1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/DenseSet.h" 23 #include "llvm/ADT/MapVector.h" 24 #include "llvm/ADT/None.h" 25 #include "llvm/ADT/Optional.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SetVector.h" 29 #include "llvm/ADT/SmallBitVector.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/ADT/iterator.h" 35 #include "llvm/ADT/iterator_range.h" 36 #include "llvm/Analysis/AliasAnalysis.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/LoopAccessAnalysis.h" 41 #include "llvm/Analysis/LoopInfo.h" 42 #include "llvm/Analysis/MemoryLocation.h" 43 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 44 #include "llvm/Analysis/ScalarEvolution.h" 45 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 46 #include "llvm/Analysis/TargetLibraryInfo.h" 47 #include "llvm/Analysis/TargetTransformInfo.h" 48 #include "llvm/Analysis/ValueTracking.h" 49 #include "llvm/Analysis/VectorUtils.h" 50 #include "llvm/IR/Attributes.h" 51 #include "llvm/IR/BasicBlock.h" 52 #include "llvm/IR/Constant.h" 53 #include "llvm/IR/Constants.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/DebugLoc.h" 56 #include "llvm/IR/DerivedTypes.h" 57 #include "llvm/IR/Dominators.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/IRBuilder.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/NoFolder.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PassManager.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/Verifier.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/DOTGraphTraits.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/GraphWriter.h" 85 #include "llvm/Support/KnownBits.h" 86 #include "llvm/Support/MathExtras.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 89 #include "llvm/Transforms/Utils/LoopUtils.h" 90 #include "llvm/Transforms/Vectorize.h" 91 #include <algorithm> 92 #include <cassert> 93 #include <cstdint> 94 #include <iterator> 95 #include <memory> 96 #include <set> 97 #include <string> 98 #include <tuple> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 using namespace llvm::PatternMatch; 104 using namespace slpvectorizer; 105 106 #define SV_NAME "slp-vectorizer" 107 #define DEBUG_TYPE "SLP" 108 109 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 110 111 cl::opt<bool> 112 llvm::RunSLPVectorization("vectorize-slp", cl::init(false), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<int> 134 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 135 cl::desc("Maximum depth of the lookup for consecutive stores.")); 136 137 /// Limits the size of scheduling regions in a block. 138 /// It avoid long compile times for _very_ large blocks where vector 139 /// instructions are spread over a wide range. 140 /// This limit is way higher than needed by real-world functions. 141 static cl::opt<int> 142 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 143 cl::desc("Limit the size of the SLP scheduling region per block")); 144 145 static cl::opt<int> MinVectorRegSizeOption( 146 "slp-min-reg-size", cl::init(128), cl::Hidden, 147 cl::desc("Attempt to vectorize for this register size in bits")); 148 149 static cl::opt<unsigned> RecursionMaxDepth( 150 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 151 cl::desc("Limit the recursion depth when building a vectorizable tree")); 152 153 static cl::opt<unsigned> MinTreeSize( 154 "slp-min-tree-size", cl::init(3), cl::Hidden, 155 cl::desc("Only vectorize small trees if they are fully vectorizable")); 156 157 // The maximum depth that the look-ahead score heuristic will explore. 158 // The higher this value, the higher the compilation time overhead. 159 static cl::opt<int> LookAheadMaxDepth( 160 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 161 cl::desc("The maximum look-ahead depth for operand reordering scores")); 162 163 // The Look-ahead heuristic goes through the users of the bundle to calculate 164 // the users cost in getExternalUsesCost(). To avoid compilation time increase 165 // we limit the number of users visited to this value. 166 static cl::opt<unsigned> LookAheadUsersBudget( 167 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 168 cl::desc("The maximum number of users to visit while visiting the " 169 "predecessors. This prevents compilation time increase.")); 170 171 static cl::opt<bool> 172 ViewSLPTree("view-slp-tree", cl::Hidden, 173 cl::desc("Display the SLP trees with Graphviz")); 174 175 // Limit the number of alias checks. The limit is chosen so that 176 // it has no negative effect on the llvm benchmarks. 177 static const unsigned AliasedCheckLimit = 10; 178 179 // Another limit for the alias checks: The maximum distance between load/store 180 // instructions where alias checks are done. 181 // This limit is useful for very large basic blocks. 182 static const unsigned MaxMemDepDistance = 160; 183 184 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 185 /// regions to be handled. 186 static const int MinScheduleRegionSize = 16; 187 188 /// Predicate for the element types that the SLP vectorizer supports. 189 /// 190 /// The most important thing to filter here are types which are invalid in LLVM 191 /// vectors. We also filter target specific types which have absolutely no 192 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 193 /// avoids spending time checking the cost model and realizing that they will 194 /// be inevitably scalarized. 195 static bool isValidElementType(Type *Ty) { 196 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 197 !Ty->isPPC_FP128Ty(); 198 } 199 200 /// \returns true if all of the instructions in \p VL are in the same block or 201 /// false otherwise. 202 static bool allSameBlock(ArrayRef<Value *> VL) { 203 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 204 if (!I0) 205 return false; 206 BasicBlock *BB = I0->getParent(); 207 for (int i = 1, e = VL.size(); i < e; i++) { 208 Instruction *I = dyn_cast<Instruction>(VL[i]); 209 if (!I) 210 return false; 211 212 if (BB != I->getParent()) 213 return false; 214 } 215 return true; 216 } 217 218 /// \returns True if all of the values in \p VL are constants (but not 219 /// globals/constant expressions). 220 static bool allConstant(ArrayRef<Value *> VL) { 221 // Constant expressions and globals can't be vectorized like normal integer/FP 222 // constants. 223 for (Value *i : VL) 224 if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i)) 225 return false; 226 return true; 227 } 228 229 /// \returns True if all of the values in \p VL are identical. 230 static bool isSplat(ArrayRef<Value *> VL) { 231 for (unsigned i = 1, e = VL.size(); i < e; ++i) 232 if (VL[i] != VL[0]) 233 return false; 234 return true; 235 } 236 237 /// \returns True if \p I is commutative, handles CmpInst as well as Instruction. 238 static bool isCommutative(Instruction *I) { 239 if (auto *IC = dyn_cast<CmpInst>(I)) 240 return IC->isCommutative(); 241 return I->isCommutative(); 242 } 243 244 /// Checks if the vector of instructions can be represented as a shuffle, like: 245 /// %x0 = extractelement <4 x i8> %x, i32 0 246 /// %x3 = extractelement <4 x i8> %x, i32 3 247 /// %y1 = extractelement <4 x i8> %y, i32 1 248 /// %y2 = extractelement <4 x i8> %y, i32 2 249 /// %x0x0 = mul i8 %x0, %x0 250 /// %x3x3 = mul i8 %x3, %x3 251 /// %y1y1 = mul i8 %y1, %y1 252 /// %y2y2 = mul i8 %y2, %y2 253 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 254 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 255 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 256 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 257 /// ret <4 x i8> %ins4 258 /// can be transformed into: 259 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 260 /// i32 6> 261 /// %2 = mul <4 x i8> %1, %1 262 /// ret <4 x i8> %2 263 /// We convert this initially to something like: 264 /// %x0 = extractelement <4 x i8> %x, i32 0 265 /// %x3 = extractelement <4 x i8> %x, i32 3 266 /// %y1 = extractelement <4 x i8> %y, i32 1 267 /// %y2 = extractelement <4 x i8> %y, i32 2 268 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 269 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 270 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 271 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 272 /// %5 = mul <4 x i8> %4, %4 273 /// %6 = extractelement <4 x i8> %5, i32 0 274 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 275 /// %7 = extractelement <4 x i8> %5, i32 1 276 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 277 /// %8 = extractelement <4 x i8> %5, i32 2 278 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 279 /// %9 = extractelement <4 x i8> %5, i32 3 280 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 281 /// ret <4 x i8> %ins4 282 /// InstCombiner transforms this into a shuffle and vector mul 283 /// TODO: Can we split off and reuse the shuffle mask detection from 284 /// TargetTransformInfo::getInstructionThroughput? 285 static Optional<TargetTransformInfo::ShuffleKind> 286 isShuffle(ArrayRef<Value *> VL) { 287 auto *EI0 = cast<ExtractElementInst>(VL[0]); 288 unsigned Size = EI0->getVectorOperandType()->getVectorNumElements(); 289 Value *Vec1 = nullptr; 290 Value *Vec2 = nullptr; 291 enum ShuffleMode { Unknown, Select, Permute }; 292 ShuffleMode CommonShuffleMode = Unknown; 293 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 294 auto *EI = cast<ExtractElementInst>(VL[I]); 295 auto *Vec = EI->getVectorOperand(); 296 // All vector operands must have the same number of vector elements. 297 if (Vec->getType()->getVectorNumElements() != Size) 298 return None; 299 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 300 if (!Idx) 301 return None; 302 // Undefined behavior if Idx is negative or >= Size. 303 if (Idx->getValue().uge(Size)) 304 continue; 305 unsigned IntIdx = Idx->getValue().getZExtValue(); 306 // We can extractelement from undef vector. 307 if (isa<UndefValue>(Vec)) 308 continue; 309 // For correct shuffling we have to have at most 2 different vector operands 310 // in all extractelement instructions. 311 if (!Vec1 || Vec1 == Vec) 312 Vec1 = Vec; 313 else if (!Vec2 || Vec2 == Vec) 314 Vec2 = Vec; 315 else 316 return None; 317 if (CommonShuffleMode == Permute) 318 continue; 319 // If the extract index is not the same as the operation number, it is a 320 // permutation. 321 if (IntIdx != I) { 322 CommonShuffleMode = Permute; 323 continue; 324 } 325 CommonShuffleMode = Select; 326 } 327 // If we're not crossing lanes in different vectors, consider it as blending. 328 if (CommonShuffleMode == Select && Vec2) 329 return TargetTransformInfo::SK_Select; 330 // If Vec2 was never used, we have a permutation of a single vector, otherwise 331 // we have permutation of 2 vectors. 332 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 333 : TargetTransformInfo::SK_PermuteSingleSrc; 334 } 335 336 namespace { 337 338 /// Main data required for vectorization of instructions. 339 struct InstructionsState { 340 /// The very first instruction in the list with the main opcode. 341 Value *OpValue = nullptr; 342 343 /// The main/alternate instruction. 344 Instruction *MainOp = nullptr; 345 Instruction *AltOp = nullptr; 346 347 /// The main/alternate opcodes for the list of instructions. 348 unsigned getOpcode() const { 349 return MainOp ? MainOp->getOpcode() : 0; 350 } 351 352 unsigned getAltOpcode() const { 353 return AltOp ? AltOp->getOpcode() : 0; 354 } 355 356 /// Some of the instructions in the list have alternate opcodes. 357 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 358 359 bool isOpcodeOrAlt(Instruction *I) const { 360 unsigned CheckedOpcode = I->getOpcode(); 361 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 362 } 363 364 InstructionsState() = delete; 365 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 366 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 367 }; 368 369 } // end anonymous namespace 370 371 /// Chooses the correct key for scheduling data. If \p Op has the same (or 372 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 373 /// OpValue. 374 static Value *isOneOf(const InstructionsState &S, Value *Op) { 375 auto *I = dyn_cast<Instruction>(Op); 376 if (I && S.isOpcodeOrAlt(I)) 377 return Op; 378 return S.OpValue; 379 } 380 381 /// \returns true if \p Opcode is allowed as part of of the main/alternate 382 /// instruction for SLP vectorization. 383 /// 384 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 385 /// "shuffled out" lane would result in division by zero. 386 static bool isValidForAlternation(unsigned Opcode) { 387 if (Instruction::isIntDivRem(Opcode)) 388 return false; 389 390 return true; 391 } 392 393 /// \returns analysis of the Instructions in \p VL described in 394 /// InstructionsState, the Opcode that we suppose the whole list 395 /// could be vectorized even if its structure is diverse. 396 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 397 unsigned BaseIndex = 0) { 398 // Make sure these are all Instructions. 399 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 400 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 401 402 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 403 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 404 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 405 unsigned AltOpcode = Opcode; 406 unsigned AltIndex = BaseIndex; 407 408 // Check for one alternate opcode from another BinaryOperator. 409 // TODO - generalize to support all operators (types, calls etc.). 410 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 411 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 412 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 413 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 414 continue; 415 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 416 isValidForAlternation(Opcode)) { 417 AltOpcode = InstOpcode; 418 AltIndex = Cnt; 419 continue; 420 } 421 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 422 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 423 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 424 if (Ty0 == Ty1) { 425 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 426 continue; 427 if (Opcode == AltOpcode) { 428 assert(isValidForAlternation(Opcode) && 429 isValidForAlternation(InstOpcode) && 430 "Cast isn't safe for alternation, logic needs to be updated!"); 431 AltOpcode = InstOpcode; 432 AltIndex = Cnt; 433 continue; 434 } 435 } 436 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 437 continue; 438 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 439 } 440 441 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 442 cast<Instruction>(VL[AltIndex])); 443 } 444 445 /// \returns true if all of the values in \p VL have the same type or false 446 /// otherwise. 447 static bool allSameType(ArrayRef<Value *> VL) { 448 Type *Ty = VL[0]->getType(); 449 for (int i = 1, e = VL.size(); i < e; i++) 450 if (VL[i]->getType() != Ty) 451 return false; 452 453 return true; 454 } 455 456 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 457 static Optional<unsigned> getExtractIndex(Instruction *E) { 458 unsigned Opcode = E->getOpcode(); 459 assert((Opcode == Instruction::ExtractElement || 460 Opcode == Instruction::ExtractValue) && 461 "Expected extractelement or extractvalue instruction."); 462 if (Opcode == Instruction::ExtractElement) { 463 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 464 if (!CI) 465 return None; 466 return CI->getZExtValue(); 467 } 468 ExtractValueInst *EI = cast<ExtractValueInst>(E); 469 if (EI->getNumIndices() != 1) 470 return None; 471 return *EI->idx_begin(); 472 } 473 474 /// \returns True if in-tree use also needs extract. This refers to 475 /// possible scalar operand in vectorized instruction. 476 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 477 TargetLibraryInfo *TLI) { 478 unsigned Opcode = UserInst->getOpcode(); 479 switch (Opcode) { 480 case Instruction::Load: { 481 LoadInst *LI = cast<LoadInst>(UserInst); 482 return (LI->getPointerOperand() == Scalar); 483 } 484 case Instruction::Store: { 485 StoreInst *SI = cast<StoreInst>(UserInst); 486 return (SI->getPointerOperand() == Scalar); 487 } 488 case Instruction::Call: { 489 CallInst *CI = cast<CallInst>(UserInst); 490 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 491 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 492 if (hasVectorInstrinsicScalarOpd(ID, i)) 493 return (CI->getArgOperand(i) == Scalar); 494 } 495 LLVM_FALLTHROUGH; 496 } 497 default: 498 return false; 499 } 500 } 501 502 /// \returns the AA location that is being access by the instruction. 503 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 504 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 505 return MemoryLocation::get(SI); 506 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 507 return MemoryLocation::get(LI); 508 return MemoryLocation(); 509 } 510 511 /// \returns True if the instruction is not a volatile or atomic load/store. 512 static bool isSimple(Instruction *I) { 513 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 514 return LI->isSimple(); 515 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 516 return SI->isSimple(); 517 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 518 return !MI->isVolatile(); 519 return true; 520 } 521 522 namespace llvm { 523 524 namespace slpvectorizer { 525 526 /// Bottom Up SLP Vectorizer. 527 class BoUpSLP { 528 struct TreeEntry; 529 struct ScheduleData; 530 531 public: 532 using ValueList = SmallVector<Value *, 8>; 533 using InstrList = SmallVector<Instruction *, 16>; 534 using ValueSet = SmallPtrSet<Value *, 16>; 535 using StoreList = SmallVector<StoreInst *, 8>; 536 using ExtraValueToDebugLocsMap = 537 MapVector<Value *, SmallVector<Instruction *, 2>>; 538 539 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 540 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 541 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 542 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 543 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 544 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 545 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 546 // Use the vector register size specified by the target unless overridden 547 // by a command-line option. 548 // TODO: It would be better to limit the vectorization factor based on 549 // data type rather than just register size. For example, x86 AVX has 550 // 256-bit registers, but it does not support integer operations 551 // at that width (that requires AVX2). 552 if (MaxVectorRegSizeOption.getNumOccurrences()) 553 MaxVecRegSize = MaxVectorRegSizeOption; 554 else 555 MaxVecRegSize = TTI->getRegisterBitWidth(true); 556 557 if (MinVectorRegSizeOption.getNumOccurrences()) 558 MinVecRegSize = MinVectorRegSizeOption; 559 else 560 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 561 } 562 563 /// Vectorize the tree that starts with the elements in \p VL. 564 /// Returns the vectorized root. 565 Value *vectorizeTree(); 566 567 /// Vectorize the tree but with the list of externally used values \p 568 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 569 /// generated extractvalue instructions. 570 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 571 572 /// \returns the cost incurred by unwanted spills and fills, caused by 573 /// holding live values over call sites. 574 int getSpillCost() const; 575 576 /// \returns the vectorization cost of the subtree that starts at \p VL. 577 /// A negative number means that this is profitable. 578 int getTreeCost(); 579 580 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 581 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 582 void buildTree(ArrayRef<Value *> Roots, 583 ArrayRef<Value *> UserIgnoreLst = None); 584 585 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 586 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 587 /// into account (and updating it, if required) list of externally used 588 /// values stored in \p ExternallyUsedValues. 589 void buildTree(ArrayRef<Value *> Roots, 590 ExtraValueToDebugLocsMap &ExternallyUsedValues, 591 ArrayRef<Value *> UserIgnoreLst = None); 592 593 /// Clear the internal data structures that are created by 'buildTree'. 594 void deleteTree() { 595 VectorizableTree.clear(); 596 ScalarToTreeEntry.clear(); 597 MustGather.clear(); 598 ExternalUses.clear(); 599 NumOpsWantToKeepOrder.clear(); 600 NumOpsWantToKeepOriginalOrder = 0; 601 for (auto &Iter : BlocksSchedules) { 602 BlockScheduling *BS = Iter.second.get(); 603 BS->clear(); 604 } 605 MinBWs.clear(); 606 } 607 608 unsigned getTreeSize() const { return VectorizableTree.size(); } 609 610 /// Perform LICM and CSE on the newly generated gather sequences. 611 void optimizeGatherSequence(); 612 613 /// \returns The best order of instructions for vectorization. 614 Optional<ArrayRef<unsigned>> bestOrder() const { 615 auto I = std::max_element( 616 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 617 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 618 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 619 return D1.second < D2.second; 620 }); 621 if (I == NumOpsWantToKeepOrder.end() || 622 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 623 return None; 624 625 return makeArrayRef(I->getFirst()); 626 } 627 628 /// \return The vector element size in bits to use when vectorizing the 629 /// expression tree ending at \p V. If V is a store, the size is the width of 630 /// the stored value. Otherwise, the size is the width of the largest loaded 631 /// value reaching V. This method is used by the vectorizer to calculate 632 /// vectorization factors. 633 unsigned getVectorElementSize(Value *V) const; 634 635 /// Compute the minimum type sizes required to represent the entries in a 636 /// vectorizable tree. 637 void computeMinimumValueSizes(); 638 639 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 640 unsigned getMaxVecRegSize() const { 641 return MaxVecRegSize; 642 } 643 644 // \returns minimum vector register size as set by cl::opt. 645 unsigned getMinVecRegSize() const { 646 return MinVecRegSize; 647 } 648 649 /// Check if homogeneous aggregate is isomorphic to some VectorType. 650 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 651 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 652 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 653 /// 654 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 655 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 656 657 /// \returns True if the VectorizableTree is both tiny and not fully 658 /// vectorizable. We do not vectorize such trees. 659 bool isTreeTinyAndNotFullyVectorizable() const; 660 661 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 662 /// can be load combined in the backend. Load combining may not be allowed in 663 /// the IR optimizer, so we do not want to alter the pattern. For example, 664 /// partially transforming a scalar bswap() pattern into vector code is 665 /// effectively impossible for the backend to undo. 666 /// TODO: If load combining is allowed in the IR optimizer, this analysis 667 /// may not be necessary. 668 bool isLoadCombineReductionCandidate(unsigned ReductionOpcode) const; 669 670 OptimizationRemarkEmitter *getORE() { return ORE; } 671 672 /// This structure holds any data we need about the edges being traversed 673 /// during buildTree_rec(). We keep track of: 674 /// (i) the user TreeEntry index, and 675 /// (ii) the index of the edge. 676 struct EdgeInfo { 677 EdgeInfo() = default; 678 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 679 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 680 /// The user TreeEntry. 681 TreeEntry *UserTE = nullptr; 682 /// The operand index of the use. 683 unsigned EdgeIdx = UINT_MAX; 684 #ifndef NDEBUG 685 friend inline raw_ostream &operator<<(raw_ostream &OS, 686 const BoUpSLP::EdgeInfo &EI) { 687 EI.dump(OS); 688 return OS; 689 } 690 /// Debug print. 691 void dump(raw_ostream &OS) const { 692 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 693 << " EdgeIdx:" << EdgeIdx << "}"; 694 } 695 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 696 #endif 697 }; 698 699 /// A helper data structure to hold the operands of a vector of instructions. 700 /// This supports a fixed vector length for all operand vectors. 701 class VLOperands { 702 /// For each operand we need (i) the value, and (ii) the opcode that it 703 /// would be attached to if the expression was in a left-linearized form. 704 /// This is required to avoid illegal operand reordering. 705 /// For example: 706 /// \verbatim 707 /// 0 Op1 708 /// |/ 709 /// Op1 Op2 Linearized + Op2 710 /// \ / ----------> |/ 711 /// - - 712 /// 713 /// Op1 - Op2 (0 + Op1) - Op2 714 /// \endverbatim 715 /// 716 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 717 /// 718 /// Another way to think of this is to track all the operations across the 719 /// path from the operand all the way to the root of the tree and to 720 /// calculate the operation that corresponds to this path. For example, the 721 /// path from Op2 to the root crosses the RHS of the '-', therefore the 722 /// corresponding operation is a '-' (which matches the one in the 723 /// linearized tree, as shown above). 724 /// 725 /// For lack of a better term, we refer to this operation as Accumulated 726 /// Path Operation (APO). 727 struct OperandData { 728 OperandData() = default; 729 OperandData(Value *V, bool APO, bool IsUsed) 730 : V(V), APO(APO), IsUsed(IsUsed) {} 731 /// The operand value. 732 Value *V = nullptr; 733 /// TreeEntries only allow a single opcode, or an alternate sequence of 734 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 735 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 736 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 737 /// (e.g., Add/Mul) 738 bool APO = false; 739 /// Helper data for the reordering function. 740 bool IsUsed = false; 741 }; 742 743 /// During operand reordering, we are trying to select the operand at lane 744 /// that matches best with the operand at the neighboring lane. Our 745 /// selection is based on the type of value we are looking for. For example, 746 /// if the neighboring lane has a load, we need to look for a load that is 747 /// accessing a consecutive address. These strategies are summarized in the 748 /// 'ReorderingMode' enumerator. 749 enum class ReorderingMode { 750 Load, ///< Matching loads to consecutive memory addresses 751 Opcode, ///< Matching instructions based on opcode (same or alternate) 752 Constant, ///< Matching constants 753 Splat, ///< Matching the same instruction multiple times (broadcast) 754 Failed, ///< We failed to create a vectorizable group 755 }; 756 757 using OperandDataVec = SmallVector<OperandData, 2>; 758 759 /// A vector of operand vectors. 760 SmallVector<OperandDataVec, 4> OpsVec; 761 762 const DataLayout &DL; 763 ScalarEvolution &SE; 764 const BoUpSLP &R; 765 766 /// \returns the operand data at \p OpIdx and \p Lane. 767 OperandData &getData(unsigned OpIdx, unsigned Lane) { 768 return OpsVec[OpIdx][Lane]; 769 } 770 771 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 772 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 773 return OpsVec[OpIdx][Lane]; 774 } 775 776 /// Clears the used flag for all entries. 777 void clearUsed() { 778 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 779 OpIdx != NumOperands; ++OpIdx) 780 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 781 ++Lane) 782 OpsVec[OpIdx][Lane].IsUsed = false; 783 } 784 785 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 786 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 787 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 788 } 789 790 // The hard-coded scores listed here are not very important. When computing 791 // the scores of matching one sub-tree with another, we are basically 792 // counting the number of values that are matching. So even if all scores 793 // are set to 1, we would still get a decent matching result. 794 // However, sometimes we have to break ties. For example we may have to 795 // choose between matching loads vs matching opcodes. This is what these 796 // scores are helping us with: they provide the order of preference. 797 798 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 799 static const int ScoreConsecutiveLoads = 3; 800 /// ExtractElementInst from same vector and consecutive indexes. 801 static const int ScoreConsecutiveExtracts = 3; 802 /// Constants. 803 static const int ScoreConstants = 2; 804 /// Instructions with the same opcode. 805 static const int ScoreSameOpcode = 2; 806 /// Instructions with alt opcodes (e.g, add + sub). 807 static const int ScoreAltOpcodes = 1; 808 /// Identical instructions (a.k.a. splat or broadcast). 809 static const int ScoreSplat = 1; 810 /// Matching with an undef is preferable to failing. 811 static const int ScoreUndef = 1; 812 /// Score for failing to find a decent match. 813 static const int ScoreFail = 0; 814 /// User exteranl to the vectorized code. 815 static const int ExternalUseCost = 1; 816 /// The user is internal but in a different lane. 817 static const int UserInDiffLaneCost = ExternalUseCost; 818 819 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 820 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 821 ScalarEvolution &SE) { 822 auto *LI1 = dyn_cast<LoadInst>(V1); 823 auto *LI2 = dyn_cast<LoadInst>(V2); 824 if (LI1 && LI2) 825 return isConsecutiveAccess(LI1, LI2, DL, SE) 826 ? VLOperands::ScoreConsecutiveLoads 827 : VLOperands::ScoreFail; 828 829 auto *C1 = dyn_cast<Constant>(V1); 830 auto *C2 = dyn_cast<Constant>(V2); 831 if (C1 && C2) 832 return VLOperands::ScoreConstants; 833 834 // Extracts from consecutive indexes of the same vector better score as 835 // the extracts could be optimized away. 836 Value *EV; 837 ConstantInt *Ex1Idx, *Ex2Idx; 838 if (match(V1, m_ExtractElement(m_Value(EV), m_ConstantInt(Ex1Idx))) && 839 match(V2, m_ExtractElement(m_Deferred(EV), m_ConstantInt(Ex2Idx))) && 840 Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue()) 841 return VLOperands::ScoreConsecutiveExtracts; 842 843 auto *I1 = dyn_cast<Instruction>(V1); 844 auto *I2 = dyn_cast<Instruction>(V2); 845 if (I1 && I2) { 846 if (I1 == I2) 847 return VLOperands::ScoreSplat; 848 InstructionsState S = getSameOpcode({I1, I2}); 849 // Note: Only consider instructions with <= 2 operands to avoid 850 // complexity explosion. 851 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 852 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 853 : VLOperands::ScoreSameOpcode; 854 } 855 856 if (isa<UndefValue>(V2)) 857 return VLOperands::ScoreUndef; 858 859 return VLOperands::ScoreFail; 860 } 861 862 /// Holds the values and their lane that are taking part in the look-ahead 863 /// score calculation. This is used in the external uses cost calculation. 864 SmallDenseMap<Value *, int> InLookAheadValues; 865 866 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are 867 /// either external to the vectorized code, or require shuffling. 868 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 869 const std::pair<Value *, int> &RHS) { 870 int Cost = 0; 871 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 872 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 873 Value *V = Values[Idx].first; 874 // Calculate the absolute lane, using the minimum relative lane of LHS 875 // and RHS as base and Idx as the offset. 876 int Ln = std::min(LHS.second, RHS.second) + Idx; 877 assert(Ln >= 0 && "Bad lane calculation"); 878 unsigned UsersBudget = LookAheadUsersBudget; 879 for (User *U : V->users()) { 880 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 881 // The user is in the VectorizableTree. Check if we need to insert. 882 auto It = llvm::find(UserTE->Scalars, U); 883 assert(It != UserTE->Scalars.end() && "U is in UserTE"); 884 int UserLn = std::distance(UserTE->Scalars.begin(), It); 885 assert(UserLn >= 0 && "Bad lane"); 886 if (UserLn != Ln) 887 Cost += UserInDiffLaneCost; 888 } else { 889 // Check if the user is in the look-ahead code. 890 auto It2 = InLookAheadValues.find(U); 891 if (It2 != InLookAheadValues.end()) { 892 // The user is in the look-ahead code. Check the lane. 893 if (It2->second != Ln) 894 Cost += UserInDiffLaneCost; 895 } else { 896 // The user is neither in SLP tree nor in the look-ahead code. 897 Cost += ExternalUseCost; 898 } 899 } 900 // Limit the number of visited uses to cap compilation time. 901 if (--UsersBudget == 0) 902 break; 903 } 904 } 905 return Cost; 906 } 907 908 /// Go through the operands of \p LHS and \p RHS recursively until \p 909 /// MaxLevel, and return the cummulative score. For example: 910 /// \verbatim 911 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 912 /// \ / \ / \ / \ / 913 /// + + + + 914 /// G1 G2 G3 G4 915 /// \endverbatim 916 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 917 /// each level recursively, accumulating the score. It starts from matching 918 /// the additions at level 0, then moves on to the loads (level 1). The 919 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 920 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 921 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 922 /// Please note that the order of the operands does not matter, as we 923 /// evaluate the score of all profitable combinations of operands. In 924 /// other words the score of G1 and G4 is the same as G1 and G2. This 925 /// heuristic is based on ideas described in: 926 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 927 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 928 /// Luís F. W. Góes 929 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 930 const std::pair<Value *, int> &RHS, int CurrLevel, 931 int MaxLevel) { 932 933 Value *V1 = LHS.first; 934 Value *V2 = RHS.first; 935 // Get the shallow score of V1 and V2. 936 int ShallowScoreAtThisLevel = 937 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) - 938 getExternalUsesCost(LHS, RHS)); 939 int Lane1 = LHS.second; 940 int Lane2 = RHS.second; 941 942 // If reached MaxLevel, 943 // or if V1 and V2 are not instructions, 944 // or if they are SPLAT, 945 // or if they are not consecutive, early return the current cost. 946 auto *I1 = dyn_cast<Instruction>(V1); 947 auto *I2 = dyn_cast<Instruction>(V2); 948 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 949 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 950 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel)) 951 return ShallowScoreAtThisLevel; 952 assert(I1 && I2 && "Should have early exited."); 953 954 // Keep track of in-tree values for determining the external-use cost. 955 InLookAheadValues[V1] = Lane1; 956 InLookAheadValues[V2] = Lane2; 957 958 // Contains the I2 operand indexes that got matched with I1 operands. 959 SmallSet<unsigned, 4> Op2Used; 960 961 // Recursion towards the operands of I1 and I2. We are trying all possbile 962 // operand pairs, and keeping track of the best score. 963 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 964 OpIdx1 != NumOperands1; ++OpIdx1) { 965 // Try to pair op1I with the best operand of I2. 966 int MaxTmpScore = 0; 967 unsigned MaxOpIdx2 = 0; 968 bool FoundBest = false; 969 // If I2 is commutative try all combinations. 970 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 971 unsigned ToIdx = isCommutative(I2) 972 ? I2->getNumOperands() 973 : std::min(I2->getNumOperands(), OpIdx1 + 1); 974 assert(FromIdx <= ToIdx && "Bad index"); 975 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 976 // Skip operands already paired with OpIdx1. 977 if (Op2Used.count(OpIdx2)) 978 continue; 979 // Recursively calculate the cost at each level 980 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 981 {I2->getOperand(OpIdx2), Lane2}, 982 CurrLevel + 1, MaxLevel); 983 // Look for the best score. 984 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 985 MaxTmpScore = TmpScore; 986 MaxOpIdx2 = OpIdx2; 987 FoundBest = true; 988 } 989 } 990 if (FoundBest) { 991 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 992 Op2Used.insert(MaxOpIdx2); 993 ShallowScoreAtThisLevel += MaxTmpScore; 994 } 995 } 996 return ShallowScoreAtThisLevel; 997 } 998 999 /// \Returns the look-ahead score, which tells us how much the sub-trees 1000 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1001 /// score. This helps break ties in an informed way when we cannot decide on 1002 /// the order of the operands by just considering the immediate 1003 /// predecessors. 1004 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1005 const std::pair<Value *, int> &RHS) { 1006 InLookAheadValues.clear(); 1007 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1008 } 1009 1010 // Search all operands in Ops[*][Lane] for the one that matches best 1011 // Ops[OpIdx][LastLane] and return its opreand index. 1012 // If no good match can be found, return None. 1013 Optional<unsigned> 1014 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1015 ArrayRef<ReorderingMode> ReorderingModes) { 1016 unsigned NumOperands = getNumOperands(); 1017 1018 // The operand of the previous lane at OpIdx. 1019 Value *OpLastLane = getData(OpIdx, LastLane).V; 1020 1021 // Our strategy mode for OpIdx. 1022 ReorderingMode RMode = ReorderingModes[OpIdx]; 1023 1024 // The linearized opcode of the operand at OpIdx, Lane. 1025 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1026 1027 // The best operand index and its score. 1028 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1029 // are using the score to differentiate between the two. 1030 struct BestOpData { 1031 Optional<unsigned> Idx = None; 1032 unsigned Score = 0; 1033 } BestOp; 1034 1035 // Iterate through all unused operands and look for the best. 1036 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1037 // Get the operand at Idx and Lane. 1038 OperandData &OpData = getData(Idx, Lane); 1039 Value *Op = OpData.V; 1040 bool OpAPO = OpData.APO; 1041 1042 // Skip already selected operands. 1043 if (OpData.IsUsed) 1044 continue; 1045 1046 // Skip if we are trying to move the operand to a position with a 1047 // different opcode in the linearized tree form. This would break the 1048 // semantics. 1049 if (OpAPO != OpIdxAPO) 1050 continue; 1051 1052 // Look for an operand that matches the current mode. 1053 switch (RMode) { 1054 case ReorderingMode::Load: 1055 case ReorderingMode::Constant: 1056 case ReorderingMode::Opcode: { 1057 bool LeftToRight = Lane > LastLane; 1058 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1059 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1060 unsigned Score = 1061 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1062 if (Score > BestOp.Score) { 1063 BestOp.Idx = Idx; 1064 BestOp.Score = Score; 1065 } 1066 break; 1067 } 1068 case ReorderingMode::Splat: 1069 if (Op == OpLastLane) 1070 BestOp.Idx = Idx; 1071 break; 1072 case ReorderingMode::Failed: 1073 return None; 1074 } 1075 } 1076 1077 if (BestOp.Idx) { 1078 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1079 return BestOp.Idx; 1080 } 1081 // If we could not find a good match return None. 1082 return None; 1083 } 1084 1085 /// Helper for reorderOperandVecs. \Returns the lane that we should start 1086 /// reordering from. This is the one which has the least number of operands 1087 /// that can freely move about. 1088 unsigned getBestLaneToStartReordering() const { 1089 unsigned BestLane = 0; 1090 unsigned Min = UINT_MAX; 1091 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1092 ++Lane) { 1093 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 1094 if (NumFreeOps < Min) { 1095 Min = NumFreeOps; 1096 BestLane = Lane; 1097 } 1098 } 1099 return BestLane; 1100 } 1101 1102 /// \Returns the maximum number of operands that are allowed to be reordered 1103 /// for \p Lane. This is used as a heuristic for selecting the first lane to 1104 /// start operand reordering. 1105 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1106 unsigned CntTrue = 0; 1107 unsigned NumOperands = getNumOperands(); 1108 // Operands with the same APO can be reordered. We therefore need to count 1109 // how many of them we have for each APO, like this: Cnt[APO] = x. 1110 // Since we only have two APOs, namely true and false, we can avoid using 1111 // a map. Instead we can simply count the number of operands that 1112 // correspond to one of them (in this case the 'true' APO), and calculate 1113 // the other by subtracting it from the total number of operands. 1114 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 1115 if (getData(OpIdx, Lane).APO) 1116 ++CntTrue; 1117 unsigned CntFalse = NumOperands - CntTrue; 1118 return std::max(CntTrue, CntFalse); 1119 } 1120 1121 /// Go through the instructions in VL and append their operands. 1122 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1123 assert(!VL.empty() && "Bad VL"); 1124 assert((empty() || VL.size() == getNumLanes()) && 1125 "Expected same number of lanes"); 1126 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1127 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1128 OpsVec.resize(NumOperands); 1129 unsigned NumLanes = VL.size(); 1130 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1131 OpsVec[OpIdx].resize(NumLanes); 1132 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1133 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1134 // Our tree has just 3 nodes: the root and two operands. 1135 // It is therefore trivial to get the APO. We only need to check the 1136 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1137 // RHS operand. The LHS operand of both add and sub is never attached 1138 // to an inversese operation in the linearized form, therefore its APO 1139 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1140 1141 // Since operand reordering is performed on groups of commutative 1142 // operations or alternating sequences (e.g., +, -), we can safely 1143 // tell the inverse operations by checking commutativity. 1144 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1145 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1146 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1147 APO, false}; 1148 } 1149 } 1150 } 1151 1152 /// \returns the number of operands. 1153 unsigned getNumOperands() const { return OpsVec.size(); } 1154 1155 /// \returns the number of lanes. 1156 unsigned getNumLanes() const { return OpsVec[0].size(); } 1157 1158 /// \returns the operand value at \p OpIdx and \p Lane. 1159 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1160 return getData(OpIdx, Lane).V; 1161 } 1162 1163 /// \returns true if the data structure is empty. 1164 bool empty() const { return OpsVec.empty(); } 1165 1166 /// Clears the data. 1167 void clear() { OpsVec.clear(); } 1168 1169 /// \Returns true if there are enough operands identical to \p Op to fill 1170 /// the whole vector. 1171 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1172 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1173 bool OpAPO = getData(OpIdx, Lane).APO; 1174 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1175 if (Ln == Lane) 1176 continue; 1177 // This is set to true if we found a candidate for broadcast at Lane. 1178 bool FoundCandidate = false; 1179 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1180 OperandData &Data = getData(OpI, Ln); 1181 if (Data.APO != OpAPO || Data.IsUsed) 1182 continue; 1183 if (Data.V == Op) { 1184 FoundCandidate = true; 1185 Data.IsUsed = true; 1186 break; 1187 } 1188 } 1189 if (!FoundCandidate) 1190 return false; 1191 } 1192 return true; 1193 } 1194 1195 public: 1196 /// Initialize with all the operands of the instruction vector \p RootVL. 1197 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1198 ScalarEvolution &SE, const BoUpSLP &R) 1199 : DL(DL), SE(SE), R(R) { 1200 // Append all the operands of RootVL. 1201 appendOperandsOfVL(RootVL); 1202 } 1203 1204 /// \Returns a value vector with the operands across all lanes for the 1205 /// opearnd at \p OpIdx. 1206 ValueList getVL(unsigned OpIdx) const { 1207 ValueList OpVL(OpsVec[OpIdx].size()); 1208 assert(OpsVec[OpIdx].size() == getNumLanes() && 1209 "Expected same num of lanes across all operands"); 1210 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1211 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1212 return OpVL; 1213 } 1214 1215 // Performs operand reordering for 2 or more operands. 1216 // The original operands are in OrigOps[OpIdx][Lane]. 1217 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1218 void reorder() { 1219 unsigned NumOperands = getNumOperands(); 1220 unsigned NumLanes = getNumLanes(); 1221 // Each operand has its own mode. We are using this mode to help us select 1222 // the instructions for each lane, so that they match best with the ones 1223 // we have selected so far. 1224 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1225 1226 // This is a greedy single-pass algorithm. We are going over each lane 1227 // once and deciding on the best order right away with no back-tracking. 1228 // However, in order to increase its effectiveness, we start with the lane 1229 // that has operands that can move the least. For example, given the 1230 // following lanes: 1231 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1232 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1233 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1234 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1235 // we will start at Lane 1, since the operands of the subtraction cannot 1236 // be reordered. Then we will visit the rest of the lanes in a circular 1237 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1238 1239 // Find the first lane that we will start our search from. 1240 unsigned FirstLane = getBestLaneToStartReordering(); 1241 1242 // Initialize the modes. 1243 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1244 Value *OpLane0 = getValue(OpIdx, FirstLane); 1245 // Keep track if we have instructions with all the same opcode on one 1246 // side. 1247 if (isa<LoadInst>(OpLane0)) 1248 ReorderingModes[OpIdx] = ReorderingMode::Load; 1249 else if (isa<Instruction>(OpLane0)) { 1250 // Check if OpLane0 should be broadcast. 1251 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1252 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1253 else 1254 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1255 } 1256 else if (isa<Constant>(OpLane0)) 1257 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1258 else if (isa<Argument>(OpLane0)) 1259 // Our best hope is a Splat. It may save some cost in some cases. 1260 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1261 else 1262 // NOTE: This should be unreachable. 1263 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1264 } 1265 1266 // If the initial strategy fails for any of the operand indexes, then we 1267 // perform reordering again in a second pass. This helps avoid assigning 1268 // high priority to the failed strategy, and should improve reordering for 1269 // the non-failed operand indexes. 1270 for (int Pass = 0; Pass != 2; ++Pass) { 1271 // Skip the second pass if the first pass did not fail. 1272 bool StrategyFailed = false; 1273 // Mark all operand data as free to use. 1274 clearUsed(); 1275 // We keep the original operand order for the FirstLane, so reorder the 1276 // rest of the lanes. We are visiting the nodes in a circular fashion, 1277 // using FirstLane as the center point and increasing the radius 1278 // distance. 1279 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1280 // Visit the lane on the right and then the lane on the left. 1281 for (int Direction : {+1, -1}) { 1282 int Lane = FirstLane + Direction * Distance; 1283 if (Lane < 0 || Lane >= (int)NumLanes) 1284 continue; 1285 int LastLane = Lane - Direction; 1286 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1287 "Out of bounds"); 1288 // Look for a good match for each operand. 1289 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1290 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1291 Optional<unsigned> BestIdx = 1292 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1293 // By not selecting a value, we allow the operands that follow to 1294 // select a better matching value. We will get a non-null value in 1295 // the next run of getBestOperand(). 1296 if (BestIdx) { 1297 // Swap the current operand with the one returned by 1298 // getBestOperand(). 1299 swap(OpIdx, BestIdx.getValue(), Lane); 1300 } else { 1301 // We failed to find a best operand, set mode to 'Failed'. 1302 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1303 // Enable the second pass. 1304 StrategyFailed = true; 1305 } 1306 } 1307 } 1308 } 1309 // Skip second pass if the strategy did not fail. 1310 if (!StrategyFailed) 1311 break; 1312 } 1313 } 1314 1315 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1316 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1317 switch (RMode) { 1318 case ReorderingMode::Load: 1319 return "Load"; 1320 case ReorderingMode::Opcode: 1321 return "Opcode"; 1322 case ReorderingMode::Constant: 1323 return "Constant"; 1324 case ReorderingMode::Splat: 1325 return "Splat"; 1326 case ReorderingMode::Failed: 1327 return "Failed"; 1328 } 1329 llvm_unreachable("Unimplemented Reordering Type"); 1330 } 1331 1332 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1333 raw_ostream &OS) { 1334 return OS << getModeStr(RMode); 1335 } 1336 1337 /// Debug print. 1338 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1339 printMode(RMode, dbgs()); 1340 } 1341 1342 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1343 return printMode(RMode, OS); 1344 } 1345 1346 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1347 const unsigned Indent = 2; 1348 unsigned Cnt = 0; 1349 for (const OperandDataVec &OpDataVec : OpsVec) { 1350 OS << "Operand " << Cnt++ << "\n"; 1351 for (const OperandData &OpData : OpDataVec) { 1352 OS.indent(Indent) << "{"; 1353 if (Value *V = OpData.V) 1354 OS << *V; 1355 else 1356 OS << "null"; 1357 OS << ", APO:" << OpData.APO << "}\n"; 1358 } 1359 OS << "\n"; 1360 } 1361 return OS; 1362 } 1363 1364 /// Debug print. 1365 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1366 #endif 1367 }; 1368 1369 /// Checks if the instruction is marked for deletion. 1370 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1371 1372 /// Marks values operands for later deletion by replacing them with Undefs. 1373 void eraseInstructions(ArrayRef<Value *> AV); 1374 1375 ~BoUpSLP(); 1376 1377 private: 1378 /// Checks if all users of \p I are the part of the vectorization tree. 1379 bool areAllUsersVectorized(Instruction *I) const; 1380 1381 /// \returns the cost of the vectorizable entry. 1382 int getEntryCost(TreeEntry *E); 1383 1384 /// This is the recursive part of buildTree. 1385 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1386 const EdgeInfo &EI); 1387 1388 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1389 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1390 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1391 /// returns false, setting \p CurrentOrder to either an empty vector or a 1392 /// non-identity permutation that allows to reuse extract instructions. 1393 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1394 SmallVectorImpl<unsigned> &CurrentOrder) const; 1395 1396 /// Vectorize a single entry in the tree. 1397 Value *vectorizeTree(TreeEntry *E); 1398 1399 /// Vectorize a single entry in the tree, starting in \p VL. 1400 Value *vectorizeTree(ArrayRef<Value *> VL); 1401 1402 /// \returns the scalarization cost for this type. Scalarization in this 1403 /// context means the creation of vectors from a group of scalars. 1404 int getGatherCost(Type *Ty, const DenseSet<unsigned> &ShuffledIndices) const; 1405 1406 /// \returns the scalarization cost for this list of values. Assuming that 1407 /// this subtree gets vectorized, we may need to extract the values from the 1408 /// roots. This method calculates the cost of extracting the values. 1409 int getGatherCost(ArrayRef<Value *> VL) const; 1410 1411 /// Set the Builder insert point to one after the last instruction in 1412 /// the bundle 1413 void setInsertPointAfterBundle(TreeEntry *E); 1414 1415 /// \returns a vector from a collection of scalars in \p VL. 1416 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 1417 1418 /// \returns whether the VectorizableTree is fully vectorizable and will 1419 /// be beneficial even the tree height is tiny. 1420 bool isFullyVectorizableTinyTree() const; 1421 1422 /// Reorder commutative or alt operands to get better probability of 1423 /// generating vectorized code. 1424 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1425 SmallVectorImpl<Value *> &Left, 1426 SmallVectorImpl<Value *> &Right, 1427 const DataLayout &DL, 1428 ScalarEvolution &SE, 1429 const BoUpSLP &R); 1430 struct TreeEntry { 1431 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1432 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1433 1434 /// \returns true if the scalars in VL are equal to this entry. 1435 bool isSame(ArrayRef<Value *> VL) const { 1436 if (VL.size() == Scalars.size()) 1437 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1438 return VL.size() == ReuseShuffleIndices.size() && 1439 std::equal( 1440 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 1441 [this](Value *V, unsigned Idx) { return V == Scalars[Idx]; }); 1442 } 1443 1444 /// A vector of scalars. 1445 ValueList Scalars; 1446 1447 /// The Scalars are vectorized into this value. It is initialized to Null. 1448 Value *VectorizedValue = nullptr; 1449 1450 /// Do we need to gather this sequence ? 1451 enum EntryState { Vectorize, NeedToGather }; 1452 EntryState State; 1453 1454 /// Does this sequence require some shuffling? 1455 SmallVector<unsigned, 4> ReuseShuffleIndices; 1456 1457 /// Does this entry require reordering? 1458 ArrayRef<unsigned> ReorderIndices; 1459 1460 /// Points back to the VectorizableTree. 1461 /// 1462 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1463 /// to be a pointer and needs to be able to initialize the child iterator. 1464 /// Thus we need a reference back to the container to translate the indices 1465 /// to entries. 1466 VecTreeTy &Container; 1467 1468 /// The TreeEntry index containing the user of this entry. We can actually 1469 /// have multiple users so the data structure is not truly a tree. 1470 SmallVector<EdgeInfo, 1> UserTreeIndices; 1471 1472 /// The index of this treeEntry in VectorizableTree. 1473 int Idx = -1; 1474 1475 private: 1476 /// The operands of each instruction in each lane Operands[op_index][lane]. 1477 /// Note: This helps avoid the replication of the code that performs the 1478 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1479 SmallVector<ValueList, 2> Operands; 1480 1481 /// The main/alternate instruction. 1482 Instruction *MainOp = nullptr; 1483 Instruction *AltOp = nullptr; 1484 1485 public: 1486 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1487 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1488 if (Operands.size() < OpIdx + 1) 1489 Operands.resize(OpIdx + 1); 1490 assert(Operands[OpIdx].size() == 0 && "Already resized?"); 1491 Operands[OpIdx].resize(Scalars.size()); 1492 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1493 Operands[OpIdx][Lane] = OpVL[Lane]; 1494 } 1495 1496 /// Set the operands of this bundle in their original order. 1497 void setOperandsInOrder() { 1498 assert(Operands.empty() && "Already initialized?"); 1499 auto *I0 = cast<Instruction>(Scalars[0]); 1500 Operands.resize(I0->getNumOperands()); 1501 unsigned NumLanes = Scalars.size(); 1502 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1503 OpIdx != NumOperands; ++OpIdx) { 1504 Operands[OpIdx].resize(NumLanes); 1505 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1506 auto *I = cast<Instruction>(Scalars[Lane]); 1507 assert(I->getNumOperands() == NumOperands && 1508 "Expected same number of operands"); 1509 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1510 } 1511 } 1512 } 1513 1514 /// \returns the \p OpIdx operand of this TreeEntry. 1515 ValueList &getOperand(unsigned OpIdx) { 1516 assert(OpIdx < Operands.size() && "Off bounds"); 1517 return Operands[OpIdx]; 1518 } 1519 1520 /// \returns the number of operands. 1521 unsigned getNumOperands() const { return Operands.size(); } 1522 1523 /// \return the single \p OpIdx operand. 1524 Value *getSingleOperand(unsigned OpIdx) const { 1525 assert(OpIdx < Operands.size() && "Off bounds"); 1526 assert(!Operands[OpIdx].empty() && "No operand available"); 1527 return Operands[OpIdx][0]; 1528 } 1529 1530 /// Some of the instructions in the list have alternate opcodes. 1531 bool isAltShuffle() const { 1532 return getOpcode() != getAltOpcode(); 1533 } 1534 1535 bool isOpcodeOrAlt(Instruction *I) const { 1536 unsigned CheckedOpcode = I->getOpcode(); 1537 return (getOpcode() == CheckedOpcode || 1538 getAltOpcode() == CheckedOpcode); 1539 } 1540 1541 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1542 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1543 /// \p OpValue. 1544 Value *isOneOf(Value *Op) const { 1545 auto *I = dyn_cast<Instruction>(Op); 1546 if (I && isOpcodeOrAlt(I)) 1547 return Op; 1548 return MainOp; 1549 } 1550 1551 void setOperations(const InstructionsState &S) { 1552 MainOp = S.MainOp; 1553 AltOp = S.AltOp; 1554 } 1555 1556 Instruction *getMainOp() const { 1557 return MainOp; 1558 } 1559 1560 Instruction *getAltOp() const { 1561 return AltOp; 1562 } 1563 1564 /// The main/alternate opcodes for the list of instructions. 1565 unsigned getOpcode() const { 1566 return MainOp ? MainOp->getOpcode() : 0; 1567 } 1568 1569 unsigned getAltOpcode() const { 1570 return AltOp ? AltOp->getOpcode() : 0; 1571 } 1572 1573 /// Update operations state of this entry if reorder occurred. 1574 bool updateStateIfReorder() { 1575 if (ReorderIndices.empty()) 1576 return false; 1577 InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front()); 1578 setOperations(S); 1579 return true; 1580 } 1581 1582 #ifndef NDEBUG 1583 /// Debug printer. 1584 LLVM_DUMP_METHOD void dump() const { 1585 dbgs() << Idx << ".\n"; 1586 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1587 dbgs() << "Operand " << OpI << ":\n"; 1588 for (const Value *V : Operands[OpI]) 1589 dbgs().indent(2) << *V << "\n"; 1590 } 1591 dbgs() << "Scalars: \n"; 1592 for (Value *V : Scalars) 1593 dbgs().indent(2) << *V << "\n"; 1594 dbgs() << "State: "; 1595 switch (State) { 1596 case Vectorize: 1597 dbgs() << "Vectorize\n"; 1598 break; 1599 case NeedToGather: 1600 dbgs() << "NeedToGather\n"; 1601 break; 1602 } 1603 dbgs() << "MainOp: "; 1604 if (MainOp) 1605 dbgs() << *MainOp << "\n"; 1606 else 1607 dbgs() << "NULL\n"; 1608 dbgs() << "AltOp: "; 1609 if (AltOp) 1610 dbgs() << *AltOp << "\n"; 1611 else 1612 dbgs() << "NULL\n"; 1613 dbgs() << "VectorizedValue: "; 1614 if (VectorizedValue) 1615 dbgs() << *VectorizedValue << "\n"; 1616 else 1617 dbgs() << "NULL\n"; 1618 dbgs() << "ReuseShuffleIndices: "; 1619 if (ReuseShuffleIndices.empty()) 1620 dbgs() << "Emtpy"; 1621 else 1622 for (unsigned ReuseIdx : ReuseShuffleIndices) 1623 dbgs() << ReuseIdx << ", "; 1624 dbgs() << "\n"; 1625 dbgs() << "ReorderIndices: "; 1626 for (unsigned ReorderIdx : ReorderIndices) 1627 dbgs() << ReorderIdx << ", "; 1628 dbgs() << "\n"; 1629 dbgs() << "UserTreeIndices: "; 1630 for (const auto &EInfo : UserTreeIndices) 1631 dbgs() << EInfo << ", "; 1632 dbgs() << "\n"; 1633 } 1634 #endif 1635 }; 1636 1637 /// Create a new VectorizableTree entry. 1638 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1639 const InstructionsState &S, 1640 const EdgeInfo &UserTreeIdx, 1641 ArrayRef<unsigned> ReuseShuffleIndices = None, 1642 ArrayRef<unsigned> ReorderIndices = None) { 1643 bool Vectorized = (bool)Bundle; 1644 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1645 TreeEntry *Last = VectorizableTree.back().get(); 1646 Last->Idx = VectorizableTree.size() - 1; 1647 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 1648 Last->State = Vectorized ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 1649 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1650 ReuseShuffleIndices.end()); 1651 Last->ReorderIndices = ReorderIndices; 1652 Last->setOperations(S); 1653 if (Vectorized) { 1654 for (int i = 0, e = VL.size(); i != e; ++i) { 1655 assert(!getTreeEntry(VL[i]) && "Scalar already in tree!"); 1656 ScalarToTreeEntry[VL[i]] = Last; 1657 } 1658 // Update the scheduler bundle to point to this TreeEntry. 1659 unsigned Lane = 0; 1660 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 1661 BundleMember = BundleMember->NextInBundle) { 1662 BundleMember->TE = Last; 1663 BundleMember->Lane = Lane; 1664 ++Lane; 1665 } 1666 assert((!Bundle.getValue() || Lane == VL.size()) && 1667 "Bundle and VL out of sync"); 1668 } else { 1669 MustGather.insert(VL.begin(), VL.end()); 1670 } 1671 1672 if (UserTreeIdx.UserTE) 1673 Last->UserTreeIndices.push_back(UserTreeIdx); 1674 1675 return Last; 1676 } 1677 1678 /// -- Vectorization State -- 1679 /// Holds all of the tree entries. 1680 TreeEntry::VecTreeTy VectorizableTree; 1681 1682 #ifndef NDEBUG 1683 /// Debug printer. 1684 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1685 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1686 VectorizableTree[Id]->dump(); 1687 dbgs() << "\n"; 1688 } 1689 } 1690 #endif 1691 1692 TreeEntry *getTreeEntry(Value *V) { 1693 auto I = ScalarToTreeEntry.find(V); 1694 if (I != ScalarToTreeEntry.end()) 1695 return I->second; 1696 return nullptr; 1697 } 1698 1699 const TreeEntry *getTreeEntry(Value *V) const { 1700 auto I = ScalarToTreeEntry.find(V); 1701 if (I != ScalarToTreeEntry.end()) 1702 return I->second; 1703 return nullptr; 1704 } 1705 1706 /// Maps a specific scalar to its tree entry. 1707 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 1708 1709 /// A list of scalars that we found that we need to keep as scalars. 1710 ValueSet MustGather; 1711 1712 /// This POD struct describes one external user in the vectorized tree. 1713 struct ExternalUser { 1714 ExternalUser(Value *S, llvm::User *U, int L) 1715 : Scalar(S), User(U), Lane(L) {} 1716 1717 // Which scalar in our function. 1718 Value *Scalar; 1719 1720 // Which user that uses the scalar. 1721 llvm::User *User; 1722 1723 // Which lane does the scalar belong to. 1724 int Lane; 1725 }; 1726 using UserList = SmallVector<ExternalUser, 16>; 1727 1728 /// Checks if two instructions may access the same memory. 1729 /// 1730 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 1731 /// is invariant in the calling loop. 1732 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 1733 Instruction *Inst2) { 1734 // First check if the result is already in the cache. 1735 AliasCacheKey key = std::make_pair(Inst1, Inst2); 1736 Optional<bool> &result = AliasCache[key]; 1737 if (result.hasValue()) { 1738 return result.getValue(); 1739 } 1740 MemoryLocation Loc2 = getLocation(Inst2, AA); 1741 bool aliased = true; 1742 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 1743 // Do the alias check. 1744 aliased = AA->alias(Loc1, Loc2); 1745 } 1746 // Store the result in the cache. 1747 result = aliased; 1748 return aliased; 1749 } 1750 1751 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 1752 1753 /// Cache for alias results. 1754 /// TODO: consider moving this to the AliasAnalysis itself. 1755 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 1756 1757 /// Removes an instruction from its block and eventually deletes it. 1758 /// It's like Instruction::eraseFromParent() except that the actual deletion 1759 /// is delayed until BoUpSLP is destructed. 1760 /// This is required to ensure that there are no incorrect collisions in the 1761 /// AliasCache, which can happen if a new instruction is allocated at the 1762 /// same address as a previously deleted instruction. 1763 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 1764 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 1765 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 1766 } 1767 1768 /// Temporary store for deleted instructions. Instructions will be deleted 1769 /// eventually when the BoUpSLP is destructed. 1770 DenseMap<Instruction *, bool> DeletedInstructions; 1771 1772 /// A list of values that need to extracted out of the tree. 1773 /// This list holds pairs of (Internal Scalar : External User). External User 1774 /// can be nullptr, it means that this Internal Scalar will be used later, 1775 /// after vectorization. 1776 UserList ExternalUses; 1777 1778 /// Values used only by @llvm.assume calls. 1779 SmallPtrSet<const Value *, 32> EphValues; 1780 1781 /// Holds all of the instructions that we gathered. 1782 SetVector<Instruction *> GatherSeq; 1783 1784 /// A list of blocks that we are going to CSE. 1785 SetVector<BasicBlock *> CSEBlocks; 1786 1787 /// Contains all scheduling relevant data for an instruction. 1788 /// A ScheduleData either represents a single instruction or a member of an 1789 /// instruction bundle (= a group of instructions which is combined into a 1790 /// vector instruction). 1791 struct ScheduleData { 1792 // The initial value for the dependency counters. It means that the 1793 // dependencies are not calculated yet. 1794 enum { InvalidDeps = -1 }; 1795 1796 ScheduleData() = default; 1797 1798 void init(int BlockSchedulingRegionID, Value *OpVal) { 1799 FirstInBundle = this; 1800 NextInBundle = nullptr; 1801 NextLoadStore = nullptr; 1802 IsScheduled = false; 1803 SchedulingRegionID = BlockSchedulingRegionID; 1804 UnscheduledDepsInBundle = UnscheduledDeps; 1805 clearDependencies(); 1806 OpValue = OpVal; 1807 TE = nullptr; 1808 Lane = -1; 1809 } 1810 1811 /// Returns true if the dependency information has been calculated. 1812 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 1813 1814 /// Returns true for single instructions and for bundle representatives 1815 /// (= the head of a bundle). 1816 bool isSchedulingEntity() const { return FirstInBundle == this; } 1817 1818 /// Returns true if it represents an instruction bundle and not only a 1819 /// single instruction. 1820 bool isPartOfBundle() const { 1821 return NextInBundle != nullptr || FirstInBundle != this; 1822 } 1823 1824 /// Returns true if it is ready for scheduling, i.e. it has no more 1825 /// unscheduled depending instructions/bundles. 1826 bool isReady() const { 1827 assert(isSchedulingEntity() && 1828 "can't consider non-scheduling entity for ready list"); 1829 return UnscheduledDepsInBundle == 0 && !IsScheduled; 1830 } 1831 1832 /// Modifies the number of unscheduled dependencies, also updating it for 1833 /// the whole bundle. 1834 int incrementUnscheduledDeps(int Incr) { 1835 UnscheduledDeps += Incr; 1836 return FirstInBundle->UnscheduledDepsInBundle += Incr; 1837 } 1838 1839 /// Sets the number of unscheduled dependencies to the number of 1840 /// dependencies. 1841 void resetUnscheduledDeps() { 1842 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 1843 } 1844 1845 /// Clears all dependency information. 1846 void clearDependencies() { 1847 Dependencies = InvalidDeps; 1848 resetUnscheduledDeps(); 1849 MemoryDependencies.clear(); 1850 } 1851 1852 void dump(raw_ostream &os) const { 1853 if (!isSchedulingEntity()) { 1854 os << "/ " << *Inst; 1855 } else if (NextInBundle) { 1856 os << '[' << *Inst; 1857 ScheduleData *SD = NextInBundle; 1858 while (SD) { 1859 os << ';' << *SD->Inst; 1860 SD = SD->NextInBundle; 1861 } 1862 os << ']'; 1863 } else { 1864 os << *Inst; 1865 } 1866 } 1867 1868 Instruction *Inst = nullptr; 1869 1870 /// Points to the head in an instruction bundle (and always to this for 1871 /// single instructions). 1872 ScheduleData *FirstInBundle = nullptr; 1873 1874 /// Single linked list of all instructions in a bundle. Null if it is a 1875 /// single instruction. 1876 ScheduleData *NextInBundle = nullptr; 1877 1878 /// Single linked list of all memory instructions (e.g. load, store, call) 1879 /// in the block - until the end of the scheduling region. 1880 ScheduleData *NextLoadStore = nullptr; 1881 1882 /// The dependent memory instructions. 1883 /// This list is derived on demand in calculateDependencies(). 1884 SmallVector<ScheduleData *, 4> MemoryDependencies; 1885 1886 /// This ScheduleData is in the current scheduling region if this matches 1887 /// the current SchedulingRegionID of BlockScheduling. 1888 int SchedulingRegionID = 0; 1889 1890 /// Used for getting a "good" final ordering of instructions. 1891 int SchedulingPriority = 0; 1892 1893 /// The number of dependencies. Constitutes of the number of users of the 1894 /// instruction plus the number of dependent memory instructions (if any). 1895 /// This value is calculated on demand. 1896 /// If InvalidDeps, the number of dependencies is not calculated yet. 1897 int Dependencies = InvalidDeps; 1898 1899 /// The number of dependencies minus the number of dependencies of scheduled 1900 /// instructions. As soon as this is zero, the instruction/bundle gets ready 1901 /// for scheduling. 1902 /// Note that this is negative as long as Dependencies is not calculated. 1903 int UnscheduledDeps = InvalidDeps; 1904 1905 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 1906 /// single instructions. 1907 int UnscheduledDepsInBundle = InvalidDeps; 1908 1909 /// True if this instruction is scheduled (or considered as scheduled in the 1910 /// dry-run). 1911 bool IsScheduled = false; 1912 1913 /// Opcode of the current instruction in the schedule data. 1914 Value *OpValue = nullptr; 1915 1916 /// The TreeEntry that this instruction corresponds to. 1917 TreeEntry *TE = nullptr; 1918 1919 /// The lane of this node in the TreeEntry. 1920 int Lane = -1; 1921 }; 1922 1923 #ifndef NDEBUG 1924 friend inline raw_ostream &operator<<(raw_ostream &os, 1925 const BoUpSLP::ScheduleData &SD) { 1926 SD.dump(os); 1927 return os; 1928 } 1929 #endif 1930 1931 friend struct GraphTraits<BoUpSLP *>; 1932 friend struct DOTGraphTraits<BoUpSLP *>; 1933 1934 /// Contains all scheduling data for a basic block. 1935 struct BlockScheduling { 1936 BlockScheduling(BasicBlock *BB) 1937 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 1938 1939 void clear() { 1940 ReadyInsts.clear(); 1941 ScheduleStart = nullptr; 1942 ScheduleEnd = nullptr; 1943 FirstLoadStoreInRegion = nullptr; 1944 LastLoadStoreInRegion = nullptr; 1945 1946 // Reduce the maximum schedule region size by the size of the 1947 // previous scheduling run. 1948 ScheduleRegionSizeLimit -= ScheduleRegionSize; 1949 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 1950 ScheduleRegionSizeLimit = MinScheduleRegionSize; 1951 ScheduleRegionSize = 0; 1952 1953 // Make a new scheduling region, i.e. all existing ScheduleData is not 1954 // in the new region yet. 1955 ++SchedulingRegionID; 1956 } 1957 1958 ScheduleData *getScheduleData(Value *V) { 1959 ScheduleData *SD = ScheduleDataMap[V]; 1960 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1961 return SD; 1962 return nullptr; 1963 } 1964 1965 ScheduleData *getScheduleData(Value *V, Value *Key) { 1966 if (V == Key) 1967 return getScheduleData(V); 1968 auto I = ExtraScheduleDataMap.find(V); 1969 if (I != ExtraScheduleDataMap.end()) { 1970 ScheduleData *SD = I->second[Key]; 1971 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1972 return SD; 1973 } 1974 return nullptr; 1975 } 1976 1977 bool isInSchedulingRegion(ScheduleData *SD) const { 1978 return SD->SchedulingRegionID == SchedulingRegionID; 1979 } 1980 1981 /// Marks an instruction as scheduled and puts all dependent ready 1982 /// instructions into the ready-list. 1983 template <typename ReadyListType> 1984 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 1985 SD->IsScheduled = true; 1986 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 1987 1988 ScheduleData *BundleMember = SD; 1989 while (BundleMember) { 1990 if (BundleMember->Inst != BundleMember->OpValue) { 1991 BundleMember = BundleMember->NextInBundle; 1992 continue; 1993 } 1994 // Handle the def-use chain dependencies. 1995 1996 // Decrement the unscheduled counter and insert to ready list if ready. 1997 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 1998 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 1999 if (OpDef && OpDef->hasValidDependencies() && 2000 OpDef->incrementUnscheduledDeps(-1) == 0) { 2001 // There are no more unscheduled dependencies after 2002 // decrementing, so we can put the dependent instruction 2003 // into the ready list. 2004 ScheduleData *DepBundle = OpDef->FirstInBundle; 2005 assert(!DepBundle->IsScheduled && 2006 "already scheduled bundle gets ready"); 2007 ReadyList.insert(DepBundle); 2008 LLVM_DEBUG(dbgs() 2009 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2010 } 2011 }); 2012 }; 2013 2014 // If BundleMember is a vector bundle, its operands may have been 2015 // reordered duiring buildTree(). We therefore need to get its operands 2016 // through the TreeEntry. 2017 if (TreeEntry *TE = BundleMember->TE) { 2018 int Lane = BundleMember->Lane; 2019 assert(Lane >= 0 && "Lane not set"); 2020 2021 // Since vectorization tree is being built recursively this assertion 2022 // ensures that the tree entry has all operands set before reaching 2023 // this code. Couple of exceptions known at the moment are extracts 2024 // where their second (immediate) operand is not added. Since 2025 // immediates do not affect scheduler behavior this is considered 2026 // okay. 2027 auto *In = TE->getMainOp(); 2028 assert(In && 2029 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2030 In->getNumOperands() == TE->getNumOperands()) && 2031 "Missed TreeEntry operands?"); 2032 (void)In; // fake use to avoid build failure when assertions disabled 2033 2034 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2035 OpIdx != NumOperands; ++OpIdx) 2036 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2037 DecrUnsched(I); 2038 } else { 2039 // If BundleMember is a stand-alone instruction, no operand reordering 2040 // has taken place, so we directly access its operands. 2041 for (Use &U : BundleMember->Inst->operands()) 2042 if (auto *I = dyn_cast<Instruction>(U.get())) 2043 DecrUnsched(I); 2044 } 2045 // Handle the memory dependencies. 2046 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2047 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2048 // There are no more unscheduled dependencies after decrementing, 2049 // so we can put the dependent instruction into the ready list. 2050 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2051 assert(!DepBundle->IsScheduled && 2052 "already scheduled bundle gets ready"); 2053 ReadyList.insert(DepBundle); 2054 LLVM_DEBUG(dbgs() 2055 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2056 } 2057 } 2058 BundleMember = BundleMember->NextInBundle; 2059 } 2060 } 2061 2062 void doForAllOpcodes(Value *V, 2063 function_ref<void(ScheduleData *SD)> Action) { 2064 if (ScheduleData *SD = getScheduleData(V)) 2065 Action(SD); 2066 auto I = ExtraScheduleDataMap.find(V); 2067 if (I != ExtraScheduleDataMap.end()) 2068 for (auto &P : I->second) 2069 if (P.second->SchedulingRegionID == SchedulingRegionID) 2070 Action(P.second); 2071 } 2072 2073 /// Put all instructions into the ReadyList which are ready for scheduling. 2074 template <typename ReadyListType> 2075 void initialFillReadyList(ReadyListType &ReadyList) { 2076 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2077 doForAllOpcodes(I, [&](ScheduleData *SD) { 2078 if (SD->isSchedulingEntity() && SD->isReady()) { 2079 ReadyList.insert(SD); 2080 LLVM_DEBUG(dbgs() 2081 << "SLP: initially in ready list: " << *I << "\n"); 2082 } 2083 }); 2084 } 2085 } 2086 2087 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2088 /// cyclic dependencies. This is only a dry-run, no instructions are 2089 /// actually moved at this stage. 2090 /// \returns the scheduling bundle. The returned Optional value is non-None 2091 /// if \p VL is allowed to be scheduled. 2092 Optional<ScheduleData *> 2093 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2094 const InstructionsState &S); 2095 2096 /// Un-bundles a group of instructions. 2097 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2098 2099 /// Allocates schedule data chunk. 2100 ScheduleData *allocateScheduleDataChunks(); 2101 2102 /// Extends the scheduling region so that V is inside the region. 2103 /// \returns true if the region size is within the limit. 2104 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2105 2106 /// Initialize the ScheduleData structures for new instructions in the 2107 /// scheduling region. 2108 void initScheduleData(Instruction *FromI, Instruction *ToI, 2109 ScheduleData *PrevLoadStore, 2110 ScheduleData *NextLoadStore); 2111 2112 /// Updates the dependency information of a bundle and of all instructions/ 2113 /// bundles which depend on the original bundle. 2114 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2115 BoUpSLP *SLP); 2116 2117 /// Sets all instruction in the scheduling region to un-scheduled. 2118 void resetSchedule(); 2119 2120 BasicBlock *BB; 2121 2122 /// Simple memory allocation for ScheduleData. 2123 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2124 2125 /// The size of a ScheduleData array in ScheduleDataChunks. 2126 int ChunkSize; 2127 2128 /// The allocator position in the current chunk, which is the last entry 2129 /// of ScheduleDataChunks. 2130 int ChunkPos; 2131 2132 /// Attaches ScheduleData to Instruction. 2133 /// Note that the mapping survives during all vectorization iterations, i.e. 2134 /// ScheduleData structures are recycled. 2135 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2136 2137 /// Attaches ScheduleData to Instruction with the leading key. 2138 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2139 ExtraScheduleDataMap; 2140 2141 struct ReadyList : SmallVector<ScheduleData *, 8> { 2142 void insert(ScheduleData *SD) { push_back(SD); } 2143 }; 2144 2145 /// The ready-list for scheduling (only used for the dry-run). 2146 ReadyList ReadyInsts; 2147 2148 /// The first instruction of the scheduling region. 2149 Instruction *ScheduleStart = nullptr; 2150 2151 /// The first instruction _after_ the scheduling region. 2152 Instruction *ScheduleEnd = nullptr; 2153 2154 /// The first memory accessing instruction in the scheduling region 2155 /// (can be null). 2156 ScheduleData *FirstLoadStoreInRegion = nullptr; 2157 2158 /// The last memory accessing instruction in the scheduling region 2159 /// (can be null). 2160 ScheduleData *LastLoadStoreInRegion = nullptr; 2161 2162 /// The current size of the scheduling region. 2163 int ScheduleRegionSize = 0; 2164 2165 /// The maximum size allowed for the scheduling region. 2166 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2167 2168 /// The ID of the scheduling region. For a new vectorization iteration this 2169 /// is incremented which "removes" all ScheduleData from the region. 2170 // Make sure that the initial SchedulingRegionID is greater than the 2171 // initial SchedulingRegionID in ScheduleData (which is 0). 2172 int SchedulingRegionID = 1; 2173 }; 2174 2175 /// Attaches the BlockScheduling structures to basic blocks. 2176 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2177 2178 /// Performs the "real" scheduling. Done before vectorization is actually 2179 /// performed in a basic block. 2180 void scheduleBlock(BlockScheduling *BS); 2181 2182 /// List of users to ignore during scheduling and that don't need extracting. 2183 ArrayRef<Value *> UserIgnoreList; 2184 2185 using OrdersType = SmallVector<unsigned, 4>; 2186 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2187 /// sorted SmallVectors of unsigned. 2188 struct OrdersTypeDenseMapInfo { 2189 static OrdersType getEmptyKey() { 2190 OrdersType V; 2191 V.push_back(~1U); 2192 return V; 2193 } 2194 2195 static OrdersType getTombstoneKey() { 2196 OrdersType V; 2197 V.push_back(~2U); 2198 return V; 2199 } 2200 2201 static unsigned getHashValue(const OrdersType &V) { 2202 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2203 } 2204 2205 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2206 return LHS == RHS; 2207 } 2208 }; 2209 2210 /// Contains orders of operations along with the number of bundles that have 2211 /// operations in this order. It stores only those orders that require 2212 /// reordering, if reordering is not required it is counted using \a 2213 /// NumOpsWantToKeepOriginalOrder. 2214 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 2215 /// Number of bundles that do not require reordering. 2216 unsigned NumOpsWantToKeepOriginalOrder = 0; 2217 2218 // Analysis and block reference. 2219 Function *F; 2220 ScalarEvolution *SE; 2221 TargetTransformInfo *TTI; 2222 TargetLibraryInfo *TLI; 2223 AliasAnalysis *AA; 2224 LoopInfo *LI; 2225 DominatorTree *DT; 2226 AssumptionCache *AC; 2227 DemandedBits *DB; 2228 const DataLayout *DL; 2229 OptimizationRemarkEmitter *ORE; 2230 2231 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2232 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2233 2234 /// Instruction builder to construct the vectorized tree. 2235 IRBuilder<> Builder; 2236 2237 /// A map of scalar integer values to the smallest bit width with which they 2238 /// can legally be represented. The values map to (width, signed) pairs, 2239 /// where "width" indicates the minimum bit width and "signed" is True if the 2240 /// value must be signed-extended, rather than zero-extended, back to its 2241 /// original width. 2242 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2243 }; 2244 2245 } // end namespace slpvectorizer 2246 2247 template <> struct GraphTraits<BoUpSLP *> { 2248 using TreeEntry = BoUpSLP::TreeEntry; 2249 2250 /// NodeRef has to be a pointer per the GraphWriter. 2251 using NodeRef = TreeEntry *; 2252 2253 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2254 2255 /// Add the VectorizableTree to the index iterator to be able to return 2256 /// TreeEntry pointers. 2257 struct ChildIteratorType 2258 : public iterator_adaptor_base< 2259 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2260 ContainerTy &VectorizableTree; 2261 2262 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2263 ContainerTy &VT) 2264 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2265 2266 NodeRef operator*() { return I->UserTE; } 2267 }; 2268 2269 static NodeRef getEntryNode(BoUpSLP &R) { 2270 return R.VectorizableTree[0].get(); 2271 } 2272 2273 static ChildIteratorType child_begin(NodeRef N) { 2274 return {N->UserTreeIndices.begin(), N->Container}; 2275 } 2276 2277 static ChildIteratorType child_end(NodeRef N) { 2278 return {N->UserTreeIndices.end(), N->Container}; 2279 } 2280 2281 /// For the node iterator we just need to turn the TreeEntry iterator into a 2282 /// TreeEntry* iterator so that it dereferences to NodeRef. 2283 class nodes_iterator { 2284 using ItTy = ContainerTy::iterator; 2285 ItTy It; 2286 2287 public: 2288 nodes_iterator(const ItTy &It2) : It(It2) {} 2289 NodeRef operator*() { return It->get(); } 2290 nodes_iterator operator++() { 2291 ++It; 2292 return *this; 2293 } 2294 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2295 }; 2296 2297 static nodes_iterator nodes_begin(BoUpSLP *R) { 2298 return nodes_iterator(R->VectorizableTree.begin()); 2299 } 2300 2301 static nodes_iterator nodes_end(BoUpSLP *R) { 2302 return nodes_iterator(R->VectorizableTree.end()); 2303 } 2304 2305 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2306 }; 2307 2308 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2309 using TreeEntry = BoUpSLP::TreeEntry; 2310 2311 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2312 2313 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2314 std::string Str; 2315 raw_string_ostream OS(Str); 2316 if (isSplat(Entry->Scalars)) { 2317 OS << "<splat> " << *Entry->Scalars[0]; 2318 return Str; 2319 } 2320 for (auto V : Entry->Scalars) { 2321 OS << *V; 2322 if (std::any_of( 2323 R->ExternalUses.begin(), R->ExternalUses.end(), 2324 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 2325 OS << " <extract>"; 2326 OS << "\n"; 2327 } 2328 return Str; 2329 } 2330 2331 static std::string getNodeAttributes(const TreeEntry *Entry, 2332 const BoUpSLP *) { 2333 if (Entry->State == TreeEntry::NeedToGather) 2334 return "color=red"; 2335 return ""; 2336 } 2337 }; 2338 2339 } // end namespace llvm 2340 2341 BoUpSLP::~BoUpSLP() { 2342 for (const auto &Pair : DeletedInstructions) { 2343 // Replace operands of ignored instructions with Undefs in case if they were 2344 // marked for deletion. 2345 if (Pair.getSecond()) { 2346 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2347 Pair.getFirst()->replaceAllUsesWith(Undef); 2348 } 2349 Pair.getFirst()->dropAllReferences(); 2350 } 2351 for (const auto &Pair : DeletedInstructions) { 2352 assert(Pair.getFirst()->use_empty() && 2353 "trying to erase instruction with users."); 2354 Pair.getFirst()->eraseFromParent(); 2355 } 2356 } 2357 2358 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2359 for (auto *V : AV) { 2360 if (auto *I = dyn_cast<Instruction>(V)) 2361 eraseInstruction(I, /*ReplaceWithUndef=*/true); 2362 }; 2363 } 2364 2365 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2366 ArrayRef<Value *> UserIgnoreLst) { 2367 ExtraValueToDebugLocsMap ExternallyUsedValues; 2368 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 2369 } 2370 2371 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2372 ExtraValueToDebugLocsMap &ExternallyUsedValues, 2373 ArrayRef<Value *> UserIgnoreLst) { 2374 deleteTree(); 2375 UserIgnoreList = UserIgnoreLst; 2376 if (!allSameType(Roots)) 2377 return; 2378 buildTree_rec(Roots, 0, EdgeInfo()); 2379 2380 // Collect the values that we need to extract from the tree. 2381 for (auto &TEPtr : VectorizableTree) { 2382 TreeEntry *Entry = TEPtr.get(); 2383 2384 // No need to handle users of gathered values. 2385 if (Entry->State == TreeEntry::NeedToGather) 2386 continue; 2387 2388 // For each lane: 2389 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2390 Value *Scalar = Entry->Scalars[Lane]; 2391 int FoundLane = Lane; 2392 if (!Entry->ReuseShuffleIndices.empty()) { 2393 FoundLane = 2394 std::distance(Entry->ReuseShuffleIndices.begin(), 2395 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 2396 } 2397 2398 // Check if the scalar is externally used as an extra arg. 2399 auto ExtI = ExternallyUsedValues.find(Scalar); 2400 if (ExtI != ExternallyUsedValues.end()) { 2401 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 2402 << Lane << " from " << *Scalar << ".\n"); 2403 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 2404 } 2405 for (User *U : Scalar->users()) { 2406 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 2407 2408 Instruction *UserInst = dyn_cast<Instruction>(U); 2409 if (!UserInst) 2410 continue; 2411 2412 // Skip in-tree scalars that become vectors 2413 if (TreeEntry *UseEntry = getTreeEntry(U)) { 2414 Value *UseScalar = UseEntry->Scalars[0]; 2415 // Some in-tree scalars will remain as scalar in vectorized 2416 // instructions. If that is the case, the one in Lane 0 will 2417 // be used. 2418 if (UseScalar != U || 2419 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 2420 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 2421 << ".\n"); 2422 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 2423 continue; 2424 } 2425 } 2426 2427 // Ignore users in the user ignore list. 2428 if (is_contained(UserIgnoreList, UserInst)) 2429 continue; 2430 2431 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 2432 << Lane << " from " << *Scalar << ".\n"); 2433 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 2434 } 2435 } 2436 } 2437 } 2438 2439 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 2440 const EdgeInfo &UserTreeIdx) { 2441 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 2442 2443 InstructionsState S = getSameOpcode(VL); 2444 if (Depth == RecursionMaxDepth) { 2445 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 2446 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2447 return; 2448 } 2449 2450 // Don't handle vectors. 2451 if (S.OpValue->getType()->isVectorTy()) { 2452 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 2453 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2454 return; 2455 } 2456 2457 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2458 if (SI->getValueOperand()->getType()->isVectorTy()) { 2459 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 2460 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2461 return; 2462 } 2463 2464 // If all of the operands are identical or constant we have a simple solution. 2465 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 2466 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 2467 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2468 return; 2469 } 2470 2471 // We now know that this is a vector of instructions of the same type from 2472 // the same block. 2473 2474 // Don't vectorize ephemeral values. 2475 for (Value *V : VL) { 2476 if (EphValues.count(V)) { 2477 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2478 << ") is ephemeral.\n"); 2479 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2480 return; 2481 } 2482 } 2483 2484 // Check if this is a duplicate of another entry. 2485 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2486 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 2487 if (!E->isSame(VL)) { 2488 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 2489 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2490 return; 2491 } 2492 // Record the reuse of the tree node. FIXME, currently this is only used to 2493 // properly draw the graph rather than for the actual vectorization. 2494 E->UserTreeIndices.push_back(UserTreeIdx); 2495 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 2496 << ".\n"); 2497 return; 2498 } 2499 2500 // Check that none of the instructions in the bundle are already in the tree. 2501 for (Value *V : VL) { 2502 auto *I = dyn_cast<Instruction>(V); 2503 if (!I) 2504 continue; 2505 if (getTreeEntry(I)) { 2506 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2507 << ") is already in tree.\n"); 2508 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2509 return; 2510 } 2511 } 2512 2513 // If any of the scalars is marked as a value that needs to stay scalar, then 2514 // we need to gather the scalars. 2515 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 2516 for (Value *V : VL) { 2517 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 2518 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 2519 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2520 return; 2521 } 2522 } 2523 2524 // Check that all of the users of the scalars that we want to vectorize are 2525 // schedulable. 2526 auto *VL0 = cast<Instruction>(S.OpValue); 2527 BasicBlock *BB = VL0->getParent(); 2528 2529 if (!DT->isReachableFromEntry(BB)) { 2530 // Don't go into unreachable blocks. They may contain instructions with 2531 // dependency cycles which confuse the final scheduling. 2532 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 2533 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2534 return; 2535 } 2536 2537 // Check that every instruction appears once in this bundle. 2538 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2539 SmallVector<Value *, 4> UniqueValues; 2540 DenseMap<Value *, unsigned> UniquePositions; 2541 for (Value *V : VL) { 2542 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2543 ReuseShuffleIndicies.emplace_back(Res.first->second); 2544 if (Res.second) 2545 UniqueValues.emplace_back(V); 2546 } 2547 size_t NumUniqueScalarValues = UniqueValues.size(); 2548 if (NumUniqueScalarValues == VL.size()) { 2549 ReuseShuffleIndicies.clear(); 2550 } else { 2551 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 2552 if (NumUniqueScalarValues <= 1 || 2553 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 2554 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 2555 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2556 return; 2557 } 2558 VL = UniqueValues; 2559 } 2560 2561 auto &BSRef = BlocksSchedules[BB]; 2562 if (!BSRef) 2563 BSRef = std::make_unique<BlockScheduling>(BB); 2564 2565 BlockScheduling &BS = *BSRef.get(); 2566 2567 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 2568 if (!Bundle) { 2569 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 2570 assert((!BS.getScheduleData(VL0) || 2571 !BS.getScheduleData(VL0)->isPartOfBundle()) && 2572 "tryScheduleBundle should cancelScheduling on failure"); 2573 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2574 ReuseShuffleIndicies); 2575 return; 2576 } 2577 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 2578 2579 unsigned ShuffleOrOp = S.isAltShuffle() ? 2580 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2581 switch (ShuffleOrOp) { 2582 case Instruction::PHI: { 2583 auto *PH = cast<PHINode>(VL0); 2584 2585 // Check for terminator values (e.g. invoke). 2586 for (unsigned j = 0; j < VL.size(); ++j) 2587 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2588 Instruction *Term = dyn_cast<Instruction>( 2589 cast<PHINode>(VL[j])->getIncomingValueForBlock( 2590 PH->getIncomingBlock(i))); 2591 if (Term && Term->isTerminator()) { 2592 LLVM_DEBUG(dbgs() 2593 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 2594 BS.cancelScheduling(VL, VL0); 2595 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2596 ReuseShuffleIndicies); 2597 return; 2598 } 2599 } 2600 2601 TreeEntry *TE = 2602 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 2603 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 2604 2605 // Keeps the reordered operands to avoid code duplication. 2606 SmallVector<ValueList, 2> OperandsVec; 2607 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2608 ValueList Operands; 2609 // Prepare the operand vector. 2610 for (Value *j : VL) 2611 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 2612 PH->getIncomingBlock(i))); 2613 TE->setOperand(i, Operands); 2614 OperandsVec.push_back(Operands); 2615 } 2616 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 2617 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 2618 return; 2619 } 2620 case Instruction::ExtractValue: 2621 case Instruction::ExtractElement: { 2622 OrdersType CurrentOrder; 2623 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 2624 if (Reuse) { 2625 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 2626 ++NumOpsWantToKeepOriginalOrder; 2627 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2628 ReuseShuffleIndicies); 2629 // This is a special case, as it does not gather, but at the same time 2630 // we are not extending buildTree_rec() towards the operands. 2631 ValueList Op0; 2632 Op0.assign(VL.size(), VL0->getOperand(0)); 2633 VectorizableTree.back()->setOperand(0, Op0); 2634 return; 2635 } 2636 if (!CurrentOrder.empty()) { 2637 LLVM_DEBUG({ 2638 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 2639 "with order"; 2640 for (unsigned Idx : CurrentOrder) 2641 dbgs() << " " << Idx; 2642 dbgs() << "\n"; 2643 }); 2644 // Insert new order with initial value 0, if it does not exist, 2645 // otherwise return the iterator to the existing one. 2646 auto StoredCurrentOrderAndNum = 2647 NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 2648 ++StoredCurrentOrderAndNum->getSecond(); 2649 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2650 ReuseShuffleIndicies, 2651 StoredCurrentOrderAndNum->getFirst()); 2652 // This is a special case, as it does not gather, but at the same time 2653 // we are not extending buildTree_rec() towards the operands. 2654 ValueList Op0; 2655 Op0.assign(VL.size(), VL0->getOperand(0)); 2656 VectorizableTree.back()->setOperand(0, Op0); 2657 return; 2658 } 2659 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 2660 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2661 ReuseShuffleIndicies); 2662 BS.cancelScheduling(VL, VL0); 2663 return; 2664 } 2665 case Instruction::Load: { 2666 // Check that a vectorized load would load the same memory as a scalar 2667 // load. For example, we don't want to vectorize loads that are smaller 2668 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 2669 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 2670 // from such a struct, we read/write packed bits disagreeing with the 2671 // unvectorized version. 2672 Type *ScalarTy = VL0->getType(); 2673 2674 if (DL->getTypeSizeInBits(ScalarTy) != 2675 DL->getTypeAllocSizeInBits(ScalarTy)) { 2676 BS.cancelScheduling(VL, VL0); 2677 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2678 ReuseShuffleIndicies); 2679 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 2680 return; 2681 } 2682 2683 // Make sure all loads in the bundle are simple - we can't vectorize 2684 // atomic or volatile loads. 2685 SmallVector<Value *, 4> PointerOps(VL.size()); 2686 auto POIter = PointerOps.begin(); 2687 for (Value *V : VL) { 2688 auto *L = cast<LoadInst>(V); 2689 if (!L->isSimple()) { 2690 BS.cancelScheduling(VL, VL0); 2691 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2692 ReuseShuffleIndicies); 2693 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 2694 return; 2695 } 2696 *POIter = L->getPointerOperand(); 2697 ++POIter; 2698 } 2699 2700 OrdersType CurrentOrder; 2701 // Check the order of pointer operands. 2702 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2703 Value *Ptr0; 2704 Value *PtrN; 2705 if (CurrentOrder.empty()) { 2706 Ptr0 = PointerOps.front(); 2707 PtrN = PointerOps.back(); 2708 } else { 2709 Ptr0 = PointerOps[CurrentOrder.front()]; 2710 PtrN = PointerOps[CurrentOrder.back()]; 2711 } 2712 const SCEV *Scev0 = SE->getSCEV(Ptr0); 2713 const SCEV *ScevN = SE->getSCEV(PtrN); 2714 const auto *Diff = 2715 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 2716 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 2717 // Check that the sorted loads are consecutive. 2718 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 2719 if (CurrentOrder.empty()) { 2720 // Original loads are consecutive and does not require reordering. 2721 ++NumOpsWantToKeepOriginalOrder; 2722 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 2723 UserTreeIdx, ReuseShuffleIndicies); 2724 TE->setOperandsInOrder(); 2725 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 2726 } else { 2727 // Need to reorder. 2728 auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 2729 ++I->getSecond(); 2730 TreeEntry *TE = 2731 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2732 ReuseShuffleIndicies, I->getFirst()); 2733 TE->setOperandsInOrder(); 2734 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 2735 } 2736 return; 2737 } 2738 } 2739 2740 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 2741 BS.cancelScheduling(VL, VL0); 2742 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2743 ReuseShuffleIndicies); 2744 return; 2745 } 2746 case Instruction::ZExt: 2747 case Instruction::SExt: 2748 case Instruction::FPToUI: 2749 case Instruction::FPToSI: 2750 case Instruction::FPExt: 2751 case Instruction::PtrToInt: 2752 case Instruction::IntToPtr: 2753 case Instruction::SIToFP: 2754 case Instruction::UIToFP: 2755 case Instruction::Trunc: 2756 case Instruction::FPTrunc: 2757 case Instruction::BitCast: { 2758 Type *SrcTy = VL0->getOperand(0)->getType(); 2759 for (Value *V : VL) { 2760 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 2761 if (Ty != SrcTy || !isValidElementType(Ty)) { 2762 BS.cancelScheduling(VL, VL0); 2763 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2764 ReuseShuffleIndicies); 2765 LLVM_DEBUG(dbgs() 2766 << "SLP: Gathering casts with different src types.\n"); 2767 return; 2768 } 2769 } 2770 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2771 ReuseShuffleIndicies); 2772 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 2773 2774 TE->setOperandsInOrder(); 2775 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2776 ValueList Operands; 2777 // Prepare the operand vector. 2778 for (Value *V : VL) 2779 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2780 2781 buildTree_rec(Operands, Depth + 1, {TE, i}); 2782 } 2783 return; 2784 } 2785 case Instruction::ICmp: 2786 case Instruction::FCmp: { 2787 // Check that all of the compares have the same predicate. 2788 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2789 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 2790 Type *ComparedTy = VL0->getOperand(0)->getType(); 2791 for (Value *V : VL) { 2792 CmpInst *Cmp = cast<CmpInst>(V); 2793 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 2794 Cmp->getOperand(0)->getType() != ComparedTy) { 2795 BS.cancelScheduling(VL, VL0); 2796 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2797 ReuseShuffleIndicies); 2798 LLVM_DEBUG(dbgs() 2799 << "SLP: Gathering cmp with different predicate.\n"); 2800 return; 2801 } 2802 } 2803 2804 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2805 ReuseShuffleIndicies); 2806 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 2807 2808 ValueList Left, Right; 2809 if (cast<CmpInst>(VL0)->isCommutative()) { 2810 // Commutative predicate - collect + sort operands of the instructions 2811 // so that each side is more likely to have the same opcode. 2812 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 2813 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 2814 } else { 2815 // Collect operands - commute if it uses the swapped predicate. 2816 for (Value *V : VL) { 2817 auto *Cmp = cast<CmpInst>(V); 2818 Value *LHS = Cmp->getOperand(0); 2819 Value *RHS = Cmp->getOperand(1); 2820 if (Cmp->getPredicate() != P0) 2821 std::swap(LHS, RHS); 2822 Left.push_back(LHS); 2823 Right.push_back(RHS); 2824 } 2825 } 2826 TE->setOperand(0, Left); 2827 TE->setOperand(1, Right); 2828 buildTree_rec(Left, Depth + 1, {TE, 0}); 2829 buildTree_rec(Right, Depth + 1, {TE, 1}); 2830 return; 2831 } 2832 case Instruction::Select: 2833 case Instruction::FNeg: 2834 case Instruction::Add: 2835 case Instruction::FAdd: 2836 case Instruction::Sub: 2837 case Instruction::FSub: 2838 case Instruction::Mul: 2839 case Instruction::FMul: 2840 case Instruction::UDiv: 2841 case Instruction::SDiv: 2842 case Instruction::FDiv: 2843 case Instruction::URem: 2844 case Instruction::SRem: 2845 case Instruction::FRem: 2846 case Instruction::Shl: 2847 case Instruction::LShr: 2848 case Instruction::AShr: 2849 case Instruction::And: 2850 case Instruction::Or: 2851 case Instruction::Xor: { 2852 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2853 ReuseShuffleIndicies); 2854 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 2855 2856 // Sort operands of the instructions so that each side is more likely to 2857 // have the same opcode. 2858 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 2859 ValueList Left, Right; 2860 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 2861 TE->setOperand(0, Left); 2862 TE->setOperand(1, Right); 2863 buildTree_rec(Left, Depth + 1, {TE, 0}); 2864 buildTree_rec(Right, Depth + 1, {TE, 1}); 2865 return; 2866 } 2867 2868 TE->setOperandsInOrder(); 2869 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2870 ValueList Operands; 2871 // Prepare the operand vector. 2872 for (Value *j : VL) 2873 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 2874 2875 buildTree_rec(Operands, Depth + 1, {TE, i}); 2876 } 2877 return; 2878 } 2879 case Instruction::GetElementPtr: { 2880 // We don't combine GEPs with complicated (nested) indexing. 2881 for (Value *V : VL) { 2882 if (cast<Instruction>(V)->getNumOperands() != 2) { 2883 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 2884 BS.cancelScheduling(VL, VL0); 2885 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2886 ReuseShuffleIndicies); 2887 return; 2888 } 2889 } 2890 2891 // We can't combine several GEPs into one vector if they operate on 2892 // different types. 2893 Type *Ty0 = VL0->getOperand(0)->getType(); 2894 for (Value *V : VL) { 2895 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 2896 if (Ty0 != CurTy) { 2897 LLVM_DEBUG(dbgs() 2898 << "SLP: not-vectorizable GEP (different types).\n"); 2899 BS.cancelScheduling(VL, VL0); 2900 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2901 ReuseShuffleIndicies); 2902 return; 2903 } 2904 } 2905 2906 // We don't combine GEPs with non-constant indexes. 2907 Type *Ty1 = VL0->getOperand(1)->getType(); 2908 for (Value *V : VL) { 2909 auto Op = cast<Instruction>(V)->getOperand(1); 2910 if (!isa<ConstantInt>(Op) || 2911 (Op->getType() != Ty1 && 2912 Op->getType()->getScalarSizeInBits() > 2913 DL->getIndexSizeInBits( 2914 V->getType()->getPointerAddressSpace()))) { 2915 LLVM_DEBUG(dbgs() 2916 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 2917 BS.cancelScheduling(VL, VL0); 2918 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2919 ReuseShuffleIndicies); 2920 return; 2921 } 2922 } 2923 2924 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2925 ReuseShuffleIndicies); 2926 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 2927 TE->setOperandsInOrder(); 2928 for (unsigned i = 0, e = 2; i < e; ++i) { 2929 ValueList Operands; 2930 // Prepare the operand vector. 2931 for (Value *V : VL) 2932 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2933 2934 buildTree_rec(Operands, Depth + 1, {TE, i}); 2935 } 2936 return; 2937 } 2938 case Instruction::Store: { 2939 // Check if the stores are consecutive or if we need to swizzle them. 2940 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 2941 // Make sure all stores in the bundle are simple - we can't vectorize 2942 // atomic or volatile stores. 2943 SmallVector<Value *, 4> PointerOps(VL.size()); 2944 ValueList Operands(VL.size()); 2945 auto POIter = PointerOps.begin(); 2946 auto OIter = Operands.begin(); 2947 for (Value *V : VL) { 2948 auto *SI = cast<StoreInst>(V); 2949 if (!SI->isSimple()) { 2950 BS.cancelScheduling(VL, VL0); 2951 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2952 ReuseShuffleIndicies); 2953 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 2954 return; 2955 } 2956 *POIter = SI->getPointerOperand(); 2957 *OIter = SI->getValueOperand(); 2958 ++POIter; 2959 ++OIter; 2960 } 2961 2962 OrdersType CurrentOrder; 2963 // Check the order of pointer operands. 2964 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2965 Value *Ptr0; 2966 Value *PtrN; 2967 if (CurrentOrder.empty()) { 2968 Ptr0 = PointerOps.front(); 2969 PtrN = PointerOps.back(); 2970 } else { 2971 Ptr0 = PointerOps[CurrentOrder.front()]; 2972 PtrN = PointerOps[CurrentOrder.back()]; 2973 } 2974 const SCEV *Scev0 = SE->getSCEV(Ptr0); 2975 const SCEV *ScevN = SE->getSCEV(PtrN); 2976 const auto *Diff = 2977 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 2978 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 2979 // Check that the sorted pointer operands are consecutive. 2980 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 2981 if (CurrentOrder.empty()) { 2982 // Original stores are consecutive and does not require reordering. 2983 ++NumOpsWantToKeepOriginalOrder; 2984 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 2985 UserTreeIdx, ReuseShuffleIndicies); 2986 TE->setOperandsInOrder(); 2987 buildTree_rec(Operands, Depth + 1, {TE, 0}); 2988 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 2989 } else { 2990 // Need to reorder. 2991 auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 2992 ++(I->getSecond()); 2993 TreeEntry *TE = 2994 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2995 ReuseShuffleIndicies, I->getFirst()); 2996 TE->setOperandsInOrder(); 2997 buildTree_rec(Operands, Depth + 1, {TE, 0}); 2998 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 2999 } 3000 return; 3001 } 3002 } 3003 3004 BS.cancelScheduling(VL, VL0); 3005 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3006 ReuseShuffleIndicies); 3007 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 3008 return; 3009 } 3010 case Instruction::Call: { 3011 // Check if the calls are all to the same vectorizable intrinsic. 3012 CallInst *CI = cast<CallInst>(VL0); 3013 // Check if this is an Intrinsic call or something that can be 3014 // represented by an intrinsic call 3015 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3016 if (!isTriviallyVectorizable(ID)) { 3017 BS.cancelScheduling(VL, VL0); 3018 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3019 ReuseShuffleIndicies); 3020 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 3021 return; 3022 } 3023 Function *Int = CI->getCalledFunction(); 3024 unsigned NumArgs = CI->getNumArgOperands(); 3025 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 3026 for (unsigned j = 0; j != NumArgs; ++j) 3027 if (hasVectorInstrinsicScalarOpd(ID, j)) 3028 ScalarArgs[j] = CI->getArgOperand(j); 3029 for (Value *V : VL) { 3030 CallInst *CI2 = dyn_cast<CallInst>(V); 3031 if (!CI2 || CI2->getCalledFunction() != Int || 3032 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 3033 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 3034 BS.cancelScheduling(VL, VL0); 3035 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3036 ReuseShuffleIndicies); 3037 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 3038 << "\n"); 3039 return; 3040 } 3041 // Some intrinsics have scalar arguments and should be same in order for 3042 // them to be vectorized. 3043 for (unsigned j = 0; j != NumArgs; ++j) { 3044 if (hasVectorInstrinsicScalarOpd(ID, j)) { 3045 Value *A1J = CI2->getArgOperand(j); 3046 if (ScalarArgs[j] != A1J) { 3047 BS.cancelScheduling(VL, VL0); 3048 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3049 ReuseShuffleIndicies); 3050 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 3051 << " argument " << ScalarArgs[j] << "!=" << A1J 3052 << "\n"); 3053 return; 3054 } 3055 } 3056 } 3057 // Verify that the bundle operands are identical between the two calls. 3058 if (CI->hasOperandBundles() && 3059 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 3060 CI->op_begin() + CI->getBundleOperandsEndIndex(), 3061 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 3062 BS.cancelScheduling(VL, VL0); 3063 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3064 ReuseShuffleIndicies); 3065 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 3066 << *CI << "!=" << *V << '\n'); 3067 return; 3068 } 3069 } 3070 3071 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3072 ReuseShuffleIndicies); 3073 TE->setOperandsInOrder(); 3074 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 3075 ValueList Operands; 3076 // Prepare the operand vector. 3077 for (Value *V : VL) { 3078 auto *CI2 = cast<CallInst>(V); 3079 Operands.push_back(CI2->getArgOperand(i)); 3080 } 3081 buildTree_rec(Operands, Depth + 1, {TE, i}); 3082 } 3083 return; 3084 } 3085 case Instruction::ShuffleVector: { 3086 // If this is not an alternate sequence of opcode like add-sub 3087 // then do not vectorize this instruction. 3088 if (!S.isAltShuffle()) { 3089 BS.cancelScheduling(VL, VL0); 3090 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3091 ReuseShuffleIndicies); 3092 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 3093 return; 3094 } 3095 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3096 ReuseShuffleIndicies); 3097 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 3098 3099 // Reorder operands if reordering would enable vectorization. 3100 if (isa<BinaryOperator>(VL0)) { 3101 ValueList Left, Right; 3102 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3103 TE->setOperand(0, Left); 3104 TE->setOperand(1, Right); 3105 buildTree_rec(Left, Depth + 1, {TE, 0}); 3106 buildTree_rec(Right, Depth + 1, {TE, 1}); 3107 return; 3108 } 3109 3110 TE->setOperandsInOrder(); 3111 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3112 ValueList Operands; 3113 // Prepare the operand vector. 3114 for (Value *V : VL) 3115 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3116 3117 buildTree_rec(Operands, Depth + 1, {TE, i}); 3118 } 3119 return; 3120 } 3121 default: 3122 BS.cancelScheduling(VL, VL0); 3123 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3124 ReuseShuffleIndicies); 3125 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 3126 return; 3127 } 3128 } 3129 3130 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 3131 unsigned N = 1; 3132 Type *EltTy = T; 3133 3134 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 3135 isa<VectorType>(EltTy)) { 3136 if (auto *ST = dyn_cast<StructType>(EltTy)) { 3137 // Check that struct is homogeneous. 3138 for (const auto *Ty : ST->elements()) 3139 if (Ty != *ST->element_begin()) 3140 return 0; 3141 N *= ST->getNumElements(); 3142 EltTy = *ST->element_begin(); 3143 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 3144 N *= AT->getNumElements(); 3145 EltTy = AT->getElementType(); 3146 } else { 3147 auto *VT = cast<VectorType>(EltTy); 3148 N *= VT->getNumElements(); 3149 EltTy = VT->getElementType(); 3150 } 3151 } 3152 3153 if (!isValidElementType(EltTy)) 3154 return 0; 3155 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 3156 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 3157 return 0; 3158 return N; 3159 } 3160 3161 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 3162 SmallVectorImpl<unsigned> &CurrentOrder) const { 3163 Instruction *E0 = cast<Instruction>(OpValue); 3164 assert(E0->getOpcode() == Instruction::ExtractElement || 3165 E0->getOpcode() == Instruction::ExtractValue); 3166 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 3167 // Check if all of the extracts come from the same vector and from the 3168 // correct offset. 3169 Value *Vec = E0->getOperand(0); 3170 3171 CurrentOrder.clear(); 3172 3173 // We have to extract from a vector/aggregate with the same number of elements. 3174 unsigned NElts; 3175 if (E0->getOpcode() == Instruction::ExtractValue) { 3176 const DataLayout &DL = E0->getModule()->getDataLayout(); 3177 NElts = canMapToVector(Vec->getType(), DL); 3178 if (!NElts) 3179 return false; 3180 // Check if load can be rewritten as load of vector. 3181 LoadInst *LI = dyn_cast<LoadInst>(Vec); 3182 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 3183 return false; 3184 } else { 3185 NElts = Vec->getType()->getVectorNumElements(); 3186 } 3187 3188 if (NElts != VL.size()) 3189 return false; 3190 3191 // Check that all of the indices extract from the correct offset. 3192 bool ShouldKeepOrder = true; 3193 unsigned E = VL.size(); 3194 // Assign to all items the initial value E + 1 so we can check if the extract 3195 // instruction index was used already. 3196 // Also, later we can check that all the indices are used and we have a 3197 // consecutive access in the extract instructions, by checking that no 3198 // element of CurrentOrder still has value E + 1. 3199 CurrentOrder.assign(E, E + 1); 3200 unsigned I = 0; 3201 for (; I < E; ++I) { 3202 auto *Inst = cast<Instruction>(VL[I]); 3203 if (Inst->getOperand(0) != Vec) 3204 break; 3205 Optional<unsigned> Idx = getExtractIndex(Inst); 3206 if (!Idx) 3207 break; 3208 const unsigned ExtIdx = *Idx; 3209 if (ExtIdx != I) { 3210 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 3211 break; 3212 ShouldKeepOrder = false; 3213 CurrentOrder[ExtIdx] = I; 3214 } else { 3215 if (CurrentOrder[I] != E + 1) 3216 break; 3217 CurrentOrder[I] = I; 3218 } 3219 } 3220 if (I < E) { 3221 CurrentOrder.clear(); 3222 return false; 3223 } 3224 3225 return ShouldKeepOrder; 3226 } 3227 3228 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 3229 return I->hasOneUse() || 3230 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 3231 return ScalarToTreeEntry.count(U) > 0; 3232 }); 3233 } 3234 3235 static std::pair<unsigned, unsigned> 3236 getVectorCallCosts(CallInst *CI, VectorType *VecTy, TargetTransformInfo *TTI, 3237 TargetLibraryInfo *TLI) { 3238 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3239 3240 // Calculate the cost of the scalar and vector calls. 3241 FastMathFlags FMF; 3242 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3243 FMF = FPMO->getFastMathFlags(); 3244 3245 SmallVector<Value *, 4> Args(CI->arg_operands()); 3246 int IntrinsicCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF, 3247 VecTy->getNumElements()); 3248 3249 auto Shape = 3250 VFShape::get(*CI, {static_cast<unsigned>(VecTy->getNumElements()), false}, 3251 false /*HasGlobalPred*/); 3252 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3253 int LibCost = IntrinsicCost; 3254 if (!CI->isNoBuiltin() && VecFunc) { 3255 // Calculate the cost of the vector library call. 3256 SmallVector<Type *, 4> VecTys; 3257 for (Use &Arg : CI->args()) 3258 VecTys.push_back( 3259 VectorType::get(Arg->getType(), VecTy->getNumElements())); 3260 3261 // If the corresponding vector call is cheaper, return its cost. 3262 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys); 3263 } 3264 return {IntrinsicCost, LibCost}; 3265 } 3266 3267 int BoUpSLP::getEntryCost(TreeEntry *E) { 3268 ArrayRef<Value*> VL = E->Scalars; 3269 3270 Type *ScalarTy = VL[0]->getType(); 3271 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3272 ScalarTy = SI->getValueOperand()->getType(); 3273 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 3274 ScalarTy = CI->getOperand(0)->getType(); 3275 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 3276 3277 // If we have computed a smaller type for the expression, update VecTy so 3278 // that the costs will be accurate. 3279 if (MinBWs.count(VL[0])) 3280 VecTy = VectorType::get( 3281 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 3282 3283 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 3284 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3285 int ReuseShuffleCost = 0; 3286 if (NeedToShuffleReuses) { 3287 ReuseShuffleCost = 3288 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3289 } 3290 if (E->State == TreeEntry::NeedToGather) { 3291 if (allConstant(VL)) 3292 return 0; 3293 if (isSplat(VL)) { 3294 return ReuseShuffleCost + 3295 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 3296 } 3297 if (E->getOpcode() == Instruction::ExtractElement && 3298 allSameType(VL) && allSameBlock(VL)) { 3299 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 3300 if (ShuffleKind.hasValue()) { 3301 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 3302 for (auto *V : VL) { 3303 // If all users of instruction are going to be vectorized and this 3304 // instruction itself is not going to be vectorized, consider this 3305 // instruction as dead and remove its cost from the final cost of the 3306 // vectorized tree. 3307 if (areAllUsersVectorized(cast<Instruction>(V)) && 3308 !ScalarToTreeEntry.count(V)) { 3309 auto *IO = cast<ConstantInt>( 3310 cast<ExtractElementInst>(V)->getIndexOperand()); 3311 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 3312 IO->getZExtValue()); 3313 } 3314 } 3315 return ReuseShuffleCost + Cost; 3316 } 3317 } 3318 return ReuseShuffleCost + getGatherCost(VL); 3319 } 3320 assert(E->State == TreeEntry::Vectorize && "Unhandled state"); 3321 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 3322 Instruction *VL0 = E->getMainOp(); 3323 unsigned ShuffleOrOp = 3324 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 3325 switch (ShuffleOrOp) { 3326 case Instruction::PHI: 3327 return 0; 3328 3329 case Instruction::ExtractValue: 3330 case Instruction::ExtractElement: { 3331 if (NeedToShuffleReuses) { 3332 unsigned Idx = 0; 3333 for (unsigned I : E->ReuseShuffleIndices) { 3334 if (ShuffleOrOp == Instruction::ExtractElement) { 3335 auto *IO = cast<ConstantInt>( 3336 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 3337 Idx = IO->getZExtValue(); 3338 ReuseShuffleCost -= TTI->getVectorInstrCost( 3339 Instruction::ExtractElement, VecTy, Idx); 3340 } else { 3341 ReuseShuffleCost -= TTI->getVectorInstrCost( 3342 Instruction::ExtractElement, VecTy, Idx); 3343 ++Idx; 3344 } 3345 } 3346 Idx = ReuseShuffleNumbers; 3347 for (Value *V : VL) { 3348 if (ShuffleOrOp == Instruction::ExtractElement) { 3349 auto *IO = cast<ConstantInt>( 3350 cast<ExtractElementInst>(V)->getIndexOperand()); 3351 Idx = IO->getZExtValue(); 3352 } else { 3353 --Idx; 3354 } 3355 ReuseShuffleCost += 3356 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 3357 } 3358 } 3359 int DeadCost = ReuseShuffleCost; 3360 if (!E->ReorderIndices.empty()) { 3361 // TODO: Merge this shuffle with the ReuseShuffleCost. 3362 DeadCost += TTI->getShuffleCost( 3363 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3364 } 3365 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3366 Instruction *E = cast<Instruction>(VL[i]); 3367 // If all users are going to be vectorized, instruction can be 3368 // considered as dead. 3369 // The same, if have only one user, it will be vectorized for sure. 3370 if (areAllUsersVectorized(E)) { 3371 // Take credit for instruction that will become dead. 3372 if (E->hasOneUse()) { 3373 Instruction *Ext = E->user_back(); 3374 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3375 all_of(Ext->users(), 3376 [](User *U) { return isa<GetElementPtrInst>(U); })) { 3377 // Use getExtractWithExtendCost() to calculate the cost of 3378 // extractelement/ext pair. 3379 DeadCost -= TTI->getExtractWithExtendCost( 3380 Ext->getOpcode(), Ext->getType(), VecTy, i); 3381 // Add back the cost of s|zext which is subtracted separately. 3382 DeadCost += TTI->getCastInstrCost( 3383 Ext->getOpcode(), Ext->getType(), E->getType(), Ext); 3384 continue; 3385 } 3386 } 3387 DeadCost -= 3388 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 3389 } 3390 } 3391 return DeadCost; 3392 } 3393 case Instruction::ZExt: 3394 case Instruction::SExt: 3395 case Instruction::FPToUI: 3396 case Instruction::FPToSI: 3397 case Instruction::FPExt: 3398 case Instruction::PtrToInt: 3399 case Instruction::IntToPtr: 3400 case Instruction::SIToFP: 3401 case Instruction::UIToFP: 3402 case Instruction::Trunc: 3403 case Instruction::FPTrunc: 3404 case Instruction::BitCast: { 3405 Type *SrcTy = VL0->getOperand(0)->getType(); 3406 int ScalarEltCost = 3407 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, VL0); 3408 if (NeedToShuffleReuses) { 3409 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3410 } 3411 3412 // Calculate the cost of this instruction. 3413 int ScalarCost = VL.size() * ScalarEltCost; 3414 3415 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 3416 int VecCost = 0; 3417 // Check if the values are candidates to demote. 3418 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 3419 VecCost = ReuseShuffleCost + 3420 TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, VL0); 3421 } 3422 return VecCost - ScalarCost; 3423 } 3424 case Instruction::FCmp: 3425 case Instruction::ICmp: 3426 case Instruction::Select: { 3427 // Calculate the cost of this instruction. 3428 int ScalarEltCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 3429 Builder.getInt1Ty(), VL0); 3430 if (NeedToShuffleReuses) { 3431 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3432 } 3433 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 3434 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3435 int VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), VecTy, MaskTy, VL0); 3436 return ReuseShuffleCost + VecCost - ScalarCost; 3437 } 3438 case Instruction::FNeg: 3439 case Instruction::Add: 3440 case Instruction::FAdd: 3441 case Instruction::Sub: 3442 case Instruction::FSub: 3443 case Instruction::Mul: 3444 case Instruction::FMul: 3445 case Instruction::UDiv: 3446 case Instruction::SDiv: 3447 case Instruction::FDiv: 3448 case Instruction::URem: 3449 case Instruction::SRem: 3450 case Instruction::FRem: 3451 case Instruction::Shl: 3452 case Instruction::LShr: 3453 case Instruction::AShr: 3454 case Instruction::And: 3455 case Instruction::Or: 3456 case Instruction::Xor: { 3457 // Certain instructions can be cheaper to vectorize if they have a 3458 // constant second vector operand. 3459 TargetTransformInfo::OperandValueKind Op1VK = 3460 TargetTransformInfo::OK_AnyValue; 3461 TargetTransformInfo::OperandValueKind Op2VK = 3462 TargetTransformInfo::OK_UniformConstantValue; 3463 TargetTransformInfo::OperandValueProperties Op1VP = 3464 TargetTransformInfo::OP_None; 3465 TargetTransformInfo::OperandValueProperties Op2VP = 3466 TargetTransformInfo::OP_PowerOf2; 3467 3468 // If all operands are exactly the same ConstantInt then set the 3469 // operand kind to OK_UniformConstantValue. 3470 // If instead not all operands are constants, then set the operand kind 3471 // to OK_AnyValue. If all operands are constants but not the same, 3472 // then set the operand kind to OK_NonUniformConstantValue. 3473 ConstantInt *CInt0 = nullptr; 3474 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3475 const Instruction *I = cast<Instruction>(VL[i]); 3476 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 3477 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 3478 if (!CInt) { 3479 Op2VK = TargetTransformInfo::OK_AnyValue; 3480 Op2VP = TargetTransformInfo::OP_None; 3481 break; 3482 } 3483 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 3484 !CInt->getValue().isPowerOf2()) 3485 Op2VP = TargetTransformInfo::OP_None; 3486 if (i == 0) { 3487 CInt0 = CInt; 3488 continue; 3489 } 3490 if (CInt0 != CInt) 3491 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 3492 } 3493 3494 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 3495 int ScalarEltCost = TTI->getArithmeticInstrCost( 3496 E->getOpcode(), ScalarTy, Op1VK, Op2VK, Op1VP, Op2VP, Operands, VL0); 3497 if (NeedToShuffleReuses) { 3498 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3499 } 3500 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3501 int VecCost = TTI->getArithmeticInstrCost( 3502 E->getOpcode(), VecTy, Op1VK, Op2VK, Op1VP, Op2VP, Operands, VL0); 3503 return ReuseShuffleCost + VecCost - ScalarCost; 3504 } 3505 case Instruction::GetElementPtr: { 3506 TargetTransformInfo::OperandValueKind Op1VK = 3507 TargetTransformInfo::OK_AnyValue; 3508 TargetTransformInfo::OperandValueKind Op2VK = 3509 TargetTransformInfo::OK_UniformConstantValue; 3510 3511 int ScalarEltCost = 3512 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 3513 if (NeedToShuffleReuses) { 3514 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3515 } 3516 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3517 int VecCost = 3518 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 3519 return ReuseShuffleCost + VecCost - ScalarCost; 3520 } 3521 case Instruction::Load: { 3522 // Cost of wide load - cost of scalar loads. 3523 MaybeAlign alignment(cast<LoadInst>(VL0)->getAlignment()); 3524 int ScalarEltCost = 3525 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0); 3526 if (NeedToShuffleReuses) { 3527 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3528 } 3529 int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 3530 int VecLdCost = 3531 TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, VL0); 3532 if (!E->ReorderIndices.empty()) { 3533 // TODO: Merge this shuffle with the ReuseShuffleCost. 3534 VecLdCost += TTI->getShuffleCost( 3535 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3536 } 3537 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 3538 } 3539 case Instruction::Store: { 3540 // We know that we can merge the stores. Calculate the cost. 3541 bool IsReorder = !E->ReorderIndices.empty(); 3542 auto *SI = 3543 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 3544 MaybeAlign Alignment(SI->getAlignment()); 3545 int ScalarEltCost = 3546 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, Alignment, 0, VL0); 3547 if (NeedToShuffleReuses) 3548 ReuseShuffleCost = -(ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3549 int ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 3550 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, 3551 VecTy, Alignment, 0, VL0); 3552 if (IsReorder) { 3553 // TODO: Merge this shuffle with the ReuseShuffleCost. 3554 VecStCost += TTI->getShuffleCost( 3555 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3556 } 3557 return ReuseShuffleCost + VecStCost - ScalarStCost; 3558 } 3559 case Instruction::Call: { 3560 CallInst *CI = cast<CallInst>(VL0); 3561 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3562 3563 // Calculate the cost of the scalar and vector calls. 3564 SmallVector<Type *, 4> ScalarTys; 3565 for (unsigned op = 0, opc = CI->getNumArgOperands(); op != opc; ++op) 3566 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 3567 3568 FastMathFlags FMF; 3569 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3570 FMF = FPMO->getFastMathFlags(); 3571 3572 int ScalarEltCost = 3573 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 3574 if (NeedToShuffleReuses) { 3575 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3576 } 3577 int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 3578 3579 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 3580 int VecCallCost = std::min(VecCallCosts.first, VecCallCosts.second); 3581 3582 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 3583 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 3584 << " for " << *CI << "\n"); 3585 3586 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 3587 } 3588 case Instruction::ShuffleVector: { 3589 assert(E->isAltShuffle() && 3590 ((Instruction::isBinaryOp(E->getOpcode()) && 3591 Instruction::isBinaryOp(E->getAltOpcode())) || 3592 (Instruction::isCast(E->getOpcode()) && 3593 Instruction::isCast(E->getAltOpcode()))) && 3594 "Invalid Shuffle Vector Operand"); 3595 int ScalarCost = 0; 3596 if (NeedToShuffleReuses) { 3597 for (unsigned Idx : E->ReuseShuffleIndices) { 3598 Instruction *I = cast<Instruction>(VL[Idx]); 3599 ReuseShuffleCost -= TTI->getInstructionCost( 3600 I, TargetTransformInfo::TCK_RecipThroughput); 3601 } 3602 for (Value *V : VL) { 3603 Instruction *I = cast<Instruction>(V); 3604 ReuseShuffleCost += TTI->getInstructionCost( 3605 I, TargetTransformInfo::TCK_RecipThroughput); 3606 } 3607 } 3608 for (Value *V : VL) { 3609 Instruction *I = cast<Instruction>(V); 3610 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 3611 ScalarCost += TTI->getInstructionCost( 3612 I, TargetTransformInfo::TCK_RecipThroughput); 3613 } 3614 // VecCost is equal to sum of the cost of creating 2 vectors 3615 // and the cost of creating shuffle. 3616 int VecCost = 0; 3617 if (Instruction::isBinaryOp(E->getOpcode())) { 3618 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy); 3619 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy); 3620 } else { 3621 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 3622 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 3623 VectorType *Src0Ty = VectorType::get(Src0SclTy, VL.size()); 3624 VectorType *Src1Ty = VectorType::get(Src1SclTy, VL.size()); 3625 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty); 3626 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty); 3627 } 3628 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0); 3629 return ReuseShuffleCost + VecCost - ScalarCost; 3630 } 3631 default: 3632 llvm_unreachable("Unknown instruction"); 3633 } 3634 } 3635 3636 bool BoUpSLP::isFullyVectorizableTinyTree() const { 3637 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 3638 << VectorizableTree.size() << " is fully vectorizable .\n"); 3639 3640 // We only handle trees of heights 1 and 2. 3641 if (VectorizableTree.size() == 1 && 3642 VectorizableTree[0]->State == TreeEntry::Vectorize) 3643 return true; 3644 3645 if (VectorizableTree.size() != 2) 3646 return false; 3647 3648 // Handle splat and all-constants stores. 3649 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 3650 (allConstant(VectorizableTree[1]->Scalars) || 3651 isSplat(VectorizableTree[1]->Scalars))) 3652 return true; 3653 3654 // Gathering cost would be too much for tiny trees. 3655 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 3656 VectorizableTree[1]->State == TreeEntry::NeedToGather) 3657 return false; 3658 3659 return true; 3660 } 3661 3662 bool BoUpSLP::isLoadCombineReductionCandidate(unsigned RdxOpcode) const { 3663 if (RdxOpcode != Instruction::Or) 3664 return false; 3665 3666 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3667 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 3668 3669 // Look past the reduction to find a source value. Arbitrarily follow the 3670 // path through operand 0 of any 'or'. Also, peek through optional 3671 // shift-left-by-constant. 3672 Value *ZextLoad = FirstReduced; 3673 while (match(ZextLoad, m_Or(m_Value(), m_Value())) || 3674 match(ZextLoad, m_Shl(m_Value(), m_Constant()))) 3675 ZextLoad = cast<BinaryOperator>(ZextLoad)->getOperand(0); 3676 3677 // Check if the input to the reduction is an extended load. 3678 Value *LoadPtr; 3679 if (!match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr))))) 3680 return false; 3681 3682 // Require that the total load bit width is a legal integer type. 3683 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 3684 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 3685 Type *SrcTy = LoadPtr->getType()->getPointerElementType(); 3686 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 3687 LLVMContext &Context = FirstReduced->getContext(); 3688 if (!TTI->isTypeLegal(IntegerType::get(Context, LoadBitWidth))) 3689 return false; 3690 3691 // Everything matched - assume that we can fold the whole sequence using 3692 // load combining. 3693 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for scalar reduction of " 3694 << *(cast<Instruction>(FirstReduced)) << "\n"); 3695 3696 return true; 3697 } 3698 3699 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 3700 // We can vectorize the tree if its size is greater than or equal to the 3701 // minimum size specified by the MinTreeSize command line option. 3702 if (VectorizableTree.size() >= MinTreeSize) 3703 return false; 3704 3705 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 3706 // can vectorize it if we can prove it fully vectorizable. 3707 if (isFullyVectorizableTinyTree()) 3708 return false; 3709 3710 assert(VectorizableTree.empty() 3711 ? ExternalUses.empty() 3712 : true && "We shouldn't have any external users"); 3713 3714 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 3715 // vectorizable. 3716 return true; 3717 } 3718 3719 int BoUpSLP::getSpillCost() const { 3720 // Walk from the bottom of the tree to the top, tracking which values are 3721 // live. When we see a call instruction that is not part of our tree, 3722 // query TTI to see if there is a cost to keeping values live over it 3723 // (for example, if spills and fills are required). 3724 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 3725 int Cost = 0; 3726 3727 SmallPtrSet<Instruction*, 4> LiveValues; 3728 Instruction *PrevInst = nullptr; 3729 3730 for (const auto &TEPtr : VectorizableTree) { 3731 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 3732 if (!Inst) 3733 continue; 3734 3735 if (!PrevInst) { 3736 PrevInst = Inst; 3737 continue; 3738 } 3739 3740 // Update LiveValues. 3741 LiveValues.erase(PrevInst); 3742 for (auto &J : PrevInst->operands()) { 3743 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 3744 LiveValues.insert(cast<Instruction>(&*J)); 3745 } 3746 3747 LLVM_DEBUG({ 3748 dbgs() << "SLP: #LV: " << LiveValues.size(); 3749 for (auto *X : LiveValues) 3750 dbgs() << " " << X->getName(); 3751 dbgs() << ", Looking at "; 3752 Inst->dump(); 3753 }); 3754 3755 // Now find the sequence of instructions between PrevInst and Inst. 3756 unsigned NumCalls = 0; 3757 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 3758 PrevInstIt = 3759 PrevInst->getIterator().getReverse(); 3760 while (InstIt != PrevInstIt) { 3761 if (PrevInstIt == PrevInst->getParent()->rend()) { 3762 PrevInstIt = Inst->getParent()->rbegin(); 3763 continue; 3764 } 3765 3766 // Debug information does not impact spill cost. 3767 if ((isa<CallInst>(&*PrevInstIt) && 3768 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 3769 &*PrevInstIt != PrevInst) 3770 NumCalls++; 3771 3772 ++PrevInstIt; 3773 } 3774 3775 if (NumCalls) { 3776 SmallVector<Type*, 4> V; 3777 for (auto *II : LiveValues) 3778 V.push_back(VectorType::get(II->getType(), BundleWidth)); 3779 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 3780 } 3781 3782 PrevInst = Inst; 3783 } 3784 3785 return Cost; 3786 } 3787 3788 int BoUpSLP::getTreeCost() { 3789 int Cost = 0; 3790 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 3791 << VectorizableTree.size() << ".\n"); 3792 3793 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 3794 3795 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 3796 TreeEntry &TE = *VectorizableTree[I].get(); 3797 3798 // We create duplicate tree entries for gather sequences that have multiple 3799 // uses. However, we should not compute the cost of duplicate sequences. 3800 // For example, if we have a build vector (i.e., insertelement sequence) 3801 // that is used by more than one vector instruction, we only need to 3802 // compute the cost of the insertelement instructions once. The redundant 3803 // instructions will be eliminated by CSE. 3804 // 3805 // We should consider not creating duplicate tree entries for gather 3806 // sequences, and instead add additional edges to the tree representing 3807 // their uses. Since such an approach results in fewer total entries, 3808 // existing heuristics based on tree size may yield different results. 3809 // 3810 if (TE.State == TreeEntry::NeedToGather && 3811 std::any_of(std::next(VectorizableTree.begin(), I + 1), 3812 VectorizableTree.end(), 3813 [TE](const std::unique_ptr<TreeEntry> &EntryPtr) { 3814 return EntryPtr->State == TreeEntry::NeedToGather && 3815 EntryPtr->isSame(TE.Scalars); 3816 })) 3817 continue; 3818 3819 int C = getEntryCost(&TE); 3820 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 3821 << " for bundle that starts with " << *TE.Scalars[0] 3822 << ".\n"); 3823 Cost += C; 3824 } 3825 3826 SmallPtrSet<Value *, 16> ExtractCostCalculated; 3827 int ExtractCost = 0; 3828 for (ExternalUser &EU : ExternalUses) { 3829 // We only add extract cost once for the same scalar. 3830 if (!ExtractCostCalculated.insert(EU.Scalar).second) 3831 continue; 3832 3833 // Uses by ephemeral values are free (because the ephemeral value will be 3834 // removed prior to code generation, and so the extraction will be 3835 // removed as well). 3836 if (EphValues.count(EU.User)) 3837 continue; 3838 3839 // If we plan to rewrite the tree in a smaller type, we will need to sign 3840 // extend the extracted value back to the original type. Here, we account 3841 // for the extract and the added cost of the sign extend if needed. 3842 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 3843 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 3844 if (MinBWs.count(ScalarRoot)) { 3845 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 3846 auto Extend = 3847 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 3848 VecTy = VectorType::get(MinTy, BundleWidth); 3849 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 3850 VecTy, EU.Lane); 3851 } else { 3852 ExtractCost += 3853 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 3854 } 3855 } 3856 3857 int SpillCost = getSpillCost(); 3858 Cost += SpillCost + ExtractCost; 3859 3860 std::string Str; 3861 { 3862 raw_string_ostream OS(Str); 3863 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 3864 << "SLP: Extract Cost = " << ExtractCost << ".\n" 3865 << "SLP: Total Cost = " << Cost << ".\n"; 3866 } 3867 LLVM_DEBUG(dbgs() << Str); 3868 3869 if (ViewSLPTree) 3870 ViewGraph(this, "SLP" + F->getName(), false, Str); 3871 3872 return Cost; 3873 } 3874 3875 int BoUpSLP::getGatherCost(Type *Ty, 3876 const DenseSet<unsigned> &ShuffledIndices) const { 3877 int Cost = 0; 3878 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 3879 if (!ShuffledIndices.count(i)) 3880 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 3881 if (!ShuffledIndices.empty()) 3882 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 3883 return Cost; 3884 } 3885 3886 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 3887 // Find the type of the operands in VL. 3888 Type *ScalarTy = VL[0]->getType(); 3889 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3890 ScalarTy = SI->getValueOperand()->getType(); 3891 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 3892 // Find the cost of inserting/extracting values from the vector. 3893 // Check if the same elements are inserted several times and count them as 3894 // shuffle candidates. 3895 DenseSet<unsigned> ShuffledElements; 3896 DenseSet<Value *> UniqueElements; 3897 // Iterate in reverse order to consider insert elements with the high cost. 3898 for (unsigned I = VL.size(); I > 0; --I) { 3899 unsigned Idx = I - 1; 3900 if (!UniqueElements.insert(VL[Idx]).second) 3901 ShuffledElements.insert(Idx); 3902 } 3903 return getGatherCost(VecTy, ShuffledElements); 3904 } 3905 3906 // Perform operand reordering on the instructions in VL and return the reordered 3907 // operands in Left and Right. 3908 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 3909 SmallVectorImpl<Value *> &Left, 3910 SmallVectorImpl<Value *> &Right, 3911 const DataLayout &DL, 3912 ScalarEvolution &SE, 3913 const BoUpSLP &R) { 3914 if (VL.empty()) 3915 return; 3916 VLOperands Ops(VL, DL, SE, R); 3917 // Reorder the operands in place. 3918 Ops.reorder(); 3919 Left = Ops.getVL(0); 3920 Right = Ops.getVL(1); 3921 } 3922 3923 void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) { 3924 // Get the basic block this bundle is in. All instructions in the bundle 3925 // should be in this block. 3926 auto *Front = E->getMainOp(); 3927 auto *BB = Front->getParent(); 3928 assert(llvm::all_of(make_range(E->Scalars.begin(), E->Scalars.end()), 3929 [=](Value *V) -> bool { 3930 auto *I = cast<Instruction>(V); 3931 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 3932 })); 3933 3934 // The last instruction in the bundle in program order. 3935 Instruction *LastInst = nullptr; 3936 3937 // Find the last instruction. The common case should be that BB has been 3938 // scheduled, and the last instruction is VL.back(). So we start with 3939 // VL.back() and iterate over schedule data until we reach the end of the 3940 // bundle. The end of the bundle is marked by null ScheduleData. 3941 if (BlocksSchedules.count(BB)) { 3942 auto *Bundle = 3943 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 3944 if (Bundle && Bundle->isPartOfBundle()) 3945 for (; Bundle; Bundle = Bundle->NextInBundle) 3946 if (Bundle->OpValue == Bundle->Inst) 3947 LastInst = Bundle->Inst; 3948 } 3949 3950 // LastInst can still be null at this point if there's either not an entry 3951 // for BB in BlocksSchedules or there's no ScheduleData available for 3952 // VL.back(). This can be the case if buildTree_rec aborts for various 3953 // reasons (e.g., the maximum recursion depth is reached, the maximum region 3954 // size is reached, etc.). ScheduleData is initialized in the scheduling 3955 // "dry-run". 3956 // 3957 // If this happens, we can still find the last instruction by brute force. We 3958 // iterate forwards from Front (inclusive) until we either see all 3959 // instructions in the bundle or reach the end of the block. If Front is the 3960 // last instruction in program order, LastInst will be set to Front, and we 3961 // will visit all the remaining instructions in the block. 3962 // 3963 // One of the reasons we exit early from buildTree_rec is to place an upper 3964 // bound on compile-time. Thus, taking an additional compile-time hit here is 3965 // not ideal. However, this should be exceedingly rare since it requires that 3966 // we both exit early from buildTree_rec and that the bundle be out-of-order 3967 // (causing us to iterate all the way to the end of the block). 3968 if (!LastInst) { 3969 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 3970 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 3971 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 3972 LastInst = &I; 3973 if (Bundle.empty()) 3974 break; 3975 } 3976 } 3977 assert(LastInst && "Failed to find last instruction in bundle"); 3978 3979 // Set the insertion point after the last instruction in the bundle. Set the 3980 // debug location to Front. 3981 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 3982 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 3983 } 3984 3985 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 3986 Value *Vec = UndefValue::get(Ty); 3987 // Generate the 'InsertElement' instruction. 3988 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 3989 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 3990 if (auto *Insrt = dyn_cast<InsertElementInst>(Vec)) { 3991 GatherSeq.insert(Insrt); 3992 CSEBlocks.insert(Insrt->getParent()); 3993 3994 // Add to our 'need-to-extract' list. 3995 if (TreeEntry *E = getTreeEntry(VL[i])) { 3996 // Find which lane we need to extract. 3997 int FoundLane = -1; 3998 for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) { 3999 // Is this the lane of the scalar that we are looking for ? 4000 if (E->Scalars[Lane] == VL[i]) { 4001 FoundLane = Lane; 4002 break; 4003 } 4004 } 4005 assert(FoundLane >= 0 && "Could not find the correct lane"); 4006 if (!E->ReuseShuffleIndices.empty()) { 4007 FoundLane = 4008 std::distance(E->ReuseShuffleIndices.begin(), 4009 llvm::find(E->ReuseShuffleIndices, FoundLane)); 4010 } 4011 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 4012 } 4013 } 4014 } 4015 4016 return Vec; 4017 } 4018 4019 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 4020 InstructionsState S = getSameOpcode(VL); 4021 if (S.getOpcode()) { 4022 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4023 if (E->isSame(VL)) { 4024 Value *V = vectorizeTree(E); 4025 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 4026 // We need to get the vectorized value but without shuffle. 4027 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 4028 V = SV->getOperand(0); 4029 } else { 4030 // Reshuffle to get only unique values. 4031 SmallVector<unsigned, 4> UniqueIdxs; 4032 SmallSet<unsigned, 4> UsedIdxs; 4033 for(unsigned Idx : E->ReuseShuffleIndices) 4034 if (UsedIdxs.insert(Idx).second) 4035 UniqueIdxs.emplace_back(Idx); 4036 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 4037 UniqueIdxs); 4038 } 4039 } 4040 return V; 4041 } 4042 } 4043 } 4044 4045 Type *ScalarTy = S.OpValue->getType(); 4046 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 4047 ScalarTy = SI->getValueOperand()->getType(); 4048 4049 // Check that every instruction appears once in this bundle. 4050 SmallVector<unsigned, 4> ReuseShuffleIndicies; 4051 SmallVector<Value *, 4> UniqueValues; 4052 if (VL.size() > 2) { 4053 DenseMap<Value *, unsigned> UniquePositions; 4054 for (Value *V : VL) { 4055 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 4056 ReuseShuffleIndicies.emplace_back(Res.first->second); 4057 if (Res.second || isa<Constant>(V)) 4058 UniqueValues.emplace_back(V); 4059 } 4060 // Do not shuffle single element or if number of unique values is not power 4061 // of 2. 4062 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 4063 !llvm::isPowerOf2_32(UniqueValues.size())) 4064 ReuseShuffleIndicies.clear(); 4065 else 4066 VL = UniqueValues; 4067 } 4068 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 4069 4070 Value *V = Gather(VL, VecTy); 4071 if (!ReuseShuffleIndicies.empty()) { 4072 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4073 ReuseShuffleIndicies, "shuffle"); 4074 if (auto *I = dyn_cast<Instruction>(V)) { 4075 GatherSeq.insert(I); 4076 CSEBlocks.insert(I->getParent()); 4077 } 4078 } 4079 return V; 4080 } 4081 4082 static void inversePermutation(ArrayRef<unsigned> Indices, 4083 SmallVectorImpl<unsigned> &Mask) { 4084 Mask.clear(); 4085 const unsigned E = Indices.size(); 4086 Mask.resize(E); 4087 for (unsigned I = 0; I < E; ++I) 4088 Mask[Indices[I]] = I; 4089 } 4090 4091 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 4092 IRBuilder<>::InsertPointGuard Guard(Builder); 4093 4094 if (E->VectorizedValue) { 4095 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 4096 return E->VectorizedValue; 4097 } 4098 4099 Instruction *VL0 = E->getMainOp(); 4100 Type *ScalarTy = VL0->getType(); 4101 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 4102 ScalarTy = SI->getValueOperand()->getType(); 4103 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 4104 4105 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4106 4107 if (E->State == TreeEntry::NeedToGather) { 4108 setInsertPointAfterBundle(E); 4109 auto *V = Gather(E->Scalars, VecTy); 4110 if (NeedToShuffleReuses) { 4111 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4112 E->ReuseShuffleIndices, "shuffle"); 4113 if (auto *I = dyn_cast<Instruction>(V)) { 4114 GatherSeq.insert(I); 4115 CSEBlocks.insert(I->getParent()); 4116 } 4117 } 4118 E->VectorizedValue = V; 4119 return V; 4120 } 4121 4122 assert(E->State == TreeEntry::Vectorize && "Unhandled state"); 4123 unsigned ShuffleOrOp = 4124 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 4125 switch (ShuffleOrOp) { 4126 case Instruction::PHI: { 4127 auto *PH = cast<PHINode>(VL0); 4128 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 4129 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4130 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 4131 Value *V = NewPhi; 4132 if (NeedToShuffleReuses) { 4133 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4134 E->ReuseShuffleIndices, "shuffle"); 4135 } 4136 E->VectorizedValue = V; 4137 4138 // PHINodes may have multiple entries from the same block. We want to 4139 // visit every block once. 4140 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 4141 4142 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 4143 ValueList Operands; 4144 BasicBlock *IBB = PH->getIncomingBlock(i); 4145 4146 if (!VisitedBBs.insert(IBB).second) { 4147 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 4148 continue; 4149 } 4150 4151 Builder.SetInsertPoint(IBB->getTerminator()); 4152 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4153 Value *Vec = vectorizeTree(E->getOperand(i)); 4154 NewPhi->addIncoming(Vec, IBB); 4155 } 4156 4157 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 4158 "Invalid number of incoming values"); 4159 return V; 4160 } 4161 4162 case Instruction::ExtractElement: { 4163 Value *V = E->getSingleOperand(0); 4164 if (!E->ReorderIndices.empty()) { 4165 OrdersType Mask; 4166 inversePermutation(E->ReorderIndices, Mask); 4167 Builder.SetInsertPoint(VL0); 4168 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), Mask, 4169 "reorder_shuffle"); 4170 } 4171 if (NeedToShuffleReuses) { 4172 // TODO: Merge this shuffle with the ReorderShuffleMask. 4173 if (E->ReorderIndices.empty()) 4174 Builder.SetInsertPoint(VL0); 4175 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4176 E->ReuseShuffleIndices, "shuffle"); 4177 } 4178 E->VectorizedValue = V; 4179 return V; 4180 } 4181 case Instruction::ExtractValue: { 4182 LoadInst *LI = cast<LoadInst>(E->getSingleOperand(0)); 4183 Builder.SetInsertPoint(LI); 4184 PointerType *PtrTy = 4185 PointerType::get(VecTy, LI->getPointerAddressSpace()); 4186 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 4187 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 4188 Value *NewV = propagateMetadata(V, E->Scalars); 4189 if (!E->ReorderIndices.empty()) { 4190 OrdersType Mask; 4191 inversePermutation(E->ReorderIndices, Mask); 4192 NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), Mask, 4193 "reorder_shuffle"); 4194 } 4195 if (NeedToShuffleReuses) { 4196 // TODO: Merge this shuffle with the ReorderShuffleMask. 4197 NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), 4198 E->ReuseShuffleIndices, "shuffle"); 4199 } 4200 E->VectorizedValue = NewV; 4201 return NewV; 4202 } 4203 case Instruction::ZExt: 4204 case Instruction::SExt: 4205 case Instruction::FPToUI: 4206 case Instruction::FPToSI: 4207 case Instruction::FPExt: 4208 case Instruction::PtrToInt: 4209 case Instruction::IntToPtr: 4210 case Instruction::SIToFP: 4211 case Instruction::UIToFP: 4212 case Instruction::Trunc: 4213 case Instruction::FPTrunc: 4214 case Instruction::BitCast: { 4215 setInsertPointAfterBundle(E); 4216 4217 Value *InVec = vectorizeTree(E->getOperand(0)); 4218 4219 if (E->VectorizedValue) { 4220 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4221 return E->VectorizedValue; 4222 } 4223 4224 auto *CI = cast<CastInst>(VL0); 4225 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 4226 if (NeedToShuffleReuses) { 4227 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4228 E->ReuseShuffleIndices, "shuffle"); 4229 } 4230 E->VectorizedValue = V; 4231 ++NumVectorInstructions; 4232 return V; 4233 } 4234 case Instruction::FCmp: 4235 case Instruction::ICmp: { 4236 setInsertPointAfterBundle(E); 4237 4238 Value *L = vectorizeTree(E->getOperand(0)); 4239 Value *R = vectorizeTree(E->getOperand(1)); 4240 4241 if (E->VectorizedValue) { 4242 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4243 return E->VectorizedValue; 4244 } 4245 4246 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4247 Value *V; 4248 if (E->getOpcode() == Instruction::FCmp) 4249 V = Builder.CreateFCmp(P0, L, R); 4250 else 4251 V = Builder.CreateICmp(P0, L, R); 4252 4253 propagateIRFlags(V, E->Scalars, VL0); 4254 if (NeedToShuffleReuses) { 4255 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4256 E->ReuseShuffleIndices, "shuffle"); 4257 } 4258 E->VectorizedValue = V; 4259 ++NumVectorInstructions; 4260 return V; 4261 } 4262 case Instruction::Select: { 4263 setInsertPointAfterBundle(E); 4264 4265 Value *Cond = vectorizeTree(E->getOperand(0)); 4266 Value *True = vectorizeTree(E->getOperand(1)); 4267 Value *False = vectorizeTree(E->getOperand(2)); 4268 4269 if (E->VectorizedValue) { 4270 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4271 return E->VectorizedValue; 4272 } 4273 4274 Value *V = Builder.CreateSelect(Cond, True, False); 4275 if (NeedToShuffleReuses) { 4276 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4277 E->ReuseShuffleIndices, "shuffle"); 4278 } 4279 E->VectorizedValue = V; 4280 ++NumVectorInstructions; 4281 return V; 4282 } 4283 case Instruction::FNeg: { 4284 setInsertPointAfterBundle(E); 4285 4286 Value *Op = vectorizeTree(E->getOperand(0)); 4287 4288 if (E->VectorizedValue) { 4289 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4290 return E->VectorizedValue; 4291 } 4292 4293 Value *V = Builder.CreateUnOp( 4294 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 4295 propagateIRFlags(V, E->Scalars, VL0); 4296 if (auto *I = dyn_cast<Instruction>(V)) 4297 V = propagateMetadata(I, E->Scalars); 4298 4299 if (NeedToShuffleReuses) { 4300 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4301 E->ReuseShuffleIndices, "shuffle"); 4302 } 4303 E->VectorizedValue = V; 4304 ++NumVectorInstructions; 4305 4306 return V; 4307 } 4308 case Instruction::Add: 4309 case Instruction::FAdd: 4310 case Instruction::Sub: 4311 case Instruction::FSub: 4312 case Instruction::Mul: 4313 case Instruction::FMul: 4314 case Instruction::UDiv: 4315 case Instruction::SDiv: 4316 case Instruction::FDiv: 4317 case Instruction::URem: 4318 case Instruction::SRem: 4319 case Instruction::FRem: 4320 case Instruction::Shl: 4321 case Instruction::LShr: 4322 case Instruction::AShr: 4323 case Instruction::And: 4324 case Instruction::Or: 4325 case Instruction::Xor: { 4326 setInsertPointAfterBundle(E); 4327 4328 Value *LHS = vectorizeTree(E->getOperand(0)); 4329 Value *RHS = vectorizeTree(E->getOperand(1)); 4330 4331 if (E->VectorizedValue) { 4332 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4333 return E->VectorizedValue; 4334 } 4335 4336 Value *V = Builder.CreateBinOp( 4337 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 4338 RHS); 4339 propagateIRFlags(V, E->Scalars, VL0); 4340 if (auto *I = dyn_cast<Instruction>(V)) 4341 V = propagateMetadata(I, E->Scalars); 4342 4343 if (NeedToShuffleReuses) { 4344 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4345 E->ReuseShuffleIndices, "shuffle"); 4346 } 4347 E->VectorizedValue = V; 4348 ++NumVectorInstructions; 4349 4350 return V; 4351 } 4352 case Instruction::Load: { 4353 // Loads are inserted at the head of the tree because we don't want to 4354 // sink them all the way down past store instructions. 4355 bool IsReorder = E->updateStateIfReorder(); 4356 if (IsReorder) 4357 VL0 = E->getMainOp(); 4358 setInsertPointAfterBundle(E); 4359 4360 LoadInst *LI = cast<LoadInst>(VL0); 4361 Type *ScalarLoadTy = LI->getType(); 4362 unsigned AS = LI->getPointerAddressSpace(); 4363 4364 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 4365 VecTy->getPointerTo(AS)); 4366 4367 // The pointer operand uses an in-tree scalar so we add the new BitCast to 4368 // ExternalUses list to make sure that an extract will be generated in the 4369 // future. 4370 Value *PO = LI->getPointerOperand(); 4371 if (getTreeEntry(PO)) 4372 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0)); 4373 4374 Align Alignment = DL->getValueOrABITypeAlignment(LI->getAlign(), 4375 ScalarLoadTy); 4376 LI = Builder.CreateAlignedLoad(VecTy, VecPtr, Alignment); 4377 Value *V = propagateMetadata(LI, E->Scalars); 4378 if (IsReorder) { 4379 OrdersType Mask; 4380 inversePermutation(E->ReorderIndices, Mask); 4381 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 4382 Mask, "reorder_shuffle"); 4383 } 4384 if (NeedToShuffleReuses) { 4385 // TODO: Merge this shuffle with the ReorderShuffleMask. 4386 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4387 E->ReuseShuffleIndices, "shuffle"); 4388 } 4389 E->VectorizedValue = V; 4390 ++NumVectorInstructions; 4391 return V; 4392 } 4393 case Instruction::Store: { 4394 bool IsReorder = !E->ReorderIndices.empty(); 4395 auto *SI = cast<StoreInst>( 4396 IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0); 4397 unsigned Alignment = SI->getAlignment(); 4398 unsigned AS = SI->getPointerAddressSpace(); 4399 4400 setInsertPointAfterBundle(E); 4401 4402 Value *VecValue = vectorizeTree(E->getOperand(0)); 4403 if (IsReorder) { 4404 OrdersType Mask; 4405 inversePermutation(E->ReorderIndices, Mask); 4406 VecValue = Builder.CreateShuffleVector( 4407 VecValue, UndefValue::get(VecValue->getType()), E->ReorderIndices, 4408 "reorder_shuffle"); 4409 } 4410 Value *ScalarPtr = SI->getPointerOperand(); 4411 Value *VecPtr = Builder.CreateBitCast( 4412 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 4413 StoreInst *ST = Builder.CreateStore(VecValue, VecPtr); 4414 4415 // The pointer operand uses an in-tree scalar, so add the new BitCast to 4416 // ExternalUses to make sure that an extract will be generated in the 4417 // future. 4418 if (getTreeEntry(ScalarPtr)) 4419 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 4420 4421 if (!Alignment) 4422 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 4423 4424 ST->setAlignment(Align(Alignment)); 4425 Value *V = propagateMetadata(ST, E->Scalars); 4426 if (NeedToShuffleReuses) { 4427 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4428 E->ReuseShuffleIndices, "shuffle"); 4429 } 4430 E->VectorizedValue = V; 4431 ++NumVectorInstructions; 4432 return V; 4433 } 4434 case Instruction::GetElementPtr: { 4435 setInsertPointAfterBundle(E); 4436 4437 Value *Op0 = vectorizeTree(E->getOperand(0)); 4438 4439 std::vector<Value *> OpVecs; 4440 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 4441 ++j) { 4442 ValueList &VL = E->getOperand(j); 4443 // Need to cast all elements to the same type before vectorization to 4444 // avoid crash. 4445 Type *VL0Ty = VL0->getOperand(j)->getType(); 4446 Type *Ty = llvm::all_of( 4447 VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); }) 4448 ? VL0Ty 4449 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4450 ->getPointerOperandType() 4451 ->getScalarType()); 4452 for (Value *&V : VL) { 4453 auto *CI = cast<ConstantInt>(V); 4454 V = ConstantExpr::getIntegerCast(CI, Ty, 4455 CI->getValue().isSignBitSet()); 4456 } 4457 Value *OpVec = vectorizeTree(VL); 4458 OpVecs.push_back(OpVec); 4459 } 4460 4461 Value *V = Builder.CreateGEP( 4462 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 4463 if (Instruction *I = dyn_cast<Instruction>(V)) 4464 V = propagateMetadata(I, E->Scalars); 4465 4466 if (NeedToShuffleReuses) { 4467 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4468 E->ReuseShuffleIndices, "shuffle"); 4469 } 4470 E->VectorizedValue = V; 4471 ++NumVectorInstructions; 4472 4473 return V; 4474 } 4475 case Instruction::Call: { 4476 CallInst *CI = cast<CallInst>(VL0); 4477 setInsertPointAfterBundle(E); 4478 4479 Intrinsic::ID IID = Intrinsic::not_intrinsic; 4480 if (Function *FI = CI->getCalledFunction()) 4481 IID = FI->getIntrinsicID(); 4482 4483 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4484 4485 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 4486 bool UseIntrinsic = VecCallCosts.first <= VecCallCosts.second; 4487 4488 Value *ScalarArg = nullptr; 4489 std::vector<Value *> OpVecs; 4490 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 4491 ValueList OpVL; 4492 // Some intrinsics have scalar arguments. This argument should not be 4493 // vectorized. 4494 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 4495 CallInst *CEI = cast<CallInst>(VL0); 4496 ScalarArg = CEI->getArgOperand(j); 4497 OpVecs.push_back(CEI->getArgOperand(j)); 4498 continue; 4499 } 4500 4501 Value *OpVec = vectorizeTree(E->getOperand(j)); 4502 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 4503 OpVecs.push_back(OpVec); 4504 } 4505 4506 Module *M = F->getParent(); 4507 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 4508 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 4509 4510 if (!UseIntrinsic) { 4511 VFShape Shape = VFShape::get( 4512 *CI, {static_cast<unsigned>(VecTy->getNumElements()), false}, 4513 false /*HasGlobalPred*/); 4514 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 4515 } 4516 4517 SmallVector<OperandBundleDef, 1> OpBundles; 4518 CI->getOperandBundlesAsDefs(OpBundles); 4519 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 4520 4521 // The scalar argument uses an in-tree scalar so we add the new vectorized 4522 // call to ExternalUses list to make sure that an extract will be 4523 // generated in the future. 4524 if (ScalarArg && getTreeEntry(ScalarArg)) 4525 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 4526 4527 propagateIRFlags(V, E->Scalars, VL0); 4528 if (NeedToShuffleReuses) { 4529 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4530 E->ReuseShuffleIndices, "shuffle"); 4531 } 4532 E->VectorizedValue = V; 4533 ++NumVectorInstructions; 4534 return V; 4535 } 4536 case Instruction::ShuffleVector: { 4537 assert(E->isAltShuffle() && 4538 ((Instruction::isBinaryOp(E->getOpcode()) && 4539 Instruction::isBinaryOp(E->getAltOpcode())) || 4540 (Instruction::isCast(E->getOpcode()) && 4541 Instruction::isCast(E->getAltOpcode()))) && 4542 "Invalid Shuffle Vector Operand"); 4543 4544 Value *LHS = nullptr, *RHS = nullptr; 4545 if (Instruction::isBinaryOp(E->getOpcode())) { 4546 setInsertPointAfterBundle(E); 4547 LHS = vectorizeTree(E->getOperand(0)); 4548 RHS = vectorizeTree(E->getOperand(1)); 4549 } else { 4550 setInsertPointAfterBundle(E); 4551 LHS = vectorizeTree(E->getOperand(0)); 4552 } 4553 4554 if (E->VectorizedValue) { 4555 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4556 return E->VectorizedValue; 4557 } 4558 4559 Value *V0, *V1; 4560 if (Instruction::isBinaryOp(E->getOpcode())) { 4561 V0 = Builder.CreateBinOp( 4562 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 4563 V1 = Builder.CreateBinOp( 4564 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 4565 } else { 4566 V0 = Builder.CreateCast( 4567 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 4568 V1 = Builder.CreateCast( 4569 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 4570 } 4571 4572 // Create shuffle to take alternate operations from the vector. 4573 // Also, gather up main and alt scalar ops to propagate IR flags to 4574 // each vector operation. 4575 ValueList OpScalars, AltScalars; 4576 unsigned e = E->Scalars.size(); 4577 SmallVector<Constant *, 8> Mask(e); 4578 for (unsigned i = 0; i < e; ++i) { 4579 auto *OpInst = cast<Instruction>(E->Scalars[i]); 4580 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 4581 if (OpInst->getOpcode() == E->getAltOpcode()) { 4582 Mask[i] = Builder.getInt32(e + i); 4583 AltScalars.push_back(E->Scalars[i]); 4584 } else { 4585 Mask[i] = Builder.getInt32(i); 4586 OpScalars.push_back(E->Scalars[i]); 4587 } 4588 } 4589 4590 Value *ShuffleMask = ConstantVector::get(Mask); 4591 propagateIRFlags(V0, OpScalars); 4592 propagateIRFlags(V1, AltScalars); 4593 4594 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 4595 if (Instruction *I = dyn_cast<Instruction>(V)) 4596 V = propagateMetadata(I, E->Scalars); 4597 if (NeedToShuffleReuses) { 4598 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4599 E->ReuseShuffleIndices, "shuffle"); 4600 } 4601 E->VectorizedValue = V; 4602 ++NumVectorInstructions; 4603 4604 return V; 4605 } 4606 default: 4607 llvm_unreachable("unknown inst"); 4608 } 4609 return nullptr; 4610 } 4611 4612 Value *BoUpSLP::vectorizeTree() { 4613 ExtraValueToDebugLocsMap ExternallyUsedValues; 4614 return vectorizeTree(ExternallyUsedValues); 4615 } 4616 4617 Value * 4618 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 4619 // All blocks must be scheduled before any instructions are inserted. 4620 for (auto &BSIter : BlocksSchedules) { 4621 scheduleBlock(BSIter.second.get()); 4622 } 4623 4624 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4625 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 4626 4627 // If the vectorized tree can be rewritten in a smaller type, we truncate the 4628 // vectorized root. InstCombine will then rewrite the entire expression. We 4629 // sign extend the extracted values below. 4630 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4631 if (MinBWs.count(ScalarRoot)) { 4632 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 4633 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 4634 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 4635 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4636 auto *VecTy = VectorType::get(MinTy, BundleWidth); 4637 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 4638 VectorizableTree[0]->VectorizedValue = Trunc; 4639 } 4640 4641 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 4642 << " values .\n"); 4643 4644 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 4645 // specified by ScalarType. 4646 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 4647 if (!MinBWs.count(ScalarRoot)) 4648 return Ex; 4649 if (MinBWs[ScalarRoot].second) 4650 return Builder.CreateSExt(Ex, ScalarType); 4651 return Builder.CreateZExt(Ex, ScalarType); 4652 }; 4653 4654 // Extract all of the elements with the external uses. 4655 for (const auto &ExternalUse : ExternalUses) { 4656 Value *Scalar = ExternalUse.Scalar; 4657 llvm::User *User = ExternalUse.User; 4658 4659 // Skip users that we already RAUW. This happens when one instruction 4660 // has multiple uses of the same value. 4661 if (User && !is_contained(Scalar->users(), User)) 4662 continue; 4663 TreeEntry *E = getTreeEntry(Scalar); 4664 assert(E && "Invalid scalar"); 4665 assert(E->State == TreeEntry::Vectorize && "Extracting from a gather list"); 4666 4667 Value *Vec = E->VectorizedValue; 4668 assert(Vec && "Can't find vectorizable value"); 4669 4670 Value *Lane = Builder.getInt32(ExternalUse.Lane); 4671 // If User == nullptr, the Scalar is used as extra arg. Generate 4672 // ExtractElement instruction and update the record for this scalar in 4673 // ExternallyUsedValues. 4674 if (!User) { 4675 assert(ExternallyUsedValues.count(Scalar) && 4676 "Scalar with nullptr as an external user must be registered in " 4677 "ExternallyUsedValues map"); 4678 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4679 Builder.SetInsertPoint(VecI->getParent(), 4680 std::next(VecI->getIterator())); 4681 } else { 4682 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4683 } 4684 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4685 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4686 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 4687 auto &Locs = ExternallyUsedValues[Scalar]; 4688 ExternallyUsedValues.insert({Ex, Locs}); 4689 ExternallyUsedValues.erase(Scalar); 4690 // Required to update internally referenced instructions. 4691 Scalar->replaceAllUsesWith(Ex); 4692 continue; 4693 } 4694 4695 // Generate extracts for out-of-tree users. 4696 // Find the insertion point for the extractelement lane. 4697 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4698 if (PHINode *PH = dyn_cast<PHINode>(User)) { 4699 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 4700 if (PH->getIncomingValue(i) == Scalar) { 4701 Instruction *IncomingTerminator = 4702 PH->getIncomingBlock(i)->getTerminator(); 4703 if (isa<CatchSwitchInst>(IncomingTerminator)) { 4704 Builder.SetInsertPoint(VecI->getParent(), 4705 std::next(VecI->getIterator())); 4706 } else { 4707 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 4708 } 4709 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4710 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4711 CSEBlocks.insert(PH->getIncomingBlock(i)); 4712 PH->setOperand(i, Ex); 4713 } 4714 } 4715 } else { 4716 Builder.SetInsertPoint(cast<Instruction>(User)); 4717 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4718 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4719 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 4720 User->replaceUsesOfWith(Scalar, Ex); 4721 } 4722 } else { 4723 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4724 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4725 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4726 CSEBlocks.insert(&F->getEntryBlock()); 4727 User->replaceUsesOfWith(Scalar, Ex); 4728 } 4729 4730 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 4731 } 4732 4733 // For each vectorized value: 4734 for (auto &TEPtr : VectorizableTree) { 4735 TreeEntry *Entry = TEPtr.get(); 4736 4737 // No need to handle users of gathered values. 4738 if (Entry->State == TreeEntry::NeedToGather) 4739 continue; 4740 4741 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 4742 4743 // For each lane: 4744 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 4745 Value *Scalar = Entry->Scalars[Lane]; 4746 4747 #ifndef NDEBUG 4748 Type *Ty = Scalar->getType(); 4749 if (!Ty->isVoidTy()) { 4750 for (User *U : Scalar->users()) { 4751 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 4752 4753 // It is legal to delete users in the ignorelist. 4754 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 4755 "Deleting out-of-tree value"); 4756 } 4757 } 4758 #endif 4759 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 4760 eraseInstruction(cast<Instruction>(Scalar)); 4761 } 4762 } 4763 4764 Builder.ClearInsertionPoint(); 4765 4766 return VectorizableTree[0]->VectorizedValue; 4767 } 4768 4769 void BoUpSLP::optimizeGatherSequence() { 4770 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 4771 << " gather sequences instructions.\n"); 4772 // LICM InsertElementInst sequences. 4773 for (Instruction *I : GatherSeq) { 4774 if (isDeleted(I)) 4775 continue; 4776 4777 // Check if this block is inside a loop. 4778 Loop *L = LI->getLoopFor(I->getParent()); 4779 if (!L) 4780 continue; 4781 4782 // Check if it has a preheader. 4783 BasicBlock *PreHeader = L->getLoopPreheader(); 4784 if (!PreHeader) 4785 continue; 4786 4787 // If the vector or the element that we insert into it are 4788 // instructions that are defined in this basic block then we can't 4789 // hoist this instruction. 4790 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 4791 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 4792 if (Op0 && L->contains(Op0)) 4793 continue; 4794 if (Op1 && L->contains(Op1)) 4795 continue; 4796 4797 // We can hoist this instruction. Move it to the pre-header. 4798 I->moveBefore(PreHeader->getTerminator()); 4799 } 4800 4801 // Make a list of all reachable blocks in our CSE queue. 4802 SmallVector<const DomTreeNode *, 8> CSEWorkList; 4803 CSEWorkList.reserve(CSEBlocks.size()); 4804 for (BasicBlock *BB : CSEBlocks) 4805 if (DomTreeNode *N = DT->getNode(BB)) { 4806 assert(DT->isReachableFromEntry(N)); 4807 CSEWorkList.push_back(N); 4808 } 4809 4810 // Sort blocks by domination. This ensures we visit a block after all blocks 4811 // dominating it are visited. 4812 llvm::stable_sort(CSEWorkList, 4813 [this](const DomTreeNode *A, const DomTreeNode *B) { 4814 return DT->properlyDominates(A, B); 4815 }); 4816 4817 // Perform O(N^2) search over the gather sequences and merge identical 4818 // instructions. TODO: We can further optimize this scan if we split the 4819 // instructions into different buckets based on the insert lane. 4820 SmallVector<Instruction *, 16> Visited; 4821 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 4822 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 4823 "Worklist not sorted properly!"); 4824 BasicBlock *BB = (*I)->getBlock(); 4825 // For all instructions in blocks containing gather sequences: 4826 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 4827 Instruction *In = &*it++; 4828 if (isDeleted(In)) 4829 continue; 4830 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 4831 continue; 4832 4833 // Check if we can replace this instruction with any of the 4834 // visited instructions. 4835 for (Instruction *v : Visited) { 4836 if (In->isIdenticalTo(v) && 4837 DT->dominates(v->getParent(), In->getParent())) { 4838 In->replaceAllUsesWith(v); 4839 eraseInstruction(In); 4840 In = nullptr; 4841 break; 4842 } 4843 } 4844 if (In) { 4845 assert(!is_contained(Visited, In)); 4846 Visited.push_back(In); 4847 } 4848 } 4849 } 4850 CSEBlocks.clear(); 4851 GatherSeq.clear(); 4852 } 4853 4854 // Groups the instructions to a bundle (which is then a single scheduling entity) 4855 // and schedules instructions until the bundle gets ready. 4856 Optional<BoUpSLP::ScheduleData *> 4857 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 4858 const InstructionsState &S) { 4859 if (isa<PHINode>(S.OpValue)) 4860 return nullptr; 4861 4862 // Initialize the instruction bundle. 4863 Instruction *OldScheduleEnd = ScheduleEnd; 4864 ScheduleData *PrevInBundle = nullptr; 4865 ScheduleData *Bundle = nullptr; 4866 bool ReSchedule = false; 4867 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 4868 4869 // Make sure that the scheduling region contains all 4870 // instructions of the bundle. 4871 for (Value *V : VL) { 4872 if (!extendSchedulingRegion(V, S)) 4873 return None; 4874 } 4875 4876 for (Value *V : VL) { 4877 ScheduleData *BundleMember = getScheduleData(V); 4878 assert(BundleMember && 4879 "no ScheduleData for bundle member (maybe not in same basic block)"); 4880 if (BundleMember->IsScheduled) { 4881 // A bundle member was scheduled as single instruction before and now 4882 // needs to be scheduled as part of the bundle. We just get rid of the 4883 // existing schedule. 4884 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 4885 << " was already scheduled\n"); 4886 ReSchedule = true; 4887 } 4888 assert(BundleMember->isSchedulingEntity() && 4889 "bundle member already part of other bundle"); 4890 if (PrevInBundle) { 4891 PrevInBundle->NextInBundle = BundleMember; 4892 } else { 4893 Bundle = BundleMember; 4894 } 4895 BundleMember->UnscheduledDepsInBundle = 0; 4896 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 4897 4898 // Group the instructions to a bundle. 4899 BundleMember->FirstInBundle = Bundle; 4900 PrevInBundle = BundleMember; 4901 } 4902 if (ScheduleEnd != OldScheduleEnd) { 4903 // The scheduling region got new instructions at the lower end (or it is a 4904 // new region for the first bundle). This makes it necessary to 4905 // recalculate all dependencies. 4906 // It is seldom that this needs to be done a second time after adding the 4907 // initial bundle to the region. 4908 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 4909 doForAllOpcodes(I, [](ScheduleData *SD) { 4910 SD->clearDependencies(); 4911 }); 4912 } 4913 ReSchedule = true; 4914 } 4915 if (ReSchedule) { 4916 resetSchedule(); 4917 initialFillReadyList(ReadyInsts); 4918 } 4919 assert(Bundle && "Failed to find schedule bundle"); 4920 4921 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 4922 << BB->getName() << "\n"); 4923 4924 calculateDependencies(Bundle, true, SLP); 4925 4926 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 4927 // means that there are no cyclic dependencies and we can schedule it. 4928 // Note that's important that we don't "schedule" the bundle yet (see 4929 // cancelScheduling). 4930 while (!Bundle->isReady() && !ReadyInsts.empty()) { 4931 4932 ScheduleData *pickedSD = ReadyInsts.back(); 4933 ReadyInsts.pop_back(); 4934 4935 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 4936 schedule(pickedSD, ReadyInsts); 4937 } 4938 } 4939 if (!Bundle->isReady()) { 4940 cancelScheduling(VL, S.OpValue); 4941 return None; 4942 } 4943 return Bundle; 4944 } 4945 4946 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 4947 Value *OpValue) { 4948 if (isa<PHINode>(OpValue)) 4949 return; 4950 4951 ScheduleData *Bundle = getScheduleData(OpValue); 4952 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 4953 assert(!Bundle->IsScheduled && 4954 "Can't cancel bundle which is already scheduled"); 4955 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 4956 "tried to unbundle something which is not a bundle"); 4957 4958 // Un-bundle: make single instructions out of the bundle. 4959 ScheduleData *BundleMember = Bundle; 4960 while (BundleMember) { 4961 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 4962 BundleMember->FirstInBundle = BundleMember; 4963 ScheduleData *Next = BundleMember->NextInBundle; 4964 BundleMember->NextInBundle = nullptr; 4965 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 4966 if (BundleMember->UnscheduledDepsInBundle == 0) { 4967 ReadyInsts.insert(BundleMember); 4968 } 4969 BundleMember = Next; 4970 } 4971 } 4972 4973 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 4974 // Allocate a new ScheduleData for the instruction. 4975 if (ChunkPos >= ChunkSize) { 4976 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 4977 ChunkPos = 0; 4978 } 4979 return &(ScheduleDataChunks.back()[ChunkPos++]); 4980 } 4981 4982 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 4983 const InstructionsState &S) { 4984 if (getScheduleData(V, isOneOf(S, V))) 4985 return true; 4986 Instruction *I = dyn_cast<Instruction>(V); 4987 assert(I && "bundle member must be an instruction"); 4988 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 4989 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 4990 ScheduleData *ISD = getScheduleData(I); 4991 if (!ISD) 4992 return false; 4993 assert(isInSchedulingRegion(ISD) && 4994 "ScheduleData not in scheduling region"); 4995 ScheduleData *SD = allocateScheduleDataChunks(); 4996 SD->Inst = I; 4997 SD->init(SchedulingRegionID, S.OpValue); 4998 ExtraScheduleDataMap[I][S.OpValue] = SD; 4999 return true; 5000 }; 5001 if (CheckSheduleForI(I)) 5002 return true; 5003 if (!ScheduleStart) { 5004 // It's the first instruction in the new region. 5005 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 5006 ScheduleStart = I; 5007 ScheduleEnd = I->getNextNode(); 5008 if (isOneOf(S, I) != I) 5009 CheckSheduleForI(I); 5010 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5011 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 5012 return true; 5013 } 5014 // Search up and down at the same time, because we don't know if the new 5015 // instruction is above or below the existing scheduling region. 5016 BasicBlock::reverse_iterator UpIter = 5017 ++ScheduleStart->getIterator().getReverse(); 5018 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 5019 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 5020 BasicBlock::iterator LowerEnd = BB->end(); 5021 while (true) { 5022 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 5023 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 5024 return false; 5025 } 5026 5027 if (UpIter != UpperEnd) { 5028 if (&*UpIter == I) { 5029 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 5030 ScheduleStart = I; 5031 if (isOneOf(S, I) != I) 5032 CheckSheduleForI(I); 5033 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 5034 << "\n"); 5035 return true; 5036 } 5037 ++UpIter; 5038 } 5039 if (DownIter != LowerEnd) { 5040 if (&*DownIter == I) { 5041 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 5042 nullptr); 5043 ScheduleEnd = I->getNextNode(); 5044 if (isOneOf(S, I) != I) 5045 CheckSheduleForI(I); 5046 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5047 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I 5048 << "\n"); 5049 return true; 5050 } 5051 ++DownIter; 5052 } 5053 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 5054 "instruction not found in block"); 5055 } 5056 return true; 5057 } 5058 5059 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 5060 Instruction *ToI, 5061 ScheduleData *PrevLoadStore, 5062 ScheduleData *NextLoadStore) { 5063 ScheduleData *CurrentLoadStore = PrevLoadStore; 5064 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 5065 ScheduleData *SD = ScheduleDataMap[I]; 5066 if (!SD) { 5067 SD = allocateScheduleDataChunks(); 5068 ScheduleDataMap[I] = SD; 5069 SD->Inst = I; 5070 } 5071 assert(!isInSchedulingRegion(SD) && 5072 "new ScheduleData already in scheduling region"); 5073 SD->init(SchedulingRegionID, I); 5074 5075 if (I->mayReadOrWriteMemory() && 5076 (!isa<IntrinsicInst>(I) || 5077 cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) { 5078 // Update the linked list of memory accessing instructions. 5079 if (CurrentLoadStore) { 5080 CurrentLoadStore->NextLoadStore = SD; 5081 } else { 5082 FirstLoadStoreInRegion = SD; 5083 } 5084 CurrentLoadStore = SD; 5085 } 5086 } 5087 if (NextLoadStore) { 5088 if (CurrentLoadStore) 5089 CurrentLoadStore->NextLoadStore = NextLoadStore; 5090 } else { 5091 LastLoadStoreInRegion = CurrentLoadStore; 5092 } 5093 } 5094 5095 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 5096 bool InsertInReadyList, 5097 BoUpSLP *SLP) { 5098 assert(SD->isSchedulingEntity()); 5099 5100 SmallVector<ScheduleData *, 10> WorkList; 5101 WorkList.push_back(SD); 5102 5103 while (!WorkList.empty()) { 5104 ScheduleData *SD = WorkList.back(); 5105 WorkList.pop_back(); 5106 5107 ScheduleData *BundleMember = SD; 5108 while (BundleMember) { 5109 assert(isInSchedulingRegion(BundleMember)); 5110 if (!BundleMember->hasValidDependencies()) { 5111 5112 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 5113 << "\n"); 5114 BundleMember->Dependencies = 0; 5115 BundleMember->resetUnscheduledDeps(); 5116 5117 // Handle def-use chain dependencies. 5118 if (BundleMember->OpValue != BundleMember->Inst) { 5119 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 5120 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5121 BundleMember->Dependencies++; 5122 ScheduleData *DestBundle = UseSD->FirstInBundle; 5123 if (!DestBundle->IsScheduled) 5124 BundleMember->incrementUnscheduledDeps(1); 5125 if (!DestBundle->hasValidDependencies()) 5126 WorkList.push_back(DestBundle); 5127 } 5128 } else { 5129 for (User *U : BundleMember->Inst->users()) { 5130 if (isa<Instruction>(U)) { 5131 ScheduleData *UseSD = getScheduleData(U); 5132 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5133 BundleMember->Dependencies++; 5134 ScheduleData *DestBundle = UseSD->FirstInBundle; 5135 if (!DestBundle->IsScheduled) 5136 BundleMember->incrementUnscheduledDeps(1); 5137 if (!DestBundle->hasValidDependencies()) 5138 WorkList.push_back(DestBundle); 5139 } 5140 } else { 5141 // I'm not sure if this can ever happen. But we need to be safe. 5142 // This lets the instruction/bundle never be scheduled and 5143 // eventually disable vectorization. 5144 BundleMember->Dependencies++; 5145 BundleMember->incrementUnscheduledDeps(1); 5146 } 5147 } 5148 } 5149 5150 // Handle the memory dependencies. 5151 ScheduleData *DepDest = BundleMember->NextLoadStore; 5152 if (DepDest) { 5153 Instruction *SrcInst = BundleMember->Inst; 5154 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 5155 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 5156 unsigned numAliased = 0; 5157 unsigned DistToSrc = 1; 5158 5159 while (DepDest) { 5160 assert(isInSchedulingRegion(DepDest)); 5161 5162 // We have two limits to reduce the complexity: 5163 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 5164 // SLP->isAliased (which is the expensive part in this loop). 5165 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 5166 // the whole loop (even if the loop is fast, it's quadratic). 5167 // It's important for the loop break condition (see below) to 5168 // check this limit even between two read-only instructions. 5169 if (DistToSrc >= MaxMemDepDistance || 5170 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 5171 (numAliased >= AliasedCheckLimit || 5172 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 5173 5174 // We increment the counter only if the locations are aliased 5175 // (instead of counting all alias checks). This gives a better 5176 // balance between reduced runtime and accurate dependencies. 5177 numAliased++; 5178 5179 DepDest->MemoryDependencies.push_back(BundleMember); 5180 BundleMember->Dependencies++; 5181 ScheduleData *DestBundle = DepDest->FirstInBundle; 5182 if (!DestBundle->IsScheduled) { 5183 BundleMember->incrementUnscheduledDeps(1); 5184 } 5185 if (!DestBundle->hasValidDependencies()) { 5186 WorkList.push_back(DestBundle); 5187 } 5188 } 5189 DepDest = DepDest->NextLoadStore; 5190 5191 // Example, explaining the loop break condition: Let's assume our 5192 // starting instruction is i0 and MaxMemDepDistance = 3. 5193 // 5194 // +--------v--v--v 5195 // i0,i1,i2,i3,i4,i5,i6,i7,i8 5196 // +--------^--^--^ 5197 // 5198 // MaxMemDepDistance let us stop alias-checking at i3 and we add 5199 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 5200 // Previously we already added dependencies from i3 to i6,i7,i8 5201 // (because of MaxMemDepDistance). As we added a dependency from 5202 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 5203 // and we can abort this loop at i6. 5204 if (DistToSrc >= 2 * MaxMemDepDistance) 5205 break; 5206 DistToSrc++; 5207 } 5208 } 5209 } 5210 BundleMember = BundleMember->NextInBundle; 5211 } 5212 if (InsertInReadyList && SD->isReady()) { 5213 ReadyInsts.push_back(SD); 5214 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 5215 << "\n"); 5216 } 5217 } 5218 } 5219 5220 void BoUpSLP::BlockScheduling::resetSchedule() { 5221 assert(ScheduleStart && 5222 "tried to reset schedule on block which has not been scheduled"); 5223 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 5224 doForAllOpcodes(I, [&](ScheduleData *SD) { 5225 assert(isInSchedulingRegion(SD) && 5226 "ScheduleData not in scheduling region"); 5227 SD->IsScheduled = false; 5228 SD->resetUnscheduledDeps(); 5229 }); 5230 } 5231 ReadyInsts.clear(); 5232 } 5233 5234 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 5235 if (!BS->ScheduleStart) 5236 return; 5237 5238 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 5239 5240 BS->resetSchedule(); 5241 5242 // For the real scheduling we use a more sophisticated ready-list: it is 5243 // sorted by the original instruction location. This lets the final schedule 5244 // be as close as possible to the original instruction order. 5245 struct ScheduleDataCompare { 5246 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 5247 return SD2->SchedulingPriority < SD1->SchedulingPriority; 5248 } 5249 }; 5250 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 5251 5252 // Ensure that all dependency data is updated and fill the ready-list with 5253 // initial instructions. 5254 int Idx = 0; 5255 int NumToSchedule = 0; 5256 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 5257 I = I->getNextNode()) { 5258 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 5259 assert(SD->isPartOfBundle() == 5260 (getTreeEntry(SD->Inst) != nullptr) && 5261 "scheduler and vectorizer bundle mismatch"); 5262 SD->FirstInBundle->SchedulingPriority = Idx++; 5263 if (SD->isSchedulingEntity()) { 5264 BS->calculateDependencies(SD, false, this); 5265 NumToSchedule++; 5266 } 5267 }); 5268 } 5269 BS->initialFillReadyList(ReadyInsts); 5270 5271 Instruction *LastScheduledInst = BS->ScheduleEnd; 5272 5273 // Do the "real" scheduling. 5274 while (!ReadyInsts.empty()) { 5275 ScheduleData *picked = *ReadyInsts.begin(); 5276 ReadyInsts.erase(ReadyInsts.begin()); 5277 5278 // Move the scheduled instruction(s) to their dedicated places, if not 5279 // there yet. 5280 ScheduleData *BundleMember = picked; 5281 while (BundleMember) { 5282 Instruction *pickedInst = BundleMember->Inst; 5283 if (LastScheduledInst->getNextNode() != pickedInst) { 5284 BS->BB->getInstList().remove(pickedInst); 5285 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 5286 pickedInst); 5287 } 5288 LastScheduledInst = pickedInst; 5289 BundleMember = BundleMember->NextInBundle; 5290 } 5291 5292 BS->schedule(picked, ReadyInsts); 5293 NumToSchedule--; 5294 } 5295 assert(NumToSchedule == 0 && "could not schedule all instructions"); 5296 5297 // Avoid duplicate scheduling of the block. 5298 BS->ScheduleStart = nullptr; 5299 } 5300 5301 unsigned BoUpSLP::getVectorElementSize(Value *V) const { 5302 // If V is a store, just return the width of the stored value without 5303 // traversing the expression tree. This is the common case. 5304 if (auto *Store = dyn_cast<StoreInst>(V)) 5305 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 5306 5307 // If V is not a store, we can traverse the expression tree to find loads 5308 // that feed it. The type of the loaded value may indicate a more suitable 5309 // width than V's type. We want to base the vector element size on the width 5310 // of memory operations where possible. 5311 SmallVector<Instruction *, 16> Worklist; 5312 SmallPtrSet<Instruction *, 16> Visited; 5313 if (auto *I = dyn_cast<Instruction>(V)) { 5314 Worklist.push_back(I); 5315 Visited.insert(I); 5316 } 5317 5318 // Traverse the expression tree in bottom-up order looking for loads. If we 5319 // encounter an instruction we don't yet handle, we give up. 5320 auto MaxWidth = 0u; 5321 auto FoundUnknownInst = false; 5322 while (!Worklist.empty() && !FoundUnknownInst) { 5323 auto *I = Worklist.pop_back_val(); 5324 5325 // We should only be looking at scalar instructions here. If the current 5326 // instruction has a vector type, give up. 5327 auto *Ty = I->getType(); 5328 if (isa<VectorType>(Ty)) 5329 FoundUnknownInst = true; 5330 5331 // If the current instruction is a load, update MaxWidth to reflect the 5332 // width of the loaded value. 5333 else if (isa<LoadInst>(I)) 5334 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 5335 5336 // Otherwise, we need to visit the operands of the instruction. We only 5337 // handle the interesting cases from buildTree here. If an operand is an 5338 // instruction we haven't yet visited, we add it to the worklist. 5339 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5340 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 5341 for (Use &U : I->operands()) 5342 if (auto *J = dyn_cast<Instruction>(U.get())) 5343 if (Visited.insert(J).second) 5344 Worklist.push_back(J); 5345 } 5346 5347 // If we don't yet handle the instruction, give up. 5348 else 5349 FoundUnknownInst = true; 5350 } 5351 5352 // If we didn't encounter a memory access in the expression tree, or if we 5353 // gave up for some reason, just return the width of V. 5354 if (!MaxWidth || FoundUnknownInst) 5355 return DL->getTypeSizeInBits(V->getType()); 5356 5357 // Otherwise, return the maximum width we found. 5358 return MaxWidth; 5359 } 5360 5361 // Determine if a value V in a vectorizable expression Expr can be demoted to a 5362 // smaller type with a truncation. We collect the values that will be demoted 5363 // in ToDemote and additional roots that require investigating in Roots. 5364 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 5365 SmallVectorImpl<Value *> &ToDemote, 5366 SmallVectorImpl<Value *> &Roots) { 5367 // We can always demote constants. 5368 if (isa<Constant>(V)) { 5369 ToDemote.push_back(V); 5370 return true; 5371 } 5372 5373 // If the value is not an instruction in the expression with only one use, it 5374 // cannot be demoted. 5375 auto *I = dyn_cast<Instruction>(V); 5376 if (!I || !I->hasOneUse() || !Expr.count(I)) 5377 return false; 5378 5379 switch (I->getOpcode()) { 5380 5381 // We can always demote truncations and extensions. Since truncations can 5382 // seed additional demotion, we save the truncated value. 5383 case Instruction::Trunc: 5384 Roots.push_back(I->getOperand(0)); 5385 break; 5386 case Instruction::ZExt: 5387 case Instruction::SExt: 5388 break; 5389 5390 // We can demote certain binary operations if we can demote both of their 5391 // operands. 5392 case Instruction::Add: 5393 case Instruction::Sub: 5394 case Instruction::Mul: 5395 case Instruction::And: 5396 case Instruction::Or: 5397 case Instruction::Xor: 5398 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 5399 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 5400 return false; 5401 break; 5402 5403 // We can demote selects if we can demote their true and false values. 5404 case Instruction::Select: { 5405 SelectInst *SI = cast<SelectInst>(I); 5406 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 5407 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 5408 return false; 5409 break; 5410 } 5411 5412 // We can demote phis if we can demote all their incoming operands. Note that 5413 // we don't need to worry about cycles since we ensure single use above. 5414 case Instruction::PHI: { 5415 PHINode *PN = cast<PHINode>(I); 5416 for (Value *IncValue : PN->incoming_values()) 5417 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 5418 return false; 5419 break; 5420 } 5421 5422 // Otherwise, conservatively give up. 5423 default: 5424 return false; 5425 } 5426 5427 // Record the value that we can demote. 5428 ToDemote.push_back(V); 5429 return true; 5430 } 5431 5432 void BoUpSLP::computeMinimumValueSizes() { 5433 // If there are no external uses, the expression tree must be rooted by a 5434 // store. We can't demote in-memory values, so there is nothing to do here. 5435 if (ExternalUses.empty()) 5436 return; 5437 5438 // We only attempt to truncate integer expressions. 5439 auto &TreeRoot = VectorizableTree[0]->Scalars; 5440 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 5441 if (!TreeRootIT) 5442 return; 5443 5444 // If the expression is not rooted by a store, these roots should have 5445 // external uses. We will rely on InstCombine to rewrite the expression in 5446 // the narrower type. However, InstCombine only rewrites single-use values. 5447 // This means that if a tree entry other than a root is used externally, it 5448 // must have multiple uses and InstCombine will not rewrite it. The code 5449 // below ensures that only the roots are used externally. 5450 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 5451 for (auto &EU : ExternalUses) 5452 if (!Expr.erase(EU.Scalar)) 5453 return; 5454 if (!Expr.empty()) 5455 return; 5456 5457 // Collect the scalar values of the vectorizable expression. We will use this 5458 // context to determine which values can be demoted. If we see a truncation, 5459 // we mark it as seeding another demotion. 5460 for (auto &EntryPtr : VectorizableTree) 5461 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 5462 5463 // Ensure the roots of the vectorizable tree don't form a cycle. They must 5464 // have a single external user that is not in the vectorizable tree. 5465 for (auto *Root : TreeRoot) 5466 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 5467 return; 5468 5469 // Conservatively determine if we can actually truncate the roots of the 5470 // expression. Collect the values that can be demoted in ToDemote and 5471 // additional roots that require investigating in Roots. 5472 SmallVector<Value *, 32> ToDemote; 5473 SmallVector<Value *, 4> Roots; 5474 for (auto *Root : TreeRoot) 5475 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 5476 return; 5477 5478 // The maximum bit width required to represent all the values that can be 5479 // demoted without loss of precision. It would be safe to truncate the roots 5480 // of the expression to this width. 5481 auto MaxBitWidth = 8u; 5482 5483 // We first check if all the bits of the roots are demanded. If they're not, 5484 // we can truncate the roots to this narrower type. 5485 for (auto *Root : TreeRoot) { 5486 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 5487 MaxBitWidth = std::max<unsigned>( 5488 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 5489 } 5490 5491 // True if the roots can be zero-extended back to their original type, rather 5492 // than sign-extended. We know that if the leading bits are not demanded, we 5493 // can safely zero-extend. So we initialize IsKnownPositive to True. 5494 bool IsKnownPositive = true; 5495 5496 // If all the bits of the roots are demanded, we can try a little harder to 5497 // compute a narrower type. This can happen, for example, if the roots are 5498 // getelementptr indices. InstCombine promotes these indices to the pointer 5499 // width. Thus, all their bits are technically demanded even though the 5500 // address computation might be vectorized in a smaller type. 5501 // 5502 // We start by looking at each entry that can be demoted. We compute the 5503 // maximum bit width required to store the scalar by using ValueTracking to 5504 // compute the number of high-order bits we can truncate. 5505 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 5506 llvm::all_of(TreeRoot, [](Value *R) { 5507 assert(R->hasOneUse() && "Root should have only one use!"); 5508 return isa<GetElementPtrInst>(R->user_back()); 5509 })) { 5510 MaxBitWidth = 8u; 5511 5512 // Determine if the sign bit of all the roots is known to be zero. If not, 5513 // IsKnownPositive is set to False. 5514 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 5515 KnownBits Known = computeKnownBits(R, *DL); 5516 return Known.isNonNegative(); 5517 }); 5518 5519 // Determine the maximum number of bits required to store the scalar 5520 // values. 5521 for (auto *Scalar : ToDemote) { 5522 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 5523 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 5524 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 5525 } 5526 5527 // If we can't prove that the sign bit is zero, we must add one to the 5528 // maximum bit width to account for the unknown sign bit. This preserves 5529 // the existing sign bit so we can safely sign-extend the root back to the 5530 // original type. Otherwise, if we know the sign bit is zero, we will 5531 // zero-extend the root instead. 5532 // 5533 // FIXME: This is somewhat suboptimal, as there will be cases where adding 5534 // one to the maximum bit width will yield a larger-than-necessary 5535 // type. In general, we need to add an extra bit only if we can't 5536 // prove that the upper bit of the original type is equal to the 5537 // upper bit of the proposed smaller type. If these two bits are the 5538 // same (either zero or one) we know that sign-extending from the 5539 // smaller type will result in the same value. Here, since we can't 5540 // yet prove this, we are just making the proposed smaller type 5541 // larger to ensure correctness. 5542 if (!IsKnownPositive) 5543 ++MaxBitWidth; 5544 } 5545 5546 // Round MaxBitWidth up to the next power-of-two. 5547 if (!isPowerOf2_64(MaxBitWidth)) 5548 MaxBitWidth = NextPowerOf2(MaxBitWidth); 5549 5550 // If the maximum bit width we compute is less than the with of the roots' 5551 // type, we can proceed with the narrowing. Otherwise, do nothing. 5552 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 5553 return; 5554 5555 // If we can truncate the root, we must collect additional values that might 5556 // be demoted as a result. That is, those seeded by truncations we will 5557 // modify. 5558 while (!Roots.empty()) 5559 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 5560 5561 // Finally, map the values we can demote to the maximum bit with we computed. 5562 for (auto *Scalar : ToDemote) 5563 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 5564 } 5565 5566 namespace { 5567 5568 /// The SLPVectorizer Pass. 5569 struct SLPVectorizer : public FunctionPass { 5570 SLPVectorizerPass Impl; 5571 5572 /// Pass identification, replacement for typeid 5573 static char ID; 5574 5575 explicit SLPVectorizer() : FunctionPass(ID) { 5576 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 5577 } 5578 5579 bool doInitialization(Module &M) override { 5580 return false; 5581 } 5582 5583 bool runOnFunction(Function &F) override { 5584 if (skipFunction(F)) 5585 return false; 5586 5587 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5588 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 5589 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 5590 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 5591 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 5592 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5593 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5594 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 5595 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 5596 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 5597 5598 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5599 } 5600 5601 void getAnalysisUsage(AnalysisUsage &AU) const override { 5602 FunctionPass::getAnalysisUsage(AU); 5603 AU.addRequired<AssumptionCacheTracker>(); 5604 AU.addRequired<ScalarEvolutionWrapperPass>(); 5605 AU.addRequired<AAResultsWrapperPass>(); 5606 AU.addRequired<TargetTransformInfoWrapperPass>(); 5607 AU.addRequired<LoopInfoWrapperPass>(); 5608 AU.addRequired<DominatorTreeWrapperPass>(); 5609 AU.addRequired<DemandedBitsWrapperPass>(); 5610 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 5611 AU.addRequired<InjectTLIMappingsLegacy>(); 5612 AU.addPreserved<LoopInfoWrapperPass>(); 5613 AU.addPreserved<DominatorTreeWrapperPass>(); 5614 AU.addPreserved<AAResultsWrapperPass>(); 5615 AU.addPreserved<GlobalsAAWrapperPass>(); 5616 AU.setPreservesCFG(); 5617 } 5618 }; 5619 5620 } // end anonymous namespace 5621 5622 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 5623 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 5624 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 5625 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 5626 auto *AA = &AM.getResult<AAManager>(F); 5627 auto *LI = &AM.getResult<LoopAnalysis>(F); 5628 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 5629 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 5630 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 5631 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 5632 5633 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5634 if (!Changed) 5635 return PreservedAnalyses::all(); 5636 5637 PreservedAnalyses PA; 5638 PA.preserveSet<CFGAnalyses>(); 5639 PA.preserve<AAManager>(); 5640 PA.preserve<GlobalsAA>(); 5641 return PA; 5642 } 5643 5644 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 5645 TargetTransformInfo *TTI_, 5646 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 5647 LoopInfo *LI_, DominatorTree *DT_, 5648 AssumptionCache *AC_, DemandedBits *DB_, 5649 OptimizationRemarkEmitter *ORE_) { 5650 SE = SE_; 5651 TTI = TTI_; 5652 TLI = TLI_; 5653 AA = AA_; 5654 LI = LI_; 5655 DT = DT_; 5656 AC = AC_; 5657 DB = DB_; 5658 DL = &F.getParent()->getDataLayout(); 5659 5660 Stores.clear(); 5661 GEPs.clear(); 5662 bool Changed = false; 5663 5664 // If the target claims to have no vector registers don't attempt 5665 // vectorization. 5666 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 5667 return false; 5668 5669 // Don't vectorize when the attribute NoImplicitFloat is used. 5670 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 5671 return false; 5672 5673 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 5674 5675 // Use the bottom up slp vectorizer to construct chains that start with 5676 // store instructions. 5677 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 5678 5679 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 5680 // delete instructions. 5681 5682 // Scan the blocks in the function in post order. 5683 for (auto BB : post_order(&F.getEntryBlock())) { 5684 collectSeedInstructions(BB); 5685 5686 // Vectorize trees that end at stores. 5687 if (!Stores.empty()) { 5688 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 5689 << " underlying objects.\n"); 5690 Changed |= vectorizeStoreChains(R); 5691 } 5692 5693 // Vectorize trees that end at reductions. 5694 Changed |= vectorizeChainsInBlock(BB, R); 5695 5696 // Vectorize the index computations of getelementptr instructions. This 5697 // is primarily intended to catch gather-like idioms ending at 5698 // non-consecutive loads. 5699 if (!GEPs.empty()) { 5700 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 5701 << " underlying objects.\n"); 5702 Changed |= vectorizeGEPIndices(BB, R); 5703 } 5704 } 5705 5706 if (Changed) { 5707 R.optimizeGatherSequence(); 5708 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 5709 LLVM_DEBUG(verifyFunction(F)); 5710 } 5711 return Changed; 5712 } 5713 5714 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 5715 unsigned Idx) { 5716 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 5717 << "\n"); 5718 const unsigned Sz = R.getVectorElementSize(Chain[0]); 5719 const unsigned MinVF = R.getMinVecRegSize() / Sz; 5720 unsigned VF = Chain.size(); 5721 5722 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 5723 return false; 5724 5725 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 5726 << "\n"); 5727 5728 R.buildTree(Chain); 5729 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 5730 // TODO: Handle orders of size less than number of elements in the vector. 5731 if (Order && Order->size() == Chain.size()) { 5732 // TODO: reorder tree nodes without tree rebuilding. 5733 SmallVector<Value *, 4> ReorderedOps(Chain.rbegin(), Chain.rend()); 5734 llvm::transform(*Order, ReorderedOps.begin(), 5735 [Chain](const unsigned Idx) { return Chain[Idx]; }); 5736 R.buildTree(ReorderedOps); 5737 } 5738 if (R.isTreeTinyAndNotFullyVectorizable()) 5739 return false; 5740 5741 R.computeMinimumValueSizes(); 5742 5743 int Cost = R.getTreeCost(); 5744 5745 LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); 5746 if (Cost < -SLPCostThreshold) { 5747 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 5748 5749 using namespace ore; 5750 5751 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 5752 cast<StoreInst>(Chain[0])) 5753 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 5754 << " and with tree size " 5755 << NV("TreeSize", R.getTreeSize())); 5756 5757 R.vectorizeTree(); 5758 return true; 5759 } 5760 5761 return false; 5762 } 5763 5764 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 5765 BoUpSLP &R) { 5766 // We may run into multiple chains that merge into a single chain. We mark the 5767 // stores that we vectorized so that we don't visit the same store twice. 5768 BoUpSLP::ValueSet VectorizedStores; 5769 bool Changed = false; 5770 5771 int E = Stores.size(); 5772 SmallBitVector Tails(E, false); 5773 SmallVector<int, 16> ConsecutiveChain(E, E + 1); 5774 int MaxIter = MaxStoreLookup.getValue(); 5775 int IterCnt; 5776 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 5777 &ConsecutiveChain](int K, int Idx) { 5778 if (IterCnt >= MaxIter) 5779 return true; 5780 ++IterCnt; 5781 if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) 5782 return false; 5783 5784 Tails.set(Idx); 5785 ConsecutiveChain[K] = Idx; 5786 return true; 5787 }; 5788 // Do a quadratic search on all of the given stores in reverse order and find 5789 // all of the pairs of stores that follow each other. 5790 for (int Idx = E - 1; Idx >= 0; --Idx) { 5791 // If a store has multiple consecutive store candidates, search according 5792 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 5793 // This is because usually pairing with immediate succeeding or preceding 5794 // candidate create the best chance to find slp vectorization opportunity. 5795 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 5796 IterCnt = 0; 5797 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 5798 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 5799 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 5800 break; 5801 } 5802 5803 // For stores that start but don't end a link in the chain: 5804 for (int Cnt = E; Cnt > 0; --Cnt) { 5805 int I = Cnt - 1; 5806 if (ConsecutiveChain[I] == E + 1 || Tails.test(I)) 5807 continue; 5808 // We found a store instr that starts a chain. Now follow the chain and try 5809 // to vectorize it. 5810 BoUpSLP::ValueList Operands; 5811 // Collect the chain into a list. 5812 while (I != E + 1 && !VectorizedStores.count(Stores[I])) { 5813 Operands.push_back(Stores[I]); 5814 // Move to the next value in the chain. 5815 I = ConsecutiveChain[I]; 5816 } 5817 5818 // If a vector register can't hold 1 element, we are done. 5819 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 5820 unsigned EltSize = R.getVectorElementSize(Stores[0]); 5821 if (MaxVecRegSize % EltSize != 0) 5822 continue; 5823 5824 unsigned MaxElts = MaxVecRegSize / EltSize; 5825 // FIXME: Is division-by-2 the correct step? Should we assert that the 5826 // register size is a power-of-2? 5827 unsigned StartIdx = 0; 5828 for (unsigned Size = llvm::PowerOf2Ceil(MaxElts); Size >= 2; Size /= 2) { 5829 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 5830 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 5831 if (!VectorizedStores.count(Slice.front()) && 5832 !VectorizedStores.count(Slice.back()) && 5833 vectorizeStoreChain(Slice, R, Cnt)) { 5834 // Mark the vectorized stores so that we don't vectorize them again. 5835 VectorizedStores.insert(Slice.begin(), Slice.end()); 5836 Changed = true; 5837 // If we vectorized initial block, no need to try to vectorize it 5838 // again. 5839 if (Cnt == StartIdx) 5840 StartIdx += Size; 5841 Cnt += Size; 5842 continue; 5843 } 5844 ++Cnt; 5845 } 5846 // Check if the whole array was vectorized already - exit. 5847 if (StartIdx >= Operands.size()) 5848 break; 5849 } 5850 } 5851 5852 return Changed; 5853 } 5854 5855 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 5856 // Initialize the collections. We will make a single pass over the block. 5857 Stores.clear(); 5858 GEPs.clear(); 5859 5860 // Visit the store and getelementptr instructions in BB and organize them in 5861 // Stores and GEPs according to the underlying objects of their pointer 5862 // operands. 5863 for (Instruction &I : *BB) { 5864 // Ignore store instructions that are volatile or have a pointer operand 5865 // that doesn't point to a scalar type. 5866 if (auto *SI = dyn_cast<StoreInst>(&I)) { 5867 if (!SI->isSimple()) 5868 continue; 5869 if (!isValidElementType(SI->getValueOperand()->getType())) 5870 continue; 5871 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 5872 } 5873 5874 // Ignore getelementptr instructions that have more than one index, a 5875 // constant index, or a pointer operand that doesn't point to a scalar 5876 // type. 5877 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 5878 auto Idx = GEP->idx_begin()->get(); 5879 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 5880 continue; 5881 if (!isValidElementType(Idx->getType())) 5882 continue; 5883 if (GEP->getType()->isVectorTy()) 5884 continue; 5885 GEPs[GEP->getPointerOperand()].push_back(GEP); 5886 } 5887 } 5888 } 5889 5890 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 5891 if (!A || !B) 5892 return false; 5893 Value *VL[] = { A, B }; 5894 return tryToVectorizeList(VL, R, /*UserCost=*/0, true); 5895 } 5896 5897 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 5898 int UserCost, bool AllowReorder) { 5899 if (VL.size() < 2) 5900 return false; 5901 5902 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 5903 << VL.size() << ".\n"); 5904 5905 // Check that all of the parts are instructions of the same type, 5906 // we permit an alternate opcode via InstructionsState. 5907 InstructionsState S = getSameOpcode(VL); 5908 if (!S.getOpcode()) 5909 return false; 5910 5911 Instruction *I0 = cast<Instruction>(S.OpValue); 5912 // Make sure invalid types (including vector type) are rejected before 5913 // determining vectorization factor for scalar instructions. 5914 for (Value *V : VL) { 5915 Type *Ty = V->getType(); 5916 if (!isValidElementType(Ty)) { 5917 // NOTE: the following will give user internal llvm type name, which may 5918 // not be useful. 5919 R.getORE()->emit([&]() { 5920 std::string type_str; 5921 llvm::raw_string_ostream rso(type_str); 5922 Ty->print(rso); 5923 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 5924 << "Cannot SLP vectorize list: type " 5925 << rso.str() + " is unsupported by vectorizer"; 5926 }); 5927 return false; 5928 } 5929 } 5930 5931 unsigned Sz = R.getVectorElementSize(I0); 5932 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 5933 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 5934 if (MaxVF < 2) { 5935 R.getORE()->emit([&]() { 5936 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 5937 << "Cannot SLP vectorize list: vectorization factor " 5938 << "less than 2 is not supported"; 5939 }); 5940 return false; 5941 } 5942 5943 bool Changed = false; 5944 bool CandidateFound = false; 5945 int MinCost = SLPCostThreshold; 5946 5947 unsigned NextInst = 0, MaxInst = VL.size(); 5948 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 5949 // No actual vectorization should happen, if number of parts is the same as 5950 // provided vectorization factor (i.e. the scalar type is used for vector 5951 // code during codegen). 5952 auto *VecTy = VectorType::get(VL[0]->getType(), VF); 5953 if (TTI->getNumberOfParts(VecTy) == VF) 5954 continue; 5955 for (unsigned I = NextInst; I < MaxInst; ++I) { 5956 unsigned OpsWidth = 0; 5957 5958 if (I + VF > MaxInst) 5959 OpsWidth = MaxInst - I; 5960 else 5961 OpsWidth = VF; 5962 5963 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 5964 break; 5965 5966 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 5967 // Check that a previous iteration of this loop did not delete the Value. 5968 if (llvm::any_of(Ops, [&R](Value *V) { 5969 auto *I = dyn_cast<Instruction>(V); 5970 return I && R.isDeleted(I); 5971 })) 5972 continue; 5973 5974 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 5975 << "\n"); 5976 5977 R.buildTree(Ops); 5978 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 5979 // TODO: check if we can allow reordering for more cases. 5980 if (AllowReorder && Order) { 5981 // TODO: reorder tree nodes without tree rebuilding. 5982 // Conceptually, there is nothing actually preventing us from trying to 5983 // reorder a larger list. In fact, we do exactly this when vectorizing 5984 // reductions. However, at this point, we only expect to get here when 5985 // there are exactly two operations. 5986 assert(Ops.size() == 2); 5987 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 5988 R.buildTree(ReorderedOps, None); 5989 } 5990 if (R.isTreeTinyAndNotFullyVectorizable()) 5991 continue; 5992 5993 R.computeMinimumValueSizes(); 5994 int Cost = R.getTreeCost() - UserCost; 5995 CandidateFound = true; 5996 MinCost = std::min(MinCost, Cost); 5997 5998 if (Cost < -SLPCostThreshold) { 5999 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 6000 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 6001 cast<Instruction>(Ops[0])) 6002 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 6003 << " and with tree size " 6004 << ore::NV("TreeSize", R.getTreeSize())); 6005 6006 R.vectorizeTree(); 6007 // Move to the next bundle. 6008 I += VF - 1; 6009 NextInst = I + 1; 6010 Changed = true; 6011 } 6012 } 6013 } 6014 6015 if (!Changed && CandidateFound) { 6016 R.getORE()->emit([&]() { 6017 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 6018 << "List vectorization was possible but not beneficial with cost " 6019 << ore::NV("Cost", MinCost) << " >= " 6020 << ore::NV("Treshold", -SLPCostThreshold); 6021 }); 6022 } else if (!Changed) { 6023 R.getORE()->emit([&]() { 6024 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 6025 << "Cannot SLP vectorize list: vectorization was impossible" 6026 << " with available vectorization factors"; 6027 }); 6028 } 6029 return Changed; 6030 } 6031 6032 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 6033 if (!I) 6034 return false; 6035 6036 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 6037 return false; 6038 6039 Value *P = I->getParent(); 6040 6041 // Vectorize in current basic block only. 6042 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 6043 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 6044 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 6045 return false; 6046 6047 // Try to vectorize V. 6048 if (tryToVectorizePair(Op0, Op1, R)) 6049 return true; 6050 6051 auto *A = dyn_cast<BinaryOperator>(Op0); 6052 auto *B = dyn_cast<BinaryOperator>(Op1); 6053 // Try to skip B. 6054 if (B && B->hasOneUse()) { 6055 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 6056 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 6057 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 6058 return true; 6059 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 6060 return true; 6061 } 6062 6063 // Try to skip A. 6064 if (A && A->hasOneUse()) { 6065 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 6066 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 6067 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 6068 return true; 6069 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 6070 return true; 6071 } 6072 return false; 6073 } 6074 6075 /// Generate a shuffle mask to be used in a reduction tree. 6076 /// 6077 /// \param VecLen The length of the vector to be reduced. 6078 /// \param NumEltsToRdx The number of elements that should be reduced in the 6079 /// vector. 6080 /// \param IsPairwise Whether the reduction is a pairwise or splitting 6081 /// reduction. A pairwise reduction will generate a mask of 6082 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 6083 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 6084 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 6085 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 6086 bool IsPairwise, bool IsLeft, 6087 IRBuilder<> &Builder) { 6088 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 6089 6090 SmallVector<Constant *, 32> ShuffleMask( 6091 VecLen, UndefValue::get(Builder.getInt32Ty())); 6092 6093 if (IsPairwise) 6094 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 6095 for (unsigned i = 0; i != NumEltsToRdx; ++i) 6096 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 6097 else 6098 // Move the upper half of the vector to the lower half. 6099 for (unsigned i = 0; i != NumEltsToRdx; ++i) 6100 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 6101 6102 return ConstantVector::get(ShuffleMask); 6103 } 6104 6105 namespace { 6106 6107 /// Model horizontal reductions. 6108 /// 6109 /// A horizontal reduction is a tree of reduction operations (currently add and 6110 /// fadd) that has operations that can be put into a vector as its leaf. 6111 /// For example, this tree: 6112 /// 6113 /// mul mul mul mul 6114 /// \ / \ / 6115 /// + + 6116 /// \ / 6117 /// + 6118 /// This tree has "mul" as its reduced values and "+" as its reduction 6119 /// operations. A reduction might be feeding into a store or a binary operation 6120 /// feeding a phi. 6121 /// ... 6122 /// \ / 6123 /// + 6124 /// | 6125 /// phi += 6126 /// 6127 /// Or: 6128 /// ... 6129 /// \ / 6130 /// + 6131 /// | 6132 /// *p = 6133 /// 6134 class HorizontalReduction { 6135 using ReductionOpsType = SmallVector<Value *, 16>; 6136 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 6137 ReductionOpsListType ReductionOps; 6138 SmallVector<Value *, 32> ReducedVals; 6139 // Use map vector to make stable output. 6140 MapVector<Instruction *, Value *> ExtraArgs; 6141 6142 /// Kind of the reduction data. 6143 enum ReductionKind { 6144 RK_None, /// Not a reduction. 6145 RK_Arithmetic, /// Binary reduction data. 6146 RK_Min, /// Minimum reduction data. 6147 RK_UMin, /// Unsigned minimum reduction data. 6148 RK_Max, /// Maximum reduction data. 6149 RK_UMax, /// Unsigned maximum reduction data. 6150 }; 6151 6152 /// Contains info about operation, like its opcode, left and right operands. 6153 class OperationData { 6154 /// Opcode of the instruction. 6155 unsigned Opcode = 0; 6156 6157 /// Left operand of the reduction operation. 6158 Value *LHS = nullptr; 6159 6160 /// Right operand of the reduction operation. 6161 Value *RHS = nullptr; 6162 6163 /// Kind of the reduction operation. 6164 ReductionKind Kind = RK_None; 6165 6166 /// True if float point min/max reduction has no NaNs. 6167 bool NoNaN = false; 6168 6169 /// Checks if the reduction operation can be vectorized. 6170 bool isVectorizable() const { 6171 return LHS && RHS && 6172 // We currently only support add/mul/logical && min/max reductions. 6173 ((Kind == RK_Arithmetic && 6174 (Opcode == Instruction::Add || Opcode == Instruction::FAdd || 6175 Opcode == Instruction::Mul || Opcode == Instruction::FMul || 6176 Opcode == Instruction::And || Opcode == Instruction::Or || 6177 Opcode == Instruction::Xor)) || 6178 ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 6179 (Kind == RK_Min || Kind == RK_Max)) || 6180 (Opcode == Instruction::ICmp && 6181 (Kind == RK_UMin || Kind == RK_UMax))); 6182 } 6183 6184 /// Creates reduction operation with the current opcode. 6185 Value *createOp(IRBuilder<> &Builder, const Twine &Name) const { 6186 assert(isVectorizable() && 6187 "Expected add|fadd or min/max reduction operation."); 6188 Value *Cmp = nullptr; 6189 switch (Kind) { 6190 case RK_Arithmetic: 6191 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 6192 Name); 6193 case RK_Min: 6194 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS) 6195 : Builder.CreateFCmpOLT(LHS, RHS); 6196 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6197 case RK_Max: 6198 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS) 6199 : Builder.CreateFCmpOGT(LHS, RHS); 6200 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6201 case RK_UMin: 6202 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6203 Cmp = Builder.CreateICmpULT(LHS, RHS); 6204 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6205 case RK_UMax: 6206 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6207 Cmp = Builder.CreateICmpUGT(LHS, RHS); 6208 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6209 case RK_None: 6210 break; 6211 } 6212 llvm_unreachable("Unknown reduction operation."); 6213 } 6214 6215 public: 6216 explicit OperationData() = default; 6217 6218 /// Construction for reduced values. They are identified by opcode only and 6219 /// don't have associated LHS/RHS values. 6220 explicit OperationData(Value *V) { 6221 if (auto *I = dyn_cast<Instruction>(V)) 6222 Opcode = I->getOpcode(); 6223 } 6224 6225 /// Constructor for reduction operations with opcode and its left and 6226 /// right operands. 6227 OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind, 6228 bool NoNaN = false) 6229 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) { 6230 assert(Kind != RK_None && "One of the reduction operations is expected."); 6231 } 6232 6233 explicit operator bool() const { return Opcode; } 6234 6235 /// Return true if this operation is any kind of minimum or maximum. 6236 bool isMinMax() const { 6237 switch (Kind) { 6238 case RK_Arithmetic: 6239 return false; 6240 case RK_Min: 6241 case RK_Max: 6242 case RK_UMin: 6243 case RK_UMax: 6244 return true; 6245 case RK_None: 6246 break; 6247 } 6248 llvm_unreachable("Reduction kind is not set"); 6249 } 6250 6251 /// Get the index of the first operand. 6252 unsigned getFirstOperandIndex() const { 6253 assert(!!*this && "The opcode is not set."); 6254 // We allow calling this before 'Kind' is set, so handle that specially. 6255 if (Kind == RK_None) 6256 return 0; 6257 return isMinMax() ? 1 : 0; 6258 } 6259 6260 /// Total number of operands in the reduction operation. 6261 unsigned getNumberOfOperands() const { 6262 assert(Kind != RK_None && !!*this && LHS && RHS && 6263 "Expected reduction operation."); 6264 return isMinMax() ? 3 : 2; 6265 } 6266 6267 /// Checks if the operation has the same parent as \p P. 6268 bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const { 6269 assert(Kind != RK_None && !!*this && LHS && RHS && 6270 "Expected reduction operation."); 6271 if (!IsRedOp) 6272 return I->getParent() == P; 6273 if (isMinMax()) { 6274 // SelectInst must be used twice while the condition op must have single 6275 // use only. 6276 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 6277 return I->getParent() == P && Cmp && Cmp->getParent() == P; 6278 } 6279 // Arithmetic reduction operation must be used once only. 6280 return I->getParent() == P; 6281 } 6282 6283 /// Expected number of uses for reduction operations/reduced values. 6284 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { 6285 assert(Kind != RK_None && !!*this && LHS && RHS && 6286 "Expected reduction operation."); 6287 if (isMinMax()) 6288 return I->hasNUses(2) && 6289 (!IsReductionOp || 6290 cast<SelectInst>(I)->getCondition()->hasOneUse()); 6291 return I->hasOneUse(); 6292 } 6293 6294 /// Initializes the list of reduction operations. 6295 void initReductionOps(ReductionOpsListType &ReductionOps) { 6296 assert(Kind != RK_None && !!*this && LHS && RHS && 6297 "Expected reduction operation."); 6298 if (isMinMax()) 6299 ReductionOps.assign(2, ReductionOpsType()); 6300 else 6301 ReductionOps.assign(1, ReductionOpsType()); 6302 } 6303 6304 /// Add all reduction operations for the reduction instruction \p I. 6305 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { 6306 assert(Kind != RK_None && !!*this && LHS && RHS && 6307 "Expected reduction operation."); 6308 if (isMinMax()) { 6309 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 6310 ReductionOps[1].emplace_back(I); 6311 } else { 6312 ReductionOps[0].emplace_back(I); 6313 } 6314 } 6315 6316 /// Checks if instruction is associative and can be vectorized. 6317 bool isAssociative(Instruction *I) const { 6318 assert(Kind != RK_None && *this && LHS && RHS && 6319 "Expected reduction operation."); 6320 switch (Kind) { 6321 case RK_Arithmetic: 6322 return I->isAssociative(); 6323 case RK_Min: 6324 case RK_Max: 6325 return Opcode == Instruction::ICmp || 6326 cast<Instruction>(I->getOperand(0))->isFast(); 6327 case RK_UMin: 6328 case RK_UMax: 6329 assert(Opcode == Instruction::ICmp && 6330 "Only integer compare operation is expected."); 6331 return true; 6332 case RK_None: 6333 break; 6334 } 6335 llvm_unreachable("Reduction kind is not set"); 6336 } 6337 6338 /// Checks if the reduction operation can be vectorized. 6339 bool isVectorizable(Instruction *I) const { 6340 return isVectorizable() && isAssociative(I); 6341 } 6342 6343 /// Checks if two operation data are both a reduction op or both a reduced 6344 /// value. 6345 bool operator==(const OperationData &OD) const { 6346 assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) && 6347 "One of the comparing operations is incorrect."); 6348 return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode); 6349 } 6350 bool operator!=(const OperationData &OD) const { return !(*this == OD); } 6351 void clear() { 6352 Opcode = 0; 6353 LHS = nullptr; 6354 RHS = nullptr; 6355 Kind = RK_None; 6356 NoNaN = false; 6357 } 6358 6359 /// Get the opcode of the reduction operation. 6360 unsigned getOpcode() const { 6361 assert(isVectorizable() && "Expected vectorizable operation."); 6362 return Opcode; 6363 } 6364 6365 /// Get kind of reduction data. 6366 ReductionKind getKind() const { return Kind; } 6367 Value *getLHS() const { return LHS; } 6368 Value *getRHS() const { return RHS; } 6369 Type *getConditionType() const { 6370 return isMinMax() ? CmpInst::makeCmpResultType(LHS->getType()) : nullptr; 6371 } 6372 6373 /// Creates reduction operation with the current opcode with the IR flags 6374 /// from \p ReductionOps. 6375 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 6376 const ReductionOpsListType &ReductionOps) const { 6377 assert(isVectorizable() && 6378 "Expected add|fadd or min/max reduction operation."); 6379 auto *Op = createOp(Builder, Name); 6380 switch (Kind) { 6381 case RK_Arithmetic: 6382 propagateIRFlags(Op, ReductionOps[0]); 6383 return Op; 6384 case RK_Min: 6385 case RK_Max: 6386 case RK_UMin: 6387 case RK_UMax: 6388 if (auto *SI = dyn_cast<SelectInst>(Op)) 6389 propagateIRFlags(SI->getCondition(), ReductionOps[0]); 6390 propagateIRFlags(Op, ReductionOps[1]); 6391 return Op; 6392 case RK_None: 6393 break; 6394 } 6395 llvm_unreachable("Unknown reduction operation."); 6396 } 6397 /// Creates reduction operation with the current opcode with the IR flags 6398 /// from \p I. 6399 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 6400 Instruction *I) const { 6401 assert(isVectorizable() && 6402 "Expected add|fadd or min/max reduction operation."); 6403 auto *Op = createOp(Builder, Name); 6404 switch (Kind) { 6405 case RK_Arithmetic: 6406 propagateIRFlags(Op, I); 6407 return Op; 6408 case RK_Min: 6409 case RK_Max: 6410 case RK_UMin: 6411 case RK_UMax: 6412 if (auto *SI = dyn_cast<SelectInst>(Op)) { 6413 propagateIRFlags(SI->getCondition(), 6414 cast<SelectInst>(I)->getCondition()); 6415 } 6416 propagateIRFlags(Op, I); 6417 return Op; 6418 case RK_None: 6419 break; 6420 } 6421 llvm_unreachable("Unknown reduction operation."); 6422 } 6423 6424 TargetTransformInfo::ReductionFlags getFlags() const { 6425 TargetTransformInfo::ReductionFlags Flags; 6426 Flags.NoNaN = NoNaN; 6427 switch (Kind) { 6428 case RK_Arithmetic: 6429 break; 6430 case RK_Min: 6431 Flags.IsSigned = Opcode == Instruction::ICmp; 6432 Flags.IsMaxOp = false; 6433 break; 6434 case RK_Max: 6435 Flags.IsSigned = Opcode == Instruction::ICmp; 6436 Flags.IsMaxOp = true; 6437 break; 6438 case RK_UMin: 6439 Flags.IsSigned = false; 6440 Flags.IsMaxOp = false; 6441 break; 6442 case RK_UMax: 6443 Flags.IsSigned = false; 6444 Flags.IsMaxOp = true; 6445 break; 6446 case RK_None: 6447 llvm_unreachable("Reduction kind is not set"); 6448 } 6449 return Flags; 6450 } 6451 }; 6452 6453 WeakTrackingVH ReductionRoot; 6454 6455 /// The operation data of the reduction operation. 6456 OperationData ReductionData; 6457 6458 /// The operation data of the values we perform a reduction on. 6459 OperationData ReducedValueData; 6460 6461 /// Should we model this reduction as a pairwise reduction tree or a tree that 6462 /// splits the vector in halves and adds those halves. 6463 bool IsPairwiseReduction = false; 6464 6465 /// Checks if the ParentStackElem.first should be marked as a reduction 6466 /// operation with an extra argument or as extra argument itself. 6467 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 6468 Value *ExtraArg) { 6469 if (ExtraArgs.count(ParentStackElem.first)) { 6470 ExtraArgs[ParentStackElem.first] = nullptr; 6471 // We ran into something like: 6472 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 6473 // The whole ParentStackElem.first should be considered as an extra value 6474 // in this case. 6475 // Do not perform analysis of remaining operands of ParentStackElem.first 6476 // instruction, this whole instruction is an extra argument. 6477 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 6478 } else { 6479 // We ran into something like: 6480 // ParentStackElem.first += ... + ExtraArg + ... 6481 ExtraArgs[ParentStackElem.first] = ExtraArg; 6482 } 6483 } 6484 6485 static OperationData getOperationData(Value *V) { 6486 if (!V) 6487 return OperationData(); 6488 6489 Value *LHS; 6490 Value *RHS; 6491 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) { 6492 return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS, 6493 RK_Arithmetic); 6494 } 6495 if (auto *Select = dyn_cast<SelectInst>(V)) { 6496 // Look for a min/max pattern. 6497 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6498 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 6499 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6500 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 6501 } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) || 6502 m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6503 return OperationData( 6504 Instruction::FCmp, LHS, RHS, RK_Min, 6505 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 6506 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6507 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 6508 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6509 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 6510 } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) || 6511 m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6512 return OperationData( 6513 Instruction::FCmp, LHS, RHS, RK_Max, 6514 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 6515 } else { 6516 // Try harder: look for min/max pattern based on instructions producing 6517 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 6518 // During the intermediate stages of SLP, it's very common to have 6519 // pattern like this (since optimizeGatherSequence is run only once 6520 // at the end): 6521 // %1 = extractelement <2 x i32> %a, i32 0 6522 // %2 = extractelement <2 x i32> %a, i32 1 6523 // %cond = icmp sgt i32 %1, %2 6524 // %3 = extractelement <2 x i32> %a, i32 0 6525 // %4 = extractelement <2 x i32> %a, i32 1 6526 // %select = select i1 %cond, i32 %3, i32 %4 6527 CmpInst::Predicate Pred; 6528 Instruction *L1; 6529 Instruction *L2; 6530 6531 LHS = Select->getTrueValue(); 6532 RHS = Select->getFalseValue(); 6533 Value *Cond = Select->getCondition(); 6534 6535 // TODO: Support inverse predicates. 6536 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 6537 if (!isa<ExtractElementInst>(RHS) || 6538 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6539 return OperationData(V); 6540 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 6541 if (!isa<ExtractElementInst>(LHS) || 6542 !L1->isIdenticalTo(cast<Instruction>(LHS))) 6543 return OperationData(V); 6544 } else { 6545 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 6546 return OperationData(V); 6547 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 6548 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 6549 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6550 return OperationData(V); 6551 } 6552 switch (Pred) { 6553 default: 6554 return OperationData(V); 6555 6556 case CmpInst::ICMP_ULT: 6557 case CmpInst::ICMP_ULE: 6558 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 6559 6560 case CmpInst::ICMP_SLT: 6561 case CmpInst::ICMP_SLE: 6562 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 6563 6564 case CmpInst::FCMP_OLT: 6565 case CmpInst::FCMP_OLE: 6566 case CmpInst::FCMP_ULT: 6567 case CmpInst::FCMP_ULE: 6568 return OperationData(Instruction::FCmp, LHS, RHS, RK_Min, 6569 cast<Instruction>(Cond)->hasNoNaNs()); 6570 6571 case CmpInst::ICMP_UGT: 6572 case CmpInst::ICMP_UGE: 6573 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 6574 6575 case CmpInst::ICMP_SGT: 6576 case CmpInst::ICMP_SGE: 6577 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 6578 6579 case CmpInst::FCMP_OGT: 6580 case CmpInst::FCMP_OGE: 6581 case CmpInst::FCMP_UGT: 6582 case CmpInst::FCMP_UGE: 6583 return OperationData(Instruction::FCmp, LHS, RHS, RK_Max, 6584 cast<Instruction>(Cond)->hasNoNaNs()); 6585 } 6586 } 6587 } 6588 return OperationData(V); 6589 } 6590 6591 public: 6592 HorizontalReduction() = default; 6593 6594 /// Try to find a reduction tree. 6595 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 6596 assert((!Phi || is_contained(Phi->operands(), B)) && 6597 "Thi phi needs to use the binary operator"); 6598 6599 ReductionData = getOperationData(B); 6600 6601 // We could have a initial reductions that is not an add. 6602 // r *= v1 + v2 + v3 + v4 6603 // In such a case start looking for a tree rooted in the first '+'. 6604 if (Phi) { 6605 if (ReductionData.getLHS() == Phi) { 6606 Phi = nullptr; 6607 B = dyn_cast<Instruction>(ReductionData.getRHS()); 6608 ReductionData = getOperationData(B); 6609 } else if (ReductionData.getRHS() == Phi) { 6610 Phi = nullptr; 6611 B = dyn_cast<Instruction>(ReductionData.getLHS()); 6612 ReductionData = getOperationData(B); 6613 } 6614 } 6615 6616 if (!ReductionData.isVectorizable(B)) 6617 return false; 6618 6619 Type *Ty = B->getType(); 6620 if (!isValidElementType(Ty)) 6621 return false; 6622 if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy()) 6623 return false; 6624 6625 ReducedValueData.clear(); 6626 ReductionRoot = B; 6627 6628 // Post order traverse the reduction tree starting at B. We only handle true 6629 // trees containing only binary operators. 6630 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 6631 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); 6632 ReductionData.initReductionOps(ReductionOps); 6633 while (!Stack.empty()) { 6634 Instruction *TreeN = Stack.back().first; 6635 unsigned EdgeToVist = Stack.back().second++; 6636 OperationData OpData = getOperationData(TreeN); 6637 bool IsReducedValue = OpData != ReductionData; 6638 6639 // Postorder vist. 6640 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { 6641 if (IsReducedValue) 6642 ReducedVals.push_back(TreeN); 6643 else { 6644 auto I = ExtraArgs.find(TreeN); 6645 if (I != ExtraArgs.end() && !I->second) { 6646 // Check if TreeN is an extra argument of its parent operation. 6647 if (Stack.size() <= 1) { 6648 // TreeN can't be an extra argument as it is a root reduction 6649 // operation. 6650 return false; 6651 } 6652 // Yes, TreeN is an extra argument, do not add it to a list of 6653 // reduction operations. 6654 // Stack[Stack.size() - 2] always points to the parent operation. 6655 markExtraArg(Stack[Stack.size() - 2], TreeN); 6656 ExtraArgs.erase(TreeN); 6657 } else 6658 ReductionData.addReductionOps(TreeN, ReductionOps); 6659 } 6660 // Retract. 6661 Stack.pop_back(); 6662 continue; 6663 } 6664 6665 // Visit left or right. 6666 Value *NextV = TreeN->getOperand(EdgeToVist); 6667 if (NextV != Phi) { 6668 auto *I = dyn_cast<Instruction>(NextV); 6669 OpData = getOperationData(I); 6670 // Continue analysis if the next operand is a reduction operation or 6671 // (possibly) a reduced value. If the reduced value opcode is not set, 6672 // the first met operation != reduction operation is considered as the 6673 // reduced value class. 6674 if (I && (!ReducedValueData || OpData == ReducedValueData || 6675 OpData == ReductionData)) { 6676 const bool IsReductionOperation = OpData == ReductionData; 6677 // Only handle trees in the current basic block. 6678 if (!ReductionData.hasSameParent(I, B->getParent(), 6679 IsReductionOperation)) { 6680 // I is an extra argument for TreeN (its parent operation). 6681 markExtraArg(Stack.back(), I); 6682 continue; 6683 } 6684 6685 // Each tree node needs to have minimal number of users except for the 6686 // ultimate reduction. 6687 if (!ReductionData.hasRequiredNumberOfUses(I, 6688 OpData == ReductionData) && 6689 I != B) { 6690 // I is an extra argument for TreeN (its parent operation). 6691 markExtraArg(Stack.back(), I); 6692 continue; 6693 } 6694 6695 if (IsReductionOperation) { 6696 // We need to be able to reassociate the reduction operations. 6697 if (!OpData.isAssociative(I)) { 6698 // I is an extra argument for TreeN (its parent operation). 6699 markExtraArg(Stack.back(), I); 6700 continue; 6701 } 6702 } else if (ReducedValueData && 6703 ReducedValueData != OpData) { 6704 // Make sure that the opcodes of the operations that we are going to 6705 // reduce match. 6706 // I is an extra argument for TreeN (its parent operation). 6707 markExtraArg(Stack.back(), I); 6708 continue; 6709 } else if (!ReducedValueData) 6710 ReducedValueData = OpData; 6711 6712 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 6713 continue; 6714 } 6715 } 6716 // NextV is an extra argument for TreeN (its parent operation). 6717 markExtraArg(Stack.back(), NextV); 6718 } 6719 return true; 6720 } 6721 6722 /// Attempt to vectorize the tree found by 6723 /// matchAssociativeReduction. 6724 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 6725 if (ReducedVals.empty()) 6726 return false; 6727 6728 // If there is a sufficient number of reduction values, reduce 6729 // to a nearby power-of-2. Can safely generate oversized 6730 // vectors and rely on the backend to split them to legal sizes. 6731 unsigned NumReducedVals = ReducedVals.size(); 6732 if (NumReducedVals < 4) 6733 return false; 6734 6735 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 6736 6737 Value *VectorizedTree = nullptr; 6738 6739 // FIXME: Fast-math-flags should be set based on the instructions in the 6740 // reduction (not all of 'fast' are required). 6741 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 6742 FastMathFlags Unsafe; 6743 Unsafe.setFast(); 6744 Builder.setFastMathFlags(Unsafe); 6745 unsigned i = 0; 6746 6747 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 6748 // The same extra argument may be used several time, so log each attempt 6749 // to use it. 6750 for (auto &Pair : ExtraArgs) { 6751 assert(Pair.first && "DebugLoc must be set."); 6752 ExternallyUsedValues[Pair.second].push_back(Pair.first); 6753 } 6754 6755 // The compare instruction of a min/max is the insertion point for new 6756 // instructions and may be replaced with a new compare instruction. 6757 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 6758 assert(isa<SelectInst>(RdxRootInst) && 6759 "Expected min/max reduction to have select root instruction"); 6760 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 6761 assert(isa<Instruction>(ScalarCond) && 6762 "Expected min/max reduction to have compare condition"); 6763 return cast<Instruction>(ScalarCond); 6764 }; 6765 6766 // The reduction root is used as the insertion point for new instructions, 6767 // so set it as externally used to prevent it from being deleted. 6768 ExternallyUsedValues[ReductionRoot]; 6769 SmallVector<Value *, 16> IgnoreList; 6770 for (auto &V : ReductionOps) 6771 IgnoreList.append(V.begin(), V.end()); 6772 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 6773 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 6774 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 6775 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 6776 // TODO: Handle orders of size less than number of elements in the vector. 6777 if (Order && Order->size() == VL.size()) { 6778 // TODO: reorder tree nodes without tree rebuilding. 6779 SmallVector<Value *, 4> ReorderedOps(VL.size()); 6780 llvm::transform(*Order, ReorderedOps.begin(), 6781 [VL](const unsigned Idx) { return VL[Idx]; }); 6782 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 6783 } 6784 if (V.isTreeTinyAndNotFullyVectorizable()) 6785 break; 6786 if (V.isLoadCombineReductionCandidate(ReductionData.getOpcode())) 6787 break; 6788 6789 V.computeMinimumValueSizes(); 6790 6791 // Estimate cost. 6792 int TreeCost = V.getTreeCost(); 6793 int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth); 6794 int Cost = TreeCost + ReductionCost; 6795 if (Cost >= -SLPCostThreshold) { 6796 V.getORE()->emit([&]() { 6797 return OptimizationRemarkMissed( 6798 SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0])) 6799 << "Vectorizing horizontal reduction is possible" 6800 << "but not beneficial with cost " 6801 << ore::NV("Cost", Cost) << " and threshold " 6802 << ore::NV("Threshold", -SLPCostThreshold); 6803 }); 6804 break; 6805 } 6806 6807 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 6808 << Cost << ". (HorRdx)\n"); 6809 V.getORE()->emit([&]() { 6810 return OptimizationRemark( 6811 SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0])) 6812 << "Vectorized horizontal reduction with cost " 6813 << ore::NV("Cost", Cost) << " and with tree size " 6814 << ore::NV("TreeSize", V.getTreeSize()); 6815 }); 6816 6817 // Vectorize a tree. 6818 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 6819 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 6820 6821 // Emit a reduction. For min/max, the root is a select, but the insertion 6822 // point is the compare condition of that select. 6823 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 6824 if (ReductionData.isMinMax()) 6825 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 6826 else 6827 Builder.SetInsertPoint(RdxRootInst); 6828 6829 Value *ReducedSubTree = 6830 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 6831 if (VectorizedTree) { 6832 Builder.SetCurrentDebugLocation(Loc); 6833 OperationData VectReductionData(ReductionData.getOpcode(), 6834 VectorizedTree, ReducedSubTree, 6835 ReductionData.getKind()); 6836 VectorizedTree = 6837 VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 6838 } else 6839 VectorizedTree = ReducedSubTree; 6840 i += ReduxWidth; 6841 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 6842 } 6843 6844 if (VectorizedTree) { 6845 // Finish the reduction. 6846 for (; i < NumReducedVals; ++i) { 6847 auto *I = cast<Instruction>(ReducedVals[i]); 6848 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 6849 OperationData VectReductionData(ReductionData.getOpcode(), 6850 VectorizedTree, I, 6851 ReductionData.getKind()); 6852 VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps); 6853 } 6854 for (auto &Pair : ExternallyUsedValues) { 6855 // Add each externally used value to the final reduction. 6856 for (auto *I : Pair.second) { 6857 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 6858 OperationData VectReductionData(ReductionData.getOpcode(), 6859 VectorizedTree, Pair.first, 6860 ReductionData.getKind()); 6861 VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I); 6862 } 6863 } 6864 6865 // Update users. For a min/max reduction that ends with a compare and 6866 // select, we also have to RAUW for the compare instruction feeding the 6867 // reduction root. That's because the original compare may have extra uses 6868 // besides the final select of the reduction. 6869 if (ReductionData.isMinMax()) { 6870 if (auto *VecSelect = dyn_cast<SelectInst>(VectorizedTree)) { 6871 Instruction *ScalarCmp = 6872 getCmpForMinMaxReduction(cast<Instruction>(ReductionRoot)); 6873 ScalarCmp->replaceAllUsesWith(VecSelect->getCondition()); 6874 } 6875 } 6876 ReductionRoot->replaceAllUsesWith(VectorizedTree); 6877 6878 // Mark all scalar reduction ops for deletion, they are replaced by the 6879 // vector reductions. 6880 V.eraseInstructions(IgnoreList); 6881 } 6882 return VectorizedTree != nullptr; 6883 } 6884 6885 unsigned numReductionValues() const { 6886 return ReducedVals.size(); 6887 } 6888 6889 private: 6890 /// Calculate the cost of a reduction. 6891 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 6892 unsigned ReduxWidth) { 6893 Type *ScalarTy = FirstReducedVal->getType(); 6894 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 6895 6896 int PairwiseRdxCost; 6897 int SplittingRdxCost; 6898 switch (ReductionData.getKind()) { 6899 case RK_Arithmetic: 6900 PairwiseRdxCost = 6901 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 6902 /*IsPairwiseForm=*/true); 6903 SplittingRdxCost = 6904 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 6905 /*IsPairwiseForm=*/false); 6906 break; 6907 case RK_Min: 6908 case RK_Max: 6909 case RK_UMin: 6910 case RK_UMax: { 6911 Type *VecCondTy = CmpInst::makeCmpResultType(VecTy); 6912 bool IsUnsigned = ReductionData.getKind() == RK_UMin || 6913 ReductionData.getKind() == RK_UMax; 6914 PairwiseRdxCost = 6915 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 6916 /*IsPairwiseForm=*/true, IsUnsigned); 6917 SplittingRdxCost = 6918 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 6919 /*IsPairwiseForm=*/false, IsUnsigned); 6920 break; 6921 } 6922 case RK_None: 6923 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 6924 } 6925 6926 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 6927 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 6928 6929 int ScalarReduxCost = 0; 6930 switch (ReductionData.getKind()) { 6931 case RK_Arithmetic: 6932 ScalarReduxCost = 6933 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); 6934 break; 6935 case RK_Min: 6936 case RK_Max: 6937 case RK_UMin: 6938 case RK_UMax: 6939 ScalarReduxCost = 6940 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) + 6941 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 6942 CmpInst::makeCmpResultType(ScalarTy)); 6943 break; 6944 case RK_None: 6945 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 6946 } 6947 ScalarReduxCost *= (ReduxWidth - 1); 6948 6949 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 6950 << " for reduction that starts with " << *FirstReducedVal 6951 << " (It is a " 6952 << (IsPairwiseReduction ? "pairwise" : "splitting") 6953 << " reduction)\n"); 6954 6955 return VecReduxCost - ScalarReduxCost; 6956 } 6957 6958 /// Emit a horizontal reduction of the vectorized value. 6959 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 6960 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 6961 assert(VectorizedValue && "Need to have a vectorized tree node"); 6962 assert(isPowerOf2_32(ReduxWidth) && 6963 "We only handle power-of-two reductions for now"); 6964 6965 if (!IsPairwiseReduction) { 6966 // FIXME: The builder should use an FMF guard. It should not be hard-coded 6967 // to 'fast'. 6968 assert(Builder.getFastMathFlags().isFast() && "Expected 'fast' FMF"); 6969 return createSimpleTargetReduction( 6970 Builder, TTI, ReductionData.getOpcode(), VectorizedValue, 6971 ReductionData.getFlags(), ReductionOps.back()); 6972 } 6973 6974 Value *TmpVec = VectorizedValue; 6975 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 6976 Value *LeftMask = 6977 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 6978 Value *RightMask = 6979 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 6980 6981 Value *LeftShuf = Builder.CreateShuffleVector( 6982 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 6983 Value *RightShuf = Builder.CreateShuffleVector( 6984 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 6985 "rdx.shuf.r"); 6986 OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf, 6987 RightShuf, ReductionData.getKind()); 6988 TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 6989 } 6990 6991 // The result is in the first element of the vector. 6992 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 6993 } 6994 }; 6995 6996 } // end anonymous namespace 6997 6998 /// Recognize construction of vectors like 6999 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 7000 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 7001 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 7002 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 7003 /// starting from the last insertelement or insertvalue instruction. 7004 /// 7005 /// Also recognize aggregates like {<2 x float>, <2 x float>}, 7006 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 7007 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 7008 /// 7009 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 7010 /// 7011 /// \return true if it matches. 7012 static bool findBuildAggregate(Value *LastInsertInst, TargetTransformInfo *TTI, 7013 SmallVectorImpl<Value *> &BuildVectorOpds, 7014 int &UserCost) { 7015 assert((isa<InsertElementInst>(LastInsertInst) || 7016 isa<InsertValueInst>(LastInsertInst)) && 7017 "Expected insertelement or insertvalue instruction!"); 7018 UserCost = 0; 7019 do { 7020 Value *InsertedOperand; 7021 if (auto *IE = dyn_cast<InsertElementInst>(LastInsertInst)) { 7022 InsertedOperand = IE->getOperand(1); 7023 LastInsertInst = IE->getOperand(0); 7024 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 7025 UserCost += TTI->getVectorInstrCost(Instruction::InsertElement, 7026 IE->getType(), CI->getZExtValue()); 7027 } 7028 } else { 7029 auto *IV = cast<InsertValueInst>(LastInsertInst); 7030 InsertedOperand = IV->getInsertedValueOperand(); 7031 LastInsertInst = IV->getAggregateOperand(); 7032 } 7033 if (isa<InsertElementInst>(InsertedOperand) || 7034 isa<InsertValueInst>(InsertedOperand)) { 7035 int TmpUserCost; 7036 SmallVector<Value *, 8> TmpBuildVectorOpds; 7037 if (!findBuildAggregate(InsertedOperand, TTI, TmpBuildVectorOpds, 7038 TmpUserCost)) 7039 return false; 7040 BuildVectorOpds.append(TmpBuildVectorOpds.rbegin(), 7041 TmpBuildVectorOpds.rend()); 7042 UserCost += TmpUserCost; 7043 } else { 7044 BuildVectorOpds.push_back(InsertedOperand); 7045 } 7046 if (isa<UndefValue>(LastInsertInst)) 7047 break; 7048 if ((!isa<InsertValueInst>(LastInsertInst) && 7049 !isa<InsertElementInst>(LastInsertInst)) || 7050 !LastInsertInst->hasOneUse()) 7051 return false; 7052 } while (true); 7053 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 7054 return true; 7055 } 7056 7057 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 7058 return V->getType() < V2->getType(); 7059 } 7060 7061 /// Try and get a reduction value from a phi node. 7062 /// 7063 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 7064 /// if they come from either \p ParentBB or a containing loop latch. 7065 /// 7066 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 7067 /// if not possible. 7068 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 7069 BasicBlock *ParentBB, LoopInfo *LI) { 7070 // There are situations where the reduction value is not dominated by the 7071 // reduction phi. Vectorizing such cases has been reported to cause 7072 // miscompiles. See PR25787. 7073 auto DominatedReduxValue = [&](Value *R) { 7074 return isa<Instruction>(R) && 7075 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 7076 }; 7077 7078 Value *Rdx = nullptr; 7079 7080 // Return the incoming value if it comes from the same BB as the phi node. 7081 if (P->getIncomingBlock(0) == ParentBB) { 7082 Rdx = P->getIncomingValue(0); 7083 } else if (P->getIncomingBlock(1) == ParentBB) { 7084 Rdx = P->getIncomingValue(1); 7085 } 7086 7087 if (Rdx && DominatedReduxValue(Rdx)) 7088 return Rdx; 7089 7090 // Otherwise, check whether we have a loop latch to look at. 7091 Loop *BBL = LI->getLoopFor(ParentBB); 7092 if (!BBL) 7093 return nullptr; 7094 BasicBlock *BBLatch = BBL->getLoopLatch(); 7095 if (!BBLatch) 7096 return nullptr; 7097 7098 // There is a loop latch, return the incoming value if it comes from 7099 // that. This reduction pattern occasionally turns up. 7100 if (P->getIncomingBlock(0) == BBLatch) { 7101 Rdx = P->getIncomingValue(0); 7102 } else if (P->getIncomingBlock(1) == BBLatch) { 7103 Rdx = P->getIncomingValue(1); 7104 } 7105 7106 if (Rdx && DominatedReduxValue(Rdx)) 7107 return Rdx; 7108 7109 return nullptr; 7110 } 7111 7112 /// Attempt to reduce a horizontal reduction. 7113 /// If it is legal to match a horizontal reduction feeding the phi node \a P 7114 /// with reduction operators \a Root (or one of its operands) in a basic block 7115 /// \a BB, then check if it can be done. If horizontal reduction is not found 7116 /// and root instruction is a binary operation, vectorization of the operands is 7117 /// attempted. 7118 /// \returns true if a horizontal reduction was matched and reduced or operands 7119 /// of one of the binary instruction were vectorized. 7120 /// \returns false if a horizontal reduction was not matched (or not possible) 7121 /// or no vectorization of any binary operation feeding \a Root instruction was 7122 /// performed. 7123 static bool tryToVectorizeHorReductionOrInstOperands( 7124 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 7125 TargetTransformInfo *TTI, 7126 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 7127 if (!ShouldVectorizeHor) 7128 return false; 7129 7130 if (!Root) 7131 return false; 7132 7133 if (Root->getParent() != BB || isa<PHINode>(Root)) 7134 return false; 7135 // Start analysis starting from Root instruction. If horizontal reduction is 7136 // found, try to vectorize it. If it is not a horizontal reduction or 7137 // vectorization is not possible or not effective, and currently analyzed 7138 // instruction is a binary operation, try to vectorize the operands, using 7139 // pre-order DFS traversal order. If the operands were not vectorized, repeat 7140 // the same procedure considering each operand as a possible root of the 7141 // horizontal reduction. 7142 // Interrupt the process if the Root instruction itself was vectorized or all 7143 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 7144 SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0}); 7145 SmallPtrSet<Value *, 8> VisitedInstrs; 7146 bool Res = false; 7147 while (!Stack.empty()) { 7148 Instruction *Inst; 7149 unsigned Level; 7150 std::tie(Inst, Level) = Stack.pop_back_val(); 7151 auto *BI = dyn_cast<BinaryOperator>(Inst); 7152 auto *SI = dyn_cast<SelectInst>(Inst); 7153 if (BI || SI) { 7154 HorizontalReduction HorRdx; 7155 if (HorRdx.matchAssociativeReduction(P, Inst)) { 7156 if (HorRdx.tryToReduce(R, TTI)) { 7157 Res = true; 7158 // Set P to nullptr to avoid re-analysis of phi node in 7159 // matchAssociativeReduction function unless this is the root node. 7160 P = nullptr; 7161 continue; 7162 } 7163 } 7164 if (P && BI) { 7165 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 7166 if (Inst == P) 7167 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 7168 if (!Inst) { 7169 // Set P to nullptr to avoid re-analysis of phi node in 7170 // matchAssociativeReduction function unless this is the root node. 7171 P = nullptr; 7172 continue; 7173 } 7174 } 7175 } 7176 // Set P to nullptr to avoid re-analysis of phi node in 7177 // matchAssociativeReduction function unless this is the root node. 7178 P = nullptr; 7179 if (Vectorize(Inst, R)) { 7180 Res = true; 7181 continue; 7182 } 7183 7184 // Try to vectorize operands. 7185 // Continue analysis for the instruction from the same basic block only to 7186 // save compile time. 7187 if (++Level < RecursionMaxDepth) 7188 for (auto *Op : Inst->operand_values()) 7189 if (VisitedInstrs.insert(Op).second) 7190 if (auto *I = dyn_cast<Instruction>(Op)) 7191 if (!isa<PHINode>(I) && !R.isDeleted(I) && I->getParent() == BB) 7192 Stack.emplace_back(I, Level); 7193 } 7194 return Res; 7195 } 7196 7197 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 7198 BasicBlock *BB, BoUpSLP &R, 7199 TargetTransformInfo *TTI) { 7200 if (!V) 7201 return false; 7202 auto *I = dyn_cast<Instruction>(V); 7203 if (!I) 7204 return false; 7205 7206 if (!isa<BinaryOperator>(I)) 7207 P = nullptr; 7208 // Try to match and vectorize a horizontal reduction. 7209 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 7210 return tryToVectorize(I, R); 7211 }; 7212 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 7213 ExtraVectorization); 7214 } 7215 7216 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 7217 BasicBlock *BB, BoUpSLP &R) { 7218 int UserCost = 0; 7219 const DataLayout &DL = BB->getModule()->getDataLayout(); 7220 if (!R.canMapToVector(IVI->getType(), DL)) 7221 return false; 7222 7223 SmallVector<Value *, 16> BuildVectorOpds; 7224 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, UserCost)) 7225 return false; 7226 7227 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 7228 // Aggregate value is unlikely to be processed in vector register, we need to 7229 // extract scalars into scalar registers, so NeedExtraction is set true. 7230 return tryToVectorizeList(BuildVectorOpds, R, UserCost); 7231 } 7232 7233 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 7234 BasicBlock *BB, BoUpSLP &R) { 7235 int UserCost; 7236 SmallVector<Value *, 16> BuildVectorOpds; 7237 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, UserCost) || 7238 (llvm::all_of(BuildVectorOpds, 7239 [](Value *V) { return isa<ExtractElementInst>(V); }) && 7240 isShuffle(BuildVectorOpds))) 7241 return false; 7242 7243 // Vectorize starting with the build vector operands ignoring the BuildVector 7244 // instructions for the purpose of scheduling and user extraction. 7245 return tryToVectorizeList(BuildVectorOpds, R, UserCost); 7246 } 7247 7248 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 7249 BoUpSLP &R) { 7250 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 7251 return true; 7252 7253 bool OpsChanged = false; 7254 for (int Idx = 0; Idx < 2; ++Idx) { 7255 OpsChanged |= 7256 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 7257 } 7258 return OpsChanged; 7259 } 7260 7261 bool SLPVectorizerPass::vectorizeSimpleInstructions( 7262 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R) { 7263 bool OpsChanged = false; 7264 for (auto *I : reverse(Instructions)) { 7265 if (R.isDeleted(I)) 7266 continue; 7267 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 7268 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 7269 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 7270 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 7271 else if (auto *CI = dyn_cast<CmpInst>(I)) 7272 OpsChanged |= vectorizeCmpInst(CI, BB, R); 7273 } 7274 Instructions.clear(); 7275 return OpsChanged; 7276 } 7277 7278 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 7279 bool Changed = false; 7280 SmallVector<Value *, 4> Incoming; 7281 SmallPtrSet<Value *, 16> VisitedInstrs; 7282 7283 bool HaveVectorizedPhiNodes = true; 7284 while (HaveVectorizedPhiNodes) { 7285 HaveVectorizedPhiNodes = false; 7286 7287 // Collect the incoming values from the PHIs. 7288 Incoming.clear(); 7289 for (Instruction &I : *BB) { 7290 PHINode *P = dyn_cast<PHINode>(&I); 7291 if (!P) 7292 break; 7293 7294 if (!VisitedInstrs.count(P) && !R.isDeleted(P)) 7295 Incoming.push_back(P); 7296 } 7297 7298 // Sort by type. 7299 llvm::stable_sort(Incoming, PhiTypeSorterFunc); 7300 7301 // Try to vectorize elements base on their type. 7302 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 7303 E = Incoming.end(); 7304 IncIt != E;) { 7305 7306 // Look for the next elements with the same type. 7307 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 7308 while (SameTypeIt != E && 7309 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 7310 VisitedInstrs.insert(*SameTypeIt); 7311 ++SameTypeIt; 7312 } 7313 7314 // Try to vectorize them. 7315 unsigned NumElts = (SameTypeIt - IncIt); 7316 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 7317 << NumElts << ")\n"); 7318 // The order in which the phi nodes appear in the program does not matter. 7319 // So allow tryToVectorizeList to reorder them if it is beneficial. This 7320 // is done when there are exactly two elements since tryToVectorizeList 7321 // asserts that there are only two values when AllowReorder is true. 7322 bool AllowReorder = NumElts == 2; 7323 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, 7324 /*UserCost=*/0, AllowReorder)) { 7325 // Success start over because instructions might have been changed. 7326 HaveVectorizedPhiNodes = true; 7327 Changed = true; 7328 break; 7329 } 7330 7331 // Start over at the next instruction of a different type (or the end). 7332 IncIt = SameTypeIt; 7333 } 7334 } 7335 7336 VisitedInstrs.clear(); 7337 7338 SmallVector<Instruction *, 8> PostProcessInstructions; 7339 SmallDenseSet<Instruction *, 4> KeyNodes; 7340 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 7341 // Skip instructions marked for the deletion. 7342 if (R.isDeleted(&*it)) 7343 continue; 7344 // We may go through BB multiple times so skip the one we have checked. 7345 if (!VisitedInstrs.insert(&*it).second) { 7346 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 7347 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 7348 // We would like to start over since some instructions are deleted 7349 // and the iterator may become invalid value. 7350 Changed = true; 7351 it = BB->begin(); 7352 e = BB->end(); 7353 } 7354 continue; 7355 } 7356 7357 if (isa<DbgInfoIntrinsic>(it)) 7358 continue; 7359 7360 // Try to vectorize reductions that use PHINodes. 7361 if (PHINode *P = dyn_cast<PHINode>(it)) { 7362 // Check that the PHI is a reduction PHI. 7363 if (P->getNumIncomingValues() != 2) 7364 return Changed; 7365 7366 // Try to match and vectorize a horizontal reduction. 7367 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 7368 TTI)) { 7369 Changed = true; 7370 it = BB->begin(); 7371 e = BB->end(); 7372 continue; 7373 } 7374 continue; 7375 } 7376 7377 // Ran into an instruction without users, like terminator, or function call 7378 // with ignored return value, store. Ignore unused instructions (basing on 7379 // instruction type, except for CallInst and InvokeInst). 7380 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 7381 isa<InvokeInst>(it))) { 7382 KeyNodes.insert(&*it); 7383 bool OpsChanged = false; 7384 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 7385 for (auto *V : it->operand_values()) { 7386 // Try to match and vectorize a horizontal reduction. 7387 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 7388 } 7389 } 7390 // Start vectorization of post-process list of instructions from the 7391 // top-tree instructions to try to vectorize as many instructions as 7392 // possible. 7393 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 7394 if (OpsChanged) { 7395 // We would like to start over since some instructions are deleted 7396 // and the iterator may become invalid value. 7397 Changed = true; 7398 it = BB->begin(); 7399 e = BB->end(); 7400 continue; 7401 } 7402 } 7403 7404 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 7405 isa<InsertValueInst>(it)) 7406 PostProcessInstructions.push_back(&*it); 7407 } 7408 7409 return Changed; 7410 } 7411 7412 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 7413 auto Changed = false; 7414 for (auto &Entry : GEPs) { 7415 // If the getelementptr list has fewer than two elements, there's nothing 7416 // to do. 7417 if (Entry.second.size() < 2) 7418 continue; 7419 7420 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 7421 << Entry.second.size() << ".\n"); 7422 7423 // Process the GEP list in chunks suitable for the target's supported 7424 // vector size. If a vector register can't hold 1 element, we are done. 7425 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7426 unsigned EltSize = R.getVectorElementSize(Entry.second[0]); 7427 if (MaxVecRegSize < EltSize) 7428 continue; 7429 7430 unsigned MaxElts = MaxVecRegSize / EltSize; 7431 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 7432 auto Len = std::min<unsigned>(BE - BI, MaxElts); 7433 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 7434 7435 // Initialize a set a candidate getelementptrs. Note that we use a 7436 // SetVector here to preserve program order. If the index computations 7437 // are vectorizable and begin with loads, we want to minimize the chance 7438 // of having to reorder them later. 7439 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 7440 7441 // Some of the candidates may have already been vectorized after we 7442 // initially collected them. If so, they are marked as deleted, so remove 7443 // them from the set of candidates. 7444 Candidates.remove_if( 7445 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 7446 7447 // Remove from the set of candidates all pairs of getelementptrs with 7448 // constant differences. Such getelementptrs are likely not good 7449 // candidates for vectorization in a bottom-up phase since one can be 7450 // computed from the other. We also ensure all candidate getelementptr 7451 // indices are unique. 7452 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 7453 auto *GEPI = GEPList[I]; 7454 if (!Candidates.count(GEPI)) 7455 continue; 7456 auto *SCEVI = SE->getSCEV(GEPList[I]); 7457 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 7458 auto *GEPJ = GEPList[J]; 7459 auto *SCEVJ = SE->getSCEV(GEPList[J]); 7460 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 7461 Candidates.remove(GEPI); 7462 Candidates.remove(GEPJ); 7463 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 7464 Candidates.remove(GEPJ); 7465 } 7466 } 7467 } 7468 7469 // We break out of the above computation as soon as we know there are 7470 // fewer than two candidates remaining. 7471 if (Candidates.size() < 2) 7472 continue; 7473 7474 // Add the single, non-constant index of each candidate to the bundle. We 7475 // ensured the indices met these constraints when we originally collected 7476 // the getelementptrs. 7477 SmallVector<Value *, 16> Bundle(Candidates.size()); 7478 auto BundleIndex = 0u; 7479 for (auto *V : Candidates) { 7480 auto *GEP = cast<GetElementPtrInst>(V); 7481 auto *GEPIdx = GEP->idx_begin()->get(); 7482 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 7483 Bundle[BundleIndex++] = GEPIdx; 7484 } 7485 7486 // Try and vectorize the indices. We are currently only interested in 7487 // gather-like cases of the form: 7488 // 7489 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 7490 // 7491 // where the loads of "a", the loads of "b", and the subtractions can be 7492 // performed in parallel. It's likely that detecting this pattern in a 7493 // bottom-up phase will be simpler and less costly than building a 7494 // full-blown top-down phase beginning at the consecutive loads. 7495 Changed |= tryToVectorizeList(Bundle, R); 7496 } 7497 } 7498 return Changed; 7499 } 7500 7501 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 7502 bool Changed = false; 7503 // Attempt to sort and vectorize each of the store-groups. 7504 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 7505 ++it) { 7506 if (it->second.size() < 2) 7507 continue; 7508 7509 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 7510 << it->second.size() << ".\n"); 7511 7512 Changed |= vectorizeStores(it->second, R); 7513 } 7514 return Changed; 7515 } 7516 7517 char SLPVectorizer::ID = 0; 7518 7519 static const char lv_name[] = "SLP Vectorizer"; 7520 7521 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 7522 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7523 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7524 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7525 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7526 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 7527 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7528 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7529 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7530 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 7531 7532 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 7533