1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10 // stores that can be put together into vector-stores. Next, it attempts to
11 // construct vectorizable tree using the use-def chains. If a profitable tree
12 // was found, the SLP vectorizer performs vectorization on the tree.
13 //
14 // The pass is inspired by the work described in the paper:
15 //  "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/DenseSet.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/PostOrderIterator.h"
24 #include "llvm/ADT/PriorityQueue.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SetOperations.h"
27 #include "llvm/ADT/SetVector.h"
28 #include "llvm/ADT/SmallBitVector.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/SmallString.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/ADT/iterator.h"
34 #include "llvm/ADT/iterator_range.h"
35 #include "llvm/Analysis/AliasAnalysis.h"
36 #include "llvm/Analysis/AssumptionCache.h"
37 #include "llvm/Analysis/CodeMetrics.h"
38 #include "llvm/Analysis/DemandedBits.h"
39 #include "llvm/Analysis/GlobalsModRef.h"
40 #include "llvm/Analysis/IVDescriptors.h"
41 #include "llvm/Analysis/LoopAccessAnalysis.h"
42 #include "llvm/Analysis/LoopInfo.h"
43 #include "llvm/Analysis/MemoryLocation.h"
44 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
45 #include "llvm/Analysis/ScalarEvolution.h"
46 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
47 #include "llvm/Analysis/TargetLibraryInfo.h"
48 #include "llvm/Analysis/TargetTransformInfo.h"
49 #include "llvm/Analysis/ValueTracking.h"
50 #include "llvm/Analysis/VectorUtils.h"
51 #include "llvm/IR/Attributes.h"
52 #include "llvm/IR/BasicBlock.h"
53 #include "llvm/IR/Constant.h"
54 #include "llvm/IR/Constants.h"
55 #include "llvm/IR/DataLayout.h"
56 #include "llvm/IR/DebugLoc.h"
57 #include "llvm/IR/DerivedTypes.h"
58 #include "llvm/IR/Dominators.h"
59 #include "llvm/IR/Function.h"
60 #include "llvm/IR/IRBuilder.h"
61 #include "llvm/IR/InstrTypes.h"
62 #include "llvm/IR/Instruction.h"
63 #include "llvm/IR/Instructions.h"
64 #include "llvm/IR/IntrinsicInst.h"
65 #include "llvm/IR/Intrinsics.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/NoFolder.h"
68 #include "llvm/IR/Operator.h"
69 #include "llvm/IR/PatternMatch.h"
70 #include "llvm/IR/Type.h"
71 #include "llvm/IR/Use.h"
72 #include "llvm/IR/User.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/IR/ValueHandle.h"
75 #include "llvm/IR/Verifier.h"
76 #include "llvm/InitializePasses.h"
77 #include "llvm/Pass.h"
78 #include "llvm/Support/Casting.h"
79 #include "llvm/Support/CommandLine.h"
80 #include "llvm/Support/Compiler.h"
81 #include "llvm/Support/DOTGraphTraits.h"
82 #include "llvm/Support/Debug.h"
83 #include "llvm/Support/ErrorHandling.h"
84 #include "llvm/Support/GraphWriter.h"
85 #include "llvm/Support/InstructionCost.h"
86 #include "llvm/Support/KnownBits.h"
87 #include "llvm/Support/MathExtras.h"
88 #include "llvm/Support/raw_ostream.h"
89 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
90 #include "llvm/Transforms/Utils/LoopUtils.h"
91 #include "llvm/Transforms/Vectorize.h"
92 #include <algorithm>
93 #include <cassert>
94 #include <cstdint>
95 #include <iterator>
96 #include <memory>
97 #include <set>
98 #include <string>
99 #include <tuple>
100 #include <utility>
101 #include <vector>
102 
103 using namespace llvm;
104 using namespace llvm::PatternMatch;
105 using namespace slpvectorizer;
106 
107 #define SV_NAME "slp-vectorizer"
108 #define DEBUG_TYPE "SLP"
109 
110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
111 
112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden,
113                                   cl::desc("Run the SLP vectorization passes"));
114 
115 static cl::opt<int>
116     SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
117                      cl::desc("Only vectorize if you gain more than this "
118                               "number "));
119 
120 static cl::opt<bool>
121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
122                    cl::desc("Attempt to vectorize horizontal reductions"));
123 
124 static cl::opt<bool> ShouldStartVectorizeHorAtStore(
125     "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
126     cl::desc(
127         "Attempt to vectorize horizontal reductions feeding into a store"));
128 
129 static cl::opt<int>
130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
131     cl::desc("Attempt to vectorize for this register size in bits"));
132 
133 static cl::opt<unsigned>
134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden,
135     cl::desc("Maximum SLP vectorization factor (0=unlimited)"));
136 
137 static cl::opt<int>
138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden,
139     cl::desc("Maximum depth of the lookup for consecutive stores."));
140 
141 /// Limits the size of scheduling regions in a block.
142 /// It avoid long compile times for _very_ large blocks where vector
143 /// instructions are spread over a wide range.
144 /// This limit is way higher than needed by real-world functions.
145 static cl::opt<int>
146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
147     cl::desc("Limit the size of the SLP scheduling region per block"));
148 
149 static cl::opt<int> MinVectorRegSizeOption(
150     "slp-min-reg-size", cl::init(128), cl::Hidden,
151     cl::desc("Attempt to vectorize for this register size in bits"));
152 
153 static cl::opt<unsigned> RecursionMaxDepth(
154     "slp-recursion-max-depth", cl::init(12), cl::Hidden,
155     cl::desc("Limit the recursion depth when building a vectorizable tree"));
156 
157 static cl::opt<unsigned> MinTreeSize(
158     "slp-min-tree-size", cl::init(3), cl::Hidden,
159     cl::desc("Only vectorize small trees if they are fully vectorizable"));
160 
161 // The maximum depth that the look-ahead score heuristic will explore.
162 // The higher this value, the higher the compilation time overhead.
163 static cl::opt<int> LookAheadMaxDepth(
164     "slp-max-look-ahead-depth", cl::init(2), cl::Hidden,
165     cl::desc("The maximum look-ahead depth for operand reordering scores"));
166 
167 static cl::opt<bool>
168     ViewSLPTree("view-slp-tree", cl::Hidden,
169                 cl::desc("Display the SLP trees with Graphviz"));
170 
171 // Limit the number of alias checks. The limit is chosen so that
172 // it has no negative effect on the llvm benchmarks.
173 static const unsigned AliasedCheckLimit = 10;
174 
175 // Another limit for the alias checks: The maximum distance between load/store
176 // instructions where alias checks are done.
177 // This limit is useful for very large basic blocks.
178 static const unsigned MaxMemDepDistance = 160;
179 
180 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
181 /// regions to be handled.
182 static const int MinScheduleRegionSize = 16;
183 
184 /// Predicate for the element types that the SLP vectorizer supports.
185 ///
186 /// The most important thing to filter here are types which are invalid in LLVM
187 /// vectors. We also filter target specific types which have absolutely no
188 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
189 /// avoids spending time checking the cost model and realizing that they will
190 /// be inevitably scalarized.
191 static bool isValidElementType(Type *Ty) {
192   return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
193          !Ty->isPPC_FP128Ty();
194 }
195 
196 /// \returns True if the value is a constant (but not globals/constant
197 /// expressions).
198 static bool isConstant(Value *V) {
199   return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V);
200 }
201 
202 /// Checks if \p V is one of vector-like instructions, i.e. undef,
203 /// insertelement/extractelement with constant indices for fixed vector type or
204 /// extractvalue instruction.
205 static bool isVectorLikeInstWithConstOps(Value *V) {
206   if (!isa<InsertElementInst, ExtractElementInst>(V) &&
207       !isa<ExtractValueInst, UndefValue>(V))
208     return false;
209   auto *I = dyn_cast<Instruction>(V);
210   if (!I || isa<ExtractValueInst>(I))
211     return true;
212   if (!isa<FixedVectorType>(I->getOperand(0)->getType()))
213     return false;
214   if (isa<ExtractElementInst>(I))
215     return isConstant(I->getOperand(1));
216   assert(isa<InsertElementInst>(V) && "Expected only insertelement.");
217   return isConstant(I->getOperand(2));
218 }
219 
220 /// \returns true if all of the instructions in \p VL are in the same block or
221 /// false otherwise.
222 static bool allSameBlock(ArrayRef<Value *> VL) {
223   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
224   if (!I0)
225     return false;
226   if (all_of(VL, isVectorLikeInstWithConstOps))
227     return true;
228 
229   BasicBlock *BB = I0->getParent();
230   for (int I = 1, E = VL.size(); I < E; I++) {
231     auto *II = dyn_cast<Instruction>(VL[I]);
232     if (!II)
233       return false;
234 
235     if (BB != II->getParent())
236       return false;
237   }
238   return true;
239 }
240 
241 /// \returns True if all of the values in \p VL are constants (but not
242 /// globals/constant expressions).
243 static bool allConstant(ArrayRef<Value *> VL) {
244   // Constant expressions and globals can't be vectorized like normal integer/FP
245   // constants.
246   return all_of(VL, isConstant);
247 }
248 
249 /// \returns True if all of the values in \p VL are identical or some of them
250 /// are UndefValue.
251 static bool isSplat(ArrayRef<Value *> VL) {
252   Value *FirstNonUndef = nullptr;
253   for (Value *V : VL) {
254     if (isa<UndefValue>(V))
255       continue;
256     if (!FirstNonUndef) {
257       FirstNonUndef = V;
258       continue;
259     }
260     if (V != FirstNonUndef)
261       return false;
262   }
263   return FirstNonUndef != nullptr;
264 }
265 
266 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator.
267 static bool isCommutative(Instruction *I) {
268   if (auto *Cmp = dyn_cast<CmpInst>(I))
269     return Cmp->isCommutative();
270   if (auto *BO = dyn_cast<BinaryOperator>(I))
271     return BO->isCommutative();
272   // TODO: This should check for generic Instruction::isCommutative(), but
273   //       we need to confirm that the caller code correctly handles Intrinsics
274   //       for example (does not have 2 operands).
275   return false;
276 }
277 
278 /// Checks if the given value is actually an undefined constant vector.
279 static bool isUndefVector(const Value *V) {
280   if (isa<UndefValue>(V))
281     return true;
282   auto *C = dyn_cast<Constant>(V);
283   if (!C)
284     return false;
285   if (!C->containsUndefOrPoisonElement())
286     return false;
287   auto *VecTy = dyn_cast<FixedVectorType>(C->getType());
288   if (!VecTy)
289     return false;
290   for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) {
291     if (Constant *Elem = C->getAggregateElement(I))
292       if (!isa<UndefValue>(Elem))
293         return false;
294   }
295   return true;
296 }
297 
298 /// Checks if the vector of instructions can be represented as a shuffle, like:
299 /// %x0 = extractelement <4 x i8> %x, i32 0
300 /// %x3 = extractelement <4 x i8> %x, i32 3
301 /// %y1 = extractelement <4 x i8> %y, i32 1
302 /// %y2 = extractelement <4 x i8> %y, i32 2
303 /// %x0x0 = mul i8 %x0, %x0
304 /// %x3x3 = mul i8 %x3, %x3
305 /// %y1y1 = mul i8 %y1, %y1
306 /// %y2y2 = mul i8 %y2, %y2
307 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0
308 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1
309 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2
310 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3
311 /// ret <4 x i8> %ins4
312 /// can be transformed into:
313 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5,
314 ///                                                         i32 6>
315 /// %2 = mul <4 x i8> %1, %1
316 /// ret <4 x i8> %2
317 /// We convert this initially to something like:
318 /// %x0 = extractelement <4 x i8> %x, i32 0
319 /// %x3 = extractelement <4 x i8> %x, i32 3
320 /// %y1 = extractelement <4 x i8> %y, i32 1
321 /// %y2 = extractelement <4 x i8> %y, i32 2
322 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0
323 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1
324 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2
325 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3
326 /// %5 = mul <4 x i8> %4, %4
327 /// %6 = extractelement <4 x i8> %5, i32 0
328 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0
329 /// %7 = extractelement <4 x i8> %5, i32 1
330 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1
331 /// %8 = extractelement <4 x i8> %5, i32 2
332 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2
333 /// %9 = extractelement <4 x i8> %5, i32 3
334 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3
335 /// ret <4 x i8> %ins4
336 /// InstCombiner transforms this into a shuffle and vector mul
337 /// Mask will return the Shuffle Mask equivalent to the extracted elements.
338 /// TODO: Can we split off and reuse the shuffle mask detection from
339 /// TargetTransformInfo::getInstructionThroughput?
340 static Optional<TargetTransformInfo::ShuffleKind>
341 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) {
342   const auto *It =
343       find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); });
344   if (It == VL.end())
345     return None;
346   auto *EI0 = cast<ExtractElementInst>(*It);
347   if (isa<ScalableVectorType>(EI0->getVectorOperandType()))
348     return None;
349   unsigned Size =
350       cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements();
351   Value *Vec1 = nullptr;
352   Value *Vec2 = nullptr;
353   enum ShuffleMode { Unknown, Select, Permute };
354   ShuffleMode CommonShuffleMode = Unknown;
355   Mask.assign(VL.size(), UndefMaskElem);
356   for (unsigned I = 0, E = VL.size(); I < E; ++I) {
357     // Undef can be represented as an undef element in a vector.
358     if (isa<UndefValue>(VL[I]))
359       continue;
360     auto *EI = cast<ExtractElementInst>(VL[I]);
361     if (isa<ScalableVectorType>(EI->getVectorOperandType()))
362       return None;
363     auto *Vec = EI->getVectorOperand();
364     // We can extractelement from undef or poison vector.
365     if (isUndefVector(Vec))
366       continue;
367     // All vector operands must have the same number of vector elements.
368     if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size)
369       return None;
370     if (isa<UndefValue>(EI->getIndexOperand()))
371       continue;
372     auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand());
373     if (!Idx)
374       return None;
375     // Undefined behavior if Idx is negative or >= Size.
376     if (Idx->getValue().uge(Size))
377       continue;
378     unsigned IntIdx = Idx->getValue().getZExtValue();
379     Mask[I] = IntIdx;
380     // For correct shuffling we have to have at most 2 different vector operands
381     // in all extractelement instructions.
382     if (!Vec1 || Vec1 == Vec) {
383       Vec1 = Vec;
384     } else if (!Vec2 || Vec2 == Vec) {
385       Vec2 = Vec;
386       Mask[I] += Size;
387     } else {
388       return None;
389     }
390     if (CommonShuffleMode == Permute)
391       continue;
392     // If the extract index is not the same as the operation number, it is a
393     // permutation.
394     if (IntIdx != I) {
395       CommonShuffleMode = Permute;
396       continue;
397     }
398     CommonShuffleMode = Select;
399   }
400   // If we're not crossing lanes in different vectors, consider it as blending.
401   if (CommonShuffleMode == Select && Vec2)
402     return TargetTransformInfo::SK_Select;
403   // If Vec2 was never used, we have a permutation of a single vector, otherwise
404   // we have permutation of 2 vectors.
405   return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc
406               : TargetTransformInfo::SK_PermuteSingleSrc;
407 }
408 
409 namespace {
410 
411 /// Main data required for vectorization of instructions.
412 struct InstructionsState {
413   /// The very first instruction in the list with the main opcode.
414   Value *OpValue = nullptr;
415 
416   /// The main/alternate instruction.
417   Instruction *MainOp = nullptr;
418   Instruction *AltOp = nullptr;
419 
420   /// The main/alternate opcodes for the list of instructions.
421   unsigned getOpcode() const {
422     return MainOp ? MainOp->getOpcode() : 0;
423   }
424 
425   unsigned getAltOpcode() const {
426     return AltOp ? AltOp->getOpcode() : 0;
427   }
428 
429   /// Some of the instructions in the list have alternate opcodes.
430   bool isAltShuffle() const { return AltOp != MainOp; }
431 
432   bool isOpcodeOrAlt(Instruction *I) const {
433     unsigned CheckedOpcode = I->getOpcode();
434     return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode;
435   }
436 
437   InstructionsState() = delete;
438   InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp)
439       : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {}
440 };
441 
442 } // end anonymous namespace
443 
444 /// Chooses the correct key for scheduling data. If \p Op has the same (or
445 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p
446 /// OpValue.
447 static Value *isOneOf(const InstructionsState &S, Value *Op) {
448   auto *I = dyn_cast<Instruction>(Op);
449   if (I && S.isOpcodeOrAlt(I))
450     return Op;
451   return S.OpValue;
452 }
453 
454 /// \returns true if \p Opcode is allowed as part of of the main/alternate
455 /// instruction for SLP vectorization.
456 ///
457 /// Example of unsupported opcode is SDIV that can potentially cause UB if the
458 /// "shuffled out" lane would result in division by zero.
459 static bool isValidForAlternation(unsigned Opcode) {
460   if (Instruction::isIntDivRem(Opcode))
461     return false;
462 
463   return true;
464 }
465 
466 static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
467                                        unsigned BaseIndex = 0);
468 
469 /// Checks if the provided operands of 2 cmp instructions are compatible, i.e.
470 /// compatible instructions or constants, or just some other regular values.
471 static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0,
472                                 Value *Op1) {
473   return (isConstant(BaseOp0) && isConstant(Op0)) ||
474          (isConstant(BaseOp1) && isConstant(Op1)) ||
475          (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) &&
476           !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) ||
477          getSameOpcode({BaseOp0, Op0}).getOpcode() ||
478          getSameOpcode({BaseOp1, Op1}).getOpcode();
479 }
480 
481 /// \returns analysis of the Instructions in \p VL described in
482 /// InstructionsState, the Opcode that we suppose the whole list
483 /// could be vectorized even if its structure is diverse.
484 static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
485                                        unsigned BaseIndex) {
486   // Make sure these are all Instructions.
487   if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); }))
488     return InstructionsState(VL[BaseIndex], nullptr, nullptr);
489 
490   bool IsCastOp = isa<CastInst>(VL[BaseIndex]);
491   bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]);
492   bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]);
493   CmpInst::Predicate BasePred =
494       IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate()
495               : CmpInst::BAD_ICMP_PREDICATE;
496   unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode();
497   unsigned AltOpcode = Opcode;
498   unsigned AltIndex = BaseIndex;
499 
500   // Check for one alternate opcode from another BinaryOperator.
501   // TODO - generalize to support all operators (types, calls etc.).
502   for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) {
503     unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode();
504     if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) {
505       if (InstOpcode == Opcode || InstOpcode == AltOpcode)
506         continue;
507       if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) &&
508           isValidForAlternation(Opcode)) {
509         AltOpcode = InstOpcode;
510         AltIndex = Cnt;
511         continue;
512       }
513     } else if (IsCastOp && isa<CastInst>(VL[Cnt])) {
514       Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType();
515       Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType();
516       if (Ty0 == Ty1) {
517         if (InstOpcode == Opcode || InstOpcode == AltOpcode)
518           continue;
519         if (Opcode == AltOpcode) {
520           assert(isValidForAlternation(Opcode) &&
521                  isValidForAlternation(InstOpcode) &&
522                  "Cast isn't safe for alternation, logic needs to be updated!");
523           AltOpcode = InstOpcode;
524           AltIndex = Cnt;
525           continue;
526         }
527       }
528     } else if (IsCmpOp && isa<CmpInst>(VL[Cnt])) {
529       auto *BaseInst = cast<Instruction>(VL[BaseIndex]);
530       auto *Inst = cast<Instruction>(VL[Cnt]);
531       Type *Ty0 = BaseInst->getOperand(0)->getType();
532       Type *Ty1 = Inst->getOperand(0)->getType();
533       if (Ty0 == Ty1) {
534         Value *BaseOp0 = BaseInst->getOperand(0);
535         Value *BaseOp1 = BaseInst->getOperand(1);
536         Value *Op0 = Inst->getOperand(0);
537         Value *Op1 = Inst->getOperand(1);
538         CmpInst::Predicate CurrentPred =
539             cast<CmpInst>(VL[Cnt])->getPredicate();
540         CmpInst::Predicate SwappedCurrentPred =
541             CmpInst::getSwappedPredicate(CurrentPred);
542         // Check for compatible operands. If the corresponding operands are not
543         // compatible - need to perform alternate vectorization.
544         if (InstOpcode == Opcode) {
545           if (BasePred == CurrentPred &&
546               areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1))
547             continue;
548           if (BasePred == SwappedCurrentPred &&
549               areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0))
550             continue;
551           if (E == 2 &&
552               (BasePred == CurrentPred || BasePred == SwappedCurrentPred))
553             continue;
554           auto *AltInst = cast<CmpInst>(VL[AltIndex]);
555           CmpInst::Predicate AltPred = AltInst->getPredicate();
556           Value *AltOp0 = AltInst->getOperand(0);
557           Value *AltOp1 = AltInst->getOperand(1);
558           // Check if operands are compatible with alternate operands.
559           if (AltPred == CurrentPred &&
560               areCompatibleCmpOps(AltOp0, AltOp1, Op0, Op1))
561             continue;
562           if (AltPred == SwappedCurrentPred &&
563               areCompatibleCmpOps(AltOp0, AltOp1, Op1, Op0))
564             continue;
565         }
566         if (BaseIndex == AltIndex && BasePred != CurrentPred) {
567           assert(isValidForAlternation(Opcode) &&
568                  isValidForAlternation(InstOpcode) &&
569                  "Cast isn't safe for alternation, logic needs to be updated!");
570           AltIndex = Cnt;
571           continue;
572         }
573         auto *AltInst = cast<CmpInst>(VL[AltIndex]);
574         CmpInst::Predicate AltPred = AltInst->getPredicate();
575         if (BasePred == CurrentPred || BasePred == SwappedCurrentPred ||
576             AltPred == CurrentPred || AltPred == SwappedCurrentPred)
577           continue;
578       }
579     } else if (InstOpcode == Opcode || InstOpcode == AltOpcode)
580       continue;
581     return InstructionsState(VL[BaseIndex], nullptr, nullptr);
582   }
583 
584   return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]),
585                            cast<Instruction>(VL[AltIndex]));
586 }
587 
588 /// \returns true if all of the values in \p VL have the same type or false
589 /// otherwise.
590 static bool allSameType(ArrayRef<Value *> VL) {
591   Type *Ty = VL[0]->getType();
592   for (int i = 1, e = VL.size(); i < e; i++)
593     if (VL[i]->getType() != Ty)
594       return false;
595 
596   return true;
597 }
598 
599 /// \returns True if Extract{Value,Element} instruction extracts element Idx.
600 static Optional<unsigned> getExtractIndex(Instruction *E) {
601   unsigned Opcode = E->getOpcode();
602   assert((Opcode == Instruction::ExtractElement ||
603           Opcode == Instruction::ExtractValue) &&
604          "Expected extractelement or extractvalue instruction.");
605   if (Opcode == Instruction::ExtractElement) {
606     auto *CI = dyn_cast<ConstantInt>(E->getOperand(1));
607     if (!CI)
608       return None;
609     return CI->getZExtValue();
610   }
611   ExtractValueInst *EI = cast<ExtractValueInst>(E);
612   if (EI->getNumIndices() != 1)
613     return None;
614   return *EI->idx_begin();
615 }
616 
617 /// \returns True if in-tree use also needs extract. This refers to
618 /// possible scalar operand in vectorized instruction.
619 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
620                                     TargetLibraryInfo *TLI) {
621   unsigned Opcode = UserInst->getOpcode();
622   switch (Opcode) {
623   case Instruction::Load: {
624     LoadInst *LI = cast<LoadInst>(UserInst);
625     return (LI->getPointerOperand() == Scalar);
626   }
627   case Instruction::Store: {
628     StoreInst *SI = cast<StoreInst>(UserInst);
629     return (SI->getPointerOperand() == Scalar);
630   }
631   case Instruction::Call: {
632     CallInst *CI = cast<CallInst>(UserInst);
633     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
634     for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) {
635       if (hasVectorInstrinsicScalarOpd(ID, i))
636         return (CI->getArgOperand(i) == Scalar);
637     }
638     LLVM_FALLTHROUGH;
639   }
640   default:
641     return false;
642   }
643 }
644 
645 /// \returns the AA location that is being access by the instruction.
646 static MemoryLocation getLocation(Instruction *I) {
647   if (StoreInst *SI = dyn_cast<StoreInst>(I))
648     return MemoryLocation::get(SI);
649   if (LoadInst *LI = dyn_cast<LoadInst>(I))
650     return MemoryLocation::get(LI);
651   return MemoryLocation();
652 }
653 
654 /// \returns True if the instruction is not a volatile or atomic load/store.
655 static bool isSimple(Instruction *I) {
656   if (LoadInst *LI = dyn_cast<LoadInst>(I))
657     return LI->isSimple();
658   if (StoreInst *SI = dyn_cast<StoreInst>(I))
659     return SI->isSimple();
660   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
661     return !MI->isVolatile();
662   return true;
663 }
664 
665 /// Shuffles \p Mask in accordance with the given \p SubMask.
666 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) {
667   if (SubMask.empty())
668     return;
669   if (Mask.empty()) {
670     Mask.append(SubMask.begin(), SubMask.end());
671     return;
672   }
673   SmallVector<int> NewMask(SubMask.size(), UndefMaskElem);
674   int TermValue = std::min(Mask.size(), SubMask.size());
675   for (int I = 0, E = SubMask.size(); I < E; ++I) {
676     if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem ||
677         Mask[SubMask[I]] >= TermValue)
678       continue;
679     NewMask[I] = Mask[SubMask[I]];
680   }
681   Mask.swap(NewMask);
682 }
683 
684 /// Order may have elements assigned special value (size) which is out of
685 /// bounds. Such indices only appear on places which correspond to undef values
686 /// (see canReuseExtract for details) and used in order to avoid undef values
687 /// have effect on operands ordering.
688 /// The first loop below simply finds all unused indices and then the next loop
689 /// nest assigns these indices for undef values positions.
690 /// As an example below Order has two undef positions and they have assigned
691 /// values 3 and 7 respectively:
692 /// before:  6 9 5 4 9 2 1 0
693 /// after:   6 3 5 4 7 2 1 0
694 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) {
695   const unsigned Sz = Order.size();
696   SmallBitVector UnusedIndices(Sz, /*t=*/true);
697   SmallBitVector MaskedIndices(Sz);
698   for (unsigned I = 0; I < Sz; ++I) {
699     if (Order[I] < Sz)
700       UnusedIndices.reset(Order[I]);
701     else
702       MaskedIndices.set(I);
703   }
704   if (MaskedIndices.none())
705     return;
706   assert(UnusedIndices.count() == MaskedIndices.count() &&
707          "Non-synced masked/available indices.");
708   int Idx = UnusedIndices.find_first();
709   int MIdx = MaskedIndices.find_first();
710   while (MIdx >= 0) {
711     assert(Idx >= 0 && "Indices must be synced.");
712     Order[MIdx] = Idx;
713     Idx = UnusedIndices.find_next(Idx);
714     MIdx = MaskedIndices.find_next(MIdx);
715   }
716 }
717 
718 namespace llvm {
719 
720 static void inversePermutation(ArrayRef<unsigned> Indices,
721                                SmallVectorImpl<int> &Mask) {
722   Mask.clear();
723   const unsigned E = Indices.size();
724   Mask.resize(E, UndefMaskElem);
725   for (unsigned I = 0; I < E; ++I)
726     Mask[Indices[I]] = I;
727 }
728 
729 /// \returns inserting index of InsertElement or InsertValue instruction,
730 /// using Offset as base offset for index.
731 static Optional<unsigned> getInsertIndex(Value *InsertInst,
732                                          unsigned Offset = 0) {
733   int Index = Offset;
734   if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) {
735     if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) {
736       auto *VT = cast<FixedVectorType>(IE->getType());
737       if (CI->getValue().uge(VT->getNumElements()))
738         return None;
739       Index *= VT->getNumElements();
740       Index += CI->getZExtValue();
741       return Index;
742     }
743     return None;
744   }
745 
746   auto *IV = cast<InsertValueInst>(InsertInst);
747   Type *CurrentType = IV->getType();
748   for (unsigned I : IV->indices()) {
749     if (auto *ST = dyn_cast<StructType>(CurrentType)) {
750       Index *= ST->getNumElements();
751       CurrentType = ST->getElementType(I);
752     } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) {
753       Index *= AT->getNumElements();
754       CurrentType = AT->getElementType();
755     } else {
756       return None;
757     }
758     Index += I;
759   }
760   return Index;
761 }
762 
763 /// Reorders the list of scalars in accordance with the given \p Mask.
764 static void reorderScalars(SmallVectorImpl<Value *> &Scalars,
765                            ArrayRef<int> Mask) {
766   assert(!Mask.empty() && "Expected non-empty mask.");
767   SmallVector<Value *> Prev(Scalars.size(),
768                             UndefValue::get(Scalars.front()->getType()));
769   Prev.swap(Scalars);
770   for (unsigned I = 0, E = Prev.size(); I < E; ++I)
771     if (Mask[I] != UndefMaskElem)
772       Scalars[Mask[I]] = Prev[I];
773 }
774 
775 namespace slpvectorizer {
776 
777 /// Bottom Up SLP Vectorizer.
778 class BoUpSLP {
779   struct TreeEntry;
780   struct ScheduleData;
781 
782 public:
783   using ValueList = SmallVector<Value *, 8>;
784   using InstrList = SmallVector<Instruction *, 16>;
785   using ValueSet = SmallPtrSet<Value *, 16>;
786   using StoreList = SmallVector<StoreInst *, 8>;
787   using ExtraValueToDebugLocsMap =
788       MapVector<Value *, SmallVector<Instruction *, 2>>;
789   using OrdersType = SmallVector<unsigned, 4>;
790 
791   BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
792           TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li,
793           DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
794           const DataLayout *DL, OptimizationRemarkEmitter *ORE)
795       : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC),
796         DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) {
797     CodeMetrics::collectEphemeralValues(F, AC, EphValues);
798     // Use the vector register size specified by the target unless overridden
799     // by a command-line option.
800     // TODO: It would be better to limit the vectorization factor based on
801     //       data type rather than just register size. For example, x86 AVX has
802     //       256-bit registers, but it does not support integer operations
803     //       at that width (that requires AVX2).
804     if (MaxVectorRegSizeOption.getNumOccurrences())
805       MaxVecRegSize = MaxVectorRegSizeOption;
806     else
807       MaxVecRegSize =
808           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
809               .getFixedSize();
810 
811     if (MinVectorRegSizeOption.getNumOccurrences())
812       MinVecRegSize = MinVectorRegSizeOption;
813     else
814       MinVecRegSize = TTI->getMinVectorRegisterBitWidth();
815   }
816 
817   /// Vectorize the tree that starts with the elements in \p VL.
818   /// Returns the vectorized root.
819   Value *vectorizeTree();
820 
821   /// Vectorize the tree but with the list of externally used values \p
822   /// ExternallyUsedValues. Values in this MapVector can be replaced but the
823   /// generated extractvalue instructions.
824   Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues);
825 
826   /// \returns the cost incurred by unwanted spills and fills, caused by
827   /// holding live values over call sites.
828   InstructionCost getSpillCost() const;
829 
830   /// \returns the vectorization cost of the subtree that starts at \p VL.
831   /// A negative number means that this is profitable.
832   InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None);
833 
834   /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
835   /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
836   void buildTree(ArrayRef<Value *> Roots,
837                  ArrayRef<Value *> UserIgnoreLst = None);
838 
839   /// Builds external uses of the vectorized scalars, i.e. the list of
840   /// vectorized scalars to be extracted, their lanes and their scalar users. \p
841   /// ExternallyUsedValues contains additional list of external uses to handle
842   /// vectorization of reductions.
843   void
844   buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {});
845 
846   /// Clear the internal data structures that are created by 'buildTree'.
847   void deleteTree() {
848     VectorizableTree.clear();
849     ScalarToTreeEntry.clear();
850     MustGather.clear();
851     ExternalUses.clear();
852     for (auto &Iter : BlocksSchedules) {
853       BlockScheduling *BS = Iter.second.get();
854       BS->clear();
855     }
856     MinBWs.clear();
857     InstrElementSize.clear();
858   }
859 
860   unsigned getTreeSize() const { return VectorizableTree.size(); }
861 
862   /// Perform LICM and CSE on the newly generated gather sequences.
863   void optimizeGatherSequence();
864 
865   /// Checks if the specified gather tree entry \p TE can be represented as a
866   /// shuffled vector entry + (possibly) permutation with other gathers. It
867   /// implements the checks only for possibly ordered scalars (Loads,
868   /// ExtractElement, ExtractValue), which can be part of the graph.
869   Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE);
870 
871   /// Gets reordering data for the given tree entry. If the entry is vectorized
872   /// - just return ReorderIndices, otherwise check if the scalars can be
873   /// reordered and return the most optimal order.
874   /// \param TopToBottom If true, include the order of vectorized stores and
875   /// insertelement nodes, otherwise skip them.
876   Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom);
877 
878   /// Reorders the current graph to the most profitable order starting from the
879   /// root node to the leaf nodes. The best order is chosen only from the nodes
880   /// of the same size (vectorization factor). Smaller nodes are considered
881   /// parts of subgraph with smaller VF and they are reordered independently. We
882   /// can make it because we still need to extend smaller nodes to the wider VF
883   /// and we can merge reordering shuffles with the widening shuffles.
884   void reorderTopToBottom();
885 
886   /// Reorders the current graph to the most profitable order starting from
887   /// leaves to the root. It allows to rotate small subgraphs and reduce the
888   /// number of reshuffles if the leaf nodes use the same order. In this case we
889   /// can merge the orders and just shuffle user node instead of shuffling its
890   /// operands. Plus, even the leaf nodes have different orders, it allows to
891   /// sink reordering in the graph closer to the root node and merge it later
892   /// during analysis.
893   void reorderBottomToTop(bool IgnoreReorder = false);
894 
895   /// \return The vector element size in bits to use when vectorizing the
896   /// expression tree ending at \p V. If V is a store, the size is the width of
897   /// the stored value. Otherwise, the size is the width of the largest loaded
898   /// value reaching V. This method is used by the vectorizer to calculate
899   /// vectorization factors.
900   unsigned getVectorElementSize(Value *V);
901 
902   /// Compute the minimum type sizes required to represent the entries in a
903   /// vectorizable tree.
904   void computeMinimumValueSizes();
905 
906   // \returns maximum vector register size as set by TTI or overridden by cl::opt.
907   unsigned getMaxVecRegSize() const {
908     return MaxVecRegSize;
909   }
910 
911   // \returns minimum vector register size as set by cl::opt.
912   unsigned getMinVecRegSize() const {
913     return MinVecRegSize;
914   }
915 
916   unsigned getMinVF(unsigned Sz) const {
917     return std::max(2U, getMinVecRegSize() / Sz);
918   }
919 
920   unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const {
921     unsigned MaxVF = MaxVFOption.getNumOccurrences() ?
922       MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode);
923     return MaxVF ? MaxVF : UINT_MAX;
924   }
925 
926   /// Check if homogeneous aggregate is isomorphic to some VectorType.
927   /// Accepts homogeneous multidimensional aggregate of scalars/vectors like
928   /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> },
929   /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on.
930   ///
931   /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
932   unsigned canMapToVector(Type *T, const DataLayout &DL) const;
933 
934   /// \returns True if the VectorizableTree is both tiny and not fully
935   /// vectorizable. We do not vectorize such trees.
936   bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const;
937 
938   /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values
939   /// can be load combined in the backend. Load combining may not be allowed in
940   /// the IR optimizer, so we do not want to alter the pattern. For example,
941   /// partially transforming a scalar bswap() pattern into vector code is
942   /// effectively impossible for the backend to undo.
943   /// TODO: If load combining is allowed in the IR optimizer, this analysis
944   ///       may not be necessary.
945   bool isLoadCombineReductionCandidate(RecurKind RdxKind) const;
946 
947   /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values
948   /// can be load combined in the backend. Load combining may not be allowed in
949   /// the IR optimizer, so we do not want to alter the pattern. For example,
950   /// partially transforming a scalar bswap() pattern into vector code is
951   /// effectively impossible for the backend to undo.
952   /// TODO: If load combining is allowed in the IR optimizer, this analysis
953   ///       may not be necessary.
954   bool isLoadCombineCandidate() const;
955 
956   OptimizationRemarkEmitter *getORE() { return ORE; }
957 
958   /// This structure holds any data we need about the edges being traversed
959   /// during buildTree_rec(). We keep track of:
960   /// (i) the user TreeEntry index, and
961   /// (ii) the index of the edge.
962   struct EdgeInfo {
963     EdgeInfo() = default;
964     EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx)
965         : UserTE(UserTE), EdgeIdx(EdgeIdx) {}
966     /// The user TreeEntry.
967     TreeEntry *UserTE = nullptr;
968     /// The operand index of the use.
969     unsigned EdgeIdx = UINT_MAX;
970 #ifndef NDEBUG
971     friend inline raw_ostream &operator<<(raw_ostream &OS,
972                                           const BoUpSLP::EdgeInfo &EI) {
973       EI.dump(OS);
974       return OS;
975     }
976     /// Debug print.
977     void dump(raw_ostream &OS) const {
978       OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null")
979          << " EdgeIdx:" << EdgeIdx << "}";
980     }
981     LLVM_DUMP_METHOD void dump() const { dump(dbgs()); }
982 #endif
983   };
984 
985   /// A helper data structure to hold the operands of a vector of instructions.
986   /// This supports a fixed vector length for all operand vectors.
987   class VLOperands {
988     /// For each operand we need (i) the value, and (ii) the opcode that it
989     /// would be attached to if the expression was in a left-linearized form.
990     /// This is required to avoid illegal operand reordering.
991     /// For example:
992     /// \verbatim
993     ///                         0 Op1
994     ///                         |/
995     /// Op1 Op2   Linearized    + Op2
996     ///   \ /     ---------->   |/
997     ///    -                    -
998     ///
999     /// Op1 - Op2            (0 + Op1) - Op2
1000     /// \endverbatim
1001     ///
1002     /// Value Op1 is attached to a '+' operation, and Op2 to a '-'.
1003     ///
1004     /// Another way to think of this is to track all the operations across the
1005     /// path from the operand all the way to the root of the tree and to
1006     /// calculate the operation that corresponds to this path. For example, the
1007     /// path from Op2 to the root crosses the RHS of the '-', therefore the
1008     /// corresponding operation is a '-' (which matches the one in the
1009     /// linearized tree, as shown above).
1010     ///
1011     /// For lack of a better term, we refer to this operation as Accumulated
1012     /// Path Operation (APO).
1013     struct OperandData {
1014       OperandData() = default;
1015       OperandData(Value *V, bool APO, bool IsUsed)
1016           : V(V), APO(APO), IsUsed(IsUsed) {}
1017       /// The operand value.
1018       Value *V = nullptr;
1019       /// TreeEntries only allow a single opcode, or an alternate sequence of
1020       /// them (e.g, +, -). Therefore, we can safely use a boolean value for the
1021       /// APO. It is set to 'true' if 'V' is attached to an inverse operation
1022       /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise
1023       /// (e.g., Add/Mul)
1024       bool APO = false;
1025       /// Helper data for the reordering function.
1026       bool IsUsed = false;
1027     };
1028 
1029     /// During operand reordering, we are trying to select the operand at lane
1030     /// that matches best with the operand at the neighboring lane. Our
1031     /// selection is based on the type of value we are looking for. For example,
1032     /// if the neighboring lane has a load, we need to look for a load that is
1033     /// accessing a consecutive address. These strategies are summarized in the
1034     /// 'ReorderingMode' enumerator.
1035     enum class ReorderingMode {
1036       Load,     ///< Matching loads to consecutive memory addresses
1037       Opcode,   ///< Matching instructions based on opcode (same or alternate)
1038       Constant, ///< Matching constants
1039       Splat,    ///< Matching the same instruction multiple times (broadcast)
1040       Failed,   ///< We failed to create a vectorizable group
1041     };
1042 
1043     using OperandDataVec = SmallVector<OperandData, 2>;
1044 
1045     /// A vector of operand vectors.
1046     SmallVector<OperandDataVec, 4> OpsVec;
1047 
1048     const DataLayout &DL;
1049     ScalarEvolution &SE;
1050     const BoUpSLP &R;
1051 
1052     /// \returns the operand data at \p OpIdx and \p Lane.
1053     OperandData &getData(unsigned OpIdx, unsigned Lane) {
1054       return OpsVec[OpIdx][Lane];
1055     }
1056 
1057     /// \returns the operand data at \p OpIdx and \p Lane. Const version.
1058     const OperandData &getData(unsigned OpIdx, unsigned Lane) const {
1059       return OpsVec[OpIdx][Lane];
1060     }
1061 
1062     /// Clears the used flag for all entries.
1063     void clearUsed() {
1064       for (unsigned OpIdx = 0, NumOperands = getNumOperands();
1065            OpIdx != NumOperands; ++OpIdx)
1066         for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
1067              ++Lane)
1068           OpsVec[OpIdx][Lane].IsUsed = false;
1069     }
1070 
1071     /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2.
1072     void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) {
1073       std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]);
1074     }
1075 
1076     // The hard-coded scores listed here are not very important, though it shall
1077     // be higher for better matches to improve the resulting cost. When
1078     // computing the scores of matching one sub-tree with another, we are
1079     // basically counting the number of values that are matching. So even if all
1080     // scores are set to 1, we would still get a decent matching result.
1081     // However, sometimes we have to break ties. For example we may have to
1082     // choose between matching loads vs matching opcodes. This is what these
1083     // scores are helping us with: they provide the order of preference. Also,
1084     // this is important if the scalar is externally used or used in another
1085     // tree entry node in the different lane.
1086 
1087     /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]).
1088     static const int ScoreConsecutiveLoads = 4;
1089     /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]).
1090     static const int ScoreReversedLoads = 3;
1091     /// ExtractElementInst from same vector and consecutive indexes.
1092     static const int ScoreConsecutiveExtracts = 4;
1093     /// ExtractElementInst from same vector and reversed indices.
1094     static const int ScoreReversedExtracts = 3;
1095     /// Constants.
1096     static const int ScoreConstants = 2;
1097     /// Instructions with the same opcode.
1098     static const int ScoreSameOpcode = 2;
1099     /// Instructions with alt opcodes (e.g, add + sub).
1100     static const int ScoreAltOpcodes = 1;
1101     /// Identical instructions (a.k.a. splat or broadcast).
1102     static const int ScoreSplat = 1;
1103     /// Matching with an undef is preferable to failing.
1104     static const int ScoreUndef = 1;
1105     /// Score for failing to find a decent match.
1106     static const int ScoreFail = 0;
1107     /// Score if all users are vectorized.
1108     static const int ScoreAllUserVectorized = 1;
1109 
1110     /// \returns the score of placing \p V1 and \p V2 in consecutive lanes.
1111     /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p
1112     /// MainAltOps.
1113     static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL,
1114                                ScalarEvolution &SE, int NumLanes,
1115                                ArrayRef<Value *> MainAltOps) {
1116       if (V1 == V2)
1117         return VLOperands::ScoreSplat;
1118 
1119       auto *LI1 = dyn_cast<LoadInst>(V1);
1120       auto *LI2 = dyn_cast<LoadInst>(V2);
1121       if (LI1 && LI2) {
1122         if (LI1->getParent() != LI2->getParent())
1123           return VLOperands::ScoreFail;
1124 
1125         Optional<int> Dist = getPointersDiff(
1126             LI1->getType(), LI1->getPointerOperand(), LI2->getType(),
1127             LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true);
1128         if (!Dist || *Dist == 0)
1129           return VLOperands::ScoreFail;
1130         // The distance is too large - still may be profitable to use masked
1131         // loads/gathers.
1132         if (std::abs(*Dist) > NumLanes / 2)
1133           return VLOperands::ScoreAltOpcodes;
1134         // This still will detect consecutive loads, but we might have "holes"
1135         // in some cases. It is ok for non-power-2 vectorization and may produce
1136         // better results. It should not affect current vectorization.
1137         return (*Dist > 0) ? VLOperands::ScoreConsecutiveLoads
1138                            : VLOperands::ScoreReversedLoads;
1139       }
1140 
1141       auto *C1 = dyn_cast<Constant>(V1);
1142       auto *C2 = dyn_cast<Constant>(V2);
1143       if (C1 && C2)
1144         return VLOperands::ScoreConstants;
1145 
1146       // Extracts from consecutive indexes of the same vector better score as
1147       // the extracts could be optimized away.
1148       Value *EV1;
1149       ConstantInt *Ex1Idx;
1150       if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) {
1151         // Undefs are always profitable for extractelements.
1152         if (isa<UndefValue>(V2))
1153           return VLOperands::ScoreConsecutiveExtracts;
1154         Value *EV2 = nullptr;
1155         ConstantInt *Ex2Idx = nullptr;
1156         if (match(V2,
1157                   m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx),
1158                                                          m_Undef())))) {
1159           // Undefs are always profitable for extractelements.
1160           if (!Ex2Idx)
1161             return VLOperands::ScoreConsecutiveExtracts;
1162           if (isUndefVector(EV2) && EV2->getType() == EV1->getType())
1163             return VLOperands::ScoreConsecutiveExtracts;
1164           if (EV2 == EV1) {
1165             int Idx1 = Ex1Idx->getZExtValue();
1166             int Idx2 = Ex2Idx->getZExtValue();
1167             int Dist = Idx2 - Idx1;
1168             // The distance is too large - still may be profitable to use
1169             // shuffles.
1170             if (std::abs(Dist) == 0)
1171               return VLOperands::ScoreSplat;
1172             if (std::abs(Dist) > NumLanes / 2)
1173               return VLOperands::ScoreSameOpcode;
1174             return (Dist > 0) ? VLOperands::ScoreConsecutiveExtracts
1175                               : VLOperands::ScoreReversedExtracts;
1176           }
1177           return VLOperands::ScoreAltOpcodes;
1178         }
1179         return VLOperands::ScoreFail;
1180       }
1181 
1182       auto *I1 = dyn_cast<Instruction>(V1);
1183       auto *I2 = dyn_cast<Instruction>(V2);
1184       if (I1 && I2) {
1185         if (I1->getParent() != I2->getParent())
1186           return VLOperands::ScoreFail;
1187         SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end());
1188         Ops.push_back(I1);
1189         Ops.push_back(I2);
1190         InstructionsState S = getSameOpcode(Ops);
1191         // Note: Only consider instructions with <= 2 operands to avoid
1192         // complexity explosion.
1193         if (S.getOpcode() &&
1194             (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() ||
1195              !S.isAltShuffle()) &&
1196             all_of(Ops, [&S](Value *V) {
1197               return cast<Instruction>(V)->getNumOperands() ==
1198                      S.MainOp->getNumOperands();
1199             }))
1200           return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes
1201                                   : VLOperands::ScoreSameOpcode;
1202       }
1203 
1204       if (isa<UndefValue>(V2))
1205         return VLOperands::ScoreUndef;
1206 
1207       return VLOperands::ScoreFail;
1208     }
1209 
1210     /// \param Lane lane of the operands under analysis.
1211     /// \param OpIdx operand index in \p Lane lane we're looking the best
1212     /// candidate for.
1213     /// \param Idx operand index of the current candidate value.
1214     /// \returns The additional score due to possible broadcasting of the
1215     /// elements in the lane. It is more profitable to have power-of-2 unique
1216     /// elements in the lane, it will be vectorized with higher probability
1217     /// after removing duplicates. Currently the SLP vectorizer supports only
1218     /// vectorization of the power-of-2 number of unique scalars.
1219     int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const {
1220       Value *IdxLaneV = getData(Idx, Lane).V;
1221       if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V)
1222         return 0;
1223       SmallPtrSet<Value *, 4> Uniques;
1224       for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) {
1225         if (Ln == Lane)
1226           continue;
1227         Value *OpIdxLnV = getData(OpIdx, Ln).V;
1228         if (!isa<Instruction>(OpIdxLnV))
1229           return 0;
1230         Uniques.insert(OpIdxLnV);
1231       }
1232       int UniquesCount = Uniques.size();
1233       int UniquesCntWithIdxLaneV =
1234           Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1;
1235       Value *OpIdxLaneV = getData(OpIdx, Lane).V;
1236       int UniquesCntWithOpIdxLaneV =
1237           Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1;
1238       if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV)
1239         return 0;
1240       return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) -
1241               UniquesCntWithOpIdxLaneV) -
1242              (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV);
1243     }
1244 
1245     /// \param Lane lane of the operands under analysis.
1246     /// \param OpIdx operand index in \p Lane lane we're looking the best
1247     /// candidate for.
1248     /// \param Idx operand index of the current candidate value.
1249     /// \returns The additional score for the scalar which users are all
1250     /// vectorized.
1251     int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const {
1252       Value *IdxLaneV = getData(Idx, Lane).V;
1253       Value *OpIdxLaneV = getData(OpIdx, Lane).V;
1254       // Do not care about number of uses for vector-like instructions
1255       // (extractelement/extractvalue with constant indices), they are extracts
1256       // themselves and already externally used. Vectorization of such
1257       // instructions does not add extra extractelement instruction, just may
1258       // remove it.
1259       if (isVectorLikeInstWithConstOps(IdxLaneV) &&
1260           isVectorLikeInstWithConstOps(OpIdxLaneV))
1261         return VLOperands::ScoreAllUserVectorized;
1262       auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV);
1263       if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV))
1264         return 0;
1265       return R.areAllUsersVectorized(IdxLaneI, None)
1266                  ? VLOperands::ScoreAllUserVectorized
1267                  : 0;
1268     }
1269 
1270     /// Go through the operands of \p LHS and \p RHS recursively until \p
1271     /// MaxLevel, and return the cummulative score. For example:
1272     /// \verbatim
1273     ///  A[0]  B[0]  A[1]  B[1]  C[0] D[0]  B[1] A[1]
1274     ///     \ /         \ /         \ /        \ /
1275     ///      +           +           +          +
1276     ///     G1          G2          G3         G4
1277     /// \endverbatim
1278     /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at
1279     /// each level recursively, accumulating the score. It starts from matching
1280     /// the additions at level 0, then moves on to the loads (level 1). The
1281     /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and
1282     /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while
1283     /// {A[0],C[0]} has a score of VLOperands::ScoreFail.
1284     /// Please note that the order of the operands does not matter, as we
1285     /// evaluate the score of all profitable combinations of operands. In
1286     /// other words the score of G1 and G4 is the same as G1 and G2. This
1287     /// heuristic is based on ideas described in:
1288     ///   Look-ahead SLP: Auto-vectorization in the presence of commutative
1289     ///   operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha,
1290     ///   Luís F. W. Góes
1291     int getScoreAtLevelRec(Value *LHS, Value *RHS, int CurrLevel, int MaxLevel,
1292                            ArrayRef<Value *> MainAltOps) {
1293 
1294       // Get the shallow score of V1 and V2.
1295       int ShallowScoreAtThisLevel =
1296           getShallowScore(LHS, RHS, DL, SE, getNumLanes(), MainAltOps);
1297 
1298       // If reached MaxLevel,
1299       //  or if V1 and V2 are not instructions,
1300       //  or if they are SPLAT,
1301       //  or if they are not consecutive,
1302       //  or if profitable to vectorize loads or extractelements, early return
1303       //  the current cost.
1304       auto *I1 = dyn_cast<Instruction>(LHS);
1305       auto *I2 = dyn_cast<Instruction>(RHS);
1306       if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 ||
1307           ShallowScoreAtThisLevel == VLOperands::ScoreFail ||
1308           (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) ||
1309             (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) ||
1310             (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) &&
1311            ShallowScoreAtThisLevel))
1312         return ShallowScoreAtThisLevel;
1313       assert(I1 && I2 && "Should have early exited.");
1314 
1315       // Contains the I2 operand indexes that got matched with I1 operands.
1316       SmallSet<unsigned, 4> Op2Used;
1317 
1318       // Recursion towards the operands of I1 and I2. We are trying all possible
1319       // operand pairs, and keeping track of the best score.
1320       for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands();
1321            OpIdx1 != NumOperands1; ++OpIdx1) {
1322         // Try to pair op1I with the best operand of I2.
1323         int MaxTmpScore = 0;
1324         unsigned MaxOpIdx2 = 0;
1325         bool FoundBest = false;
1326         // If I2 is commutative try all combinations.
1327         unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1;
1328         unsigned ToIdx = isCommutative(I2)
1329                              ? I2->getNumOperands()
1330                              : std::min(I2->getNumOperands(), OpIdx1 + 1);
1331         assert(FromIdx <= ToIdx && "Bad index");
1332         for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) {
1333           // Skip operands already paired with OpIdx1.
1334           if (Op2Used.count(OpIdx2))
1335             continue;
1336           // Recursively calculate the cost at each level
1337           int TmpScore =
1338               getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2),
1339                                  CurrLevel + 1, MaxLevel, None);
1340           // Look for the best score.
1341           if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) {
1342             MaxTmpScore = TmpScore;
1343             MaxOpIdx2 = OpIdx2;
1344             FoundBest = true;
1345           }
1346         }
1347         if (FoundBest) {
1348           // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it.
1349           Op2Used.insert(MaxOpIdx2);
1350           ShallowScoreAtThisLevel += MaxTmpScore;
1351         }
1352       }
1353       return ShallowScoreAtThisLevel;
1354     }
1355 
1356     /// Score scaling factor for fully compatible instructions but with
1357     /// different number of external uses. Allows better selection of the
1358     /// instructions with less external uses.
1359     static const int ScoreScaleFactor = 10;
1360 
1361     /// \Returns the look-ahead score, which tells us how much the sub-trees
1362     /// rooted at \p LHS and \p RHS match, the more they match the higher the
1363     /// score. This helps break ties in an informed way when we cannot decide on
1364     /// the order of the operands by just considering the immediate
1365     /// predecessors.
1366     int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps,
1367                           int Lane, unsigned OpIdx, unsigned Idx,
1368                           bool &IsUsed) {
1369       int Score =
1370           getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth, MainAltOps);
1371       if (Score) {
1372         int SplatScore = getSplatScore(Lane, OpIdx, Idx);
1373         if (Score <= -SplatScore) {
1374           // Set the minimum score for splat-like sequence to avoid setting
1375           // failed state.
1376           Score = 1;
1377         } else {
1378           Score += SplatScore;
1379           // Scale score to see the difference between different operands
1380           // and similar operands but all vectorized/not all vectorized
1381           // uses. It does not affect actual selection of the best
1382           // compatible operand in general, just allows to select the
1383           // operand with all vectorized uses.
1384           Score *= ScoreScaleFactor;
1385           Score += getExternalUseScore(Lane, OpIdx, Idx);
1386           IsUsed = true;
1387         }
1388       }
1389       return Score;
1390     }
1391 
1392     /// Best defined scores per lanes between the passes. Used to choose the
1393     /// best operand (with the highest score) between the passes.
1394     /// The key - {Operand Index, Lane}.
1395     /// The value - the best score between the passes for the lane and the
1396     /// operand.
1397     SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8>
1398         BestScoresPerLanes;
1399 
1400     // Search all operands in Ops[*][Lane] for the one that matches best
1401     // Ops[OpIdx][LastLane] and return its opreand index.
1402     // If no good match can be found, return None.
1403     Optional<unsigned> getBestOperand(unsigned OpIdx, int Lane, int LastLane,
1404                                       ArrayRef<ReorderingMode> ReorderingModes,
1405                                       ArrayRef<Value *> MainAltOps) {
1406       unsigned NumOperands = getNumOperands();
1407 
1408       // The operand of the previous lane at OpIdx.
1409       Value *OpLastLane = getData(OpIdx, LastLane).V;
1410 
1411       // Our strategy mode for OpIdx.
1412       ReorderingMode RMode = ReorderingModes[OpIdx];
1413       if (RMode == ReorderingMode::Failed)
1414         return None;
1415 
1416       // The linearized opcode of the operand at OpIdx, Lane.
1417       bool OpIdxAPO = getData(OpIdx, Lane).APO;
1418 
1419       // The best operand index and its score.
1420       // Sometimes we have more than one option (e.g., Opcode and Undefs), so we
1421       // are using the score to differentiate between the two.
1422       struct BestOpData {
1423         Optional<unsigned> Idx = None;
1424         unsigned Score = 0;
1425       } BestOp;
1426       BestOp.Score =
1427           BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0)
1428               .first->second;
1429 
1430       // Track if the operand must be marked as used. If the operand is set to
1431       // Score 1 explicitly (because of non power-of-2 unique scalars, we may
1432       // want to reestimate the operands again on the following iterations).
1433       bool IsUsed =
1434           RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant;
1435       // Iterate through all unused operands and look for the best.
1436       for (unsigned Idx = 0; Idx != NumOperands; ++Idx) {
1437         // Get the operand at Idx and Lane.
1438         OperandData &OpData = getData(Idx, Lane);
1439         Value *Op = OpData.V;
1440         bool OpAPO = OpData.APO;
1441 
1442         // Skip already selected operands.
1443         if (OpData.IsUsed)
1444           continue;
1445 
1446         // Skip if we are trying to move the operand to a position with a
1447         // different opcode in the linearized tree form. This would break the
1448         // semantics.
1449         if (OpAPO != OpIdxAPO)
1450           continue;
1451 
1452         // Look for an operand that matches the current mode.
1453         switch (RMode) {
1454         case ReorderingMode::Load:
1455         case ReorderingMode::Constant:
1456         case ReorderingMode::Opcode: {
1457           bool LeftToRight = Lane > LastLane;
1458           Value *OpLeft = (LeftToRight) ? OpLastLane : Op;
1459           Value *OpRight = (LeftToRight) ? Op : OpLastLane;
1460           int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane,
1461                                         OpIdx, Idx, IsUsed);
1462           if (Score > static_cast<int>(BestOp.Score)) {
1463             BestOp.Idx = Idx;
1464             BestOp.Score = Score;
1465             BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score;
1466           }
1467           break;
1468         }
1469         case ReorderingMode::Splat:
1470           if (Op == OpLastLane)
1471             BestOp.Idx = Idx;
1472           break;
1473         case ReorderingMode::Failed:
1474           llvm_unreachable("Not expected Failed reordering mode.");
1475         }
1476       }
1477 
1478       if (BestOp.Idx) {
1479         getData(BestOp.Idx.getValue(), Lane).IsUsed = IsUsed;
1480         return BestOp.Idx;
1481       }
1482       // If we could not find a good match return None.
1483       return None;
1484     }
1485 
1486     /// Helper for reorderOperandVecs.
1487     /// \returns the lane that we should start reordering from. This is the one
1488     /// which has the least number of operands that can freely move about or
1489     /// less profitable because it already has the most optimal set of operands.
1490     unsigned getBestLaneToStartReordering() const {
1491       unsigned Min = UINT_MAX;
1492       unsigned SameOpNumber = 0;
1493       // std::pair<unsigned, unsigned> is used to implement a simple voting
1494       // algorithm and choose the lane with the least number of operands that
1495       // can freely move about or less profitable because it already has the
1496       // most optimal set of operands. The first unsigned is a counter for
1497       // voting, the second unsigned is the counter of lanes with instructions
1498       // with same/alternate opcodes and same parent basic block.
1499       MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap;
1500       // Try to be closer to the original results, if we have multiple lanes
1501       // with same cost. If 2 lanes have the same cost, use the one with the
1502       // lowest index.
1503       for (int I = getNumLanes(); I > 0; --I) {
1504         unsigned Lane = I - 1;
1505         OperandsOrderData NumFreeOpsHash =
1506             getMaxNumOperandsThatCanBeReordered(Lane);
1507         // Compare the number of operands that can move and choose the one with
1508         // the least number.
1509         if (NumFreeOpsHash.NumOfAPOs < Min) {
1510           Min = NumFreeOpsHash.NumOfAPOs;
1511           SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent;
1512           HashMap.clear();
1513           HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane);
1514         } else if (NumFreeOpsHash.NumOfAPOs == Min &&
1515                    NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) {
1516           // Select the most optimal lane in terms of number of operands that
1517           // should be moved around.
1518           SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent;
1519           HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane);
1520         } else if (NumFreeOpsHash.NumOfAPOs == Min &&
1521                    NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) {
1522           auto It = HashMap.find(NumFreeOpsHash.Hash);
1523           if (It == HashMap.end())
1524             HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane);
1525           else
1526             ++It->second.first;
1527         }
1528       }
1529       // Select the lane with the minimum counter.
1530       unsigned BestLane = 0;
1531       unsigned CntMin = UINT_MAX;
1532       for (const auto &Data : reverse(HashMap)) {
1533         if (Data.second.first < CntMin) {
1534           CntMin = Data.second.first;
1535           BestLane = Data.second.second;
1536         }
1537       }
1538       return BestLane;
1539     }
1540 
1541     /// Data structure that helps to reorder operands.
1542     struct OperandsOrderData {
1543       /// The best number of operands with the same APOs, which can be
1544       /// reordered.
1545       unsigned NumOfAPOs = UINT_MAX;
1546       /// Number of operands with the same/alternate instruction opcode and
1547       /// parent.
1548       unsigned NumOpsWithSameOpcodeParent = 0;
1549       /// Hash for the actual operands ordering.
1550       /// Used to count operands, actually their position id and opcode
1551       /// value. It is used in the voting mechanism to find the lane with the
1552       /// least number of operands that can freely move about or less profitable
1553       /// because it already has the most optimal set of operands. Can be
1554       /// replaced with SmallVector<unsigned> instead but hash code is faster
1555       /// and requires less memory.
1556       unsigned Hash = 0;
1557     };
1558     /// \returns the maximum number of operands that are allowed to be reordered
1559     /// for \p Lane and the number of compatible instructions(with the same
1560     /// parent/opcode). This is used as a heuristic for selecting the first lane
1561     /// to start operand reordering.
1562     OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const {
1563       unsigned CntTrue = 0;
1564       unsigned NumOperands = getNumOperands();
1565       // Operands with the same APO can be reordered. We therefore need to count
1566       // how many of them we have for each APO, like this: Cnt[APO] = x.
1567       // Since we only have two APOs, namely true and false, we can avoid using
1568       // a map. Instead we can simply count the number of operands that
1569       // correspond to one of them (in this case the 'true' APO), and calculate
1570       // the other by subtracting it from the total number of operands.
1571       // Operands with the same instruction opcode and parent are more
1572       // profitable since we don't need to move them in many cases, with a high
1573       // probability such lane already can be vectorized effectively.
1574       bool AllUndefs = true;
1575       unsigned NumOpsWithSameOpcodeParent = 0;
1576       Instruction *OpcodeI = nullptr;
1577       BasicBlock *Parent = nullptr;
1578       unsigned Hash = 0;
1579       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1580         const OperandData &OpData = getData(OpIdx, Lane);
1581         if (OpData.APO)
1582           ++CntTrue;
1583         // Use Boyer-Moore majority voting for finding the majority opcode and
1584         // the number of times it occurs.
1585         if (auto *I = dyn_cast<Instruction>(OpData.V)) {
1586           if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() ||
1587               I->getParent() != Parent) {
1588             if (NumOpsWithSameOpcodeParent == 0) {
1589               NumOpsWithSameOpcodeParent = 1;
1590               OpcodeI = I;
1591               Parent = I->getParent();
1592             } else {
1593               --NumOpsWithSameOpcodeParent;
1594             }
1595           } else {
1596             ++NumOpsWithSameOpcodeParent;
1597           }
1598         }
1599         Hash = hash_combine(
1600             Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1)));
1601         AllUndefs = AllUndefs && isa<UndefValue>(OpData.V);
1602       }
1603       if (AllUndefs)
1604         return {};
1605       OperandsOrderData Data;
1606       Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue);
1607       Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent;
1608       Data.Hash = Hash;
1609       return Data;
1610     }
1611 
1612     /// Go through the instructions in VL and append their operands.
1613     void appendOperandsOfVL(ArrayRef<Value *> VL) {
1614       assert(!VL.empty() && "Bad VL");
1615       assert((empty() || VL.size() == getNumLanes()) &&
1616              "Expected same number of lanes");
1617       assert(isa<Instruction>(VL[0]) && "Expected instruction");
1618       unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands();
1619       OpsVec.resize(NumOperands);
1620       unsigned NumLanes = VL.size();
1621       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1622         OpsVec[OpIdx].resize(NumLanes);
1623         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1624           assert(isa<Instruction>(VL[Lane]) && "Expected instruction");
1625           // Our tree has just 3 nodes: the root and two operands.
1626           // It is therefore trivial to get the APO. We only need to check the
1627           // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or
1628           // RHS operand. The LHS operand of both add and sub is never attached
1629           // to an inversese operation in the linearized form, therefore its APO
1630           // is false. The RHS is true only if VL[Lane] is an inverse operation.
1631 
1632           // Since operand reordering is performed on groups of commutative
1633           // operations or alternating sequences (e.g., +, -), we can safely
1634           // tell the inverse operations by checking commutativity.
1635           bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane]));
1636           bool APO = (OpIdx == 0) ? false : IsInverseOperation;
1637           OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx),
1638                                  APO, false};
1639         }
1640       }
1641     }
1642 
1643     /// \returns the number of operands.
1644     unsigned getNumOperands() const { return OpsVec.size(); }
1645 
1646     /// \returns the number of lanes.
1647     unsigned getNumLanes() const { return OpsVec[0].size(); }
1648 
1649     /// \returns the operand value at \p OpIdx and \p Lane.
1650     Value *getValue(unsigned OpIdx, unsigned Lane) const {
1651       return getData(OpIdx, Lane).V;
1652     }
1653 
1654     /// \returns true if the data structure is empty.
1655     bool empty() const { return OpsVec.empty(); }
1656 
1657     /// Clears the data.
1658     void clear() { OpsVec.clear(); }
1659 
1660     /// \Returns true if there are enough operands identical to \p Op to fill
1661     /// the whole vector.
1662     /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow.
1663     bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) {
1664       bool OpAPO = getData(OpIdx, Lane).APO;
1665       for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) {
1666         if (Ln == Lane)
1667           continue;
1668         // This is set to true if we found a candidate for broadcast at Lane.
1669         bool FoundCandidate = false;
1670         for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) {
1671           OperandData &Data = getData(OpI, Ln);
1672           if (Data.APO != OpAPO || Data.IsUsed)
1673             continue;
1674           if (Data.V == Op) {
1675             FoundCandidate = true;
1676             Data.IsUsed = true;
1677             break;
1678           }
1679         }
1680         if (!FoundCandidate)
1681           return false;
1682       }
1683       return true;
1684     }
1685 
1686   public:
1687     /// Initialize with all the operands of the instruction vector \p RootVL.
1688     VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL,
1689                ScalarEvolution &SE, const BoUpSLP &R)
1690         : DL(DL), SE(SE), R(R) {
1691       // Append all the operands of RootVL.
1692       appendOperandsOfVL(RootVL);
1693     }
1694 
1695     /// \Returns a value vector with the operands across all lanes for the
1696     /// opearnd at \p OpIdx.
1697     ValueList getVL(unsigned OpIdx) const {
1698       ValueList OpVL(OpsVec[OpIdx].size());
1699       assert(OpsVec[OpIdx].size() == getNumLanes() &&
1700              "Expected same num of lanes across all operands");
1701       for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane)
1702         OpVL[Lane] = OpsVec[OpIdx][Lane].V;
1703       return OpVL;
1704     }
1705 
1706     // Performs operand reordering for 2 or more operands.
1707     // The original operands are in OrigOps[OpIdx][Lane].
1708     // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'.
1709     void reorder() {
1710       unsigned NumOperands = getNumOperands();
1711       unsigned NumLanes = getNumLanes();
1712       // Each operand has its own mode. We are using this mode to help us select
1713       // the instructions for each lane, so that they match best with the ones
1714       // we have selected so far.
1715       SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands);
1716 
1717       // This is a greedy single-pass algorithm. We are going over each lane
1718       // once and deciding on the best order right away with no back-tracking.
1719       // However, in order to increase its effectiveness, we start with the lane
1720       // that has operands that can move the least. For example, given the
1721       // following lanes:
1722       //  Lane 0 : A[0] = B[0] + C[0]   // Visited 3rd
1723       //  Lane 1 : A[1] = C[1] - B[1]   // Visited 1st
1724       //  Lane 2 : A[2] = B[2] + C[2]   // Visited 2nd
1725       //  Lane 3 : A[3] = C[3] - B[3]   // Visited 4th
1726       // we will start at Lane 1, since the operands of the subtraction cannot
1727       // be reordered. Then we will visit the rest of the lanes in a circular
1728       // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3.
1729 
1730       // Find the first lane that we will start our search from.
1731       unsigned FirstLane = getBestLaneToStartReordering();
1732 
1733       // Initialize the modes.
1734       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1735         Value *OpLane0 = getValue(OpIdx, FirstLane);
1736         // Keep track if we have instructions with all the same opcode on one
1737         // side.
1738         if (isa<LoadInst>(OpLane0))
1739           ReorderingModes[OpIdx] = ReorderingMode::Load;
1740         else if (isa<Instruction>(OpLane0)) {
1741           // Check if OpLane0 should be broadcast.
1742           if (shouldBroadcast(OpLane0, OpIdx, FirstLane))
1743             ReorderingModes[OpIdx] = ReorderingMode::Splat;
1744           else
1745             ReorderingModes[OpIdx] = ReorderingMode::Opcode;
1746         }
1747         else if (isa<Constant>(OpLane0))
1748           ReorderingModes[OpIdx] = ReorderingMode::Constant;
1749         else if (isa<Argument>(OpLane0))
1750           // Our best hope is a Splat. It may save some cost in some cases.
1751           ReorderingModes[OpIdx] = ReorderingMode::Splat;
1752         else
1753           // NOTE: This should be unreachable.
1754           ReorderingModes[OpIdx] = ReorderingMode::Failed;
1755       }
1756 
1757       // Check that we don't have same operands. No need to reorder if operands
1758       // are just perfect diamond or shuffled diamond match. Do not do it only
1759       // for possible broadcasts or non-power of 2 number of scalars (just for
1760       // now).
1761       auto &&SkipReordering = [this]() {
1762         SmallPtrSet<Value *, 4> UniqueValues;
1763         ArrayRef<OperandData> Op0 = OpsVec.front();
1764         for (const OperandData &Data : Op0)
1765           UniqueValues.insert(Data.V);
1766         for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) {
1767           if (any_of(Op, [&UniqueValues](const OperandData &Data) {
1768                 return !UniqueValues.contains(Data.V);
1769               }))
1770             return false;
1771         }
1772         // TODO: Check if we can remove a check for non-power-2 number of
1773         // scalars after full support of non-power-2 vectorization.
1774         return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size());
1775       };
1776 
1777       // If the initial strategy fails for any of the operand indexes, then we
1778       // perform reordering again in a second pass. This helps avoid assigning
1779       // high priority to the failed strategy, and should improve reordering for
1780       // the non-failed operand indexes.
1781       for (int Pass = 0; Pass != 2; ++Pass) {
1782         // Check if no need to reorder operands since they're are perfect or
1783         // shuffled diamond match.
1784         // Need to to do it to avoid extra external use cost counting for
1785         // shuffled matches, which may cause regressions.
1786         if (SkipReordering())
1787           break;
1788         // Skip the second pass if the first pass did not fail.
1789         bool StrategyFailed = false;
1790         // Mark all operand data as free to use.
1791         clearUsed();
1792         // We keep the original operand order for the FirstLane, so reorder the
1793         // rest of the lanes. We are visiting the nodes in a circular fashion,
1794         // using FirstLane as the center point and increasing the radius
1795         // distance.
1796         SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands);
1797         for (unsigned I = 0; I < NumOperands; ++I)
1798           MainAltOps[I].push_back(getData(I, FirstLane).V);
1799 
1800         for (unsigned Distance = 1; Distance != NumLanes; ++Distance) {
1801           // Visit the lane on the right and then the lane on the left.
1802           for (int Direction : {+1, -1}) {
1803             int Lane = FirstLane + Direction * Distance;
1804             if (Lane < 0 || Lane >= (int)NumLanes)
1805               continue;
1806             int LastLane = Lane - Direction;
1807             assert(LastLane >= 0 && LastLane < (int)NumLanes &&
1808                    "Out of bounds");
1809             // Look for a good match for each operand.
1810             for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1811               // Search for the operand that matches SortedOps[OpIdx][Lane-1].
1812               Optional<unsigned> BestIdx = getBestOperand(
1813                   OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]);
1814               // By not selecting a value, we allow the operands that follow to
1815               // select a better matching value. We will get a non-null value in
1816               // the next run of getBestOperand().
1817               if (BestIdx) {
1818                 // Swap the current operand with the one returned by
1819                 // getBestOperand().
1820                 swap(OpIdx, BestIdx.getValue(), Lane);
1821               } else {
1822                 // We failed to find a best operand, set mode to 'Failed'.
1823                 ReorderingModes[OpIdx] = ReorderingMode::Failed;
1824                 // Enable the second pass.
1825                 StrategyFailed = true;
1826               }
1827               // Try to get the alternate opcode and follow it during analysis.
1828               if (MainAltOps[OpIdx].size() != 2) {
1829                 OperandData &AltOp = getData(OpIdx, Lane);
1830                 InstructionsState OpS =
1831                     getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V});
1832                 if (OpS.getOpcode() && OpS.isAltShuffle())
1833                   MainAltOps[OpIdx].push_back(AltOp.V);
1834               }
1835             }
1836           }
1837         }
1838         // Skip second pass if the strategy did not fail.
1839         if (!StrategyFailed)
1840           break;
1841       }
1842     }
1843 
1844 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1845     LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) {
1846       switch (RMode) {
1847       case ReorderingMode::Load:
1848         return "Load";
1849       case ReorderingMode::Opcode:
1850         return "Opcode";
1851       case ReorderingMode::Constant:
1852         return "Constant";
1853       case ReorderingMode::Splat:
1854         return "Splat";
1855       case ReorderingMode::Failed:
1856         return "Failed";
1857       }
1858       llvm_unreachable("Unimplemented Reordering Type");
1859     }
1860 
1861     LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode,
1862                                                    raw_ostream &OS) {
1863       return OS << getModeStr(RMode);
1864     }
1865 
1866     /// Debug print.
1867     LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) {
1868       printMode(RMode, dbgs());
1869     }
1870 
1871     friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) {
1872       return printMode(RMode, OS);
1873     }
1874 
1875     LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const {
1876       const unsigned Indent = 2;
1877       unsigned Cnt = 0;
1878       for (const OperandDataVec &OpDataVec : OpsVec) {
1879         OS << "Operand " << Cnt++ << "\n";
1880         for (const OperandData &OpData : OpDataVec) {
1881           OS.indent(Indent) << "{";
1882           if (Value *V = OpData.V)
1883             OS << *V;
1884           else
1885             OS << "null";
1886           OS << ", APO:" << OpData.APO << "}\n";
1887         }
1888         OS << "\n";
1889       }
1890       return OS;
1891     }
1892 
1893     /// Debug print.
1894     LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
1895 #endif
1896   };
1897 
1898   /// Checks if the instruction is marked for deletion.
1899   bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); }
1900 
1901   /// Marks values operands for later deletion by replacing them with Undefs.
1902   void eraseInstructions(ArrayRef<Value *> AV);
1903 
1904   ~BoUpSLP();
1905 
1906 private:
1907   /// Checks if all users of \p I are the part of the vectorization tree.
1908   bool areAllUsersVectorized(Instruction *I,
1909                              ArrayRef<Value *> VectorizedVals) const;
1910 
1911   /// \returns the cost of the vectorizable entry.
1912   InstructionCost getEntryCost(const TreeEntry *E,
1913                                ArrayRef<Value *> VectorizedVals);
1914 
1915   /// This is the recursive part of buildTree.
1916   void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth,
1917                      const EdgeInfo &EI);
1918 
1919   /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can
1920   /// be vectorized to use the original vector (or aggregate "bitcast" to a
1921   /// vector) and sets \p CurrentOrder to the identity permutation; otherwise
1922   /// returns false, setting \p CurrentOrder to either an empty vector or a
1923   /// non-identity permutation that allows to reuse extract instructions.
1924   bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
1925                        SmallVectorImpl<unsigned> &CurrentOrder) const;
1926 
1927   /// Vectorize a single entry in the tree.
1928   Value *vectorizeTree(TreeEntry *E);
1929 
1930   /// Vectorize a single entry in the tree, starting in \p VL.
1931   Value *vectorizeTree(ArrayRef<Value *> VL);
1932 
1933   /// \returns the scalarization cost for this type. Scalarization in this
1934   /// context means the creation of vectors from a group of scalars. If \p
1935   /// NeedToShuffle is true, need to add a cost of reshuffling some of the
1936   /// vector elements.
1937   InstructionCost getGatherCost(FixedVectorType *Ty,
1938                                 const APInt &ShuffledIndices,
1939                                 bool NeedToShuffle) const;
1940 
1941   /// Checks if the gathered \p VL can be represented as shuffle(s) of previous
1942   /// tree entries.
1943   /// \returns ShuffleKind, if gathered values can be represented as shuffles of
1944   /// previous tree entries. \p Mask is filled with the shuffle mask.
1945   Optional<TargetTransformInfo::ShuffleKind>
1946   isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask,
1947                         SmallVectorImpl<const TreeEntry *> &Entries);
1948 
1949   /// \returns the scalarization cost for this list of values. Assuming that
1950   /// this subtree gets vectorized, we may need to extract the values from the
1951   /// roots. This method calculates the cost of extracting the values.
1952   InstructionCost getGatherCost(ArrayRef<Value *> VL) const;
1953 
1954   /// Set the Builder insert point to one after the last instruction in
1955   /// the bundle
1956   void setInsertPointAfterBundle(const TreeEntry *E);
1957 
1958   /// \returns a vector from a collection of scalars in \p VL.
1959   Value *gather(ArrayRef<Value *> VL);
1960 
1961   /// \returns whether the VectorizableTree is fully vectorizable and will
1962   /// be beneficial even the tree height is tiny.
1963   bool isFullyVectorizableTinyTree(bool ForReduction) const;
1964 
1965   /// Reorder commutative or alt operands to get better probability of
1966   /// generating vectorized code.
1967   static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
1968                                              SmallVectorImpl<Value *> &Left,
1969                                              SmallVectorImpl<Value *> &Right,
1970                                              const DataLayout &DL,
1971                                              ScalarEvolution &SE,
1972                                              const BoUpSLP &R);
1973   struct TreeEntry {
1974     using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>;
1975     TreeEntry(VecTreeTy &Container) : Container(Container) {}
1976 
1977     /// \returns true if the scalars in VL are equal to this entry.
1978     bool isSame(ArrayRef<Value *> VL) const {
1979       auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) {
1980         if (Mask.size() != VL.size() && VL.size() == Scalars.size())
1981           return std::equal(VL.begin(), VL.end(), Scalars.begin());
1982         return VL.size() == Mask.size() &&
1983                std::equal(VL.begin(), VL.end(), Mask.begin(),
1984                           [Scalars](Value *V, int Idx) {
1985                             return (isa<UndefValue>(V) &&
1986                                     Idx == UndefMaskElem) ||
1987                                    (Idx != UndefMaskElem && V == Scalars[Idx]);
1988                           });
1989       };
1990       if (!ReorderIndices.empty()) {
1991         // TODO: implement matching if the nodes are just reordered, still can
1992         // treat the vector as the same if the list of scalars matches VL
1993         // directly, without reordering.
1994         SmallVector<int> Mask;
1995         inversePermutation(ReorderIndices, Mask);
1996         if (VL.size() == Scalars.size())
1997           return IsSame(Scalars, Mask);
1998         if (VL.size() == ReuseShuffleIndices.size()) {
1999           ::addMask(Mask, ReuseShuffleIndices);
2000           return IsSame(Scalars, Mask);
2001         }
2002         return false;
2003       }
2004       return IsSame(Scalars, ReuseShuffleIndices);
2005     }
2006 
2007     /// \returns true if current entry has same operands as \p TE.
2008     bool hasEqualOperands(const TreeEntry &TE) const {
2009       if (TE.getNumOperands() != getNumOperands())
2010         return false;
2011       SmallBitVector Used(getNumOperands());
2012       for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
2013         unsigned PrevCount = Used.count();
2014         for (unsigned K = 0; K < E; ++K) {
2015           if (Used.test(K))
2016             continue;
2017           if (getOperand(K) == TE.getOperand(I)) {
2018             Used.set(K);
2019             break;
2020           }
2021         }
2022         // Check if we actually found the matching operand.
2023         if (PrevCount == Used.count())
2024           return false;
2025       }
2026       return true;
2027     }
2028 
2029     /// \return Final vectorization factor for the node. Defined by the total
2030     /// number of vectorized scalars, including those, used several times in the
2031     /// entry and counted in the \a ReuseShuffleIndices, if any.
2032     unsigned getVectorFactor() const {
2033       if (!ReuseShuffleIndices.empty())
2034         return ReuseShuffleIndices.size();
2035       return Scalars.size();
2036     };
2037 
2038     /// A vector of scalars.
2039     ValueList Scalars;
2040 
2041     /// The Scalars are vectorized into this value. It is initialized to Null.
2042     Value *VectorizedValue = nullptr;
2043 
2044     /// Do we need to gather this sequence or vectorize it
2045     /// (either with vector instruction or with scatter/gather
2046     /// intrinsics for store/load)?
2047     enum EntryState { Vectorize, ScatterVectorize, NeedToGather };
2048     EntryState State;
2049 
2050     /// Does this sequence require some shuffling?
2051     SmallVector<int, 4> ReuseShuffleIndices;
2052 
2053     /// Does this entry require reordering?
2054     SmallVector<unsigned, 4> ReorderIndices;
2055 
2056     /// Points back to the VectorizableTree.
2057     ///
2058     /// Only used for Graphviz right now.  Unfortunately GraphTrait::NodeRef has
2059     /// to be a pointer and needs to be able to initialize the child iterator.
2060     /// Thus we need a reference back to the container to translate the indices
2061     /// to entries.
2062     VecTreeTy &Container;
2063 
2064     /// The TreeEntry index containing the user of this entry.  We can actually
2065     /// have multiple users so the data structure is not truly a tree.
2066     SmallVector<EdgeInfo, 1> UserTreeIndices;
2067 
2068     /// The index of this treeEntry in VectorizableTree.
2069     int Idx = -1;
2070 
2071   private:
2072     /// The operands of each instruction in each lane Operands[op_index][lane].
2073     /// Note: This helps avoid the replication of the code that performs the
2074     /// reordering of operands during buildTree_rec() and vectorizeTree().
2075     SmallVector<ValueList, 2> Operands;
2076 
2077     /// The main/alternate instruction.
2078     Instruction *MainOp = nullptr;
2079     Instruction *AltOp = nullptr;
2080 
2081   public:
2082     /// Set this bundle's \p OpIdx'th operand to \p OpVL.
2083     void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) {
2084       if (Operands.size() < OpIdx + 1)
2085         Operands.resize(OpIdx + 1);
2086       assert(Operands[OpIdx].empty() && "Already resized?");
2087       assert(OpVL.size() <= Scalars.size() &&
2088              "Number of operands is greater than the number of scalars.");
2089       Operands[OpIdx].resize(OpVL.size());
2090       copy(OpVL, Operands[OpIdx].begin());
2091     }
2092 
2093     /// Set the operands of this bundle in their original order.
2094     void setOperandsInOrder() {
2095       assert(Operands.empty() && "Already initialized?");
2096       auto *I0 = cast<Instruction>(Scalars[0]);
2097       Operands.resize(I0->getNumOperands());
2098       unsigned NumLanes = Scalars.size();
2099       for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands();
2100            OpIdx != NumOperands; ++OpIdx) {
2101         Operands[OpIdx].resize(NumLanes);
2102         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
2103           auto *I = cast<Instruction>(Scalars[Lane]);
2104           assert(I->getNumOperands() == NumOperands &&
2105                  "Expected same number of operands");
2106           Operands[OpIdx][Lane] = I->getOperand(OpIdx);
2107         }
2108       }
2109     }
2110 
2111     /// Reorders operands of the node to the given mask \p Mask.
2112     void reorderOperands(ArrayRef<int> Mask) {
2113       for (ValueList &Operand : Operands)
2114         reorderScalars(Operand, Mask);
2115     }
2116 
2117     /// \returns the \p OpIdx operand of this TreeEntry.
2118     ValueList &getOperand(unsigned OpIdx) {
2119       assert(OpIdx < Operands.size() && "Off bounds");
2120       return Operands[OpIdx];
2121     }
2122 
2123     /// \returns the \p OpIdx operand of this TreeEntry.
2124     ArrayRef<Value *> getOperand(unsigned OpIdx) const {
2125       assert(OpIdx < Operands.size() && "Off bounds");
2126       return Operands[OpIdx];
2127     }
2128 
2129     /// \returns the number of operands.
2130     unsigned getNumOperands() const { return Operands.size(); }
2131 
2132     /// \return the single \p OpIdx operand.
2133     Value *getSingleOperand(unsigned OpIdx) const {
2134       assert(OpIdx < Operands.size() && "Off bounds");
2135       assert(!Operands[OpIdx].empty() && "No operand available");
2136       return Operands[OpIdx][0];
2137     }
2138 
2139     /// Some of the instructions in the list have alternate opcodes.
2140     bool isAltShuffle() const { return MainOp != AltOp; }
2141 
2142     bool isOpcodeOrAlt(Instruction *I) const {
2143       unsigned CheckedOpcode = I->getOpcode();
2144       return (getOpcode() == CheckedOpcode ||
2145               getAltOpcode() == CheckedOpcode);
2146     }
2147 
2148     /// Chooses the correct key for scheduling data. If \p Op has the same (or
2149     /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is
2150     /// \p OpValue.
2151     Value *isOneOf(Value *Op) const {
2152       auto *I = dyn_cast<Instruction>(Op);
2153       if (I && isOpcodeOrAlt(I))
2154         return Op;
2155       return MainOp;
2156     }
2157 
2158     void setOperations(const InstructionsState &S) {
2159       MainOp = S.MainOp;
2160       AltOp = S.AltOp;
2161     }
2162 
2163     Instruction *getMainOp() const {
2164       return MainOp;
2165     }
2166 
2167     Instruction *getAltOp() const {
2168       return AltOp;
2169     }
2170 
2171     /// The main/alternate opcodes for the list of instructions.
2172     unsigned getOpcode() const {
2173       return MainOp ? MainOp->getOpcode() : 0;
2174     }
2175 
2176     unsigned getAltOpcode() const {
2177       return AltOp ? AltOp->getOpcode() : 0;
2178     }
2179 
2180     /// When ReuseReorderShuffleIndices is empty it just returns position of \p
2181     /// V within vector of Scalars. Otherwise, try to remap on its reuse index.
2182     int findLaneForValue(Value *V) const {
2183       unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V));
2184       assert(FoundLane < Scalars.size() && "Couldn't find extract lane");
2185       if (!ReorderIndices.empty())
2186         FoundLane = ReorderIndices[FoundLane];
2187       assert(FoundLane < Scalars.size() && "Couldn't find extract lane");
2188       if (!ReuseShuffleIndices.empty()) {
2189         FoundLane = std::distance(ReuseShuffleIndices.begin(),
2190                                   find(ReuseShuffleIndices, FoundLane));
2191       }
2192       return FoundLane;
2193     }
2194 
2195 #ifndef NDEBUG
2196     /// Debug printer.
2197     LLVM_DUMP_METHOD void dump() const {
2198       dbgs() << Idx << ".\n";
2199       for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) {
2200         dbgs() << "Operand " << OpI << ":\n";
2201         for (const Value *V : Operands[OpI])
2202           dbgs().indent(2) << *V << "\n";
2203       }
2204       dbgs() << "Scalars: \n";
2205       for (Value *V : Scalars)
2206         dbgs().indent(2) << *V << "\n";
2207       dbgs() << "State: ";
2208       switch (State) {
2209       case Vectorize:
2210         dbgs() << "Vectorize\n";
2211         break;
2212       case ScatterVectorize:
2213         dbgs() << "ScatterVectorize\n";
2214         break;
2215       case NeedToGather:
2216         dbgs() << "NeedToGather\n";
2217         break;
2218       }
2219       dbgs() << "MainOp: ";
2220       if (MainOp)
2221         dbgs() << *MainOp << "\n";
2222       else
2223         dbgs() << "NULL\n";
2224       dbgs() << "AltOp: ";
2225       if (AltOp)
2226         dbgs() << *AltOp << "\n";
2227       else
2228         dbgs() << "NULL\n";
2229       dbgs() << "VectorizedValue: ";
2230       if (VectorizedValue)
2231         dbgs() << *VectorizedValue << "\n";
2232       else
2233         dbgs() << "NULL\n";
2234       dbgs() << "ReuseShuffleIndices: ";
2235       if (ReuseShuffleIndices.empty())
2236         dbgs() << "Empty";
2237       else
2238         for (int ReuseIdx : ReuseShuffleIndices)
2239           dbgs() << ReuseIdx << ", ";
2240       dbgs() << "\n";
2241       dbgs() << "ReorderIndices: ";
2242       for (unsigned ReorderIdx : ReorderIndices)
2243         dbgs() << ReorderIdx << ", ";
2244       dbgs() << "\n";
2245       dbgs() << "UserTreeIndices: ";
2246       for (const auto &EInfo : UserTreeIndices)
2247         dbgs() << EInfo << ", ";
2248       dbgs() << "\n";
2249     }
2250 #endif
2251   };
2252 
2253 #ifndef NDEBUG
2254   void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost,
2255                      InstructionCost VecCost,
2256                      InstructionCost ScalarCost) const {
2257     dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump();
2258     dbgs() << "SLP: Costs:\n";
2259     dbgs() << "SLP:     ReuseShuffleCost = " << ReuseShuffleCost << "\n";
2260     dbgs() << "SLP:     VectorCost = " << VecCost << "\n";
2261     dbgs() << "SLP:     ScalarCost = " << ScalarCost << "\n";
2262     dbgs() << "SLP:     ReuseShuffleCost + VecCost - ScalarCost = " <<
2263                ReuseShuffleCost + VecCost - ScalarCost << "\n";
2264   }
2265 #endif
2266 
2267   /// Create a new VectorizableTree entry.
2268   TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle,
2269                           const InstructionsState &S,
2270                           const EdgeInfo &UserTreeIdx,
2271                           ArrayRef<int> ReuseShuffleIndices = None,
2272                           ArrayRef<unsigned> ReorderIndices = None) {
2273     TreeEntry::EntryState EntryState =
2274         Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather;
2275     return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx,
2276                         ReuseShuffleIndices, ReorderIndices);
2277   }
2278 
2279   TreeEntry *newTreeEntry(ArrayRef<Value *> VL,
2280                           TreeEntry::EntryState EntryState,
2281                           Optional<ScheduleData *> Bundle,
2282                           const InstructionsState &S,
2283                           const EdgeInfo &UserTreeIdx,
2284                           ArrayRef<int> ReuseShuffleIndices = None,
2285                           ArrayRef<unsigned> ReorderIndices = None) {
2286     assert(((!Bundle && EntryState == TreeEntry::NeedToGather) ||
2287             (Bundle && EntryState != TreeEntry::NeedToGather)) &&
2288            "Need to vectorize gather entry?");
2289     VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree));
2290     TreeEntry *Last = VectorizableTree.back().get();
2291     Last->Idx = VectorizableTree.size() - 1;
2292     Last->State = EntryState;
2293     Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(),
2294                                      ReuseShuffleIndices.end());
2295     if (ReorderIndices.empty()) {
2296       Last->Scalars.assign(VL.begin(), VL.end());
2297       Last->setOperations(S);
2298     } else {
2299       // Reorder scalars and build final mask.
2300       Last->Scalars.assign(VL.size(), nullptr);
2301       transform(ReorderIndices, Last->Scalars.begin(),
2302                 [VL](unsigned Idx) -> Value * {
2303                   if (Idx >= VL.size())
2304                     return UndefValue::get(VL.front()->getType());
2305                   return VL[Idx];
2306                 });
2307       InstructionsState S = getSameOpcode(Last->Scalars);
2308       Last->setOperations(S);
2309       Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end());
2310     }
2311     if (Last->State != TreeEntry::NeedToGather) {
2312       for (Value *V : VL) {
2313         assert(!getTreeEntry(V) && "Scalar already in tree!");
2314         ScalarToTreeEntry[V] = Last;
2315       }
2316       // Update the scheduler bundle to point to this TreeEntry.
2317       unsigned Lane = 0;
2318       for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember;
2319            BundleMember = BundleMember->NextInBundle) {
2320         BundleMember->TE = Last;
2321         BundleMember->Lane = Lane;
2322         ++Lane;
2323       }
2324       assert((!Bundle.getValue() || Lane == VL.size()) &&
2325              "Bundle and VL out of sync");
2326     } else {
2327       MustGather.insert(VL.begin(), VL.end());
2328     }
2329 
2330     if (UserTreeIdx.UserTE)
2331       Last->UserTreeIndices.push_back(UserTreeIdx);
2332 
2333     return Last;
2334   }
2335 
2336   /// -- Vectorization State --
2337   /// Holds all of the tree entries.
2338   TreeEntry::VecTreeTy VectorizableTree;
2339 
2340 #ifndef NDEBUG
2341   /// Debug printer.
2342   LLVM_DUMP_METHOD void dumpVectorizableTree() const {
2343     for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) {
2344       VectorizableTree[Id]->dump();
2345       dbgs() << "\n";
2346     }
2347   }
2348 #endif
2349 
2350   TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); }
2351 
2352   const TreeEntry *getTreeEntry(Value *V) const {
2353     return ScalarToTreeEntry.lookup(V);
2354   }
2355 
2356   /// Maps a specific scalar to its tree entry.
2357   SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry;
2358 
2359   /// Maps a value to the proposed vectorizable size.
2360   SmallDenseMap<Value *, unsigned> InstrElementSize;
2361 
2362   /// A list of scalars that we found that we need to keep as scalars.
2363   ValueSet MustGather;
2364 
2365   /// This POD struct describes one external user in the vectorized tree.
2366   struct ExternalUser {
2367     ExternalUser(Value *S, llvm::User *U, int L)
2368         : Scalar(S), User(U), Lane(L) {}
2369 
2370     // Which scalar in our function.
2371     Value *Scalar;
2372 
2373     // Which user that uses the scalar.
2374     llvm::User *User;
2375 
2376     // Which lane does the scalar belong to.
2377     int Lane;
2378   };
2379   using UserList = SmallVector<ExternalUser, 16>;
2380 
2381   /// Checks if two instructions may access the same memory.
2382   ///
2383   /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
2384   /// is invariant in the calling loop.
2385   bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
2386                  Instruction *Inst2) {
2387     // First check if the result is already in the cache.
2388     AliasCacheKey key = std::make_pair(Inst1, Inst2);
2389     Optional<bool> &result = AliasCache[key];
2390     if (result.hasValue()) {
2391       return result.getValue();
2392     }
2393     bool aliased = true;
2394     if (Loc1.Ptr && isSimple(Inst1))
2395       aliased = isModOrRefSet(AA->getModRefInfo(Inst2, Loc1));
2396     // Store the result in the cache.
2397     result = aliased;
2398     return aliased;
2399   }
2400 
2401   using AliasCacheKey = std::pair<Instruction *, Instruction *>;
2402 
2403   /// Cache for alias results.
2404   /// TODO: consider moving this to the AliasAnalysis itself.
2405   DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
2406 
2407   /// Removes an instruction from its block and eventually deletes it.
2408   /// It's like Instruction::eraseFromParent() except that the actual deletion
2409   /// is delayed until BoUpSLP is destructed.
2410   /// This is required to ensure that there are no incorrect collisions in the
2411   /// AliasCache, which can happen if a new instruction is allocated at the
2412   /// same address as a previously deleted instruction.
2413   void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) {
2414     auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first;
2415     It->getSecond() = It->getSecond() && ReplaceOpsWithUndef;
2416   }
2417 
2418   /// Temporary store for deleted instructions. Instructions will be deleted
2419   /// eventually when the BoUpSLP is destructed.
2420   DenseMap<Instruction *, bool> DeletedInstructions;
2421 
2422   /// A list of values that need to extracted out of the tree.
2423   /// This list holds pairs of (Internal Scalar : External User). External User
2424   /// can be nullptr, it means that this Internal Scalar will be used later,
2425   /// after vectorization.
2426   UserList ExternalUses;
2427 
2428   /// Values used only by @llvm.assume calls.
2429   SmallPtrSet<const Value *, 32> EphValues;
2430 
2431   /// Holds all of the instructions that we gathered.
2432   SetVector<Instruction *> GatherShuffleSeq;
2433 
2434   /// A list of blocks that we are going to CSE.
2435   SetVector<BasicBlock *> CSEBlocks;
2436 
2437   /// Contains all scheduling relevant data for an instruction.
2438   /// A ScheduleData either represents a single instruction or a member of an
2439   /// instruction bundle (= a group of instructions which is combined into a
2440   /// vector instruction).
2441   struct ScheduleData {
2442     // The initial value for the dependency counters. It means that the
2443     // dependencies are not calculated yet.
2444     enum { InvalidDeps = -1 };
2445 
2446     ScheduleData() = default;
2447 
2448     void init(int BlockSchedulingRegionID, Value *OpVal) {
2449       FirstInBundle = this;
2450       NextInBundle = nullptr;
2451       NextLoadStore = nullptr;
2452       IsScheduled = false;
2453       SchedulingRegionID = BlockSchedulingRegionID;
2454       clearDependencies();
2455       OpValue = OpVal;
2456       TE = nullptr;
2457       Lane = -1;
2458     }
2459 
2460     /// Verify basic self consistency properties
2461     void verify() {
2462       if (hasValidDependencies()) {
2463         assert(UnscheduledDeps <= Dependencies && "invariant");
2464       } else {
2465         assert(UnscheduledDeps == Dependencies && "invariant");
2466       }
2467 
2468       if (IsScheduled) {
2469         assert(isSchedulingEntity() &&
2470                 "unexpected scheduled state");
2471         for (const ScheduleData *BundleMember = this; BundleMember;
2472              BundleMember = BundleMember->NextInBundle) {
2473           assert(BundleMember->hasValidDependencies() &&
2474                  BundleMember->UnscheduledDeps == 0 &&
2475                  "unexpected scheduled state");
2476           assert((BundleMember == this || !BundleMember->IsScheduled) &&
2477                  "only bundle is marked scheduled");
2478         }
2479       }
2480     }
2481 
2482     /// Returns true if the dependency information has been calculated.
2483     /// Note that depenendency validity can vary between instructions within
2484     /// a single bundle.
2485     bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
2486 
2487     /// Returns true for single instructions and for bundle representatives
2488     /// (= the head of a bundle).
2489     bool isSchedulingEntity() const { return FirstInBundle == this; }
2490 
2491     /// Returns true if it represents an instruction bundle and not only a
2492     /// single instruction.
2493     bool isPartOfBundle() const {
2494       return NextInBundle != nullptr || FirstInBundle != this;
2495     }
2496 
2497     /// Returns true if it is ready for scheduling, i.e. it has no more
2498     /// unscheduled depending instructions/bundles.
2499     bool isReady() const {
2500       assert(isSchedulingEntity() &&
2501              "can't consider non-scheduling entity for ready list");
2502       return unscheduledDepsInBundle() == 0 && !IsScheduled;
2503     }
2504 
2505     /// Modifies the number of unscheduled dependencies for this instruction,
2506     /// and returns the number of remaining dependencies for the containing
2507     /// bundle.
2508     int incrementUnscheduledDeps(int Incr) {
2509       assert(hasValidDependencies() &&
2510              "increment of unscheduled deps would be meaningless");
2511       UnscheduledDeps += Incr;
2512       return FirstInBundle->unscheduledDepsInBundle();
2513     }
2514 
2515     /// Sets the number of unscheduled dependencies to the number of
2516     /// dependencies.
2517     void resetUnscheduledDeps() {
2518       UnscheduledDeps = Dependencies;
2519     }
2520 
2521     /// Clears all dependency information.
2522     void clearDependencies() {
2523       Dependencies = InvalidDeps;
2524       resetUnscheduledDeps();
2525       MemoryDependencies.clear();
2526     }
2527 
2528     int unscheduledDepsInBundle() const {
2529       assert(isSchedulingEntity() && "only meaningful on the bundle");
2530       int Sum = 0;
2531       for (const ScheduleData *BundleMember = this; BundleMember;
2532            BundleMember = BundleMember->NextInBundle) {
2533         if (BundleMember->UnscheduledDeps == InvalidDeps)
2534           return InvalidDeps;
2535         Sum += BundleMember->UnscheduledDeps;
2536       }
2537       return Sum;
2538     }
2539 
2540     void dump(raw_ostream &os) const {
2541       if (!isSchedulingEntity()) {
2542         os << "/ " << *Inst;
2543       } else if (NextInBundle) {
2544         os << '[' << *Inst;
2545         ScheduleData *SD = NextInBundle;
2546         while (SD) {
2547           os << ';' << *SD->Inst;
2548           SD = SD->NextInBundle;
2549         }
2550         os << ']';
2551       } else {
2552         os << *Inst;
2553       }
2554     }
2555 
2556     Instruction *Inst = nullptr;
2557 
2558     /// Points to the head in an instruction bundle (and always to this for
2559     /// single instructions).
2560     ScheduleData *FirstInBundle = nullptr;
2561 
2562     /// Single linked list of all instructions in a bundle. Null if it is a
2563     /// single instruction.
2564     ScheduleData *NextInBundle = nullptr;
2565 
2566     /// Single linked list of all memory instructions (e.g. load, store, call)
2567     /// in the block - until the end of the scheduling region.
2568     ScheduleData *NextLoadStore = nullptr;
2569 
2570     /// The dependent memory instructions.
2571     /// This list is derived on demand in calculateDependencies().
2572     SmallVector<ScheduleData *, 4> MemoryDependencies;
2573 
2574     /// This ScheduleData is in the current scheduling region if this matches
2575     /// the current SchedulingRegionID of BlockScheduling.
2576     int SchedulingRegionID = 0;
2577 
2578     /// Used for getting a "good" final ordering of instructions.
2579     int SchedulingPriority = 0;
2580 
2581     /// The number of dependencies. Constitutes of the number of users of the
2582     /// instruction plus the number of dependent memory instructions (if any).
2583     /// This value is calculated on demand.
2584     /// If InvalidDeps, the number of dependencies is not calculated yet.
2585     int Dependencies = InvalidDeps;
2586 
2587     /// The number of dependencies minus the number of dependencies of scheduled
2588     /// instructions. As soon as this is zero, the instruction/bundle gets ready
2589     /// for scheduling.
2590     /// Note that this is negative as long as Dependencies is not calculated.
2591     int UnscheduledDeps = InvalidDeps;
2592 
2593     /// True if this instruction is scheduled (or considered as scheduled in the
2594     /// dry-run).
2595     bool IsScheduled = false;
2596 
2597     /// Opcode of the current instruction in the schedule data.
2598     Value *OpValue = nullptr;
2599 
2600     /// The TreeEntry that this instruction corresponds to.
2601     TreeEntry *TE = nullptr;
2602 
2603     /// The lane of this node in the TreeEntry.
2604     int Lane = -1;
2605   };
2606 
2607 #ifndef NDEBUG
2608   friend inline raw_ostream &operator<<(raw_ostream &os,
2609                                         const BoUpSLP::ScheduleData &SD) {
2610     SD.dump(os);
2611     return os;
2612   }
2613 #endif
2614 
2615   friend struct GraphTraits<BoUpSLP *>;
2616   friend struct DOTGraphTraits<BoUpSLP *>;
2617 
2618   /// Contains all scheduling data for a basic block.
2619   struct BlockScheduling {
2620     BlockScheduling(BasicBlock *BB)
2621         : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {}
2622 
2623     void clear() {
2624       ReadyInsts.clear();
2625       ScheduleStart = nullptr;
2626       ScheduleEnd = nullptr;
2627       FirstLoadStoreInRegion = nullptr;
2628       LastLoadStoreInRegion = nullptr;
2629 
2630       // Reduce the maximum schedule region size by the size of the
2631       // previous scheduling run.
2632       ScheduleRegionSizeLimit -= ScheduleRegionSize;
2633       if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
2634         ScheduleRegionSizeLimit = MinScheduleRegionSize;
2635       ScheduleRegionSize = 0;
2636 
2637       // Make a new scheduling region, i.e. all existing ScheduleData is not
2638       // in the new region yet.
2639       ++SchedulingRegionID;
2640     }
2641 
2642     ScheduleData *getScheduleData(Value *V) {
2643       ScheduleData *SD = ScheduleDataMap[V];
2644       if (SD && isInSchedulingRegion(SD))
2645         return SD;
2646       return nullptr;
2647     }
2648 
2649     ScheduleData *getScheduleData(Value *V, Value *Key) {
2650       if (V == Key)
2651         return getScheduleData(V);
2652       auto I = ExtraScheduleDataMap.find(V);
2653       if (I != ExtraScheduleDataMap.end()) {
2654         ScheduleData *SD = I->second[Key];
2655         if (SD && isInSchedulingRegion(SD))
2656           return SD;
2657       }
2658       return nullptr;
2659     }
2660 
2661     bool isInSchedulingRegion(ScheduleData *SD) const {
2662       return SD->SchedulingRegionID == SchedulingRegionID;
2663     }
2664 
2665     /// Marks an instruction as scheduled and puts all dependent ready
2666     /// instructions into the ready-list.
2667     template <typename ReadyListType>
2668     void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
2669       SD->IsScheduled = true;
2670       LLVM_DEBUG(dbgs() << "SLP:   schedule " << *SD << "\n");
2671 
2672       for (ScheduleData *BundleMember = SD; BundleMember;
2673            BundleMember = BundleMember->NextInBundle) {
2674         if (BundleMember->Inst != BundleMember->OpValue)
2675           continue;
2676 
2677         // Handle the def-use chain dependencies.
2678 
2679         // Decrement the unscheduled counter and insert to ready list if ready.
2680         auto &&DecrUnsched = [this, &ReadyList](Instruction *I) {
2681           doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) {
2682             if (OpDef && OpDef->hasValidDependencies() &&
2683                 OpDef->incrementUnscheduledDeps(-1) == 0) {
2684               // There are no more unscheduled dependencies after
2685               // decrementing, so we can put the dependent instruction
2686               // into the ready list.
2687               ScheduleData *DepBundle = OpDef->FirstInBundle;
2688               assert(!DepBundle->IsScheduled &&
2689                      "already scheduled bundle gets ready");
2690               ReadyList.insert(DepBundle);
2691               LLVM_DEBUG(dbgs()
2692                          << "SLP:    gets ready (def): " << *DepBundle << "\n");
2693             }
2694           });
2695         };
2696 
2697         // If BundleMember is a vector bundle, its operands may have been
2698         // reordered during buildTree(). We therefore need to get its operands
2699         // through the TreeEntry.
2700         if (TreeEntry *TE = BundleMember->TE) {
2701           int Lane = BundleMember->Lane;
2702           assert(Lane >= 0 && "Lane not set");
2703 
2704           // Since vectorization tree is being built recursively this assertion
2705           // ensures that the tree entry has all operands set before reaching
2706           // this code. Couple of exceptions known at the moment are extracts
2707           // where their second (immediate) operand is not added. Since
2708           // immediates do not affect scheduler behavior this is considered
2709           // okay.
2710           auto *In = TE->getMainOp();
2711           assert(In &&
2712                  (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) ||
2713                   In->getNumOperands() == TE->getNumOperands()) &&
2714                  "Missed TreeEntry operands?");
2715           (void)In; // fake use to avoid build failure when assertions disabled
2716 
2717           for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands();
2718                OpIdx != NumOperands; ++OpIdx)
2719             if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane]))
2720               DecrUnsched(I);
2721         } else {
2722           // If BundleMember is a stand-alone instruction, no operand reordering
2723           // has taken place, so we directly access its operands.
2724           for (Use &U : BundleMember->Inst->operands())
2725             if (auto *I = dyn_cast<Instruction>(U.get()))
2726               DecrUnsched(I);
2727         }
2728         // Handle the memory dependencies.
2729         for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
2730           if (MemoryDepSD->hasValidDependencies() &&
2731               MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
2732             // There are no more unscheduled dependencies after decrementing,
2733             // so we can put the dependent instruction into the ready list.
2734             ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
2735             assert(!DepBundle->IsScheduled &&
2736                    "already scheduled bundle gets ready");
2737             ReadyList.insert(DepBundle);
2738             LLVM_DEBUG(dbgs()
2739                        << "SLP:    gets ready (mem): " << *DepBundle << "\n");
2740           }
2741         }
2742       }
2743     }
2744 
2745     /// Verify basic self consistency properties of the data structure.
2746     void verify() {
2747       if (!ScheduleStart)
2748         return;
2749 
2750       assert(ScheduleStart->getParent() == ScheduleEnd->getParent() &&
2751              ScheduleStart->comesBefore(ScheduleEnd) &&
2752              "Not a valid scheduling region?");
2753 
2754       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
2755         auto *SD = getScheduleData(I);
2756         assert(SD && "primary scheduledata must exist in window");
2757         assert(isInSchedulingRegion(SD) &&
2758                "primary schedule data not in window?");
2759         (void)SD;
2760         doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); });
2761       }
2762 
2763       for (auto *SD : ReadyInsts) {
2764         assert(SD->isSchedulingEntity() && SD->isReady() &&
2765                "item in ready list not ready?");
2766         (void)SD;
2767       }
2768     }
2769 
2770     void doForAllOpcodes(Value *V,
2771                          function_ref<void(ScheduleData *SD)> Action) {
2772       if (ScheduleData *SD = getScheduleData(V))
2773         Action(SD);
2774       auto I = ExtraScheduleDataMap.find(V);
2775       if (I != ExtraScheduleDataMap.end())
2776         for (auto &P : I->second)
2777           if (isInSchedulingRegion(P.second))
2778             Action(P.second);
2779     }
2780 
2781     /// Put all instructions into the ReadyList which are ready for scheduling.
2782     template <typename ReadyListType>
2783     void initialFillReadyList(ReadyListType &ReadyList) {
2784       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
2785         doForAllOpcodes(I, [&](ScheduleData *SD) {
2786           if (SD->isSchedulingEntity() && SD->hasValidDependencies() &&
2787               SD->isReady()) {
2788             ReadyList.insert(SD);
2789             LLVM_DEBUG(dbgs()
2790                        << "SLP:    initially in ready list: " << *SD << "\n");
2791           }
2792         });
2793       }
2794     }
2795 
2796     /// Build a bundle from the ScheduleData nodes corresponding to the
2797     /// scalar instruction for each lane.
2798     ScheduleData *buildBundle(ArrayRef<Value *> VL);
2799 
2800     /// Checks if a bundle of instructions can be scheduled, i.e. has no
2801     /// cyclic dependencies. This is only a dry-run, no instructions are
2802     /// actually moved at this stage.
2803     /// \returns the scheduling bundle. The returned Optional value is non-None
2804     /// if \p VL is allowed to be scheduled.
2805     Optional<ScheduleData *>
2806     tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
2807                       const InstructionsState &S);
2808 
2809     /// Un-bundles a group of instructions.
2810     void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue);
2811 
2812     /// Allocates schedule data chunk.
2813     ScheduleData *allocateScheduleDataChunks();
2814 
2815     /// Extends the scheduling region so that V is inside the region.
2816     /// \returns true if the region size is within the limit.
2817     bool extendSchedulingRegion(Value *V, const InstructionsState &S);
2818 
2819     /// Initialize the ScheduleData structures for new instructions in the
2820     /// scheduling region.
2821     void initScheduleData(Instruction *FromI, Instruction *ToI,
2822                           ScheduleData *PrevLoadStore,
2823                           ScheduleData *NextLoadStore);
2824 
2825     /// Updates the dependency information of a bundle and of all instructions/
2826     /// bundles which depend on the original bundle.
2827     void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
2828                                BoUpSLP *SLP);
2829 
2830     /// Sets all instruction in the scheduling region to un-scheduled.
2831     void resetSchedule();
2832 
2833     BasicBlock *BB;
2834 
2835     /// Simple memory allocation for ScheduleData.
2836     std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
2837 
2838     /// The size of a ScheduleData array in ScheduleDataChunks.
2839     int ChunkSize;
2840 
2841     /// The allocator position in the current chunk, which is the last entry
2842     /// of ScheduleDataChunks.
2843     int ChunkPos;
2844 
2845     /// Attaches ScheduleData to Instruction.
2846     /// Note that the mapping survives during all vectorization iterations, i.e.
2847     /// ScheduleData structures are recycled.
2848     DenseMap<Value *, ScheduleData *> ScheduleDataMap;
2849 
2850     /// Attaches ScheduleData to Instruction with the leading key.
2851     DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>>
2852         ExtraScheduleDataMap;
2853 
2854     /// The ready-list for scheduling (only used for the dry-run).
2855     SetVector<ScheduleData *> ReadyInsts;
2856 
2857     /// The first instruction of the scheduling region.
2858     Instruction *ScheduleStart = nullptr;
2859 
2860     /// The first instruction _after_ the scheduling region.
2861     Instruction *ScheduleEnd = nullptr;
2862 
2863     /// The first memory accessing instruction in the scheduling region
2864     /// (can be null).
2865     ScheduleData *FirstLoadStoreInRegion = nullptr;
2866 
2867     /// The last memory accessing instruction in the scheduling region
2868     /// (can be null).
2869     ScheduleData *LastLoadStoreInRegion = nullptr;
2870 
2871     /// The current size of the scheduling region.
2872     int ScheduleRegionSize = 0;
2873 
2874     /// The maximum size allowed for the scheduling region.
2875     int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget;
2876 
2877     /// The ID of the scheduling region. For a new vectorization iteration this
2878     /// is incremented which "removes" all ScheduleData from the region.
2879     /// Make sure that the initial SchedulingRegionID is greater than the
2880     /// initial SchedulingRegionID in ScheduleData (which is 0).
2881     int SchedulingRegionID = 1;
2882   };
2883 
2884   /// Attaches the BlockScheduling structures to basic blocks.
2885   MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
2886 
2887   /// Performs the "real" scheduling. Done before vectorization is actually
2888   /// performed in a basic block.
2889   void scheduleBlock(BlockScheduling *BS);
2890 
2891   /// List of users to ignore during scheduling and that don't need extracting.
2892   ArrayRef<Value *> UserIgnoreList;
2893 
2894   /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of
2895   /// sorted SmallVectors of unsigned.
2896   struct OrdersTypeDenseMapInfo {
2897     static OrdersType getEmptyKey() {
2898       OrdersType V;
2899       V.push_back(~1U);
2900       return V;
2901     }
2902 
2903     static OrdersType getTombstoneKey() {
2904       OrdersType V;
2905       V.push_back(~2U);
2906       return V;
2907     }
2908 
2909     static unsigned getHashValue(const OrdersType &V) {
2910       return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
2911     }
2912 
2913     static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) {
2914       return LHS == RHS;
2915     }
2916   };
2917 
2918   // Analysis and block reference.
2919   Function *F;
2920   ScalarEvolution *SE;
2921   TargetTransformInfo *TTI;
2922   TargetLibraryInfo *TLI;
2923   AAResults *AA;
2924   LoopInfo *LI;
2925   DominatorTree *DT;
2926   AssumptionCache *AC;
2927   DemandedBits *DB;
2928   const DataLayout *DL;
2929   OptimizationRemarkEmitter *ORE;
2930 
2931   unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
2932   unsigned MinVecRegSize; // Set by cl::opt (default: 128).
2933 
2934   /// Instruction builder to construct the vectorized tree.
2935   IRBuilder<> Builder;
2936 
2937   /// A map of scalar integer values to the smallest bit width with which they
2938   /// can legally be represented. The values map to (width, signed) pairs,
2939   /// where "width" indicates the minimum bit width and "signed" is True if the
2940   /// value must be signed-extended, rather than zero-extended, back to its
2941   /// original width.
2942   MapVector<Value *, std::pair<uint64_t, bool>> MinBWs;
2943 };
2944 
2945 } // end namespace slpvectorizer
2946 
2947 template <> struct GraphTraits<BoUpSLP *> {
2948   using TreeEntry = BoUpSLP::TreeEntry;
2949 
2950   /// NodeRef has to be a pointer per the GraphWriter.
2951   using NodeRef = TreeEntry *;
2952 
2953   using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy;
2954 
2955   /// Add the VectorizableTree to the index iterator to be able to return
2956   /// TreeEntry pointers.
2957   struct ChildIteratorType
2958       : public iterator_adaptor_base<
2959             ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> {
2960     ContainerTy &VectorizableTree;
2961 
2962     ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W,
2963                       ContainerTy &VT)
2964         : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {}
2965 
2966     NodeRef operator*() { return I->UserTE; }
2967   };
2968 
2969   static NodeRef getEntryNode(BoUpSLP &R) {
2970     return R.VectorizableTree[0].get();
2971   }
2972 
2973   static ChildIteratorType child_begin(NodeRef N) {
2974     return {N->UserTreeIndices.begin(), N->Container};
2975   }
2976 
2977   static ChildIteratorType child_end(NodeRef N) {
2978     return {N->UserTreeIndices.end(), N->Container};
2979   }
2980 
2981   /// For the node iterator we just need to turn the TreeEntry iterator into a
2982   /// TreeEntry* iterator so that it dereferences to NodeRef.
2983   class nodes_iterator {
2984     using ItTy = ContainerTy::iterator;
2985     ItTy It;
2986 
2987   public:
2988     nodes_iterator(const ItTy &It2) : It(It2) {}
2989     NodeRef operator*() { return It->get(); }
2990     nodes_iterator operator++() {
2991       ++It;
2992       return *this;
2993     }
2994     bool operator!=(const nodes_iterator &N2) const { return N2.It != It; }
2995   };
2996 
2997   static nodes_iterator nodes_begin(BoUpSLP *R) {
2998     return nodes_iterator(R->VectorizableTree.begin());
2999   }
3000 
3001   static nodes_iterator nodes_end(BoUpSLP *R) {
3002     return nodes_iterator(R->VectorizableTree.end());
3003   }
3004 
3005   static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); }
3006 };
3007 
3008 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits {
3009   using TreeEntry = BoUpSLP::TreeEntry;
3010 
3011   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
3012 
3013   std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) {
3014     std::string Str;
3015     raw_string_ostream OS(Str);
3016     if (isSplat(Entry->Scalars))
3017       OS << "<splat> ";
3018     for (auto V : Entry->Scalars) {
3019       OS << *V;
3020       if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) {
3021             return EU.Scalar == V;
3022           }))
3023         OS << " <extract>";
3024       OS << "\n";
3025     }
3026     return Str;
3027   }
3028 
3029   static std::string getNodeAttributes(const TreeEntry *Entry,
3030                                        const BoUpSLP *) {
3031     if (Entry->State == TreeEntry::NeedToGather)
3032       return "color=red";
3033     return "";
3034   }
3035 };
3036 
3037 } // end namespace llvm
3038 
3039 BoUpSLP::~BoUpSLP() {
3040   for (const auto &Pair : DeletedInstructions) {
3041     // Replace operands of ignored instructions with Undefs in case if they were
3042     // marked for deletion.
3043     if (Pair.getSecond()) {
3044       Value *Undef = UndefValue::get(Pair.getFirst()->getType());
3045       Pair.getFirst()->replaceAllUsesWith(Undef);
3046     }
3047     Pair.getFirst()->dropAllReferences();
3048   }
3049   for (const auto &Pair : DeletedInstructions) {
3050     assert(Pair.getFirst()->use_empty() &&
3051            "trying to erase instruction with users.");
3052     Pair.getFirst()->eraseFromParent();
3053   }
3054 #ifdef EXPENSIVE_CHECKS
3055   // If we could guarantee that this call is not extremely slow, we could
3056   // remove the ifdef limitation (see PR47712).
3057   assert(!verifyFunction(*F, &dbgs()));
3058 #endif
3059 }
3060 
3061 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) {
3062   for (auto *V : AV) {
3063     if (auto *I = dyn_cast<Instruction>(V))
3064       eraseInstruction(I, /*ReplaceOpsWithUndef=*/true);
3065   };
3066 }
3067 
3068 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses
3069 /// contains original mask for the scalars reused in the node. Procedure
3070 /// transform this mask in accordance with the given \p Mask.
3071 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) {
3072   assert(!Mask.empty() && Reuses.size() == Mask.size() &&
3073          "Expected non-empty mask.");
3074   SmallVector<int> Prev(Reuses.begin(), Reuses.end());
3075   Prev.swap(Reuses);
3076   for (unsigned I = 0, E = Prev.size(); I < E; ++I)
3077     if (Mask[I] != UndefMaskElem)
3078       Reuses[Mask[I]] = Prev[I];
3079 }
3080 
3081 /// Reorders the given \p Order according to the given \p Mask. \p Order - is
3082 /// the original order of the scalars. Procedure transforms the provided order
3083 /// in accordance with the given \p Mask. If the resulting \p Order is just an
3084 /// identity order, \p Order is cleared.
3085 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) {
3086   assert(!Mask.empty() && "Expected non-empty mask.");
3087   SmallVector<int> MaskOrder;
3088   if (Order.empty()) {
3089     MaskOrder.resize(Mask.size());
3090     std::iota(MaskOrder.begin(), MaskOrder.end(), 0);
3091   } else {
3092     inversePermutation(Order, MaskOrder);
3093   }
3094   reorderReuses(MaskOrder, Mask);
3095   if (ShuffleVectorInst::isIdentityMask(MaskOrder)) {
3096     Order.clear();
3097     return;
3098   }
3099   Order.assign(Mask.size(), Mask.size());
3100   for (unsigned I = 0, E = Mask.size(); I < E; ++I)
3101     if (MaskOrder[I] != UndefMaskElem)
3102       Order[MaskOrder[I]] = I;
3103   fixupOrderingIndices(Order);
3104 }
3105 
3106 Optional<BoUpSLP::OrdersType>
3107 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) {
3108   assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only.");
3109   unsigned NumScalars = TE.Scalars.size();
3110   OrdersType CurrentOrder(NumScalars, NumScalars);
3111   SmallVector<int> Positions;
3112   SmallBitVector UsedPositions(NumScalars);
3113   const TreeEntry *STE = nullptr;
3114   // Try to find all gathered scalars that are gets vectorized in other
3115   // vectorize node. Here we can have only one single tree vector node to
3116   // correctly identify order of the gathered scalars.
3117   for (unsigned I = 0; I < NumScalars; ++I) {
3118     Value *V = TE.Scalars[I];
3119     if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V))
3120       continue;
3121     if (const auto *LocalSTE = getTreeEntry(V)) {
3122       if (!STE)
3123         STE = LocalSTE;
3124       else if (STE != LocalSTE)
3125         // Take the order only from the single vector node.
3126         return None;
3127       unsigned Lane =
3128           std::distance(STE->Scalars.begin(), find(STE->Scalars, V));
3129       if (Lane >= NumScalars)
3130         return None;
3131       if (CurrentOrder[Lane] != NumScalars) {
3132         if (Lane != I)
3133           continue;
3134         UsedPositions.reset(CurrentOrder[Lane]);
3135       }
3136       // The partial identity (where only some elements of the gather node are
3137       // in the identity order) is good.
3138       CurrentOrder[Lane] = I;
3139       UsedPositions.set(I);
3140     }
3141   }
3142   // Need to keep the order if we have a vector entry and at least 2 scalars or
3143   // the vectorized entry has just 2 scalars.
3144   if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) {
3145     auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) {
3146       for (unsigned I = 0; I < NumScalars; ++I)
3147         if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars)
3148           return false;
3149       return true;
3150     };
3151     if (IsIdentityOrder(CurrentOrder)) {
3152       CurrentOrder.clear();
3153       return CurrentOrder;
3154     }
3155     auto *It = CurrentOrder.begin();
3156     for (unsigned I = 0; I < NumScalars;) {
3157       if (UsedPositions.test(I)) {
3158         ++I;
3159         continue;
3160       }
3161       if (*It == NumScalars) {
3162         *It = I;
3163         ++I;
3164       }
3165       ++It;
3166     }
3167     return CurrentOrder;
3168   }
3169   return None;
3170 }
3171 
3172 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE,
3173                                                          bool TopToBottom) {
3174   // No need to reorder if need to shuffle reuses, still need to shuffle the
3175   // node.
3176   if (!TE.ReuseShuffleIndices.empty())
3177     return None;
3178   if (TE.State == TreeEntry::Vectorize &&
3179       (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) ||
3180        (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) &&
3181       !TE.isAltShuffle())
3182     return TE.ReorderIndices;
3183   if (TE.State == TreeEntry::NeedToGather) {
3184     // TODO: add analysis of other gather nodes with extractelement
3185     // instructions and other values/instructions, not only undefs.
3186     if (((TE.getOpcode() == Instruction::ExtractElement &&
3187           !TE.isAltShuffle()) ||
3188          (all_of(TE.Scalars,
3189                  [](Value *V) {
3190                    return isa<UndefValue, ExtractElementInst>(V);
3191                  }) &&
3192           any_of(TE.Scalars,
3193                  [](Value *V) { return isa<ExtractElementInst>(V); }))) &&
3194         all_of(TE.Scalars,
3195                [](Value *V) {
3196                  auto *EE = dyn_cast<ExtractElementInst>(V);
3197                  return !EE || isa<FixedVectorType>(EE->getVectorOperandType());
3198                }) &&
3199         allSameType(TE.Scalars)) {
3200       // Check that gather of extractelements can be represented as
3201       // just a shuffle of a single vector.
3202       OrdersType CurrentOrder;
3203       bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder);
3204       if (Reuse || !CurrentOrder.empty()) {
3205         if (!CurrentOrder.empty())
3206           fixupOrderingIndices(CurrentOrder);
3207         return CurrentOrder;
3208       }
3209     }
3210     if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE))
3211       return CurrentOrder;
3212   }
3213   return None;
3214 }
3215 
3216 void BoUpSLP::reorderTopToBottom() {
3217   // Maps VF to the graph nodes.
3218   DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries;
3219   // ExtractElement gather nodes which can be vectorized and need to handle
3220   // their ordering.
3221   DenseMap<const TreeEntry *, OrdersType> GathersToOrders;
3222   // Find all reorderable nodes with the given VF.
3223   // Currently the are vectorized stores,loads,extracts + some gathering of
3224   // extracts.
3225   for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders](
3226                                  const std::unique_ptr<TreeEntry> &TE) {
3227     if (Optional<OrdersType> CurrentOrder =
3228             getReorderingData(*TE.get(), /*TopToBottom=*/true)) {
3229       // Do not include ordering for nodes used in the alt opcode vectorization,
3230       // better to reorder them during bottom-to-top stage. If follow the order
3231       // here, it causes reordering of the whole graph though actually it is
3232       // profitable just to reorder the subgraph that starts from the alternate
3233       // opcode vectorization node. Such nodes already end-up with the shuffle
3234       // instruction and it is just enough to change this shuffle rather than
3235       // rotate the scalars for the whole graph.
3236       unsigned Cnt = 0;
3237       const TreeEntry *UserTE = TE.get();
3238       while (UserTE && Cnt < RecursionMaxDepth) {
3239         if (UserTE->UserTreeIndices.size() != 1)
3240           break;
3241         if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) {
3242               return EI.UserTE->State == TreeEntry::Vectorize &&
3243                      EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0;
3244             }))
3245           return;
3246         if (UserTE->UserTreeIndices.empty())
3247           UserTE = nullptr;
3248         else
3249           UserTE = UserTE->UserTreeIndices.back().UserTE;
3250         ++Cnt;
3251       }
3252       VFToOrderedEntries[TE->Scalars.size()].insert(TE.get());
3253       if (TE->State != TreeEntry::Vectorize)
3254         GathersToOrders.try_emplace(TE.get(), *CurrentOrder);
3255     }
3256   });
3257 
3258   // Reorder the graph nodes according to their vectorization factor.
3259   for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1;
3260        VF /= 2) {
3261     auto It = VFToOrderedEntries.find(VF);
3262     if (It == VFToOrderedEntries.end())
3263       continue;
3264     // Try to find the most profitable order. We just are looking for the most
3265     // used order and reorder scalar elements in the nodes according to this
3266     // mostly used order.
3267     ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef();
3268     // All operands are reordered and used only in this node - propagate the
3269     // most used order to the user node.
3270     MapVector<OrdersType, unsigned,
3271               DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>>
3272         OrdersUses;
3273     SmallPtrSet<const TreeEntry *, 4> VisitedOps;
3274     for (const TreeEntry *OpTE : OrderedEntries) {
3275       // No need to reorder this nodes, still need to extend and to use shuffle,
3276       // just need to merge reordering shuffle and the reuse shuffle.
3277       if (!OpTE->ReuseShuffleIndices.empty())
3278         continue;
3279       // Count number of orders uses.
3280       const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & {
3281         if (OpTE->State == TreeEntry::NeedToGather)
3282           return GathersToOrders.find(OpTE)->second;
3283         return OpTE->ReorderIndices;
3284       }();
3285       // Stores actually store the mask, not the order, need to invert.
3286       if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() &&
3287           OpTE->getOpcode() == Instruction::Store && !Order.empty()) {
3288         SmallVector<int> Mask;
3289         inversePermutation(Order, Mask);
3290         unsigned E = Order.size();
3291         OrdersType CurrentOrder(E, E);
3292         transform(Mask, CurrentOrder.begin(), [E](int Idx) {
3293           return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx);
3294         });
3295         fixupOrderingIndices(CurrentOrder);
3296         ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second;
3297       } else {
3298         ++OrdersUses.insert(std::make_pair(Order, 0)).first->second;
3299       }
3300     }
3301     // Set order of the user node.
3302     if (OrdersUses.empty())
3303       continue;
3304     // Choose the most used order.
3305     ArrayRef<unsigned> BestOrder = OrdersUses.front().first;
3306     unsigned Cnt = OrdersUses.front().second;
3307     for (const auto &Pair : drop_begin(OrdersUses)) {
3308       if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) {
3309         BestOrder = Pair.first;
3310         Cnt = Pair.second;
3311       }
3312     }
3313     // Set order of the user node.
3314     if (BestOrder.empty())
3315       continue;
3316     SmallVector<int> Mask;
3317     inversePermutation(BestOrder, Mask);
3318     SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem);
3319     unsigned E = BestOrder.size();
3320     transform(BestOrder, MaskOrder.begin(), [E](unsigned I) {
3321       return I < E ? static_cast<int>(I) : UndefMaskElem;
3322     });
3323     // Do an actual reordering, if profitable.
3324     for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) {
3325       // Just do the reordering for the nodes with the given VF.
3326       if (TE->Scalars.size() != VF) {
3327         if (TE->ReuseShuffleIndices.size() == VF) {
3328           // Need to reorder the reuses masks of the operands with smaller VF to
3329           // be able to find the match between the graph nodes and scalar
3330           // operands of the given node during vectorization/cost estimation.
3331           assert(all_of(TE->UserTreeIndices,
3332                         [VF, &TE](const EdgeInfo &EI) {
3333                           return EI.UserTE->Scalars.size() == VF ||
3334                                  EI.UserTE->Scalars.size() ==
3335                                      TE->Scalars.size();
3336                         }) &&
3337                  "All users must be of VF size.");
3338           // Update ordering of the operands with the smaller VF than the given
3339           // one.
3340           reorderReuses(TE->ReuseShuffleIndices, Mask);
3341         }
3342         continue;
3343       }
3344       if (TE->State == TreeEntry::Vectorize &&
3345           isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst,
3346               InsertElementInst>(TE->getMainOp()) &&
3347           !TE->isAltShuffle()) {
3348         // Build correct orders for extract{element,value}, loads and
3349         // stores.
3350         reorderOrder(TE->ReorderIndices, Mask);
3351         if (isa<InsertElementInst, StoreInst>(TE->getMainOp()))
3352           TE->reorderOperands(Mask);
3353       } else {
3354         // Reorder the node and its operands.
3355         TE->reorderOperands(Mask);
3356         assert(TE->ReorderIndices.empty() &&
3357                "Expected empty reorder sequence.");
3358         reorderScalars(TE->Scalars, Mask);
3359       }
3360       if (!TE->ReuseShuffleIndices.empty()) {
3361         // Apply reversed order to keep the original ordering of the reused
3362         // elements to avoid extra reorder indices shuffling.
3363         OrdersType CurrentOrder;
3364         reorderOrder(CurrentOrder, MaskOrder);
3365         SmallVector<int> NewReuses;
3366         inversePermutation(CurrentOrder, NewReuses);
3367         addMask(NewReuses, TE->ReuseShuffleIndices);
3368         TE->ReuseShuffleIndices.swap(NewReuses);
3369       }
3370     }
3371   }
3372 }
3373 
3374 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) {
3375   SetVector<TreeEntry *> OrderedEntries;
3376   DenseMap<const TreeEntry *, OrdersType> GathersToOrders;
3377   // Find all reorderable leaf nodes with the given VF.
3378   // Currently the are vectorized loads,extracts without alternate operands +
3379   // some gathering of extracts.
3380   SmallVector<TreeEntry *> NonVectorized;
3381   for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders,
3382                               &NonVectorized](
3383                                  const std::unique_ptr<TreeEntry> &TE) {
3384     if (TE->State != TreeEntry::Vectorize)
3385       NonVectorized.push_back(TE.get());
3386     if (Optional<OrdersType> CurrentOrder =
3387             getReorderingData(*TE.get(), /*TopToBottom=*/false)) {
3388       OrderedEntries.insert(TE.get());
3389       if (TE->State != TreeEntry::Vectorize)
3390         GathersToOrders.try_emplace(TE.get(), *CurrentOrder);
3391     }
3392   });
3393 
3394   // Checks if the operands of the users are reordarable and have only single
3395   // use.
3396   auto &&CheckOperands =
3397       [this, &NonVectorized](const auto &Data,
3398                              SmallVectorImpl<TreeEntry *> &GatherOps) {
3399         for (unsigned I = 0, E = Data.first->getNumOperands(); I < E; ++I) {
3400           if (any_of(Data.second,
3401                      [I](const std::pair<unsigned, TreeEntry *> &OpData) {
3402                        return OpData.first == I &&
3403                               OpData.second->State == TreeEntry::Vectorize;
3404                      }))
3405             continue;
3406           ArrayRef<Value *> VL = Data.first->getOperand(I);
3407           const TreeEntry *TE = nullptr;
3408           const auto *It = find_if(VL, [this, &TE](Value *V) {
3409             TE = getTreeEntry(V);
3410             return TE;
3411           });
3412           if (It != VL.end() && TE->isSame(VL))
3413             return false;
3414           TreeEntry *Gather = nullptr;
3415           if (count_if(NonVectorized, [VL, &Gather](TreeEntry *TE) {
3416                 assert(TE->State != TreeEntry::Vectorize &&
3417                        "Only non-vectorized nodes are expected.");
3418                 if (TE->isSame(VL)) {
3419                   Gather = TE;
3420                   return true;
3421                 }
3422                 return false;
3423               }) > 1)
3424             return false;
3425           if (Gather)
3426             GatherOps.push_back(Gather);
3427         }
3428         return true;
3429       };
3430   // 1. Propagate order to the graph nodes, which use only reordered nodes.
3431   // I.e., if the node has operands, that are reordered, try to make at least
3432   // one operand order in the natural order and reorder others + reorder the
3433   // user node itself.
3434   SmallPtrSet<const TreeEntry *, 4> Visited;
3435   while (!OrderedEntries.empty()) {
3436     // 1. Filter out only reordered nodes.
3437     // 2. If the entry has multiple uses - skip it and jump to the next node.
3438     MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users;
3439     SmallVector<TreeEntry *> Filtered;
3440     for (TreeEntry *TE : OrderedEntries) {
3441       if (!(TE->State == TreeEntry::Vectorize ||
3442             (TE->State == TreeEntry::NeedToGather &&
3443              GathersToOrders.count(TE))) ||
3444           TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() ||
3445           !all_of(drop_begin(TE->UserTreeIndices),
3446                   [TE](const EdgeInfo &EI) {
3447                     return EI.UserTE == TE->UserTreeIndices.front().UserTE;
3448                   }) ||
3449           !Visited.insert(TE).second) {
3450         Filtered.push_back(TE);
3451         continue;
3452       }
3453       // Build a map between user nodes and their operands order to speedup
3454       // search. The graph currently does not provide this dependency directly.
3455       for (EdgeInfo &EI : TE->UserTreeIndices) {
3456         TreeEntry *UserTE = EI.UserTE;
3457         auto It = Users.find(UserTE);
3458         if (It == Users.end())
3459           It = Users.insert({UserTE, {}}).first;
3460         It->second.emplace_back(EI.EdgeIdx, TE);
3461       }
3462     }
3463     // Erase filtered entries.
3464     for_each(Filtered,
3465              [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); });
3466     for (const auto &Data : Users) {
3467       // Check that operands are used only in the User node.
3468       SmallVector<TreeEntry *> GatherOps;
3469       if (!CheckOperands(Data, GatherOps)) {
3470         for_each(Data.second,
3471                  [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) {
3472                    OrderedEntries.remove(Op.second);
3473                  });
3474         continue;
3475       }
3476       // All operands are reordered and used only in this node - propagate the
3477       // most used order to the user node.
3478       MapVector<OrdersType, unsigned,
3479                 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>>
3480           OrdersUses;
3481       // Do the analysis for each tree entry only once, otherwise the order of
3482       // the same node my be considered several times, though might be not
3483       // profitable.
3484       SmallPtrSet<const TreeEntry *, 4> VisitedOps;
3485       for (const auto &Op : Data.second) {
3486         TreeEntry *OpTE = Op.second;
3487         if (!VisitedOps.insert(OpTE).second)
3488           continue;
3489         if (!OpTE->ReuseShuffleIndices.empty() ||
3490             (IgnoreReorder && OpTE == VectorizableTree.front().get()))
3491           continue;
3492         const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & {
3493           if (OpTE->State == TreeEntry::NeedToGather)
3494             return GathersToOrders.find(OpTE)->second;
3495           return OpTE->ReorderIndices;
3496         }();
3497         // Stores actually store the mask, not the order, need to invert.
3498         if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() &&
3499             OpTE->getOpcode() == Instruction::Store && !Order.empty()) {
3500           SmallVector<int> Mask;
3501           inversePermutation(Order, Mask);
3502           unsigned E = Order.size();
3503           OrdersType CurrentOrder(E, E);
3504           transform(Mask, CurrentOrder.begin(), [E](int Idx) {
3505             return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx);
3506           });
3507           fixupOrderingIndices(CurrentOrder);
3508           ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second;
3509         } else {
3510           ++OrdersUses.insert(std::make_pair(Order, 0)).first->second;
3511         }
3512         OrdersUses.insert(std::make_pair(OrdersType(), 0)).first->second +=
3513             OpTE->UserTreeIndices.size();
3514         assert(OrdersUses[{}] > 0 && "Counter cannot be less than 0.");
3515         --OrdersUses[{}];
3516       }
3517       // If no orders - skip current nodes and jump to the next one, if any.
3518       if (OrdersUses.empty()) {
3519         for_each(Data.second,
3520                  [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) {
3521                    OrderedEntries.remove(Op.second);
3522                  });
3523         continue;
3524       }
3525       // Choose the best order.
3526       ArrayRef<unsigned> BestOrder = OrdersUses.front().first;
3527       unsigned Cnt = OrdersUses.front().second;
3528       for (const auto &Pair : drop_begin(OrdersUses)) {
3529         if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) {
3530           BestOrder = Pair.first;
3531           Cnt = Pair.second;
3532         }
3533       }
3534       // Set order of the user node (reordering of operands and user nodes).
3535       if (BestOrder.empty()) {
3536         for_each(Data.second,
3537                  [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) {
3538                    OrderedEntries.remove(Op.second);
3539                  });
3540         continue;
3541       }
3542       // Erase operands from OrderedEntries list and adjust their orders.
3543       VisitedOps.clear();
3544       SmallVector<int> Mask;
3545       inversePermutation(BestOrder, Mask);
3546       SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem);
3547       unsigned E = BestOrder.size();
3548       transform(BestOrder, MaskOrder.begin(), [E](unsigned I) {
3549         return I < E ? static_cast<int>(I) : UndefMaskElem;
3550       });
3551       for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) {
3552         TreeEntry *TE = Op.second;
3553         OrderedEntries.remove(TE);
3554         if (!VisitedOps.insert(TE).second)
3555           continue;
3556         if (!TE->ReuseShuffleIndices.empty() && TE->ReorderIndices.empty()) {
3557           // Just reorder reuses indices.
3558           reorderReuses(TE->ReuseShuffleIndices, Mask);
3559           continue;
3560         }
3561         // Gathers are processed separately.
3562         if (TE->State != TreeEntry::Vectorize)
3563           continue;
3564         assert((BestOrder.size() == TE->ReorderIndices.size() ||
3565                 TE->ReorderIndices.empty()) &&
3566                "Non-matching sizes of user/operand entries.");
3567         reorderOrder(TE->ReorderIndices, Mask);
3568       }
3569       // For gathers just need to reorder its scalars.
3570       for (TreeEntry *Gather : GatherOps) {
3571         assert(Gather->ReorderIndices.empty() &&
3572                "Unexpected reordering of gathers.");
3573         if (!Gather->ReuseShuffleIndices.empty()) {
3574           // Just reorder reuses indices.
3575           reorderReuses(Gather->ReuseShuffleIndices, Mask);
3576           continue;
3577         }
3578         reorderScalars(Gather->Scalars, Mask);
3579         OrderedEntries.remove(Gather);
3580       }
3581       // Reorder operands of the user node and set the ordering for the user
3582       // node itself.
3583       if (Data.first->State != TreeEntry::Vectorize ||
3584           !isa<ExtractElementInst, ExtractValueInst, LoadInst>(
3585               Data.first->getMainOp()) ||
3586           Data.first->isAltShuffle())
3587         Data.first->reorderOperands(Mask);
3588       if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) ||
3589           Data.first->isAltShuffle()) {
3590         reorderScalars(Data.first->Scalars, Mask);
3591         reorderOrder(Data.first->ReorderIndices, MaskOrder);
3592         if (Data.first->ReuseShuffleIndices.empty() &&
3593             !Data.first->ReorderIndices.empty() &&
3594             !Data.first->isAltShuffle()) {
3595           // Insert user node to the list to try to sink reordering deeper in
3596           // the graph.
3597           OrderedEntries.insert(Data.first);
3598         }
3599       } else {
3600         reorderOrder(Data.first->ReorderIndices, Mask);
3601       }
3602     }
3603   }
3604   // If the reordering is unnecessary, just remove the reorder.
3605   if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() &&
3606       VectorizableTree.front()->ReuseShuffleIndices.empty())
3607     VectorizableTree.front()->ReorderIndices.clear();
3608 }
3609 
3610 void BoUpSLP::buildExternalUses(
3611     const ExtraValueToDebugLocsMap &ExternallyUsedValues) {
3612   // Collect the values that we need to extract from the tree.
3613   for (auto &TEPtr : VectorizableTree) {
3614     TreeEntry *Entry = TEPtr.get();
3615 
3616     // No need to handle users of gathered values.
3617     if (Entry->State == TreeEntry::NeedToGather)
3618       continue;
3619 
3620     // For each lane:
3621     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
3622       Value *Scalar = Entry->Scalars[Lane];
3623       int FoundLane = Entry->findLaneForValue(Scalar);
3624 
3625       // Check if the scalar is externally used as an extra arg.
3626       auto ExtI = ExternallyUsedValues.find(Scalar);
3627       if (ExtI != ExternallyUsedValues.end()) {
3628         LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane "
3629                           << Lane << " from " << *Scalar << ".\n");
3630         ExternalUses.emplace_back(Scalar, nullptr, FoundLane);
3631       }
3632       for (User *U : Scalar->users()) {
3633         LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
3634 
3635         Instruction *UserInst = dyn_cast<Instruction>(U);
3636         if (!UserInst)
3637           continue;
3638 
3639         if (isDeleted(UserInst))
3640           continue;
3641 
3642         // Skip in-tree scalars that become vectors
3643         if (TreeEntry *UseEntry = getTreeEntry(U)) {
3644           Value *UseScalar = UseEntry->Scalars[0];
3645           // Some in-tree scalars will remain as scalar in vectorized
3646           // instructions. If that is the case, the one in Lane 0 will
3647           // be used.
3648           if (UseScalar != U ||
3649               UseEntry->State == TreeEntry::ScatterVectorize ||
3650               !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
3651             LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
3652                               << ".\n");
3653             assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state");
3654             continue;
3655           }
3656         }
3657 
3658         // Ignore users in the user ignore list.
3659         if (is_contained(UserIgnoreList, UserInst))
3660           continue;
3661 
3662         LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane "
3663                           << Lane << " from " << *Scalar << ".\n");
3664         ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane));
3665       }
3666     }
3667   }
3668 }
3669 
3670 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
3671                         ArrayRef<Value *> UserIgnoreLst) {
3672   deleteTree();
3673   UserIgnoreList = UserIgnoreLst;
3674   if (!allSameType(Roots))
3675     return;
3676   buildTree_rec(Roots, 0, EdgeInfo());
3677 }
3678 
3679 namespace {
3680 /// Tracks the state we can represent the loads in the given sequence.
3681 enum class LoadsState { Gather, Vectorize, ScatterVectorize };
3682 } // anonymous namespace
3683 
3684 /// Checks if the given array of loads can be represented as a vectorized,
3685 /// scatter or just simple gather.
3686 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0,
3687                                     const TargetTransformInfo &TTI,
3688                                     const DataLayout &DL, ScalarEvolution &SE,
3689                                     SmallVectorImpl<unsigned> &Order,
3690                                     SmallVectorImpl<Value *> &PointerOps) {
3691   // Check that a vectorized load would load the same memory as a scalar
3692   // load. For example, we don't want to vectorize loads that are smaller
3693   // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
3694   // treats loading/storing it as an i8 struct. If we vectorize loads/stores
3695   // from such a struct, we read/write packed bits disagreeing with the
3696   // unvectorized version.
3697   Type *ScalarTy = VL0->getType();
3698 
3699   if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy))
3700     return LoadsState::Gather;
3701 
3702   // Make sure all loads in the bundle are simple - we can't vectorize
3703   // atomic or volatile loads.
3704   PointerOps.clear();
3705   PointerOps.resize(VL.size());
3706   auto *POIter = PointerOps.begin();
3707   for (Value *V : VL) {
3708     auto *L = cast<LoadInst>(V);
3709     if (!L->isSimple())
3710       return LoadsState::Gather;
3711     *POIter = L->getPointerOperand();
3712     ++POIter;
3713   }
3714 
3715   Order.clear();
3716   // Check the order of pointer operands.
3717   if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) {
3718     Value *Ptr0;
3719     Value *PtrN;
3720     if (Order.empty()) {
3721       Ptr0 = PointerOps.front();
3722       PtrN = PointerOps.back();
3723     } else {
3724       Ptr0 = PointerOps[Order.front()];
3725       PtrN = PointerOps[Order.back()];
3726     }
3727     Optional<int> Diff =
3728         getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE);
3729     // Check that the sorted loads are consecutive.
3730     if (static_cast<unsigned>(*Diff) == VL.size() - 1)
3731       return LoadsState::Vectorize;
3732     Align CommonAlignment = cast<LoadInst>(VL0)->getAlign();
3733     for (Value *V : VL)
3734       CommonAlignment =
3735           commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign());
3736     if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()),
3737                                 CommonAlignment))
3738       return LoadsState::ScatterVectorize;
3739   }
3740 
3741   return LoadsState::Gather;
3742 }
3743 
3744 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
3745                             const EdgeInfo &UserTreeIdx) {
3746   assert((allConstant(VL) || allSameType(VL)) && "Invalid types!");
3747 
3748   SmallVector<int> ReuseShuffleIndicies;
3749   SmallVector<Value *> UniqueValues;
3750   auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues,
3751                                 &UserTreeIdx,
3752                                 this](const InstructionsState &S) {
3753     // Check that every instruction appears once in this bundle.
3754     DenseMap<Value *, unsigned> UniquePositions;
3755     for (Value *V : VL) {
3756       if (isConstant(V)) {
3757         ReuseShuffleIndicies.emplace_back(
3758             isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size());
3759         UniqueValues.emplace_back(V);
3760         continue;
3761       }
3762       auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
3763       ReuseShuffleIndicies.emplace_back(Res.first->second);
3764       if (Res.second)
3765         UniqueValues.emplace_back(V);
3766     }
3767     size_t NumUniqueScalarValues = UniqueValues.size();
3768     if (NumUniqueScalarValues == VL.size()) {
3769       ReuseShuffleIndicies.clear();
3770     } else {
3771       LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n");
3772       if (NumUniqueScalarValues <= 1 ||
3773           (UniquePositions.size() == 1 && all_of(UniqueValues,
3774                                                  [](Value *V) {
3775                                                    return isa<UndefValue>(V) ||
3776                                                           !isConstant(V);
3777                                                  })) ||
3778           !llvm::isPowerOf2_32(NumUniqueScalarValues)) {
3779         LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
3780         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
3781         return false;
3782       }
3783       VL = UniqueValues;
3784     }
3785     return true;
3786   };
3787 
3788   InstructionsState S = getSameOpcode(VL);
3789   if (Depth == RecursionMaxDepth) {
3790     LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
3791     if (TryToFindDuplicates(S))
3792       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3793                    ReuseShuffleIndicies);
3794     return;
3795   }
3796 
3797   // Don't handle scalable vectors
3798   if (S.getOpcode() == Instruction::ExtractElement &&
3799       isa<ScalableVectorType>(
3800           cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) {
3801     LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n");
3802     if (TryToFindDuplicates(S))
3803       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3804                    ReuseShuffleIndicies);
3805     return;
3806   }
3807 
3808   // Don't handle vectors.
3809   if (S.OpValue->getType()->isVectorTy() &&
3810       !isa<InsertElementInst>(S.OpValue)) {
3811     LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
3812     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
3813     return;
3814   }
3815 
3816   if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
3817     if (SI->getValueOperand()->getType()->isVectorTy()) {
3818       LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
3819       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
3820       return;
3821     }
3822 
3823   // If all of the operands are identical or constant we have a simple solution.
3824   // If we deal with insert/extract instructions, they all must have constant
3825   // indices, otherwise we should gather them, not try to vectorize.
3826   if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() ||
3827       (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) &&
3828        !all_of(VL, isVectorLikeInstWithConstOps))) {
3829     LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
3830     if (TryToFindDuplicates(S))
3831       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3832                    ReuseShuffleIndicies);
3833     return;
3834   }
3835 
3836   // We now know that this is a vector of instructions of the same type from
3837   // the same block.
3838 
3839   // Don't vectorize ephemeral values.
3840   for (Value *V : VL) {
3841     if (EphValues.count(V)) {
3842       LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
3843                         << ") is ephemeral.\n");
3844       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
3845       return;
3846     }
3847   }
3848 
3849   // Check if this is a duplicate of another entry.
3850   if (TreeEntry *E = getTreeEntry(S.OpValue)) {
3851     LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n");
3852     if (!E->isSame(VL)) {
3853       LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
3854       if (TryToFindDuplicates(S))
3855         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3856                      ReuseShuffleIndicies);
3857       return;
3858     }
3859     // Record the reuse of the tree node.  FIXME, currently this is only used to
3860     // properly draw the graph rather than for the actual vectorization.
3861     E->UserTreeIndices.push_back(UserTreeIdx);
3862     LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue
3863                       << ".\n");
3864     return;
3865   }
3866 
3867   // Check that none of the instructions in the bundle are already in the tree.
3868   for (Value *V : VL) {
3869     auto *I = dyn_cast<Instruction>(V);
3870     if (!I)
3871       continue;
3872     if (getTreeEntry(I)) {
3873       LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
3874                         << ") is already in tree.\n");
3875       if (TryToFindDuplicates(S))
3876         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3877                      ReuseShuffleIndicies);
3878       return;
3879     }
3880   }
3881 
3882   // The reduction nodes (stored in UserIgnoreList) also should stay scalar.
3883   for (Value *V : VL) {
3884     if (is_contained(UserIgnoreList, V)) {
3885       LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
3886       if (TryToFindDuplicates(S))
3887         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3888                      ReuseShuffleIndicies);
3889       return;
3890     }
3891   }
3892 
3893   // Check that all of the users of the scalars that we want to vectorize are
3894   // schedulable.
3895   auto *VL0 = cast<Instruction>(S.OpValue);
3896   BasicBlock *BB = VL0->getParent();
3897 
3898   if (!DT->isReachableFromEntry(BB)) {
3899     // Don't go into unreachable blocks. They may contain instructions with
3900     // dependency cycles which confuse the final scheduling.
3901     LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
3902     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
3903     return;
3904   }
3905 
3906   // Check that every instruction appears once in this bundle.
3907   if (!TryToFindDuplicates(S))
3908     return;
3909 
3910   auto &BSRef = BlocksSchedules[BB];
3911   if (!BSRef)
3912     BSRef = std::make_unique<BlockScheduling>(BB);
3913 
3914   BlockScheduling &BS = *BSRef.get();
3915 
3916   Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S);
3917 #ifdef EXPENSIVE_CHECKS
3918   // Make sure we didn't break any internal invariants
3919   BS.verify();
3920 #endif
3921   if (!Bundle) {
3922     LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
3923     assert((!BS.getScheduleData(VL0) ||
3924             !BS.getScheduleData(VL0)->isPartOfBundle()) &&
3925            "tryScheduleBundle should cancelScheduling on failure");
3926     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3927                  ReuseShuffleIndicies);
3928     return;
3929   }
3930   LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
3931 
3932   unsigned ShuffleOrOp = S.isAltShuffle() ?
3933                 (unsigned) Instruction::ShuffleVector : S.getOpcode();
3934   switch (ShuffleOrOp) {
3935     case Instruction::PHI: {
3936       auto *PH = cast<PHINode>(VL0);
3937 
3938       // Check for terminator values (e.g. invoke).
3939       for (Value *V : VL)
3940         for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) {
3941           Instruction *Term = dyn_cast<Instruction>(
3942               cast<PHINode>(V)->getIncomingValueForBlock(
3943                   PH->getIncomingBlock(I)));
3944           if (Term && Term->isTerminator()) {
3945             LLVM_DEBUG(dbgs()
3946                        << "SLP: Need to swizzle PHINodes (terminator use).\n");
3947             BS.cancelScheduling(VL, VL0);
3948             newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3949                          ReuseShuffleIndicies);
3950             return;
3951           }
3952         }
3953 
3954       TreeEntry *TE =
3955           newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies);
3956       LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
3957 
3958       // Keeps the reordered operands to avoid code duplication.
3959       SmallVector<ValueList, 2> OperandsVec;
3960       for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) {
3961         if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) {
3962           ValueList Operands(VL.size(), PoisonValue::get(PH->getType()));
3963           TE->setOperand(I, Operands);
3964           OperandsVec.push_back(Operands);
3965           continue;
3966         }
3967         ValueList Operands;
3968         // Prepare the operand vector.
3969         for (Value *V : VL)
3970           Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(
3971               PH->getIncomingBlock(I)));
3972         TE->setOperand(I, Operands);
3973         OperandsVec.push_back(Operands);
3974       }
3975       for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx)
3976         buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx});
3977       return;
3978     }
3979     case Instruction::ExtractValue:
3980     case Instruction::ExtractElement: {
3981       OrdersType CurrentOrder;
3982       bool Reuse = canReuseExtract(VL, VL0, CurrentOrder);
3983       if (Reuse) {
3984         LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n");
3985         newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3986                      ReuseShuffleIndicies);
3987         // This is a special case, as it does not gather, but at the same time
3988         // we are not extending buildTree_rec() towards the operands.
3989         ValueList Op0;
3990         Op0.assign(VL.size(), VL0->getOperand(0));
3991         VectorizableTree.back()->setOperand(0, Op0);
3992         return;
3993       }
3994       if (!CurrentOrder.empty()) {
3995         LLVM_DEBUG({
3996           dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
3997                     "with order";
3998           for (unsigned Idx : CurrentOrder)
3999             dbgs() << " " << Idx;
4000           dbgs() << "\n";
4001         });
4002         fixupOrderingIndices(CurrentOrder);
4003         // Insert new order with initial value 0, if it does not exist,
4004         // otherwise return the iterator to the existing one.
4005         newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4006                      ReuseShuffleIndicies, CurrentOrder);
4007         // This is a special case, as it does not gather, but at the same time
4008         // we are not extending buildTree_rec() towards the operands.
4009         ValueList Op0;
4010         Op0.assign(VL.size(), VL0->getOperand(0));
4011         VectorizableTree.back()->setOperand(0, Op0);
4012         return;
4013       }
4014       LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n");
4015       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4016                    ReuseShuffleIndicies);
4017       BS.cancelScheduling(VL, VL0);
4018       return;
4019     }
4020     case Instruction::InsertElement: {
4021       assert(ReuseShuffleIndicies.empty() && "All inserts should be unique");
4022 
4023       // Check that we have a buildvector and not a shuffle of 2 or more
4024       // different vectors.
4025       ValueSet SourceVectors;
4026       for (Value *V : VL) {
4027         SourceVectors.insert(cast<Instruction>(V)->getOperand(0));
4028         assert(getInsertIndex(V) != None && "Non-constant or undef index?");
4029       }
4030 
4031       if (count_if(VL, [&SourceVectors](Value *V) {
4032             return !SourceVectors.contains(V);
4033           }) >= 2) {
4034         // Found 2nd source vector - cancel.
4035         LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with "
4036                              "different source vectors.\n");
4037         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
4038         BS.cancelScheduling(VL, VL0);
4039         return;
4040       }
4041 
4042       auto OrdCompare = [](const std::pair<int, int> &P1,
4043                            const std::pair<int, int> &P2) {
4044         return P1.first > P2.first;
4045       };
4046       PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>,
4047                     decltype(OrdCompare)>
4048           Indices(OrdCompare);
4049       for (int I = 0, E = VL.size(); I < E; ++I) {
4050         unsigned Idx = *getInsertIndex(VL[I]);
4051         Indices.emplace(Idx, I);
4052       }
4053       OrdersType CurrentOrder(VL.size(), VL.size());
4054       bool IsIdentity = true;
4055       for (int I = 0, E = VL.size(); I < E; ++I) {
4056         CurrentOrder[Indices.top().second] = I;
4057         IsIdentity &= Indices.top().second == I;
4058         Indices.pop();
4059       }
4060       if (IsIdentity)
4061         CurrentOrder.clear();
4062       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4063                                    None, CurrentOrder);
4064       LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n");
4065 
4066       constexpr int NumOps = 2;
4067       ValueList VectorOperands[NumOps];
4068       for (int I = 0; I < NumOps; ++I) {
4069         for (Value *V : VL)
4070           VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I));
4071 
4072         TE->setOperand(I, VectorOperands[I]);
4073       }
4074       buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1});
4075       return;
4076     }
4077     case Instruction::Load: {
4078       // Check that a vectorized load would load the same memory as a scalar
4079       // load. For example, we don't want to vectorize loads that are smaller
4080       // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
4081       // treats loading/storing it as an i8 struct. If we vectorize loads/stores
4082       // from such a struct, we read/write packed bits disagreeing with the
4083       // unvectorized version.
4084       SmallVector<Value *> PointerOps;
4085       OrdersType CurrentOrder;
4086       TreeEntry *TE = nullptr;
4087       switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder,
4088                                 PointerOps)) {
4089       case LoadsState::Vectorize:
4090         if (CurrentOrder.empty()) {
4091           // Original loads are consecutive and does not require reordering.
4092           TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4093                             ReuseShuffleIndicies);
4094           LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n");
4095         } else {
4096           fixupOrderingIndices(CurrentOrder);
4097           // Need to reorder.
4098           TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4099                             ReuseShuffleIndicies, CurrentOrder);
4100           LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n");
4101         }
4102         TE->setOperandsInOrder();
4103         break;
4104       case LoadsState::ScatterVectorize:
4105         // Vectorizing non-consecutive loads with `llvm.masked.gather`.
4106         TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S,
4107                           UserTreeIdx, ReuseShuffleIndicies);
4108         TE->setOperandsInOrder();
4109         buildTree_rec(PointerOps, Depth + 1, {TE, 0});
4110         LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n");
4111         break;
4112       case LoadsState::Gather:
4113         BS.cancelScheduling(VL, VL0);
4114         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4115                      ReuseShuffleIndicies);
4116 #ifndef NDEBUG
4117         Type *ScalarTy = VL0->getType();
4118         if (DL->getTypeSizeInBits(ScalarTy) !=
4119             DL->getTypeAllocSizeInBits(ScalarTy))
4120           LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
4121         else if (any_of(VL, [](Value *V) {
4122                    return !cast<LoadInst>(V)->isSimple();
4123                  }))
4124           LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
4125         else
4126           LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
4127 #endif // NDEBUG
4128         break;
4129       }
4130       return;
4131     }
4132     case Instruction::ZExt:
4133     case Instruction::SExt:
4134     case Instruction::FPToUI:
4135     case Instruction::FPToSI:
4136     case Instruction::FPExt:
4137     case Instruction::PtrToInt:
4138     case Instruction::IntToPtr:
4139     case Instruction::SIToFP:
4140     case Instruction::UIToFP:
4141     case Instruction::Trunc:
4142     case Instruction::FPTrunc:
4143     case Instruction::BitCast: {
4144       Type *SrcTy = VL0->getOperand(0)->getType();
4145       for (Value *V : VL) {
4146         Type *Ty = cast<Instruction>(V)->getOperand(0)->getType();
4147         if (Ty != SrcTy || !isValidElementType(Ty)) {
4148           BS.cancelScheduling(VL, VL0);
4149           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4150                        ReuseShuffleIndicies);
4151           LLVM_DEBUG(dbgs()
4152                      << "SLP: Gathering casts with different src types.\n");
4153           return;
4154         }
4155       }
4156       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4157                                    ReuseShuffleIndicies);
4158       LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n");
4159 
4160       TE->setOperandsInOrder();
4161       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
4162         ValueList Operands;
4163         // Prepare the operand vector.
4164         for (Value *V : VL)
4165           Operands.push_back(cast<Instruction>(V)->getOperand(i));
4166 
4167         buildTree_rec(Operands, Depth + 1, {TE, i});
4168       }
4169       return;
4170     }
4171     case Instruction::ICmp:
4172     case Instruction::FCmp: {
4173       // Check that all of the compares have the same predicate.
4174       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
4175       CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0);
4176       Type *ComparedTy = VL0->getOperand(0)->getType();
4177       for (Value *V : VL) {
4178         CmpInst *Cmp = cast<CmpInst>(V);
4179         if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) ||
4180             Cmp->getOperand(0)->getType() != ComparedTy) {
4181           BS.cancelScheduling(VL, VL0);
4182           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4183                        ReuseShuffleIndicies);
4184           LLVM_DEBUG(dbgs()
4185                      << "SLP: Gathering cmp with different predicate.\n");
4186           return;
4187         }
4188       }
4189 
4190       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4191                                    ReuseShuffleIndicies);
4192       LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n");
4193 
4194       ValueList Left, Right;
4195       if (cast<CmpInst>(VL0)->isCommutative()) {
4196         // Commutative predicate - collect + sort operands of the instructions
4197         // so that each side is more likely to have the same opcode.
4198         assert(P0 == SwapP0 && "Commutative Predicate mismatch");
4199         reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
4200       } else {
4201         // Collect operands - commute if it uses the swapped predicate.
4202         for (Value *V : VL) {
4203           auto *Cmp = cast<CmpInst>(V);
4204           Value *LHS = Cmp->getOperand(0);
4205           Value *RHS = Cmp->getOperand(1);
4206           if (Cmp->getPredicate() != P0)
4207             std::swap(LHS, RHS);
4208           Left.push_back(LHS);
4209           Right.push_back(RHS);
4210         }
4211       }
4212       TE->setOperand(0, Left);
4213       TE->setOperand(1, Right);
4214       buildTree_rec(Left, Depth + 1, {TE, 0});
4215       buildTree_rec(Right, Depth + 1, {TE, 1});
4216       return;
4217     }
4218     case Instruction::Select:
4219     case Instruction::FNeg:
4220     case Instruction::Add:
4221     case Instruction::FAdd:
4222     case Instruction::Sub:
4223     case Instruction::FSub:
4224     case Instruction::Mul:
4225     case Instruction::FMul:
4226     case Instruction::UDiv:
4227     case Instruction::SDiv:
4228     case Instruction::FDiv:
4229     case Instruction::URem:
4230     case Instruction::SRem:
4231     case Instruction::FRem:
4232     case Instruction::Shl:
4233     case Instruction::LShr:
4234     case Instruction::AShr:
4235     case Instruction::And:
4236     case Instruction::Or:
4237     case Instruction::Xor: {
4238       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4239                                    ReuseShuffleIndicies);
4240       LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n");
4241 
4242       // Sort operands of the instructions so that each side is more likely to
4243       // have the same opcode.
4244       if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
4245         ValueList Left, Right;
4246         reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
4247         TE->setOperand(0, Left);
4248         TE->setOperand(1, Right);
4249         buildTree_rec(Left, Depth + 1, {TE, 0});
4250         buildTree_rec(Right, Depth + 1, {TE, 1});
4251         return;
4252       }
4253 
4254       TE->setOperandsInOrder();
4255       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
4256         ValueList Operands;
4257         // Prepare the operand vector.
4258         for (Value *V : VL)
4259           Operands.push_back(cast<Instruction>(V)->getOperand(i));
4260 
4261         buildTree_rec(Operands, Depth + 1, {TE, i});
4262       }
4263       return;
4264     }
4265     case Instruction::GetElementPtr: {
4266       // We don't combine GEPs with complicated (nested) indexing.
4267       for (Value *V : VL) {
4268         if (cast<Instruction>(V)->getNumOperands() != 2) {
4269           LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
4270           BS.cancelScheduling(VL, VL0);
4271           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4272                        ReuseShuffleIndicies);
4273           return;
4274         }
4275       }
4276 
4277       // We can't combine several GEPs into one vector if they operate on
4278       // different types.
4279       Type *Ty0 = cast<GEPOperator>(VL0)->getSourceElementType();
4280       for (Value *V : VL) {
4281         Type *CurTy = cast<GEPOperator>(V)->getSourceElementType();
4282         if (Ty0 != CurTy) {
4283           LLVM_DEBUG(dbgs()
4284                      << "SLP: not-vectorizable GEP (different types).\n");
4285           BS.cancelScheduling(VL, VL0);
4286           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4287                        ReuseShuffleIndicies);
4288           return;
4289         }
4290       }
4291 
4292       // We don't combine GEPs with non-constant indexes.
4293       Type *Ty1 = VL0->getOperand(1)->getType();
4294       for (Value *V : VL) {
4295         auto Op = cast<Instruction>(V)->getOperand(1);
4296         if (!isa<ConstantInt>(Op) ||
4297             (Op->getType() != Ty1 &&
4298              Op->getType()->getScalarSizeInBits() >
4299                  DL->getIndexSizeInBits(
4300                      V->getType()->getPointerAddressSpace()))) {
4301           LLVM_DEBUG(dbgs()
4302                      << "SLP: not-vectorizable GEP (non-constant indexes).\n");
4303           BS.cancelScheduling(VL, VL0);
4304           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4305                        ReuseShuffleIndicies);
4306           return;
4307         }
4308       }
4309 
4310       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4311                                    ReuseShuffleIndicies);
4312       LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
4313       SmallVector<ValueList, 2> Operands(2);
4314       // Prepare the operand vector for pointer operands.
4315       for (Value *V : VL)
4316         Operands.front().push_back(
4317             cast<GetElementPtrInst>(V)->getPointerOperand());
4318       TE->setOperand(0, Operands.front());
4319       // Need to cast all indices to the same type before vectorization to
4320       // avoid crash.
4321       // Required to be able to find correct matches between different gather
4322       // nodes and reuse the vectorized values rather than trying to gather them
4323       // again.
4324       int IndexIdx = 1;
4325       Type *VL0Ty = VL0->getOperand(IndexIdx)->getType();
4326       Type *Ty = all_of(VL,
4327                         [VL0Ty, IndexIdx](Value *V) {
4328                           return VL0Ty == cast<GetElementPtrInst>(V)
4329                                               ->getOperand(IndexIdx)
4330                                               ->getType();
4331                         })
4332                      ? VL0Ty
4333                      : DL->getIndexType(cast<GetElementPtrInst>(VL0)
4334                                             ->getPointerOperandType()
4335                                             ->getScalarType());
4336       // Prepare the operand vector.
4337       for (Value *V : VL) {
4338         auto *Op = cast<Instruction>(V)->getOperand(IndexIdx);
4339         auto *CI = cast<ConstantInt>(Op);
4340         Operands.back().push_back(ConstantExpr::getIntegerCast(
4341             CI, Ty, CI->getValue().isSignBitSet()));
4342       }
4343       TE->setOperand(IndexIdx, Operands.back());
4344 
4345       for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I)
4346         buildTree_rec(Operands[I], Depth + 1, {TE, I});
4347       return;
4348     }
4349     case Instruction::Store: {
4350       // Check if the stores are consecutive or if we need to swizzle them.
4351       llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType();
4352       // Avoid types that are padded when being allocated as scalars, while
4353       // being packed together in a vector (such as i1).
4354       if (DL->getTypeSizeInBits(ScalarTy) !=
4355           DL->getTypeAllocSizeInBits(ScalarTy)) {
4356         BS.cancelScheduling(VL, VL0);
4357         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4358                      ReuseShuffleIndicies);
4359         LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n");
4360         return;
4361       }
4362       // Make sure all stores in the bundle are simple - we can't vectorize
4363       // atomic or volatile stores.
4364       SmallVector<Value *, 4> PointerOps(VL.size());
4365       ValueList Operands(VL.size());
4366       auto POIter = PointerOps.begin();
4367       auto OIter = Operands.begin();
4368       for (Value *V : VL) {
4369         auto *SI = cast<StoreInst>(V);
4370         if (!SI->isSimple()) {
4371           BS.cancelScheduling(VL, VL0);
4372           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4373                        ReuseShuffleIndicies);
4374           LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n");
4375           return;
4376         }
4377         *POIter = SI->getPointerOperand();
4378         *OIter = SI->getValueOperand();
4379         ++POIter;
4380         ++OIter;
4381       }
4382 
4383       OrdersType CurrentOrder;
4384       // Check the order of pointer operands.
4385       if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) {
4386         Value *Ptr0;
4387         Value *PtrN;
4388         if (CurrentOrder.empty()) {
4389           Ptr0 = PointerOps.front();
4390           PtrN = PointerOps.back();
4391         } else {
4392           Ptr0 = PointerOps[CurrentOrder.front()];
4393           PtrN = PointerOps[CurrentOrder.back()];
4394         }
4395         Optional<int> Dist =
4396             getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE);
4397         // Check that the sorted pointer operands are consecutive.
4398         if (static_cast<unsigned>(*Dist) == VL.size() - 1) {
4399           if (CurrentOrder.empty()) {
4400             // Original stores are consecutive and does not require reordering.
4401             TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
4402                                          UserTreeIdx, ReuseShuffleIndicies);
4403             TE->setOperandsInOrder();
4404             buildTree_rec(Operands, Depth + 1, {TE, 0});
4405             LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n");
4406           } else {
4407             fixupOrderingIndices(CurrentOrder);
4408             TreeEntry *TE =
4409                 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4410                              ReuseShuffleIndicies, CurrentOrder);
4411             TE->setOperandsInOrder();
4412             buildTree_rec(Operands, Depth + 1, {TE, 0});
4413             LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n");
4414           }
4415           return;
4416         }
4417       }
4418 
4419       BS.cancelScheduling(VL, VL0);
4420       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4421                    ReuseShuffleIndicies);
4422       LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
4423       return;
4424     }
4425     case Instruction::Call: {
4426       // Check if the calls are all to the same vectorizable intrinsic or
4427       // library function.
4428       CallInst *CI = cast<CallInst>(VL0);
4429       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4430 
4431       VFShape Shape = VFShape::get(
4432           *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())),
4433           false /*HasGlobalPred*/);
4434       Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
4435 
4436       if (!VecFunc && !isTriviallyVectorizable(ID)) {
4437         BS.cancelScheduling(VL, VL0);
4438         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4439                      ReuseShuffleIndicies);
4440         LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
4441         return;
4442       }
4443       Function *F = CI->getCalledFunction();
4444       unsigned NumArgs = CI->arg_size();
4445       SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr);
4446       for (unsigned j = 0; j != NumArgs; ++j)
4447         if (hasVectorInstrinsicScalarOpd(ID, j))
4448           ScalarArgs[j] = CI->getArgOperand(j);
4449       for (Value *V : VL) {
4450         CallInst *CI2 = dyn_cast<CallInst>(V);
4451         if (!CI2 || CI2->getCalledFunction() != F ||
4452             getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
4453             (VecFunc &&
4454              VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) ||
4455             !CI->hasIdenticalOperandBundleSchema(*CI2)) {
4456           BS.cancelScheduling(VL, VL0);
4457           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4458                        ReuseShuffleIndicies);
4459           LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V
4460                             << "\n");
4461           return;
4462         }
4463         // Some intrinsics have scalar arguments and should be same in order for
4464         // them to be vectorized.
4465         for (unsigned j = 0; j != NumArgs; ++j) {
4466           if (hasVectorInstrinsicScalarOpd(ID, j)) {
4467             Value *A1J = CI2->getArgOperand(j);
4468             if (ScalarArgs[j] != A1J) {
4469               BS.cancelScheduling(VL, VL0);
4470               newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4471                            ReuseShuffleIndicies);
4472               LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
4473                                 << " argument " << ScalarArgs[j] << "!=" << A1J
4474                                 << "\n");
4475               return;
4476             }
4477           }
4478         }
4479         // Verify that the bundle operands are identical between the two calls.
4480         if (CI->hasOperandBundles() &&
4481             !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
4482                         CI->op_begin() + CI->getBundleOperandsEndIndex(),
4483                         CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
4484           BS.cancelScheduling(VL, VL0);
4485           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4486                        ReuseShuffleIndicies);
4487           LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:"
4488                             << *CI << "!=" << *V << '\n');
4489           return;
4490         }
4491       }
4492 
4493       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4494                                    ReuseShuffleIndicies);
4495       TE->setOperandsInOrder();
4496       for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) {
4497         // For scalar operands no need to to create an entry since no need to
4498         // vectorize it.
4499         if (hasVectorInstrinsicScalarOpd(ID, i))
4500           continue;
4501         ValueList Operands;
4502         // Prepare the operand vector.
4503         for (Value *V : VL) {
4504           auto *CI2 = cast<CallInst>(V);
4505           Operands.push_back(CI2->getArgOperand(i));
4506         }
4507         buildTree_rec(Operands, Depth + 1, {TE, i});
4508       }
4509       return;
4510     }
4511     case Instruction::ShuffleVector: {
4512       // If this is not an alternate sequence of opcode like add-sub
4513       // then do not vectorize this instruction.
4514       if (!S.isAltShuffle()) {
4515         BS.cancelScheduling(VL, VL0);
4516         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4517                      ReuseShuffleIndicies);
4518         LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
4519         return;
4520       }
4521       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4522                                    ReuseShuffleIndicies);
4523       LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
4524 
4525       // Reorder operands if reordering would enable vectorization.
4526       auto *CI = dyn_cast<CmpInst>(VL0);
4527       if (isa<BinaryOperator>(VL0) || CI) {
4528         ValueList Left, Right;
4529         if (!CI || all_of(VL, [](Value *V) {
4530               return cast<CmpInst>(V)->isCommutative();
4531             })) {
4532           reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
4533         } else {
4534           CmpInst::Predicate P0 = CI->getPredicate();
4535           CmpInst::Predicate AltP0 = cast<CmpInst>(S.AltOp)->getPredicate();
4536           assert(P0 != AltP0 &&
4537                  "Expected different main/alternate predicates.");
4538           CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0);
4539           Value *BaseOp0 = VL0->getOperand(0);
4540           Value *BaseOp1 = VL0->getOperand(1);
4541           // Collect operands - commute if it uses the swapped predicate or
4542           // alternate operation.
4543           for (Value *V : VL) {
4544             auto *Cmp = cast<CmpInst>(V);
4545             Value *LHS = Cmp->getOperand(0);
4546             Value *RHS = Cmp->getOperand(1);
4547             CmpInst::Predicate CurrentPred = Cmp->getPredicate();
4548             if (P0 == AltP0Swapped) {
4549               if (CI != Cmp && S.AltOp != Cmp &&
4550                   ((P0 == CurrentPred &&
4551                     !areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)) ||
4552                    (AltP0 == CurrentPred &&
4553                     areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS))))
4554                 std::swap(LHS, RHS);
4555             } else if (P0 != CurrentPred && AltP0 != CurrentPred) {
4556               std::swap(LHS, RHS);
4557             }
4558             Left.push_back(LHS);
4559             Right.push_back(RHS);
4560           }
4561         }
4562         TE->setOperand(0, Left);
4563         TE->setOperand(1, Right);
4564         buildTree_rec(Left, Depth + 1, {TE, 0});
4565         buildTree_rec(Right, Depth + 1, {TE, 1});
4566         return;
4567       }
4568 
4569       TE->setOperandsInOrder();
4570       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
4571         ValueList Operands;
4572         // Prepare the operand vector.
4573         for (Value *V : VL)
4574           Operands.push_back(cast<Instruction>(V)->getOperand(i));
4575 
4576         buildTree_rec(Operands, Depth + 1, {TE, i});
4577       }
4578       return;
4579     }
4580     default:
4581       BS.cancelScheduling(VL, VL0);
4582       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4583                    ReuseShuffleIndicies);
4584       LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
4585       return;
4586   }
4587 }
4588 
4589 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
4590   unsigned N = 1;
4591   Type *EltTy = T;
4592 
4593   while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) ||
4594          isa<VectorType>(EltTy)) {
4595     if (auto *ST = dyn_cast<StructType>(EltTy)) {
4596       // Check that struct is homogeneous.
4597       for (const auto *Ty : ST->elements())
4598         if (Ty != *ST->element_begin())
4599           return 0;
4600       N *= ST->getNumElements();
4601       EltTy = *ST->element_begin();
4602     } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) {
4603       N *= AT->getNumElements();
4604       EltTy = AT->getElementType();
4605     } else {
4606       auto *VT = cast<FixedVectorType>(EltTy);
4607       N *= VT->getNumElements();
4608       EltTy = VT->getElementType();
4609     }
4610   }
4611 
4612   if (!isValidElementType(EltTy))
4613     return 0;
4614   uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N));
4615   if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
4616     return 0;
4617   return N;
4618 }
4619 
4620 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
4621                               SmallVectorImpl<unsigned> &CurrentOrder) const {
4622   const auto *It = find_if(VL, [](Value *V) {
4623     return isa<ExtractElementInst, ExtractValueInst>(V);
4624   });
4625   assert(It != VL.end() && "Expected at least one extract instruction.");
4626   auto *E0 = cast<Instruction>(*It);
4627   assert(all_of(VL,
4628                 [](Value *V) {
4629                   return isa<UndefValue, ExtractElementInst, ExtractValueInst>(
4630                       V);
4631                 }) &&
4632          "Invalid opcode");
4633   // Check if all of the extracts come from the same vector and from the
4634   // correct offset.
4635   Value *Vec = E0->getOperand(0);
4636 
4637   CurrentOrder.clear();
4638 
4639   // We have to extract from a vector/aggregate with the same number of elements.
4640   unsigned NElts;
4641   if (E0->getOpcode() == Instruction::ExtractValue) {
4642     const DataLayout &DL = E0->getModule()->getDataLayout();
4643     NElts = canMapToVector(Vec->getType(), DL);
4644     if (!NElts)
4645       return false;
4646     // Check if load can be rewritten as load of vector.
4647     LoadInst *LI = dyn_cast<LoadInst>(Vec);
4648     if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
4649       return false;
4650   } else {
4651     NElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
4652   }
4653 
4654   if (NElts != VL.size())
4655     return false;
4656 
4657   // Check that all of the indices extract from the correct offset.
4658   bool ShouldKeepOrder = true;
4659   unsigned E = VL.size();
4660   // Assign to all items the initial value E + 1 so we can check if the extract
4661   // instruction index was used already.
4662   // Also, later we can check that all the indices are used and we have a
4663   // consecutive access in the extract instructions, by checking that no
4664   // element of CurrentOrder still has value E + 1.
4665   CurrentOrder.assign(E, E);
4666   unsigned I = 0;
4667   for (; I < E; ++I) {
4668     auto *Inst = dyn_cast<Instruction>(VL[I]);
4669     if (!Inst)
4670       continue;
4671     if (Inst->getOperand(0) != Vec)
4672       break;
4673     if (auto *EE = dyn_cast<ExtractElementInst>(Inst))
4674       if (isa<UndefValue>(EE->getIndexOperand()))
4675         continue;
4676     Optional<unsigned> Idx = getExtractIndex(Inst);
4677     if (!Idx)
4678       break;
4679     const unsigned ExtIdx = *Idx;
4680     if (ExtIdx != I) {
4681       if (ExtIdx >= E || CurrentOrder[ExtIdx] != E)
4682         break;
4683       ShouldKeepOrder = false;
4684       CurrentOrder[ExtIdx] = I;
4685     } else {
4686       if (CurrentOrder[I] != E)
4687         break;
4688       CurrentOrder[I] = I;
4689     }
4690   }
4691   if (I < E) {
4692     CurrentOrder.clear();
4693     return false;
4694   }
4695   if (ShouldKeepOrder)
4696     CurrentOrder.clear();
4697 
4698   return ShouldKeepOrder;
4699 }
4700 
4701 bool BoUpSLP::areAllUsersVectorized(Instruction *I,
4702                                     ArrayRef<Value *> VectorizedVals) const {
4703   return (I->hasOneUse() && is_contained(VectorizedVals, I)) ||
4704          all_of(I->users(), [this](User *U) {
4705            return ScalarToTreeEntry.count(U) > 0 ||
4706                   isVectorLikeInstWithConstOps(U) ||
4707                   (isa<ExtractElementInst>(U) && MustGather.contains(U));
4708          });
4709 }
4710 
4711 static std::pair<InstructionCost, InstructionCost>
4712 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy,
4713                    TargetTransformInfo *TTI, TargetLibraryInfo *TLI) {
4714   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4715 
4716   // Calculate the cost of the scalar and vector calls.
4717   SmallVector<Type *, 4> VecTys;
4718   for (Use &Arg : CI->args())
4719     VecTys.push_back(
4720         FixedVectorType::get(Arg->getType(), VecTy->getNumElements()));
4721   FastMathFlags FMF;
4722   if (auto *FPCI = dyn_cast<FPMathOperator>(CI))
4723     FMF = FPCI->getFastMathFlags();
4724   SmallVector<const Value *> Arguments(CI->args());
4725   IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF,
4726                                     dyn_cast<IntrinsicInst>(CI));
4727   auto IntrinsicCost =
4728     TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput);
4729 
4730   auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
4731                                      VecTy->getNumElements())),
4732                             false /*HasGlobalPred*/);
4733   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
4734   auto LibCost = IntrinsicCost;
4735   if (!CI->isNoBuiltin() && VecFunc) {
4736     // Calculate the cost of the vector library call.
4737     // If the corresponding vector call is cheaper, return its cost.
4738     LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys,
4739                                     TTI::TCK_RecipThroughput);
4740   }
4741   return {IntrinsicCost, LibCost};
4742 }
4743 
4744 /// Compute the cost of creating a vector of type \p VecTy containing the
4745 /// extracted values from \p VL.
4746 static InstructionCost
4747 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy,
4748                    TargetTransformInfo::ShuffleKind ShuffleKind,
4749                    ArrayRef<int> Mask, TargetTransformInfo &TTI) {
4750   unsigned NumOfParts = TTI.getNumberOfParts(VecTy);
4751 
4752   if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts ||
4753       VecTy->getNumElements() < NumOfParts)
4754     return TTI.getShuffleCost(ShuffleKind, VecTy, Mask);
4755 
4756   bool AllConsecutive = true;
4757   unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts;
4758   unsigned Idx = -1;
4759   InstructionCost Cost = 0;
4760 
4761   // Process extracts in blocks of EltsPerVector to check if the source vector
4762   // operand can be re-used directly. If not, add the cost of creating a shuffle
4763   // to extract the values into a vector register.
4764   for (auto *V : VL) {
4765     ++Idx;
4766 
4767     // Need to exclude undefs from analysis.
4768     if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem)
4769       continue;
4770 
4771     // Reached the start of a new vector registers.
4772     if (Idx % EltsPerVector == 0) {
4773       AllConsecutive = true;
4774       continue;
4775     }
4776 
4777     // Check all extracts for a vector register on the target directly
4778     // extract values in order.
4779     unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V));
4780     if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) {
4781       unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1]));
4782       AllConsecutive &= PrevIdx + 1 == CurrentIdx &&
4783                         CurrentIdx % EltsPerVector == Idx % EltsPerVector;
4784     }
4785 
4786     if (AllConsecutive)
4787       continue;
4788 
4789     // Skip all indices, except for the last index per vector block.
4790     if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size())
4791       continue;
4792 
4793     // If we have a series of extracts which are not consecutive and hence
4794     // cannot re-use the source vector register directly, compute the shuffle
4795     // cost to extract the a vector with EltsPerVector elements.
4796     Cost += TTI.getShuffleCost(
4797         TargetTransformInfo::SK_PermuteSingleSrc,
4798         FixedVectorType::get(VecTy->getElementType(), EltsPerVector));
4799   }
4800   return Cost;
4801 }
4802 
4803 /// Build shuffle mask for shuffle graph entries and lists of main and alternate
4804 /// operations operands.
4805 static void
4806 buildShuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices,
4807                       ArrayRef<int> ReusesIndices,
4808                       const function_ref<bool(Instruction *)> IsAltOp,
4809                       SmallVectorImpl<int> &Mask,
4810                       SmallVectorImpl<Value *> *OpScalars = nullptr,
4811                       SmallVectorImpl<Value *> *AltScalars = nullptr) {
4812   unsigned Sz = VL.size();
4813   Mask.assign(Sz, UndefMaskElem);
4814   SmallVector<int> OrderMask;
4815   if (!ReorderIndices.empty())
4816     inversePermutation(ReorderIndices, OrderMask);
4817   for (unsigned I = 0; I < Sz; ++I) {
4818     unsigned Idx = I;
4819     if (!ReorderIndices.empty())
4820       Idx = OrderMask[I];
4821     auto *OpInst = cast<Instruction>(VL[Idx]);
4822     if (IsAltOp(OpInst)) {
4823       Mask[I] = Sz + Idx;
4824       if (AltScalars)
4825         AltScalars->push_back(OpInst);
4826     } else {
4827       Mask[I] = Idx;
4828       if (OpScalars)
4829         OpScalars->push_back(OpInst);
4830     }
4831   }
4832   if (!ReusesIndices.empty()) {
4833     SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem);
4834     transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) {
4835       return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem;
4836     });
4837     Mask.swap(NewMask);
4838   }
4839 }
4840 
4841 /// Checks if the specified instruction \p I is an alternate operation for the
4842 /// given \p MainOp and \p AltOp instructions.
4843 static bool isAlternateInstruction(const Instruction *I,
4844                                    const Instruction *MainOp,
4845                                    const Instruction *AltOp) {
4846   if (auto *CI0 = dyn_cast<CmpInst>(MainOp)) {
4847     auto *AltCI0 = cast<CmpInst>(AltOp);
4848     auto *CI = cast<CmpInst>(I);
4849     CmpInst::Predicate P0 = CI0->getPredicate();
4850     CmpInst::Predicate AltP0 = AltCI0->getPredicate();
4851     assert(P0 != AltP0 && "Expected different main/alternate predicates.");
4852     CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0);
4853     CmpInst::Predicate CurrentPred = CI->getPredicate();
4854     if (P0 == AltP0Swapped)
4855       return I == AltCI0 ||
4856              (I != MainOp &&
4857               !areCompatibleCmpOps(CI0->getOperand(0), CI0->getOperand(1),
4858                                    CI->getOperand(0), CI->getOperand(1)));
4859     return AltP0 == CurrentPred || AltP0Swapped == CurrentPred;
4860   }
4861   return I->getOpcode() == AltOp->getOpcode();
4862 }
4863 
4864 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E,
4865                                       ArrayRef<Value *> VectorizedVals) {
4866   ArrayRef<Value*> VL = E->Scalars;
4867 
4868   Type *ScalarTy = VL[0]->getType();
4869   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
4870     ScalarTy = SI->getValueOperand()->getType();
4871   else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0]))
4872     ScalarTy = CI->getOperand(0)->getType();
4873   else if (auto *IE = dyn_cast<InsertElementInst>(VL[0]))
4874     ScalarTy = IE->getOperand(1)->getType();
4875   auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
4876   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
4877 
4878   // If we have computed a smaller type for the expression, update VecTy so
4879   // that the costs will be accurate.
4880   if (MinBWs.count(VL[0]))
4881     VecTy = FixedVectorType::get(
4882         IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size());
4883   unsigned EntryVF = E->getVectorFactor();
4884   auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF);
4885 
4886   bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
4887   // FIXME: it tries to fix a problem with MSVC buildbots.
4888   TargetTransformInfo &TTIRef = *TTI;
4889   auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy,
4890                                VectorizedVals, E](InstructionCost &Cost) {
4891     DenseMap<Value *, int> ExtractVectorsTys;
4892     SmallPtrSet<Value *, 4> CheckedExtracts;
4893     for (auto *V : VL) {
4894       if (isa<UndefValue>(V))
4895         continue;
4896       // If all users of instruction are going to be vectorized and this
4897       // instruction itself is not going to be vectorized, consider this
4898       // instruction as dead and remove its cost from the final cost of the
4899       // vectorized tree.
4900       // Also, avoid adjusting the cost for extractelements with multiple uses
4901       // in different graph entries.
4902       const TreeEntry *VE = getTreeEntry(V);
4903       if (!CheckedExtracts.insert(V).second ||
4904           !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) ||
4905           (VE && VE != E))
4906         continue;
4907       auto *EE = cast<ExtractElementInst>(V);
4908       Optional<unsigned> EEIdx = getExtractIndex(EE);
4909       if (!EEIdx)
4910         continue;
4911       unsigned Idx = *EEIdx;
4912       if (TTIRef.getNumberOfParts(VecTy) !=
4913           TTIRef.getNumberOfParts(EE->getVectorOperandType())) {
4914         auto It =
4915             ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first;
4916         It->getSecond() = std::min<int>(It->second, Idx);
4917       }
4918       // Take credit for instruction that will become dead.
4919       if (EE->hasOneUse()) {
4920         Instruction *Ext = EE->user_back();
4921         if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
4922             all_of(Ext->users(),
4923                    [](User *U) { return isa<GetElementPtrInst>(U); })) {
4924           // Use getExtractWithExtendCost() to calculate the cost of
4925           // extractelement/ext pair.
4926           Cost -=
4927               TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(),
4928                                               EE->getVectorOperandType(), Idx);
4929           // Add back the cost of s|zext which is subtracted separately.
4930           Cost += TTIRef.getCastInstrCost(
4931               Ext->getOpcode(), Ext->getType(), EE->getType(),
4932               TTI::getCastContextHint(Ext), CostKind, Ext);
4933           continue;
4934         }
4935       }
4936       Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement,
4937                                         EE->getVectorOperandType(), Idx);
4938     }
4939     // Add a cost for subvector extracts/inserts if required.
4940     for (const auto &Data : ExtractVectorsTys) {
4941       auto *EEVTy = cast<FixedVectorType>(Data.first->getType());
4942       unsigned NumElts = VecTy->getNumElements();
4943       if (Data.second % NumElts == 0)
4944         continue;
4945       if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) {
4946         unsigned Idx = (Data.second / NumElts) * NumElts;
4947         unsigned EENumElts = EEVTy->getNumElements();
4948         if (Idx + NumElts <= EENumElts) {
4949           Cost +=
4950               TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
4951                                     EEVTy, None, Idx, VecTy);
4952         } else {
4953           // Need to round up the subvector type vectorization factor to avoid a
4954           // crash in cost model functions. Make SubVT so that Idx + VF of SubVT
4955           // <= EENumElts.
4956           auto *SubVT =
4957               FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx);
4958           Cost +=
4959               TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
4960                                     EEVTy, None, Idx, SubVT);
4961         }
4962       } else {
4963         Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector,
4964                                       VecTy, None, 0, EEVTy);
4965       }
4966     }
4967   };
4968   if (E->State == TreeEntry::NeedToGather) {
4969     if (allConstant(VL))
4970       return 0;
4971     if (isa<InsertElementInst>(VL[0]))
4972       return InstructionCost::getInvalid();
4973     SmallVector<int> Mask;
4974     SmallVector<const TreeEntry *> Entries;
4975     Optional<TargetTransformInfo::ShuffleKind> Shuffle =
4976         isGatherShuffledEntry(E, Mask, Entries);
4977     if (Shuffle.hasValue()) {
4978       InstructionCost GatherCost = 0;
4979       if (ShuffleVectorInst::isIdentityMask(Mask)) {
4980         // Perfect match in the graph, will reuse the previously vectorized
4981         // node. Cost is 0.
4982         LLVM_DEBUG(
4983             dbgs()
4984             << "SLP: perfect diamond match for gather bundle that starts with "
4985             << *VL.front() << ".\n");
4986         if (NeedToShuffleReuses)
4987           GatherCost =
4988               TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc,
4989                                   FinalVecTy, E->ReuseShuffleIndices);
4990       } else {
4991         LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size()
4992                           << " entries for bundle that starts with "
4993                           << *VL.front() << ".\n");
4994         // Detected that instead of gather we can emit a shuffle of single/two
4995         // previously vectorized nodes. Add the cost of the permutation rather
4996         // than gather.
4997         ::addMask(Mask, E->ReuseShuffleIndices);
4998         GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask);
4999       }
5000       return GatherCost;
5001     }
5002     if ((E->getOpcode() == Instruction::ExtractElement ||
5003          all_of(E->Scalars,
5004                 [](Value *V) {
5005                   return isa<ExtractElementInst, UndefValue>(V);
5006                 })) &&
5007         allSameType(VL)) {
5008       // Check that gather of extractelements can be represented as just a
5009       // shuffle of a single/two vectors the scalars are extracted from.
5010       SmallVector<int> Mask;
5011       Optional<TargetTransformInfo::ShuffleKind> ShuffleKind =
5012           isFixedVectorShuffle(VL, Mask);
5013       if (ShuffleKind.hasValue()) {
5014         // Found the bunch of extractelement instructions that must be gathered
5015         // into a vector and can be represented as a permutation elements in a
5016         // single input vector or of 2 input vectors.
5017         InstructionCost Cost =
5018             computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI);
5019         AdjustExtractsCost(Cost);
5020         if (NeedToShuffleReuses)
5021           Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc,
5022                                       FinalVecTy, E->ReuseShuffleIndices);
5023         return Cost;
5024       }
5025     }
5026     if (isSplat(VL)) {
5027       // Found the broadcasting of the single scalar, calculate the cost as the
5028       // broadcast.
5029       assert(VecTy == FinalVecTy &&
5030              "No reused scalars expected for broadcast.");
5031       return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy);
5032     }
5033     InstructionCost ReuseShuffleCost = 0;
5034     if (NeedToShuffleReuses)
5035       ReuseShuffleCost = TTI->getShuffleCost(
5036           TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices);
5037     // Improve gather cost for gather of loads, if we can group some of the
5038     // loads into vector loads.
5039     if (VL.size() > 2 && E->getOpcode() == Instruction::Load &&
5040         !E->isAltShuffle()) {
5041       BoUpSLP::ValueSet VectorizedLoads;
5042       unsigned StartIdx = 0;
5043       unsigned VF = VL.size() / 2;
5044       unsigned VectorizedCnt = 0;
5045       unsigned ScatterVectorizeCnt = 0;
5046       const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType());
5047       for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) {
5048         for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End;
5049              Cnt += VF) {
5050           ArrayRef<Value *> Slice = VL.slice(Cnt, VF);
5051           if (!VectorizedLoads.count(Slice.front()) &&
5052               !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) {
5053             SmallVector<Value *> PointerOps;
5054             OrdersType CurrentOrder;
5055             LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL,
5056                                               *SE, CurrentOrder, PointerOps);
5057             switch (LS) {
5058             case LoadsState::Vectorize:
5059             case LoadsState::ScatterVectorize:
5060               // Mark the vectorized loads so that we don't vectorize them
5061               // again.
5062               if (LS == LoadsState::Vectorize)
5063                 ++VectorizedCnt;
5064               else
5065                 ++ScatterVectorizeCnt;
5066               VectorizedLoads.insert(Slice.begin(), Slice.end());
5067               // If we vectorized initial block, no need to try to vectorize it
5068               // again.
5069               if (Cnt == StartIdx)
5070                 StartIdx += VF;
5071               break;
5072             case LoadsState::Gather:
5073               break;
5074             }
5075           }
5076         }
5077         // Check if the whole array was vectorized already - exit.
5078         if (StartIdx >= VL.size())
5079           break;
5080         // Found vectorizable parts - exit.
5081         if (!VectorizedLoads.empty())
5082           break;
5083       }
5084       if (!VectorizedLoads.empty()) {
5085         InstructionCost GatherCost = 0;
5086         unsigned NumParts = TTI->getNumberOfParts(VecTy);
5087         bool NeedInsertSubvectorAnalysis =
5088             !NumParts || (VL.size() / VF) > NumParts;
5089         // Get the cost for gathered loads.
5090         for (unsigned I = 0, End = VL.size(); I < End; I += VF) {
5091           if (VectorizedLoads.contains(VL[I]))
5092             continue;
5093           GatherCost += getGatherCost(VL.slice(I, VF));
5094         }
5095         // The cost for vectorized loads.
5096         InstructionCost ScalarsCost = 0;
5097         for (Value *V : VectorizedLoads) {
5098           auto *LI = cast<LoadInst>(V);
5099           ScalarsCost += TTI->getMemoryOpCost(
5100               Instruction::Load, LI->getType(), LI->getAlign(),
5101               LI->getPointerAddressSpace(), CostKind, LI);
5102         }
5103         auto *LI = cast<LoadInst>(E->getMainOp());
5104         auto *LoadTy = FixedVectorType::get(LI->getType(), VF);
5105         Align Alignment = LI->getAlign();
5106         GatherCost +=
5107             VectorizedCnt *
5108             TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment,
5109                                  LI->getPointerAddressSpace(), CostKind, LI);
5110         GatherCost += ScatterVectorizeCnt *
5111                       TTI->getGatherScatterOpCost(
5112                           Instruction::Load, LoadTy, LI->getPointerOperand(),
5113                           /*VariableMask=*/false, Alignment, CostKind, LI);
5114         if (NeedInsertSubvectorAnalysis) {
5115           // Add the cost for the subvectors insert.
5116           for (int I = VF, E = VL.size(); I < E; I += VF)
5117             GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy,
5118                                               None, I, LoadTy);
5119         }
5120         return ReuseShuffleCost + GatherCost - ScalarsCost;
5121       }
5122     }
5123     return ReuseShuffleCost + getGatherCost(VL);
5124   }
5125   InstructionCost CommonCost = 0;
5126   SmallVector<int> Mask;
5127   if (!E->ReorderIndices.empty()) {
5128     SmallVector<int> NewMask;
5129     if (E->getOpcode() == Instruction::Store) {
5130       // For stores the order is actually a mask.
5131       NewMask.resize(E->ReorderIndices.size());
5132       copy(E->ReorderIndices, NewMask.begin());
5133     } else {
5134       inversePermutation(E->ReorderIndices, NewMask);
5135     }
5136     ::addMask(Mask, NewMask);
5137   }
5138   if (NeedToShuffleReuses)
5139     ::addMask(Mask, E->ReuseShuffleIndices);
5140   if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask))
5141     CommonCost =
5142         TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask);
5143   assert((E->State == TreeEntry::Vectorize ||
5144           E->State == TreeEntry::ScatterVectorize) &&
5145          "Unhandled state");
5146   assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL");
5147   Instruction *VL0 = E->getMainOp();
5148   unsigned ShuffleOrOp =
5149       E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
5150   switch (ShuffleOrOp) {
5151     case Instruction::PHI:
5152       return 0;
5153 
5154     case Instruction::ExtractValue:
5155     case Instruction::ExtractElement: {
5156       // The common cost of removal ExtractElement/ExtractValue instructions +
5157       // the cost of shuffles, if required to resuffle the original vector.
5158       if (NeedToShuffleReuses) {
5159         unsigned Idx = 0;
5160         for (unsigned I : E->ReuseShuffleIndices) {
5161           if (ShuffleOrOp == Instruction::ExtractElement) {
5162             auto *EE = cast<ExtractElementInst>(VL[I]);
5163             CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement,
5164                                                   EE->getVectorOperandType(),
5165                                                   *getExtractIndex(EE));
5166           } else {
5167             CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement,
5168                                                   VecTy, Idx);
5169             ++Idx;
5170           }
5171         }
5172         Idx = EntryVF;
5173         for (Value *V : VL) {
5174           if (ShuffleOrOp == Instruction::ExtractElement) {
5175             auto *EE = cast<ExtractElementInst>(V);
5176             CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement,
5177                                                   EE->getVectorOperandType(),
5178                                                   *getExtractIndex(EE));
5179           } else {
5180             --Idx;
5181             CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement,
5182                                                   VecTy, Idx);
5183           }
5184         }
5185       }
5186       if (ShuffleOrOp == Instruction::ExtractValue) {
5187         for (unsigned I = 0, E = VL.size(); I < E; ++I) {
5188           auto *EI = cast<Instruction>(VL[I]);
5189           // Take credit for instruction that will become dead.
5190           if (EI->hasOneUse()) {
5191             Instruction *Ext = EI->user_back();
5192             if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
5193                 all_of(Ext->users(),
5194                        [](User *U) { return isa<GetElementPtrInst>(U); })) {
5195               // Use getExtractWithExtendCost() to calculate the cost of
5196               // extractelement/ext pair.
5197               CommonCost -= TTI->getExtractWithExtendCost(
5198                   Ext->getOpcode(), Ext->getType(), VecTy, I);
5199               // Add back the cost of s|zext which is subtracted separately.
5200               CommonCost += TTI->getCastInstrCost(
5201                   Ext->getOpcode(), Ext->getType(), EI->getType(),
5202                   TTI::getCastContextHint(Ext), CostKind, Ext);
5203               continue;
5204             }
5205           }
5206           CommonCost -=
5207               TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I);
5208         }
5209       } else {
5210         AdjustExtractsCost(CommonCost);
5211       }
5212       return CommonCost;
5213     }
5214     case Instruction::InsertElement: {
5215       assert(E->ReuseShuffleIndices.empty() &&
5216              "Unique insertelements only are expected.");
5217       auto *SrcVecTy = cast<FixedVectorType>(VL0->getType());
5218 
5219       unsigned const NumElts = SrcVecTy->getNumElements();
5220       unsigned const NumScalars = VL.size();
5221       APInt DemandedElts = APInt::getZero(NumElts);
5222       // TODO: Add support for Instruction::InsertValue.
5223       SmallVector<int> Mask;
5224       if (!E->ReorderIndices.empty()) {
5225         inversePermutation(E->ReorderIndices, Mask);
5226         Mask.append(NumElts - NumScalars, UndefMaskElem);
5227       } else {
5228         Mask.assign(NumElts, UndefMaskElem);
5229         std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0);
5230       }
5231       unsigned Offset = *getInsertIndex(VL0);
5232       bool IsIdentity = true;
5233       SmallVector<int> PrevMask(NumElts, UndefMaskElem);
5234       Mask.swap(PrevMask);
5235       for (unsigned I = 0; I < NumScalars; ++I) {
5236         unsigned InsertIdx = *getInsertIndex(VL[PrevMask[I]]);
5237         DemandedElts.setBit(InsertIdx);
5238         IsIdentity &= InsertIdx - Offset == I;
5239         Mask[InsertIdx - Offset] = I;
5240       }
5241       assert(Offset < NumElts && "Failed to find vector index offset");
5242 
5243       InstructionCost Cost = 0;
5244       Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts,
5245                                             /*Insert*/ true, /*Extract*/ false);
5246 
5247       if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) {
5248         // FIXME: Replace with SK_InsertSubvector once it is properly supported.
5249         unsigned Sz = PowerOf2Ceil(Offset + NumScalars);
5250         Cost += TTI->getShuffleCost(
5251             TargetTransformInfo::SK_PermuteSingleSrc,
5252             FixedVectorType::get(SrcVecTy->getElementType(), Sz));
5253       } else if (!IsIdentity) {
5254         auto *FirstInsert =
5255             cast<Instruction>(*find_if(E->Scalars, [E](Value *V) {
5256               return !is_contained(E->Scalars,
5257                                    cast<Instruction>(V)->getOperand(0));
5258             }));
5259         if (isUndefVector(FirstInsert->getOperand(0))) {
5260           Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask);
5261         } else {
5262           SmallVector<int> InsertMask(NumElts);
5263           std::iota(InsertMask.begin(), InsertMask.end(), 0);
5264           for (unsigned I = 0; I < NumElts; I++) {
5265             if (Mask[I] != UndefMaskElem)
5266               InsertMask[Offset + I] = NumElts + I;
5267           }
5268           Cost +=
5269               TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask);
5270         }
5271       }
5272 
5273       return Cost;
5274     }
5275     case Instruction::ZExt:
5276     case Instruction::SExt:
5277     case Instruction::FPToUI:
5278     case Instruction::FPToSI:
5279     case Instruction::FPExt:
5280     case Instruction::PtrToInt:
5281     case Instruction::IntToPtr:
5282     case Instruction::SIToFP:
5283     case Instruction::UIToFP:
5284     case Instruction::Trunc:
5285     case Instruction::FPTrunc:
5286     case Instruction::BitCast: {
5287       Type *SrcTy = VL0->getOperand(0)->getType();
5288       InstructionCost ScalarEltCost =
5289           TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy,
5290                                 TTI::getCastContextHint(VL0), CostKind, VL0);
5291       if (NeedToShuffleReuses) {
5292         CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
5293       }
5294 
5295       // Calculate the cost of this instruction.
5296       InstructionCost ScalarCost = VL.size() * ScalarEltCost;
5297 
5298       auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size());
5299       InstructionCost VecCost = 0;
5300       // Check if the values are candidates to demote.
5301       if (!MinBWs.count(VL0) || VecTy != SrcVecTy) {
5302         VecCost = CommonCost + TTI->getCastInstrCost(
5303                                    E->getOpcode(), VecTy, SrcVecTy,
5304                                    TTI::getCastContextHint(VL0), CostKind, VL0);
5305       }
5306       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
5307       return VecCost - ScalarCost;
5308     }
5309     case Instruction::FCmp:
5310     case Instruction::ICmp:
5311     case Instruction::Select: {
5312       // Calculate the cost of this instruction.
5313       InstructionCost ScalarEltCost =
5314           TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(),
5315                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0);
5316       if (NeedToShuffleReuses) {
5317         CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
5318       }
5319       auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size());
5320       InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
5321 
5322       // Check if all entries in VL are either compares or selects with compares
5323       // as condition that have the same predicates.
5324       CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE;
5325       bool First = true;
5326       for (auto *V : VL) {
5327         CmpInst::Predicate CurrentPred;
5328         auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value());
5329         if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) &&
5330              !match(V, MatchCmp)) ||
5331             (!First && VecPred != CurrentPred)) {
5332           VecPred = CmpInst::BAD_ICMP_PREDICATE;
5333           break;
5334         }
5335         First = false;
5336         VecPred = CurrentPred;
5337       }
5338 
5339       InstructionCost VecCost = TTI->getCmpSelInstrCost(
5340           E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0);
5341       // Check if it is possible and profitable to use min/max for selects in
5342       // VL.
5343       //
5344       auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL);
5345       if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) {
5346         IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy,
5347                                           {VecTy, VecTy});
5348         InstructionCost IntrinsicCost =
5349             TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
5350         // If the selects are the only uses of the compares, they will be dead
5351         // and we can adjust the cost by removing their cost.
5352         if (IntrinsicAndUse.second)
5353           IntrinsicCost -=
5354               TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy,
5355                                       CmpInst::BAD_ICMP_PREDICATE, CostKind);
5356         VecCost = std::min(VecCost, IntrinsicCost);
5357       }
5358       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
5359       return CommonCost + VecCost - ScalarCost;
5360     }
5361     case Instruction::FNeg:
5362     case Instruction::Add:
5363     case Instruction::FAdd:
5364     case Instruction::Sub:
5365     case Instruction::FSub:
5366     case Instruction::Mul:
5367     case Instruction::FMul:
5368     case Instruction::UDiv:
5369     case Instruction::SDiv:
5370     case Instruction::FDiv:
5371     case Instruction::URem:
5372     case Instruction::SRem:
5373     case Instruction::FRem:
5374     case Instruction::Shl:
5375     case Instruction::LShr:
5376     case Instruction::AShr:
5377     case Instruction::And:
5378     case Instruction::Or:
5379     case Instruction::Xor: {
5380       // Certain instructions can be cheaper to vectorize if they have a
5381       // constant second vector operand.
5382       TargetTransformInfo::OperandValueKind Op1VK =
5383           TargetTransformInfo::OK_AnyValue;
5384       TargetTransformInfo::OperandValueKind Op2VK =
5385           TargetTransformInfo::OK_UniformConstantValue;
5386       TargetTransformInfo::OperandValueProperties Op1VP =
5387           TargetTransformInfo::OP_None;
5388       TargetTransformInfo::OperandValueProperties Op2VP =
5389           TargetTransformInfo::OP_PowerOf2;
5390 
5391       // If all operands are exactly the same ConstantInt then set the
5392       // operand kind to OK_UniformConstantValue.
5393       // If instead not all operands are constants, then set the operand kind
5394       // to OK_AnyValue. If all operands are constants but not the same,
5395       // then set the operand kind to OK_NonUniformConstantValue.
5396       ConstantInt *CInt0 = nullptr;
5397       for (unsigned i = 0, e = VL.size(); i < e; ++i) {
5398         const Instruction *I = cast<Instruction>(VL[i]);
5399         unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0;
5400         ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx));
5401         if (!CInt) {
5402           Op2VK = TargetTransformInfo::OK_AnyValue;
5403           Op2VP = TargetTransformInfo::OP_None;
5404           break;
5405         }
5406         if (Op2VP == TargetTransformInfo::OP_PowerOf2 &&
5407             !CInt->getValue().isPowerOf2())
5408           Op2VP = TargetTransformInfo::OP_None;
5409         if (i == 0) {
5410           CInt0 = CInt;
5411           continue;
5412         }
5413         if (CInt0 != CInt)
5414           Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
5415       }
5416 
5417       SmallVector<const Value *, 4> Operands(VL0->operand_values());
5418       InstructionCost ScalarEltCost =
5419           TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK,
5420                                       Op2VK, Op1VP, Op2VP, Operands, VL0);
5421       if (NeedToShuffleReuses) {
5422         CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
5423       }
5424       InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
5425       InstructionCost VecCost =
5426           TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK,
5427                                       Op2VK, Op1VP, Op2VP, Operands, VL0);
5428       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
5429       return CommonCost + VecCost - ScalarCost;
5430     }
5431     case Instruction::GetElementPtr: {
5432       TargetTransformInfo::OperandValueKind Op1VK =
5433           TargetTransformInfo::OK_AnyValue;
5434       TargetTransformInfo::OperandValueKind Op2VK =
5435           TargetTransformInfo::OK_UniformConstantValue;
5436 
5437       InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost(
5438           Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK);
5439       if (NeedToShuffleReuses) {
5440         CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
5441       }
5442       InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
5443       InstructionCost VecCost = TTI->getArithmeticInstrCost(
5444           Instruction::Add, VecTy, CostKind, Op1VK, Op2VK);
5445       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
5446       return CommonCost + VecCost - ScalarCost;
5447     }
5448     case Instruction::Load: {
5449       // Cost of wide load - cost of scalar loads.
5450       Align Alignment = cast<LoadInst>(VL0)->getAlign();
5451       InstructionCost ScalarEltCost = TTI->getMemoryOpCost(
5452           Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0);
5453       if (NeedToShuffleReuses) {
5454         CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
5455       }
5456       InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost;
5457       InstructionCost VecLdCost;
5458       if (E->State == TreeEntry::Vectorize) {
5459         VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0,
5460                                          CostKind, VL0);
5461       } else {
5462         assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState");
5463         Align CommonAlignment = Alignment;
5464         for (Value *V : VL)
5465           CommonAlignment =
5466               commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign());
5467         VecLdCost = TTI->getGatherScatterOpCost(
5468             Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(),
5469             /*VariableMask=*/false, CommonAlignment, CostKind, VL0);
5470       }
5471       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost));
5472       return CommonCost + VecLdCost - ScalarLdCost;
5473     }
5474     case Instruction::Store: {
5475       // We know that we can merge the stores. Calculate the cost.
5476       bool IsReorder = !E->ReorderIndices.empty();
5477       auto *SI =
5478           cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0);
5479       Align Alignment = SI->getAlign();
5480       InstructionCost ScalarEltCost = TTI->getMemoryOpCost(
5481           Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0);
5482       InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost;
5483       InstructionCost VecStCost = TTI->getMemoryOpCost(
5484           Instruction::Store, VecTy, Alignment, 0, CostKind, VL0);
5485       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost));
5486       return CommonCost + VecStCost - ScalarStCost;
5487     }
5488     case Instruction::Call: {
5489       CallInst *CI = cast<CallInst>(VL0);
5490       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
5491 
5492       // Calculate the cost of the scalar and vector calls.
5493       IntrinsicCostAttributes CostAttrs(ID, *CI, 1);
5494       InstructionCost ScalarEltCost =
5495           TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
5496       if (NeedToShuffleReuses) {
5497         CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
5498       }
5499       InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost;
5500 
5501       auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
5502       InstructionCost VecCallCost =
5503           std::min(VecCallCosts.first, VecCallCosts.second);
5504 
5505       LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost
5506                         << " (" << VecCallCost << "-" << ScalarCallCost << ")"
5507                         << " for " << *CI << "\n");
5508 
5509       return CommonCost + VecCallCost - ScalarCallCost;
5510     }
5511     case Instruction::ShuffleVector: {
5512       assert(E->isAltShuffle() &&
5513              ((Instruction::isBinaryOp(E->getOpcode()) &&
5514                Instruction::isBinaryOp(E->getAltOpcode())) ||
5515               (Instruction::isCast(E->getOpcode()) &&
5516                Instruction::isCast(E->getAltOpcode())) ||
5517               (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) &&
5518              "Invalid Shuffle Vector Operand");
5519       InstructionCost ScalarCost = 0;
5520       if (NeedToShuffleReuses) {
5521         for (unsigned Idx : E->ReuseShuffleIndices) {
5522           Instruction *I = cast<Instruction>(VL[Idx]);
5523           CommonCost -= TTI->getInstructionCost(I, CostKind);
5524         }
5525         for (Value *V : VL) {
5526           Instruction *I = cast<Instruction>(V);
5527           CommonCost += TTI->getInstructionCost(I, CostKind);
5528         }
5529       }
5530       for (Value *V : VL) {
5531         Instruction *I = cast<Instruction>(V);
5532         assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
5533         ScalarCost += TTI->getInstructionCost(I, CostKind);
5534       }
5535       // VecCost is equal to sum of the cost of creating 2 vectors
5536       // and the cost of creating shuffle.
5537       InstructionCost VecCost = 0;
5538       // Try to find the previous shuffle node with the same operands and same
5539       // main/alternate ops.
5540       auto &&TryFindNodeWithEqualOperands = [this, E]() {
5541         for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) {
5542           if (TE.get() == E)
5543             break;
5544           if (TE->isAltShuffle() &&
5545               ((TE->getOpcode() == E->getOpcode() &&
5546                 TE->getAltOpcode() == E->getAltOpcode()) ||
5547                (TE->getOpcode() == E->getAltOpcode() &&
5548                 TE->getAltOpcode() == E->getOpcode())) &&
5549               TE->hasEqualOperands(*E))
5550             return true;
5551         }
5552         return false;
5553       };
5554       if (TryFindNodeWithEqualOperands()) {
5555         LLVM_DEBUG({
5556           dbgs() << "SLP: diamond match for alternate node found.\n";
5557           E->dump();
5558         });
5559         // No need to add new vector costs here since we're going to reuse
5560         // same main/alternate vector ops, just do different shuffling.
5561       } else if (Instruction::isBinaryOp(E->getOpcode())) {
5562         VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind);
5563         VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy,
5564                                                CostKind);
5565       } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) {
5566         VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy,
5567                                           Builder.getInt1Ty(),
5568                                           CI0->getPredicate(), CostKind, VL0);
5569         VecCost += TTI->getCmpSelInstrCost(
5570             E->getOpcode(), ScalarTy, Builder.getInt1Ty(),
5571             cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind,
5572             E->getAltOp());
5573       } else {
5574         Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType();
5575         Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType();
5576         auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size());
5577         auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size());
5578         VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty,
5579                                         TTI::CastContextHint::None, CostKind);
5580         VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty,
5581                                          TTI::CastContextHint::None, CostKind);
5582       }
5583 
5584       SmallVector<int> Mask;
5585       buildShuffleEntryMask(
5586           E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices,
5587           [E](Instruction *I) {
5588             assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
5589             return isAlternateInstruction(I, E->getMainOp(), E->getAltOp());
5590           },
5591           Mask);
5592       CommonCost =
5593           TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask);
5594       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
5595       return CommonCost + VecCost - ScalarCost;
5596     }
5597     default:
5598       llvm_unreachable("Unknown instruction");
5599   }
5600 }
5601 
5602 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const {
5603   LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height "
5604                     << VectorizableTree.size() << " is fully vectorizable .\n");
5605 
5606   auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) {
5607     SmallVector<int> Mask;
5608     return TE->State == TreeEntry::NeedToGather &&
5609            !any_of(TE->Scalars,
5610                    [this](Value *V) { return EphValues.contains(V); }) &&
5611            (allConstant(TE->Scalars) || isSplat(TE->Scalars) ||
5612             TE->Scalars.size() < Limit ||
5613             ((TE->getOpcode() == Instruction::ExtractElement ||
5614               all_of(TE->Scalars,
5615                      [](Value *V) {
5616                        return isa<ExtractElementInst, UndefValue>(V);
5617                      })) &&
5618              isFixedVectorShuffle(TE->Scalars, Mask)) ||
5619             (TE->State == TreeEntry::NeedToGather &&
5620              TE->getOpcode() == Instruction::Load && !TE->isAltShuffle()));
5621   };
5622 
5623   // We only handle trees of heights 1 and 2.
5624   if (VectorizableTree.size() == 1 &&
5625       (VectorizableTree[0]->State == TreeEntry::Vectorize ||
5626        (ForReduction &&
5627         AreVectorizableGathers(VectorizableTree[0].get(),
5628                                VectorizableTree[0]->Scalars.size()) &&
5629         VectorizableTree[0]->getVectorFactor() > 2)))
5630     return true;
5631 
5632   if (VectorizableTree.size() != 2)
5633     return false;
5634 
5635   // Handle splat and all-constants stores. Also try to vectorize tiny trees
5636   // with the second gather nodes if they have less scalar operands rather than
5637   // the initial tree element (may be profitable to shuffle the second gather)
5638   // or they are extractelements, which form shuffle.
5639   SmallVector<int> Mask;
5640   if (VectorizableTree[0]->State == TreeEntry::Vectorize &&
5641       AreVectorizableGathers(VectorizableTree[1].get(),
5642                              VectorizableTree[0]->Scalars.size()))
5643     return true;
5644 
5645   // Gathering cost would be too much for tiny trees.
5646   if (VectorizableTree[0]->State == TreeEntry::NeedToGather ||
5647       (VectorizableTree[1]->State == TreeEntry::NeedToGather &&
5648        VectorizableTree[0]->State != TreeEntry::ScatterVectorize))
5649     return false;
5650 
5651   return true;
5652 }
5653 
5654 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts,
5655                                        TargetTransformInfo *TTI,
5656                                        bool MustMatchOrInst) {
5657   // Look past the root to find a source value. Arbitrarily follow the
5658   // path through operand 0 of any 'or'. Also, peek through optional
5659   // shift-left-by-multiple-of-8-bits.
5660   Value *ZextLoad = Root;
5661   const APInt *ShAmtC;
5662   bool FoundOr = false;
5663   while (!isa<ConstantExpr>(ZextLoad) &&
5664          (match(ZextLoad, m_Or(m_Value(), m_Value())) ||
5665           (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) &&
5666            ShAmtC->urem(8) == 0))) {
5667     auto *BinOp = cast<BinaryOperator>(ZextLoad);
5668     ZextLoad = BinOp->getOperand(0);
5669     if (BinOp->getOpcode() == Instruction::Or)
5670       FoundOr = true;
5671   }
5672   // Check if the input is an extended load of the required or/shift expression.
5673   Value *Load;
5674   if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root ||
5675       !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load))
5676     return false;
5677 
5678   // Require that the total load bit width is a legal integer type.
5679   // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target.
5680   // But <16 x i8> --> i128 is not, so the backend probably can't reduce it.
5681   Type *SrcTy = Load->getType();
5682   unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts;
5683   if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth)))
5684     return false;
5685 
5686   // Everything matched - assume that we can fold the whole sequence using
5687   // load combining.
5688   LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at "
5689              << *(cast<Instruction>(Root)) << "\n");
5690 
5691   return true;
5692 }
5693 
5694 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const {
5695   if (RdxKind != RecurKind::Or)
5696     return false;
5697 
5698   unsigned NumElts = VectorizableTree[0]->Scalars.size();
5699   Value *FirstReduced = VectorizableTree[0]->Scalars[0];
5700   return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI,
5701                                     /* MatchOr */ false);
5702 }
5703 
5704 bool BoUpSLP::isLoadCombineCandidate() const {
5705   // Peek through a final sequence of stores and check if all operations are
5706   // likely to be load-combined.
5707   unsigned NumElts = VectorizableTree[0]->Scalars.size();
5708   for (Value *Scalar : VectorizableTree[0]->Scalars) {
5709     Value *X;
5710     if (!match(Scalar, m_Store(m_Value(X), m_Value())) ||
5711         !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true))
5712       return false;
5713   }
5714   return true;
5715 }
5716 
5717 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const {
5718   // No need to vectorize inserts of gathered values.
5719   if (VectorizableTree.size() == 2 &&
5720       isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) &&
5721       VectorizableTree[1]->State == TreeEntry::NeedToGather)
5722     return true;
5723 
5724   // We can vectorize the tree if its size is greater than or equal to the
5725   // minimum size specified by the MinTreeSize command line option.
5726   if (VectorizableTree.size() >= MinTreeSize)
5727     return false;
5728 
5729   // If we have a tiny tree (a tree whose size is less than MinTreeSize), we
5730   // can vectorize it if we can prove it fully vectorizable.
5731   if (isFullyVectorizableTinyTree(ForReduction))
5732     return false;
5733 
5734   assert(VectorizableTree.empty()
5735              ? ExternalUses.empty()
5736              : true && "We shouldn't have any external users");
5737 
5738   // Otherwise, we can't vectorize the tree. It is both tiny and not fully
5739   // vectorizable.
5740   return true;
5741 }
5742 
5743 InstructionCost BoUpSLP::getSpillCost() const {
5744   // Walk from the bottom of the tree to the top, tracking which values are
5745   // live. When we see a call instruction that is not part of our tree,
5746   // query TTI to see if there is a cost to keeping values live over it
5747   // (for example, if spills and fills are required).
5748   unsigned BundleWidth = VectorizableTree.front()->Scalars.size();
5749   InstructionCost Cost = 0;
5750 
5751   SmallPtrSet<Instruction*, 4> LiveValues;
5752   Instruction *PrevInst = nullptr;
5753 
5754   // The entries in VectorizableTree are not necessarily ordered by their
5755   // position in basic blocks. Collect them and order them by dominance so later
5756   // instructions are guaranteed to be visited first. For instructions in
5757   // different basic blocks, we only scan to the beginning of the block, so
5758   // their order does not matter, as long as all instructions in a basic block
5759   // are grouped together. Using dominance ensures a deterministic order.
5760   SmallVector<Instruction *, 16> OrderedScalars;
5761   for (const auto &TEPtr : VectorizableTree) {
5762     Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]);
5763     if (!Inst)
5764       continue;
5765     OrderedScalars.push_back(Inst);
5766   }
5767   llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) {
5768     auto *NodeA = DT->getNode(A->getParent());
5769     auto *NodeB = DT->getNode(B->getParent());
5770     assert(NodeA && "Should only process reachable instructions");
5771     assert(NodeB && "Should only process reachable instructions");
5772     assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) &&
5773            "Different nodes should have different DFS numbers");
5774     if (NodeA != NodeB)
5775       return NodeA->getDFSNumIn() < NodeB->getDFSNumIn();
5776     return B->comesBefore(A);
5777   });
5778 
5779   for (Instruction *Inst : OrderedScalars) {
5780     if (!PrevInst) {
5781       PrevInst = Inst;
5782       continue;
5783     }
5784 
5785     // Update LiveValues.
5786     LiveValues.erase(PrevInst);
5787     for (auto &J : PrevInst->operands()) {
5788       if (isa<Instruction>(&*J) && getTreeEntry(&*J))
5789         LiveValues.insert(cast<Instruction>(&*J));
5790     }
5791 
5792     LLVM_DEBUG({
5793       dbgs() << "SLP: #LV: " << LiveValues.size();
5794       for (auto *X : LiveValues)
5795         dbgs() << " " << X->getName();
5796       dbgs() << ", Looking at ";
5797       Inst->dump();
5798     });
5799 
5800     // Now find the sequence of instructions between PrevInst and Inst.
5801     unsigned NumCalls = 0;
5802     BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(),
5803                                  PrevInstIt =
5804                                      PrevInst->getIterator().getReverse();
5805     while (InstIt != PrevInstIt) {
5806       if (PrevInstIt == PrevInst->getParent()->rend()) {
5807         PrevInstIt = Inst->getParent()->rbegin();
5808         continue;
5809       }
5810 
5811       // Debug information does not impact spill cost.
5812       if ((isa<CallInst>(&*PrevInstIt) &&
5813            !isa<DbgInfoIntrinsic>(&*PrevInstIt)) &&
5814           &*PrevInstIt != PrevInst)
5815         NumCalls++;
5816 
5817       ++PrevInstIt;
5818     }
5819 
5820     if (NumCalls) {
5821       SmallVector<Type*, 4> V;
5822       for (auto *II : LiveValues) {
5823         auto *ScalarTy = II->getType();
5824         if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy))
5825           ScalarTy = VectorTy->getElementType();
5826         V.push_back(FixedVectorType::get(ScalarTy, BundleWidth));
5827       }
5828       Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V);
5829     }
5830 
5831     PrevInst = Inst;
5832   }
5833 
5834   return Cost;
5835 }
5836 
5837 /// Check if two insertelement instructions are from the same buildvector.
5838 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU,
5839                                             InsertElementInst *V) {
5840   // Instructions must be from the same basic blocks.
5841   if (VU->getParent() != V->getParent())
5842     return false;
5843   // Checks if 2 insertelements are from the same buildvector.
5844   if (VU->getType() != V->getType())
5845     return false;
5846   // Multiple used inserts are separate nodes.
5847   if (!VU->hasOneUse() && !V->hasOneUse())
5848     return false;
5849   auto *IE1 = VU;
5850   auto *IE2 = V;
5851   // Go through the vector operand of insertelement instructions trying to find
5852   // either VU as the original vector for IE2 or V as the original vector for
5853   // IE1.
5854   do {
5855     if (IE2 == VU || IE1 == V)
5856       return true;
5857     if (IE1) {
5858       if (IE1 != VU && !IE1->hasOneUse())
5859         IE1 = nullptr;
5860       else
5861         IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0));
5862     }
5863     if (IE2) {
5864       if (IE2 != V && !IE2->hasOneUse())
5865         IE2 = nullptr;
5866       else
5867         IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0));
5868     }
5869   } while (IE1 || IE2);
5870   return false;
5871 }
5872 
5873 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) {
5874   InstructionCost Cost = 0;
5875   LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size "
5876                     << VectorizableTree.size() << ".\n");
5877 
5878   unsigned BundleWidth = VectorizableTree[0]->Scalars.size();
5879 
5880   for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) {
5881     TreeEntry &TE = *VectorizableTree[I].get();
5882 
5883     InstructionCost C = getEntryCost(&TE, VectorizedVals);
5884     Cost += C;
5885     LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
5886                       << " for bundle that starts with " << *TE.Scalars[0]
5887                       << ".\n"
5888                       << "SLP: Current total cost = " << Cost << "\n");
5889   }
5890 
5891   SmallPtrSet<Value *, 16> ExtractCostCalculated;
5892   InstructionCost ExtractCost = 0;
5893   SmallVector<unsigned> VF;
5894   SmallVector<SmallVector<int>> ShuffleMask;
5895   SmallVector<Value *> FirstUsers;
5896   SmallVector<APInt> DemandedElts;
5897   for (ExternalUser &EU : ExternalUses) {
5898     // We only add extract cost once for the same scalar.
5899     if (!isa_and_nonnull<InsertElementInst>(EU.User) &&
5900         !ExtractCostCalculated.insert(EU.Scalar).second)
5901       continue;
5902 
5903     // Uses by ephemeral values are free (because the ephemeral value will be
5904     // removed prior to code generation, and so the extraction will be
5905     // removed as well).
5906     if (EphValues.count(EU.User))
5907       continue;
5908 
5909     // No extract cost for vector "scalar"
5910     if (isa<FixedVectorType>(EU.Scalar->getType()))
5911       continue;
5912 
5913     // Already counted the cost for external uses when tried to adjust the cost
5914     // for extractelements, no need to add it again.
5915     if (isa<ExtractElementInst>(EU.Scalar))
5916       continue;
5917 
5918     // If found user is an insertelement, do not calculate extract cost but try
5919     // to detect it as a final shuffled/identity match.
5920     if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) {
5921       if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) {
5922         Optional<unsigned> InsertIdx = getInsertIndex(VU);
5923         if (InsertIdx) {
5924           auto *It = find_if(FirstUsers, [VU](Value *V) {
5925             return areTwoInsertFromSameBuildVector(VU,
5926                                                    cast<InsertElementInst>(V));
5927           });
5928           int VecId = -1;
5929           if (It == FirstUsers.end()) {
5930             VF.push_back(FTy->getNumElements());
5931             ShuffleMask.emplace_back(VF.back(), UndefMaskElem);
5932             // Find the insertvector, vectorized in tree, if any.
5933             Value *Base = VU;
5934             while (isa<InsertElementInst>(Base)) {
5935               // Build the mask for the vectorized insertelement instructions.
5936               if (const TreeEntry *E = getTreeEntry(Base)) {
5937                 VU = cast<InsertElementInst>(Base);
5938                 do {
5939                   int Idx = E->findLaneForValue(Base);
5940                   ShuffleMask.back()[Idx] = Idx;
5941                   Base = cast<InsertElementInst>(Base)->getOperand(0);
5942                 } while (E == getTreeEntry(Base));
5943                 break;
5944               }
5945               Base = cast<InsertElementInst>(Base)->getOperand(0);
5946             }
5947             FirstUsers.push_back(VU);
5948             DemandedElts.push_back(APInt::getZero(VF.back()));
5949             VecId = FirstUsers.size() - 1;
5950           } else {
5951             VecId = std::distance(FirstUsers.begin(), It);
5952           }
5953           ShuffleMask[VecId][*InsertIdx] = EU.Lane;
5954           DemandedElts[VecId].setBit(*InsertIdx);
5955           continue;
5956         }
5957       }
5958     }
5959 
5960     // If we plan to rewrite the tree in a smaller type, we will need to sign
5961     // extend the extracted value back to the original type. Here, we account
5962     // for the extract and the added cost of the sign extend if needed.
5963     auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth);
5964     auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
5965     if (MinBWs.count(ScalarRoot)) {
5966       auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
5967       auto Extend =
5968           MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt;
5969       VecTy = FixedVectorType::get(MinTy, BundleWidth);
5970       ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(),
5971                                                    VecTy, EU.Lane);
5972     } else {
5973       ExtractCost +=
5974           TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane);
5975     }
5976   }
5977 
5978   InstructionCost SpillCost = getSpillCost();
5979   Cost += SpillCost + ExtractCost;
5980   if (FirstUsers.size() == 1) {
5981     int Limit = ShuffleMask.front().size() * 2;
5982     if (all_of(ShuffleMask.front(), [Limit](int Idx) { return Idx < Limit; }) &&
5983         !ShuffleVectorInst::isIdentityMask(ShuffleMask.front())) {
5984       InstructionCost C = TTI->getShuffleCost(
5985           TTI::SK_PermuteSingleSrc,
5986           cast<FixedVectorType>(FirstUsers.front()->getType()),
5987           ShuffleMask.front());
5988       LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
5989                         << " for final shuffle of insertelement external users "
5990                         << *VectorizableTree.front()->Scalars.front() << ".\n"
5991                         << "SLP: Current total cost = " << Cost << "\n");
5992       Cost += C;
5993     }
5994     InstructionCost InsertCost = TTI->getScalarizationOverhead(
5995         cast<FixedVectorType>(FirstUsers.front()->getType()),
5996         DemandedElts.front(), /*Insert*/ true, /*Extract*/ false);
5997     LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost
5998                       << " for insertelements gather.\n"
5999                       << "SLP: Current total cost = " << Cost << "\n");
6000     Cost -= InsertCost;
6001   } else if (FirstUsers.size() >= 2) {
6002     unsigned MaxVF = *std::max_element(VF.begin(), VF.end());
6003     // Combined masks of the first 2 vectors.
6004     SmallVector<int> CombinedMask(MaxVF, UndefMaskElem);
6005     copy(ShuffleMask.front(), CombinedMask.begin());
6006     APInt CombinedDemandedElts = DemandedElts.front().zextOrSelf(MaxVF);
6007     auto *VecTy = FixedVectorType::get(
6008         cast<VectorType>(FirstUsers.front()->getType())->getElementType(),
6009         MaxVF);
6010     for (int I = 0, E = ShuffleMask[1].size(); I < E; ++I) {
6011       if (ShuffleMask[1][I] != UndefMaskElem) {
6012         CombinedMask[I] = ShuffleMask[1][I] + MaxVF;
6013         CombinedDemandedElts.setBit(I);
6014       }
6015     }
6016     InstructionCost C =
6017         TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask);
6018     LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
6019                       << " for final shuffle of vector node and external "
6020                          "insertelement users "
6021                       << *VectorizableTree.front()->Scalars.front() << ".\n"
6022                       << "SLP: Current total cost = " << Cost << "\n");
6023     Cost += C;
6024     InstructionCost InsertCost = TTI->getScalarizationOverhead(
6025         VecTy, CombinedDemandedElts, /*Insert*/ true, /*Extract*/ false);
6026     LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost
6027                       << " for insertelements gather.\n"
6028                       << "SLP: Current total cost = " << Cost << "\n");
6029     Cost -= InsertCost;
6030     for (int I = 2, E = FirstUsers.size(); I < E; ++I) {
6031       // Other elements - permutation of 2 vectors (the initial one and the
6032       // next Ith incoming vector).
6033       unsigned VF = ShuffleMask[I].size();
6034       for (unsigned Idx = 0; Idx < VF; ++Idx) {
6035         int Mask = ShuffleMask[I][Idx];
6036         if (Mask != UndefMaskElem)
6037           CombinedMask[Idx] = MaxVF + Mask;
6038         else if (CombinedMask[Idx] != UndefMaskElem)
6039           CombinedMask[Idx] = Idx;
6040       }
6041       for (unsigned Idx = VF; Idx < MaxVF; ++Idx)
6042         if (CombinedMask[Idx] != UndefMaskElem)
6043           CombinedMask[Idx] = Idx;
6044       InstructionCost C =
6045           TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask);
6046       LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
6047                         << " for final shuffle of vector node and external "
6048                            "insertelement users "
6049                         << *VectorizableTree.front()->Scalars.front() << ".\n"
6050                         << "SLP: Current total cost = " << Cost << "\n");
6051       Cost += C;
6052       InstructionCost InsertCost = TTI->getScalarizationOverhead(
6053           cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I],
6054           /*Insert*/ true, /*Extract*/ false);
6055       LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost
6056                         << " for insertelements gather.\n"
6057                         << "SLP: Current total cost = " << Cost << "\n");
6058       Cost -= InsertCost;
6059     }
6060   }
6061 
6062 #ifndef NDEBUG
6063   SmallString<256> Str;
6064   {
6065     raw_svector_ostream OS(Str);
6066     OS << "SLP: Spill Cost = " << SpillCost << ".\n"
6067        << "SLP: Extract Cost = " << ExtractCost << ".\n"
6068        << "SLP: Total Cost = " << Cost << ".\n";
6069   }
6070   LLVM_DEBUG(dbgs() << Str);
6071   if (ViewSLPTree)
6072     ViewGraph(this, "SLP" + F->getName(), false, Str);
6073 #endif
6074 
6075   return Cost;
6076 }
6077 
6078 Optional<TargetTransformInfo::ShuffleKind>
6079 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask,
6080                                SmallVectorImpl<const TreeEntry *> &Entries) {
6081   // TODO: currently checking only for Scalars in the tree entry, need to count
6082   // reused elements too for better cost estimation.
6083   Mask.assign(TE->Scalars.size(), UndefMaskElem);
6084   Entries.clear();
6085   // Build a lists of values to tree entries.
6086   DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs;
6087   for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) {
6088     if (EntryPtr.get() == TE)
6089       break;
6090     if (EntryPtr->State != TreeEntry::NeedToGather)
6091       continue;
6092     for (Value *V : EntryPtr->Scalars)
6093       ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get());
6094   }
6095   // Find all tree entries used by the gathered values. If no common entries
6096   // found - not a shuffle.
6097   // Here we build a set of tree nodes for each gathered value and trying to
6098   // find the intersection between these sets. If we have at least one common
6099   // tree node for each gathered value - we have just a permutation of the
6100   // single vector. If we have 2 different sets, we're in situation where we
6101   // have a permutation of 2 input vectors.
6102   SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs;
6103   DenseMap<Value *, int> UsedValuesEntry;
6104   for (Value *V : TE->Scalars) {
6105     if (isa<UndefValue>(V))
6106       continue;
6107     // Build a list of tree entries where V is used.
6108     SmallPtrSet<const TreeEntry *, 4> VToTEs;
6109     auto It = ValueToTEs.find(V);
6110     if (It != ValueToTEs.end())
6111       VToTEs = It->second;
6112     if (const TreeEntry *VTE = getTreeEntry(V))
6113       VToTEs.insert(VTE);
6114     if (VToTEs.empty())
6115       return None;
6116     if (UsedTEs.empty()) {
6117       // The first iteration, just insert the list of nodes to vector.
6118       UsedTEs.push_back(VToTEs);
6119     } else {
6120       // Need to check if there are any previously used tree nodes which use V.
6121       // If there are no such nodes, consider that we have another one input
6122       // vector.
6123       SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs);
6124       unsigned Idx = 0;
6125       for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) {
6126         // Do we have a non-empty intersection of previously listed tree entries
6127         // and tree entries using current V?
6128         set_intersect(VToTEs, Set);
6129         if (!VToTEs.empty()) {
6130           // Yes, write the new subset and continue analysis for the next
6131           // scalar.
6132           Set.swap(VToTEs);
6133           break;
6134         }
6135         VToTEs = SavedVToTEs;
6136         ++Idx;
6137       }
6138       // No non-empty intersection found - need to add a second set of possible
6139       // source vectors.
6140       if (Idx == UsedTEs.size()) {
6141         // If the number of input vectors is greater than 2 - not a permutation,
6142         // fallback to the regular gather.
6143         if (UsedTEs.size() == 2)
6144           return None;
6145         UsedTEs.push_back(SavedVToTEs);
6146         Idx = UsedTEs.size() - 1;
6147       }
6148       UsedValuesEntry.try_emplace(V, Idx);
6149     }
6150   }
6151 
6152   unsigned VF = 0;
6153   if (UsedTEs.size() == 1) {
6154     // Try to find the perfect match in another gather node at first.
6155     auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) {
6156       return EntryPtr->isSame(TE->Scalars);
6157     });
6158     if (It != UsedTEs.front().end()) {
6159       Entries.push_back(*It);
6160       std::iota(Mask.begin(), Mask.end(), 0);
6161       return TargetTransformInfo::SK_PermuteSingleSrc;
6162     }
6163     // No perfect match, just shuffle, so choose the first tree node.
6164     Entries.push_back(*UsedTEs.front().begin());
6165   } else {
6166     // Try to find nodes with the same vector factor.
6167     assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries.");
6168     DenseMap<int, const TreeEntry *> VFToTE;
6169     for (const TreeEntry *TE : UsedTEs.front())
6170       VFToTE.try_emplace(TE->getVectorFactor(), TE);
6171     for (const TreeEntry *TE : UsedTEs.back()) {
6172       auto It = VFToTE.find(TE->getVectorFactor());
6173       if (It != VFToTE.end()) {
6174         VF = It->first;
6175         Entries.push_back(It->second);
6176         Entries.push_back(TE);
6177         break;
6178       }
6179     }
6180     // No 2 source vectors with the same vector factor - give up and do regular
6181     // gather.
6182     if (Entries.empty())
6183       return None;
6184   }
6185 
6186   // Build a shuffle mask for better cost estimation and vector emission.
6187   for (int I = 0, E = TE->Scalars.size(); I < E; ++I) {
6188     Value *V = TE->Scalars[I];
6189     if (isa<UndefValue>(V))
6190       continue;
6191     unsigned Idx = UsedValuesEntry.lookup(V);
6192     const TreeEntry *VTE = Entries[Idx];
6193     int FoundLane = VTE->findLaneForValue(V);
6194     Mask[I] = Idx * VF + FoundLane;
6195     // Extra check required by isSingleSourceMaskImpl function (called by
6196     // ShuffleVectorInst::isSingleSourceMask).
6197     if (Mask[I] >= 2 * E)
6198       return None;
6199   }
6200   switch (Entries.size()) {
6201   case 1:
6202     return TargetTransformInfo::SK_PermuteSingleSrc;
6203   case 2:
6204     return TargetTransformInfo::SK_PermuteTwoSrc;
6205   default:
6206     break;
6207   }
6208   return None;
6209 }
6210 
6211 InstructionCost BoUpSLP::getGatherCost(FixedVectorType *Ty,
6212                                        const APInt &ShuffledIndices,
6213                                        bool NeedToShuffle) const {
6214   InstructionCost Cost =
6215       TTI->getScalarizationOverhead(Ty, ~ShuffledIndices, /*Insert*/ true,
6216                                     /*Extract*/ false);
6217   if (NeedToShuffle)
6218     Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty);
6219   return Cost;
6220 }
6221 
6222 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const {
6223   // Find the type of the operands in VL.
6224   Type *ScalarTy = VL[0]->getType();
6225   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
6226     ScalarTy = SI->getValueOperand()->getType();
6227   auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
6228   bool DuplicateNonConst = false;
6229   // Find the cost of inserting/extracting values from the vector.
6230   // Check if the same elements are inserted several times and count them as
6231   // shuffle candidates.
6232   APInt ShuffledElements = APInt::getZero(VL.size());
6233   DenseSet<Value *> UniqueElements;
6234   // Iterate in reverse order to consider insert elements with the high cost.
6235   for (unsigned I = VL.size(); I > 0; --I) {
6236     unsigned Idx = I - 1;
6237     // No need to shuffle duplicates for constants.
6238     if (isConstant(VL[Idx])) {
6239       ShuffledElements.setBit(Idx);
6240       continue;
6241     }
6242     if (!UniqueElements.insert(VL[Idx]).second) {
6243       DuplicateNonConst = true;
6244       ShuffledElements.setBit(Idx);
6245     }
6246   }
6247   return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst);
6248 }
6249 
6250 // Perform operand reordering on the instructions in VL and return the reordered
6251 // operands in Left and Right.
6252 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
6253                                              SmallVectorImpl<Value *> &Left,
6254                                              SmallVectorImpl<Value *> &Right,
6255                                              const DataLayout &DL,
6256                                              ScalarEvolution &SE,
6257                                              const BoUpSLP &R) {
6258   if (VL.empty())
6259     return;
6260   VLOperands Ops(VL, DL, SE, R);
6261   // Reorder the operands in place.
6262   Ops.reorder();
6263   Left = Ops.getVL(0);
6264   Right = Ops.getVL(1);
6265 }
6266 
6267 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) {
6268   // Get the basic block this bundle is in. All instructions in the bundle
6269   // should be in this block.
6270   auto *Front = E->getMainOp();
6271   auto *BB = Front->getParent();
6272   assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool {
6273     auto *I = cast<Instruction>(V);
6274     return !E->isOpcodeOrAlt(I) || I->getParent() == BB;
6275   }));
6276 
6277   // The last instruction in the bundle in program order.
6278   Instruction *LastInst = nullptr;
6279 
6280   // Find the last instruction. The common case should be that BB has been
6281   // scheduled, and the last instruction is VL.back(). So we start with
6282   // VL.back() and iterate over schedule data until we reach the end of the
6283   // bundle. The end of the bundle is marked by null ScheduleData.
6284   if (BlocksSchedules.count(BB)) {
6285     auto *Bundle =
6286         BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back()));
6287     if (Bundle && Bundle->isPartOfBundle())
6288       for (; Bundle; Bundle = Bundle->NextInBundle)
6289         if (Bundle->OpValue == Bundle->Inst)
6290           LastInst = Bundle->Inst;
6291   }
6292 
6293   // LastInst can still be null at this point if there's either not an entry
6294   // for BB in BlocksSchedules or there's no ScheduleData available for
6295   // VL.back(). This can be the case if buildTree_rec aborts for various
6296   // reasons (e.g., the maximum recursion depth is reached, the maximum region
6297   // size is reached, etc.). ScheduleData is initialized in the scheduling
6298   // "dry-run".
6299   //
6300   // If this happens, we can still find the last instruction by brute force. We
6301   // iterate forwards from Front (inclusive) until we either see all
6302   // instructions in the bundle or reach the end of the block. If Front is the
6303   // last instruction in program order, LastInst will be set to Front, and we
6304   // will visit all the remaining instructions in the block.
6305   //
6306   // One of the reasons we exit early from buildTree_rec is to place an upper
6307   // bound on compile-time. Thus, taking an additional compile-time hit here is
6308   // not ideal. However, this should be exceedingly rare since it requires that
6309   // we both exit early from buildTree_rec and that the bundle be out-of-order
6310   // (causing us to iterate all the way to the end of the block).
6311   if (!LastInst) {
6312     SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end());
6313     for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) {
6314       if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I))
6315         LastInst = &I;
6316       if (Bundle.empty())
6317         break;
6318     }
6319   }
6320   assert(LastInst && "Failed to find last instruction in bundle");
6321 
6322   // Set the insertion point after the last instruction in the bundle. Set the
6323   // debug location to Front.
6324   Builder.SetInsertPoint(BB, ++LastInst->getIterator());
6325   Builder.SetCurrentDebugLocation(Front->getDebugLoc());
6326 }
6327 
6328 Value *BoUpSLP::gather(ArrayRef<Value *> VL) {
6329   // List of instructions/lanes from current block and/or the blocks which are
6330   // part of the current loop. These instructions will be inserted at the end to
6331   // make it possible to optimize loops and hoist invariant instructions out of
6332   // the loops body with better chances for success.
6333   SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts;
6334   SmallSet<int, 4> PostponedIndices;
6335   Loop *L = LI->getLoopFor(Builder.GetInsertBlock());
6336   auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) {
6337     SmallPtrSet<BasicBlock *, 4> Visited;
6338     while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second)
6339       InsertBB = InsertBB->getSinglePredecessor();
6340     return InsertBB && InsertBB == InstBB;
6341   };
6342   for (int I = 0, E = VL.size(); I < E; ++I) {
6343     if (auto *Inst = dyn_cast<Instruction>(VL[I]))
6344       if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) ||
6345            getTreeEntry(Inst) || (L && (L->contains(Inst)))) &&
6346           PostponedIndices.insert(I).second)
6347         PostponedInsts.emplace_back(Inst, I);
6348   }
6349 
6350   auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) {
6351     Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos));
6352     auto *InsElt = dyn_cast<InsertElementInst>(Vec);
6353     if (!InsElt)
6354       return Vec;
6355     GatherShuffleSeq.insert(InsElt);
6356     CSEBlocks.insert(InsElt->getParent());
6357     // Add to our 'need-to-extract' list.
6358     if (TreeEntry *Entry = getTreeEntry(V)) {
6359       // Find which lane we need to extract.
6360       unsigned FoundLane = Entry->findLaneForValue(V);
6361       ExternalUses.emplace_back(V, InsElt, FoundLane);
6362     }
6363     return Vec;
6364   };
6365   Value *Val0 =
6366       isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0];
6367   FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size());
6368   Value *Vec = PoisonValue::get(VecTy);
6369   SmallVector<int> NonConsts;
6370   // Insert constant values at first.
6371   for (int I = 0, E = VL.size(); I < E; ++I) {
6372     if (PostponedIndices.contains(I))
6373       continue;
6374     if (!isConstant(VL[I])) {
6375       NonConsts.push_back(I);
6376       continue;
6377     }
6378     Vec = CreateInsertElement(Vec, VL[I], I);
6379   }
6380   // Insert non-constant values.
6381   for (int I : NonConsts)
6382     Vec = CreateInsertElement(Vec, VL[I], I);
6383   // Append instructions, which are/may be part of the loop, in the end to make
6384   // it possible to hoist non-loop-based instructions.
6385   for (const std::pair<Value *, unsigned> &Pair : PostponedInsts)
6386     Vec = CreateInsertElement(Vec, Pair.first, Pair.second);
6387 
6388   return Vec;
6389 }
6390 
6391 namespace {
6392 /// Merges shuffle masks and emits final shuffle instruction, if required.
6393 class ShuffleInstructionBuilder {
6394   IRBuilderBase &Builder;
6395   const unsigned VF = 0;
6396   bool IsFinalized = false;
6397   SmallVector<int, 4> Mask;
6398   /// Holds all of the instructions that we gathered.
6399   SetVector<Instruction *> &GatherShuffleSeq;
6400   /// A list of blocks that we are going to CSE.
6401   SetVector<BasicBlock *> &CSEBlocks;
6402 
6403 public:
6404   ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF,
6405                             SetVector<Instruction *> &GatherShuffleSeq,
6406                             SetVector<BasicBlock *> &CSEBlocks)
6407       : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq),
6408         CSEBlocks(CSEBlocks) {}
6409 
6410   /// Adds a mask, inverting it before applying.
6411   void addInversedMask(ArrayRef<unsigned> SubMask) {
6412     if (SubMask.empty())
6413       return;
6414     SmallVector<int, 4> NewMask;
6415     inversePermutation(SubMask, NewMask);
6416     addMask(NewMask);
6417   }
6418 
6419   /// Functions adds masks, merging them into  single one.
6420   void addMask(ArrayRef<unsigned> SubMask) {
6421     SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end());
6422     addMask(NewMask);
6423   }
6424 
6425   void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); }
6426 
6427   Value *finalize(Value *V) {
6428     IsFinalized = true;
6429     unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements();
6430     if (VF == ValueVF && Mask.empty())
6431       return V;
6432     SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem);
6433     std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0);
6434     addMask(NormalizedMask);
6435 
6436     if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask))
6437       return V;
6438     Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle");
6439     if (auto *I = dyn_cast<Instruction>(Vec)) {
6440       GatherShuffleSeq.insert(I);
6441       CSEBlocks.insert(I->getParent());
6442     }
6443     return Vec;
6444   }
6445 
6446   ~ShuffleInstructionBuilder() {
6447     assert((IsFinalized || Mask.empty()) &&
6448            "Shuffle construction must be finalized.");
6449   }
6450 };
6451 } // namespace
6452 
6453 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
6454   unsigned VF = VL.size();
6455   InstructionsState S = getSameOpcode(VL);
6456   if (S.getOpcode()) {
6457     if (TreeEntry *E = getTreeEntry(S.OpValue))
6458       if (E->isSame(VL)) {
6459         Value *V = vectorizeTree(E);
6460         if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) {
6461           if (!E->ReuseShuffleIndices.empty()) {
6462             // Reshuffle to get only unique values.
6463             // If some of the scalars are duplicated in the vectorization tree
6464             // entry, we do not vectorize them but instead generate a mask for
6465             // the reuses. But if there are several users of the same entry,
6466             // they may have different vectorization factors. This is especially
6467             // important for PHI nodes. In this case, we need to adapt the
6468             // resulting instruction for the user vectorization factor and have
6469             // to reshuffle it again to take only unique elements of the vector.
6470             // Without this code the function incorrectly returns reduced vector
6471             // instruction with the same elements, not with the unique ones.
6472 
6473             // block:
6474             // %phi = phi <2 x > { .., %entry} {%shuffle, %block}
6475             // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0>
6476             // ... (use %2)
6477             // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0}
6478             // br %block
6479             SmallVector<int> UniqueIdxs(VF, UndefMaskElem);
6480             SmallSet<int, 4> UsedIdxs;
6481             int Pos = 0;
6482             int Sz = VL.size();
6483             for (int Idx : E->ReuseShuffleIndices) {
6484               if (Idx != Sz && Idx != UndefMaskElem &&
6485                   UsedIdxs.insert(Idx).second)
6486                 UniqueIdxs[Idx] = Pos;
6487               ++Pos;
6488             }
6489             assert(VF >= UsedIdxs.size() && "Expected vectorization factor "
6490                                             "less than original vector size.");
6491             UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem);
6492             V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle");
6493           } else {
6494             assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() &&
6495                    "Expected vectorization factor less "
6496                    "than original vector size.");
6497             SmallVector<int> UniformMask(VF, 0);
6498             std::iota(UniformMask.begin(), UniformMask.end(), 0);
6499             V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle");
6500           }
6501           if (auto *I = dyn_cast<Instruction>(V)) {
6502             GatherShuffleSeq.insert(I);
6503             CSEBlocks.insert(I->getParent());
6504           }
6505         }
6506         return V;
6507       }
6508   }
6509 
6510   // Check that every instruction appears once in this bundle.
6511   SmallVector<int> ReuseShuffleIndicies;
6512   SmallVector<Value *> UniqueValues;
6513   if (VL.size() > 2) {
6514     DenseMap<Value *, unsigned> UniquePositions;
6515     unsigned NumValues =
6516         std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) {
6517                                     return !isa<UndefValue>(V);
6518                                   }).base());
6519     VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues));
6520     int UniqueVals = 0;
6521     for (Value *V : VL.drop_back(VL.size() - VF)) {
6522       if (isa<UndefValue>(V)) {
6523         ReuseShuffleIndicies.emplace_back(UndefMaskElem);
6524         continue;
6525       }
6526       if (isConstant(V)) {
6527         ReuseShuffleIndicies.emplace_back(UniqueValues.size());
6528         UniqueValues.emplace_back(V);
6529         continue;
6530       }
6531       auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
6532       ReuseShuffleIndicies.emplace_back(Res.first->second);
6533       if (Res.second) {
6534         UniqueValues.emplace_back(V);
6535         ++UniqueVals;
6536       }
6537     }
6538     if (UniqueVals == 1 && UniqueValues.size() == 1) {
6539       // Emit pure splat vector.
6540       ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(),
6541                                   UndefMaskElem);
6542     } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) {
6543       ReuseShuffleIndicies.clear();
6544       UniqueValues.clear();
6545       UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues));
6546     }
6547     UniqueValues.append(VF - UniqueValues.size(),
6548                         PoisonValue::get(VL[0]->getType()));
6549     VL = UniqueValues;
6550   }
6551 
6552   ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq,
6553                                            CSEBlocks);
6554   Value *Vec = gather(VL);
6555   if (!ReuseShuffleIndicies.empty()) {
6556     ShuffleBuilder.addMask(ReuseShuffleIndicies);
6557     Vec = ShuffleBuilder.finalize(Vec);
6558   }
6559   return Vec;
6560 }
6561 
6562 Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
6563   IRBuilder<>::InsertPointGuard Guard(Builder);
6564 
6565   if (E->VectorizedValue) {
6566     LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
6567     return E->VectorizedValue;
6568   }
6569 
6570   bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
6571   unsigned VF = E->getVectorFactor();
6572   ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq,
6573                                            CSEBlocks);
6574   if (E->State == TreeEntry::NeedToGather) {
6575     if (E->getMainOp())
6576       setInsertPointAfterBundle(E);
6577     Value *Vec;
6578     SmallVector<int> Mask;
6579     SmallVector<const TreeEntry *> Entries;
6580     Optional<TargetTransformInfo::ShuffleKind> Shuffle =
6581         isGatherShuffledEntry(E, Mask, Entries);
6582     if (Shuffle.hasValue()) {
6583       assert((Entries.size() == 1 || Entries.size() == 2) &&
6584              "Expected shuffle of 1 or 2 entries.");
6585       Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue,
6586                                         Entries.back()->VectorizedValue, Mask);
6587       if (auto *I = dyn_cast<Instruction>(Vec)) {
6588         GatherShuffleSeq.insert(I);
6589         CSEBlocks.insert(I->getParent());
6590       }
6591     } else {
6592       Vec = gather(E->Scalars);
6593     }
6594     if (NeedToShuffleReuses) {
6595       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
6596       Vec = ShuffleBuilder.finalize(Vec);
6597     }
6598     E->VectorizedValue = Vec;
6599     return Vec;
6600   }
6601 
6602   assert((E->State == TreeEntry::Vectorize ||
6603           E->State == TreeEntry::ScatterVectorize) &&
6604          "Unhandled state");
6605   unsigned ShuffleOrOp =
6606       E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
6607   Instruction *VL0 = E->getMainOp();
6608   Type *ScalarTy = VL0->getType();
6609   if (auto *Store = dyn_cast<StoreInst>(VL0))
6610     ScalarTy = Store->getValueOperand()->getType();
6611   else if (auto *IE = dyn_cast<InsertElementInst>(VL0))
6612     ScalarTy = IE->getOperand(1)->getType();
6613   auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size());
6614   switch (ShuffleOrOp) {
6615     case Instruction::PHI: {
6616       assert(
6617           (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) &&
6618           "PHI reordering is free.");
6619       auto *PH = cast<PHINode>(VL0);
6620       Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
6621       Builder.SetCurrentDebugLocation(PH->getDebugLoc());
6622       PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
6623       Value *V = NewPhi;
6624       ShuffleBuilder.addInversedMask(E->ReorderIndices);
6625       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
6626       V = ShuffleBuilder.finalize(V);
6627 
6628       E->VectorizedValue = V;
6629 
6630       // PHINodes may have multiple entries from the same block. We want to
6631       // visit every block once.
6632       SmallPtrSet<BasicBlock*, 4> VisitedBBs;
6633 
6634       for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
6635         ValueList Operands;
6636         BasicBlock *IBB = PH->getIncomingBlock(i);
6637 
6638         if (!VisitedBBs.insert(IBB).second) {
6639           NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
6640           continue;
6641         }
6642 
6643         Builder.SetInsertPoint(IBB->getTerminator());
6644         Builder.SetCurrentDebugLocation(PH->getDebugLoc());
6645         Value *Vec = vectorizeTree(E->getOperand(i));
6646         NewPhi->addIncoming(Vec, IBB);
6647       }
6648 
6649       assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
6650              "Invalid number of incoming values");
6651       return V;
6652     }
6653 
6654     case Instruction::ExtractElement: {
6655       Value *V = E->getSingleOperand(0);
6656       Builder.SetInsertPoint(VL0);
6657       ShuffleBuilder.addInversedMask(E->ReorderIndices);
6658       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
6659       V = ShuffleBuilder.finalize(V);
6660       E->VectorizedValue = V;
6661       return V;
6662     }
6663     case Instruction::ExtractValue: {
6664       auto *LI = cast<LoadInst>(E->getSingleOperand(0));
6665       Builder.SetInsertPoint(LI);
6666       auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace());
6667       Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
6668       LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign());
6669       Value *NewV = propagateMetadata(V, E->Scalars);
6670       ShuffleBuilder.addInversedMask(E->ReorderIndices);
6671       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
6672       NewV = ShuffleBuilder.finalize(NewV);
6673       E->VectorizedValue = NewV;
6674       return NewV;
6675     }
6676     case Instruction::InsertElement: {
6677       assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique");
6678       Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back()));
6679       Value *V = vectorizeTree(E->getOperand(1));
6680 
6681       // Create InsertVector shuffle if necessary
6682       auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) {
6683         return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0));
6684       }));
6685       const unsigned NumElts =
6686           cast<FixedVectorType>(FirstInsert->getType())->getNumElements();
6687       const unsigned NumScalars = E->Scalars.size();
6688 
6689       unsigned Offset = *getInsertIndex(VL0);
6690       assert(Offset < NumElts && "Failed to find vector index offset");
6691 
6692       // Create shuffle to resize vector
6693       SmallVector<int> Mask;
6694       if (!E->ReorderIndices.empty()) {
6695         inversePermutation(E->ReorderIndices, Mask);
6696         Mask.append(NumElts - NumScalars, UndefMaskElem);
6697       } else {
6698         Mask.assign(NumElts, UndefMaskElem);
6699         std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0);
6700       }
6701       // Create InsertVector shuffle if necessary
6702       bool IsIdentity = true;
6703       SmallVector<int> PrevMask(NumElts, UndefMaskElem);
6704       Mask.swap(PrevMask);
6705       for (unsigned I = 0; I < NumScalars; ++I) {
6706         Value *Scalar = E->Scalars[PrevMask[I]];
6707         unsigned InsertIdx = *getInsertIndex(Scalar);
6708         IsIdentity &= InsertIdx - Offset == I;
6709         Mask[InsertIdx - Offset] = I;
6710       }
6711       if (!IsIdentity || NumElts != NumScalars) {
6712         V = Builder.CreateShuffleVector(V, Mask);
6713         if (auto *I = dyn_cast<Instruction>(V)) {
6714           GatherShuffleSeq.insert(I);
6715           CSEBlocks.insert(I->getParent());
6716         }
6717       }
6718 
6719       if ((!IsIdentity || Offset != 0 ||
6720            !isUndefVector(FirstInsert->getOperand(0))) &&
6721           NumElts != NumScalars) {
6722         SmallVector<int> InsertMask(NumElts);
6723         std::iota(InsertMask.begin(), InsertMask.end(), 0);
6724         for (unsigned I = 0; I < NumElts; I++) {
6725           if (Mask[I] != UndefMaskElem)
6726             InsertMask[Offset + I] = NumElts + I;
6727         }
6728 
6729         V = Builder.CreateShuffleVector(
6730             FirstInsert->getOperand(0), V, InsertMask,
6731             cast<Instruction>(E->Scalars.back())->getName());
6732         if (auto *I = dyn_cast<Instruction>(V)) {
6733           GatherShuffleSeq.insert(I);
6734           CSEBlocks.insert(I->getParent());
6735         }
6736       }
6737 
6738       ++NumVectorInstructions;
6739       E->VectorizedValue = V;
6740       return V;
6741     }
6742     case Instruction::ZExt:
6743     case Instruction::SExt:
6744     case Instruction::FPToUI:
6745     case Instruction::FPToSI:
6746     case Instruction::FPExt:
6747     case Instruction::PtrToInt:
6748     case Instruction::IntToPtr:
6749     case Instruction::SIToFP:
6750     case Instruction::UIToFP:
6751     case Instruction::Trunc:
6752     case Instruction::FPTrunc:
6753     case Instruction::BitCast: {
6754       setInsertPointAfterBundle(E);
6755 
6756       Value *InVec = vectorizeTree(E->getOperand(0));
6757 
6758       if (E->VectorizedValue) {
6759         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
6760         return E->VectorizedValue;
6761       }
6762 
6763       auto *CI = cast<CastInst>(VL0);
6764       Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
6765       ShuffleBuilder.addInversedMask(E->ReorderIndices);
6766       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
6767       V = ShuffleBuilder.finalize(V);
6768 
6769       E->VectorizedValue = V;
6770       ++NumVectorInstructions;
6771       return V;
6772     }
6773     case Instruction::FCmp:
6774     case Instruction::ICmp: {
6775       setInsertPointAfterBundle(E);
6776 
6777       Value *L = vectorizeTree(E->getOperand(0));
6778       Value *R = vectorizeTree(E->getOperand(1));
6779 
6780       if (E->VectorizedValue) {
6781         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
6782         return E->VectorizedValue;
6783       }
6784 
6785       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
6786       Value *V = Builder.CreateCmp(P0, L, R);
6787       propagateIRFlags(V, E->Scalars, VL0);
6788       ShuffleBuilder.addInversedMask(E->ReorderIndices);
6789       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
6790       V = ShuffleBuilder.finalize(V);
6791 
6792       E->VectorizedValue = V;
6793       ++NumVectorInstructions;
6794       return V;
6795     }
6796     case Instruction::Select: {
6797       setInsertPointAfterBundle(E);
6798 
6799       Value *Cond = vectorizeTree(E->getOperand(0));
6800       Value *True = vectorizeTree(E->getOperand(1));
6801       Value *False = vectorizeTree(E->getOperand(2));
6802 
6803       if (E->VectorizedValue) {
6804         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
6805         return E->VectorizedValue;
6806       }
6807 
6808       Value *V = Builder.CreateSelect(Cond, True, False);
6809       ShuffleBuilder.addInversedMask(E->ReorderIndices);
6810       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
6811       V = ShuffleBuilder.finalize(V);
6812 
6813       E->VectorizedValue = V;
6814       ++NumVectorInstructions;
6815       return V;
6816     }
6817     case Instruction::FNeg: {
6818       setInsertPointAfterBundle(E);
6819 
6820       Value *Op = vectorizeTree(E->getOperand(0));
6821 
6822       if (E->VectorizedValue) {
6823         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
6824         return E->VectorizedValue;
6825       }
6826 
6827       Value *V = Builder.CreateUnOp(
6828           static_cast<Instruction::UnaryOps>(E->getOpcode()), Op);
6829       propagateIRFlags(V, E->Scalars, VL0);
6830       if (auto *I = dyn_cast<Instruction>(V))
6831         V = propagateMetadata(I, E->Scalars);
6832 
6833       ShuffleBuilder.addInversedMask(E->ReorderIndices);
6834       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
6835       V = ShuffleBuilder.finalize(V);
6836 
6837       E->VectorizedValue = V;
6838       ++NumVectorInstructions;
6839 
6840       return V;
6841     }
6842     case Instruction::Add:
6843     case Instruction::FAdd:
6844     case Instruction::Sub:
6845     case Instruction::FSub:
6846     case Instruction::Mul:
6847     case Instruction::FMul:
6848     case Instruction::UDiv:
6849     case Instruction::SDiv:
6850     case Instruction::FDiv:
6851     case Instruction::URem:
6852     case Instruction::SRem:
6853     case Instruction::FRem:
6854     case Instruction::Shl:
6855     case Instruction::LShr:
6856     case Instruction::AShr:
6857     case Instruction::And:
6858     case Instruction::Or:
6859     case Instruction::Xor: {
6860       setInsertPointAfterBundle(E);
6861 
6862       Value *LHS = vectorizeTree(E->getOperand(0));
6863       Value *RHS = vectorizeTree(E->getOperand(1));
6864 
6865       if (E->VectorizedValue) {
6866         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
6867         return E->VectorizedValue;
6868       }
6869 
6870       Value *V = Builder.CreateBinOp(
6871           static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS,
6872           RHS);
6873       propagateIRFlags(V, E->Scalars, VL0);
6874       if (auto *I = dyn_cast<Instruction>(V))
6875         V = propagateMetadata(I, E->Scalars);
6876 
6877       ShuffleBuilder.addInversedMask(E->ReorderIndices);
6878       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
6879       V = ShuffleBuilder.finalize(V);
6880 
6881       E->VectorizedValue = V;
6882       ++NumVectorInstructions;
6883 
6884       return V;
6885     }
6886     case Instruction::Load: {
6887       // Loads are inserted at the head of the tree because we don't want to
6888       // sink them all the way down past store instructions.
6889       setInsertPointAfterBundle(E);
6890 
6891       LoadInst *LI = cast<LoadInst>(VL0);
6892       Instruction *NewLI;
6893       unsigned AS = LI->getPointerAddressSpace();
6894       Value *PO = LI->getPointerOperand();
6895       if (E->State == TreeEntry::Vectorize) {
6896 
6897         Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS));
6898 
6899         // The pointer operand uses an in-tree scalar so we add the new BitCast
6900         // to ExternalUses list to make sure that an extract will be generated
6901         // in the future.
6902         if (TreeEntry *Entry = getTreeEntry(PO)) {
6903           // Find which lane we need to extract.
6904           unsigned FoundLane = Entry->findLaneForValue(PO);
6905           ExternalUses.emplace_back(PO, cast<User>(VecPtr), FoundLane);
6906         }
6907 
6908         NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign());
6909       } else {
6910         assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state");
6911         Value *VecPtr = vectorizeTree(E->getOperand(0));
6912         // Use the minimum alignment of the gathered loads.
6913         Align CommonAlignment = LI->getAlign();
6914         for (Value *V : E->Scalars)
6915           CommonAlignment =
6916               commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign());
6917         NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment);
6918       }
6919       Value *V = propagateMetadata(NewLI, E->Scalars);
6920 
6921       ShuffleBuilder.addInversedMask(E->ReorderIndices);
6922       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
6923       V = ShuffleBuilder.finalize(V);
6924       E->VectorizedValue = V;
6925       ++NumVectorInstructions;
6926       return V;
6927     }
6928     case Instruction::Store: {
6929       auto *SI = cast<StoreInst>(VL0);
6930       unsigned AS = SI->getPointerAddressSpace();
6931 
6932       setInsertPointAfterBundle(E);
6933 
6934       Value *VecValue = vectorizeTree(E->getOperand(0));
6935       ShuffleBuilder.addMask(E->ReorderIndices);
6936       VecValue = ShuffleBuilder.finalize(VecValue);
6937 
6938       Value *ScalarPtr = SI->getPointerOperand();
6939       Value *VecPtr = Builder.CreateBitCast(
6940           ScalarPtr, VecValue->getType()->getPointerTo(AS));
6941       StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr,
6942                                                  SI->getAlign());
6943 
6944       // The pointer operand uses an in-tree scalar, so add the new BitCast to
6945       // ExternalUses to make sure that an extract will be generated in the
6946       // future.
6947       if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) {
6948         // Find which lane we need to extract.
6949         unsigned FoundLane = Entry->findLaneForValue(ScalarPtr);
6950         ExternalUses.push_back(
6951             ExternalUser(ScalarPtr, cast<User>(VecPtr), FoundLane));
6952       }
6953 
6954       Value *V = propagateMetadata(ST, E->Scalars);
6955 
6956       E->VectorizedValue = V;
6957       ++NumVectorInstructions;
6958       return V;
6959     }
6960     case Instruction::GetElementPtr: {
6961       auto *GEP0 = cast<GetElementPtrInst>(VL0);
6962       setInsertPointAfterBundle(E);
6963 
6964       Value *Op0 = vectorizeTree(E->getOperand(0));
6965 
6966       SmallVector<Value *> OpVecs;
6967       for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) {
6968         Value *OpVec = vectorizeTree(E->getOperand(J));
6969         OpVecs.push_back(OpVec);
6970       }
6971 
6972       Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs);
6973       if (Instruction *I = dyn_cast<Instruction>(V))
6974         V = propagateMetadata(I, E->Scalars);
6975 
6976       ShuffleBuilder.addInversedMask(E->ReorderIndices);
6977       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
6978       V = ShuffleBuilder.finalize(V);
6979 
6980       E->VectorizedValue = V;
6981       ++NumVectorInstructions;
6982 
6983       return V;
6984     }
6985     case Instruction::Call: {
6986       CallInst *CI = cast<CallInst>(VL0);
6987       setInsertPointAfterBundle(E);
6988 
6989       Intrinsic::ID IID  = Intrinsic::not_intrinsic;
6990       if (Function *FI = CI->getCalledFunction())
6991         IID = FI->getIntrinsicID();
6992 
6993       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
6994 
6995       auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
6996       bool UseIntrinsic = ID != Intrinsic::not_intrinsic &&
6997                           VecCallCosts.first <= VecCallCosts.second;
6998 
6999       Value *ScalarArg = nullptr;
7000       std::vector<Value *> OpVecs;
7001       SmallVector<Type *, 2> TysForDecl =
7002           {FixedVectorType::get(CI->getType(), E->Scalars.size())};
7003       for (int j = 0, e = CI->arg_size(); j < e; ++j) {
7004         ValueList OpVL;
7005         // Some intrinsics have scalar arguments. This argument should not be
7006         // vectorized.
7007         if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) {
7008           CallInst *CEI = cast<CallInst>(VL0);
7009           ScalarArg = CEI->getArgOperand(j);
7010           OpVecs.push_back(CEI->getArgOperand(j));
7011           if (hasVectorInstrinsicOverloadedScalarOpd(IID, j))
7012             TysForDecl.push_back(ScalarArg->getType());
7013           continue;
7014         }
7015 
7016         Value *OpVec = vectorizeTree(E->getOperand(j));
7017         LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
7018         OpVecs.push_back(OpVec);
7019       }
7020 
7021       Function *CF;
7022       if (!UseIntrinsic) {
7023         VFShape Shape =
7024             VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
7025                                   VecTy->getNumElements())),
7026                          false /*HasGlobalPred*/);
7027         CF = VFDatabase(*CI).getVectorizedFunction(Shape);
7028       } else {
7029         CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl);
7030       }
7031 
7032       SmallVector<OperandBundleDef, 1> OpBundles;
7033       CI->getOperandBundlesAsDefs(OpBundles);
7034       Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
7035 
7036       // The scalar argument uses an in-tree scalar so we add the new vectorized
7037       // call to ExternalUses list to make sure that an extract will be
7038       // generated in the future.
7039       if (ScalarArg) {
7040         if (TreeEntry *Entry = getTreeEntry(ScalarArg)) {
7041           // Find which lane we need to extract.
7042           unsigned FoundLane = Entry->findLaneForValue(ScalarArg);
7043           ExternalUses.push_back(
7044               ExternalUser(ScalarArg, cast<User>(V), FoundLane));
7045         }
7046       }
7047 
7048       propagateIRFlags(V, E->Scalars, VL0);
7049       ShuffleBuilder.addInversedMask(E->ReorderIndices);
7050       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
7051       V = ShuffleBuilder.finalize(V);
7052 
7053       E->VectorizedValue = V;
7054       ++NumVectorInstructions;
7055       return V;
7056     }
7057     case Instruction::ShuffleVector: {
7058       assert(E->isAltShuffle() &&
7059              ((Instruction::isBinaryOp(E->getOpcode()) &&
7060                Instruction::isBinaryOp(E->getAltOpcode())) ||
7061               (Instruction::isCast(E->getOpcode()) &&
7062                Instruction::isCast(E->getAltOpcode())) ||
7063               (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) &&
7064              "Invalid Shuffle Vector Operand");
7065 
7066       Value *LHS = nullptr, *RHS = nullptr;
7067       if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) {
7068         setInsertPointAfterBundle(E);
7069         LHS = vectorizeTree(E->getOperand(0));
7070         RHS = vectorizeTree(E->getOperand(1));
7071       } else {
7072         setInsertPointAfterBundle(E);
7073         LHS = vectorizeTree(E->getOperand(0));
7074       }
7075 
7076       if (E->VectorizedValue) {
7077         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
7078         return E->VectorizedValue;
7079       }
7080 
7081       Value *V0, *V1;
7082       if (Instruction::isBinaryOp(E->getOpcode())) {
7083         V0 = Builder.CreateBinOp(
7084             static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS);
7085         V1 = Builder.CreateBinOp(
7086             static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS);
7087       } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) {
7088         V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS);
7089         auto *AltCI = cast<CmpInst>(E->getAltOp());
7090         CmpInst::Predicate AltPred = AltCI->getPredicate();
7091         V1 = Builder.CreateCmp(AltPred, LHS, RHS);
7092       } else {
7093         V0 = Builder.CreateCast(
7094             static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy);
7095         V1 = Builder.CreateCast(
7096             static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy);
7097       }
7098       // Add V0 and V1 to later analysis to try to find and remove matching
7099       // instruction, if any.
7100       for (Value *V : {V0, V1}) {
7101         if (auto *I = dyn_cast<Instruction>(V)) {
7102           GatherShuffleSeq.insert(I);
7103           CSEBlocks.insert(I->getParent());
7104         }
7105       }
7106 
7107       // Create shuffle to take alternate operations from the vector.
7108       // Also, gather up main and alt scalar ops to propagate IR flags to
7109       // each vector operation.
7110       ValueList OpScalars, AltScalars;
7111       SmallVector<int> Mask;
7112       buildShuffleEntryMask(
7113           E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices,
7114           [E](Instruction *I) {
7115             assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
7116             return isAlternateInstruction(I, E->getMainOp(), E->getAltOp());
7117           },
7118           Mask, &OpScalars, &AltScalars);
7119 
7120       propagateIRFlags(V0, OpScalars);
7121       propagateIRFlags(V1, AltScalars);
7122 
7123       Value *V = Builder.CreateShuffleVector(V0, V1, Mask);
7124       if (auto *I = dyn_cast<Instruction>(V)) {
7125         V = propagateMetadata(I, E->Scalars);
7126         GatherShuffleSeq.insert(I);
7127         CSEBlocks.insert(I->getParent());
7128       }
7129       V = ShuffleBuilder.finalize(V);
7130 
7131       E->VectorizedValue = V;
7132       ++NumVectorInstructions;
7133 
7134       return V;
7135     }
7136     default:
7137     llvm_unreachable("unknown inst");
7138   }
7139   return nullptr;
7140 }
7141 
7142 Value *BoUpSLP::vectorizeTree() {
7143   ExtraValueToDebugLocsMap ExternallyUsedValues;
7144   return vectorizeTree(ExternallyUsedValues);
7145 }
7146 
7147 Value *
7148 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) {
7149   // All blocks must be scheduled before any instructions are inserted.
7150   for (auto &BSIter : BlocksSchedules) {
7151     scheduleBlock(BSIter.second.get());
7152   }
7153 
7154   Builder.SetInsertPoint(&F->getEntryBlock().front());
7155   auto *VectorRoot = vectorizeTree(VectorizableTree[0].get());
7156 
7157   // If the vectorized tree can be rewritten in a smaller type, we truncate the
7158   // vectorized root. InstCombine will then rewrite the entire expression. We
7159   // sign extend the extracted values below.
7160   auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
7161   if (MinBWs.count(ScalarRoot)) {
7162     if (auto *I = dyn_cast<Instruction>(VectorRoot)) {
7163       // If current instr is a phi and not the last phi, insert it after the
7164       // last phi node.
7165       if (isa<PHINode>(I))
7166         Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt());
7167       else
7168         Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
7169     }
7170     auto BundleWidth = VectorizableTree[0]->Scalars.size();
7171     auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
7172     auto *VecTy = FixedVectorType::get(MinTy, BundleWidth);
7173     auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
7174     VectorizableTree[0]->VectorizedValue = Trunc;
7175   }
7176 
7177   LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size()
7178                     << " values .\n");
7179 
7180   // Extract all of the elements with the external uses.
7181   for (const auto &ExternalUse : ExternalUses) {
7182     Value *Scalar = ExternalUse.Scalar;
7183     llvm::User *User = ExternalUse.User;
7184 
7185     // Skip users that we already RAUW. This happens when one instruction
7186     // has multiple uses of the same value.
7187     if (User && !is_contained(Scalar->users(), User))
7188       continue;
7189     TreeEntry *E = getTreeEntry(Scalar);
7190     assert(E && "Invalid scalar");
7191     assert(E->State != TreeEntry::NeedToGather &&
7192            "Extracting from a gather list");
7193 
7194     Value *Vec = E->VectorizedValue;
7195     assert(Vec && "Can't find vectorizable value");
7196 
7197     Value *Lane = Builder.getInt32(ExternalUse.Lane);
7198     auto ExtractAndExtendIfNeeded = [&](Value *Vec) {
7199       if (Scalar->getType() != Vec->getType()) {
7200         Value *Ex;
7201         // "Reuse" the existing extract to improve final codegen.
7202         if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) {
7203           Ex = Builder.CreateExtractElement(ES->getOperand(0),
7204                                             ES->getOperand(1));
7205         } else {
7206           Ex = Builder.CreateExtractElement(Vec, Lane);
7207         }
7208         // If necessary, sign-extend or zero-extend ScalarRoot
7209         // to the larger type.
7210         if (!MinBWs.count(ScalarRoot))
7211           return Ex;
7212         if (MinBWs[ScalarRoot].second)
7213           return Builder.CreateSExt(Ex, Scalar->getType());
7214         return Builder.CreateZExt(Ex, Scalar->getType());
7215       }
7216       assert(isa<FixedVectorType>(Scalar->getType()) &&
7217              isa<InsertElementInst>(Scalar) &&
7218              "In-tree scalar of vector type is not insertelement?");
7219       return Vec;
7220     };
7221     // If User == nullptr, the Scalar is used as extra arg. Generate
7222     // ExtractElement instruction and update the record for this scalar in
7223     // ExternallyUsedValues.
7224     if (!User) {
7225       assert(ExternallyUsedValues.count(Scalar) &&
7226              "Scalar with nullptr as an external user must be registered in "
7227              "ExternallyUsedValues map");
7228       if (auto *VecI = dyn_cast<Instruction>(Vec)) {
7229         Builder.SetInsertPoint(VecI->getParent(),
7230                                std::next(VecI->getIterator()));
7231       } else {
7232         Builder.SetInsertPoint(&F->getEntryBlock().front());
7233       }
7234       Value *NewInst = ExtractAndExtendIfNeeded(Vec);
7235       CSEBlocks.insert(cast<Instruction>(Scalar)->getParent());
7236       auto &NewInstLocs = ExternallyUsedValues[NewInst];
7237       auto It = ExternallyUsedValues.find(Scalar);
7238       assert(It != ExternallyUsedValues.end() &&
7239              "Externally used scalar is not found in ExternallyUsedValues");
7240       NewInstLocs.append(It->second);
7241       ExternallyUsedValues.erase(Scalar);
7242       // Required to update internally referenced instructions.
7243       Scalar->replaceAllUsesWith(NewInst);
7244       continue;
7245     }
7246 
7247     // Generate extracts for out-of-tree users.
7248     // Find the insertion point for the extractelement lane.
7249     if (auto *VecI = dyn_cast<Instruction>(Vec)) {
7250       if (PHINode *PH = dyn_cast<PHINode>(User)) {
7251         for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
7252           if (PH->getIncomingValue(i) == Scalar) {
7253             Instruction *IncomingTerminator =
7254                 PH->getIncomingBlock(i)->getTerminator();
7255             if (isa<CatchSwitchInst>(IncomingTerminator)) {
7256               Builder.SetInsertPoint(VecI->getParent(),
7257                                      std::next(VecI->getIterator()));
7258             } else {
7259               Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
7260             }
7261             Value *NewInst = ExtractAndExtendIfNeeded(Vec);
7262             CSEBlocks.insert(PH->getIncomingBlock(i));
7263             PH->setOperand(i, NewInst);
7264           }
7265         }
7266       } else {
7267         Builder.SetInsertPoint(cast<Instruction>(User));
7268         Value *NewInst = ExtractAndExtendIfNeeded(Vec);
7269         CSEBlocks.insert(cast<Instruction>(User)->getParent());
7270         User->replaceUsesOfWith(Scalar, NewInst);
7271       }
7272     } else {
7273       Builder.SetInsertPoint(&F->getEntryBlock().front());
7274       Value *NewInst = ExtractAndExtendIfNeeded(Vec);
7275       CSEBlocks.insert(&F->getEntryBlock());
7276       User->replaceUsesOfWith(Scalar, NewInst);
7277     }
7278 
7279     LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
7280   }
7281 
7282   // For each vectorized value:
7283   for (auto &TEPtr : VectorizableTree) {
7284     TreeEntry *Entry = TEPtr.get();
7285 
7286     // No need to handle users of gathered values.
7287     if (Entry->State == TreeEntry::NeedToGather)
7288       continue;
7289 
7290     assert(Entry->VectorizedValue && "Can't find vectorizable value");
7291 
7292     // For each lane:
7293     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
7294       Value *Scalar = Entry->Scalars[Lane];
7295 
7296 #ifndef NDEBUG
7297       Type *Ty = Scalar->getType();
7298       if (!Ty->isVoidTy()) {
7299         for (User *U : Scalar->users()) {
7300           LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
7301 
7302           // It is legal to delete users in the ignorelist.
7303           assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) ||
7304                   (isa_and_nonnull<Instruction>(U) &&
7305                    isDeleted(cast<Instruction>(U)))) &&
7306                  "Deleting out-of-tree value");
7307         }
7308       }
7309 #endif
7310       LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
7311       eraseInstruction(cast<Instruction>(Scalar));
7312     }
7313   }
7314 
7315   Builder.ClearInsertionPoint();
7316   InstrElementSize.clear();
7317 
7318   return VectorizableTree[0]->VectorizedValue;
7319 }
7320 
7321 void BoUpSLP::optimizeGatherSequence() {
7322   LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size()
7323                     << " gather sequences instructions.\n");
7324   // LICM InsertElementInst sequences.
7325   for (Instruction *I : GatherShuffleSeq) {
7326     if (isDeleted(I))
7327       continue;
7328 
7329     // Check if this block is inside a loop.
7330     Loop *L = LI->getLoopFor(I->getParent());
7331     if (!L)
7332       continue;
7333 
7334     // Check if it has a preheader.
7335     BasicBlock *PreHeader = L->getLoopPreheader();
7336     if (!PreHeader)
7337       continue;
7338 
7339     // If the vector or the element that we insert into it are
7340     // instructions that are defined in this basic block then we can't
7341     // hoist this instruction.
7342     if (any_of(I->operands(), [L](Value *V) {
7343           auto *OpI = dyn_cast<Instruction>(V);
7344           return OpI && L->contains(OpI);
7345         }))
7346       continue;
7347 
7348     // We can hoist this instruction. Move it to the pre-header.
7349     I->moveBefore(PreHeader->getTerminator());
7350   }
7351 
7352   // Make a list of all reachable blocks in our CSE queue.
7353   SmallVector<const DomTreeNode *, 8> CSEWorkList;
7354   CSEWorkList.reserve(CSEBlocks.size());
7355   for (BasicBlock *BB : CSEBlocks)
7356     if (DomTreeNode *N = DT->getNode(BB)) {
7357       assert(DT->isReachableFromEntry(N));
7358       CSEWorkList.push_back(N);
7359     }
7360 
7361   // Sort blocks by domination. This ensures we visit a block after all blocks
7362   // dominating it are visited.
7363   llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) {
7364     assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) &&
7365            "Different nodes should have different DFS numbers");
7366     return A->getDFSNumIn() < B->getDFSNumIn();
7367   });
7368 
7369   // Less defined shuffles can be replaced by the more defined copies.
7370   // Between two shuffles one is less defined if it has the same vector operands
7371   // and its mask indeces are the same as in the first one or undefs. E.g.
7372   // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0,
7373   // poison, <0, 0, 0, 0>.
7374   auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2,
7375                                            SmallVectorImpl<int> &NewMask) {
7376     if (I1->getType() != I2->getType())
7377       return false;
7378     auto *SI1 = dyn_cast<ShuffleVectorInst>(I1);
7379     auto *SI2 = dyn_cast<ShuffleVectorInst>(I2);
7380     if (!SI1 || !SI2)
7381       return I1->isIdenticalTo(I2);
7382     if (SI1->isIdenticalTo(SI2))
7383       return true;
7384     for (int I = 0, E = SI1->getNumOperands(); I < E; ++I)
7385       if (SI1->getOperand(I) != SI2->getOperand(I))
7386         return false;
7387     // Check if the second instruction is more defined than the first one.
7388     NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end());
7389     ArrayRef<int> SM1 = SI1->getShuffleMask();
7390     // Count trailing undefs in the mask to check the final number of used
7391     // registers.
7392     unsigned LastUndefsCnt = 0;
7393     for (int I = 0, E = NewMask.size(); I < E; ++I) {
7394       if (SM1[I] == UndefMaskElem)
7395         ++LastUndefsCnt;
7396       else
7397         LastUndefsCnt = 0;
7398       if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem &&
7399           NewMask[I] != SM1[I])
7400         return false;
7401       if (NewMask[I] == UndefMaskElem)
7402         NewMask[I] = SM1[I];
7403     }
7404     // Check if the last undefs actually change the final number of used vector
7405     // registers.
7406     return SM1.size() - LastUndefsCnt > 1 &&
7407            TTI->getNumberOfParts(SI1->getType()) ==
7408                TTI->getNumberOfParts(
7409                    FixedVectorType::get(SI1->getType()->getElementType(),
7410                                         SM1.size() - LastUndefsCnt));
7411   };
7412   // Perform O(N^2) search over the gather/shuffle sequences and merge identical
7413   // instructions. TODO: We can further optimize this scan if we split the
7414   // instructions into different buckets based on the insert lane.
7415   SmallVector<Instruction *, 16> Visited;
7416   for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
7417     assert(*I &&
7418            (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
7419            "Worklist not sorted properly!");
7420     BasicBlock *BB = (*I)->getBlock();
7421     // For all instructions in blocks containing gather sequences:
7422     for (Instruction &In : llvm::make_early_inc_range(*BB)) {
7423       if (isDeleted(&In))
7424         continue;
7425       if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) &&
7426           !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In))
7427         continue;
7428 
7429       // Check if we can replace this instruction with any of the
7430       // visited instructions.
7431       bool Replaced = false;
7432       for (Instruction *&V : Visited) {
7433         SmallVector<int> NewMask;
7434         if (IsIdenticalOrLessDefined(&In, V, NewMask) &&
7435             DT->dominates(V->getParent(), In.getParent())) {
7436           In.replaceAllUsesWith(V);
7437           eraseInstruction(&In);
7438           if (auto *SI = dyn_cast<ShuffleVectorInst>(V))
7439             if (!NewMask.empty())
7440               SI->setShuffleMask(NewMask);
7441           Replaced = true;
7442           break;
7443         }
7444         if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) &&
7445             GatherShuffleSeq.contains(V) &&
7446             IsIdenticalOrLessDefined(V, &In, NewMask) &&
7447             DT->dominates(In.getParent(), V->getParent())) {
7448           In.moveAfter(V);
7449           V->replaceAllUsesWith(&In);
7450           eraseInstruction(V);
7451           if (auto *SI = dyn_cast<ShuffleVectorInst>(&In))
7452             if (!NewMask.empty())
7453               SI->setShuffleMask(NewMask);
7454           V = &In;
7455           Replaced = true;
7456           break;
7457         }
7458       }
7459       if (!Replaced) {
7460         assert(!is_contained(Visited, &In));
7461         Visited.push_back(&In);
7462       }
7463     }
7464   }
7465   CSEBlocks.clear();
7466   GatherShuffleSeq.clear();
7467 }
7468 
7469 BoUpSLP::ScheduleData *
7470 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) {
7471   ScheduleData *Bundle = nullptr;
7472   ScheduleData *PrevInBundle = nullptr;
7473   for (Value *V : VL) {
7474     ScheduleData *BundleMember = getScheduleData(V);
7475     assert(BundleMember &&
7476            "no ScheduleData for bundle member "
7477            "(maybe not in same basic block)");
7478     assert(BundleMember->isSchedulingEntity() &&
7479            "bundle member already part of other bundle");
7480     if (PrevInBundle) {
7481       PrevInBundle->NextInBundle = BundleMember;
7482     } else {
7483       Bundle = BundleMember;
7484     }
7485 
7486     // Group the instructions to a bundle.
7487     BundleMember->FirstInBundle = Bundle;
7488     PrevInBundle = BundleMember;
7489   }
7490   assert(Bundle && "Failed to find schedule bundle");
7491   return Bundle;
7492 }
7493 
7494 // Groups the instructions to a bundle (which is then a single scheduling entity)
7495 // and schedules instructions until the bundle gets ready.
7496 Optional<BoUpSLP::ScheduleData *>
7497 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
7498                                             const InstructionsState &S) {
7499   // No need to schedule PHIs, insertelement, extractelement and extractvalue
7500   // instructions.
7501   if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue))
7502     return nullptr;
7503 
7504   // Initialize the instruction bundle.
7505   Instruction *OldScheduleEnd = ScheduleEnd;
7506   LLVM_DEBUG(dbgs() << "SLP:  bundle: " << *S.OpValue << "\n");
7507 
7508   auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule,
7509                                                          ScheduleData *Bundle) {
7510     // The scheduling region got new instructions at the lower end (or it is a
7511     // new region for the first bundle). This makes it necessary to
7512     // recalculate all dependencies.
7513     // It is seldom that this needs to be done a second time after adding the
7514     // initial bundle to the region.
7515     if (ScheduleEnd != OldScheduleEnd) {
7516       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode())
7517         doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); });
7518       ReSchedule = true;
7519     }
7520     if (Bundle) {
7521       LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle
7522                         << " in block " << BB->getName() << "\n");
7523       calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP);
7524     }
7525 
7526     if (ReSchedule) {
7527       resetSchedule();
7528       initialFillReadyList(ReadyInsts);
7529     }
7530 
7531     // Now try to schedule the new bundle or (if no bundle) just calculate
7532     // dependencies. As soon as the bundle is "ready" it means that there are no
7533     // cyclic dependencies and we can schedule it. Note that's important that we
7534     // don't "schedule" the bundle yet (see cancelScheduling).
7535     while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) &&
7536            !ReadyInsts.empty()) {
7537       ScheduleData *Picked = ReadyInsts.pop_back_val();
7538       assert(Picked->isSchedulingEntity() && Picked->isReady() &&
7539              "must be ready to schedule");
7540       schedule(Picked, ReadyInsts);
7541     }
7542   };
7543 
7544   // Make sure that the scheduling region contains all
7545   // instructions of the bundle.
7546   for (Value *V : VL) {
7547     if (!extendSchedulingRegion(V, S)) {
7548       // If the scheduling region got new instructions at the lower end (or it
7549       // is a new region for the first bundle). This makes it necessary to
7550       // recalculate all dependencies.
7551       // Otherwise the compiler may crash trying to incorrectly calculate
7552       // dependencies and emit instruction in the wrong order at the actual
7553       // scheduling.
7554       TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr);
7555       return None;
7556     }
7557   }
7558 
7559   bool ReSchedule = false;
7560   for (Value *V : VL) {
7561     ScheduleData *BundleMember = getScheduleData(V);
7562     assert(BundleMember &&
7563            "no ScheduleData for bundle member (maybe not in same basic block)");
7564 
7565     // Make sure we don't leave the pieces of the bundle in the ready list when
7566     // whole bundle might not be ready.
7567     ReadyInsts.remove(BundleMember);
7568 
7569     if (!BundleMember->IsScheduled)
7570       continue;
7571     // A bundle member was scheduled as single instruction before and now
7572     // needs to be scheduled as part of the bundle. We just get rid of the
7573     // existing schedule.
7574     LLVM_DEBUG(dbgs() << "SLP:  reset schedule because " << *BundleMember
7575                       << " was already scheduled\n");
7576     ReSchedule = true;
7577   }
7578 
7579   auto *Bundle = buildBundle(VL);
7580   TryScheduleBundleImpl(ReSchedule, Bundle);
7581   if (!Bundle->isReady()) {
7582     cancelScheduling(VL, S.OpValue);
7583     return None;
7584   }
7585   return Bundle;
7586 }
7587 
7588 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL,
7589                                                 Value *OpValue) {
7590   if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue))
7591     return;
7592 
7593   ScheduleData *Bundle = getScheduleData(OpValue);
7594   LLVM_DEBUG(dbgs() << "SLP:  cancel scheduling of " << *Bundle << "\n");
7595   assert(!Bundle->IsScheduled &&
7596          "Can't cancel bundle which is already scheduled");
7597   assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&
7598          "tried to unbundle something which is not a bundle");
7599 
7600   // Remove the bundle from the ready list.
7601   if (Bundle->isReady())
7602     ReadyInsts.remove(Bundle);
7603 
7604   // Un-bundle: make single instructions out of the bundle.
7605   ScheduleData *BundleMember = Bundle;
7606   while (BundleMember) {
7607     assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
7608     BundleMember->FirstInBundle = BundleMember;
7609     ScheduleData *Next = BundleMember->NextInBundle;
7610     BundleMember->NextInBundle = nullptr;
7611     if (BundleMember->unscheduledDepsInBundle() == 0) {
7612       ReadyInsts.insert(BundleMember);
7613     }
7614     BundleMember = Next;
7615   }
7616 }
7617 
7618 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() {
7619   // Allocate a new ScheduleData for the instruction.
7620   if (ChunkPos >= ChunkSize) {
7621     ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize));
7622     ChunkPos = 0;
7623   }
7624   return &(ScheduleDataChunks.back()[ChunkPos++]);
7625 }
7626 
7627 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V,
7628                                                       const InstructionsState &S) {
7629   if (getScheduleData(V, isOneOf(S, V)))
7630     return true;
7631   Instruction *I = dyn_cast<Instruction>(V);
7632   assert(I && "bundle member must be an instruction");
7633   assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) &&
7634          "phi nodes/insertelements/extractelements/extractvalues don't need to "
7635          "be scheduled");
7636   auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool {
7637     ScheduleData *ISD = getScheduleData(I);
7638     if (!ISD)
7639       return false;
7640     assert(isInSchedulingRegion(ISD) &&
7641            "ScheduleData not in scheduling region");
7642     ScheduleData *SD = allocateScheduleDataChunks();
7643     SD->Inst = I;
7644     SD->init(SchedulingRegionID, S.OpValue);
7645     ExtraScheduleDataMap[I][S.OpValue] = SD;
7646     return true;
7647   };
7648   if (CheckSheduleForI(I))
7649     return true;
7650   if (!ScheduleStart) {
7651     // It's the first instruction in the new region.
7652     initScheduleData(I, I->getNextNode(), nullptr, nullptr);
7653     ScheduleStart = I;
7654     ScheduleEnd = I->getNextNode();
7655     if (isOneOf(S, I) != I)
7656       CheckSheduleForI(I);
7657     assert(ScheduleEnd && "tried to vectorize a terminator?");
7658     LLVM_DEBUG(dbgs() << "SLP:  initialize schedule region to " << *I << "\n");
7659     return true;
7660   }
7661   // Search up and down at the same time, because we don't know if the new
7662   // instruction is above or below the existing scheduling region.
7663   BasicBlock::reverse_iterator UpIter =
7664       ++ScheduleStart->getIterator().getReverse();
7665   BasicBlock::reverse_iterator UpperEnd = BB->rend();
7666   BasicBlock::iterator DownIter = ScheduleEnd->getIterator();
7667   BasicBlock::iterator LowerEnd = BB->end();
7668   while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I &&
7669          &*DownIter != I) {
7670     if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
7671       LLVM_DEBUG(dbgs() << "SLP:  exceeded schedule region size limit\n");
7672       return false;
7673     }
7674 
7675     ++UpIter;
7676     ++DownIter;
7677   }
7678   if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) {
7679     assert(I->getParent() == ScheduleStart->getParent() &&
7680            "Instruction is in wrong basic block.");
7681     initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
7682     ScheduleStart = I;
7683     if (isOneOf(S, I) != I)
7684       CheckSheduleForI(I);
7685     LLVM_DEBUG(dbgs() << "SLP:  extend schedule region start to " << *I
7686                       << "\n");
7687     return true;
7688   }
7689   assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) &&
7690          "Expected to reach top of the basic block or instruction down the "
7691          "lower end.");
7692   assert(I->getParent() == ScheduleEnd->getParent() &&
7693          "Instruction is in wrong basic block.");
7694   initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
7695                    nullptr);
7696   ScheduleEnd = I->getNextNode();
7697   if (isOneOf(S, I) != I)
7698     CheckSheduleForI(I);
7699   assert(ScheduleEnd && "tried to vectorize a terminator?");
7700   LLVM_DEBUG(dbgs() << "SLP:  extend schedule region end to " << *I << "\n");
7701   return true;
7702 }
7703 
7704 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
7705                                                 Instruction *ToI,
7706                                                 ScheduleData *PrevLoadStore,
7707                                                 ScheduleData *NextLoadStore) {
7708   ScheduleData *CurrentLoadStore = PrevLoadStore;
7709   for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
7710     ScheduleData *SD = ScheduleDataMap[I];
7711     if (!SD) {
7712       SD = allocateScheduleDataChunks();
7713       ScheduleDataMap[I] = SD;
7714       SD->Inst = I;
7715     }
7716     assert(!isInSchedulingRegion(SD) &&
7717            "new ScheduleData already in scheduling region");
7718     SD->init(SchedulingRegionID, I);
7719 
7720     if (I->mayReadOrWriteMemory() &&
7721         (!isa<IntrinsicInst>(I) ||
7722          (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect &&
7723           cast<IntrinsicInst>(I)->getIntrinsicID() !=
7724               Intrinsic::pseudoprobe))) {
7725       // Update the linked list of memory accessing instructions.
7726       if (CurrentLoadStore) {
7727         CurrentLoadStore->NextLoadStore = SD;
7728       } else {
7729         FirstLoadStoreInRegion = SD;
7730       }
7731       CurrentLoadStore = SD;
7732     }
7733   }
7734   if (NextLoadStore) {
7735     if (CurrentLoadStore)
7736       CurrentLoadStore->NextLoadStore = NextLoadStore;
7737   } else {
7738     LastLoadStoreInRegion = CurrentLoadStore;
7739   }
7740 }
7741 
7742 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
7743                                                      bool InsertInReadyList,
7744                                                      BoUpSLP *SLP) {
7745   assert(SD->isSchedulingEntity());
7746 
7747   SmallVector<ScheduleData *, 10> WorkList;
7748   WorkList.push_back(SD);
7749 
7750   while (!WorkList.empty()) {
7751     ScheduleData *SD = WorkList.pop_back_val();
7752     for (ScheduleData *BundleMember = SD; BundleMember;
7753          BundleMember = BundleMember->NextInBundle) {
7754       assert(isInSchedulingRegion(BundleMember));
7755       if (BundleMember->hasValidDependencies())
7756         continue;
7757 
7758       LLVM_DEBUG(dbgs() << "SLP:       update deps of " << *BundleMember
7759                  << "\n");
7760       BundleMember->Dependencies = 0;
7761       BundleMember->resetUnscheduledDeps();
7762 
7763       // Handle def-use chain dependencies.
7764       if (BundleMember->OpValue != BundleMember->Inst) {
7765         ScheduleData *UseSD = getScheduleData(BundleMember->Inst);
7766         if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
7767           BundleMember->Dependencies++;
7768           ScheduleData *DestBundle = UseSD->FirstInBundle;
7769           if (!DestBundle->IsScheduled)
7770             BundleMember->incrementUnscheduledDeps(1);
7771           if (!DestBundle->hasValidDependencies())
7772             WorkList.push_back(DestBundle);
7773         }
7774       } else {
7775         for (User *U : BundleMember->Inst->users()) {
7776           assert(isa<Instruction>(U) &&
7777                  "user of instruction must be instruction");
7778           ScheduleData *UseSD = getScheduleData(U);
7779           if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
7780             BundleMember->Dependencies++;
7781             ScheduleData *DestBundle = UseSD->FirstInBundle;
7782             if (!DestBundle->IsScheduled)
7783               BundleMember->incrementUnscheduledDeps(1);
7784             if (!DestBundle->hasValidDependencies())
7785               WorkList.push_back(DestBundle);
7786           }
7787         }
7788       }
7789 
7790       // Handle the memory dependencies (if any).
7791       ScheduleData *DepDest = BundleMember->NextLoadStore;
7792       if (!DepDest)
7793         continue;
7794       Instruction *SrcInst = BundleMember->Inst;
7795       assert(SrcInst->mayReadOrWriteMemory() &&
7796              "NextLoadStore list for non memory effecting bundle?");
7797       MemoryLocation SrcLoc = getLocation(SrcInst);
7798       bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
7799       unsigned numAliased = 0;
7800       unsigned DistToSrc = 1;
7801 
7802       for ( ; DepDest; DepDest = DepDest->NextLoadStore) {
7803         assert(isInSchedulingRegion(DepDest));
7804 
7805         // We have two limits to reduce the complexity:
7806         // 1) AliasedCheckLimit: It's a small limit to reduce calls to
7807         //    SLP->isAliased (which is the expensive part in this loop).
7808         // 2) MaxMemDepDistance: It's for very large blocks and it aborts
7809         //    the whole loop (even if the loop is fast, it's quadratic).
7810         //    It's important for the loop break condition (see below) to
7811         //    check this limit even between two read-only instructions.
7812         if (DistToSrc >= MaxMemDepDistance ||
7813             ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
7814              (numAliased >= AliasedCheckLimit ||
7815               SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
7816 
7817           // We increment the counter only if the locations are aliased
7818           // (instead of counting all alias checks). This gives a better
7819           // balance between reduced runtime and accurate dependencies.
7820           numAliased++;
7821 
7822           DepDest->MemoryDependencies.push_back(BundleMember);
7823           BundleMember->Dependencies++;
7824           ScheduleData *DestBundle = DepDest->FirstInBundle;
7825           if (!DestBundle->IsScheduled) {
7826             BundleMember->incrementUnscheduledDeps(1);
7827           }
7828           if (!DestBundle->hasValidDependencies()) {
7829             WorkList.push_back(DestBundle);
7830           }
7831         }
7832 
7833         // Example, explaining the loop break condition: Let's assume our
7834         // starting instruction is i0 and MaxMemDepDistance = 3.
7835         //
7836         //                      +--------v--v--v
7837         //             i0,i1,i2,i3,i4,i5,i6,i7,i8
7838         //             +--------^--^--^
7839         //
7840         // MaxMemDepDistance let us stop alias-checking at i3 and we add
7841         // dependencies from i0 to i3,i4,.. (even if they are not aliased).
7842         // Previously we already added dependencies from i3 to i6,i7,i8
7843         // (because of MaxMemDepDistance). As we added a dependency from
7844         // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
7845         // and we can abort this loop at i6.
7846         if (DistToSrc >= 2 * MaxMemDepDistance)
7847           break;
7848         DistToSrc++;
7849       }
7850     }
7851     if (InsertInReadyList && SD->isReady()) {
7852       ReadyInsts.insert(SD);
7853       LLVM_DEBUG(dbgs() << "SLP:     gets ready on update: " << *SD->Inst
7854                         << "\n");
7855     }
7856   }
7857 }
7858 
7859 void BoUpSLP::BlockScheduling::resetSchedule() {
7860   assert(ScheduleStart &&
7861          "tried to reset schedule on block which has not been scheduled");
7862   for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
7863     doForAllOpcodes(I, [&](ScheduleData *SD) {
7864       assert(isInSchedulingRegion(SD) &&
7865              "ScheduleData not in scheduling region");
7866       SD->IsScheduled = false;
7867       SD->resetUnscheduledDeps();
7868     });
7869   }
7870   ReadyInsts.clear();
7871 }
7872 
7873 void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
7874   if (!BS->ScheduleStart)
7875     return;
7876 
7877   LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
7878 
7879   // A key point - if we got here, pre-scheduling was able to find a valid
7880   // scheduling of the sub-graph of the scheduling window which consists
7881   // of all vector bundles and their transitive users.  As such, we do not
7882   // need to reschedule anything *outside of* that subgraph.
7883 
7884   BS->resetSchedule();
7885 
7886   // For the real scheduling we use a more sophisticated ready-list: it is
7887   // sorted by the original instruction location. This lets the final schedule
7888   // be as  close as possible to the original instruction order.
7889   struct ScheduleDataCompare {
7890     bool operator()(ScheduleData *SD1, ScheduleData *SD2) const {
7891       return SD2->SchedulingPriority < SD1->SchedulingPriority;
7892     }
7893   };
7894   std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
7895 
7896   // Ensure that all dependency data is updated (for nodes in the sub-graph)
7897   // and fill the ready-list with initial instructions.
7898   int Idx = 0;
7899   for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
7900        I = I->getNextNode()) {
7901     BS->doForAllOpcodes(I, [this, &Idx, BS](ScheduleData *SD) {
7902       assert((isVectorLikeInstWithConstOps(SD->Inst) ||
7903               SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr)) &&
7904              "scheduler and vectorizer bundle mismatch");
7905       SD->FirstInBundle->SchedulingPriority = Idx++;
7906 
7907       if (SD->isSchedulingEntity() && SD->isPartOfBundle())
7908         BS->calculateDependencies(SD, false, this);
7909     });
7910   }
7911   BS->initialFillReadyList(ReadyInsts);
7912 
7913   Instruction *LastScheduledInst = BS->ScheduleEnd;
7914 
7915   // Do the "real" scheduling.
7916   while (!ReadyInsts.empty()) {
7917     ScheduleData *picked = *ReadyInsts.begin();
7918     ReadyInsts.erase(ReadyInsts.begin());
7919 
7920     // Move the scheduled instruction(s) to their dedicated places, if not
7921     // there yet.
7922     for (ScheduleData *BundleMember = picked; BundleMember;
7923          BundleMember = BundleMember->NextInBundle) {
7924       Instruction *pickedInst = BundleMember->Inst;
7925       if (pickedInst->getNextNode() != LastScheduledInst)
7926         pickedInst->moveBefore(LastScheduledInst);
7927       LastScheduledInst = pickedInst;
7928     }
7929 
7930     BS->schedule(picked, ReadyInsts);
7931   }
7932 
7933   // Check that we didn't break any of our invariants.
7934 #ifdef EXPENSIVE_CHECKS
7935   BS->verify();
7936 #endif
7937 
7938 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS)
7939   // Check that all schedulable entities got scheduled
7940   for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) {
7941     BS->doForAllOpcodes(I, [&](ScheduleData *SD) {
7942       if (SD->isSchedulingEntity() && SD->hasValidDependencies()) {
7943         assert(SD->IsScheduled && "must be scheduled at this point");
7944       }
7945     });
7946   }
7947 #endif
7948 
7949   // Avoid duplicate scheduling of the block.
7950   BS->ScheduleStart = nullptr;
7951 }
7952 
7953 unsigned BoUpSLP::getVectorElementSize(Value *V) {
7954   // If V is a store, just return the width of the stored value (or value
7955   // truncated just before storing) without traversing the expression tree.
7956   // This is the common case.
7957   if (auto *Store = dyn_cast<StoreInst>(V)) {
7958     if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand()))
7959       return DL->getTypeSizeInBits(Trunc->getSrcTy());
7960     return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
7961   }
7962 
7963   if (auto *IEI = dyn_cast<InsertElementInst>(V))
7964     return getVectorElementSize(IEI->getOperand(1));
7965 
7966   auto E = InstrElementSize.find(V);
7967   if (E != InstrElementSize.end())
7968     return E->second;
7969 
7970   // If V is not a store, we can traverse the expression tree to find loads
7971   // that feed it. The type of the loaded value may indicate a more suitable
7972   // width than V's type. We want to base the vector element size on the width
7973   // of memory operations where possible.
7974   SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist;
7975   SmallPtrSet<Instruction *, 16> Visited;
7976   if (auto *I = dyn_cast<Instruction>(V)) {
7977     Worklist.emplace_back(I, I->getParent());
7978     Visited.insert(I);
7979   }
7980 
7981   // Traverse the expression tree in bottom-up order looking for loads. If we
7982   // encounter an instruction we don't yet handle, we give up.
7983   auto Width = 0u;
7984   while (!Worklist.empty()) {
7985     Instruction *I;
7986     BasicBlock *Parent;
7987     std::tie(I, Parent) = Worklist.pop_back_val();
7988 
7989     // We should only be looking at scalar instructions here. If the current
7990     // instruction has a vector type, skip.
7991     auto *Ty = I->getType();
7992     if (isa<VectorType>(Ty))
7993       continue;
7994 
7995     // If the current instruction is a load, update MaxWidth to reflect the
7996     // width of the loaded value.
7997     if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) ||
7998         isa<ExtractValueInst>(I))
7999       Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty));
8000 
8001     // Otherwise, we need to visit the operands of the instruction. We only
8002     // handle the interesting cases from buildTree here. If an operand is an
8003     // instruction we haven't yet visited and from the same basic block as the
8004     // user or the use is a PHI node, we add it to the worklist.
8005     else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
8006              isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) ||
8007              isa<UnaryOperator>(I)) {
8008       for (Use &U : I->operands())
8009         if (auto *J = dyn_cast<Instruction>(U.get()))
8010           if (Visited.insert(J).second &&
8011               (isa<PHINode>(I) || J->getParent() == Parent))
8012             Worklist.emplace_back(J, J->getParent());
8013     } else {
8014       break;
8015     }
8016   }
8017 
8018   // If we didn't encounter a memory access in the expression tree, or if we
8019   // gave up for some reason, just return the width of V. Otherwise, return the
8020   // maximum width we found.
8021   if (!Width) {
8022     if (auto *CI = dyn_cast<CmpInst>(V))
8023       V = CI->getOperand(0);
8024     Width = DL->getTypeSizeInBits(V->getType());
8025   }
8026 
8027   for (Instruction *I : Visited)
8028     InstrElementSize[I] = Width;
8029 
8030   return Width;
8031 }
8032 
8033 // Determine if a value V in a vectorizable expression Expr can be demoted to a
8034 // smaller type with a truncation. We collect the values that will be demoted
8035 // in ToDemote and additional roots that require investigating in Roots.
8036 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
8037                                   SmallVectorImpl<Value *> &ToDemote,
8038                                   SmallVectorImpl<Value *> &Roots) {
8039   // We can always demote constants.
8040   if (isa<Constant>(V)) {
8041     ToDemote.push_back(V);
8042     return true;
8043   }
8044 
8045   // If the value is not an instruction in the expression with only one use, it
8046   // cannot be demoted.
8047   auto *I = dyn_cast<Instruction>(V);
8048   if (!I || !I->hasOneUse() || !Expr.count(I))
8049     return false;
8050 
8051   switch (I->getOpcode()) {
8052 
8053   // We can always demote truncations and extensions. Since truncations can
8054   // seed additional demotion, we save the truncated value.
8055   case Instruction::Trunc:
8056     Roots.push_back(I->getOperand(0));
8057     break;
8058   case Instruction::ZExt:
8059   case Instruction::SExt:
8060     if (isa<ExtractElementInst>(I->getOperand(0)) ||
8061         isa<InsertElementInst>(I->getOperand(0)))
8062       return false;
8063     break;
8064 
8065   // We can demote certain binary operations if we can demote both of their
8066   // operands.
8067   case Instruction::Add:
8068   case Instruction::Sub:
8069   case Instruction::Mul:
8070   case Instruction::And:
8071   case Instruction::Or:
8072   case Instruction::Xor:
8073     if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
8074         !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
8075       return false;
8076     break;
8077 
8078   // We can demote selects if we can demote their true and false values.
8079   case Instruction::Select: {
8080     SelectInst *SI = cast<SelectInst>(I);
8081     if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
8082         !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
8083       return false;
8084     break;
8085   }
8086 
8087   // We can demote phis if we can demote all their incoming operands. Note that
8088   // we don't need to worry about cycles since we ensure single use above.
8089   case Instruction::PHI: {
8090     PHINode *PN = cast<PHINode>(I);
8091     for (Value *IncValue : PN->incoming_values())
8092       if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
8093         return false;
8094     break;
8095   }
8096 
8097   // Otherwise, conservatively give up.
8098   default:
8099     return false;
8100   }
8101 
8102   // Record the value that we can demote.
8103   ToDemote.push_back(V);
8104   return true;
8105 }
8106 
8107 void BoUpSLP::computeMinimumValueSizes() {
8108   // If there are no external uses, the expression tree must be rooted by a
8109   // store. We can't demote in-memory values, so there is nothing to do here.
8110   if (ExternalUses.empty())
8111     return;
8112 
8113   // We only attempt to truncate integer expressions.
8114   auto &TreeRoot = VectorizableTree[0]->Scalars;
8115   auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
8116   if (!TreeRootIT)
8117     return;
8118 
8119   // If the expression is not rooted by a store, these roots should have
8120   // external uses. We will rely on InstCombine to rewrite the expression in
8121   // the narrower type. However, InstCombine only rewrites single-use values.
8122   // This means that if a tree entry other than a root is used externally, it
8123   // must have multiple uses and InstCombine will not rewrite it. The code
8124   // below ensures that only the roots are used externally.
8125   SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
8126   for (auto &EU : ExternalUses)
8127     if (!Expr.erase(EU.Scalar))
8128       return;
8129   if (!Expr.empty())
8130     return;
8131 
8132   // Collect the scalar values of the vectorizable expression. We will use this
8133   // context to determine which values can be demoted. If we see a truncation,
8134   // we mark it as seeding another demotion.
8135   for (auto &EntryPtr : VectorizableTree)
8136     Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end());
8137 
8138   // Ensure the roots of the vectorizable tree don't form a cycle. They must
8139   // have a single external user that is not in the vectorizable tree.
8140   for (auto *Root : TreeRoot)
8141     if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
8142       return;
8143 
8144   // Conservatively determine if we can actually truncate the roots of the
8145   // expression. Collect the values that can be demoted in ToDemote and
8146   // additional roots that require investigating in Roots.
8147   SmallVector<Value *, 32> ToDemote;
8148   SmallVector<Value *, 4> Roots;
8149   for (auto *Root : TreeRoot)
8150     if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
8151       return;
8152 
8153   // The maximum bit width required to represent all the values that can be
8154   // demoted without loss of precision. It would be safe to truncate the roots
8155   // of the expression to this width.
8156   auto MaxBitWidth = 8u;
8157 
8158   // We first check if all the bits of the roots are demanded. If they're not,
8159   // we can truncate the roots to this narrower type.
8160   for (auto *Root : TreeRoot) {
8161     auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
8162     MaxBitWidth = std::max<unsigned>(
8163         Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
8164   }
8165 
8166   // True if the roots can be zero-extended back to their original type, rather
8167   // than sign-extended. We know that if the leading bits are not demanded, we
8168   // can safely zero-extend. So we initialize IsKnownPositive to True.
8169   bool IsKnownPositive = true;
8170 
8171   // If all the bits of the roots are demanded, we can try a little harder to
8172   // compute a narrower type. This can happen, for example, if the roots are
8173   // getelementptr indices. InstCombine promotes these indices to the pointer
8174   // width. Thus, all their bits are technically demanded even though the
8175   // address computation might be vectorized in a smaller type.
8176   //
8177   // We start by looking at each entry that can be demoted. We compute the
8178   // maximum bit width required to store the scalar by using ValueTracking to
8179   // compute the number of high-order bits we can truncate.
8180   if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) &&
8181       llvm::all_of(TreeRoot, [](Value *R) {
8182         assert(R->hasOneUse() && "Root should have only one use!");
8183         return isa<GetElementPtrInst>(R->user_back());
8184       })) {
8185     MaxBitWidth = 8u;
8186 
8187     // Determine if the sign bit of all the roots is known to be zero. If not,
8188     // IsKnownPositive is set to False.
8189     IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) {
8190       KnownBits Known = computeKnownBits(R, *DL);
8191       return Known.isNonNegative();
8192     });
8193 
8194     // Determine the maximum number of bits required to store the scalar
8195     // values.
8196     for (auto *Scalar : ToDemote) {
8197       auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT);
8198       auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
8199       MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
8200     }
8201 
8202     // If we can't prove that the sign bit is zero, we must add one to the
8203     // maximum bit width to account for the unknown sign bit. This preserves
8204     // the existing sign bit so we can safely sign-extend the root back to the
8205     // original type. Otherwise, if we know the sign bit is zero, we will
8206     // zero-extend the root instead.
8207     //
8208     // FIXME: This is somewhat suboptimal, as there will be cases where adding
8209     //        one to the maximum bit width will yield a larger-than-necessary
8210     //        type. In general, we need to add an extra bit only if we can't
8211     //        prove that the upper bit of the original type is equal to the
8212     //        upper bit of the proposed smaller type. If these two bits are the
8213     //        same (either zero or one) we know that sign-extending from the
8214     //        smaller type will result in the same value. Here, since we can't
8215     //        yet prove this, we are just making the proposed smaller type
8216     //        larger to ensure correctness.
8217     if (!IsKnownPositive)
8218       ++MaxBitWidth;
8219   }
8220 
8221   // Round MaxBitWidth up to the next power-of-two.
8222   if (!isPowerOf2_64(MaxBitWidth))
8223     MaxBitWidth = NextPowerOf2(MaxBitWidth);
8224 
8225   // If the maximum bit width we compute is less than the with of the roots'
8226   // type, we can proceed with the narrowing. Otherwise, do nothing.
8227   if (MaxBitWidth >= TreeRootIT->getBitWidth())
8228     return;
8229 
8230   // If we can truncate the root, we must collect additional values that might
8231   // be demoted as a result. That is, those seeded by truncations we will
8232   // modify.
8233   while (!Roots.empty())
8234     collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);
8235 
8236   // Finally, map the values we can demote to the maximum bit with we computed.
8237   for (auto *Scalar : ToDemote)
8238     MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive);
8239 }
8240 
8241 namespace {
8242 
8243 /// The SLPVectorizer Pass.
8244 struct SLPVectorizer : public FunctionPass {
8245   SLPVectorizerPass Impl;
8246 
8247   /// Pass identification, replacement for typeid
8248   static char ID;
8249 
8250   explicit SLPVectorizer() : FunctionPass(ID) {
8251     initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
8252   }
8253 
8254   bool doInitialization(Module &M) override { return false; }
8255 
8256   bool runOnFunction(Function &F) override {
8257     if (skipFunction(F))
8258       return false;
8259 
8260     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
8261     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
8262     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
8263     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
8264     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
8265     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
8266     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
8267     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
8268     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
8269     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
8270 
8271     return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
8272   }
8273 
8274   void getAnalysisUsage(AnalysisUsage &AU) const override {
8275     FunctionPass::getAnalysisUsage(AU);
8276     AU.addRequired<AssumptionCacheTracker>();
8277     AU.addRequired<ScalarEvolutionWrapperPass>();
8278     AU.addRequired<AAResultsWrapperPass>();
8279     AU.addRequired<TargetTransformInfoWrapperPass>();
8280     AU.addRequired<LoopInfoWrapperPass>();
8281     AU.addRequired<DominatorTreeWrapperPass>();
8282     AU.addRequired<DemandedBitsWrapperPass>();
8283     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
8284     AU.addRequired<InjectTLIMappingsLegacy>();
8285     AU.addPreserved<LoopInfoWrapperPass>();
8286     AU.addPreserved<DominatorTreeWrapperPass>();
8287     AU.addPreserved<AAResultsWrapperPass>();
8288     AU.addPreserved<GlobalsAAWrapperPass>();
8289     AU.setPreservesCFG();
8290   }
8291 };
8292 
8293 } // end anonymous namespace
8294 
8295 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
8296   auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
8297   auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
8298   auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
8299   auto *AA = &AM.getResult<AAManager>(F);
8300   auto *LI = &AM.getResult<LoopAnalysis>(F);
8301   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
8302   auto *AC = &AM.getResult<AssumptionAnalysis>(F);
8303   auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
8304   auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
8305 
8306   bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
8307   if (!Changed)
8308     return PreservedAnalyses::all();
8309 
8310   PreservedAnalyses PA;
8311   PA.preserveSet<CFGAnalyses>();
8312   return PA;
8313 }
8314 
8315 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
8316                                 TargetTransformInfo *TTI_,
8317                                 TargetLibraryInfo *TLI_, AAResults *AA_,
8318                                 LoopInfo *LI_, DominatorTree *DT_,
8319                                 AssumptionCache *AC_, DemandedBits *DB_,
8320                                 OptimizationRemarkEmitter *ORE_) {
8321   if (!RunSLPVectorization)
8322     return false;
8323   SE = SE_;
8324   TTI = TTI_;
8325   TLI = TLI_;
8326   AA = AA_;
8327   LI = LI_;
8328   DT = DT_;
8329   AC = AC_;
8330   DB = DB_;
8331   DL = &F.getParent()->getDataLayout();
8332 
8333   Stores.clear();
8334   GEPs.clear();
8335   bool Changed = false;
8336 
8337   // If the target claims to have no vector registers don't attempt
8338   // vectorization.
8339   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) {
8340     LLVM_DEBUG(
8341         dbgs() << "SLP: Didn't find any vector registers for target, abort.\n");
8342     return false;
8343   }
8344 
8345   // Don't vectorize when the attribute NoImplicitFloat is used.
8346   if (F.hasFnAttribute(Attribute::NoImplicitFloat))
8347     return false;
8348 
8349   LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
8350 
8351   // Use the bottom up slp vectorizer to construct chains that start with
8352   // store instructions.
8353   BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_);
8354 
8355   // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
8356   // delete instructions.
8357 
8358   // Update DFS numbers now so that we can use them for ordering.
8359   DT->updateDFSNumbers();
8360 
8361   // Scan the blocks in the function in post order.
8362   for (auto BB : post_order(&F.getEntryBlock())) {
8363     collectSeedInstructions(BB);
8364 
8365     // Vectorize trees that end at stores.
8366     if (!Stores.empty()) {
8367       LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()
8368                         << " underlying objects.\n");
8369       Changed |= vectorizeStoreChains(R);
8370     }
8371 
8372     // Vectorize trees that end at reductions.
8373     Changed |= vectorizeChainsInBlock(BB, R);
8374 
8375     // Vectorize the index computations of getelementptr instructions. This
8376     // is primarily intended to catch gather-like idioms ending at
8377     // non-consecutive loads.
8378     if (!GEPs.empty()) {
8379       LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()
8380                         << " underlying objects.\n");
8381       Changed |= vectorizeGEPIndices(BB, R);
8382     }
8383   }
8384 
8385   if (Changed) {
8386     R.optimizeGatherSequence();
8387     LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
8388   }
8389   return Changed;
8390 }
8391 
8392 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R,
8393                                             unsigned Idx) {
8394   LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size()
8395                     << "\n");
8396   const unsigned Sz = R.getVectorElementSize(Chain[0]);
8397   const unsigned MinVF = R.getMinVecRegSize() / Sz;
8398   unsigned VF = Chain.size();
8399 
8400   if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF)
8401     return false;
8402 
8403   LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx
8404                     << "\n");
8405 
8406   R.buildTree(Chain);
8407   if (R.isTreeTinyAndNotFullyVectorizable())
8408     return false;
8409   if (R.isLoadCombineCandidate())
8410     return false;
8411   R.reorderTopToBottom();
8412   R.reorderBottomToTop();
8413   R.buildExternalUses();
8414 
8415   R.computeMinimumValueSizes();
8416 
8417   InstructionCost Cost = R.getTreeCost();
8418 
8419   LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n");
8420   if (Cost < -SLPCostThreshold) {
8421     LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n");
8422 
8423     using namespace ore;
8424 
8425     R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized",
8426                                         cast<StoreInst>(Chain[0]))
8427                      << "Stores SLP vectorized with cost " << NV("Cost", Cost)
8428                      << " and with tree size "
8429                      << NV("TreeSize", R.getTreeSize()));
8430 
8431     R.vectorizeTree();
8432     return true;
8433   }
8434 
8435   return false;
8436 }
8437 
8438 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
8439                                         BoUpSLP &R) {
8440   // We may run into multiple chains that merge into a single chain. We mark the
8441   // stores that we vectorized so that we don't visit the same store twice.
8442   BoUpSLP::ValueSet VectorizedStores;
8443   bool Changed = false;
8444 
8445   int E = Stores.size();
8446   SmallBitVector Tails(E, false);
8447   int MaxIter = MaxStoreLookup.getValue();
8448   SmallVector<std::pair<int, int>, 16> ConsecutiveChain(
8449       E, std::make_pair(E, INT_MAX));
8450   SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false));
8451   int IterCnt;
8452   auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter,
8453                                   &CheckedPairs,
8454                                   &ConsecutiveChain](int K, int Idx) {
8455     if (IterCnt >= MaxIter)
8456       return true;
8457     if (CheckedPairs[Idx].test(K))
8458       return ConsecutiveChain[K].second == 1 &&
8459              ConsecutiveChain[K].first == Idx;
8460     ++IterCnt;
8461     CheckedPairs[Idx].set(K);
8462     CheckedPairs[K].set(Idx);
8463     Optional<int> Diff = getPointersDiff(
8464         Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(),
8465         Stores[Idx]->getValueOperand()->getType(),
8466         Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true);
8467     if (!Diff || *Diff == 0)
8468       return false;
8469     int Val = *Diff;
8470     if (Val < 0) {
8471       if (ConsecutiveChain[Idx].second > -Val) {
8472         Tails.set(K);
8473         ConsecutiveChain[Idx] = std::make_pair(K, -Val);
8474       }
8475       return false;
8476     }
8477     if (ConsecutiveChain[K].second <= Val)
8478       return false;
8479 
8480     Tails.set(Idx);
8481     ConsecutiveChain[K] = std::make_pair(Idx, Val);
8482     return Val == 1;
8483   };
8484   // Do a quadratic search on all of the given stores in reverse order and find
8485   // all of the pairs of stores that follow each other.
8486   for (int Idx = E - 1; Idx >= 0; --Idx) {
8487     // If a store has multiple consecutive store candidates, search according
8488     // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ...
8489     // This is because usually pairing with immediate succeeding or preceding
8490     // candidate create the best chance to find slp vectorization opportunity.
8491     const int MaxLookDepth = std::max(E - Idx, Idx + 1);
8492     IterCnt = 0;
8493     for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset)
8494       if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) ||
8495           (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx)))
8496         break;
8497   }
8498 
8499   // Tracks if we tried to vectorize stores starting from the given tail
8500   // already.
8501   SmallBitVector TriedTails(E, false);
8502   // For stores that start but don't end a link in the chain:
8503   for (int Cnt = E; Cnt > 0; --Cnt) {
8504     int I = Cnt - 1;
8505     if (ConsecutiveChain[I].first == E || Tails.test(I))
8506       continue;
8507     // We found a store instr that starts a chain. Now follow the chain and try
8508     // to vectorize it.
8509     BoUpSLP::ValueList Operands;
8510     // Collect the chain into a list.
8511     while (I != E && !VectorizedStores.count(Stores[I])) {
8512       Operands.push_back(Stores[I]);
8513       Tails.set(I);
8514       if (ConsecutiveChain[I].second != 1) {
8515         // Mark the new end in the chain and go back, if required. It might be
8516         // required if the original stores come in reversed order, for example.
8517         if (ConsecutiveChain[I].first != E &&
8518             Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) &&
8519             !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) {
8520           TriedTails.set(I);
8521           Tails.reset(ConsecutiveChain[I].first);
8522           if (Cnt < ConsecutiveChain[I].first + 2)
8523             Cnt = ConsecutiveChain[I].first + 2;
8524         }
8525         break;
8526       }
8527       // Move to the next value in the chain.
8528       I = ConsecutiveChain[I].first;
8529     }
8530     assert(!Operands.empty() && "Expected non-empty list of stores.");
8531 
8532     unsigned MaxVecRegSize = R.getMaxVecRegSize();
8533     unsigned EltSize = R.getVectorElementSize(Operands[0]);
8534     unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize);
8535 
8536     unsigned MinVF = R.getMinVF(EltSize);
8537     unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store),
8538                               MaxElts);
8539 
8540     // FIXME: Is division-by-2 the correct step? Should we assert that the
8541     // register size is a power-of-2?
8542     unsigned StartIdx = 0;
8543     for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) {
8544       for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) {
8545         ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size);
8546         if (!VectorizedStores.count(Slice.front()) &&
8547             !VectorizedStores.count(Slice.back()) &&
8548             vectorizeStoreChain(Slice, R, Cnt)) {
8549           // Mark the vectorized stores so that we don't vectorize them again.
8550           VectorizedStores.insert(Slice.begin(), Slice.end());
8551           Changed = true;
8552           // If we vectorized initial block, no need to try to vectorize it
8553           // again.
8554           if (Cnt == StartIdx)
8555             StartIdx += Size;
8556           Cnt += Size;
8557           continue;
8558         }
8559         ++Cnt;
8560       }
8561       // Check if the whole array was vectorized already - exit.
8562       if (StartIdx >= Operands.size())
8563         break;
8564     }
8565   }
8566 
8567   return Changed;
8568 }
8569 
8570 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
8571   // Initialize the collections. We will make a single pass over the block.
8572   Stores.clear();
8573   GEPs.clear();
8574 
8575   // Visit the store and getelementptr instructions in BB and organize them in
8576   // Stores and GEPs according to the underlying objects of their pointer
8577   // operands.
8578   for (Instruction &I : *BB) {
8579     // Ignore store instructions that are volatile or have a pointer operand
8580     // that doesn't point to a scalar type.
8581     if (auto *SI = dyn_cast<StoreInst>(&I)) {
8582       if (!SI->isSimple())
8583         continue;
8584       if (!isValidElementType(SI->getValueOperand()->getType()))
8585         continue;
8586       Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI);
8587     }
8588 
8589     // Ignore getelementptr instructions that have more than one index, a
8590     // constant index, or a pointer operand that doesn't point to a scalar
8591     // type.
8592     else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
8593       auto Idx = GEP->idx_begin()->get();
8594       if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
8595         continue;
8596       if (!isValidElementType(Idx->getType()))
8597         continue;
8598       if (GEP->getType()->isVectorTy())
8599         continue;
8600       GEPs[GEP->getPointerOperand()].push_back(GEP);
8601     }
8602   }
8603 }
8604 
8605 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
8606   if (!A || !B)
8607     return false;
8608   if (isa<InsertElementInst>(A) || isa<InsertElementInst>(B))
8609     return false;
8610   Value *VL[] = {A, B};
8611   return tryToVectorizeList(VL, R);
8612 }
8613 
8614 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
8615                                            bool LimitForRegisterSize) {
8616   if (VL.size() < 2)
8617     return false;
8618 
8619   LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = "
8620                     << VL.size() << ".\n");
8621 
8622   // Check that all of the parts are instructions of the same type,
8623   // we permit an alternate opcode via InstructionsState.
8624   InstructionsState S = getSameOpcode(VL);
8625   if (!S.getOpcode())
8626     return false;
8627 
8628   Instruction *I0 = cast<Instruction>(S.OpValue);
8629   // Make sure invalid types (including vector type) are rejected before
8630   // determining vectorization factor for scalar instructions.
8631   for (Value *V : VL) {
8632     Type *Ty = V->getType();
8633     if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) {
8634       // NOTE: the following will give user internal llvm type name, which may
8635       // not be useful.
8636       R.getORE()->emit([&]() {
8637         std::string type_str;
8638         llvm::raw_string_ostream rso(type_str);
8639         Ty->print(rso);
8640         return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0)
8641                << "Cannot SLP vectorize list: type "
8642                << rso.str() + " is unsupported by vectorizer";
8643       });
8644       return false;
8645     }
8646   }
8647 
8648   unsigned Sz = R.getVectorElementSize(I0);
8649   unsigned MinVF = R.getMinVF(Sz);
8650   unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF);
8651   MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF);
8652   if (MaxVF < 2) {
8653     R.getORE()->emit([&]() {
8654       return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0)
8655              << "Cannot SLP vectorize list: vectorization factor "
8656              << "less than 2 is not supported";
8657     });
8658     return false;
8659   }
8660 
8661   bool Changed = false;
8662   bool CandidateFound = false;
8663   InstructionCost MinCost = SLPCostThreshold.getValue();
8664   Type *ScalarTy = VL[0]->getType();
8665   if (auto *IE = dyn_cast<InsertElementInst>(VL[0]))
8666     ScalarTy = IE->getOperand(1)->getType();
8667 
8668   unsigned NextInst = 0, MaxInst = VL.size();
8669   for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) {
8670     // No actual vectorization should happen, if number of parts is the same as
8671     // provided vectorization factor (i.e. the scalar type is used for vector
8672     // code during codegen).
8673     auto *VecTy = FixedVectorType::get(ScalarTy, VF);
8674     if (TTI->getNumberOfParts(VecTy) == VF)
8675       continue;
8676     for (unsigned I = NextInst; I < MaxInst; ++I) {
8677       unsigned OpsWidth = 0;
8678 
8679       if (I + VF > MaxInst)
8680         OpsWidth = MaxInst - I;
8681       else
8682         OpsWidth = VF;
8683 
8684       if (!isPowerOf2_32(OpsWidth))
8685         continue;
8686 
8687       if ((LimitForRegisterSize && OpsWidth < MaxVF) ||
8688           (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2))
8689         break;
8690 
8691       ArrayRef<Value *> Ops = VL.slice(I, OpsWidth);
8692       // Check that a previous iteration of this loop did not delete the Value.
8693       if (llvm::any_of(Ops, [&R](Value *V) {
8694             auto *I = dyn_cast<Instruction>(V);
8695             return I && R.isDeleted(I);
8696           }))
8697         continue;
8698 
8699       LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
8700                         << "\n");
8701 
8702       R.buildTree(Ops);
8703       if (R.isTreeTinyAndNotFullyVectorizable())
8704         continue;
8705       R.reorderTopToBottom();
8706       R.reorderBottomToTop(!isa<InsertElementInst>(Ops.front()));
8707       R.buildExternalUses();
8708 
8709       R.computeMinimumValueSizes();
8710       InstructionCost Cost = R.getTreeCost();
8711       CandidateFound = true;
8712       MinCost = std::min(MinCost, Cost);
8713 
8714       if (Cost < -SLPCostThreshold) {
8715         LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
8716         R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList",
8717                                                     cast<Instruction>(Ops[0]))
8718                                  << "SLP vectorized with cost " << ore::NV("Cost", Cost)
8719                                  << " and with tree size "
8720                                  << ore::NV("TreeSize", R.getTreeSize()));
8721 
8722         R.vectorizeTree();
8723         // Move to the next bundle.
8724         I += VF - 1;
8725         NextInst = I + 1;
8726         Changed = true;
8727       }
8728     }
8729   }
8730 
8731   if (!Changed && CandidateFound) {
8732     R.getORE()->emit([&]() {
8733       return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0)
8734              << "List vectorization was possible but not beneficial with cost "
8735              << ore::NV("Cost", MinCost) << " >= "
8736              << ore::NV("Treshold", -SLPCostThreshold);
8737     });
8738   } else if (!Changed) {
8739     R.getORE()->emit([&]() {
8740       return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0)
8741              << "Cannot SLP vectorize list: vectorization was impossible"
8742              << " with available vectorization factors";
8743     });
8744   }
8745   return Changed;
8746 }
8747 
8748 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) {
8749   if (!I)
8750     return false;
8751 
8752   if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I))
8753     return false;
8754 
8755   Value *P = I->getParent();
8756 
8757   // Vectorize in current basic block only.
8758   auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
8759   auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
8760   if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P)
8761     return false;
8762 
8763   // Try to vectorize V.
8764   if (tryToVectorizePair(Op0, Op1, R))
8765     return true;
8766 
8767   auto *A = dyn_cast<BinaryOperator>(Op0);
8768   auto *B = dyn_cast<BinaryOperator>(Op1);
8769   // Try to skip B.
8770   if (B && B->hasOneUse()) {
8771     auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
8772     auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
8773     if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R))
8774       return true;
8775     if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R))
8776       return true;
8777   }
8778 
8779   // Try to skip A.
8780   if (A && A->hasOneUse()) {
8781     auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
8782     auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
8783     if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R))
8784       return true;
8785     if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R))
8786       return true;
8787   }
8788   return false;
8789 }
8790 
8791 namespace {
8792 
8793 /// Model horizontal reductions.
8794 ///
8795 /// A horizontal reduction is a tree of reduction instructions that has values
8796 /// that can be put into a vector as its leaves. For example:
8797 ///
8798 /// mul mul mul mul
8799 ///  \  /    \  /
8800 ///   +       +
8801 ///    \     /
8802 ///       +
8803 /// This tree has "mul" as its leaf values and "+" as its reduction
8804 /// instructions. A reduction can feed into a store or a binary operation
8805 /// feeding a phi.
8806 ///    ...
8807 ///    \  /
8808 ///     +
8809 ///     |
8810 ///  phi +=
8811 ///
8812 ///  Or:
8813 ///    ...
8814 ///    \  /
8815 ///     +
8816 ///     |
8817 ///   *p =
8818 ///
8819 class HorizontalReduction {
8820   using ReductionOpsType = SmallVector<Value *, 16>;
8821   using ReductionOpsListType = SmallVector<ReductionOpsType, 2>;
8822   ReductionOpsListType ReductionOps;
8823   SmallVector<Value *, 32> ReducedVals;
8824   // Use map vector to make stable output.
8825   MapVector<Instruction *, Value *> ExtraArgs;
8826   WeakTrackingVH ReductionRoot;
8827   /// The type of reduction operation.
8828   RecurKind RdxKind;
8829 
8830   const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max();
8831 
8832   static bool isCmpSelMinMax(Instruction *I) {
8833     return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) &&
8834            RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I));
8835   }
8836 
8837   // And/or are potentially poison-safe logical patterns like:
8838   // select x, y, false
8839   // select x, true, y
8840   static bool isBoolLogicOp(Instruction *I) {
8841     return match(I, m_LogicalAnd(m_Value(), m_Value())) ||
8842            match(I, m_LogicalOr(m_Value(), m_Value()));
8843   }
8844 
8845   /// Checks if instruction is associative and can be vectorized.
8846   static bool isVectorizable(RecurKind Kind, Instruction *I) {
8847     if (Kind == RecurKind::None)
8848       return false;
8849 
8850     // Integer ops that map to select instructions or intrinsics are fine.
8851     if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) ||
8852         isBoolLogicOp(I))
8853       return true;
8854 
8855     if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) {
8856       // FP min/max are associative except for NaN and -0.0. We do not
8857       // have to rule out -0.0 here because the intrinsic semantics do not
8858       // specify a fixed result for it.
8859       return I->getFastMathFlags().noNaNs();
8860     }
8861 
8862     return I->isAssociative();
8863   }
8864 
8865   static Value *getRdxOperand(Instruction *I, unsigned Index) {
8866     // Poison-safe 'or' takes the form: select X, true, Y
8867     // To make that work with the normal operand processing, we skip the
8868     // true value operand.
8869     // TODO: Change the code and data structures to handle this without a hack.
8870     if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1)
8871       return I->getOperand(2);
8872     return I->getOperand(Index);
8873   }
8874 
8875   /// Checks if the ParentStackElem.first should be marked as a reduction
8876   /// operation with an extra argument or as extra argument itself.
8877   void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem,
8878                     Value *ExtraArg) {
8879     if (ExtraArgs.count(ParentStackElem.first)) {
8880       ExtraArgs[ParentStackElem.first] = nullptr;
8881       // We ran into something like:
8882       // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg.
8883       // The whole ParentStackElem.first should be considered as an extra value
8884       // in this case.
8885       // Do not perform analysis of remaining operands of ParentStackElem.first
8886       // instruction, this whole instruction is an extra argument.
8887       ParentStackElem.second = INVALID_OPERAND_INDEX;
8888     } else {
8889       // We ran into something like:
8890       // ParentStackElem.first += ... + ExtraArg + ...
8891       ExtraArgs[ParentStackElem.first] = ExtraArg;
8892     }
8893   }
8894 
8895   /// Creates reduction operation with the current opcode.
8896   static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS,
8897                          Value *RHS, const Twine &Name, bool UseSelect) {
8898     unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind);
8899     switch (Kind) {
8900     case RecurKind::Or:
8901       if (UseSelect &&
8902           LHS->getType() == CmpInst::makeCmpResultType(LHS->getType()))
8903         return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name);
8904       return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS,
8905                                  Name);
8906     case RecurKind::And:
8907       if (UseSelect &&
8908           LHS->getType() == CmpInst::makeCmpResultType(LHS->getType()))
8909         return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name);
8910       return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS,
8911                                  Name);
8912     case RecurKind::Add:
8913     case RecurKind::Mul:
8914     case RecurKind::Xor:
8915     case RecurKind::FAdd:
8916     case RecurKind::FMul:
8917       return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS,
8918                                  Name);
8919     case RecurKind::FMax:
8920       return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS);
8921     case RecurKind::FMin:
8922       return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS);
8923     case RecurKind::SMax:
8924       if (UseSelect) {
8925         Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name);
8926         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
8927       }
8928       return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS);
8929     case RecurKind::SMin:
8930       if (UseSelect) {
8931         Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name);
8932         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
8933       }
8934       return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS);
8935     case RecurKind::UMax:
8936       if (UseSelect) {
8937         Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name);
8938         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
8939       }
8940       return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS);
8941     case RecurKind::UMin:
8942       if (UseSelect) {
8943         Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name);
8944         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
8945       }
8946       return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS);
8947     default:
8948       llvm_unreachable("Unknown reduction operation.");
8949     }
8950   }
8951 
8952   /// Creates reduction operation with the current opcode with the IR flags
8953   /// from \p ReductionOps.
8954   static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS,
8955                          Value *RHS, const Twine &Name,
8956                          const ReductionOpsListType &ReductionOps) {
8957     bool UseSelect = ReductionOps.size() == 2 ||
8958                      // Logical or/and.
8959                      (ReductionOps.size() == 1 &&
8960                       isa<SelectInst>(ReductionOps.front().front()));
8961     assert((!UseSelect || ReductionOps.size() != 2 ||
8962             isa<SelectInst>(ReductionOps[1][0])) &&
8963            "Expected cmp + select pairs for reduction");
8964     Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect);
8965     if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) {
8966       if (auto *Sel = dyn_cast<SelectInst>(Op)) {
8967         propagateIRFlags(Sel->getCondition(), ReductionOps[0]);
8968         propagateIRFlags(Op, ReductionOps[1]);
8969         return Op;
8970       }
8971     }
8972     propagateIRFlags(Op, ReductionOps[0]);
8973     return Op;
8974   }
8975 
8976   /// Creates reduction operation with the current opcode with the IR flags
8977   /// from \p I.
8978   static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS,
8979                          Value *RHS, const Twine &Name, Instruction *I) {
8980     auto *SelI = dyn_cast<SelectInst>(I);
8981     Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr);
8982     if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) {
8983       if (auto *Sel = dyn_cast<SelectInst>(Op))
8984         propagateIRFlags(Sel->getCondition(), SelI->getCondition());
8985     }
8986     propagateIRFlags(Op, I);
8987     return Op;
8988   }
8989 
8990   static RecurKind getRdxKind(Instruction *I) {
8991     assert(I && "Expected instruction for reduction matching");
8992     if (match(I, m_Add(m_Value(), m_Value())))
8993       return RecurKind::Add;
8994     if (match(I, m_Mul(m_Value(), m_Value())))
8995       return RecurKind::Mul;
8996     if (match(I, m_And(m_Value(), m_Value())) ||
8997         match(I, m_LogicalAnd(m_Value(), m_Value())))
8998       return RecurKind::And;
8999     if (match(I, m_Or(m_Value(), m_Value())) ||
9000         match(I, m_LogicalOr(m_Value(), m_Value())))
9001       return RecurKind::Or;
9002     if (match(I, m_Xor(m_Value(), m_Value())))
9003       return RecurKind::Xor;
9004     if (match(I, m_FAdd(m_Value(), m_Value())))
9005       return RecurKind::FAdd;
9006     if (match(I, m_FMul(m_Value(), m_Value())))
9007       return RecurKind::FMul;
9008 
9009     if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value())))
9010       return RecurKind::FMax;
9011     if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value())))
9012       return RecurKind::FMin;
9013 
9014     // This matches either cmp+select or intrinsics. SLP is expected to handle
9015     // either form.
9016     // TODO: If we are canonicalizing to intrinsics, we can remove several
9017     //       special-case paths that deal with selects.
9018     if (match(I, m_SMax(m_Value(), m_Value())))
9019       return RecurKind::SMax;
9020     if (match(I, m_SMin(m_Value(), m_Value())))
9021       return RecurKind::SMin;
9022     if (match(I, m_UMax(m_Value(), m_Value())))
9023       return RecurKind::UMax;
9024     if (match(I, m_UMin(m_Value(), m_Value())))
9025       return RecurKind::UMin;
9026 
9027     if (auto *Select = dyn_cast<SelectInst>(I)) {
9028       // Try harder: look for min/max pattern based on instructions producing
9029       // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2).
9030       // During the intermediate stages of SLP, it's very common to have
9031       // pattern like this (since optimizeGatherSequence is run only once
9032       // at the end):
9033       // %1 = extractelement <2 x i32> %a, i32 0
9034       // %2 = extractelement <2 x i32> %a, i32 1
9035       // %cond = icmp sgt i32 %1, %2
9036       // %3 = extractelement <2 x i32> %a, i32 0
9037       // %4 = extractelement <2 x i32> %a, i32 1
9038       // %select = select i1 %cond, i32 %3, i32 %4
9039       CmpInst::Predicate Pred;
9040       Instruction *L1;
9041       Instruction *L2;
9042 
9043       Value *LHS = Select->getTrueValue();
9044       Value *RHS = Select->getFalseValue();
9045       Value *Cond = Select->getCondition();
9046 
9047       // TODO: Support inverse predicates.
9048       if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) {
9049         if (!isa<ExtractElementInst>(RHS) ||
9050             !L2->isIdenticalTo(cast<Instruction>(RHS)))
9051           return RecurKind::None;
9052       } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) {
9053         if (!isa<ExtractElementInst>(LHS) ||
9054             !L1->isIdenticalTo(cast<Instruction>(LHS)))
9055           return RecurKind::None;
9056       } else {
9057         if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS))
9058           return RecurKind::None;
9059         if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) ||
9060             !L1->isIdenticalTo(cast<Instruction>(LHS)) ||
9061             !L2->isIdenticalTo(cast<Instruction>(RHS)))
9062           return RecurKind::None;
9063       }
9064 
9065       switch (Pred) {
9066       default:
9067         return RecurKind::None;
9068       case CmpInst::ICMP_SGT:
9069       case CmpInst::ICMP_SGE:
9070         return RecurKind::SMax;
9071       case CmpInst::ICMP_SLT:
9072       case CmpInst::ICMP_SLE:
9073         return RecurKind::SMin;
9074       case CmpInst::ICMP_UGT:
9075       case CmpInst::ICMP_UGE:
9076         return RecurKind::UMax;
9077       case CmpInst::ICMP_ULT:
9078       case CmpInst::ICMP_ULE:
9079         return RecurKind::UMin;
9080       }
9081     }
9082     return RecurKind::None;
9083   }
9084 
9085   /// Get the index of the first operand.
9086   static unsigned getFirstOperandIndex(Instruction *I) {
9087     return isCmpSelMinMax(I) ? 1 : 0;
9088   }
9089 
9090   /// Total number of operands in the reduction operation.
9091   static unsigned getNumberOfOperands(Instruction *I) {
9092     return isCmpSelMinMax(I) ? 3 : 2;
9093   }
9094 
9095   /// Checks if the instruction is in basic block \p BB.
9096   /// For a cmp+sel min/max reduction check that both ops are in \p BB.
9097   static bool hasSameParent(Instruction *I, BasicBlock *BB) {
9098     if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) {
9099       auto *Sel = cast<SelectInst>(I);
9100       auto *Cmp = dyn_cast<Instruction>(Sel->getCondition());
9101       return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB;
9102     }
9103     return I->getParent() == BB;
9104   }
9105 
9106   /// Expected number of uses for reduction operations/reduced values.
9107   static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) {
9108     if (IsCmpSelMinMax) {
9109       // SelectInst must be used twice while the condition op must have single
9110       // use only.
9111       if (auto *Sel = dyn_cast<SelectInst>(I))
9112         return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse();
9113       return I->hasNUses(2);
9114     }
9115 
9116     // Arithmetic reduction operation must be used once only.
9117     return I->hasOneUse();
9118   }
9119 
9120   /// Initializes the list of reduction operations.
9121   void initReductionOps(Instruction *I) {
9122     if (isCmpSelMinMax(I))
9123       ReductionOps.assign(2, ReductionOpsType());
9124     else
9125       ReductionOps.assign(1, ReductionOpsType());
9126   }
9127 
9128   /// Add all reduction operations for the reduction instruction \p I.
9129   void addReductionOps(Instruction *I) {
9130     if (isCmpSelMinMax(I)) {
9131       ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition());
9132       ReductionOps[1].emplace_back(I);
9133     } else {
9134       ReductionOps[0].emplace_back(I);
9135     }
9136   }
9137 
9138   static Value *getLHS(RecurKind Kind, Instruction *I) {
9139     if (Kind == RecurKind::None)
9140       return nullptr;
9141     return I->getOperand(getFirstOperandIndex(I));
9142   }
9143   static Value *getRHS(RecurKind Kind, Instruction *I) {
9144     if (Kind == RecurKind::None)
9145       return nullptr;
9146     return I->getOperand(getFirstOperandIndex(I) + 1);
9147   }
9148 
9149 public:
9150   HorizontalReduction() = default;
9151 
9152   /// Try to find a reduction tree.
9153   bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) {
9154     assert((!Phi || is_contained(Phi->operands(), Inst)) &&
9155            "Phi needs to use the binary operator");
9156     assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) ||
9157             isa<IntrinsicInst>(Inst)) &&
9158            "Expected binop, select, or intrinsic for reduction matching");
9159     RdxKind = getRdxKind(Inst);
9160 
9161     // We could have a initial reductions that is not an add.
9162     //  r *= v1 + v2 + v3 + v4
9163     // In such a case start looking for a tree rooted in the first '+'.
9164     if (Phi) {
9165       if (getLHS(RdxKind, Inst) == Phi) {
9166         Phi = nullptr;
9167         Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst));
9168         if (!Inst)
9169           return false;
9170         RdxKind = getRdxKind(Inst);
9171       } else if (getRHS(RdxKind, Inst) == Phi) {
9172         Phi = nullptr;
9173         Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst));
9174         if (!Inst)
9175           return false;
9176         RdxKind = getRdxKind(Inst);
9177       }
9178     }
9179 
9180     if (!isVectorizable(RdxKind, Inst))
9181       return false;
9182 
9183     // Analyze "regular" integer/FP types for reductions - no target-specific
9184     // types or pointers.
9185     Type *Ty = Inst->getType();
9186     if (!isValidElementType(Ty) || Ty->isPointerTy())
9187       return false;
9188 
9189     // Though the ultimate reduction may have multiple uses, its condition must
9190     // have only single use.
9191     if (auto *Sel = dyn_cast<SelectInst>(Inst))
9192       if (!Sel->getCondition()->hasOneUse())
9193         return false;
9194 
9195     ReductionRoot = Inst;
9196 
9197     // The opcode for leaf values that we perform a reduction on.
9198     // For example: load(x) + load(y) + load(z) + fptoui(w)
9199     // The leaf opcode for 'w' does not match, so we don't include it as a
9200     // potential candidate for the reduction.
9201     unsigned LeafOpcode = 0;
9202 
9203     // Post-order traverse the reduction tree starting at Inst. We only handle
9204     // true trees containing binary operators or selects.
9205     SmallVector<std::pair<Instruction *, unsigned>, 32> Stack;
9206     Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst)));
9207     initReductionOps(Inst);
9208     while (!Stack.empty()) {
9209       Instruction *TreeN = Stack.back().first;
9210       unsigned EdgeToVisit = Stack.back().second++;
9211       const RecurKind TreeRdxKind = getRdxKind(TreeN);
9212       bool IsReducedValue = TreeRdxKind != RdxKind;
9213 
9214       // Postorder visit.
9215       if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) {
9216         if (IsReducedValue)
9217           ReducedVals.push_back(TreeN);
9218         else {
9219           auto ExtraArgsIter = ExtraArgs.find(TreeN);
9220           if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) {
9221             // Check if TreeN is an extra argument of its parent operation.
9222             if (Stack.size() <= 1) {
9223               // TreeN can't be an extra argument as it is a root reduction
9224               // operation.
9225               return false;
9226             }
9227             // Yes, TreeN is an extra argument, do not add it to a list of
9228             // reduction operations.
9229             // Stack[Stack.size() - 2] always points to the parent operation.
9230             markExtraArg(Stack[Stack.size() - 2], TreeN);
9231             ExtraArgs.erase(TreeN);
9232           } else
9233             addReductionOps(TreeN);
9234         }
9235         // Retract.
9236         Stack.pop_back();
9237         continue;
9238       }
9239 
9240       // Visit operands.
9241       Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit);
9242       auto *EdgeInst = dyn_cast<Instruction>(EdgeVal);
9243       if (!EdgeInst) {
9244         // Edge value is not a reduction instruction or a leaf instruction.
9245         // (It may be a constant, function argument, or something else.)
9246         markExtraArg(Stack.back(), EdgeVal);
9247         continue;
9248       }
9249       RecurKind EdgeRdxKind = getRdxKind(EdgeInst);
9250       // Continue analysis if the next operand is a reduction operation or
9251       // (possibly) a leaf value. If the leaf value opcode is not set,
9252       // the first met operation != reduction operation is considered as the
9253       // leaf opcode.
9254       // Only handle trees in the current basic block.
9255       // Each tree node needs to have minimal number of users except for the
9256       // ultimate reduction.
9257       const bool IsRdxInst = EdgeRdxKind == RdxKind;
9258       if (EdgeInst != Phi && EdgeInst != Inst &&
9259           hasSameParent(EdgeInst, Inst->getParent()) &&
9260           hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) &&
9261           (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) {
9262         if (IsRdxInst) {
9263           // We need to be able to reassociate the reduction operations.
9264           if (!isVectorizable(EdgeRdxKind, EdgeInst)) {
9265             // I is an extra argument for TreeN (its parent operation).
9266             markExtraArg(Stack.back(), EdgeInst);
9267             continue;
9268           }
9269         } else if (!LeafOpcode) {
9270           LeafOpcode = EdgeInst->getOpcode();
9271         }
9272         Stack.push_back(
9273             std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst)));
9274         continue;
9275       }
9276       // I is an extra argument for TreeN (its parent operation).
9277       markExtraArg(Stack.back(), EdgeInst);
9278     }
9279     return true;
9280   }
9281 
9282   /// Attempt to vectorize the tree found by matchAssociativeReduction.
9283   Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
9284     // If there are a sufficient number of reduction values, reduce
9285     // to a nearby power-of-2. We can safely generate oversized
9286     // vectors and rely on the backend to split them to legal sizes.
9287     unsigned NumReducedVals = ReducedVals.size();
9288     if (NumReducedVals < 4)
9289       return nullptr;
9290 
9291     // Intersect the fast-math-flags from all reduction operations.
9292     FastMathFlags RdxFMF;
9293     RdxFMF.set();
9294     for (ReductionOpsType &RdxOp : ReductionOps) {
9295       for (Value *RdxVal : RdxOp) {
9296         if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal))
9297           RdxFMF &= FPMO->getFastMathFlags();
9298       }
9299     }
9300 
9301     IRBuilder<> Builder(cast<Instruction>(ReductionRoot));
9302     Builder.setFastMathFlags(RdxFMF);
9303 
9304     BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues;
9305     // The same extra argument may be used several times, so log each attempt
9306     // to use it.
9307     for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) {
9308       assert(Pair.first && "DebugLoc must be set.");
9309       ExternallyUsedValues[Pair.second].push_back(Pair.first);
9310     }
9311 
9312     // The compare instruction of a min/max is the insertion point for new
9313     // instructions and may be replaced with a new compare instruction.
9314     auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) {
9315       assert(isa<SelectInst>(RdxRootInst) &&
9316              "Expected min/max reduction to have select root instruction");
9317       Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition();
9318       assert(isa<Instruction>(ScalarCond) &&
9319              "Expected min/max reduction to have compare condition");
9320       return cast<Instruction>(ScalarCond);
9321     };
9322 
9323     // The reduction root is used as the insertion point for new instructions,
9324     // so set it as externally used to prevent it from being deleted.
9325     ExternallyUsedValues[ReductionRoot];
9326     SmallVector<Value *, 16> IgnoreList;
9327     for (ReductionOpsType &RdxOp : ReductionOps)
9328       IgnoreList.append(RdxOp.begin(), RdxOp.end());
9329 
9330     unsigned ReduxWidth = PowerOf2Floor(NumReducedVals);
9331     if (NumReducedVals > ReduxWidth) {
9332       // In the loop below, we are building a tree based on a window of
9333       // 'ReduxWidth' values.
9334       // If the operands of those values have common traits (compare predicate,
9335       // constant operand, etc), then we want to group those together to
9336       // minimize the cost of the reduction.
9337 
9338       // TODO: This should be extended to count common operands for
9339       //       compares and binops.
9340 
9341       // Step 1: Count the number of times each compare predicate occurs.
9342       SmallDenseMap<unsigned, unsigned> PredCountMap;
9343       for (Value *RdxVal : ReducedVals) {
9344         CmpInst::Predicate Pred;
9345         if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value())))
9346           ++PredCountMap[Pred];
9347       }
9348       // Step 2: Sort the values so the most common predicates come first.
9349       stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) {
9350         CmpInst::Predicate PredA, PredB;
9351         if (match(A, m_Cmp(PredA, m_Value(), m_Value())) &&
9352             match(B, m_Cmp(PredB, m_Value(), m_Value()))) {
9353           return PredCountMap[PredA] > PredCountMap[PredB];
9354         }
9355         return false;
9356       });
9357     }
9358 
9359     Value *VectorizedTree = nullptr;
9360     unsigned i = 0;
9361     while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) {
9362       ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth);
9363       V.buildTree(VL, IgnoreList);
9364       if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true))
9365         break;
9366       if (V.isLoadCombineReductionCandidate(RdxKind))
9367         break;
9368       V.reorderTopToBottom();
9369       V.reorderBottomToTop(/*IgnoreReorder=*/true);
9370       V.buildExternalUses(ExternallyUsedValues);
9371 
9372       // For a poison-safe boolean logic reduction, do not replace select
9373       // instructions with logic ops. All reduced values will be frozen (see
9374       // below) to prevent leaking poison.
9375       if (isa<SelectInst>(ReductionRoot) &&
9376           isBoolLogicOp(cast<Instruction>(ReductionRoot)) &&
9377           NumReducedVals != ReduxWidth)
9378         break;
9379 
9380       V.computeMinimumValueSizes();
9381 
9382       // Estimate cost.
9383       InstructionCost TreeCost =
9384           V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth));
9385       InstructionCost ReductionCost =
9386           getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF);
9387       InstructionCost Cost = TreeCost + ReductionCost;
9388       if (!Cost.isValid()) {
9389         LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n");
9390         return nullptr;
9391       }
9392       if (Cost >= -SLPCostThreshold) {
9393         V.getORE()->emit([&]() {
9394           return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial",
9395                                           cast<Instruction>(VL[0]))
9396                  << "Vectorizing horizontal reduction is possible"
9397                  << "but not beneficial with cost " << ore::NV("Cost", Cost)
9398                  << " and threshold "
9399                  << ore::NV("Threshold", -SLPCostThreshold);
9400         });
9401         break;
9402       }
9403 
9404       LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
9405                         << Cost << ". (HorRdx)\n");
9406       V.getORE()->emit([&]() {
9407         return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction",
9408                                   cast<Instruction>(VL[0]))
9409                << "Vectorized horizontal reduction with cost "
9410                << ore::NV("Cost", Cost) << " and with tree size "
9411                << ore::NV("TreeSize", V.getTreeSize());
9412       });
9413 
9414       // Vectorize a tree.
9415       DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
9416       Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues);
9417 
9418       // Emit a reduction. If the root is a select (min/max idiom), the insert
9419       // point is the compare condition of that select.
9420       Instruction *RdxRootInst = cast<Instruction>(ReductionRoot);
9421       if (isCmpSelMinMax(RdxRootInst))
9422         Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst));
9423       else
9424         Builder.SetInsertPoint(RdxRootInst);
9425 
9426       // To prevent poison from leaking across what used to be sequential, safe,
9427       // scalar boolean logic operations, the reduction operand must be frozen.
9428       if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst))
9429         VectorizedRoot = Builder.CreateFreeze(VectorizedRoot);
9430 
9431       Value *ReducedSubTree =
9432           emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI);
9433 
9434       if (!VectorizedTree) {
9435         // Initialize the final value in the reduction.
9436         VectorizedTree = ReducedSubTree;
9437       } else {
9438         // Update the final value in the reduction.
9439         Builder.SetCurrentDebugLocation(Loc);
9440         VectorizedTree = createOp(Builder, RdxKind, VectorizedTree,
9441                                   ReducedSubTree, "op.rdx", ReductionOps);
9442       }
9443       i += ReduxWidth;
9444       ReduxWidth = PowerOf2Floor(NumReducedVals - i);
9445     }
9446 
9447     if (VectorizedTree) {
9448       // Finish the reduction.
9449       for (; i < NumReducedVals; ++i) {
9450         auto *I = cast<Instruction>(ReducedVals[i]);
9451         Builder.SetCurrentDebugLocation(I->getDebugLoc());
9452         VectorizedTree =
9453             createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps);
9454       }
9455       for (auto &Pair : ExternallyUsedValues) {
9456         // Add each externally used value to the final reduction.
9457         for (auto *I : Pair.second) {
9458           Builder.SetCurrentDebugLocation(I->getDebugLoc());
9459           VectorizedTree = createOp(Builder, RdxKind, VectorizedTree,
9460                                     Pair.first, "op.extra", I);
9461         }
9462       }
9463 
9464       ReductionRoot->replaceAllUsesWith(VectorizedTree);
9465 
9466       // Mark all scalar reduction ops for deletion, they are replaced by the
9467       // vector reductions.
9468       V.eraseInstructions(IgnoreList);
9469     }
9470     return VectorizedTree;
9471   }
9472 
9473   unsigned numReductionValues() const { return ReducedVals.size(); }
9474 
9475 private:
9476   /// Calculate the cost of a reduction.
9477   InstructionCost getReductionCost(TargetTransformInfo *TTI,
9478                                    Value *FirstReducedVal, unsigned ReduxWidth,
9479                                    FastMathFlags FMF) {
9480     TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
9481     Type *ScalarTy = FirstReducedVal->getType();
9482     FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth);
9483     InstructionCost VectorCost, ScalarCost;
9484     switch (RdxKind) {
9485     case RecurKind::Add:
9486     case RecurKind::Mul:
9487     case RecurKind::Or:
9488     case RecurKind::And:
9489     case RecurKind::Xor:
9490     case RecurKind::FAdd:
9491     case RecurKind::FMul: {
9492       unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind);
9493       VectorCost =
9494           TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind);
9495       ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind);
9496       break;
9497     }
9498     case RecurKind::FMax:
9499     case RecurKind::FMin: {
9500       auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy);
9501       auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy));
9502       VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy,
9503                                                /*IsUnsigned=*/false, CostKind);
9504       CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind);
9505       ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy,
9506                                            SclCondTy, RdxPred, CostKind) +
9507                    TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
9508                                            SclCondTy, RdxPred, CostKind);
9509       break;
9510     }
9511     case RecurKind::SMax:
9512     case RecurKind::SMin:
9513     case RecurKind::UMax:
9514     case RecurKind::UMin: {
9515       auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy);
9516       auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy));
9517       bool IsUnsigned =
9518           RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin;
9519       VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned,
9520                                                CostKind);
9521       CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind);
9522       ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy,
9523                                            SclCondTy, RdxPred, CostKind) +
9524                    TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
9525                                            SclCondTy, RdxPred, CostKind);
9526       break;
9527     }
9528     default:
9529       llvm_unreachable("Expected arithmetic or min/max reduction operation");
9530     }
9531 
9532     // Scalar cost is repeated for N-1 elements.
9533     ScalarCost *= (ReduxWidth - 1);
9534     LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost
9535                       << " for reduction that starts with " << *FirstReducedVal
9536                       << " (It is a splitting reduction)\n");
9537     return VectorCost - ScalarCost;
9538   }
9539 
9540   /// Emit a horizontal reduction of the vectorized value.
9541   Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder,
9542                        unsigned ReduxWidth, const TargetTransformInfo *TTI) {
9543     assert(VectorizedValue && "Need to have a vectorized tree node");
9544     assert(isPowerOf2_32(ReduxWidth) &&
9545            "We only handle power-of-two reductions for now");
9546     assert(RdxKind != RecurKind::FMulAdd &&
9547            "A call to the llvm.fmuladd intrinsic is not handled yet");
9548 
9549     ++NumVectorInstructions;
9550     return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind);
9551   }
9552 };
9553 
9554 } // end anonymous namespace
9555 
9556 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) {
9557   if (auto *IE = dyn_cast<InsertElementInst>(InsertInst))
9558     return cast<FixedVectorType>(IE->getType())->getNumElements();
9559 
9560   unsigned AggregateSize = 1;
9561   auto *IV = cast<InsertValueInst>(InsertInst);
9562   Type *CurrentType = IV->getType();
9563   do {
9564     if (auto *ST = dyn_cast<StructType>(CurrentType)) {
9565       for (auto *Elt : ST->elements())
9566         if (Elt != ST->getElementType(0)) // check homogeneity
9567           return None;
9568       AggregateSize *= ST->getNumElements();
9569       CurrentType = ST->getElementType(0);
9570     } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) {
9571       AggregateSize *= AT->getNumElements();
9572       CurrentType = AT->getElementType();
9573     } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) {
9574       AggregateSize *= VT->getNumElements();
9575       return AggregateSize;
9576     } else if (CurrentType->isSingleValueType()) {
9577       return AggregateSize;
9578     } else {
9579       return None;
9580     }
9581   } while (true);
9582 }
9583 
9584 static void findBuildAggregate_rec(Instruction *LastInsertInst,
9585                                    TargetTransformInfo *TTI,
9586                                    SmallVectorImpl<Value *> &BuildVectorOpds,
9587                                    SmallVectorImpl<Value *> &InsertElts,
9588                                    unsigned OperandOffset) {
9589   do {
9590     Value *InsertedOperand = LastInsertInst->getOperand(1);
9591     Optional<unsigned> OperandIndex =
9592         getInsertIndex(LastInsertInst, OperandOffset);
9593     if (!OperandIndex)
9594       return;
9595     if (isa<InsertElementInst>(InsertedOperand) ||
9596         isa<InsertValueInst>(InsertedOperand)) {
9597       findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI,
9598                              BuildVectorOpds, InsertElts, *OperandIndex);
9599 
9600     } else {
9601       BuildVectorOpds[*OperandIndex] = InsertedOperand;
9602       InsertElts[*OperandIndex] = LastInsertInst;
9603     }
9604     LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0));
9605   } while (LastInsertInst != nullptr &&
9606            (isa<InsertValueInst>(LastInsertInst) ||
9607             isa<InsertElementInst>(LastInsertInst)) &&
9608            LastInsertInst->hasOneUse());
9609 }
9610 
9611 /// Recognize construction of vectors like
9612 ///  %ra = insertelement <4 x float> poison, float %s0, i32 0
9613 ///  %rb = insertelement <4 x float> %ra, float %s1, i32 1
9614 ///  %rc = insertelement <4 x float> %rb, float %s2, i32 2
9615 ///  %rd = insertelement <4 x float> %rc, float %s3, i32 3
9616 ///  starting from the last insertelement or insertvalue instruction.
9617 ///
9618 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>},
9619 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on.
9620 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples.
9621 ///
9622 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type.
9623 ///
9624 /// \return true if it matches.
9625 static bool findBuildAggregate(Instruction *LastInsertInst,
9626                                TargetTransformInfo *TTI,
9627                                SmallVectorImpl<Value *> &BuildVectorOpds,
9628                                SmallVectorImpl<Value *> &InsertElts) {
9629 
9630   assert((isa<InsertElementInst>(LastInsertInst) ||
9631           isa<InsertValueInst>(LastInsertInst)) &&
9632          "Expected insertelement or insertvalue instruction!");
9633 
9634   assert((BuildVectorOpds.empty() && InsertElts.empty()) &&
9635          "Expected empty result vectors!");
9636 
9637   Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst);
9638   if (!AggregateSize)
9639     return false;
9640   BuildVectorOpds.resize(*AggregateSize);
9641   InsertElts.resize(*AggregateSize);
9642 
9643   findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 0);
9644   llvm::erase_value(BuildVectorOpds, nullptr);
9645   llvm::erase_value(InsertElts, nullptr);
9646   if (BuildVectorOpds.size() >= 2)
9647     return true;
9648 
9649   return false;
9650 }
9651 
9652 /// Try and get a reduction value from a phi node.
9653 ///
9654 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions
9655 /// if they come from either \p ParentBB or a containing loop latch.
9656 ///
9657 /// \returns A candidate reduction value if possible, or \code nullptr \endcode
9658 /// if not possible.
9659 static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
9660                                 BasicBlock *ParentBB, LoopInfo *LI) {
9661   // There are situations where the reduction value is not dominated by the
9662   // reduction phi. Vectorizing such cases has been reported to cause
9663   // miscompiles. See PR25787.
9664   auto DominatedReduxValue = [&](Value *R) {
9665     return isa<Instruction>(R) &&
9666            DT->dominates(P->getParent(), cast<Instruction>(R)->getParent());
9667   };
9668 
9669   Value *Rdx = nullptr;
9670 
9671   // Return the incoming value if it comes from the same BB as the phi node.
9672   if (P->getIncomingBlock(0) == ParentBB) {
9673     Rdx = P->getIncomingValue(0);
9674   } else if (P->getIncomingBlock(1) == ParentBB) {
9675     Rdx = P->getIncomingValue(1);
9676   }
9677 
9678   if (Rdx && DominatedReduxValue(Rdx))
9679     return Rdx;
9680 
9681   // Otherwise, check whether we have a loop latch to look at.
9682   Loop *BBL = LI->getLoopFor(ParentBB);
9683   if (!BBL)
9684     return nullptr;
9685   BasicBlock *BBLatch = BBL->getLoopLatch();
9686   if (!BBLatch)
9687     return nullptr;
9688 
9689   // There is a loop latch, return the incoming value if it comes from
9690   // that. This reduction pattern occasionally turns up.
9691   if (P->getIncomingBlock(0) == BBLatch) {
9692     Rdx = P->getIncomingValue(0);
9693   } else if (P->getIncomingBlock(1) == BBLatch) {
9694     Rdx = P->getIncomingValue(1);
9695   }
9696 
9697   if (Rdx && DominatedReduxValue(Rdx))
9698     return Rdx;
9699 
9700   return nullptr;
9701 }
9702 
9703 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) {
9704   if (match(I, m_BinOp(m_Value(V0), m_Value(V1))))
9705     return true;
9706   if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1))))
9707     return true;
9708   if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1))))
9709     return true;
9710   if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1))))
9711     return true;
9712   if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1))))
9713     return true;
9714   if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1))))
9715     return true;
9716   if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1))))
9717     return true;
9718   return false;
9719 }
9720 
9721 /// Attempt to reduce a horizontal reduction.
9722 /// If it is legal to match a horizontal reduction feeding the phi node \a P
9723 /// with reduction operators \a Root (or one of its operands) in a basic block
9724 /// \a BB, then check if it can be done. If horizontal reduction is not found
9725 /// and root instruction is a binary operation, vectorization of the operands is
9726 /// attempted.
9727 /// \returns true if a horizontal reduction was matched and reduced or operands
9728 /// of one of the binary instruction were vectorized.
9729 /// \returns false if a horizontal reduction was not matched (or not possible)
9730 /// or no vectorization of any binary operation feeding \a Root instruction was
9731 /// performed.
9732 static bool tryToVectorizeHorReductionOrInstOperands(
9733     PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R,
9734     TargetTransformInfo *TTI,
9735     const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) {
9736   if (!ShouldVectorizeHor)
9737     return false;
9738 
9739   if (!Root)
9740     return false;
9741 
9742   if (Root->getParent() != BB || isa<PHINode>(Root))
9743     return false;
9744   // Start analysis starting from Root instruction. If horizontal reduction is
9745   // found, try to vectorize it. If it is not a horizontal reduction or
9746   // vectorization is not possible or not effective, and currently analyzed
9747   // instruction is a binary operation, try to vectorize the operands, using
9748   // pre-order DFS traversal order. If the operands were not vectorized, repeat
9749   // the same procedure considering each operand as a possible root of the
9750   // horizontal reduction.
9751   // Interrupt the process if the Root instruction itself was vectorized or all
9752   // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
9753   // Skip the analysis of CmpInsts.Compiler implements postanalysis of the
9754   // CmpInsts so we can skip extra attempts in
9755   // tryToVectorizeHorReductionOrInstOperands and save compile time.
9756   std::queue<std::pair<Instruction *, unsigned>> Stack;
9757   Stack.emplace(Root, 0);
9758   SmallPtrSet<Value *, 8> VisitedInstrs;
9759   SmallVector<WeakTrackingVH> PostponedInsts;
9760   bool Res = false;
9761   auto &&TryToReduce = [TTI, &P, &R](Instruction *Inst, Value *&B0,
9762                                      Value *&B1) -> Value * {
9763     bool IsBinop = matchRdxBop(Inst, B0, B1);
9764     bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value()));
9765     if (IsBinop || IsSelect) {
9766       HorizontalReduction HorRdx;
9767       if (HorRdx.matchAssociativeReduction(P, Inst))
9768         return HorRdx.tryToReduce(R, TTI);
9769     }
9770     return nullptr;
9771   };
9772   while (!Stack.empty()) {
9773     Instruction *Inst;
9774     unsigned Level;
9775     std::tie(Inst, Level) = Stack.front();
9776     Stack.pop();
9777     // Do not try to analyze instruction that has already been vectorized.
9778     // This may happen when we vectorize instruction operands on a previous
9779     // iteration while stack was populated before that happened.
9780     if (R.isDeleted(Inst))
9781       continue;
9782     Value *B0 = nullptr, *B1 = nullptr;
9783     if (Value *V = TryToReduce(Inst, B0, B1)) {
9784       Res = true;
9785       // Set P to nullptr to avoid re-analysis of phi node in
9786       // matchAssociativeReduction function unless this is the root node.
9787       P = nullptr;
9788       if (auto *I = dyn_cast<Instruction>(V)) {
9789         // Try to find another reduction.
9790         Stack.emplace(I, Level);
9791         continue;
9792       }
9793     } else {
9794       bool IsBinop = B0 && B1;
9795       if (P && IsBinop) {
9796         Inst = dyn_cast<Instruction>(B0);
9797         if (Inst == P)
9798           Inst = dyn_cast<Instruction>(B1);
9799         if (!Inst) {
9800           // Set P to nullptr to avoid re-analysis of phi node in
9801           // matchAssociativeReduction function unless this is the root node.
9802           P = nullptr;
9803           continue;
9804         }
9805       }
9806       // Set P to nullptr to avoid re-analysis of phi node in
9807       // matchAssociativeReduction function unless this is the root node.
9808       P = nullptr;
9809       // Do not try to vectorize CmpInst operands, this is done separately.
9810       // Final attempt for binop args vectorization should happen after the loop
9811       // to try to find reductions.
9812       if (!isa<CmpInst>(Inst))
9813         PostponedInsts.push_back(Inst);
9814     }
9815 
9816     // Try to vectorize operands.
9817     // Continue analysis for the instruction from the same basic block only to
9818     // save compile time.
9819     if (++Level < RecursionMaxDepth)
9820       for (auto *Op : Inst->operand_values())
9821         if (VisitedInstrs.insert(Op).second)
9822           if (auto *I = dyn_cast<Instruction>(Op))
9823             // Do not try to vectorize CmpInst operands,  this is done
9824             // separately.
9825             if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) &&
9826                 I->getParent() == BB)
9827               Stack.emplace(I, Level);
9828   }
9829   // Try to vectorized binops where reductions were not found.
9830   for (Value *V : PostponedInsts)
9831     if (auto *Inst = dyn_cast<Instruction>(V))
9832       if (!R.isDeleted(Inst))
9833         Res |= Vectorize(Inst, R);
9834   return Res;
9835 }
9836 
9837 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V,
9838                                                  BasicBlock *BB, BoUpSLP &R,
9839                                                  TargetTransformInfo *TTI) {
9840   auto *I = dyn_cast_or_null<Instruction>(V);
9841   if (!I)
9842     return false;
9843 
9844   if (!isa<BinaryOperator>(I))
9845     P = nullptr;
9846   // Try to match and vectorize a horizontal reduction.
9847   auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool {
9848     return tryToVectorize(I, R);
9849   };
9850   return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI,
9851                                                   ExtraVectorization);
9852 }
9853 
9854 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI,
9855                                                  BasicBlock *BB, BoUpSLP &R) {
9856   const DataLayout &DL = BB->getModule()->getDataLayout();
9857   if (!R.canMapToVector(IVI->getType(), DL))
9858     return false;
9859 
9860   SmallVector<Value *, 16> BuildVectorOpds;
9861   SmallVector<Value *, 16> BuildVectorInsts;
9862   if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts))
9863     return false;
9864 
9865   LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n");
9866   // Aggregate value is unlikely to be processed in vector register.
9867   return tryToVectorizeList(BuildVectorOpds, R);
9868 }
9869 
9870 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI,
9871                                                    BasicBlock *BB, BoUpSLP &R) {
9872   SmallVector<Value *, 16> BuildVectorInsts;
9873   SmallVector<Value *, 16> BuildVectorOpds;
9874   SmallVector<int> Mask;
9875   if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) ||
9876       (llvm::all_of(
9877            BuildVectorOpds,
9878            [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) &&
9879        isFixedVectorShuffle(BuildVectorOpds, Mask)))
9880     return false;
9881 
9882   LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n");
9883   return tryToVectorizeList(BuildVectorInsts, R);
9884 }
9885 
9886 template <typename T>
9887 static bool
9888 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming,
9889                        function_ref<unsigned(T *)> Limit,
9890                        function_ref<bool(T *, T *)> Comparator,
9891                        function_ref<bool(T *, T *)> AreCompatible,
9892                        function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper,
9893                        bool LimitForRegisterSize) {
9894   bool Changed = false;
9895   // Sort by type, parent, operands.
9896   stable_sort(Incoming, Comparator);
9897 
9898   // Try to vectorize elements base on their type.
9899   SmallVector<T *> Candidates;
9900   for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) {
9901     // Look for the next elements with the same type, parent and operand
9902     // kinds.
9903     auto *SameTypeIt = IncIt;
9904     while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt))
9905       ++SameTypeIt;
9906 
9907     // Try to vectorize them.
9908     unsigned NumElts = (SameTypeIt - IncIt);
9909     LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes ("
9910                       << NumElts << ")\n");
9911     // The vectorization is a 3-state attempt:
9912     // 1. Try to vectorize instructions with the same/alternate opcodes with the
9913     // size of maximal register at first.
9914     // 2. Try to vectorize remaining instructions with the same type, if
9915     // possible. This may result in the better vectorization results rather than
9916     // if we try just to vectorize instructions with the same/alternate opcodes.
9917     // 3. Final attempt to try to vectorize all instructions with the
9918     // same/alternate ops only, this may result in some extra final
9919     // vectorization.
9920     if (NumElts > 1 &&
9921         TryToVectorizeHelper(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) {
9922       // Success start over because instructions might have been changed.
9923       Changed = true;
9924     } else if (NumElts < Limit(*IncIt) &&
9925                (Candidates.empty() ||
9926                 Candidates.front()->getType() == (*IncIt)->getType())) {
9927       Candidates.append(IncIt, std::next(IncIt, NumElts));
9928     }
9929     // Final attempt to vectorize instructions with the same types.
9930     if (Candidates.size() > 1 &&
9931         (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) {
9932       if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) {
9933         // Success start over because instructions might have been changed.
9934         Changed = true;
9935       } else if (LimitForRegisterSize) {
9936         // Try to vectorize using small vectors.
9937         for (auto *It = Candidates.begin(), *End = Candidates.end();
9938              It != End;) {
9939           auto *SameTypeIt = It;
9940           while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It))
9941             ++SameTypeIt;
9942           unsigned NumElts = (SameTypeIt - It);
9943           if (NumElts > 1 && TryToVectorizeHelper(makeArrayRef(It, NumElts),
9944                                             /*LimitForRegisterSize=*/false))
9945             Changed = true;
9946           It = SameTypeIt;
9947         }
9948       }
9949       Candidates.clear();
9950     }
9951 
9952     // Start over at the next instruction of a different type (or the end).
9953     IncIt = SameTypeIt;
9954   }
9955   return Changed;
9956 }
9957 
9958 /// Compare two cmp instructions. If IsCompatibility is true, function returns
9959 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding
9960 /// operands. If IsCompatibility is false, function implements strict weak
9961 /// ordering relation between two cmp instructions, returning true if the first
9962 /// instruction is "less" than the second, i.e. its predicate is less than the
9963 /// predicate of the second or the operands IDs are less than the operands IDs
9964 /// of the second cmp instruction.
9965 template <bool IsCompatibility>
9966 static bool compareCmp(Value *V, Value *V2,
9967                        function_ref<bool(Instruction *)> IsDeleted) {
9968   auto *CI1 = cast<CmpInst>(V);
9969   auto *CI2 = cast<CmpInst>(V2);
9970   if (IsDeleted(CI2) || !isValidElementType(CI2->getType()))
9971     return false;
9972   if (CI1->getOperand(0)->getType()->getTypeID() <
9973       CI2->getOperand(0)->getType()->getTypeID())
9974     return !IsCompatibility;
9975   if (CI1->getOperand(0)->getType()->getTypeID() >
9976       CI2->getOperand(0)->getType()->getTypeID())
9977     return false;
9978   CmpInst::Predicate Pred1 = CI1->getPredicate();
9979   CmpInst::Predicate Pred2 = CI2->getPredicate();
9980   CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1);
9981   CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2);
9982   CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1);
9983   CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2);
9984   if (BasePred1 < BasePred2)
9985     return !IsCompatibility;
9986   if (BasePred1 > BasePred2)
9987     return false;
9988   // Compare operands.
9989   bool LEPreds = Pred1 <= Pred2;
9990   bool GEPreds = Pred1 >= Pred2;
9991   for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) {
9992     auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1);
9993     auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1);
9994     if (Op1->getValueID() < Op2->getValueID())
9995       return !IsCompatibility;
9996     if (Op1->getValueID() > Op2->getValueID())
9997       return false;
9998     if (auto *I1 = dyn_cast<Instruction>(Op1))
9999       if (auto *I2 = dyn_cast<Instruction>(Op2)) {
10000         if (I1->getParent() != I2->getParent())
10001           return false;
10002         InstructionsState S = getSameOpcode({I1, I2});
10003         if (S.getOpcode())
10004           continue;
10005         return false;
10006       }
10007   }
10008   return IsCompatibility;
10009 }
10010 
10011 bool SLPVectorizerPass::vectorizeSimpleInstructions(
10012     SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R,
10013     bool AtTerminator) {
10014   bool OpsChanged = false;
10015   SmallVector<Instruction *, 4> PostponedCmps;
10016   for (auto *I : reverse(Instructions)) {
10017     if (R.isDeleted(I))
10018       continue;
10019     if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I))
10020       OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R);
10021     else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I))
10022       OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R);
10023     else if (isa<CmpInst>(I))
10024       PostponedCmps.push_back(I);
10025   }
10026   if (AtTerminator) {
10027     // Try to find reductions first.
10028     for (Instruction *I : PostponedCmps) {
10029       if (R.isDeleted(I))
10030         continue;
10031       for (Value *Op : I->operands())
10032         OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI);
10033     }
10034     // Try to vectorize operands as vector bundles.
10035     for (Instruction *I : PostponedCmps) {
10036       if (R.isDeleted(I))
10037         continue;
10038       OpsChanged |= tryToVectorize(I, R);
10039     }
10040     // Try to vectorize list of compares.
10041     // Sort by type, compare predicate, etc.
10042     auto &&CompareSorter = [&R](Value *V, Value *V2) {
10043       return compareCmp<false>(V, V2,
10044                                [&R](Instruction *I) { return R.isDeleted(I); });
10045     };
10046 
10047     auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) {
10048       if (V1 == V2)
10049         return true;
10050       return compareCmp<true>(V1, V2,
10051                               [&R](Instruction *I) { return R.isDeleted(I); });
10052     };
10053     auto Limit = [&R](Value *V) {
10054       unsigned EltSize = R.getVectorElementSize(V);
10055       return std::max(2U, R.getMaxVecRegSize() / EltSize);
10056     };
10057 
10058     SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end());
10059     OpsChanged |= tryToVectorizeSequence<Value>(
10060         Vals, Limit, CompareSorter, AreCompatibleCompares,
10061         [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) {
10062           // Exclude possible reductions from other blocks.
10063           bool ArePossiblyReducedInOtherBlock =
10064               any_of(Candidates, [](Value *V) {
10065                 return any_of(V->users(), [V](User *U) {
10066                   return isa<SelectInst>(U) &&
10067                          cast<SelectInst>(U)->getParent() !=
10068                              cast<Instruction>(V)->getParent();
10069                 });
10070               });
10071           if (ArePossiblyReducedInOtherBlock)
10072             return false;
10073           return tryToVectorizeList(Candidates, R, LimitForRegisterSize);
10074         },
10075         /*LimitForRegisterSize=*/true);
10076     Instructions.clear();
10077   } else {
10078     // Insert in reverse order since the PostponedCmps vector was filled in
10079     // reverse order.
10080     Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend());
10081   }
10082   return OpsChanged;
10083 }
10084 
10085 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
10086   bool Changed = false;
10087   SmallVector<Value *, 4> Incoming;
10088   SmallPtrSet<Value *, 16> VisitedInstrs;
10089   // Maps phi nodes to the non-phi nodes found in the use tree for each phi
10090   // node. Allows better to identify the chains that can be vectorized in the
10091   // better way.
10092   DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes;
10093   auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) {
10094     assert(isValidElementType(V1->getType()) &&
10095            isValidElementType(V2->getType()) &&
10096            "Expected vectorizable types only.");
10097     // It is fine to compare type IDs here, since we expect only vectorizable
10098     // types, like ints, floats and pointers, we don't care about other type.
10099     if (V1->getType()->getTypeID() < V2->getType()->getTypeID())
10100       return true;
10101     if (V1->getType()->getTypeID() > V2->getType()->getTypeID())
10102       return false;
10103     ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1];
10104     ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2];
10105     if (Opcodes1.size() < Opcodes2.size())
10106       return true;
10107     if (Opcodes1.size() > Opcodes2.size())
10108       return false;
10109     Optional<bool> ConstOrder;
10110     for (int I = 0, E = Opcodes1.size(); I < E; ++I) {
10111       // Undefs are compatible with any other value.
10112       if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) {
10113         if (!ConstOrder)
10114           ConstOrder =
10115               !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]);
10116         continue;
10117       }
10118       if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I]))
10119         if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) {
10120           DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent());
10121           DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent());
10122           if (!NodeI1)
10123             return NodeI2 != nullptr;
10124           if (!NodeI2)
10125             return false;
10126           assert((NodeI1 == NodeI2) ==
10127                      (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) &&
10128                  "Different nodes should have different DFS numbers");
10129           if (NodeI1 != NodeI2)
10130             return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn();
10131           InstructionsState S = getSameOpcode({I1, I2});
10132           if (S.getOpcode())
10133             continue;
10134           return I1->getOpcode() < I2->getOpcode();
10135         }
10136       if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) {
10137         if (!ConstOrder)
10138           ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID();
10139         continue;
10140       }
10141       if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID())
10142         return true;
10143       if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID())
10144         return false;
10145     }
10146     return ConstOrder && *ConstOrder;
10147   };
10148   auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) {
10149     if (V1 == V2)
10150       return true;
10151     if (V1->getType() != V2->getType())
10152       return false;
10153     ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1];
10154     ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2];
10155     if (Opcodes1.size() != Opcodes2.size())
10156       return false;
10157     for (int I = 0, E = Opcodes1.size(); I < E; ++I) {
10158       // Undefs are compatible with any other value.
10159       if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I]))
10160         continue;
10161       if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I]))
10162         if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) {
10163           if (I1->getParent() != I2->getParent())
10164             return false;
10165           InstructionsState S = getSameOpcode({I1, I2});
10166           if (S.getOpcode())
10167             continue;
10168           return false;
10169         }
10170       if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I]))
10171         continue;
10172       if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID())
10173         return false;
10174     }
10175     return true;
10176   };
10177   auto Limit = [&R](Value *V) {
10178     unsigned EltSize = R.getVectorElementSize(V);
10179     return std::max(2U, R.getMaxVecRegSize() / EltSize);
10180   };
10181 
10182   bool HaveVectorizedPhiNodes = false;
10183   do {
10184     // Collect the incoming values from the PHIs.
10185     Incoming.clear();
10186     for (Instruction &I : *BB) {
10187       PHINode *P = dyn_cast<PHINode>(&I);
10188       if (!P)
10189         break;
10190 
10191       // No need to analyze deleted, vectorized and non-vectorizable
10192       // instructions.
10193       if (!VisitedInstrs.count(P) && !R.isDeleted(P) &&
10194           isValidElementType(P->getType()))
10195         Incoming.push_back(P);
10196     }
10197 
10198     // Find the corresponding non-phi nodes for better matching when trying to
10199     // build the tree.
10200     for (Value *V : Incoming) {
10201       SmallVectorImpl<Value *> &Opcodes =
10202           PHIToOpcodes.try_emplace(V).first->getSecond();
10203       if (!Opcodes.empty())
10204         continue;
10205       SmallVector<Value *, 4> Nodes(1, V);
10206       SmallPtrSet<Value *, 4> Visited;
10207       while (!Nodes.empty()) {
10208         auto *PHI = cast<PHINode>(Nodes.pop_back_val());
10209         if (!Visited.insert(PHI).second)
10210           continue;
10211         for (Value *V : PHI->incoming_values()) {
10212           if (auto *PHI1 = dyn_cast<PHINode>((V))) {
10213             Nodes.push_back(PHI1);
10214             continue;
10215           }
10216           Opcodes.emplace_back(V);
10217         }
10218       }
10219     }
10220 
10221     HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>(
10222         Incoming, Limit, PHICompare, AreCompatiblePHIs,
10223         [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) {
10224           return tryToVectorizeList(Candidates, R, LimitForRegisterSize);
10225         },
10226         /*LimitForRegisterSize=*/true);
10227     Changed |= HaveVectorizedPhiNodes;
10228     VisitedInstrs.insert(Incoming.begin(), Incoming.end());
10229   } while (HaveVectorizedPhiNodes);
10230 
10231   VisitedInstrs.clear();
10232 
10233   SmallVector<Instruction *, 8> PostProcessInstructions;
10234   SmallDenseSet<Instruction *, 4> KeyNodes;
10235   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
10236     // Skip instructions with scalable type. The num of elements is unknown at
10237     // compile-time for scalable type.
10238     if (isa<ScalableVectorType>(it->getType()))
10239       continue;
10240 
10241     // Skip instructions marked for the deletion.
10242     if (R.isDeleted(&*it))
10243       continue;
10244     // We may go through BB multiple times so skip the one we have checked.
10245     if (!VisitedInstrs.insert(&*it).second) {
10246       if (it->use_empty() && KeyNodes.contains(&*it) &&
10247           vectorizeSimpleInstructions(PostProcessInstructions, BB, R,
10248                                       it->isTerminator())) {
10249         // We would like to start over since some instructions are deleted
10250         // and the iterator may become invalid value.
10251         Changed = true;
10252         it = BB->begin();
10253         e = BB->end();
10254       }
10255       continue;
10256     }
10257 
10258     if (isa<DbgInfoIntrinsic>(it))
10259       continue;
10260 
10261     // Try to vectorize reductions that use PHINodes.
10262     if (PHINode *P = dyn_cast<PHINode>(it)) {
10263       // Check that the PHI is a reduction PHI.
10264       if (P->getNumIncomingValues() == 2) {
10265         // Try to match and vectorize a horizontal reduction.
10266         if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R,
10267                                      TTI)) {
10268           Changed = true;
10269           it = BB->begin();
10270           e = BB->end();
10271           continue;
10272         }
10273       }
10274       // Try to vectorize the incoming values of the PHI, to catch reductions
10275       // that feed into PHIs.
10276       for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) {
10277         // Skip if the incoming block is the current BB for now. Also, bypass
10278         // unreachable IR for efficiency and to avoid crashing.
10279         // TODO: Collect the skipped incoming values and try to vectorize them
10280         // after processing BB.
10281         if (BB == P->getIncomingBlock(I) ||
10282             !DT->isReachableFromEntry(P->getIncomingBlock(I)))
10283           continue;
10284 
10285         Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I),
10286                                             P->getIncomingBlock(I), R, TTI);
10287       }
10288       continue;
10289     }
10290 
10291     // Ran into an instruction without users, like terminator, or function call
10292     // with ignored return value, store. Ignore unused instructions (basing on
10293     // instruction type, except for CallInst and InvokeInst).
10294     if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) ||
10295                             isa<InvokeInst>(it))) {
10296       KeyNodes.insert(&*it);
10297       bool OpsChanged = false;
10298       if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) {
10299         for (auto *V : it->operand_values()) {
10300           // Try to match and vectorize a horizontal reduction.
10301           OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI);
10302         }
10303       }
10304       // Start vectorization of post-process list of instructions from the
10305       // top-tree instructions to try to vectorize as many instructions as
10306       // possible.
10307       OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R,
10308                                                 it->isTerminator());
10309       if (OpsChanged) {
10310         // We would like to start over since some instructions are deleted
10311         // and the iterator may become invalid value.
10312         Changed = true;
10313         it = BB->begin();
10314         e = BB->end();
10315         continue;
10316       }
10317     }
10318 
10319     if (isa<InsertElementInst>(it) || isa<CmpInst>(it) ||
10320         isa<InsertValueInst>(it))
10321       PostProcessInstructions.push_back(&*it);
10322   }
10323 
10324   return Changed;
10325 }
10326 
10327 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
10328   auto Changed = false;
10329   for (auto &Entry : GEPs) {
10330     // If the getelementptr list has fewer than two elements, there's nothing
10331     // to do.
10332     if (Entry.second.size() < 2)
10333       continue;
10334 
10335     LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "
10336                       << Entry.second.size() << ".\n");
10337 
10338     // Process the GEP list in chunks suitable for the target's supported
10339     // vector size. If a vector register can't hold 1 element, we are done. We
10340     // are trying to vectorize the index computations, so the maximum number of
10341     // elements is based on the size of the index expression, rather than the
10342     // size of the GEP itself (the target's pointer size).
10343     unsigned MaxVecRegSize = R.getMaxVecRegSize();
10344     unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin());
10345     if (MaxVecRegSize < EltSize)
10346       continue;
10347 
10348     unsigned MaxElts = MaxVecRegSize / EltSize;
10349     for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) {
10350       auto Len = std::min<unsigned>(BE - BI, MaxElts);
10351       ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len);
10352 
10353       // Initialize a set a candidate getelementptrs. Note that we use a
10354       // SetVector here to preserve program order. If the index computations
10355       // are vectorizable and begin with loads, we want to minimize the chance
10356       // of having to reorder them later.
10357       SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
10358 
10359       // Some of the candidates may have already been vectorized after we
10360       // initially collected them. If so, they are marked as deleted, so remove
10361       // them from the set of candidates.
10362       Candidates.remove_if(
10363           [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); });
10364 
10365       // Remove from the set of candidates all pairs of getelementptrs with
10366       // constant differences. Such getelementptrs are likely not good
10367       // candidates for vectorization in a bottom-up phase since one can be
10368       // computed from the other. We also ensure all candidate getelementptr
10369       // indices are unique.
10370       for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
10371         auto *GEPI = GEPList[I];
10372         if (!Candidates.count(GEPI))
10373           continue;
10374         auto *SCEVI = SE->getSCEV(GEPList[I]);
10375         for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
10376           auto *GEPJ = GEPList[J];
10377           auto *SCEVJ = SE->getSCEV(GEPList[J]);
10378           if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
10379             Candidates.remove(GEPI);
10380             Candidates.remove(GEPJ);
10381           } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
10382             Candidates.remove(GEPJ);
10383           }
10384         }
10385       }
10386 
10387       // We break out of the above computation as soon as we know there are
10388       // fewer than two candidates remaining.
10389       if (Candidates.size() < 2)
10390         continue;
10391 
10392       // Add the single, non-constant index of each candidate to the bundle. We
10393       // ensured the indices met these constraints when we originally collected
10394       // the getelementptrs.
10395       SmallVector<Value *, 16> Bundle(Candidates.size());
10396       auto BundleIndex = 0u;
10397       for (auto *V : Candidates) {
10398         auto *GEP = cast<GetElementPtrInst>(V);
10399         auto *GEPIdx = GEP->idx_begin()->get();
10400         assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx));
10401         Bundle[BundleIndex++] = GEPIdx;
10402       }
10403 
10404       // Try and vectorize the indices. We are currently only interested in
10405       // gather-like cases of the form:
10406       //
10407       // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
10408       //
10409       // where the loads of "a", the loads of "b", and the subtractions can be
10410       // performed in parallel. It's likely that detecting this pattern in a
10411       // bottom-up phase will be simpler and less costly than building a
10412       // full-blown top-down phase beginning at the consecutive loads.
10413       Changed |= tryToVectorizeList(Bundle, R);
10414     }
10415   }
10416   return Changed;
10417 }
10418 
10419 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
10420   bool Changed = false;
10421   // Sort by type, base pointers and values operand. Value operands must be
10422   // compatible (have the same opcode, same parent), otherwise it is
10423   // definitely not profitable to try to vectorize them.
10424   auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) {
10425     if (V->getPointerOperandType()->getTypeID() <
10426         V2->getPointerOperandType()->getTypeID())
10427       return true;
10428     if (V->getPointerOperandType()->getTypeID() >
10429         V2->getPointerOperandType()->getTypeID())
10430       return false;
10431     // UndefValues are compatible with all other values.
10432     if (isa<UndefValue>(V->getValueOperand()) ||
10433         isa<UndefValue>(V2->getValueOperand()))
10434       return false;
10435     if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand()))
10436       if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) {
10437         DomTreeNodeBase<llvm::BasicBlock> *NodeI1 =
10438             DT->getNode(I1->getParent());
10439         DomTreeNodeBase<llvm::BasicBlock> *NodeI2 =
10440             DT->getNode(I2->getParent());
10441         assert(NodeI1 && "Should only process reachable instructions");
10442         assert(NodeI1 && "Should only process reachable instructions");
10443         assert((NodeI1 == NodeI2) ==
10444                    (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) &&
10445                "Different nodes should have different DFS numbers");
10446         if (NodeI1 != NodeI2)
10447           return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn();
10448         InstructionsState S = getSameOpcode({I1, I2});
10449         if (S.getOpcode())
10450           return false;
10451         return I1->getOpcode() < I2->getOpcode();
10452       }
10453     if (isa<Constant>(V->getValueOperand()) &&
10454         isa<Constant>(V2->getValueOperand()))
10455       return false;
10456     return V->getValueOperand()->getValueID() <
10457            V2->getValueOperand()->getValueID();
10458   };
10459 
10460   auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) {
10461     if (V1 == V2)
10462       return true;
10463     if (V1->getPointerOperandType() != V2->getPointerOperandType())
10464       return false;
10465     // Undefs are compatible with any other value.
10466     if (isa<UndefValue>(V1->getValueOperand()) ||
10467         isa<UndefValue>(V2->getValueOperand()))
10468       return true;
10469     if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand()))
10470       if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) {
10471         if (I1->getParent() != I2->getParent())
10472           return false;
10473         InstructionsState S = getSameOpcode({I1, I2});
10474         return S.getOpcode() > 0;
10475       }
10476     if (isa<Constant>(V1->getValueOperand()) &&
10477         isa<Constant>(V2->getValueOperand()))
10478       return true;
10479     return V1->getValueOperand()->getValueID() ==
10480            V2->getValueOperand()->getValueID();
10481   };
10482   auto Limit = [&R, this](StoreInst *SI) {
10483     unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType());
10484     return R.getMinVF(EltSize);
10485   };
10486 
10487   // Attempt to sort and vectorize each of the store-groups.
10488   for (auto &Pair : Stores) {
10489     if (Pair.second.size() < 2)
10490       continue;
10491 
10492     LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
10493                       << Pair.second.size() << ".\n");
10494 
10495     if (!isValidElementType(Pair.second.front()->getValueOperand()->getType()))
10496       continue;
10497 
10498     Changed |= tryToVectorizeSequence<StoreInst>(
10499         Pair.second, Limit, StoreSorter, AreCompatibleStores,
10500         [this, &R](ArrayRef<StoreInst *> Candidates, bool) {
10501           return vectorizeStores(Candidates, R);
10502         },
10503         /*LimitForRegisterSize=*/false);
10504   }
10505   return Changed;
10506 }
10507 
10508 char SLPVectorizer::ID = 0;
10509 
10510 static const char lv_name[] = "SLP Vectorizer";
10511 
10512 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
10513 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
10514 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
10515 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
10516 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
10517 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
10518 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
10519 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
10520 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
10521 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
10522 
10523 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); }
10524