2 = cast<CallInst>(V); 4330 Operands.push_back(CI2->getArgOperand(i)); 4331 } 4332 buildTree_rec(Operands, Depth + 1, {TE, i}); 4333 } 4334 return; 4335 } 4336 case Instruction::ShuffleVector: { 4337 // If this is not an alternate sequence of opcode like add-sub 4338 // then do not vectorize this instruction. 4339 if (!S.isAltShuffle()) { 4340 BS.cancelScheduling(VL, VL0); 4341 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4342 ReuseShuffleIndicies); 4343 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 4344 return; 4345 } 4346 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4347 ReuseShuffleIndicies); 4348 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 4349 4350 // Reorder operands if reordering would enable vectorization. 4351 if (isa<BinaryOperator>(VL0)) { 4352 ValueList Left, Right; 4353 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4354 TE->setOperand(0, Left); 4355 TE->setOperand(1, Right); 4356 buildTree_rec(Left, Depth + 1, {TE, 0}); 4357 buildTree_rec(Right, Depth + 1, {TE, 1}); 4358 return; 4359 } 4360 4361 TE->setOperandsInOrder(); 4362 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4363 ValueList Operands; 4364 // Prepare the operand vector. 4365 for (Value *V : VL) 4366 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4367 4368 buildTree_rec(Operands, Depth + 1, {TE, i}); 4369 } 4370 return; 4371 } 4372 default: 4373 BS.cancelScheduling(VL, VL0); 4374 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4375 ReuseShuffleIndicies); 4376 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 4377 return; 4378 } 4379 } 4380 4381 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 4382 unsigned N = 1; 4383 Type *EltTy = T; 4384 4385 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 4386 isa<VectorType>(EltTy)) { 4387 if (auto *ST = dyn_cast<StructType>(EltTy)) { 4388 // Check that struct is homogeneous. 4389 for (const auto *Ty : ST->elements()) 4390 if (Ty != *ST->element_begin()) 4391 return 0; 4392 N *= ST->getNumElements(); 4393 EltTy = *ST->element_begin(); 4394 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 4395 N *= AT->getNumElements(); 4396 EltTy = AT->getElementType(); 4397 } else { 4398 auto *VT = cast<FixedVectorType>(EltTy); 4399 N *= VT->getNumElements(); 4400 EltTy = VT->getElementType(); 4401 } 4402 } 4403 4404 if (!isValidElementType(EltTy)) 4405 return 0; 4406 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 4407 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 4408 return 0; 4409 return N; 4410 } 4411 4412 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 4413 SmallVectorImpl<unsigned> &CurrentOrder) const { 4414 const auto *It = find_if(VL, [](Value *V) { 4415 return isa<ExtractElementInst, ExtractValueInst>(V); 4416 }); 4417 assert(It != VL.end() && "Expected at least one extract instruction."); 4418 auto *E0 = cast<Instruction>(*It); 4419 assert(all_of(VL, 4420 [](Value *V) { 4421 return isa<UndefValue, ExtractElementInst, ExtractValueInst>( 4422 V); 4423 }) && 4424 "Invalid opcode"); 4425 // Check if all of the extracts come from the same vector and from the 4426 // correct offset. 4427 Value *Vec = E0->getOperand(0); 4428 4429 CurrentOrder.clear(); 4430 4431 // We have to extract from a vector/aggregate with the same number of elements. 4432 unsigned NElts; 4433 if (E0->getOpcode() == Instruction::ExtractValue) { 4434 const DataLayout &DL = E0->getModule()->getDataLayout(); 4435 NElts = canMapToVector(Vec->getType(), DL); 4436 if (!NElts) 4437 return false; 4438 // Check if load can be rewritten as load of vector. 4439 LoadInst *LI = dyn_cast<LoadInst>(Vec); 4440 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 4441 return false; 4442 } else { 4443 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 4444 } 4445 4446 if (NElts != VL.size()) 4447 return false; 4448 4449 // Check that all of the indices extract from the correct offset. 4450 bool ShouldKeepOrder = true; 4451 unsigned E = VL.size(); 4452 // Assign to all items the initial value E + 1 so we can check if the extract 4453 // instruction index was used already. 4454 // Also, later we can check that all the indices are used and we have a 4455 // consecutive access in the extract instructions, by checking that no 4456 // element of CurrentOrder still has value E + 1. 4457 CurrentOrder.assign(E, E); 4458 unsigned I = 0; 4459 for (; I < E; ++I) { 4460 auto *Inst = dyn_cast<Instruction>(VL[I]); 4461 if (!Inst) 4462 continue; 4463 if (Inst->getOperand(0) != Vec) 4464 break; 4465 if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) 4466 if (isa<UndefValue>(EE->getIndexOperand())) 4467 continue; 4468 Optional<unsigned> Idx = getExtractIndex(Inst); 4469 if (!Idx) 4470 break; 4471 const unsigned ExtIdx = *Idx; 4472 if (ExtIdx != I) { 4473 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E) 4474 break; 4475 ShouldKeepOrder = false; 4476 CurrentOrder[ExtIdx] = I; 4477 } else { 4478 if (CurrentOrder[I] != E) 4479 break; 4480 CurrentOrder[I] = I; 4481 } 4482 } 4483 if (I < E) { 4484 CurrentOrder.clear(); 4485 return false; 4486 } 4487 if (ShouldKeepOrder) 4488 CurrentOrder.clear(); 4489 4490 return ShouldKeepOrder; 4491 } 4492 4493 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 4494 ArrayRef<Value *> VectorizedVals) const { 4495 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 4496 all_of(I->users(), [this](User *U) { 4497 return ScalarToTreeEntry.count(U) > 0 || MustGather.contains(U); 4498 }); 4499 } 4500 4501 static std::pair<InstructionCost, InstructionCost> 4502 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 4503 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 4504 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4505 4506 // Calculate the cost of the scalar and vector calls. 4507 SmallVector<Type *, 4> VecTys; 4508 for (Use &Arg : CI->args()) 4509 VecTys.push_back( 4510 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 4511 FastMathFlags FMF; 4512 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 4513 FMF = FPCI->getFastMathFlags(); 4514 SmallVector<const Value *> Arguments(CI->args()); 4515 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 4516 dyn_cast<IntrinsicInst>(CI)); 4517 auto IntrinsicCost = 4518 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 4519 4520 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4521 VecTy->getNumElements())), 4522 false /*HasGlobalPred*/); 4523 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4524 auto LibCost = IntrinsicCost; 4525 if (!CI->isNoBuiltin() && VecFunc) { 4526 // Calculate the cost of the vector library call. 4527 // If the corresponding vector call is cheaper, return its cost. 4528 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 4529 TTI::TCK_RecipThroughput); 4530 } 4531 return {IntrinsicCost, LibCost}; 4532 } 4533 4534 /// Compute the cost of creating a vector of type \p VecTy containing the 4535 /// extracted values from \p VL. 4536 static InstructionCost 4537 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 4538 TargetTransformInfo::ShuffleKind ShuffleKind, 4539 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 4540 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 4541 4542 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 4543 VecTy->getNumElements() < NumOfParts) 4544 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 4545 4546 bool AllConsecutive = true; 4547 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 4548 unsigned Idx = -1; 4549 InstructionCost Cost = 0; 4550 4551 // Process extracts in blocks of EltsPerVector to check if the source vector 4552 // operand can be re-used directly. If not, add the cost of creating a shuffle 4553 // to extract the values into a vector register. 4554 for (auto *V : VL) { 4555 ++Idx; 4556 4557 // Need to exclude undefs from analysis. 4558 if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem) 4559 continue; 4560 4561 // Reached the start of a new vector registers. 4562 if (Idx % EltsPerVector == 0) { 4563 AllConsecutive = true; 4564 continue; 4565 } 4566 4567 // Check all extracts for a vector register on the target directly 4568 // extract values in order. 4569 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 4570 if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) { 4571 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 4572 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 4573 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 4574 } 4575 4576 if (AllConsecutive) 4577 continue; 4578 4579 // Skip all indices, except for the last index per vector block. 4580 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 4581 continue; 4582 4583 // If we have a series of extracts which are not consecutive and hence 4584 // cannot re-use the source vector register directly, compute the shuffle 4585 // cost to extract the a vector with EltsPerVector elements. 4586 Cost += TTI.getShuffleCost( 4587 TargetTransformInfo::SK_PermuteSingleSrc, 4588 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 4589 } 4590 return Cost; 4591 } 4592 4593 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 4594 /// operations operands. 4595 static void 4596 buildSuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 4597 ArrayRef<int> ReusesIndices, 4598 const function_ref<bool(Instruction *)> IsAltOp, 4599 SmallVectorImpl<int> &Mask, 4600 SmallVectorImpl<Value *> *OpScalars = nullptr, 4601 SmallVectorImpl<Value *> *AltScalars = nullptr) { 4602 unsigned Sz = VL.size(); 4603 Mask.assign(Sz, UndefMaskElem); 4604 SmallVector<int> OrderMask; 4605 if (!ReorderIndices.empty()) 4606 inversePermutation(ReorderIndices, OrderMask); 4607 for (unsigned I = 0; I < Sz; ++I) { 4608 unsigned Idx = I; 4609 if (!ReorderIndices.empty()) 4610 Idx = OrderMask[I]; 4611 auto *OpInst = cast<Instruction>(VL[Idx]); 4612 if (IsAltOp(OpInst)) { 4613 Mask[I] = Sz + Idx; 4614 if (AltScalars) 4615 AltScalars->push_back(OpInst); 4616 } else { 4617 Mask[I] = Idx; 4618 if (OpScalars) 4619 OpScalars->push_back(OpInst); 4620 } 4621 } 4622 if (!ReusesIndices.empty()) { 4623 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 4624 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 4625 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 4626 }); 4627 Mask.swap(NewMask); 4628 } 4629 } 4630 4631 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 4632 ArrayRef<Value *> VectorizedVals) { 4633 ArrayRef<Value*> VL = E->Scalars; 4634 4635 Type *ScalarTy = VL[0]->getType(); 4636 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4637 ScalarTy = SI->getValueOperand()->getType(); 4638 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 4639 ScalarTy = CI->getOperand(0)->getType(); 4640 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 4641 ScalarTy = IE->getOperand(1)->getType(); 4642 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4643 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 4644 4645 // If we have computed a smaller type for the expression, update VecTy so 4646 // that the costs will be accurate. 4647 if (MinBWs.count(VL[0])) 4648 VecTy = FixedVectorType::get( 4649 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 4650 unsigned EntryVF = E->getVectorFactor(); 4651 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 4652 4653 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4654 // FIXME: it tries to fix a problem with MSVC buildbots. 4655 TargetTransformInfo &TTIRef = *TTI; 4656 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 4657 VectorizedVals, E](InstructionCost &Cost) { 4658 DenseMap<Value *, int> ExtractVectorsTys; 4659 SmallPtrSet<Value *, 4> CheckedExtracts; 4660 for (auto *V : VL) { 4661 if (isa<UndefValue>(V)) 4662 continue; 4663 // If all users of instruction are going to be vectorized and this 4664 // instruction itself is not going to be vectorized, consider this 4665 // instruction as dead and remove its cost from the final cost of the 4666 // vectorized tree. 4667 // Also, avoid adjusting the cost for extractelements with multiple uses 4668 // in different graph entries. 4669 const TreeEntry *VE = getTreeEntry(V); 4670 if (!CheckedExtracts.insert(V).second || 4671 !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 4672 (VE && VE != E)) 4673 continue; 4674 auto *EE = cast<ExtractElementInst>(V); 4675 Optional<unsigned> EEIdx = getExtractIndex(EE); 4676 if (!EEIdx) 4677 continue; 4678 unsigned Idx = *EEIdx; 4679 if (TTIRef.getNumberOfParts(VecTy) != 4680 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 4681 auto It = 4682 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 4683 It->getSecond() = std::min<int>(It->second, Idx); 4684 } 4685 // Take credit for instruction that will become dead. 4686 if (EE->hasOneUse()) { 4687 Instruction *Ext = EE->user_back(); 4688 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4689 all_of(Ext->users(), 4690 [](User *U) { return isa<GetElementPtrInst>(U); })) { 4691 // Use getExtractWithExtendCost() to calculate the cost of 4692 // extractelement/ext pair. 4693 Cost -= 4694 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 4695 EE->getVectorOperandType(), Idx); 4696 // Add back the cost of s|zext which is subtracted separately. 4697 Cost += TTIRef.getCastInstrCost( 4698 Ext->getOpcode(), Ext->getType(), EE->getType(), 4699 TTI::getCastContextHint(Ext), CostKind, Ext); 4700 continue; 4701 } 4702 } 4703 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 4704 EE->getVectorOperandType(), Idx); 4705 } 4706 // Add a cost for subvector extracts/inserts if required. 4707 for (const auto &Data : ExtractVectorsTys) { 4708 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 4709 unsigned NumElts = VecTy->getNumElements(); 4710 if (Data.second % NumElts == 0) 4711 continue; 4712 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 4713 unsigned Idx = (Data.second / NumElts) * NumElts; 4714 unsigned EENumElts = EEVTy->getNumElements(); 4715 if (Idx + NumElts <= EENumElts) { 4716 Cost += 4717 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4718 EEVTy, None, Idx, VecTy); 4719 } else { 4720 // Need to round up the subvector type vectorization factor to avoid a 4721 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 4722 // <= EENumElts. 4723 auto *SubVT = 4724 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 4725 Cost += 4726 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4727 EEVTy, None, Idx, SubVT); 4728 } 4729 } else { 4730 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 4731 VecTy, None, 0, EEVTy); 4732 } 4733 } 4734 }; 4735 if (E->State == TreeEntry::NeedToGather) { 4736 if (allConstant(VL)) 4737 return 0; 4738 if (isa<InsertElementInst>(VL[0])) 4739 return InstructionCost::getInvalid(); 4740 SmallVector<int> Mask; 4741 SmallVector<const TreeEntry *> Entries; 4742 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 4743 isGatherShuffledEntry(E, Mask, Entries); 4744 if (Shuffle.hasValue()) { 4745 InstructionCost GatherCost = 0; 4746 if (ShuffleVectorInst::isIdentityMask(Mask)) { 4747 // Perfect match in the graph, will reuse the previously vectorized 4748 // node. Cost is 0. 4749 LLVM_DEBUG( 4750 dbgs() 4751 << "SLP: perfect diamond match for gather bundle that starts with " 4752 << *VL.front() << ".\n"); 4753 if (NeedToShuffleReuses) 4754 GatherCost = 4755 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 4756 FinalVecTy, E->ReuseShuffleIndices); 4757 } else { 4758 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 4759 << " entries for bundle that starts with " 4760 << *VL.front() << ".\n"); 4761 // Detected that instead of gather we can emit a shuffle of single/two 4762 // previously vectorized nodes. Add the cost of the permutation rather 4763 // than gather. 4764 ::addMask(Mask, E->ReuseShuffleIndices); 4765 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 4766 } 4767 return GatherCost; 4768 } 4769 if ((E->getOpcode() == Instruction::ExtractElement || 4770 all_of(E->Scalars, 4771 [](Value *V) { 4772 return isa<ExtractElementInst, UndefValue>(V); 4773 })) && 4774 allSameType(VL)) { 4775 // Check that gather of extractelements can be represented as just a 4776 // shuffle of a single/two vectors the scalars are extracted from. 4777 SmallVector<int> Mask; 4778 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 4779 isFixedVectorShuffle(VL, Mask); 4780 if (ShuffleKind.hasValue()) { 4781 // Found the bunch of extractelement instructions that must be gathered 4782 // into a vector and can be represented as a permutation elements in a 4783 // single input vector or of 2 input vectors. 4784 InstructionCost Cost = 4785 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 4786 AdjustExtractsCost(Cost); 4787 if (NeedToShuffleReuses) 4788 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 4789 FinalVecTy, E->ReuseShuffleIndices); 4790 return Cost; 4791 } 4792 } 4793 if (isSplat(VL)) { 4794 // Found the broadcasting of the single scalar, calculate the cost as the 4795 // broadcast. 4796 assert(VecTy == FinalVecTy && 4797 "No reused scalars expected for broadcast."); 4798 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy); 4799 } 4800 InstructionCost ReuseShuffleCost = 0; 4801 if (NeedToShuffleReuses) 4802 ReuseShuffleCost = TTI->getShuffleCost( 4803 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 4804 // Improve gather cost for gather of loads, if we can group some of the 4805 // loads into vector loads. 4806 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 4807 !E->isAltShuffle()) { 4808 BoUpSLP::ValueSet VectorizedLoads; 4809 unsigned StartIdx = 0; 4810 unsigned VF = VL.size() / 2; 4811 unsigned VectorizedCnt = 0; 4812 unsigned ScatterVectorizeCnt = 0; 4813 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 4814 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 4815 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 4816 Cnt += VF) { 4817 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 4818 if (!VectorizedLoads.count(Slice.front()) && 4819 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 4820 SmallVector<Value *> PointerOps; 4821 OrdersType CurrentOrder; 4822 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 4823 *SE, CurrentOrder, PointerOps); 4824 switch (LS) { 4825 case LoadsState::Vectorize: 4826 case LoadsState::ScatterVectorize: 4827 // Mark the vectorized loads so that we don't vectorize them 4828 // again. 4829 if (LS == LoadsState::Vectorize) 4830 ++VectorizedCnt; 4831 else 4832 ++ScatterVectorizeCnt; 4833 VectorizedLoads.insert(Slice.begin(), Slice.end()); 4834 // If we vectorized initial block, no need to try to vectorize it 4835 // again. 4836 if (Cnt == StartIdx) 4837 StartIdx += VF; 4838 break; 4839 case LoadsState::Gather: 4840 break; 4841 } 4842 } 4843 } 4844 // Check if the whole array was vectorized already - exit. 4845 if (StartIdx >= VL.size()) 4846 break; 4847 // Found vectorizable parts - exit. 4848 if (!VectorizedLoads.empty()) 4849 break; 4850 } 4851 if (!VectorizedLoads.empty()) { 4852 InstructionCost GatherCost = 0; 4853 unsigned NumParts = TTI->getNumberOfParts(VecTy); 4854 bool NeedInsertSubvectorAnalysis = 4855 !NumParts || (VL.size() / VF) > NumParts; 4856 // Get the cost for gathered loads. 4857 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 4858 if (VectorizedLoads.contains(VL[I])) 4859 continue; 4860 GatherCost += getGatherCost(VL.slice(I, VF)); 4861 } 4862 // The cost for vectorized loads. 4863 InstructionCost ScalarsCost = 0; 4864 for (Value *V : VectorizedLoads) { 4865 auto *LI = cast<LoadInst>(V); 4866 ScalarsCost += TTI->getMemoryOpCost( 4867 Instruction::Load, LI->getType(), LI->getAlign(), 4868 LI->getPointerAddressSpace(), CostKind, LI); 4869 } 4870 auto *LI = cast<LoadInst>(E->getMainOp()); 4871 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 4872 Align Alignment = LI->getAlign(); 4873 GatherCost += 4874 VectorizedCnt * 4875 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 4876 LI->getPointerAddressSpace(), CostKind, LI); 4877 GatherCost += ScatterVectorizeCnt * 4878 TTI->getGatherScatterOpCost( 4879 Instruction::Load, LoadTy, LI->getPointerOperand(), 4880 /*VariableMask=*/false, Alignment, CostKind, LI); 4881 if (NeedInsertSubvectorAnalysis) { 4882 // Add the cost for the subvectors insert. 4883 for (int I = VF, E = VL.size(); I < E; I += VF) 4884 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 4885 None, I, LoadTy); 4886 } 4887 return ReuseShuffleCost + GatherCost - ScalarsCost; 4888 } 4889 } 4890 return ReuseShuffleCost + getGatherCost(VL); 4891 } 4892 InstructionCost CommonCost = 0; 4893 SmallVector<int> Mask; 4894 if (!E->ReorderIndices.empty()) { 4895 SmallVector<int> NewMask; 4896 if (E->getOpcode() == Instruction::Store) { 4897 // For stores the order is actually a mask. 4898 NewMask.resize(E->ReorderIndices.size()); 4899 copy(E->ReorderIndices, NewMask.begin()); 4900 } else { 4901 inversePermutation(E->ReorderIndices, NewMask); 4902 } 4903 ::addMask(Mask, NewMask); 4904 } 4905 if (NeedToShuffleReuses) 4906 ::addMask(Mask, E->ReuseShuffleIndices); 4907 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 4908 CommonCost = 4909 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 4910 assert((E->State == TreeEntry::Vectorize || 4911 E->State == TreeEntry::ScatterVectorize) && 4912 "Unhandled state"); 4913 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 4914 Instruction *VL0 = E->getMainOp(); 4915 unsigned ShuffleOrOp = 4916 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 4917 switch (ShuffleOrOp) { 4918 case Instruction::PHI: 4919 return 0; 4920 4921 case Instruction::ExtractValue: 4922 case Instruction::ExtractElement: { 4923 // The common cost of removal ExtractElement/ExtractValue instructions + 4924 // the cost of shuffles, if required to resuffle the original vector. 4925 if (NeedToShuffleReuses) { 4926 unsigned Idx = 0; 4927 for (unsigned I : E->ReuseShuffleIndices) { 4928 if (ShuffleOrOp == Instruction::ExtractElement) { 4929 auto *EE = cast<ExtractElementInst>(VL[I]); 4930 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 4931 EE->getVectorOperandType(), 4932 *getExtractIndex(EE)); 4933 } else { 4934 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 4935 VecTy, Idx); 4936 ++Idx; 4937 } 4938 } 4939 Idx = EntryVF; 4940 for (Value *V : VL) { 4941 if (ShuffleOrOp == Instruction::ExtractElement) { 4942 auto *EE = cast<ExtractElementInst>(V); 4943 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 4944 EE->getVectorOperandType(), 4945 *getExtractIndex(EE)); 4946 } else { 4947 --Idx; 4948 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 4949 VecTy, Idx); 4950 } 4951 } 4952 } 4953 if (ShuffleOrOp == Instruction::ExtractValue) { 4954 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 4955 auto *EI = cast<Instruction>(VL[I]); 4956 // Take credit for instruction that will become dead. 4957 if (EI->hasOneUse()) { 4958 Instruction *Ext = EI->user_back(); 4959 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4960 all_of(Ext->users(), 4961 [](User *U) { return isa<GetElementPtrInst>(U); })) { 4962 // Use getExtractWithExtendCost() to calculate the cost of 4963 // extractelement/ext pair. 4964 CommonCost -= TTI->getExtractWithExtendCost( 4965 Ext->getOpcode(), Ext->getType(), VecTy, I); 4966 // Add back the cost of s|zext which is subtracted separately. 4967 CommonCost += TTI->getCastInstrCost( 4968 Ext->getOpcode(), Ext->getType(), EI->getType(), 4969 TTI::getCastContextHint(Ext), CostKind, Ext); 4970 continue; 4971 } 4972 } 4973 CommonCost -= 4974 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 4975 } 4976 } else { 4977 AdjustExtractsCost(CommonCost); 4978 } 4979 return CommonCost; 4980 } 4981 case Instruction::InsertElement: { 4982 assert(E->ReuseShuffleIndices.empty() && 4983 "Unique insertelements only are expected."); 4984 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 4985 4986 unsigned const NumElts = SrcVecTy->getNumElements(); 4987 unsigned const NumScalars = VL.size(); 4988 APInt DemandedElts = APInt::getZero(NumElts); 4989 // TODO: Add support for Instruction::InsertValue. 4990 SmallVector<int> Mask; 4991 if (!E->ReorderIndices.empty()) { 4992 inversePermutation(E->ReorderIndices, Mask); 4993 Mask.append(NumElts - NumScalars, UndefMaskElem); 4994 } else { 4995 Mask.assign(NumElts, UndefMaskElem); 4996 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 4997 } 4998 unsigned Offset = *getInsertIndex(VL0, 0); 4999 bool IsIdentity = true; 5000 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 5001 Mask.swap(PrevMask); 5002 for (unsigned I = 0; I < NumScalars; ++I) { 5003 Optional<int> InsertIdx = getInsertIndex(VL[PrevMask[I]], 0); 5004 if (!InsertIdx || *InsertIdx == UndefMaskElem) 5005 continue; 5006 DemandedElts.setBit(*InsertIdx); 5007 IsIdentity &= *InsertIdx - Offset == I; 5008 Mask[*InsertIdx - Offset] = I; 5009 } 5010 assert(Offset < NumElts && "Failed to find vector index offset"); 5011 5012 InstructionCost Cost = 0; 5013 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 5014 /*Insert*/ true, /*Extract*/ false); 5015 5016 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 5017 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 5018 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 5019 Cost += TTI->getShuffleCost( 5020 TargetTransformInfo::SK_PermuteSingleSrc, 5021 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 5022 } else if (!IsIdentity) { 5023 auto *FirstInsert = 5024 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 5025 return !is_contained(E->Scalars, 5026 cast<Instruction>(V)->getOperand(0)); 5027 })); 5028 if (isUndefVector(FirstInsert->getOperand(0))) { 5029 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 5030 } else { 5031 SmallVector<int> InsertMask(NumElts); 5032 std::iota(InsertMask.begin(), InsertMask.end(), 0); 5033 for (unsigned I = 0; I < NumElts; I++) { 5034 if (Mask[I] != UndefMaskElem) 5035 InsertMask[Offset + I] = NumElts + I; 5036 } 5037 Cost += 5038 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 5039 } 5040 } 5041 5042 return Cost; 5043 } 5044 case Instruction::ZExt: 5045 case Instruction::SExt: 5046 case Instruction::FPToUI: 5047 case Instruction::FPToSI: 5048 case Instruction::FPExt: 5049 case Instruction::PtrToInt: 5050 case Instruction::IntToPtr: 5051 case Instruction::SIToFP: 5052 case Instruction::UIToFP: 5053 case Instruction::Trunc: 5054 case Instruction::FPTrunc: 5055 case Instruction::BitCast: { 5056 Type *SrcTy = VL0->getOperand(0)->getType(); 5057 InstructionCost ScalarEltCost = 5058 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 5059 TTI::getCastContextHint(VL0), CostKind, VL0); 5060 if (NeedToShuffleReuses) { 5061 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5062 } 5063 5064 // Calculate the cost of this instruction. 5065 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 5066 5067 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 5068 InstructionCost VecCost = 0; 5069 // Check if the values are candidates to demote. 5070 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 5071 VecCost = CommonCost + TTI->getCastInstrCost( 5072 E->getOpcode(), VecTy, SrcVecTy, 5073 TTI::getCastContextHint(VL0), CostKind, VL0); 5074 } 5075 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5076 return VecCost - ScalarCost; 5077 } 5078 case Instruction::FCmp: 5079 case Instruction::ICmp: 5080 case Instruction::Select: { 5081 // Calculate the cost of this instruction. 5082 InstructionCost ScalarEltCost = 5083 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5084 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 5085 if (NeedToShuffleReuses) { 5086 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5087 } 5088 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 5089 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5090 5091 // Check if all entries in VL are either compares or selects with compares 5092 // as condition that have the same predicates. 5093 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 5094 bool First = true; 5095 for (auto *V : VL) { 5096 CmpInst::Predicate CurrentPred; 5097 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 5098 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 5099 !match(V, MatchCmp)) || 5100 (!First && VecPred != CurrentPred)) { 5101 VecPred = CmpInst::BAD_ICMP_PREDICATE; 5102 break; 5103 } 5104 First = false; 5105 VecPred = CurrentPred; 5106 } 5107 5108 InstructionCost VecCost = TTI->getCmpSelInstrCost( 5109 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 5110 // Check if it is possible and profitable to use min/max for selects in 5111 // VL. 5112 // 5113 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 5114 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 5115 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 5116 {VecTy, VecTy}); 5117 InstructionCost IntrinsicCost = 5118 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5119 // If the selects are the only uses of the compares, they will be dead 5120 // and we can adjust the cost by removing their cost. 5121 if (IntrinsicAndUse.second) 5122 IntrinsicCost -= 5123 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, 5124 CmpInst::BAD_ICMP_PREDICATE, CostKind); 5125 VecCost = std::min(VecCost, IntrinsicCost); 5126 } 5127 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5128 return CommonCost + VecCost - ScalarCost; 5129 } 5130 case Instruction::FNeg: 5131 case Instruction::Add: 5132 case Instruction::FAdd: 5133 case Instruction::Sub: 5134 case Instruction::FSub: 5135 case Instruction::Mul: 5136 case Instruction::FMul: 5137 case Instruction::UDiv: 5138 case Instruction::SDiv: 5139 case Instruction::FDiv: 5140 case Instruction::URem: 5141 case Instruction::SRem: 5142 case Instruction::FRem: 5143 case Instruction::Shl: 5144 case Instruction::LShr: 5145 case Instruction::AShr: 5146 case Instruction::And: 5147 case Instruction::Or: 5148 case Instruction::Xor: { 5149 // Certain instructions can be cheaper to vectorize if they have a 5150 // constant second vector operand. 5151 TargetTransformInfo::OperandValueKind Op1VK = 5152 TargetTransformInfo::OK_AnyValue; 5153 TargetTransformInfo::OperandValueKind Op2VK = 5154 TargetTransformInfo::OK_UniformConstantValue; 5155 TargetTransformInfo::OperandValueProperties Op1VP = 5156 TargetTransformInfo::OP_None; 5157 TargetTransformInfo::OperandValueProperties Op2VP = 5158 TargetTransformInfo::OP_PowerOf2; 5159 5160 // If all operands are exactly the same ConstantInt then set the 5161 // operand kind to OK_UniformConstantValue. 5162 // If instead not all operands are constants, then set the operand kind 5163 // to OK_AnyValue. If all operands are constants but not the same, 5164 // then set the operand kind to OK_NonUniformConstantValue. 5165 ConstantInt *CInt0 = nullptr; 5166 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 5167 const Instruction *I = cast<Instruction>(VL[i]); 5168 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 5169 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 5170 if (!CInt) { 5171 Op2VK = TargetTransformInfo::OK_AnyValue; 5172 Op2VP = TargetTransformInfo::OP_None; 5173 break; 5174 } 5175 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 5176 !CInt->getValue().isPowerOf2()) 5177 Op2VP = TargetTransformInfo::OP_None; 5178 if (i == 0) { 5179 CInt0 = CInt; 5180 continue; 5181 } 5182 if (CInt0 != CInt) 5183 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5184 } 5185 5186 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 5187 InstructionCost ScalarEltCost = 5188 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 5189 Op2VK, Op1VP, Op2VP, Operands, VL0); 5190 if (NeedToShuffleReuses) { 5191 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5192 } 5193 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5194 InstructionCost VecCost = 5195 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 5196 Op2VK, Op1VP, Op2VP, Operands, VL0); 5197 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5198 return CommonCost + VecCost - ScalarCost; 5199 } 5200 case Instruction::GetElementPtr: { 5201 TargetTransformInfo::OperandValueKind Op1VK = 5202 TargetTransformInfo::OK_AnyValue; 5203 TargetTransformInfo::OperandValueKind Op2VK = 5204 TargetTransformInfo::OK_UniformConstantValue; 5205 5206 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 5207 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 5208 if (NeedToShuffleReuses) { 5209 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5210 } 5211 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5212 InstructionCost VecCost = TTI->getArithmeticInstrCost( 5213 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 5214 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5215 return CommonCost + VecCost - ScalarCost; 5216 } 5217 case Instruction::Load: { 5218 // Cost of wide load - cost of scalar loads. 5219 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 5220 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5221 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 5222 if (NeedToShuffleReuses) { 5223 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5224 } 5225 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 5226 InstructionCost VecLdCost; 5227 if (E->State == TreeEntry::Vectorize) { 5228 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 5229 CostKind, VL0); 5230 } else { 5231 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 5232 Align CommonAlignment = Alignment; 5233 for (Value *V : VL) 5234 CommonAlignment = 5235 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 5236 VecLdCost = TTI->getGatherScatterOpCost( 5237 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 5238 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 5239 } 5240 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 5241 return CommonCost + VecLdCost - ScalarLdCost; 5242 } 5243 case Instruction::Store: { 5244 // We know that we can merge the stores. Calculate the cost. 5245 bool IsReorder = !E->ReorderIndices.empty(); 5246 auto *SI = 5247 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 5248 Align Alignment = SI->getAlign(); 5249 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5250 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 5251 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 5252 InstructionCost VecStCost = TTI->getMemoryOpCost( 5253 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 5254 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 5255 return CommonCost + VecStCost - ScalarStCost; 5256 } 5257 case Instruction::Call: { 5258 CallInst *CI = cast<CallInst>(VL0); 5259 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5260 5261 // Calculate the cost of the scalar and vector calls. 5262 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 5263 InstructionCost ScalarEltCost = 5264 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5265 if (NeedToShuffleReuses) { 5266 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5267 } 5268 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 5269 5270 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 5271 InstructionCost VecCallCost = 5272 std::min(VecCallCosts.first, VecCallCosts.second); 5273 5274 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 5275 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 5276 << " for " << *CI << "\n"); 5277 5278 return CommonCost + VecCallCost - ScalarCallCost; 5279 } 5280 case Instruction::ShuffleVector: { 5281 assert(E->isAltShuffle() && 5282 ((Instruction::isBinaryOp(E->getOpcode()) && 5283 Instruction::isBinaryOp(E->getAltOpcode())) || 5284 (Instruction::isCast(E->getOpcode()) && 5285 Instruction::isCast(E->getAltOpcode()))) && 5286 "Invalid Shuffle Vector Operand"); 5287 InstructionCost ScalarCost = 0; 5288 if (NeedToShuffleReuses) { 5289 for (unsigned Idx : E->ReuseShuffleIndices) { 5290 Instruction *I = cast<Instruction>(VL[Idx]); 5291 CommonCost -= TTI->getInstructionCost(I, CostKind); 5292 } 5293 for (Value *V : VL) { 5294 Instruction *I = cast<Instruction>(V); 5295 CommonCost += TTI->getInstructionCost(I, CostKind); 5296 } 5297 } 5298 for (Value *V : VL) { 5299 Instruction *I = cast<Instruction>(V); 5300 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5301 ScalarCost += TTI->getInstructionCost(I, CostKind); 5302 } 5303 // VecCost is equal to sum of the cost of creating 2 vectors 5304 // and the cost of creating shuffle. 5305 InstructionCost VecCost = 0; 5306 // Try to find the previous shuffle node with the same operands and same 5307 // main/alternate ops. 5308 auto &&TryFindNodeWithEqualOperands = [this, E]() { 5309 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 5310 if (TE.get() == E) 5311 break; 5312 if (TE->isAltShuffle() && 5313 ((TE->getOpcode() == E->getOpcode() && 5314 TE->getAltOpcode() == E->getAltOpcode()) || 5315 (TE->getOpcode() == E->getAltOpcode() && 5316 TE->getAltOpcode() == E->getOpcode())) && 5317 TE->hasEqualOperands(*E)) 5318 return true; 5319 } 5320 return false; 5321 }; 5322 if (TryFindNodeWithEqualOperands()) { 5323 LLVM_DEBUG({ 5324 dbgs() << "SLP: diamond match for alternate node found.\n"; 5325 E->dump(); 5326 }); 5327 // No need to add new vector costs here since we're going to reuse 5328 // same main/alternate vector ops, just do different shuffling. 5329 } else if (Instruction::isBinaryOp(E->getOpcode())) { 5330 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 5331 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 5332 CostKind); 5333 } else { 5334 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 5335 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 5336 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 5337 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 5338 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 5339 TTI::CastContextHint::None, CostKind); 5340 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 5341 TTI::CastContextHint::None, CostKind); 5342 } 5343 5344 SmallVector<int> Mask; 5345 buildSuffleEntryMask( 5346 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 5347 [E](Instruction *I) { 5348 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5349 return I->getOpcode() == E->getAltOpcode(); 5350 }, 5351 Mask); 5352 CommonCost = 5353 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask); 5354 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5355 return CommonCost + VecCost - ScalarCost; 5356 } 5357 default: 5358 llvm_unreachable("Unknown instruction"); 5359 } 5360 } 5361 5362 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 5363 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 5364 << VectorizableTree.size() << " is fully vectorizable .\n"); 5365 5366 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 5367 SmallVector<int> Mask; 5368 return TE->State == TreeEntry::NeedToGather && 5369 !any_of(TE->Scalars, 5370 [this](Value *V) { return EphValues.contains(V); }) && 5371 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 5372 TE->Scalars.size() < Limit || 5373 ((TE->getOpcode() == Instruction::ExtractElement || 5374 all_of(TE->Scalars, 5375 [](Value *V) { 5376 return isa<ExtractElementInst, UndefValue>(V); 5377 })) && 5378 isFixedVectorShuffle(TE->Scalars, Mask)) || 5379 (TE->State == TreeEntry::NeedToGather && 5380 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 5381 }; 5382 5383 // We only handle trees of heights 1 and 2. 5384 if (VectorizableTree.size() == 1 && 5385 (VectorizableTree[0]->State == TreeEntry::Vectorize || 5386 (ForReduction && 5387 AreVectorizableGathers(VectorizableTree[0].get(), 5388 VectorizableTree[0]->Scalars.size()) && 5389 VectorizableTree[0]->getVectorFactor() > 2))) 5390 return true; 5391 5392 if (VectorizableTree.size() != 2) 5393 return false; 5394 5395 // Handle splat and all-constants stores. Also try to vectorize tiny trees 5396 // with the second gather nodes if they have less scalar operands rather than 5397 // the initial tree element (may be profitable to shuffle the second gather) 5398 // or they are extractelements, which form shuffle. 5399 SmallVector<int> Mask; 5400 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 5401 AreVectorizableGathers(VectorizableTree[1].get(), 5402 VectorizableTree[0]->Scalars.size())) 5403 return true; 5404 5405 // Gathering cost would be too much for tiny trees. 5406 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 5407 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 5408 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 5409 return false; 5410 5411 return true; 5412 } 5413 5414 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 5415 TargetTransformInfo *TTI, 5416 bool MustMatchOrInst) { 5417 // Look past the root to find a source value. Arbitrarily follow the 5418 // path through operand 0 of any 'or'. Also, peek through optional 5419 // shift-left-by-multiple-of-8-bits. 5420 Value *ZextLoad = Root; 5421 const APInt *ShAmtC; 5422 bool FoundOr = false; 5423 while (!isa<ConstantExpr>(ZextLoad) && 5424 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 5425 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 5426 ShAmtC->urem(8) == 0))) { 5427 auto *BinOp = cast<BinaryOperator>(ZextLoad); 5428 ZextLoad = BinOp->getOperand(0); 5429 if (BinOp->getOpcode() == Instruction::Or) 5430 FoundOr = true; 5431 } 5432 // Check if the input is an extended load of the required or/shift expression. 5433 Value *Load; 5434 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 5435 !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load)) 5436 return false; 5437 5438 // Require that the total load bit width is a legal integer type. 5439 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 5440 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 5441 Type *SrcTy = Load->getType(); 5442 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 5443 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 5444 return false; 5445 5446 // Everything matched - assume that we can fold the whole sequence using 5447 // load combining. 5448 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 5449 << *(cast<Instruction>(Root)) << "\n"); 5450 5451 return true; 5452 } 5453 5454 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 5455 if (RdxKind != RecurKind::Or) 5456 return false; 5457 5458 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5459 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 5460 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 5461 /* MatchOr */ false); 5462 } 5463 5464 bool BoUpSLP::isLoadCombineCandidate() const { 5465 // Peek through a final sequence of stores and check if all operations are 5466 // likely to be load-combined. 5467 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5468 for (Value *Scalar : VectorizableTree[0]->Scalars) { 5469 Value *X; 5470 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 5471 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 5472 return false; 5473 } 5474 return true; 5475 } 5476 5477 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 5478 // No need to vectorize inserts of gathered values. 5479 if (VectorizableTree.size() == 2 && 5480 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 5481 VectorizableTree[1]->State == TreeEntry::NeedToGather) 5482 return true; 5483 5484 // We can vectorize the tree if its size is greater than or equal to the 5485 // minimum size specified by the MinTreeSize command line option. 5486 if (VectorizableTree.size() >= MinTreeSize) 5487 return false; 5488 5489 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 5490 // can vectorize it if we can prove it fully vectorizable. 5491 if (isFullyVectorizableTinyTree(ForReduction)) 5492 return false; 5493 5494 assert(VectorizableTree.empty() 5495 ? ExternalUses.empty() 5496 : true && "We shouldn't have any external users"); 5497 5498 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 5499 // vectorizable. 5500 return true; 5501 } 5502 5503 InstructionCost BoUpSLP::getSpillCost() const { 5504 // Walk from the bottom of the tree to the top, tracking which values are 5505 // live. When we see a call instruction that is not part of our tree, 5506 // query TTI to see if there is a cost to keeping values live over it 5507 // (for example, if spills and fills are required). 5508 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 5509 InstructionCost Cost = 0; 5510 5511 SmallPtrSet<Instruction*, 4> LiveValues; 5512 Instruction *PrevInst = nullptr; 5513 5514 // The entries in VectorizableTree are not necessarily ordered by their 5515 // position in basic blocks. Collect them and order them by dominance so later 5516 // instructions are guaranteed to be visited first. For instructions in 5517 // different basic blocks, we only scan to the beginning of the block, so 5518 // their order does not matter, as long as all instructions in a basic block 5519 // are grouped together. Using dominance ensures a deterministic order. 5520 SmallVector<Instruction *, 16> OrderedScalars; 5521 for (const auto &TEPtr : VectorizableTree) { 5522 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 5523 if (!Inst) 5524 continue; 5525 OrderedScalars.push_back(Inst); 5526 } 5527 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 5528 auto *NodeA = DT->getNode(A->getParent()); 5529 auto *NodeB = DT->getNode(B->getParent()); 5530 assert(NodeA && "Should only process reachable instructions"); 5531 assert(NodeB && "Should only process reachable instructions"); 5532 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 5533 "Different nodes should have different DFS numbers"); 5534 if (NodeA != NodeB) 5535 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 5536 return B->comesBefore(A); 5537 }); 5538 5539 for (Instruction *Inst : OrderedScalars) { 5540 if (!PrevInst) { 5541 PrevInst = Inst; 5542 continue; 5543 } 5544 5545 // Update LiveValues. 5546 LiveValues.erase(PrevInst); 5547 for (auto &J : PrevInst->operands()) { 5548 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 5549 LiveValues.insert(cast<Instruction>(&*J)); 5550 } 5551 5552 LLVM_DEBUG({ 5553 dbgs() << "SLP: #LV: " << LiveValues.size(); 5554 for (auto *X : LiveValues) 5555 dbgs() << " " << X->getName(); 5556 dbgs() << ", Looking at "; 5557 Inst->dump(); 5558 }); 5559 5560 // Now find the sequence of instructions between PrevInst and Inst. 5561 unsigned NumCalls = 0; 5562 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 5563 PrevInstIt = 5564 PrevInst->getIterator().getReverse(); 5565 while (InstIt != PrevInstIt) { 5566 if (PrevInstIt == PrevInst->getParent()->rend()) { 5567 PrevInstIt = Inst->getParent()->rbegin(); 5568 continue; 5569 } 5570 5571 // Debug information does not impact spill cost. 5572 if ((isa<CallInst>(&*PrevInstIt) && 5573 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 5574 &*PrevInstIt != PrevInst) 5575 NumCalls++; 5576 5577 ++PrevInstIt; 5578 } 5579 5580 if (NumCalls) { 5581 SmallVector<Type*, 4> V; 5582 for (auto *II : LiveValues) { 5583 auto *ScalarTy = II->getType(); 5584 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 5585 ScalarTy = VectorTy->getElementType(); 5586 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 5587 } 5588 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 5589 } 5590 5591 PrevInst = Inst; 5592 } 5593 5594 return Cost; 5595 } 5596 5597 /// Check if two insertelement instructions are from the same buildvector. 5598 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU, 5599 InsertElementInst *V) { 5600 // Instructions must be from the same basic blocks. 5601 if (VU->getParent() != V->getParent()) 5602 return false; 5603 // Checks if 2 insertelements are from the same buildvector. 5604 if (VU->getType() != V->getType()) 5605 return false; 5606 // Multiple used inserts are separate nodes. 5607 if (!VU->hasOneUse() && !V->hasOneUse()) 5608 return false; 5609 auto *IE1 = VU; 5610 auto *IE2 = V; 5611 // Go through the vector operand of insertelement instructions trying to find 5612 // either VU as the original vector for IE2 or V as the original vector for 5613 // IE1. 5614 do { 5615 if (IE2 == VU || IE1 == V) 5616 return true; 5617 if (IE1) { 5618 if (IE1 != VU && !IE1->hasOneUse()) 5619 IE1 = nullptr; 5620 else 5621 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 5622 } 5623 if (IE2) { 5624 if (IE2 != V && !IE2->hasOneUse()) 5625 IE2 = nullptr; 5626 else 5627 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 5628 } 5629 } while (IE1 || IE2); 5630 return false; 5631 } 5632 5633 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 5634 InstructionCost Cost = 0; 5635 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 5636 << VectorizableTree.size() << ".\n"); 5637 5638 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 5639 5640 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 5641 TreeEntry &TE = *VectorizableTree[I].get(); 5642 5643 InstructionCost C = getEntryCost(&TE, VectorizedVals); 5644 Cost += C; 5645 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5646 << " for bundle that starts with " << *TE.Scalars[0] 5647 << ".\n" 5648 << "SLP: Current total cost = " << Cost << "\n"); 5649 } 5650 5651 SmallPtrSet<Value *, 16> ExtractCostCalculated; 5652 InstructionCost ExtractCost = 0; 5653 SmallVector<unsigned> VF; 5654 SmallVector<SmallVector<int>> ShuffleMask; 5655 SmallVector<Value *> FirstUsers; 5656 SmallVector<APInt> DemandedElts; 5657 for (ExternalUser &EU : ExternalUses) { 5658 // We only add extract cost once for the same scalar. 5659 if (!isa_and_nonnull<InsertElementInst>(EU.User) && 5660 !ExtractCostCalculated.insert(EU.Scalar).second) 5661 continue; 5662 5663 // Uses by ephemeral values are free (because the ephemeral value will be 5664 // removed prior to code generation, and so the extraction will be 5665 // removed as well). 5666 if (EphValues.count(EU.User)) 5667 continue; 5668 5669 // No extract cost for vector "scalar" 5670 if (isa<FixedVectorType>(EU.Scalar->getType())) 5671 continue; 5672 5673 // Already counted the cost for external uses when tried to adjust the cost 5674 // for extractelements, no need to add it again. 5675 if (isa<ExtractElementInst>(EU.Scalar)) 5676 continue; 5677 5678 // If found user is an insertelement, do not calculate extract cost but try 5679 // to detect it as a final shuffled/identity match. 5680 if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) { 5681 if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) { 5682 Optional<int> InsertIdx = getInsertIndex(VU, 0); 5683 if (!InsertIdx || *InsertIdx == UndefMaskElem) 5684 continue; 5685 auto *It = find_if(FirstUsers, [VU](Value *V) { 5686 return areTwoInsertFromSameBuildVector(VU, 5687 cast<InsertElementInst>(V)); 5688 }); 5689 int VecId = -1; 5690 if (It == FirstUsers.end()) { 5691 VF.push_back(FTy->getNumElements()); 5692 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 5693 // Find the insertvector, vectorized in tree, if any. 5694 Value *Base = VU; 5695 while (isa<InsertElementInst>(Base)) { 5696 // Build the mask for the vectorized insertelement instructions. 5697 if (const TreeEntry *E = getTreeEntry(Base)) { 5698 VU = cast<InsertElementInst>(Base); 5699 do { 5700 int Idx = E->findLaneForValue(Base); 5701 ShuffleMask.back()[Idx] = Idx; 5702 Base = cast<InsertElementInst>(Base)->getOperand(0); 5703 } while (E == getTreeEntry(Base)); 5704 break; 5705 } 5706 Base = cast<InsertElementInst>(Base)->getOperand(0); 5707 } 5708 FirstUsers.push_back(VU); 5709 DemandedElts.push_back(APInt::getZero(VF.back())); 5710 VecId = FirstUsers.size() - 1; 5711 } else { 5712 VecId = std::distance(FirstUsers.begin(), It); 5713 } 5714 int Idx = *InsertIdx; 5715 ShuffleMask[VecId][Idx] = EU.Lane; 5716 DemandedElts[VecId].setBit(Idx); 5717 continue; 5718 } 5719 } 5720 5721 // If we plan to rewrite the tree in a smaller type, we will need to sign 5722 // extend the extracted value back to the original type. Here, we account 5723 // for the extract and the added cost of the sign extend if needed. 5724 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 5725 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 5726 if (MinBWs.count(ScalarRoot)) { 5727 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 5728 auto Extend = 5729 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 5730 VecTy = FixedVectorType::get(MinTy, BundleWidth); 5731 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 5732 VecTy, EU.Lane); 5733 } else { 5734 ExtractCost += 5735 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 5736 } 5737 } 5738 5739 InstructionCost SpillCost = getSpillCost(); 5740 Cost += SpillCost + ExtractCost; 5741 if (FirstUsers.size() == 1) { 5742 int Limit = ShuffleMask.front().size() * 2; 5743 if (all_of(ShuffleMask.front(), [Limit](int Idx) { return Idx < Limit; }) && 5744 !ShuffleVectorInst::isIdentityMask(ShuffleMask.front())) { 5745 InstructionCost C = TTI->getShuffleCost( 5746 TTI::SK_PermuteSingleSrc, 5747 cast<FixedVectorType>(FirstUsers.front()->getType()), 5748 ShuffleMask.front()); 5749 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5750 << " for final shuffle of insertelement external users " 5751 << *VectorizableTree.front()->Scalars.front() << ".\n" 5752 << "SLP: Current total cost = " << Cost << "\n"); 5753 Cost += C; 5754 } 5755 InstructionCost InsertCost = TTI->getScalarizationOverhead( 5756 cast<FixedVectorType>(FirstUsers.front()->getType()), 5757 DemandedElts.front(), /*Insert*/ true, /*Extract*/ false); 5758 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 5759 << " for insertelements gather.\n" 5760 << "SLP: Current total cost = " << Cost << "\n"); 5761 Cost -= InsertCost; 5762 } else if (FirstUsers.size() >= 2) { 5763 unsigned MaxVF = *std::max_element(VF.begin(), VF.end()); 5764 // Combined masks of the first 2 vectors. 5765 SmallVector<int> CombinedMask(MaxVF, UndefMaskElem); 5766 copy(ShuffleMask.front(), CombinedMask.begin()); 5767 APInt CombinedDemandedElts = DemandedElts.front().zextOrSelf(MaxVF); 5768 auto *VecTy = FixedVectorType::get( 5769 cast<VectorType>(FirstUsers.front()->getType())->getElementType(), 5770 MaxVF); 5771 for (int I = 0, E = ShuffleMask[1].size(); I < E; ++I) { 5772 if (ShuffleMask[1][I] != UndefMaskElem) { 5773 CombinedMask[I] = ShuffleMask[1][I] + MaxVF; 5774 CombinedDemandedElts.setBit(I); 5775 } 5776 } 5777 InstructionCost C = 5778 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 5779 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5780 << " for final shuffle of vector node and external " 5781 "insertelement users " 5782 << *VectorizableTree.front()->Scalars.front() << ".\n" 5783 << "SLP: Current total cost = " << Cost << "\n"); 5784 Cost += C; 5785 InstructionCost InsertCost = TTI->getScalarizationOverhead( 5786 VecTy, CombinedDemandedElts, /*Insert*/ true, /*Extract*/ false); 5787 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 5788 << " for insertelements gather.\n" 5789 << "SLP: Current total cost = " << Cost << "\n"); 5790 Cost -= InsertCost; 5791 for (int I = 2, E = FirstUsers.size(); I < E; ++I) { 5792 // Other elements - permutation of 2 vectors (the initial one and the 5793 // next Ith incoming vector). 5794 unsigned VF = ShuffleMask[I].size(); 5795 for (unsigned Idx = 0; Idx < VF; ++Idx) { 5796 int Mask = ShuffleMask[I][Idx]; 5797 if (Mask != UndefMaskElem) 5798 CombinedMask[Idx] = MaxVF + Mask; 5799 else if (CombinedMask[Idx] != UndefMaskElem) 5800 CombinedMask[Idx] = Idx; 5801 } 5802 for (unsigned Idx = VF; Idx < MaxVF; ++Idx) 5803 if (CombinedMask[Idx] != UndefMaskElem) 5804 CombinedMask[Idx] = Idx; 5805 InstructionCost C = 5806 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 5807 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5808 << " for final shuffle of vector node and external " 5809 "insertelement users " 5810 << *VectorizableTree.front()->Scalars.front() << ".\n" 5811 << "SLP: Current total cost = " << Cost << "\n"); 5812 Cost += C; 5813 InstructionCost InsertCost = TTI->getScalarizationOverhead( 5814 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 5815 /*Insert*/ true, /*Extract*/ false); 5816 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 5817 << " for insertelements gather.\n" 5818 << "SLP: Current total cost = " << Cost << "\n"); 5819 Cost -= InsertCost; 5820 } 5821 } 5822 5823 #ifndef NDEBUG 5824 SmallString<256> Str; 5825 { 5826 raw_svector_ostream OS(Str); 5827 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 5828 << "SLP: Extract Cost = " << ExtractCost << ".\n" 5829 << "SLP: Total Cost = " << Cost << ".\n"; 5830 } 5831 LLVM_DEBUG(dbgs() << Str); 5832 if (ViewSLPTree) 5833 ViewGraph(this, "SLP" + F->getName(), false, Str); 5834 #endif 5835 5836 return Cost; 5837 } 5838 5839 Optional<TargetTransformInfo::ShuffleKind> 5840 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 5841 SmallVectorImpl<const TreeEntry *> &Entries) { 5842 // TODO: currently checking only for Scalars in the tree entry, need to count 5843 // reused elements too for better cost estimation. 5844 Mask.assign(TE->Scalars.size(), UndefMaskElem); 5845 Entries.clear(); 5846 // Build a lists of values to tree entries. 5847 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 5848 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 5849 if (EntryPtr.get() == TE) 5850 break; 5851 if (EntryPtr->State != TreeEntry::NeedToGather) 5852 continue; 5853 for (Value *V : EntryPtr->Scalars) 5854 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 5855 } 5856 // Find all tree entries used by the gathered values. If no common entries 5857 // found - not a shuffle. 5858 // Here we build a set of tree nodes for each gathered value and trying to 5859 // find the intersection between these sets. If we have at least one common 5860 // tree node for each gathered value - we have just a permutation of the 5861 // single vector. If we have 2 different sets, we're in situation where we 5862 // have a permutation of 2 input vectors. 5863 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 5864 DenseMap<Value *, int> UsedValuesEntry; 5865 for (Value *V : TE->Scalars) { 5866 if (isa<UndefValue>(V)) 5867 continue; 5868 // Build a list of tree entries where V is used. 5869 SmallPtrSet<const TreeEntry *, 4> VToTEs; 5870 auto It = ValueToTEs.find(V); 5871 if (It != ValueToTEs.end()) 5872 VToTEs = It->second; 5873 if (const TreeEntry *VTE = getTreeEntry(V)) 5874 VToTEs.insert(VTE); 5875 if (VToTEs.empty()) 5876 return None; 5877 if (UsedTEs.empty()) { 5878 // The first iteration, just insert the list of nodes to vector. 5879 UsedTEs.push_back(VToTEs); 5880 } else { 5881 // Need to check if there are any previously used tree nodes which use V. 5882 // If there are no such nodes, consider that we have another one input 5883 // vector. 5884 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 5885 unsigned Idx = 0; 5886 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 5887 // Do we have a non-empty intersection of previously listed tree entries 5888 // and tree entries using current V? 5889 set_intersect(VToTEs, Set); 5890 if (!VToTEs.empty()) { 5891 // Yes, write the new subset and continue analysis for the next 5892 // scalar. 5893 Set.swap(VToTEs); 5894 break; 5895 } 5896 VToTEs = SavedVToTEs; 5897 ++Idx; 5898 } 5899 // No non-empty intersection found - need to add a second set of possible 5900 // source vectors. 5901 if (Idx == UsedTEs.size()) { 5902 // If the number of input vectors is greater than 2 - not a permutation, 5903 // fallback to the regular gather. 5904 if (UsedTEs.size() == 2) 5905 return None; 5906 UsedTEs.push_back(SavedVToTEs); 5907 Idx = UsedTEs.size() - 1; 5908 } 5909 UsedValuesEntry.try_emplace(V, Idx); 5910 } 5911 } 5912 5913 unsigned VF = 0; 5914 if (UsedTEs.size() == 1) { 5915 // Try to find the perfect match in another gather node at first. 5916 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 5917 return EntryPtr->isSame(TE->Scalars); 5918 }); 5919 if (It != UsedTEs.front().end()) { 5920 Entries.push_back(*It); 5921 std::iota(Mask.begin(), Mask.end(), 0); 5922 return TargetTransformInfo::SK_PermuteSingleSrc; 5923 } 5924 // No perfect match, just shuffle, so choose the first tree node. 5925 Entries.push_back(*UsedTEs.front().begin()); 5926 } else { 5927 // Try to find nodes with the same vector factor. 5928 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 5929 DenseMap<int, const TreeEntry *> VFToTE; 5930 for (const TreeEntry *TE : UsedTEs.front()) 5931 VFToTE.try_emplace(TE->getVectorFactor(), TE); 5932 for (const TreeEntry *TE : UsedTEs.back()) { 5933 auto It = VFToTE.find(TE->getVectorFactor()); 5934 if (It != VFToTE.end()) { 5935 VF = It->first; 5936 Entries.push_back(It->second); 5937 Entries.push_back(TE); 5938 break; 5939 } 5940 } 5941 // No 2 source vectors with the same vector factor - give up and do regular 5942 // gather. 5943 if (Entries.empty()) 5944 return None; 5945 } 5946 5947 // Build a shuffle mask for better cost estimation and vector emission. 5948 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 5949 Value *V = TE->Scalars[I]; 5950 if (isa<UndefValue>(V)) 5951 continue; 5952 unsigned Idx = UsedValuesEntry.lookup(V); 5953 const TreeEntry *VTE = Entries[Idx]; 5954 int FoundLane = VTE->findLaneForValue(V); 5955 Mask[I] = Idx * VF + FoundLane; 5956 // Extra check required by isSingleSourceMaskImpl function (called by 5957 // ShuffleVectorInst::isSingleSourceMask). 5958 if (Mask[I] >= 2 * E) 5959 return None; 5960 } 5961 switch (Entries.size()) { 5962 case 1: 5963 return TargetTransformInfo::SK_PermuteSingleSrc; 5964 case 2: 5965 return TargetTransformInfo::SK_PermuteTwoSrc; 5966 default: 5967 break; 5968 } 5969 return None; 5970 } 5971 5972 InstructionCost 5973 BoUpSLP::getGatherCost(FixedVectorType *Ty, 5974 const DenseSet<unsigned> &ShuffledIndices, 5975 bool NeedToShuffle) const { 5976 unsigned NumElts = Ty->getNumElements(); 5977 APInt DemandedElts = APInt::getZero(NumElts); 5978 for (unsigned I = 0; I < NumElts; ++I) 5979 if (!ShuffledIndices.count(I)) 5980 DemandedElts.setBit(I); 5981 InstructionCost Cost = 5982 TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 5983 /*Extract*/ false); 5984 if (NeedToShuffle) 5985 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 5986 return Cost; 5987 } 5988 5989 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 5990 // Find the type of the operands in VL. 5991 Type *ScalarTy = VL[0]->getType(); 5992 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 5993 ScalarTy = SI->getValueOperand()->getType(); 5994 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 5995 bool DuplicateNonConst = false; 5996 // Find the cost of inserting/extracting values from the vector. 5997 // Check if the same elements are inserted several times and count them as 5998 // shuffle candidates. 5999 DenseSet<unsigned> ShuffledElements; 6000 DenseSet<Value *> UniqueElements; 6001 // Iterate in reverse order to consider insert elements with the high cost. 6002 for (unsigned I = VL.size(); I > 0; --I) { 6003 unsigned Idx = I - 1; 6004 // No need to shuffle duplicates for constants. 6005 if (isConstant(VL[Idx])) { 6006 ShuffledElements.insert(Idx); 6007 continue; 6008 } 6009 if (!UniqueElements.insert(VL[Idx]).second) { 6010 DuplicateNonConst = true; 6011 ShuffledElements.insert(Idx); 6012 } 6013 } 6014 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 6015 } 6016 6017 // Perform operand reordering on the instructions in VL and return the reordered 6018 // operands in Left and Right. 6019 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 6020 SmallVectorImpl<Value *> &Left, 6021 SmallVectorImpl<Value *> &Right, 6022 const DataLayout &DL, 6023 ScalarEvolution &SE, 6024 const BoUpSLP &R) { 6025 if (VL.empty()) 6026 return; 6027 VLOperands Ops(VL, DL, SE, R); 6028 // Reorder the operands in place. 6029 Ops.reorder(); 6030 Left = Ops.getVL(0); 6031 Right = Ops.getVL(1); 6032 } 6033 6034 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 6035 // Get the basic block this bundle is in. All instructions in the bundle 6036 // should be in this block. 6037 auto *Front = E->getMainOp(); 6038 auto *BB = Front->getParent(); 6039 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 6040 auto *I = cast<Instruction>(V); 6041 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 6042 })); 6043 6044 // The last instruction in the bundle in program order. 6045 Instruction *LastInst = nullptr; 6046 6047 // Find the last instruction. The common case should be that BB has been 6048 // scheduled, and the last instruction is VL.back(). So we start with 6049 // VL.back() and iterate over schedule data until we reach the end of the 6050 // bundle. The end of the bundle is marked by null ScheduleData. 6051 if (BlocksSchedules.count(BB)) { 6052 auto *Bundle = 6053 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 6054 if (Bundle && Bundle->isPartOfBundle()) 6055 for (; Bundle; Bundle = Bundle->NextInBundle) 6056 if (Bundle->OpValue == Bundle->Inst) 6057 LastInst = Bundle->Inst; 6058 } 6059 6060 // LastInst can still be null at this point if there's either not an entry 6061 // for BB in BlocksSchedules or there's no ScheduleData available for 6062 // VL.back(). This can be the case if buildTree_rec aborts for various 6063 // reasons (e.g., the maximum recursion depth is reached, the maximum region 6064 // size is reached, etc.). ScheduleData is initialized in the scheduling 6065 // "dry-run". 6066 // 6067 // If this happens, we can still find the last instruction by brute force. We 6068 // iterate forwards from Front (inclusive) until we either see all 6069 // instructions in the bundle or reach the end of the block. If Front is the 6070 // last instruction in program order, LastInst will be set to Front, and we 6071 // will visit all the remaining instructions in the block. 6072 // 6073 // One of the reasons we exit early from buildTree_rec is to place an upper 6074 // bound on compile-time. Thus, taking an additional compile-time hit here is 6075 // not ideal. However, this should be exceedingly rare since it requires that 6076 // we both exit early from buildTree_rec and that the bundle be out-of-order 6077 // (causing us to iterate all the way to the end of the block). 6078 if (!LastInst) { 6079 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 6080 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 6081 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 6082 LastInst = &I; 6083 if (Bundle.empty()) 6084 break; 6085 } 6086 } 6087 assert(LastInst && "Failed to find last instruction in bundle"); 6088 6089 // Set the insertion point after the last instruction in the bundle. Set the 6090 // debug location to Front. 6091 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 6092 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6093 } 6094 6095 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 6096 // List of instructions/lanes from current block and/or the blocks which are 6097 // part of the current loop. These instructions will be inserted at the end to 6098 // make it possible to optimize loops and hoist invariant instructions out of 6099 // the loops body with better chances for success. 6100 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 6101 SmallSet<int, 4> PostponedIndices; 6102 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 6103 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 6104 SmallPtrSet<BasicBlock *, 4> Visited; 6105 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 6106 InsertBB = InsertBB->getSinglePredecessor(); 6107 return InsertBB && InsertBB == InstBB; 6108 }; 6109 for (int I = 0, E = VL.size(); I < E; ++I) { 6110 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 6111 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 6112 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 6113 PostponedIndices.insert(I).second) 6114 PostponedInsts.emplace_back(Inst, I); 6115 } 6116 6117 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 6118 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 6119 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 6120 if (!InsElt) 6121 return Vec; 6122 GatherShuffleSeq.insert(InsElt); 6123 CSEBlocks.insert(InsElt->getParent()); 6124 // Add to our 'need-to-extract' list. 6125 if (TreeEntry *Entry = getTreeEntry(V)) { 6126 // Find which lane we need to extract. 6127 unsigned FoundLane = Entry->findLaneForValue(V); 6128 ExternalUses.emplace_back(V, InsElt, FoundLane); 6129 } 6130 return Vec; 6131 }; 6132 Value *Val0 = 6133 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 6134 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 6135 Value *Vec = PoisonValue::get(VecTy); 6136 SmallVector<int> NonConsts; 6137 // Insert constant values at first. 6138 for (int I = 0, E = VL.size(); I < E; ++I) { 6139 if (PostponedIndices.contains(I)) 6140 continue; 6141 if (!isConstant(VL[I])) { 6142 NonConsts.push_back(I); 6143 continue; 6144 } 6145 Vec = CreateInsertElement(Vec, VL[I], I); 6146 } 6147 // Insert non-constant values. 6148 for (int I : NonConsts) 6149 Vec = CreateInsertElement(Vec, VL[I], I); 6150 // Append instructions, which are/may be part of the loop, in the end to make 6151 // it possible to hoist non-loop-based instructions. 6152 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 6153 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 6154 6155 return Vec; 6156 } 6157 6158 namespace { 6159 /// Merges shuffle masks and emits final shuffle instruction, if required. 6160 class ShuffleInstructionBuilder { 6161 IRBuilderBase &Builder; 6162 const unsigned VF = 0; 6163 bool IsFinalized = false; 6164 SmallVector<int, 4> Mask; 6165 /// Holds all of the instructions that we gathered. 6166 SetVector<Instruction *> &GatherShuffleSeq; 6167 /// A list of blocks that we are going to CSE. 6168 SetVector<BasicBlock *> &CSEBlocks; 6169 6170 public: 6171 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF, 6172 SetVector<Instruction *> &GatherShuffleSeq, 6173 SetVector<BasicBlock *> &CSEBlocks) 6174 : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq), 6175 CSEBlocks(CSEBlocks) {} 6176 6177 /// Adds a mask, inverting it before applying. 6178 void addInversedMask(ArrayRef<unsigned> SubMask) { 6179 if (SubMask.empty()) 6180 return; 6181 SmallVector<int, 4> NewMask; 6182 inversePermutation(SubMask, NewMask); 6183 addMask(NewMask); 6184 } 6185 6186 /// Functions adds masks, merging them into single one. 6187 void addMask(ArrayRef<unsigned> SubMask) { 6188 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 6189 addMask(NewMask); 6190 } 6191 6192 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 6193 6194 Value *finalize(Value *V) { 6195 IsFinalized = true; 6196 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 6197 if (VF == ValueVF && Mask.empty()) 6198 return V; 6199 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 6200 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 6201 addMask(NormalizedMask); 6202 6203 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 6204 return V; 6205 Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle"); 6206 if (auto *I = dyn_cast<Instruction>(Vec)) { 6207 GatherShuffleSeq.insert(I); 6208 CSEBlocks.insert(I->getParent()); 6209 } 6210 return Vec; 6211 } 6212 6213 ~ShuffleInstructionBuilder() { 6214 assert((IsFinalized || Mask.empty()) && 6215 "Shuffle construction must be finalized."); 6216 } 6217 }; 6218 } // namespace 6219 6220 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 6221 unsigned VF = VL.size(); 6222 InstructionsState S = getSameOpcode(VL); 6223 if (S.getOpcode()) { 6224 if (TreeEntry *E = getTreeEntry(S.OpValue)) 6225 if (E->isSame(VL)) { 6226 Value *V = vectorizeTree(E); 6227 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 6228 if (!E->ReuseShuffleIndices.empty()) { 6229 // Reshuffle to get only unique values. 6230 // If some of the scalars are duplicated in the vectorization tree 6231 // entry, we do not vectorize them but instead generate a mask for 6232 // the reuses. But if there are several users of the same entry, 6233 // they may have different vectorization factors. This is especially 6234 // important for PHI nodes. In this case, we need to adapt the 6235 // resulting instruction for the user vectorization factor and have 6236 // to reshuffle it again to take only unique elements of the vector. 6237 // Without this code the function incorrectly returns reduced vector 6238 // instruction with the same elements, not with the unique ones. 6239 6240 // block: 6241 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 6242 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 6243 // ... (use %2) 6244 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 6245 // br %block 6246 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 6247 SmallSet<int, 4> UsedIdxs; 6248 int Pos = 0; 6249 int Sz = VL.size(); 6250 for (int Idx : E->ReuseShuffleIndices) { 6251 if (Idx != Sz && Idx != UndefMaskElem && 6252 UsedIdxs.insert(Idx).second) 6253 UniqueIdxs[Idx] = Pos; 6254 ++Pos; 6255 } 6256 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 6257 "less than original vector size."); 6258 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 6259 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 6260 } else { 6261 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 6262 "Expected vectorization factor less " 6263 "than original vector size."); 6264 SmallVector<int> UniformMask(VF, 0); 6265 std::iota(UniformMask.begin(), UniformMask.end(), 0); 6266 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 6267 } 6268 if (auto *I = dyn_cast<Instruction>(V)) { 6269 GatherShuffleSeq.insert(I); 6270 CSEBlocks.insert(I->getParent()); 6271 } 6272 } 6273 return V; 6274 } 6275 } 6276 6277 // Check that every instruction appears once in this bundle. 6278 SmallVector<int> ReuseShuffleIndicies; 6279 SmallVector<Value *> UniqueValues; 6280 if (VL.size() > 2) { 6281 DenseMap<Value *, unsigned> UniquePositions; 6282 unsigned NumValues = 6283 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 6284 return !isa<UndefValue>(V); 6285 }).base()); 6286 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 6287 int UniqueVals = 0; 6288 for (Value *V : VL.drop_back(VL.size() - VF)) { 6289 if (isa<UndefValue>(V)) { 6290 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 6291 continue; 6292 } 6293 if (isConstant(V)) { 6294 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 6295 UniqueValues.emplace_back(V); 6296 continue; 6297 } 6298 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 6299 ReuseShuffleIndicies.emplace_back(Res.first->second); 6300 if (Res.second) { 6301 UniqueValues.emplace_back(V); 6302 ++UniqueVals; 6303 } 6304 } 6305 if (UniqueVals == 1 && UniqueValues.size() == 1) { 6306 // Emit pure splat vector. 6307 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 6308 UndefMaskElem); 6309 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 6310 ReuseShuffleIndicies.clear(); 6311 UniqueValues.clear(); 6312 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 6313 } 6314 UniqueValues.append(VF - UniqueValues.size(), 6315 PoisonValue::get(VL[0]->getType())); 6316 VL = UniqueValues; 6317 } 6318 6319 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6320 CSEBlocks); 6321 Value *Vec = gather(VL); 6322 if (!ReuseShuffleIndicies.empty()) { 6323 ShuffleBuilder.addMask(ReuseShuffleIndicies); 6324 Vec = ShuffleBuilder.finalize(Vec); 6325 } 6326 return Vec; 6327 } 6328 6329 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 6330 IRBuilder<>::InsertPointGuard Guard(Builder); 6331 6332 if (E->VectorizedValue) { 6333 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 6334 return E->VectorizedValue; 6335 } 6336 6337 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 6338 unsigned VF = E->getVectorFactor(); 6339 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6340 CSEBlocks); 6341 if (E->State == TreeEntry::NeedToGather) { 6342 if (E->getMainOp()) 6343 setInsertPointAfterBundle(E); 6344 Value *Vec; 6345 SmallVector<int> Mask; 6346 SmallVector<const TreeEntry *> Entries; 6347 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 6348 isGatherShuffledEntry(E, Mask, Entries); 6349 if (Shuffle.hasValue()) { 6350 assert((Entries.size() == 1 || Entries.size() == 2) && 6351 "Expected shuffle of 1 or 2 entries."); 6352 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 6353 Entries.back()->VectorizedValue, Mask); 6354 if (auto *I = dyn_cast<Instruction>(Vec)) { 6355 GatherShuffleSeq.insert(I); 6356 CSEBlocks.insert(I->getParent()); 6357 } 6358 } else { 6359 Vec = gather(E->Scalars); 6360 } 6361 if (NeedToShuffleReuses) { 6362 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6363 Vec = ShuffleBuilder.finalize(Vec); 6364 } 6365 E->VectorizedValue = Vec; 6366 return Vec; 6367 } 6368 6369 assert((E->State == TreeEntry::Vectorize || 6370 E->State == TreeEntry::ScatterVectorize) && 6371 "Unhandled state"); 6372 unsigned ShuffleOrOp = 6373 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 6374 Instruction *VL0 = E->getMainOp(); 6375 Type *ScalarTy = VL0->getType(); 6376 if (auto *Store = dyn_cast<StoreInst>(VL0)) 6377 ScalarTy = Store->getValueOperand()->getType(); 6378 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 6379 ScalarTy = IE->getOperand(1)->getType(); 6380 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 6381 switch (ShuffleOrOp) { 6382 case Instruction::PHI: { 6383 assert( 6384 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 6385 "PHI reordering is free."); 6386 auto *PH = cast<PHINode>(VL0); 6387 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 6388 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6389 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 6390 Value *V = NewPhi; 6391 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6392 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6393 V = ShuffleBuilder.finalize(V); 6394 6395 E->VectorizedValue = V; 6396 6397 // PHINodes may have multiple entries from the same block. We want to 6398 // visit every block once. 6399 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 6400 6401 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 6402 ValueList Operands; 6403 BasicBlock *IBB = PH->getIncomingBlock(i); 6404 6405 if (!VisitedBBs.insert(IBB).second) { 6406 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 6407 continue; 6408 } 6409 6410 Builder.SetInsertPoint(IBB->getTerminator()); 6411 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6412 Value *Vec = vectorizeTree(E->getOperand(i)); 6413 NewPhi->addIncoming(Vec, IBB); 6414 } 6415 6416 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 6417 "Invalid number of incoming values"); 6418 return V; 6419 } 6420 6421 case Instruction::ExtractElement: { 6422 Value *V = E->getSingleOperand(0); 6423 Builder.SetInsertPoint(VL0); 6424 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6425 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6426 V = ShuffleBuilder.finalize(V); 6427 E->VectorizedValue = V; 6428 return V; 6429 } 6430 case Instruction::ExtractValue: { 6431 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 6432 Builder.SetInsertPoint(LI); 6433 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 6434 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 6435 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 6436 Value *NewV = propagateMetadata(V, E->Scalars); 6437 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6438 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6439 NewV = ShuffleBuilder.finalize(NewV); 6440 E->VectorizedValue = NewV; 6441 return NewV; 6442 } 6443 case Instruction::InsertElement: { 6444 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 6445 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 6446 Value *V = vectorizeTree(E->getOperand(1)); 6447 6448 // Create InsertVector shuffle if necessary 6449 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 6450 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 6451 })); 6452 const unsigned NumElts = 6453 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 6454 const unsigned NumScalars = E->Scalars.size(); 6455 6456 unsigned Offset = *getInsertIndex(VL0, 0); 6457 assert(Offset < NumElts && "Failed to find vector index offset"); 6458 6459 // Create shuffle to resize vector 6460 SmallVector<int> Mask; 6461 if (!E->ReorderIndices.empty()) { 6462 inversePermutation(E->ReorderIndices, Mask); 6463 Mask.append(NumElts - NumScalars, UndefMaskElem); 6464 } else { 6465 Mask.assign(NumElts, UndefMaskElem); 6466 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 6467 } 6468 // Create InsertVector shuffle if necessary 6469 bool IsIdentity = true; 6470 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 6471 Mask.swap(PrevMask); 6472 for (unsigned I = 0; I < NumScalars; ++I) { 6473 Value *Scalar = E->Scalars[PrevMask[I]]; 6474 Optional<int> InsertIdx = getInsertIndex(Scalar, 0); 6475 if (!InsertIdx || *InsertIdx == UndefMaskElem) 6476 continue; 6477 IsIdentity &= *InsertIdx - Offset == I; 6478 Mask[*InsertIdx - Offset] = I; 6479 } 6480 if (!IsIdentity || NumElts != NumScalars) { 6481 V = Builder.CreateShuffleVector(V, Mask); 6482 if (auto *I = dyn_cast<Instruction>(V)) { 6483 GatherShuffleSeq.insert(I); 6484 CSEBlocks.insert(I->getParent()); 6485 } 6486 } 6487 6488 if ((!IsIdentity || Offset != 0 || 6489 !isUndefVector(FirstInsert->getOperand(0))) && 6490 NumElts != NumScalars) { 6491 SmallVector<int> InsertMask(NumElts); 6492 std::iota(InsertMask.begin(), InsertMask.end(), 0); 6493 for (unsigned I = 0; I < NumElts; I++) { 6494 if (Mask[I] != UndefMaskElem) 6495 InsertMask[Offset + I] = NumElts + I; 6496 } 6497 6498 V = Builder.CreateShuffleVector( 6499 FirstInsert->getOperand(0), V, InsertMask, 6500 cast<Instruction>(E->Scalars.back())->getName()); 6501 if (auto *I = dyn_cast<Instruction>(V)) { 6502 GatherShuffleSeq.insert(I); 6503 CSEBlocks.insert(I->getParent()); 6504 } 6505 } 6506 6507 ++NumVectorInstructions; 6508 E->VectorizedValue = V; 6509 return V; 6510 } 6511 case Instruction::ZExt: 6512 case Instruction::SExt: 6513 case Instruction::FPToUI: 6514 case Instruction::FPToSI: 6515 case Instruction::FPExt: 6516 case Instruction::PtrToInt: 6517 case Instruction::IntToPtr: 6518 case Instruction::SIToFP: 6519 case Instruction::UIToFP: 6520 case Instruction::Trunc: 6521 case Instruction::FPTrunc: 6522 case Instruction::BitCast: { 6523 setInsertPointAfterBundle(E); 6524 6525 Value *InVec = vectorizeTree(E->getOperand(0)); 6526 6527 if (E->VectorizedValue) { 6528 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6529 return E->VectorizedValue; 6530 } 6531 6532 auto *CI = cast<CastInst>(VL0); 6533 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 6534 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6535 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6536 V = ShuffleBuilder.finalize(V); 6537 6538 E->VectorizedValue = V; 6539 ++NumVectorInstructions; 6540 return V; 6541 } 6542 case Instruction::FCmp: 6543 case Instruction::ICmp: { 6544 setInsertPointAfterBundle(E); 6545 6546 Value *L = vectorizeTree(E->getOperand(0)); 6547 Value *R = vectorizeTree(E->getOperand(1)); 6548 6549 if (E->VectorizedValue) { 6550 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6551 return E->VectorizedValue; 6552 } 6553 6554 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 6555 Value *V = Builder.CreateCmp(P0, L, R); 6556 propagateIRFlags(V, E->Scalars, VL0); 6557 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6558 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6559 V = ShuffleBuilder.finalize(V); 6560 6561 E->VectorizedValue = V; 6562 ++NumVectorInstructions; 6563 return V; 6564 } 6565 case Instruction::Select: { 6566 setInsertPointAfterBundle(E); 6567 6568 Value *Cond = vectorizeTree(E->getOperand(0)); 6569 Value *True = vectorizeTree(E->getOperand(1)); 6570 Value *False = vectorizeTree(E->getOperand(2)); 6571 6572 if (E->VectorizedValue) { 6573 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6574 return E->VectorizedValue; 6575 } 6576 6577 Value *V = Builder.CreateSelect(Cond, True, False); 6578 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6579 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6580 V = ShuffleBuilder.finalize(V); 6581 6582 E->VectorizedValue = V; 6583 ++NumVectorInstructions; 6584 return V; 6585 } 6586 case Instruction::FNeg: { 6587 setInsertPointAfterBundle(E); 6588 6589 Value *Op = vectorizeTree(E->getOperand(0)); 6590 6591 if (E->VectorizedValue) { 6592 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6593 return E->VectorizedValue; 6594 } 6595 6596 Value *V = Builder.CreateUnOp( 6597 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 6598 propagateIRFlags(V, E->Scalars, VL0); 6599 if (auto *I = dyn_cast<Instruction>(V)) 6600 V = propagateMetadata(I, E->Scalars); 6601 6602 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6603 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6604 V = ShuffleBuilder.finalize(V); 6605 6606 E->VectorizedValue = V; 6607 ++NumVectorInstructions; 6608 6609 return V; 6610 } 6611 case Instruction::Add: 6612 case Instruction::FAdd: 6613 case Instruction::Sub: 6614 case Instruction::FSub: 6615 case Instruction::Mul: 6616 case Instruction::FMul: 6617 case Instruction::UDiv: 6618 case Instruction::SDiv: 6619 case Instruction::FDiv: 6620 case Instruction::URem: 6621 case Instruction::SRem: 6622 case Instruction::FRem: 6623 case Instruction::Shl: 6624 case Instruction::LShr: 6625 case Instruction::AShr: 6626 case Instruction::And: 6627 case Instruction::Or: 6628 case Instruction::Xor: { 6629 setInsertPointAfterBundle(E); 6630 6631 Value *LHS = vectorizeTree(E->getOperand(0)); 6632 Value *RHS = vectorizeTree(E->getOperand(1)); 6633 6634 if (E->VectorizedValue) { 6635 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6636 return E->VectorizedValue; 6637 } 6638 6639 Value *V = Builder.CreateBinOp( 6640 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 6641 RHS); 6642 propagateIRFlags(V, E->Scalars, VL0); 6643 if (auto *I = dyn_cast<Instruction>(V)) 6644 V = propagateMetadata(I, E->Scalars); 6645 6646 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6647 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6648 V = ShuffleBuilder.finalize(V); 6649 6650 E->VectorizedValue = V; 6651 ++NumVectorInstructions; 6652 6653 return V; 6654 } 6655 case Instruction::Load: { 6656 // Loads are inserted at the head of the tree because we don't want to 6657 // sink them all the way down past store instructions. 6658 setInsertPointAfterBundle(E); 6659 6660 LoadInst *LI = cast<LoadInst>(VL0); 6661 Instruction *NewLI; 6662 unsigned AS = LI->getPointerAddressSpace(); 6663 Value *PO = LI->getPointerOperand(); 6664 if (E->State == TreeEntry::Vectorize) { 6665 6666 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 6667 6668 // The pointer operand uses an in-tree scalar so we add the new BitCast 6669 // to ExternalUses list to make sure that an extract will be generated 6670 // in the future. 6671 if (TreeEntry *Entry = getTreeEntry(PO)) { 6672 // Find which lane we need to extract. 6673 unsigned FoundLane = Entry->findLaneForValue(PO); 6674 ExternalUses.emplace_back(PO, cast<User>(VecPtr), FoundLane); 6675 } 6676 6677 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 6678 } else { 6679 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 6680 Value *VecPtr = vectorizeTree(E->getOperand(0)); 6681 // Use the minimum alignment of the gathered loads. 6682 Align CommonAlignment = LI->getAlign(); 6683 for (Value *V : E->Scalars) 6684 CommonAlignment = 6685 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 6686 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 6687 } 6688 Value *V = propagateMetadata(NewLI, E->Scalars); 6689 6690 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6691 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6692 V = ShuffleBuilder.finalize(V); 6693 E->VectorizedValue = V; 6694 ++NumVectorInstructions; 6695 return V; 6696 } 6697 case Instruction::Store: { 6698 auto *SI = cast<StoreInst>(VL0); 6699 unsigned AS = SI->getPointerAddressSpace(); 6700 6701 setInsertPointAfterBundle(E); 6702 6703 Value *VecValue = vectorizeTree(E->getOperand(0)); 6704 ShuffleBuilder.addMask(E->ReorderIndices); 6705 VecValue = ShuffleBuilder.finalize(VecValue); 6706 6707 Value *ScalarPtr = SI->getPointerOperand(); 6708 Value *VecPtr = Builder.CreateBitCast( 6709 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 6710 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 6711 SI->getAlign()); 6712 6713 // The pointer operand uses an in-tree scalar, so add the new BitCast to 6714 // ExternalUses to make sure that an extract will be generated in the 6715 // future. 6716 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 6717 // Find which lane we need to extract. 6718 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 6719 ExternalUses.push_back( 6720 ExternalUser(ScalarPtr, cast<User>(VecPtr), FoundLane)); 6721 } 6722 6723 Value *V = propagateMetadata(ST, E->Scalars); 6724 6725 E->VectorizedValue = V; 6726 ++NumVectorInstructions; 6727 return V; 6728 } 6729 case Instruction::GetElementPtr: { 6730 auto *GEP0 = cast<GetElementPtrInst>(VL0); 6731 setInsertPointAfterBundle(E); 6732 6733 Value *Op0 = vectorizeTree(E->getOperand(0)); 6734 6735 SmallVector<Value *> OpVecs; 6736 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 6737 Value *OpVec = vectorizeTree(E->getOperand(J)); 6738 OpVecs.push_back(OpVec); 6739 } 6740 6741 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 6742 if (Instruction *I = dyn_cast<Instruction>(V)) 6743 V = propagateMetadata(I, E->Scalars); 6744 6745 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6746 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6747 V = ShuffleBuilder.finalize(V); 6748 6749 E->VectorizedValue = V; 6750 ++NumVectorInstructions; 6751 6752 return V; 6753 } 6754 case Instruction::Call: { 6755 CallInst *CI = cast<CallInst>(VL0); 6756 setInsertPointAfterBundle(E); 6757 6758 Intrinsic::ID IID = Intrinsic::not_intrinsic; 6759 if (Function *FI = CI->getCalledFunction()) 6760 IID = FI->getIntrinsicID(); 6761 6762 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6763 6764 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 6765 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 6766 VecCallCosts.first <= VecCallCosts.second; 6767 6768 Value *ScalarArg = nullptr; 6769 std::vector<Value *> OpVecs; 6770 SmallVector<Type *, 2> TysForDecl = 6771 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 6772 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 6773 ValueList OpVL; 6774 // Some intrinsics have scalar arguments. This argument should not be 6775 // vectorized. 6776 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 6777 CallInst *CEI = cast<CallInst>(VL0); 6778 ScalarArg = CEI->getArgOperand(j); 6779 OpVecs.push_back(CEI->getArgOperand(j)); 6780 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j)) 6781 TysForDecl.push_back(ScalarArg->getType()); 6782 continue; 6783 } 6784 6785 Value *OpVec = vectorizeTree(E->getOperand(j)); 6786 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 6787 OpVecs.push_back(OpVec); 6788 } 6789 6790 Function *CF; 6791 if (!UseIntrinsic) { 6792 VFShape Shape = 6793 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 6794 VecTy->getNumElements())), 6795 false /*HasGlobalPred*/); 6796 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 6797 } else { 6798 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 6799 } 6800 6801 SmallVector<OperandBundleDef, 1> OpBundles; 6802 CI->getOperandBundlesAsDefs(OpBundles); 6803 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 6804 6805 // The scalar argument uses an in-tree scalar so we add the new vectorized 6806 // call to ExternalUses list to make sure that an extract will be 6807 // generated in the future. 6808 if (ScalarArg) { 6809 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 6810 // Find which lane we need to extract. 6811 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 6812 ExternalUses.push_back( 6813 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 6814 } 6815 } 6816 6817 propagateIRFlags(V, E->Scalars, VL0); 6818 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6819 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6820 V = ShuffleBuilder.finalize(V); 6821 6822 E->VectorizedValue = V; 6823 ++NumVectorInstructions; 6824 return V; 6825 } 6826 case Instruction::ShuffleVector: { 6827 assert(E->isAltShuffle() && 6828 ((Instruction::isBinaryOp(E->getOpcode()) && 6829 Instruction::isBinaryOp(E->getAltOpcode())) || 6830 (Instruction::isCast(E->getOpcode()) && 6831 Instruction::isCast(E->getAltOpcode()))) && 6832 "Invalid Shuffle Vector Operand"); 6833 6834 Value *LHS = nullptr, *RHS = nullptr; 6835 if (Instruction::isBinaryOp(E->getOpcode())) { 6836 setInsertPointAfterBundle(E); 6837 LHS = vectorizeTree(E->getOperand(0)); 6838 RHS = vectorizeTree(E->getOperand(1)); 6839 } else { 6840 setInsertPointAfterBundle(E); 6841 LHS = vectorizeTree(E->getOperand(0)); 6842 } 6843 6844 if (E->VectorizedValue) { 6845 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6846 return E->VectorizedValue; 6847 } 6848 6849 Value *V0, *V1; 6850 if (Instruction::isBinaryOp(E->getOpcode())) { 6851 V0 = Builder.CreateBinOp( 6852 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 6853 V1 = Builder.CreateBinOp( 6854 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 6855 } else { 6856 V0 = Builder.CreateCast( 6857 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 6858 V1 = Builder.CreateCast( 6859 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 6860 } 6861 // Add V0 and V1 to later analysis to try to find and remove matching 6862 // instruction, if any. 6863 for (Value *V : {V0, V1}) { 6864 if (auto *I = dyn_cast<Instruction>(V)) { 6865 GatherShuffleSeq.insert(I); 6866 CSEBlocks.insert(I->getParent()); 6867 } 6868 } 6869 6870 // Create shuffle to take alternate operations from the vector. 6871 // Also, gather up main and alt scalar ops to propagate IR flags to 6872 // each vector operation. 6873 ValueList OpScalars, AltScalars; 6874 SmallVector<int> Mask; 6875 buildSuffleEntryMask( 6876 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 6877 [E](Instruction *I) { 6878 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 6879 return I->getOpcode() == E->getAltOpcode(); 6880 }, 6881 Mask, &OpScalars, &AltScalars); 6882 6883 propagateIRFlags(V0, OpScalars); 6884 propagateIRFlags(V1, AltScalars); 6885 6886 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 6887 if (auto *I = dyn_cast<Instruction>(V)) { 6888 V = propagateMetadata(I, E->Scalars); 6889 GatherShuffleSeq.insert(I); 6890 CSEBlocks.insert(I->getParent()); 6891 } 6892 V = ShuffleBuilder.finalize(V); 6893 6894 E->VectorizedValue = V; 6895 ++NumVectorInstructions; 6896 6897 return V; 6898 } 6899 default: 6900 llvm_unreachable("unknown inst"); 6901 } 6902 return nullptr; 6903 } 6904 6905 Value *BoUpSLP::vectorizeTree() { 6906 ExtraValueToDebugLocsMap ExternallyUsedValues; 6907 return vectorizeTree(ExternallyUsedValues); 6908 } 6909 6910 Value * 6911 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 6912 // All blocks must be scheduled before any instructions are inserted. 6913 for (auto &BSIter : BlocksSchedules) { 6914 scheduleBlock(BSIter.second.get()); 6915 } 6916 6917 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6918 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 6919 6920 // If the vectorized tree can be rewritten in a smaller type, we truncate the 6921 // vectorized root. InstCombine will then rewrite the entire expression. We 6922 // sign extend the extracted values below. 6923 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 6924 if (MinBWs.count(ScalarRoot)) { 6925 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 6926 // If current instr is a phi and not the last phi, insert it after the 6927 // last phi node. 6928 if (isa<PHINode>(I)) 6929 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 6930 else 6931 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 6932 } 6933 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 6934 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 6935 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 6936 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 6937 VectorizableTree[0]->VectorizedValue = Trunc; 6938 } 6939 6940 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 6941 << " values .\n"); 6942 6943 // Extract all of the elements with the external uses. 6944 for (const auto &ExternalUse : ExternalUses) { 6945 Value *Scalar = ExternalUse.Scalar; 6946 llvm::User *User = ExternalUse.User; 6947 6948 // Skip users that we already RAUW. This happens when one instruction 6949 // has multiple uses of the same value. 6950 if (User && !is_contained(Scalar->users(), User)) 6951 continue; 6952 TreeEntry *E = getTreeEntry(Scalar); 6953 assert(E && "Invalid scalar"); 6954 assert(E->State != TreeEntry::NeedToGather && 6955 "Extracting from a gather list"); 6956 6957 Value *Vec = E->VectorizedValue; 6958 assert(Vec && "Can't find vectorizable value"); 6959 6960 Value *Lane = Builder.getInt32(ExternalUse.Lane); 6961 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 6962 if (Scalar->getType() != Vec->getType()) { 6963 Value *Ex; 6964 // "Reuse" the existing extract to improve final codegen. 6965 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 6966 Ex = Builder.CreateExtractElement(ES->getOperand(0), 6967 ES->getOperand(1)); 6968 } else { 6969 Ex = Builder.CreateExtractElement(Vec, Lane); 6970 } 6971 // If necessary, sign-extend or zero-extend ScalarRoot 6972 // to the larger type. 6973 if (!MinBWs.count(ScalarRoot)) 6974 return Ex; 6975 if (MinBWs[ScalarRoot].second) 6976 return Builder.CreateSExt(Ex, Scalar->getType()); 6977 return Builder.CreateZExt(Ex, Scalar->getType()); 6978 } 6979 assert(isa<FixedVectorType>(Scalar->getType()) && 6980 isa<InsertElementInst>(Scalar) && 6981 "In-tree scalar of vector type is not insertelement?"); 6982 return Vec; 6983 }; 6984 // If User == nullptr, the Scalar is used as extra arg. Generate 6985 // ExtractElement instruction and update the record for this scalar in 6986 // ExternallyUsedValues. 6987 if (!User) { 6988 assert(ExternallyUsedValues.count(Scalar) && 6989 "Scalar with nullptr as an external user must be registered in " 6990 "ExternallyUsedValues map"); 6991 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 6992 Builder.SetInsertPoint(VecI->getParent(), 6993 std::next(VecI->getIterator())); 6994 } else { 6995 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6996 } 6997 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6998 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 6999 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 7000 auto It = ExternallyUsedValues.find(Scalar); 7001 assert(It != ExternallyUsedValues.end() && 7002 "Externally used scalar is not found in ExternallyUsedValues"); 7003 NewInstLocs.append(It->second); 7004 ExternallyUsedValues.erase(Scalar); 7005 // Required to update internally referenced instructions. 7006 Scalar->replaceAllUsesWith(NewInst); 7007 continue; 7008 } 7009 7010 // Generate extracts for out-of-tree users. 7011 // Find the insertion point for the extractelement lane. 7012 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7013 if (PHINode *PH = dyn_cast<PHINode>(User)) { 7014 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 7015 if (PH->getIncomingValue(i) == Scalar) { 7016 Instruction *IncomingTerminator = 7017 PH->getIncomingBlock(i)->getTerminator(); 7018 if (isa<CatchSwitchInst>(IncomingTerminator)) { 7019 Builder.SetInsertPoint(VecI->getParent(), 7020 std::next(VecI->getIterator())); 7021 } else { 7022 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 7023 } 7024 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7025 CSEBlocks.insert(PH->getIncomingBlock(i)); 7026 PH->setOperand(i, NewInst); 7027 } 7028 } 7029 } else { 7030 Builder.SetInsertPoint(cast<Instruction>(User)); 7031 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7032 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 7033 User->replaceUsesOfWith(Scalar, NewInst); 7034 } 7035 } else { 7036 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7037 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7038 CSEBlocks.insert(&F->getEntryBlock()); 7039 User->replaceUsesOfWith(Scalar, NewInst); 7040 } 7041 7042 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 7043 } 7044 7045 // For each vectorized value: 7046 for (auto &TEPtr : VectorizableTree) { 7047 TreeEntry *Entry = TEPtr.get(); 7048 7049 // No need to handle users of gathered values. 7050 if (Entry->State == TreeEntry::NeedToGather) 7051 continue; 7052 7053 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 7054 7055 // For each lane: 7056 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 7057 Value *Scalar = Entry->Scalars[Lane]; 7058 7059 #ifndef NDEBUG 7060 Type *Ty = Scalar->getType(); 7061 if (!Ty->isVoidTy()) { 7062 for (User *U : Scalar->users()) { 7063 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 7064 7065 // It is legal to delete users in the ignorelist. 7066 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 7067 (isa_and_nonnull<Instruction>(U) && 7068 isDeleted(cast<Instruction>(U)))) && 7069 "Deleting out-of-tree value"); 7070 } 7071 } 7072 #endif 7073 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 7074 eraseInstruction(cast<Instruction>(Scalar)); 7075 } 7076 } 7077 7078 Builder.ClearInsertionPoint(); 7079 InstrElementSize.clear(); 7080 7081 return VectorizableTree[0]->VectorizedValue; 7082 } 7083 7084 void BoUpSLP::optimizeGatherSequence() { 7085 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size() 7086 << " gather sequences instructions.\n"); 7087 // LICM InsertElementInst sequences. 7088 for (Instruction *I : GatherShuffleSeq) { 7089 if (isDeleted(I)) 7090 continue; 7091 7092 // Check if this block is inside a loop. 7093 Loop *L = LI->getLoopFor(I->getParent()); 7094 if (!L) 7095 continue; 7096 7097 // Check if it has a preheader. 7098 BasicBlock *PreHeader = L->getLoopPreheader(); 7099 if (!PreHeader) 7100 continue; 7101 7102 // If the vector or the element that we insert into it are 7103 // instructions that are defined in this basic block then we can't 7104 // hoist this instruction. 7105 if (any_of(I->operands(), [L](Value *V) { 7106 auto *OpI = dyn_cast<Instruction>(V); 7107 return OpI && L->contains(OpI); 7108 })) 7109 continue; 7110 7111 // We can hoist this instruction. Move it to the pre-header. 7112 I->moveBefore(PreHeader->getTerminator()); 7113 } 7114 7115 // Make a list of all reachable blocks in our CSE queue. 7116 SmallVector<const DomTreeNode *, 8> CSEWorkList; 7117 CSEWorkList.reserve(CSEBlocks.size()); 7118 for (BasicBlock *BB : CSEBlocks) 7119 if (DomTreeNode *N = DT->getNode(BB)) { 7120 assert(DT->isReachableFromEntry(N)); 7121 CSEWorkList.push_back(N); 7122 } 7123 7124 // Sort blocks by domination. This ensures we visit a block after all blocks 7125 // dominating it are visited. 7126 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 7127 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 7128 "Different nodes should have different DFS numbers"); 7129 return A->getDFSNumIn() < B->getDFSNumIn(); 7130 }); 7131 7132 // Less defined shuffles can be replaced by the more defined copies. 7133 // Between two shuffles one is less defined if it has the same vector operands 7134 // and its mask indeces are the same as in the first one or undefs. E.g. 7135 // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0, 7136 // poison, <0, 0, 0, 0>. 7137 auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2, 7138 SmallVectorImpl<int> &NewMask) { 7139 if (I1->getType() != I2->getType()) 7140 return false; 7141 auto *SI1 = dyn_cast<ShuffleVectorInst>(I1); 7142 auto *SI2 = dyn_cast<ShuffleVectorInst>(I2); 7143 if (!SI1 || !SI2) 7144 return I1->isIdenticalTo(I2); 7145 if (SI1->isIdenticalTo(SI2)) 7146 return true; 7147 for (int I = 0, E = SI1->getNumOperands(); I < E; ++I) 7148 if (SI1->getOperand(I) != SI2->getOperand(I)) 7149 return false; 7150 // Check if the second instruction is more defined than the first one. 7151 NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end()); 7152 ArrayRef<int> SM1 = SI1->getShuffleMask(); 7153 // Count trailing undefs in the mask to check the final number of used 7154 // registers. 7155 unsigned LastUndefsCnt = 0; 7156 for (int I = 0, E = NewMask.size(); I < E; ++I) { 7157 if (SM1[I] == UndefMaskElem) 7158 ++LastUndefsCnt; 7159 else 7160 LastUndefsCnt = 0; 7161 if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem && 7162 NewMask[I] != SM1[I]) 7163 return false; 7164 if (NewMask[I] == UndefMaskElem) 7165 NewMask[I] = SM1[I]; 7166 } 7167 // Check if the last undefs actually change the final number of used vector 7168 // registers. 7169 return SM1.size() - LastUndefsCnt > 1 && 7170 TTI->getNumberOfParts(SI1->getType()) == 7171 TTI->getNumberOfParts( 7172 FixedVectorType::get(SI1->getType()->getElementType(), 7173 SM1.size() - LastUndefsCnt)); 7174 }; 7175 // Perform O(N^2) search over the gather/shuffle sequences and merge identical 7176 // instructions. TODO: We can further optimize this scan if we split the 7177 // instructions into different buckets based on the insert lane. 7178 SmallVector<Instruction *, 16> Visited; 7179 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 7180 assert(*I && 7181 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 7182 "Worklist not sorted properly!"); 7183 BasicBlock *BB = (*I)->getBlock(); 7184 // For all instructions in blocks containing gather sequences: 7185 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 7186 if (isDeleted(&In)) 7187 continue; 7188 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 7189 !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In)) 7190 continue; 7191 7192 // Check if we can replace this instruction with any of the 7193 // visited instructions. 7194 bool Replaced = false; 7195 for (Instruction *&V : Visited) { 7196 SmallVector<int> NewMask; 7197 if (IsIdenticalOrLessDefined(&In, V, NewMask) && 7198 DT->dominates(V->getParent(), In.getParent())) { 7199 In.replaceAllUsesWith(V); 7200 eraseInstruction(&In); 7201 if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) 7202 if (!NewMask.empty()) 7203 SI->setShuffleMask(NewMask); 7204 Replaced = true; 7205 break; 7206 } 7207 if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) && 7208 GatherShuffleSeq.contains(V) && 7209 IsIdenticalOrLessDefined(V, &In, NewMask) && 7210 DT->dominates(In.getParent(), V->getParent())) { 7211 In.moveAfter(V); 7212 V->replaceAllUsesWith(&In); 7213 eraseInstruction(V); 7214 if (auto *SI = dyn_cast<ShuffleVectorInst>(&In)) 7215 if (!NewMask.empty()) 7216 SI->setShuffleMask(NewMask); 7217 V = &In; 7218 Replaced = true; 7219 break; 7220 } 7221 } 7222 if (!Replaced) { 7223 assert(!is_contained(Visited, &In)); 7224 Visited.push_back(&In); 7225 } 7226 } 7227 } 7228 CSEBlocks.clear(); 7229 GatherShuffleSeq.clear(); 7230 } 7231 7232 // Groups the instructions to a bundle (which is then a single scheduling entity) 7233 // and schedules instructions until the bundle gets ready. 7234 Optional<BoUpSLP::ScheduleData *> 7235 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 7236 const InstructionsState &S) { 7237 // No need to schedule PHIs, insertelement, extractelement and extractvalue 7238 // instructions. 7239 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue)) 7240 return nullptr; 7241 7242 // Initialize the instruction bundle. 7243 Instruction *OldScheduleEnd = ScheduleEnd; 7244 ScheduleData *PrevInBundle = nullptr; 7245 ScheduleData *Bundle = nullptr; 7246 bool ReSchedule = false; 7247 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 7248 7249 auto &&TryScheduleBundle = [this, OldScheduleEnd, SLP](bool ReSchedule, 7250 ScheduleData *Bundle) { 7251 // The scheduling region got new instructions at the lower end (or it is a 7252 // new region for the first bundle). This makes it necessary to 7253 // recalculate all dependencies. 7254 // It is seldom that this needs to be done a second time after adding the 7255 // initial bundle to the region. 7256 if (ScheduleEnd != OldScheduleEnd) { 7257 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 7258 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 7259 ReSchedule = true; 7260 } 7261 if (ReSchedule) { 7262 resetSchedule(); 7263 initialFillReadyList(ReadyInsts); 7264 } 7265 if (Bundle) { 7266 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 7267 << " in block " << BB->getName() << "\n"); 7268 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 7269 } 7270 7271 // Now try to schedule the new bundle or (if no bundle) just calculate 7272 // dependencies. As soon as the bundle is "ready" it means that there are no 7273 // cyclic dependencies and we can schedule it. Note that's important that we 7274 // don't "schedule" the bundle yet (see cancelScheduling). 7275 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 7276 !ReadyInsts.empty()) { 7277 ScheduleData *Picked = ReadyInsts.pop_back_val(); 7278 if (Picked->isSchedulingEntity() && Picked->isReady()) 7279 schedule(Picked, ReadyInsts); 7280 } 7281 }; 7282 7283 // Make sure that the scheduling region contains all 7284 // instructions of the bundle. 7285 for (Value *V : VL) { 7286 if (!extendSchedulingRegion(V, S)) { 7287 // If the scheduling region got new instructions at the lower end (or it 7288 // is a new region for the first bundle). This makes it necessary to 7289 // recalculate all dependencies. 7290 // Otherwise the compiler may crash trying to incorrectly calculate 7291 // dependencies and emit instruction in the wrong order at the actual 7292 // scheduling. 7293 TryScheduleBundle(/*ReSchedule=*/false, nullptr); 7294 return None; 7295 } 7296 } 7297 7298 for (Value *V : VL) { 7299 ScheduleData *BundleMember = getScheduleData(V); 7300 assert(BundleMember && 7301 "no ScheduleData for bundle member (maybe not in same basic block)"); 7302 if (BundleMember->IsScheduled) { 7303 // A bundle member was scheduled as single instruction before and now 7304 // needs to be scheduled as part of the bundle. We just get rid of the 7305 // existing schedule. 7306 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 7307 << " was already scheduled\n"); 7308 ReSchedule = true; 7309 } 7310 assert(BundleMember->isSchedulingEntity() && 7311 "bundle member already part of other bundle"); 7312 if (PrevInBundle) { 7313 PrevInBundle->NextInBundle = BundleMember; 7314 } else { 7315 Bundle = BundleMember; 7316 } 7317 BundleMember->UnscheduledDepsInBundle = 0; 7318 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 7319 7320 // Group the instructions to a bundle. 7321 BundleMember->FirstInBundle = Bundle; 7322 PrevInBundle = BundleMember; 7323 } 7324 assert(Bundle && "Failed to find schedule bundle"); 7325 TryScheduleBundle(ReSchedule, Bundle); 7326 if (!Bundle->isReady()) { 7327 cancelScheduling(VL, S.OpValue); 7328 return None; 7329 } 7330 return Bundle; 7331 } 7332 7333 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 7334 Value *OpValue) { 7335 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue)) 7336 return; 7337 7338 ScheduleData *Bundle = getScheduleData(OpValue); 7339 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 7340 assert(!Bundle->IsScheduled && 7341 "Can't cancel bundle which is already scheduled"); 7342 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 7343 "tried to unbundle something which is not a bundle"); 7344 7345 // Un-bundle: make single instructions out of the bundle. 7346 ScheduleData *BundleMember = Bundle; 7347 while (BundleMember) { 7348 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 7349 BundleMember->FirstInBundle = BundleMember; 7350 ScheduleData *Next = BundleMember->NextInBundle; 7351 BundleMember->NextInBundle = nullptr; 7352 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 7353 if (BundleMember->UnscheduledDepsInBundle == 0) { 7354 ReadyInsts.insert(BundleMember); 7355 } 7356 BundleMember = Next; 7357 } 7358 } 7359 7360 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 7361 // Allocate a new ScheduleData for the instruction. 7362 if (ChunkPos >= ChunkSize) { 7363 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 7364 ChunkPos = 0; 7365 } 7366 return &(ScheduleDataChunks.back()[ChunkPos++]); 7367 } 7368 7369 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 7370 const InstructionsState &S) { 7371 if (getScheduleData(V, isOneOf(S, V))) 7372 return true; 7373 Instruction *I = dyn_cast<Instruction>(V); 7374 assert(I && "bundle member must be an instruction"); 7375 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 7376 "phi nodes/insertelements/extractelements/extractvalues don't need to " 7377 "be scheduled"); 7378 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 7379 ScheduleData *ISD = getScheduleData(I); 7380 if (!ISD) 7381 return false; 7382 assert(isInSchedulingRegion(ISD) && 7383 "ScheduleData not in scheduling region"); 7384 ScheduleData *SD = allocateScheduleDataChunks(); 7385 SD->Inst = I; 7386 SD->init(SchedulingRegionID, S.OpValue); 7387 ExtraScheduleDataMap[I][S.OpValue] = SD; 7388 return true; 7389 }; 7390 if (CheckSheduleForI(I)) 7391 return true; 7392 if (!ScheduleStart) { 7393 // It's the first instruction in the new region. 7394 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 7395 ScheduleStart = I; 7396 ScheduleEnd = I->getNextNode(); 7397 if (isOneOf(S, I) != I) 7398 CheckSheduleForI(I); 7399 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7400 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 7401 return true; 7402 } 7403 // Search up and down at the same time, because we don't know if the new 7404 // instruction is above or below the existing scheduling region. 7405 BasicBlock::reverse_iterator UpIter = 7406 ++ScheduleStart->getIterator().getReverse(); 7407 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 7408 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 7409 BasicBlock::iterator LowerEnd = BB->end(); 7410 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 7411 &*DownIter != I) { 7412 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 7413 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 7414 return false; 7415 } 7416 7417 ++UpIter; 7418 ++DownIter; 7419 } 7420 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 7421 assert(I->getParent() == ScheduleStart->getParent() && 7422 "Instruction is in wrong basic block."); 7423 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 7424 ScheduleStart = I; 7425 if (isOneOf(S, I) != I) 7426 CheckSheduleForI(I); 7427 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 7428 << "\n"); 7429 return true; 7430 } 7431 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 7432 "Expected to reach top of the basic block or instruction down the " 7433 "lower end."); 7434 assert(I->getParent() == ScheduleEnd->getParent() && 7435 "Instruction is in wrong basic block."); 7436 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 7437 nullptr); 7438 ScheduleEnd = I->getNextNode(); 7439 if (isOneOf(S, I) != I) 7440 CheckSheduleForI(I); 7441 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7442 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 7443 return true; 7444 } 7445 7446 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 7447 Instruction *ToI, 7448 ScheduleData *PrevLoadStore, 7449 ScheduleData *NextLoadStore) { 7450 ScheduleData *CurrentLoadStore = PrevLoadStore; 7451 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 7452 ScheduleData *SD = ScheduleDataMap[I]; 7453 if (!SD) { 7454 SD = allocateScheduleDataChunks(); 7455 ScheduleDataMap[I] = SD; 7456 SD->Inst = I; 7457 } 7458 assert(!isInSchedulingRegion(SD) && 7459 "new ScheduleData already in scheduling region"); 7460 SD->init(SchedulingRegionID, I); 7461 7462 if (I->mayReadOrWriteMemory() && 7463 (!isa<IntrinsicInst>(I) || 7464 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 7465 cast<IntrinsicInst>(I)->getIntrinsicID() != 7466 Intrinsic::pseudoprobe))) { 7467 // Update the linked list of memory accessing instructions. 7468 if (CurrentLoadStore) { 7469 CurrentLoadStore->NextLoadStore = SD; 7470 } else { 7471 FirstLoadStoreInRegion = SD; 7472 } 7473 CurrentLoadStore = SD; 7474 } 7475 } 7476 if (NextLoadStore) { 7477 if (CurrentLoadStore) 7478 CurrentLoadStore->NextLoadStore = NextLoadStore; 7479 } else { 7480 LastLoadStoreInRegion = CurrentLoadStore; 7481 } 7482 } 7483 7484 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 7485 bool InsertInReadyList, 7486 BoUpSLP *SLP) { 7487 assert(SD->isSchedulingEntity()); 7488 7489 SmallVector<ScheduleData *, 10> WorkList; 7490 WorkList.push_back(SD); 7491 7492 while (!WorkList.empty()) { 7493 ScheduleData *SD = WorkList.pop_back_val(); 7494 for (ScheduleData *BundleMember = SD; BundleMember; 7495 BundleMember = BundleMember->NextInBundle) { 7496 assert(isInSchedulingRegion(BundleMember)); 7497 if (BundleMember->hasValidDependencies()) 7498 continue; 7499 7500 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 7501 << "\n"); 7502 BundleMember->Dependencies = 0; 7503 BundleMember->resetUnscheduledDeps(); 7504 7505 // Handle def-use chain dependencies. 7506 if (BundleMember->OpValue != BundleMember->Inst) { 7507 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 7508 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 7509 BundleMember->Dependencies++; 7510 ScheduleData *DestBundle = UseSD->FirstInBundle; 7511 if (!DestBundle->IsScheduled) 7512 BundleMember->incrementUnscheduledDeps(1); 7513 if (!DestBundle->hasValidDependencies()) 7514 WorkList.push_back(DestBundle); 7515 } 7516 } else { 7517 for (User *U : BundleMember->Inst->users()) { 7518 assert(isa<Instruction>(U) && 7519 "user of instruction must be instruction"); 7520 ScheduleData *UseSD = getScheduleData(U); 7521 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 7522 BundleMember->Dependencies++; 7523 ScheduleData *DestBundle = UseSD->FirstInBundle; 7524 if (!DestBundle->IsScheduled) 7525 BundleMember->incrementUnscheduledDeps(1); 7526 if (!DestBundle->hasValidDependencies()) 7527 WorkList.push_back(DestBundle); 7528 } 7529 } 7530 } 7531 7532 // Handle the memory dependencies (if any). 7533 ScheduleData *DepDest = BundleMember->NextLoadStore; 7534 if (!DepDest) 7535 continue; 7536 Instruction *SrcInst = BundleMember->Inst; 7537 assert(SrcInst->mayReadOrWriteMemory() && 7538 "NextLoadStore list for non memory effecting bundle?"); 7539 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 7540 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 7541 unsigned numAliased = 0; 7542 unsigned DistToSrc = 1; 7543 7544 while (DepDest) { 7545 assert(isInSchedulingRegion(DepDest)); 7546 7547 // We have two limits to reduce the complexity: 7548 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 7549 // SLP->isAliased (which is the expensive part in this loop). 7550 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 7551 // the whole loop (even if the loop is fast, it's quadratic). 7552 // It's important for the loop break condition (see below) to 7553 // check this limit even between two read-only instructions. 7554 if (DistToSrc >= MaxMemDepDistance || 7555 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 7556 (numAliased >= AliasedCheckLimit || 7557 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 7558 7559 // We increment the counter only if the locations are aliased 7560 // (instead of counting all alias checks). This gives a better 7561 // balance between reduced runtime and accurate dependencies. 7562 numAliased++; 7563 7564 DepDest->MemoryDependencies.push_back(BundleMember); 7565 BundleMember->Dependencies++; 7566 ScheduleData *DestBundle = DepDest->FirstInBundle; 7567 if (!DestBundle->IsScheduled) { 7568 BundleMember->incrementUnscheduledDeps(1); 7569 } 7570 if (!DestBundle->hasValidDependencies()) { 7571 WorkList.push_back(DestBundle); 7572 } 7573 } 7574 DepDest = DepDest->NextLoadStore; 7575 7576 // Example, explaining the loop break condition: Let's assume our 7577 // starting instruction is i0 and MaxMemDepDistance = 3. 7578 // 7579 // +--------v--v--v 7580 // i0,i1,i2,i3,i4,i5,i6,i7,i8 7581 // +--------^--^--^ 7582 // 7583 // MaxMemDepDistance let us stop alias-checking at i3 and we add 7584 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 7585 // Previously we already added dependencies from i3 to i6,i7,i8 7586 // (because of MaxMemDepDistance). As we added a dependency from 7587 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 7588 // and we can abort this loop at i6. 7589 if (DistToSrc >= 2 * MaxMemDepDistance) 7590 break; 7591 DistToSrc++; 7592 } 7593 } 7594 if (InsertInReadyList && SD->isReady()) { 7595 ReadyInsts.push_back(SD); 7596 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 7597 << "\n"); 7598 } 7599 } 7600 } 7601 7602 void BoUpSLP::BlockScheduling::resetSchedule() { 7603 assert(ScheduleStart && 7604 "tried to reset schedule on block which has not been scheduled"); 7605 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 7606 doForAllOpcodes(I, [&](ScheduleData *SD) { 7607 assert(isInSchedulingRegion(SD) && 7608 "ScheduleData not in scheduling region"); 7609 SD->IsScheduled = false; 7610 SD->resetUnscheduledDeps(); 7611 }); 7612 } 7613 ReadyInsts.clear(); 7614 } 7615 7616 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 7617 if (!BS->ScheduleStart) 7618 return; 7619 7620 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 7621 7622 BS->resetSchedule(); 7623 7624 // For the real scheduling we use a more sophisticated ready-list: it is 7625 // sorted by the original instruction location. This lets the final schedule 7626 // be as close as possible to the original instruction order. 7627 struct ScheduleDataCompare { 7628 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 7629 return SD2->SchedulingPriority < SD1->SchedulingPriority; 7630 } 7631 }; 7632 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 7633 7634 // Ensure that all dependency data is updated and fill the ready-list with 7635 // initial instructions. 7636 int Idx = 0; 7637 int NumToSchedule = 0; 7638 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 7639 I = I->getNextNode()) { 7640 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 7641 assert((isVectorLikeInstWithConstOps(SD->Inst) || 7642 SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr)) && 7643 "scheduler and vectorizer bundle mismatch"); 7644 SD->FirstInBundle->SchedulingPriority = Idx++; 7645 if (SD->isSchedulingEntity()) { 7646 BS->calculateDependencies(SD, false, this); 7647 NumToSchedule++; 7648 } 7649 }); 7650 } 7651 BS->initialFillReadyList(ReadyInsts); 7652 7653 Instruction *LastScheduledInst = BS->ScheduleEnd; 7654 7655 // Do the "real" scheduling. 7656 while (!ReadyInsts.empty()) { 7657 ScheduleData *picked = *ReadyInsts.begin(); 7658 ReadyInsts.erase(ReadyInsts.begin()); 7659 7660 // Move the scheduled instruction(s) to their dedicated places, if not 7661 // there yet. 7662 ScheduleData *BundleMember = picked; 7663 while (BundleMember) { 7664 Instruction *pickedInst = BundleMember->Inst; 7665 if (pickedInst->getNextNode() != LastScheduledInst) { 7666 BS->BB->getInstList().remove(pickedInst); 7667 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 7668 pickedInst); 7669 } 7670 LastScheduledInst = pickedInst; 7671 BundleMember = BundleMember->NextInBundle; 7672 } 7673 7674 BS->schedule(picked, ReadyInsts); 7675 NumToSchedule--; 7676 } 7677 assert(NumToSchedule == 0 && "could not schedule all instructions"); 7678 7679 // Avoid duplicate scheduling of the block. 7680 BS->ScheduleStart = nullptr; 7681 } 7682 7683 unsigned BoUpSLP::getVectorElementSize(Value *V) { 7684 // If V is a store, just return the width of the stored value (or value 7685 // truncated just before storing) without traversing the expression tree. 7686 // This is the common case. 7687 if (auto *Store = dyn_cast<StoreInst>(V)) { 7688 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 7689 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 7690 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 7691 } 7692 7693 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 7694 return getVectorElementSize(IEI->getOperand(1)); 7695 7696 auto E = InstrElementSize.find(V); 7697 if (E != InstrElementSize.end()) 7698 return E->second; 7699 7700 // If V is not a store, we can traverse the expression tree to find loads 7701 // that feed it. The type of the loaded value may indicate a more suitable 7702 // width than V's type. We want to base the vector element size on the width 7703 // of memory operations where possible. 7704 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 7705 SmallPtrSet<Instruction *, 16> Visited; 7706 if (auto *I = dyn_cast<Instruction>(V)) { 7707 Worklist.emplace_back(I, I->getParent()); 7708 Visited.insert(I); 7709 } 7710 7711 // Traverse the expression tree in bottom-up order looking for loads. If we 7712 // encounter an instruction we don't yet handle, we give up. 7713 auto Width = 0u; 7714 while (!Worklist.empty()) { 7715 Instruction *I; 7716 BasicBlock *Parent; 7717 std::tie(I, Parent) = Worklist.pop_back_val(); 7718 7719 // We should only be looking at scalar instructions here. If the current 7720 // instruction has a vector type, skip. 7721 auto *Ty = I->getType(); 7722 if (isa<VectorType>(Ty)) 7723 continue; 7724 7725 // If the current instruction is a load, update MaxWidth to reflect the 7726 // width of the loaded value. 7727 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 7728 isa<ExtractValueInst>(I)) 7729 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 7730 7731 // Otherwise, we need to visit the operands of the instruction. We only 7732 // handle the interesting cases from buildTree here. If an operand is an 7733 // instruction we haven't yet visited and from the same basic block as the 7734 // user or the use is a PHI node, we add it to the worklist. 7735 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 7736 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 7737 isa<UnaryOperator>(I)) { 7738 for (Use &U : I->operands()) 7739 if (auto *J = dyn_cast<Instruction>(U.get())) 7740 if (Visited.insert(J).second && 7741 (isa<PHINode>(I) || J->getParent() == Parent)) 7742 Worklist.emplace_back(J, J->getParent()); 7743 } else { 7744 break; 7745 } 7746 } 7747 7748 // If we didn't encounter a memory access in the expression tree, or if we 7749 // gave up for some reason, just return the width of V. Otherwise, return the 7750 // maximum width we found. 7751 if (!Width) { 7752 if (auto *CI = dyn_cast<CmpInst>(V)) 7753 V = CI->getOperand(0); 7754 Width = DL->getTypeSizeInBits(V->getType()); 7755 } 7756 7757 for (Instruction *I : Visited) 7758 InstrElementSize[I] = Width; 7759 7760 return Width; 7761 } 7762 7763 // Determine if a value V in a vectorizable expression Expr can be demoted to a 7764 // smaller type with a truncation. We collect the values that will be demoted 7765 // in ToDemote and additional roots that require investigating in Roots. 7766 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 7767 SmallVectorImpl<Value *> &ToDemote, 7768 SmallVectorImpl<Value *> &Roots) { 7769 // We can always demote constants. 7770 if (isa<Constant>(V)) { 7771 ToDemote.push_back(V); 7772 return true; 7773 } 7774 7775 // If the value is not an instruction in the expression with only one use, it 7776 // cannot be demoted. 7777 auto *I = dyn_cast<Instruction>(V); 7778 if (!I || !I->hasOneUse() || !Expr.count(I)) 7779 return false; 7780 7781 switch (I->getOpcode()) { 7782 7783 // We can always demote truncations and extensions. Since truncations can 7784 // seed additional demotion, we save the truncated value. 7785 case Instruction::Trunc: 7786 Roots.push_back(I->getOperand(0)); 7787 break; 7788 case Instruction::ZExt: 7789 case Instruction::SExt: 7790 if (isa<ExtractElementInst>(I->getOperand(0)) || 7791 isa<InsertElementInst>(I->getOperand(0))) 7792 return false; 7793 break; 7794 7795 // We can demote certain binary operations if we can demote both of their 7796 // operands. 7797 case Instruction::Add: 7798 case Instruction::Sub: 7799 case Instruction::Mul: 7800 case Instruction::And: 7801 case Instruction::Or: 7802 case Instruction::Xor: 7803 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 7804 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 7805 return false; 7806 break; 7807 7808 // We can demote selects if we can demote their true and false values. 7809 case Instruction::Select: { 7810 SelectInst *SI = cast<SelectInst>(I); 7811 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 7812 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 7813 return false; 7814 break; 7815 } 7816 7817 // We can demote phis if we can demote all their incoming operands. Note that 7818 // we don't need to worry about cycles since we ensure single use above. 7819 case Instruction::PHI: { 7820 PHINode *PN = cast<PHINode>(I); 7821 for (Value *IncValue : PN->incoming_values()) 7822 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 7823 return false; 7824 break; 7825 } 7826 7827 // Otherwise, conservatively give up. 7828 default: 7829 return false; 7830 } 7831 7832 // Record the value that we can demote. 7833 ToDemote.push_back(V); 7834 return true; 7835 } 7836 7837 void BoUpSLP::computeMinimumValueSizes() { 7838 // If there are no external uses, the expression tree must be rooted by a 7839 // store. We can't demote in-memory values, so there is nothing to do here. 7840 if (ExternalUses.empty()) 7841 return; 7842 7843 // We only attempt to truncate integer expressions. 7844 auto &TreeRoot = VectorizableTree[0]->Scalars; 7845 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 7846 if (!TreeRootIT) 7847 return; 7848 7849 // If the expression is not rooted by a store, these roots should have 7850 // external uses. We will rely on InstCombine to rewrite the expression in 7851 // the narrower type. However, InstCombine only rewrites single-use values. 7852 // This means that if a tree entry other than a root is used externally, it 7853 // must have multiple uses and InstCombine will not rewrite it. The code 7854 // below ensures that only the roots are used externally. 7855 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 7856 for (auto &EU : ExternalUses) 7857 if (!Expr.erase(EU.Scalar)) 7858 return; 7859 if (!Expr.empty()) 7860 return; 7861 7862 // Collect the scalar values of the vectorizable expression. We will use this 7863 // context to determine which values can be demoted. If we see a truncation, 7864 // we mark it as seeding another demotion. 7865 for (auto &EntryPtr : VectorizableTree) 7866 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 7867 7868 // Ensure the roots of the vectorizable tree don't form a cycle. They must 7869 // have a single external user that is not in the vectorizable tree. 7870 for (auto *Root : TreeRoot) 7871 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 7872 return; 7873 7874 // Conservatively determine if we can actually truncate the roots of the 7875 // expression. Collect the values that can be demoted in ToDemote and 7876 // additional roots that require investigating in Roots. 7877 SmallVector<Value *, 32> ToDemote; 7878 SmallVector<Value *, 4> Roots; 7879 for (auto *Root : TreeRoot) 7880 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 7881 return; 7882 7883 // The maximum bit width required to represent all the values that can be 7884 // demoted without loss of precision. It would be safe to truncate the roots 7885 // of the expression to this width. 7886 auto MaxBitWidth = 8u; 7887 7888 // We first check if all the bits of the roots are demanded. If they're not, 7889 // we can truncate the roots to this narrower type. 7890 for (auto *Root : TreeRoot) { 7891 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 7892 MaxBitWidth = std::max<unsigned>( 7893 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 7894 } 7895 7896 // True if the roots can be zero-extended back to their original type, rather 7897 // than sign-extended. We know that if the leading bits are not demanded, we 7898 // can safely zero-extend. So we initialize IsKnownPositive to True. 7899 bool IsKnownPositive = true; 7900 7901 // If all the bits of the roots are demanded, we can try a little harder to 7902 // compute a narrower type. This can happen, for example, if the roots are 7903 // getelementptr indices. InstCombine promotes these indices to the pointer 7904 // width. Thus, all their bits are technically demanded even though the 7905 // address computation might be vectorized in a smaller type. 7906 // 7907 // We start by looking at each entry that can be demoted. We compute the 7908 // maximum bit width required to store the scalar by using ValueTracking to 7909 // compute the number of high-order bits we can truncate. 7910 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 7911 llvm::all_of(TreeRoot, [](Value *R) { 7912 assert(R->hasOneUse() && "Root should have only one use!"); 7913 return isa<GetElementPtrInst>(R->user_back()); 7914 })) { 7915 MaxBitWidth = 8u; 7916 7917 // Determine if the sign bit of all the roots is known to be zero. If not, 7918 // IsKnownPositive is set to False. 7919 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 7920 KnownBits Known = computeKnownBits(R, *DL); 7921 return Known.isNonNegative(); 7922 }); 7923 7924 // Determine the maximum number of bits required to store the scalar 7925 // values. 7926 for (auto *Scalar : ToDemote) { 7927 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 7928 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 7929 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 7930 } 7931 7932 // If we can't prove that the sign bit is zero, we must add one to the 7933 // maximum bit width to account for the unknown sign bit. This preserves 7934 // the existing sign bit so we can safely sign-extend the root back to the 7935 // original type. Otherwise, if we know the sign bit is zero, we will 7936 // zero-extend the root instead. 7937 // 7938 // FIXME: This is somewhat suboptimal, as there will be cases where adding 7939 // one to the maximum bit width will yield a larger-than-necessary 7940 // type. In general, we need to add an extra bit only if we can't 7941 // prove that the upper bit of the original type is equal to the 7942 // upper bit of the proposed smaller type. If these two bits are the 7943 // same (either zero or one) we know that sign-extending from the 7944 // smaller type will result in the same value. Here, since we can't 7945 // yet prove this, we are just making the proposed smaller type 7946 // larger to ensure correctness. 7947 if (!IsKnownPositive) 7948 ++MaxBitWidth; 7949 } 7950 7951 // Round MaxBitWidth up to the next power-of-two. 7952 if (!isPowerOf2_64(MaxBitWidth)) 7953 MaxBitWidth = NextPowerOf2(MaxBitWidth); 7954 7955 // If the maximum bit width we compute is less than the with of the roots' 7956 // type, we can proceed with the narrowing. Otherwise, do nothing. 7957 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 7958 return; 7959 7960 // If we can truncate the root, we must collect additional values that might 7961 // be demoted as a result. That is, those seeded by truncations we will 7962 // modify. 7963 while (!Roots.empty()) 7964 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 7965 7966 // Finally, map the values we can demote to the maximum bit with we computed. 7967 for (auto *Scalar : ToDemote) 7968 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 7969 } 7970 7971 namespace { 7972 7973 /// The SLPVectorizer Pass. 7974 struct SLPVectorizer : public FunctionPass { 7975 SLPVectorizerPass Impl; 7976 7977 /// Pass identification, replacement for typeid 7978 static char ID; 7979 7980 explicit SLPVectorizer() : FunctionPass(ID) { 7981 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 7982 } 7983 7984 bool doInitialization(Module &M) override { return false; } 7985 7986 bool runOnFunction(Function &F) override { 7987 if (skipFunction(F)) 7988 return false; 7989 7990 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 7991 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 7992 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 7993 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 7994 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 7995 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 7996 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 7997 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 7998 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 7999 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 8000 8001 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8002 } 8003 8004 void getAnalysisUsage(AnalysisUsage &AU) const override { 8005 FunctionPass::getAnalysisUsage(AU); 8006 AU.addRequired<AssumptionCacheTracker>(); 8007 AU.addRequired<ScalarEvolutionWrapperPass>(); 8008 AU.addRequired<AAResultsWrapperPass>(); 8009 AU.addRequired<TargetTransformInfoWrapperPass>(); 8010 AU.addRequired<LoopInfoWrapperPass>(); 8011 AU.addRequired<DominatorTreeWrapperPass>(); 8012 AU.addRequired<DemandedBitsWrapperPass>(); 8013 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 8014 AU.addRequired<InjectTLIMappingsLegacy>(); 8015 AU.addPreserved<LoopInfoWrapperPass>(); 8016 AU.addPreserved<DominatorTreeWrapperPass>(); 8017 AU.addPreserved<AAResultsWrapperPass>(); 8018 AU.addPreserved<GlobalsAAWrapperPass>(); 8019 AU.setPreservesCFG(); 8020 } 8021 }; 8022 8023 } // end anonymous namespace 8024 8025 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 8026 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 8027 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 8028 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 8029 auto *AA = &AM.getResult<AAManager>(F); 8030 auto *LI = &AM.getResult<LoopAnalysis>(F); 8031 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 8032 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 8033 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 8034 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8035 8036 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8037 if (!Changed) 8038 return PreservedAnalyses::all(); 8039 8040 PreservedAnalyses PA; 8041 PA.preserveSet<CFGAnalyses>(); 8042 return PA; 8043 } 8044 8045 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 8046 TargetTransformInfo *TTI_, 8047 TargetLibraryInfo *TLI_, AAResults *AA_, 8048 LoopInfo *LI_, DominatorTree *DT_, 8049 AssumptionCache *AC_, DemandedBits *DB_, 8050 OptimizationRemarkEmitter *ORE_) { 8051 if (!RunSLPVectorization) 8052 return false; 8053 SE = SE_; 8054 TTI = TTI_; 8055 TLI = TLI_; 8056 AA = AA_; 8057 LI = LI_; 8058 DT = DT_; 8059 AC = AC_; 8060 DB = DB_; 8061 DL = &F.getParent()->getDataLayout(); 8062 8063 Stores.clear(); 8064 GEPs.clear(); 8065 bool Changed = false; 8066 8067 // If the target claims to have no vector registers don't attempt 8068 // vectorization. 8069 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 8070 return false; 8071 8072 // Don't vectorize when the attribute NoImplicitFloat is used. 8073 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 8074 return false; 8075 8076 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 8077 8078 // Use the bottom up slp vectorizer to construct chains that start with 8079 // store instructions. 8080 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 8081 8082 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 8083 // delete instructions. 8084 8085 // Update DFS numbers now so that we can use them for ordering. 8086 DT->updateDFSNumbers(); 8087 8088 // Scan the blocks in the function in post order. 8089 for (auto BB : post_order(&F.getEntryBlock())) { 8090 collectSeedInstructions(BB); 8091 8092 // Vectorize trees that end at stores. 8093 if (!Stores.empty()) { 8094 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 8095 << " underlying objects.\n"); 8096 Changed |= vectorizeStoreChains(R); 8097 } 8098 8099 // Vectorize trees that end at reductions. 8100 Changed |= vectorizeChainsInBlock(BB, R); 8101 8102 // Vectorize the index computations of getelementptr instructions. This 8103 // is primarily intended to catch gather-like idioms ending at 8104 // non-consecutive loads. 8105 if (!GEPs.empty()) { 8106 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 8107 << " underlying objects.\n"); 8108 Changed |= vectorizeGEPIndices(BB, R); 8109 } 8110 } 8111 8112 if (Changed) { 8113 R.optimizeGatherSequence(); 8114 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 8115 } 8116 return Changed; 8117 } 8118 8119 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 8120 unsigned Idx) { 8121 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 8122 << "\n"); 8123 const unsigned Sz = R.getVectorElementSize(Chain[0]); 8124 const unsigned MinVF = R.getMinVecRegSize() / Sz; 8125 unsigned VF = Chain.size(); 8126 8127 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 8128 return false; 8129 8130 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 8131 << "\n"); 8132 8133 R.buildTree(Chain); 8134 if (R.isTreeTinyAndNotFullyVectorizable()) 8135 return false; 8136 if (R.isLoadCombineCandidate()) 8137 return false; 8138 R.reorderTopToBottom(); 8139 R.reorderBottomToTop(); 8140 R.buildExternalUses(); 8141 8142 R.computeMinimumValueSizes(); 8143 8144 InstructionCost Cost = R.getTreeCost(); 8145 8146 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 8147 if (Cost < -SLPCostThreshold) { 8148 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 8149 8150 using namespace ore; 8151 8152 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 8153 cast<StoreInst>(Chain[0])) 8154 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 8155 << " and with tree size " 8156 << NV("TreeSize", R.getTreeSize())); 8157 8158 R.vectorizeTree(); 8159 return true; 8160 } 8161 8162 return false; 8163 } 8164 8165 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 8166 BoUpSLP &R) { 8167 // We may run into multiple chains that merge into a single chain. We mark the 8168 // stores that we vectorized so that we don't visit the same store twice. 8169 BoUpSLP::ValueSet VectorizedStores; 8170 bool Changed = false; 8171 8172 int E = Stores.size(); 8173 SmallBitVector Tails(E, false); 8174 int MaxIter = MaxStoreLookup.getValue(); 8175 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 8176 E, std::make_pair(E, INT_MAX)); 8177 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 8178 int IterCnt; 8179 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 8180 &CheckedPairs, 8181 &ConsecutiveChain](int K, int Idx) { 8182 if (IterCnt >= MaxIter) 8183 return true; 8184 if (CheckedPairs[Idx].test(K)) 8185 return ConsecutiveChain[K].second == 1 && 8186 ConsecutiveChain[K].first == Idx; 8187 ++IterCnt; 8188 CheckedPairs[Idx].set(K); 8189 CheckedPairs[K].set(Idx); 8190 Optional<int> Diff = getPointersDiff( 8191 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 8192 Stores[Idx]->getValueOperand()->getType(), 8193 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 8194 if (!Diff || *Diff == 0) 8195 return false; 8196 int Val = *Diff; 8197 if (Val < 0) { 8198 if (ConsecutiveChain[Idx].second > -Val) { 8199 Tails.set(K); 8200 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 8201 } 8202 return false; 8203 } 8204 if (ConsecutiveChain[K].second <= Val) 8205 return false; 8206 8207 Tails.set(Idx); 8208 ConsecutiveChain[K] = std::make_pair(Idx, Val); 8209 return Val == 1; 8210 }; 8211 // Do a quadratic search on all of the given stores in reverse order and find 8212 // all of the pairs of stores that follow each other. 8213 for (int Idx = E - 1; Idx >= 0; --Idx) { 8214 // If a store has multiple consecutive store candidates, search according 8215 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 8216 // This is because usually pairing with immediate succeeding or preceding 8217 // candidate create the best chance to find slp vectorization opportunity. 8218 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 8219 IterCnt = 0; 8220 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 8221 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 8222 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 8223 break; 8224 } 8225 8226 // Tracks if we tried to vectorize stores starting from the given tail 8227 // already. 8228 SmallBitVector TriedTails(E, false); 8229 // For stores that start but don't end a link in the chain: 8230 for (int Cnt = E; Cnt > 0; --Cnt) { 8231 int I = Cnt - 1; 8232 if (ConsecutiveChain[I].first == E || Tails.test(I)) 8233 continue; 8234 // We found a store instr that starts a chain. Now follow the chain and try 8235 // to vectorize it. 8236 BoUpSLP::ValueList Operands; 8237 // Collect the chain into a list. 8238 while (I != E && !VectorizedStores.count(Stores[I])) { 8239 Operands.push_back(Stores[I]); 8240 Tails.set(I); 8241 if (ConsecutiveChain[I].second != 1) { 8242 // Mark the new end in the chain and go back, if required. It might be 8243 // required if the original stores come in reversed order, for example. 8244 if (ConsecutiveChain[I].first != E && 8245 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 8246 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 8247 TriedTails.set(I); 8248 Tails.reset(ConsecutiveChain[I].first); 8249 if (Cnt < ConsecutiveChain[I].first + 2) 8250 Cnt = ConsecutiveChain[I].first + 2; 8251 } 8252 break; 8253 } 8254 // Move to the next value in the chain. 8255 I = ConsecutiveChain[I].first; 8256 } 8257 assert(!Operands.empty() && "Expected non-empty list of stores."); 8258 8259 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 8260 unsigned EltSize = R.getVectorElementSize(Operands[0]); 8261 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 8262 8263 unsigned MinVF = R.getMinVF(EltSize); 8264 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 8265 MaxElts); 8266 8267 // FIXME: Is division-by-2 the correct step? Should we assert that the 8268 // register size is a power-of-2? 8269 unsigned StartIdx = 0; 8270 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 8271 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 8272 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 8273 if (!VectorizedStores.count(Slice.front()) && 8274 !VectorizedStores.count(Slice.back()) && 8275 vectorizeStoreChain(Slice, R, Cnt)) { 8276 // Mark the vectorized stores so that we don't vectorize them again. 8277 VectorizedStores.insert(Slice.begin(), Slice.end()); 8278 Changed = true; 8279 // If we vectorized initial block, no need to try to vectorize it 8280 // again. 8281 if (Cnt == StartIdx) 8282 StartIdx += Size; 8283 Cnt += Size; 8284 continue; 8285 } 8286 ++Cnt; 8287 } 8288 // Check if the whole array was vectorized already - exit. 8289 if (StartIdx >= Operands.size()) 8290 break; 8291 } 8292 } 8293 8294 return Changed; 8295 } 8296 8297 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 8298 // Initialize the collections. We will make a single pass over the block. 8299 Stores.clear(); 8300 GEPs.clear(); 8301 8302 // Visit the store and getelementptr instructions in BB and organize them in 8303 // Stores and GEPs according to the underlying objects of their pointer 8304 // operands. 8305 for (Instruction &I : *BB) { 8306 // Ignore store instructions that are volatile or have a pointer operand 8307 // that doesn't point to a scalar type. 8308 if (auto *SI = dyn_cast<StoreInst>(&I)) { 8309 if (!SI->isSimple()) 8310 continue; 8311 if (!isValidElementType(SI->getValueOperand()->getType())) 8312 continue; 8313 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 8314 } 8315 8316 // Ignore getelementptr instructions that have more than one index, a 8317 // constant index, or a pointer operand that doesn't point to a scalar 8318 // type. 8319 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 8320 auto Idx = GEP->idx_begin()->get(); 8321 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 8322 continue; 8323 if (!isValidElementType(Idx->getType())) 8324 continue; 8325 if (GEP->getType()->isVectorTy()) 8326 continue; 8327 GEPs[GEP->getPointerOperand()].push_back(GEP); 8328 } 8329 } 8330 } 8331 8332 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 8333 if (!A || !B) 8334 return false; 8335 Value *VL[] = {A, B}; 8336 return tryToVectorizeList(VL, R); 8337 } 8338 8339 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 8340 bool LimitForRegisterSize) { 8341 if (VL.size() < 2) 8342 return false; 8343 8344 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 8345 << VL.size() << ".\n"); 8346 8347 // Check that all of the parts are instructions of the same type, 8348 // we permit an alternate opcode via InstructionsState. 8349 InstructionsState S = getSameOpcode(VL); 8350 if (!S.getOpcode()) 8351 return false; 8352 8353 Instruction *I0 = cast<Instruction>(S.OpValue); 8354 // Make sure invalid types (including vector type) are rejected before 8355 // determining vectorization factor for scalar instructions. 8356 for (Value *V : VL) { 8357 Type *Ty = V->getType(); 8358 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 8359 // NOTE: the following will give user internal llvm type name, which may 8360 // not be useful. 8361 R.getORE()->emit([&]() { 8362 std::string type_str; 8363 llvm::raw_string_ostream rso(type_str); 8364 Ty->print(rso); 8365 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 8366 << "Cannot SLP vectorize list: type " 8367 << rso.str() + " is unsupported by vectorizer"; 8368 }); 8369 return false; 8370 } 8371 } 8372 8373 unsigned Sz = R.getVectorElementSize(I0); 8374 unsigned MinVF = R.getMinVF(Sz); 8375 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 8376 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 8377 if (MaxVF < 2) { 8378 R.getORE()->emit([&]() { 8379 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 8380 << "Cannot SLP vectorize list: vectorization factor " 8381 << "less than 2 is not supported"; 8382 }); 8383 return false; 8384 } 8385 8386 bool Changed = false; 8387 bool CandidateFound = false; 8388 InstructionCost MinCost = SLPCostThreshold.getValue(); 8389 Type *ScalarTy = VL[0]->getType(); 8390 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 8391 ScalarTy = IE->getOperand(1)->getType(); 8392 8393 unsigned NextInst = 0, MaxInst = VL.size(); 8394 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 8395 // No actual vectorization should happen, if number of parts is the same as 8396 // provided vectorization factor (i.e. the scalar type is used for vector 8397 // code during codegen). 8398 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 8399 if (TTI->getNumberOfParts(VecTy) == VF) 8400 continue; 8401 for (unsigned I = NextInst; I < MaxInst; ++I) { 8402 unsigned OpsWidth = 0; 8403 8404 if (I + VF > MaxInst) 8405 OpsWidth = MaxInst - I; 8406 else 8407 OpsWidth = VF; 8408 8409 if (!isPowerOf2_32(OpsWidth)) 8410 continue; 8411 8412 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 8413 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 8414 break; 8415 8416 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 8417 // Check that a previous iteration of this loop did not delete the Value. 8418 if (llvm::any_of(Ops, [&R](Value *V) { 8419 auto *I = dyn_cast<Instruction>(V); 8420 return I && R.isDeleted(I); 8421 })) 8422 continue; 8423 8424 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 8425 << "\n"); 8426 8427 R.buildTree(Ops); 8428 if (R.isTreeTinyAndNotFullyVectorizable()) 8429 continue; 8430 R.reorderTopToBottom(); 8431 R.reorderBottomToTop(); 8432 R.buildExternalUses(); 8433 8434 R.computeMinimumValueSizes(); 8435 InstructionCost Cost = R.getTreeCost(); 8436 CandidateFound = true; 8437 MinCost = std::min(MinCost, Cost); 8438 8439 if (Cost < -SLPCostThreshold) { 8440 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 8441 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 8442 cast<Instruction>(Ops[0])) 8443 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 8444 << " and with tree size " 8445 << ore::NV("TreeSize", R.getTreeSize())); 8446 8447 R.vectorizeTree(); 8448 // Move to the next bundle. 8449 I += VF - 1; 8450 NextInst = I + 1; 8451 Changed = true; 8452 } 8453 } 8454 } 8455 8456 if (!Changed && CandidateFound) { 8457 R.getORE()->emit([&]() { 8458 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 8459 << "List vectorization was possible but not beneficial with cost " 8460 << ore::NV("Cost", MinCost) << " >= " 8461 << ore::NV("Treshold", -SLPCostThreshold); 8462 }); 8463 } else if (!Changed) { 8464 R.getORE()->emit([&]() { 8465 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 8466 << "Cannot SLP vectorize list: vectorization was impossible" 8467 << " with available vectorization factors"; 8468 }); 8469 } 8470 return Changed; 8471 } 8472 8473 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 8474 if (!I) 8475 return false; 8476 8477 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 8478 return false; 8479 8480 Value *P = I->getParent(); 8481 8482 // Vectorize in current basic block only. 8483 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 8484 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 8485 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 8486 return false; 8487 8488 // Try to vectorize V. 8489 if (tryToVectorizePair(Op0, Op1, R)) 8490 return true; 8491 8492 auto *A = dyn_cast<BinaryOperator>(Op0); 8493 auto *B = dyn_cast<BinaryOperator>(Op1); 8494 // Try to skip B. 8495 if (B && B->hasOneUse()) { 8496 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 8497 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 8498 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 8499 return true; 8500 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 8501 return true; 8502 } 8503 8504 // Try to skip A. 8505 if (A && A->hasOneUse()) { 8506 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 8507 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 8508 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 8509 return true; 8510 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 8511 return true; 8512 } 8513 return false; 8514 } 8515 8516 namespace { 8517 8518 /// Model horizontal reductions. 8519 /// 8520 /// A horizontal reduction is a tree of reduction instructions that has values 8521 /// that can be put into a vector as its leaves. For example: 8522 /// 8523 /// mul mul mul mul 8524 /// \ / \ / 8525 /// + + 8526 /// \ / 8527 /// + 8528 /// This tree has "mul" as its leaf values and "+" as its reduction 8529 /// instructions. A reduction can feed into a store or a binary operation 8530 /// feeding a phi. 8531 /// ... 8532 /// \ / 8533 /// + 8534 /// | 8535 /// phi += 8536 /// 8537 /// Or: 8538 /// ... 8539 /// \ / 8540 /// + 8541 /// | 8542 /// *p = 8543 /// 8544 class HorizontalReduction { 8545 using ReductionOpsType = SmallVector<Value *, 16>; 8546 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 8547 ReductionOpsListType ReductionOps; 8548 SmallVector<Value *, 32> ReducedVals; 8549 // Use map vector to make stable output. 8550 MapVector<Instruction *, Value *> ExtraArgs; 8551 WeakTrackingVH ReductionRoot; 8552 /// The type of reduction operation. 8553 RecurKind RdxKind; 8554 8555 const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max(); 8556 8557 static bool isCmpSelMinMax(Instruction *I) { 8558 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 8559 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 8560 } 8561 8562 // And/or are potentially poison-safe logical patterns like: 8563 // select x, y, false 8564 // select x, true, y 8565 static bool isBoolLogicOp(Instruction *I) { 8566 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 8567 match(I, m_LogicalOr(m_Value(), m_Value())); 8568 } 8569 8570 /// Checks if instruction is associative and can be vectorized. 8571 static bool isVectorizable(RecurKind Kind, Instruction *I) { 8572 if (Kind == RecurKind::None) 8573 return false; 8574 8575 // Integer ops that map to select instructions or intrinsics are fine. 8576 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 8577 isBoolLogicOp(I)) 8578 return true; 8579 8580 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 8581 // FP min/max are associative except for NaN and -0.0. We do not 8582 // have to rule out -0.0 here because the intrinsic semantics do not 8583 // specify a fixed result for it. 8584 return I->getFastMathFlags().noNaNs(); 8585 } 8586 8587 return I->isAssociative(); 8588 } 8589 8590 static Value *getRdxOperand(Instruction *I, unsigned Index) { 8591 // Poison-safe 'or' takes the form: select X, true, Y 8592 // To make that work with the normal operand processing, we skip the 8593 // true value operand. 8594 // TODO: Change the code and data structures to handle this without a hack. 8595 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 8596 return I->getOperand(2); 8597 return I->getOperand(Index); 8598 } 8599 8600 /// Checks if the ParentStackElem.first should be marked as a reduction 8601 /// operation with an extra argument or as extra argument itself. 8602 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 8603 Value *ExtraArg) { 8604 if (ExtraArgs.count(ParentStackElem.first)) { 8605 ExtraArgs[ParentStackElem.first] = nullptr; 8606 // We ran into something like: 8607 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 8608 // The whole ParentStackElem.first should be considered as an extra value 8609 // in this case. 8610 // Do not perform analysis of remaining operands of ParentStackElem.first 8611 // instruction, this whole instruction is an extra argument. 8612 ParentStackElem.second = INVALID_OPERAND_INDEX; 8613 } else { 8614 // We ran into something like: 8615 // ParentStackElem.first += ... + ExtraArg + ... 8616 ExtraArgs[ParentStackElem.first] = ExtraArg; 8617 } 8618 } 8619 8620 /// Creates reduction operation with the current opcode. 8621 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 8622 Value *RHS, const Twine &Name, bool UseSelect) { 8623 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 8624 switch (Kind) { 8625 case RecurKind::Or: 8626 if (UseSelect && 8627 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 8628 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 8629 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8630 Name); 8631 case RecurKind::And: 8632 if (UseSelect && 8633 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 8634 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 8635 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8636 Name); 8637 case RecurKind::Add: 8638 case RecurKind::Mul: 8639 case RecurKind::Xor: 8640 case RecurKind::FAdd: 8641 case RecurKind::FMul: 8642 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8643 Name); 8644 case RecurKind::FMax: 8645 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 8646 case RecurKind::FMin: 8647 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 8648 case RecurKind::SMax: 8649 if (UseSelect) { 8650 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 8651 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8652 } 8653 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 8654 case RecurKind::SMin: 8655 if (UseSelect) { 8656 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 8657 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8658 } 8659 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 8660 case RecurKind::UMax: 8661 if (UseSelect) { 8662 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 8663 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8664 } 8665 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 8666 case RecurKind::UMin: 8667 if (UseSelect) { 8668 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 8669 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8670 } 8671 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 8672 default: 8673 llvm_unreachable("Unknown reduction operation."); 8674 } 8675 } 8676 8677 /// Creates reduction operation with the current opcode with the IR flags 8678 /// from \p ReductionOps. 8679 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 8680 Value *RHS, const Twine &Name, 8681 const ReductionOpsListType &ReductionOps) { 8682 bool UseSelect = ReductionOps.size() == 2 || 8683 // Logical or/and. 8684 (ReductionOps.size() == 1 && 8685 isa<SelectInst>(ReductionOps.front().front())); 8686 assert((!UseSelect || ReductionOps.size() != 2 || 8687 isa<SelectInst>(ReductionOps[1][0])) && 8688 "Expected cmp + select pairs for reduction"); 8689 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 8690 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 8691 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 8692 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 8693 propagateIRFlags(Op, ReductionOps[1]); 8694 return Op; 8695 } 8696 } 8697 propagateIRFlags(Op, ReductionOps[0]); 8698 return Op; 8699 } 8700 8701 /// Creates reduction operation with the current opcode with the IR flags 8702 /// from \p I. 8703 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 8704 Value *RHS, const Twine &Name, Instruction *I) { 8705 auto *SelI = dyn_cast<SelectInst>(I); 8706 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 8707 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 8708 if (auto *Sel = dyn_cast<SelectInst>(Op)) 8709 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 8710 } 8711 propagateIRFlags(Op, I); 8712 return Op; 8713 } 8714 8715 static RecurKind getRdxKind(Instruction *I) { 8716 assert(I && "Expected instruction for reduction matching"); 8717 TargetTransformInfo::ReductionFlags RdxFlags; 8718 if (match(I, m_Add(m_Value(), m_Value()))) 8719 return RecurKind::Add; 8720 if (match(I, m_Mul(m_Value(), m_Value()))) 8721 return RecurKind::Mul; 8722 if (match(I, m_And(m_Value(), m_Value())) || 8723 match(I, m_LogicalAnd(m_Value(), m_Value()))) 8724 return RecurKind::And; 8725 if (match(I, m_Or(m_Value(), m_Value())) || 8726 match(I, m_LogicalOr(m_Value(), m_Value()))) 8727 return RecurKind::Or; 8728 if (match(I, m_Xor(m_Value(), m_Value()))) 8729 return RecurKind::Xor; 8730 if (match(I, m_FAdd(m_Value(), m_Value()))) 8731 return RecurKind::FAdd; 8732 if (match(I, m_FMul(m_Value(), m_Value()))) 8733 return RecurKind::FMul; 8734 8735 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 8736 return RecurKind::FMax; 8737 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 8738 return RecurKind::FMin; 8739 8740 // This matches either cmp+select or intrinsics. SLP is expected to handle 8741 // either form. 8742 // TODO: If we are canonicalizing to intrinsics, we can remove several 8743 // special-case paths that deal with selects. 8744 if (match(I, m_SMax(m_Value(), m_Value()))) 8745 return RecurKind::SMax; 8746 if (match(I, m_SMin(m_Value(), m_Value()))) 8747 return RecurKind::SMin; 8748 if (match(I, m_UMax(m_Value(), m_Value()))) 8749 return RecurKind::UMax; 8750 if (match(I, m_UMin(m_Value(), m_Value()))) 8751 return RecurKind::UMin; 8752 8753 if (auto *Select = dyn_cast<SelectInst>(I)) { 8754 // Try harder: look for min/max pattern based on instructions producing 8755 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 8756 // During the intermediate stages of SLP, it's very common to have 8757 // pattern like this (since optimizeGatherSequence is run only once 8758 // at the end): 8759 // %1 = extractelement <2 x i32> %a, i32 0 8760 // %2 = extractelement <2 x i32> %a, i32 1 8761 // %cond = icmp sgt i32 %1, %2 8762 // %3 = extractelement <2 x i32> %a, i32 0 8763 // %4 = extractelement <2 x i32> %a, i32 1 8764 // %select = select i1 %cond, i32 %3, i32 %4 8765 CmpInst::Predicate Pred; 8766 Instruction *L1; 8767 Instruction *L2; 8768 8769 Value *LHS = Select->getTrueValue(); 8770 Value *RHS = Select->getFalseValue(); 8771 Value *Cond = Select->getCondition(); 8772 8773 // TODO: Support inverse predicates. 8774 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 8775 if (!isa<ExtractElementInst>(RHS) || 8776 !L2->isIdenticalTo(cast<Instruction>(RHS))) 8777 return RecurKind::None; 8778 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 8779 if (!isa<ExtractElementInst>(LHS) || 8780 !L1->isIdenticalTo(cast<Instruction>(LHS))) 8781 return RecurKind::None; 8782 } else { 8783 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 8784 return RecurKind::None; 8785 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 8786 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 8787 !L2->isIdenticalTo(cast<Instruction>(RHS))) 8788 return RecurKind::None; 8789 } 8790 8791 TargetTransformInfo::ReductionFlags RdxFlags; 8792 switch (Pred) { 8793 default: 8794 return RecurKind::None; 8795 case CmpInst::ICMP_SGT: 8796 case CmpInst::ICMP_SGE: 8797 return RecurKind::SMax; 8798 case CmpInst::ICMP_SLT: 8799 case CmpInst::ICMP_SLE: 8800 return RecurKind::SMin; 8801 case CmpInst::ICMP_UGT: 8802 case CmpInst::ICMP_UGE: 8803 return RecurKind::UMax; 8804 case CmpInst::ICMP_ULT: 8805 case CmpInst::ICMP_ULE: 8806 return RecurKind::UMin; 8807 } 8808 } 8809 return RecurKind::None; 8810 } 8811 8812 /// Get the index of the first operand. 8813 static unsigned getFirstOperandIndex(Instruction *I) { 8814 return isCmpSelMinMax(I) ? 1 : 0; 8815 } 8816 8817 /// Total number of operands in the reduction operation. 8818 static unsigned getNumberOfOperands(Instruction *I) { 8819 return isCmpSelMinMax(I) ? 3 : 2; 8820 } 8821 8822 /// Checks if the instruction is in basic block \p BB. 8823 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 8824 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 8825 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 8826 auto *Sel = cast<SelectInst>(I); 8827 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 8828 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 8829 } 8830 return I->getParent() == BB; 8831 } 8832 8833 /// Expected number of uses for reduction operations/reduced values. 8834 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 8835 if (IsCmpSelMinMax) { 8836 // SelectInst must be used twice while the condition op must have single 8837 // use only. 8838 if (auto *Sel = dyn_cast<SelectInst>(I)) 8839 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 8840 return I->hasNUses(2); 8841 } 8842 8843 // Arithmetic reduction operation must be used once only. 8844 return I->hasOneUse(); 8845 } 8846 8847 /// Initializes the list of reduction operations. 8848 void initReductionOps(Instruction *I) { 8849 if (isCmpSelMinMax(I)) 8850 ReductionOps.assign(2, ReductionOpsType()); 8851 else 8852 ReductionOps.assign(1, ReductionOpsType()); 8853 } 8854 8855 /// Add all reduction operations for the reduction instruction \p I. 8856 void addReductionOps(Instruction *I) { 8857 if (isCmpSelMinMax(I)) { 8858 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 8859 ReductionOps[1].emplace_back(I); 8860 } else { 8861 ReductionOps[0].emplace_back(I); 8862 } 8863 } 8864 8865 static Value *getLHS(RecurKind Kind, Instruction *I) { 8866 if (Kind == RecurKind::None) 8867 return nullptr; 8868 return I->getOperand(getFirstOperandIndex(I)); 8869 } 8870 static Value *getRHS(RecurKind Kind, Instruction *I) { 8871 if (Kind == RecurKind::None) 8872 return nullptr; 8873 return I->getOperand(getFirstOperandIndex(I) + 1); 8874 } 8875 8876 public: 8877 HorizontalReduction() = default; 8878 8879 /// Try to find a reduction tree. 8880 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) { 8881 assert((!Phi || is_contained(Phi->operands(), Inst)) && 8882 "Phi needs to use the binary operator"); 8883 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 8884 isa<IntrinsicInst>(Inst)) && 8885 "Expected binop, select, or intrinsic for reduction matching"); 8886 RdxKind = getRdxKind(Inst); 8887 8888 // We could have a initial reductions that is not an add. 8889 // r *= v1 + v2 + v3 + v4 8890 // In such a case start looking for a tree rooted in the first '+'. 8891 if (Phi) { 8892 if (getLHS(RdxKind, Inst) == Phi) { 8893 Phi = nullptr; 8894 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 8895 if (!Inst) 8896 return false; 8897 RdxKind = getRdxKind(Inst); 8898 } else if (getRHS(RdxKind, Inst) == Phi) { 8899 Phi = nullptr; 8900 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 8901 if (!Inst) 8902 return false; 8903 RdxKind = getRdxKind(Inst); 8904 } 8905 } 8906 8907 if (!isVectorizable(RdxKind, Inst)) 8908 return false; 8909 8910 // Analyze "regular" integer/FP types for reductions - no target-specific 8911 // types or pointers. 8912 Type *Ty = Inst->getType(); 8913 if (!isValidElementType(Ty) || Ty->isPointerTy()) 8914 return false; 8915 8916 // Though the ultimate reduction may have multiple uses, its condition must 8917 // have only single use. 8918 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 8919 if (!Sel->getCondition()->hasOneUse()) 8920 return false; 8921 8922 ReductionRoot = Inst; 8923 8924 // The opcode for leaf values that we perform a reduction on. 8925 // For example: load(x) + load(y) + load(z) + fptoui(w) 8926 // The leaf opcode for 'w' does not match, so we don't include it as a 8927 // potential candidate for the reduction. 8928 unsigned LeafOpcode = 0; 8929 8930 // Post-order traverse the reduction tree starting at Inst. We only handle 8931 // true trees containing binary operators or selects. 8932 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 8933 Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst))); 8934 initReductionOps(Inst); 8935 while (!Stack.empty()) { 8936 Instruction *TreeN = Stack.back().first; 8937 unsigned EdgeToVisit = Stack.back().second++; 8938 const RecurKind TreeRdxKind = getRdxKind(TreeN); 8939 bool IsReducedValue = TreeRdxKind != RdxKind; 8940 8941 // Postorder visit. 8942 if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) { 8943 if (IsReducedValue) 8944 ReducedVals.push_back(TreeN); 8945 else { 8946 auto ExtraArgsIter = ExtraArgs.find(TreeN); 8947 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 8948 // Check if TreeN is an extra argument of its parent operation. 8949 if (Stack.size() <= 1) { 8950 // TreeN can't be an extra argument as it is a root reduction 8951 // operation. 8952 return false; 8953 } 8954 // Yes, TreeN is an extra argument, do not add it to a list of 8955 // reduction operations. 8956 // Stack[Stack.size() - 2] always points to the parent operation. 8957 markExtraArg(Stack[Stack.size() - 2], TreeN); 8958 ExtraArgs.erase(TreeN); 8959 } else 8960 addReductionOps(TreeN); 8961 } 8962 // Retract. 8963 Stack.pop_back(); 8964 continue; 8965 } 8966 8967 // Visit operands. 8968 Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit); 8969 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 8970 if (!EdgeInst) { 8971 // Edge value is not a reduction instruction or a leaf instruction. 8972 // (It may be a constant, function argument, or something else.) 8973 markExtraArg(Stack.back(), EdgeVal); 8974 continue; 8975 } 8976 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 8977 // Continue analysis if the next operand is a reduction operation or 8978 // (possibly) a leaf value. If the leaf value opcode is not set, 8979 // the first met operation != reduction operation is considered as the 8980 // leaf opcode. 8981 // Only handle trees in the current basic block. 8982 // Each tree node needs to have minimal number of users except for the 8983 // ultimate reduction. 8984 const bool IsRdxInst = EdgeRdxKind == RdxKind; 8985 if (EdgeInst != Phi && EdgeInst != Inst && 8986 hasSameParent(EdgeInst, Inst->getParent()) && 8987 hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) && 8988 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 8989 if (IsRdxInst) { 8990 // We need to be able to reassociate the reduction operations. 8991 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 8992 // I is an extra argument for TreeN (its parent operation). 8993 markExtraArg(Stack.back(), EdgeInst); 8994 continue; 8995 } 8996 } else if (!LeafOpcode) { 8997 LeafOpcode = EdgeInst->getOpcode(); 8998 } 8999 Stack.push_back( 9000 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 9001 continue; 9002 } 9003 // I is an extra argument for TreeN (its parent operation). 9004 markExtraArg(Stack.back(), EdgeInst); 9005 } 9006 return true; 9007 } 9008 9009 /// Attempt to vectorize the tree found by matchAssociativeReduction. 9010 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 9011 // If there are a sufficient number of reduction values, reduce 9012 // to a nearby power-of-2. We can safely generate oversized 9013 // vectors and rely on the backend to split them to legal sizes. 9014 unsigned NumReducedVals = ReducedVals.size(); 9015 if (NumReducedVals < 4) 9016 return nullptr; 9017 9018 // Intersect the fast-math-flags from all reduction operations. 9019 FastMathFlags RdxFMF; 9020 RdxFMF.set(); 9021 for (ReductionOpsType &RdxOp : ReductionOps) { 9022 for (Value *RdxVal : RdxOp) { 9023 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 9024 RdxFMF &= FPMO->getFastMathFlags(); 9025 } 9026 } 9027 9028 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 9029 Builder.setFastMathFlags(RdxFMF); 9030 9031 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 9032 // The same extra argument may be used several times, so log each attempt 9033 // to use it. 9034 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 9035 assert(Pair.first && "DebugLoc must be set."); 9036 ExternallyUsedValues[Pair.second].push_back(Pair.first); 9037 } 9038 9039 // The compare instruction of a min/max is the insertion point for new 9040 // instructions and may be replaced with a new compare instruction. 9041 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 9042 assert(isa<SelectInst>(RdxRootInst) && 9043 "Expected min/max reduction to have select root instruction"); 9044 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 9045 assert(isa<Instruction>(ScalarCond) && 9046 "Expected min/max reduction to have compare condition"); 9047 return cast<Instruction>(ScalarCond); 9048 }; 9049 9050 // The reduction root is used as the insertion point for new instructions, 9051 // so set it as externally used to prevent it from being deleted. 9052 ExternallyUsedValues[ReductionRoot]; 9053 SmallVector<Value *, 16> IgnoreList; 9054 for (ReductionOpsType &RdxOp : ReductionOps) 9055 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 9056 9057 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 9058 if (NumReducedVals > ReduxWidth) { 9059 // In the loop below, we are building a tree based on a window of 9060 // 'ReduxWidth' values. 9061 // If the operands of those values have common traits (compare predicate, 9062 // constant operand, etc), then we want to group those together to 9063 // minimize the cost of the reduction. 9064 9065 // TODO: This should be extended to count common operands for 9066 // compares and binops. 9067 9068 // Step 1: Count the number of times each compare predicate occurs. 9069 SmallDenseMap<unsigned, unsigned> PredCountMap; 9070 for (Value *RdxVal : ReducedVals) { 9071 CmpInst::Predicate Pred; 9072 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 9073 ++PredCountMap[Pred]; 9074 } 9075 // Step 2: Sort the values so the most common predicates come first. 9076 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 9077 CmpInst::Predicate PredA, PredB; 9078 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 9079 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 9080 return PredCountMap[PredA] > PredCountMap[PredB]; 9081 } 9082 return false; 9083 }); 9084 } 9085 9086 Value *VectorizedTree = nullptr; 9087 unsigned i = 0; 9088 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 9089 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 9090 V.buildTree(VL, IgnoreList); 9091 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) 9092 break; 9093 if (V.isLoadCombineReductionCandidate(RdxKind)) 9094 break; 9095 V.reorderTopToBottom(); 9096 V.reorderBottomToTop(/*IgnoreReorder=*/true); 9097 V.buildExternalUses(ExternallyUsedValues); 9098 9099 // For a poison-safe boolean logic reduction, do not replace select 9100 // instructions with logic ops. All reduced values will be frozen (see 9101 // below) to prevent leaking poison. 9102 if (isa<SelectInst>(ReductionRoot) && 9103 isBoolLogicOp(cast<Instruction>(ReductionRoot)) && 9104 NumReducedVals != ReduxWidth) 9105 break; 9106 9107 V.computeMinimumValueSizes(); 9108 9109 // Estimate cost. 9110 InstructionCost TreeCost = 9111 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth)); 9112 InstructionCost ReductionCost = 9113 getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF); 9114 InstructionCost Cost = TreeCost + ReductionCost; 9115 if (!Cost.isValid()) { 9116 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 9117 return nullptr; 9118 } 9119 if (Cost >= -SLPCostThreshold) { 9120 V.getORE()->emit([&]() { 9121 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 9122 cast<Instruction>(VL[0])) 9123 << "Vectorizing horizontal reduction is possible" 9124 << "but not beneficial with cost " << ore::NV("Cost", Cost) 9125 << " and threshold " 9126 << ore::NV("Threshold", -SLPCostThreshold); 9127 }); 9128 break; 9129 } 9130 9131 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 9132 << Cost << ". (HorRdx)\n"); 9133 V.getORE()->emit([&]() { 9134 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 9135 cast<Instruction>(VL[0])) 9136 << "Vectorized horizontal reduction with cost " 9137 << ore::NV("Cost", Cost) << " and with tree size " 9138 << ore::NV("TreeSize", V.getTreeSize()); 9139 }); 9140 9141 // Vectorize a tree. 9142 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 9143 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 9144 9145 // Emit a reduction. If the root is a select (min/max idiom), the insert 9146 // point is the compare condition of that select. 9147 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 9148 if (isCmpSelMinMax(RdxRootInst)) 9149 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 9150 else 9151 Builder.SetInsertPoint(RdxRootInst); 9152 9153 // To prevent poison from leaking across what used to be sequential, safe, 9154 // scalar boolean logic operations, the reduction operand must be frozen. 9155 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 9156 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 9157 9158 Value *ReducedSubTree = 9159 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 9160 9161 if (!VectorizedTree) { 9162 // Initialize the final value in the reduction. 9163 VectorizedTree = ReducedSubTree; 9164 } else { 9165 // Update the final value in the reduction. 9166 Builder.SetCurrentDebugLocation(Loc); 9167 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9168 ReducedSubTree, "op.rdx", ReductionOps); 9169 } 9170 i += ReduxWidth; 9171 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 9172 } 9173 9174 if (VectorizedTree) { 9175 // Finish the reduction. 9176 for (; i < NumReducedVals; ++i) { 9177 auto *I = cast<Instruction>(ReducedVals[i]); 9178 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9179 VectorizedTree = 9180 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 9181 } 9182 for (auto &Pair : ExternallyUsedValues) { 9183 // Add each externally used value to the final reduction. 9184 for (auto *I : Pair.second) { 9185 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9186 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9187 Pair.first, "op.extra", I); 9188 } 9189 } 9190 9191 ReductionRoot->replaceAllUsesWith(VectorizedTree); 9192 9193 // Mark all scalar reduction ops for deletion, they are replaced by the 9194 // vector reductions. 9195 V.eraseInstructions(IgnoreList); 9196 } 9197 return VectorizedTree; 9198 } 9199 9200 unsigned numReductionValues() const { return ReducedVals.size(); } 9201 9202 private: 9203 /// Calculate the cost of a reduction. 9204 InstructionCost getReductionCost(TargetTransformInfo *TTI, 9205 Value *FirstReducedVal, unsigned ReduxWidth, 9206 FastMathFlags FMF) { 9207 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 9208 Type *ScalarTy = FirstReducedVal->getType(); 9209 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 9210 InstructionCost VectorCost, ScalarCost; 9211 switch (RdxKind) { 9212 case RecurKind::Add: 9213 case RecurKind::Mul: 9214 case RecurKind::Or: 9215 case RecurKind::And: 9216 case RecurKind::Xor: 9217 case RecurKind::FAdd: 9218 case RecurKind::FMul: { 9219 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 9220 VectorCost = 9221 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 9222 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 9223 break; 9224 } 9225 case RecurKind::FMax: 9226 case RecurKind::FMin: { 9227 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9228 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9229 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 9230 /*IsUnsigned=*/false, CostKind); 9231 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9232 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 9233 SclCondTy, RdxPred, CostKind) + 9234 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9235 SclCondTy, RdxPred, CostKind); 9236 break; 9237 } 9238 case RecurKind::SMax: 9239 case RecurKind::SMin: 9240 case RecurKind::UMax: 9241 case RecurKind::UMin: { 9242 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9243 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9244 bool IsUnsigned = 9245 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 9246 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned, 9247 CostKind); 9248 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9249 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 9250 SclCondTy, RdxPred, CostKind) + 9251 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9252 SclCondTy, RdxPred, CostKind); 9253 break; 9254 } 9255 default: 9256 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 9257 } 9258 9259 // Scalar cost is repeated for N-1 elements. 9260 ScalarCost *= (ReduxWidth - 1); 9261 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 9262 << " for reduction that starts with " << *FirstReducedVal 9263 << " (It is a splitting reduction)\n"); 9264 return VectorCost - ScalarCost; 9265 } 9266 9267 /// Emit a horizontal reduction of the vectorized value. 9268 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 9269 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 9270 assert(VectorizedValue && "Need to have a vectorized tree node"); 9271 assert(isPowerOf2_32(ReduxWidth) && 9272 "We only handle power-of-two reductions for now"); 9273 assert(RdxKind != RecurKind::FMulAdd && 9274 "A call to the llvm.fmuladd intrinsic is not handled yet"); 9275 9276 ++NumVectorInstructions; 9277 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind); 9278 } 9279 }; 9280 9281 } // end anonymous namespace 9282 9283 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 9284 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 9285 return cast<FixedVectorType>(IE->getType())->getNumElements(); 9286 9287 unsigned AggregateSize = 1; 9288 auto *IV = cast<InsertValueInst>(InsertInst); 9289 Type *CurrentType = IV->getType(); 9290 do { 9291 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 9292 for (auto *Elt : ST->elements()) 9293 if (Elt != ST->getElementType(0)) // check homogeneity 9294 return None; 9295 AggregateSize *= ST->getNumElements(); 9296 CurrentType = ST->getElementType(0); 9297 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 9298 AggregateSize *= AT->getNumElements(); 9299 CurrentType = AT->getElementType(); 9300 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 9301 AggregateSize *= VT->getNumElements(); 9302 return AggregateSize; 9303 } else if (CurrentType->isSingleValueType()) { 9304 return AggregateSize; 9305 } else { 9306 return None; 9307 } 9308 } while (true); 9309 } 9310 9311 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 9312 TargetTransformInfo *TTI, 9313 SmallVectorImpl<Value *> &BuildVectorOpds, 9314 SmallVectorImpl<Value *> &InsertElts, 9315 unsigned OperandOffset) { 9316 do { 9317 Value *InsertedOperand = LastInsertInst->getOperand(1); 9318 Optional<int> OperandIndex = getInsertIndex(LastInsertInst, OperandOffset); 9319 if (!OperandIndex) 9320 return false; 9321 if (isa<InsertElementInst>(InsertedOperand) || 9322 isa<InsertValueInst>(InsertedOperand)) { 9323 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 9324 BuildVectorOpds, InsertElts, *OperandIndex)) 9325 return false; 9326 } else { 9327 BuildVectorOpds[*OperandIndex] = InsertedOperand; 9328 InsertElts[*OperandIndex] = LastInsertInst; 9329 } 9330 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 9331 } while (LastInsertInst != nullptr && 9332 (isa<InsertValueInst>(LastInsertInst) || 9333 isa<InsertElementInst>(LastInsertInst)) && 9334 LastInsertInst->hasOneUse()); 9335 return true; 9336 } 9337 9338 /// Recognize construction of vectors like 9339 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 9340 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 9341 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 9342 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 9343 /// starting from the last insertelement or insertvalue instruction. 9344 /// 9345 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 9346 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 9347 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 9348 /// 9349 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 9350 /// 9351 /// \return true if it matches. 9352 static bool findBuildAggregate(Instruction *LastInsertInst, 9353 TargetTransformInfo *TTI, 9354 SmallVectorImpl<Value *> &BuildVectorOpds, 9355 SmallVectorImpl<Value *> &InsertElts) { 9356 9357 assert((isa<InsertElementInst>(LastInsertInst) || 9358 isa<InsertValueInst>(LastInsertInst)) && 9359 "Expected insertelement or insertvalue instruction!"); 9360 9361 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 9362 "Expected empty result vectors!"); 9363 9364 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 9365 if (!AggregateSize) 9366 return false; 9367 BuildVectorOpds.resize(*AggregateSize); 9368 InsertElts.resize(*AggregateSize); 9369 9370 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 9371 0)) { 9372 llvm::erase_value(BuildVectorOpds, nullptr); 9373 llvm::erase_value(InsertElts, nullptr); 9374 if (BuildVectorOpds.size() >= 2) 9375 return true; 9376 } 9377 9378 return false; 9379 } 9380 9381 /// Try and get a reduction value from a phi node. 9382 /// 9383 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 9384 /// if they come from either \p ParentBB or a containing loop latch. 9385 /// 9386 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 9387 /// if not possible. 9388 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 9389 BasicBlock *ParentBB, LoopInfo *LI) { 9390 // There are situations where the reduction value is not dominated by the 9391 // reduction phi. Vectorizing such cases has been reported to cause 9392 // miscompiles. See PR25787. 9393 auto DominatedReduxValue = [&](Value *R) { 9394 return isa<Instruction>(R) && 9395 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 9396 }; 9397 9398 Value *Rdx = nullptr; 9399 9400 // Return the incoming value if it comes from the same BB as the phi node. 9401 if (P->getIncomingBlock(0) == ParentBB) { 9402 Rdx = P->getIncomingValue(0); 9403 } else if (P->getIncomingBlock(1) == ParentBB) { 9404 Rdx = P->getIncomingValue(1); 9405 } 9406 9407 if (Rdx && DominatedReduxValue(Rdx)) 9408 return Rdx; 9409 9410 // Otherwise, check whether we have a loop latch to look at. 9411 Loop *BBL = LI->getLoopFor(ParentBB); 9412 if (!BBL) 9413 return nullptr; 9414 BasicBlock *BBLatch = BBL->getLoopLatch(); 9415 if (!BBLatch) 9416 return nullptr; 9417 9418 // There is a loop latch, return the incoming value if it comes from 9419 // that. This reduction pattern occasionally turns up. 9420 if (P->getIncomingBlock(0) == BBLatch) { 9421 Rdx = P->getIncomingValue(0); 9422 } else if (P->getIncomingBlock(1) == BBLatch) { 9423 Rdx = P->getIncomingValue(1); 9424 } 9425 9426 if (Rdx && DominatedReduxValue(Rdx)) 9427 return Rdx; 9428 9429 return nullptr; 9430 } 9431 9432 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 9433 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 9434 return true; 9435 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 9436 return true; 9437 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 9438 return true; 9439 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 9440 return true; 9441 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 9442 return true; 9443 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 9444 return true; 9445 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 9446 return true; 9447 return false; 9448 } 9449 9450 /// Attempt to reduce a horizontal reduction. 9451 /// If it is legal to match a horizontal reduction feeding the phi node \a P 9452 /// with reduction operators \a Root (or one of its operands) in a basic block 9453 /// \a BB, then check if it can be done. If horizontal reduction is not found 9454 /// and root instruction is a binary operation, vectorization of the operands is 9455 /// attempted. 9456 /// \returns true if a horizontal reduction was matched and reduced or operands 9457 /// of one of the binary instruction were vectorized. 9458 /// \returns false if a horizontal reduction was not matched (or not possible) 9459 /// or no vectorization of any binary operation feeding \a Root instruction was 9460 /// performed. 9461 static bool tryToVectorizeHorReductionOrInstOperands( 9462 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 9463 TargetTransformInfo *TTI, 9464 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 9465 if (!ShouldVectorizeHor) 9466 return false; 9467 9468 if (!Root) 9469 return false; 9470 9471 if (Root->getParent() != BB || isa<PHINode>(Root)) 9472 return false; 9473 // Start analysis starting from Root instruction. If horizontal reduction is 9474 // found, try to vectorize it. If it is not a horizontal reduction or 9475 // vectorization is not possible or not effective, and currently analyzed 9476 // instruction is a binary operation, try to vectorize the operands, using 9477 // pre-order DFS traversal order. If the operands were not vectorized, repeat 9478 // the same procedure considering each operand as a possible root of the 9479 // horizontal reduction. 9480 // Interrupt the process if the Root instruction itself was vectorized or all 9481 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 9482 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 9483 // CmpInsts so we can skip extra attempts in 9484 // tryToVectorizeHorReductionOrInstOperands and save compile time. 9485 std::queue<std::pair<Instruction *, unsigned>> Stack; 9486 Stack.emplace(Root, 0); 9487 SmallPtrSet<Value *, 8> VisitedInstrs; 9488 SmallVector<WeakTrackingVH> PostponedInsts; 9489 bool Res = false; 9490 auto &&TryToReduce = [TTI, &P, &R](Instruction *Inst, Value *&B0, 9491 Value *&B1) -> Value * { 9492 bool IsBinop = matchRdxBop(Inst, B0, B1); 9493 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 9494 if (IsBinop || IsSelect) { 9495 HorizontalReduction HorRdx; 9496 if (HorRdx.matchAssociativeReduction(P, Inst)) 9497 return HorRdx.tryToReduce(R, TTI); 9498 } 9499 return nullptr; 9500 }; 9501 while (!Stack.empty()) { 9502 Instruction *Inst; 9503 unsigned Level; 9504 std::tie(Inst, Level) = Stack.front(); 9505 Stack.pop(); 9506 // Do not try to analyze instruction that has already been vectorized. 9507 // This may happen when we vectorize instruction operands on a previous 9508 // iteration while stack was populated before that happened. 9509 if (R.isDeleted(Inst)) 9510 continue; 9511 Value *B0 = nullptr, *B1 = nullptr; 9512 if (Value *V = TryToReduce(Inst, B0, B1)) { 9513 Res = true; 9514 // Set P to nullptr to avoid re-analysis of phi node in 9515 // matchAssociativeReduction function unless this is the root node. 9516 P = nullptr; 9517 if (auto *I = dyn_cast<Instruction>(V)) { 9518 // Try to find another reduction. 9519 Stack.emplace(I, Level); 9520 continue; 9521 } 9522 } else { 9523 bool IsBinop = B0 && B1; 9524 if (P && IsBinop) { 9525 Inst = dyn_cast<Instruction>(B0); 9526 if (Inst == P) 9527 Inst = dyn_cast<Instruction>(B1); 9528 if (!Inst) { 9529 // Set P to nullptr to avoid re-analysis of phi node in 9530 // matchAssociativeReduction function unless this is the root node. 9531 P = nullptr; 9532 continue; 9533 } 9534 } 9535 // Set P to nullptr to avoid re-analysis of phi node in 9536 // matchAssociativeReduction function unless this is the root node. 9537 P = nullptr; 9538 // Do not try to vectorize CmpInst operands, this is done separately. 9539 // Final attempt for binop args vectorization should happen after the loop 9540 // to try to find reductions. 9541 if (!isa<CmpInst>(Inst)) 9542 PostponedInsts.push_back(Inst); 9543 } 9544 9545 // Try to vectorize operands. 9546 // Continue analysis for the instruction from the same basic block only to 9547 // save compile time. 9548 if (++Level < RecursionMaxDepth) 9549 for (auto *Op : Inst->operand_values()) 9550 if (VisitedInstrs.insert(Op).second) 9551 if (auto *I = dyn_cast<Instruction>(Op)) 9552 // Do not try to vectorize CmpInst operands, this is done 9553 // separately. 9554 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 9555 I->getParent() == BB) 9556 Stack.emplace(I, Level); 9557 } 9558 // Try to vectorized binops where reductions were not found. 9559 for (Value *V : PostponedInsts) 9560 if (auto *Inst = dyn_cast<Instruction>(V)) 9561 if (!R.isDeleted(Inst)) 9562 Res |= Vectorize(Inst, R); 9563 return Res; 9564 } 9565 9566 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 9567 BasicBlock *BB, BoUpSLP &R, 9568 TargetTransformInfo *TTI) { 9569 auto *I = dyn_cast_or_null<Instruction>(V); 9570 if (!I) 9571 return false; 9572 9573 if (!isa<BinaryOperator>(I)) 9574 P = nullptr; 9575 // Try to match and vectorize a horizontal reduction. 9576 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 9577 return tryToVectorize(I, R); 9578 }; 9579 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 9580 ExtraVectorization); 9581 } 9582 9583 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 9584 BasicBlock *BB, BoUpSLP &R) { 9585 const DataLayout &DL = BB->getModule()->getDataLayout(); 9586 if (!R.canMapToVector(IVI->getType(), DL)) 9587 return false; 9588 9589 SmallVector<Value *, 16> BuildVectorOpds; 9590 SmallVector<Value *, 16> BuildVectorInsts; 9591 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 9592 return false; 9593 9594 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 9595 // Aggregate value is unlikely to be processed in vector register. 9596 return tryToVectorizeList(BuildVectorOpds, R); 9597 } 9598 9599 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 9600 BasicBlock *BB, BoUpSLP &R) { 9601 SmallVector<Value *, 16> BuildVectorInsts; 9602 SmallVector<Value *, 16> BuildVectorOpds; 9603 SmallVector<int> Mask; 9604 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 9605 (llvm::all_of( 9606 BuildVectorOpds, 9607 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) && 9608 isFixedVectorShuffle(BuildVectorOpds, Mask))) 9609 return false; 9610 9611 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 9612 return tryToVectorizeList(BuildVectorInsts, R); 9613 } 9614 9615 template <typename T> 9616 static bool 9617 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 9618 function_ref<unsigned(T *)> Limit, 9619 function_ref<bool(T *, T *)> Comparator, 9620 function_ref<bool(T *, T *)> AreCompatible, 9621 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorize, 9622 bool LimitForRegisterSize) { 9623 bool Changed = false; 9624 // Sort by type, parent, operands. 9625 stable_sort(Incoming, Comparator); 9626 9627 // Try to vectorize elements base on their type. 9628 SmallVector<T *> Candidates; 9629 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 9630 // Look for the next elements with the same type, parent and operand 9631 // kinds. 9632 auto *SameTypeIt = IncIt; 9633 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 9634 ++SameTypeIt; 9635 9636 // Try to vectorize them. 9637 unsigned NumElts = (SameTypeIt - IncIt); 9638 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 9639 << NumElts << ")\n"); 9640 // The vectorization is a 3-state attempt: 9641 // 1. Try to vectorize instructions with the same/alternate opcodes with the 9642 // size of maximal register at first. 9643 // 2. Try to vectorize remaining instructions with the same type, if 9644 // possible. This may result in the better vectorization results rather than 9645 // if we try just to vectorize instructions with the same/alternate opcodes. 9646 // 3. Final attempt to try to vectorize all instructions with the 9647 // same/alternate ops only, this may result in some extra final 9648 // vectorization. 9649 if (NumElts > 1 && 9650 TryToVectorize(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 9651 // Success start over because instructions might have been changed. 9652 Changed = true; 9653 } else if (NumElts < Limit(*IncIt) && 9654 (Candidates.empty() || 9655 Candidates.front()->getType() == (*IncIt)->getType())) { 9656 Candidates.append(IncIt, std::next(IncIt, NumElts)); 9657 } 9658 // Final attempt to vectorize instructions with the same types. 9659 if (Candidates.size() > 1 && 9660 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 9661 if (TryToVectorize(Candidates, /*LimitForRegisterSize=*/false)) { 9662 // Success start over because instructions might have been changed. 9663 Changed = true; 9664 } else if (LimitForRegisterSize) { 9665 // Try to vectorize using small vectors. 9666 for (auto *It = Candidates.begin(), *End = Candidates.end(); 9667 It != End;) { 9668 auto *SameTypeIt = It; 9669 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 9670 ++SameTypeIt; 9671 unsigned NumElts = (SameTypeIt - It); 9672 if (NumElts > 1 && TryToVectorize(makeArrayRef(It, NumElts), 9673 /*LimitForRegisterSize=*/false)) 9674 Changed = true; 9675 It = SameTypeIt; 9676 } 9677 } 9678 Candidates.clear(); 9679 } 9680 9681 // Start over at the next instruction of a different type (or the end). 9682 IncIt = SameTypeIt; 9683 } 9684 return Changed; 9685 } 9686 9687 /// Compare two cmp instructions. If IsCompatibility is true, function returns 9688 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding 9689 /// operands. If IsCompatibility is false, function implements strict weak 9690 /// ordering relation between two cmp instructions, returning true if the first 9691 /// instruction is "less" than the second, i.e. its predicate is less than the 9692 /// predicate of the second or the operands IDs are less than the operands IDs 9693 /// of the second cmp instruction. 9694 template <bool IsCompatibility> 9695 static bool compareCmp(Value *V, Value *V2, 9696 function_ref<bool(Instruction *)> IsDeleted) { 9697 auto *CI1 = cast<CmpInst>(V); 9698 auto *CI2 = cast<CmpInst>(V2); 9699 if (IsDeleted(CI2) || !isValidElementType(CI2->getType())) 9700 return false; 9701 if (CI1->getOperand(0)->getType()->getTypeID() < 9702 CI2->getOperand(0)->getType()->getTypeID()) 9703 return !IsCompatibility; 9704 if (CI1->getOperand(0)->getType()->getTypeID() > 9705 CI2->getOperand(0)->getType()->getTypeID()) 9706 return false; 9707 CmpInst::Predicate Pred1 = CI1->getPredicate(); 9708 CmpInst::Predicate Pred2 = CI2->getPredicate(); 9709 CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1); 9710 CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2); 9711 CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1); 9712 CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2); 9713 if (BasePred1 < BasePred2) 9714 return !IsCompatibility; 9715 if (BasePred1 > BasePred2) 9716 return false; 9717 // Compare operands. 9718 bool LEPreds = Pred1 <= Pred2; 9719 bool GEPreds = Pred1 >= Pred2; 9720 for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) { 9721 auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1); 9722 auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1); 9723 if (Op1->getValueID() < Op2->getValueID()) 9724 return !IsCompatibility; 9725 if (Op1->getValueID() > Op2->getValueID()) 9726 return false; 9727 if (auto *I1 = dyn_cast<Instruction>(Op1)) 9728 if (auto *I2 = dyn_cast<Instruction>(Op2)) { 9729 if (I1->getParent() != I2->getParent()) 9730 return false; 9731 InstructionsState S = getSameOpcode({I1, I2}); 9732 if (S.getOpcode()) 9733 continue; 9734 return false; 9735 } 9736 } 9737 return IsCompatibility; 9738 } 9739 9740 bool SLPVectorizerPass::vectorizeSimpleInstructions( 9741 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 9742 bool AtTerminator) { 9743 bool OpsChanged = false; 9744 SmallVector<Instruction *, 4> PostponedCmps; 9745 for (auto *I : reverse(Instructions)) { 9746 if (R.isDeleted(I)) 9747 continue; 9748 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 9749 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 9750 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 9751 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 9752 else if (isa<CmpInst>(I)) 9753 PostponedCmps.push_back(I); 9754 } 9755 if (AtTerminator) { 9756 // Try to find reductions first. 9757 for (Instruction *I : PostponedCmps) { 9758 if (R.isDeleted(I)) 9759 continue; 9760 for (Value *Op : I->operands()) 9761 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 9762 } 9763 // Try to vectorize operands as vector bundles. 9764 for (Instruction *I : PostponedCmps) { 9765 if (R.isDeleted(I)) 9766 continue; 9767 OpsChanged |= tryToVectorize(I, R); 9768 } 9769 // Try to vectorize list of compares. 9770 // Sort by type, compare predicate, etc. 9771 auto &&CompareSorter = [&R](Value *V, Value *V2) { 9772 return compareCmp<false>(V, V2, 9773 [&R](Instruction *I) { return R.isDeleted(I); }); 9774 }; 9775 9776 auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) { 9777 if (V1 == V2) 9778 return true; 9779 return compareCmp<true>(V1, V2, 9780 [&R](Instruction *I) { return R.isDeleted(I); }); 9781 }; 9782 auto Limit = [&R](Value *V) { 9783 unsigned EltSize = R.getVectorElementSize(V); 9784 return std::max(2U, R.getMaxVecRegSize() / EltSize); 9785 }; 9786 9787 SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end()); 9788 OpsChanged |= tryToVectorizeSequence<Value>( 9789 Vals, Limit, CompareSorter, AreCompatibleCompares, 9790 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 9791 // Exclude possible reductions from other blocks. 9792 bool ArePossiblyReducedInOtherBlock = 9793 any_of(Candidates, [](Value *V) { 9794 return any_of(V->users(), [V](User *U) { 9795 return isa<SelectInst>(U) && 9796 cast<SelectInst>(U)->getParent() != 9797 cast<Instruction>(V)->getParent(); 9798 }); 9799 }); 9800 if (ArePossiblyReducedInOtherBlock) 9801 return false; 9802 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 9803 }, 9804 /*LimitForRegisterSize=*/true); 9805 Instructions.clear(); 9806 } else { 9807 // Insert in reverse order since the PostponedCmps vector was filled in 9808 // reverse order. 9809 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 9810 } 9811 return OpsChanged; 9812 } 9813 9814 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 9815 bool Changed = false; 9816 SmallVector<Value *, 4> Incoming; 9817 SmallPtrSet<Value *, 16> VisitedInstrs; 9818 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 9819 // node. Allows better to identify the chains that can be vectorized in the 9820 // better way. 9821 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 9822 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 9823 assert(isValidElementType(V1->getType()) && 9824 isValidElementType(V2->getType()) && 9825 "Expected vectorizable types only."); 9826 // It is fine to compare type IDs here, since we expect only vectorizable 9827 // types, like ints, floats and pointers, we don't care about other type. 9828 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 9829 return true; 9830 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 9831 return false; 9832 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 9833 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 9834 if (Opcodes1.size() < Opcodes2.size()) 9835 return true; 9836 if (Opcodes1.size() > Opcodes2.size()) 9837 return false; 9838 Optional<bool> ConstOrder; 9839 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 9840 // Undefs are compatible with any other value. 9841 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) { 9842 if (!ConstOrder) 9843 ConstOrder = 9844 !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]); 9845 continue; 9846 } 9847 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 9848 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 9849 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 9850 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 9851 if (!NodeI1) 9852 return NodeI2 != nullptr; 9853 if (!NodeI2) 9854 return false; 9855 assert((NodeI1 == NodeI2) == 9856 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 9857 "Different nodes should have different DFS numbers"); 9858 if (NodeI1 != NodeI2) 9859 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 9860 InstructionsState S = getSameOpcode({I1, I2}); 9861 if (S.getOpcode()) 9862 continue; 9863 return I1->getOpcode() < I2->getOpcode(); 9864 } 9865 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) { 9866 if (!ConstOrder) 9867 ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID(); 9868 continue; 9869 } 9870 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 9871 return true; 9872 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 9873 return false; 9874 } 9875 return ConstOrder && *ConstOrder; 9876 }; 9877 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 9878 if (V1 == V2) 9879 return true; 9880 if (V1->getType() != V2->getType()) 9881 return false; 9882 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 9883 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 9884 if (Opcodes1.size() != Opcodes2.size()) 9885 return false; 9886 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 9887 // Undefs are compatible with any other value. 9888 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 9889 continue; 9890 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 9891 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 9892 if (I1->getParent() != I2->getParent()) 9893 return false; 9894 InstructionsState S = getSameOpcode({I1, I2}); 9895 if (S.getOpcode()) 9896 continue; 9897 return false; 9898 } 9899 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 9900 continue; 9901 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 9902 return false; 9903 } 9904 return true; 9905 }; 9906 auto Limit = [&R](Value *V) { 9907 unsigned EltSize = R.getVectorElementSize(V); 9908 return std::max(2U, R.getMaxVecRegSize() / EltSize); 9909 }; 9910 9911 bool HaveVectorizedPhiNodes = false; 9912 do { 9913 // Collect the incoming values from the PHIs. 9914 Incoming.clear(); 9915 for (Instruction &I : *BB) { 9916 PHINode *P = dyn_cast<PHINode>(&I); 9917 if (!P) 9918 break; 9919 9920 // No need to analyze deleted, vectorized and non-vectorizable 9921 // instructions. 9922 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 9923 isValidElementType(P->getType())) 9924 Incoming.push_back(P); 9925 } 9926 9927 // Find the corresponding non-phi nodes for better matching when trying to 9928 // build the tree. 9929 for (Value *V : Incoming) { 9930 SmallVectorImpl<Value *> &Opcodes = 9931 PHIToOpcodes.try_emplace(V).first->getSecond(); 9932 if (!Opcodes.empty()) 9933 continue; 9934 SmallVector<Value *, 4> Nodes(1, V); 9935 SmallPtrSet<Value *, 4> Visited; 9936 while (!Nodes.empty()) { 9937 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 9938 if (!Visited.insert(PHI).second) 9939 continue; 9940 for (Value *V : PHI->incoming_values()) { 9941 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 9942 Nodes.push_back(PHI1); 9943 continue; 9944 } 9945 Opcodes.emplace_back(V); 9946 } 9947 } 9948 } 9949 9950 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 9951 Incoming, Limit, PHICompare, AreCompatiblePHIs, 9952 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 9953 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 9954 }, 9955 /*LimitForRegisterSize=*/true); 9956 Changed |= HaveVectorizedPhiNodes; 9957 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 9958 } while (HaveVectorizedPhiNodes); 9959 9960 VisitedInstrs.clear(); 9961 9962 SmallVector<Instruction *, 8> PostProcessInstructions; 9963 SmallDenseSet<Instruction *, 4> KeyNodes; 9964 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 9965 // Skip instructions with scalable type. The num of elements is unknown at 9966 // compile-time for scalable type. 9967 if (isa<ScalableVectorType>(it->getType())) 9968 continue; 9969 9970 // Skip instructions marked for the deletion. 9971 if (R.isDeleted(&*it)) 9972 continue; 9973 // We may go through BB multiple times so skip the one we have checked. 9974 if (!VisitedInstrs.insert(&*it).second) { 9975 if (it->use_empty() && KeyNodes.contains(&*it) && 9976 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 9977 it->isTerminator())) { 9978 // We would like to start over since some instructions are deleted 9979 // and the iterator may become invalid value. 9980 Changed = true; 9981 it = BB->begin(); 9982 e = BB->end(); 9983 } 9984 continue; 9985 } 9986 9987 if (isa<DbgInfoIntrinsic>(it)) 9988 continue; 9989 9990 // Try to vectorize reductions that use PHINodes. 9991 if (PHINode *P = dyn_cast<PHINode>(it)) { 9992 // Check that the PHI is a reduction PHI. 9993 if (P->getNumIncomingValues() == 2) { 9994 // Try to match and vectorize a horizontal reduction. 9995 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 9996 TTI)) { 9997 Changed = true; 9998 it = BB->begin(); 9999 e = BB->end(); 10000 continue; 10001 } 10002 } 10003 // Try to vectorize the incoming values of the PHI, to catch reductions 10004 // that feed into PHIs. 10005 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 10006 // Skip if the incoming block is the current BB for now. Also, bypass 10007 // unreachable IR for efficiency and to avoid crashing. 10008 // TODO: Collect the skipped incoming values and try to vectorize them 10009 // after processing BB. 10010 if (BB == P->getIncomingBlock(I) || 10011 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 10012 continue; 10013 10014 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 10015 P->getIncomingBlock(I), R, TTI); 10016 } 10017 continue; 10018 } 10019 10020 // Ran into an instruction without users, like terminator, or function call 10021 // with ignored return value, store. Ignore unused instructions (basing on 10022 // instruction type, except for CallInst and InvokeInst). 10023 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 10024 isa<InvokeInst>(it))) { 10025 KeyNodes.insert(&*it); 10026 bool OpsChanged = false; 10027 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 10028 for (auto *V : it->operand_values()) { 10029 // Try to match and vectorize a horizontal reduction. 10030 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 10031 } 10032 } 10033 // Start vectorization of post-process list of instructions from the 10034 // top-tree instructions to try to vectorize as many instructions as 10035 // possible. 10036 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10037 it->isTerminator()); 10038 if (OpsChanged) { 10039 // We would like to start over since some instructions are deleted 10040 // and the iterator may become invalid value. 10041 Changed = true; 10042 it = BB->begin(); 10043 e = BB->end(); 10044 continue; 10045 } 10046 } 10047 10048 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 10049 isa<InsertValueInst>(it)) 10050 PostProcessInstructions.push_back(&*it); 10051 } 10052 10053 return Changed; 10054 } 10055 10056 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 10057 auto Changed = false; 10058 for (auto &Entry : GEPs) { 10059 // If the getelementptr list has fewer than two elements, there's nothing 10060 // to do. 10061 if (Entry.second.size() < 2) 10062 continue; 10063 10064 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 10065 << Entry.second.size() << ".\n"); 10066 10067 // Process the GEP list in chunks suitable for the target's supported 10068 // vector size. If a vector register can't hold 1 element, we are done. We 10069 // are trying to vectorize the index computations, so the maximum number of 10070 // elements is based on the size of the index expression, rather than the 10071 // size of the GEP itself (the target's pointer size). 10072 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 10073 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 10074 if (MaxVecRegSize < EltSize) 10075 continue; 10076 10077 unsigned MaxElts = MaxVecRegSize / EltSize; 10078 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 10079 auto Len = std::min<unsigned>(BE - BI, MaxElts); 10080 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 10081 10082 // Initialize a set a candidate getelementptrs. Note that we use a 10083 // SetVector here to preserve program order. If the index computations 10084 // are vectorizable and begin with loads, we want to minimize the chance 10085 // of having to reorder them later. 10086 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 10087 10088 // Some of the candidates may have already been vectorized after we 10089 // initially collected them. If so, they are marked as deleted, so remove 10090 // them from the set of candidates. 10091 Candidates.remove_if( 10092 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 10093 10094 // Remove from the set of candidates all pairs of getelementptrs with 10095 // constant differences. Such getelementptrs are likely not good 10096 // candidates for vectorization in a bottom-up phase since one can be 10097 // computed from the other. We also ensure all candidate getelementptr 10098 // indices are unique. 10099 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 10100 auto *GEPI = GEPList[I]; 10101 if (!Candidates.count(GEPI)) 10102 continue; 10103 auto *SCEVI = SE->getSCEV(GEPList[I]); 10104 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 10105 auto *GEPJ = GEPList[J]; 10106 auto *SCEVJ = SE->getSCEV(GEPList[J]); 10107 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 10108 Candidates.remove(GEPI); 10109 Candidates.remove(GEPJ); 10110 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 10111 Candidates.remove(GEPJ); 10112 } 10113 } 10114 } 10115 10116 // We break out of the above computation as soon as we know there are 10117 // fewer than two candidates remaining. 10118 if (Candidates.size() < 2) 10119 continue; 10120 10121 // Add the single, non-constant index of each candidate to the bundle. We 10122 // ensured the indices met these constraints when we originally collected 10123 // the getelementptrs. 10124 SmallVector<Value *, 16> Bundle(Candidates.size()); 10125 auto BundleIndex = 0u; 10126 for (auto *V : Candidates) { 10127 auto *GEP = cast<GetElementPtrInst>(V); 10128 auto *GEPIdx = GEP->idx_begin()->get(); 10129 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 10130 Bundle[BundleIndex++] = GEPIdx; 10131 } 10132 10133 // Try and vectorize the indices. We are currently only interested in 10134 // gather-like cases of the form: 10135 // 10136 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 10137 // 10138 // where the loads of "a", the loads of "b", and the subtractions can be 10139 // performed in parallel. It's likely that detecting this pattern in a 10140 // bottom-up phase will be simpler and less costly than building a 10141 // full-blown top-down phase beginning at the consecutive loads. 10142 Changed |= tryToVectorizeList(Bundle, R); 10143 } 10144 } 10145 return Changed; 10146 } 10147 10148 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 10149 bool Changed = false; 10150 // Sort by type, base pointers and values operand. Value operands must be 10151 // compatible (have the same opcode, same parent), otherwise it is 10152 // definitely not profitable to try to vectorize them. 10153 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 10154 if (V->getPointerOperandType()->getTypeID() < 10155 V2->getPointerOperandType()->getTypeID()) 10156 return true; 10157 if (V->getPointerOperandType()->getTypeID() > 10158 V2->getPointerOperandType()->getTypeID()) 10159 return false; 10160 // UndefValues are compatible with all other values. 10161 if (isa<UndefValue>(V->getValueOperand()) || 10162 isa<UndefValue>(V2->getValueOperand())) 10163 return false; 10164 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 10165 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10166 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 10167 DT->getNode(I1->getParent()); 10168 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 10169 DT->getNode(I2->getParent()); 10170 assert(NodeI1 && "Should only process reachable instructions"); 10171 assert(NodeI1 && "Should only process reachable instructions"); 10172 assert((NodeI1 == NodeI2) == 10173 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10174 "Different nodes should have different DFS numbers"); 10175 if (NodeI1 != NodeI2) 10176 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10177 InstructionsState S = getSameOpcode({I1, I2}); 10178 if (S.getOpcode()) 10179 return false; 10180 return I1->getOpcode() < I2->getOpcode(); 10181 } 10182 if (isa<Constant>(V->getValueOperand()) && 10183 isa<Constant>(V2->getValueOperand())) 10184 return false; 10185 return V->getValueOperand()->getValueID() < 10186 V2->getValueOperand()->getValueID(); 10187 }; 10188 10189 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 10190 if (V1 == V2) 10191 return true; 10192 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 10193 return false; 10194 // Undefs are compatible with any other value. 10195 if (isa<UndefValue>(V1->getValueOperand()) || 10196 isa<UndefValue>(V2->getValueOperand())) 10197 return true; 10198 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 10199 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10200 if (I1->getParent() != I2->getParent()) 10201 return false; 10202 InstructionsState S = getSameOpcode({I1, I2}); 10203 return S.getOpcode() > 0; 10204 } 10205 if (isa<Constant>(V1->getValueOperand()) && 10206 isa<Constant>(V2->getValueOperand())) 10207 return true; 10208 return V1->getValueOperand()->getValueID() == 10209 V2->getValueOperand()->getValueID(); 10210 }; 10211 auto Limit = [&R, this](StoreInst *SI) { 10212 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 10213 return R.getMinVF(EltSize); 10214 }; 10215 10216 // Attempt to sort and vectorize each of the store-groups. 10217 for (auto &Pair : Stores) { 10218 if (Pair.second.size() < 2) 10219 continue; 10220 10221 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 10222 << Pair.second.size() << ".\n"); 10223 10224 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 10225 continue; 10226 10227 Changed |= tryToVectorizeSequence<StoreInst>( 10228 Pair.second, Limit, StoreSorter, AreCompatibleStores, 10229 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 10230 return vectorizeStores(Candidates, R); 10231 }, 10232 /*LimitForRegisterSize=*/false); 10233 } 10234 return Changed; 10235 } 10236 10237 char SLPVectorizer::ID = 0; 10238 10239 static const char lv_name[] = "SLP Vectorizer"; 10240 10241 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 10242 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 10243 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 10244 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 10245 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 10246 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 10247 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 10248 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 10249 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 10250 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 10251 10252 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 10253