1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/ADT/SmallBitVector.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/ADT/SmallString.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/ADT/iterator.h" 32 #include "llvm/ADT/iterator_range.h" 33 #include "llvm/Analysis/AliasAnalysis.h" 34 #include "llvm/Analysis/AssumptionCache.h" 35 #include "llvm/Analysis/CodeMetrics.h" 36 #include "llvm/Analysis/DemandedBits.h" 37 #include "llvm/Analysis/GlobalsModRef.h" 38 #include "llvm/Analysis/LoopAccessAnalysis.h" 39 #include "llvm/Analysis/LoopInfo.h" 40 #include "llvm/Analysis/MemoryLocation.h" 41 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 42 #include "llvm/Analysis/ScalarEvolution.h" 43 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 44 #include "llvm/Analysis/TargetLibraryInfo.h" 45 #include "llvm/Analysis/TargetTransformInfo.h" 46 #include "llvm/Analysis/ValueTracking.h" 47 #include "llvm/Analysis/VectorUtils.h" 48 #include "llvm/IR/Attributes.h" 49 #include "llvm/IR/BasicBlock.h" 50 #include "llvm/IR/Constant.h" 51 #include "llvm/IR/Constants.h" 52 #include "llvm/IR/DataLayout.h" 53 #include "llvm/IR/DebugLoc.h" 54 #include "llvm/IR/DerivedTypes.h" 55 #include "llvm/IR/Dominators.h" 56 #include "llvm/IR/Function.h" 57 #include "llvm/IR/IRBuilder.h" 58 #include "llvm/IR/InstrTypes.h" 59 #include "llvm/IR/Instruction.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/Intrinsics.h" 63 #include "llvm/IR/Module.h" 64 #include "llvm/IR/NoFolder.h" 65 #include "llvm/IR/Operator.h" 66 #include "llvm/IR/PatternMatch.h" 67 #include "llvm/IR/Type.h" 68 #include "llvm/IR/Use.h" 69 #include "llvm/IR/User.h" 70 #include "llvm/IR/Value.h" 71 #include "llvm/IR/ValueHandle.h" 72 #include "llvm/IR/Verifier.h" 73 #include "llvm/InitializePasses.h" 74 #include "llvm/Pass.h" 75 #include "llvm/Support/Casting.h" 76 #include "llvm/Support/CommandLine.h" 77 #include "llvm/Support/Compiler.h" 78 #include "llvm/Support/DOTGraphTraits.h" 79 #include "llvm/Support/Debug.h" 80 #include "llvm/Support/ErrorHandling.h" 81 #include "llvm/Support/GraphWriter.h" 82 #include "llvm/Support/KnownBits.h" 83 #include "llvm/Support/MathExtras.h" 84 #include "llvm/Support/raw_ostream.h" 85 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 86 #include "llvm/Transforms/Utils/LoopUtils.h" 87 #include "llvm/Transforms/Vectorize.h" 88 #include <algorithm> 89 #include <cassert> 90 #include <cstdint> 91 #include <iterator> 92 #include <memory> 93 #include <set> 94 #include <string> 95 #include <tuple> 96 #include <utility> 97 #include <vector> 98 99 using namespace llvm; 100 using namespace llvm::PatternMatch; 101 using namespace slpvectorizer; 102 103 #define SV_NAME "slp-vectorizer" 104 #define DEBUG_TYPE "SLP" 105 106 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 107 108 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 109 cl::desc("Run the SLP vectorization passes")); 110 111 static cl::opt<int> 112 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 113 cl::desc("Only vectorize if you gain more than this " 114 "number ")); 115 116 static cl::opt<bool> 117 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 118 cl::desc("Attempt to vectorize horizontal reductions")); 119 120 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 121 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 122 cl::desc( 123 "Attempt to vectorize horizontal reductions feeding into a store")); 124 125 static cl::opt<int> 126 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 127 cl::desc("Attempt to vectorize for this register size in bits")); 128 129 static cl::opt<int> 130 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 131 cl::desc("Maximum depth of the lookup for consecutive stores.")); 132 133 /// Limits the size of scheduling regions in a block. 134 /// It avoid long compile times for _very_ large blocks where vector 135 /// instructions are spread over a wide range. 136 /// This limit is way higher than needed by real-world functions. 137 static cl::opt<int> 138 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 139 cl::desc("Limit the size of the SLP scheduling region per block")); 140 141 static cl::opt<int> MinVectorRegSizeOption( 142 "slp-min-reg-size", cl::init(128), cl::Hidden, 143 cl::desc("Attempt to vectorize for this register size in bits")); 144 145 static cl::opt<unsigned> RecursionMaxDepth( 146 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 147 cl::desc("Limit the recursion depth when building a vectorizable tree")); 148 149 static cl::opt<unsigned> MinTreeSize( 150 "slp-min-tree-size", cl::init(3), cl::Hidden, 151 cl::desc("Only vectorize small trees if they are fully vectorizable")); 152 153 // The maximum depth that the look-ahead score heuristic will explore. 154 // The higher this value, the higher the compilation time overhead. 155 static cl::opt<int> LookAheadMaxDepth( 156 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 157 cl::desc("The maximum look-ahead depth for operand reordering scores")); 158 159 // The Look-ahead heuristic goes through the users of the bundle to calculate 160 // the users cost in getExternalUsesCost(). To avoid compilation time increase 161 // we limit the number of users visited to this value. 162 static cl::opt<unsigned> LookAheadUsersBudget( 163 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 164 cl::desc("The maximum number of users to visit while visiting the " 165 "predecessors. This prevents compilation time increase.")); 166 167 static cl::opt<bool> 168 ViewSLPTree("view-slp-tree", cl::Hidden, 169 cl::desc("Display the SLP trees with Graphviz")); 170 171 // Limit the number of alias checks. The limit is chosen so that 172 // it has no negative effect on the llvm benchmarks. 173 static const unsigned AliasedCheckLimit = 10; 174 175 // Another limit for the alias checks: The maximum distance between load/store 176 // instructions where alias checks are done. 177 // This limit is useful for very large basic blocks. 178 static const unsigned MaxMemDepDistance = 160; 179 180 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 181 /// regions to be handled. 182 static const int MinScheduleRegionSize = 16; 183 184 /// Predicate for the element types that the SLP vectorizer supports. 185 /// 186 /// The most important thing to filter here are types which are invalid in LLVM 187 /// vectors. We also filter target specific types which have absolutely no 188 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 189 /// avoids spending time checking the cost model and realizing that they will 190 /// be inevitably scalarized. 191 static bool isValidElementType(Type *Ty) { 192 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 193 !Ty->isPPC_FP128Ty(); 194 } 195 196 /// \returns true if all of the instructions in \p VL are in the same block or 197 /// false otherwise. 198 static bool allSameBlock(ArrayRef<Value *> VL) { 199 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 200 if (!I0) 201 return false; 202 BasicBlock *BB = I0->getParent(); 203 for (int I = 1, E = VL.size(); I < E; I++) { 204 auto *II = dyn_cast<Instruction>(VL[I]); 205 if (!II) 206 return false; 207 208 if (BB != II->getParent()) 209 return false; 210 } 211 return true; 212 } 213 214 /// \returns True if all of the values in \p VL are constants (but not 215 /// globals/constant expressions). 216 static bool allConstant(ArrayRef<Value *> VL) { 217 // Constant expressions and globals can't be vectorized like normal integer/FP 218 // constants. 219 for (Value *i : VL) 220 if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i)) 221 return false; 222 return true; 223 } 224 225 /// \returns True if all of the values in \p VL are identical. 226 static bool isSplat(ArrayRef<Value *> VL) { 227 for (unsigned i = 1, e = VL.size(); i < e; ++i) 228 if (VL[i] != VL[0]) 229 return false; 230 return true; 231 } 232 233 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 234 static bool isCommutative(Instruction *I) { 235 if (auto *Cmp = dyn_cast<CmpInst>(I)) 236 return Cmp->isCommutative(); 237 if (auto *BO = dyn_cast<BinaryOperator>(I)) 238 return BO->isCommutative(); 239 // TODO: This should check for generic Instruction::isCommutative(), but 240 // we need to confirm that the caller code correctly handles Intrinsics 241 // for example (does not have 2 operands). 242 return false; 243 } 244 245 /// Checks if the vector of instructions can be represented as a shuffle, like: 246 /// %x0 = extractelement <4 x i8> %x, i32 0 247 /// %x3 = extractelement <4 x i8> %x, i32 3 248 /// %y1 = extractelement <4 x i8> %y, i32 1 249 /// %y2 = extractelement <4 x i8> %y, i32 2 250 /// %x0x0 = mul i8 %x0, %x0 251 /// %x3x3 = mul i8 %x3, %x3 252 /// %y1y1 = mul i8 %y1, %y1 253 /// %y2y2 = mul i8 %y2, %y2 254 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 255 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 256 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 257 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 258 /// ret <4 x i8> %ins4 259 /// can be transformed into: 260 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 261 /// i32 6> 262 /// %2 = mul <4 x i8> %1, %1 263 /// ret <4 x i8> %2 264 /// We convert this initially to something like: 265 /// %x0 = extractelement <4 x i8> %x, i32 0 266 /// %x3 = extractelement <4 x i8> %x, i32 3 267 /// %y1 = extractelement <4 x i8> %y, i32 1 268 /// %y2 = extractelement <4 x i8> %y, i32 2 269 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 270 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 271 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 272 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 273 /// %5 = mul <4 x i8> %4, %4 274 /// %6 = extractelement <4 x i8> %5, i32 0 275 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 276 /// %7 = extractelement <4 x i8> %5, i32 1 277 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 278 /// %8 = extractelement <4 x i8> %5, i32 2 279 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 280 /// %9 = extractelement <4 x i8> %5, i32 3 281 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 282 /// ret <4 x i8> %ins4 283 /// InstCombiner transforms this into a shuffle and vector mul 284 /// TODO: Can we split off and reuse the shuffle mask detection from 285 /// TargetTransformInfo::getInstructionThroughput? 286 static Optional<TargetTransformInfo::ShuffleKind> 287 isShuffle(ArrayRef<Value *> VL) { 288 auto *EI0 = cast<ExtractElementInst>(VL[0]); 289 unsigned Size = 290 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 291 Value *Vec1 = nullptr; 292 Value *Vec2 = nullptr; 293 enum ShuffleMode { Unknown, Select, Permute }; 294 ShuffleMode CommonShuffleMode = Unknown; 295 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 296 auto *EI = cast<ExtractElementInst>(VL[I]); 297 auto *Vec = EI->getVectorOperand(); 298 // All vector operands must have the same number of vector elements. 299 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 300 return None; 301 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 302 if (!Idx) 303 return None; 304 // Undefined behavior if Idx is negative or >= Size. 305 if (Idx->getValue().uge(Size)) 306 continue; 307 unsigned IntIdx = Idx->getValue().getZExtValue(); 308 // We can extractelement from undef vector. 309 if (isa<UndefValue>(Vec)) 310 continue; 311 // For correct shuffling we have to have at most 2 different vector operands 312 // in all extractelement instructions. 313 if (!Vec1 || Vec1 == Vec) 314 Vec1 = Vec; 315 else if (!Vec2 || Vec2 == Vec) 316 Vec2 = Vec; 317 else 318 return None; 319 if (CommonShuffleMode == Permute) 320 continue; 321 // If the extract index is not the same as the operation number, it is a 322 // permutation. 323 if (IntIdx != I) { 324 CommonShuffleMode = Permute; 325 continue; 326 } 327 CommonShuffleMode = Select; 328 } 329 // If we're not crossing lanes in different vectors, consider it as blending. 330 if (CommonShuffleMode == Select && Vec2) 331 return TargetTransformInfo::SK_Select; 332 // If Vec2 was never used, we have a permutation of a single vector, otherwise 333 // we have permutation of 2 vectors. 334 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 335 : TargetTransformInfo::SK_PermuteSingleSrc; 336 } 337 338 namespace { 339 340 /// Main data required for vectorization of instructions. 341 struct InstructionsState { 342 /// The very first instruction in the list with the main opcode. 343 Value *OpValue = nullptr; 344 345 /// The main/alternate instruction. 346 Instruction *MainOp = nullptr; 347 Instruction *AltOp = nullptr; 348 349 /// The main/alternate opcodes for the list of instructions. 350 unsigned getOpcode() const { 351 return MainOp ? MainOp->getOpcode() : 0; 352 } 353 354 unsigned getAltOpcode() const { 355 return AltOp ? AltOp->getOpcode() : 0; 356 } 357 358 /// Some of the instructions in the list have alternate opcodes. 359 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 360 361 bool isOpcodeOrAlt(Instruction *I) const { 362 unsigned CheckedOpcode = I->getOpcode(); 363 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 364 } 365 366 InstructionsState() = delete; 367 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 368 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 369 }; 370 371 } // end anonymous namespace 372 373 /// Chooses the correct key for scheduling data. If \p Op has the same (or 374 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 375 /// OpValue. 376 static Value *isOneOf(const InstructionsState &S, Value *Op) { 377 auto *I = dyn_cast<Instruction>(Op); 378 if (I && S.isOpcodeOrAlt(I)) 379 return Op; 380 return S.OpValue; 381 } 382 383 /// \returns true if \p Opcode is allowed as part of of the main/alternate 384 /// instruction for SLP vectorization. 385 /// 386 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 387 /// "shuffled out" lane would result in division by zero. 388 static bool isValidForAlternation(unsigned Opcode) { 389 if (Instruction::isIntDivRem(Opcode)) 390 return false; 391 392 return true; 393 } 394 395 /// \returns analysis of the Instructions in \p VL described in 396 /// InstructionsState, the Opcode that we suppose the whole list 397 /// could be vectorized even if its structure is diverse. 398 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 399 unsigned BaseIndex = 0) { 400 // Make sure these are all Instructions. 401 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 402 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 403 404 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 405 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 406 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 407 unsigned AltOpcode = Opcode; 408 unsigned AltIndex = BaseIndex; 409 410 // Check for one alternate opcode from another BinaryOperator. 411 // TODO - generalize to support all operators (types, calls etc.). 412 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 413 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 414 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 415 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 416 continue; 417 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 418 isValidForAlternation(Opcode)) { 419 AltOpcode = InstOpcode; 420 AltIndex = Cnt; 421 continue; 422 } 423 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 424 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 425 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 426 if (Ty0 == Ty1) { 427 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 428 continue; 429 if (Opcode == AltOpcode) { 430 assert(isValidForAlternation(Opcode) && 431 isValidForAlternation(InstOpcode) && 432 "Cast isn't safe for alternation, logic needs to be updated!"); 433 AltOpcode = InstOpcode; 434 AltIndex = Cnt; 435 continue; 436 } 437 } 438 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 439 continue; 440 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 441 } 442 443 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 444 cast<Instruction>(VL[AltIndex])); 445 } 446 447 /// \returns true if all of the values in \p VL have the same type or false 448 /// otherwise. 449 static bool allSameType(ArrayRef<Value *> VL) { 450 Type *Ty = VL[0]->getType(); 451 for (int i = 1, e = VL.size(); i < e; i++) 452 if (VL[i]->getType() != Ty) 453 return false; 454 455 return true; 456 } 457 458 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 459 static Optional<unsigned> getExtractIndex(Instruction *E) { 460 unsigned Opcode = E->getOpcode(); 461 assert((Opcode == Instruction::ExtractElement || 462 Opcode == Instruction::ExtractValue) && 463 "Expected extractelement or extractvalue instruction."); 464 if (Opcode == Instruction::ExtractElement) { 465 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 466 if (!CI) 467 return None; 468 return CI->getZExtValue(); 469 } 470 ExtractValueInst *EI = cast<ExtractValueInst>(E); 471 if (EI->getNumIndices() != 1) 472 return None; 473 return *EI->idx_begin(); 474 } 475 476 /// \returns True if in-tree use also needs extract. This refers to 477 /// possible scalar operand in vectorized instruction. 478 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 479 TargetLibraryInfo *TLI) { 480 unsigned Opcode = UserInst->getOpcode(); 481 switch (Opcode) { 482 case Instruction::Load: { 483 LoadInst *LI = cast<LoadInst>(UserInst); 484 return (LI->getPointerOperand() == Scalar); 485 } 486 case Instruction::Store: { 487 StoreInst *SI = cast<StoreInst>(UserInst); 488 return (SI->getPointerOperand() == Scalar); 489 } 490 case Instruction::Call: { 491 CallInst *CI = cast<CallInst>(UserInst); 492 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 493 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 494 if (hasVectorInstrinsicScalarOpd(ID, i)) 495 return (CI->getArgOperand(i) == Scalar); 496 } 497 LLVM_FALLTHROUGH; 498 } 499 default: 500 return false; 501 } 502 } 503 504 /// \returns the AA location that is being access by the instruction. 505 static MemoryLocation getLocation(Instruction *I, AAResults *AA) { 506 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 507 return MemoryLocation::get(SI); 508 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 509 return MemoryLocation::get(LI); 510 return MemoryLocation(); 511 } 512 513 /// \returns True if the instruction is not a volatile or atomic load/store. 514 static bool isSimple(Instruction *I) { 515 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 516 return LI->isSimple(); 517 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 518 return SI->isSimple(); 519 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 520 return !MI->isVolatile(); 521 return true; 522 } 523 524 namespace llvm { 525 526 static void inversePermutation(ArrayRef<unsigned> Indices, 527 SmallVectorImpl<int> &Mask) { 528 Mask.clear(); 529 const unsigned E = Indices.size(); 530 Mask.resize(E, E + 1); 531 for (unsigned I = 0; I < E; ++I) 532 Mask[Indices[I]] = I; 533 } 534 535 namespace slpvectorizer { 536 537 /// Bottom Up SLP Vectorizer. 538 class BoUpSLP { 539 struct TreeEntry; 540 struct ScheduleData; 541 542 public: 543 using ValueList = SmallVector<Value *, 8>; 544 using InstrList = SmallVector<Instruction *, 16>; 545 using ValueSet = SmallPtrSet<Value *, 16>; 546 using StoreList = SmallVector<StoreInst *, 8>; 547 using ExtraValueToDebugLocsMap = 548 MapVector<Value *, SmallVector<Instruction *, 2>>; 549 using OrdersType = SmallVector<unsigned, 4>; 550 551 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 552 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 553 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 554 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 555 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 556 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 557 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 558 // Use the vector register size specified by the target unless overridden 559 // by a command-line option. 560 // TODO: It would be better to limit the vectorization factor based on 561 // data type rather than just register size. For example, x86 AVX has 562 // 256-bit registers, but it does not support integer operations 563 // at that width (that requires AVX2). 564 if (MaxVectorRegSizeOption.getNumOccurrences()) 565 MaxVecRegSize = MaxVectorRegSizeOption; 566 else 567 MaxVecRegSize = TTI->getRegisterBitWidth(true); 568 569 if (MinVectorRegSizeOption.getNumOccurrences()) 570 MinVecRegSize = MinVectorRegSizeOption; 571 else 572 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 573 } 574 575 /// Vectorize the tree that starts with the elements in \p VL. 576 /// Returns the vectorized root. 577 Value *vectorizeTree(); 578 579 /// Vectorize the tree but with the list of externally used values \p 580 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 581 /// generated extractvalue instructions. 582 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 583 584 /// \returns the cost incurred by unwanted spills and fills, caused by 585 /// holding live values over call sites. 586 int getSpillCost() const; 587 588 /// \returns the vectorization cost of the subtree that starts at \p VL. 589 /// A negative number means that this is profitable. 590 int getTreeCost(); 591 592 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 593 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 594 void buildTree(ArrayRef<Value *> Roots, 595 ArrayRef<Value *> UserIgnoreLst = None); 596 597 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 598 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 599 /// into account (and updating it, if required) list of externally used 600 /// values stored in \p ExternallyUsedValues. 601 void buildTree(ArrayRef<Value *> Roots, 602 ExtraValueToDebugLocsMap &ExternallyUsedValues, 603 ArrayRef<Value *> UserIgnoreLst = None); 604 605 /// Clear the internal data structures that are created by 'buildTree'. 606 void deleteTree() { 607 VectorizableTree.clear(); 608 ScalarToTreeEntry.clear(); 609 MustGather.clear(); 610 ExternalUses.clear(); 611 NumOpsWantToKeepOrder.clear(); 612 NumOpsWantToKeepOriginalOrder = 0; 613 for (auto &Iter : BlocksSchedules) { 614 BlockScheduling *BS = Iter.second.get(); 615 BS->clear(); 616 } 617 MinBWs.clear(); 618 } 619 620 unsigned getTreeSize() const { return VectorizableTree.size(); } 621 622 /// Perform LICM and CSE on the newly generated gather sequences. 623 void optimizeGatherSequence(); 624 625 /// \returns The best order of instructions for vectorization. 626 Optional<ArrayRef<unsigned>> bestOrder() const { 627 assert(llvm::all_of( 628 NumOpsWantToKeepOrder, 629 [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { 630 return D.getFirst().size() == 631 VectorizableTree[0]->Scalars.size(); 632 }) && 633 "All orders must have the same size as number of instructions in " 634 "tree node."); 635 auto I = std::max_element( 636 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 637 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 638 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 639 return D1.second < D2.second; 640 }); 641 if (I == NumOpsWantToKeepOrder.end() || 642 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 643 return None; 644 645 return makeArrayRef(I->getFirst()); 646 } 647 648 /// Builds the correct order for root instructions. 649 /// If some leaves have the same instructions to be vectorized, we may 650 /// incorrectly evaluate the best order for the root node (it is built for the 651 /// vector of instructions without repeated instructions and, thus, has less 652 /// elements than the root node). This function builds the correct order for 653 /// the root node. 654 /// For example, if the root node is \<a+b, a+c, a+d, f+e\>, then the leaves 655 /// are \<a, a, a, f\> and \<b, c, d, e\>. When we try to vectorize the first 656 /// leaf, it will be shrink to \<a, b\>. If instructions in this leaf should 657 /// be reordered, the best order will be \<1, 0\>. We need to extend this 658 /// order for the root node. For the root node this order should look like 659 /// \<3, 0, 1, 2\>. This function extends the order for the reused 660 /// instructions. 661 void findRootOrder(OrdersType &Order) { 662 // If the leaf has the same number of instructions to vectorize as the root 663 // - order must be set already. 664 unsigned RootSize = VectorizableTree[0]->Scalars.size(); 665 if (Order.size() == RootSize) 666 return; 667 SmallVector<unsigned, 4> RealOrder(Order.size()); 668 std::swap(Order, RealOrder); 669 SmallVector<int, 4> Mask; 670 inversePermutation(RealOrder, Mask); 671 Order.assign(Mask.begin(), Mask.end()); 672 // The leaf has less number of instructions - need to find the true order of 673 // the root. 674 // Scan the nodes starting from the leaf back to the root. 675 const TreeEntry *PNode = VectorizableTree.back().get(); 676 SmallVector<const TreeEntry *, 4> Nodes(1, PNode); 677 SmallPtrSet<const TreeEntry *, 4> Visited; 678 while (!Nodes.empty() && Order.size() != RootSize) { 679 const TreeEntry *PNode = Nodes.pop_back_val(); 680 if (!Visited.insert(PNode).second) 681 continue; 682 const TreeEntry &Node = *PNode; 683 for (const EdgeInfo &EI : Node.UserTreeIndices) 684 if (EI.UserTE) 685 Nodes.push_back(EI.UserTE); 686 if (Node.ReuseShuffleIndices.empty()) 687 continue; 688 // Build the order for the parent node. 689 OrdersType NewOrder(Node.ReuseShuffleIndices.size(), RootSize); 690 SmallVector<unsigned, 4> OrderCounter(Order.size(), 0); 691 // The algorithm of the order extension is: 692 // 1. Calculate the number of the same instructions for the order. 693 // 2. Calculate the index of the new order: total number of instructions 694 // with order less than the order of the current instruction + reuse 695 // number of the current instruction. 696 // 3. The new order is just the index of the instruction in the original 697 // vector of the instructions. 698 for (unsigned I : Node.ReuseShuffleIndices) 699 ++OrderCounter[Order[I]]; 700 SmallVector<unsigned, 4> CurrentCounter(Order.size(), 0); 701 for (unsigned I = 0, E = Node.ReuseShuffleIndices.size(); I < E; ++I) { 702 unsigned ReusedIdx = Node.ReuseShuffleIndices[I]; 703 unsigned OrderIdx = Order[ReusedIdx]; 704 unsigned NewIdx = 0; 705 for (unsigned J = 0; J < OrderIdx; ++J) 706 NewIdx += OrderCounter[J]; 707 NewIdx += CurrentCounter[OrderIdx]; 708 ++CurrentCounter[OrderIdx]; 709 assert(NewOrder[NewIdx] == RootSize && 710 "The order index should not be written already."); 711 NewOrder[NewIdx] = I; 712 } 713 std::swap(Order, NewOrder); 714 } 715 assert(Order.size() == RootSize && 716 "Root node is expected or the size of the order must be the same as " 717 "the number of elements in the root node."); 718 assert(llvm::all_of(Order, 719 [RootSize](unsigned Val) { return Val != RootSize; }) && 720 "All indices must be initialized"); 721 } 722 723 /// \return The vector element size in bits to use when vectorizing the 724 /// expression tree ending at \p V. If V is a store, the size is the width of 725 /// the stored value. Otherwise, the size is the width of the largest loaded 726 /// value reaching V. This method is used by the vectorizer to calculate 727 /// vectorization factors. 728 unsigned getVectorElementSize(Value *V); 729 730 /// Compute the minimum type sizes required to represent the entries in a 731 /// vectorizable tree. 732 void computeMinimumValueSizes(); 733 734 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 735 unsigned getMaxVecRegSize() const { 736 return MaxVecRegSize; 737 } 738 739 // \returns minimum vector register size as set by cl::opt. 740 unsigned getMinVecRegSize() const { 741 return MinVecRegSize; 742 } 743 744 /// Check if homogeneous aggregate is isomorphic to some VectorType. 745 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 746 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 747 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 748 /// 749 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 750 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 751 752 /// \returns True if the VectorizableTree is both tiny and not fully 753 /// vectorizable. We do not vectorize such trees. 754 bool isTreeTinyAndNotFullyVectorizable() const; 755 756 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 757 /// can be load combined in the backend. Load combining may not be allowed in 758 /// the IR optimizer, so we do not want to alter the pattern. For example, 759 /// partially transforming a scalar bswap() pattern into vector code is 760 /// effectively impossible for the backend to undo. 761 /// TODO: If load combining is allowed in the IR optimizer, this analysis 762 /// may not be necessary. 763 bool isLoadCombineReductionCandidate(unsigned ReductionOpcode) const; 764 765 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 766 /// can be load combined in the backend. Load combining may not be allowed in 767 /// the IR optimizer, so we do not want to alter the pattern. For example, 768 /// partially transforming a scalar bswap() pattern into vector code is 769 /// effectively impossible for the backend to undo. 770 /// TODO: If load combining is allowed in the IR optimizer, this analysis 771 /// may not be necessary. 772 bool isLoadCombineCandidate() const; 773 774 OptimizationRemarkEmitter *getORE() { return ORE; } 775 776 /// This structure holds any data we need about the edges being traversed 777 /// during buildTree_rec(). We keep track of: 778 /// (i) the user TreeEntry index, and 779 /// (ii) the index of the edge. 780 struct EdgeInfo { 781 EdgeInfo() = default; 782 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 783 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 784 /// The user TreeEntry. 785 TreeEntry *UserTE = nullptr; 786 /// The operand index of the use. 787 unsigned EdgeIdx = UINT_MAX; 788 #ifndef NDEBUG 789 friend inline raw_ostream &operator<<(raw_ostream &OS, 790 const BoUpSLP::EdgeInfo &EI) { 791 EI.dump(OS); 792 return OS; 793 } 794 /// Debug print. 795 void dump(raw_ostream &OS) const { 796 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 797 << " EdgeIdx:" << EdgeIdx << "}"; 798 } 799 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 800 #endif 801 }; 802 803 /// A helper data structure to hold the operands of a vector of instructions. 804 /// This supports a fixed vector length for all operand vectors. 805 class VLOperands { 806 /// For each operand we need (i) the value, and (ii) the opcode that it 807 /// would be attached to if the expression was in a left-linearized form. 808 /// This is required to avoid illegal operand reordering. 809 /// For example: 810 /// \verbatim 811 /// 0 Op1 812 /// |/ 813 /// Op1 Op2 Linearized + Op2 814 /// \ / ----------> |/ 815 /// - - 816 /// 817 /// Op1 - Op2 (0 + Op1) - Op2 818 /// \endverbatim 819 /// 820 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 821 /// 822 /// Another way to think of this is to track all the operations across the 823 /// path from the operand all the way to the root of the tree and to 824 /// calculate the operation that corresponds to this path. For example, the 825 /// path from Op2 to the root crosses the RHS of the '-', therefore the 826 /// corresponding operation is a '-' (which matches the one in the 827 /// linearized tree, as shown above). 828 /// 829 /// For lack of a better term, we refer to this operation as Accumulated 830 /// Path Operation (APO). 831 struct OperandData { 832 OperandData() = default; 833 OperandData(Value *V, bool APO, bool IsUsed) 834 : V(V), APO(APO), IsUsed(IsUsed) {} 835 /// The operand value. 836 Value *V = nullptr; 837 /// TreeEntries only allow a single opcode, or an alternate sequence of 838 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 839 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 840 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 841 /// (e.g., Add/Mul) 842 bool APO = false; 843 /// Helper data for the reordering function. 844 bool IsUsed = false; 845 }; 846 847 /// During operand reordering, we are trying to select the operand at lane 848 /// that matches best with the operand at the neighboring lane. Our 849 /// selection is based on the type of value we are looking for. For example, 850 /// if the neighboring lane has a load, we need to look for a load that is 851 /// accessing a consecutive address. These strategies are summarized in the 852 /// 'ReorderingMode' enumerator. 853 enum class ReorderingMode { 854 Load, ///< Matching loads to consecutive memory addresses 855 Opcode, ///< Matching instructions based on opcode (same or alternate) 856 Constant, ///< Matching constants 857 Splat, ///< Matching the same instruction multiple times (broadcast) 858 Failed, ///< We failed to create a vectorizable group 859 }; 860 861 using OperandDataVec = SmallVector<OperandData, 2>; 862 863 /// A vector of operand vectors. 864 SmallVector<OperandDataVec, 4> OpsVec; 865 866 const DataLayout &DL; 867 ScalarEvolution &SE; 868 const BoUpSLP &R; 869 870 /// \returns the operand data at \p OpIdx and \p Lane. 871 OperandData &getData(unsigned OpIdx, unsigned Lane) { 872 return OpsVec[OpIdx][Lane]; 873 } 874 875 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 876 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 877 return OpsVec[OpIdx][Lane]; 878 } 879 880 /// Clears the used flag for all entries. 881 void clearUsed() { 882 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 883 OpIdx != NumOperands; ++OpIdx) 884 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 885 ++Lane) 886 OpsVec[OpIdx][Lane].IsUsed = false; 887 } 888 889 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 890 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 891 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 892 } 893 894 // The hard-coded scores listed here are not very important. When computing 895 // the scores of matching one sub-tree with another, we are basically 896 // counting the number of values that are matching. So even if all scores 897 // are set to 1, we would still get a decent matching result. 898 // However, sometimes we have to break ties. For example we may have to 899 // choose between matching loads vs matching opcodes. This is what these 900 // scores are helping us with: they provide the order of preference. 901 902 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 903 static const int ScoreConsecutiveLoads = 3; 904 /// ExtractElementInst from same vector and consecutive indexes. 905 static const int ScoreConsecutiveExtracts = 3; 906 /// Constants. 907 static const int ScoreConstants = 2; 908 /// Instructions with the same opcode. 909 static const int ScoreSameOpcode = 2; 910 /// Instructions with alt opcodes (e.g, add + sub). 911 static const int ScoreAltOpcodes = 1; 912 /// Identical instructions (a.k.a. splat or broadcast). 913 static const int ScoreSplat = 1; 914 /// Matching with an undef is preferable to failing. 915 static const int ScoreUndef = 1; 916 /// Score for failing to find a decent match. 917 static const int ScoreFail = 0; 918 /// User exteranl to the vectorized code. 919 static const int ExternalUseCost = 1; 920 /// The user is internal but in a different lane. 921 static const int UserInDiffLaneCost = ExternalUseCost; 922 923 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 924 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 925 ScalarEvolution &SE) { 926 auto *LI1 = dyn_cast<LoadInst>(V1); 927 auto *LI2 = dyn_cast<LoadInst>(V2); 928 if (LI1 && LI2) 929 return isConsecutiveAccess(LI1, LI2, DL, SE) 930 ? VLOperands::ScoreConsecutiveLoads 931 : VLOperands::ScoreFail; 932 933 auto *C1 = dyn_cast<Constant>(V1); 934 auto *C2 = dyn_cast<Constant>(V2); 935 if (C1 && C2) 936 return VLOperands::ScoreConstants; 937 938 // Extracts from consecutive indexes of the same vector better score as 939 // the extracts could be optimized away. 940 Value *EV; 941 ConstantInt *Ex1Idx, *Ex2Idx; 942 if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) && 943 match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) && 944 Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue()) 945 return VLOperands::ScoreConsecutiveExtracts; 946 947 auto *I1 = dyn_cast<Instruction>(V1); 948 auto *I2 = dyn_cast<Instruction>(V2); 949 if (I1 && I2) { 950 if (I1 == I2) 951 return VLOperands::ScoreSplat; 952 InstructionsState S = getSameOpcode({I1, I2}); 953 // Note: Only consider instructions with <= 2 operands to avoid 954 // complexity explosion. 955 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 956 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 957 : VLOperands::ScoreSameOpcode; 958 } 959 960 if (isa<UndefValue>(V2)) 961 return VLOperands::ScoreUndef; 962 963 return VLOperands::ScoreFail; 964 } 965 966 /// Holds the values and their lane that are taking part in the look-ahead 967 /// score calculation. This is used in the external uses cost calculation. 968 SmallDenseMap<Value *, int> InLookAheadValues; 969 970 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are 971 /// either external to the vectorized code, or require shuffling. 972 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 973 const std::pair<Value *, int> &RHS) { 974 int Cost = 0; 975 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 976 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 977 Value *V = Values[Idx].first; 978 // Calculate the absolute lane, using the minimum relative lane of LHS 979 // and RHS as base and Idx as the offset. 980 int Ln = std::min(LHS.second, RHS.second) + Idx; 981 assert(Ln >= 0 && "Bad lane calculation"); 982 unsigned UsersBudget = LookAheadUsersBudget; 983 for (User *U : V->users()) { 984 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 985 // The user is in the VectorizableTree. Check if we need to insert. 986 auto It = llvm::find(UserTE->Scalars, U); 987 assert(It != UserTE->Scalars.end() && "U is in UserTE"); 988 int UserLn = std::distance(UserTE->Scalars.begin(), It); 989 assert(UserLn >= 0 && "Bad lane"); 990 if (UserLn != Ln) 991 Cost += UserInDiffLaneCost; 992 } else { 993 // Check if the user is in the look-ahead code. 994 auto It2 = InLookAheadValues.find(U); 995 if (It2 != InLookAheadValues.end()) { 996 // The user is in the look-ahead code. Check the lane. 997 if (It2->second != Ln) 998 Cost += UserInDiffLaneCost; 999 } else { 1000 // The user is neither in SLP tree nor in the look-ahead code. 1001 Cost += ExternalUseCost; 1002 } 1003 } 1004 // Limit the number of visited uses to cap compilation time. 1005 if (--UsersBudget == 0) 1006 break; 1007 } 1008 } 1009 return Cost; 1010 } 1011 1012 /// Go through the operands of \p LHS and \p RHS recursively until \p 1013 /// MaxLevel, and return the cummulative score. For example: 1014 /// \verbatim 1015 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1016 /// \ / \ / \ / \ / 1017 /// + + + + 1018 /// G1 G2 G3 G4 1019 /// \endverbatim 1020 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1021 /// each level recursively, accumulating the score. It starts from matching 1022 /// the additions at level 0, then moves on to the loads (level 1). The 1023 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1024 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1025 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1026 /// Please note that the order of the operands does not matter, as we 1027 /// evaluate the score of all profitable combinations of operands. In 1028 /// other words the score of G1 and G4 is the same as G1 and G2. This 1029 /// heuristic is based on ideas described in: 1030 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1031 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1032 /// Luís F. W. Góes 1033 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 1034 const std::pair<Value *, int> &RHS, int CurrLevel, 1035 int MaxLevel) { 1036 1037 Value *V1 = LHS.first; 1038 Value *V2 = RHS.first; 1039 // Get the shallow score of V1 and V2. 1040 int ShallowScoreAtThisLevel = 1041 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) - 1042 getExternalUsesCost(LHS, RHS)); 1043 int Lane1 = LHS.second; 1044 int Lane2 = RHS.second; 1045 1046 // If reached MaxLevel, 1047 // or if V1 and V2 are not instructions, 1048 // or if they are SPLAT, 1049 // or if they are not consecutive, early return the current cost. 1050 auto *I1 = dyn_cast<Instruction>(V1); 1051 auto *I2 = dyn_cast<Instruction>(V2); 1052 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1053 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1054 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel)) 1055 return ShallowScoreAtThisLevel; 1056 assert(I1 && I2 && "Should have early exited."); 1057 1058 // Keep track of in-tree values for determining the external-use cost. 1059 InLookAheadValues[V1] = Lane1; 1060 InLookAheadValues[V2] = Lane2; 1061 1062 // Contains the I2 operand indexes that got matched with I1 operands. 1063 SmallSet<unsigned, 4> Op2Used; 1064 1065 // Recursion towards the operands of I1 and I2. We are trying all possbile 1066 // operand pairs, and keeping track of the best score. 1067 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1068 OpIdx1 != NumOperands1; ++OpIdx1) { 1069 // Try to pair op1I with the best operand of I2. 1070 int MaxTmpScore = 0; 1071 unsigned MaxOpIdx2 = 0; 1072 bool FoundBest = false; 1073 // If I2 is commutative try all combinations. 1074 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1075 unsigned ToIdx = isCommutative(I2) 1076 ? I2->getNumOperands() 1077 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1078 assert(FromIdx <= ToIdx && "Bad index"); 1079 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1080 // Skip operands already paired with OpIdx1. 1081 if (Op2Used.count(OpIdx2)) 1082 continue; 1083 // Recursively calculate the cost at each level 1084 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 1085 {I2->getOperand(OpIdx2), Lane2}, 1086 CurrLevel + 1, MaxLevel); 1087 // Look for the best score. 1088 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1089 MaxTmpScore = TmpScore; 1090 MaxOpIdx2 = OpIdx2; 1091 FoundBest = true; 1092 } 1093 } 1094 if (FoundBest) { 1095 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1096 Op2Used.insert(MaxOpIdx2); 1097 ShallowScoreAtThisLevel += MaxTmpScore; 1098 } 1099 } 1100 return ShallowScoreAtThisLevel; 1101 } 1102 1103 /// \Returns the look-ahead score, which tells us how much the sub-trees 1104 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1105 /// score. This helps break ties in an informed way when we cannot decide on 1106 /// the order of the operands by just considering the immediate 1107 /// predecessors. 1108 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1109 const std::pair<Value *, int> &RHS) { 1110 InLookAheadValues.clear(); 1111 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1112 } 1113 1114 // Search all operands in Ops[*][Lane] for the one that matches best 1115 // Ops[OpIdx][LastLane] and return its opreand index. 1116 // If no good match can be found, return None. 1117 Optional<unsigned> 1118 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1119 ArrayRef<ReorderingMode> ReorderingModes) { 1120 unsigned NumOperands = getNumOperands(); 1121 1122 // The operand of the previous lane at OpIdx. 1123 Value *OpLastLane = getData(OpIdx, LastLane).V; 1124 1125 // Our strategy mode for OpIdx. 1126 ReorderingMode RMode = ReorderingModes[OpIdx]; 1127 1128 // The linearized opcode of the operand at OpIdx, Lane. 1129 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1130 1131 // The best operand index and its score. 1132 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1133 // are using the score to differentiate between the two. 1134 struct BestOpData { 1135 Optional<unsigned> Idx = None; 1136 unsigned Score = 0; 1137 } BestOp; 1138 1139 // Iterate through all unused operands and look for the best. 1140 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1141 // Get the operand at Idx and Lane. 1142 OperandData &OpData = getData(Idx, Lane); 1143 Value *Op = OpData.V; 1144 bool OpAPO = OpData.APO; 1145 1146 // Skip already selected operands. 1147 if (OpData.IsUsed) 1148 continue; 1149 1150 // Skip if we are trying to move the operand to a position with a 1151 // different opcode in the linearized tree form. This would break the 1152 // semantics. 1153 if (OpAPO != OpIdxAPO) 1154 continue; 1155 1156 // Look for an operand that matches the current mode. 1157 switch (RMode) { 1158 case ReorderingMode::Load: 1159 case ReorderingMode::Constant: 1160 case ReorderingMode::Opcode: { 1161 bool LeftToRight = Lane > LastLane; 1162 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1163 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1164 unsigned Score = 1165 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1166 if (Score > BestOp.Score) { 1167 BestOp.Idx = Idx; 1168 BestOp.Score = Score; 1169 } 1170 break; 1171 } 1172 case ReorderingMode::Splat: 1173 if (Op == OpLastLane) 1174 BestOp.Idx = Idx; 1175 break; 1176 case ReorderingMode::Failed: 1177 return None; 1178 } 1179 } 1180 1181 if (BestOp.Idx) { 1182 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1183 return BestOp.Idx; 1184 } 1185 // If we could not find a good match return None. 1186 return None; 1187 } 1188 1189 /// Helper for reorderOperandVecs. \Returns the lane that we should start 1190 /// reordering from. This is the one which has the least number of operands 1191 /// that can freely move about. 1192 unsigned getBestLaneToStartReordering() const { 1193 unsigned BestLane = 0; 1194 unsigned Min = UINT_MAX; 1195 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1196 ++Lane) { 1197 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 1198 if (NumFreeOps < Min) { 1199 Min = NumFreeOps; 1200 BestLane = Lane; 1201 } 1202 } 1203 return BestLane; 1204 } 1205 1206 /// \Returns the maximum number of operands that are allowed to be reordered 1207 /// for \p Lane. This is used as a heuristic for selecting the first lane to 1208 /// start operand reordering. 1209 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1210 unsigned CntTrue = 0; 1211 unsigned NumOperands = getNumOperands(); 1212 // Operands with the same APO can be reordered. We therefore need to count 1213 // how many of them we have for each APO, like this: Cnt[APO] = x. 1214 // Since we only have two APOs, namely true and false, we can avoid using 1215 // a map. Instead we can simply count the number of operands that 1216 // correspond to one of them (in this case the 'true' APO), and calculate 1217 // the other by subtracting it from the total number of operands. 1218 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 1219 if (getData(OpIdx, Lane).APO) 1220 ++CntTrue; 1221 unsigned CntFalse = NumOperands - CntTrue; 1222 return std::max(CntTrue, CntFalse); 1223 } 1224 1225 /// Go through the instructions in VL and append their operands. 1226 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1227 assert(!VL.empty() && "Bad VL"); 1228 assert((empty() || VL.size() == getNumLanes()) && 1229 "Expected same number of lanes"); 1230 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1231 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1232 OpsVec.resize(NumOperands); 1233 unsigned NumLanes = VL.size(); 1234 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1235 OpsVec[OpIdx].resize(NumLanes); 1236 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1237 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1238 // Our tree has just 3 nodes: the root and two operands. 1239 // It is therefore trivial to get the APO. We only need to check the 1240 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1241 // RHS operand. The LHS operand of both add and sub is never attached 1242 // to an inversese operation in the linearized form, therefore its APO 1243 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1244 1245 // Since operand reordering is performed on groups of commutative 1246 // operations or alternating sequences (e.g., +, -), we can safely 1247 // tell the inverse operations by checking commutativity. 1248 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1249 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1250 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1251 APO, false}; 1252 } 1253 } 1254 } 1255 1256 /// \returns the number of operands. 1257 unsigned getNumOperands() const { return OpsVec.size(); } 1258 1259 /// \returns the number of lanes. 1260 unsigned getNumLanes() const { return OpsVec[0].size(); } 1261 1262 /// \returns the operand value at \p OpIdx and \p Lane. 1263 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1264 return getData(OpIdx, Lane).V; 1265 } 1266 1267 /// \returns true if the data structure is empty. 1268 bool empty() const { return OpsVec.empty(); } 1269 1270 /// Clears the data. 1271 void clear() { OpsVec.clear(); } 1272 1273 /// \Returns true if there are enough operands identical to \p Op to fill 1274 /// the whole vector. 1275 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1276 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1277 bool OpAPO = getData(OpIdx, Lane).APO; 1278 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1279 if (Ln == Lane) 1280 continue; 1281 // This is set to true if we found a candidate for broadcast at Lane. 1282 bool FoundCandidate = false; 1283 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1284 OperandData &Data = getData(OpI, Ln); 1285 if (Data.APO != OpAPO || Data.IsUsed) 1286 continue; 1287 if (Data.V == Op) { 1288 FoundCandidate = true; 1289 Data.IsUsed = true; 1290 break; 1291 } 1292 } 1293 if (!FoundCandidate) 1294 return false; 1295 } 1296 return true; 1297 } 1298 1299 public: 1300 /// Initialize with all the operands of the instruction vector \p RootVL. 1301 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1302 ScalarEvolution &SE, const BoUpSLP &R) 1303 : DL(DL), SE(SE), R(R) { 1304 // Append all the operands of RootVL. 1305 appendOperandsOfVL(RootVL); 1306 } 1307 1308 /// \Returns a value vector with the operands across all lanes for the 1309 /// opearnd at \p OpIdx. 1310 ValueList getVL(unsigned OpIdx) const { 1311 ValueList OpVL(OpsVec[OpIdx].size()); 1312 assert(OpsVec[OpIdx].size() == getNumLanes() && 1313 "Expected same num of lanes across all operands"); 1314 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1315 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1316 return OpVL; 1317 } 1318 1319 // Performs operand reordering for 2 or more operands. 1320 // The original operands are in OrigOps[OpIdx][Lane]. 1321 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1322 void reorder() { 1323 unsigned NumOperands = getNumOperands(); 1324 unsigned NumLanes = getNumLanes(); 1325 // Each operand has its own mode. We are using this mode to help us select 1326 // the instructions for each lane, so that they match best with the ones 1327 // we have selected so far. 1328 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1329 1330 // This is a greedy single-pass algorithm. We are going over each lane 1331 // once and deciding on the best order right away with no back-tracking. 1332 // However, in order to increase its effectiveness, we start with the lane 1333 // that has operands that can move the least. For example, given the 1334 // following lanes: 1335 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1336 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1337 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1338 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1339 // we will start at Lane 1, since the operands of the subtraction cannot 1340 // be reordered. Then we will visit the rest of the lanes in a circular 1341 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1342 1343 // Find the first lane that we will start our search from. 1344 unsigned FirstLane = getBestLaneToStartReordering(); 1345 1346 // Initialize the modes. 1347 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1348 Value *OpLane0 = getValue(OpIdx, FirstLane); 1349 // Keep track if we have instructions with all the same opcode on one 1350 // side. 1351 if (isa<LoadInst>(OpLane0)) 1352 ReorderingModes[OpIdx] = ReorderingMode::Load; 1353 else if (isa<Instruction>(OpLane0)) { 1354 // Check if OpLane0 should be broadcast. 1355 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1356 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1357 else 1358 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1359 } 1360 else if (isa<Constant>(OpLane0)) 1361 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1362 else if (isa<Argument>(OpLane0)) 1363 // Our best hope is a Splat. It may save some cost in some cases. 1364 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1365 else 1366 // NOTE: This should be unreachable. 1367 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1368 } 1369 1370 // If the initial strategy fails for any of the operand indexes, then we 1371 // perform reordering again in a second pass. This helps avoid assigning 1372 // high priority to the failed strategy, and should improve reordering for 1373 // the non-failed operand indexes. 1374 for (int Pass = 0; Pass != 2; ++Pass) { 1375 // Skip the second pass if the first pass did not fail. 1376 bool StrategyFailed = false; 1377 // Mark all operand data as free to use. 1378 clearUsed(); 1379 // We keep the original operand order for the FirstLane, so reorder the 1380 // rest of the lanes. We are visiting the nodes in a circular fashion, 1381 // using FirstLane as the center point and increasing the radius 1382 // distance. 1383 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1384 // Visit the lane on the right and then the lane on the left. 1385 for (int Direction : {+1, -1}) { 1386 int Lane = FirstLane + Direction * Distance; 1387 if (Lane < 0 || Lane >= (int)NumLanes) 1388 continue; 1389 int LastLane = Lane - Direction; 1390 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1391 "Out of bounds"); 1392 // Look for a good match for each operand. 1393 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1394 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1395 Optional<unsigned> BestIdx = 1396 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1397 // By not selecting a value, we allow the operands that follow to 1398 // select a better matching value. We will get a non-null value in 1399 // the next run of getBestOperand(). 1400 if (BestIdx) { 1401 // Swap the current operand with the one returned by 1402 // getBestOperand(). 1403 swap(OpIdx, BestIdx.getValue(), Lane); 1404 } else { 1405 // We failed to find a best operand, set mode to 'Failed'. 1406 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1407 // Enable the second pass. 1408 StrategyFailed = true; 1409 } 1410 } 1411 } 1412 } 1413 // Skip second pass if the strategy did not fail. 1414 if (!StrategyFailed) 1415 break; 1416 } 1417 } 1418 1419 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1420 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1421 switch (RMode) { 1422 case ReorderingMode::Load: 1423 return "Load"; 1424 case ReorderingMode::Opcode: 1425 return "Opcode"; 1426 case ReorderingMode::Constant: 1427 return "Constant"; 1428 case ReorderingMode::Splat: 1429 return "Splat"; 1430 case ReorderingMode::Failed: 1431 return "Failed"; 1432 } 1433 llvm_unreachable("Unimplemented Reordering Type"); 1434 } 1435 1436 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1437 raw_ostream &OS) { 1438 return OS << getModeStr(RMode); 1439 } 1440 1441 /// Debug print. 1442 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1443 printMode(RMode, dbgs()); 1444 } 1445 1446 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1447 return printMode(RMode, OS); 1448 } 1449 1450 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1451 const unsigned Indent = 2; 1452 unsigned Cnt = 0; 1453 for (const OperandDataVec &OpDataVec : OpsVec) { 1454 OS << "Operand " << Cnt++ << "\n"; 1455 for (const OperandData &OpData : OpDataVec) { 1456 OS.indent(Indent) << "{"; 1457 if (Value *V = OpData.V) 1458 OS << *V; 1459 else 1460 OS << "null"; 1461 OS << ", APO:" << OpData.APO << "}\n"; 1462 } 1463 OS << "\n"; 1464 } 1465 return OS; 1466 } 1467 1468 /// Debug print. 1469 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1470 #endif 1471 }; 1472 1473 /// Checks if the instruction is marked for deletion. 1474 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1475 1476 /// Marks values operands for later deletion by replacing them with Undefs. 1477 void eraseInstructions(ArrayRef<Value *> AV); 1478 1479 ~BoUpSLP(); 1480 1481 private: 1482 /// Checks if all users of \p I are the part of the vectorization tree. 1483 bool areAllUsersVectorized(Instruction *I) const; 1484 1485 /// \returns the cost of the vectorizable entry. 1486 int getEntryCost(TreeEntry *E); 1487 1488 /// This is the recursive part of buildTree. 1489 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1490 const EdgeInfo &EI); 1491 1492 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1493 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1494 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1495 /// returns false, setting \p CurrentOrder to either an empty vector or a 1496 /// non-identity permutation that allows to reuse extract instructions. 1497 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1498 SmallVectorImpl<unsigned> &CurrentOrder) const; 1499 1500 /// Vectorize a single entry in the tree. 1501 Value *vectorizeTree(TreeEntry *E); 1502 1503 /// Vectorize a single entry in the tree, starting in \p VL. 1504 Value *vectorizeTree(ArrayRef<Value *> VL); 1505 1506 /// \returns the scalarization cost for this type. Scalarization in this 1507 /// context means the creation of vectors from a group of scalars. 1508 int getGatherCost(FixedVectorType *Ty, 1509 const DenseSet<unsigned> &ShuffledIndices) const; 1510 1511 /// \returns the scalarization cost for this list of values. Assuming that 1512 /// this subtree gets vectorized, we may need to extract the values from the 1513 /// roots. This method calculates the cost of extracting the values. 1514 int getGatherCost(ArrayRef<Value *> VL) const; 1515 1516 /// Set the Builder insert point to one after the last instruction in 1517 /// the bundle 1518 void setInsertPointAfterBundle(TreeEntry *E); 1519 1520 /// \returns a vector from a collection of scalars in \p VL. 1521 Value *gather(ArrayRef<Value *> VL); 1522 1523 /// \returns whether the VectorizableTree is fully vectorizable and will 1524 /// be beneficial even the tree height is tiny. 1525 bool isFullyVectorizableTinyTree() const; 1526 1527 /// Reorder commutative or alt operands to get better probability of 1528 /// generating vectorized code. 1529 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1530 SmallVectorImpl<Value *> &Left, 1531 SmallVectorImpl<Value *> &Right, 1532 const DataLayout &DL, 1533 ScalarEvolution &SE, 1534 const BoUpSLP &R); 1535 struct TreeEntry { 1536 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1537 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1538 1539 /// \returns true if the scalars in VL are equal to this entry. 1540 bool isSame(ArrayRef<Value *> VL) const { 1541 if (VL.size() == Scalars.size()) 1542 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1543 return VL.size() == ReuseShuffleIndices.size() && 1544 std::equal( 1545 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 1546 [this](Value *V, int Idx) { return V == Scalars[Idx]; }); 1547 } 1548 1549 /// A vector of scalars. 1550 ValueList Scalars; 1551 1552 /// The Scalars are vectorized into this value. It is initialized to Null. 1553 Value *VectorizedValue = nullptr; 1554 1555 /// Do we need to gather this sequence ? 1556 enum EntryState { Vectorize, NeedToGather }; 1557 EntryState State; 1558 1559 /// Does this sequence require some shuffling? 1560 SmallVector<int, 4> ReuseShuffleIndices; 1561 1562 /// Does this entry require reordering? 1563 SmallVector<unsigned, 4> ReorderIndices; 1564 1565 /// Points back to the VectorizableTree. 1566 /// 1567 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1568 /// to be a pointer and needs to be able to initialize the child iterator. 1569 /// Thus we need a reference back to the container to translate the indices 1570 /// to entries. 1571 VecTreeTy &Container; 1572 1573 /// The TreeEntry index containing the user of this entry. We can actually 1574 /// have multiple users so the data structure is not truly a tree. 1575 SmallVector<EdgeInfo, 1> UserTreeIndices; 1576 1577 /// The index of this treeEntry in VectorizableTree. 1578 int Idx = -1; 1579 1580 private: 1581 /// The operands of each instruction in each lane Operands[op_index][lane]. 1582 /// Note: This helps avoid the replication of the code that performs the 1583 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1584 SmallVector<ValueList, 2> Operands; 1585 1586 /// The main/alternate instruction. 1587 Instruction *MainOp = nullptr; 1588 Instruction *AltOp = nullptr; 1589 1590 public: 1591 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1592 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1593 if (Operands.size() < OpIdx + 1) 1594 Operands.resize(OpIdx + 1); 1595 assert(Operands[OpIdx].size() == 0 && "Already resized?"); 1596 Operands[OpIdx].resize(Scalars.size()); 1597 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1598 Operands[OpIdx][Lane] = OpVL[Lane]; 1599 } 1600 1601 /// Set the operands of this bundle in their original order. 1602 void setOperandsInOrder() { 1603 assert(Operands.empty() && "Already initialized?"); 1604 auto *I0 = cast<Instruction>(Scalars[0]); 1605 Operands.resize(I0->getNumOperands()); 1606 unsigned NumLanes = Scalars.size(); 1607 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1608 OpIdx != NumOperands; ++OpIdx) { 1609 Operands[OpIdx].resize(NumLanes); 1610 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1611 auto *I = cast<Instruction>(Scalars[Lane]); 1612 assert(I->getNumOperands() == NumOperands && 1613 "Expected same number of operands"); 1614 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1615 } 1616 } 1617 } 1618 1619 /// \returns the \p OpIdx operand of this TreeEntry. 1620 ValueList &getOperand(unsigned OpIdx) { 1621 assert(OpIdx < Operands.size() && "Off bounds"); 1622 return Operands[OpIdx]; 1623 } 1624 1625 /// \returns the number of operands. 1626 unsigned getNumOperands() const { return Operands.size(); } 1627 1628 /// \return the single \p OpIdx operand. 1629 Value *getSingleOperand(unsigned OpIdx) const { 1630 assert(OpIdx < Operands.size() && "Off bounds"); 1631 assert(!Operands[OpIdx].empty() && "No operand available"); 1632 return Operands[OpIdx][0]; 1633 } 1634 1635 /// Some of the instructions in the list have alternate opcodes. 1636 bool isAltShuffle() const { 1637 return getOpcode() != getAltOpcode(); 1638 } 1639 1640 bool isOpcodeOrAlt(Instruction *I) const { 1641 unsigned CheckedOpcode = I->getOpcode(); 1642 return (getOpcode() == CheckedOpcode || 1643 getAltOpcode() == CheckedOpcode); 1644 } 1645 1646 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1647 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1648 /// \p OpValue. 1649 Value *isOneOf(Value *Op) const { 1650 auto *I = dyn_cast<Instruction>(Op); 1651 if (I && isOpcodeOrAlt(I)) 1652 return Op; 1653 return MainOp; 1654 } 1655 1656 void setOperations(const InstructionsState &S) { 1657 MainOp = S.MainOp; 1658 AltOp = S.AltOp; 1659 } 1660 1661 Instruction *getMainOp() const { 1662 return MainOp; 1663 } 1664 1665 Instruction *getAltOp() const { 1666 return AltOp; 1667 } 1668 1669 /// The main/alternate opcodes for the list of instructions. 1670 unsigned getOpcode() const { 1671 return MainOp ? MainOp->getOpcode() : 0; 1672 } 1673 1674 unsigned getAltOpcode() const { 1675 return AltOp ? AltOp->getOpcode() : 0; 1676 } 1677 1678 /// Update operations state of this entry if reorder occurred. 1679 bool updateStateIfReorder() { 1680 if (ReorderIndices.empty()) 1681 return false; 1682 InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front()); 1683 setOperations(S); 1684 return true; 1685 } 1686 1687 #ifndef NDEBUG 1688 /// Debug printer. 1689 LLVM_DUMP_METHOD void dump() const { 1690 dbgs() << Idx << ".\n"; 1691 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1692 dbgs() << "Operand " << OpI << ":\n"; 1693 for (const Value *V : Operands[OpI]) 1694 dbgs().indent(2) << *V << "\n"; 1695 } 1696 dbgs() << "Scalars: \n"; 1697 for (Value *V : Scalars) 1698 dbgs().indent(2) << *V << "\n"; 1699 dbgs() << "State: "; 1700 switch (State) { 1701 case Vectorize: 1702 dbgs() << "Vectorize\n"; 1703 break; 1704 case NeedToGather: 1705 dbgs() << "NeedToGather\n"; 1706 break; 1707 } 1708 dbgs() << "MainOp: "; 1709 if (MainOp) 1710 dbgs() << *MainOp << "\n"; 1711 else 1712 dbgs() << "NULL\n"; 1713 dbgs() << "AltOp: "; 1714 if (AltOp) 1715 dbgs() << *AltOp << "\n"; 1716 else 1717 dbgs() << "NULL\n"; 1718 dbgs() << "VectorizedValue: "; 1719 if (VectorizedValue) 1720 dbgs() << *VectorizedValue << "\n"; 1721 else 1722 dbgs() << "NULL\n"; 1723 dbgs() << "ReuseShuffleIndices: "; 1724 if (ReuseShuffleIndices.empty()) 1725 dbgs() << "Emtpy"; 1726 else 1727 for (unsigned ReuseIdx : ReuseShuffleIndices) 1728 dbgs() << ReuseIdx << ", "; 1729 dbgs() << "\n"; 1730 dbgs() << "ReorderIndices: "; 1731 for (unsigned ReorderIdx : ReorderIndices) 1732 dbgs() << ReorderIdx << ", "; 1733 dbgs() << "\n"; 1734 dbgs() << "UserTreeIndices: "; 1735 for (const auto &EInfo : UserTreeIndices) 1736 dbgs() << EInfo << ", "; 1737 dbgs() << "\n"; 1738 } 1739 #endif 1740 }; 1741 1742 /// Create a new VectorizableTree entry. 1743 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1744 const InstructionsState &S, 1745 const EdgeInfo &UserTreeIdx, 1746 ArrayRef<unsigned> ReuseShuffleIndices = None, 1747 ArrayRef<unsigned> ReorderIndices = None) { 1748 bool Vectorized = (bool)Bundle; 1749 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1750 TreeEntry *Last = VectorizableTree.back().get(); 1751 Last->Idx = VectorizableTree.size() - 1; 1752 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 1753 Last->State = Vectorized ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 1754 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1755 ReuseShuffleIndices.end()); 1756 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 1757 Last->setOperations(S); 1758 if (Vectorized) { 1759 for (Value *V : VL) { 1760 assert(!getTreeEntry(V) && "Scalar already in tree!"); 1761 ScalarToTreeEntry[V] = Last; 1762 } 1763 // Update the scheduler bundle to point to this TreeEntry. 1764 unsigned Lane = 0; 1765 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 1766 BundleMember = BundleMember->NextInBundle) { 1767 BundleMember->TE = Last; 1768 BundleMember->Lane = Lane; 1769 ++Lane; 1770 } 1771 assert((!Bundle.getValue() || Lane == VL.size()) && 1772 "Bundle and VL out of sync"); 1773 } else { 1774 MustGather.insert(VL.begin(), VL.end()); 1775 } 1776 1777 if (UserTreeIdx.UserTE) 1778 Last->UserTreeIndices.push_back(UserTreeIdx); 1779 1780 return Last; 1781 } 1782 1783 /// -- Vectorization State -- 1784 /// Holds all of the tree entries. 1785 TreeEntry::VecTreeTy VectorizableTree; 1786 1787 #ifndef NDEBUG 1788 /// Debug printer. 1789 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1790 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1791 VectorizableTree[Id]->dump(); 1792 dbgs() << "\n"; 1793 } 1794 } 1795 #endif 1796 1797 TreeEntry *getTreeEntry(Value *V) { 1798 auto I = ScalarToTreeEntry.find(V); 1799 if (I != ScalarToTreeEntry.end()) 1800 return I->second; 1801 return nullptr; 1802 } 1803 1804 const TreeEntry *getTreeEntry(Value *V) const { 1805 auto I = ScalarToTreeEntry.find(V); 1806 if (I != ScalarToTreeEntry.end()) 1807 return I->second; 1808 return nullptr; 1809 } 1810 1811 /// Maps a specific scalar to its tree entry. 1812 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 1813 1814 /// Maps a value to the proposed vectorizable size. 1815 SmallDenseMap<Value *, unsigned> InstrElementSize; 1816 1817 /// A list of scalars that we found that we need to keep as scalars. 1818 ValueSet MustGather; 1819 1820 /// This POD struct describes one external user in the vectorized tree. 1821 struct ExternalUser { 1822 ExternalUser(Value *S, llvm::User *U, int L) 1823 : Scalar(S), User(U), Lane(L) {} 1824 1825 // Which scalar in our function. 1826 Value *Scalar; 1827 1828 // Which user that uses the scalar. 1829 llvm::User *User; 1830 1831 // Which lane does the scalar belong to. 1832 int Lane; 1833 }; 1834 using UserList = SmallVector<ExternalUser, 16>; 1835 1836 /// Checks if two instructions may access the same memory. 1837 /// 1838 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 1839 /// is invariant in the calling loop. 1840 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 1841 Instruction *Inst2) { 1842 // First check if the result is already in the cache. 1843 AliasCacheKey key = std::make_pair(Inst1, Inst2); 1844 Optional<bool> &result = AliasCache[key]; 1845 if (result.hasValue()) { 1846 return result.getValue(); 1847 } 1848 MemoryLocation Loc2 = getLocation(Inst2, AA); 1849 bool aliased = true; 1850 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 1851 // Do the alias check. 1852 aliased = AA->alias(Loc1, Loc2); 1853 } 1854 // Store the result in the cache. 1855 result = aliased; 1856 return aliased; 1857 } 1858 1859 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 1860 1861 /// Cache for alias results. 1862 /// TODO: consider moving this to the AliasAnalysis itself. 1863 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 1864 1865 /// Removes an instruction from its block and eventually deletes it. 1866 /// It's like Instruction::eraseFromParent() except that the actual deletion 1867 /// is delayed until BoUpSLP is destructed. 1868 /// This is required to ensure that there are no incorrect collisions in the 1869 /// AliasCache, which can happen if a new instruction is allocated at the 1870 /// same address as a previously deleted instruction. 1871 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 1872 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 1873 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 1874 } 1875 1876 /// Temporary store for deleted instructions. Instructions will be deleted 1877 /// eventually when the BoUpSLP is destructed. 1878 DenseMap<Instruction *, bool> DeletedInstructions; 1879 1880 /// A list of values that need to extracted out of the tree. 1881 /// This list holds pairs of (Internal Scalar : External User). External User 1882 /// can be nullptr, it means that this Internal Scalar will be used later, 1883 /// after vectorization. 1884 UserList ExternalUses; 1885 1886 /// Values used only by @llvm.assume calls. 1887 SmallPtrSet<const Value *, 32> EphValues; 1888 1889 /// Holds all of the instructions that we gathered. 1890 SetVector<Instruction *> GatherSeq; 1891 1892 /// A list of blocks that we are going to CSE. 1893 SetVector<BasicBlock *> CSEBlocks; 1894 1895 /// Contains all scheduling relevant data for an instruction. 1896 /// A ScheduleData either represents a single instruction or a member of an 1897 /// instruction bundle (= a group of instructions which is combined into a 1898 /// vector instruction). 1899 struct ScheduleData { 1900 // The initial value for the dependency counters. It means that the 1901 // dependencies are not calculated yet. 1902 enum { InvalidDeps = -1 }; 1903 1904 ScheduleData() = default; 1905 1906 void init(int BlockSchedulingRegionID, Value *OpVal) { 1907 FirstInBundle = this; 1908 NextInBundle = nullptr; 1909 NextLoadStore = nullptr; 1910 IsScheduled = false; 1911 SchedulingRegionID = BlockSchedulingRegionID; 1912 UnscheduledDepsInBundle = UnscheduledDeps; 1913 clearDependencies(); 1914 OpValue = OpVal; 1915 TE = nullptr; 1916 Lane = -1; 1917 } 1918 1919 /// Returns true if the dependency information has been calculated. 1920 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 1921 1922 /// Returns true for single instructions and for bundle representatives 1923 /// (= the head of a bundle). 1924 bool isSchedulingEntity() const { return FirstInBundle == this; } 1925 1926 /// Returns true if it represents an instruction bundle and not only a 1927 /// single instruction. 1928 bool isPartOfBundle() const { 1929 return NextInBundle != nullptr || FirstInBundle != this; 1930 } 1931 1932 /// Returns true if it is ready for scheduling, i.e. it has no more 1933 /// unscheduled depending instructions/bundles. 1934 bool isReady() const { 1935 assert(isSchedulingEntity() && 1936 "can't consider non-scheduling entity for ready list"); 1937 return UnscheduledDepsInBundle == 0 && !IsScheduled; 1938 } 1939 1940 /// Modifies the number of unscheduled dependencies, also updating it for 1941 /// the whole bundle. 1942 int incrementUnscheduledDeps(int Incr) { 1943 UnscheduledDeps += Incr; 1944 return FirstInBundle->UnscheduledDepsInBundle += Incr; 1945 } 1946 1947 /// Sets the number of unscheduled dependencies to the number of 1948 /// dependencies. 1949 void resetUnscheduledDeps() { 1950 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 1951 } 1952 1953 /// Clears all dependency information. 1954 void clearDependencies() { 1955 Dependencies = InvalidDeps; 1956 resetUnscheduledDeps(); 1957 MemoryDependencies.clear(); 1958 } 1959 1960 void dump(raw_ostream &os) const { 1961 if (!isSchedulingEntity()) { 1962 os << "/ " << *Inst; 1963 } else if (NextInBundle) { 1964 os << '[' << *Inst; 1965 ScheduleData *SD = NextInBundle; 1966 while (SD) { 1967 os << ';' << *SD->Inst; 1968 SD = SD->NextInBundle; 1969 } 1970 os << ']'; 1971 } else { 1972 os << *Inst; 1973 } 1974 } 1975 1976 Instruction *Inst = nullptr; 1977 1978 /// Points to the head in an instruction bundle (and always to this for 1979 /// single instructions). 1980 ScheduleData *FirstInBundle = nullptr; 1981 1982 /// Single linked list of all instructions in a bundle. Null if it is a 1983 /// single instruction. 1984 ScheduleData *NextInBundle = nullptr; 1985 1986 /// Single linked list of all memory instructions (e.g. load, store, call) 1987 /// in the block - until the end of the scheduling region. 1988 ScheduleData *NextLoadStore = nullptr; 1989 1990 /// The dependent memory instructions. 1991 /// This list is derived on demand in calculateDependencies(). 1992 SmallVector<ScheduleData *, 4> MemoryDependencies; 1993 1994 /// This ScheduleData is in the current scheduling region if this matches 1995 /// the current SchedulingRegionID of BlockScheduling. 1996 int SchedulingRegionID = 0; 1997 1998 /// Used for getting a "good" final ordering of instructions. 1999 int SchedulingPriority = 0; 2000 2001 /// The number of dependencies. Constitutes of the number of users of the 2002 /// instruction plus the number of dependent memory instructions (if any). 2003 /// This value is calculated on demand. 2004 /// If InvalidDeps, the number of dependencies is not calculated yet. 2005 int Dependencies = InvalidDeps; 2006 2007 /// The number of dependencies minus the number of dependencies of scheduled 2008 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2009 /// for scheduling. 2010 /// Note that this is negative as long as Dependencies is not calculated. 2011 int UnscheduledDeps = InvalidDeps; 2012 2013 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 2014 /// single instructions. 2015 int UnscheduledDepsInBundle = InvalidDeps; 2016 2017 /// True if this instruction is scheduled (or considered as scheduled in the 2018 /// dry-run). 2019 bool IsScheduled = false; 2020 2021 /// Opcode of the current instruction in the schedule data. 2022 Value *OpValue = nullptr; 2023 2024 /// The TreeEntry that this instruction corresponds to. 2025 TreeEntry *TE = nullptr; 2026 2027 /// The lane of this node in the TreeEntry. 2028 int Lane = -1; 2029 }; 2030 2031 #ifndef NDEBUG 2032 friend inline raw_ostream &operator<<(raw_ostream &os, 2033 const BoUpSLP::ScheduleData &SD) { 2034 SD.dump(os); 2035 return os; 2036 } 2037 #endif 2038 2039 friend struct GraphTraits<BoUpSLP *>; 2040 friend struct DOTGraphTraits<BoUpSLP *>; 2041 2042 /// Contains all scheduling data for a basic block. 2043 struct BlockScheduling { 2044 BlockScheduling(BasicBlock *BB) 2045 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2046 2047 void clear() { 2048 ReadyInsts.clear(); 2049 ScheduleStart = nullptr; 2050 ScheduleEnd = nullptr; 2051 FirstLoadStoreInRegion = nullptr; 2052 LastLoadStoreInRegion = nullptr; 2053 2054 // Reduce the maximum schedule region size by the size of the 2055 // previous scheduling run. 2056 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2057 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2058 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2059 ScheduleRegionSize = 0; 2060 2061 // Make a new scheduling region, i.e. all existing ScheduleData is not 2062 // in the new region yet. 2063 ++SchedulingRegionID; 2064 } 2065 2066 ScheduleData *getScheduleData(Value *V) { 2067 ScheduleData *SD = ScheduleDataMap[V]; 2068 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2069 return SD; 2070 return nullptr; 2071 } 2072 2073 ScheduleData *getScheduleData(Value *V, Value *Key) { 2074 if (V == Key) 2075 return getScheduleData(V); 2076 auto I = ExtraScheduleDataMap.find(V); 2077 if (I != ExtraScheduleDataMap.end()) { 2078 ScheduleData *SD = I->second[Key]; 2079 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2080 return SD; 2081 } 2082 return nullptr; 2083 } 2084 2085 bool isInSchedulingRegion(ScheduleData *SD) const { 2086 return SD->SchedulingRegionID == SchedulingRegionID; 2087 } 2088 2089 /// Marks an instruction as scheduled and puts all dependent ready 2090 /// instructions into the ready-list. 2091 template <typename ReadyListType> 2092 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2093 SD->IsScheduled = true; 2094 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2095 2096 ScheduleData *BundleMember = SD; 2097 while (BundleMember) { 2098 if (BundleMember->Inst != BundleMember->OpValue) { 2099 BundleMember = BundleMember->NextInBundle; 2100 continue; 2101 } 2102 // Handle the def-use chain dependencies. 2103 2104 // Decrement the unscheduled counter and insert to ready list if ready. 2105 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2106 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2107 if (OpDef && OpDef->hasValidDependencies() && 2108 OpDef->incrementUnscheduledDeps(-1) == 0) { 2109 // There are no more unscheduled dependencies after 2110 // decrementing, so we can put the dependent instruction 2111 // into the ready list. 2112 ScheduleData *DepBundle = OpDef->FirstInBundle; 2113 assert(!DepBundle->IsScheduled && 2114 "already scheduled bundle gets ready"); 2115 ReadyList.insert(DepBundle); 2116 LLVM_DEBUG(dbgs() 2117 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2118 } 2119 }); 2120 }; 2121 2122 // If BundleMember is a vector bundle, its operands may have been 2123 // reordered duiring buildTree(). We therefore need to get its operands 2124 // through the TreeEntry. 2125 if (TreeEntry *TE = BundleMember->TE) { 2126 int Lane = BundleMember->Lane; 2127 assert(Lane >= 0 && "Lane not set"); 2128 2129 // Since vectorization tree is being built recursively this assertion 2130 // ensures that the tree entry has all operands set before reaching 2131 // this code. Couple of exceptions known at the moment are extracts 2132 // where their second (immediate) operand is not added. Since 2133 // immediates do not affect scheduler behavior this is considered 2134 // okay. 2135 auto *In = TE->getMainOp(); 2136 assert(In && 2137 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2138 In->getNumOperands() == TE->getNumOperands()) && 2139 "Missed TreeEntry operands?"); 2140 (void)In; // fake use to avoid build failure when assertions disabled 2141 2142 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2143 OpIdx != NumOperands; ++OpIdx) 2144 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2145 DecrUnsched(I); 2146 } else { 2147 // If BundleMember is a stand-alone instruction, no operand reordering 2148 // has taken place, so we directly access its operands. 2149 for (Use &U : BundleMember->Inst->operands()) 2150 if (auto *I = dyn_cast<Instruction>(U.get())) 2151 DecrUnsched(I); 2152 } 2153 // Handle the memory dependencies. 2154 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2155 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2156 // There are no more unscheduled dependencies after decrementing, 2157 // so we can put the dependent instruction into the ready list. 2158 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2159 assert(!DepBundle->IsScheduled && 2160 "already scheduled bundle gets ready"); 2161 ReadyList.insert(DepBundle); 2162 LLVM_DEBUG(dbgs() 2163 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2164 } 2165 } 2166 BundleMember = BundleMember->NextInBundle; 2167 } 2168 } 2169 2170 void doForAllOpcodes(Value *V, 2171 function_ref<void(ScheduleData *SD)> Action) { 2172 if (ScheduleData *SD = getScheduleData(V)) 2173 Action(SD); 2174 auto I = ExtraScheduleDataMap.find(V); 2175 if (I != ExtraScheduleDataMap.end()) 2176 for (auto &P : I->second) 2177 if (P.second->SchedulingRegionID == SchedulingRegionID) 2178 Action(P.second); 2179 } 2180 2181 /// Put all instructions into the ReadyList which are ready for scheduling. 2182 template <typename ReadyListType> 2183 void initialFillReadyList(ReadyListType &ReadyList) { 2184 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2185 doForAllOpcodes(I, [&](ScheduleData *SD) { 2186 if (SD->isSchedulingEntity() && SD->isReady()) { 2187 ReadyList.insert(SD); 2188 LLVM_DEBUG(dbgs() 2189 << "SLP: initially in ready list: " << *I << "\n"); 2190 } 2191 }); 2192 } 2193 } 2194 2195 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2196 /// cyclic dependencies. This is only a dry-run, no instructions are 2197 /// actually moved at this stage. 2198 /// \returns the scheduling bundle. The returned Optional value is non-None 2199 /// if \p VL is allowed to be scheduled. 2200 Optional<ScheduleData *> 2201 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2202 const InstructionsState &S); 2203 2204 /// Un-bundles a group of instructions. 2205 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2206 2207 /// Allocates schedule data chunk. 2208 ScheduleData *allocateScheduleDataChunks(); 2209 2210 /// Extends the scheduling region so that V is inside the region. 2211 /// \returns true if the region size is within the limit. 2212 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2213 2214 /// Initialize the ScheduleData structures for new instructions in the 2215 /// scheduling region. 2216 void initScheduleData(Instruction *FromI, Instruction *ToI, 2217 ScheduleData *PrevLoadStore, 2218 ScheduleData *NextLoadStore); 2219 2220 /// Updates the dependency information of a bundle and of all instructions/ 2221 /// bundles which depend on the original bundle. 2222 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2223 BoUpSLP *SLP); 2224 2225 /// Sets all instruction in the scheduling region to un-scheduled. 2226 void resetSchedule(); 2227 2228 BasicBlock *BB; 2229 2230 /// Simple memory allocation for ScheduleData. 2231 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2232 2233 /// The size of a ScheduleData array in ScheduleDataChunks. 2234 int ChunkSize; 2235 2236 /// The allocator position in the current chunk, which is the last entry 2237 /// of ScheduleDataChunks. 2238 int ChunkPos; 2239 2240 /// Attaches ScheduleData to Instruction. 2241 /// Note that the mapping survives during all vectorization iterations, i.e. 2242 /// ScheduleData structures are recycled. 2243 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2244 2245 /// Attaches ScheduleData to Instruction with the leading key. 2246 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2247 ExtraScheduleDataMap; 2248 2249 struct ReadyList : SmallVector<ScheduleData *, 8> { 2250 void insert(ScheduleData *SD) { push_back(SD); } 2251 }; 2252 2253 /// The ready-list for scheduling (only used for the dry-run). 2254 ReadyList ReadyInsts; 2255 2256 /// The first instruction of the scheduling region. 2257 Instruction *ScheduleStart = nullptr; 2258 2259 /// The first instruction _after_ the scheduling region. 2260 Instruction *ScheduleEnd = nullptr; 2261 2262 /// The first memory accessing instruction in the scheduling region 2263 /// (can be null). 2264 ScheduleData *FirstLoadStoreInRegion = nullptr; 2265 2266 /// The last memory accessing instruction in the scheduling region 2267 /// (can be null). 2268 ScheduleData *LastLoadStoreInRegion = nullptr; 2269 2270 /// The current size of the scheduling region. 2271 int ScheduleRegionSize = 0; 2272 2273 /// The maximum size allowed for the scheduling region. 2274 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2275 2276 /// The ID of the scheduling region. For a new vectorization iteration this 2277 /// is incremented which "removes" all ScheduleData from the region. 2278 // Make sure that the initial SchedulingRegionID is greater than the 2279 // initial SchedulingRegionID in ScheduleData (which is 0). 2280 int SchedulingRegionID = 1; 2281 }; 2282 2283 /// Attaches the BlockScheduling structures to basic blocks. 2284 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2285 2286 /// Performs the "real" scheduling. Done before vectorization is actually 2287 /// performed in a basic block. 2288 void scheduleBlock(BlockScheduling *BS); 2289 2290 /// List of users to ignore during scheduling and that don't need extracting. 2291 ArrayRef<Value *> UserIgnoreList; 2292 2293 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2294 /// sorted SmallVectors of unsigned. 2295 struct OrdersTypeDenseMapInfo { 2296 static OrdersType getEmptyKey() { 2297 OrdersType V; 2298 V.push_back(~1U); 2299 return V; 2300 } 2301 2302 static OrdersType getTombstoneKey() { 2303 OrdersType V; 2304 V.push_back(~2U); 2305 return V; 2306 } 2307 2308 static unsigned getHashValue(const OrdersType &V) { 2309 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2310 } 2311 2312 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2313 return LHS == RHS; 2314 } 2315 }; 2316 2317 /// Contains orders of operations along with the number of bundles that have 2318 /// operations in this order. It stores only those orders that require 2319 /// reordering, if reordering is not required it is counted using \a 2320 /// NumOpsWantToKeepOriginalOrder. 2321 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 2322 /// Number of bundles that do not require reordering. 2323 unsigned NumOpsWantToKeepOriginalOrder = 0; 2324 2325 // Analysis and block reference. 2326 Function *F; 2327 ScalarEvolution *SE; 2328 TargetTransformInfo *TTI; 2329 TargetLibraryInfo *TLI; 2330 AAResults *AA; 2331 LoopInfo *LI; 2332 DominatorTree *DT; 2333 AssumptionCache *AC; 2334 DemandedBits *DB; 2335 const DataLayout *DL; 2336 OptimizationRemarkEmitter *ORE; 2337 2338 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2339 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2340 2341 /// Instruction builder to construct the vectorized tree. 2342 IRBuilder<> Builder; 2343 2344 /// A map of scalar integer values to the smallest bit width with which they 2345 /// can legally be represented. The values map to (width, signed) pairs, 2346 /// where "width" indicates the minimum bit width and "signed" is True if the 2347 /// value must be signed-extended, rather than zero-extended, back to its 2348 /// original width. 2349 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2350 }; 2351 2352 } // end namespace slpvectorizer 2353 2354 template <> struct GraphTraits<BoUpSLP *> { 2355 using TreeEntry = BoUpSLP::TreeEntry; 2356 2357 /// NodeRef has to be a pointer per the GraphWriter. 2358 using NodeRef = TreeEntry *; 2359 2360 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2361 2362 /// Add the VectorizableTree to the index iterator to be able to return 2363 /// TreeEntry pointers. 2364 struct ChildIteratorType 2365 : public iterator_adaptor_base< 2366 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2367 ContainerTy &VectorizableTree; 2368 2369 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2370 ContainerTy &VT) 2371 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2372 2373 NodeRef operator*() { return I->UserTE; } 2374 }; 2375 2376 static NodeRef getEntryNode(BoUpSLP &R) { 2377 return R.VectorizableTree[0].get(); 2378 } 2379 2380 static ChildIteratorType child_begin(NodeRef N) { 2381 return {N->UserTreeIndices.begin(), N->Container}; 2382 } 2383 2384 static ChildIteratorType child_end(NodeRef N) { 2385 return {N->UserTreeIndices.end(), N->Container}; 2386 } 2387 2388 /// For the node iterator we just need to turn the TreeEntry iterator into a 2389 /// TreeEntry* iterator so that it dereferences to NodeRef. 2390 class nodes_iterator { 2391 using ItTy = ContainerTy::iterator; 2392 ItTy It; 2393 2394 public: 2395 nodes_iterator(const ItTy &It2) : It(It2) {} 2396 NodeRef operator*() { return It->get(); } 2397 nodes_iterator operator++() { 2398 ++It; 2399 return *this; 2400 } 2401 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2402 }; 2403 2404 static nodes_iterator nodes_begin(BoUpSLP *R) { 2405 return nodes_iterator(R->VectorizableTree.begin()); 2406 } 2407 2408 static nodes_iterator nodes_end(BoUpSLP *R) { 2409 return nodes_iterator(R->VectorizableTree.end()); 2410 } 2411 2412 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2413 }; 2414 2415 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2416 using TreeEntry = BoUpSLP::TreeEntry; 2417 2418 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2419 2420 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2421 std::string Str; 2422 raw_string_ostream OS(Str); 2423 if (isSplat(Entry->Scalars)) { 2424 OS << "<splat> " << *Entry->Scalars[0]; 2425 return Str; 2426 } 2427 for (auto V : Entry->Scalars) { 2428 OS << *V; 2429 if (std::any_of( 2430 R->ExternalUses.begin(), R->ExternalUses.end(), 2431 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 2432 OS << " <extract>"; 2433 OS << "\n"; 2434 } 2435 return Str; 2436 } 2437 2438 static std::string getNodeAttributes(const TreeEntry *Entry, 2439 const BoUpSLP *) { 2440 if (Entry->State == TreeEntry::NeedToGather) 2441 return "color=red"; 2442 return ""; 2443 } 2444 }; 2445 2446 } // end namespace llvm 2447 2448 BoUpSLP::~BoUpSLP() { 2449 for (const auto &Pair : DeletedInstructions) { 2450 // Replace operands of ignored instructions with Undefs in case if they were 2451 // marked for deletion. 2452 if (Pair.getSecond()) { 2453 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2454 Pair.getFirst()->replaceAllUsesWith(Undef); 2455 } 2456 Pair.getFirst()->dropAllReferences(); 2457 } 2458 for (const auto &Pair : DeletedInstructions) { 2459 assert(Pair.getFirst()->use_empty() && 2460 "trying to erase instruction with users."); 2461 Pair.getFirst()->eraseFromParent(); 2462 } 2463 assert(!verifyFunction(*F, &dbgs())); 2464 } 2465 2466 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2467 for (auto *V : AV) { 2468 if (auto *I = dyn_cast<Instruction>(V)) 2469 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 2470 }; 2471 } 2472 2473 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2474 ArrayRef<Value *> UserIgnoreLst) { 2475 ExtraValueToDebugLocsMap ExternallyUsedValues; 2476 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 2477 } 2478 2479 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2480 ExtraValueToDebugLocsMap &ExternallyUsedValues, 2481 ArrayRef<Value *> UserIgnoreLst) { 2482 deleteTree(); 2483 UserIgnoreList = UserIgnoreLst; 2484 if (!allSameType(Roots)) 2485 return; 2486 buildTree_rec(Roots, 0, EdgeInfo()); 2487 2488 // Collect the values that we need to extract from the tree. 2489 for (auto &TEPtr : VectorizableTree) { 2490 TreeEntry *Entry = TEPtr.get(); 2491 2492 // No need to handle users of gathered values. 2493 if (Entry->State == TreeEntry::NeedToGather) 2494 continue; 2495 2496 // For each lane: 2497 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2498 Value *Scalar = Entry->Scalars[Lane]; 2499 int FoundLane = Lane; 2500 if (!Entry->ReuseShuffleIndices.empty()) { 2501 FoundLane = 2502 std::distance(Entry->ReuseShuffleIndices.begin(), 2503 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 2504 } 2505 2506 // Check if the scalar is externally used as an extra arg. 2507 auto ExtI = ExternallyUsedValues.find(Scalar); 2508 if (ExtI != ExternallyUsedValues.end()) { 2509 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 2510 << Lane << " from " << *Scalar << ".\n"); 2511 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 2512 } 2513 for (User *U : Scalar->users()) { 2514 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 2515 2516 Instruction *UserInst = dyn_cast<Instruction>(U); 2517 if (!UserInst) 2518 continue; 2519 2520 // Skip in-tree scalars that become vectors 2521 if (TreeEntry *UseEntry = getTreeEntry(U)) { 2522 Value *UseScalar = UseEntry->Scalars[0]; 2523 // Some in-tree scalars will remain as scalar in vectorized 2524 // instructions. If that is the case, the one in Lane 0 will 2525 // be used. 2526 if (UseScalar != U || 2527 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 2528 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 2529 << ".\n"); 2530 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 2531 continue; 2532 } 2533 } 2534 2535 // Ignore users in the user ignore list. 2536 if (is_contained(UserIgnoreList, UserInst)) 2537 continue; 2538 2539 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 2540 << Lane << " from " << *Scalar << ".\n"); 2541 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 2542 } 2543 } 2544 } 2545 } 2546 2547 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 2548 const EdgeInfo &UserTreeIdx) { 2549 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 2550 2551 InstructionsState S = getSameOpcode(VL); 2552 if (Depth == RecursionMaxDepth) { 2553 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 2554 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2555 return; 2556 } 2557 2558 // Don't handle vectors. 2559 if (S.OpValue->getType()->isVectorTy()) { 2560 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 2561 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2562 return; 2563 } 2564 2565 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2566 if (SI->getValueOperand()->getType()->isVectorTy()) { 2567 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 2568 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2569 return; 2570 } 2571 2572 // If all of the operands are identical or constant we have a simple solution. 2573 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 2574 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 2575 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2576 return; 2577 } 2578 2579 // We now know that this is a vector of instructions of the same type from 2580 // the same block. 2581 2582 // Don't vectorize ephemeral values. 2583 for (Value *V : VL) { 2584 if (EphValues.count(V)) { 2585 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2586 << ") is ephemeral.\n"); 2587 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2588 return; 2589 } 2590 } 2591 2592 // Check if this is a duplicate of another entry. 2593 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2594 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 2595 if (!E->isSame(VL)) { 2596 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 2597 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2598 return; 2599 } 2600 // Record the reuse of the tree node. FIXME, currently this is only used to 2601 // properly draw the graph rather than for the actual vectorization. 2602 E->UserTreeIndices.push_back(UserTreeIdx); 2603 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 2604 << ".\n"); 2605 return; 2606 } 2607 2608 // Check that none of the instructions in the bundle are already in the tree. 2609 for (Value *V : VL) { 2610 auto *I = dyn_cast<Instruction>(V); 2611 if (!I) 2612 continue; 2613 if (getTreeEntry(I)) { 2614 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2615 << ") is already in tree.\n"); 2616 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2617 return; 2618 } 2619 } 2620 2621 // If any of the scalars is marked as a value that needs to stay scalar, then 2622 // we need to gather the scalars. 2623 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 2624 for (Value *V : VL) { 2625 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 2626 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 2627 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2628 return; 2629 } 2630 } 2631 2632 // Check that all of the users of the scalars that we want to vectorize are 2633 // schedulable. 2634 auto *VL0 = cast<Instruction>(S.OpValue); 2635 BasicBlock *BB = VL0->getParent(); 2636 2637 if (!DT->isReachableFromEntry(BB)) { 2638 // Don't go into unreachable blocks. They may contain instructions with 2639 // dependency cycles which confuse the final scheduling. 2640 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 2641 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2642 return; 2643 } 2644 2645 // Check that every instruction appears once in this bundle. 2646 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2647 SmallVector<Value *, 4> UniqueValues; 2648 DenseMap<Value *, unsigned> UniquePositions; 2649 for (Value *V : VL) { 2650 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2651 ReuseShuffleIndicies.emplace_back(Res.first->second); 2652 if (Res.second) 2653 UniqueValues.emplace_back(V); 2654 } 2655 size_t NumUniqueScalarValues = UniqueValues.size(); 2656 if (NumUniqueScalarValues == VL.size()) { 2657 ReuseShuffleIndicies.clear(); 2658 } else { 2659 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 2660 if (NumUniqueScalarValues <= 1 || 2661 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 2662 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 2663 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2664 return; 2665 } 2666 VL = UniqueValues; 2667 } 2668 2669 auto &BSRef = BlocksSchedules[BB]; 2670 if (!BSRef) 2671 BSRef = std::make_unique<BlockScheduling>(BB); 2672 2673 BlockScheduling &BS = *BSRef.get(); 2674 2675 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 2676 if (!Bundle) { 2677 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 2678 assert((!BS.getScheduleData(VL0) || 2679 !BS.getScheduleData(VL0)->isPartOfBundle()) && 2680 "tryScheduleBundle should cancelScheduling on failure"); 2681 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2682 ReuseShuffleIndicies); 2683 return; 2684 } 2685 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 2686 2687 unsigned ShuffleOrOp = S.isAltShuffle() ? 2688 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2689 switch (ShuffleOrOp) { 2690 case Instruction::PHI: { 2691 auto *PH = cast<PHINode>(VL0); 2692 2693 // Check for terminator values (e.g. invoke). 2694 for (Value *V : VL) 2695 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 2696 Instruction *Term = dyn_cast<Instruction>( 2697 cast<PHINode>(V)->getIncomingValueForBlock( 2698 PH->getIncomingBlock(I))); 2699 if (Term && Term->isTerminator()) { 2700 LLVM_DEBUG(dbgs() 2701 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 2702 BS.cancelScheduling(VL, VL0); 2703 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2704 ReuseShuffleIndicies); 2705 return; 2706 } 2707 } 2708 2709 TreeEntry *TE = 2710 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 2711 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 2712 2713 // Keeps the reordered operands to avoid code duplication. 2714 SmallVector<ValueList, 2> OperandsVec; 2715 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 2716 ValueList Operands; 2717 // Prepare the operand vector. 2718 for (Value *V : VL) 2719 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 2720 PH->getIncomingBlock(I))); 2721 TE->setOperand(I, Operands); 2722 OperandsVec.push_back(Operands); 2723 } 2724 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 2725 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 2726 return; 2727 } 2728 case Instruction::ExtractValue: 2729 case Instruction::ExtractElement: { 2730 OrdersType CurrentOrder; 2731 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 2732 if (Reuse) { 2733 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 2734 ++NumOpsWantToKeepOriginalOrder; 2735 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2736 ReuseShuffleIndicies); 2737 // This is a special case, as it does not gather, but at the same time 2738 // we are not extending buildTree_rec() towards the operands. 2739 ValueList Op0; 2740 Op0.assign(VL.size(), VL0->getOperand(0)); 2741 VectorizableTree.back()->setOperand(0, Op0); 2742 return; 2743 } 2744 if (!CurrentOrder.empty()) { 2745 LLVM_DEBUG({ 2746 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 2747 "with order"; 2748 for (unsigned Idx : CurrentOrder) 2749 dbgs() << " " << Idx; 2750 dbgs() << "\n"; 2751 }); 2752 // Insert new order with initial value 0, if it does not exist, 2753 // otherwise return the iterator to the existing one. 2754 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2755 ReuseShuffleIndicies, CurrentOrder); 2756 findRootOrder(CurrentOrder); 2757 ++NumOpsWantToKeepOrder[CurrentOrder]; 2758 // This is a special case, as it does not gather, but at the same time 2759 // we are not extending buildTree_rec() towards the operands. 2760 ValueList Op0; 2761 Op0.assign(VL.size(), VL0->getOperand(0)); 2762 VectorizableTree.back()->setOperand(0, Op0); 2763 return; 2764 } 2765 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 2766 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2767 ReuseShuffleIndicies); 2768 BS.cancelScheduling(VL, VL0); 2769 return; 2770 } 2771 case Instruction::Load: { 2772 // Check that a vectorized load would load the same memory as a scalar 2773 // load. For example, we don't want to vectorize loads that are smaller 2774 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 2775 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 2776 // from such a struct, we read/write packed bits disagreeing with the 2777 // unvectorized version. 2778 Type *ScalarTy = VL0->getType(); 2779 2780 if (DL->getTypeSizeInBits(ScalarTy) != 2781 DL->getTypeAllocSizeInBits(ScalarTy)) { 2782 BS.cancelScheduling(VL, VL0); 2783 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2784 ReuseShuffleIndicies); 2785 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 2786 return; 2787 } 2788 2789 // Make sure all loads in the bundle are simple - we can't vectorize 2790 // atomic or volatile loads. 2791 SmallVector<Value *, 4> PointerOps(VL.size()); 2792 auto POIter = PointerOps.begin(); 2793 for (Value *V : VL) { 2794 auto *L = cast<LoadInst>(V); 2795 if (!L->isSimple()) { 2796 BS.cancelScheduling(VL, VL0); 2797 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2798 ReuseShuffleIndicies); 2799 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 2800 return; 2801 } 2802 *POIter = L->getPointerOperand(); 2803 ++POIter; 2804 } 2805 2806 OrdersType CurrentOrder; 2807 // Check the order of pointer operands. 2808 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2809 Value *Ptr0; 2810 Value *PtrN; 2811 if (CurrentOrder.empty()) { 2812 Ptr0 = PointerOps.front(); 2813 PtrN = PointerOps.back(); 2814 } else { 2815 Ptr0 = PointerOps[CurrentOrder.front()]; 2816 PtrN = PointerOps[CurrentOrder.back()]; 2817 } 2818 const SCEV *Scev0 = SE->getSCEV(Ptr0); 2819 const SCEV *ScevN = SE->getSCEV(PtrN); 2820 const auto *Diff = 2821 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 2822 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 2823 // Check that the sorted loads are consecutive. 2824 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 2825 if (CurrentOrder.empty()) { 2826 // Original loads are consecutive and does not require reordering. 2827 ++NumOpsWantToKeepOriginalOrder; 2828 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 2829 UserTreeIdx, ReuseShuffleIndicies); 2830 TE->setOperandsInOrder(); 2831 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 2832 } else { 2833 // Need to reorder. 2834 TreeEntry *TE = 2835 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2836 ReuseShuffleIndicies, CurrentOrder); 2837 TE->setOperandsInOrder(); 2838 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 2839 findRootOrder(CurrentOrder); 2840 ++NumOpsWantToKeepOrder[CurrentOrder]; 2841 } 2842 return; 2843 } 2844 } 2845 2846 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 2847 BS.cancelScheduling(VL, VL0); 2848 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2849 ReuseShuffleIndicies); 2850 return; 2851 } 2852 case Instruction::ZExt: 2853 case Instruction::SExt: 2854 case Instruction::FPToUI: 2855 case Instruction::FPToSI: 2856 case Instruction::FPExt: 2857 case Instruction::PtrToInt: 2858 case Instruction::IntToPtr: 2859 case Instruction::SIToFP: 2860 case Instruction::UIToFP: 2861 case Instruction::Trunc: 2862 case Instruction::FPTrunc: 2863 case Instruction::BitCast: { 2864 Type *SrcTy = VL0->getOperand(0)->getType(); 2865 for (Value *V : VL) { 2866 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 2867 if (Ty != SrcTy || !isValidElementType(Ty)) { 2868 BS.cancelScheduling(VL, VL0); 2869 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2870 ReuseShuffleIndicies); 2871 LLVM_DEBUG(dbgs() 2872 << "SLP: Gathering casts with different src types.\n"); 2873 return; 2874 } 2875 } 2876 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2877 ReuseShuffleIndicies); 2878 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 2879 2880 TE->setOperandsInOrder(); 2881 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2882 ValueList Operands; 2883 // Prepare the operand vector. 2884 for (Value *V : VL) 2885 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2886 2887 buildTree_rec(Operands, Depth + 1, {TE, i}); 2888 } 2889 return; 2890 } 2891 case Instruction::ICmp: 2892 case Instruction::FCmp: { 2893 // Check that all of the compares have the same predicate. 2894 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2895 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 2896 Type *ComparedTy = VL0->getOperand(0)->getType(); 2897 for (Value *V : VL) { 2898 CmpInst *Cmp = cast<CmpInst>(V); 2899 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 2900 Cmp->getOperand(0)->getType() != ComparedTy) { 2901 BS.cancelScheduling(VL, VL0); 2902 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2903 ReuseShuffleIndicies); 2904 LLVM_DEBUG(dbgs() 2905 << "SLP: Gathering cmp with different predicate.\n"); 2906 return; 2907 } 2908 } 2909 2910 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2911 ReuseShuffleIndicies); 2912 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 2913 2914 ValueList Left, Right; 2915 if (cast<CmpInst>(VL0)->isCommutative()) { 2916 // Commutative predicate - collect + sort operands of the instructions 2917 // so that each side is more likely to have the same opcode. 2918 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 2919 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 2920 } else { 2921 // Collect operands - commute if it uses the swapped predicate. 2922 for (Value *V : VL) { 2923 auto *Cmp = cast<CmpInst>(V); 2924 Value *LHS = Cmp->getOperand(0); 2925 Value *RHS = Cmp->getOperand(1); 2926 if (Cmp->getPredicate() != P0) 2927 std::swap(LHS, RHS); 2928 Left.push_back(LHS); 2929 Right.push_back(RHS); 2930 } 2931 } 2932 TE->setOperand(0, Left); 2933 TE->setOperand(1, Right); 2934 buildTree_rec(Left, Depth + 1, {TE, 0}); 2935 buildTree_rec(Right, Depth + 1, {TE, 1}); 2936 return; 2937 } 2938 case Instruction::Select: 2939 case Instruction::FNeg: 2940 case Instruction::Add: 2941 case Instruction::FAdd: 2942 case Instruction::Sub: 2943 case Instruction::FSub: 2944 case Instruction::Mul: 2945 case Instruction::FMul: 2946 case Instruction::UDiv: 2947 case Instruction::SDiv: 2948 case Instruction::FDiv: 2949 case Instruction::URem: 2950 case Instruction::SRem: 2951 case Instruction::FRem: 2952 case Instruction::Shl: 2953 case Instruction::LShr: 2954 case Instruction::AShr: 2955 case Instruction::And: 2956 case Instruction::Or: 2957 case Instruction::Xor: { 2958 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2959 ReuseShuffleIndicies); 2960 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 2961 2962 // Sort operands of the instructions so that each side is more likely to 2963 // have the same opcode. 2964 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 2965 ValueList Left, Right; 2966 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 2967 TE->setOperand(0, Left); 2968 TE->setOperand(1, Right); 2969 buildTree_rec(Left, Depth + 1, {TE, 0}); 2970 buildTree_rec(Right, Depth + 1, {TE, 1}); 2971 return; 2972 } 2973 2974 TE->setOperandsInOrder(); 2975 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2976 ValueList Operands; 2977 // Prepare the operand vector. 2978 for (Value *V : VL) 2979 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2980 2981 buildTree_rec(Operands, Depth + 1, {TE, i}); 2982 } 2983 return; 2984 } 2985 case Instruction::GetElementPtr: { 2986 // We don't combine GEPs with complicated (nested) indexing. 2987 for (Value *V : VL) { 2988 if (cast<Instruction>(V)->getNumOperands() != 2) { 2989 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 2990 BS.cancelScheduling(VL, VL0); 2991 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2992 ReuseShuffleIndicies); 2993 return; 2994 } 2995 } 2996 2997 // We can't combine several GEPs into one vector if they operate on 2998 // different types. 2999 Type *Ty0 = VL0->getOperand(0)->getType(); 3000 for (Value *V : VL) { 3001 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 3002 if (Ty0 != CurTy) { 3003 LLVM_DEBUG(dbgs() 3004 << "SLP: not-vectorizable GEP (different types).\n"); 3005 BS.cancelScheduling(VL, VL0); 3006 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3007 ReuseShuffleIndicies); 3008 return; 3009 } 3010 } 3011 3012 // We don't combine GEPs with non-constant indexes. 3013 Type *Ty1 = VL0->getOperand(1)->getType(); 3014 for (Value *V : VL) { 3015 auto Op = cast<Instruction>(V)->getOperand(1); 3016 if (!isa<ConstantInt>(Op) || 3017 (Op->getType() != Ty1 && 3018 Op->getType()->getScalarSizeInBits() > 3019 DL->getIndexSizeInBits( 3020 V->getType()->getPointerAddressSpace()))) { 3021 LLVM_DEBUG(dbgs() 3022 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 3023 BS.cancelScheduling(VL, VL0); 3024 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3025 ReuseShuffleIndicies); 3026 return; 3027 } 3028 } 3029 3030 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3031 ReuseShuffleIndicies); 3032 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 3033 TE->setOperandsInOrder(); 3034 for (unsigned i = 0, e = 2; i < e; ++i) { 3035 ValueList Operands; 3036 // Prepare the operand vector. 3037 for (Value *V : VL) 3038 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3039 3040 buildTree_rec(Operands, Depth + 1, {TE, i}); 3041 } 3042 return; 3043 } 3044 case Instruction::Store: { 3045 // Check if the stores are consecutive or if we need to swizzle them. 3046 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 3047 // Make sure all stores in the bundle are simple - we can't vectorize 3048 // atomic or volatile stores. 3049 SmallVector<Value *, 4> PointerOps(VL.size()); 3050 ValueList Operands(VL.size()); 3051 auto POIter = PointerOps.begin(); 3052 auto OIter = Operands.begin(); 3053 for (Value *V : VL) { 3054 auto *SI = cast<StoreInst>(V); 3055 if (!SI->isSimple()) { 3056 BS.cancelScheduling(VL, VL0); 3057 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3058 ReuseShuffleIndicies); 3059 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 3060 return; 3061 } 3062 *POIter = SI->getPointerOperand(); 3063 *OIter = SI->getValueOperand(); 3064 ++POIter; 3065 ++OIter; 3066 } 3067 3068 OrdersType CurrentOrder; 3069 // Check the order of pointer operands. 3070 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 3071 Value *Ptr0; 3072 Value *PtrN; 3073 if (CurrentOrder.empty()) { 3074 Ptr0 = PointerOps.front(); 3075 PtrN = PointerOps.back(); 3076 } else { 3077 Ptr0 = PointerOps[CurrentOrder.front()]; 3078 PtrN = PointerOps[CurrentOrder.back()]; 3079 } 3080 const SCEV *Scev0 = SE->getSCEV(Ptr0); 3081 const SCEV *ScevN = SE->getSCEV(PtrN); 3082 const auto *Diff = 3083 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 3084 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 3085 // Check that the sorted pointer operands are consecutive. 3086 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 3087 if (CurrentOrder.empty()) { 3088 // Original stores are consecutive and does not require reordering. 3089 ++NumOpsWantToKeepOriginalOrder; 3090 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 3091 UserTreeIdx, ReuseShuffleIndicies); 3092 TE->setOperandsInOrder(); 3093 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3094 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 3095 } else { 3096 TreeEntry *TE = 3097 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3098 ReuseShuffleIndicies, CurrentOrder); 3099 TE->setOperandsInOrder(); 3100 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3101 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 3102 findRootOrder(CurrentOrder); 3103 ++NumOpsWantToKeepOrder[CurrentOrder]; 3104 } 3105 return; 3106 } 3107 } 3108 3109 BS.cancelScheduling(VL, VL0); 3110 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3111 ReuseShuffleIndicies); 3112 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 3113 return; 3114 } 3115 case Instruction::Call: { 3116 // Check if the calls are all to the same vectorizable intrinsic or 3117 // library function. 3118 CallInst *CI = cast<CallInst>(VL0); 3119 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3120 3121 VFShape Shape = VFShape::get( 3122 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 3123 false /*HasGlobalPred*/); 3124 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3125 3126 if (!VecFunc && !isTriviallyVectorizable(ID)) { 3127 BS.cancelScheduling(VL, VL0); 3128 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3129 ReuseShuffleIndicies); 3130 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 3131 return; 3132 } 3133 Function *F = CI->getCalledFunction(); 3134 unsigned NumArgs = CI->getNumArgOperands(); 3135 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 3136 for (unsigned j = 0; j != NumArgs; ++j) 3137 if (hasVectorInstrinsicScalarOpd(ID, j)) 3138 ScalarArgs[j] = CI->getArgOperand(j); 3139 for (Value *V : VL) { 3140 CallInst *CI2 = dyn_cast<CallInst>(V); 3141 if (!CI2 || CI2->getCalledFunction() != F || 3142 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 3143 (VecFunc && 3144 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 3145 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 3146 BS.cancelScheduling(VL, VL0); 3147 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3148 ReuseShuffleIndicies); 3149 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 3150 << "\n"); 3151 return; 3152 } 3153 // Some intrinsics have scalar arguments and should be same in order for 3154 // them to be vectorized. 3155 for (unsigned j = 0; j != NumArgs; ++j) { 3156 if (hasVectorInstrinsicScalarOpd(ID, j)) { 3157 Value *A1J = CI2->getArgOperand(j); 3158 if (ScalarArgs[j] != A1J) { 3159 BS.cancelScheduling(VL, VL0); 3160 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3161 ReuseShuffleIndicies); 3162 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 3163 << " argument " << ScalarArgs[j] << "!=" << A1J 3164 << "\n"); 3165 return; 3166 } 3167 } 3168 } 3169 // Verify that the bundle operands are identical between the two calls. 3170 if (CI->hasOperandBundles() && 3171 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 3172 CI->op_begin() + CI->getBundleOperandsEndIndex(), 3173 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 3174 BS.cancelScheduling(VL, VL0); 3175 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3176 ReuseShuffleIndicies); 3177 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 3178 << *CI << "!=" << *V << '\n'); 3179 return; 3180 } 3181 } 3182 3183 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3184 ReuseShuffleIndicies); 3185 TE->setOperandsInOrder(); 3186 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 3187 ValueList Operands; 3188 // Prepare the operand vector. 3189 for (Value *V : VL) { 3190 auto *CI2 = cast<CallInst>(V); 3191 Operands.push_back(CI2->getArgOperand(i)); 3192 } 3193 buildTree_rec(Operands, Depth + 1, {TE, i}); 3194 } 3195 return; 3196 } 3197 case Instruction::ShuffleVector: { 3198 // If this is not an alternate sequence of opcode like add-sub 3199 // then do not vectorize this instruction. 3200 if (!S.isAltShuffle()) { 3201 BS.cancelScheduling(VL, VL0); 3202 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3203 ReuseShuffleIndicies); 3204 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 3205 return; 3206 } 3207 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3208 ReuseShuffleIndicies); 3209 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 3210 3211 // Reorder operands if reordering would enable vectorization. 3212 if (isa<BinaryOperator>(VL0)) { 3213 ValueList Left, Right; 3214 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3215 TE->setOperand(0, Left); 3216 TE->setOperand(1, Right); 3217 buildTree_rec(Left, Depth + 1, {TE, 0}); 3218 buildTree_rec(Right, Depth + 1, {TE, 1}); 3219 return; 3220 } 3221 3222 TE->setOperandsInOrder(); 3223 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3224 ValueList Operands; 3225 // Prepare the operand vector. 3226 for (Value *V : VL) 3227 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3228 3229 buildTree_rec(Operands, Depth + 1, {TE, i}); 3230 } 3231 return; 3232 } 3233 default: 3234 BS.cancelScheduling(VL, VL0); 3235 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3236 ReuseShuffleIndicies); 3237 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 3238 return; 3239 } 3240 } 3241 3242 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 3243 unsigned N = 1; 3244 Type *EltTy = T; 3245 3246 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 3247 isa<VectorType>(EltTy)) { 3248 if (auto *ST = dyn_cast<StructType>(EltTy)) { 3249 // Check that struct is homogeneous. 3250 for (const auto *Ty : ST->elements()) 3251 if (Ty != *ST->element_begin()) 3252 return 0; 3253 N *= ST->getNumElements(); 3254 EltTy = *ST->element_begin(); 3255 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 3256 N *= AT->getNumElements(); 3257 EltTy = AT->getElementType(); 3258 } else { 3259 auto *VT = cast<FixedVectorType>(EltTy); 3260 N *= VT->getNumElements(); 3261 EltTy = VT->getElementType(); 3262 } 3263 } 3264 3265 if (!isValidElementType(EltTy)) 3266 return 0; 3267 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 3268 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 3269 return 0; 3270 return N; 3271 } 3272 3273 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 3274 SmallVectorImpl<unsigned> &CurrentOrder) const { 3275 Instruction *E0 = cast<Instruction>(OpValue); 3276 assert(E0->getOpcode() == Instruction::ExtractElement || 3277 E0->getOpcode() == Instruction::ExtractValue); 3278 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 3279 // Check if all of the extracts come from the same vector and from the 3280 // correct offset. 3281 Value *Vec = E0->getOperand(0); 3282 3283 CurrentOrder.clear(); 3284 3285 // We have to extract from a vector/aggregate with the same number of elements. 3286 unsigned NElts; 3287 if (E0->getOpcode() == Instruction::ExtractValue) { 3288 const DataLayout &DL = E0->getModule()->getDataLayout(); 3289 NElts = canMapToVector(Vec->getType(), DL); 3290 if (!NElts) 3291 return false; 3292 // Check if load can be rewritten as load of vector. 3293 LoadInst *LI = dyn_cast<LoadInst>(Vec); 3294 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 3295 return false; 3296 } else { 3297 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 3298 } 3299 3300 if (NElts != VL.size()) 3301 return false; 3302 3303 // Check that all of the indices extract from the correct offset. 3304 bool ShouldKeepOrder = true; 3305 unsigned E = VL.size(); 3306 // Assign to all items the initial value E + 1 so we can check if the extract 3307 // instruction index was used already. 3308 // Also, later we can check that all the indices are used and we have a 3309 // consecutive access in the extract instructions, by checking that no 3310 // element of CurrentOrder still has value E + 1. 3311 CurrentOrder.assign(E, E + 1); 3312 unsigned I = 0; 3313 for (; I < E; ++I) { 3314 auto *Inst = cast<Instruction>(VL[I]); 3315 if (Inst->getOperand(0) != Vec) 3316 break; 3317 Optional<unsigned> Idx = getExtractIndex(Inst); 3318 if (!Idx) 3319 break; 3320 const unsigned ExtIdx = *Idx; 3321 if (ExtIdx != I) { 3322 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 3323 break; 3324 ShouldKeepOrder = false; 3325 CurrentOrder[ExtIdx] = I; 3326 } else { 3327 if (CurrentOrder[I] != E + 1) 3328 break; 3329 CurrentOrder[I] = I; 3330 } 3331 } 3332 if (I < E) { 3333 CurrentOrder.clear(); 3334 return false; 3335 } 3336 3337 return ShouldKeepOrder; 3338 } 3339 3340 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 3341 return I->hasOneUse() || 3342 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 3343 return ScalarToTreeEntry.count(U) > 0; 3344 }); 3345 } 3346 3347 static std::pair<unsigned, unsigned> 3348 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 3349 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 3350 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3351 3352 // Calculate the cost of the scalar and vector calls. 3353 IntrinsicCostAttributes CostAttrs(ID, *CI, VecTy->getNumElements()); 3354 int IntrinsicCost = 3355 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 3356 3357 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 3358 VecTy->getNumElements())), 3359 false /*HasGlobalPred*/); 3360 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3361 int LibCost = IntrinsicCost; 3362 if (!CI->isNoBuiltin() && VecFunc) { 3363 // Calculate the cost of the vector library call. 3364 SmallVector<Type *, 4> VecTys; 3365 for (Use &Arg : CI->args()) 3366 VecTys.push_back( 3367 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 3368 3369 // If the corresponding vector call is cheaper, return its cost. 3370 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 3371 TTI::TCK_RecipThroughput); 3372 } 3373 return {IntrinsicCost, LibCost}; 3374 } 3375 3376 int BoUpSLP::getEntryCost(TreeEntry *E) { 3377 ArrayRef<Value*> VL = E->Scalars; 3378 3379 Type *ScalarTy = VL[0]->getType(); 3380 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3381 ScalarTy = SI->getValueOperand()->getType(); 3382 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 3383 ScalarTy = CI->getOperand(0)->getType(); 3384 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 3385 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 3386 3387 // If we have computed a smaller type for the expression, update VecTy so 3388 // that the costs will be accurate. 3389 if (MinBWs.count(VL[0])) 3390 VecTy = FixedVectorType::get( 3391 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 3392 3393 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 3394 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3395 int ReuseShuffleCost = 0; 3396 if (NeedToShuffleReuses) { 3397 ReuseShuffleCost = 3398 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3399 } 3400 if (E->State == TreeEntry::NeedToGather) { 3401 if (allConstant(VL)) 3402 return 0; 3403 if (isSplat(VL)) { 3404 return ReuseShuffleCost + 3405 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 3406 } 3407 if (E->getOpcode() == Instruction::ExtractElement && 3408 allSameType(VL) && allSameBlock(VL)) { 3409 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 3410 if (ShuffleKind.hasValue()) { 3411 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 3412 for (auto *V : VL) { 3413 // If all users of instruction are going to be vectorized and this 3414 // instruction itself is not going to be vectorized, consider this 3415 // instruction as dead and remove its cost from the final cost of the 3416 // vectorized tree. 3417 if (areAllUsersVectorized(cast<Instruction>(V)) && 3418 !ScalarToTreeEntry.count(V)) { 3419 auto *IO = cast<ConstantInt>( 3420 cast<ExtractElementInst>(V)->getIndexOperand()); 3421 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 3422 IO->getZExtValue()); 3423 } 3424 } 3425 return ReuseShuffleCost + Cost; 3426 } 3427 } 3428 return ReuseShuffleCost + getGatherCost(VL); 3429 } 3430 assert(E->State == TreeEntry::Vectorize && "Unhandled state"); 3431 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 3432 Instruction *VL0 = E->getMainOp(); 3433 unsigned ShuffleOrOp = 3434 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 3435 switch (ShuffleOrOp) { 3436 case Instruction::PHI: 3437 return 0; 3438 3439 case Instruction::ExtractValue: 3440 case Instruction::ExtractElement: { 3441 if (NeedToShuffleReuses) { 3442 unsigned Idx = 0; 3443 for (unsigned I : E->ReuseShuffleIndices) { 3444 if (ShuffleOrOp == Instruction::ExtractElement) { 3445 auto *IO = cast<ConstantInt>( 3446 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 3447 Idx = IO->getZExtValue(); 3448 ReuseShuffleCost -= TTI->getVectorInstrCost( 3449 Instruction::ExtractElement, VecTy, Idx); 3450 } else { 3451 ReuseShuffleCost -= TTI->getVectorInstrCost( 3452 Instruction::ExtractElement, VecTy, Idx); 3453 ++Idx; 3454 } 3455 } 3456 Idx = ReuseShuffleNumbers; 3457 for (Value *V : VL) { 3458 if (ShuffleOrOp == Instruction::ExtractElement) { 3459 auto *IO = cast<ConstantInt>( 3460 cast<ExtractElementInst>(V)->getIndexOperand()); 3461 Idx = IO->getZExtValue(); 3462 } else { 3463 --Idx; 3464 } 3465 ReuseShuffleCost += 3466 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 3467 } 3468 } 3469 int DeadCost = ReuseShuffleCost; 3470 if (!E->ReorderIndices.empty()) { 3471 // TODO: Merge this shuffle with the ReuseShuffleCost. 3472 DeadCost += TTI->getShuffleCost( 3473 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3474 } 3475 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 3476 Instruction *EI = cast<Instruction>(VL[I]); 3477 // If all users are going to be vectorized, instruction can be 3478 // considered as dead. 3479 // The same, if have only one user, it will be vectorized for sure. 3480 if (areAllUsersVectorized(EI)) { 3481 // Take credit for instruction that will become dead. 3482 if (EI->hasOneUse()) { 3483 Instruction *Ext = EI->user_back(); 3484 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3485 all_of(Ext->users(), 3486 [](User *U) { return isa<GetElementPtrInst>(U); })) { 3487 // Use getExtractWithExtendCost() to calculate the cost of 3488 // extractelement/ext pair. 3489 DeadCost -= TTI->getExtractWithExtendCost( 3490 Ext->getOpcode(), Ext->getType(), VecTy, I); 3491 // Add back the cost of s|zext which is subtracted separately. 3492 DeadCost += TTI->getCastInstrCost( 3493 Ext->getOpcode(), Ext->getType(), EI->getType(), 3494 TTI::getCastContextHint(Ext), CostKind, Ext); 3495 continue; 3496 } 3497 } 3498 DeadCost -= 3499 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 3500 } 3501 } 3502 return DeadCost; 3503 } 3504 case Instruction::ZExt: 3505 case Instruction::SExt: 3506 case Instruction::FPToUI: 3507 case Instruction::FPToSI: 3508 case Instruction::FPExt: 3509 case Instruction::PtrToInt: 3510 case Instruction::IntToPtr: 3511 case Instruction::SIToFP: 3512 case Instruction::UIToFP: 3513 case Instruction::Trunc: 3514 case Instruction::FPTrunc: 3515 case Instruction::BitCast: { 3516 Type *SrcTy = VL0->getOperand(0)->getType(); 3517 int ScalarEltCost = 3518 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 3519 TTI::getCastContextHint(VL0), CostKind, VL0); 3520 if (NeedToShuffleReuses) { 3521 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3522 } 3523 3524 // Calculate the cost of this instruction. 3525 int ScalarCost = VL.size() * ScalarEltCost; 3526 3527 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 3528 int VecCost = 0; 3529 // Check if the values are candidates to demote. 3530 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 3531 VecCost = 3532 ReuseShuffleCost + 3533 TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, 3534 TTI::getCastContextHint(VL0), CostKind, VL0); 3535 } 3536 return VecCost - ScalarCost; 3537 } 3538 case Instruction::FCmp: 3539 case Instruction::ICmp: 3540 case Instruction::Select: { 3541 // Calculate the cost of this instruction. 3542 int ScalarEltCost = 3543 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 3544 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 3545 if (NeedToShuffleReuses) { 3546 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3547 } 3548 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 3549 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3550 3551 // Check if all entries in VL are either compares or selects with compares 3552 // as condition that have the same predicates. 3553 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 3554 bool First = true; 3555 for (auto *V : VL) { 3556 CmpInst::Predicate CurrentPred; 3557 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 3558 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 3559 !match(V, MatchCmp)) || 3560 (!First && VecPred != CurrentPred)) { 3561 VecPred = CmpInst::BAD_ICMP_PREDICATE; 3562 break; 3563 } 3564 First = false; 3565 VecPred = CurrentPred; 3566 } 3567 3568 int VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), VecTy, MaskTy, 3569 VecPred, CostKind, VL0); 3570 // Check if it is possible and profitable to use min/max for selects in 3571 // VL. 3572 // 3573 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 3574 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 3575 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 3576 {VecTy, VecTy}); 3577 int IntrinsicCost = TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 3578 // If the selects are the only uses of the compares, they will be dead 3579 // and we can adjust the cost by removing their cost. 3580 if (IntrinsicAndUse.second) 3581 IntrinsicCost -= 3582 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, 3583 CmpInst::BAD_ICMP_PREDICATE, CostKind); 3584 VecCost = std::min(VecCost, IntrinsicCost); 3585 } 3586 return ReuseShuffleCost + VecCost - ScalarCost; 3587 } 3588 case Instruction::FNeg: 3589 case Instruction::Add: 3590 case Instruction::FAdd: 3591 case Instruction::Sub: 3592 case Instruction::FSub: 3593 case Instruction::Mul: 3594 case Instruction::FMul: 3595 case Instruction::UDiv: 3596 case Instruction::SDiv: 3597 case Instruction::FDiv: 3598 case Instruction::URem: 3599 case Instruction::SRem: 3600 case Instruction::FRem: 3601 case Instruction::Shl: 3602 case Instruction::LShr: 3603 case Instruction::AShr: 3604 case Instruction::And: 3605 case Instruction::Or: 3606 case Instruction::Xor: { 3607 // Certain instructions can be cheaper to vectorize if they have a 3608 // constant second vector operand. 3609 TargetTransformInfo::OperandValueKind Op1VK = 3610 TargetTransformInfo::OK_AnyValue; 3611 TargetTransformInfo::OperandValueKind Op2VK = 3612 TargetTransformInfo::OK_UniformConstantValue; 3613 TargetTransformInfo::OperandValueProperties Op1VP = 3614 TargetTransformInfo::OP_None; 3615 TargetTransformInfo::OperandValueProperties Op2VP = 3616 TargetTransformInfo::OP_PowerOf2; 3617 3618 // If all operands are exactly the same ConstantInt then set the 3619 // operand kind to OK_UniformConstantValue. 3620 // If instead not all operands are constants, then set the operand kind 3621 // to OK_AnyValue. If all operands are constants but not the same, 3622 // then set the operand kind to OK_NonUniformConstantValue. 3623 ConstantInt *CInt0 = nullptr; 3624 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3625 const Instruction *I = cast<Instruction>(VL[i]); 3626 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 3627 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 3628 if (!CInt) { 3629 Op2VK = TargetTransformInfo::OK_AnyValue; 3630 Op2VP = TargetTransformInfo::OP_None; 3631 break; 3632 } 3633 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 3634 !CInt->getValue().isPowerOf2()) 3635 Op2VP = TargetTransformInfo::OP_None; 3636 if (i == 0) { 3637 CInt0 = CInt; 3638 continue; 3639 } 3640 if (CInt0 != CInt) 3641 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 3642 } 3643 3644 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 3645 int ScalarEltCost = TTI->getArithmeticInstrCost( 3646 E->getOpcode(), ScalarTy, CostKind, Op1VK, Op2VK, Op1VP, Op2VP, 3647 Operands, VL0); 3648 if (NeedToShuffleReuses) { 3649 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3650 } 3651 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3652 int VecCost = TTI->getArithmeticInstrCost( 3653 E->getOpcode(), VecTy, CostKind, Op1VK, Op2VK, Op1VP, Op2VP, 3654 Operands, VL0); 3655 return ReuseShuffleCost + VecCost - ScalarCost; 3656 } 3657 case Instruction::GetElementPtr: { 3658 TargetTransformInfo::OperandValueKind Op1VK = 3659 TargetTransformInfo::OK_AnyValue; 3660 TargetTransformInfo::OperandValueKind Op2VK = 3661 TargetTransformInfo::OK_UniformConstantValue; 3662 3663 int ScalarEltCost = 3664 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, CostKind, 3665 Op1VK, Op2VK); 3666 if (NeedToShuffleReuses) { 3667 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3668 } 3669 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3670 int VecCost = 3671 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, CostKind, 3672 Op1VK, Op2VK); 3673 return ReuseShuffleCost + VecCost - ScalarCost; 3674 } 3675 case Instruction::Load: { 3676 // Cost of wide load - cost of scalar loads. 3677 Align alignment = cast<LoadInst>(VL0)->getAlign(); 3678 int ScalarEltCost = 3679 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, 3680 CostKind, VL0); 3681 if (NeedToShuffleReuses) { 3682 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3683 } 3684 int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 3685 int VecLdCost = 3686 TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, 3687 CostKind, VL0); 3688 if (!E->ReorderIndices.empty()) { 3689 // TODO: Merge this shuffle with the ReuseShuffleCost. 3690 VecLdCost += TTI->getShuffleCost( 3691 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3692 } 3693 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 3694 } 3695 case Instruction::Store: { 3696 // We know that we can merge the stores. Calculate the cost. 3697 bool IsReorder = !E->ReorderIndices.empty(); 3698 auto *SI = 3699 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 3700 Align Alignment = SI->getAlign(); 3701 int ScalarEltCost = 3702 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, Alignment, 0, 3703 CostKind, VL0); 3704 if (NeedToShuffleReuses) 3705 ReuseShuffleCost = -(ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3706 int ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 3707 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, 3708 VecTy, Alignment, 0, CostKind, VL0); 3709 if (IsReorder) { 3710 // TODO: Merge this shuffle with the ReuseShuffleCost. 3711 VecStCost += TTI->getShuffleCost( 3712 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3713 } 3714 return ReuseShuffleCost + VecStCost - ScalarStCost; 3715 } 3716 case Instruction::Call: { 3717 CallInst *CI = cast<CallInst>(VL0); 3718 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3719 3720 // Calculate the cost of the scalar and vector calls. 3721 IntrinsicCostAttributes CostAttrs(ID, *CI, 1, 1); 3722 int ScalarEltCost = TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 3723 if (NeedToShuffleReuses) { 3724 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3725 } 3726 int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 3727 3728 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 3729 int VecCallCost = std::min(VecCallCosts.first, VecCallCosts.second); 3730 3731 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 3732 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 3733 << " for " << *CI << "\n"); 3734 3735 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 3736 } 3737 case Instruction::ShuffleVector: { 3738 assert(E->isAltShuffle() && 3739 ((Instruction::isBinaryOp(E->getOpcode()) && 3740 Instruction::isBinaryOp(E->getAltOpcode())) || 3741 (Instruction::isCast(E->getOpcode()) && 3742 Instruction::isCast(E->getAltOpcode()))) && 3743 "Invalid Shuffle Vector Operand"); 3744 int ScalarCost = 0; 3745 if (NeedToShuffleReuses) { 3746 for (unsigned Idx : E->ReuseShuffleIndices) { 3747 Instruction *I = cast<Instruction>(VL[Idx]); 3748 ReuseShuffleCost -= TTI->getInstructionCost(I, CostKind); 3749 } 3750 for (Value *V : VL) { 3751 Instruction *I = cast<Instruction>(V); 3752 ReuseShuffleCost += TTI->getInstructionCost(I, CostKind); 3753 } 3754 } 3755 for (Value *V : VL) { 3756 Instruction *I = cast<Instruction>(V); 3757 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 3758 ScalarCost += TTI->getInstructionCost(I, CostKind); 3759 } 3760 // VecCost is equal to sum of the cost of creating 2 vectors 3761 // and the cost of creating shuffle. 3762 int VecCost = 0; 3763 if (Instruction::isBinaryOp(E->getOpcode())) { 3764 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 3765 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 3766 CostKind); 3767 } else { 3768 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 3769 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 3770 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 3771 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 3772 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 3773 TTI::CastContextHint::None, CostKind); 3774 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 3775 TTI::CastContextHint::None, CostKind); 3776 } 3777 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0); 3778 return ReuseShuffleCost + VecCost - ScalarCost; 3779 } 3780 default: 3781 llvm_unreachable("Unknown instruction"); 3782 } 3783 } 3784 3785 bool BoUpSLP::isFullyVectorizableTinyTree() const { 3786 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 3787 << VectorizableTree.size() << " is fully vectorizable .\n"); 3788 3789 // We only handle trees of heights 1 and 2. 3790 if (VectorizableTree.size() == 1 && 3791 VectorizableTree[0]->State == TreeEntry::Vectorize) 3792 return true; 3793 3794 if (VectorizableTree.size() != 2) 3795 return false; 3796 3797 // Handle splat and all-constants stores. 3798 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 3799 (allConstant(VectorizableTree[1]->Scalars) || 3800 isSplat(VectorizableTree[1]->Scalars))) 3801 return true; 3802 3803 // Gathering cost would be too much for tiny trees. 3804 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 3805 VectorizableTree[1]->State == TreeEntry::NeedToGather) 3806 return false; 3807 3808 return true; 3809 } 3810 3811 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 3812 TargetTransformInfo *TTI) { 3813 // Look past the root to find a source value. Arbitrarily follow the 3814 // path through operand 0 of any 'or'. Also, peek through optional 3815 // shift-left-by-multiple-of-8-bits. 3816 Value *ZextLoad = Root; 3817 const APInt *ShAmtC; 3818 while (!isa<ConstantExpr>(ZextLoad) && 3819 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 3820 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 3821 ShAmtC->urem(8) == 0))) 3822 ZextLoad = cast<BinaryOperator>(ZextLoad)->getOperand(0); 3823 3824 // Check if the input is an extended load of the required or/shift expression. 3825 Value *LoadPtr; 3826 if (ZextLoad == Root || !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr))))) 3827 return false; 3828 3829 // Require that the total load bit width is a legal integer type. 3830 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 3831 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 3832 Type *SrcTy = LoadPtr->getType()->getPointerElementType(); 3833 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 3834 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 3835 return false; 3836 3837 // Everything matched - assume that we can fold the whole sequence using 3838 // load combining. 3839 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 3840 << *(cast<Instruction>(Root)) << "\n"); 3841 3842 return true; 3843 } 3844 3845 bool BoUpSLP::isLoadCombineReductionCandidate(unsigned RdxOpcode) const { 3846 if (RdxOpcode != Instruction::Or) 3847 return false; 3848 3849 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3850 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 3851 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI); 3852 } 3853 3854 bool BoUpSLP::isLoadCombineCandidate() const { 3855 // Peek through a final sequence of stores and check if all operations are 3856 // likely to be load-combined. 3857 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3858 for (Value *Scalar : VectorizableTree[0]->Scalars) { 3859 Value *X; 3860 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 3861 !isLoadCombineCandidateImpl(X, NumElts, TTI)) 3862 return false; 3863 } 3864 return true; 3865 } 3866 3867 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 3868 // We can vectorize the tree if its size is greater than or equal to the 3869 // minimum size specified by the MinTreeSize command line option. 3870 if (VectorizableTree.size() >= MinTreeSize) 3871 return false; 3872 3873 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 3874 // can vectorize it if we can prove it fully vectorizable. 3875 if (isFullyVectorizableTinyTree()) 3876 return false; 3877 3878 assert(VectorizableTree.empty() 3879 ? ExternalUses.empty() 3880 : true && "We shouldn't have any external users"); 3881 3882 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 3883 // vectorizable. 3884 return true; 3885 } 3886 3887 int BoUpSLP::getSpillCost() const { 3888 // Walk from the bottom of the tree to the top, tracking which values are 3889 // live. When we see a call instruction that is not part of our tree, 3890 // query TTI to see if there is a cost to keeping values live over it 3891 // (for example, if spills and fills are required). 3892 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 3893 int Cost = 0; 3894 3895 SmallPtrSet<Instruction*, 4> LiveValues; 3896 Instruction *PrevInst = nullptr; 3897 3898 // The entries in VectorizableTree are not necessarily ordered by their 3899 // position in basic blocks. Collect them and order them by dominance so later 3900 // instructions are guaranteed to be visited first. For instructions in 3901 // different basic blocks, we only scan to the beginning of the block, so 3902 // their order does not matter, as long as all instructions in a basic block 3903 // are grouped together. Using dominance ensures a deterministic order. 3904 SmallVector<Instruction *, 16> OrderedScalars; 3905 for (const auto &TEPtr : VectorizableTree) { 3906 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 3907 if (!Inst) 3908 continue; 3909 OrderedScalars.push_back(Inst); 3910 } 3911 llvm::stable_sort(OrderedScalars, [this](Instruction *A, Instruction *B) { 3912 return DT->dominates(B, A); 3913 }); 3914 3915 for (Instruction *Inst : OrderedScalars) { 3916 if (!PrevInst) { 3917 PrevInst = Inst; 3918 continue; 3919 } 3920 3921 // Update LiveValues. 3922 LiveValues.erase(PrevInst); 3923 for (auto &J : PrevInst->operands()) { 3924 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 3925 LiveValues.insert(cast<Instruction>(&*J)); 3926 } 3927 3928 LLVM_DEBUG({ 3929 dbgs() << "SLP: #LV: " << LiveValues.size(); 3930 for (auto *X : LiveValues) 3931 dbgs() << " " << X->getName(); 3932 dbgs() << ", Looking at "; 3933 Inst->dump(); 3934 }); 3935 3936 // Now find the sequence of instructions between PrevInst and Inst. 3937 unsigned NumCalls = 0; 3938 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 3939 PrevInstIt = 3940 PrevInst->getIterator().getReverse(); 3941 while (InstIt != PrevInstIt) { 3942 if (PrevInstIt == PrevInst->getParent()->rend()) { 3943 PrevInstIt = Inst->getParent()->rbegin(); 3944 continue; 3945 } 3946 3947 // Debug information does not impact spill cost. 3948 if ((isa<CallInst>(&*PrevInstIt) && 3949 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 3950 &*PrevInstIt != PrevInst) 3951 NumCalls++; 3952 3953 ++PrevInstIt; 3954 } 3955 3956 if (NumCalls) { 3957 SmallVector<Type*, 4> V; 3958 for (auto *II : LiveValues) 3959 V.push_back(FixedVectorType::get(II->getType(), BundleWidth)); 3960 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 3961 } 3962 3963 PrevInst = Inst; 3964 } 3965 3966 return Cost; 3967 } 3968 3969 int BoUpSLP::getTreeCost() { 3970 int Cost = 0; 3971 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 3972 << VectorizableTree.size() << ".\n"); 3973 3974 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 3975 3976 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 3977 TreeEntry &TE = *VectorizableTree[I].get(); 3978 3979 // We create duplicate tree entries for gather sequences that have multiple 3980 // uses. However, we should not compute the cost of duplicate sequences. 3981 // For example, if we have a build vector (i.e., insertelement sequence) 3982 // that is used by more than one vector instruction, we only need to 3983 // compute the cost of the insertelement instructions once. The redundant 3984 // instructions will be eliminated by CSE. 3985 // 3986 // We should consider not creating duplicate tree entries for gather 3987 // sequences, and instead add additional edges to the tree representing 3988 // their uses. Since such an approach results in fewer total entries, 3989 // existing heuristics based on tree size may yield different results. 3990 // 3991 if (TE.State == TreeEntry::NeedToGather && 3992 std::any_of(std::next(VectorizableTree.begin(), I + 1), 3993 VectorizableTree.end(), 3994 [TE](const std::unique_ptr<TreeEntry> &EntryPtr) { 3995 return EntryPtr->State == TreeEntry::NeedToGather && 3996 EntryPtr->isSame(TE.Scalars); 3997 })) 3998 continue; 3999 4000 int C = getEntryCost(&TE); 4001 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 4002 << " for bundle that starts with " << *TE.Scalars[0] 4003 << ".\n"); 4004 Cost += C; 4005 } 4006 4007 SmallPtrSet<Value *, 16> ExtractCostCalculated; 4008 int ExtractCost = 0; 4009 for (ExternalUser &EU : ExternalUses) { 4010 // We only add extract cost once for the same scalar. 4011 if (!ExtractCostCalculated.insert(EU.Scalar).second) 4012 continue; 4013 4014 // Uses by ephemeral values are free (because the ephemeral value will be 4015 // removed prior to code generation, and so the extraction will be 4016 // removed as well). 4017 if (EphValues.count(EU.User)) 4018 continue; 4019 4020 // If we plan to rewrite the tree in a smaller type, we will need to sign 4021 // extend the extracted value back to the original type. Here, we account 4022 // for the extract and the added cost of the sign extend if needed. 4023 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 4024 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4025 if (MinBWs.count(ScalarRoot)) { 4026 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4027 auto Extend = 4028 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 4029 VecTy = FixedVectorType::get(MinTy, BundleWidth); 4030 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 4031 VecTy, EU.Lane); 4032 } else { 4033 ExtractCost += 4034 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 4035 } 4036 } 4037 4038 int SpillCost = getSpillCost(); 4039 Cost += SpillCost + ExtractCost; 4040 4041 #ifndef NDEBUG 4042 SmallString<256> Str; 4043 { 4044 raw_svector_ostream OS(Str); 4045 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 4046 << "SLP: Extract Cost = " << ExtractCost << ".\n" 4047 << "SLP: Total Cost = " << Cost << ".\n"; 4048 } 4049 LLVM_DEBUG(dbgs() << Str); 4050 if (ViewSLPTree) 4051 ViewGraph(this, "SLP" + F->getName(), false, Str); 4052 #endif 4053 4054 return Cost; 4055 } 4056 4057 int BoUpSLP::getGatherCost(FixedVectorType *Ty, 4058 const DenseSet<unsigned> &ShuffledIndices) const { 4059 unsigned NumElts = Ty->getNumElements(); 4060 APInt DemandedElts = APInt::getNullValue(NumElts); 4061 for (unsigned I = 0; I < NumElts; ++I) 4062 if (!ShuffledIndices.count(I)) 4063 DemandedElts.setBit(I); 4064 int Cost = TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 4065 /*Extract*/ false); 4066 if (!ShuffledIndices.empty()) 4067 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 4068 return Cost; 4069 } 4070 4071 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 4072 // Find the type of the operands in VL. 4073 Type *ScalarTy = VL[0]->getType(); 4074 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4075 ScalarTy = SI->getValueOperand()->getType(); 4076 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4077 // Find the cost of inserting/extracting values from the vector. 4078 // Check if the same elements are inserted several times and count them as 4079 // shuffle candidates. 4080 DenseSet<unsigned> ShuffledElements; 4081 DenseSet<Value *> UniqueElements; 4082 // Iterate in reverse order to consider insert elements with the high cost. 4083 for (unsigned I = VL.size(); I > 0; --I) { 4084 unsigned Idx = I - 1; 4085 if (!UniqueElements.insert(VL[Idx]).second) 4086 ShuffledElements.insert(Idx); 4087 } 4088 return getGatherCost(VecTy, ShuffledElements); 4089 } 4090 4091 // Perform operand reordering on the instructions in VL and return the reordered 4092 // operands in Left and Right. 4093 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 4094 SmallVectorImpl<Value *> &Left, 4095 SmallVectorImpl<Value *> &Right, 4096 const DataLayout &DL, 4097 ScalarEvolution &SE, 4098 const BoUpSLP &R) { 4099 if (VL.empty()) 4100 return; 4101 VLOperands Ops(VL, DL, SE, R); 4102 // Reorder the operands in place. 4103 Ops.reorder(); 4104 Left = Ops.getVL(0); 4105 Right = Ops.getVL(1); 4106 } 4107 4108 void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) { 4109 // Get the basic block this bundle is in. All instructions in the bundle 4110 // should be in this block. 4111 auto *Front = E->getMainOp(); 4112 auto *BB = Front->getParent(); 4113 assert(llvm::all_of(make_range(E->Scalars.begin(), E->Scalars.end()), 4114 [=](Value *V) -> bool { 4115 auto *I = cast<Instruction>(V); 4116 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 4117 })); 4118 4119 // The last instruction in the bundle in program order. 4120 Instruction *LastInst = nullptr; 4121 4122 // Find the last instruction. The common case should be that BB has been 4123 // scheduled, and the last instruction is VL.back(). So we start with 4124 // VL.back() and iterate over schedule data until we reach the end of the 4125 // bundle. The end of the bundle is marked by null ScheduleData. 4126 if (BlocksSchedules.count(BB)) { 4127 auto *Bundle = 4128 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 4129 if (Bundle && Bundle->isPartOfBundle()) 4130 for (; Bundle; Bundle = Bundle->NextInBundle) 4131 if (Bundle->OpValue == Bundle->Inst) 4132 LastInst = Bundle->Inst; 4133 } 4134 4135 // LastInst can still be null at this point if there's either not an entry 4136 // for BB in BlocksSchedules or there's no ScheduleData available for 4137 // VL.back(). This can be the case if buildTree_rec aborts for various 4138 // reasons (e.g., the maximum recursion depth is reached, the maximum region 4139 // size is reached, etc.). ScheduleData is initialized in the scheduling 4140 // "dry-run". 4141 // 4142 // If this happens, we can still find the last instruction by brute force. We 4143 // iterate forwards from Front (inclusive) until we either see all 4144 // instructions in the bundle or reach the end of the block. If Front is the 4145 // last instruction in program order, LastInst will be set to Front, and we 4146 // will visit all the remaining instructions in the block. 4147 // 4148 // One of the reasons we exit early from buildTree_rec is to place an upper 4149 // bound on compile-time. Thus, taking an additional compile-time hit here is 4150 // not ideal. However, this should be exceedingly rare since it requires that 4151 // we both exit early from buildTree_rec and that the bundle be out-of-order 4152 // (causing us to iterate all the way to the end of the block). 4153 if (!LastInst) { 4154 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 4155 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 4156 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 4157 LastInst = &I; 4158 if (Bundle.empty()) 4159 break; 4160 } 4161 } 4162 assert(LastInst && "Failed to find last instruction in bundle"); 4163 4164 // Set the insertion point after the last instruction in the bundle. Set the 4165 // debug location to Front. 4166 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 4167 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 4168 } 4169 4170 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 4171 Value *Val0 = 4172 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 4173 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 4174 Value *Vec = UndefValue::get(VecTy); 4175 unsigned InsIndex = 0; 4176 for (Value *Val : VL) { 4177 Vec = Builder.CreateInsertElement(Vec, Val, Builder.getInt32(InsIndex++)); 4178 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 4179 if (!InsElt) 4180 continue; 4181 GatherSeq.insert(InsElt); 4182 CSEBlocks.insert(InsElt->getParent()); 4183 // Add to our 'need-to-extract' list. 4184 if (TreeEntry *Entry = getTreeEntry(Val)) { 4185 // Find which lane we need to extract. 4186 unsigned FoundLane = std::distance(Entry->Scalars.begin(), 4187 find(Entry->Scalars, Val)); 4188 assert(FoundLane < Entry->Scalars.size() && "Couldn't find extract lane"); 4189 if (!Entry->ReuseShuffleIndices.empty()) { 4190 FoundLane = std::distance(Entry->ReuseShuffleIndices.begin(), 4191 find(Entry->ReuseShuffleIndices, FoundLane)); 4192 } 4193 ExternalUses.push_back(ExternalUser(Val, InsElt, FoundLane)); 4194 } 4195 } 4196 4197 return Vec; 4198 } 4199 4200 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 4201 InstructionsState S = getSameOpcode(VL); 4202 if (S.getOpcode()) { 4203 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4204 if (E->isSame(VL)) { 4205 Value *V = vectorizeTree(E); 4206 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 4207 // We need to get the vectorized value but without shuffle. 4208 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 4209 V = SV->getOperand(0); 4210 } else { 4211 // Reshuffle to get only unique values. 4212 SmallVector<int, 4> UniqueIdxs; 4213 SmallSet<int, 4> UsedIdxs; 4214 for (int Idx : E->ReuseShuffleIndices) 4215 if (UsedIdxs.insert(Idx).second) 4216 UniqueIdxs.emplace_back(Idx); 4217 V = Builder.CreateShuffleVector(V, UniqueIdxs); 4218 } 4219 } 4220 return V; 4221 } 4222 } 4223 } 4224 4225 // Check that every instruction appears once in this bundle. 4226 SmallVector<int, 4> ReuseShuffleIndicies; 4227 SmallVector<Value *, 4> UniqueValues; 4228 if (VL.size() > 2) { 4229 DenseMap<Value *, unsigned> UniquePositions; 4230 for (Value *V : VL) { 4231 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 4232 ReuseShuffleIndicies.emplace_back(Res.first->second); 4233 if (Res.second || isa<Constant>(V)) 4234 UniqueValues.emplace_back(V); 4235 } 4236 // Do not shuffle single element or if number of unique values is not power 4237 // of 2. 4238 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 4239 !llvm::isPowerOf2_32(UniqueValues.size())) 4240 ReuseShuffleIndicies.clear(); 4241 else 4242 VL = UniqueValues; 4243 } 4244 4245 Value *Vec = gather(VL); 4246 if (!ReuseShuffleIndicies.empty()) { 4247 Vec = Builder.CreateShuffleVector(Vec, ReuseShuffleIndicies, "shuffle"); 4248 if (auto *I = dyn_cast<Instruction>(Vec)) { 4249 GatherSeq.insert(I); 4250 CSEBlocks.insert(I->getParent()); 4251 } 4252 } 4253 return Vec; 4254 } 4255 4256 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 4257 IRBuilder<>::InsertPointGuard Guard(Builder); 4258 4259 if (E->VectorizedValue) { 4260 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 4261 return E->VectorizedValue; 4262 } 4263 4264 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4265 if (E->State == TreeEntry::NeedToGather) { 4266 setInsertPointAfterBundle(E); 4267 Value *Vec = gather(E->Scalars); 4268 if (NeedToShuffleReuses) { 4269 Vec = Builder.CreateShuffleVector(Vec, E->ReuseShuffleIndices, "shuffle"); 4270 if (auto *I = dyn_cast<Instruction>(Vec)) { 4271 GatherSeq.insert(I); 4272 CSEBlocks.insert(I->getParent()); 4273 } 4274 } 4275 E->VectorizedValue = Vec; 4276 return Vec; 4277 } 4278 4279 assert(E->State == TreeEntry::Vectorize && "Unhandled state"); 4280 unsigned ShuffleOrOp = 4281 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 4282 Instruction *VL0 = E->getMainOp(); 4283 Type *ScalarTy = VL0->getType(); 4284 if (auto *Store = dyn_cast<StoreInst>(VL0)) 4285 ScalarTy = Store->getValueOperand()->getType(); 4286 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 4287 switch (ShuffleOrOp) { 4288 case Instruction::PHI: { 4289 auto *PH = cast<PHINode>(VL0); 4290 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 4291 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4292 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 4293 Value *V = NewPhi; 4294 if (NeedToShuffleReuses) 4295 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4296 4297 E->VectorizedValue = V; 4298 4299 // PHINodes may have multiple entries from the same block. We want to 4300 // visit every block once. 4301 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 4302 4303 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 4304 ValueList Operands; 4305 BasicBlock *IBB = PH->getIncomingBlock(i); 4306 4307 if (!VisitedBBs.insert(IBB).second) { 4308 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 4309 continue; 4310 } 4311 4312 Builder.SetInsertPoint(IBB->getTerminator()); 4313 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4314 Value *Vec = vectorizeTree(E->getOperand(i)); 4315 NewPhi->addIncoming(Vec, IBB); 4316 } 4317 4318 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 4319 "Invalid number of incoming values"); 4320 return V; 4321 } 4322 4323 case Instruction::ExtractElement: { 4324 Value *V = E->getSingleOperand(0); 4325 if (!E->ReorderIndices.empty()) { 4326 SmallVector<int, 4> Mask; 4327 inversePermutation(E->ReorderIndices, Mask); 4328 Builder.SetInsertPoint(VL0); 4329 V = Builder.CreateShuffleVector(V, Mask, "reorder_shuffle"); 4330 } 4331 if (NeedToShuffleReuses) { 4332 // TODO: Merge this shuffle with the ReorderShuffleMask. 4333 if (E->ReorderIndices.empty()) 4334 Builder.SetInsertPoint(VL0); 4335 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4336 } 4337 E->VectorizedValue = V; 4338 return V; 4339 } 4340 case Instruction::ExtractValue: { 4341 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 4342 Builder.SetInsertPoint(LI); 4343 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 4344 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 4345 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 4346 Value *NewV = propagateMetadata(V, E->Scalars); 4347 if (!E->ReorderIndices.empty()) { 4348 SmallVector<int, 4> Mask; 4349 inversePermutation(E->ReorderIndices, Mask); 4350 NewV = Builder.CreateShuffleVector(NewV, Mask, "reorder_shuffle"); 4351 } 4352 if (NeedToShuffleReuses) { 4353 // TODO: Merge this shuffle with the ReorderShuffleMask. 4354 NewV = Builder.CreateShuffleVector(NewV, E->ReuseShuffleIndices, 4355 "shuffle"); 4356 } 4357 E->VectorizedValue = NewV; 4358 return NewV; 4359 } 4360 case Instruction::ZExt: 4361 case Instruction::SExt: 4362 case Instruction::FPToUI: 4363 case Instruction::FPToSI: 4364 case Instruction::FPExt: 4365 case Instruction::PtrToInt: 4366 case Instruction::IntToPtr: 4367 case Instruction::SIToFP: 4368 case Instruction::UIToFP: 4369 case Instruction::Trunc: 4370 case Instruction::FPTrunc: 4371 case Instruction::BitCast: { 4372 setInsertPointAfterBundle(E); 4373 4374 Value *InVec = vectorizeTree(E->getOperand(0)); 4375 4376 if (E->VectorizedValue) { 4377 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4378 return E->VectorizedValue; 4379 } 4380 4381 auto *CI = cast<CastInst>(VL0); 4382 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 4383 if (NeedToShuffleReuses) 4384 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4385 4386 E->VectorizedValue = V; 4387 ++NumVectorInstructions; 4388 return V; 4389 } 4390 case Instruction::FCmp: 4391 case Instruction::ICmp: { 4392 setInsertPointAfterBundle(E); 4393 4394 Value *L = vectorizeTree(E->getOperand(0)); 4395 Value *R = vectorizeTree(E->getOperand(1)); 4396 4397 if (E->VectorizedValue) { 4398 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4399 return E->VectorizedValue; 4400 } 4401 4402 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4403 Value *V = Builder.CreateCmp(P0, L, R); 4404 propagateIRFlags(V, E->Scalars, VL0); 4405 if (NeedToShuffleReuses) 4406 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4407 4408 E->VectorizedValue = V; 4409 ++NumVectorInstructions; 4410 return V; 4411 } 4412 case Instruction::Select: { 4413 setInsertPointAfterBundle(E); 4414 4415 Value *Cond = vectorizeTree(E->getOperand(0)); 4416 Value *True = vectorizeTree(E->getOperand(1)); 4417 Value *False = vectorizeTree(E->getOperand(2)); 4418 4419 if (E->VectorizedValue) { 4420 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4421 return E->VectorizedValue; 4422 } 4423 4424 Value *V = Builder.CreateSelect(Cond, True, False); 4425 if (NeedToShuffleReuses) 4426 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4427 4428 E->VectorizedValue = V; 4429 ++NumVectorInstructions; 4430 return V; 4431 } 4432 case Instruction::FNeg: { 4433 setInsertPointAfterBundle(E); 4434 4435 Value *Op = vectorizeTree(E->getOperand(0)); 4436 4437 if (E->VectorizedValue) { 4438 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4439 return E->VectorizedValue; 4440 } 4441 4442 Value *V = Builder.CreateUnOp( 4443 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 4444 propagateIRFlags(V, E->Scalars, VL0); 4445 if (auto *I = dyn_cast<Instruction>(V)) 4446 V = propagateMetadata(I, E->Scalars); 4447 4448 if (NeedToShuffleReuses) 4449 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4450 4451 E->VectorizedValue = V; 4452 ++NumVectorInstructions; 4453 4454 return V; 4455 } 4456 case Instruction::Add: 4457 case Instruction::FAdd: 4458 case Instruction::Sub: 4459 case Instruction::FSub: 4460 case Instruction::Mul: 4461 case Instruction::FMul: 4462 case Instruction::UDiv: 4463 case Instruction::SDiv: 4464 case Instruction::FDiv: 4465 case Instruction::URem: 4466 case Instruction::SRem: 4467 case Instruction::FRem: 4468 case Instruction::Shl: 4469 case Instruction::LShr: 4470 case Instruction::AShr: 4471 case Instruction::And: 4472 case Instruction::Or: 4473 case Instruction::Xor: { 4474 setInsertPointAfterBundle(E); 4475 4476 Value *LHS = vectorizeTree(E->getOperand(0)); 4477 Value *RHS = vectorizeTree(E->getOperand(1)); 4478 4479 if (E->VectorizedValue) { 4480 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4481 return E->VectorizedValue; 4482 } 4483 4484 Value *V = Builder.CreateBinOp( 4485 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 4486 RHS); 4487 propagateIRFlags(V, E->Scalars, VL0); 4488 if (auto *I = dyn_cast<Instruction>(V)) 4489 V = propagateMetadata(I, E->Scalars); 4490 4491 if (NeedToShuffleReuses) 4492 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4493 4494 E->VectorizedValue = V; 4495 ++NumVectorInstructions; 4496 4497 return V; 4498 } 4499 case Instruction::Load: { 4500 // Loads are inserted at the head of the tree because we don't want to 4501 // sink them all the way down past store instructions. 4502 bool IsReorder = E->updateStateIfReorder(); 4503 if (IsReorder) 4504 VL0 = E->getMainOp(); 4505 setInsertPointAfterBundle(E); 4506 4507 LoadInst *LI = cast<LoadInst>(VL0); 4508 unsigned AS = LI->getPointerAddressSpace(); 4509 4510 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 4511 VecTy->getPointerTo(AS)); 4512 4513 // The pointer operand uses an in-tree scalar so we add the new BitCast to 4514 // ExternalUses list to make sure that an extract will be generated in the 4515 // future. 4516 Value *PO = LI->getPointerOperand(); 4517 if (getTreeEntry(PO)) 4518 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0)); 4519 4520 LI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 4521 Value *V = propagateMetadata(LI, E->Scalars); 4522 if (IsReorder) { 4523 SmallVector<int, 4> Mask; 4524 inversePermutation(E->ReorderIndices, Mask); 4525 V = Builder.CreateShuffleVector(V, Mask, "reorder_shuffle"); 4526 } 4527 if (NeedToShuffleReuses) { 4528 // TODO: Merge this shuffle with the ReorderShuffleMask. 4529 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4530 } 4531 E->VectorizedValue = V; 4532 ++NumVectorInstructions; 4533 return V; 4534 } 4535 case Instruction::Store: { 4536 bool IsReorder = !E->ReorderIndices.empty(); 4537 auto *SI = cast<StoreInst>( 4538 IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0); 4539 unsigned AS = SI->getPointerAddressSpace(); 4540 4541 setInsertPointAfterBundle(E); 4542 4543 Value *VecValue = vectorizeTree(E->getOperand(0)); 4544 if (IsReorder) { 4545 SmallVector<int, 4> Mask(E->ReorderIndices.begin(), 4546 E->ReorderIndices.end()); 4547 VecValue = Builder.CreateShuffleVector(VecValue, Mask, "reorder_shuf"); 4548 } 4549 Value *ScalarPtr = SI->getPointerOperand(); 4550 Value *VecPtr = Builder.CreateBitCast( 4551 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 4552 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 4553 SI->getAlign()); 4554 4555 // The pointer operand uses an in-tree scalar, so add the new BitCast to 4556 // ExternalUses to make sure that an extract will be generated in the 4557 // future. 4558 if (getTreeEntry(ScalarPtr)) 4559 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 4560 4561 Value *V = propagateMetadata(ST, E->Scalars); 4562 if (NeedToShuffleReuses) 4563 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4564 4565 E->VectorizedValue = V; 4566 ++NumVectorInstructions; 4567 return V; 4568 } 4569 case Instruction::GetElementPtr: { 4570 setInsertPointAfterBundle(E); 4571 4572 Value *Op0 = vectorizeTree(E->getOperand(0)); 4573 4574 std::vector<Value *> OpVecs; 4575 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 4576 ++j) { 4577 ValueList &VL = E->getOperand(j); 4578 // Need to cast all elements to the same type before vectorization to 4579 // avoid crash. 4580 Type *VL0Ty = VL0->getOperand(j)->getType(); 4581 Type *Ty = llvm::all_of( 4582 VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); }) 4583 ? VL0Ty 4584 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4585 ->getPointerOperandType() 4586 ->getScalarType()); 4587 for (Value *&V : VL) { 4588 auto *CI = cast<ConstantInt>(V); 4589 V = ConstantExpr::getIntegerCast(CI, Ty, 4590 CI->getValue().isSignBitSet()); 4591 } 4592 Value *OpVec = vectorizeTree(VL); 4593 OpVecs.push_back(OpVec); 4594 } 4595 4596 Value *V = Builder.CreateGEP( 4597 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 4598 if (Instruction *I = dyn_cast<Instruction>(V)) 4599 V = propagateMetadata(I, E->Scalars); 4600 4601 if (NeedToShuffleReuses) 4602 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4603 4604 E->VectorizedValue = V; 4605 ++NumVectorInstructions; 4606 4607 return V; 4608 } 4609 case Instruction::Call: { 4610 CallInst *CI = cast<CallInst>(VL0); 4611 setInsertPointAfterBundle(E); 4612 4613 Intrinsic::ID IID = Intrinsic::not_intrinsic; 4614 if (Function *FI = CI->getCalledFunction()) 4615 IID = FI->getIntrinsicID(); 4616 4617 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4618 4619 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 4620 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 4621 VecCallCosts.first <= VecCallCosts.second; 4622 4623 Value *ScalarArg = nullptr; 4624 std::vector<Value *> OpVecs; 4625 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 4626 ValueList OpVL; 4627 // Some intrinsics have scalar arguments. This argument should not be 4628 // vectorized. 4629 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 4630 CallInst *CEI = cast<CallInst>(VL0); 4631 ScalarArg = CEI->getArgOperand(j); 4632 OpVecs.push_back(CEI->getArgOperand(j)); 4633 continue; 4634 } 4635 4636 Value *OpVec = vectorizeTree(E->getOperand(j)); 4637 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 4638 OpVecs.push_back(OpVec); 4639 } 4640 4641 Function *CF; 4642 if (!UseIntrinsic) { 4643 VFShape Shape = 4644 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4645 VecTy->getNumElements())), 4646 false /*HasGlobalPred*/); 4647 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 4648 } else { 4649 Type *Tys[] = {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 4650 CF = Intrinsic::getDeclaration(F->getParent(), ID, Tys); 4651 } 4652 4653 SmallVector<OperandBundleDef, 1> OpBundles; 4654 CI->getOperandBundlesAsDefs(OpBundles); 4655 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 4656 4657 // The scalar argument uses an in-tree scalar so we add the new vectorized 4658 // call to ExternalUses list to make sure that an extract will be 4659 // generated in the future. 4660 if (ScalarArg && getTreeEntry(ScalarArg)) 4661 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 4662 4663 propagateIRFlags(V, E->Scalars, VL0); 4664 if (NeedToShuffleReuses) 4665 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4666 4667 E->VectorizedValue = V; 4668 ++NumVectorInstructions; 4669 return V; 4670 } 4671 case Instruction::ShuffleVector: { 4672 assert(E->isAltShuffle() && 4673 ((Instruction::isBinaryOp(E->getOpcode()) && 4674 Instruction::isBinaryOp(E->getAltOpcode())) || 4675 (Instruction::isCast(E->getOpcode()) && 4676 Instruction::isCast(E->getAltOpcode()))) && 4677 "Invalid Shuffle Vector Operand"); 4678 4679 Value *LHS = nullptr, *RHS = nullptr; 4680 if (Instruction::isBinaryOp(E->getOpcode())) { 4681 setInsertPointAfterBundle(E); 4682 LHS = vectorizeTree(E->getOperand(0)); 4683 RHS = vectorizeTree(E->getOperand(1)); 4684 } else { 4685 setInsertPointAfterBundle(E); 4686 LHS = vectorizeTree(E->getOperand(0)); 4687 } 4688 4689 if (E->VectorizedValue) { 4690 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4691 return E->VectorizedValue; 4692 } 4693 4694 Value *V0, *V1; 4695 if (Instruction::isBinaryOp(E->getOpcode())) { 4696 V0 = Builder.CreateBinOp( 4697 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 4698 V1 = Builder.CreateBinOp( 4699 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 4700 } else { 4701 V0 = Builder.CreateCast( 4702 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 4703 V1 = Builder.CreateCast( 4704 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 4705 } 4706 4707 // Create shuffle to take alternate operations from the vector. 4708 // Also, gather up main and alt scalar ops to propagate IR flags to 4709 // each vector operation. 4710 ValueList OpScalars, AltScalars; 4711 unsigned e = E->Scalars.size(); 4712 SmallVector<int, 8> Mask(e); 4713 for (unsigned i = 0; i < e; ++i) { 4714 auto *OpInst = cast<Instruction>(E->Scalars[i]); 4715 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 4716 if (OpInst->getOpcode() == E->getAltOpcode()) { 4717 Mask[i] = e + i; 4718 AltScalars.push_back(E->Scalars[i]); 4719 } else { 4720 Mask[i] = i; 4721 OpScalars.push_back(E->Scalars[i]); 4722 } 4723 } 4724 4725 propagateIRFlags(V0, OpScalars); 4726 propagateIRFlags(V1, AltScalars); 4727 4728 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 4729 if (Instruction *I = dyn_cast<Instruction>(V)) 4730 V = propagateMetadata(I, E->Scalars); 4731 if (NeedToShuffleReuses) 4732 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4733 4734 E->VectorizedValue = V; 4735 ++NumVectorInstructions; 4736 4737 return V; 4738 } 4739 default: 4740 llvm_unreachable("unknown inst"); 4741 } 4742 return nullptr; 4743 } 4744 4745 Value *BoUpSLP::vectorizeTree() { 4746 ExtraValueToDebugLocsMap ExternallyUsedValues; 4747 return vectorizeTree(ExternallyUsedValues); 4748 } 4749 4750 Value * 4751 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 4752 // All blocks must be scheduled before any instructions are inserted. 4753 for (auto &BSIter : BlocksSchedules) { 4754 scheduleBlock(BSIter.second.get()); 4755 } 4756 4757 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4758 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 4759 4760 // If the vectorized tree can be rewritten in a smaller type, we truncate the 4761 // vectorized root. InstCombine will then rewrite the entire expression. We 4762 // sign extend the extracted values below. 4763 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4764 if (MinBWs.count(ScalarRoot)) { 4765 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 4766 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 4767 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 4768 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4769 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 4770 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 4771 VectorizableTree[0]->VectorizedValue = Trunc; 4772 } 4773 4774 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 4775 << " values .\n"); 4776 4777 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 4778 // specified by ScalarType. 4779 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 4780 if (!MinBWs.count(ScalarRoot)) 4781 return Ex; 4782 if (MinBWs[ScalarRoot].second) 4783 return Builder.CreateSExt(Ex, ScalarType); 4784 return Builder.CreateZExt(Ex, ScalarType); 4785 }; 4786 4787 // Extract all of the elements with the external uses. 4788 for (const auto &ExternalUse : ExternalUses) { 4789 Value *Scalar = ExternalUse.Scalar; 4790 llvm::User *User = ExternalUse.User; 4791 4792 // Skip users that we already RAUW. This happens when one instruction 4793 // has multiple uses of the same value. 4794 if (User && !is_contained(Scalar->users(), User)) 4795 continue; 4796 TreeEntry *E = getTreeEntry(Scalar); 4797 assert(E && "Invalid scalar"); 4798 assert(E->State == TreeEntry::Vectorize && "Extracting from a gather list"); 4799 4800 Value *Vec = E->VectorizedValue; 4801 assert(Vec && "Can't find vectorizable value"); 4802 4803 Value *Lane = Builder.getInt32(ExternalUse.Lane); 4804 // If User == nullptr, the Scalar is used as extra arg. Generate 4805 // ExtractElement instruction and update the record for this scalar in 4806 // ExternallyUsedValues. 4807 if (!User) { 4808 assert(ExternallyUsedValues.count(Scalar) && 4809 "Scalar with nullptr as an external user must be registered in " 4810 "ExternallyUsedValues map"); 4811 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4812 Builder.SetInsertPoint(VecI->getParent(), 4813 std::next(VecI->getIterator())); 4814 } else { 4815 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4816 } 4817 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4818 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4819 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 4820 auto &Locs = ExternallyUsedValues[Scalar]; 4821 ExternallyUsedValues.insert({Ex, Locs}); 4822 ExternallyUsedValues.erase(Scalar); 4823 // Required to update internally referenced instructions. 4824 Scalar->replaceAllUsesWith(Ex); 4825 continue; 4826 } 4827 4828 // Generate extracts for out-of-tree users. 4829 // Find the insertion point for the extractelement lane. 4830 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4831 if (PHINode *PH = dyn_cast<PHINode>(User)) { 4832 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 4833 if (PH->getIncomingValue(i) == Scalar) { 4834 Instruction *IncomingTerminator = 4835 PH->getIncomingBlock(i)->getTerminator(); 4836 if (isa<CatchSwitchInst>(IncomingTerminator)) { 4837 Builder.SetInsertPoint(VecI->getParent(), 4838 std::next(VecI->getIterator())); 4839 } else { 4840 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 4841 } 4842 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4843 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4844 CSEBlocks.insert(PH->getIncomingBlock(i)); 4845 PH->setOperand(i, Ex); 4846 } 4847 } 4848 } else { 4849 Builder.SetInsertPoint(cast<Instruction>(User)); 4850 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4851 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4852 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 4853 User->replaceUsesOfWith(Scalar, Ex); 4854 } 4855 } else { 4856 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4857 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4858 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4859 CSEBlocks.insert(&F->getEntryBlock()); 4860 User->replaceUsesOfWith(Scalar, Ex); 4861 } 4862 4863 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 4864 } 4865 4866 // For each vectorized value: 4867 for (auto &TEPtr : VectorizableTree) { 4868 TreeEntry *Entry = TEPtr.get(); 4869 4870 // No need to handle users of gathered values. 4871 if (Entry->State == TreeEntry::NeedToGather) 4872 continue; 4873 4874 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 4875 4876 // For each lane: 4877 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 4878 Value *Scalar = Entry->Scalars[Lane]; 4879 4880 #ifndef NDEBUG 4881 Type *Ty = Scalar->getType(); 4882 if (!Ty->isVoidTy()) { 4883 for (User *U : Scalar->users()) { 4884 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 4885 4886 // It is legal to delete users in the ignorelist. 4887 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 4888 "Deleting out-of-tree value"); 4889 } 4890 } 4891 #endif 4892 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 4893 eraseInstruction(cast<Instruction>(Scalar)); 4894 } 4895 } 4896 4897 Builder.ClearInsertionPoint(); 4898 InstrElementSize.clear(); 4899 4900 return VectorizableTree[0]->VectorizedValue; 4901 } 4902 4903 void BoUpSLP::optimizeGatherSequence() { 4904 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 4905 << " gather sequences instructions.\n"); 4906 // LICM InsertElementInst sequences. 4907 for (Instruction *I : GatherSeq) { 4908 if (isDeleted(I)) 4909 continue; 4910 4911 // Check if this block is inside a loop. 4912 Loop *L = LI->getLoopFor(I->getParent()); 4913 if (!L) 4914 continue; 4915 4916 // Check if it has a preheader. 4917 BasicBlock *PreHeader = L->getLoopPreheader(); 4918 if (!PreHeader) 4919 continue; 4920 4921 // If the vector or the element that we insert into it are 4922 // instructions that are defined in this basic block then we can't 4923 // hoist this instruction. 4924 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 4925 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 4926 if (Op0 && L->contains(Op0)) 4927 continue; 4928 if (Op1 && L->contains(Op1)) 4929 continue; 4930 4931 // We can hoist this instruction. Move it to the pre-header. 4932 I->moveBefore(PreHeader->getTerminator()); 4933 } 4934 4935 // Make a list of all reachable blocks in our CSE queue. 4936 SmallVector<const DomTreeNode *, 8> CSEWorkList; 4937 CSEWorkList.reserve(CSEBlocks.size()); 4938 for (BasicBlock *BB : CSEBlocks) 4939 if (DomTreeNode *N = DT->getNode(BB)) { 4940 assert(DT->isReachableFromEntry(N)); 4941 CSEWorkList.push_back(N); 4942 } 4943 4944 // Sort blocks by domination. This ensures we visit a block after all blocks 4945 // dominating it are visited. 4946 llvm::stable_sort(CSEWorkList, 4947 [this](const DomTreeNode *A, const DomTreeNode *B) { 4948 return DT->properlyDominates(A, B); 4949 }); 4950 4951 // Perform O(N^2) search over the gather sequences and merge identical 4952 // instructions. TODO: We can further optimize this scan if we split the 4953 // instructions into different buckets based on the insert lane. 4954 SmallVector<Instruction *, 16> Visited; 4955 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 4956 assert(*I && 4957 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 4958 "Worklist not sorted properly!"); 4959 BasicBlock *BB = (*I)->getBlock(); 4960 // For all instructions in blocks containing gather sequences: 4961 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 4962 Instruction *In = &*it++; 4963 if (isDeleted(In)) 4964 continue; 4965 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 4966 continue; 4967 4968 // Check if we can replace this instruction with any of the 4969 // visited instructions. 4970 for (Instruction *v : Visited) { 4971 if (In->isIdenticalTo(v) && 4972 DT->dominates(v->getParent(), In->getParent())) { 4973 In->replaceAllUsesWith(v); 4974 eraseInstruction(In); 4975 In = nullptr; 4976 break; 4977 } 4978 } 4979 if (In) { 4980 assert(!is_contained(Visited, In)); 4981 Visited.push_back(In); 4982 } 4983 } 4984 } 4985 CSEBlocks.clear(); 4986 GatherSeq.clear(); 4987 } 4988 4989 // Groups the instructions to a bundle (which is then a single scheduling entity) 4990 // and schedules instructions until the bundle gets ready. 4991 Optional<BoUpSLP::ScheduleData *> 4992 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 4993 const InstructionsState &S) { 4994 if (isa<PHINode>(S.OpValue)) 4995 return nullptr; 4996 4997 // Initialize the instruction bundle. 4998 Instruction *OldScheduleEnd = ScheduleEnd; 4999 ScheduleData *PrevInBundle = nullptr; 5000 ScheduleData *Bundle = nullptr; 5001 bool ReSchedule = false; 5002 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 5003 5004 // Make sure that the scheduling region contains all 5005 // instructions of the bundle. 5006 for (Value *V : VL) { 5007 if (!extendSchedulingRegion(V, S)) 5008 return None; 5009 } 5010 5011 for (Value *V : VL) { 5012 ScheduleData *BundleMember = getScheduleData(V); 5013 assert(BundleMember && 5014 "no ScheduleData for bundle member (maybe not in same basic block)"); 5015 if (BundleMember->IsScheduled) { 5016 // A bundle member was scheduled as single instruction before and now 5017 // needs to be scheduled as part of the bundle. We just get rid of the 5018 // existing schedule. 5019 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 5020 << " was already scheduled\n"); 5021 ReSchedule = true; 5022 } 5023 assert(BundleMember->isSchedulingEntity() && 5024 "bundle member already part of other bundle"); 5025 if (PrevInBundle) { 5026 PrevInBundle->NextInBundle = BundleMember; 5027 } else { 5028 Bundle = BundleMember; 5029 } 5030 BundleMember->UnscheduledDepsInBundle = 0; 5031 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 5032 5033 // Group the instructions to a bundle. 5034 BundleMember->FirstInBundle = Bundle; 5035 PrevInBundle = BundleMember; 5036 } 5037 if (ScheduleEnd != OldScheduleEnd) { 5038 // The scheduling region got new instructions at the lower end (or it is a 5039 // new region for the first bundle). This makes it necessary to 5040 // recalculate all dependencies. 5041 // It is seldom that this needs to be done a second time after adding the 5042 // initial bundle to the region. 5043 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 5044 doForAllOpcodes(I, [](ScheduleData *SD) { 5045 SD->clearDependencies(); 5046 }); 5047 } 5048 ReSchedule = true; 5049 } 5050 if (ReSchedule) { 5051 resetSchedule(); 5052 initialFillReadyList(ReadyInsts); 5053 } 5054 assert(Bundle && "Failed to find schedule bundle"); 5055 5056 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 5057 << BB->getName() << "\n"); 5058 5059 calculateDependencies(Bundle, true, SLP); 5060 5061 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 5062 // means that there are no cyclic dependencies and we can schedule it. 5063 // Note that's important that we don't "schedule" the bundle yet (see 5064 // cancelScheduling). 5065 while (!Bundle->isReady() && !ReadyInsts.empty()) { 5066 5067 ScheduleData *pickedSD = ReadyInsts.back(); 5068 ReadyInsts.pop_back(); 5069 5070 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 5071 schedule(pickedSD, ReadyInsts); 5072 } 5073 } 5074 if (!Bundle->isReady()) { 5075 cancelScheduling(VL, S.OpValue); 5076 return None; 5077 } 5078 return Bundle; 5079 } 5080 5081 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 5082 Value *OpValue) { 5083 if (isa<PHINode>(OpValue)) 5084 return; 5085 5086 ScheduleData *Bundle = getScheduleData(OpValue); 5087 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 5088 assert(!Bundle->IsScheduled && 5089 "Can't cancel bundle which is already scheduled"); 5090 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 5091 "tried to unbundle something which is not a bundle"); 5092 5093 // Un-bundle: make single instructions out of the bundle. 5094 ScheduleData *BundleMember = Bundle; 5095 while (BundleMember) { 5096 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 5097 BundleMember->FirstInBundle = BundleMember; 5098 ScheduleData *Next = BundleMember->NextInBundle; 5099 BundleMember->NextInBundle = nullptr; 5100 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 5101 if (BundleMember->UnscheduledDepsInBundle == 0) { 5102 ReadyInsts.insert(BundleMember); 5103 } 5104 BundleMember = Next; 5105 } 5106 } 5107 5108 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 5109 // Allocate a new ScheduleData for the instruction. 5110 if (ChunkPos >= ChunkSize) { 5111 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 5112 ChunkPos = 0; 5113 } 5114 return &(ScheduleDataChunks.back()[ChunkPos++]); 5115 } 5116 5117 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 5118 const InstructionsState &S) { 5119 if (getScheduleData(V, isOneOf(S, V))) 5120 return true; 5121 Instruction *I = dyn_cast<Instruction>(V); 5122 assert(I && "bundle member must be an instruction"); 5123 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 5124 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 5125 ScheduleData *ISD = getScheduleData(I); 5126 if (!ISD) 5127 return false; 5128 assert(isInSchedulingRegion(ISD) && 5129 "ScheduleData not in scheduling region"); 5130 ScheduleData *SD = allocateScheduleDataChunks(); 5131 SD->Inst = I; 5132 SD->init(SchedulingRegionID, S.OpValue); 5133 ExtraScheduleDataMap[I][S.OpValue] = SD; 5134 return true; 5135 }; 5136 if (CheckSheduleForI(I)) 5137 return true; 5138 if (!ScheduleStart) { 5139 // It's the first instruction in the new region. 5140 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 5141 ScheduleStart = I; 5142 ScheduleEnd = I->getNextNode(); 5143 if (isOneOf(S, I) != I) 5144 CheckSheduleForI(I); 5145 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5146 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 5147 return true; 5148 } 5149 // Search up and down at the same time, because we don't know if the new 5150 // instruction is above or below the existing scheduling region. 5151 BasicBlock::reverse_iterator UpIter = 5152 ++ScheduleStart->getIterator().getReverse(); 5153 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 5154 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 5155 BasicBlock::iterator LowerEnd = BB->end(); 5156 while (true) { 5157 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 5158 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 5159 return false; 5160 } 5161 5162 if (UpIter != UpperEnd) { 5163 if (&*UpIter == I) { 5164 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 5165 ScheduleStart = I; 5166 if (isOneOf(S, I) != I) 5167 CheckSheduleForI(I); 5168 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 5169 << "\n"); 5170 return true; 5171 } 5172 ++UpIter; 5173 } 5174 if (DownIter != LowerEnd) { 5175 if (&*DownIter == I) { 5176 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 5177 nullptr); 5178 ScheduleEnd = I->getNextNode(); 5179 if (isOneOf(S, I) != I) 5180 CheckSheduleForI(I); 5181 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5182 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I 5183 << "\n"); 5184 return true; 5185 } 5186 ++DownIter; 5187 } 5188 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 5189 "instruction not found in block"); 5190 } 5191 return true; 5192 } 5193 5194 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 5195 Instruction *ToI, 5196 ScheduleData *PrevLoadStore, 5197 ScheduleData *NextLoadStore) { 5198 ScheduleData *CurrentLoadStore = PrevLoadStore; 5199 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 5200 ScheduleData *SD = ScheduleDataMap[I]; 5201 if (!SD) { 5202 SD = allocateScheduleDataChunks(); 5203 ScheduleDataMap[I] = SD; 5204 SD->Inst = I; 5205 } 5206 assert(!isInSchedulingRegion(SD) && 5207 "new ScheduleData already in scheduling region"); 5208 SD->init(SchedulingRegionID, I); 5209 5210 if (I->mayReadOrWriteMemory() && 5211 (!isa<IntrinsicInst>(I) || 5212 cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) { 5213 // Update the linked list of memory accessing instructions. 5214 if (CurrentLoadStore) { 5215 CurrentLoadStore->NextLoadStore = SD; 5216 } else { 5217 FirstLoadStoreInRegion = SD; 5218 } 5219 CurrentLoadStore = SD; 5220 } 5221 } 5222 if (NextLoadStore) { 5223 if (CurrentLoadStore) 5224 CurrentLoadStore->NextLoadStore = NextLoadStore; 5225 } else { 5226 LastLoadStoreInRegion = CurrentLoadStore; 5227 } 5228 } 5229 5230 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 5231 bool InsertInReadyList, 5232 BoUpSLP *SLP) { 5233 assert(SD->isSchedulingEntity()); 5234 5235 SmallVector<ScheduleData *, 10> WorkList; 5236 WorkList.push_back(SD); 5237 5238 while (!WorkList.empty()) { 5239 ScheduleData *SD = WorkList.back(); 5240 WorkList.pop_back(); 5241 5242 ScheduleData *BundleMember = SD; 5243 while (BundleMember) { 5244 assert(isInSchedulingRegion(BundleMember)); 5245 if (!BundleMember->hasValidDependencies()) { 5246 5247 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 5248 << "\n"); 5249 BundleMember->Dependencies = 0; 5250 BundleMember->resetUnscheduledDeps(); 5251 5252 // Handle def-use chain dependencies. 5253 if (BundleMember->OpValue != BundleMember->Inst) { 5254 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 5255 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5256 BundleMember->Dependencies++; 5257 ScheduleData *DestBundle = UseSD->FirstInBundle; 5258 if (!DestBundle->IsScheduled) 5259 BundleMember->incrementUnscheduledDeps(1); 5260 if (!DestBundle->hasValidDependencies()) 5261 WorkList.push_back(DestBundle); 5262 } 5263 } else { 5264 for (User *U : BundleMember->Inst->users()) { 5265 if (isa<Instruction>(U)) { 5266 ScheduleData *UseSD = getScheduleData(U); 5267 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5268 BundleMember->Dependencies++; 5269 ScheduleData *DestBundle = UseSD->FirstInBundle; 5270 if (!DestBundle->IsScheduled) 5271 BundleMember->incrementUnscheduledDeps(1); 5272 if (!DestBundle->hasValidDependencies()) 5273 WorkList.push_back(DestBundle); 5274 } 5275 } else { 5276 // I'm not sure if this can ever happen. But we need to be safe. 5277 // This lets the instruction/bundle never be scheduled and 5278 // eventually disable vectorization. 5279 BundleMember->Dependencies++; 5280 BundleMember->incrementUnscheduledDeps(1); 5281 } 5282 } 5283 } 5284 5285 // Handle the memory dependencies. 5286 ScheduleData *DepDest = BundleMember->NextLoadStore; 5287 if (DepDest) { 5288 Instruction *SrcInst = BundleMember->Inst; 5289 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 5290 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 5291 unsigned numAliased = 0; 5292 unsigned DistToSrc = 1; 5293 5294 while (DepDest) { 5295 assert(isInSchedulingRegion(DepDest)); 5296 5297 // We have two limits to reduce the complexity: 5298 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 5299 // SLP->isAliased (which is the expensive part in this loop). 5300 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 5301 // the whole loop (even if the loop is fast, it's quadratic). 5302 // It's important for the loop break condition (see below) to 5303 // check this limit even between two read-only instructions. 5304 if (DistToSrc >= MaxMemDepDistance || 5305 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 5306 (numAliased >= AliasedCheckLimit || 5307 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 5308 5309 // We increment the counter only if the locations are aliased 5310 // (instead of counting all alias checks). This gives a better 5311 // balance between reduced runtime and accurate dependencies. 5312 numAliased++; 5313 5314 DepDest->MemoryDependencies.push_back(BundleMember); 5315 BundleMember->Dependencies++; 5316 ScheduleData *DestBundle = DepDest->FirstInBundle; 5317 if (!DestBundle->IsScheduled) { 5318 BundleMember->incrementUnscheduledDeps(1); 5319 } 5320 if (!DestBundle->hasValidDependencies()) { 5321 WorkList.push_back(DestBundle); 5322 } 5323 } 5324 DepDest = DepDest->NextLoadStore; 5325 5326 // Example, explaining the loop break condition: Let's assume our 5327 // starting instruction is i0 and MaxMemDepDistance = 3. 5328 // 5329 // +--------v--v--v 5330 // i0,i1,i2,i3,i4,i5,i6,i7,i8 5331 // +--------^--^--^ 5332 // 5333 // MaxMemDepDistance let us stop alias-checking at i3 and we add 5334 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 5335 // Previously we already added dependencies from i3 to i6,i7,i8 5336 // (because of MaxMemDepDistance). As we added a dependency from 5337 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 5338 // and we can abort this loop at i6. 5339 if (DistToSrc >= 2 * MaxMemDepDistance) 5340 break; 5341 DistToSrc++; 5342 } 5343 } 5344 } 5345 BundleMember = BundleMember->NextInBundle; 5346 } 5347 if (InsertInReadyList && SD->isReady()) { 5348 ReadyInsts.push_back(SD); 5349 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 5350 << "\n"); 5351 } 5352 } 5353 } 5354 5355 void BoUpSLP::BlockScheduling::resetSchedule() { 5356 assert(ScheduleStart && 5357 "tried to reset schedule on block which has not been scheduled"); 5358 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 5359 doForAllOpcodes(I, [&](ScheduleData *SD) { 5360 assert(isInSchedulingRegion(SD) && 5361 "ScheduleData not in scheduling region"); 5362 SD->IsScheduled = false; 5363 SD->resetUnscheduledDeps(); 5364 }); 5365 } 5366 ReadyInsts.clear(); 5367 } 5368 5369 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 5370 if (!BS->ScheduleStart) 5371 return; 5372 5373 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 5374 5375 BS->resetSchedule(); 5376 5377 // For the real scheduling we use a more sophisticated ready-list: it is 5378 // sorted by the original instruction location. This lets the final schedule 5379 // be as close as possible to the original instruction order. 5380 struct ScheduleDataCompare { 5381 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 5382 return SD2->SchedulingPriority < SD1->SchedulingPriority; 5383 } 5384 }; 5385 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 5386 5387 // Ensure that all dependency data is updated and fill the ready-list with 5388 // initial instructions. 5389 int Idx = 0; 5390 int NumToSchedule = 0; 5391 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 5392 I = I->getNextNode()) { 5393 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 5394 assert(SD->isPartOfBundle() == 5395 (getTreeEntry(SD->Inst) != nullptr) && 5396 "scheduler and vectorizer bundle mismatch"); 5397 SD->FirstInBundle->SchedulingPriority = Idx++; 5398 if (SD->isSchedulingEntity()) { 5399 BS->calculateDependencies(SD, false, this); 5400 NumToSchedule++; 5401 } 5402 }); 5403 } 5404 BS->initialFillReadyList(ReadyInsts); 5405 5406 Instruction *LastScheduledInst = BS->ScheduleEnd; 5407 5408 // Do the "real" scheduling. 5409 while (!ReadyInsts.empty()) { 5410 ScheduleData *picked = *ReadyInsts.begin(); 5411 ReadyInsts.erase(ReadyInsts.begin()); 5412 5413 // Move the scheduled instruction(s) to their dedicated places, if not 5414 // there yet. 5415 ScheduleData *BundleMember = picked; 5416 while (BundleMember) { 5417 Instruction *pickedInst = BundleMember->Inst; 5418 if (LastScheduledInst->getNextNode() != pickedInst) { 5419 BS->BB->getInstList().remove(pickedInst); 5420 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 5421 pickedInst); 5422 } 5423 LastScheduledInst = pickedInst; 5424 BundleMember = BundleMember->NextInBundle; 5425 } 5426 5427 BS->schedule(picked, ReadyInsts); 5428 NumToSchedule--; 5429 } 5430 assert(NumToSchedule == 0 && "could not schedule all instructions"); 5431 5432 // Avoid duplicate scheduling of the block. 5433 BS->ScheduleStart = nullptr; 5434 } 5435 5436 unsigned BoUpSLP::getVectorElementSize(Value *V) { 5437 // If V is a store, just return the width of the stored value without 5438 // traversing the expression tree. This is the common case. 5439 if (auto *Store = dyn_cast<StoreInst>(V)) 5440 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 5441 5442 auto E = InstrElementSize.find(V); 5443 if (E != InstrElementSize.end()) 5444 return E->second; 5445 5446 // If V is not a store, we can traverse the expression tree to find loads 5447 // that feed it. The type of the loaded value may indicate a more suitable 5448 // width than V's type. We want to base the vector element size on the width 5449 // of memory operations where possible. 5450 SmallVector<Instruction *, 16> Worklist; 5451 SmallPtrSet<Instruction *, 16> Visited; 5452 if (auto *I = dyn_cast<Instruction>(V)) { 5453 Worklist.push_back(I); 5454 Visited.insert(I); 5455 } 5456 5457 // Traverse the expression tree in bottom-up order looking for loads. If we 5458 // encounter an instruction we don't yet handle, we give up. 5459 auto MaxWidth = 0u; 5460 auto FoundUnknownInst = false; 5461 while (!Worklist.empty() && !FoundUnknownInst) { 5462 auto *I = Worklist.pop_back_val(); 5463 5464 // We should only be looking at scalar instructions here. If the current 5465 // instruction has a vector type, give up. 5466 auto *Ty = I->getType(); 5467 if (isa<VectorType>(Ty)) 5468 FoundUnknownInst = true; 5469 5470 // If the current instruction is a load, update MaxWidth to reflect the 5471 // width of the loaded value. 5472 else if (isa<LoadInst>(I)) 5473 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 5474 5475 // Otherwise, we need to visit the operands of the instruction. We only 5476 // handle the interesting cases from buildTree here. If an operand is an 5477 // instruction we haven't yet visited, we add it to the worklist. 5478 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5479 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 5480 for (Use &U : I->operands()) 5481 if (auto *J = dyn_cast<Instruction>(U.get())) 5482 if (Visited.insert(J).second) 5483 Worklist.push_back(J); 5484 } 5485 5486 // If we don't yet handle the instruction, give up. 5487 else 5488 FoundUnknownInst = true; 5489 } 5490 5491 int Width = MaxWidth; 5492 // If we didn't encounter a memory access in the expression tree, or if we 5493 // gave up for some reason, just return the width of V. Otherwise, return the 5494 // maximum width we found. 5495 if (!MaxWidth || FoundUnknownInst) 5496 Width = DL->getTypeSizeInBits(V->getType()); 5497 5498 for (Instruction *I : Visited) 5499 InstrElementSize[I] = Width; 5500 5501 return Width; 5502 } 5503 5504 // Determine if a value V in a vectorizable expression Expr can be demoted to a 5505 // smaller type with a truncation. We collect the values that will be demoted 5506 // in ToDemote and additional roots that require investigating in Roots. 5507 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 5508 SmallVectorImpl<Value *> &ToDemote, 5509 SmallVectorImpl<Value *> &Roots) { 5510 // We can always demote constants. 5511 if (isa<Constant>(V)) { 5512 ToDemote.push_back(V); 5513 return true; 5514 } 5515 5516 // If the value is not an instruction in the expression with only one use, it 5517 // cannot be demoted. 5518 auto *I = dyn_cast<Instruction>(V); 5519 if (!I || !I->hasOneUse() || !Expr.count(I)) 5520 return false; 5521 5522 switch (I->getOpcode()) { 5523 5524 // We can always demote truncations and extensions. Since truncations can 5525 // seed additional demotion, we save the truncated value. 5526 case Instruction::Trunc: 5527 Roots.push_back(I->getOperand(0)); 5528 break; 5529 case Instruction::ZExt: 5530 case Instruction::SExt: 5531 break; 5532 5533 // We can demote certain binary operations if we can demote both of their 5534 // operands. 5535 case Instruction::Add: 5536 case Instruction::Sub: 5537 case Instruction::Mul: 5538 case Instruction::And: 5539 case Instruction::Or: 5540 case Instruction::Xor: 5541 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 5542 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 5543 return false; 5544 break; 5545 5546 // We can demote selects if we can demote their true and false values. 5547 case Instruction::Select: { 5548 SelectInst *SI = cast<SelectInst>(I); 5549 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 5550 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 5551 return false; 5552 break; 5553 } 5554 5555 // We can demote phis if we can demote all their incoming operands. Note that 5556 // we don't need to worry about cycles since we ensure single use above. 5557 case Instruction::PHI: { 5558 PHINode *PN = cast<PHINode>(I); 5559 for (Value *IncValue : PN->incoming_values()) 5560 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 5561 return false; 5562 break; 5563 } 5564 5565 // Otherwise, conservatively give up. 5566 default: 5567 return false; 5568 } 5569 5570 // Record the value that we can demote. 5571 ToDemote.push_back(V); 5572 return true; 5573 } 5574 5575 void BoUpSLP::computeMinimumValueSizes() { 5576 // If there are no external uses, the expression tree must be rooted by a 5577 // store. We can't demote in-memory values, so there is nothing to do here. 5578 if (ExternalUses.empty()) 5579 return; 5580 5581 // We only attempt to truncate integer expressions. 5582 auto &TreeRoot = VectorizableTree[0]->Scalars; 5583 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 5584 if (!TreeRootIT) 5585 return; 5586 5587 // If the expression is not rooted by a store, these roots should have 5588 // external uses. We will rely on InstCombine to rewrite the expression in 5589 // the narrower type. However, InstCombine only rewrites single-use values. 5590 // This means that if a tree entry other than a root is used externally, it 5591 // must have multiple uses and InstCombine will not rewrite it. The code 5592 // below ensures that only the roots are used externally. 5593 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 5594 for (auto &EU : ExternalUses) 5595 if (!Expr.erase(EU.Scalar)) 5596 return; 5597 if (!Expr.empty()) 5598 return; 5599 5600 // Collect the scalar values of the vectorizable expression. We will use this 5601 // context to determine which values can be demoted. If we see a truncation, 5602 // we mark it as seeding another demotion. 5603 for (auto &EntryPtr : VectorizableTree) 5604 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 5605 5606 // Ensure the roots of the vectorizable tree don't form a cycle. They must 5607 // have a single external user that is not in the vectorizable tree. 5608 for (auto *Root : TreeRoot) 5609 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 5610 return; 5611 5612 // Conservatively determine if we can actually truncate the roots of the 5613 // expression. Collect the values that can be demoted in ToDemote and 5614 // additional roots that require investigating in Roots. 5615 SmallVector<Value *, 32> ToDemote; 5616 SmallVector<Value *, 4> Roots; 5617 for (auto *Root : TreeRoot) 5618 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 5619 return; 5620 5621 // The maximum bit width required to represent all the values that can be 5622 // demoted without loss of precision. It would be safe to truncate the roots 5623 // of the expression to this width. 5624 auto MaxBitWidth = 8u; 5625 5626 // We first check if all the bits of the roots are demanded. If they're not, 5627 // we can truncate the roots to this narrower type. 5628 for (auto *Root : TreeRoot) { 5629 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 5630 MaxBitWidth = std::max<unsigned>( 5631 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 5632 } 5633 5634 // True if the roots can be zero-extended back to their original type, rather 5635 // than sign-extended. We know that if the leading bits are not demanded, we 5636 // can safely zero-extend. So we initialize IsKnownPositive to True. 5637 bool IsKnownPositive = true; 5638 5639 // If all the bits of the roots are demanded, we can try a little harder to 5640 // compute a narrower type. This can happen, for example, if the roots are 5641 // getelementptr indices. InstCombine promotes these indices to the pointer 5642 // width. Thus, all their bits are technically demanded even though the 5643 // address computation might be vectorized in a smaller type. 5644 // 5645 // We start by looking at each entry that can be demoted. We compute the 5646 // maximum bit width required to store the scalar by using ValueTracking to 5647 // compute the number of high-order bits we can truncate. 5648 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 5649 llvm::all_of(TreeRoot, [](Value *R) { 5650 assert(R->hasOneUse() && "Root should have only one use!"); 5651 return isa<GetElementPtrInst>(R->user_back()); 5652 })) { 5653 MaxBitWidth = 8u; 5654 5655 // Determine if the sign bit of all the roots is known to be zero. If not, 5656 // IsKnownPositive is set to False. 5657 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 5658 KnownBits Known = computeKnownBits(R, *DL); 5659 return Known.isNonNegative(); 5660 }); 5661 5662 // Determine the maximum number of bits required to store the scalar 5663 // values. 5664 for (auto *Scalar : ToDemote) { 5665 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 5666 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 5667 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 5668 } 5669 5670 // If we can't prove that the sign bit is zero, we must add one to the 5671 // maximum bit width to account for the unknown sign bit. This preserves 5672 // the existing sign bit so we can safely sign-extend the root back to the 5673 // original type. Otherwise, if we know the sign bit is zero, we will 5674 // zero-extend the root instead. 5675 // 5676 // FIXME: This is somewhat suboptimal, as there will be cases where adding 5677 // one to the maximum bit width will yield a larger-than-necessary 5678 // type. In general, we need to add an extra bit only if we can't 5679 // prove that the upper bit of the original type is equal to the 5680 // upper bit of the proposed smaller type. If these two bits are the 5681 // same (either zero or one) we know that sign-extending from the 5682 // smaller type will result in the same value. Here, since we can't 5683 // yet prove this, we are just making the proposed smaller type 5684 // larger to ensure correctness. 5685 if (!IsKnownPositive) 5686 ++MaxBitWidth; 5687 } 5688 5689 // Round MaxBitWidth up to the next power-of-two. 5690 if (!isPowerOf2_64(MaxBitWidth)) 5691 MaxBitWidth = NextPowerOf2(MaxBitWidth); 5692 5693 // If the maximum bit width we compute is less than the with of the roots' 5694 // type, we can proceed with the narrowing. Otherwise, do nothing. 5695 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 5696 return; 5697 5698 // If we can truncate the root, we must collect additional values that might 5699 // be demoted as a result. That is, those seeded by truncations we will 5700 // modify. 5701 while (!Roots.empty()) 5702 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 5703 5704 // Finally, map the values we can demote to the maximum bit with we computed. 5705 for (auto *Scalar : ToDemote) 5706 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 5707 } 5708 5709 namespace { 5710 5711 /// The SLPVectorizer Pass. 5712 struct SLPVectorizer : public FunctionPass { 5713 SLPVectorizerPass Impl; 5714 5715 /// Pass identification, replacement for typeid 5716 static char ID; 5717 5718 explicit SLPVectorizer() : FunctionPass(ID) { 5719 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 5720 } 5721 5722 bool doInitialization(Module &M) override { 5723 return false; 5724 } 5725 5726 bool runOnFunction(Function &F) override { 5727 if (skipFunction(F)) 5728 return false; 5729 5730 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5731 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 5732 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 5733 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 5734 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 5735 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5736 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5737 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 5738 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 5739 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 5740 5741 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5742 } 5743 5744 void getAnalysisUsage(AnalysisUsage &AU) const override { 5745 FunctionPass::getAnalysisUsage(AU); 5746 AU.addRequired<AssumptionCacheTracker>(); 5747 AU.addRequired<ScalarEvolutionWrapperPass>(); 5748 AU.addRequired<AAResultsWrapperPass>(); 5749 AU.addRequired<TargetTransformInfoWrapperPass>(); 5750 AU.addRequired<LoopInfoWrapperPass>(); 5751 AU.addRequired<DominatorTreeWrapperPass>(); 5752 AU.addRequired<DemandedBitsWrapperPass>(); 5753 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 5754 AU.addRequired<InjectTLIMappingsLegacy>(); 5755 AU.addPreserved<LoopInfoWrapperPass>(); 5756 AU.addPreserved<DominatorTreeWrapperPass>(); 5757 AU.addPreserved<AAResultsWrapperPass>(); 5758 AU.addPreserved<GlobalsAAWrapperPass>(); 5759 AU.setPreservesCFG(); 5760 } 5761 }; 5762 5763 } // end anonymous namespace 5764 5765 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 5766 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 5767 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 5768 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 5769 auto *AA = &AM.getResult<AAManager>(F); 5770 auto *LI = &AM.getResult<LoopAnalysis>(F); 5771 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 5772 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 5773 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 5774 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 5775 5776 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5777 if (!Changed) 5778 return PreservedAnalyses::all(); 5779 5780 PreservedAnalyses PA; 5781 PA.preserveSet<CFGAnalyses>(); 5782 PA.preserve<AAManager>(); 5783 PA.preserve<GlobalsAA>(); 5784 return PA; 5785 } 5786 5787 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 5788 TargetTransformInfo *TTI_, 5789 TargetLibraryInfo *TLI_, AAResults *AA_, 5790 LoopInfo *LI_, DominatorTree *DT_, 5791 AssumptionCache *AC_, DemandedBits *DB_, 5792 OptimizationRemarkEmitter *ORE_) { 5793 if (!RunSLPVectorization) 5794 return false; 5795 SE = SE_; 5796 TTI = TTI_; 5797 TLI = TLI_; 5798 AA = AA_; 5799 LI = LI_; 5800 DT = DT_; 5801 AC = AC_; 5802 DB = DB_; 5803 DL = &F.getParent()->getDataLayout(); 5804 5805 Stores.clear(); 5806 GEPs.clear(); 5807 bool Changed = false; 5808 5809 // If the target claims to have no vector registers don't attempt 5810 // vectorization. 5811 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 5812 return false; 5813 5814 // Don't vectorize when the attribute NoImplicitFloat is used. 5815 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 5816 return false; 5817 5818 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 5819 5820 // Use the bottom up slp vectorizer to construct chains that start with 5821 // store instructions. 5822 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 5823 5824 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 5825 // delete instructions. 5826 5827 // Scan the blocks in the function in post order. 5828 for (auto BB : post_order(&F.getEntryBlock())) { 5829 collectSeedInstructions(BB); 5830 5831 // Vectorize trees that end at stores. 5832 if (!Stores.empty()) { 5833 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 5834 << " underlying objects.\n"); 5835 Changed |= vectorizeStoreChains(R); 5836 } 5837 5838 // Vectorize trees that end at reductions. 5839 Changed |= vectorizeChainsInBlock(BB, R); 5840 5841 // Vectorize the index computations of getelementptr instructions. This 5842 // is primarily intended to catch gather-like idioms ending at 5843 // non-consecutive loads. 5844 if (!GEPs.empty()) { 5845 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 5846 << " underlying objects.\n"); 5847 Changed |= vectorizeGEPIndices(BB, R); 5848 } 5849 } 5850 5851 if (Changed) { 5852 R.optimizeGatherSequence(); 5853 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 5854 } 5855 return Changed; 5856 } 5857 5858 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 5859 unsigned Idx) { 5860 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 5861 << "\n"); 5862 const unsigned Sz = R.getVectorElementSize(Chain[0]); 5863 const unsigned MinVF = R.getMinVecRegSize() / Sz; 5864 unsigned VF = Chain.size(); 5865 5866 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 5867 return false; 5868 5869 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 5870 << "\n"); 5871 5872 R.buildTree(Chain); 5873 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 5874 // TODO: Handle orders of size less than number of elements in the vector. 5875 if (Order && Order->size() == Chain.size()) { 5876 // TODO: reorder tree nodes without tree rebuilding. 5877 SmallVector<Value *, 4> ReorderedOps(Chain.rbegin(), Chain.rend()); 5878 llvm::transform(*Order, ReorderedOps.begin(), 5879 [Chain](const unsigned Idx) { return Chain[Idx]; }); 5880 R.buildTree(ReorderedOps); 5881 } 5882 if (R.isTreeTinyAndNotFullyVectorizable()) 5883 return false; 5884 if (R.isLoadCombineCandidate()) 5885 return false; 5886 5887 R.computeMinimumValueSizes(); 5888 5889 int Cost = R.getTreeCost(); 5890 5891 LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); 5892 if (Cost < -SLPCostThreshold) { 5893 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 5894 5895 using namespace ore; 5896 5897 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 5898 cast<StoreInst>(Chain[0])) 5899 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 5900 << " and with tree size " 5901 << NV("TreeSize", R.getTreeSize())); 5902 5903 R.vectorizeTree(); 5904 return true; 5905 } 5906 5907 return false; 5908 } 5909 5910 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 5911 BoUpSLP &R) { 5912 // We may run into multiple chains that merge into a single chain. We mark the 5913 // stores that we vectorized so that we don't visit the same store twice. 5914 BoUpSLP::ValueSet VectorizedStores; 5915 bool Changed = false; 5916 5917 int E = Stores.size(); 5918 SmallBitVector Tails(E, false); 5919 SmallVector<int, 16> ConsecutiveChain(E, E + 1); 5920 int MaxIter = MaxStoreLookup.getValue(); 5921 int IterCnt; 5922 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 5923 &ConsecutiveChain](int K, int Idx) { 5924 if (IterCnt >= MaxIter) 5925 return true; 5926 ++IterCnt; 5927 if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) 5928 return false; 5929 5930 Tails.set(Idx); 5931 ConsecutiveChain[K] = Idx; 5932 return true; 5933 }; 5934 // Do a quadratic search on all of the given stores in reverse order and find 5935 // all of the pairs of stores that follow each other. 5936 for (int Idx = E - 1; Idx >= 0; --Idx) { 5937 // If a store has multiple consecutive store candidates, search according 5938 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 5939 // This is because usually pairing with immediate succeeding or preceding 5940 // candidate create the best chance to find slp vectorization opportunity. 5941 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 5942 IterCnt = 0; 5943 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 5944 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 5945 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 5946 break; 5947 } 5948 5949 // For stores that start but don't end a link in the chain: 5950 for (int Cnt = E; Cnt > 0; --Cnt) { 5951 int I = Cnt - 1; 5952 if (ConsecutiveChain[I] == E + 1 || Tails.test(I)) 5953 continue; 5954 // We found a store instr that starts a chain. Now follow the chain and try 5955 // to vectorize it. 5956 BoUpSLP::ValueList Operands; 5957 // Collect the chain into a list. 5958 while (I != E + 1 && !VectorizedStores.count(Stores[I])) { 5959 Operands.push_back(Stores[I]); 5960 // Move to the next value in the chain. 5961 I = ConsecutiveChain[I]; 5962 } 5963 5964 // If a vector register can't hold 1 element, we are done. 5965 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 5966 unsigned EltSize = R.getVectorElementSize(Stores[0]); 5967 if (MaxVecRegSize % EltSize != 0) 5968 continue; 5969 5970 unsigned MaxElts = MaxVecRegSize / EltSize; 5971 // FIXME: Is division-by-2 the correct step? Should we assert that the 5972 // register size is a power-of-2? 5973 unsigned StartIdx = 0; 5974 for (unsigned Size = llvm::PowerOf2Ceil(MaxElts); Size >= 2; Size /= 2) { 5975 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 5976 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 5977 if (!VectorizedStores.count(Slice.front()) && 5978 !VectorizedStores.count(Slice.back()) && 5979 vectorizeStoreChain(Slice, R, Cnt)) { 5980 // Mark the vectorized stores so that we don't vectorize them again. 5981 VectorizedStores.insert(Slice.begin(), Slice.end()); 5982 Changed = true; 5983 // If we vectorized initial block, no need to try to vectorize it 5984 // again. 5985 if (Cnt == StartIdx) 5986 StartIdx += Size; 5987 Cnt += Size; 5988 continue; 5989 } 5990 ++Cnt; 5991 } 5992 // Check if the whole array was vectorized already - exit. 5993 if (StartIdx >= Operands.size()) 5994 break; 5995 } 5996 } 5997 5998 return Changed; 5999 } 6000 6001 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 6002 // Initialize the collections. We will make a single pass over the block. 6003 Stores.clear(); 6004 GEPs.clear(); 6005 6006 // Visit the store and getelementptr instructions in BB and organize them in 6007 // Stores and GEPs according to the underlying objects of their pointer 6008 // operands. 6009 for (Instruction &I : *BB) { 6010 // Ignore store instructions that are volatile or have a pointer operand 6011 // that doesn't point to a scalar type. 6012 if (auto *SI = dyn_cast<StoreInst>(&I)) { 6013 if (!SI->isSimple()) 6014 continue; 6015 if (!isValidElementType(SI->getValueOperand()->getType())) 6016 continue; 6017 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 6018 } 6019 6020 // Ignore getelementptr instructions that have more than one index, a 6021 // constant index, or a pointer operand that doesn't point to a scalar 6022 // type. 6023 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 6024 auto Idx = GEP->idx_begin()->get(); 6025 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 6026 continue; 6027 if (!isValidElementType(Idx->getType())) 6028 continue; 6029 if (GEP->getType()->isVectorTy()) 6030 continue; 6031 GEPs[GEP->getPointerOperand()].push_back(GEP); 6032 } 6033 } 6034 } 6035 6036 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 6037 if (!A || !B) 6038 return false; 6039 Value *VL[] = {A, B}; 6040 return tryToVectorizeList(VL, R, /*AllowReorder=*/true); 6041 } 6042 6043 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 6044 bool AllowReorder, 6045 ArrayRef<Value *> InsertUses) { 6046 if (VL.size() < 2) 6047 return false; 6048 6049 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 6050 << VL.size() << ".\n"); 6051 6052 // Check that all of the parts are instructions of the same type, 6053 // we permit an alternate opcode via InstructionsState. 6054 InstructionsState S = getSameOpcode(VL); 6055 if (!S.getOpcode()) 6056 return false; 6057 6058 Instruction *I0 = cast<Instruction>(S.OpValue); 6059 // Make sure invalid types (including vector type) are rejected before 6060 // determining vectorization factor for scalar instructions. 6061 for (Value *V : VL) { 6062 Type *Ty = V->getType(); 6063 if (!isValidElementType(Ty)) { 6064 // NOTE: the following will give user internal llvm type name, which may 6065 // not be useful. 6066 R.getORE()->emit([&]() { 6067 std::string type_str; 6068 llvm::raw_string_ostream rso(type_str); 6069 Ty->print(rso); 6070 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 6071 << "Cannot SLP vectorize list: type " 6072 << rso.str() + " is unsupported by vectorizer"; 6073 }); 6074 return false; 6075 } 6076 } 6077 6078 unsigned Sz = R.getVectorElementSize(I0); 6079 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 6080 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 6081 if (MaxVF < 2) { 6082 R.getORE()->emit([&]() { 6083 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 6084 << "Cannot SLP vectorize list: vectorization factor " 6085 << "less than 2 is not supported"; 6086 }); 6087 return false; 6088 } 6089 6090 bool Changed = false; 6091 bool CandidateFound = false; 6092 int MinCost = SLPCostThreshold; 6093 6094 bool CompensateUseCost = 6095 !InsertUses.empty() && llvm::all_of(InsertUses, [](const Value *V) { 6096 return V && isa<InsertElementInst>(V); 6097 }); 6098 assert((!CompensateUseCost || InsertUses.size() == VL.size()) && 6099 "Each scalar expected to have an associated InsertElement user."); 6100 6101 unsigned NextInst = 0, MaxInst = VL.size(); 6102 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 6103 // No actual vectorization should happen, if number of parts is the same as 6104 // provided vectorization factor (i.e. the scalar type is used for vector 6105 // code during codegen). 6106 auto *VecTy = FixedVectorType::get(VL[0]->getType(), VF); 6107 if (TTI->getNumberOfParts(VecTy) == VF) 6108 continue; 6109 for (unsigned I = NextInst; I < MaxInst; ++I) { 6110 unsigned OpsWidth = 0; 6111 6112 if (I + VF > MaxInst) 6113 OpsWidth = MaxInst - I; 6114 else 6115 OpsWidth = VF; 6116 6117 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 6118 break; 6119 6120 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 6121 // Check that a previous iteration of this loop did not delete the Value. 6122 if (llvm::any_of(Ops, [&R](Value *V) { 6123 auto *I = dyn_cast<Instruction>(V); 6124 return I && R.isDeleted(I); 6125 })) 6126 continue; 6127 6128 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 6129 << "\n"); 6130 6131 R.buildTree(Ops); 6132 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 6133 // TODO: check if we can allow reordering for more cases. 6134 if (AllowReorder && Order) { 6135 // TODO: reorder tree nodes without tree rebuilding. 6136 // Conceptually, there is nothing actually preventing us from trying to 6137 // reorder a larger list. In fact, we do exactly this when vectorizing 6138 // reductions. However, at this point, we only expect to get here when 6139 // there are exactly two operations. 6140 assert(Ops.size() == 2); 6141 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 6142 R.buildTree(ReorderedOps, None); 6143 } 6144 if (R.isTreeTinyAndNotFullyVectorizable()) 6145 continue; 6146 6147 R.computeMinimumValueSizes(); 6148 int Cost = R.getTreeCost(); 6149 CandidateFound = true; 6150 if (CompensateUseCost) { 6151 // TODO: Use TTI's getScalarizationOverhead for sequence of inserts 6152 // rather than sum of single inserts as the latter may overestimate 6153 // cost. This work should imply improving cost estimation for extracts 6154 // that added in for external (for vectorization tree) users,i.e. that 6155 // part should also switch to same interface. 6156 // For example, the following case is projected code after SLP: 6157 // %4 = extractelement <4 x i64> %3, i32 0 6158 // %v0 = insertelement <4 x i64> undef, i64 %4, i32 0 6159 // %5 = extractelement <4 x i64> %3, i32 1 6160 // %v1 = insertelement <4 x i64> %v0, i64 %5, i32 1 6161 // %6 = extractelement <4 x i64> %3, i32 2 6162 // %v2 = insertelement <4 x i64> %v1, i64 %6, i32 2 6163 // %7 = extractelement <4 x i64> %3, i32 3 6164 // %v3 = insertelement <4 x i64> %v2, i64 %7, i32 3 6165 // 6166 // Extracts here added by SLP in order to feed users (the inserts) of 6167 // original scalars and contribute to "ExtractCost" at cost evaluation. 6168 // The inserts in turn form sequence to build an aggregate that 6169 // detected by findBuildAggregate routine. 6170 // SLP makes an assumption that such sequence will be optimized away 6171 // later (instcombine) so it tries to compensate ExctractCost with 6172 // cost of insert sequence. 6173 // Current per element cost calculation approach is not quite accurate 6174 // and tends to create bias toward favoring vectorization. 6175 // Switching to the TTI interface might help a bit. 6176 // Alternative solution could be pattern-match to detect a no-op or 6177 // shuffle. 6178 unsigned UserCost = 0; 6179 for (unsigned Lane = 0; Lane < OpsWidth; Lane++) { 6180 auto *IE = cast<InsertElementInst>(InsertUses[I + Lane]); 6181 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) 6182 UserCost += TTI->getVectorInstrCost( 6183 Instruction::InsertElement, IE->getType(), CI->getZExtValue()); 6184 } 6185 LLVM_DEBUG(dbgs() << "SLP: Compensate cost of users by: " << UserCost 6186 << ".\n"); 6187 Cost -= UserCost; 6188 } 6189 6190 MinCost = std::min(MinCost, Cost); 6191 6192 if (Cost < -SLPCostThreshold) { 6193 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 6194 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 6195 cast<Instruction>(Ops[0])) 6196 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 6197 << " and with tree size " 6198 << ore::NV("TreeSize", R.getTreeSize())); 6199 6200 R.vectorizeTree(); 6201 // Move to the next bundle. 6202 I += VF - 1; 6203 NextInst = I + 1; 6204 Changed = true; 6205 } 6206 } 6207 } 6208 6209 if (!Changed && CandidateFound) { 6210 R.getORE()->emit([&]() { 6211 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 6212 << "List vectorization was possible but not beneficial with cost " 6213 << ore::NV("Cost", MinCost) << " >= " 6214 << ore::NV("Treshold", -SLPCostThreshold); 6215 }); 6216 } else if (!Changed) { 6217 R.getORE()->emit([&]() { 6218 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 6219 << "Cannot SLP vectorize list: vectorization was impossible" 6220 << " with available vectorization factors"; 6221 }); 6222 } 6223 return Changed; 6224 } 6225 6226 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 6227 if (!I) 6228 return false; 6229 6230 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 6231 return false; 6232 6233 Value *P = I->getParent(); 6234 6235 // Vectorize in current basic block only. 6236 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 6237 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 6238 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 6239 return false; 6240 6241 // Try to vectorize V. 6242 if (tryToVectorizePair(Op0, Op1, R)) 6243 return true; 6244 6245 auto *A = dyn_cast<BinaryOperator>(Op0); 6246 auto *B = dyn_cast<BinaryOperator>(Op1); 6247 // Try to skip B. 6248 if (B && B->hasOneUse()) { 6249 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 6250 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 6251 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 6252 return true; 6253 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 6254 return true; 6255 } 6256 6257 // Try to skip A. 6258 if (A && A->hasOneUse()) { 6259 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 6260 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 6261 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 6262 return true; 6263 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 6264 return true; 6265 } 6266 return false; 6267 } 6268 6269 /// Generate a shuffle mask to be used in a reduction tree. 6270 /// 6271 /// \param VecLen The length of the vector to be reduced. 6272 /// \param NumEltsToRdx The number of elements that should be reduced in the 6273 /// vector. 6274 /// \param IsPairwise Whether the reduction is a pairwise or splitting 6275 /// reduction. A pairwise reduction will generate a mask of 6276 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 6277 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 6278 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 6279 static SmallVector<int, 32> createRdxShuffleMask(unsigned VecLen, 6280 unsigned NumEltsToRdx, 6281 bool IsPairwise, bool IsLeft) { 6282 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 6283 6284 SmallVector<int, 32> ShuffleMask(VecLen, -1); 6285 6286 if (IsPairwise) 6287 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 6288 for (unsigned i = 0; i != NumEltsToRdx; ++i) 6289 ShuffleMask[i] = 2 * i + !IsLeft; 6290 else 6291 // Move the upper half of the vector to the lower half. 6292 for (unsigned i = 0; i != NumEltsToRdx; ++i) 6293 ShuffleMask[i] = NumEltsToRdx + i; 6294 6295 return ShuffleMask; 6296 } 6297 6298 namespace { 6299 6300 /// Model horizontal reductions. 6301 /// 6302 /// A horizontal reduction is a tree of reduction operations (currently add and 6303 /// fadd) that has operations that can be put into a vector as its leaf. 6304 /// For example, this tree: 6305 /// 6306 /// mul mul mul mul 6307 /// \ / \ / 6308 /// + + 6309 /// \ / 6310 /// + 6311 /// This tree has "mul" as its reduced values and "+" as its reduction 6312 /// operations. A reduction might be feeding into a store or a binary operation 6313 /// feeding a phi. 6314 /// ... 6315 /// \ / 6316 /// + 6317 /// | 6318 /// phi += 6319 /// 6320 /// Or: 6321 /// ... 6322 /// \ / 6323 /// + 6324 /// | 6325 /// *p = 6326 /// 6327 class HorizontalReduction { 6328 using ReductionOpsType = SmallVector<Value *, 16>; 6329 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 6330 ReductionOpsListType ReductionOps; 6331 SmallVector<Value *, 32> ReducedVals; 6332 // Use map vector to make stable output. 6333 MapVector<Instruction *, Value *> ExtraArgs; 6334 6335 /// Kind of the reduction data. 6336 enum ReductionKind { 6337 RK_None, /// Not a reduction. 6338 RK_Arithmetic, /// Binary reduction data. 6339 RK_SMin, /// Signed minimum reduction data. 6340 RK_UMin, /// Unsigned minimum reduction data. 6341 RK_SMax, /// Signed maximum reduction data. 6342 RK_UMax, /// Unsigned maximum reduction data. 6343 }; 6344 6345 /// Contains info about operation, like its opcode, left and right operands. 6346 class OperationData { 6347 /// Opcode of the instruction. 6348 unsigned Opcode = 0; 6349 6350 /// Kind of the reduction operation. 6351 ReductionKind Kind = RK_None; 6352 6353 /// Checks if the reduction operation can be vectorized. 6354 bool isVectorizable() const { 6355 // We currently only support add/mul/logical && min/max reductions. 6356 return ((Kind == RK_Arithmetic && 6357 (Opcode == Instruction::Add || Opcode == Instruction::FAdd || 6358 Opcode == Instruction::Mul || Opcode == Instruction::FMul || 6359 Opcode == Instruction::And || Opcode == Instruction::Or || 6360 Opcode == Instruction::Xor)) || 6361 (Opcode == Instruction::ICmp && 6362 (Kind == RK_SMin || Kind == RK_SMax || 6363 Kind == RK_UMin || Kind == RK_UMax))); 6364 } 6365 6366 /// Creates reduction operation with the current opcode. 6367 Value *createOp(IRBuilder<> &Builder, Value *LHS, Value *RHS, 6368 const Twine &Name) const { 6369 assert(isVectorizable() && 6370 "Expected add|fadd or min/max reduction operation."); 6371 Value *Cmp = nullptr; 6372 switch (Kind) { 6373 case RK_Arithmetic: 6374 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 6375 Name); 6376 case RK_SMin: 6377 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6378 Cmp = Builder.CreateICmpSLT(LHS, RHS); 6379 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6380 case RK_SMax: 6381 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6382 Cmp = Builder.CreateICmpSGT(LHS, RHS); 6383 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6384 case RK_UMin: 6385 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6386 Cmp = Builder.CreateICmpULT(LHS, RHS); 6387 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6388 case RK_UMax: 6389 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6390 Cmp = Builder.CreateICmpUGT(LHS, RHS); 6391 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6392 case RK_None: 6393 break; 6394 } 6395 llvm_unreachable("Unknown reduction operation."); 6396 } 6397 6398 public: 6399 explicit OperationData() = default; 6400 6401 /// Construction for reduced values. They are identified by opcode only and 6402 /// don't have associated LHS/RHS values. 6403 explicit OperationData(Instruction &I) { 6404 Opcode = I.getOpcode(); 6405 } 6406 6407 /// Constructor for reduction operations with opcode and its left and 6408 /// right operands. 6409 OperationData(unsigned Opcode, ReductionKind Kind) 6410 : Opcode(Opcode), Kind(Kind) { 6411 assert(Kind != RK_None && "One of the reduction operations is expected."); 6412 } 6413 6414 explicit operator bool() const { return Opcode; } 6415 6416 /// Return true if this operation is any kind of minimum or maximum. 6417 bool isMinMax() const { 6418 switch (Kind) { 6419 case RK_Arithmetic: 6420 return false; 6421 case RK_SMin: 6422 case RK_SMax: 6423 case RK_UMin: 6424 case RK_UMax: 6425 return true; 6426 case RK_None: 6427 break; 6428 } 6429 llvm_unreachable("Reduction kind is not set"); 6430 } 6431 6432 /// Get the index of the first operand. 6433 unsigned getFirstOperandIndex() const { 6434 assert(!!*this && "The opcode is not set."); 6435 // We allow calling this before 'Kind' is set, so handle that specially. 6436 if (Kind == RK_None) 6437 return 0; 6438 return isMinMax() ? 1 : 0; 6439 } 6440 6441 /// Total number of operands in the reduction operation. 6442 unsigned getNumberOfOperands() const { 6443 assert(Kind != RK_None && !!*this && "Expected reduction operation."); 6444 return isMinMax() ? 3 : 2; 6445 } 6446 6447 /// Checks if the instruction is in basic block \p BB. 6448 /// For a min/max reduction check that both compare and select are in \p BB. 6449 bool hasSameParent(Instruction *I, BasicBlock *BB, bool IsRedOp) const { 6450 assert(Kind != RK_None && !!*this && "Expected reduction operation."); 6451 if (IsRedOp && isMinMax()) { 6452 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 6453 return I->getParent() == BB && Cmp && Cmp->getParent() == BB; 6454 } 6455 return I->getParent() == BB; 6456 } 6457 6458 /// Expected number of uses for reduction operations/reduced values. 6459 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { 6460 assert(Kind != RK_None && !!*this && "Expected reduction operation."); 6461 // SelectInst must be used twice while the condition op must have single 6462 // use only. 6463 if (isMinMax()) 6464 return I->hasNUses(2) && 6465 (!IsReductionOp || 6466 cast<SelectInst>(I)->getCondition()->hasOneUse()); 6467 6468 // Arithmetic reduction operation must be used once only. 6469 return I->hasOneUse(); 6470 } 6471 6472 /// Initializes the list of reduction operations. 6473 void initReductionOps(ReductionOpsListType &ReductionOps) { 6474 assert(Kind != RK_None && !!*this && "Expected reduction operation."); 6475 if (isMinMax()) 6476 ReductionOps.assign(2, ReductionOpsType()); 6477 else 6478 ReductionOps.assign(1, ReductionOpsType()); 6479 } 6480 6481 /// Add all reduction operations for the reduction instruction \p I. 6482 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { 6483 assert(Kind != RK_None && !!*this && "Expected reduction operation."); 6484 if (isMinMax()) { 6485 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 6486 ReductionOps[1].emplace_back(I); 6487 } else { 6488 ReductionOps[0].emplace_back(I); 6489 } 6490 } 6491 6492 /// Checks if instruction is associative and can be vectorized. 6493 bool isAssociative(Instruction *I) const { 6494 assert(Kind != RK_None && *this && "Expected reduction operation."); 6495 switch (Kind) { 6496 case RK_Arithmetic: 6497 return I->isAssociative(); 6498 case RK_SMin: 6499 case RK_SMax: 6500 case RK_UMin: 6501 case RK_UMax: 6502 assert(Opcode == Instruction::ICmp && 6503 "Only integer compare operation is expected."); 6504 return true; 6505 case RK_None: 6506 break; 6507 } 6508 llvm_unreachable("Reduction kind is not set"); 6509 } 6510 6511 /// Checks if the reduction operation can be vectorized. 6512 bool isVectorizable(Instruction *I) const { 6513 return isVectorizable() && isAssociative(I); 6514 } 6515 6516 /// Checks if two operation data are both a reduction op or both a reduced 6517 /// value. 6518 bool operator==(const OperationData &OD) const { 6519 assert(((Kind != OD.Kind) || (Opcode != 0 && OD.Opcode != 0)) && 6520 "One of the comparing operations is incorrect."); 6521 return Kind == OD.Kind && Opcode == OD.Opcode; 6522 } 6523 bool operator!=(const OperationData &OD) const { return !(*this == OD); } 6524 void clear() { 6525 Opcode = 0; 6526 Kind = RK_None; 6527 } 6528 6529 /// Get the opcode of the reduction operation. 6530 unsigned getOpcode() const { 6531 assert(isVectorizable() && "Expected vectorizable operation."); 6532 return Opcode; 6533 } 6534 6535 /// Get kind of reduction data. 6536 ReductionKind getKind() const { return Kind; } 6537 Value *getLHS(Instruction *I) const { 6538 if (Kind == RK_None) 6539 return nullptr; 6540 return I->getOperand(getFirstOperandIndex()); 6541 } 6542 Value *getRHS(Instruction *I) const { 6543 if (Kind == RK_None) 6544 return nullptr; 6545 return I->getOperand(getFirstOperandIndex() + 1); 6546 } 6547 6548 /// Creates reduction operation with the current opcode with the IR flags 6549 /// from \p ReductionOps. 6550 Value *createOp(IRBuilder<> &Builder, Value *LHS, Value *RHS, 6551 const Twine &Name, 6552 const ReductionOpsListType &ReductionOps) const { 6553 assert(isVectorizable() && 6554 "Expected add|fadd or min/max reduction operation."); 6555 auto *Op = createOp(Builder, LHS, RHS, Name); 6556 switch (Kind) { 6557 case RK_Arithmetic: 6558 propagateIRFlags(Op, ReductionOps[0]); 6559 return Op; 6560 case RK_SMin: 6561 case RK_SMax: 6562 case RK_UMin: 6563 case RK_UMax: 6564 if (auto *SI = dyn_cast<SelectInst>(Op)) 6565 propagateIRFlags(SI->getCondition(), ReductionOps[0]); 6566 propagateIRFlags(Op, ReductionOps[1]); 6567 return Op; 6568 case RK_None: 6569 break; 6570 } 6571 llvm_unreachable("Unknown reduction operation."); 6572 } 6573 /// Creates reduction operation with the current opcode with the IR flags 6574 /// from \p I. 6575 Value *createOp(IRBuilder<> &Builder, Value *LHS, Value *RHS, 6576 const Twine &Name, Instruction *I) const { 6577 assert(isVectorizable() && 6578 "Expected add|fadd or min/max reduction operation."); 6579 auto *Op = createOp(Builder, LHS, RHS, Name); 6580 switch (Kind) { 6581 case RK_Arithmetic: 6582 propagateIRFlags(Op, I); 6583 return Op; 6584 case RK_SMin: 6585 case RK_SMax: 6586 case RK_UMin: 6587 case RK_UMax: 6588 if (auto *SI = dyn_cast<SelectInst>(Op)) { 6589 propagateIRFlags(SI->getCondition(), 6590 cast<SelectInst>(I)->getCondition()); 6591 } 6592 propagateIRFlags(Op, I); 6593 return Op; 6594 case RK_None: 6595 break; 6596 } 6597 llvm_unreachable("Unknown reduction operation."); 6598 } 6599 6600 TargetTransformInfo::ReductionFlags getFlags() const { 6601 TargetTransformInfo::ReductionFlags Flags; 6602 switch (Kind) { 6603 case RK_Arithmetic: 6604 break; 6605 case RK_SMin: 6606 Flags.IsSigned = true; 6607 Flags.IsMaxOp = false; 6608 break; 6609 case RK_SMax: 6610 Flags.IsSigned = true; 6611 Flags.IsMaxOp = true; 6612 break; 6613 case RK_UMin: 6614 Flags.IsSigned = false; 6615 Flags.IsMaxOp = false; 6616 break; 6617 case RK_UMax: 6618 Flags.IsSigned = false; 6619 Flags.IsMaxOp = true; 6620 break; 6621 case RK_None: 6622 llvm_unreachable("Reduction kind is not set"); 6623 } 6624 return Flags; 6625 } 6626 }; 6627 6628 WeakTrackingVH ReductionRoot; 6629 6630 /// The operation data of the reduction operation. 6631 OperationData ReductionData; 6632 6633 /// The operation data of the values we perform a reduction on. 6634 OperationData ReducedValueData; 6635 6636 /// Should we model this reduction as a pairwise reduction tree or a tree that 6637 /// splits the vector in halves and adds those halves. 6638 bool IsPairwiseReduction = false; 6639 6640 /// Checks if the ParentStackElem.first should be marked as a reduction 6641 /// operation with an extra argument or as extra argument itself. 6642 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 6643 Value *ExtraArg) { 6644 if (ExtraArgs.count(ParentStackElem.first)) { 6645 ExtraArgs[ParentStackElem.first] = nullptr; 6646 // We ran into something like: 6647 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 6648 // The whole ParentStackElem.first should be considered as an extra value 6649 // in this case. 6650 // Do not perform analysis of remaining operands of ParentStackElem.first 6651 // instruction, this whole instruction is an extra argument. 6652 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 6653 } else { 6654 // We ran into something like: 6655 // ParentStackElem.first += ... + ExtraArg + ... 6656 ExtraArgs[ParentStackElem.first] = ExtraArg; 6657 } 6658 } 6659 6660 static OperationData getOperationData(Instruction *I) { 6661 if (!I) 6662 return OperationData(); 6663 6664 Value *LHS; 6665 Value *RHS; 6666 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(I)) { 6667 return OperationData(cast<BinaryOperator>(I)->getOpcode(), RK_Arithmetic); 6668 } 6669 if (auto *Select = dyn_cast<SelectInst>(I)) { 6670 // Look for a min/max pattern. 6671 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6672 return OperationData(Instruction::ICmp, RK_UMin); 6673 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6674 return OperationData(Instruction::ICmp, RK_SMin); 6675 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6676 return OperationData(Instruction::ICmp, RK_UMax); 6677 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6678 return OperationData(Instruction::ICmp, RK_SMax); 6679 } else { 6680 // Try harder: look for min/max pattern based on instructions producing 6681 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 6682 // During the intermediate stages of SLP, it's very common to have 6683 // pattern like this (since optimizeGatherSequence is run only once 6684 // at the end): 6685 // %1 = extractelement <2 x i32> %a, i32 0 6686 // %2 = extractelement <2 x i32> %a, i32 1 6687 // %cond = icmp sgt i32 %1, %2 6688 // %3 = extractelement <2 x i32> %a, i32 0 6689 // %4 = extractelement <2 x i32> %a, i32 1 6690 // %select = select i1 %cond, i32 %3, i32 %4 6691 CmpInst::Predicate Pred; 6692 Instruction *L1; 6693 Instruction *L2; 6694 6695 LHS = Select->getTrueValue(); 6696 RHS = Select->getFalseValue(); 6697 Value *Cond = Select->getCondition(); 6698 6699 // TODO: Support inverse predicates. 6700 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 6701 if (!isa<ExtractElementInst>(RHS) || 6702 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6703 return OperationData(*I); 6704 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 6705 if (!isa<ExtractElementInst>(LHS) || 6706 !L1->isIdenticalTo(cast<Instruction>(LHS))) 6707 return OperationData(*I); 6708 } else { 6709 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 6710 return OperationData(*I); 6711 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 6712 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 6713 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6714 return OperationData(*I); 6715 } 6716 switch (Pred) { 6717 default: 6718 return OperationData(*I); 6719 6720 case CmpInst::ICMP_ULT: 6721 case CmpInst::ICMP_ULE: 6722 return OperationData(Instruction::ICmp, RK_UMin); 6723 6724 case CmpInst::ICMP_SLT: 6725 case CmpInst::ICMP_SLE: 6726 return OperationData(Instruction::ICmp, RK_SMin); 6727 6728 case CmpInst::ICMP_UGT: 6729 case CmpInst::ICMP_UGE: 6730 return OperationData(Instruction::ICmp, RK_UMax); 6731 6732 case CmpInst::ICMP_SGT: 6733 case CmpInst::ICMP_SGE: 6734 return OperationData(Instruction::ICmp, RK_SMax); 6735 } 6736 } 6737 } 6738 return OperationData(*I); 6739 } 6740 6741 public: 6742 HorizontalReduction() = default; 6743 6744 /// Try to find a reduction tree. 6745 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 6746 assert((!Phi || is_contained(Phi->operands(), B)) && 6747 "Thi phi needs to use the binary operator"); 6748 6749 ReductionData = getOperationData(B); 6750 6751 // We could have a initial reductions that is not an add. 6752 // r *= v1 + v2 + v3 + v4 6753 // In such a case start looking for a tree rooted in the first '+'. 6754 if (Phi) { 6755 if (ReductionData.getLHS(B) == Phi) { 6756 Phi = nullptr; 6757 B = dyn_cast<Instruction>(ReductionData.getRHS(B)); 6758 ReductionData = getOperationData(B); 6759 } else if (ReductionData.getRHS(B) == Phi) { 6760 Phi = nullptr; 6761 B = dyn_cast<Instruction>(ReductionData.getLHS(B)); 6762 ReductionData = getOperationData(B); 6763 } 6764 } 6765 6766 if (!ReductionData.isVectorizable(B)) 6767 return false; 6768 6769 Type *Ty = B->getType(); 6770 if (!isValidElementType(Ty)) 6771 return false; 6772 if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy()) 6773 return false; 6774 6775 ReducedValueData.clear(); 6776 ReductionRoot = B; 6777 6778 // Post order traverse the reduction tree starting at B. We only handle true 6779 // trees containing only binary operators. 6780 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 6781 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); 6782 ReductionData.initReductionOps(ReductionOps); 6783 while (!Stack.empty()) { 6784 Instruction *TreeN = Stack.back().first; 6785 unsigned EdgeToVist = Stack.back().second++; 6786 OperationData OpData = getOperationData(TreeN); 6787 bool IsReducedValue = OpData != ReductionData; 6788 6789 // Postorder vist. 6790 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { 6791 if (IsReducedValue) 6792 ReducedVals.push_back(TreeN); 6793 else { 6794 auto I = ExtraArgs.find(TreeN); 6795 if (I != ExtraArgs.end() && !I->second) { 6796 // Check if TreeN is an extra argument of its parent operation. 6797 if (Stack.size() <= 1) { 6798 // TreeN can't be an extra argument as it is a root reduction 6799 // operation. 6800 return false; 6801 } 6802 // Yes, TreeN is an extra argument, do not add it to a list of 6803 // reduction operations. 6804 // Stack[Stack.size() - 2] always points to the parent operation. 6805 markExtraArg(Stack[Stack.size() - 2], TreeN); 6806 ExtraArgs.erase(TreeN); 6807 } else 6808 ReductionData.addReductionOps(TreeN, ReductionOps); 6809 } 6810 // Retract. 6811 Stack.pop_back(); 6812 continue; 6813 } 6814 6815 // Visit left or right. 6816 Value *NextV = TreeN->getOperand(EdgeToVist); 6817 if (NextV != Phi) { 6818 auto *I = dyn_cast<Instruction>(NextV); 6819 OpData = getOperationData(I); 6820 // Continue analysis if the next operand is a reduction operation or 6821 // (possibly) a reduced value. If the reduced value opcode is not set, 6822 // the first met operation != reduction operation is considered as the 6823 // reduced value class. 6824 if (I && (!ReducedValueData || OpData == ReducedValueData || 6825 OpData == ReductionData)) { 6826 const bool IsReductionOperation = OpData == ReductionData; 6827 // Only handle trees in the current basic block. 6828 if (!ReductionData.hasSameParent(I, B->getParent(), 6829 IsReductionOperation)) { 6830 // I is an extra argument for TreeN (its parent operation). 6831 markExtraArg(Stack.back(), I); 6832 continue; 6833 } 6834 6835 // Each tree node needs to have minimal number of users except for the 6836 // ultimate reduction. 6837 if (!ReductionData.hasRequiredNumberOfUses(I, 6838 OpData == ReductionData) && 6839 I != B) { 6840 // I is an extra argument for TreeN (its parent operation). 6841 markExtraArg(Stack.back(), I); 6842 continue; 6843 } 6844 6845 if (IsReductionOperation) { 6846 // We need to be able to reassociate the reduction operations. 6847 if (!OpData.isAssociative(I)) { 6848 // I is an extra argument for TreeN (its parent operation). 6849 markExtraArg(Stack.back(), I); 6850 continue; 6851 } 6852 } else if (ReducedValueData && 6853 ReducedValueData != OpData) { 6854 // Make sure that the opcodes of the operations that we are going to 6855 // reduce match. 6856 // I is an extra argument for TreeN (its parent operation). 6857 markExtraArg(Stack.back(), I); 6858 continue; 6859 } else if (!ReducedValueData) 6860 ReducedValueData = OpData; 6861 6862 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 6863 continue; 6864 } 6865 } 6866 // NextV is an extra argument for TreeN (its parent operation). 6867 markExtraArg(Stack.back(), NextV); 6868 } 6869 return true; 6870 } 6871 6872 /// Attempt to vectorize the tree found by matchAssociativeReduction. 6873 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 6874 // If there are a sufficient number of reduction values, reduce 6875 // to a nearby power-of-2. We can safely generate oversized 6876 // vectors and rely on the backend to split them to legal sizes. 6877 unsigned NumReducedVals = ReducedVals.size(); 6878 if (NumReducedVals < 4) 6879 return false; 6880 6881 // FIXME: Fast-math-flags should be set based on the instructions in the 6882 // reduction (not all of 'fast' are required). 6883 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 6884 FastMathFlags Unsafe; 6885 Unsafe.setFast(); 6886 Builder.setFastMathFlags(Unsafe); 6887 6888 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 6889 // The same extra argument may be used several times, so log each attempt 6890 // to use it. 6891 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 6892 assert(Pair.first && "DebugLoc must be set."); 6893 ExternallyUsedValues[Pair.second].push_back(Pair.first); 6894 } 6895 6896 // The compare instruction of a min/max is the insertion point for new 6897 // instructions and may be replaced with a new compare instruction. 6898 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 6899 assert(isa<SelectInst>(RdxRootInst) && 6900 "Expected min/max reduction to have select root instruction"); 6901 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 6902 assert(isa<Instruction>(ScalarCond) && 6903 "Expected min/max reduction to have compare condition"); 6904 return cast<Instruction>(ScalarCond); 6905 }; 6906 6907 // The reduction root is used as the insertion point for new instructions, 6908 // so set it as externally used to prevent it from being deleted. 6909 ExternallyUsedValues[ReductionRoot]; 6910 SmallVector<Value *, 16> IgnoreList; 6911 for (ReductionOpsType &RdxOp : ReductionOps) 6912 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 6913 6914 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 6915 if (NumReducedVals > ReduxWidth) { 6916 // In the loop below, we are building a tree based on a window of 6917 // 'ReduxWidth' values. 6918 // If the operands of those values have common traits (compare predicate, 6919 // constant operand, etc), then we want to group those together to 6920 // minimize the cost of the reduction. 6921 6922 // TODO: This should be extended to count common operands for 6923 // compares and binops. 6924 6925 // Step 1: Count the number of times each compare predicate occurs. 6926 SmallDenseMap<unsigned, unsigned> PredCountMap; 6927 for (Value *RdxVal : ReducedVals) { 6928 CmpInst::Predicate Pred; 6929 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 6930 ++PredCountMap[Pred]; 6931 } 6932 // Step 2: Sort the values so the most common predicates come first. 6933 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 6934 CmpInst::Predicate PredA, PredB; 6935 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 6936 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 6937 return PredCountMap[PredA] > PredCountMap[PredB]; 6938 } 6939 return false; 6940 }); 6941 } 6942 6943 Value *VectorizedTree = nullptr; 6944 unsigned i = 0; 6945 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 6946 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 6947 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 6948 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 6949 if (Order) { 6950 assert(Order->size() == VL.size() && 6951 "Order size must be the same as number of vectorized " 6952 "instructions."); 6953 // TODO: reorder tree nodes without tree rebuilding. 6954 SmallVector<Value *, 4> ReorderedOps(VL.size()); 6955 llvm::transform(*Order, ReorderedOps.begin(), 6956 [VL](const unsigned Idx) { return VL[Idx]; }); 6957 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 6958 } 6959 if (V.isTreeTinyAndNotFullyVectorizable()) 6960 break; 6961 if (V.isLoadCombineReductionCandidate(ReductionData.getOpcode())) 6962 break; 6963 6964 V.computeMinimumValueSizes(); 6965 6966 // Estimate cost. 6967 int TreeCost = V.getTreeCost(); 6968 int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth); 6969 int Cost = TreeCost + ReductionCost; 6970 if (Cost >= -SLPCostThreshold) { 6971 V.getORE()->emit([&]() { 6972 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 6973 cast<Instruction>(VL[0])) 6974 << "Vectorizing horizontal reduction is possible" 6975 << "but not beneficial with cost " << ore::NV("Cost", Cost) 6976 << " and threshold " 6977 << ore::NV("Threshold", -SLPCostThreshold); 6978 }); 6979 break; 6980 } 6981 6982 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 6983 << Cost << ". (HorRdx)\n"); 6984 V.getORE()->emit([&]() { 6985 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 6986 cast<Instruction>(VL[0])) 6987 << "Vectorized horizontal reduction with cost " 6988 << ore::NV("Cost", Cost) << " and with tree size " 6989 << ore::NV("TreeSize", V.getTreeSize()); 6990 }); 6991 6992 // Vectorize a tree. 6993 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 6994 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 6995 6996 // Emit a reduction. For min/max, the root is a select, but the insertion 6997 // point is the compare condition of that select. 6998 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 6999 if (ReductionData.isMinMax()) 7000 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 7001 else 7002 Builder.SetInsertPoint(RdxRootInst); 7003 7004 Value *ReducedSubTree = 7005 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 7006 7007 if (!VectorizedTree) { 7008 // Initialize the final value in the reduction. 7009 VectorizedTree = ReducedSubTree; 7010 } else { 7011 // Update the final value in the reduction. 7012 Builder.SetCurrentDebugLocation(Loc); 7013 VectorizedTree = ReductionData.createOp( 7014 Builder, VectorizedTree, ReducedSubTree, "op.rdx", ReductionOps); 7015 } 7016 i += ReduxWidth; 7017 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 7018 } 7019 7020 if (VectorizedTree) { 7021 // Finish the reduction. 7022 for (; i < NumReducedVals; ++i) { 7023 auto *I = cast<Instruction>(ReducedVals[i]); 7024 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 7025 VectorizedTree = ReductionData.createOp(Builder, VectorizedTree, I, "", 7026 ReductionOps); 7027 } 7028 for (auto &Pair : ExternallyUsedValues) { 7029 // Add each externally used value to the final reduction. 7030 for (auto *I : Pair.second) { 7031 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 7032 VectorizedTree = ReductionData.createOp(Builder, VectorizedTree, 7033 Pair.first, "op.extra", I); 7034 } 7035 } 7036 7037 // Update users. For a min/max reduction that ends with a compare and 7038 // select, we also have to RAUW for the compare instruction feeding the 7039 // reduction root. That's because the original compare may have extra uses 7040 // besides the final select of the reduction. 7041 if (ReductionData.isMinMax()) { 7042 if (auto *VecSelect = dyn_cast<SelectInst>(VectorizedTree)) { 7043 Instruction *ScalarCmp = 7044 getCmpForMinMaxReduction(cast<Instruction>(ReductionRoot)); 7045 ScalarCmp->replaceAllUsesWith(VecSelect->getCondition()); 7046 } 7047 } 7048 ReductionRoot->replaceAllUsesWith(VectorizedTree); 7049 7050 // Mark all scalar reduction ops for deletion, they are replaced by the 7051 // vector reductions. 7052 V.eraseInstructions(IgnoreList); 7053 } 7054 return VectorizedTree != nullptr; 7055 } 7056 7057 unsigned numReductionValues() const { 7058 return ReducedVals.size(); 7059 } 7060 7061 private: 7062 /// Calculate the cost of a reduction. 7063 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 7064 unsigned ReduxWidth) { 7065 Type *ScalarTy = FirstReducedVal->getType(); 7066 auto *VecTy = FixedVectorType::get(ScalarTy, ReduxWidth); 7067 7068 int PairwiseRdxCost; 7069 int SplittingRdxCost; 7070 switch (ReductionData.getKind()) { 7071 case RK_Arithmetic: 7072 PairwiseRdxCost = 7073 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 7074 /*IsPairwiseForm=*/true); 7075 SplittingRdxCost = 7076 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 7077 /*IsPairwiseForm=*/false); 7078 break; 7079 case RK_SMin: 7080 case RK_SMax: 7081 case RK_UMin: 7082 case RK_UMax: { 7083 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VecTy)); 7084 bool IsUnsigned = ReductionData.getKind() == RK_UMin || 7085 ReductionData.getKind() == RK_UMax; 7086 PairwiseRdxCost = 7087 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 7088 /*IsPairwiseForm=*/true, IsUnsigned); 7089 SplittingRdxCost = 7090 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 7091 /*IsPairwiseForm=*/false, IsUnsigned); 7092 break; 7093 } 7094 case RK_None: 7095 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 7096 } 7097 7098 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 7099 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 7100 7101 int ScalarReduxCost = 0; 7102 switch (ReductionData.getKind()) { 7103 case RK_Arithmetic: 7104 ScalarReduxCost = 7105 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); 7106 break; 7107 case RK_SMin: 7108 case RK_SMax: 7109 case RK_UMin: 7110 case RK_UMax: 7111 ScalarReduxCost = 7112 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) + 7113 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 7114 CmpInst::makeCmpResultType(ScalarTy)); 7115 break; 7116 case RK_None: 7117 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 7118 } 7119 ScalarReduxCost *= (ReduxWidth - 1); 7120 7121 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 7122 << " for reduction that starts with " << *FirstReducedVal 7123 << " (It is a " 7124 << (IsPairwiseReduction ? "pairwise" : "splitting") 7125 << " reduction)\n"); 7126 7127 return VecReduxCost - ScalarReduxCost; 7128 } 7129 7130 /// Emit a horizontal reduction of the vectorized value. 7131 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 7132 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 7133 assert(VectorizedValue && "Need to have a vectorized tree node"); 7134 assert(isPowerOf2_32(ReduxWidth) && 7135 "We only handle power-of-two reductions for now"); 7136 7137 if (!IsPairwiseReduction) { 7138 // FIXME: The builder should use an FMF guard. It should not be hard-coded 7139 // to 'fast'. 7140 assert(Builder.getFastMathFlags().isFast() && "Expected 'fast' FMF"); 7141 return createSimpleTargetReduction( 7142 Builder, TTI, ReductionData.getOpcode(), VectorizedValue, 7143 ReductionData.getFlags(), ReductionOps.back()); 7144 } 7145 7146 Value *TmpVec = VectorizedValue; 7147 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 7148 auto LeftMask = createRdxShuffleMask(ReduxWidth, i, true, true); 7149 auto RightMask = createRdxShuffleMask(ReduxWidth, i, true, false); 7150 7151 Value *LeftShuf = 7152 Builder.CreateShuffleVector(TmpVec, LeftMask, "rdx.shuf.l"); 7153 Value *RightShuf = 7154 Builder.CreateShuffleVector(TmpVec, RightMask, "rdx.shuf.r"); 7155 TmpVec = ReductionData.createOp(Builder, LeftShuf, RightShuf, "op.rdx", 7156 ReductionOps); 7157 } 7158 7159 // The result is in the first element of the vector. 7160 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 7161 } 7162 }; 7163 7164 } // end anonymous namespace 7165 7166 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 7167 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 7168 return cast<FixedVectorType>(IE->getType())->getNumElements(); 7169 7170 unsigned AggregateSize = 1; 7171 auto *IV = cast<InsertValueInst>(InsertInst); 7172 Type *CurrentType = IV->getType(); 7173 do { 7174 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 7175 for (auto *Elt : ST->elements()) 7176 if (Elt != ST->getElementType(0)) // check homogeneity 7177 return None; 7178 AggregateSize *= ST->getNumElements(); 7179 CurrentType = ST->getElementType(0); 7180 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 7181 AggregateSize *= AT->getNumElements(); 7182 CurrentType = AT->getElementType(); 7183 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 7184 AggregateSize *= VT->getNumElements(); 7185 return AggregateSize; 7186 } else if (CurrentType->isSingleValueType()) { 7187 return AggregateSize; 7188 } else { 7189 return None; 7190 } 7191 } while (true); 7192 } 7193 7194 static Optional<unsigned> getOperandIndex(Instruction *InsertInst, 7195 unsigned OperandOffset) { 7196 unsigned OperandIndex = OperandOffset; 7197 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 7198 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 7199 auto *VT = cast<FixedVectorType>(IE->getType()); 7200 OperandIndex *= VT->getNumElements(); 7201 OperandIndex += CI->getZExtValue(); 7202 return OperandIndex; 7203 } 7204 return None; 7205 } 7206 7207 auto *IV = cast<InsertValueInst>(InsertInst); 7208 Type *CurrentType = IV->getType(); 7209 for (unsigned int Index : IV->indices()) { 7210 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 7211 OperandIndex *= ST->getNumElements(); 7212 CurrentType = ST->getElementType(Index); 7213 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 7214 OperandIndex *= AT->getNumElements(); 7215 CurrentType = AT->getElementType(); 7216 } else { 7217 return None; 7218 } 7219 OperandIndex += Index; 7220 } 7221 return OperandIndex; 7222 } 7223 7224 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 7225 TargetTransformInfo *TTI, 7226 SmallVectorImpl<Value *> &BuildVectorOpds, 7227 SmallVectorImpl<Value *> &InsertElts, 7228 unsigned OperandOffset) { 7229 do { 7230 Value *InsertedOperand = LastInsertInst->getOperand(1); 7231 Optional<unsigned> OperandIndex = 7232 getOperandIndex(LastInsertInst, OperandOffset); 7233 if (!OperandIndex) 7234 return false; 7235 if (isa<InsertElementInst>(InsertedOperand) || 7236 isa<InsertValueInst>(InsertedOperand)) { 7237 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 7238 BuildVectorOpds, InsertElts, *OperandIndex)) 7239 return false; 7240 } else { 7241 BuildVectorOpds[*OperandIndex] = InsertedOperand; 7242 InsertElts[*OperandIndex] = LastInsertInst; 7243 } 7244 if (isa<UndefValue>(LastInsertInst->getOperand(0))) 7245 return true; 7246 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 7247 } while (LastInsertInst != nullptr && 7248 (isa<InsertValueInst>(LastInsertInst) || 7249 isa<InsertElementInst>(LastInsertInst)) && 7250 LastInsertInst->hasOneUse()); 7251 return false; 7252 } 7253 7254 /// Recognize construction of vectors like 7255 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 7256 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 7257 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 7258 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 7259 /// starting from the last insertelement or insertvalue instruction. 7260 /// 7261 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 7262 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 7263 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 7264 /// 7265 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 7266 /// 7267 /// \return true if it matches. 7268 static bool findBuildAggregate(Instruction *LastInsertInst, 7269 TargetTransformInfo *TTI, 7270 SmallVectorImpl<Value *> &BuildVectorOpds, 7271 SmallVectorImpl<Value *> &InsertElts) { 7272 7273 assert((isa<InsertElementInst>(LastInsertInst) || 7274 isa<InsertValueInst>(LastInsertInst)) && 7275 "Expected insertelement or insertvalue instruction!"); 7276 7277 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 7278 "Expected empty result vectors!"); 7279 7280 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 7281 if (!AggregateSize) 7282 return false; 7283 BuildVectorOpds.resize(*AggregateSize); 7284 InsertElts.resize(*AggregateSize); 7285 7286 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 7287 0)) { 7288 llvm::erase_if(BuildVectorOpds, 7289 [](const Value *V) { return V == nullptr; }); 7290 llvm::erase_if(InsertElts, [](const Value *V) { return V == nullptr; }); 7291 if (BuildVectorOpds.size() >= 2) 7292 return true; 7293 } 7294 7295 return false; 7296 } 7297 7298 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 7299 return V->getType() < V2->getType(); 7300 } 7301 7302 /// Try and get a reduction value from a phi node. 7303 /// 7304 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 7305 /// if they come from either \p ParentBB or a containing loop latch. 7306 /// 7307 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 7308 /// if not possible. 7309 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 7310 BasicBlock *ParentBB, LoopInfo *LI) { 7311 // There are situations where the reduction value is not dominated by the 7312 // reduction phi. Vectorizing such cases has been reported to cause 7313 // miscompiles. See PR25787. 7314 auto DominatedReduxValue = [&](Value *R) { 7315 return isa<Instruction>(R) && 7316 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 7317 }; 7318 7319 Value *Rdx = nullptr; 7320 7321 // Return the incoming value if it comes from the same BB as the phi node. 7322 if (P->getIncomingBlock(0) == ParentBB) { 7323 Rdx = P->getIncomingValue(0); 7324 } else if (P->getIncomingBlock(1) == ParentBB) { 7325 Rdx = P->getIncomingValue(1); 7326 } 7327 7328 if (Rdx && DominatedReduxValue(Rdx)) 7329 return Rdx; 7330 7331 // Otherwise, check whether we have a loop latch to look at. 7332 Loop *BBL = LI->getLoopFor(ParentBB); 7333 if (!BBL) 7334 return nullptr; 7335 BasicBlock *BBLatch = BBL->getLoopLatch(); 7336 if (!BBLatch) 7337 return nullptr; 7338 7339 // There is a loop latch, return the incoming value if it comes from 7340 // that. This reduction pattern occasionally turns up. 7341 if (P->getIncomingBlock(0) == BBLatch) { 7342 Rdx = P->getIncomingValue(0); 7343 } else if (P->getIncomingBlock(1) == BBLatch) { 7344 Rdx = P->getIncomingValue(1); 7345 } 7346 7347 if (Rdx && DominatedReduxValue(Rdx)) 7348 return Rdx; 7349 7350 return nullptr; 7351 } 7352 7353 /// Attempt to reduce a horizontal reduction. 7354 /// If it is legal to match a horizontal reduction feeding the phi node \a P 7355 /// with reduction operators \a Root (or one of its operands) in a basic block 7356 /// \a BB, then check if it can be done. If horizontal reduction is not found 7357 /// and root instruction is a binary operation, vectorization of the operands is 7358 /// attempted. 7359 /// \returns true if a horizontal reduction was matched and reduced or operands 7360 /// of one of the binary instruction were vectorized. 7361 /// \returns false if a horizontal reduction was not matched (or not possible) 7362 /// or no vectorization of any binary operation feeding \a Root instruction was 7363 /// performed. 7364 static bool tryToVectorizeHorReductionOrInstOperands( 7365 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 7366 TargetTransformInfo *TTI, 7367 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 7368 if (!ShouldVectorizeHor) 7369 return false; 7370 7371 if (!Root) 7372 return false; 7373 7374 if (Root->getParent() != BB || isa<PHINode>(Root)) 7375 return false; 7376 // Start analysis starting from Root instruction. If horizontal reduction is 7377 // found, try to vectorize it. If it is not a horizontal reduction or 7378 // vectorization is not possible or not effective, and currently analyzed 7379 // instruction is a binary operation, try to vectorize the operands, using 7380 // pre-order DFS traversal order. If the operands were not vectorized, repeat 7381 // the same procedure considering each operand as a possible root of the 7382 // horizontal reduction. 7383 // Interrupt the process if the Root instruction itself was vectorized or all 7384 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 7385 SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0}); 7386 SmallPtrSet<Value *, 8> VisitedInstrs; 7387 bool Res = false; 7388 while (!Stack.empty()) { 7389 Instruction *Inst; 7390 unsigned Level; 7391 std::tie(Inst, Level) = Stack.pop_back_val(); 7392 auto *BI = dyn_cast<BinaryOperator>(Inst); 7393 auto *SI = dyn_cast<SelectInst>(Inst); 7394 if (BI || SI) { 7395 HorizontalReduction HorRdx; 7396 if (HorRdx.matchAssociativeReduction(P, Inst)) { 7397 if (HorRdx.tryToReduce(R, TTI)) { 7398 Res = true; 7399 // Set P to nullptr to avoid re-analysis of phi node in 7400 // matchAssociativeReduction function unless this is the root node. 7401 P = nullptr; 7402 continue; 7403 } 7404 } 7405 if (P && BI) { 7406 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 7407 if (Inst == P) 7408 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 7409 if (!Inst) { 7410 // Set P to nullptr to avoid re-analysis of phi node in 7411 // matchAssociativeReduction function unless this is the root node. 7412 P = nullptr; 7413 continue; 7414 } 7415 } 7416 } 7417 // Set P to nullptr to avoid re-analysis of phi node in 7418 // matchAssociativeReduction function unless this is the root node. 7419 P = nullptr; 7420 if (Vectorize(Inst, R)) { 7421 Res = true; 7422 continue; 7423 } 7424 7425 // Try to vectorize operands. 7426 // Continue analysis for the instruction from the same basic block only to 7427 // save compile time. 7428 if (++Level < RecursionMaxDepth) 7429 for (auto *Op : Inst->operand_values()) 7430 if (VisitedInstrs.insert(Op).second) 7431 if (auto *I = dyn_cast<Instruction>(Op)) 7432 if (!isa<PHINode>(I) && !R.isDeleted(I) && I->getParent() == BB) 7433 Stack.emplace_back(I, Level); 7434 } 7435 return Res; 7436 } 7437 7438 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 7439 BasicBlock *BB, BoUpSLP &R, 7440 TargetTransformInfo *TTI) { 7441 auto *I = dyn_cast_or_null<Instruction>(V); 7442 if (!I) 7443 return false; 7444 7445 if (!isa<BinaryOperator>(I)) 7446 P = nullptr; 7447 // Try to match and vectorize a horizontal reduction. 7448 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 7449 return tryToVectorize(I, R); 7450 }; 7451 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 7452 ExtraVectorization); 7453 } 7454 7455 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 7456 BasicBlock *BB, BoUpSLP &R) { 7457 const DataLayout &DL = BB->getModule()->getDataLayout(); 7458 if (!R.canMapToVector(IVI->getType(), DL)) 7459 return false; 7460 7461 SmallVector<Value *, 16> BuildVectorOpds; 7462 SmallVector<Value *, 16> BuildVectorInsts; 7463 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 7464 return false; 7465 7466 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 7467 // Aggregate value is unlikely to be processed in vector register, we need to 7468 // extract scalars into scalar registers, so NeedExtraction is set true. 7469 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false, 7470 BuildVectorInsts); 7471 } 7472 7473 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 7474 BasicBlock *BB, BoUpSLP &R) { 7475 SmallVector<Value *, 16> BuildVectorInsts; 7476 SmallVector<Value *, 16> BuildVectorOpds; 7477 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 7478 (llvm::all_of(BuildVectorOpds, 7479 [](Value *V) { return isa<ExtractElementInst>(V); }) && 7480 isShuffle(BuildVectorOpds))) 7481 return false; 7482 7483 // Vectorize starting with the build vector operands ignoring the BuildVector 7484 // instructions for the purpose of scheduling and user extraction. 7485 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false, 7486 BuildVectorInsts); 7487 } 7488 7489 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 7490 BoUpSLP &R) { 7491 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 7492 return true; 7493 7494 bool OpsChanged = false; 7495 for (int Idx = 0; Idx < 2; ++Idx) { 7496 OpsChanged |= 7497 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 7498 } 7499 return OpsChanged; 7500 } 7501 7502 bool SLPVectorizerPass::vectorizeSimpleInstructions( 7503 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R) { 7504 bool OpsChanged = false; 7505 for (auto *I : reverse(Instructions)) { 7506 if (R.isDeleted(I)) 7507 continue; 7508 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 7509 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 7510 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 7511 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 7512 else if (auto *CI = dyn_cast<CmpInst>(I)) 7513 OpsChanged |= vectorizeCmpInst(CI, BB, R); 7514 } 7515 Instructions.clear(); 7516 return OpsChanged; 7517 } 7518 7519 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 7520 bool Changed = false; 7521 SmallVector<Value *, 4> Incoming; 7522 SmallPtrSet<Value *, 16> VisitedInstrs; 7523 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7524 7525 bool HaveVectorizedPhiNodes = true; 7526 while (HaveVectorizedPhiNodes) { 7527 HaveVectorizedPhiNodes = false; 7528 7529 // Collect the incoming values from the PHIs. 7530 Incoming.clear(); 7531 for (Instruction &I : *BB) { 7532 PHINode *P = dyn_cast<PHINode>(&I); 7533 if (!P) 7534 break; 7535 7536 if (!VisitedInstrs.count(P) && !R.isDeleted(P)) 7537 Incoming.push_back(P); 7538 } 7539 7540 // Sort by type. 7541 llvm::stable_sort(Incoming, PhiTypeSorterFunc); 7542 7543 // Try to vectorize elements base on their type. 7544 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 7545 E = Incoming.end(); 7546 IncIt != E;) { 7547 7548 // Look for the next elements with the same type. 7549 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 7550 Type *EltTy = (*IncIt)->getType(); 7551 7552 assert(EltTy->isSized() && 7553 "Instructions should all be sized at this point"); 7554 TypeSize EltTS = DL->getTypeSizeInBits(EltTy); 7555 if (EltTS.isScalable()) { 7556 // For now, just ignore vectorizing scalable types. 7557 ++IncIt; 7558 continue; 7559 } 7560 7561 unsigned EltSize = EltTS.getFixedSize(); 7562 unsigned MaxNumElts = MaxVecRegSize / EltSize; 7563 if (MaxNumElts < 2) { 7564 ++IncIt; 7565 continue; 7566 } 7567 7568 while (SameTypeIt != E && 7569 (*SameTypeIt)->getType() == EltTy && 7570 static_cast<unsigned>(SameTypeIt - IncIt) < MaxNumElts) { 7571 VisitedInstrs.insert(*SameTypeIt); 7572 ++SameTypeIt; 7573 } 7574 7575 // Try to vectorize them. 7576 unsigned NumElts = (SameTypeIt - IncIt); 7577 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 7578 << NumElts << ")\n"); 7579 // The order in which the phi nodes appear in the program does not matter. 7580 // So allow tryToVectorizeList to reorder them if it is beneficial. This 7581 // is done when there are exactly two elements since tryToVectorizeList 7582 // asserts that there are only two values when AllowReorder is true. 7583 bool AllowReorder = NumElts == 2; 7584 if (NumElts > 1 && 7585 tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, AllowReorder)) { 7586 // Success start over because instructions might have been changed. 7587 HaveVectorizedPhiNodes = true; 7588 Changed = true; 7589 break; 7590 } 7591 7592 // Start over at the next instruction of a different type (or the end). 7593 IncIt = SameTypeIt; 7594 } 7595 } 7596 7597 VisitedInstrs.clear(); 7598 7599 SmallVector<Instruction *, 8> PostProcessInstructions; 7600 SmallDenseSet<Instruction *, 4> KeyNodes; 7601 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 7602 // Skip instructions with scalable type. The num of elements is unknown at 7603 // compile-time for scalable type. 7604 if (isa<ScalableVectorType>(it->getType())) 7605 continue; 7606 7607 // Skip instructions marked for the deletion. 7608 if (R.isDeleted(&*it)) 7609 continue; 7610 // We may go through BB multiple times so skip the one we have checked. 7611 if (!VisitedInstrs.insert(&*it).second) { 7612 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 7613 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 7614 // We would like to start over since some instructions are deleted 7615 // and the iterator may become invalid value. 7616 Changed = true; 7617 it = BB->begin(); 7618 e = BB->end(); 7619 } 7620 continue; 7621 } 7622 7623 if (isa<DbgInfoIntrinsic>(it)) 7624 continue; 7625 7626 // Try to vectorize reductions that use PHINodes. 7627 if (PHINode *P = dyn_cast<PHINode>(it)) { 7628 // Check that the PHI is a reduction PHI. 7629 if (P->getNumIncomingValues() == 2) { 7630 // Try to match and vectorize a horizontal reduction. 7631 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 7632 TTI)) { 7633 Changed = true; 7634 it = BB->begin(); 7635 e = BB->end(); 7636 continue; 7637 } 7638 } 7639 // Try to vectorize the incoming values of the PHI, to catch reductions 7640 // that feed into PHIs. 7641 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 7642 // Skip if the incoming block is the current BB for now. 7643 // TODO: Collect the skipped incoming values and try to vectorize them 7644 // after processing BB. 7645 if (BB == P->getIncomingBlock(I)) 7646 continue; 7647 7648 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 7649 P->getIncomingBlock(I), R, TTI); 7650 } 7651 continue; 7652 } 7653 7654 // Ran into an instruction without users, like terminator, or function call 7655 // with ignored return value, store. Ignore unused instructions (basing on 7656 // instruction type, except for CallInst and InvokeInst). 7657 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 7658 isa<InvokeInst>(it))) { 7659 KeyNodes.insert(&*it); 7660 bool OpsChanged = false; 7661 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 7662 for (auto *V : it->operand_values()) { 7663 // Try to match and vectorize a horizontal reduction. 7664 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 7665 } 7666 } 7667 // Start vectorization of post-process list of instructions from the 7668 // top-tree instructions to try to vectorize as many instructions as 7669 // possible. 7670 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 7671 if (OpsChanged) { 7672 // We would like to start over since some instructions are deleted 7673 // and the iterator may become invalid value. 7674 Changed = true; 7675 it = BB->begin(); 7676 e = BB->end(); 7677 continue; 7678 } 7679 } 7680 7681 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 7682 isa<InsertValueInst>(it)) 7683 PostProcessInstructions.push_back(&*it); 7684 } 7685 7686 return Changed; 7687 } 7688 7689 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 7690 auto Changed = false; 7691 for (auto &Entry : GEPs) { 7692 // If the getelementptr list has fewer than two elements, there's nothing 7693 // to do. 7694 if (Entry.second.size() < 2) 7695 continue; 7696 7697 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 7698 << Entry.second.size() << ".\n"); 7699 7700 // Process the GEP list in chunks suitable for the target's supported 7701 // vector size. If a vector register can't hold 1 element, we are done. We 7702 // are trying to vectorize the index computations, so the maximum number of 7703 // elements is based on the size of the index expression, rather than the 7704 // size of the GEP itself (the target's pointer size). 7705 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7706 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 7707 if (MaxVecRegSize < EltSize) 7708 continue; 7709 7710 unsigned MaxElts = MaxVecRegSize / EltSize; 7711 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 7712 auto Len = std::min<unsigned>(BE - BI, MaxElts); 7713 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 7714 7715 // Initialize a set a candidate getelementptrs. Note that we use a 7716 // SetVector here to preserve program order. If the index computations 7717 // are vectorizable and begin with loads, we want to minimize the chance 7718 // of having to reorder them later. 7719 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 7720 7721 // Some of the candidates may have already been vectorized after we 7722 // initially collected them. If so, they are marked as deleted, so remove 7723 // them from the set of candidates. 7724 Candidates.remove_if( 7725 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 7726 7727 // Remove from the set of candidates all pairs of getelementptrs with 7728 // constant differences. Such getelementptrs are likely not good 7729 // candidates for vectorization in a bottom-up phase since one can be 7730 // computed from the other. We also ensure all candidate getelementptr 7731 // indices are unique. 7732 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 7733 auto *GEPI = GEPList[I]; 7734 if (!Candidates.count(GEPI)) 7735 continue; 7736 auto *SCEVI = SE->getSCEV(GEPList[I]); 7737 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 7738 auto *GEPJ = GEPList[J]; 7739 auto *SCEVJ = SE->getSCEV(GEPList[J]); 7740 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 7741 Candidates.remove(GEPI); 7742 Candidates.remove(GEPJ); 7743 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 7744 Candidates.remove(GEPJ); 7745 } 7746 } 7747 } 7748 7749 // We break out of the above computation as soon as we know there are 7750 // fewer than two candidates remaining. 7751 if (Candidates.size() < 2) 7752 continue; 7753 7754 // Add the single, non-constant index of each candidate to the bundle. We 7755 // ensured the indices met these constraints when we originally collected 7756 // the getelementptrs. 7757 SmallVector<Value *, 16> Bundle(Candidates.size()); 7758 auto BundleIndex = 0u; 7759 for (auto *V : Candidates) { 7760 auto *GEP = cast<GetElementPtrInst>(V); 7761 auto *GEPIdx = GEP->idx_begin()->get(); 7762 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 7763 Bundle[BundleIndex++] = GEPIdx; 7764 } 7765 7766 // Try and vectorize the indices. We are currently only interested in 7767 // gather-like cases of the form: 7768 // 7769 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 7770 // 7771 // where the loads of "a", the loads of "b", and the subtractions can be 7772 // performed in parallel. It's likely that detecting this pattern in a 7773 // bottom-up phase will be simpler and less costly than building a 7774 // full-blown top-down phase beginning at the consecutive loads. 7775 Changed |= tryToVectorizeList(Bundle, R); 7776 } 7777 } 7778 return Changed; 7779 } 7780 7781 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 7782 bool Changed = false; 7783 // Attempt to sort and vectorize each of the store-groups. 7784 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 7785 ++it) { 7786 if (it->second.size() < 2) 7787 continue; 7788 7789 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 7790 << it->second.size() << ".\n"); 7791 7792 Changed |= vectorizeStores(it->second, R); 7793 } 7794 return Changed; 7795 } 7796 7797 char SLPVectorizer::ID = 0; 7798 7799 static const char lv_name[] = "SLP Vectorizer"; 7800 7801 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 7802 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7803 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7804 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7805 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7806 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 7807 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7808 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7809 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7810 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 7811 7812 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 7813