1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DerivedTypes.h" 57 #include "llvm/IR/Dominators.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/IRBuilder.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #ifdef EXPENSIVE_CHECKS 74 #include "llvm/IR/Verifier.h" 75 #endif 76 #include "llvm/Pass.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Compiler.h" 80 #include "llvm/Support/DOTGraphTraits.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/GraphWriter.h" 84 #include "llvm/Support/InstructionCost.h" 85 #include "llvm/Support/KnownBits.h" 86 #include "llvm/Support/MathExtras.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 89 #include "llvm/Transforms/Utils/Local.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 // The maximum depth that the look-ahead score heuristic will explore 168 // when it probing among candidates for vectorization tree roots. 169 // The higher this value, the higher the compilation time overhead but unlike 170 // similar limit for operands ordering this is less frequently used, hence 171 // impact of higher value is less noticeable. 172 static cl::opt<int> RootLookAheadMaxDepth( 173 "slp-max-root-look-ahead-depth", cl::init(2), cl::Hidden, 174 cl::desc("The maximum look-ahead depth for searching best rooting option")); 175 176 static cl::opt<bool> 177 ViewSLPTree("view-slp-tree", cl::Hidden, 178 cl::desc("Display the SLP trees with Graphviz")); 179 180 // Limit the number of alias checks. The limit is chosen so that 181 // it has no negative effect on the llvm benchmarks. 182 static const unsigned AliasedCheckLimit = 10; 183 184 // Another limit for the alias checks: The maximum distance between load/store 185 // instructions where alias checks are done. 186 // This limit is useful for very large basic blocks. 187 static const unsigned MaxMemDepDistance = 160; 188 189 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 190 /// regions to be handled. 191 static const int MinScheduleRegionSize = 16; 192 193 /// Predicate for the element types that the SLP vectorizer supports. 194 /// 195 /// The most important thing to filter here are types which are invalid in LLVM 196 /// vectors. We also filter target specific types which have absolutely no 197 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 198 /// avoids spending time checking the cost model and realizing that they will 199 /// be inevitably scalarized. 200 static bool isValidElementType(Type *Ty) { 201 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 202 !Ty->isPPC_FP128Ty(); 203 } 204 205 /// \returns True if the value is a constant (but not globals/constant 206 /// expressions). 207 static bool isConstant(Value *V) { 208 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 209 } 210 211 /// Checks if \p V is one of vector-like instructions, i.e. undef, 212 /// insertelement/extractelement with constant indices for fixed vector type or 213 /// extractvalue instruction. 214 static bool isVectorLikeInstWithConstOps(Value *V) { 215 if (!isa<InsertElementInst, ExtractElementInst>(V) && 216 !isa<ExtractValueInst, UndefValue>(V)) 217 return false; 218 auto *I = dyn_cast<Instruction>(V); 219 if (!I || isa<ExtractValueInst>(I)) 220 return true; 221 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 222 return false; 223 if (isa<ExtractElementInst>(I)) 224 return isConstant(I->getOperand(1)); 225 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 226 return isConstant(I->getOperand(2)); 227 } 228 229 /// \returns true if all of the instructions in \p VL are in the same block or 230 /// false otherwise. 231 static bool allSameBlock(ArrayRef<Value *> VL) { 232 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 233 if (!I0) 234 return false; 235 if (all_of(VL, isVectorLikeInstWithConstOps)) 236 return true; 237 238 BasicBlock *BB = I0->getParent(); 239 for (int I = 1, E = VL.size(); I < E; I++) { 240 auto *II = dyn_cast<Instruction>(VL[I]); 241 if (!II) 242 return false; 243 244 if (BB != II->getParent()) 245 return false; 246 } 247 return true; 248 } 249 250 /// \returns True if all of the values in \p VL are constants (but not 251 /// globals/constant expressions). 252 static bool allConstant(ArrayRef<Value *> VL) { 253 // Constant expressions and globals can't be vectorized like normal integer/FP 254 // constants. 255 return all_of(VL, isConstant); 256 } 257 258 /// \returns True if all of the values in \p VL are identical or some of them 259 /// are UndefValue. 260 static bool isSplat(ArrayRef<Value *> VL) { 261 Value *FirstNonUndef = nullptr; 262 for (Value *V : VL) { 263 if (isa<UndefValue>(V)) 264 continue; 265 if (!FirstNonUndef) { 266 FirstNonUndef = V; 267 continue; 268 } 269 if (V != FirstNonUndef) 270 return false; 271 } 272 return FirstNonUndef != nullptr; 273 } 274 275 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 276 static bool isCommutative(Instruction *I) { 277 if (auto *Cmp = dyn_cast<CmpInst>(I)) 278 return Cmp->isCommutative(); 279 if (auto *BO = dyn_cast<BinaryOperator>(I)) 280 return BO->isCommutative(); 281 // TODO: This should check for generic Instruction::isCommutative(), but 282 // we need to confirm that the caller code correctly handles Intrinsics 283 // for example (does not have 2 operands). 284 return false; 285 } 286 287 /// Checks if the given value is actually an undefined constant vector. 288 static bool isUndefVector(const Value *V) { 289 if (isa<UndefValue>(V)) 290 return true; 291 auto *C = dyn_cast<Constant>(V); 292 if (!C) 293 return false; 294 if (!C->containsUndefOrPoisonElement()) 295 return false; 296 auto *VecTy = dyn_cast<FixedVectorType>(C->getType()); 297 if (!VecTy) 298 return false; 299 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 300 if (Constant *Elem = C->getAggregateElement(I)) 301 if (!isa<UndefValue>(Elem)) 302 return false; 303 } 304 return true; 305 } 306 307 /// Checks if the vector of instructions can be represented as a shuffle, like: 308 /// %x0 = extractelement <4 x i8> %x, i32 0 309 /// %x3 = extractelement <4 x i8> %x, i32 3 310 /// %y1 = extractelement <4 x i8> %y, i32 1 311 /// %y2 = extractelement <4 x i8> %y, i32 2 312 /// %x0x0 = mul i8 %x0, %x0 313 /// %x3x3 = mul i8 %x3, %x3 314 /// %y1y1 = mul i8 %y1, %y1 315 /// %y2y2 = mul i8 %y2, %y2 316 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 317 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 318 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 319 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 320 /// ret <4 x i8> %ins4 321 /// can be transformed into: 322 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 323 /// i32 6> 324 /// %2 = mul <4 x i8> %1, %1 325 /// ret <4 x i8> %2 326 /// We convert this initially to something like: 327 /// %x0 = extractelement <4 x i8> %x, i32 0 328 /// %x3 = extractelement <4 x i8> %x, i32 3 329 /// %y1 = extractelement <4 x i8> %y, i32 1 330 /// %y2 = extractelement <4 x i8> %y, i32 2 331 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 332 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 333 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 334 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 335 /// %5 = mul <4 x i8> %4, %4 336 /// %6 = extractelement <4 x i8> %5, i32 0 337 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 338 /// %7 = extractelement <4 x i8> %5, i32 1 339 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 340 /// %8 = extractelement <4 x i8> %5, i32 2 341 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 342 /// %9 = extractelement <4 x i8> %5, i32 3 343 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 344 /// ret <4 x i8> %ins4 345 /// InstCombiner transforms this into a shuffle and vector mul 346 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 347 /// TODO: Can we split off and reuse the shuffle mask detection from 348 /// TargetTransformInfo::getInstructionThroughput? 349 static Optional<TargetTransformInfo::ShuffleKind> 350 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 351 const auto *It = 352 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); 353 if (It == VL.end()) 354 return None; 355 auto *EI0 = cast<ExtractElementInst>(*It); 356 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 357 return None; 358 unsigned Size = 359 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 360 Value *Vec1 = nullptr; 361 Value *Vec2 = nullptr; 362 enum ShuffleMode { Unknown, Select, Permute }; 363 ShuffleMode CommonShuffleMode = Unknown; 364 Mask.assign(VL.size(), UndefMaskElem); 365 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 366 // Undef can be represented as an undef element in a vector. 367 if (isa<UndefValue>(VL[I])) 368 continue; 369 auto *EI = cast<ExtractElementInst>(VL[I]); 370 if (isa<ScalableVectorType>(EI->getVectorOperandType())) 371 return None; 372 auto *Vec = EI->getVectorOperand(); 373 // We can extractelement from undef or poison vector. 374 if (isUndefVector(Vec)) 375 continue; 376 // All vector operands must have the same number of vector elements. 377 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 378 return None; 379 if (isa<UndefValue>(EI->getIndexOperand())) 380 continue; 381 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 382 if (!Idx) 383 return None; 384 // Undefined behavior if Idx is negative or >= Size. 385 if (Idx->getValue().uge(Size)) 386 continue; 387 unsigned IntIdx = Idx->getValue().getZExtValue(); 388 Mask[I] = IntIdx; 389 // For correct shuffling we have to have at most 2 different vector operands 390 // in all extractelement instructions. 391 if (!Vec1 || Vec1 == Vec) { 392 Vec1 = Vec; 393 } else if (!Vec2 || Vec2 == Vec) { 394 Vec2 = Vec; 395 Mask[I] += Size; 396 } else { 397 return None; 398 } 399 if (CommonShuffleMode == Permute) 400 continue; 401 // If the extract index is not the same as the operation number, it is a 402 // permutation. 403 if (IntIdx != I) { 404 CommonShuffleMode = Permute; 405 continue; 406 } 407 CommonShuffleMode = Select; 408 } 409 // If we're not crossing lanes in different vectors, consider it as blending. 410 if (CommonShuffleMode == Select && Vec2) 411 return TargetTransformInfo::SK_Select; 412 // If Vec2 was never used, we have a permutation of a single vector, otherwise 413 // we have permutation of 2 vectors. 414 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 415 : TargetTransformInfo::SK_PermuteSingleSrc; 416 } 417 418 namespace { 419 420 /// Main data required for vectorization of instructions. 421 struct InstructionsState { 422 /// The very first instruction in the list with the main opcode. 423 Value *OpValue = nullptr; 424 425 /// The main/alternate instruction. 426 Instruction *MainOp = nullptr; 427 Instruction *AltOp = nullptr; 428 429 /// The main/alternate opcodes for the list of instructions. 430 unsigned getOpcode() const { 431 return MainOp ? MainOp->getOpcode() : 0; 432 } 433 434 unsigned getAltOpcode() const { 435 return AltOp ? AltOp->getOpcode() : 0; 436 } 437 438 /// Some of the instructions in the list have alternate opcodes. 439 bool isAltShuffle() const { return AltOp != MainOp; } 440 441 bool isOpcodeOrAlt(Instruction *I) const { 442 unsigned CheckedOpcode = I->getOpcode(); 443 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 444 } 445 446 InstructionsState() = delete; 447 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 448 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 449 }; 450 451 } // end anonymous namespace 452 453 /// Chooses the correct key for scheduling data. If \p Op has the same (or 454 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 455 /// OpValue. 456 static Value *isOneOf(const InstructionsState &S, Value *Op) { 457 auto *I = dyn_cast<Instruction>(Op); 458 if (I && S.isOpcodeOrAlt(I)) 459 return Op; 460 return S.OpValue; 461 } 462 463 /// \returns true if \p Opcode is allowed as part of of the main/alternate 464 /// instruction for SLP vectorization. 465 /// 466 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 467 /// "shuffled out" lane would result in division by zero. 468 static bool isValidForAlternation(unsigned Opcode) { 469 if (Instruction::isIntDivRem(Opcode)) 470 return false; 471 472 return true; 473 } 474 475 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 476 unsigned BaseIndex = 0); 477 478 /// Checks if the provided operands of 2 cmp instructions are compatible, i.e. 479 /// compatible instructions or constants, or just some other regular values. 480 static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0, 481 Value *Op1) { 482 return (isConstant(BaseOp0) && isConstant(Op0)) || 483 (isConstant(BaseOp1) && isConstant(Op1)) || 484 (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) && 485 !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) || 486 getSameOpcode({BaseOp0, Op0}).getOpcode() || 487 getSameOpcode({BaseOp1, Op1}).getOpcode(); 488 } 489 490 /// \returns analysis of the Instructions in \p VL described in 491 /// InstructionsState, the Opcode that we suppose the whole list 492 /// could be vectorized even if its structure is diverse. 493 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 494 unsigned BaseIndex) { 495 // Make sure these are all Instructions. 496 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 497 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 498 499 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 500 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 501 bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]); 502 CmpInst::Predicate BasePred = 503 IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate() 504 : CmpInst::BAD_ICMP_PREDICATE; 505 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 506 unsigned AltOpcode = Opcode; 507 unsigned AltIndex = BaseIndex; 508 509 // Check for one alternate opcode from another BinaryOperator. 510 // TODO - generalize to support all operators (types, calls etc.). 511 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 512 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 513 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 514 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 515 continue; 516 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 517 isValidForAlternation(Opcode)) { 518 AltOpcode = InstOpcode; 519 AltIndex = Cnt; 520 continue; 521 } 522 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 523 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 524 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 525 if (Ty0 == Ty1) { 526 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 527 continue; 528 if (Opcode == AltOpcode) { 529 assert(isValidForAlternation(Opcode) && 530 isValidForAlternation(InstOpcode) && 531 "Cast isn't safe for alternation, logic needs to be updated!"); 532 AltOpcode = InstOpcode; 533 AltIndex = Cnt; 534 continue; 535 } 536 } 537 } else if (IsCmpOp && isa<CmpInst>(VL[Cnt])) { 538 auto *BaseInst = cast<Instruction>(VL[BaseIndex]); 539 auto *Inst = cast<Instruction>(VL[Cnt]); 540 Type *Ty0 = BaseInst->getOperand(0)->getType(); 541 Type *Ty1 = Inst->getOperand(0)->getType(); 542 if (Ty0 == Ty1) { 543 Value *BaseOp0 = BaseInst->getOperand(0); 544 Value *BaseOp1 = BaseInst->getOperand(1); 545 Value *Op0 = Inst->getOperand(0); 546 Value *Op1 = Inst->getOperand(1); 547 CmpInst::Predicate CurrentPred = 548 cast<CmpInst>(VL[Cnt])->getPredicate(); 549 CmpInst::Predicate SwappedCurrentPred = 550 CmpInst::getSwappedPredicate(CurrentPred); 551 // Check for compatible operands. If the corresponding operands are not 552 // compatible - need to perform alternate vectorization. 553 if (InstOpcode == Opcode) { 554 if (BasePred == CurrentPred && 555 areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1)) 556 continue; 557 if (BasePred == SwappedCurrentPred && 558 areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0)) 559 continue; 560 if (E == 2 && 561 (BasePred == CurrentPred || BasePred == SwappedCurrentPred)) 562 continue; 563 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 564 CmpInst::Predicate AltPred = AltInst->getPredicate(); 565 Value *AltOp0 = AltInst->getOperand(0); 566 Value *AltOp1 = AltInst->getOperand(1); 567 // Check if operands are compatible with alternate operands. 568 if (AltPred == CurrentPred && 569 areCompatibleCmpOps(AltOp0, AltOp1, Op0, Op1)) 570 continue; 571 if (AltPred == SwappedCurrentPred && 572 areCompatibleCmpOps(AltOp0, AltOp1, Op1, Op0)) 573 continue; 574 } 575 if (BaseIndex == AltIndex && BasePred != CurrentPred) { 576 assert(isValidForAlternation(Opcode) && 577 isValidForAlternation(InstOpcode) && 578 "Cast isn't safe for alternation, logic needs to be updated!"); 579 AltIndex = Cnt; 580 continue; 581 } 582 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 583 CmpInst::Predicate AltPred = AltInst->getPredicate(); 584 if (BasePred == CurrentPred || BasePred == SwappedCurrentPred || 585 AltPred == CurrentPred || AltPred == SwappedCurrentPred) 586 continue; 587 } 588 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 589 continue; 590 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 591 } 592 593 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 594 cast<Instruction>(VL[AltIndex])); 595 } 596 597 /// \returns true if all of the values in \p VL have the same type or false 598 /// otherwise. 599 static bool allSameType(ArrayRef<Value *> VL) { 600 Type *Ty = VL[0]->getType(); 601 for (int i = 1, e = VL.size(); i < e; i++) 602 if (VL[i]->getType() != Ty) 603 return false; 604 605 return true; 606 } 607 608 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 609 static Optional<unsigned> getExtractIndex(Instruction *E) { 610 unsigned Opcode = E->getOpcode(); 611 assert((Opcode == Instruction::ExtractElement || 612 Opcode == Instruction::ExtractValue) && 613 "Expected extractelement or extractvalue instruction."); 614 if (Opcode == Instruction::ExtractElement) { 615 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 616 if (!CI) 617 return None; 618 return CI->getZExtValue(); 619 } 620 ExtractValueInst *EI = cast<ExtractValueInst>(E); 621 if (EI->getNumIndices() != 1) 622 return None; 623 return *EI->idx_begin(); 624 } 625 626 /// \returns True if in-tree use also needs extract. This refers to 627 /// possible scalar operand in vectorized instruction. 628 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 629 TargetLibraryInfo *TLI) { 630 unsigned Opcode = UserInst->getOpcode(); 631 switch (Opcode) { 632 case Instruction::Load: { 633 LoadInst *LI = cast<LoadInst>(UserInst); 634 return (LI->getPointerOperand() == Scalar); 635 } 636 case Instruction::Store: { 637 StoreInst *SI = cast<StoreInst>(UserInst); 638 return (SI->getPointerOperand() == Scalar); 639 } 640 case Instruction::Call: { 641 CallInst *CI = cast<CallInst>(UserInst); 642 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 643 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 644 if (isVectorIntrinsicWithScalarOpAtArg(ID, i)) 645 return (CI->getArgOperand(i) == Scalar); 646 } 647 LLVM_FALLTHROUGH; 648 } 649 default: 650 return false; 651 } 652 } 653 654 /// \returns the AA location that is being access by the instruction. 655 static MemoryLocation getLocation(Instruction *I) { 656 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 657 return MemoryLocation::get(SI); 658 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 659 return MemoryLocation::get(LI); 660 return MemoryLocation(); 661 } 662 663 /// \returns True if the instruction is not a volatile or atomic load/store. 664 static bool isSimple(Instruction *I) { 665 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 666 return LI->isSimple(); 667 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 668 return SI->isSimple(); 669 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 670 return !MI->isVolatile(); 671 return true; 672 } 673 674 /// Shuffles \p Mask in accordance with the given \p SubMask. 675 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 676 if (SubMask.empty()) 677 return; 678 if (Mask.empty()) { 679 Mask.append(SubMask.begin(), SubMask.end()); 680 return; 681 } 682 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 683 int TermValue = std::min(Mask.size(), SubMask.size()); 684 for (int I = 0, E = SubMask.size(); I < E; ++I) { 685 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 686 Mask[SubMask[I]] >= TermValue) 687 continue; 688 NewMask[I] = Mask[SubMask[I]]; 689 } 690 Mask.swap(NewMask); 691 } 692 693 /// Order may have elements assigned special value (size) which is out of 694 /// bounds. Such indices only appear on places which correspond to undef values 695 /// (see canReuseExtract for details) and used in order to avoid undef values 696 /// have effect on operands ordering. 697 /// The first loop below simply finds all unused indices and then the next loop 698 /// nest assigns these indices for undef values positions. 699 /// As an example below Order has two undef positions and they have assigned 700 /// values 3 and 7 respectively: 701 /// before: 6 9 5 4 9 2 1 0 702 /// after: 6 3 5 4 7 2 1 0 703 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 704 const unsigned Sz = Order.size(); 705 SmallBitVector UnusedIndices(Sz, /*t=*/true); 706 SmallBitVector MaskedIndices(Sz); 707 for (unsigned I = 0; I < Sz; ++I) { 708 if (Order[I] < Sz) 709 UnusedIndices.reset(Order[I]); 710 else 711 MaskedIndices.set(I); 712 } 713 if (MaskedIndices.none()) 714 return; 715 assert(UnusedIndices.count() == MaskedIndices.count() && 716 "Non-synced masked/available indices."); 717 int Idx = UnusedIndices.find_first(); 718 int MIdx = MaskedIndices.find_first(); 719 while (MIdx >= 0) { 720 assert(Idx >= 0 && "Indices must be synced."); 721 Order[MIdx] = Idx; 722 Idx = UnusedIndices.find_next(Idx); 723 MIdx = MaskedIndices.find_next(MIdx); 724 } 725 } 726 727 namespace llvm { 728 729 static void inversePermutation(ArrayRef<unsigned> Indices, 730 SmallVectorImpl<int> &Mask) { 731 Mask.clear(); 732 const unsigned E = Indices.size(); 733 Mask.resize(E, UndefMaskElem); 734 for (unsigned I = 0; I < E; ++I) 735 Mask[Indices[I]] = I; 736 } 737 738 /// \returns inserting index of InsertElement or InsertValue instruction, 739 /// using Offset as base offset for index. 740 static Optional<unsigned> getInsertIndex(Value *InsertInst, 741 unsigned Offset = 0) { 742 int Index = Offset; 743 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 744 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 745 auto *VT = cast<FixedVectorType>(IE->getType()); 746 if (CI->getValue().uge(VT->getNumElements())) 747 return None; 748 Index *= VT->getNumElements(); 749 Index += CI->getZExtValue(); 750 return Index; 751 } 752 return None; 753 } 754 755 auto *IV = cast<InsertValueInst>(InsertInst); 756 Type *CurrentType = IV->getType(); 757 for (unsigned I : IV->indices()) { 758 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 759 Index *= ST->getNumElements(); 760 CurrentType = ST->getElementType(I); 761 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 762 Index *= AT->getNumElements(); 763 CurrentType = AT->getElementType(); 764 } else { 765 return None; 766 } 767 Index += I; 768 } 769 return Index; 770 } 771 772 /// Reorders the list of scalars in accordance with the given \p Mask. 773 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 774 ArrayRef<int> Mask) { 775 assert(!Mask.empty() && "Expected non-empty mask."); 776 SmallVector<Value *> Prev(Scalars.size(), 777 UndefValue::get(Scalars.front()->getType())); 778 Prev.swap(Scalars); 779 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 780 if (Mask[I] != UndefMaskElem) 781 Scalars[Mask[I]] = Prev[I]; 782 } 783 784 /// Checks if the provided value does not require scheduling. It does not 785 /// require scheduling if this is not an instruction or it is an instruction 786 /// that does not read/write memory and all operands are either not instructions 787 /// or phi nodes or instructions from different blocks. 788 static bool areAllOperandsNonInsts(Value *V) { 789 auto *I = dyn_cast<Instruction>(V); 790 if (!I) 791 return true; 792 return !mayHaveNonDefUseDependency(*I) && 793 all_of(I->operands(), [I](Value *V) { 794 auto *IO = dyn_cast<Instruction>(V); 795 if (!IO) 796 return true; 797 return isa<PHINode>(IO) || IO->getParent() != I->getParent(); 798 }); 799 } 800 801 /// Checks if the provided value does not require scheduling. It does not 802 /// require scheduling if this is not an instruction or it is an instruction 803 /// that does not read/write memory and all users are phi nodes or instructions 804 /// from the different blocks. 805 static bool isUsedOutsideBlock(Value *V) { 806 auto *I = dyn_cast<Instruction>(V); 807 if (!I) 808 return true; 809 // Limits the number of uses to save compile time. 810 constexpr int UsesLimit = 8; 811 return !I->mayReadOrWriteMemory() && !I->hasNUsesOrMore(UsesLimit) && 812 all_of(I->users(), [I](User *U) { 813 auto *IU = dyn_cast<Instruction>(U); 814 if (!IU) 815 return true; 816 return IU->getParent() != I->getParent() || isa<PHINode>(IU); 817 }); 818 } 819 820 /// Checks if the specified value does not require scheduling. It does not 821 /// require scheduling if all operands and all users do not need to be scheduled 822 /// in the current basic block. 823 static bool doesNotNeedToBeScheduled(Value *V) { 824 return areAllOperandsNonInsts(V) && isUsedOutsideBlock(V); 825 } 826 827 /// Checks if the specified array of instructions does not require scheduling. 828 /// It is so if all either instructions have operands that do not require 829 /// scheduling or their users do not require scheduling since they are phis or 830 /// in other basic blocks. 831 static bool doesNotNeedToSchedule(ArrayRef<Value *> VL) { 832 return !VL.empty() && 833 (all_of(VL, isUsedOutsideBlock) || all_of(VL, areAllOperandsNonInsts)); 834 } 835 836 namespace slpvectorizer { 837 838 /// Bottom Up SLP Vectorizer. 839 class BoUpSLP { 840 struct TreeEntry; 841 struct ScheduleData; 842 843 public: 844 using ValueList = SmallVector<Value *, 8>; 845 using InstrList = SmallVector<Instruction *, 16>; 846 using ValueSet = SmallPtrSet<Value *, 16>; 847 using StoreList = SmallVector<StoreInst *, 8>; 848 using ExtraValueToDebugLocsMap = 849 MapVector<Value *, SmallVector<Instruction *, 2>>; 850 using OrdersType = SmallVector<unsigned, 4>; 851 852 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 853 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 854 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 855 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 856 : BatchAA(*Aa), F(Func), SE(Se), TTI(Tti), TLI(TLi), LI(Li), 857 DT(Dt), AC(AC), DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 858 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 859 // Use the vector register size specified by the target unless overridden 860 // by a command-line option. 861 // TODO: It would be better to limit the vectorization factor based on 862 // data type rather than just register size. For example, x86 AVX has 863 // 256-bit registers, but it does not support integer operations 864 // at that width (that requires AVX2). 865 if (MaxVectorRegSizeOption.getNumOccurrences()) 866 MaxVecRegSize = MaxVectorRegSizeOption; 867 else 868 MaxVecRegSize = 869 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 870 .getFixedSize(); 871 872 if (MinVectorRegSizeOption.getNumOccurrences()) 873 MinVecRegSize = MinVectorRegSizeOption; 874 else 875 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 876 } 877 878 /// Vectorize the tree that starts with the elements in \p VL. 879 /// Returns the vectorized root. 880 Value *vectorizeTree(); 881 882 /// Vectorize the tree but with the list of externally used values \p 883 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 884 /// generated extractvalue instructions. 885 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 886 887 /// \returns the cost incurred by unwanted spills and fills, caused by 888 /// holding live values over call sites. 889 InstructionCost getSpillCost() const; 890 891 /// \returns the vectorization cost of the subtree that starts at \p VL. 892 /// A negative number means that this is profitable. 893 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 894 895 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 896 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 897 void buildTree(ArrayRef<Value *> Roots, 898 ArrayRef<Value *> UserIgnoreLst = None); 899 900 /// Builds external uses of the vectorized scalars, i.e. the list of 901 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 902 /// ExternallyUsedValues contains additional list of external uses to handle 903 /// vectorization of reductions. 904 void 905 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 906 907 /// Clear the internal data structures that are created by 'buildTree'. 908 void deleteTree() { 909 VectorizableTree.clear(); 910 ScalarToTreeEntry.clear(); 911 MustGather.clear(); 912 ExternalUses.clear(); 913 for (auto &Iter : BlocksSchedules) { 914 BlockScheduling *BS = Iter.second.get(); 915 BS->clear(); 916 } 917 MinBWs.clear(); 918 InstrElementSize.clear(); 919 } 920 921 unsigned getTreeSize() const { return VectorizableTree.size(); } 922 923 /// Perform LICM and CSE on the newly generated gather sequences. 924 void optimizeGatherSequence(); 925 926 /// Checks if the specified gather tree entry \p TE can be represented as a 927 /// shuffled vector entry + (possibly) permutation with other gathers. It 928 /// implements the checks only for possibly ordered scalars (Loads, 929 /// ExtractElement, ExtractValue), which can be part of the graph. 930 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 931 932 /// Sort loads into increasing pointers offsets to allow greater clustering. 933 Optional<OrdersType> findPartiallyOrderedLoads(const TreeEntry &TE); 934 935 /// Gets reordering data for the given tree entry. If the entry is vectorized 936 /// - just return ReorderIndices, otherwise check if the scalars can be 937 /// reordered and return the most optimal order. 938 /// \param TopToBottom If true, include the order of vectorized stores and 939 /// insertelement nodes, otherwise skip them. 940 Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom); 941 942 /// Reorders the current graph to the most profitable order starting from the 943 /// root node to the leaf nodes. The best order is chosen only from the nodes 944 /// of the same size (vectorization factor). Smaller nodes are considered 945 /// parts of subgraph with smaller VF and they are reordered independently. We 946 /// can make it because we still need to extend smaller nodes to the wider VF 947 /// and we can merge reordering shuffles with the widening shuffles. 948 void reorderTopToBottom(); 949 950 /// Reorders the current graph to the most profitable order starting from 951 /// leaves to the root. It allows to rotate small subgraphs and reduce the 952 /// number of reshuffles if the leaf nodes use the same order. In this case we 953 /// can merge the orders and just shuffle user node instead of shuffling its 954 /// operands. Plus, even the leaf nodes have different orders, it allows to 955 /// sink reordering in the graph closer to the root node and merge it later 956 /// during analysis. 957 void reorderBottomToTop(bool IgnoreReorder = false); 958 959 /// \return The vector element size in bits to use when vectorizing the 960 /// expression tree ending at \p V. If V is a store, the size is the width of 961 /// the stored value. Otherwise, the size is the width of the largest loaded 962 /// value reaching V. This method is used by the vectorizer to calculate 963 /// vectorization factors. 964 unsigned getVectorElementSize(Value *V); 965 966 /// Compute the minimum type sizes required to represent the entries in a 967 /// vectorizable tree. 968 void computeMinimumValueSizes(); 969 970 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 971 unsigned getMaxVecRegSize() const { 972 return MaxVecRegSize; 973 } 974 975 // \returns minimum vector register size as set by cl::opt. 976 unsigned getMinVecRegSize() const { 977 return MinVecRegSize; 978 } 979 980 unsigned getMinVF(unsigned Sz) const { 981 return std::max(2U, getMinVecRegSize() / Sz); 982 } 983 984 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 985 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 986 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 987 return MaxVF ? MaxVF : UINT_MAX; 988 } 989 990 /// Check if homogeneous aggregate is isomorphic to some VectorType. 991 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 992 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 993 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 994 /// 995 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 996 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 997 998 /// \returns True if the VectorizableTree is both tiny and not fully 999 /// vectorizable. We do not vectorize such trees. 1000 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 1001 1002 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 1003 /// can be load combined in the backend. Load combining may not be allowed in 1004 /// the IR optimizer, so we do not want to alter the pattern. For example, 1005 /// partially transforming a scalar bswap() pattern into vector code is 1006 /// effectively impossible for the backend to undo. 1007 /// TODO: If load combining is allowed in the IR optimizer, this analysis 1008 /// may not be necessary. 1009 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 1010 1011 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 1012 /// can be load combined in the backend. Load combining may not be allowed in 1013 /// the IR optimizer, so we do not want to alter the pattern. For example, 1014 /// partially transforming a scalar bswap() pattern into vector code is 1015 /// effectively impossible for the backend to undo. 1016 /// TODO: If load combining is allowed in the IR optimizer, this analysis 1017 /// may not be necessary. 1018 bool isLoadCombineCandidate() const; 1019 1020 OptimizationRemarkEmitter *getORE() { return ORE; } 1021 1022 /// This structure holds any data we need about the edges being traversed 1023 /// during buildTree_rec(). We keep track of: 1024 /// (i) the user TreeEntry index, and 1025 /// (ii) the index of the edge. 1026 struct EdgeInfo { 1027 EdgeInfo() = default; 1028 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 1029 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 1030 /// The user TreeEntry. 1031 TreeEntry *UserTE = nullptr; 1032 /// The operand index of the use. 1033 unsigned EdgeIdx = UINT_MAX; 1034 #ifndef NDEBUG 1035 friend inline raw_ostream &operator<<(raw_ostream &OS, 1036 const BoUpSLP::EdgeInfo &EI) { 1037 EI.dump(OS); 1038 return OS; 1039 } 1040 /// Debug print. 1041 void dump(raw_ostream &OS) const { 1042 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 1043 << " EdgeIdx:" << EdgeIdx << "}"; 1044 } 1045 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 1046 #endif 1047 }; 1048 1049 /// A helper class used for scoring candidates for two consecutive lanes. 1050 class LookAheadHeuristics { 1051 const DataLayout &DL; 1052 ScalarEvolution &SE; 1053 const BoUpSLP &R; 1054 int NumLanes; // Total number of lanes (aka vectorization factor). 1055 int MaxLevel; // The maximum recursion depth for accumulating score. 1056 1057 public: 1058 LookAheadHeuristics(const DataLayout &DL, ScalarEvolution &SE, 1059 const BoUpSLP &R, int NumLanes, int MaxLevel) 1060 : DL(DL), SE(SE), R(R), NumLanes(NumLanes), MaxLevel(MaxLevel) {} 1061 1062 // The hard-coded scores listed here are not very important, though it shall 1063 // be higher for better matches to improve the resulting cost. When 1064 // computing the scores of matching one sub-tree with another, we are 1065 // basically counting the number of values that are matching. So even if all 1066 // scores are set to 1, we would still get a decent matching result. 1067 // However, sometimes we have to break ties. For example we may have to 1068 // choose between matching loads vs matching opcodes. This is what these 1069 // scores are helping us with: they provide the order of preference. Also, 1070 // this is important if the scalar is externally used or used in another 1071 // tree entry node in the different lane. 1072 1073 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 1074 static const int ScoreConsecutiveLoads = 4; 1075 /// The same load multiple times. This should have a better score than 1076 /// `ScoreSplat` because it in x86 for a 2-lane vector we can represent it 1077 /// with `movddup (%reg), xmm0` which has a throughput of 0.5 versus 0.5 for 1078 /// a vector load and 1.0 for a broadcast. 1079 static const int ScoreSplatLoads = 3; 1080 /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]). 1081 static const int ScoreReversedLoads = 3; 1082 /// ExtractElementInst from same vector and consecutive indexes. 1083 static const int ScoreConsecutiveExtracts = 4; 1084 /// ExtractElementInst from same vector and reversed indices. 1085 static const int ScoreReversedExtracts = 3; 1086 /// Constants. 1087 static const int ScoreConstants = 2; 1088 /// Instructions with the same opcode. 1089 static const int ScoreSameOpcode = 2; 1090 /// Instructions with alt opcodes (e.g, add + sub). 1091 static const int ScoreAltOpcodes = 1; 1092 /// Identical instructions (a.k.a. splat or broadcast). 1093 static const int ScoreSplat = 1; 1094 /// Matching with an undef is preferable to failing. 1095 static const int ScoreUndef = 1; 1096 /// Score for failing to find a decent match. 1097 static const int ScoreFail = 0; 1098 /// Score if all users are vectorized. 1099 static const int ScoreAllUserVectorized = 1; 1100 1101 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1102 /// \p U1 and \p U2 are the users of \p V1 and \p V2. 1103 /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p 1104 /// MainAltOps. 1105 int getShallowScore(Value *V1, Value *V2, Instruction *U1, Instruction *U2, 1106 ArrayRef<Value *> MainAltOps) const { 1107 if (V1 == V2) { 1108 if (isa<LoadInst>(V1)) { 1109 // Retruns true if the users of V1 and V2 won't need to be extracted. 1110 auto AllUsersAreInternal = [U1, U2, this](Value *V1, Value *V2) { 1111 // Bail out if we have too many uses to save compilation time. 1112 static constexpr unsigned Limit = 8; 1113 if (V1->hasNUsesOrMore(Limit) || V2->hasNUsesOrMore(Limit)) 1114 return false; 1115 1116 auto AllUsersVectorized = [U1, U2, this](Value *V) { 1117 return llvm::all_of(V->users(), [U1, U2, this](Value *U) { 1118 return U == U1 || U == U2 || R.getTreeEntry(U) != nullptr; 1119 }); 1120 }; 1121 return AllUsersVectorized(V1) && AllUsersVectorized(V2); 1122 }; 1123 // A broadcast of a load can be cheaper on some targets. 1124 if (R.TTI->isLegalBroadcastLoad(V1->getType(), 1125 ElementCount::getFixed(NumLanes)) && 1126 ((int)V1->getNumUses() == NumLanes || 1127 AllUsersAreInternal(V1, V2))) 1128 return LookAheadHeuristics::ScoreSplatLoads; 1129 } 1130 return LookAheadHeuristics::ScoreSplat; 1131 } 1132 1133 auto *LI1 = dyn_cast<LoadInst>(V1); 1134 auto *LI2 = dyn_cast<LoadInst>(V2); 1135 if (LI1 && LI2) { 1136 if (LI1->getParent() != LI2->getParent()) 1137 return LookAheadHeuristics::ScoreFail; 1138 1139 Optional<int> Dist = getPointersDiff( 1140 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1141 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1142 if (!Dist || *Dist == 0) 1143 return LookAheadHeuristics::ScoreFail; 1144 // The distance is too large - still may be profitable to use masked 1145 // loads/gathers. 1146 if (std::abs(*Dist) > NumLanes / 2) 1147 return LookAheadHeuristics::ScoreAltOpcodes; 1148 // This still will detect consecutive loads, but we might have "holes" 1149 // in some cases. It is ok for non-power-2 vectorization and may produce 1150 // better results. It should not affect current vectorization. 1151 return (*Dist > 0) ? LookAheadHeuristics::ScoreConsecutiveLoads 1152 : LookAheadHeuristics::ScoreReversedLoads; 1153 } 1154 1155 auto *C1 = dyn_cast<Constant>(V1); 1156 auto *C2 = dyn_cast<Constant>(V2); 1157 if (C1 && C2) 1158 return LookAheadHeuristics::ScoreConstants; 1159 1160 // Extracts from consecutive indexes of the same vector better score as 1161 // the extracts could be optimized away. 1162 Value *EV1; 1163 ConstantInt *Ex1Idx; 1164 if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) { 1165 // Undefs are always profitable for extractelements. 1166 if (isa<UndefValue>(V2)) 1167 return LookAheadHeuristics::ScoreConsecutiveExtracts; 1168 Value *EV2 = nullptr; 1169 ConstantInt *Ex2Idx = nullptr; 1170 if (match(V2, 1171 m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx), 1172 m_Undef())))) { 1173 // Undefs are always profitable for extractelements. 1174 if (!Ex2Idx) 1175 return LookAheadHeuristics::ScoreConsecutiveExtracts; 1176 if (isUndefVector(EV2) && EV2->getType() == EV1->getType()) 1177 return LookAheadHeuristics::ScoreConsecutiveExtracts; 1178 if (EV2 == EV1) { 1179 int Idx1 = Ex1Idx->getZExtValue(); 1180 int Idx2 = Ex2Idx->getZExtValue(); 1181 int Dist = Idx2 - Idx1; 1182 // The distance is too large - still may be profitable to use 1183 // shuffles. 1184 if (std::abs(Dist) == 0) 1185 return LookAheadHeuristics::ScoreSplat; 1186 if (std::abs(Dist) > NumLanes / 2) 1187 return LookAheadHeuristics::ScoreSameOpcode; 1188 return (Dist > 0) ? LookAheadHeuristics::ScoreConsecutiveExtracts 1189 : LookAheadHeuristics::ScoreReversedExtracts; 1190 } 1191 return LookAheadHeuristics::ScoreAltOpcodes; 1192 } 1193 return LookAheadHeuristics::ScoreFail; 1194 } 1195 1196 auto *I1 = dyn_cast<Instruction>(V1); 1197 auto *I2 = dyn_cast<Instruction>(V2); 1198 if (I1 && I2) { 1199 if (I1->getParent() != I2->getParent()) 1200 return LookAheadHeuristics::ScoreFail; 1201 SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end()); 1202 Ops.push_back(I1); 1203 Ops.push_back(I2); 1204 InstructionsState S = getSameOpcode(Ops); 1205 // Note: Only consider instructions with <= 2 operands to avoid 1206 // complexity explosion. 1207 if (S.getOpcode() && 1208 (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() || 1209 !S.isAltShuffle()) && 1210 all_of(Ops, [&S](Value *V) { 1211 return cast<Instruction>(V)->getNumOperands() == 1212 S.MainOp->getNumOperands(); 1213 })) 1214 return S.isAltShuffle() ? LookAheadHeuristics::ScoreAltOpcodes 1215 : LookAheadHeuristics::ScoreSameOpcode; 1216 } 1217 1218 if (isa<UndefValue>(V2)) 1219 return LookAheadHeuristics::ScoreUndef; 1220 1221 return LookAheadHeuristics::ScoreFail; 1222 } 1223 1224 /// Go through the operands of \p LHS and \p RHS recursively until 1225 /// MaxLevel, and return the cummulative score. \p U1 and \p U2 are 1226 /// the users of \p LHS and \p RHS (that is \p LHS and \p RHS are operands 1227 /// of \p U1 and \p U2), except at the beginning of the recursion where 1228 /// these are set to nullptr. 1229 /// 1230 /// For example: 1231 /// \verbatim 1232 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1233 /// \ / \ / \ / \ / 1234 /// + + + + 1235 /// G1 G2 G3 G4 1236 /// \endverbatim 1237 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1238 /// each level recursively, accumulating the score. It starts from matching 1239 /// the additions at level 0, then moves on to the loads (level 1). The 1240 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1241 /// {B[0],B[1]} match with LookAheadHeuristics::ScoreConsecutiveLoads, while 1242 /// {A[0],C[0]} has a score of LookAheadHeuristics::ScoreFail. 1243 /// Please note that the order of the operands does not matter, as we 1244 /// evaluate the score of all profitable combinations of operands. In 1245 /// other words the score of G1 and G4 is the same as G1 and G2. This 1246 /// heuristic is based on ideas described in: 1247 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1248 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1249 /// Luís F. W. Góes 1250 int getScoreAtLevelRec(Value *LHS, Value *RHS, Instruction *U1, 1251 Instruction *U2, int CurrLevel, 1252 ArrayRef<Value *> MainAltOps) const { 1253 1254 // Get the shallow score of V1 and V2. 1255 int ShallowScoreAtThisLevel = 1256 getShallowScore(LHS, RHS, U1, U2, MainAltOps); 1257 1258 // If reached MaxLevel, 1259 // or if V1 and V2 are not instructions, 1260 // or if they are SPLAT, 1261 // or if they are not consecutive, 1262 // or if profitable to vectorize loads or extractelements, early return 1263 // the current cost. 1264 auto *I1 = dyn_cast<Instruction>(LHS); 1265 auto *I2 = dyn_cast<Instruction>(RHS); 1266 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1267 ShallowScoreAtThisLevel == LookAheadHeuristics::ScoreFail || 1268 (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) || 1269 (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) || 1270 (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) && 1271 ShallowScoreAtThisLevel)) 1272 return ShallowScoreAtThisLevel; 1273 assert(I1 && I2 && "Should have early exited."); 1274 1275 // Contains the I2 operand indexes that got matched with I1 operands. 1276 SmallSet<unsigned, 4> Op2Used; 1277 1278 // Recursion towards the operands of I1 and I2. We are trying all possible 1279 // operand pairs, and keeping track of the best score. 1280 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1281 OpIdx1 != NumOperands1; ++OpIdx1) { 1282 // Try to pair op1I with the best operand of I2. 1283 int MaxTmpScore = 0; 1284 unsigned MaxOpIdx2 = 0; 1285 bool FoundBest = false; 1286 // If I2 is commutative try all combinations. 1287 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1288 unsigned ToIdx = isCommutative(I2) 1289 ? I2->getNumOperands() 1290 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1291 assert(FromIdx <= ToIdx && "Bad index"); 1292 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1293 // Skip operands already paired with OpIdx1. 1294 if (Op2Used.count(OpIdx2)) 1295 continue; 1296 // Recursively calculate the cost at each level 1297 int TmpScore = 1298 getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2), 1299 I1, I2, CurrLevel + 1, None); 1300 // Look for the best score. 1301 if (TmpScore > LookAheadHeuristics::ScoreFail && 1302 TmpScore > MaxTmpScore) { 1303 MaxTmpScore = TmpScore; 1304 MaxOpIdx2 = OpIdx2; 1305 FoundBest = true; 1306 } 1307 } 1308 if (FoundBest) { 1309 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1310 Op2Used.insert(MaxOpIdx2); 1311 ShallowScoreAtThisLevel += MaxTmpScore; 1312 } 1313 } 1314 return ShallowScoreAtThisLevel; 1315 } 1316 }; 1317 /// A helper data structure to hold the operands of a vector of instructions. 1318 /// This supports a fixed vector length for all operand vectors. 1319 class VLOperands { 1320 /// For each operand we need (i) the value, and (ii) the opcode that it 1321 /// would be attached to if the expression was in a left-linearized form. 1322 /// This is required to avoid illegal operand reordering. 1323 /// For example: 1324 /// \verbatim 1325 /// 0 Op1 1326 /// |/ 1327 /// Op1 Op2 Linearized + Op2 1328 /// \ / ----------> |/ 1329 /// - - 1330 /// 1331 /// Op1 - Op2 (0 + Op1) - Op2 1332 /// \endverbatim 1333 /// 1334 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 1335 /// 1336 /// Another way to think of this is to track all the operations across the 1337 /// path from the operand all the way to the root of the tree and to 1338 /// calculate the operation that corresponds to this path. For example, the 1339 /// path from Op2 to the root crosses the RHS of the '-', therefore the 1340 /// corresponding operation is a '-' (which matches the one in the 1341 /// linearized tree, as shown above). 1342 /// 1343 /// For lack of a better term, we refer to this operation as Accumulated 1344 /// Path Operation (APO). 1345 struct OperandData { 1346 OperandData() = default; 1347 OperandData(Value *V, bool APO, bool IsUsed) 1348 : V(V), APO(APO), IsUsed(IsUsed) {} 1349 /// The operand value. 1350 Value *V = nullptr; 1351 /// TreeEntries only allow a single opcode, or an alternate sequence of 1352 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 1353 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 1354 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 1355 /// (e.g., Add/Mul) 1356 bool APO = false; 1357 /// Helper data for the reordering function. 1358 bool IsUsed = false; 1359 }; 1360 1361 /// During operand reordering, we are trying to select the operand at lane 1362 /// that matches best with the operand at the neighboring lane. Our 1363 /// selection is based on the type of value we are looking for. For example, 1364 /// if the neighboring lane has a load, we need to look for a load that is 1365 /// accessing a consecutive address. These strategies are summarized in the 1366 /// 'ReorderingMode' enumerator. 1367 enum class ReorderingMode { 1368 Load, ///< Matching loads to consecutive memory addresses 1369 Opcode, ///< Matching instructions based on opcode (same or alternate) 1370 Constant, ///< Matching constants 1371 Splat, ///< Matching the same instruction multiple times (broadcast) 1372 Failed, ///< We failed to create a vectorizable group 1373 }; 1374 1375 using OperandDataVec = SmallVector<OperandData, 2>; 1376 1377 /// A vector of operand vectors. 1378 SmallVector<OperandDataVec, 4> OpsVec; 1379 1380 const DataLayout &DL; 1381 ScalarEvolution &SE; 1382 const BoUpSLP &R; 1383 1384 /// \returns the operand data at \p OpIdx and \p Lane. 1385 OperandData &getData(unsigned OpIdx, unsigned Lane) { 1386 return OpsVec[OpIdx][Lane]; 1387 } 1388 1389 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 1390 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 1391 return OpsVec[OpIdx][Lane]; 1392 } 1393 1394 /// Clears the used flag for all entries. 1395 void clearUsed() { 1396 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 1397 OpIdx != NumOperands; ++OpIdx) 1398 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1399 ++Lane) 1400 OpsVec[OpIdx][Lane].IsUsed = false; 1401 } 1402 1403 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 1404 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 1405 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 1406 } 1407 1408 /// \param Lane lane of the operands under analysis. 1409 /// \param OpIdx operand index in \p Lane lane we're looking the best 1410 /// candidate for. 1411 /// \param Idx operand index of the current candidate value. 1412 /// \returns The additional score due to possible broadcasting of the 1413 /// elements in the lane. It is more profitable to have power-of-2 unique 1414 /// elements in the lane, it will be vectorized with higher probability 1415 /// after removing duplicates. Currently the SLP vectorizer supports only 1416 /// vectorization of the power-of-2 number of unique scalars. 1417 int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1418 Value *IdxLaneV = getData(Idx, Lane).V; 1419 if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V) 1420 return 0; 1421 SmallPtrSet<Value *, 4> Uniques; 1422 for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) { 1423 if (Ln == Lane) 1424 continue; 1425 Value *OpIdxLnV = getData(OpIdx, Ln).V; 1426 if (!isa<Instruction>(OpIdxLnV)) 1427 return 0; 1428 Uniques.insert(OpIdxLnV); 1429 } 1430 int UniquesCount = Uniques.size(); 1431 int UniquesCntWithIdxLaneV = 1432 Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1; 1433 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1434 int UniquesCntWithOpIdxLaneV = 1435 Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1; 1436 if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV) 1437 return 0; 1438 return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) - 1439 UniquesCntWithOpIdxLaneV) - 1440 (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV); 1441 } 1442 1443 /// \param Lane lane of the operands under analysis. 1444 /// \param OpIdx operand index in \p Lane lane we're looking the best 1445 /// candidate for. 1446 /// \param Idx operand index of the current candidate value. 1447 /// \returns The additional score for the scalar which users are all 1448 /// vectorized. 1449 int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1450 Value *IdxLaneV = getData(Idx, Lane).V; 1451 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1452 // Do not care about number of uses for vector-like instructions 1453 // (extractelement/extractvalue with constant indices), they are extracts 1454 // themselves and already externally used. Vectorization of such 1455 // instructions does not add extra extractelement instruction, just may 1456 // remove it. 1457 if (isVectorLikeInstWithConstOps(IdxLaneV) && 1458 isVectorLikeInstWithConstOps(OpIdxLaneV)) 1459 return LookAheadHeuristics::ScoreAllUserVectorized; 1460 auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV); 1461 if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV)) 1462 return 0; 1463 return R.areAllUsersVectorized(IdxLaneI, None) 1464 ? LookAheadHeuristics::ScoreAllUserVectorized 1465 : 0; 1466 } 1467 1468 /// Score scaling factor for fully compatible instructions but with 1469 /// different number of external uses. Allows better selection of the 1470 /// instructions with less external uses. 1471 static const int ScoreScaleFactor = 10; 1472 1473 /// \Returns the look-ahead score, which tells us how much the sub-trees 1474 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1475 /// score. This helps break ties in an informed way when we cannot decide on 1476 /// the order of the operands by just considering the immediate 1477 /// predecessors. 1478 int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps, 1479 int Lane, unsigned OpIdx, unsigned Idx, 1480 bool &IsUsed) { 1481 LookAheadHeuristics LookAhead(DL, SE, R, getNumLanes(), 1482 LookAheadMaxDepth); 1483 // Keep track of the instruction stack as we recurse into the operands 1484 // during the look-ahead score exploration. 1485 int Score = 1486 LookAhead.getScoreAtLevelRec(LHS, RHS, /*U1=*/nullptr, /*U2=*/nullptr, 1487 /*CurrLevel=*/1, MainAltOps); 1488 if (Score) { 1489 int SplatScore = getSplatScore(Lane, OpIdx, Idx); 1490 if (Score <= -SplatScore) { 1491 // Set the minimum score for splat-like sequence to avoid setting 1492 // failed state. 1493 Score = 1; 1494 } else { 1495 Score += SplatScore; 1496 // Scale score to see the difference between different operands 1497 // and similar operands but all vectorized/not all vectorized 1498 // uses. It does not affect actual selection of the best 1499 // compatible operand in general, just allows to select the 1500 // operand with all vectorized uses. 1501 Score *= ScoreScaleFactor; 1502 Score += getExternalUseScore(Lane, OpIdx, Idx); 1503 IsUsed = true; 1504 } 1505 } 1506 return Score; 1507 } 1508 1509 /// Best defined scores per lanes between the passes. Used to choose the 1510 /// best operand (with the highest score) between the passes. 1511 /// The key - {Operand Index, Lane}. 1512 /// The value - the best score between the passes for the lane and the 1513 /// operand. 1514 SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8> 1515 BestScoresPerLanes; 1516 1517 // Search all operands in Ops[*][Lane] for the one that matches best 1518 // Ops[OpIdx][LastLane] and return its opreand index. 1519 // If no good match can be found, return None. 1520 Optional<unsigned> getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1521 ArrayRef<ReorderingMode> ReorderingModes, 1522 ArrayRef<Value *> MainAltOps) { 1523 unsigned NumOperands = getNumOperands(); 1524 1525 // The operand of the previous lane at OpIdx. 1526 Value *OpLastLane = getData(OpIdx, LastLane).V; 1527 1528 // Our strategy mode for OpIdx. 1529 ReorderingMode RMode = ReorderingModes[OpIdx]; 1530 if (RMode == ReorderingMode::Failed) 1531 return None; 1532 1533 // The linearized opcode of the operand at OpIdx, Lane. 1534 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1535 1536 // The best operand index and its score. 1537 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1538 // are using the score to differentiate between the two. 1539 struct BestOpData { 1540 Optional<unsigned> Idx = None; 1541 unsigned Score = 0; 1542 } BestOp; 1543 BestOp.Score = 1544 BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0) 1545 .first->second; 1546 1547 // Track if the operand must be marked as used. If the operand is set to 1548 // Score 1 explicitly (because of non power-of-2 unique scalars, we may 1549 // want to reestimate the operands again on the following iterations). 1550 bool IsUsed = 1551 RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant; 1552 // Iterate through all unused operands and look for the best. 1553 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1554 // Get the operand at Idx and Lane. 1555 OperandData &OpData = getData(Idx, Lane); 1556 Value *Op = OpData.V; 1557 bool OpAPO = OpData.APO; 1558 1559 // Skip already selected operands. 1560 if (OpData.IsUsed) 1561 continue; 1562 1563 // Skip if we are trying to move the operand to a position with a 1564 // different opcode in the linearized tree form. This would break the 1565 // semantics. 1566 if (OpAPO != OpIdxAPO) 1567 continue; 1568 1569 // Look for an operand that matches the current mode. 1570 switch (RMode) { 1571 case ReorderingMode::Load: 1572 case ReorderingMode::Constant: 1573 case ReorderingMode::Opcode: { 1574 bool LeftToRight = Lane > LastLane; 1575 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1576 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1577 int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane, 1578 OpIdx, Idx, IsUsed); 1579 if (Score > static_cast<int>(BestOp.Score)) { 1580 BestOp.Idx = Idx; 1581 BestOp.Score = Score; 1582 BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score; 1583 } 1584 break; 1585 } 1586 case ReorderingMode::Splat: 1587 if (Op == OpLastLane) 1588 BestOp.Idx = Idx; 1589 break; 1590 case ReorderingMode::Failed: 1591 llvm_unreachable("Not expected Failed reordering mode."); 1592 } 1593 } 1594 1595 if (BestOp.Idx) { 1596 getData(BestOp.Idx.getValue(), Lane).IsUsed = IsUsed; 1597 return BestOp.Idx; 1598 } 1599 // If we could not find a good match return None. 1600 return None; 1601 } 1602 1603 /// Helper for reorderOperandVecs. 1604 /// \returns the lane that we should start reordering from. This is the one 1605 /// which has the least number of operands that can freely move about or 1606 /// less profitable because it already has the most optimal set of operands. 1607 unsigned getBestLaneToStartReordering() const { 1608 unsigned Min = UINT_MAX; 1609 unsigned SameOpNumber = 0; 1610 // std::pair<unsigned, unsigned> is used to implement a simple voting 1611 // algorithm and choose the lane with the least number of operands that 1612 // can freely move about or less profitable because it already has the 1613 // most optimal set of operands. The first unsigned is a counter for 1614 // voting, the second unsigned is the counter of lanes with instructions 1615 // with same/alternate opcodes and same parent basic block. 1616 MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap; 1617 // Try to be closer to the original results, if we have multiple lanes 1618 // with same cost. If 2 lanes have the same cost, use the one with the 1619 // lowest index. 1620 for (int I = getNumLanes(); I > 0; --I) { 1621 unsigned Lane = I - 1; 1622 OperandsOrderData NumFreeOpsHash = 1623 getMaxNumOperandsThatCanBeReordered(Lane); 1624 // Compare the number of operands that can move and choose the one with 1625 // the least number. 1626 if (NumFreeOpsHash.NumOfAPOs < Min) { 1627 Min = NumFreeOpsHash.NumOfAPOs; 1628 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1629 HashMap.clear(); 1630 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1631 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1632 NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) { 1633 // Select the most optimal lane in terms of number of operands that 1634 // should be moved around. 1635 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1636 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1637 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1638 NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) { 1639 auto It = HashMap.find(NumFreeOpsHash.Hash); 1640 if (It == HashMap.end()) 1641 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1642 else 1643 ++It->second.first; 1644 } 1645 } 1646 // Select the lane with the minimum counter. 1647 unsigned BestLane = 0; 1648 unsigned CntMin = UINT_MAX; 1649 for (const auto &Data : reverse(HashMap)) { 1650 if (Data.second.first < CntMin) { 1651 CntMin = Data.second.first; 1652 BestLane = Data.second.second; 1653 } 1654 } 1655 return BestLane; 1656 } 1657 1658 /// Data structure that helps to reorder operands. 1659 struct OperandsOrderData { 1660 /// The best number of operands with the same APOs, which can be 1661 /// reordered. 1662 unsigned NumOfAPOs = UINT_MAX; 1663 /// Number of operands with the same/alternate instruction opcode and 1664 /// parent. 1665 unsigned NumOpsWithSameOpcodeParent = 0; 1666 /// Hash for the actual operands ordering. 1667 /// Used to count operands, actually their position id and opcode 1668 /// value. It is used in the voting mechanism to find the lane with the 1669 /// least number of operands that can freely move about or less profitable 1670 /// because it already has the most optimal set of operands. Can be 1671 /// replaced with SmallVector<unsigned> instead but hash code is faster 1672 /// and requires less memory. 1673 unsigned Hash = 0; 1674 }; 1675 /// \returns the maximum number of operands that are allowed to be reordered 1676 /// for \p Lane and the number of compatible instructions(with the same 1677 /// parent/opcode). This is used as a heuristic for selecting the first lane 1678 /// to start operand reordering. 1679 OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1680 unsigned CntTrue = 0; 1681 unsigned NumOperands = getNumOperands(); 1682 // Operands with the same APO can be reordered. We therefore need to count 1683 // how many of them we have for each APO, like this: Cnt[APO] = x. 1684 // Since we only have two APOs, namely true and false, we can avoid using 1685 // a map. Instead we can simply count the number of operands that 1686 // correspond to one of them (in this case the 'true' APO), and calculate 1687 // the other by subtracting it from the total number of operands. 1688 // Operands with the same instruction opcode and parent are more 1689 // profitable since we don't need to move them in many cases, with a high 1690 // probability such lane already can be vectorized effectively. 1691 bool AllUndefs = true; 1692 unsigned NumOpsWithSameOpcodeParent = 0; 1693 Instruction *OpcodeI = nullptr; 1694 BasicBlock *Parent = nullptr; 1695 unsigned Hash = 0; 1696 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1697 const OperandData &OpData = getData(OpIdx, Lane); 1698 if (OpData.APO) 1699 ++CntTrue; 1700 // Use Boyer-Moore majority voting for finding the majority opcode and 1701 // the number of times it occurs. 1702 if (auto *I = dyn_cast<Instruction>(OpData.V)) { 1703 if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() || 1704 I->getParent() != Parent) { 1705 if (NumOpsWithSameOpcodeParent == 0) { 1706 NumOpsWithSameOpcodeParent = 1; 1707 OpcodeI = I; 1708 Parent = I->getParent(); 1709 } else { 1710 --NumOpsWithSameOpcodeParent; 1711 } 1712 } else { 1713 ++NumOpsWithSameOpcodeParent; 1714 } 1715 } 1716 Hash = hash_combine( 1717 Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1))); 1718 AllUndefs = AllUndefs && isa<UndefValue>(OpData.V); 1719 } 1720 if (AllUndefs) 1721 return {}; 1722 OperandsOrderData Data; 1723 Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue); 1724 Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent; 1725 Data.Hash = Hash; 1726 return Data; 1727 } 1728 1729 /// Go through the instructions in VL and append their operands. 1730 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1731 assert(!VL.empty() && "Bad VL"); 1732 assert((empty() || VL.size() == getNumLanes()) && 1733 "Expected same number of lanes"); 1734 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1735 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1736 OpsVec.resize(NumOperands); 1737 unsigned NumLanes = VL.size(); 1738 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1739 OpsVec[OpIdx].resize(NumLanes); 1740 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1741 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1742 // Our tree has just 3 nodes: the root and two operands. 1743 // It is therefore trivial to get the APO. We only need to check the 1744 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1745 // RHS operand. The LHS operand of both add and sub is never attached 1746 // to an inversese operation in the linearized form, therefore its APO 1747 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1748 1749 // Since operand reordering is performed on groups of commutative 1750 // operations or alternating sequences (e.g., +, -), we can safely 1751 // tell the inverse operations by checking commutativity. 1752 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1753 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1754 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1755 APO, false}; 1756 } 1757 } 1758 } 1759 1760 /// \returns the number of operands. 1761 unsigned getNumOperands() const { return OpsVec.size(); } 1762 1763 /// \returns the number of lanes. 1764 unsigned getNumLanes() const { return OpsVec[0].size(); } 1765 1766 /// \returns the operand value at \p OpIdx and \p Lane. 1767 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1768 return getData(OpIdx, Lane).V; 1769 } 1770 1771 /// \returns true if the data structure is empty. 1772 bool empty() const { return OpsVec.empty(); } 1773 1774 /// Clears the data. 1775 void clear() { OpsVec.clear(); } 1776 1777 /// \Returns true if there are enough operands identical to \p Op to fill 1778 /// the whole vector. 1779 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1780 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1781 bool OpAPO = getData(OpIdx, Lane).APO; 1782 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1783 if (Ln == Lane) 1784 continue; 1785 // This is set to true if we found a candidate for broadcast at Lane. 1786 bool FoundCandidate = false; 1787 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1788 OperandData &Data = getData(OpI, Ln); 1789 if (Data.APO != OpAPO || Data.IsUsed) 1790 continue; 1791 if (Data.V == Op) { 1792 FoundCandidate = true; 1793 Data.IsUsed = true; 1794 break; 1795 } 1796 } 1797 if (!FoundCandidate) 1798 return false; 1799 } 1800 return true; 1801 } 1802 1803 public: 1804 /// Initialize with all the operands of the instruction vector \p RootVL. 1805 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1806 ScalarEvolution &SE, const BoUpSLP &R) 1807 : DL(DL), SE(SE), R(R) { 1808 // Append all the operands of RootVL. 1809 appendOperandsOfVL(RootVL); 1810 } 1811 1812 /// \Returns a value vector with the operands across all lanes for the 1813 /// opearnd at \p OpIdx. 1814 ValueList getVL(unsigned OpIdx) const { 1815 ValueList OpVL(OpsVec[OpIdx].size()); 1816 assert(OpsVec[OpIdx].size() == getNumLanes() && 1817 "Expected same num of lanes across all operands"); 1818 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1819 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1820 return OpVL; 1821 } 1822 1823 // Performs operand reordering for 2 or more operands. 1824 // The original operands are in OrigOps[OpIdx][Lane]. 1825 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1826 void reorder() { 1827 unsigned NumOperands = getNumOperands(); 1828 unsigned NumLanes = getNumLanes(); 1829 // Each operand has its own mode. We are using this mode to help us select 1830 // the instructions for each lane, so that they match best with the ones 1831 // we have selected so far. 1832 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1833 1834 // This is a greedy single-pass algorithm. We are going over each lane 1835 // once and deciding on the best order right away with no back-tracking. 1836 // However, in order to increase its effectiveness, we start with the lane 1837 // that has operands that can move the least. For example, given the 1838 // following lanes: 1839 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1840 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1841 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1842 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1843 // we will start at Lane 1, since the operands of the subtraction cannot 1844 // be reordered. Then we will visit the rest of the lanes in a circular 1845 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1846 1847 // Find the first lane that we will start our search from. 1848 unsigned FirstLane = getBestLaneToStartReordering(); 1849 1850 // Initialize the modes. 1851 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1852 Value *OpLane0 = getValue(OpIdx, FirstLane); 1853 // Keep track if we have instructions with all the same opcode on one 1854 // side. 1855 if (isa<LoadInst>(OpLane0)) 1856 ReorderingModes[OpIdx] = ReorderingMode::Load; 1857 else if (isa<Instruction>(OpLane0)) { 1858 // Check if OpLane0 should be broadcast. 1859 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1860 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1861 else 1862 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1863 } 1864 else if (isa<Constant>(OpLane0)) 1865 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1866 else if (isa<Argument>(OpLane0)) 1867 // Our best hope is a Splat. It may save some cost in some cases. 1868 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1869 else 1870 // NOTE: This should be unreachable. 1871 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1872 } 1873 1874 // Check that we don't have same operands. No need to reorder if operands 1875 // are just perfect diamond or shuffled diamond match. Do not do it only 1876 // for possible broadcasts or non-power of 2 number of scalars (just for 1877 // now). 1878 auto &&SkipReordering = [this]() { 1879 SmallPtrSet<Value *, 4> UniqueValues; 1880 ArrayRef<OperandData> Op0 = OpsVec.front(); 1881 for (const OperandData &Data : Op0) 1882 UniqueValues.insert(Data.V); 1883 for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) { 1884 if (any_of(Op, [&UniqueValues](const OperandData &Data) { 1885 return !UniqueValues.contains(Data.V); 1886 })) 1887 return false; 1888 } 1889 // TODO: Check if we can remove a check for non-power-2 number of 1890 // scalars after full support of non-power-2 vectorization. 1891 return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size()); 1892 }; 1893 1894 // If the initial strategy fails for any of the operand indexes, then we 1895 // perform reordering again in a second pass. This helps avoid assigning 1896 // high priority to the failed strategy, and should improve reordering for 1897 // the non-failed operand indexes. 1898 for (int Pass = 0; Pass != 2; ++Pass) { 1899 // Check if no need to reorder operands since they're are perfect or 1900 // shuffled diamond match. 1901 // Need to to do it to avoid extra external use cost counting for 1902 // shuffled matches, which may cause regressions. 1903 if (SkipReordering()) 1904 break; 1905 // Skip the second pass if the first pass did not fail. 1906 bool StrategyFailed = false; 1907 // Mark all operand data as free to use. 1908 clearUsed(); 1909 // We keep the original operand order for the FirstLane, so reorder the 1910 // rest of the lanes. We are visiting the nodes in a circular fashion, 1911 // using FirstLane as the center point and increasing the radius 1912 // distance. 1913 SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands); 1914 for (unsigned I = 0; I < NumOperands; ++I) 1915 MainAltOps[I].push_back(getData(I, FirstLane).V); 1916 1917 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1918 // Visit the lane on the right and then the lane on the left. 1919 for (int Direction : {+1, -1}) { 1920 int Lane = FirstLane + Direction * Distance; 1921 if (Lane < 0 || Lane >= (int)NumLanes) 1922 continue; 1923 int LastLane = Lane - Direction; 1924 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1925 "Out of bounds"); 1926 // Look for a good match for each operand. 1927 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1928 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1929 Optional<unsigned> BestIdx = getBestOperand( 1930 OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]); 1931 // By not selecting a value, we allow the operands that follow to 1932 // select a better matching value. We will get a non-null value in 1933 // the next run of getBestOperand(). 1934 if (BestIdx) { 1935 // Swap the current operand with the one returned by 1936 // getBestOperand(). 1937 swap(OpIdx, BestIdx.getValue(), Lane); 1938 } else { 1939 // We failed to find a best operand, set mode to 'Failed'. 1940 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1941 // Enable the second pass. 1942 StrategyFailed = true; 1943 } 1944 // Try to get the alternate opcode and follow it during analysis. 1945 if (MainAltOps[OpIdx].size() != 2) { 1946 OperandData &AltOp = getData(OpIdx, Lane); 1947 InstructionsState OpS = 1948 getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V}); 1949 if (OpS.getOpcode() && OpS.isAltShuffle()) 1950 MainAltOps[OpIdx].push_back(AltOp.V); 1951 } 1952 } 1953 } 1954 } 1955 // Skip second pass if the strategy did not fail. 1956 if (!StrategyFailed) 1957 break; 1958 } 1959 } 1960 1961 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1962 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1963 switch (RMode) { 1964 case ReorderingMode::Load: 1965 return "Load"; 1966 case ReorderingMode::Opcode: 1967 return "Opcode"; 1968 case ReorderingMode::Constant: 1969 return "Constant"; 1970 case ReorderingMode::Splat: 1971 return "Splat"; 1972 case ReorderingMode::Failed: 1973 return "Failed"; 1974 } 1975 llvm_unreachable("Unimplemented Reordering Type"); 1976 } 1977 1978 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1979 raw_ostream &OS) { 1980 return OS << getModeStr(RMode); 1981 } 1982 1983 /// Debug print. 1984 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1985 printMode(RMode, dbgs()); 1986 } 1987 1988 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1989 return printMode(RMode, OS); 1990 } 1991 1992 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1993 const unsigned Indent = 2; 1994 unsigned Cnt = 0; 1995 for (const OperandDataVec &OpDataVec : OpsVec) { 1996 OS << "Operand " << Cnt++ << "\n"; 1997 for (const OperandData &OpData : OpDataVec) { 1998 OS.indent(Indent) << "{"; 1999 if (Value *V = OpData.V) 2000 OS << *V; 2001 else 2002 OS << "null"; 2003 OS << ", APO:" << OpData.APO << "}\n"; 2004 } 2005 OS << "\n"; 2006 } 2007 return OS; 2008 } 2009 2010 /// Debug print. 2011 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 2012 #endif 2013 }; 2014 2015 /// Evaluate each pair in \p Candidates and return index into \p Candidates 2016 /// for a pair which have highest score deemed to have best chance to form 2017 /// root of profitable tree to vectorize. Return None if no candidate scored 2018 /// above the LookAheadHeuristics::ScoreFail. 2019 Optional<int> 2020 findBestRootPair(ArrayRef<std::pair<Value *, Value *>> Candidates) { 2021 LookAheadHeuristics LookAhead(*DL, *SE, *this, /*NumLanes=*/2, 2022 RootLookAheadMaxDepth); 2023 int BestScore = LookAheadHeuristics::ScoreFail; 2024 Optional<int> Index = None; 2025 for (int I : seq<int>(0, Candidates.size())) { 2026 int Score = LookAhead.getScoreAtLevelRec(Candidates[I].first, 2027 Candidates[I].second, 2028 /*U1=*/nullptr, /*U2=*/nullptr, 2029 /*Level=*/1, None); 2030 if (Score > BestScore) { 2031 BestScore = Score; 2032 Index = I; 2033 } 2034 } 2035 return Index; 2036 } 2037 2038 /// Checks if the instruction is marked for deletion. 2039 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 2040 2041 /// Removes an instruction from its block and eventually deletes it. 2042 /// It's like Instruction::eraseFromParent() except that the actual deletion 2043 /// is delayed until BoUpSLP is destructed. 2044 void eraseInstruction(Instruction *I) { 2045 DeletedInstructions.insert(I); 2046 } 2047 2048 /// Checks if the instruction was already analyzed for being possible 2049 /// reduction root. 2050 bool isAnalizedReductionRoot(Instruction *I) const { 2051 return AnalizedReductionsRoots.count(I); 2052 } 2053 /// Register given instruction as already analyzed for being possible 2054 /// reduction root. 2055 void analyzedReductionRoot(Instruction *I) { 2056 AnalizedReductionsRoots.insert(I); 2057 } 2058 /// Checks if the provided list of reduced values was checked already for 2059 /// vectorization. 2060 bool areAnalyzedReductionVals(ArrayRef<Value *> VL) { 2061 return AnalyzedReductionVals.contains(hash_value(VL)); 2062 } 2063 /// Adds the list of reduced values to list of already checked values for the 2064 /// vectorization. 2065 void analyzedReductionVals(ArrayRef<Value *> VL) { 2066 AnalyzedReductionVals.insert(hash_value(VL)); 2067 } 2068 /// Clear the list of the analyzed reduction root instructions. 2069 void clearReductionData() { 2070 AnalizedReductionsRoots.clear(); 2071 AnalyzedReductionVals.clear(); 2072 } 2073 /// Checks if the given value is gathered in one of the nodes. 2074 bool isGathered(Value *V) const { 2075 return MustGather.contains(V); 2076 } 2077 2078 ~BoUpSLP(); 2079 2080 private: 2081 /// Check if the operands on the edges \p Edges of the \p UserTE allows 2082 /// reordering (i.e. the operands can be reordered because they have only one 2083 /// user and reordarable). 2084 /// \param ReorderableGathers List of all gather nodes that require reordering 2085 /// (e.g., gather of extractlements or partially vectorizable loads). 2086 /// \param GatherOps List of gather operand nodes for \p UserTE that require 2087 /// reordering, subset of \p NonVectorized. 2088 bool 2089 canReorderOperands(TreeEntry *UserTE, 2090 SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 2091 ArrayRef<TreeEntry *> ReorderableGathers, 2092 SmallVectorImpl<TreeEntry *> &GatherOps); 2093 2094 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 2095 /// if any. If it is not vectorized (gather node), returns nullptr. 2096 TreeEntry *getVectorizedOperand(TreeEntry *UserTE, unsigned OpIdx) { 2097 ArrayRef<Value *> VL = UserTE->getOperand(OpIdx); 2098 TreeEntry *TE = nullptr; 2099 const auto *It = find_if(VL, [this, &TE](Value *V) { 2100 TE = getTreeEntry(V); 2101 return TE; 2102 }); 2103 if (It != VL.end() && TE->isSame(VL)) 2104 return TE; 2105 return nullptr; 2106 } 2107 2108 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 2109 /// if any. If it is not vectorized (gather node), returns nullptr. 2110 const TreeEntry *getVectorizedOperand(const TreeEntry *UserTE, 2111 unsigned OpIdx) const { 2112 return const_cast<BoUpSLP *>(this)->getVectorizedOperand( 2113 const_cast<TreeEntry *>(UserTE), OpIdx); 2114 } 2115 2116 /// Checks if all users of \p I are the part of the vectorization tree. 2117 bool areAllUsersVectorized(Instruction *I, 2118 ArrayRef<Value *> VectorizedVals) const; 2119 2120 /// \returns the cost of the vectorizable entry. 2121 InstructionCost getEntryCost(const TreeEntry *E, 2122 ArrayRef<Value *> VectorizedVals); 2123 2124 /// This is the recursive part of buildTree. 2125 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 2126 const EdgeInfo &EI); 2127 2128 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 2129 /// be vectorized to use the original vector (or aggregate "bitcast" to a 2130 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 2131 /// returns false, setting \p CurrentOrder to either an empty vector or a 2132 /// non-identity permutation that allows to reuse extract instructions. 2133 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 2134 SmallVectorImpl<unsigned> &CurrentOrder) const; 2135 2136 /// Vectorize a single entry in the tree. 2137 Value *vectorizeTree(TreeEntry *E); 2138 2139 /// Vectorize a single entry in the tree, starting in \p VL. 2140 Value *vectorizeTree(ArrayRef<Value *> VL); 2141 2142 /// Create a new vector from a list of scalar values. Produces a sequence 2143 /// which exploits values reused across lanes, and arranges the inserts 2144 /// for ease of later optimization. 2145 Value *createBuildVector(ArrayRef<Value *> VL); 2146 2147 /// \returns the scalarization cost for this type. Scalarization in this 2148 /// context means the creation of vectors from a group of scalars. If \p 2149 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 2150 /// vector elements. 2151 InstructionCost getGatherCost(FixedVectorType *Ty, 2152 const APInt &ShuffledIndices, 2153 bool NeedToShuffle) const; 2154 2155 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 2156 /// tree entries. 2157 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 2158 /// previous tree entries. \p Mask is filled with the shuffle mask. 2159 Optional<TargetTransformInfo::ShuffleKind> 2160 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 2161 SmallVectorImpl<const TreeEntry *> &Entries); 2162 2163 /// \returns the scalarization cost for this list of values. Assuming that 2164 /// this subtree gets vectorized, we may need to extract the values from the 2165 /// roots. This method calculates the cost of extracting the values. 2166 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 2167 2168 /// Set the Builder insert point to one after the last instruction in 2169 /// the bundle 2170 void setInsertPointAfterBundle(const TreeEntry *E); 2171 2172 /// \returns a vector from a collection of scalars in \p VL. 2173 Value *gather(ArrayRef<Value *> VL); 2174 2175 /// \returns whether the VectorizableTree is fully vectorizable and will 2176 /// be beneficial even the tree height is tiny. 2177 bool isFullyVectorizableTinyTree(bool ForReduction) const; 2178 2179 /// Reorder commutative or alt operands to get better probability of 2180 /// generating vectorized code. 2181 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 2182 SmallVectorImpl<Value *> &Left, 2183 SmallVectorImpl<Value *> &Right, 2184 const DataLayout &DL, 2185 ScalarEvolution &SE, 2186 const BoUpSLP &R); 2187 2188 /// Helper for `findExternalStoreUsersReorderIndices()`. It iterates over the 2189 /// users of \p TE and collects the stores. It returns the map from the store 2190 /// pointers to the collected stores. 2191 DenseMap<Value *, SmallVector<StoreInst *, 4>> 2192 collectUserStores(const BoUpSLP::TreeEntry *TE) const; 2193 2194 /// Helper for `findExternalStoreUsersReorderIndices()`. It checks if the 2195 /// stores in \p StoresVec can for a vector instruction. If so it returns true 2196 /// and populates \p ReorderIndices with the shuffle indices of the the stores 2197 /// when compared to the sorted vector. 2198 bool CanFormVector(const SmallVector<StoreInst *, 4> &StoresVec, 2199 OrdersType &ReorderIndices) const; 2200 2201 /// Iterates through the users of \p TE, looking for scalar stores that can be 2202 /// potentially vectorized in a future SLP-tree. If found, it keeps track of 2203 /// their order and builds an order index vector for each store bundle. It 2204 /// returns all these order vectors found. 2205 /// We run this after the tree has formed, otherwise we may come across user 2206 /// instructions that are not yet in the tree. 2207 SmallVector<OrdersType, 1> 2208 findExternalStoreUsersReorderIndices(TreeEntry *TE) const; 2209 2210 struct TreeEntry { 2211 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 2212 TreeEntry(VecTreeTy &Container) : Container(Container) {} 2213 2214 /// \returns true if the scalars in VL are equal to this entry. 2215 bool isSame(ArrayRef<Value *> VL) const { 2216 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 2217 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 2218 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 2219 return VL.size() == Mask.size() && 2220 std::equal(VL.begin(), VL.end(), Mask.begin(), 2221 [Scalars](Value *V, int Idx) { 2222 return (isa<UndefValue>(V) && 2223 Idx == UndefMaskElem) || 2224 (Idx != UndefMaskElem && V == Scalars[Idx]); 2225 }); 2226 }; 2227 if (!ReorderIndices.empty()) { 2228 // TODO: implement matching if the nodes are just reordered, still can 2229 // treat the vector as the same if the list of scalars matches VL 2230 // directly, without reordering. 2231 SmallVector<int> Mask; 2232 inversePermutation(ReorderIndices, Mask); 2233 if (VL.size() == Scalars.size()) 2234 return IsSame(Scalars, Mask); 2235 if (VL.size() == ReuseShuffleIndices.size()) { 2236 ::addMask(Mask, ReuseShuffleIndices); 2237 return IsSame(Scalars, Mask); 2238 } 2239 return false; 2240 } 2241 return IsSame(Scalars, ReuseShuffleIndices); 2242 } 2243 2244 /// \returns true if current entry has same operands as \p TE. 2245 bool hasEqualOperands(const TreeEntry &TE) const { 2246 if (TE.getNumOperands() != getNumOperands()) 2247 return false; 2248 SmallBitVector Used(getNumOperands()); 2249 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 2250 unsigned PrevCount = Used.count(); 2251 for (unsigned K = 0; K < E; ++K) { 2252 if (Used.test(K)) 2253 continue; 2254 if (getOperand(K) == TE.getOperand(I)) { 2255 Used.set(K); 2256 break; 2257 } 2258 } 2259 // Check if we actually found the matching operand. 2260 if (PrevCount == Used.count()) 2261 return false; 2262 } 2263 return true; 2264 } 2265 2266 /// \return Final vectorization factor for the node. Defined by the total 2267 /// number of vectorized scalars, including those, used several times in the 2268 /// entry and counted in the \a ReuseShuffleIndices, if any. 2269 unsigned getVectorFactor() const { 2270 if (!ReuseShuffleIndices.empty()) 2271 return ReuseShuffleIndices.size(); 2272 return Scalars.size(); 2273 }; 2274 2275 /// A vector of scalars. 2276 ValueList Scalars; 2277 2278 /// The Scalars are vectorized into this value. It is initialized to Null. 2279 Value *VectorizedValue = nullptr; 2280 2281 /// Do we need to gather this sequence or vectorize it 2282 /// (either with vector instruction or with scatter/gather 2283 /// intrinsics for store/load)? 2284 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 2285 EntryState State; 2286 2287 /// Does this sequence require some shuffling? 2288 SmallVector<int, 4> ReuseShuffleIndices; 2289 2290 /// Does this entry require reordering? 2291 SmallVector<unsigned, 4> ReorderIndices; 2292 2293 /// Points back to the VectorizableTree. 2294 /// 2295 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 2296 /// to be a pointer and needs to be able to initialize the child iterator. 2297 /// Thus we need a reference back to the container to translate the indices 2298 /// to entries. 2299 VecTreeTy &Container; 2300 2301 /// The TreeEntry index containing the user of this entry. We can actually 2302 /// have multiple users so the data structure is not truly a tree. 2303 SmallVector<EdgeInfo, 1> UserTreeIndices; 2304 2305 /// The index of this treeEntry in VectorizableTree. 2306 int Idx = -1; 2307 2308 private: 2309 /// The operands of each instruction in each lane Operands[op_index][lane]. 2310 /// Note: This helps avoid the replication of the code that performs the 2311 /// reordering of operands during buildTree_rec() and vectorizeTree(). 2312 SmallVector<ValueList, 2> Operands; 2313 2314 /// The main/alternate instruction. 2315 Instruction *MainOp = nullptr; 2316 Instruction *AltOp = nullptr; 2317 2318 public: 2319 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 2320 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 2321 if (Operands.size() < OpIdx + 1) 2322 Operands.resize(OpIdx + 1); 2323 assert(Operands[OpIdx].empty() && "Already resized?"); 2324 assert(OpVL.size() <= Scalars.size() && 2325 "Number of operands is greater than the number of scalars."); 2326 Operands[OpIdx].resize(OpVL.size()); 2327 copy(OpVL, Operands[OpIdx].begin()); 2328 } 2329 2330 /// Set the operands of this bundle in their original order. 2331 void setOperandsInOrder() { 2332 assert(Operands.empty() && "Already initialized?"); 2333 auto *I0 = cast<Instruction>(Scalars[0]); 2334 Operands.resize(I0->getNumOperands()); 2335 unsigned NumLanes = Scalars.size(); 2336 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 2337 OpIdx != NumOperands; ++OpIdx) { 2338 Operands[OpIdx].resize(NumLanes); 2339 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 2340 auto *I = cast<Instruction>(Scalars[Lane]); 2341 assert(I->getNumOperands() == NumOperands && 2342 "Expected same number of operands"); 2343 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 2344 } 2345 } 2346 } 2347 2348 /// Reorders operands of the node to the given mask \p Mask. 2349 void reorderOperands(ArrayRef<int> Mask) { 2350 for (ValueList &Operand : Operands) 2351 reorderScalars(Operand, Mask); 2352 } 2353 2354 /// \returns the \p OpIdx operand of this TreeEntry. 2355 ValueList &getOperand(unsigned OpIdx) { 2356 assert(OpIdx < Operands.size() && "Off bounds"); 2357 return Operands[OpIdx]; 2358 } 2359 2360 /// \returns the \p OpIdx operand of this TreeEntry. 2361 ArrayRef<Value *> getOperand(unsigned OpIdx) const { 2362 assert(OpIdx < Operands.size() && "Off bounds"); 2363 return Operands[OpIdx]; 2364 } 2365 2366 /// \returns the number of operands. 2367 unsigned getNumOperands() const { return Operands.size(); } 2368 2369 /// \return the single \p OpIdx operand. 2370 Value *getSingleOperand(unsigned OpIdx) const { 2371 assert(OpIdx < Operands.size() && "Off bounds"); 2372 assert(!Operands[OpIdx].empty() && "No operand available"); 2373 return Operands[OpIdx][0]; 2374 } 2375 2376 /// Some of the instructions in the list have alternate opcodes. 2377 bool isAltShuffle() const { return MainOp != AltOp; } 2378 2379 bool isOpcodeOrAlt(Instruction *I) const { 2380 unsigned CheckedOpcode = I->getOpcode(); 2381 return (getOpcode() == CheckedOpcode || 2382 getAltOpcode() == CheckedOpcode); 2383 } 2384 2385 /// Chooses the correct key for scheduling data. If \p Op has the same (or 2386 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 2387 /// \p OpValue. 2388 Value *isOneOf(Value *Op) const { 2389 auto *I = dyn_cast<Instruction>(Op); 2390 if (I && isOpcodeOrAlt(I)) 2391 return Op; 2392 return MainOp; 2393 } 2394 2395 void setOperations(const InstructionsState &S) { 2396 MainOp = S.MainOp; 2397 AltOp = S.AltOp; 2398 } 2399 2400 Instruction *getMainOp() const { 2401 return MainOp; 2402 } 2403 2404 Instruction *getAltOp() const { 2405 return AltOp; 2406 } 2407 2408 /// The main/alternate opcodes for the list of instructions. 2409 unsigned getOpcode() const { 2410 return MainOp ? MainOp->getOpcode() : 0; 2411 } 2412 2413 unsigned getAltOpcode() const { 2414 return AltOp ? AltOp->getOpcode() : 0; 2415 } 2416 2417 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 2418 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 2419 int findLaneForValue(Value *V) const { 2420 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2421 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2422 if (!ReorderIndices.empty()) 2423 FoundLane = ReorderIndices[FoundLane]; 2424 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2425 if (!ReuseShuffleIndices.empty()) { 2426 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2427 find(ReuseShuffleIndices, FoundLane)); 2428 } 2429 return FoundLane; 2430 } 2431 2432 #ifndef NDEBUG 2433 /// Debug printer. 2434 LLVM_DUMP_METHOD void dump() const { 2435 dbgs() << Idx << ".\n"; 2436 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 2437 dbgs() << "Operand " << OpI << ":\n"; 2438 for (const Value *V : Operands[OpI]) 2439 dbgs().indent(2) << *V << "\n"; 2440 } 2441 dbgs() << "Scalars: \n"; 2442 for (Value *V : Scalars) 2443 dbgs().indent(2) << *V << "\n"; 2444 dbgs() << "State: "; 2445 switch (State) { 2446 case Vectorize: 2447 dbgs() << "Vectorize\n"; 2448 break; 2449 case ScatterVectorize: 2450 dbgs() << "ScatterVectorize\n"; 2451 break; 2452 case NeedToGather: 2453 dbgs() << "NeedToGather\n"; 2454 break; 2455 } 2456 dbgs() << "MainOp: "; 2457 if (MainOp) 2458 dbgs() << *MainOp << "\n"; 2459 else 2460 dbgs() << "NULL\n"; 2461 dbgs() << "AltOp: "; 2462 if (AltOp) 2463 dbgs() << *AltOp << "\n"; 2464 else 2465 dbgs() << "NULL\n"; 2466 dbgs() << "VectorizedValue: "; 2467 if (VectorizedValue) 2468 dbgs() << *VectorizedValue << "\n"; 2469 else 2470 dbgs() << "NULL\n"; 2471 dbgs() << "ReuseShuffleIndices: "; 2472 if (ReuseShuffleIndices.empty()) 2473 dbgs() << "Empty"; 2474 else 2475 for (int ReuseIdx : ReuseShuffleIndices) 2476 dbgs() << ReuseIdx << ", "; 2477 dbgs() << "\n"; 2478 dbgs() << "ReorderIndices: "; 2479 for (unsigned ReorderIdx : ReorderIndices) 2480 dbgs() << ReorderIdx << ", "; 2481 dbgs() << "\n"; 2482 dbgs() << "UserTreeIndices: "; 2483 for (const auto &EInfo : UserTreeIndices) 2484 dbgs() << EInfo << ", "; 2485 dbgs() << "\n"; 2486 } 2487 #endif 2488 }; 2489 2490 #ifndef NDEBUG 2491 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 2492 InstructionCost VecCost, 2493 InstructionCost ScalarCost) const { 2494 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 2495 dbgs() << "SLP: Costs:\n"; 2496 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 2497 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 2498 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 2499 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 2500 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 2501 } 2502 #endif 2503 2504 /// Create a new VectorizableTree entry. 2505 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 2506 const InstructionsState &S, 2507 const EdgeInfo &UserTreeIdx, 2508 ArrayRef<int> ReuseShuffleIndices = None, 2509 ArrayRef<unsigned> ReorderIndices = None) { 2510 TreeEntry::EntryState EntryState = 2511 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 2512 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 2513 ReuseShuffleIndices, ReorderIndices); 2514 } 2515 2516 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 2517 TreeEntry::EntryState EntryState, 2518 Optional<ScheduleData *> Bundle, 2519 const InstructionsState &S, 2520 const EdgeInfo &UserTreeIdx, 2521 ArrayRef<int> ReuseShuffleIndices = None, 2522 ArrayRef<unsigned> ReorderIndices = None) { 2523 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 2524 (Bundle && EntryState != TreeEntry::NeedToGather)) && 2525 "Need to vectorize gather entry?"); 2526 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 2527 TreeEntry *Last = VectorizableTree.back().get(); 2528 Last->Idx = VectorizableTree.size() - 1; 2529 Last->State = EntryState; 2530 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 2531 ReuseShuffleIndices.end()); 2532 if (ReorderIndices.empty()) { 2533 Last->Scalars.assign(VL.begin(), VL.end()); 2534 Last->setOperations(S); 2535 } else { 2536 // Reorder scalars and build final mask. 2537 Last->Scalars.assign(VL.size(), nullptr); 2538 transform(ReorderIndices, Last->Scalars.begin(), 2539 [VL](unsigned Idx) -> Value * { 2540 if (Idx >= VL.size()) 2541 return UndefValue::get(VL.front()->getType()); 2542 return VL[Idx]; 2543 }); 2544 InstructionsState S = getSameOpcode(Last->Scalars); 2545 Last->setOperations(S); 2546 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 2547 } 2548 if (Last->State != TreeEntry::NeedToGather) { 2549 for (Value *V : VL) { 2550 assert(!getTreeEntry(V) && "Scalar already in tree!"); 2551 ScalarToTreeEntry[V] = Last; 2552 } 2553 // Update the scheduler bundle to point to this TreeEntry. 2554 ScheduleData *BundleMember = Bundle.getValue(); 2555 assert((BundleMember || isa<PHINode>(S.MainOp) || 2556 isVectorLikeInstWithConstOps(S.MainOp) || 2557 doesNotNeedToSchedule(VL)) && 2558 "Bundle and VL out of sync"); 2559 if (BundleMember) { 2560 for (Value *V : VL) { 2561 if (doesNotNeedToBeScheduled(V)) 2562 continue; 2563 assert(BundleMember && "Unexpected end of bundle."); 2564 BundleMember->TE = Last; 2565 BundleMember = BundleMember->NextInBundle; 2566 } 2567 } 2568 assert(!BundleMember && "Bundle and VL out of sync"); 2569 } else { 2570 MustGather.insert(VL.begin(), VL.end()); 2571 } 2572 2573 if (UserTreeIdx.UserTE) 2574 Last->UserTreeIndices.push_back(UserTreeIdx); 2575 2576 return Last; 2577 } 2578 2579 /// -- Vectorization State -- 2580 /// Holds all of the tree entries. 2581 TreeEntry::VecTreeTy VectorizableTree; 2582 2583 #ifndef NDEBUG 2584 /// Debug printer. 2585 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 2586 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 2587 VectorizableTree[Id]->dump(); 2588 dbgs() << "\n"; 2589 } 2590 } 2591 #endif 2592 2593 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2594 2595 const TreeEntry *getTreeEntry(Value *V) const { 2596 return ScalarToTreeEntry.lookup(V); 2597 } 2598 2599 /// Maps a specific scalar to its tree entry. 2600 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2601 2602 /// Maps a value to the proposed vectorizable size. 2603 SmallDenseMap<Value *, unsigned> InstrElementSize; 2604 2605 /// A list of scalars that we found that we need to keep as scalars. 2606 ValueSet MustGather; 2607 2608 /// This POD struct describes one external user in the vectorized tree. 2609 struct ExternalUser { 2610 ExternalUser(Value *S, llvm::User *U, int L) 2611 : Scalar(S), User(U), Lane(L) {} 2612 2613 // Which scalar in our function. 2614 Value *Scalar; 2615 2616 // Which user that uses the scalar. 2617 llvm::User *User; 2618 2619 // Which lane does the scalar belong to. 2620 int Lane; 2621 }; 2622 using UserList = SmallVector<ExternalUser, 16>; 2623 2624 /// Checks if two instructions may access the same memory. 2625 /// 2626 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2627 /// is invariant in the calling loop. 2628 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2629 Instruction *Inst2) { 2630 // First check if the result is already in the cache. 2631 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2632 Optional<bool> &result = AliasCache[key]; 2633 if (result.hasValue()) { 2634 return result.getValue(); 2635 } 2636 bool aliased = true; 2637 if (Loc1.Ptr && isSimple(Inst1)) 2638 aliased = isModOrRefSet(BatchAA.getModRefInfo(Inst2, Loc1)); 2639 // Store the result in the cache. 2640 result = aliased; 2641 return aliased; 2642 } 2643 2644 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2645 2646 /// Cache for alias results. 2647 /// TODO: consider moving this to the AliasAnalysis itself. 2648 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2649 2650 // Cache for pointerMayBeCaptured calls inside AA. This is preserved 2651 // globally through SLP because we don't perform any action which 2652 // invalidates capture results. 2653 BatchAAResults BatchAA; 2654 2655 /// Temporary store for deleted instructions. Instructions will be deleted 2656 /// eventually when the BoUpSLP is destructed. The deferral is required to 2657 /// ensure that there are no incorrect collisions in the AliasCache, which 2658 /// can happen if a new instruction is allocated at the same address as a 2659 /// previously deleted instruction. 2660 DenseSet<Instruction *> DeletedInstructions; 2661 2662 /// Set of the instruction, being analyzed already for reductions. 2663 SmallPtrSet<Instruction *, 16> AnalizedReductionsRoots; 2664 2665 /// Set of hashes for the list of reduction values already being analyzed. 2666 DenseSet<size_t> AnalyzedReductionVals; 2667 2668 /// A list of values that need to extracted out of the tree. 2669 /// This list holds pairs of (Internal Scalar : External User). External User 2670 /// can be nullptr, it means that this Internal Scalar will be used later, 2671 /// after vectorization. 2672 UserList ExternalUses; 2673 2674 /// Values used only by @llvm.assume calls. 2675 SmallPtrSet<const Value *, 32> EphValues; 2676 2677 /// Holds all of the instructions that we gathered. 2678 SetVector<Instruction *> GatherShuffleSeq; 2679 2680 /// A list of blocks that we are going to CSE. 2681 SetVector<BasicBlock *> CSEBlocks; 2682 2683 /// Contains all scheduling relevant data for an instruction. 2684 /// A ScheduleData either represents a single instruction or a member of an 2685 /// instruction bundle (= a group of instructions which is combined into a 2686 /// vector instruction). 2687 struct ScheduleData { 2688 // The initial value for the dependency counters. It means that the 2689 // dependencies are not calculated yet. 2690 enum { InvalidDeps = -1 }; 2691 2692 ScheduleData() = default; 2693 2694 void init(int BlockSchedulingRegionID, Value *OpVal) { 2695 FirstInBundle = this; 2696 NextInBundle = nullptr; 2697 NextLoadStore = nullptr; 2698 IsScheduled = false; 2699 SchedulingRegionID = BlockSchedulingRegionID; 2700 clearDependencies(); 2701 OpValue = OpVal; 2702 TE = nullptr; 2703 } 2704 2705 /// Verify basic self consistency properties 2706 void verify() { 2707 if (hasValidDependencies()) { 2708 assert(UnscheduledDeps <= Dependencies && "invariant"); 2709 } else { 2710 assert(UnscheduledDeps == Dependencies && "invariant"); 2711 } 2712 2713 if (IsScheduled) { 2714 assert(isSchedulingEntity() && 2715 "unexpected scheduled state"); 2716 for (const ScheduleData *BundleMember = this; BundleMember; 2717 BundleMember = BundleMember->NextInBundle) { 2718 assert(BundleMember->hasValidDependencies() && 2719 BundleMember->UnscheduledDeps == 0 && 2720 "unexpected scheduled state"); 2721 assert((BundleMember == this || !BundleMember->IsScheduled) && 2722 "only bundle is marked scheduled"); 2723 } 2724 } 2725 2726 assert(Inst->getParent() == FirstInBundle->Inst->getParent() && 2727 "all bundle members must be in same basic block"); 2728 } 2729 2730 /// Returns true if the dependency information has been calculated. 2731 /// Note that depenendency validity can vary between instructions within 2732 /// a single bundle. 2733 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2734 2735 /// Returns true for single instructions and for bundle representatives 2736 /// (= the head of a bundle). 2737 bool isSchedulingEntity() const { return FirstInBundle == this; } 2738 2739 /// Returns true if it represents an instruction bundle and not only a 2740 /// single instruction. 2741 bool isPartOfBundle() const { 2742 return NextInBundle != nullptr || FirstInBundle != this || TE; 2743 } 2744 2745 /// Returns true if it is ready for scheduling, i.e. it has no more 2746 /// unscheduled depending instructions/bundles. 2747 bool isReady() const { 2748 assert(isSchedulingEntity() && 2749 "can't consider non-scheduling entity for ready list"); 2750 return unscheduledDepsInBundle() == 0 && !IsScheduled; 2751 } 2752 2753 /// Modifies the number of unscheduled dependencies for this instruction, 2754 /// and returns the number of remaining dependencies for the containing 2755 /// bundle. 2756 int incrementUnscheduledDeps(int Incr) { 2757 assert(hasValidDependencies() && 2758 "increment of unscheduled deps would be meaningless"); 2759 UnscheduledDeps += Incr; 2760 return FirstInBundle->unscheduledDepsInBundle(); 2761 } 2762 2763 /// Sets the number of unscheduled dependencies to the number of 2764 /// dependencies. 2765 void resetUnscheduledDeps() { 2766 UnscheduledDeps = Dependencies; 2767 } 2768 2769 /// Clears all dependency information. 2770 void clearDependencies() { 2771 Dependencies = InvalidDeps; 2772 resetUnscheduledDeps(); 2773 MemoryDependencies.clear(); 2774 ControlDependencies.clear(); 2775 } 2776 2777 int unscheduledDepsInBundle() const { 2778 assert(isSchedulingEntity() && "only meaningful on the bundle"); 2779 int Sum = 0; 2780 for (const ScheduleData *BundleMember = this; BundleMember; 2781 BundleMember = BundleMember->NextInBundle) { 2782 if (BundleMember->UnscheduledDeps == InvalidDeps) 2783 return InvalidDeps; 2784 Sum += BundleMember->UnscheduledDeps; 2785 } 2786 return Sum; 2787 } 2788 2789 void dump(raw_ostream &os) const { 2790 if (!isSchedulingEntity()) { 2791 os << "/ " << *Inst; 2792 } else if (NextInBundle) { 2793 os << '[' << *Inst; 2794 ScheduleData *SD = NextInBundle; 2795 while (SD) { 2796 os << ';' << *SD->Inst; 2797 SD = SD->NextInBundle; 2798 } 2799 os << ']'; 2800 } else { 2801 os << *Inst; 2802 } 2803 } 2804 2805 Instruction *Inst = nullptr; 2806 2807 /// Opcode of the current instruction in the schedule data. 2808 Value *OpValue = nullptr; 2809 2810 /// The TreeEntry that this instruction corresponds to. 2811 TreeEntry *TE = nullptr; 2812 2813 /// Points to the head in an instruction bundle (and always to this for 2814 /// single instructions). 2815 ScheduleData *FirstInBundle = nullptr; 2816 2817 /// Single linked list of all instructions in a bundle. Null if it is a 2818 /// single instruction. 2819 ScheduleData *NextInBundle = nullptr; 2820 2821 /// Single linked list of all memory instructions (e.g. load, store, call) 2822 /// in the block - until the end of the scheduling region. 2823 ScheduleData *NextLoadStore = nullptr; 2824 2825 /// The dependent memory instructions. 2826 /// This list is derived on demand in calculateDependencies(). 2827 SmallVector<ScheduleData *, 4> MemoryDependencies; 2828 2829 /// List of instructions which this instruction could be control dependent 2830 /// on. Allowing such nodes to be scheduled below this one could introduce 2831 /// a runtime fault which didn't exist in the original program. 2832 /// ex: this is a load or udiv following a readonly call which inf loops 2833 SmallVector<ScheduleData *, 4> ControlDependencies; 2834 2835 /// This ScheduleData is in the current scheduling region if this matches 2836 /// the current SchedulingRegionID of BlockScheduling. 2837 int SchedulingRegionID = 0; 2838 2839 /// Used for getting a "good" final ordering of instructions. 2840 int SchedulingPriority = 0; 2841 2842 /// The number of dependencies. Constitutes of the number of users of the 2843 /// instruction plus the number of dependent memory instructions (if any). 2844 /// This value is calculated on demand. 2845 /// If InvalidDeps, the number of dependencies is not calculated yet. 2846 int Dependencies = InvalidDeps; 2847 2848 /// The number of dependencies minus the number of dependencies of scheduled 2849 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2850 /// for scheduling. 2851 /// Note that this is negative as long as Dependencies is not calculated. 2852 int UnscheduledDeps = InvalidDeps; 2853 2854 /// True if this instruction is scheduled (or considered as scheduled in the 2855 /// dry-run). 2856 bool IsScheduled = false; 2857 }; 2858 2859 #ifndef NDEBUG 2860 friend inline raw_ostream &operator<<(raw_ostream &os, 2861 const BoUpSLP::ScheduleData &SD) { 2862 SD.dump(os); 2863 return os; 2864 } 2865 #endif 2866 2867 friend struct GraphTraits<BoUpSLP *>; 2868 friend struct DOTGraphTraits<BoUpSLP *>; 2869 2870 /// Contains all scheduling data for a basic block. 2871 /// It does not schedules instructions, which are not memory read/write 2872 /// instructions and their operands are either constants, or arguments, or 2873 /// phis, or instructions from others blocks, or their users are phis or from 2874 /// the other blocks. The resulting vector instructions can be placed at the 2875 /// beginning of the basic block without scheduling (if operands does not need 2876 /// to be scheduled) or at the end of the block (if users are outside of the 2877 /// block). It allows to save some compile time and memory used by the 2878 /// compiler. 2879 /// ScheduleData is assigned for each instruction in between the boundaries of 2880 /// the tree entry, even for those, which are not part of the graph. It is 2881 /// required to correctly follow the dependencies between the instructions and 2882 /// their correct scheduling. The ScheduleData is not allocated for the 2883 /// instructions, which do not require scheduling, like phis, nodes with 2884 /// extractelements/insertelements only or nodes with instructions, with 2885 /// uses/operands outside of the block. 2886 struct BlockScheduling { 2887 BlockScheduling(BasicBlock *BB) 2888 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2889 2890 void clear() { 2891 ReadyInsts.clear(); 2892 ScheduleStart = nullptr; 2893 ScheduleEnd = nullptr; 2894 FirstLoadStoreInRegion = nullptr; 2895 LastLoadStoreInRegion = nullptr; 2896 RegionHasStackSave = false; 2897 2898 // Reduce the maximum schedule region size by the size of the 2899 // previous scheduling run. 2900 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2901 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2902 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2903 ScheduleRegionSize = 0; 2904 2905 // Make a new scheduling region, i.e. all existing ScheduleData is not 2906 // in the new region yet. 2907 ++SchedulingRegionID; 2908 } 2909 2910 ScheduleData *getScheduleData(Instruction *I) { 2911 if (BB != I->getParent()) 2912 // Avoid lookup if can't possibly be in map. 2913 return nullptr; 2914 ScheduleData *SD = ScheduleDataMap.lookup(I); 2915 if (SD && isInSchedulingRegion(SD)) 2916 return SD; 2917 return nullptr; 2918 } 2919 2920 ScheduleData *getScheduleData(Value *V) { 2921 if (auto *I = dyn_cast<Instruction>(V)) 2922 return getScheduleData(I); 2923 return nullptr; 2924 } 2925 2926 ScheduleData *getScheduleData(Value *V, Value *Key) { 2927 if (V == Key) 2928 return getScheduleData(V); 2929 auto I = ExtraScheduleDataMap.find(V); 2930 if (I != ExtraScheduleDataMap.end()) { 2931 ScheduleData *SD = I->second.lookup(Key); 2932 if (SD && isInSchedulingRegion(SD)) 2933 return SD; 2934 } 2935 return nullptr; 2936 } 2937 2938 bool isInSchedulingRegion(ScheduleData *SD) const { 2939 return SD->SchedulingRegionID == SchedulingRegionID; 2940 } 2941 2942 /// Marks an instruction as scheduled and puts all dependent ready 2943 /// instructions into the ready-list. 2944 template <typename ReadyListType> 2945 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2946 SD->IsScheduled = true; 2947 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2948 2949 for (ScheduleData *BundleMember = SD; BundleMember; 2950 BundleMember = BundleMember->NextInBundle) { 2951 if (BundleMember->Inst != BundleMember->OpValue) 2952 continue; 2953 2954 // Handle the def-use chain dependencies. 2955 2956 // Decrement the unscheduled counter and insert to ready list if ready. 2957 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2958 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2959 if (OpDef && OpDef->hasValidDependencies() && 2960 OpDef->incrementUnscheduledDeps(-1) == 0) { 2961 // There are no more unscheduled dependencies after 2962 // decrementing, so we can put the dependent instruction 2963 // into the ready list. 2964 ScheduleData *DepBundle = OpDef->FirstInBundle; 2965 assert(!DepBundle->IsScheduled && 2966 "already scheduled bundle gets ready"); 2967 ReadyList.insert(DepBundle); 2968 LLVM_DEBUG(dbgs() 2969 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2970 } 2971 }); 2972 }; 2973 2974 // If BundleMember is a vector bundle, its operands may have been 2975 // reordered during buildTree(). We therefore need to get its operands 2976 // through the TreeEntry. 2977 if (TreeEntry *TE = BundleMember->TE) { 2978 // Need to search for the lane since the tree entry can be reordered. 2979 int Lane = std::distance(TE->Scalars.begin(), 2980 find(TE->Scalars, BundleMember->Inst)); 2981 assert(Lane >= 0 && "Lane not set"); 2982 2983 // Since vectorization tree is being built recursively this assertion 2984 // ensures that the tree entry has all operands set before reaching 2985 // this code. Couple of exceptions known at the moment are extracts 2986 // where their second (immediate) operand is not added. Since 2987 // immediates do not affect scheduler behavior this is considered 2988 // okay. 2989 auto *In = BundleMember->Inst; 2990 assert(In && 2991 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2992 In->getNumOperands() == TE->getNumOperands()) && 2993 "Missed TreeEntry operands?"); 2994 (void)In; // fake use to avoid build failure when assertions disabled 2995 2996 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2997 OpIdx != NumOperands; ++OpIdx) 2998 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2999 DecrUnsched(I); 3000 } else { 3001 // If BundleMember is a stand-alone instruction, no operand reordering 3002 // has taken place, so we directly access its operands. 3003 for (Use &U : BundleMember->Inst->operands()) 3004 if (auto *I = dyn_cast<Instruction>(U.get())) 3005 DecrUnsched(I); 3006 } 3007 // Handle the memory dependencies. 3008 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 3009 if (MemoryDepSD->hasValidDependencies() && 3010 MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 3011 // There are no more unscheduled dependencies after decrementing, 3012 // so we can put the dependent instruction into the ready list. 3013 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 3014 assert(!DepBundle->IsScheduled && 3015 "already scheduled bundle gets ready"); 3016 ReadyList.insert(DepBundle); 3017 LLVM_DEBUG(dbgs() 3018 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 3019 } 3020 } 3021 // Handle the control dependencies. 3022 for (ScheduleData *DepSD : BundleMember->ControlDependencies) { 3023 if (DepSD->incrementUnscheduledDeps(-1) == 0) { 3024 // There are no more unscheduled dependencies after decrementing, 3025 // so we can put the dependent instruction into the ready list. 3026 ScheduleData *DepBundle = DepSD->FirstInBundle; 3027 assert(!DepBundle->IsScheduled && 3028 "already scheduled bundle gets ready"); 3029 ReadyList.insert(DepBundle); 3030 LLVM_DEBUG(dbgs() 3031 << "SLP: gets ready (ctl): " << *DepBundle << "\n"); 3032 } 3033 } 3034 3035 } 3036 } 3037 3038 /// Verify basic self consistency properties of the data structure. 3039 void verify() { 3040 if (!ScheduleStart) 3041 return; 3042 3043 assert(ScheduleStart->getParent() == ScheduleEnd->getParent() && 3044 ScheduleStart->comesBefore(ScheduleEnd) && 3045 "Not a valid scheduling region?"); 3046 3047 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3048 auto *SD = getScheduleData(I); 3049 if (!SD) 3050 continue; 3051 assert(isInSchedulingRegion(SD) && 3052 "primary schedule data not in window?"); 3053 assert(isInSchedulingRegion(SD->FirstInBundle) && 3054 "entire bundle in window!"); 3055 (void)SD; 3056 doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); }); 3057 } 3058 3059 for (auto *SD : ReadyInsts) { 3060 assert(SD->isSchedulingEntity() && SD->isReady() && 3061 "item in ready list not ready?"); 3062 (void)SD; 3063 } 3064 } 3065 3066 void doForAllOpcodes(Value *V, 3067 function_ref<void(ScheduleData *SD)> Action) { 3068 if (ScheduleData *SD = getScheduleData(V)) 3069 Action(SD); 3070 auto I = ExtraScheduleDataMap.find(V); 3071 if (I != ExtraScheduleDataMap.end()) 3072 for (auto &P : I->second) 3073 if (isInSchedulingRegion(P.second)) 3074 Action(P.second); 3075 } 3076 3077 /// Put all instructions into the ReadyList which are ready for scheduling. 3078 template <typename ReadyListType> 3079 void initialFillReadyList(ReadyListType &ReadyList) { 3080 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3081 doForAllOpcodes(I, [&](ScheduleData *SD) { 3082 if (SD->isSchedulingEntity() && SD->hasValidDependencies() && 3083 SD->isReady()) { 3084 ReadyList.insert(SD); 3085 LLVM_DEBUG(dbgs() 3086 << "SLP: initially in ready list: " << *SD << "\n"); 3087 } 3088 }); 3089 } 3090 } 3091 3092 /// Build a bundle from the ScheduleData nodes corresponding to the 3093 /// scalar instruction for each lane. 3094 ScheduleData *buildBundle(ArrayRef<Value *> VL); 3095 3096 /// Checks if a bundle of instructions can be scheduled, i.e. has no 3097 /// cyclic dependencies. This is only a dry-run, no instructions are 3098 /// actually moved at this stage. 3099 /// \returns the scheduling bundle. The returned Optional value is non-None 3100 /// if \p VL is allowed to be scheduled. 3101 Optional<ScheduleData *> 3102 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 3103 const InstructionsState &S); 3104 3105 /// Un-bundles a group of instructions. 3106 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 3107 3108 /// Allocates schedule data chunk. 3109 ScheduleData *allocateScheduleDataChunks(); 3110 3111 /// Extends the scheduling region so that V is inside the region. 3112 /// \returns true if the region size is within the limit. 3113 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 3114 3115 /// Initialize the ScheduleData structures for new instructions in the 3116 /// scheduling region. 3117 void initScheduleData(Instruction *FromI, Instruction *ToI, 3118 ScheduleData *PrevLoadStore, 3119 ScheduleData *NextLoadStore); 3120 3121 /// Updates the dependency information of a bundle and of all instructions/ 3122 /// bundles which depend on the original bundle. 3123 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 3124 BoUpSLP *SLP); 3125 3126 /// Sets all instruction in the scheduling region to un-scheduled. 3127 void resetSchedule(); 3128 3129 BasicBlock *BB; 3130 3131 /// Simple memory allocation for ScheduleData. 3132 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 3133 3134 /// The size of a ScheduleData array in ScheduleDataChunks. 3135 int ChunkSize; 3136 3137 /// The allocator position in the current chunk, which is the last entry 3138 /// of ScheduleDataChunks. 3139 int ChunkPos; 3140 3141 /// Attaches ScheduleData to Instruction. 3142 /// Note that the mapping survives during all vectorization iterations, i.e. 3143 /// ScheduleData structures are recycled. 3144 DenseMap<Instruction *, ScheduleData *> ScheduleDataMap; 3145 3146 /// Attaches ScheduleData to Instruction with the leading key. 3147 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 3148 ExtraScheduleDataMap; 3149 3150 /// The ready-list for scheduling (only used for the dry-run). 3151 SetVector<ScheduleData *> ReadyInsts; 3152 3153 /// The first instruction of the scheduling region. 3154 Instruction *ScheduleStart = nullptr; 3155 3156 /// The first instruction _after_ the scheduling region. 3157 Instruction *ScheduleEnd = nullptr; 3158 3159 /// The first memory accessing instruction in the scheduling region 3160 /// (can be null). 3161 ScheduleData *FirstLoadStoreInRegion = nullptr; 3162 3163 /// The last memory accessing instruction in the scheduling region 3164 /// (can be null). 3165 ScheduleData *LastLoadStoreInRegion = nullptr; 3166 3167 /// Is there an llvm.stacksave or llvm.stackrestore in the scheduling 3168 /// region? Used to optimize the dependence calculation for the 3169 /// common case where there isn't. 3170 bool RegionHasStackSave = false; 3171 3172 /// The current size of the scheduling region. 3173 int ScheduleRegionSize = 0; 3174 3175 /// The maximum size allowed for the scheduling region. 3176 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 3177 3178 /// The ID of the scheduling region. For a new vectorization iteration this 3179 /// is incremented which "removes" all ScheduleData from the region. 3180 /// Make sure that the initial SchedulingRegionID is greater than the 3181 /// initial SchedulingRegionID in ScheduleData (which is 0). 3182 int SchedulingRegionID = 1; 3183 }; 3184 3185 /// Attaches the BlockScheduling structures to basic blocks. 3186 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 3187 3188 /// Performs the "real" scheduling. Done before vectorization is actually 3189 /// performed in a basic block. 3190 void scheduleBlock(BlockScheduling *BS); 3191 3192 /// List of users to ignore during scheduling and that don't need extracting. 3193 ArrayRef<Value *> UserIgnoreList; 3194 3195 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 3196 /// sorted SmallVectors of unsigned. 3197 struct OrdersTypeDenseMapInfo { 3198 static OrdersType getEmptyKey() { 3199 OrdersType V; 3200 V.push_back(~1U); 3201 return V; 3202 } 3203 3204 static OrdersType getTombstoneKey() { 3205 OrdersType V; 3206 V.push_back(~2U); 3207 return V; 3208 } 3209 3210 static unsigned getHashValue(const OrdersType &V) { 3211 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 3212 } 3213 3214 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 3215 return LHS == RHS; 3216 } 3217 }; 3218 3219 // Analysis and block reference. 3220 Function *F; 3221 ScalarEvolution *SE; 3222 TargetTransformInfo *TTI; 3223 TargetLibraryInfo *TLI; 3224 LoopInfo *LI; 3225 DominatorTree *DT; 3226 AssumptionCache *AC; 3227 DemandedBits *DB; 3228 const DataLayout *DL; 3229 OptimizationRemarkEmitter *ORE; 3230 3231 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 3232 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 3233 3234 /// Instruction builder to construct the vectorized tree. 3235 IRBuilder<> Builder; 3236 3237 /// A map of scalar integer values to the smallest bit width with which they 3238 /// can legally be represented. The values map to (width, signed) pairs, 3239 /// where "width" indicates the minimum bit width and "signed" is True if the 3240 /// value must be signed-extended, rather than zero-extended, back to its 3241 /// original width. 3242 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 3243 }; 3244 3245 } // end namespace slpvectorizer 3246 3247 template <> struct GraphTraits<BoUpSLP *> { 3248 using TreeEntry = BoUpSLP::TreeEntry; 3249 3250 /// NodeRef has to be a pointer per the GraphWriter. 3251 using NodeRef = TreeEntry *; 3252 3253 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 3254 3255 /// Add the VectorizableTree to the index iterator to be able to return 3256 /// TreeEntry pointers. 3257 struct ChildIteratorType 3258 : public iterator_adaptor_base< 3259 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 3260 ContainerTy &VectorizableTree; 3261 3262 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 3263 ContainerTy &VT) 3264 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 3265 3266 NodeRef operator*() { return I->UserTE; } 3267 }; 3268 3269 static NodeRef getEntryNode(BoUpSLP &R) { 3270 return R.VectorizableTree[0].get(); 3271 } 3272 3273 static ChildIteratorType child_begin(NodeRef N) { 3274 return {N->UserTreeIndices.begin(), N->Container}; 3275 } 3276 3277 static ChildIteratorType child_end(NodeRef N) { 3278 return {N->UserTreeIndices.end(), N->Container}; 3279 } 3280 3281 /// For the node iterator we just need to turn the TreeEntry iterator into a 3282 /// TreeEntry* iterator so that it dereferences to NodeRef. 3283 class nodes_iterator { 3284 using ItTy = ContainerTy::iterator; 3285 ItTy It; 3286 3287 public: 3288 nodes_iterator(const ItTy &It2) : It(It2) {} 3289 NodeRef operator*() { return It->get(); } 3290 nodes_iterator operator++() { 3291 ++It; 3292 return *this; 3293 } 3294 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 3295 }; 3296 3297 static nodes_iterator nodes_begin(BoUpSLP *R) { 3298 return nodes_iterator(R->VectorizableTree.begin()); 3299 } 3300 3301 static nodes_iterator nodes_end(BoUpSLP *R) { 3302 return nodes_iterator(R->VectorizableTree.end()); 3303 } 3304 3305 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 3306 }; 3307 3308 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 3309 using TreeEntry = BoUpSLP::TreeEntry; 3310 3311 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3312 3313 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 3314 std::string Str; 3315 raw_string_ostream OS(Str); 3316 if (isSplat(Entry->Scalars)) 3317 OS << "<splat> "; 3318 for (auto V : Entry->Scalars) { 3319 OS << *V; 3320 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 3321 return EU.Scalar == V; 3322 })) 3323 OS << " <extract>"; 3324 OS << "\n"; 3325 } 3326 return Str; 3327 } 3328 3329 static std::string getNodeAttributes(const TreeEntry *Entry, 3330 const BoUpSLP *) { 3331 if (Entry->State == TreeEntry::NeedToGather) 3332 return "color=red"; 3333 return ""; 3334 } 3335 }; 3336 3337 } // end namespace llvm 3338 3339 BoUpSLP::~BoUpSLP() { 3340 SmallVector<WeakTrackingVH> DeadInsts; 3341 for (auto *I : DeletedInstructions) { 3342 for (Use &U : I->operands()) { 3343 auto *Op = dyn_cast<Instruction>(U.get()); 3344 if (Op && !DeletedInstructions.count(Op) && Op->hasOneUser() && 3345 wouldInstructionBeTriviallyDead(Op, TLI)) 3346 DeadInsts.emplace_back(Op); 3347 } 3348 I->dropAllReferences(); 3349 } 3350 for (auto *I : DeletedInstructions) { 3351 assert(I->use_empty() && 3352 "trying to erase instruction with users."); 3353 I->eraseFromParent(); 3354 } 3355 3356 // Cleanup any dead scalar code feeding the vectorized instructions 3357 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI); 3358 3359 #ifdef EXPENSIVE_CHECKS 3360 // If we could guarantee that this call is not extremely slow, we could 3361 // remove the ifdef limitation (see PR47712). 3362 assert(!verifyFunction(*F, &dbgs())); 3363 #endif 3364 } 3365 3366 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 3367 /// contains original mask for the scalars reused in the node. Procedure 3368 /// transform this mask in accordance with the given \p Mask. 3369 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 3370 assert(!Mask.empty() && Reuses.size() == Mask.size() && 3371 "Expected non-empty mask."); 3372 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 3373 Prev.swap(Reuses); 3374 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 3375 if (Mask[I] != UndefMaskElem) 3376 Reuses[Mask[I]] = Prev[I]; 3377 } 3378 3379 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 3380 /// the original order of the scalars. Procedure transforms the provided order 3381 /// in accordance with the given \p Mask. If the resulting \p Order is just an 3382 /// identity order, \p Order is cleared. 3383 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 3384 assert(!Mask.empty() && "Expected non-empty mask."); 3385 SmallVector<int> MaskOrder; 3386 if (Order.empty()) { 3387 MaskOrder.resize(Mask.size()); 3388 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 3389 } else { 3390 inversePermutation(Order, MaskOrder); 3391 } 3392 reorderReuses(MaskOrder, Mask); 3393 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 3394 Order.clear(); 3395 return; 3396 } 3397 Order.assign(Mask.size(), Mask.size()); 3398 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 3399 if (MaskOrder[I] != UndefMaskElem) 3400 Order[MaskOrder[I]] = I; 3401 fixupOrderingIndices(Order); 3402 } 3403 3404 Optional<BoUpSLP::OrdersType> 3405 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 3406 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 3407 unsigned NumScalars = TE.Scalars.size(); 3408 OrdersType CurrentOrder(NumScalars, NumScalars); 3409 SmallVector<int> Positions; 3410 SmallBitVector UsedPositions(NumScalars); 3411 const TreeEntry *STE = nullptr; 3412 // Try to find all gathered scalars that are gets vectorized in other 3413 // vectorize node. Here we can have only one single tree vector node to 3414 // correctly identify order of the gathered scalars. 3415 for (unsigned I = 0; I < NumScalars; ++I) { 3416 Value *V = TE.Scalars[I]; 3417 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 3418 continue; 3419 if (const auto *LocalSTE = getTreeEntry(V)) { 3420 if (!STE) 3421 STE = LocalSTE; 3422 else if (STE != LocalSTE) 3423 // Take the order only from the single vector node. 3424 return None; 3425 unsigned Lane = 3426 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 3427 if (Lane >= NumScalars) 3428 return None; 3429 if (CurrentOrder[Lane] != NumScalars) { 3430 if (Lane != I) 3431 continue; 3432 UsedPositions.reset(CurrentOrder[Lane]); 3433 } 3434 // The partial identity (where only some elements of the gather node are 3435 // in the identity order) is good. 3436 CurrentOrder[Lane] = I; 3437 UsedPositions.set(I); 3438 } 3439 } 3440 // Need to keep the order if we have a vector entry and at least 2 scalars or 3441 // the vectorized entry has just 2 scalars. 3442 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 3443 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 3444 for (unsigned I = 0; I < NumScalars; ++I) 3445 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 3446 return false; 3447 return true; 3448 }; 3449 if (IsIdentityOrder(CurrentOrder)) { 3450 CurrentOrder.clear(); 3451 return CurrentOrder; 3452 } 3453 auto *It = CurrentOrder.begin(); 3454 for (unsigned I = 0; I < NumScalars;) { 3455 if (UsedPositions.test(I)) { 3456 ++I; 3457 continue; 3458 } 3459 if (*It == NumScalars) { 3460 *It = I; 3461 ++I; 3462 } 3463 ++It; 3464 } 3465 return CurrentOrder; 3466 } 3467 return None; 3468 } 3469 3470 bool clusterSortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy, 3471 const DataLayout &DL, ScalarEvolution &SE, 3472 SmallVectorImpl<unsigned> &SortedIndices) { 3473 assert(llvm::all_of( 3474 VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && 3475 "Expected list of pointer operands."); 3476 // Map from bases to a vector of (Ptr, Offset, OrigIdx), which we insert each 3477 // Ptr into, sort and return the sorted indices with values next to one 3478 // another. 3479 MapVector<Value *, SmallVector<std::tuple<Value *, int, unsigned>>> Bases; 3480 Bases[VL[0]].push_back(std::make_tuple(VL[0], 0U, 0U)); 3481 3482 unsigned Cnt = 1; 3483 for (Value *Ptr : VL.drop_front()) { 3484 bool Found = any_of(Bases, [&](auto &Base) { 3485 Optional<int> Diff = 3486 getPointersDiff(ElemTy, Base.first, ElemTy, Ptr, DL, SE, 3487 /*StrictCheck=*/true); 3488 if (!Diff) 3489 return false; 3490 3491 Base.second.emplace_back(Ptr, *Diff, Cnt++); 3492 return true; 3493 }); 3494 3495 if (!Found) { 3496 // If we haven't found enough to usefully cluster, return early. 3497 if (Bases.size() > VL.size() / 2 - 1) 3498 return false; 3499 3500 // Not found already - add a new Base 3501 Bases[Ptr].emplace_back(Ptr, 0, Cnt++); 3502 } 3503 } 3504 3505 // For each of the bases sort the pointers by Offset and check if any of the 3506 // base become consecutively allocated. 3507 bool AnyConsecutive = false; 3508 for (auto &Base : Bases) { 3509 auto &Vec = Base.second; 3510 if (Vec.size() > 1) { 3511 llvm::stable_sort(Vec, [](const std::tuple<Value *, int, unsigned> &X, 3512 const std::tuple<Value *, int, unsigned> &Y) { 3513 return std::get<1>(X) < std::get<1>(Y); 3514 }); 3515 int InitialOffset = std::get<1>(Vec[0]); 3516 AnyConsecutive |= all_of(enumerate(Vec), [InitialOffset](auto &P) { 3517 return std::get<1>(P.value()) == int(P.index()) + InitialOffset; 3518 }); 3519 } 3520 } 3521 3522 // Fill SortedIndices array only if it looks worth-while to sort the ptrs. 3523 SortedIndices.clear(); 3524 if (!AnyConsecutive) 3525 return false; 3526 3527 for (auto &Base : Bases) { 3528 for (auto &T : Base.second) 3529 SortedIndices.push_back(std::get<2>(T)); 3530 } 3531 3532 assert(SortedIndices.size() == VL.size() && 3533 "Expected SortedIndices to be the size of VL"); 3534 return true; 3535 } 3536 3537 Optional<BoUpSLP::OrdersType> 3538 BoUpSLP::findPartiallyOrderedLoads(const BoUpSLP::TreeEntry &TE) { 3539 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 3540 Type *ScalarTy = TE.Scalars[0]->getType(); 3541 3542 SmallVector<Value *> Ptrs; 3543 Ptrs.reserve(TE.Scalars.size()); 3544 for (Value *V : TE.Scalars) { 3545 auto *L = dyn_cast<LoadInst>(V); 3546 if (!L || !L->isSimple()) 3547 return None; 3548 Ptrs.push_back(L->getPointerOperand()); 3549 } 3550 3551 BoUpSLP::OrdersType Order; 3552 if (clusterSortPtrAccesses(Ptrs, ScalarTy, *DL, *SE, Order)) 3553 return Order; 3554 return None; 3555 } 3556 3557 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE, 3558 bool TopToBottom) { 3559 // No need to reorder if need to shuffle reuses, still need to shuffle the 3560 // node. 3561 if (!TE.ReuseShuffleIndices.empty()) 3562 return None; 3563 if (TE.State == TreeEntry::Vectorize && 3564 (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) || 3565 (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) && 3566 !TE.isAltShuffle()) 3567 return TE.ReorderIndices; 3568 if (TE.State == TreeEntry::NeedToGather) { 3569 // TODO: add analysis of other gather nodes with extractelement 3570 // instructions and other values/instructions, not only undefs. 3571 if (((TE.getOpcode() == Instruction::ExtractElement && 3572 !TE.isAltShuffle()) || 3573 (all_of(TE.Scalars, 3574 [](Value *V) { 3575 return isa<UndefValue, ExtractElementInst>(V); 3576 }) && 3577 any_of(TE.Scalars, 3578 [](Value *V) { return isa<ExtractElementInst>(V); }))) && 3579 all_of(TE.Scalars, 3580 [](Value *V) { 3581 auto *EE = dyn_cast<ExtractElementInst>(V); 3582 return !EE || isa<FixedVectorType>(EE->getVectorOperandType()); 3583 }) && 3584 allSameType(TE.Scalars)) { 3585 // Check that gather of extractelements can be represented as 3586 // just a shuffle of a single vector. 3587 OrdersType CurrentOrder; 3588 bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder); 3589 if (Reuse || !CurrentOrder.empty()) { 3590 if (!CurrentOrder.empty()) 3591 fixupOrderingIndices(CurrentOrder); 3592 return CurrentOrder; 3593 } 3594 } 3595 if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE)) 3596 return CurrentOrder; 3597 if (TE.Scalars.size() >= 4) 3598 if (Optional<OrdersType> Order = findPartiallyOrderedLoads(TE)) 3599 return Order; 3600 } 3601 return None; 3602 } 3603 3604 void BoUpSLP::reorderTopToBottom() { 3605 // Maps VF to the graph nodes. 3606 DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries; 3607 // ExtractElement gather nodes which can be vectorized and need to handle 3608 // their ordering. 3609 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3610 3611 // Maps a TreeEntry to the reorder indices of external users. 3612 DenseMap<const TreeEntry *, SmallVector<OrdersType, 1>> 3613 ExternalUserReorderMap; 3614 // Find all reorderable nodes with the given VF. 3615 // Currently the are vectorized stores,loads,extracts + some gathering of 3616 // extracts. 3617 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders, 3618 &ExternalUserReorderMap]( 3619 const std::unique_ptr<TreeEntry> &TE) { 3620 // Look for external users that will probably be vectorized. 3621 SmallVector<OrdersType, 1> ExternalUserReorderIndices = 3622 findExternalStoreUsersReorderIndices(TE.get()); 3623 if (!ExternalUserReorderIndices.empty()) { 3624 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3625 ExternalUserReorderMap.try_emplace(TE.get(), 3626 std::move(ExternalUserReorderIndices)); 3627 } 3628 3629 if (Optional<OrdersType> CurrentOrder = 3630 getReorderingData(*TE, /*TopToBottom=*/true)) { 3631 // Do not include ordering for nodes used in the alt opcode vectorization, 3632 // better to reorder them during bottom-to-top stage. If follow the order 3633 // here, it causes reordering of the whole graph though actually it is 3634 // profitable just to reorder the subgraph that starts from the alternate 3635 // opcode vectorization node. Such nodes already end-up with the shuffle 3636 // instruction and it is just enough to change this shuffle rather than 3637 // rotate the scalars for the whole graph. 3638 unsigned Cnt = 0; 3639 const TreeEntry *UserTE = TE.get(); 3640 while (UserTE && Cnt < RecursionMaxDepth) { 3641 if (UserTE->UserTreeIndices.size() != 1) 3642 break; 3643 if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) { 3644 return EI.UserTE->State == TreeEntry::Vectorize && 3645 EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0; 3646 })) 3647 return; 3648 if (UserTE->UserTreeIndices.empty()) 3649 UserTE = nullptr; 3650 else 3651 UserTE = UserTE->UserTreeIndices.back().UserTE; 3652 ++Cnt; 3653 } 3654 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3655 if (TE->State != TreeEntry::Vectorize) 3656 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3657 } 3658 }); 3659 3660 // Reorder the graph nodes according to their vectorization factor. 3661 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 3662 VF /= 2) { 3663 auto It = VFToOrderedEntries.find(VF); 3664 if (It == VFToOrderedEntries.end()) 3665 continue; 3666 // Try to find the most profitable order. We just are looking for the most 3667 // used order and reorder scalar elements in the nodes according to this 3668 // mostly used order. 3669 ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef(); 3670 // All operands are reordered and used only in this node - propagate the 3671 // most used order to the user node. 3672 MapVector<OrdersType, unsigned, 3673 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3674 OrdersUses; 3675 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3676 for (const TreeEntry *OpTE : OrderedEntries) { 3677 // No need to reorder this nodes, still need to extend and to use shuffle, 3678 // just need to merge reordering shuffle and the reuse shuffle. 3679 if (!OpTE->ReuseShuffleIndices.empty()) 3680 continue; 3681 // Count number of orders uses. 3682 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3683 if (OpTE->State == TreeEntry::NeedToGather) { 3684 auto It = GathersToOrders.find(OpTE); 3685 if (It != GathersToOrders.end()) 3686 return It->second; 3687 } 3688 return OpTE->ReorderIndices; 3689 }(); 3690 // First consider the order of the external scalar users. 3691 auto It = ExternalUserReorderMap.find(OpTE); 3692 if (It != ExternalUserReorderMap.end()) { 3693 const auto &ExternalUserReorderIndices = It->second; 3694 for (const OrdersType &ExtOrder : ExternalUserReorderIndices) 3695 ++OrdersUses.insert(std::make_pair(ExtOrder, 0)).first->second; 3696 // No other useful reorder data in this entry. 3697 if (Order.empty()) 3698 continue; 3699 } 3700 // Stores actually store the mask, not the order, need to invert. 3701 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3702 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3703 SmallVector<int> Mask; 3704 inversePermutation(Order, Mask); 3705 unsigned E = Order.size(); 3706 OrdersType CurrentOrder(E, E); 3707 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3708 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3709 }); 3710 fixupOrderingIndices(CurrentOrder); 3711 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3712 } else { 3713 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3714 } 3715 } 3716 // Set order of the user node. 3717 if (OrdersUses.empty()) 3718 continue; 3719 // Choose the most used order. 3720 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3721 unsigned Cnt = OrdersUses.front().second; 3722 for (const auto &Pair : drop_begin(OrdersUses)) { 3723 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3724 BestOrder = Pair.first; 3725 Cnt = Pair.second; 3726 } 3727 } 3728 // Set order of the user node. 3729 if (BestOrder.empty()) 3730 continue; 3731 SmallVector<int> Mask; 3732 inversePermutation(BestOrder, Mask); 3733 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3734 unsigned E = BestOrder.size(); 3735 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3736 return I < E ? static_cast<int>(I) : UndefMaskElem; 3737 }); 3738 // Do an actual reordering, if profitable. 3739 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 3740 // Just do the reordering for the nodes with the given VF. 3741 if (TE->Scalars.size() != VF) { 3742 if (TE->ReuseShuffleIndices.size() == VF) { 3743 // Need to reorder the reuses masks of the operands with smaller VF to 3744 // be able to find the match between the graph nodes and scalar 3745 // operands of the given node during vectorization/cost estimation. 3746 assert(all_of(TE->UserTreeIndices, 3747 [VF, &TE](const EdgeInfo &EI) { 3748 return EI.UserTE->Scalars.size() == VF || 3749 EI.UserTE->Scalars.size() == 3750 TE->Scalars.size(); 3751 }) && 3752 "All users must be of VF size."); 3753 // Update ordering of the operands with the smaller VF than the given 3754 // one. 3755 reorderReuses(TE->ReuseShuffleIndices, Mask); 3756 } 3757 continue; 3758 } 3759 if (TE->State == TreeEntry::Vectorize && 3760 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 3761 InsertElementInst>(TE->getMainOp()) && 3762 !TE->isAltShuffle()) { 3763 // Build correct orders for extract{element,value}, loads and 3764 // stores. 3765 reorderOrder(TE->ReorderIndices, Mask); 3766 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 3767 TE->reorderOperands(Mask); 3768 } else { 3769 // Reorder the node and its operands. 3770 TE->reorderOperands(Mask); 3771 assert(TE->ReorderIndices.empty() && 3772 "Expected empty reorder sequence."); 3773 reorderScalars(TE->Scalars, Mask); 3774 } 3775 if (!TE->ReuseShuffleIndices.empty()) { 3776 // Apply reversed order to keep the original ordering of the reused 3777 // elements to avoid extra reorder indices shuffling. 3778 OrdersType CurrentOrder; 3779 reorderOrder(CurrentOrder, MaskOrder); 3780 SmallVector<int> NewReuses; 3781 inversePermutation(CurrentOrder, NewReuses); 3782 addMask(NewReuses, TE->ReuseShuffleIndices); 3783 TE->ReuseShuffleIndices.swap(NewReuses); 3784 } 3785 } 3786 } 3787 } 3788 3789 bool BoUpSLP::canReorderOperands( 3790 TreeEntry *UserTE, SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 3791 ArrayRef<TreeEntry *> ReorderableGathers, 3792 SmallVectorImpl<TreeEntry *> &GatherOps) { 3793 for (unsigned I = 0, E = UserTE->getNumOperands(); I < E; ++I) { 3794 if (any_of(Edges, [I](const std::pair<unsigned, TreeEntry *> &OpData) { 3795 return OpData.first == I && 3796 OpData.second->State == TreeEntry::Vectorize; 3797 })) 3798 continue; 3799 if (TreeEntry *TE = getVectorizedOperand(UserTE, I)) { 3800 // Do not reorder if operand node is used by many user nodes. 3801 if (any_of(TE->UserTreeIndices, 3802 [UserTE](const EdgeInfo &EI) { return EI.UserTE != UserTE; })) 3803 return false; 3804 // Add the node to the list of the ordered nodes with the identity 3805 // order. 3806 Edges.emplace_back(I, TE); 3807 continue; 3808 } 3809 ArrayRef<Value *> VL = UserTE->getOperand(I); 3810 TreeEntry *Gather = nullptr; 3811 if (count_if(ReorderableGathers, [VL, &Gather](TreeEntry *TE) { 3812 assert(TE->State != TreeEntry::Vectorize && 3813 "Only non-vectorized nodes are expected."); 3814 if (TE->isSame(VL)) { 3815 Gather = TE; 3816 return true; 3817 } 3818 return false; 3819 }) > 1) 3820 return false; 3821 if (Gather) 3822 GatherOps.push_back(Gather); 3823 } 3824 return true; 3825 } 3826 3827 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 3828 SetVector<TreeEntry *> OrderedEntries; 3829 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3830 // Find all reorderable leaf nodes with the given VF. 3831 // Currently the are vectorized loads,extracts without alternate operands + 3832 // some gathering of extracts. 3833 SmallVector<TreeEntry *> NonVectorized; 3834 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 3835 &NonVectorized]( 3836 const std::unique_ptr<TreeEntry> &TE) { 3837 if (TE->State != TreeEntry::Vectorize) 3838 NonVectorized.push_back(TE.get()); 3839 if (Optional<OrdersType> CurrentOrder = 3840 getReorderingData(*TE, /*TopToBottom=*/false)) { 3841 OrderedEntries.insert(TE.get()); 3842 if (TE->State != TreeEntry::Vectorize) 3843 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3844 } 3845 }); 3846 3847 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3848 // I.e., if the node has operands, that are reordered, try to make at least 3849 // one operand order in the natural order and reorder others + reorder the 3850 // user node itself. 3851 SmallPtrSet<const TreeEntry *, 4> Visited; 3852 while (!OrderedEntries.empty()) { 3853 // 1. Filter out only reordered nodes. 3854 // 2. If the entry has multiple uses - skip it and jump to the next node. 3855 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3856 SmallVector<TreeEntry *> Filtered; 3857 for (TreeEntry *TE : OrderedEntries) { 3858 if (!(TE->State == TreeEntry::Vectorize || 3859 (TE->State == TreeEntry::NeedToGather && 3860 GathersToOrders.count(TE))) || 3861 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3862 !all_of(drop_begin(TE->UserTreeIndices), 3863 [TE](const EdgeInfo &EI) { 3864 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3865 }) || 3866 !Visited.insert(TE).second) { 3867 Filtered.push_back(TE); 3868 continue; 3869 } 3870 // Build a map between user nodes and their operands order to speedup 3871 // search. The graph currently does not provide this dependency directly. 3872 for (EdgeInfo &EI : TE->UserTreeIndices) { 3873 TreeEntry *UserTE = EI.UserTE; 3874 auto It = Users.find(UserTE); 3875 if (It == Users.end()) 3876 It = Users.insert({UserTE, {}}).first; 3877 It->second.emplace_back(EI.EdgeIdx, TE); 3878 } 3879 } 3880 // Erase filtered entries. 3881 for_each(Filtered, 3882 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3883 for (auto &Data : Users) { 3884 // Check that operands are used only in the User node. 3885 SmallVector<TreeEntry *> GatherOps; 3886 if (!canReorderOperands(Data.first, Data.second, NonVectorized, 3887 GatherOps)) { 3888 for_each(Data.second, 3889 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3890 OrderedEntries.remove(Op.second); 3891 }); 3892 continue; 3893 } 3894 // All operands are reordered and used only in this node - propagate the 3895 // most used order to the user node. 3896 MapVector<OrdersType, unsigned, 3897 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3898 OrdersUses; 3899 // Do the analysis for each tree entry only once, otherwise the order of 3900 // the same node my be considered several times, though might be not 3901 // profitable. 3902 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3903 SmallPtrSet<const TreeEntry *, 4> VisitedUsers; 3904 for (const auto &Op : Data.second) { 3905 TreeEntry *OpTE = Op.second; 3906 if (!VisitedOps.insert(OpTE).second) 3907 continue; 3908 if (!OpTE->ReuseShuffleIndices.empty() || 3909 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3910 continue; 3911 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3912 if (OpTE->State == TreeEntry::NeedToGather) 3913 return GathersToOrders.find(OpTE)->second; 3914 return OpTE->ReorderIndices; 3915 }(); 3916 unsigned NumOps = count_if( 3917 Data.second, [OpTE](const std::pair<unsigned, TreeEntry *> &P) { 3918 return P.second == OpTE; 3919 }); 3920 // Stores actually store the mask, not the order, need to invert. 3921 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3922 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3923 SmallVector<int> Mask; 3924 inversePermutation(Order, Mask); 3925 unsigned E = Order.size(); 3926 OrdersType CurrentOrder(E, E); 3927 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3928 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3929 }); 3930 fixupOrderingIndices(CurrentOrder); 3931 OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second += 3932 NumOps; 3933 } else { 3934 OrdersUses.insert(std::make_pair(Order, 0)).first->second += NumOps; 3935 } 3936 auto Res = OrdersUses.insert(std::make_pair(OrdersType(), 0)); 3937 const auto &&AllowsReordering = [IgnoreReorder, &GathersToOrders]( 3938 const TreeEntry *TE) { 3939 if (!TE->ReorderIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3940 (TE->State == TreeEntry::Vectorize && TE->isAltShuffle()) || 3941 (IgnoreReorder && TE->Idx == 0)) 3942 return true; 3943 if (TE->State == TreeEntry::NeedToGather) { 3944 auto It = GathersToOrders.find(TE); 3945 if (It != GathersToOrders.end()) 3946 return !It->second.empty(); 3947 return true; 3948 } 3949 return false; 3950 }; 3951 for (const EdgeInfo &EI : OpTE->UserTreeIndices) { 3952 TreeEntry *UserTE = EI.UserTE; 3953 if (!VisitedUsers.insert(UserTE).second) 3954 continue; 3955 // May reorder user node if it requires reordering, has reused 3956 // scalars, is an alternate op vectorize node or its op nodes require 3957 // reordering. 3958 if (AllowsReordering(UserTE)) 3959 continue; 3960 // Check if users allow reordering. 3961 // Currently look up just 1 level of operands to avoid increase of 3962 // the compile time. 3963 // Profitable to reorder if definitely more operands allow 3964 // reordering rather than those with natural order. 3965 ArrayRef<std::pair<unsigned, TreeEntry *>> Ops = Users[UserTE]; 3966 if (static_cast<unsigned>(count_if( 3967 Ops, [UserTE, &AllowsReordering]( 3968 const std::pair<unsigned, TreeEntry *> &Op) { 3969 return AllowsReordering(Op.second) && 3970 all_of(Op.second->UserTreeIndices, 3971 [UserTE](const EdgeInfo &EI) { 3972 return EI.UserTE == UserTE; 3973 }); 3974 })) <= Ops.size() / 2) 3975 ++Res.first->second; 3976 } 3977 } 3978 // If no orders - skip current nodes and jump to the next one, if any. 3979 if (OrdersUses.empty()) { 3980 for_each(Data.second, 3981 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3982 OrderedEntries.remove(Op.second); 3983 }); 3984 continue; 3985 } 3986 // Choose the best order. 3987 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3988 unsigned Cnt = OrdersUses.front().second; 3989 for (const auto &Pair : drop_begin(OrdersUses)) { 3990 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3991 BestOrder = Pair.first; 3992 Cnt = Pair.second; 3993 } 3994 } 3995 // Set order of the user node (reordering of operands and user nodes). 3996 if (BestOrder.empty()) { 3997 for_each(Data.second, 3998 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3999 OrderedEntries.remove(Op.second); 4000 }); 4001 continue; 4002 } 4003 // Erase operands from OrderedEntries list and adjust their orders. 4004 VisitedOps.clear(); 4005 SmallVector<int> Mask; 4006 inversePermutation(BestOrder, Mask); 4007 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 4008 unsigned E = BestOrder.size(); 4009 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 4010 return I < E ? static_cast<int>(I) : UndefMaskElem; 4011 }); 4012 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 4013 TreeEntry *TE = Op.second; 4014 OrderedEntries.remove(TE); 4015 if (!VisitedOps.insert(TE).second) 4016 continue; 4017 if (TE->ReuseShuffleIndices.size() == BestOrder.size()) { 4018 // Just reorder reuses indices. 4019 reorderReuses(TE->ReuseShuffleIndices, Mask); 4020 continue; 4021 } 4022 // Gathers are processed separately. 4023 if (TE->State != TreeEntry::Vectorize) 4024 continue; 4025 assert((BestOrder.size() == TE->ReorderIndices.size() || 4026 TE->ReorderIndices.empty()) && 4027 "Non-matching sizes of user/operand entries."); 4028 reorderOrder(TE->ReorderIndices, Mask); 4029 } 4030 // For gathers just need to reorder its scalars. 4031 for (TreeEntry *Gather : GatherOps) { 4032 assert(Gather->ReorderIndices.empty() && 4033 "Unexpected reordering of gathers."); 4034 if (!Gather->ReuseShuffleIndices.empty()) { 4035 // Just reorder reuses indices. 4036 reorderReuses(Gather->ReuseShuffleIndices, Mask); 4037 continue; 4038 } 4039 reorderScalars(Gather->Scalars, Mask); 4040 OrderedEntries.remove(Gather); 4041 } 4042 // Reorder operands of the user node and set the ordering for the user 4043 // node itself. 4044 if (Data.first->State != TreeEntry::Vectorize || 4045 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 4046 Data.first->getMainOp()) || 4047 Data.first->isAltShuffle()) 4048 Data.first->reorderOperands(Mask); 4049 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 4050 Data.first->isAltShuffle()) { 4051 reorderScalars(Data.first->Scalars, Mask); 4052 reorderOrder(Data.first->ReorderIndices, MaskOrder); 4053 if (Data.first->ReuseShuffleIndices.empty() && 4054 !Data.first->ReorderIndices.empty() && 4055 !Data.first->isAltShuffle()) { 4056 // Insert user node to the list to try to sink reordering deeper in 4057 // the graph. 4058 OrderedEntries.insert(Data.first); 4059 } 4060 } else { 4061 reorderOrder(Data.first->ReorderIndices, Mask); 4062 } 4063 } 4064 } 4065 // If the reordering is unnecessary, just remove the reorder. 4066 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 4067 VectorizableTree.front()->ReuseShuffleIndices.empty()) 4068 VectorizableTree.front()->ReorderIndices.clear(); 4069 } 4070 4071 void BoUpSLP::buildExternalUses( 4072 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 4073 // Collect the values that we need to extract from the tree. 4074 for (auto &TEPtr : VectorizableTree) { 4075 TreeEntry *Entry = TEPtr.get(); 4076 4077 // No need to handle users of gathered values. 4078 if (Entry->State == TreeEntry::NeedToGather) 4079 continue; 4080 4081 // For each lane: 4082 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 4083 Value *Scalar = Entry->Scalars[Lane]; 4084 int FoundLane = Entry->findLaneForValue(Scalar); 4085 4086 // Check if the scalar is externally used as an extra arg. 4087 auto ExtI = ExternallyUsedValues.find(Scalar); 4088 if (ExtI != ExternallyUsedValues.end()) { 4089 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 4090 << Lane << " from " << *Scalar << ".\n"); 4091 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 4092 } 4093 for (User *U : Scalar->users()) { 4094 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 4095 4096 Instruction *UserInst = dyn_cast<Instruction>(U); 4097 if (!UserInst) 4098 continue; 4099 4100 if (isDeleted(UserInst)) 4101 continue; 4102 4103 // Skip in-tree scalars that become vectors 4104 if (TreeEntry *UseEntry = getTreeEntry(U)) { 4105 Value *UseScalar = UseEntry->Scalars[0]; 4106 // Some in-tree scalars will remain as scalar in vectorized 4107 // instructions. If that is the case, the one in Lane 0 will 4108 // be used. 4109 if (UseScalar != U || 4110 UseEntry->State == TreeEntry::ScatterVectorize || 4111 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 4112 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 4113 << ".\n"); 4114 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 4115 continue; 4116 } 4117 } 4118 4119 // Ignore users in the user ignore list. 4120 if (is_contained(UserIgnoreList, UserInst)) 4121 continue; 4122 4123 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 4124 << Lane << " from " << *Scalar << ".\n"); 4125 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 4126 } 4127 } 4128 } 4129 } 4130 4131 DenseMap<Value *, SmallVector<StoreInst *, 4>> 4132 BoUpSLP::collectUserStores(const BoUpSLP::TreeEntry *TE) const { 4133 DenseMap<Value *, SmallVector<StoreInst *, 4>> PtrToStoresMap; 4134 for (unsigned Lane : seq<unsigned>(0, TE->Scalars.size())) { 4135 Value *V = TE->Scalars[Lane]; 4136 // To save compilation time we don't visit if we have too many users. 4137 static constexpr unsigned UsersLimit = 4; 4138 if (V->hasNUsesOrMore(UsersLimit)) 4139 break; 4140 4141 // Collect stores per pointer object. 4142 for (User *U : V->users()) { 4143 auto *SI = dyn_cast<StoreInst>(U); 4144 if (SI == nullptr || !SI->isSimple() || 4145 !isValidElementType(SI->getValueOperand()->getType())) 4146 continue; 4147 // Skip entry if already 4148 if (getTreeEntry(U)) 4149 continue; 4150 4151 Value *Ptr = getUnderlyingObject(SI->getPointerOperand()); 4152 auto &StoresVec = PtrToStoresMap[Ptr]; 4153 // For now just keep one store per pointer object per lane. 4154 // TODO: Extend this to support multiple stores per pointer per lane 4155 if (StoresVec.size() > Lane) 4156 continue; 4157 // Skip if in different BBs. 4158 if (!StoresVec.empty() && 4159 SI->getParent() != StoresVec.back()->getParent()) 4160 continue; 4161 // Make sure that the stores are of the same type. 4162 if (!StoresVec.empty() && 4163 SI->getValueOperand()->getType() != 4164 StoresVec.back()->getValueOperand()->getType()) 4165 continue; 4166 StoresVec.push_back(SI); 4167 } 4168 } 4169 return PtrToStoresMap; 4170 } 4171 4172 bool BoUpSLP::CanFormVector(const SmallVector<StoreInst *, 4> &StoresVec, 4173 OrdersType &ReorderIndices) const { 4174 // We check whether the stores in StoreVec can form a vector by sorting them 4175 // and checking whether they are consecutive. 4176 4177 // To avoid calling getPointersDiff() while sorting we create a vector of 4178 // pairs {store, offset from first} and sort this instead. 4179 SmallVector<std::pair<StoreInst *, int>, 4> StoreOffsetVec(StoresVec.size()); 4180 StoreInst *S0 = StoresVec[0]; 4181 StoreOffsetVec[0] = {S0, 0}; 4182 Type *S0Ty = S0->getValueOperand()->getType(); 4183 Value *S0Ptr = S0->getPointerOperand(); 4184 for (unsigned Idx : seq<unsigned>(1, StoresVec.size())) { 4185 StoreInst *SI = StoresVec[Idx]; 4186 Optional<int> Diff = 4187 getPointersDiff(S0Ty, S0Ptr, SI->getValueOperand()->getType(), 4188 SI->getPointerOperand(), *DL, *SE, 4189 /*StrictCheck=*/true); 4190 // We failed to compare the pointers so just abandon this StoresVec. 4191 if (!Diff) 4192 return false; 4193 StoreOffsetVec[Idx] = {StoresVec[Idx], *Diff}; 4194 } 4195 4196 // Sort the vector based on the pointers. We create a copy because we may 4197 // need the original later for calculating the reorder (shuffle) indices. 4198 stable_sort(StoreOffsetVec, [](const std::pair<StoreInst *, int> &Pair1, 4199 const std::pair<StoreInst *, int> &Pair2) { 4200 int Offset1 = Pair1.second; 4201 int Offset2 = Pair2.second; 4202 return Offset1 < Offset2; 4203 }); 4204 4205 // Check if the stores are consecutive by checking if their difference is 1. 4206 for (unsigned Idx : seq<unsigned>(1, StoreOffsetVec.size())) 4207 if (StoreOffsetVec[Idx].second != StoreOffsetVec[Idx-1].second + 1) 4208 return false; 4209 4210 // Calculate the shuffle indices according to their offset against the sorted 4211 // StoreOffsetVec. 4212 ReorderIndices.reserve(StoresVec.size()); 4213 for (StoreInst *SI : StoresVec) { 4214 unsigned Idx = find_if(StoreOffsetVec, 4215 [SI](const std::pair<StoreInst *, int> &Pair) { 4216 return Pair.first == SI; 4217 }) - 4218 StoreOffsetVec.begin(); 4219 ReorderIndices.push_back(Idx); 4220 } 4221 // Identity order (e.g., {0,1,2,3}) is modeled as an empty OrdersType in 4222 // reorderTopToBottom() and reorderBottomToTop(), so we are following the 4223 // same convention here. 4224 auto IsIdentityOrder = [](const OrdersType &Order) { 4225 for (unsigned Idx : seq<unsigned>(0, Order.size())) 4226 if (Idx != Order[Idx]) 4227 return false; 4228 return true; 4229 }; 4230 if (IsIdentityOrder(ReorderIndices)) 4231 ReorderIndices.clear(); 4232 4233 return true; 4234 } 4235 4236 #ifndef NDEBUG 4237 LLVM_DUMP_METHOD static void dumpOrder(const BoUpSLP::OrdersType &Order) { 4238 for (unsigned Idx : Order) 4239 dbgs() << Idx << ", "; 4240 dbgs() << "\n"; 4241 } 4242 #endif 4243 4244 SmallVector<BoUpSLP::OrdersType, 1> 4245 BoUpSLP::findExternalStoreUsersReorderIndices(TreeEntry *TE) const { 4246 unsigned NumLanes = TE->Scalars.size(); 4247 4248 DenseMap<Value *, SmallVector<StoreInst *, 4>> PtrToStoresMap = 4249 collectUserStores(TE); 4250 4251 // Holds the reorder indices for each candidate store vector that is a user of 4252 // the current TreeEntry. 4253 SmallVector<OrdersType, 1> ExternalReorderIndices; 4254 4255 // Now inspect the stores collected per pointer and look for vectorization 4256 // candidates. For each candidate calculate the reorder index vector and push 4257 // it into `ExternalReorderIndices` 4258 for (const auto &Pair : PtrToStoresMap) { 4259 auto &StoresVec = Pair.second; 4260 // If we have fewer than NumLanes stores, then we can't form a vector. 4261 if (StoresVec.size() != NumLanes) 4262 continue; 4263 4264 // If the stores are not consecutive then abandon this StoresVec. 4265 OrdersType ReorderIndices; 4266 if (!CanFormVector(StoresVec, ReorderIndices)) 4267 continue; 4268 4269 // We now know that the scalars in StoresVec can form a vector instruction, 4270 // so set the reorder indices. 4271 ExternalReorderIndices.push_back(ReorderIndices); 4272 } 4273 return ExternalReorderIndices; 4274 } 4275 4276 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 4277 ArrayRef<Value *> UserIgnoreLst) { 4278 deleteTree(); 4279 UserIgnoreList = UserIgnoreLst; 4280 if (!allSameType(Roots)) 4281 return; 4282 buildTree_rec(Roots, 0, EdgeInfo()); 4283 } 4284 4285 namespace { 4286 /// Tracks the state we can represent the loads in the given sequence. 4287 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 4288 } // anonymous namespace 4289 4290 /// Checks if the given array of loads can be represented as a vectorized, 4291 /// scatter or just simple gather. 4292 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 4293 const TargetTransformInfo &TTI, 4294 const DataLayout &DL, ScalarEvolution &SE, 4295 SmallVectorImpl<unsigned> &Order, 4296 SmallVectorImpl<Value *> &PointerOps) { 4297 // Check that a vectorized load would load the same memory as a scalar 4298 // load. For example, we don't want to vectorize loads that are smaller 4299 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 4300 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 4301 // from such a struct, we read/write packed bits disagreeing with the 4302 // unvectorized version. 4303 Type *ScalarTy = VL0->getType(); 4304 4305 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 4306 return LoadsState::Gather; 4307 4308 // Make sure all loads in the bundle are simple - we can't vectorize 4309 // atomic or volatile loads. 4310 PointerOps.clear(); 4311 PointerOps.resize(VL.size()); 4312 auto *POIter = PointerOps.begin(); 4313 for (Value *V : VL) { 4314 auto *L = cast<LoadInst>(V); 4315 if (!L->isSimple()) 4316 return LoadsState::Gather; 4317 *POIter = L->getPointerOperand(); 4318 ++POIter; 4319 } 4320 4321 Order.clear(); 4322 // Check the order of pointer operands. 4323 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 4324 Value *Ptr0; 4325 Value *PtrN; 4326 if (Order.empty()) { 4327 Ptr0 = PointerOps.front(); 4328 PtrN = PointerOps.back(); 4329 } else { 4330 Ptr0 = PointerOps[Order.front()]; 4331 PtrN = PointerOps[Order.back()]; 4332 } 4333 Optional<int> Diff = 4334 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 4335 // Check that the sorted loads are consecutive. 4336 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 4337 return LoadsState::Vectorize; 4338 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 4339 for (Value *V : VL) 4340 CommonAlignment = 4341 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 4342 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 4343 CommonAlignment)) 4344 return LoadsState::ScatterVectorize; 4345 } 4346 4347 return LoadsState::Gather; 4348 } 4349 4350 /// \return true if the specified list of values has only one instruction that 4351 /// requires scheduling, false otherwise. 4352 #ifndef NDEBUG 4353 static bool needToScheduleSingleInstruction(ArrayRef<Value *> VL) { 4354 Value *NeedsScheduling = nullptr; 4355 for (Value *V : VL) { 4356 if (doesNotNeedToBeScheduled(V)) 4357 continue; 4358 if (!NeedsScheduling) { 4359 NeedsScheduling = V; 4360 continue; 4361 } 4362 return false; 4363 } 4364 return NeedsScheduling; 4365 } 4366 #endif 4367 4368 /// Generates key/subkey pair for the given value to provide effective sorting 4369 /// of the values and better detection of the vectorizable values sequences. The 4370 /// keys/subkeys can be used for better sorting of the values themselves (keys) 4371 /// and in values subgroups (subkeys). 4372 static std::pair<size_t, size_t> generateKeySubkey( 4373 Value *V, const TargetLibraryInfo *TLI, 4374 function_ref<hash_code(size_t, LoadInst *)> LoadsSubkeyGenerator, 4375 bool AllowAlternate) { 4376 hash_code Key = hash_value(V->getValueID() + 2); 4377 hash_code SubKey = hash_value(0); 4378 // Sort the loads by the distance between the pointers. 4379 if (auto *LI = dyn_cast<LoadInst>(V)) { 4380 Key = hash_combine(hash_value(Instruction::Load), Key); 4381 if (LI->isSimple()) 4382 SubKey = hash_value(LoadsSubkeyGenerator(Key, LI)); 4383 else 4384 SubKey = hash_value(LI); 4385 } else if (isVectorLikeInstWithConstOps(V)) { 4386 // Sort extracts by the vector operands. 4387 if (isa<ExtractElementInst, UndefValue>(V)) 4388 Key = hash_value(Value::UndefValueVal + 1); 4389 if (auto *EI = dyn_cast<ExtractElementInst>(V)) { 4390 if (!isUndefVector(EI->getVectorOperand()) && 4391 !isa<UndefValue>(EI->getIndexOperand())) 4392 SubKey = hash_value(EI->getVectorOperand()); 4393 } 4394 } else if (auto *I = dyn_cast<Instruction>(V)) { 4395 // Sort other instructions just by the opcodes except for CMPInst. 4396 // For CMP also sort by the predicate kind. 4397 if ((isa<BinaryOperator>(I) || isa<CastInst>(I)) && 4398 isValidForAlternation(I->getOpcode())) { 4399 if (AllowAlternate) 4400 Key = hash_value(isa<BinaryOperator>(I) ? 1 : 0); 4401 else 4402 Key = hash_combine(hash_value(I->getOpcode()), Key); 4403 SubKey = hash_combine( 4404 hash_value(I->getOpcode()), hash_value(I->getType()), 4405 hash_value(isa<BinaryOperator>(I) 4406 ? I->getType() 4407 : cast<CastInst>(I)->getOperand(0)->getType())); 4408 } else if (auto *CI = dyn_cast<CmpInst>(I)) { 4409 CmpInst::Predicate Pred = CI->getPredicate(); 4410 if (CI->isCommutative()) 4411 Pred = std::min(Pred, CmpInst::getInversePredicate(Pred)); 4412 CmpInst::Predicate SwapPred = CmpInst::getSwappedPredicate(Pred); 4413 SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(Pred), 4414 hash_value(SwapPred), 4415 hash_value(CI->getOperand(0)->getType())); 4416 } else if (auto *Call = dyn_cast<CallInst>(I)) { 4417 Intrinsic::ID ID = getVectorIntrinsicIDForCall(Call, TLI); 4418 if (isTriviallyVectorizable(ID)) 4419 SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(ID)); 4420 else if (!VFDatabase(*Call).getMappings(*Call).empty()) 4421 SubKey = hash_combine(hash_value(I->getOpcode()), 4422 hash_value(Call->getCalledFunction())); 4423 else 4424 SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(Call)); 4425 for (const CallBase::BundleOpInfo &Op : Call->bundle_op_infos()) 4426 SubKey = hash_combine(hash_value(Op.Begin), hash_value(Op.End), 4427 hash_value(Op.Tag), SubKey); 4428 } else if (auto *Gep = dyn_cast<GetElementPtrInst>(I)) { 4429 if (Gep->getNumOperands() == 2 && isa<ConstantInt>(Gep->getOperand(1))) 4430 SubKey = hash_value(Gep->getPointerOperand()); 4431 else 4432 SubKey = hash_value(Gep); 4433 } else if (BinaryOperator::isIntDivRem(I->getOpcode()) && 4434 !isa<ConstantInt>(I->getOperand(1))) { 4435 // Do not try to vectorize instructions with potentially high cost. 4436 SubKey = hash_value(I); 4437 } else { 4438 SubKey = hash_value(I->getOpcode()); 4439 } 4440 Key = hash_combine(hash_value(I->getParent()), Key); 4441 } 4442 return std::make_pair(Key, SubKey); 4443 } 4444 4445 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 4446 const EdgeInfo &UserTreeIdx) { 4447 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 4448 4449 SmallVector<int> ReuseShuffleIndicies; 4450 SmallVector<Value *> UniqueValues; 4451 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 4452 &UserTreeIdx, 4453 this](const InstructionsState &S) { 4454 // Check that every instruction appears once in this bundle. 4455 DenseMap<Value *, unsigned> UniquePositions; 4456 for (Value *V : VL) { 4457 if (isConstant(V)) { 4458 ReuseShuffleIndicies.emplace_back( 4459 isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size()); 4460 UniqueValues.emplace_back(V); 4461 continue; 4462 } 4463 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 4464 ReuseShuffleIndicies.emplace_back(Res.first->second); 4465 if (Res.second) 4466 UniqueValues.emplace_back(V); 4467 } 4468 size_t NumUniqueScalarValues = UniqueValues.size(); 4469 if (NumUniqueScalarValues == VL.size()) { 4470 ReuseShuffleIndicies.clear(); 4471 } else { 4472 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 4473 if (NumUniqueScalarValues <= 1 || 4474 (UniquePositions.size() == 1 && all_of(UniqueValues, 4475 [](Value *V) { 4476 return isa<UndefValue>(V) || 4477 !isConstant(V); 4478 })) || 4479 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 4480 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 4481 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4482 return false; 4483 } 4484 VL = UniqueValues; 4485 } 4486 return true; 4487 }; 4488 4489 InstructionsState S = getSameOpcode(VL); 4490 if (Depth == RecursionMaxDepth) { 4491 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 4492 if (TryToFindDuplicates(S)) 4493 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4494 ReuseShuffleIndicies); 4495 return; 4496 } 4497 4498 // Don't handle scalable vectors 4499 if (S.getOpcode() == Instruction::ExtractElement && 4500 isa<ScalableVectorType>( 4501 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 4502 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 4503 if (TryToFindDuplicates(S)) 4504 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4505 ReuseShuffleIndicies); 4506 return; 4507 } 4508 4509 // Don't handle vectors. 4510 if (S.OpValue->getType()->isVectorTy() && 4511 !isa<InsertElementInst>(S.OpValue)) { 4512 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 4513 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4514 return; 4515 } 4516 4517 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 4518 if (SI->getValueOperand()->getType()->isVectorTy()) { 4519 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 4520 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4521 return; 4522 } 4523 4524 // If all of the operands are identical or constant we have a simple solution. 4525 // If we deal with insert/extract instructions, they all must have constant 4526 // indices, otherwise we should gather them, not try to vectorize. 4527 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 4528 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 4529 !all_of(VL, isVectorLikeInstWithConstOps))) { 4530 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 4531 if (TryToFindDuplicates(S)) 4532 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4533 ReuseShuffleIndicies); 4534 return; 4535 } 4536 4537 // We now know that this is a vector of instructions of the same type from 4538 // the same block. 4539 4540 // Don't vectorize ephemeral values. 4541 for (Value *V : VL) { 4542 if (EphValues.count(V)) { 4543 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 4544 << ") is ephemeral.\n"); 4545 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4546 return; 4547 } 4548 } 4549 4550 // Check if this is a duplicate of another entry. 4551 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4552 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 4553 if (!E->isSame(VL)) { 4554 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 4555 if (TryToFindDuplicates(S)) 4556 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4557 ReuseShuffleIndicies); 4558 return; 4559 } 4560 // Record the reuse of the tree node. FIXME, currently this is only used to 4561 // properly draw the graph rather than for the actual vectorization. 4562 E->UserTreeIndices.push_back(UserTreeIdx); 4563 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 4564 << ".\n"); 4565 return; 4566 } 4567 4568 // Check that none of the instructions in the bundle are already in the tree. 4569 for (Value *V : VL) { 4570 auto *I = dyn_cast<Instruction>(V); 4571 if (!I) 4572 continue; 4573 if (getTreeEntry(I)) { 4574 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 4575 << ") is already in tree.\n"); 4576 if (TryToFindDuplicates(S)) 4577 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4578 ReuseShuffleIndicies); 4579 return; 4580 } 4581 } 4582 4583 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 4584 for (Value *V : VL) { 4585 if (is_contained(UserIgnoreList, V)) { 4586 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 4587 if (TryToFindDuplicates(S)) 4588 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4589 ReuseShuffleIndicies); 4590 return; 4591 } 4592 } 4593 4594 // Check that all of the users of the scalars that we want to vectorize are 4595 // schedulable. 4596 auto *VL0 = cast<Instruction>(S.OpValue); 4597 BasicBlock *BB = VL0->getParent(); 4598 4599 if (!DT->isReachableFromEntry(BB)) { 4600 // Don't go into unreachable blocks. They may contain instructions with 4601 // dependency cycles which confuse the final scheduling. 4602 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 4603 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4604 return; 4605 } 4606 4607 // Check that every instruction appears once in this bundle. 4608 if (!TryToFindDuplicates(S)) 4609 return; 4610 4611 auto &BSRef = BlocksSchedules[BB]; 4612 if (!BSRef) 4613 BSRef = std::make_unique<BlockScheduling>(BB); 4614 4615 BlockScheduling &BS = *BSRef; 4616 4617 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 4618 #ifdef EXPENSIVE_CHECKS 4619 // Make sure we didn't break any internal invariants 4620 BS.verify(); 4621 #endif 4622 if (!Bundle) { 4623 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 4624 assert((!BS.getScheduleData(VL0) || 4625 !BS.getScheduleData(VL0)->isPartOfBundle()) && 4626 "tryScheduleBundle should cancelScheduling on failure"); 4627 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4628 ReuseShuffleIndicies); 4629 return; 4630 } 4631 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 4632 4633 unsigned ShuffleOrOp = S.isAltShuffle() ? 4634 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 4635 switch (ShuffleOrOp) { 4636 case Instruction::PHI: { 4637 auto *PH = cast<PHINode>(VL0); 4638 4639 // Check for terminator values (e.g. invoke). 4640 for (Value *V : VL) 4641 for (Value *Incoming : cast<PHINode>(V)->incoming_values()) { 4642 Instruction *Term = dyn_cast<Instruction>(Incoming); 4643 if (Term && Term->isTerminator()) { 4644 LLVM_DEBUG(dbgs() 4645 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 4646 BS.cancelScheduling(VL, VL0); 4647 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4648 ReuseShuffleIndicies); 4649 return; 4650 } 4651 } 4652 4653 TreeEntry *TE = 4654 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 4655 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 4656 4657 // Keeps the reordered operands to avoid code duplication. 4658 SmallVector<ValueList, 2> OperandsVec; 4659 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 4660 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 4661 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 4662 TE->setOperand(I, Operands); 4663 OperandsVec.push_back(Operands); 4664 continue; 4665 } 4666 ValueList Operands; 4667 // Prepare the operand vector. 4668 for (Value *V : VL) 4669 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 4670 PH->getIncomingBlock(I))); 4671 TE->setOperand(I, Operands); 4672 OperandsVec.push_back(Operands); 4673 } 4674 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 4675 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 4676 return; 4677 } 4678 case Instruction::ExtractValue: 4679 case Instruction::ExtractElement: { 4680 OrdersType CurrentOrder; 4681 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 4682 if (Reuse) { 4683 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 4684 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4685 ReuseShuffleIndicies); 4686 // This is a special case, as it does not gather, but at the same time 4687 // we are not extending buildTree_rec() towards the operands. 4688 ValueList Op0; 4689 Op0.assign(VL.size(), VL0->getOperand(0)); 4690 VectorizableTree.back()->setOperand(0, Op0); 4691 return; 4692 } 4693 if (!CurrentOrder.empty()) { 4694 LLVM_DEBUG({ 4695 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 4696 "with order"; 4697 for (unsigned Idx : CurrentOrder) 4698 dbgs() << " " << Idx; 4699 dbgs() << "\n"; 4700 }); 4701 fixupOrderingIndices(CurrentOrder); 4702 // Insert new order with initial value 0, if it does not exist, 4703 // otherwise return the iterator to the existing one. 4704 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4705 ReuseShuffleIndicies, CurrentOrder); 4706 // This is a special case, as it does not gather, but at the same time 4707 // we are not extending buildTree_rec() towards the operands. 4708 ValueList Op0; 4709 Op0.assign(VL.size(), VL0->getOperand(0)); 4710 VectorizableTree.back()->setOperand(0, Op0); 4711 return; 4712 } 4713 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 4714 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4715 ReuseShuffleIndicies); 4716 BS.cancelScheduling(VL, VL0); 4717 return; 4718 } 4719 case Instruction::InsertElement: { 4720 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 4721 4722 // Check that we have a buildvector and not a shuffle of 2 or more 4723 // different vectors. 4724 ValueSet SourceVectors; 4725 for (Value *V : VL) { 4726 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 4727 assert(getInsertIndex(V) != None && "Non-constant or undef index?"); 4728 } 4729 4730 if (count_if(VL, [&SourceVectors](Value *V) { 4731 return !SourceVectors.contains(V); 4732 }) >= 2) { 4733 // Found 2nd source vector - cancel. 4734 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 4735 "different source vectors.\n"); 4736 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4737 BS.cancelScheduling(VL, VL0); 4738 return; 4739 } 4740 4741 auto OrdCompare = [](const std::pair<int, int> &P1, 4742 const std::pair<int, int> &P2) { 4743 return P1.first > P2.first; 4744 }; 4745 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 4746 decltype(OrdCompare)> 4747 Indices(OrdCompare); 4748 for (int I = 0, E = VL.size(); I < E; ++I) { 4749 unsigned Idx = *getInsertIndex(VL[I]); 4750 Indices.emplace(Idx, I); 4751 } 4752 OrdersType CurrentOrder(VL.size(), VL.size()); 4753 bool IsIdentity = true; 4754 for (int I = 0, E = VL.size(); I < E; ++I) { 4755 CurrentOrder[Indices.top().second] = I; 4756 IsIdentity &= Indices.top().second == I; 4757 Indices.pop(); 4758 } 4759 if (IsIdentity) 4760 CurrentOrder.clear(); 4761 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4762 None, CurrentOrder); 4763 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 4764 4765 constexpr int NumOps = 2; 4766 ValueList VectorOperands[NumOps]; 4767 for (int I = 0; I < NumOps; ++I) { 4768 for (Value *V : VL) 4769 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 4770 4771 TE->setOperand(I, VectorOperands[I]); 4772 } 4773 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 4774 return; 4775 } 4776 case Instruction::Load: { 4777 // Check that a vectorized load would load the same memory as a scalar 4778 // load. For example, we don't want to vectorize loads that are smaller 4779 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 4780 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 4781 // from such a struct, we read/write packed bits disagreeing with the 4782 // unvectorized version. 4783 SmallVector<Value *> PointerOps; 4784 OrdersType CurrentOrder; 4785 TreeEntry *TE = nullptr; 4786 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 4787 PointerOps)) { 4788 case LoadsState::Vectorize: 4789 if (CurrentOrder.empty()) { 4790 // Original loads are consecutive and does not require reordering. 4791 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4792 ReuseShuffleIndicies); 4793 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 4794 } else { 4795 fixupOrderingIndices(CurrentOrder); 4796 // Need to reorder. 4797 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4798 ReuseShuffleIndicies, CurrentOrder); 4799 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 4800 } 4801 TE->setOperandsInOrder(); 4802 break; 4803 case LoadsState::ScatterVectorize: 4804 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 4805 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 4806 UserTreeIdx, ReuseShuffleIndicies); 4807 TE->setOperandsInOrder(); 4808 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 4809 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 4810 break; 4811 case LoadsState::Gather: 4812 BS.cancelScheduling(VL, VL0); 4813 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4814 ReuseShuffleIndicies); 4815 #ifndef NDEBUG 4816 Type *ScalarTy = VL0->getType(); 4817 if (DL->getTypeSizeInBits(ScalarTy) != 4818 DL->getTypeAllocSizeInBits(ScalarTy)) 4819 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 4820 else if (any_of(VL, [](Value *V) { 4821 return !cast<LoadInst>(V)->isSimple(); 4822 })) 4823 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 4824 else 4825 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 4826 #endif // NDEBUG 4827 break; 4828 } 4829 return; 4830 } 4831 case Instruction::ZExt: 4832 case Instruction::SExt: 4833 case Instruction::FPToUI: 4834 case Instruction::FPToSI: 4835 case Instruction::FPExt: 4836 case Instruction::PtrToInt: 4837 case Instruction::IntToPtr: 4838 case Instruction::SIToFP: 4839 case Instruction::UIToFP: 4840 case Instruction::Trunc: 4841 case Instruction::FPTrunc: 4842 case Instruction::BitCast: { 4843 Type *SrcTy = VL0->getOperand(0)->getType(); 4844 for (Value *V : VL) { 4845 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 4846 if (Ty != SrcTy || !isValidElementType(Ty)) { 4847 BS.cancelScheduling(VL, VL0); 4848 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4849 ReuseShuffleIndicies); 4850 LLVM_DEBUG(dbgs() 4851 << "SLP: Gathering casts with different src types.\n"); 4852 return; 4853 } 4854 } 4855 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4856 ReuseShuffleIndicies); 4857 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 4858 4859 TE->setOperandsInOrder(); 4860 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4861 ValueList Operands; 4862 // Prepare the operand vector. 4863 for (Value *V : VL) 4864 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4865 4866 buildTree_rec(Operands, Depth + 1, {TE, i}); 4867 } 4868 return; 4869 } 4870 case Instruction::ICmp: 4871 case Instruction::FCmp: { 4872 // Check that all of the compares have the same predicate. 4873 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4874 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 4875 Type *ComparedTy = VL0->getOperand(0)->getType(); 4876 for (Value *V : VL) { 4877 CmpInst *Cmp = cast<CmpInst>(V); 4878 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 4879 Cmp->getOperand(0)->getType() != ComparedTy) { 4880 BS.cancelScheduling(VL, VL0); 4881 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4882 ReuseShuffleIndicies); 4883 LLVM_DEBUG(dbgs() 4884 << "SLP: Gathering cmp with different predicate.\n"); 4885 return; 4886 } 4887 } 4888 4889 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4890 ReuseShuffleIndicies); 4891 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 4892 4893 ValueList Left, Right; 4894 if (cast<CmpInst>(VL0)->isCommutative()) { 4895 // Commutative predicate - collect + sort operands of the instructions 4896 // so that each side is more likely to have the same opcode. 4897 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 4898 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4899 } else { 4900 // Collect operands - commute if it uses the swapped predicate. 4901 for (Value *V : VL) { 4902 auto *Cmp = cast<CmpInst>(V); 4903 Value *LHS = Cmp->getOperand(0); 4904 Value *RHS = Cmp->getOperand(1); 4905 if (Cmp->getPredicate() != P0) 4906 std::swap(LHS, RHS); 4907 Left.push_back(LHS); 4908 Right.push_back(RHS); 4909 } 4910 } 4911 TE->setOperand(0, Left); 4912 TE->setOperand(1, Right); 4913 buildTree_rec(Left, Depth + 1, {TE, 0}); 4914 buildTree_rec(Right, Depth + 1, {TE, 1}); 4915 return; 4916 } 4917 case Instruction::Select: 4918 case Instruction::FNeg: 4919 case Instruction::Add: 4920 case Instruction::FAdd: 4921 case Instruction::Sub: 4922 case Instruction::FSub: 4923 case Instruction::Mul: 4924 case Instruction::FMul: 4925 case Instruction::UDiv: 4926 case Instruction::SDiv: 4927 case Instruction::FDiv: 4928 case Instruction::URem: 4929 case Instruction::SRem: 4930 case Instruction::FRem: 4931 case Instruction::Shl: 4932 case Instruction::LShr: 4933 case Instruction::AShr: 4934 case Instruction::And: 4935 case Instruction::Or: 4936 case Instruction::Xor: { 4937 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4938 ReuseShuffleIndicies); 4939 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 4940 4941 // Sort operands of the instructions so that each side is more likely to 4942 // have the same opcode. 4943 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 4944 ValueList Left, Right; 4945 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4946 TE->setOperand(0, Left); 4947 TE->setOperand(1, Right); 4948 buildTree_rec(Left, Depth + 1, {TE, 0}); 4949 buildTree_rec(Right, Depth + 1, {TE, 1}); 4950 return; 4951 } 4952 4953 TE->setOperandsInOrder(); 4954 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4955 ValueList Operands; 4956 // Prepare the operand vector. 4957 for (Value *V : VL) 4958 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4959 4960 buildTree_rec(Operands, Depth + 1, {TE, i}); 4961 } 4962 return; 4963 } 4964 case Instruction::GetElementPtr: { 4965 // We don't combine GEPs with complicated (nested) indexing. 4966 for (Value *V : VL) { 4967 if (cast<Instruction>(V)->getNumOperands() != 2) { 4968 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 4969 BS.cancelScheduling(VL, VL0); 4970 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4971 ReuseShuffleIndicies); 4972 return; 4973 } 4974 } 4975 4976 // We can't combine several GEPs into one vector if they operate on 4977 // different types. 4978 Type *Ty0 = cast<GEPOperator>(VL0)->getSourceElementType(); 4979 for (Value *V : VL) { 4980 Type *CurTy = cast<GEPOperator>(V)->getSourceElementType(); 4981 if (Ty0 != CurTy) { 4982 LLVM_DEBUG(dbgs() 4983 << "SLP: not-vectorizable GEP (different types).\n"); 4984 BS.cancelScheduling(VL, VL0); 4985 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4986 ReuseShuffleIndicies); 4987 return; 4988 } 4989 } 4990 4991 // We don't combine GEPs with non-constant indexes. 4992 Type *Ty1 = VL0->getOperand(1)->getType(); 4993 for (Value *V : VL) { 4994 auto Op = cast<Instruction>(V)->getOperand(1); 4995 if (!isa<ConstantInt>(Op) || 4996 (Op->getType() != Ty1 && 4997 Op->getType()->getScalarSizeInBits() > 4998 DL->getIndexSizeInBits( 4999 V->getType()->getPointerAddressSpace()))) { 5000 LLVM_DEBUG(dbgs() 5001 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 5002 BS.cancelScheduling(VL, VL0); 5003 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5004 ReuseShuffleIndicies); 5005 return; 5006 } 5007 } 5008 5009 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 5010 ReuseShuffleIndicies); 5011 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 5012 SmallVector<ValueList, 2> Operands(2); 5013 // Prepare the operand vector for pointer operands. 5014 for (Value *V : VL) 5015 Operands.front().push_back( 5016 cast<GetElementPtrInst>(V)->getPointerOperand()); 5017 TE->setOperand(0, Operands.front()); 5018 // Need to cast all indices to the same type before vectorization to 5019 // avoid crash. 5020 // Required to be able to find correct matches between different gather 5021 // nodes and reuse the vectorized values rather than trying to gather them 5022 // again. 5023 int IndexIdx = 1; 5024 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 5025 Type *Ty = all_of(VL, 5026 [VL0Ty, IndexIdx](Value *V) { 5027 return VL0Ty == cast<GetElementPtrInst>(V) 5028 ->getOperand(IndexIdx) 5029 ->getType(); 5030 }) 5031 ? VL0Ty 5032 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 5033 ->getPointerOperandType() 5034 ->getScalarType()); 5035 // Prepare the operand vector. 5036 for (Value *V : VL) { 5037 auto *Op = cast<Instruction>(V)->getOperand(IndexIdx); 5038 auto *CI = cast<ConstantInt>(Op); 5039 Operands.back().push_back(ConstantExpr::getIntegerCast( 5040 CI, Ty, CI->getValue().isSignBitSet())); 5041 } 5042 TE->setOperand(IndexIdx, Operands.back()); 5043 5044 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 5045 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 5046 return; 5047 } 5048 case Instruction::Store: { 5049 // Check if the stores are consecutive or if we need to swizzle them. 5050 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 5051 // Avoid types that are padded when being allocated as scalars, while 5052 // being packed together in a vector (such as i1). 5053 if (DL->getTypeSizeInBits(ScalarTy) != 5054 DL->getTypeAllocSizeInBits(ScalarTy)) { 5055 BS.cancelScheduling(VL, VL0); 5056 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5057 ReuseShuffleIndicies); 5058 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 5059 return; 5060 } 5061 // Make sure all stores in the bundle are simple - we can't vectorize 5062 // atomic or volatile stores. 5063 SmallVector<Value *, 4> PointerOps(VL.size()); 5064 ValueList Operands(VL.size()); 5065 auto POIter = PointerOps.begin(); 5066 auto OIter = Operands.begin(); 5067 for (Value *V : VL) { 5068 auto *SI = cast<StoreInst>(V); 5069 if (!SI->isSimple()) { 5070 BS.cancelScheduling(VL, VL0); 5071 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5072 ReuseShuffleIndicies); 5073 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 5074 return; 5075 } 5076 *POIter = SI->getPointerOperand(); 5077 *OIter = SI->getValueOperand(); 5078 ++POIter; 5079 ++OIter; 5080 } 5081 5082 OrdersType CurrentOrder; 5083 // Check the order of pointer operands. 5084 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 5085 Value *Ptr0; 5086 Value *PtrN; 5087 if (CurrentOrder.empty()) { 5088 Ptr0 = PointerOps.front(); 5089 PtrN = PointerOps.back(); 5090 } else { 5091 Ptr0 = PointerOps[CurrentOrder.front()]; 5092 PtrN = PointerOps[CurrentOrder.back()]; 5093 } 5094 Optional<int> Dist = 5095 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 5096 // Check that the sorted pointer operands are consecutive. 5097 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 5098 if (CurrentOrder.empty()) { 5099 // Original stores are consecutive and does not require reordering. 5100 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 5101 UserTreeIdx, ReuseShuffleIndicies); 5102 TE->setOperandsInOrder(); 5103 buildTree_rec(Operands, Depth + 1, {TE, 0}); 5104 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 5105 } else { 5106 fixupOrderingIndices(CurrentOrder); 5107 TreeEntry *TE = 5108 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 5109 ReuseShuffleIndicies, CurrentOrder); 5110 TE->setOperandsInOrder(); 5111 buildTree_rec(Operands, Depth + 1, {TE, 0}); 5112 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 5113 } 5114 return; 5115 } 5116 } 5117 5118 BS.cancelScheduling(VL, VL0); 5119 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5120 ReuseShuffleIndicies); 5121 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 5122 return; 5123 } 5124 case Instruction::Call: { 5125 // Check if the calls are all to the same vectorizable intrinsic or 5126 // library function. 5127 CallInst *CI = cast<CallInst>(VL0); 5128 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5129 5130 VFShape Shape = VFShape::get( 5131 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 5132 false /*HasGlobalPred*/); 5133 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 5134 5135 if (!VecFunc && !isTriviallyVectorizable(ID)) { 5136 BS.cancelScheduling(VL, VL0); 5137 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5138 ReuseShuffleIndicies); 5139 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 5140 return; 5141 } 5142 Function *F = CI->getCalledFunction(); 5143 unsigned NumArgs = CI->arg_size(); 5144 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 5145 for (unsigned j = 0; j != NumArgs; ++j) 5146 if (isVectorIntrinsicWithScalarOpAtArg(ID, j)) 5147 ScalarArgs[j] = CI->getArgOperand(j); 5148 for (Value *V : VL) { 5149 CallInst *CI2 = dyn_cast<CallInst>(V); 5150 if (!CI2 || CI2->getCalledFunction() != F || 5151 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 5152 (VecFunc && 5153 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 5154 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 5155 BS.cancelScheduling(VL, VL0); 5156 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5157 ReuseShuffleIndicies); 5158 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 5159 << "\n"); 5160 return; 5161 } 5162 // Some intrinsics have scalar arguments and should be same in order for 5163 // them to be vectorized. 5164 for (unsigned j = 0; j != NumArgs; ++j) { 5165 if (isVectorIntrinsicWithScalarOpAtArg(ID, j)) { 5166 Value *A1J = CI2->getArgOperand(j); 5167 if (ScalarArgs[j] != A1J) { 5168 BS.cancelScheduling(VL, VL0); 5169 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5170 ReuseShuffleIndicies); 5171 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 5172 << " argument " << ScalarArgs[j] << "!=" << A1J 5173 << "\n"); 5174 return; 5175 } 5176 } 5177 } 5178 // Verify that the bundle operands are identical between the two calls. 5179 if (CI->hasOperandBundles() && 5180 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 5181 CI->op_begin() + CI->getBundleOperandsEndIndex(), 5182 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 5183 BS.cancelScheduling(VL, VL0); 5184 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5185 ReuseShuffleIndicies); 5186 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 5187 << *CI << "!=" << *V << '\n'); 5188 return; 5189 } 5190 } 5191 5192 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 5193 ReuseShuffleIndicies); 5194 TE->setOperandsInOrder(); 5195 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 5196 // For scalar operands no need to to create an entry since no need to 5197 // vectorize it. 5198 if (isVectorIntrinsicWithScalarOpAtArg(ID, i)) 5199 continue; 5200 ValueList Operands; 5201 // Prepare the operand vector. 5202 for (Value *V : VL) { 5203 auto *CI2 = cast<CallInst>(V); 5204 Operands.push_back(CI2->getArgOperand(i)); 5205 } 5206 buildTree_rec(Operands, Depth + 1, {TE, i}); 5207 } 5208 return; 5209 } 5210 case Instruction::ShuffleVector: { 5211 // If this is not an alternate sequence of opcode like add-sub 5212 // then do not vectorize this instruction. 5213 if (!S.isAltShuffle()) { 5214 BS.cancelScheduling(VL, VL0); 5215 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5216 ReuseShuffleIndicies); 5217 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 5218 return; 5219 } 5220 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 5221 ReuseShuffleIndicies); 5222 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 5223 5224 // Reorder operands if reordering would enable vectorization. 5225 auto *CI = dyn_cast<CmpInst>(VL0); 5226 if (isa<BinaryOperator>(VL0) || CI) { 5227 ValueList Left, Right; 5228 if (!CI || all_of(VL, [](Value *V) { 5229 return cast<CmpInst>(V)->isCommutative(); 5230 })) { 5231 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 5232 } else { 5233 CmpInst::Predicate P0 = CI->getPredicate(); 5234 CmpInst::Predicate AltP0 = cast<CmpInst>(S.AltOp)->getPredicate(); 5235 assert(P0 != AltP0 && 5236 "Expected different main/alternate predicates."); 5237 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 5238 Value *BaseOp0 = VL0->getOperand(0); 5239 Value *BaseOp1 = VL0->getOperand(1); 5240 // Collect operands - commute if it uses the swapped predicate or 5241 // alternate operation. 5242 for (Value *V : VL) { 5243 auto *Cmp = cast<CmpInst>(V); 5244 Value *LHS = Cmp->getOperand(0); 5245 Value *RHS = Cmp->getOperand(1); 5246 CmpInst::Predicate CurrentPred = Cmp->getPredicate(); 5247 if (P0 == AltP0Swapped) { 5248 if (CI != Cmp && S.AltOp != Cmp && 5249 ((P0 == CurrentPred && 5250 !areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)) || 5251 (AltP0 == CurrentPred && 5252 areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)))) 5253 std::swap(LHS, RHS); 5254 } else if (P0 != CurrentPred && AltP0 != CurrentPred) { 5255 std::swap(LHS, RHS); 5256 } 5257 Left.push_back(LHS); 5258 Right.push_back(RHS); 5259 } 5260 } 5261 TE->setOperand(0, Left); 5262 TE->setOperand(1, Right); 5263 buildTree_rec(Left, Depth + 1, {TE, 0}); 5264 buildTree_rec(Right, Depth + 1, {TE, 1}); 5265 return; 5266 } 5267 5268 TE->setOperandsInOrder(); 5269 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 5270 ValueList Operands; 5271 // Prepare the operand vector. 5272 for (Value *V : VL) 5273 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 5274 5275 buildTree_rec(Operands, Depth + 1, {TE, i}); 5276 } 5277 return; 5278 } 5279 default: 5280 BS.cancelScheduling(VL, VL0); 5281 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5282 ReuseShuffleIndicies); 5283 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 5284 return; 5285 } 5286 } 5287 5288 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 5289 unsigned N = 1; 5290 Type *EltTy = T; 5291 5292 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 5293 isa<VectorType>(EltTy)) { 5294 if (auto *ST = dyn_cast<StructType>(EltTy)) { 5295 // Check that struct is homogeneous. 5296 for (const auto *Ty : ST->elements()) 5297 if (Ty != *ST->element_begin()) 5298 return 0; 5299 N *= ST->getNumElements(); 5300 EltTy = *ST->element_begin(); 5301 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 5302 N *= AT->getNumElements(); 5303 EltTy = AT->getElementType(); 5304 } else { 5305 auto *VT = cast<FixedVectorType>(EltTy); 5306 N *= VT->getNumElements(); 5307 EltTy = VT->getElementType(); 5308 } 5309 } 5310 5311 if (!isValidElementType(EltTy)) 5312 return 0; 5313 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 5314 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 5315 return 0; 5316 return N; 5317 } 5318 5319 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 5320 SmallVectorImpl<unsigned> &CurrentOrder) const { 5321 const auto *It = find_if(VL, [](Value *V) { 5322 return isa<ExtractElementInst, ExtractValueInst>(V); 5323 }); 5324 assert(It != VL.end() && "Expected at least one extract instruction."); 5325 auto *E0 = cast<Instruction>(*It); 5326 assert(all_of(VL, 5327 [](Value *V) { 5328 return isa<UndefValue, ExtractElementInst, ExtractValueInst>( 5329 V); 5330 }) && 5331 "Invalid opcode"); 5332 // Check if all of the extracts come from the same vector and from the 5333 // correct offset. 5334 Value *Vec = E0->getOperand(0); 5335 5336 CurrentOrder.clear(); 5337 5338 // We have to extract from a vector/aggregate with the same number of elements. 5339 unsigned NElts; 5340 if (E0->getOpcode() == Instruction::ExtractValue) { 5341 const DataLayout &DL = E0->getModule()->getDataLayout(); 5342 NElts = canMapToVector(Vec->getType(), DL); 5343 if (!NElts) 5344 return false; 5345 // Check if load can be rewritten as load of vector. 5346 LoadInst *LI = dyn_cast<LoadInst>(Vec); 5347 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 5348 return false; 5349 } else { 5350 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 5351 } 5352 5353 if (NElts != VL.size()) 5354 return false; 5355 5356 // Check that all of the indices extract from the correct offset. 5357 bool ShouldKeepOrder = true; 5358 unsigned E = VL.size(); 5359 // Assign to all items the initial value E + 1 so we can check if the extract 5360 // instruction index was used already. 5361 // Also, later we can check that all the indices are used and we have a 5362 // consecutive access in the extract instructions, by checking that no 5363 // element of CurrentOrder still has value E + 1. 5364 CurrentOrder.assign(E, E); 5365 unsigned I = 0; 5366 for (; I < E; ++I) { 5367 auto *Inst = dyn_cast<Instruction>(VL[I]); 5368 if (!Inst) 5369 continue; 5370 if (Inst->getOperand(0) != Vec) 5371 break; 5372 if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) 5373 if (isa<UndefValue>(EE->getIndexOperand())) 5374 continue; 5375 Optional<unsigned> Idx = getExtractIndex(Inst); 5376 if (!Idx) 5377 break; 5378 const unsigned ExtIdx = *Idx; 5379 if (ExtIdx != I) { 5380 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E) 5381 break; 5382 ShouldKeepOrder = false; 5383 CurrentOrder[ExtIdx] = I; 5384 } else { 5385 if (CurrentOrder[I] != E) 5386 break; 5387 CurrentOrder[I] = I; 5388 } 5389 } 5390 if (I < E) { 5391 CurrentOrder.clear(); 5392 return false; 5393 } 5394 if (ShouldKeepOrder) 5395 CurrentOrder.clear(); 5396 5397 return ShouldKeepOrder; 5398 } 5399 5400 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 5401 ArrayRef<Value *> VectorizedVals) const { 5402 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 5403 all_of(I->users(), [this](User *U) { 5404 return ScalarToTreeEntry.count(U) > 0 || 5405 isVectorLikeInstWithConstOps(U) || 5406 (isa<ExtractElementInst>(U) && MustGather.contains(U)); 5407 }); 5408 } 5409 5410 static std::pair<InstructionCost, InstructionCost> 5411 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 5412 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 5413 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5414 5415 // Calculate the cost of the scalar and vector calls. 5416 SmallVector<Type *, 4> VecTys; 5417 for (Use &Arg : CI->args()) 5418 VecTys.push_back( 5419 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 5420 FastMathFlags FMF; 5421 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 5422 FMF = FPCI->getFastMathFlags(); 5423 SmallVector<const Value *> Arguments(CI->args()); 5424 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 5425 dyn_cast<IntrinsicInst>(CI)); 5426 auto IntrinsicCost = 5427 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 5428 5429 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 5430 VecTy->getNumElements())), 5431 false /*HasGlobalPred*/); 5432 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 5433 auto LibCost = IntrinsicCost; 5434 if (!CI->isNoBuiltin() && VecFunc) { 5435 // Calculate the cost of the vector library call. 5436 // If the corresponding vector call is cheaper, return its cost. 5437 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 5438 TTI::TCK_RecipThroughput); 5439 } 5440 return {IntrinsicCost, LibCost}; 5441 } 5442 5443 /// Compute the cost of creating a vector of type \p VecTy containing the 5444 /// extracted values from \p VL. 5445 static InstructionCost 5446 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 5447 TargetTransformInfo::ShuffleKind ShuffleKind, 5448 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 5449 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 5450 5451 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 5452 VecTy->getNumElements() < NumOfParts) 5453 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 5454 5455 bool AllConsecutive = true; 5456 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 5457 unsigned Idx = -1; 5458 InstructionCost Cost = 0; 5459 5460 // Process extracts in blocks of EltsPerVector to check if the source vector 5461 // operand can be re-used directly. If not, add the cost of creating a shuffle 5462 // to extract the values into a vector register. 5463 SmallVector<int> RegMask(EltsPerVector, UndefMaskElem); 5464 for (auto *V : VL) { 5465 ++Idx; 5466 5467 // Need to exclude undefs from analysis. 5468 if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem) 5469 continue; 5470 5471 // Reached the start of a new vector registers. 5472 if (Idx % EltsPerVector == 0) { 5473 RegMask.assign(EltsPerVector, UndefMaskElem); 5474 AllConsecutive = true; 5475 continue; 5476 } 5477 5478 // Check all extracts for a vector register on the target directly 5479 // extract values in order. 5480 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 5481 if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) { 5482 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 5483 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 5484 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 5485 RegMask[Idx % EltsPerVector] = CurrentIdx % EltsPerVector; 5486 } 5487 5488 if (AllConsecutive) 5489 continue; 5490 5491 // Skip all indices, except for the last index per vector block. 5492 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 5493 continue; 5494 5495 // If we have a series of extracts which are not consecutive and hence 5496 // cannot re-use the source vector register directly, compute the shuffle 5497 // cost to extract the vector with EltsPerVector elements. 5498 Cost += TTI.getShuffleCost( 5499 TargetTransformInfo::SK_PermuteSingleSrc, 5500 FixedVectorType::get(VecTy->getElementType(), EltsPerVector), RegMask); 5501 } 5502 return Cost; 5503 } 5504 5505 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 5506 /// operations operands. 5507 static void 5508 buildShuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 5509 ArrayRef<int> ReusesIndices, 5510 const function_ref<bool(Instruction *)> IsAltOp, 5511 SmallVectorImpl<int> &Mask, 5512 SmallVectorImpl<Value *> *OpScalars = nullptr, 5513 SmallVectorImpl<Value *> *AltScalars = nullptr) { 5514 unsigned Sz = VL.size(); 5515 Mask.assign(Sz, UndefMaskElem); 5516 SmallVector<int> OrderMask; 5517 if (!ReorderIndices.empty()) 5518 inversePermutation(ReorderIndices, OrderMask); 5519 for (unsigned I = 0; I < Sz; ++I) { 5520 unsigned Idx = I; 5521 if (!ReorderIndices.empty()) 5522 Idx = OrderMask[I]; 5523 auto *OpInst = cast<Instruction>(VL[Idx]); 5524 if (IsAltOp(OpInst)) { 5525 Mask[I] = Sz + Idx; 5526 if (AltScalars) 5527 AltScalars->push_back(OpInst); 5528 } else { 5529 Mask[I] = Idx; 5530 if (OpScalars) 5531 OpScalars->push_back(OpInst); 5532 } 5533 } 5534 if (!ReusesIndices.empty()) { 5535 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 5536 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 5537 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 5538 }); 5539 Mask.swap(NewMask); 5540 } 5541 } 5542 5543 /// Checks if the specified instruction \p I is an alternate operation for the 5544 /// given \p MainOp and \p AltOp instructions. 5545 static bool isAlternateInstruction(const Instruction *I, 5546 const Instruction *MainOp, 5547 const Instruction *AltOp) { 5548 if (auto *CI0 = dyn_cast<CmpInst>(MainOp)) { 5549 auto *AltCI0 = cast<CmpInst>(AltOp); 5550 auto *CI = cast<CmpInst>(I); 5551 CmpInst::Predicate P0 = CI0->getPredicate(); 5552 CmpInst::Predicate AltP0 = AltCI0->getPredicate(); 5553 assert(P0 != AltP0 && "Expected different main/alternate predicates."); 5554 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 5555 CmpInst::Predicate CurrentPred = CI->getPredicate(); 5556 if (P0 == AltP0Swapped) 5557 return I == AltCI0 || 5558 (I != MainOp && 5559 !areCompatibleCmpOps(CI0->getOperand(0), CI0->getOperand(1), 5560 CI->getOperand(0), CI->getOperand(1))); 5561 return AltP0 == CurrentPred || AltP0Swapped == CurrentPred; 5562 } 5563 return I->getOpcode() == AltOp->getOpcode(); 5564 } 5565 5566 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 5567 ArrayRef<Value *> VectorizedVals) { 5568 ArrayRef<Value*> VL = E->Scalars; 5569 5570 Type *ScalarTy = VL[0]->getType(); 5571 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 5572 ScalarTy = SI->getValueOperand()->getType(); 5573 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 5574 ScalarTy = CI->getOperand(0)->getType(); 5575 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 5576 ScalarTy = IE->getOperand(1)->getType(); 5577 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 5578 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 5579 5580 // If we have computed a smaller type for the expression, update VecTy so 5581 // that the costs will be accurate. 5582 if (MinBWs.count(VL[0])) 5583 VecTy = FixedVectorType::get( 5584 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 5585 unsigned EntryVF = E->getVectorFactor(); 5586 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 5587 5588 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 5589 // FIXME: it tries to fix a problem with MSVC buildbots. 5590 TargetTransformInfo &TTIRef = *TTI; 5591 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 5592 VectorizedVals, E](InstructionCost &Cost) { 5593 DenseMap<Value *, int> ExtractVectorsTys; 5594 SmallPtrSet<Value *, 4> CheckedExtracts; 5595 for (auto *V : VL) { 5596 if (isa<UndefValue>(V)) 5597 continue; 5598 // If all users of instruction are going to be vectorized and this 5599 // instruction itself is not going to be vectorized, consider this 5600 // instruction as dead and remove its cost from the final cost of the 5601 // vectorized tree. 5602 // Also, avoid adjusting the cost for extractelements with multiple uses 5603 // in different graph entries. 5604 const TreeEntry *VE = getTreeEntry(V); 5605 if (!CheckedExtracts.insert(V).second || 5606 !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 5607 (VE && VE != E)) 5608 continue; 5609 auto *EE = cast<ExtractElementInst>(V); 5610 Optional<unsigned> EEIdx = getExtractIndex(EE); 5611 if (!EEIdx) 5612 continue; 5613 unsigned Idx = *EEIdx; 5614 if (TTIRef.getNumberOfParts(VecTy) != 5615 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 5616 auto It = 5617 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 5618 It->getSecond() = std::min<int>(It->second, Idx); 5619 } 5620 // Take credit for instruction that will become dead. 5621 if (EE->hasOneUse()) { 5622 Instruction *Ext = EE->user_back(); 5623 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5624 all_of(Ext->users(), 5625 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5626 // Use getExtractWithExtendCost() to calculate the cost of 5627 // extractelement/ext pair. 5628 Cost -= 5629 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 5630 EE->getVectorOperandType(), Idx); 5631 // Add back the cost of s|zext which is subtracted separately. 5632 Cost += TTIRef.getCastInstrCost( 5633 Ext->getOpcode(), Ext->getType(), EE->getType(), 5634 TTI::getCastContextHint(Ext), CostKind, Ext); 5635 continue; 5636 } 5637 } 5638 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 5639 EE->getVectorOperandType(), Idx); 5640 } 5641 // Add a cost for subvector extracts/inserts if required. 5642 for (const auto &Data : ExtractVectorsTys) { 5643 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 5644 unsigned NumElts = VecTy->getNumElements(); 5645 if (Data.second % NumElts == 0) 5646 continue; 5647 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 5648 unsigned Idx = (Data.second / NumElts) * NumElts; 5649 unsigned EENumElts = EEVTy->getNumElements(); 5650 if (Idx + NumElts <= EENumElts) { 5651 Cost += 5652 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5653 EEVTy, None, Idx, VecTy); 5654 } else { 5655 // Need to round up the subvector type vectorization factor to avoid a 5656 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 5657 // <= EENumElts. 5658 auto *SubVT = 5659 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 5660 Cost += 5661 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5662 EEVTy, None, Idx, SubVT); 5663 } 5664 } else { 5665 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 5666 VecTy, None, 0, EEVTy); 5667 } 5668 } 5669 }; 5670 if (E->State == TreeEntry::NeedToGather) { 5671 if (allConstant(VL)) 5672 return 0; 5673 if (isa<InsertElementInst>(VL[0])) 5674 return InstructionCost::getInvalid(); 5675 SmallVector<int> Mask; 5676 SmallVector<const TreeEntry *> Entries; 5677 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 5678 isGatherShuffledEntry(E, Mask, Entries); 5679 if (Shuffle.hasValue()) { 5680 InstructionCost GatherCost = 0; 5681 if (ShuffleVectorInst::isIdentityMask(Mask)) { 5682 // Perfect match in the graph, will reuse the previously vectorized 5683 // node. Cost is 0. 5684 LLVM_DEBUG( 5685 dbgs() 5686 << "SLP: perfect diamond match for gather bundle that starts with " 5687 << *VL.front() << ".\n"); 5688 if (NeedToShuffleReuses) 5689 GatherCost = 5690 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5691 FinalVecTy, E->ReuseShuffleIndices); 5692 } else { 5693 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 5694 << " entries for bundle that starts with " 5695 << *VL.front() << ".\n"); 5696 // Detected that instead of gather we can emit a shuffle of single/two 5697 // previously vectorized nodes. Add the cost of the permutation rather 5698 // than gather. 5699 ::addMask(Mask, E->ReuseShuffleIndices); 5700 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 5701 } 5702 return GatherCost; 5703 } 5704 if ((E->getOpcode() == Instruction::ExtractElement || 5705 all_of(E->Scalars, 5706 [](Value *V) { 5707 return isa<ExtractElementInst, UndefValue>(V); 5708 })) && 5709 allSameType(VL)) { 5710 // Check that gather of extractelements can be represented as just a 5711 // shuffle of a single/two vectors the scalars are extracted from. 5712 SmallVector<int> Mask; 5713 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 5714 isFixedVectorShuffle(VL, Mask); 5715 if (ShuffleKind.hasValue()) { 5716 // Found the bunch of extractelement instructions that must be gathered 5717 // into a vector and can be represented as a permutation elements in a 5718 // single input vector or of 2 input vectors. 5719 InstructionCost Cost = 5720 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 5721 AdjustExtractsCost(Cost); 5722 if (NeedToShuffleReuses) 5723 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5724 FinalVecTy, E->ReuseShuffleIndices); 5725 return Cost; 5726 } 5727 } 5728 if (isSplat(VL)) { 5729 // Found the broadcasting of the single scalar, calculate the cost as the 5730 // broadcast. 5731 assert(VecTy == FinalVecTy && 5732 "No reused scalars expected for broadcast."); 5733 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 5734 /*Mask=*/None, /*Index=*/0, 5735 /*SubTp=*/nullptr, /*Args=*/VL[0]); 5736 } 5737 InstructionCost ReuseShuffleCost = 0; 5738 if (NeedToShuffleReuses) 5739 ReuseShuffleCost = TTI->getShuffleCost( 5740 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 5741 // Improve gather cost for gather of loads, if we can group some of the 5742 // loads into vector loads. 5743 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 5744 !E->isAltShuffle()) { 5745 BoUpSLP::ValueSet VectorizedLoads; 5746 unsigned StartIdx = 0; 5747 unsigned VF = VL.size() / 2; 5748 unsigned VectorizedCnt = 0; 5749 unsigned ScatterVectorizeCnt = 0; 5750 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 5751 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 5752 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 5753 Cnt += VF) { 5754 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 5755 if (!VectorizedLoads.count(Slice.front()) && 5756 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 5757 SmallVector<Value *> PointerOps; 5758 OrdersType CurrentOrder; 5759 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 5760 *SE, CurrentOrder, PointerOps); 5761 switch (LS) { 5762 case LoadsState::Vectorize: 5763 case LoadsState::ScatterVectorize: 5764 // Mark the vectorized loads so that we don't vectorize them 5765 // again. 5766 if (LS == LoadsState::Vectorize) 5767 ++VectorizedCnt; 5768 else 5769 ++ScatterVectorizeCnt; 5770 VectorizedLoads.insert(Slice.begin(), Slice.end()); 5771 // If we vectorized initial block, no need to try to vectorize it 5772 // again. 5773 if (Cnt == StartIdx) 5774 StartIdx += VF; 5775 break; 5776 case LoadsState::Gather: 5777 break; 5778 } 5779 } 5780 } 5781 // Check if the whole array was vectorized already - exit. 5782 if (StartIdx >= VL.size()) 5783 break; 5784 // Found vectorizable parts - exit. 5785 if (!VectorizedLoads.empty()) 5786 break; 5787 } 5788 if (!VectorizedLoads.empty()) { 5789 InstructionCost GatherCost = 0; 5790 unsigned NumParts = TTI->getNumberOfParts(VecTy); 5791 bool NeedInsertSubvectorAnalysis = 5792 !NumParts || (VL.size() / VF) > NumParts; 5793 // Get the cost for gathered loads. 5794 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 5795 if (VectorizedLoads.contains(VL[I])) 5796 continue; 5797 GatherCost += getGatherCost(VL.slice(I, VF)); 5798 } 5799 // The cost for vectorized loads. 5800 InstructionCost ScalarsCost = 0; 5801 for (Value *V : VectorizedLoads) { 5802 auto *LI = cast<LoadInst>(V); 5803 ScalarsCost += TTI->getMemoryOpCost( 5804 Instruction::Load, LI->getType(), LI->getAlign(), 5805 LI->getPointerAddressSpace(), CostKind, LI); 5806 } 5807 auto *LI = cast<LoadInst>(E->getMainOp()); 5808 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 5809 Align Alignment = LI->getAlign(); 5810 GatherCost += 5811 VectorizedCnt * 5812 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 5813 LI->getPointerAddressSpace(), CostKind, LI); 5814 GatherCost += ScatterVectorizeCnt * 5815 TTI->getGatherScatterOpCost( 5816 Instruction::Load, LoadTy, LI->getPointerOperand(), 5817 /*VariableMask=*/false, Alignment, CostKind, LI); 5818 if (NeedInsertSubvectorAnalysis) { 5819 // Add the cost for the subvectors insert. 5820 for (int I = VF, E = VL.size(); I < E; I += VF) 5821 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 5822 None, I, LoadTy); 5823 } 5824 return ReuseShuffleCost + GatherCost - ScalarsCost; 5825 } 5826 } 5827 return ReuseShuffleCost + getGatherCost(VL); 5828 } 5829 InstructionCost CommonCost = 0; 5830 SmallVector<int> Mask; 5831 if (!E->ReorderIndices.empty()) { 5832 SmallVector<int> NewMask; 5833 if (E->getOpcode() == Instruction::Store) { 5834 // For stores the order is actually a mask. 5835 NewMask.resize(E->ReorderIndices.size()); 5836 copy(E->ReorderIndices, NewMask.begin()); 5837 } else { 5838 inversePermutation(E->ReorderIndices, NewMask); 5839 } 5840 ::addMask(Mask, NewMask); 5841 } 5842 if (NeedToShuffleReuses) 5843 ::addMask(Mask, E->ReuseShuffleIndices); 5844 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 5845 CommonCost = 5846 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 5847 assert((E->State == TreeEntry::Vectorize || 5848 E->State == TreeEntry::ScatterVectorize) && 5849 "Unhandled state"); 5850 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 5851 Instruction *VL0 = E->getMainOp(); 5852 unsigned ShuffleOrOp = 5853 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 5854 switch (ShuffleOrOp) { 5855 case Instruction::PHI: 5856 return 0; 5857 5858 case Instruction::ExtractValue: 5859 case Instruction::ExtractElement: { 5860 // The common cost of removal ExtractElement/ExtractValue instructions + 5861 // the cost of shuffles, if required to resuffle the original vector. 5862 if (NeedToShuffleReuses) { 5863 unsigned Idx = 0; 5864 for (unsigned I : E->ReuseShuffleIndices) { 5865 if (ShuffleOrOp == Instruction::ExtractElement) { 5866 auto *EE = cast<ExtractElementInst>(VL[I]); 5867 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5868 EE->getVectorOperandType(), 5869 *getExtractIndex(EE)); 5870 } else { 5871 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5872 VecTy, Idx); 5873 ++Idx; 5874 } 5875 } 5876 Idx = EntryVF; 5877 for (Value *V : VL) { 5878 if (ShuffleOrOp == Instruction::ExtractElement) { 5879 auto *EE = cast<ExtractElementInst>(V); 5880 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5881 EE->getVectorOperandType(), 5882 *getExtractIndex(EE)); 5883 } else { 5884 --Idx; 5885 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5886 VecTy, Idx); 5887 } 5888 } 5889 } 5890 if (ShuffleOrOp == Instruction::ExtractValue) { 5891 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 5892 auto *EI = cast<Instruction>(VL[I]); 5893 // Take credit for instruction that will become dead. 5894 if (EI->hasOneUse()) { 5895 Instruction *Ext = EI->user_back(); 5896 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5897 all_of(Ext->users(), 5898 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5899 // Use getExtractWithExtendCost() to calculate the cost of 5900 // extractelement/ext pair. 5901 CommonCost -= TTI->getExtractWithExtendCost( 5902 Ext->getOpcode(), Ext->getType(), VecTy, I); 5903 // Add back the cost of s|zext which is subtracted separately. 5904 CommonCost += TTI->getCastInstrCost( 5905 Ext->getOpcode(), Ext->getType(), EI->getType(), 5906 TTI::getCastContextHint(Ext), CostKind, Ext); 5907 continue; 5908 } 5909 } 5910 CommonCost -= 5911 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 5912 } 5913 } else { 5914 AdjustExtractsCost(CommonCost); 5915 } 5916 return CommonCost; 5917 } 5918 case Instruction::InsertElement: { 5919 assert(E->ReuseShuffleIndices.empty() && 5920 "Unique insertelements only are expected."); 5921 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 5922 5923 unsigned const NumElts = SrcVecTy->getNumElements(); 5924 unsigned const NumScalars = VL.size(); 5925 APInt DemandedElts = APInt::getZero(NumElts); 5926 // TODO: Add support for Instruction::InsertValue. 5927 SmallVector<int> Mask; 5928 if (!E->ReorderIndices.empty()) { 5929 inversePermutation(E->ReorderIndices, Mask); 5930 Mask.append(NumElts - NumScalars, UndefMaskElem); 5931 } else { 5932 Mask.assign(NumElts, UndefMaskElem); 5933 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 5934 } 5935 unsigned Offset = *getInsertIndex(VL0); 5936 bool IsIdentity = true; 5937 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 5938 Mask.swap(PrevMask); 5939 for (unsigned I = 0; I < NumScalars; ++I) { 5940 unsigned InsertIdx = *getInsertIndex(VL[PrevMask[I]]); 5941 DemandedElts.setBit(InsertIdx); 5942 IsIdentity &= InsertIdx - Offset == I; 5943 Mask[InsertIdx - Offset] = I; 5944 } 5945 assert(Offset < NumElts && "Failed to find vector index offset"); 5946 5947 InstructionCost Cost = 0; 5948 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 5949 /*Insert*/ true, /*Extract*/ false); 5950 5951 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 5952 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 5953 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 5954 Cost += TTI->getShuffleCost( 5955 TargetTransformInfo::SK_PermuteSingleSrc, 5956 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 5957 } else if (!IsIdentity) { 5958 auto *FirstInsert = 5959 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 5960 return !is_contained(E->Scalars, 5961 cast<Instruction>(V)->getOperand(0)); 5962 })); 5963 if (isUndefVector(FirstInsert->getOperand(0))) { 5964 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 5965 } else { 5966 SmallVector<int> InsertMask(NumElts); 5967 std::iota(InsertMask.begin(), InsertMask.end(), 0); 5968 for (unsigned I = 0; I < NumElts; I++) { 5969 if (Mask[I] != UndefMaskElem) 5970 InsertMask[Offset + I] = NumElts + I; 5971 } 5972 Cost += 5973 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 5974 } 5975 } 5976 5977 return Cost; 5978 } 5979 case Instruction::ZExt: 5980 case Instruction::SExt: 5981 case Instruction::FPToUI: 5982 case Instruction::FPToSI: 5983 case Instruction::FPExt: 5984 case Instruction::PtrToInt: 5985 case Instruction::IntToPtr: 5986 case Instruction::SIToFP: 5987 case Instruction::UIToFP: 5988 case Instruction::Trunc: 5989 case Instruction::FPTrunc: 5990 case Instruction::BitCast: { 5991 Type *SrcTy = VL0->getOperand(0)->getType(); 5992 InstructionCost ScalarEltCost = 5993 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 5994 TTI::getCastContextHint(VL0), CostKind, VL0); 5995 if (NeedToShuffleReuses) { 5996 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5997 } 5998 5999 // Calculate the cost of this instruction. 6000 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 6001 6002 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 6003 InstructionCost VecCost = 0; 6004 // Check if the values are candidates to demote. 6005 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 6006 VecCost = CommonCost + TTI->getCastInstrCost( 6007 E->getOpcode(), VecTy, SrcVecTy, 6008 TTI::getCastContextHint(VL0), CostKind, VL0); 6009 } 6010 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 6011 return VecCost - ScalarCost; 6012 } 6013 case Instruction::FCmp: 6014 case Instruction::ICmp: 6015 case Instruction::Select: { 6016 // Calculate the cost of this instruction. 6017 InstructionCost ScalarEltCost = 6018 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 6019 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 6020 if (NeedToShuffleReuses) { 6021 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 6022 } 6023 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 6024 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 6025 6026 // Check if all entries in VL are either compares or selects with compares 6027 // as condition that have the same predicates. 6028 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 6029 bool First = true; 6030 for (auto *V : VL) { 6031 CmpInst::Predicate CurrentPred; 6032 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 6033 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 6034 !match(V, MatchCmp)) || 6035 (!First && VecPred != CurrentPred)) { 6036 VecPred = CmpInst::BAD_ICMP_PREDICATE; 6037 break; 6038 } 6039 First = false; 6040 VecPred = CurrentPred; 6041 } 6042 6043 InstructionCost VecCost = TTI->getCmpSelInstrCost( 6044 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 6045 // Check if it is possible and profitable to use min/max for selects in 6046 // VL. 6047 // 6048 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 6049 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 6050 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 6051 {VecTy, VecTy}); 6052 InstructionCost IntrinsicCost = 6053 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 6054 // If the selects are the only uses of the compares, they will be dead 6055 // and we can adjust the cost by removing their cost. 6056 if (IntrinsicAndUse.second) 6057 IntrinsicCost -= TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, 6058 MaskTy, VecPred, CostKind); 6059 VecCost = std::min(VecCost, IntrinsicCost); 6060 } 6061 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 6062 return CommonCost + VecCost - ScalarCost; 6063 } 6064 case Instruction::FNeg: 6065 case Instruction::Add: 6066 case Instruction::FAdd: 6067 case Instruction::Sub: 6068 case Instruction::FSub: 6069 case Instruction::Mul: 6070 case Instruction::FMul: 6071 case Instruction::UDiv: 6072 case Instruction::SDiv: 6073 case Instruction::FDiv: 6074 case Instruction::URem: 6075 case Instruction::SRem: 6076 case Instruction::FRem: 6077 case Instruction::Shl: 6078 case Instruction::LShr: 6079 case Instruction::AShr: 6080 case Instruction::And: 6081 case Instruction::Or: 6082 case Instruction::Xor: { 6083 // Certain instructions can be cheaper to vectorize if they have a 6084 // constant second vector operand. 6085 TargetTransformInfo::OperandValueKind Op1VK = 6086 TargetTransformInfo::OK_AnyValue; 6087 TargetTransformInfo::OperandValueKind Op2VK = 6088 TargetTransformInfo::OK_UniformConstantValue; 6089 TargetTransformInfo::OperandValueProperties Op1VP = 6090 TargetTransformInfo::OP_None; 6091 TargetTransformInfo::OperandValueProperties Op2VP = 6092 TargetTransformInfo::OP_PowerOf2; 6093 6094 // If all operands are exactly the same ConstantInt then set the 6095 // operand kind to OK_UniformConstantValue. 6096 // If instead not all operands are constants, then set the operand kind 6097 // to OK_AnyValue. If all operands are constants but not the same, 6098 // then set the operand kind to OK_NonUniformConstantValue. 6099 ConstantInt *CInt0 = nullptr; 6100 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 6101 const Instruction *I = cast<Instruction>(VL[i]); 6102 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 6103 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 6104 if (!CInt) { 6105 Op2VK = TargetTransformInfo::OK_AnyValue; 6106 Op2VP = TargetTransformInfo::OP_None; 6107 break; 6108 } 6109 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 6110 !CInt->getValue().isPowerOf2()) 6111 Op2VP = TargetTransformInfo::OP_None; 6112 if (i == 0) { 6113 CInt0 = CInt; 6114 continue; 6115 } 6116 if (CInt0 != CInt) 6117 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 6118 } 6119 6120 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 6121 InstructionCost ScalarEltCost = 6122 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 6123 Op2VK, Op1VP, Op2VP, Operands, VL0); 6124 if (NeedToShuffleReuses) { 6125 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 6126 } 6127 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 6128 InstructionCost VecCost = 6129 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 6130 Op2VK, Op1VP, Op2VP, Operands, VL0); 6131 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 6132 return CommonCost + VecCost - ScalarCost; 6133 } 6134 case Instruction::GetElementPtr: { 6135 TargetTransformInfo::OperandValueKind Op1VK = 6136 TargetTransformInfo::OK_AnyValue; 6137 TargetTransformInfo::OperandValueKind Op2VK = 6138 TargetTransformInfo::OK_UniformConstantValue; 6139 6140 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 6141 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 6142 if (NeedToShuffleReuses) { 6143 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 6144 } 6145 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 6146 InstructionCost VecCost = TTI->getArithmeticInstrCost( 6147 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 6148 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 6149 return CommonCost + VecCost - ScalarCost; 6150 } 6151 case Instruction::Load: { 6152 // Cost of wide load - cost of scalar loads. 6153 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 6154 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 6155 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 6156 if (NeedToShuffleReuses) { 6157 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 6158 } 6159 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 6160 InstructionCost VecLdCost; 6161 if (E->State == TreeEntry::Vectorize) { 6162 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 6163 CostKind, VL0); 6164 } else { 6165 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 6166 Align CommonAlignment = Alignment; 6167 for (Value *V : VL) 6168 CommonAlignment = 6169 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 6170 VecLdCost = TTI->getGatherScatterOpCost( 6171 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 6172 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 6173 } 6174 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 6175 return CommonCost + VecLdCost - ScalarLdCost; 6176 } 6177 case Instruction::Store: { 6178 // We know that we can merge the stores. Calculate the cost. 6179 bool IsReorder = !E->ReorderIndices.empty(); 6180 auto *SI = 6181 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 6182 Align Alignment = SI->getAlign(); 6183 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 6184 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 6185 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 6186 InstructionCost VecStCost = TTI->getMemoryOpCost( 6187 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 6188 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 6189 return CommonCost + VecStCost - ScalarStCost; 6190 } 6191 case Instruction::Call: { 6192 CallInst *CI = cast<CallInst>(VL0); 6193 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6194 6195 // Calculate the cost of the scalar and vector calls. 6196 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 6197 InstructionCost ScalarEltCost = 6198 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 6199 if (NeedToShuffleReuses) { 6200 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 6201 } 6202 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 6203 6204 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 6205 InstructionCost VecCallCost = 6206 std::min(VecCallCosts.first, VecCallCosts.second); 6207 6208 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 6209 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 6210 << " for " << *CI << "\n"); 6211 6212 return CommonCost + VecCallCost - ScalarCallCost; 6213 } 6214 case Instruction::ShuffleVector: { 6215 assert(E->isAltShuffle() && 6216 ((Instruction::isBinaryOp(E->getOpcode()) && 6217 Instruction::isBinaryOp(E->getAltOpcode())) || 6218 (Instruction::isCast(E->getOpcode()) && 6219 Instruction::isCast(E->getAltOpcode())) || 6220 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 6221 "Invalid Shuffle Vector Operand"); 6222 InstructionCost ScalarCost = 0; 6223 if (NeedToShuffleReuses) { 6224 for (unsigned Idx : E->ReuseShuffleIndices) { 6225 Instruction *I = cast<Instruction>(VL[Idx]); 6226 CommonCost -= TTI->getInstructionCost(I, CostKind); 6227 } 6228 for (Value *V : VL) { 6229 Instruction *I = cast<Instruction>(V); 6230 CommonCost += TTI->getInstructionCost(I, CostKind); 6231 } 6232 } 6233 for (Value *V : VL) { 6234 Instruction *I = cast<Instruction>(V); 6235 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 6236 ScalarCost += TTI->getInstructionCost(I, CostKind); 6237 } 6238 // VecCost is equal to sum of the cost of creating 2 vectors 6239 // and the cost of creating shuffle. 6240 InstructionCost VecCost = 0; 6241 // Try to find the previous shuffle node with the same operands and same 6242 // main/alternate ops. 6243 auto &&TryFindNodeWithEqualOperands = [this, E]() { 6244 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 6245 if (TE.get() == E) 6246 break; 6247 if (TE->isAltShuffle() && 6248 ((TE->getOpcode() == E->getOpcode() && 6249 TE->getAltOpcode() == E->getAltOpcode()) || 6250 (TE->getOpcode() == E->getAltOpcode() && 6251 TE->getAltOpcode() == E->getOpcode())) && 6252 TE->hasEqualOperands(*E)) 6253 return true; 6254 } 6255 return false; 6256 }; 6257 if (TryFindNodeWithEqualOperands()) { 6258 LLVM_DEBUG({ 6259 dbgs() << "SLP: diamond match for alternate node found.\n"; 6260 E->dump(); 6261 }); 6262 // No need to add new vector costs here since we're going to reuse 6263 // same main/alternate vector ops, just do different shuffling. 6264 } else if (Instruction::isBinaryOp(E->getOpcode())) { 6265 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 6266 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 6267 CostKind); 6268 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 6269 VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 6270 Builder.getInt1Ty(), 6271 CI0->getPredicate(), CostKind, VL0); 6272 VecCost += TTI->getCmpSelInstrCost( 6273 E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 6274 cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind, 6275 E->getAltOp()); 6276 } else { 6277 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 6278 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 6279 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 6280 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 6281 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 6282 TTI::CastContextHint::None, CostKind); 6283 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 6284 TTI::CastContextHint::None, CostKind); 6285 } 6286 6287 if (E->ReuseShuffleIndices.empty()) { 6288 CommonCost = 6289 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy); 6290 } else { 6291 SmallVector<int> Mask; 6292 buildShuffleEntryMask( 6293 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 6294 [E](Instruction *I) { 6295 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 6296 return I->getOpcode() == E->getAltOpcode(); 6297 }, 6298 Mask); 6299 CommonCost = TTI->getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc, 6300 FinalVecTy, Mask); 6301 } 6302 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 6303 return CommonCost + VecCost - ScalarCost; 6304 } 6305 default: 6306 llvm_unreachable("Unknown instruction"); 6307 } 6308 } 6309 6310 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 6311 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 6312 << VectorizableTree.size() << " is fully vectorizable .\n"); 6313 6314 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 6315 SmallVector<int> Mask; 6316 return TE->State == TreeEntry::NeedToGather && 6317 !any_of(TE->Scalars, 6318 [this](Value *V) { return EphValues.contains(V); }) && 6319 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 6320 TE->Scalars.size() < Limit || 6321 ((TE->getOpcode() == Instruction::ExtractElement || 6322 all_of(TE->Scalars, 6323 [](Value *V) { 6324 return isa<ExtractElementInst, UndefValue>(V); 6325 })) && 6326 isFixedVectorShuffle(TE->Scalars, Mask)) || 6327 (TE->State == TreeEntry::NeedToGather && 6328 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 6329 }; 6330 6331 // We only handle trees of heights 1 and 2. 6332 if (VectorizableTree.size() == 1 && 6333 (VectorizableTree[0]->State == TreeEntry::Vectorize || 6334 (ForReduction && 6335 AreVectorizableGathers(VectorizableTree[0].get(), 6336 VectorizableTree[0]->Scalars.size()) && 6337 VectorizableTree[0]->getVectorFactor() > 2))) 6338 return true; 6339 6340 if (VectorizableTree.size() != 2) 6341 return false; 6342 6343 // Handle splat and all-constants stores. Also try to vectorize tiny trees 6344 // with the second gather nodes if they have less scalar operands rather than 6345 // the initial tree element (may be profitable to shuffle the second gather) 6346 // or they are extractelements, which form shuffle. 6347 SmallVector<int> Mask; 6348 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 6349 AreVectorizableGathers(VectorizableTree[1].get(), 6350 VectorizableTree[0]->Scalars.size())) 6351 return true; 6352 6353 // Gathering cost would be too much for tiny trees. 6354 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 6355 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 6356 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 6357 return false; 6358 6359 return true; 6360 } 6361 6362 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 6363 TargetTransformInfo *TTI, 6364 bool MustMatchOrInst) { 6365 // Look past the root to find a source value. Arbitrarily follow the 6366 // path through operand 0 of any 'or'. Also, peek through optional 6367 // shift-left-by-multiple-of-8-bits. 6368 Value *ZextLoad = Root; 6369 const APInt *ShAmtC; 6370 bool FoundOr = false; 6371 while (!isa<ConstantExpr>(ZextLoad) && 6372 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 6373 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 6374 ShAmtC->urem(8) == 0))) { 6375 auto *BinOp = cast<BinaryOperator>(ZextLoad); 6376 ZextLoad = BinOp->getOperand(0); 6377 if (BinOp->getOpcode() == Instruction::Or) 6378 FoundOr = true; 6379 } 6380 // Check if the input is an extended load of the required or/shift expression. 6381 Value *Load; 6382 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 6383 !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load)) 6384 return false; 6385 6386 // Require that the total load bit width is a legal integer type. 6387 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 6388 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 6389 Type *SrcTy = Load->getType(); 6390 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 6391 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 6392 return false; 6393 6394 // Everything matched - assume that we can fold the whole sequence using 6395 // load combining. 6396 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 6397 << *(cast<Instruction>(Root)) << "\n"); 6398 6399 return true; 6400 } 6401 6402 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 6403 if (RdxKind != RecurKind::Or) 6404 return false; 6405 6406 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 6407 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 6408 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 6409 /* MatchOr */ false); 6410 } 6411 6412 bool BoUpSLP::isLoadCombineCandidate() const { 6413 // Peek through a final sequence of stores and check if all operations are 6414 // likely to be load-combined. 6415 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 6416 for (Value *Scalar : VectorizableTree[0]->Scalars) { 6417 Value *X; 6418 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 6419 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 6420 return false; 6421 } 6422 return true; 6423 } 6424 6425 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 6426 // No need to vectorize inserts of gathered values. 6427 if (VectorizableTree.size() == 2 && 6428 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 6429 VectorizableTree[1]->State == TreeEntry::NeedToGather) 6430 return true; 6431 6432 // We can vectorize the tree if its size is greater than or equal to the 6433 // minimum size specified by the MinTreeSize command line option. 6434 if (VectorizableTree.size() >= MinTreeSize) 6435 return false; 6436 6437 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 6438 // can vectorize it if we can prove it fully vectorizable. 6439 if (isFullyVectorizableTinyTree(ForReduction)) 6440 return false; 6441 6442 assert(VectorizableTree.empty() 6443 ? ExternalUses.empty() 6444 : true && "We shouldn't have any external users"); 6445 6446 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 6447 // vectorizable. 6448 return true; 6449 } 6450 6451 InstructionCost BoUpSLP::getSpillCost() const { 6452 // Walk from the bottom of the tree to the top, tracking which values are 6453 // live. When we see a call instruction that is not part of our tree, 6454 // query TTI to see if there is a cost to keeping values live over it 6455 // (for example, if spills and fills are required). 6456 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 6457 InstructionCost Cost = 0; 6458 6459 SmallPtrSet<Instruction*, 4> LiveValues; 6460 Instruction *PrevInst = nullptr; 6461 6462 // The entries in VectorizableTree are not necessarily ordered by their 6463 // position in basic blocks. Collect them and order them by dominance so later 6464 // instructions are guaranteed to be visited first. For instructions in 6465 // different basic blocks, we only scan to the beginning of the block, so 6466 // their order does not matter, as long as all instructions in a basic block 6467 // are grouped together. Using dominance ensures a deterministic order. 6468 SmallVector<Instruction *, 16> OrderedScalars; 6469 for (const auto &TEPtr : VectorizableTree) { 6470 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 6471 if (!Inst) 6472 continue; 6473 OrderedScalars.push_back(Inst); 6474 } 6475 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 6476 auto *NodeA = DT->getNode(A->getParent()); 6477 auto *NodeB = DT->getNode(B->getParent()); 6478 assert(NodeA && "Should only process reachable instructions"); 6479 assert(NodeB && "Should only process reachable instructions"); 6480 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 6481 "Different nodes should have different DFS numbers"); 6482 if (NodeA != NodeB) 6483 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 6484 return B->comesBefore(A); 6485 }); 6486 6487 for (Instruction *Inst : OrderedScalars) { 6488 if (!PrevInst) { 6489 PrevInst = Inst; 6490 continue; 6491 } 6492 6493 // Update LiveValues. 6494 LiveValues.erase(PrevInst); 6495 for (auto &J : PrevInst->operands()) { 6496 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 6497 LiveValues.insert(cast<Instruction>(&*J)); 6498 } 6499 6500 LLVM_DEBUG({ 6501 dbgs() << "SLP: #LV: " << LiveValues.size(); 6502 for (auto *X : LiveValues) 6503 dbgs() << " " << X->getName(); 6504 dbgs() << ", Looking at "; 6505 Inst->dump(); 6506 }); 6507 6508 // Now find the sequence of instructions between PrevInst and Inst. 6509 unsigned NumCalls = 0; 6510 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 6511 PrevInstIt = 6512 PrevInst->getIterator().getReverse(); 6513 while (InstIt != PrevInstIt) { 6514 if (PrevInstIt == PrevInst->getParent()->rend()) { 6515 PrevInstIt = Inst->getParent()->rbegin(); 6516 continue; 6517 } 6518 6519 // Debug information does not impact spill cost. 6520 if ((isa<CallInst>(&*PrevInstIt) && 6521 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 6522 &*PrevInstIt != PrevInst) 6523 NumCalls++; 6524 6525 ++PrevInstIt; 6526 } 6527 6528 if (NumCalls) { 6529 SmallVector<Type*, 4> V; 6530 for (auto *II : LiveValues) { 6531 auto *ScalarTy = II->getType(); 6532 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 6533 ScalarTy = VectorTy->getElementType(); 6534 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 6535 } 6536 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 6537 } 6538 6539 PrevInst = Inst; 6540 } 6541 6542 return Cost; 6543 } 6544 6545 /// Check if two insertelement instructions are from the same buildvector. 6546 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU, 6547 InsertElementInst *V) { 6548 // Instructions must be from the same basic blocks. 6549 if (VU->getParent() != V->getParent()) 6550 return false; 6551 // Checks if 2 insertelements are from the same buildvector. 6552 if (VU->getType() != V->getType()) 6553 return false; 6554 // Multiple used inserts are separate nodes. 6555 if (!VU->hasOneUse() && !V->hasOneUse()) 6556 return false; 6557 auto *IE1 = VU; 6558 auto *IE2 = V; 6559 // Go through the vector operand of insertelement instructions trying to find 6560 // either VU as the original vector for IE2 or V as the original vector for 6561 // IE1. 6562 do { 6563 if (IE2 == VU || IE1 == V) 6564 return true; 6565 if (IE1) { 6566 if (IE1 != VU && !IE1->hasOneUse()) 6567 IE1 = nullptr; 6568 else 6569 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 6570 } 6571 if (IE2) { 6572 if (IE2 != V && !IE2->hasOneUse()) 6573 IE2 = nullptr; 6574 else 6575 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 6576 } 6577 } while (IE1 || IE2); 6578 return false; 6579 } 6580 6581 /// Checks if the \p IE1 instructions is followed by \p IE2 instruction in the 6582 /// buildvector sequence. 6583 static bool isFirstInsertElement(const InsertElementInst *IE1, 6584 const InsertElementInst *IE2) { 6585 const auto *I1 = IE1; 6586 const auto *I2 = IE2; 6587 const InsertElementInst *PrevI1; 6588 const InsertElementInst *PrevI2; 6589 do { 6590 if (I2 == IE1) 6591 return true; 6592 if (I1 == IE2) 6593 return false; 6594 PrevI1 = I1; 6595 PrevI2 = I2; 6596 if (I1 && (I1 == IE1 || I1->hasOneUse())) 6597 I1 = dyn_cast<InsertElementInst>(I1->getOperand(0)); 6598 if (I2 && (I2 == IE2 || I2->hasOneUse())) 6599 I2 = dyn_cast<InsertElementInst>(I2->getOperand(0)); 6600 } while ((I1 && PrevI1 != I1) || (I2 && PrevI2 != I2)); 6601 llvm_unreachable("Two different buildvectors not expected."); 6602 } 6603 6604 /// Does the analysis of the provided shuffle masks and performs the requested 6605 /// actions on the vectors with the given shuffle masks. It tries to do it in 6606 /// several steps. 6607 /// 1. If the Base vector is not undef vector, resizing the very first mask to 6608 /// have common VF and perform action for 2 input vectors (including non-undef 6609 /// Base). Other shuffle masks are combined with the resulting after the 1 stage 6610 /// and processed as a shuffle of 2 elements. 6611 /// 2. If the Base is undef vector and have only 1 shuffle mask, perform the 6612 /// action only for 1 vector with the given mask, if it is not the identity 6613 /// mask. 6614 /// 3. If > 2 masks are used, perform the remaining shuffle actions for 2 6615 /// vectors, combing the masks properly between the steps. 6616 template <typename T> 6617 static T *performExtractsShuffleAction( 6618 MutableArrayRef<std::pair<T *, SmallVector<int>>> ShuffleMask, Value *Base, 6619 function_ref<unsigned(T *)> GetVF, 6620 function_ref<std::pair<T *, bool>(T *, ArrayRef<int>)> ResizeAction, 6621 function_ref<T *(ArrayRef<int>, ArrayRef<T *>)> Action) { 6622 assert(!ShuffleMask.empty() && "Empty list of shuffles for inserts."); 6623 SmallVector<int> Mask(ShuffleMask.begin()->second); 6624 auto VMIt = std::next(ShuffleMask.begin()); 6625 T *Prev = nullptr; 6626 bool IsBaseNotUndef = !isUndefVector(Base); 6627 if (IsBaseNotUndef) { 6628 // Base is not undef, need to combine it with the next subvectors. 6629 std::pair<T *, bool> Res = ResizeAction(ShuffleMask.begin()->first, Mask); 6630 for (unsigned Idx = 0, VF = Mask.size(); Idx < VF; ++Idx) { 6631 if (Mask[Idx] == UndefMaskElem) 6632 Mask[Idx] = Idx; 6633 else 6634 Mask[Idx] = (Res.second ? Idx : Mask[Idx]) + VF; 6635 } 6636 Prev = Action(Mask, {nullptr, Res.first}); 6637 } else if (ShuffleMask.size() == 1) { 6638 // Base is undef and only 1 vector is shuffled - perform the action only for 6639 // single vector, if the mask is not the identity mask. 6640 std::pair<T *, bool> Res = ResizeAction(ShuffleMask.begin()->first, Mask); 6641 if (Res.second) 6642 // Identity mask is found. 6643 Prev = Res.first; 6644 else 6645 Prev = Action(Mask, {ShuffleMask.begin()->first}); 6646 } else { 6647 // Base is undef and at least 2 input vectors shuffled - perform 2 vectors 6648 // shuffles step by step, combining shuffle between the steps. 6649 unsigned Vec1VF = GetVF(ShuffleMask.begin()->first); 6650 unsigned Vec2VF = GetVF(VMIt->first); 6651 if (Vec1VF == Vec2VF) { 6652 // No need to resize the input vectors since they are of the same size, we 6653 // can shuffle them directly. 6654 ArrayRef<int> SecMask = VMIt->second; 6655 for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) { 6656 if (SecMask[I] != UndefMaskElem) { 6657 assert(Mask[I] == UndefMaskElem && "Multiple uses of scalars."); 6658 Mask[I] = SecMask[I] + Vec1VF; 6659 } 6660 } 6661 Prev = Action(Mask, {ShuffleMask.begin()->first, VMIt->first}); 6662 } else { 6663 // Vectors of different sizes - resize and reshuffle. 6664 std::pair<T *, bool> Res1 = 6665 ResizeAction(ShuffleMask.begin()->first, Mask); 6666 std::pair<T *, bool> Res2 = ResizeAction(VMIt->first, VMIt->second); 6667 ArrayRef<int> SecMask = VMIt->second; 6668 for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) { 6669 if (Mask[I] != UndefMaskElem) { 6670 assert(SecMask[I] == UndefMaskElem && "Multiple uses of scalars."); 6671 if (Res1.second) 6672 Mask[I] = I; 6673 } else if (SecMask[I] != UndefMaskElem) { 6674 assert(Mask[I] == UndefMaskElem && "Multiple uses of scalars."); 6675 Mask[I] = (Res2.second ? I : SecMask[I]) + VF; 6676 } 6677 } 6678 Prev = Action(Mask, {Res1.first, Res2.first}); 6679 } 6680 VMIt = std::next(VMIt); 6681 } 6682 // Perform requested actions for the remaining masks/vectors. 6683 for (auto E = ShuffleMask.end(); VMIt != E; ++VMIt) { 6684 // Shuffle other input vectors, if any. 6685 std::pair<T *, bool> Res = ResizeAction(VMIt->first, VMIt->second); 6686 ArrayRef<int> SecMask = VMIt->second; 6687 for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) { 6688 if (SecMask[I] != UndefMaskElem) { 6689 assert((Mask[I] == UndefMaskElem || IsBaseNotUndef) && 6690 "Multiple uses of scalars."); 6691 Mask[I] = (Res.second ? I : SecMask[I]) + VF; 6692 } else if (Mask[I] != UndefMaskElem) { 6693 Mask[I] = I; 6694 } 6695 } 6696 Prev = Action(Mask, {Prev, Res.first}); 6697 } 6698 return Prev; 6699 } 6700 6701 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 6702 InstructionCost Cost = 0; 6703 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 6704 << VectorizableTree.size() << ".\n"); 6705 6706 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 6707 6708 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 6709 TreeEntry &TE = *VectorizableTree[I]; 6710 6711 InstructionCost C = getEntryCost(&TE, VectorizedVals); 6712 Cost += C; 6713 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6714 << " for bundle that starts with " << *TE.Scalars[0] 6715 << ".\n" 6716 << "SLP: Current total cost = " << Cost << "\n"); 6717 } 6718 6719 SmallPtrSet<Value *, 16> ExtractCostCalculated; 6720 InstructionCost ExtractCost = 0; 6721 SmallVector<MapVector<const TreeEntry *, SmallVector<int>>> ShuffleMasks; 6722 SmallVector<std::pair<Value *, const TreeEntry *>> FirstUsers; 6723 SmallVector<APInt> DemandedElts; 6724 for (ExternalUser &EU : ExternalUses) { 6725 // We only add extract cost once for the same scalar. 6726 if (!isa_and_nonnull<InsertElementInst>(EU.User) && 6727 !ExtractCostCalculated.insert(EU.Scalar).second) 6728 continue; 6729 6730 // Uses by ephemeral values are free (because the ephemeral value will be 6731 // removed prior to code generation, and so the extraction will be 6732 // removed as well). 6733 if (EphValues.count(EU.User)) 6734 continue; 6735 6736 // No extract cost for vector "scalar" 6737 if (isa<FixedVectorType>(EU.Scalar->getType())) 6738 continue; 6739 6740 // Already counted the cost for external uses when tried to adjust the cost 6741 // for extractelements, no need to add it again. 6742 if (isa<ExtractElementInst>(EU.Scalar)) 6743 continue; 6744 6745 // If found user is an insertelement, do not calculate extract cost but try 6746 // to detect it as a final shuffled/identity match. 6747 if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) { 6748 if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) { 6749 Optional<unsigned> InsertIdx = getInsertIndex(VU); 6750 if (InsertIdx) { 6751 const TreeEntry *ScalarTE = getTreeEntry(EU.Scalar); 6752 auto *It = 6753 find_if(FirstUsers, 6754 [VU](const std::pair<Value *, const TreeEntry *> &Pair) { 6755 return areTwoInsertFromSameBuildVector( 6756 VU, cast<InsertElementInst>(Pair.first)); 6757 }); 6758 int VecId = -1; 6759 if (It == FirstUsers.end()) { 6760 (void)ShuffleMasks.emplace_back(); 6761 SmallVectorImpl<int> &Mask = ShuffleMasks.back()[ScalarTE]; 6762 if (Mask.empty()) 6763 Mask.assign(FTy->getNumElements(), UndefMaskElem); 6764 // Find the insertvector, vectorized in tree, if any. 6765 Value *Base = VU; 6766 while (auto *IEBase = dyn_cast<InsertElementInst>(Base)) { 6767 if (IEBase != EU.User && !IEBase->hasOneUse()) 6768 break; 6769 // Build the mask for the vectorized insertelement instructions. 6770 if (const TreeEntry *E = getTreeEntry(IEBase)) { 6771 VU = IEBase; 6772 do { 6773 IEBase = cast<InsertElementInst>(Base); 6774 int Idx = *getInsertIndex(IEBase); 6775 assert(Mask[Idx] == UndefMaskElem && 6776 "InsertElementInstruction used already."); 6777 Mask[Idx] = Idx; 6778 Base = IEBase->getOperand(0); 6779 } while (E == getTreeEntry(Base)); 6780 break; 6781 } 6782 Base = cast<InsertElementInst>(Base)->getOperand(0); 6783 } 6784 FirstUsers.emplace_back(VU, ScalarTE); 6785 DemandedElts.push_back(APInt::getZero(FTy->getNumElements())); 6786 VecId = FirstUsers.size() - 1; 6787 } else { 6788 if (isFirstInsertElement(VU, cast<InsertElementInst>(It->first))) 6789 It->first = VU; 6790 VecId = std::distance(FirstUsers.begin(), It); 6791 } 6792 int InIdx = *InsertIdx; 6793 SmallVectorImpl<int> &Mask = ShuffleMasks[VecId][ScalarTE]; 6794 if (Mask.empty()) 6795 Mask.assign(FTy->getNumElements(), UndefMaskElem); 6796 Mask[InIdx] = EU.Lane; 6797 DemandedElts[VecId].setBit(InIdx); 6798 continue; 6799 } 6800 } 6801 } 6802 6803 // If we plan to rewrite the tree in a smaller type, we will need to sign 6804 // extend the extracted value back to the original type. Here, we account 6805 // for the extract and the added cost of the sign extend if needed. 6806 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 6807 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 6808 if (MinBWs.count(ScalarRoot)) { 6809 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 6810 auto Extend = 6811 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 6812 VecTy = FixedVectorType::get(MinTy, BundleWidth); 6813 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 6814 VecTy, EU.Lane); 6815 } else { 6816 ExtractCost += 6817 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 6818 } 6819 } 6820 6821 InstructionCost SpillCost = getSpillCost(); 6822 Cost += SpillCost + ExtractCost; 6823 auto &&ResizeToVF = [this, &Cost](const TreeEntry *TE, ArrayRef<int> Mask) { 6824 InstructionCost C = 0; 6825 unsigned VF = Mask.size(); 6826 unsigned VecVF = TE->getVectorFactor(); 6827 if (VF != VecVF && 6828 (any_of(Mask, [VF](int Idx) { return Idx >= static_cast<int>(VF); }) || 6829 (all_of(Mask, 6830 [VF](int Idx) { return Idx < 2 * static_cast<int>(VF); }) && 6831 !ShuffleVectorInst::isIdentityMask(Mask)))) { 6832 SmallVector<int> OrigMask(VecVF, UndefMaskElem); 6833 std::copy(Mask.begin(), std::next(Mask.begin(), std::min(VF, VecVF)), 6834 OrigMask.begin()); 6835 C = TTI->getShuffleCost( 6836 TTI::SK_PermuteSingleSrc, 6837 FixedVectorType::get(TE->getMainOp()->getType(), VecVF), OrigMask); 6838 LLVM_DEBUG( 6839 dbgs() << "SLP: Adding cost " << C 6840 << " for final shuffle of insertelement external users.\n"; 6841 TE->dump(); dbgs() << "SLP: Current total cost = " << Cost << "\n"); 6842 Cost += C; 6843 return std::make_pair(TE, true); 6844 } 6845 return std::make_pair(TE, false); 6846 }; 6847 // Calculate the cost of the reshuffled vectors, if any. 6848 for (int I = 0, E = FirstUsers.size(); I < E; ++I) { 6849 Value *Base = cast<Instruction>(FirstUsers[I].first)->getOperand(0); 6850 unsigned VF = ShuffleMasks[I].begin()->second.size(); 6851 auto *FTy = FixedVectorType::get( 6852 cast<VectorType>(FirstUsers[I].first->getType())->getElementType(), VF); 6853 auto Vector = ShuffleMasks[I].takeVector(); 6854 auto &&EstimateShufflesCost = [this, FTy, 6855 &Cost](ArrayRef<int> Mask, 6856 ArrayRef<const TreeEntry *> TEs) { 6857 assert((TEs.size() == 1 || TEs.size() == 2) && 6858 "Expected exactly 1 or 2 tree entries."); 6859 if (TEs.size() == 1) { 6860 int Limit = 2 * Mask.size(); 6861 if (!all_of(Mask, [Limit](int Idx) { return Idx < Limit; }) || 6862 !ShuffleVectorInst::isIdentityMask(Mask)) { 6863 InstructionCost C = 6864 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FTy, Mask); 6865 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6866 << " for final shuffle of insertelement " 6867 "external users.\n"; 6868 TEs.front()->dump(); 6869 dbgs() << "SLP: Current total cost = " << Cost << "\n"); 6870 Cost += C; 6871 } 6872 } else { 6873 InstructionCost C = 6874 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, FTy, Mask); 6875 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6876 << " for final shuffle of vector node and external " 6877 "insertelement users.\n"; 6878 if (TEs.front()) { TEs.front()->dump(); } TEs.back()->dump(); 6879 dbgs() << "SLP: Current total cost = " << Cost << "\n"); 6880 Cost += C; 6881 } 6882 return TEs.back(); 6883 }; 6884 (void)performExtractsShuffleAction<const TreeEntry>( 6885 makeMutableArrayRef(Vector.data(), Vector.size()), Base, 6886 [](const TreeEntry *E) { return E->getVectorFactor(); }, ResizeToVF, 6887 EstimateShufflesCost); 6888 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6889 cast<FixedVectorType>(FirstUsers[I].first->getType()), DemandedElts[I], 6890 /*Insert*/ true, /*Extract*/ false); 6891 Cost -= InsertCost; 6892 } 6893 6894 #ifndef NDEBUG 6895 SmallString<256> Str; 6896 { 6897 raw_svector_ostream OS(Str); 6898 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 6899 << "SLP: Extract Cost = " << ExtractCost << ".\n" 6900 << "SLP: Total Cost = " << Cost << ".\n"; 6901 } 6902 LLVM_DEBUG(dbgs() << Str); 6903 if (ViewSLPTree) 6904 ViewGraph(this, "SLP" + F->getName(), false, Str); 6905 #endif 6906 6907 return Cost; 6908 } 6909 6910 Optional<TargetTransformInfo::ShuffleKind> 6911 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 6912 SmallVectorImpl<const TreeEntry *> &Entries) { 6913 // TODO: currently checking only for Scalars in the tree entry, need to count 6914 // reused elements too for better cost estimation. 6915 Mask.assign(TE->Scalars.size(), UndefMaskElem); 6916 Entries.clear(); 6917 // Build a lists of values to tree entries. 6918 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 6919 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 6920 if (EntryPtr.get() == TE) 6921 break; 6922 if (EntryPtr->State != TreeEntry::NeedToGather) 6923 continue; 6924 for (Value *V : EntryPtr->Scalars) 6925 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 6926 } 6927 // Find all tree entries used by the gathered values. If no common entries 6928 // found - not a shuffle. 6929 // Here we build a set of tree nodes for each gathered value and trying to 6930 // find the intersection between these sets. If we have at least one common 6931 // tree node for each gathered value - we have just a permutation of the 6932 // single vector. If we have 2 different sets, we're in situation where we 6933 // have a permutation of 2 input vectors. 6934 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 6935 DenseMap<Value *, int> UsedValuesEntry; 6936 for (Value *V : TE->Scalars) { 6937 if (isa<UndefValue>(V)) 6938 continue; 6939 // Build a list of tree entries where V is used. 6940 SmallPtrSet<const TreeEntry *, 4> VToTEs; 6941 auto It = ValueToTEs.find(V); 6942 if (It != ValueToTEs.end()) 6943 VToTEs = It->second; 6944 if (const TreeEntry *VTE = getTreeEntry(V)) 6945 VToTEs.insert(VTE); 6946 if (VToTEs.empty()) 6947 return None; 6948 if (UsedTEs.empty()) { 6949 // The first iteration, just insert the list of nodes to vector. 6950 UsedTEs.push_back(VToTEs); 6951 } else { 6952 // Need to check if there are any previously used tree nodes which use V. 6953 // If there are no such nodes, consider that we have another one input 6954 // vector. 6955 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 6956 unsigned Idx = 0; 6957 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 6958 // Do we have a non-empty intersection of previously listed tree entries 6959 // and tree entries using current V? 6960 set_intersect(VToTEs, Set); 6961 if (!VToTEs.empty()) { 6962 // Yes, write the new subset and continue analysis for the next 6963 // scalar. 6964 Set.swap(VToTEs); 6965 break; 6966 } 6967 VToTEs = SavedVToTEs; 6968 ++Idx; 6969 } 6970 // No non-empty intersection found - need to add a second set of possible 6971 // source vectors. 6972 if (Idx == UsedTEs.size()) { 6973 // If the number of input vectors is greater than 2 - not a permutation, 6974 // fallback to the regular gather. 6975 if (UsedTEs.size() == 2) 6976 return None; 6977 UsedTEs.push_back(SavedVToTEs); 6978 Idx = UsedTEs.size() - 1; 6979 } 6980 UsedValuesEntry.try_emplace(V, Idx); 6981 } 6982 } 6983 6984 if (UsedTEs.empty()) { 6985 assert(all_of(TE->Scalars, UndefValue::classof) && 6986 "Expected vector of undefs only."); 6987 return None; 6988 } 6989 6990 unsigned VF = 0; 6991 if (UsedTEs.size() == 1) { 6992 // Try to find the perfect match in another gather node at first. 6993 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 6994 return EntryPtr->isSame(TE->Scalars); 6995 }); 6996 if (It != UsedTEs.front().end()) { 6997 Entries.push_back(*It); 6998 std::iota(Mask.begin(), Mask.end(), 0); 6999 return TargetTransformInfo::SK_PermuteSingleSrc; 7000 } 7001 // No perfect match, just shuffle, so choose the first tree node. 7002 Entries.push_back(*UsedTEs.front().begin()); 7003 } else { 7004 // Try to find nodes with the same vector factor. 7005 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 7006 DenseMap<int, const TreeEntry *> VFToTE; 7007 for (const TreeEntry *TE : UsedTEs.front()) 7008 VFToTE.try_emplace(TE->getVectorFactor(), TE); 7009 for (const TreeEntry *TE : UsedTEs.back()) { 7010 auto It = VFToTE.find(TE->getVectorFactor()); 7011 if (It != VFToTE.end()) { 7012 VF = It->first; 7013 Entries.push_back(It->second); 7014 Entries.push_back(TE); 7015 break; 7016 } 7017 } 7018 // No 2 source vectors with the same vector factor - give up and do regular 7019 // gather. 7020 if (Entries.empty()) 7021 return None; 7022 } 7023 7024 // Build a shuffle mask for better cost estimation and vector emission. 7025 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 7026 Value *V = TE->Scalars[I]; 7027 if (isa<UndefValue>(V)) 7028 continue; 7029 unsigned Idx = UsedValuesEntry.lookup(V); 7030 const TreeEntry *VTE = Entries[Idx]; 7031 int FoundLane = VTE->findLaneForValue(V); 7032 Mask[I] = Idx * VF + FoundLane; 7033 // Extra check required by isSingleSourceMaskImpl function (called by 7034 // ShuffleVectorInst::isSingleSourceMask). 7035 if (Mask[I] >= 2 * E) 7036 return None; 7037 } 7038 switch (Entries.size()) { 7039 case 1: 7040 return TargetTransformInfo::SK_PermuteSingleSrc; 7041 case 2: 7042 return TargetTransformInfo::SK_PermuteTwoSrc; 7043 default: 7044 break; 7045 } 7046 return None; 7047 } 7048 7049 InstructionCost BoUpSLP::getGatherCost(FixedVectorType *Ty, 7050 const APInt &ShuffledIndices, 7051 bool NeedToShuffle) const { 7052 InstructionCost Cost = 7053 TTI->getScalarizationOverhead(Ty, ~ShuffledIndices, /*Insert*/ true, 7054 /*Extract*/ false); 7055 if (NeedToShuffle) 7056 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 7057 return Cost; 7058 } 7059 7060 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 7061 // Find the type of the operands in VL. 7062 Type *ScalarTy = VL[0]->getType(); 7063 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 7064 ScalarTy = SI->getValueOperand()->getType(); 7065 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 7066 bool DuplicateNonConst = false; 7067 // Find the cost of inserting/extracting values from the vector. 7068 // Check if the same elements are inserted several times and count them as 7069 // shuffle candidates. 7070 APInt ShuffledElements = APInt::getZero(VL.size()); 7071 DenseSet<Value *> UniqueElements; 7072 // Iterate in reverse order to consider insert elements with the high cost. 7073 for (unsigned I = VL.size(); I > 0; --I) { 7074 unsigned Idx = I - 1; 7075 // No need to shuffle duplicates for constants. 7076 if (isConstant(VL[Idx])) { 7077 ShuffledElements.setBit(Idx); 7078 continue; 7079 } 7080 if (!UniqueElements.insert(VL[Idx]).second) { 7081 DuplicateNonConst = true; 7082 ShuffledElements.setBit(Idx); 7083 } 7084 } 7085 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 7086 } 7087 7088 // Perform operand reordering on the instructions in VL and return the reordered 7089 // operands in Left and Right. 7090 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 7091 SmallVectorImpl<Value *> &Left, 7092 SmallVectorImpl<Value *> &Right, 7093 const DataLayout &DL, 7094 ScalarEvolution &SE, 7095 const BoUpSLP &R) { 7096 if (VL.empty()) 7097 return; 7098 VLOperands Ops(VL, DL, SE, R); 7099 // Reorder the operands in place. 7100 Ops.reorder(); 7101 Left = Ops.getVL(0); 7102 Right = Ops.getVL(1); 7103 } 7104 7105 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 7106 // Get the basic block this bundle is in. All instructions in the bundle 7107 // should be in this block. 7108 auto *Front = E->getMainOp(); 7109 auto *BB = Front->getParent(); 7110 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 7111 auto *I = cast<Instruction>(V); 7112 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 7113 })); 7114 7115 auto &&FindLastInst = [E, Front]() { 7116 Instruction *LastInst = Front; 7117 for (Value *V : E->Scalars) { 7118 auto *I = dyn_cast<Instruction>(V); 7119 if (!I) 7120 continue; 7121 if (LastInst->comesBefore(I)) 7122 LastInst = I; 7123 } 7124 return LastInst; 7125 }; 7126 7127 auto &&FindFirstInst = [E, Front]() { 7128 Instruction *FirstInst = Front; 7129 for (Value *V : E->Scalars) { 7130 auto *I = dyn_cast<Instruction>(V); 7131 if (!I) 7132 continue; 7133 if (I->comesBefore(FirstInst)) 7134 FirstInst = I; 7135 } 7136 return FirstInst; 7137 }; 7138 7139 // Set the insert point to the beginning of the basic block if the entry 7140 // should not be scheduled. 7141 if (E->State != TreeEntry::NeedToGather && 7142 doesNotNeedToSchedule(E->Scalars)) { 7143 Instruction *InsertInst; 7144 if (all_of(E->Scalars, isUsedOutsideBlock)) 7145 InsertInst = FindLastInst(); 7146 else 7147 InsertInst = FindFirstInst(); 7148 // If the instruction is PHI, set the insert point after all the PHIs. 7149 if (isa<PHINode>(InsertInst)) 7150 InsertInst = BB->getFirstNonPHI(); 7151 BasicBlock::iterator InsertPt = InsertInst->getIterator(); 7152 Builder.SetInsertPoint(BB, InsertPt); 7153 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 7154 return; 7155 } 7156 7157 // The last instruction in the bundle in program order. 7158 Instruction *LastInst = nullptr; 7159 7160 // Find the last instruction. The common case should be that BB has been 7161 // scheduled, and the last instruction is VL.back(). So we start with 7162 // VL.back() and iterate over schedule data until we reach the end of the 7163 // bundle. The end of the bundle is marked by null ScheduleData. 7164 if (BlocksSchedules.count(BB)) { 7165 Value *V = E->isOneOf(E->Scalars.back()); 7166 if (doesNotNeedToBeScheduled(V)) 7167 V = *find_if_not(E->Scalars, doesNotNeedToBeScheduled); 7168 auto *Bundle = BlocksSchedules[BB]->getScheduleData(V); 7169 if (Bundle && Bundle->isPartOfBundle()) 7170 for (; Bundle; Bundle = Bundle->NextInBundle) 7171 if (Bundle->OpValue == Bundle->Inst) 7172 LastInst = Bundle->Inst; 7173 } 7174 7175 // LastInst can still be null at this point if there's either not an entry 7176 // for BB in BlocksSchedules or there's no ScheduleData available for 7177 // VL.back(). This can be the case if buildTree_rec aborts for various 7178 // reasons (e.g., the maximum recursion depth is reached, the maximum region 7179 // size is reached, etc.). ScheduleData is initialized in the scheduling 7180 // "dry-run". 7181 // 7182 // If this happens, we can still find the last instruction by brute force. We 7183 // iterate forwards from Front (inclusive) until we either see all 7184 // instructions in the bundle or reach the end of the block. If Front is the 7185 // last instruction in program order, LastInst will be set to Front, and we 7186 // will visit all the remaining instructions in the block. 7187 // 7188 // One of the reasons we exit early from buildTree_rec is to place an upper 7189 // bound on compile-time. Thus, taking an additional compile-time hit here is 7190 // not ideal. However, this should be exceedingly rare since it requires that 7191 // we both exit early from buildTree_rec and that the bundle be out-of-order 7192 // (causing us to iterate all the way to the end of the block). 7193 if (!LastInst) { 7194 LastInst = FindLastInst(); 7195 // If the instruction is PHI, set the insert point after all the PHIs. 7196 if (isa<PHINode>(LastInst)) 7197 LastInst = BB->getFirstNonPHI()->getPrevNode(); 7198 } 7199 assert(LastInst && "Failed to find last instruction in bundle"); 7200 7201 // Set the insertion point after the last instruction in the bundle. Set the 7202 // debug location to Front. 7203 Builder.SetInsertPoint(BB, std::next(LastInst->getIterator())); 7204 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 7205 } 7206 7207 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 7208 // List of instructions/lanes from current block and/or the blocks which are 7209 // part of the current loop. These instructions will be inserted at the end to 7210 // make it possible to optimize loops and hoist invariant instructions out of 7211 // the loops body with better chances for success. 7212 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 7213 SmallSet<int, 4> PostponedIndices; 7214 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 7215 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 7216 SmallPtrSet<BasicBlock *, 4> Visited; 7217 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 7218 InsertBB = InsertBB->getSinglePredecessor(); 7219 return InsertBB && InsertBB == InstBB; 7220 }; 7221 for (int I = 0, E = VL.size(); I < E; ++I) { 7222 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 7223 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 7224 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 7225 PostponedIndices.insert(I).second) 7226 PostponedInsts.emplace_back(Inst, I); 7227 } 7228 7229 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 7230 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 7231 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 7232 if (!InsElt) 7233 return Vec; 7234 GatherShuffleSeq.insert(InsElt); 7235 CSEBlocks.insert(InsElt->getParent()); 7236 // Add to our 'need-to-extract' list. 7237 if (TreeEntry *Entry = getTreeEntry(V)) { 7238 // Find which lane we need to extract. 7239 unsigned FoundLane = Entry->findLaneForValue(V); 7240 ExternalUses.emplace_back(V, InsElt, FoundLane); 7241 } 7242 return Vec; 7243 }; 7244 Value *Val0 = 7245 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 7246 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 7247 Value *Vec = PoisonValue::get(VecTy); 7248 SmallVector<int> NonConsts; 7249 // Insert constant values at first. 7250 for (int I = 0, E = VL.size(); I < E; ++I) { 7251 if (PostponedIndices.contains(I)) 7252 continue; 7253 if (!isConstant(VL[I])) { 7254 NonConsts.push_back(I); 7255 continue; 7256 } 7257 Vec = CreateInsertElement(Vec, VL[I], I); 7258 } 7259 // Insert non-constant values. 7260 for (int I : NonConsts) 7261 Vec = CreateInsertElement(Vec, VL[I], I); 7262 // Append instructions, which are/may be part of the loop, in the end to make 7263 // it possible to hoist non-loop-based instructions. 7264 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 7265 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 7266 7267 return Vec; 7268 } 7269 7270 namespace { 7271 /// Merges shuffle masks and emits final shuffle instruction, if required. 7272 class ShuffleInstructionBuilder { 7273 IRBuilderBase &Builder; 7274 const unsigned VF = 0; 7275 bool IsFinalized = false; 7276 SmallVector<int, 4> Mask; 7277 /// Holds all of the instructions that we gathered. 7278 SetVector<Instruction *> &GatherShuffleSeq; 7279 /// A list of blocks that we are going to CSE. 7280 SetVector<BasicBlock *> &CSEBlocks; 7281 7282 public: 7283 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF, 7284 SetVector<Instruction *> &GatherShuffleSeq, 7285 SetVector<BasicBlock *> &CSEBlocks) 7286 : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq), 7287 CSEBlocks(CSEBlocks) {} 7288 7289 /// Adds a mask, inverting it before applying. 7290 void addInversedMask(ArrayRef<unsigned> SubMask) { 7291 if (SubMask.empty()) 7292 return; 7293 SmallVector<int, 4> NewMask; 7294 inversePermutation(SubMask, NewMask); 7295 addMask(NewMask); 7296 } 7297 7298 /// Functions adds masks, merging them into single one. 7299 void addMask(ArrayRef<unsigned> SubMask) { 7300 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 7301 addMask(NewMask); 7302 } 7303 7304 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 7305 7306 Value *finalize(Value *V) { 7307 IsFinalized = true; 7308 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 7309 if (VF == ValueVF && Mask.empty()) 7310 return V; 7311 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 7312 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 7313 addMask(NormalizedMask); 7314 7315 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 7316 return V; 7317 Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle"); 7318 if (auto *I = dyn_cast<Instruction>(Vec)) { 7319 GatherShuffleSeq.insert(I); 7320 CSEBlocks.insert(I->getParent()); 7321 } 7322 return Vec; 7323 } 7324 7325 ~ShuffleInstructionBuilder() { 7326 assert((IsFinalized || Mask.empty()) && 7327 "Shuffle construction must be finalized."); 7328 } 7329 }; 7330 } // namespace 7331 7332 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 7333 const unsigned VF = VL.size(); 7334 InstructionsState S = getSameOpcode(VL); 7335 if (S.getOpcode()) { 7336 if (TreeEntry *E = getTreeEntry(S.OpValue)) 7337 if (E->isSame(VL)) { 7338 Value *V = vectorizeTree(E); 7339 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 7340 if (!E->ReuseShuffleIndices.empty()) { 7341 // Reshuffle to get only unique values. 7342 // If some of the scalars are duplicated in the vectorization tree 7343 // entry, we do not vectorize them but instead generate a mask for 7344 // the reuses. But if there are several users of the same entry, 7345 // they may have different vectorization factors. This is especially 7346 // important for PHI nodes. In this case, we need to adapt the 7347 // resulting instruction for the user vectorization factor and have 7348 // to reshuffle it again to take only unique elements of the vector. 7349 // Without this code the function incorrectly returns reduced vector 7350 // instruction with the same elements, not with the unique ones. 7351 7352 // block: 7353 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 7354 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 7355 // ... (use %2) 7356 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 7357 // br %block 7358 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 7359 SmallSet<int, 4> UsedIdxs; 7360 int Pos = 0; 7361 int Sz = VL.size(); 7362 for (int Idx : E->ReuseShuffleIndices) { 7363 if (Idx != Sz && Idx != UndefMaskElem && 7364 UsedIdxs.insert(Idx).second) 7365 UniqueIdxs[Idx] = Pos; 7366 ++Pos; 7367 } 7368 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 7369 "less than original vector size."); 7370 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 7371 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 7372 } else { 7373 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 7374 "Expected vectorization factor less " 7375 "than original vector size."); 7376 SmallVector<int> UniformMask(VF, 0); 7377 std::iota(UniformMask.begin(), UniformMask.end(), 0); 7378 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 7379 } 7380 if (auto *I = dyn_cast<Instruction>(V)) { 7381 GatherShuffleSeq.insert(I); 7382 CSEBlocks.insert(I->getParent()); 7383 } 7384 } 7385 return V; 7386 } 7387 } 7388 7389 // Can't vectorize this, so simply build a new vector with each lane 7390 // corresponding to the requested value. 7391 return createBuildVector(VL); 7392 } 7393 Value *BoUpSLP::createBuildVector(ArrayRef<Value *> VL) { 7394 unsigned VF = VL.size(); 7395 // Exploit possible reuse of values across lanes. 7396 SmallVector<int> ReuseShuffleIndicies; 7397 SmallVector<Value *> UniqueValues; 7398 if (VL.size() > 2) { 7399 DenseMap<Value *, unsigned> UniquePositions; 7400 unsigned NumValues = 7401 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 7402 return !isa<UndefValue>(V); 7403 }).base()); 7404 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 7405 int UniqueVals = 0; 7406 for (Value *V : VL.drop_back(VL.size() - VF)) { 7407 if (isa<UndefValue>(V)) { 7408 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 7409 continue; 7410 } 7411 if (isConstant(V)) { 7412 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 7413 UniqueValues.emplace_back(V); 7414 continue; 7415 } 7416 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 7417 ReuseShuffleIndicies.emplace_back(Res.first->second); 7418 if (Res.second) { 7419 UniqueValues.emplace_back(V); 7420 ++UniqueVals; 7421 } 7422 } 7423 if (UniqueVals == 1 && UniqueValues.size() == 1) { 7424 // Emit pure splat vector. 7425 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 7426 UndefMaskElem); 7427 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 7428 ReuseShuffleIndicies.clear(); 7429 UniqueValues.clear(); 7430 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 7431 } 7432 UniqueValues.append(VF - UniqueValues.size(), 7433 PoisonValue::get(VL[0]->getType())); 7434 VL = UniqueValues; 7435 } 7436 7437 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 7438 CSEBlocks); 7439 Value *Vec = gather(VL); 7440 if (!ReuseShuffleIndicies.empty()) { 7441 ShuffleBuilder.addMask(ReuseShuffleIndicies); 7442 Vec = ShuffleBuilder.finalize(Vec); 7443 } 7444 return Vec; 7445 } 7446 7447 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 7448 IRBuilder<>::InsertPointGuard Guard(Builder); 7449 7450 if (E->VectorizedValue) { 7451 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 7452 return E->VectorizedValue; 7453 } 7454 7455 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 7456 unsigned VF = E->getVectorFactor(); 7457 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 7458 CSEBlocks); 7459 if (E->State == TreeEntry::NeedToGather) { 7460 if (E->getMainOp()) 7461 setInsertPointAfterBundle(E); 7462 Value *Vec; 7463 SmallVector<int> Mask; 7464 SmallVector<const TreeEntry *> Entries; 7465 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 7466 isGatherShuffledEntry(E, Mask, Entries); 7467 if (Shuffle.hasValue()) { 7468 assert((Entries.size() == 1 || Entries.size() == 2) && 7469 "Expected shuffle of 1 or 2 entries."); 7470 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 7471 Entries.back()->VectorizedValue, Mask); 7472 if (auto *I = dyn_cast<Instruction>(Vec)) { 7473 GatherShuffleSeq.insert(I); 7474 CSEBlocks.insert(I->getParent()); 7475 } 7476 } else { 7477 Vec = gather(E->Scalars); 7478 } 7479 if (NeedToShuffleReuses) { 7480 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7481 Vec = ShuffleBuilder.finalize(Vec); 7482 } 7483 E->VectorizedValue = Vec; 7484 return Vec; 7485 } 7486 7487 assert((E->State == TreeEntry::Vectorize || 7488 E->State == TreeEntry::ScatterVectorize) && 7489 "Unhandled state"); 7490 unsigned ShuffleOrOp = 7491 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 7492 Instruction *VL0 = E->getMainOp(); 7493 Type *ScalarTy = VL0->getType(); 7494 if (auto *Store = dyn_cast<StoreInst>(VL0)) 7495 ScalarTy = Store->getValueOperand()->getType(); 7496 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 7497 ScalarTy = IE->getOperand(1)->getType(); 7498 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 7499 switch (ShuffleOrOp) { 7500 case Instruction::PHI: { 7501 assert( 7502 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 7503 "PHI reordering is free."); 7504 auto *PH = cast<PHINode>(VL0); 7505 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 7506 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 7507 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 7508 Value *V = NewPhi; 7509 7510 // Adjust insertion point once all PHI's have been generated. 7511 Builder.SetInsertPoint(&*PH->getParent()->getFirstInsertionPt()); 7512 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 7513 7514 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7515 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7516 V = ShuffleBuilder.finalize(V); 7517 7518 E->VectorizedValue = V; 7519 7520 // PHINodes may have multiple entries from the same block. We want to 7521 // visit every block once. 7522 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 7523 7524 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 7525 ValueList Operands; 7526 BasicBlock *IBB = PH->getIncomingBlock(i); 7527 7528 if (!VisitedBBs.insert(IBB).second) { 7529 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 7530 continue; 7531 } 7532 7533 Builder.SetInsertPoint(IBB->getTerminator()); 7534 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 7535 Value *Vec = vectorizeTree(E->getOperand(i)); 7536 NewPhi->addIncoming(Vec, IBB); 7537 } 7538 7539 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 7540 "Invalid number of incoming values"); 7541 return V; 7542 } 7543 7544 case Instruction::ExtractElement: { 7545 Value *V = E->getSingleOperand(0); 7546 Builder.SetInsertPoint(VL0); 7547 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7548 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7549 V = ShuffleBuilder.finalize(V); 7550 E->VectorizedValue = V; 7551 return V; 7552 } 7553 case Instruction::ExtractValue: { 7554 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 7555 Builder.SetInsertPoint(LI); 7556 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 7557 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 7558 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 7559 Value *NewV = propagateMetadata(V, E->Scalars); 7560 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7561 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7562 NewV = ShuffleBuilder.finalize(NewV); 7563 E->VectorizedValue = NewV; 7564 return NewV; 7565 } 7566 case Instruction::InsertElement: { 7567 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 7568 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 7569 Value *V = vectorizeTree(E->getOperand(1)); 7570 7571 // Create InsertVector shuffle if necessary 7572 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 7573 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 7574 })); 7575 const unsigned NumElts = 7576 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 7577 const unsigned NumScalars = E->Scalars.size(); 7578 7579 unsigned Offset = *getInsertIndex(VL0); 7580 assert(Offset < NumElts && "Failed to find vector index offset"); 7581 7582 // Create shuffle to resize vector 7583 SmallVector<int> Mask; 7584 if (!E->ReorderIndices.empty()) { 7585 inversePermutation(E->ReorderIndices, Mask); 7586 Mask.append(NumElts - NumScalars, UndefMaskElem); 7587 } else { 7588 Mask.assign(NumElts, UndefMaskElem); 7589 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 7590 } 7591 // Create InsertVector shuffle if necessary 7592 bool IsIdentity = true; 7593 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 7594 Mask.swap(PrevMask); 7595 for (unsigned I = 0; I < NumScalars; ++I) { 7596 Value *Scalar = E->Scalars[PrevMask[I]]; 7597 unsigned InsertIdx = *getInsertIndex(Scalar); 7598 IsIdentity &= InsertIdx - Offset == I; 7599 Mask[InsertIdx - Offset] = I; 7600 } 7601 if (!IsIdentity || NumElts != NumScalars) { 7602 V = Builder.CreateShuffleVector(V, Mask); 7603 if (auto *I = dyn_cast<Instruction>(V)) { 7604 GatherShuffleSeq.insert(I); 7605 CSEBlocks.insert(I->getParent()); 7606 } 7607 } 7608 7609 if ((!IsIdentity || Offset != 0 || 7610 !isUndefVector(FirstInsert->getOperand(0))) && 7611 NumElts != NumScalars) { 7612 SmallVector<int> InsertMask(NumElts); 7613 std::iota(InsertMask.begin(), InsertMask.end(), 0); 7614 for (unsigned I = 0; I < NumElts; I++) { 7615 if (Mask[I] != UndefMaskElem) 7616 InsertMask[Offset + I] = NumElts + I; 7617 } 7618 7619 V = Builder.CreateShuffleVector( 7620 FirstInsert->getOperand(0), V, InsertMask, 7621 cast<Instruction>(E->Scalars.back())->getName()); 7622 if (auto *I = dyn_cast<Instruction>(V)) { 7623 GatherShuffleSeq.insert(I); 7624 CSEBlocks.insert(I->getParent()); 7625 } 7626 } 7627 7628 ++NumVectorInstructions; 7629 E->VectorizedValue = V; 7630 return V; 7631 } 7632 case Instruction::ZExt: 7633 case Instruction::SExt: 7634 case Instruction::FPToUI: 7635 case Instruction::FPToSI: 7636 case Instruction::FPExt: 7637 case Instruction::PtrToInt: 7638 case Instruction::IntToPtr: 7639 case Instruction::SIToFP: 7640 case Instruction::UIToFP: 7641 case Instruction::Trunc: 7642 case Instruction::FPTrunc: 7643 case Instruction::BitCast: { 7644 setInsertPointAfterBundle(E); 7645 7646 Value *InVec = vectorizeTree(E->getOperand(0)); 7647 7648 if (E->VectorizedValue) { 7649 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7650 return E->VectorizedValue; 7651 } 7652 7653 auto *CI = cast<CastInst>(VL0); 7654 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 7655 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7656 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7657 V = ShuffleBuilder.finalize(V); 7658 7659 E->VectorizedValue = V; 7660 ++NumVectorInstructions; 7661 return V; 7662 } 7663 case Instruction::FCmp: 7664 case Instruction::ICmp: { 7665 setInsertPointAfterBundle(E); 7666 7667 Value *L = vectorizeTree(E->getOperand(0)); 7668 Value *R = vectorizeTree(E->getOperand(1)); 7669 7670 if (E->VectorizedValue) { 7671 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7672 return E->VectorizedValue; 7673 } 7674 7675 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 7676 Value *V = Builder.CreateCmp(P0, L, R); 7677 propagateIRFlags(V, E->Scalars, VL0); 7678 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7679 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7680 V = ShuffleBuilder.finalize(V); 7681 7682 E->VectorizedValue = V; 7683 ++NumVectorInstructions; 7684 return V; 7685 } 7686 case Instruction::Select: { 7687 setInsertPointAfterBundle(E); 7688 7689 Value *Cond = vectorizeTree(E->getOperand(0)); 7690 Value *True = vectorizeTree(E->getOperand(1)); 7691 Value *False = vectorizeTree(E->getOperand(2)); 7692 7693 if (E->VectorizedValue) { 7694 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7695 return E->VectorizedValue; 7696 } 7697 7698 Value *V = Builder.CreateSelect(Cond, True, False); 7699 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7700 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7701 V = ShuffleBuilder.finalize(V); 7702 7703 E->VectorizedValue = V; 7704 ++NumVectorInstructions; 7705 return V; 7706 } 7707 case Instruction::FNeg: { 7708 setInsertPointAfterBundle(E); 7709 7710 Value *Op = vectorizeTree(E->getOperand(0)); 7711 7712 if (E->VectorizedValue) { 7713 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7714 return E->VectorizedValue; 7715 } 7716 7717 Value *V = Builder.CreateUnOp( 7718 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 7719 propagateIRFlags(V, E->Scalars, VL0); 7720 if (auto *I = dyn_cast<Instruction>(V)) 7721 V = propagateMetadata(I, E->Scalars); 7722 7723 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7724 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7725 V = ShuffleBuilder.finalize(V); 7726 7727 E->VectorizedValue = V; 7728 ++NumVectorInstructions; 7729 7730 return V; 7731 } 7732 case Instruction::Add: 7733 case Instruction::FAdd: 7734 case Instruction::Sub: 7735 case Instruction::FSub: 7736 case Instruction::Mul: 7737 case Instruction::FMul: 7738 case Instruction::UDiv: 7739 case Instruction::SDiv: 7740 case Instruction::FDiv: 7741 case Instruction::URem: 7742 case Instruction::SRem: 7743 case Instruction::FRem: 7744 case Instruction::Shl: 7745 case Instruction::LShr: 7746 case Instruction::AShr: 7747 case Instruction::And: 7748 case Instruction::Or: 7749 case Instruction::Xor: { 7750 setInsertPointAfterBundle(E); 7751 7752 Value *LHS = vectorizeTree(E->getOperand(0)); 7753 Value *RHS = vectorizeTree(E->getOperand(1)); 7754 7755 if (E->VectorizedValue) { 7756 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7757 return E->VectorizedValue; 7758 } 7759 7760 Value *V = Builder.CreateBinOp( 7761 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 7762 RHS); 7763 propagateIRFlags(V, E->Scalars, VL0); 7764 if (auto *I = dyn_cast<Instruction>(V)) 7765 V = propagateMetadata(I, E->Scalars); 7766 7767 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7768 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7769 V = ShuffleBuilder.finalize(V); 7770 7771 E->VectorizedValue = V; 7772 ++NumVectorInstructions; 7773 7774 return V; 7775 } 7776 case Instruction::Load: { 7777 // Loads are inserted at the head of the tree because we don't want to 7778 // sink them all the way down past store instructions. 7779 setInsertPointAfterBundle(E); 7780 7781 LoadInst *LI = cast<LoadInst>(VL0); 7782 Instruction *NewLI; 7783 unsigned AS = LI->getPointerAddressSpace(); 7784 Value *PO = LI->getPointerOperand(); 7785 if (E->State == TreeEntry::Vectorize) { 7786 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 7787 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 7788 7789 // The pointer operand uses an in-tree scalar so we add the new BitCast 7790 // or LoadInst to ExternalUses list to make sure that an extract will 7791 // be generated in the future. 7792 if (TreeEntry *Entry = getTreeEntry(PO)) { 7793 // Find which lane we need to extract. 7794 unsigned FoundLane = Entry->findLaneForValue(PO); 7795 ExternalUses.emplace_back( 7796 PO, PO != VecPtr ? cast<User>(VecPtr) : NewLI, FoundLane); 7797 } 7798 } else { 7799 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 7800 Value *VecPtr = vectorizeTree(E->getOperand(0)); 7801 // Use the minimum alignment of the gathered loads. 7802 Align CommonAlignment = LI->getAlign(); 7803 for (Value *V : E->Scalars) 7804 CommonAlignment = 7805 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 7806 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 7807 } 7808 Value *V = propagateMetadata(NewLI, E->Scalars); 7809 7810 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7811 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7812 V = ShuffleBuilder.finalize(V); 7813 E->VectorizedValue = V; 7814 ++NumVectorInstructions; 7815 return V; 7816 } 7817 case Instruction::Store: { 7818 auto *SI = cast<StoreInst>(VL0); 7819 unsigned AS = SI->getPointerAddressSpace(); 7820 7821 setInsertPointAfterBundle(E); 7822 7823 Value *VecValue = vectorizeTree(E->getOperand(0)); 7824 ShuffleBuilder.addMask(E->ReorderIndices); 7825 VecValue = ShuffleBuilder.finalize(VecValue); 7826 7827 Value *ScalarPtr = SI->getPointerOperand(); 7828 Value *VecPtr = Builder.CreateBitCast( 7829 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 7830 StoreInst *ST = 7831 Builder.CreateAlignedStore(VecValue, VecPtr, SI->getAlign()); 7832 7833 // The pointer operand uses an in-tree scalar, so add the new BitCast or 7834 // StoreInst to ExternalUses to make sure that an extract will be 7835 // generated in the future. 7836 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 7837 // Find which lane we need to extract. 7838 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 7839 ExternalUses.push_back(ExternalUser( 7840 ScalarPtr, ScalarPtr != VecPtr ? cast<User>(VecPtr) : ST, 7841 FoundLane)); 7842 } 7843 7844 Value *V = propagateMetadata(ST, E->Scalars); 7845 7846 E->VectorizedValue = V; 7847 ++NumVectorInstructions; 7848 return V; 7849 } 7850 case Instruction::GetElementPtr: { 7851 auto *GEP0 = cast<GetElementPtrInst>(VL0); 7852 setInsertPointAfterBundle(E); 7853 7854 Value *Op0 = vectorizeTree(E->getOperand(0)); 7855 7856 SmallVector<Value *> OpVecs; 7857 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 7858 Value *OpVec = vectorizeTree(E->getOperand(J)); 7859 OpVecs.push_back(OpVec); 7860 } 7861 7862 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 7863 if (Instruction *I = dyn_cast<Instruction>(V)) 7864 V = propagateMetadata(I, E->Scalars); 7865 7866 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7867 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7868 V = ShuffleBuilder.finalize(V); 7869 7870 E->VectorizedValue = V; 7871 ++NumVectorInstructions; 7872 7873 return V; 7874 } 7875 case Instruction::Call: { 7876 CallInst *CI = cast<CallInst>(VL0); 7877 setInsertPointAfterBundle(E); 7878 7879 Intrinsic::ID IID = Intrinsic::not_intrinsic; 7880 if (Function *FI = CI->getCalledFunction()) 7881 IID = FI->getIntrinsicID(); 7882 7883 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7884 7885 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 7886 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 7887 VecCallCosts.first <= VecCallCosts.second; 7888 7889 Value *ScalarArg = nullptr; 7890 std::vector<Value *> OpVecs; 7891 SmallVector<Type *, 2> TysForDecl = 7892 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 7893 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 7894 ValueList OpVL; 7895 // Some intrinsics have scalar arguments. This argument should not be 7896 // vectorized. 7897 if (UseIntrinsic && isVectorIntrinsicWithScalarOpAtArg(IID, j)) { 7898 CallInst *CEI = cast<CallInst>(VL0); 7899 ScalarArg = CEI->getArgOperand(j); 7900 OpVecs.push_back(CEI->getArgOperand(j)); 7901 if (isVectorIntrinsicWithOverloadTypeAtArg(IID, j)) 7902 TysForDecl.push_back(ScalarArg->getType()); 7903 continue; 7904 } 7905 7906 Value *OpVec = vectorizeTree(E->getOperand(j)); 7907 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 7908 OpVecs.push_back(OpVec); 7909 if (isVectorIntrinsicWithOverloadTypeAtArg(IID, j)) 7910 TysForDecl.push_back(OpVec->getType()); 7911 } 7912 7913 Function *CF; 7914 if (!UseIntrinsic) { 7915 VFShape Shape = 7916 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 7917 VecTy->getNumElements())), 7918 false /*HasGlobalPred*/); 7919 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 7920 } else { 7921 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 7922 } 7923 7924 SmallVector<OperandBundleDef, 1> OpBundles; 7925 CI->getOperandBundlesAsDefs(OpBundles); 7926 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 7927 7928 // The scalar argument uses an in-tree scalar so we add the new vectorized 7929 // call to ExternalUses list to make sure that an extract will be 7930 // generated in the future. 7931 if (ScalarArg) { 7932 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 7933 // Find which lane we need to extract. 7934 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 7935 ExternalUses.push_back( 7936 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 7937 } 7938 } 7939 7940 propagateIRFlags(V, E->Scalars, VL0); 7941 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7942 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7943 V = ShuffleBuilder.finalize(V); 7944 7945 E->VectorizedValue = V; 7946 ++NumVectorInstructions; 7947 return V; 7948 } 7949 case Instruction::ShuffleVector: { 7950 assert(E->isAltShuffle() && 7951 ((Instruction::isBinaryOp(E->getOpcode()) && 7952 Instruction::isBinaryOp(E->getAltOpcode())) || 7953 (Instruction::isCast(E->getOpcode()) && 7954 Instruction::isCast(E->getAltOpcode())) || 7955 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 7956 "Invalid Shuffle Vector Operand"); 7957 7958 Value *LHS = nullptr, *RHS = nullptr; 7959 if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) { 7960 setInsertPointAfterBundle(E); 7961 LHS = vectorizeTree(E->getOperand(0)); 7962 RHS = vectorizeTree(E->getOperand(1)); 7963 } else { 7964 setInsertPointAfterBundle(E); 7965 LHS = vectorizeTree(E->getOperand(0)); 7966 } 7967 7968 if (E->VectorizedValue) { 7969 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7970 return E->VectorizedValue; 7971 } 7972 7973 Value *V0, *V1; 7974 if (Instruction::isBinaryOp(E->getOpcode())) { 7975 V0 = Builder.CreateBinOp( 7976 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 7977 V1 = Builder.CreateBinOp( 7978 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 7979 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 7980 V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS); 7981 auto *AltCI = cast<CmpInst>(E->getAltOp()); 7982 CmpInst::Predicate AltPred = AltCI->getPredicate(); 7983 V1 = Builder.CreateCmp(AltPred, LHS, RHS); 7984 } else { 7985 V0 = Builder.CreateCast( 7986 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 7987 V1 = Builder.CreateCast( 7988 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 7989 } 7990 // Add V0 and V1 to later analysis to try to find and remove matching 7991 // instruction, if any. 7992 for (Value *V : {V0, V1}) { 7993 if (auto *I = dyn_cast<Instruction>(V)) { 7994 GatherShuffleSeq.insert(I); 7995 CSEBlocks.insert(I->getParent()); 7996 } 7997 } 7998 7999 // Create shuffle to take alternate operations from the vector. 8000 // Also, gather up main and alt scalar ops to propagate IR flags to 8001 // each vector operation. 8002 ValueList OpScalars, AltScalars; 8003 SmallVector<int> Mask; 8004 buildShuffleEntryMask( 8005 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 8006 [E](Instruction *I) { 8007 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 8008 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 8009 }, 8010 Mask, &OpScalars, &AltScalars); 8011 8012 propagateIRFlags(V0, OpScalars); 8013 propagateIRFlags(V1, AltScalars); 8014 8015 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 8016 if (auto *I = dyn_cast<Instruction>(V)) { 8017 V = propagateMetadata(I, E->Scalars); 8018 GatherShuffleSeq.insert(I); 8019 CSEBlocks.insert(I->getParent()); 8020 } 8021 V = ShuffleBuilder.finalize(V); 8022 8023 E->VectorizedValue = V; 8024 ++NumVectorInstructions; 8025 8026 return V; 8027 } 8028 default: 8029 llvm_unreachable("unknown inst"); 8030 } 8031 return nullptr; 8032 } 8033 8034 Value *BoUpSLP::vectorizeTree() { 8035 ExtraValueToDebugLocsMap ExternallyUsedValues; 8036 return vectorizeTree(ExternallyUsedValues); 8037 } 8038 8039 Value * 8040 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 8041 // All blocks must be scheduled before any instructions are inserted. 8042 for (auto &BSIter : BlocksSchedules) { 8043 scheduleBlock(BSIter.second.get()); 8044 } 8045 8046 Builder.SetInsertPoint(&F->getEntryBlock().front()); 8047 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 8048 8049 // If the vectorized tree can be rewritten in a smaller type, we truncate the 8050 // vectorized root. InstCombine will then rewrite the entire expression. We 8051 // sign extend the extracted values below. 8052 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 8053 if (MinBWs.count(ScalarRoot)) { 8054 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 8055 // If current instr is a phi and not the last phi, insert it after the 8056 // last phi node. 8057 if (isa<PHINode>(I)) 8058 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 8059 else 8060 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 8061 } 8062 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 8063 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 8064 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 8065 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 8066 VectorizableTree[0]->VectorizedValue = Trunc; 8067 } 8068 8069 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 8070 << " values .\n"); 8071 8072 // Extract all of the elements with the external uses. 8073 for (const auto &ExternalUse : ExternalUses) { 8074 Value *Scalar = ExternalUse.Scalar; 8075 llvm::User *User = ExternalUse.User; 8076 8077 // Skip users that we already RAUW. This happens when one instruction 8078 // has multiple uses of the same value. 8079 if (User && !is_contained(Scalar->users(), User)) 8080 continue; 8081 TreeEntry *E = getTreeEntry(Scalar); 8082 assert(E && "Invalid scalar"); 8083 assert(E->State != TreeEntry::NeedToGather && 8084 "Extracting from a gather list"); 8085 8086 Value *Vec = E->VectorizedValue; 8087 assert(Vec && "Can't find vectorizable value"); 8088 8089 Value *Lane = Builder.getInt32(ExternalUse.Lane); 8090 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 8091 if (Scalar->getType() != Vec->getType()) { 8092 Value *Ex; 8093 // "Reuse" the existing extract to improve final codegen. 8094 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 8095 Ex = Builder.CreateExtractElement(ES->getOperand(0), 8096 ES->getOperand(1)); 8097 } else { 8098 Ex = Builder.CreateExtractElement(Vec, Lane); 8099 } 8100 // If necessary, sign-extend or zero-extend ScalarRoot 8101 // to the larger type. 8102 if (!MinBWs.count(ScalarRoot)) 8103 return Ex; 8104 if (MinBWs[ScalarRoot].second) 8105 return Builder.CreateSExt(Ex, Scalar->getType()); 8106 return Builder.CreateZExt(Ex, Scalar->getType()); 8107 } 8108 assert(isa<FixedVectorType>(Scalar->getType()) && 8109 isa<InsertElementInst>(Scalar) && 8110 "In-tree scalar of vector type is not insertelement?"); 8111 return Vec; 8112 }; 8113 // If User == nullptr, the Scalar is used as extra arg. Generate 8114 // ExtractElement instruction and update the record for this scalar in 8115 // ExternallyUsedValues. 8116 if (!User) { 8117 assert(ExternallyUsedValues.count(Scalar) && 8118 "Scalar with nullptr as an external user must be registered in " 8119 "ExternallyUsedValues map"); 8120 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 8121 Builder.SetInsertPoint(VecI->getParent(), 8122 std::next(VecI->getIterator())); 8123 } else { 8124 Builder.SetInsertPoint(&F->getEntryBlock().front()); 8125 } 8126 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 8127 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 8128 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 8129 auto It = ExternallyUsedValues.find(Scalar); 8130 assert(It != ExternallyUsedValues.end() && 8131 "Externally used scalar is not found in ExternallyUsedValues"); 8132 NewInstLocs.append(It->second); 8133 ExternallyUsedValues.erase(Scalar); 8134 // Required to update internally referenced instructions. 8135 Scalar->replaceAllUsesWith(NewInst); 8136 continue; 8137 } 8138 8139 // Generate extracts for out-of-tree users. 8140 // Find the insertion point for the extractelement lane. 8141 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 8142 if (PHINode *PH = dyn_cast<PHINode>(User)) { 8143 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 8144 if (PH->getIncomingValue(i) == Scalar) { 8145 Instruction *IncomingTerminator = 8146 PH->getIncomingBlock(i)->getTerminator(); 8147 if (isa<CatchSwitchInst>(IncomingTerminator)) { 8148 Builder.SetInsertPoint(VecI->getParent(), 8149 std::next(VecI->getIterator())); 8150 } else { 8151 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 8152 } 8153 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 8154 CSEBlocks.insert(PH->getIncomingBlock(i)); 8155 PH->setOperand(i, NewInst); 8156 } 8157 } 8158 } else { 8159 Builder.SetInsertPoint(cast<Instruction>(User)); 8160 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 8161 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 8162 User->replaceUsesOfWith(Scalar, NewInst); 8163 } 8164 } else { 8165 Builder.SetInsertPoint(&F->getEntryBlock().front()); 8166 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 8167 CSEBlocks.insert(&F->getEntryBlock()); 8168 User->replaceUsesOfWith(Scalar, NewInst); 8169 } 8170 8171 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 8172 } 8173 8174 // For each vectorized value: 8175 for (auto &TEPtr : VectorizableTree) { 8176 TreeEntry *Entry = TEPtr.get(); 8177 8178 // No need to handle users of gathered values. 8179 if (Entry->State == TreeEntry::NeedToGather) 8180 continue; 8181 8182 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 8183 8184 // For each lane: 8185 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 8186 Value *Scalar = Entry->Scalars[Lane]; 8187 8188 #ifndef NDEBUG 8189 Type *Ty = Scalar->getType(); 8190 if (!Ty->isVoidTy()) { 8191 for (User *U : Scalar->users()) { 8192 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 8193 8194 // It is legal to delete users in the ignorelist. 8195 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 8196 (isa_and_nonnull<Instruction>(U) && 8197 isDeleted(cast<Instruction>(U)))) && 8198 "Deleting out-of-tree value"); 8199 } 8200 } 8201 #endif 8202 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 8203 eraseInstruction(cast<Instruction>(Scalar)); 8204 } 8205 } 8206 8207 Builder.ClearInsertionPoint(); 8208 InstrElementSize.clear(); 8209 8210 return VectorizableTree[0]->VectorizedValue; 8211 } 8212 8213 void BoUpSLP::optimizeGatherSequence() { 8214 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size() 8215 << " gather sequences instructions.\n"); 8216 // LICM InsertElementInst sequences. 8217 for (Instruction *I : GatherShuffleSeq) { 8218 if (isDeleted(I)) 8219 continue; 8220 8221 // Check if this block is inside a loop. 8222 Loop *L = LI->getLoopFor(I->getParent()); 8223 if (!L) 8224 continue; 8225 8226 // Check if it has a preheader. 8227 BasicBlock *PreHeader = L->getLoopPreheader(); 8228 if (!PreHeader) 8229 continue; 8230 8231 // If the vector or the element that we insert into it are 8232 // instructions that are defined in this basic block then we can't 8233 // hoist this instruction. 8234 if (any_of(I->operands(), [L](Value *V) { 8235 auto *OpI = dyn_cast<Instruction>(V); 8236 return OpI && L->contains(OpI); 8237 })) 8238 continue; 8239 8240 // We can hoist this instruction. Move it to the pre-header. 8241 I->moveBefore(PreHeader->getTerminator()); 8242 } 8243 8244 // Make a list of all reachable blocks in our CSE queue. 8245 SmallVector<const DomTreeNode *, 8> CSEWorkList; 8246 CSEWorkList.reserve(CSEBlocks.size()); 8247 for (BasicBlock *BB : CSEBlocks) 8248 if (DomTreeNode *N = DT->getNode(BB)) { 8249 assert(DT->isReachableFromEntry(N)); 8250 CSEWorkList.push_back(N); 8251 } 8252 8253 // Sort blocks by domination. This ensures we visit a block after all blocks 8254 // dominating it are visited. 8255 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 8256 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 8257 "Different nodes should have different DFS numbers"); 8258 return A->getDFSNumIn() < B->getDFSNumIn(); 8259 }); 8260 8261 // Less defined shuffles can be replaced by the more defined copies. 8262 // Between two shuffles one is less defined if it has the same vector operands 8263 // and its mask indeces are the same as in the first one or undefs. E.g. 8264 // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0, 8265 // poison, <0, 0, 0, 0>. 8266 auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2, 8267 SmallVectorImpl<int> &NewMask) { 8268 if (I1->getType() != I2->getType()) 8269 return false; 8270 auto *SI1 = dyn_cast<ShuffleVectorInst>(I1); 8271 auto *SI2 = dyn_cast<ShuffleVectorInst>(I2); 8272 if (!SI1 || !SI2) 8273 return I1->isIdenticalTo(I2); 8274 if (SI1->isIdenticalTo(SI2)) 8275 return true; 8276 for (int I = 0, E = SI1->getNumOperands(); I < E; ++I) 8277 if (SI1->getOperand(I) != SI2->getOperand(I)) 8278 return false; 8279 // Check if the second instruction is more defined than the first one. 8280 NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end()); 8281 ArrayRef<int> SM1 = SI1->getShuffleMask(); 8282 // Count trailing undefs in the mask to check the final number of used 8283 // registers. 8284 unsigned LastUndefsCnt = 0; 8285 for (int I = 0, E = NewMask.size(); I < E; ++I) { 8286 if (SM1[I] == UndefMaskElem) 8287 ++LastUndefsCnt; 8288 else 8289 LastUndefsCnt = 0; 8290 if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem && 8291 NewMask[I] != SM1[I]) 8292 return false; 8293 if (NewMask[I] == UndefMaskElem) 8294 NewMask[I] = SM1[I]; 8295 } 8296 // Check if the last undefs actually change the final number of used vector 8297 // registers. 8298 return SM1.size() - LastUndefsCnt > 1 && 8299 TTI->getNumberOfParts(SI1->getType()) == 8300 TTI->getNumberOfParts( 8301 FixedVectorType::get(SI1->getType()->getElementType(), 8302 SM1.size() - LastUndefsCnt)); 8303 }; 8304 // Perform O(N^2) search over the gather/shuffle sequences and merge identical 8305 // instructions. TODO: We can further optimize this scan if we split the 8306 // instructions into different buckets based on the insert lane. 8307 SmallVector<Instruction *, 16> Visited; 8308 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 8309 assert(*I && 8310 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 8311 "Worklist not sorted properly!"); 8312 BasicBlock *BB = (*I)->getBlock(); 8313 // For all instructions in blocks containing gather sequences: 8314 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 8315 if (isDeleted(&In)) 8316 continue; 8317 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 8318 !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In)) 8319 continue; 8320 8321 // Check if we can replace this instruction with any of the 8322 // visited instructions. 8323 bool Replaced = false; 8324 for (Instruction *&V : Visited) { 8325 SmallVector<int> NewMask; 8326 if (IsIdenticalOrLessDefined(&In, V, NewMask) && 8327 DT->dominates(V->getParent(), In.getParent())) { 8328 In.replaceAllUsesWith(V); 8329 eraseInstruction(&In); 8330 if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) 8331 if (!NewMask.empty()) 8332 SI->setShuffleMask(NewMask); 8333 Replaced = true; 8334 break; 8335 } 8336 if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) && 8337 GatherShuffleSeq.contains(V) && 8338 IsIdenticalOrLessDefined(V, &In, NewMask) && 8339 DT->dominates(In.getParent(), V->getParent())) { 8340 In.moveAfter(V); 8341 V->replaceAllUsesWith(&In); 8342 eraseInstruction(V); 8343 if (auto *SI = dyn_cast<ShuffleVectorInst>(&In)) 8344 if (!NewMask.empty()) 8345 SI->setShuffleMask(NewMask); 8346 V = &In; 8347 Replaced = true; 8348 break; 8349 } 8350 } 8351 if (!Replaced) { 8352 assert(!is_contained(Visited, &In)); 8353 Visited.push_back(&In); 8354 } 8355 } 8356 } 8357 CSEBlocks.clear(); 8358 GatherShuffleSeq.clear(); 8359 } 8360 8361 BoUpSLP::ScheduleData * 8362 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) { 8363 ScheduleData *Bundle = nullptr; 8364 ScheduleData *PrevInBundle = nullptr; 8365 for (Value *V : VL) { 8366 if (doesNotNeedToBeScheduled(V)) 8367 continue; 8368 ScheduleData *BundleMember = getScheduleData(V); 8369 assert(BundleMember && 8370 "no ScheduleData for bundle member " 8371 "(maybe not in same basic block)"); 8372 assert(BundleMember->isSchedulingEntity() && 8373 "bundle member already part of other bundle"); 8374 if (PrevInBundle) { 8375 PrevInBundle->NextInBundle = BundleMember; 8376 } else { 8377 Bundle = BundleMember; 8378 } 8379 8380 // Group the instructions to a bundle. 8381 BundleMember->FirstInBundle = Bundle; 8382 PrevInBundle = BundleMember; 8383 } 8384 assert(Bundle && "Failed to find schedule bundle"); 8385 return Bundle; 8386 } 8387 8388 // Groups the instructions to a bundle (which is then a single scheduling entity) 8389 // and schedules instructions until the bundle gets ready. 8390 Optional<BoUpSLP::ScheduleData *> 8391 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 8392 const InstructionsState &S) { 8393 // No need to schedule PHIs, insertelement, extractelement and extractvalue 8394 // instructions. 8395 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue) || 8396 doesNotNeedToSchedule(VL)) 8397 return nullptr; 8398 8399 // Initialize the instruction bundle. 8400 Instruction *OldScheduleEnd = ScheduleEnd; 8401 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 8402 8403 auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule, 8404 ScheduleData *Bundle) { 8405 // The scheduling region got new instructions at the lower end (or it is a 8406 // new region for the first bundle). This makes it necessary to 8407 // recalculate all dependencies. 8408 // It is seldom that this needs to be done a second time after adding the 8409 // initial bundle to the region. 8410 if (ScheduleEnd != OldScheduleEnd) { 8411 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 8412 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 8413 ReSchedule = true; 8414 } 8415 if (Bundle) { 8416 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 8417 << " in block " << BB->getName() << "\n"); 8418 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 8419 } 8420 8421 if (ReSchedule) { 8422 resetSchedule(); 8423 initialFillReadyList(ReadyInsts); 8424 } 8425 8426 // Now try to schedule the new bundle or (if no bundle) just calculate 8427 // dependencies. As soon as the bundle is "ready" it means that there are no 8428 // cyclic dependencies and we can schedule it. Note that's important that we 8429 // don't "schedule" the bundle yet (see cancelScheduling). 8430 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 8431 !ReadyInsts.empty()) { 8432 ScheduleData *Picked = ReadyInsts.pop_back_val(); 8433 assert(Picked->isSchedulingEntity() && Picked->isReady() && 8434 "must be ready to schedule"); 8435 schedule(Picked, ReadyInsts); 8436 } 8437 }; 8438 8439 // Make sure that the scheduling region contains all 8440 // instructions of the bundle. 8441 for (Value *V : VL) { 8442 if (doesNotNeedToBeScheduled(V)) 8443 continue; 8444 if (!extendSchedulingRegion(V, S)) { 8445 // If the scheduling region got new instructions at the lower end (or it 8446 // is a new region for the first bundle). This makes it necessary to 8447 // recalculate all dependencies. 8448 // Otherwise the compiler may crash trying to incorrectly calculate 8449 // dependencies and emit instruction in the wrong order at the actual 8450 // scheduling. 8451 TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr); 8452 return None; 8453 } 8454 } 8455 8456 bool ReSchedule = false; 8457 for (Value *V : VL) { 8458 if (doesNotNeedToBeScheduled(V)) 8459 continue; 8460 ScheduleData *BundleMember = getScheduleData(V); 8461 assert(BundleMember && 8462 "no ScheduleData for bundle member (maybe not in same basic block)"); 8463 8464 // Make sure we don't leave the pieces of the bundle in the ready list when 8465 // whole bundle might not be ready. 8466 ReadyInsts.remove(BundleMember); 8467 8468 if (!BundleMember->IsScheduled) 8469 continue; 8470 // A bundle member was scheduled as single instruction before and now 8471 // needs to be scheduled as part of the bundle. We just get rid of the 8472 // existing schedule. 8473 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 8474 << " was already scheduled\n"); 8475 ReSchedule = true; 8476 } 8477 8478 auto *Bundle = buildBundle(VL); 8479 TryScheduleBundleImpl(ReSchedule, Bundle); 8480 if (!Bundle->isReady()) { 8481 cancelScheduling(VL, S.OpValue); 8482 return None; 8483 } 8484 return Bundle; 8485 } 8486 8487 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 8488 Value *OpValue) { 8489 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue) || 8490 doesNotNeedToSchedule(VL)) 8491 return; 8492 8493 if (doesNotNeedToBeScheduled(OpValue)) 8494 OpValue = *find_if_not(VL, doesNotNeedToBeScheduled); 8495 ScheduleData *Bundle = getScheduleData(OpValue); 8496 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 8497 assert(!Bundle->IsScheduled && 8498 "Can't cancel bundle which is already scheduled"); 8499 assert(Bundle->isSchedulingEntity() && 8500 (Bundle->isPartOfBundle() || needToScheduleSingleInstruction(VL)) && 8501 "tried to unbundle something which is not a bundle"); 8502 8503 // Remove the bundle from the ready list. 8504 if (Bundle->isReady()) 8505 ReadyInsts.remove(Bundle); 8506 8507 // Un-bundle: make single instructions out of the bundle. 8508 ScheduleData *BundleMember = Bundle; 8509 while (BundleMember) { 8510 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 8511 BundleMember->FirstInBundle = BundleMember; 8512 ScheduleData *Next = BundleMember->NextInBundle; 8513 BundleMember->NextInBundle = nullptr; 8514 BundleMember->TE = nullptr; 8515 if (BundleMember->unscheduledDepsInBundle() == 0) { 8516 ReadyInsts.insert(BundleMember); 8517 } 8518 BundleMember = Next; 8519 } 8520 } 8521 8522 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 8523 // Allocate a new ScheduleData for the instruction. 8524 if (ChunkPos >= ChunkSize) { 8525 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 8526 ChunkPos = 0; 8527 } 8528 return &(ScheduleDataChunks.back()[ChunkPos++]); 8529 } 8530 8531 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 8532 const InstructionsState &S) { 8533 if (getScheduleData(V, isOneOf(S, V))) 8534 return true; 8535 Instruction *I = dyn_cast<Instruction>(V); 8536 assert(I && "bundle member must be an instruction"); 8537 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 8538 !doesNotNeedToBeScheduled(I) && 8539 "phi nodes/insertelements/extractelements/extractvalues don't need to " 8540 "be scheduled"); 8541 auto &&CheckScheduleForI = [this, &S](Instruction *I) -> bool { 8542 ScheduleData *ISD = getScheduleData(I); 8543 if (!ISD) 8544 return false; 8545 assert(isInSchedulingRegion(ISD) && 8546 "ScheduleData not in scheduling region"); 8547 ScheduleData *SD = allocateScheduleDataChunks(); 8548 SD->Inst = I; 8549 SD->init(SchedulingRegionID, S.OpValue); 8550 ExtraScheduleDataMap[I][S.OpValue] = SD; 8551 return true; 8552 }; 8553 if (CheckScheduleForI(I)) 8554 return true; 8555 if (!ScheduleStart) { 8556 // It's the first instruction in the new region. 8557 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 8558 ScheduleStart = I; 8559 ScheduleEnd = I->getNextNode(); 8560 if (isOneOf(S, I) != I) 8561 CheckScheduleForI(I); 8562 assert(ScheduleEnd && "tried to vectorize a terminator?"); 8563 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 8564 return true; 8565 } 8566 // Search up and down at the same time, because we don't know if the new 8567 // instruction is above or below the existing scheduling region. 8568 BasicBlock::reverse_iterator UpIter = 8569 ++ScheduleStart->getIterator().getReverse(); 8570 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 8571 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 8572 BasicBlock::iterator LowerEnd = BB->end(); 8573 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 8574 &*DownIter != I) { 8575 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 8576 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 8577 return false; 8578 } 8579 8580 ++UpIter; 8581 ++DownIter; 8582 } 8583 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 8584 assert(I->getParent() == ScheduleStart->getParent() && 8585 "Instruction is in wrong basic block."); 8586 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 8587 ScheduleStart = I; 8588 if (isOneOf(S, I) != I) 8589 CheckScheduleForI(I); 8590 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 8591 << "\n"); 8592 return true; 8593 } 8594 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 8595 "Expected to reach top of the basic block or instruction down the " 8596 "lower end."); 8597 assert(I->getParent() == ScheduleEnd->getParent() && 8598 "Instruction is in wrong basic block."); 8599 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 8600 nullptr); 8601 ScheduleEnd = I->getNextNode(); 8602 if (isOneOf(S, I) != I) 8603 CheckScheduleForI(I); 8604 assert(ScheduleEnd && "tried to vectorize a terminator?"); 8605 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 8606 return true; 8607 } 8608 8609 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 8610 Instruction *ToI, 8611 ScheduleData *PrevLoadStore, 8612 ScheduleData *NextLoadStore) { 8613 ScheduleData *CurrentLoadStore = PrevLoadStore; 8614 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 8615 // No need to allocate data for non-schedulable instructions. 8616 if (doesNotNeedToBeScheduled(I)) 8617 continue; 8618 ScheduleData *SD = ScheduleDataMap.lookup(I); 8619 if (!SD) { 8620 SD = allocateScheduleDataChunks(); 8621 ScheduleDataMap[I] = SD; 8622 SD->Inst = I; 8623 } 8624 assert(!isInSchedulingRegion(SD) && 8625 "new ScheduleData already in scheduling region"); 8626 SD->init(SchedulingRegionID, I); 8627 8628 if (I->mayReadOrWriteMemory() && 8629 (!isa<IntrinsicInst>(I) || 8630 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 8631 cast<IntrinsicInst>(I)->getIntrinsicID() != 8632 Intrinsic::pseudoprobe))) { 8633 // Update the linked list of memory accessing instructions. 8634 if (CurrentLoadStore) { 8635 CurrentLoadStore->NextLoadStore = SD; 8636 } else { 8637 FirstLoadStoreInRegion = SD; 8638 } 8639 CurrentLoadStore = SD; 8640 } 8641 8642 if (match(I, m_Intrinsic<Intrinsic::stacksave>()) || 8643 match(I, m_Intrinsic<Intrinsic::stackrestore>())) 8644 RegionHasStackSave = true; 8645 } 8646 if (NextLoadStore) { 8647 if (CurrentLoadStore) 8648 CurrentLoadStore->NextLoadStore = NextLoadStore; 8649 } else { 8650 LastLoadStoreInRegion = CurrentLoadStore; 8651 } 8652 } 8653 8654 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 8655 bool InsertInReadyList, 8656 BoUpSLP *SLP) { 8657 assert(SD->isSchedulingEntity()); 8658 8659 SmallVector<ScheduleData *, 10> WorkList; 8660 WorkList.push_back(SD); 8661 8662 while (!WorkList.empty()) { 8663 ScheduleData *SD = WorkList.pop_back_val(); 8664 for (ScheduleData *BundleMember = SD; BundleMember; 8665 BundleMember = BundleMember->NextInBundle) { 8666 assert(isInSchedulingRegion(BundleMember)); 8667 if (BundleMember->hasValidDependencies()) 8668 continue; 8669 8670 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 8671 << "\n"); 8672 BundleMember->Dependencies = 0; 8673 BundleMember->resetUnscheduledDeps(); 8674 8675 // Handle def-use chain dependencies. 8676 if (BundleMember->OpValue != BundleMember->Inst) { 8677 if (ScheduleData *UseSD = getScheduleData(BundleMember->Inst)) { 8678 BundleMember->Dependencies++; 8679 ScheduleData *DestBundle = UseSD->FirstInBundle; 8680 if (!DestBundle->IsScheduled) 8681 BundleMember->incrementUnscheduledDeps(1); 8682 if (!DestBundle->hasValidDependencies()) 8683 WorkList.push_back(DestBundle); 8684 } 8685 } else { 8686 for (User *U : BundleMember->Inst->users()) { 8687 if (ScheduleData *UseSD = getScheduleData(cast<Instruction>(U))) { 8688 BundleMember->Dependencies++; 8689 ScheduleData *DestBundle = UseSD->FirstInBundle; 8690 if (!DestBundle->IsScheduled) 8691 BundleMember->incrementUnscheduledDeps(1); 8692 if (!DestBundle->hasValidDependencies()) 8693 WorkList.push_back(DestBundle); 8694 } 8695 } 8696 } 8697 8698 auto makeControlDependent = [&](Instruction *I) { 8699 auto *DepDest = getScheduleData(I); 8700 assert(DepDest && "must be in schedule window"); 8701 DepDest->ControlDependencies.push_back(BundleMember); 8702 BundleMember->Dependencies++; 8703 ScheduleData *DestBundle = DepDest->FirstInBundle; 8704 if (!DestBundle->IsScheduled) 8705 BundleMember->incrementUnscheduledDeps(1); 8706 if (!DestBundle->hasValidDependencies()) 8707 WorkList.push_back(DestBundle); 8708 }; 8709 8710 // Any instruction which isn't safe to speculate at the begining of the 8711 // block is control dependend on any early exit or non-willreturn call 8712 // which proceeds it. 8713 if (!isGuaranteedToTransferExecutionToSuccessor(BundleMember->Inst)) { 8714 for (Instruction *I = BundleMember->Inst->getNextNode(); 8715 I != ScheduleEnd; I = I->getNextNode()) { 8716 if (isSafeToSpeculativelyExecute(I, &*BB->begin())) 8717 continue; 8718 8719 // Add the dependency 8720 makeControlDependent(I); 8721 8722 if (!isGuaranteedToTransferExecutionToSuccessor(I)) 8723 // Everything past here must be control dependent on I. 8724 break; 8725 } 8726 } 8727 8728 if (RegionHasStackSave) { 8729 // If we have an inalloc alloca instruction, it needs to be scheduled 8730 // after any preceeding stacksave. We also need to prevent any alloca 8731 // from reordering above a preceeding stackrestore. 8732 if (match(BundleMember->Inst, m_Intrinsic<Intrinsic::stacksave>()) || 8733 match(BundleMember->Inst, m_Intrinsic<Intrinsic::stackrestore>())) { 8734 for (Instruction *I = BundleMember->Inst->getNextNode(); 8735 I != ScheduleEnd; I = I->getNextNode()) { 8736 if (match(I, m_Intrinsic<Intrinsic::stacksave>()) || 8737 match(I, m_Intrinsic<Intrinsic::stackrestore>())) 8738 // Any allocas past here must be control dependent on I, and I 8739 // must be memory dependend on BundleMember->Inst. 8740 break; 8741 8742 if (!isa<AllocaInst>(I)) 8743 continue; 8744 8745 // Add the dependency 8746 makeControlDependent(I); 8747 } 8748 } 8749 8750 // In addition to the cases handle just above, we need to prevent 8751 // allocas from moving below a stacksave. The stackrestore case 8752 // is currently thought to be conservatism. 8753 if (isa<AllocaInst>(BundleMember->Inst)) { 8754 for (Instruction *I = BundleMember->Inst->getNextNode(); 8755 I != ScheduleEnd; I = I->getNextNode()) { 8756 if (!match(I, m_Intrinsic<Intrinsic::stacksave>()) && 8757 !match(I, m_Intrinsic<Intrinsic::stackrestore>())) 8758 continue; 8759 8760 // Add the dependency 8761 makeControlDependent(I); 8762 break; 8763 } 8764 } 8765 } 8766 8767 // Handle the memory dependencies (if any). 8768 ScheduleData *DepDest = BundleMember->NextLoadStore; 8769 if (!DepDest) 8770 continue; 8771 Instruction *SrcInst = BundleMember->Inst; 8772 assert(SrcInst->mayReadOrWriteMemory() && 8773 "NextLoadStore list for non memory effecting bundle?"); 8774 MemoryLocation SrcLoc = getLocation(SrcInst); 8775 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 8776 unsigned numAliased = 0; 8777 unsigned DistToSrc = 1; 8778 8779 for ( ; DepDest; DepDest = DepDest->NextLoadStore) { 8780 assert(isInSchedulingRegion(DepDest)); 8781 8782 // We have two limits to reduce the complexity: 8783 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 8784 // SLP->isAliased (which is the expensive part in this loop). 8785 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 8786 // the whole loop (even if the loop is fast, it's quadratic). 8787 // It's important for the loop break condition (see below) to 8788 // check this limit even between two read-only instructions. 8789 if (DistToSrc >= MaxMemDepDistance || 8790 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 8791 (numAliased >= AliasedCheckLimit || 8792 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 8793 8794 // We increment the counter only if the locations are aliased 8795 // (instead of counting all alias checks). This gives a better 8796 // balance between reduced runtime and accurate dependencies. 8797 numAliased++; 8798 8799 DepDest->MemoryDependencies.push_back(BundleMember); 8800 BundleMember->Dependencies++; 8801 ScheduleData *DestBundle = DepDest->FirstInBundle; 8802 if (!DestBundle->IsScheduled) { 8803 BundleMember->incrementUnscheduledDeps(1); 8804 } 8805 if (!DestBundle->hasValidDependencies()) { 8806 WorkList.push_back(DestBundle); 8807 } 8808 } 8809 8810 // Example, explaining the loop break condition: Let's assume our 8811 // starting instruction is i0 and MaxMemDepDistance = 3. 8812 // 8813 // +--------v--v--v 8814 // i0,i1,i2,i3,i4,i5,i6,i7,i8 8815 // +--------^--^--^ 8816 // 8817 // MaxMemDepDistance let us stop alias-checking at i3 and we add 8818 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 8819 // Previously we already added dependencies from i3 to i6,i7,i8 8820 // (because of MaxMemDepDistance). As we added a dependency from 8821 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 8822 // and we can abort this loop at i6. 8823 if (DistToSrc >= 2 * MaxMemDepDistance) 8824 break; 8825 DistToSrc++; 8826 } 8827 } 8828 if (InsertInReadyList && SD->isReady()) { 8829 ReadyInsts.insert(SD); 8830 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 8831 << "\n"); 8832 } 8833 } 8834 } 8835 8836 void BoUpSLP::BlockScheduling::resetSchedule() { 8837 assert(ScheduleStart && 8838 "tried to reset schedule on block which has not been scheduled"); 8839 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 8840 doForAllOpcodes(I, [&](ScheduleData *SD) { 8841 assert(isInSchedulingRegion(SD) && 8842 "ScheduleData not in scheduling region"); 8843 SD->IsScheduled = false; 8844 SD->resetUnscheduledDeps(); 8845 }); 8846 } 8847 ReadyInsts.clear(); 8848 } 8849 8850 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 8851 if (!BS->ScheduleStart) 8852 return; 8853 8854 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 8855 8856 // A key point - if we got here, pre-scheduling was able to find a valid 8857 // scheduling of the sub-graph of the scheduling window which consists 8858 // of all vector bundles and their transitive users. As such, we do not 8859 // need to reschedule anything *outside of* that subgraph. 8860 8861 BS->resetSchedule(); 8862 8863 // For the real scheduling we use a more sophisticated ready-list: it is 8864 // sorted by the original instruction location. This lets the final schedule 8865 // be as close as possible to the original instruction order. 8866 // WARNING: If changing this order causes a correctness issue, that means 8867 // there is some missing dependence edge in the schedule data graph. 8868 struct ScheduleDataCompare { 8869 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 8870 return SD2->SchedulingPriority < SD1->SchedulingPriority; 8871 } 8872 }; 8873 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 8874 8875 // Ensure that all dependency data is updated (for nodes in the sub-graph) 8876 // and fill the ready-list with initial instructions. 8877 int Idx = 0; 8878 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 8879 I = I->getNextNode()) { 8880 BS->doForAllOpcodes(I, [this, &Idx, BS](ScheduleData *SD) { 8881 TreeEntry *SDTE = getTreeEntry(SD->Inst); 8882 (void)SDTE; 8883 assert((isVectorLikeInstWithConstOps(SD->Inst) || 8884 SD->isPartOfBundle() == 8885 (SDTE && !doesNotNeedToSchedule(SDTE->Scalars))) && 8886 "scheduler and vectorizer bundle mismatch"); 8887 SD->FirstInBundle->SchedulingPriority = Idx++; 8888 8889 if (SD->isSchedulingEntity() && SD->isPartOfBundle()) 8890 BS->calculateDependencies(SD, false, this); 8891 }); 8892 } 8893 BS->initialFillReadyList(ReadyInsts); 8894 8895 Instruction *LastScheduledInst = BS->ScheduleEnd; 8896 8897 // Do the "real" scheduling. 8898 while (!ReadyInsts.empty()) { 8899 ScheduleData *picked = *ReadyInsts.begin(); 8900 ReadyInsts.erase(ReadyInsts.begin()); 8901 8902 // Move the scheduled instruction(s) to their dedicated places, if not 8903 // there yet. 8904 for (ScheduleData *BundleMember = picked; BundleMember; 8905 BundleMember = BundleMember->NextInBundle) { 8906 Instruction *pickedInst = BundleMember->Inst; 8907 if (pickedInst->getNextNode() != LastScheduledInst) 8908 pickedInst->moveBefore(LastScheduledInst); 8909 LastScheduledInst = pickedInst; 8910 } 8911 8912 BS->schedule(picked, ReadyInsts); 8913 } 8914 8915 // Check that we didn't break any of our invariants. 8916 #ifdef EXPENSIVE_CHECKS 8917 BS->verify(); 8918 #endif 8919 8920 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) 8921 // Check that all schedulable entities got scheduled 8922 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) { 8923 BS->doForAllOpcodes(I, [&](ScheduleData *SD) { 8924 if (SD->isSchedulingEntity() && SD->hasValidDependencies()) { 8925 assert(SD->IsScheduled && "must be scheduled at this point"); 8926 } 8927 }); 8928 } 8929 #endif 8930 8931 // Avoid duplicate scheduling of the block. 8932 BS->ScheduleStart = nullptr; 8933 } 8934 8935 unsigned BoUpSLP::getVectorElementSize(Value *V) { 8936 // If V is a store, just return the width of the stored value (or value 8937 // truncated just before storing) without traversing the expression tree. 8938 // This is the common case. 8939 if (auto *Store = dyn_cast<StoreInst>(V)) 8940 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 8941 8942 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 8943 return getVectorElementSize(IEI->getOperand(1)); 8944 8945 auto E = InstrElementSize.find(V); 8946 if (E != InstrElementSize.end()) 8947 return E->second; 8948 8949 // If V is not a store, we can traverse the expression tree to find loads 8950 // that feed it. The type of the loaded value may indicate a more suitable 8951 // width than V's type. We want to base the vector element size on the width 8952 // of memory operations where possible. 8953 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 8954 SmallPtrSet<Instruction *, 16> Visited; 8955 if (auto *I = dyn_cast<Instruction>(V)) { 8956 Worklist.emplace_back(I, I->getParent()); 8957 Visited.insert(I); 8958 } 8959 8960 // Traverse the expression tree in bottom-up order looking for loads. If we 8961 // encounter an instruction we don't yet handle, we give up. 8962 auto Width = 0u; 8963 while (!Worklist.empty()) { 8964 Instruction *I; 8965 BasicBlock *Parent; 8966 std::tie(I, Parent) = Worklist.pop_back_val(); 8967 8968 // We should only be looking at scalar instructions here. If the current 8969 // instruction has a vector type, skip. 8970 auto *Ty = I->getType(); 8971 if (isa<VectorType>(Ty)) 8972 continue; 8973 8974 // If the current instruction is a load, update MaxWidth to reflect the 8975 // width of the loaded value. 8976 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 8977 isa<ExtractValueInst>(I)) 8978 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 8979 8980 // Otherwise, we need to visit the operands of the instruction. We only 8981 // handle the interesting cases from buildTree here. If an operand is an 8982 // instruction we haven't yet visited and from the same basic block as the 8983 // user or the use is a PHI node, we add it to the worklist. 8984 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8985 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 8986 isa<UnaryOperator>(I)) { 8987 for (Use &U : I->operands()) 8988 if (auto *J = dyn_cast<Instruction>(U.get())) 8989 if (Visited.insert(J).second && 8990 (isa<PHINode>(I) || J->getParent() == Parent)) 8991 Worklist.emplace_back(J, J->getParent()); 8992 } else { 8993 break; 8994 } 8995 } 8996 8997 // If we didn't encounter a memory access in the expression tree, or if we 8998 // gave up for some reason, just return the width of V. Otherwise, return the 8999 // maximum width we found. 9000 if (!Width) { 9001 if (auto *CI = dyn_cast<CmpInst>(V)) 9002 V = CI->getOperand(0); 9003 Width = DL->getTypeSizeInBits(V->getType()); 9004 } 9005 9006 for (Instruction *I : Visited) 9007 InstrElementSize[I] = Width; 9008 9009 return Width; 9010 } 9011 9012 // Determine if a value V in a vectorizable expression Expr can be demoted to a 9013 // smaller type with a truncation. We collect the values that will be demoted 9014 // in ToDemote and additional roots that require investigating in Roots. 9015 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 9016 SmallVectorImpl<Value *> &ToDemote, 9017 SmallVectorImpl<Value *> &Roots) { 9018 // We can always demote constants. 9019 if (isa<Constant>(V)) { 9020 ToDemote.push_back(V); 9021 return true; 9022 } 9023 9024 // If the value is not an instruction in the expression with only one use, it 9025 // cannot be demoted. 9026 auto *I = dyn_cast<Instruction>(V); 9027 if (!I || !I->hasOneUse() || !Expr.count(I)) 9028 return false; 9029 9030 switch (I->getOpcode()) { 9031 9032 // We can always demote truncations and extensions. Since truncations can 9033 // seed additional demotion, we save the truncated value. 9034 case Instruction::Trunc: 9035 Roots.push_back(I->getOperand(0)); 9036 break; 9037 case Instruction::ZExt: 9038 case Instruction::SExt: 9039 if (isa<ExtractElementInst>(I->getOperand(0)) || 9040 isa<InsertElementInst>(I->getOperand(0))) 9041 return false; 9042 break; 9043 9044 // We can demote certain binary operations if we can demote both of their 9045 // operands. 9046 case Instruction::Add: 9047 case Instruction::Sub: 9048 case Instruction::Mul: 9049 case Instruction::And: 9050 case Instruction::Or: 9051 case Instruction::Xor: 9052 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 9053 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 9054 return false; 9055 break; 9056 9057 // We can demote selects if we can demote their true and false values. 9058 case Instruction::Select: { 9059 SelectInst *SI = cast<SelectInst>(I); 9060 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 9061 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 9062 return false; 9063 break; 9064 } 9065 9066 // We can demote phis if we can demote all their incoming operands. Note that 9067 // we don't need to worry about cycles since we ensure single use above. 9068 case Instruction::PHI: { 9069 PHINode *PN = cast<PHINode>(I); 9070 for (Value *IncValue : PN->incoming_values()) 9071 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 9072 return false; 9073 break; 9074 } 9075 9076 // Otherwise, conservatively give up. 9077 default: 9078 return false; 9079 } 9080 9081 // Record the value that we can demote. 9082 ToDemote.push_back(V); 9083 return true; 9084 } 9085 9086 void BoUpSLP::computeMinimumValueSizes() { 9087 // If there are no external uses, the expression tree must be rooted by a 9088 // store. We can't demote in-memory values, so there is nothing to do here. 9089 if (ExternalUses.empty()) 9090 return; 9091 9092 // We only attempt to truncate integer expressions. 9093 auto &TreeRoot = VectorizableTree[0]->Scalars; 9094 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 9095 if (!TreeRootIT) 9096 return; 9097 9098 // If the expression is not rooted by a store, these roots should have 9099 // external uses. We will rely on InstCombine to rewrite the expression in 9100 // the narrower type. However, InstCombine only rewrites single-use values. 9101 // This means that if a tree entry other than a root is used externally, it 9102 // must have multiple uses and InstCombine will not rewrite it. The code 9103 // below ensures that only the roots are used externally. 9104 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 9105 for (auto &EU : ExternalUses) 9106 if (!Expr.erase(EU.Scalar)) 9107 return; 9108 if (!Expr.empty()) 9109 return; 9110 9111 // Collect the scalar values of the vectorizable expression. We will use this 9112 // context to determine which values can be demoted. If we see a truncation, 9113 // we mark it as seeding another demotion. 9114 for (auto &EntryPtr : VectorizableTree) 9115 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 9116 9117 // Ensure the roots of the vectorizable tree don't form a cycle. They must 9118 // have a single external user that is not in the vectorizable tree. 9119 for (auto *Root : TreeRoot) 9120 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 9121 return; 9122 9123 // Conservatively determine if we can actually truncate the roots of the 9124 // expression. Collect the values that can be demoted in ToDemote and 9125 // additional roots that require investigating in Roots. 9126 SmallVector<Value *, 32> ToDemote; 9127 SmallVector<Value *, 4> Roots; 9128 for (auto *Root : TreeRoot) 9129 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 9130 return; 9131 9132 // The maximum bit width required to represent all the values that can be 9133 // demoted without loss of precision. It would be safe to truncate the roots 9134 // of the expression to this width. 9135 auto MaxBitWidth = 8u; 9136 9137 // We first check if all the bits of the roots are demanded. If they're not, 9138 // we can truncate the roots to this narrower type. 9139 for (auto *Root : TreeRoot) { 9140 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 9141 MaxBitWidth = std::max<unsigned>( 9142 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 9143 } 9144 9145 // True if the roots can be zero-extended back to their original type, rather 9146 // than sign-extended. We know that if the leading bits are not demanded, we 9147 // can safely zero-extend. So we initialize IsKnownPositive to True. 9148 bool IsKnownPositive = true; 9149 9150 // If all the bits of the roots are demanded, we can try a little harder to 9151 // compute a narrower type. This can happen, for example, if the roots are 9152 // getelementptr indices. InstCombine promotes these indices to the pointer 9153 // width. Thus, all their bits are technically demanded even though the 9154 // address computation might be vectorized in a smaller type. 9155 // 9156 // We start by looking at each entry that can be demoted. We compute the 9157 // maximum bit width required to store the scalar by using ValueTracking to 9158 // compute the number of high-order bits we can truncate. 9159 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 9160 llvm::all_of(TreeRoot, [](Value *R) { 9161 assert(R->hasOneUse() && "Root should have only one use!"); 9162 return isa<GetElementPtrInst>(R->user_back()); 9163 })) { 9164 MaxBitWidth = 8u; 9165 9166 // Determine if the sign bit of all the roots is known to be zero. If not, 9167 // IsKnownPositive is set to False. 9168 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 9169 KnownBits Known = computeKnownBits(R, *DL); 9170 return Known.isNonNegative(); 9171 }); 9172 9173 // Determine the maximum number of bits required to store the scalar 9174 // values. 9175 for (auto *Scalar : ToDemote) { 9176 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 9177 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 9178 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 9179 } 9180 9181 // If we can't prove that the sign bit is zero, we must add one to the 9182 // maximum bit width to account for the unknown sign bit. This preserves 9183 // the existing sign bit so we can safely sign-extend the root back to the 9184 // original type. Otherwise, if we know the sign bit is zero, we will 9185 // zero-extend the root instead. 9186 // 9187 // FIXME: This is somewhat suboptimal, as there will be cases where adding 9188 // one to the maximum bit width will yield a larger-than-necessary 9189 // type. In general, we need to add an extra bit only if we can't 9190 // prove that the upper bit of the original type is equal to the 9191 // upper bit of the proposed smaller type. If these two bits are the 9192 // same (either zero or one) we know that sign-extending from the 9193 // smaller type will result in the same value. Here, since we can't 9194 // yet prove this, we are just making the proposed smaller type 9195 // larger to ensure correctness. 9196 if (!IsKnownPositive) 9197 ++MaxBitWidth; 9198 } 9199 9200 // Round MaxBitWidth up to the next power-of-two. 9201 if (!isPowerOf2_64(MaxBitWidth)) 9202 MaxBitWidth = NextPowerOf2(MaxBitWidth); 9203 9204 // If the maximum bit width we compute is less than the with of the roots' 9205 // type, we can proceed with the narrowing. Otherwise, do nothing. 9206 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 9207 return; 9208 9209 // If we can truncate the root, we must collect additional values that might 9210 // be demoted as a result. That is, those seeded by truncations we will 9211 // modify. 9212 while (!Roots.empty()) 9213 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 9214 9215 // Finally, map the values we can demote to the maximum bit with we computed. 9216 for (auto *Scalar : ToDemote) 9217 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 9218 } 9219 9220 namespace { 9221 9222 /// The SLPVectorizer Pass. 9223 struct SLPVectorizer : public FunctionPass { 9224 SLPVectorizerPass Impl; 9225 9226 /// Pass identification, replacement for typeid 9227 static char ID; 9228 9229 explicit SLPVectorizer() : FunctionPass(ID) { 9230 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 9231 } 9232 9233 bool doInitialization(Module &M) override { return false; } 9234 9235 bool runOnFunction(Function &F) override { 9236 if (skipFunction(F)) 9237 return false; 9238 9239 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 9240 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 9241 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 9242 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 9243 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 9244 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 9245 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 9246 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 9247 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 9248 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 9249 9250 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 9251 } 9252 9253 void getAnalysisUsage(AnalysisUsage &AU) const override { 9254 FunctionPass::getAnalysisUsage(AU); 9255 AU.addRequired<AssumptionCacheTracker>(); 9256 AU.addRequired<ScalarEvolutionWrapperPass>(); 9257 AU.addRequired<AAResultsWrapperPass>(); 9258 AU.addRequired<TargetTransformInfoWrapperPass>(); 9259 AU.addRequired<LoopInfoWrapperPass>(); 9260 AU.addRequired<DominatorTreeWrapperPass>(); 9261 AU.addRequired<DemandedBitsWrapperPass>(); 9262 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 9263 AU.addRequired<InjectTLIMappingsLegacy>(); 9264 AU.addPreserved<LoopInfoWrapperPass>(); 9265 AU.addPreserved<DominatorTreeWrapperPass>(); 9266 AU.addPreserved<AAResultsWrapperPass>(); 9267 AU.addPreserved<GlobalsAAWrapperPass>(); 9268 AU.setPreservesCFG(); 9269 } 9270 }; 9271 9272 } // end anonymous namespace 9273 9274 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 9275 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 9276 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 9277 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 9278 auto *AA = &AM.getResult<AAManager>(F); 9279 auto *LI = &AM.getResult<LoopAnalysis>(F); 9280 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 9281 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 9282 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 9283 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 9284 9285 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 9286 if (!Changed) 9287 return PreservedAnalyses::all(); 9288 9289 PreservedAnalyses PA; 9290 PA.preserveSet<CFGAnalyses>(); 9291 return PA; 9292 } 9293 9294 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 9295 TargetTransformInfo *TTI_, 9296 TargetLibraryInfo *TLI_, AAResults *AA_, 9297 LoopInfo *LI_, DominatorTree *DT_, 9298 AssumptionCache *AC_, DemandedBits *DB_, 9299 OptimizationRemarkEmitter *ORE_) { 9300 if (!RunSLPVectorization) 9301 return false; 9302 SE = SE_; 9303 TTI = TTI_; 9304 TLI = TLI_; 9305 AA = AA_; 9306 LI = LI_; 9307 DT = DT_; 9308 AC = AC_; 9309 DB = DB_; 9310 DL = &F.getParent()->getDataLayout(); 9311 9312 Stores.clear(); 9313 GEPs.clear(); 9314 bool Changed = false; 9315 9316 // If the target claims to have no vector registers don't attempt 9317 // vectorization. 9318 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) { 9319 LLVM_DEBUG( 9320 dbgs() << "SLP: Didn't find any vector registers for target, abort.\n"); 9321 return false; 9322 } 9323 9324 // Don't vectorize when the attribute NoImplicitFloat is used. 9325 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 9326 return false; 9327 9328 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 9329 9330 // Use the bottom up slp vectorizer to construct chains that start with 9331 // store instructions. 9332 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 9333 9334 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 9335 // delete instructions. 9336 9337 // Update DFS numbers now so that we can use them for ordering. 9338 DT->updateDFSNumbers(); 9339 9340 // Scan the blocks in the function in post order. 9341 for (auto BB : post_order(&F.getEntryBlock())) { 9342 // Start new block - clear the list of reduction roots. 9343 R.clearReductionData(); 9344 collectSeedInstructions(BB); 9345 9346 // Vectorize trees that end at stores. 9347 if (!Stores.empty()) { 9348 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 9349 << " underlying objects.\n"); 9350 Changed |= vectorizeStoreChains(R); 9351 } 9352 9353 // Vectorize trees that end at reductions. 9354 Changed |= vectorizeChainsInBlock(BB, R); 9355 9356 // Vectorize the index computations of getelementptr instructions. This 9357 // is primarily intended to catch gather-like idioms ending at 9358 // non-consecutive loads. 9359 if (!GEPs.empty()) { 9360 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 9361 << " underlying objects.\n"); 9362 Changed |= vectorizeGEPIndices(BB, R); 9363 } 9364 } 9365 9366 if (Changed) { 9367 R.optimizeGatherSequence(); 9368 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 9369 } 9370 return Changed; 9371 } 9372 9373 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 9374 unsigned Idx, unsigned MinVF) { 9375 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 9376 << "\n"); 9377 const unsigned Sz = R.getVectorElementSize(Chain[0]); 9378 unsigned VF = Chain.size(); 9379 9380 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 9381 return false; 9382 9383 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 9384 << "\n"); 9385 9386 R.buildTree(Chain); 9387 if (R.isTreeTinyAndNotFullyVectorizable()) 9388 return false; 9389 if (R.isLoadCombineCandidate()) 9390 return false; 9391 R.reorderTopToBottom(); 9392 R.reorderBottomToTop(); 9393 R.buildExternalUses(); 9394 9395 R.computeMinimumValueSizes(); 9396 9397 InstructionCost Cost = R.getTreeCost(); 9398 9399 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 9400 if (Cost < -SLPCostThreshold) { 9401 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 9402 9403 using namespace ore; 9404 9405 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 9406 cast<StoreInst>(Chain[0])) 9407 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 9408 << " and with tree size " 9409 << NV("TreeSize", R.getTreeSize())); 9410 9411 R.vectorizeTree(); 9412 return true; 9413 } 9414 9415 return false; 9416 } 9417 9418 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 9419 BoUpSLP &R) { 9420 // We may run into multiple chains that merge into a single chain. We mark the 9421 // stores that we vectorized so that we don't visit the same store twice. 9422 BoUpSLP::ValueSet VectorizedStores; 9423 bool Changed = false; 9424 9425 int E = Stores.size(); 9426 SmallBitVector Tails(E, false); 9427 int MaxIter = MaxStoreLookup.getValue(); 9428 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 9429 E, std::make_pair(E, INT_MAX)); 9430 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 9431 int IterCnt; 9432 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 9433 &CheckedPairs, 9434 &ConsecutiveChain](int K, int Idx) { 9435 if (IterCnt >= MaxIter) 9436 return true; 9437 if (CheckedPairs[Idx].test(K)) 9438 return ConsecutiveChain[K].second == 1 && 9439 ConsecutiveChain[K].first == Idx; 9440 ++IterCnt; 9441 CheckedPairs[Idx].set(K); 9442 CheckedPairs[K].set(Idx); 9443 Optional<int> Diff = getPointersDiff( 9444 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 9445 Stores[Idx]->getValueOperand()->getType(), 9446 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 9447 if (!Diff || *Diff == 0) 9448 return false; 9449 int Val = *Diff; 9450 if (Val < 0) { 9451 if (ConsecutiveChain[Idx].second > -Val) { 9452 Tails.set(K); 9453 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 9454 } 9455 return false; 9456 } 9457 if (ConsecutiveChain[K].second <= Val) 9458 return false; 9459 9460 Tails.set(Idx); 9461 ConsecutiveChain[K] = std::make_pair(Idx, Val); 9462 return Val == 1; 9463 }; 9464 // Do a quadratic search on all of the given stores in reverse order and find 9465 // all of the pairs of stores that follow each other. 9466 for (int Idx = E - 1; Idx >= 0; --Idx) { 9467 // If a store has multiple consecutive store candidates, search according 9468 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 9469 // This is because usually pairing with immediate succeeding or preceding 9470 // candidate create the best chance to find slp vectorization opportunity. 9471 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 9472 IterCnt = 0; 9473 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 9474 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 9475 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 9476 break; 9477 } 9478 9479 // Tracks if we tried to vectorize stores starting from the given tail 9480 // already. 9481 SmallBitVector TriedTails(E, false); 9482 // For stores that start but don't end a link in the chain: 9483 for (int Cnt = E; Cnt > 0; --Cnt) { 9484 int I = Cnt - 1; 9485 if (ConsecutiveChain[I].first == E || Tails.test(I)) 9486 continue; 9487 // We found a store instr that starts a chain. Now follow the chain and try 9488 // to vectorize it. 9489 BoUpSLP::ValueList Operands; 9490 // Collect the chain into a list. 9491 while (I != E && !VectorizedStores.count(Stores[I])) { 9492 Operands.push_back(Stores[I]); 9493 Tails.set(I); 9494 if (ConsecutiveChain[I].second != 1) { 9495 // Mark the new end in the chain and go back, if required. It might be 9496 // required if the original stores come in reversed order, for example. 9497 if (ConsecutiveChain[I].first != E && 9498 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 9499 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 9500 TriedTails.set(I); 9501 Tails.reset(ConsecutiveChain[I].first); 9502 if (Cnt < ConsecutiveChain[I].first + 2) 9503 Cnt = ConsecutiveChain[I].first + 2; 9504 } 9505 break; 9506 } 9507 // Move to the next value in the chain. 9508 I = ConsecutiveChain[I].first; 9509 } 9510 assert(!Operands.empty() && "Expected non-empty list of stores."); 9511 9512 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 9513 unsigned EltSize = R.getVectorElementSize(Operands[0]); 9514 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 9515 9516 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 9517 MaxElts); 9518 auto *Store = cast<StoreInst>(Operands[0]); 9519 Type *StoreTy = Store->getValueOperand()->getType(); 9520 Type *ValueTy = StoreTy; 9521 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 9522 ValueTy = Trunc->getSrcTy(); 9523 unsigned MinVF = TTI->getStoreMinimumVF( 9524 R.getMinVF(DL->getTypeSizeInBits(ValueTy)), StoreTy, ValueTy); 9525 9526 // FIXME: Is division-by-2 the correct step? Should we assert that the 9527 // register size is a power-of-2? 9528 unsigned StartIdx = 0; 9529 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 9530 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 9531 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 9532 if (!VectorizedStores.count(Slice.front()) && 9533 !VectorizedStores.count(Slice.back()) && 9534 vectorizeStoreChain(Slice, R, Cnt, MinVF)) { 9535 // Mark the vectorized stores so that we don't vectorize them again. 9536 VectorizedStores.insert(Slice.begin(), Slice.end()); 9537 Changed = true; 9538 // If we vectorized initial block, no need to try to vectorize it 9539 // again. 9540 if (Cnt == StartIdx) 9541 StartIdx += Size; 9542 Cnt += Size; 9543 continue; 9544 } 9545 ++Cnt; 9546 } 9547 // Check if the whole array was vectorized already - exit. 9548 if (StartIdx >= Operands.size()) 9549 break; 9550 } 9551 } 9552 9553 return Changed; 9554 } 9555 9556 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 9557 // Initialize the collections. We will make a single pass over the block. 9558 Stores.clear(); 9559 GEPs.clear(); 9560 9561 // Visit the store and getelementptr instructions in BB and organize them in 9562 // Stores and GEPs according to the underlying objects of their pointer 9563 // operands. 9564 for (Instruction &I : *BB) { 9565 // Ignore store instructions that are volatile or have a pointer operand 9566 // that doesn't point to a scalar type. 9567 if (auto *SI = dyn_cast<StoreInst>(&I)) { 9568 if (!SI->isSimple()) 9569 continue; 9570 if (!isValidElementType(SI->getValueOperand()->getType())) 9571 continue; 9572 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 9573 } 9574 9575 // Ignore getelementptr instructions that have more than one index, a 9576 // constant index, or a pointer operand that doesn't point to a scalar 9577 // type. 9578 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 9579 auto Idx = GEP->idx_begin()->get(); 9580 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 9581 continue; 9582 if (!isValidElementType(Idx->getType())) 9583 continue; 9584 if (GEP->getType()->isVectorTy()) 9585 continue; 9586 GEPs[GEP->getPointerOperand()].push_back(GEP); 9587 } 9588 } 9589 } 9590 9591 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 9592 if (!A || !B) 9593 return false; 9594 if (isa<InsertElementInst>(A) || isa<InsertElementInst>(B)) 9595 return false; 9596 Value *VL[] = {A, B}; 9597 return tryToVectorizeList(VL, R); 9598 } 9599 9600 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 9601 bool LimitForRegisterSize) { 9602 if (VL.size() < 2) 9603 return false; 9604 9605 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 9606 << VL.size() << ".\n"); 9607 9608 // Check that all of the parts are instructions of the same type, 9609 // we permit an alternate opcode via InstructionsState. 9610 InstructionsState S = getSameOpcode(VL); 9611 if (!S.getOpcode()) 9612 return false; 9613 9614 Instruction *I0 = cast<Instruction>(S.OpValue); 9615 // Make sure invalid types (including vector type) are rejected before 9616 // determining vectorization factor for scalar instructions. 9617 for (Value *V : VL) { 9618 Type *Ty = V->getType(); 9619 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 9620 // NOTE: the following will give user internal llvm type name, which may 9621 // not be useful. 9622 R.getORE()->emit([&]() { 9623 std::string type_str; 9624 llvm::raw_string_ostream rso(type_str); 9625 Ty->print(rso); 9626 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 9627 << "Cannot SLP vectorize list: type " 9628 << rso.str() + " is unsupported by vectorizer"; 9629 }); 9630 return false; 9631 } 9632 } 9633 9634 unsigned Sz = R.getVectorElementSize(I0); 9635 unsigned MinVF = R.getMinVF(Sz); 9636 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 9637 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 9638 if (MaxVF < 2) { 9639 R.getORE()->emit([&]() { 9640 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 9641 << "Cannot SLP vectorize list: vectorization factor " 9642 << "less than 2 is not supported"; 9643 }); 9644 return false; 9645 } 9646 9647 bool Changed = false; 9648 bool CandidateFound = false; 9649 InstructionCost MinCost = SLPCostThreshold.getValue(); 9650 Type *ScalarTy = VL[0]->getType(); 9651 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 9652 ScalarTy = IE->getOperand(1)->getType(); 9653 9654 unsigned NextInst = 0, MaxInst = VL.size(); 9655 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 9656 // No actual vectorization should happen, if number of parts is the same as 9657 // provided vectorization factor (i.e. the scalar type is used for vector 9658 // code during codegen). 9659 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 9660 if (TTI->getNumberOfParts(VecTy) == VF) 9661 continue; 9662 for (unsigned I = NextInst; I < MaxInst; ++I) { 9663 unsigned OpsWidth = 0; 9664 9665 if (I + VF > MaxInst) 9666 OpsWidth = MaxInst - I; 9667 else 9668 OpsWidth = VF; 9669 9670 if (!isPowerOf2_32(OpsWidth)) 9671 continue; 9672 9673 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 9674 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 9675 break; 9676 9677 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 9678 // Check that a previous iteration of this loop did not delete the Value. 9679 if (llvm::any_of(Ops, [&R](Value *V) { 9680 auto *I = dyn_cast<Instruction>(V); 9681 return I && R.isDeleted(I); 9682 })) 9683 continue; 9684 9685 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 9686 << "\n"); 9687 9688 R.buildTree(Ops); 9689 if (R.isTreeTinyAndNotFullyVectorizable()) 9690 continue; 9691 R.reorderTopToBottom(); 9692 R.reorderBottomToTop(!isa<InsertElementInst>(Ops.front())); 9693 R.buildExternalUses(); 9694 9695 R.computeMinimumValueSizes(); 9696 InstructionCost Cost = R.getTreeCost(); 9697 CandidateFound = true; 9698 MinCost = std::min(MinCost, Cost); 9699 9700 if (Cost < -SLPCostThreshold) { 9701 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 9702 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 9703 cast<Instruction>(Ops[0])) 9704 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 9705 << " and with tree size " 9706 << ore::NV("TreeSize", R.getTreeSize())); 9707 9708 R.vectorizeTree(); 9709 // Move to the next bundle. 9710 I += VF - 1; 9711 NextInst = I + 1; 9712 Changed = true; 9713 } 9714 } 9715 } 9716 9717 if (!Changed && CandidateFound) { 9718 R.getORE()->emit([&]() { 9719 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 9720 << "List vectorization was possible but not beneficial with cost " 9721 << ore::NV("Cost", MinCost) << " >= " 9722 << ore::NV("Treshold", -SLPCostThreshold); 9723 }); 9724 } else if (!Changed) { 9725 R.getORE()->emit([&]() { 9726 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 9727 << "Cannot SLP vectorize list: vectorization was impossible" 9728 << " with available vectorization factors"; 9729 }); 9730 } 9731 return Changed; 9732 } 9733 9734 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 9735 if (!I) 9736 return false; 9737 9738 if ((!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) || 9739 isa<VectorType>(I->getType())) 9740 return false; 9741 9742 Value *P = I->getParent(); 9743 9744 // Vectorize in current basic block only. 9745 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 9746 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 9747 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 9748 return false; 9749 9750 // First collect all possible candidates 9751 SmallVector<std::pair<Value *, Value *>, 4> Candidates; 9752 Candidates.emplace_back(Op0, Op1); 9753 9754 auto *A = dyn_cast<BinaryOperator>(Op0); 9755 auto *B = dyn_cast<BinaryOperator>(Op1); 9756 // Try to skip B. 9757 if (A && B && B->hasOneUse()) { 9758 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 9759 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 9760 if (B0 && B0->getParent() == P) 9761 Candidates.emplace_back(A, B0); 9762 if (B1 && B1->getParent() == P) 9763 Candidates.emplace_back(A, B1); 9764 } 9765 // Try to skip A. 9766 if (B && A && A->hasOneUse()) { 9767 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 9768 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 9769 if (A0 && A0->getParent() == P) 9770 Candidates.emplace_back(A0, B); 9771 if (A1 && A1->getParent() == P) 9772 Candidates.emplace_back(A1, B); 9773 } 9774 9775 if (Candidates.size() == 1) 9776 return tryToVectorizePair(Op0, Op1, R); 9777 9778 // We have multiple options. Try to pick the single best. 9779 Optional<int> BestCandidate = R.findBestRootPair(Candidates); 9780 if (!BestCandidate) 9781 return false; 9782 return tryToVectorizePair(Candidates[*BestCandidate].first, 9783 Candidates[*BestCandidate].second, R); 9784 } 9785 9786 namespace { 9787 9788 /// Model horizontal reductions. 9789 /// 9790 /// A horizontal reduction is a tree of reduction instructions that has values 9791 /// that can be put into a vector as its leaves. For example: 9792 /// 9793 /// mul mul mul mul 9794 /// \ / \ / 9795 /// + + 9796 /// \ / 9797 /// + 9798 /// This tree has "mul" as its leaf values and "+" as its reduction 9799 /// instructions. A reduction can feed into a store or a binary operation 9800 /// feeding a phi. 9801 /// ... 9802 /// \ / 9803 /// + 9804 /// | 9805 /// phi += 9806 /// 9807 /// Or: 9808 /// ... 9809 /// \ / 9810 /// + 9811 /// | 9812 /// *p = 9813 /// 9814 class HorizontalReduction { 9815 using ReductionOpsType = SmallVector<Value *, 16>; 9816 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 9817 ReductionOpsListType ReductionOps; 9818 /// List of possibly reduced values. 9819 SmallVector<SmallVector<Value *>> ReducedVals; 9820 /// Maps reduced value to the corresponding reduction operation. 9821 DenseMap<Value *, SmallVector<Instruction *>> ReducedValsToOps; 9822 // Use map vector to make stable output. 9823 MapVector<Instruction *, Value *> ExtraArgs; 9824 WeakTrackingVH ReductionRoot; 9825 /// The type of reduction operation. 9826 RecurKind RdxKind; 9827 9828 static bool isCmpSelMinMax(Instruction *I) { 9829 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 9830 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 9831 } 9832 9833 // And/or are potentially poison-safe logical patterns like: 9834 // select x, y, false 9835 // select x, true, y 9836 static bool isBoolLogicOp(Instruction *I) { 9837 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 9838 match(I, m_LogicalOr(m_Value(), m_Value())); 9839 } 9840 9841 /// Checks if instruction is associative and can be vectorized. 9842 static bool isVectorizable(RecurKind Kind, Instruction *I) { 9843 if (Kind == RecurKind::None) 9844 return false; 9845 9846 // Integer ops that map to select instructions or intrinsics are fine. 9847 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 9848 isBoolLogicOp(I)) 9849 return true; 9850 9851 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 9852 // FP min/max are associative except for NaN and -0.0. We do not 9853 // have to rule out -0.0 here because the intrinsic semantics do not 9854 // specify a fixed result for it. 9855 return I->getFastMathFlags().noNaNs(); 9856 } 9857 9858 return I->isAssociative(); 9859 } 9860 9861 static Value *getRdxOperand(Instruction *I, unsigned Index) { 9862 // Poison-safe 'or' takes the form: select X, true, Y 9863 // To make that work with the normal operand processing, we skip the 9864 // true value operand. 9865 // TODO: Change the code and data structures to handle this without a hack. 9866 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 9867 return I->getOperand(2); 9868 return I->getOperand(Index); 9869 } 9870 9871 /// Creates reduction operation with the current opcode. 9872 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 9873 Value *RHS, const Twine &Name, bool UseSelect) { 9874 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 9875 switch (Kind) { 9876 case RecurKind::Or: 9877 if (UseSelect && 9878 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 9879 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 9880 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9881 Name); 9882 case RecurKind::And: 9883 if (UseSelect && 9884 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 9885 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 9886 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9887 Name); 9888 case RecurKind::Add: 9889 case RecurKind::Mul: 9890 case RecurKind::Xor: 9891 case RecurKind::FAdd: 9892 case RecurKind::FMul: 9893 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9894 Name); 9895 case RecurKind::FMax: 9896 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 9897 case RecurKind::FMin: 9898 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 9899 case RecurKind::SMax: 9900 if (UseSelect) { 9901 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 9902 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9903 } 9904 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 9905 case RecurKind::SMin: 9906 if (UseSelect) { 9907 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 9908 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9909 } 9910 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 9911 case RecurKind::UMax: 9912 if (UseSelect) { 9913 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 9914 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9915 } 9916 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 9917 case RecurKind::UMin: 9918 if (UseSelect) { 9919 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 9920 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9921 } 9922 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 9923 default: 9924 llvm_unreachable("Unknown reduction operation."); 9925 } 9926 } 9927 9928 /// Creates reduction operation with the current opcode with the IR flags 9929 /// from \p ReductionOps. 9930 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9931 Value *RHS, const Twine &Name, 9932 const ReductionOpsListType &ReductionOps) { 9933 bool UseSelect = ReductionOps.size() == 2 || 9934 // Logical or/and. 9935 (ReductionOps.size() == 1 && 9936 isa<SelectInst>(ReductionOps.front().front())); 9937 assert((!UseSelect || ReductionOps.size() != 2 || 9938 isa<SelectInst>(ReductionOps[1][0])) && 9939 "Expected cmp + select pairs for reduction"); 9940 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 9941 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9942 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 9943 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 9944 propagateIRFlags(Op, ReductionOps[1]); 9945 return Op; 9946 } 9947 } 9948 propagateIRFlags(Op, ReductionOps[0]); 9949 return Op; 9950 } 9951 9952 /// Creates reduction operation with the current opcode with the IR flags 9953 /// from \p I. 9954 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9955 Value *RHS, const Twine &Name, Value *I) { 9956 auto *SelI = dyn_cast<SelectInst>(I); 9957 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 9958 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9959 if (auto *Sel = dyn_cast<SelectInst>(Op)) 9960 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 9961 } 9962 propagateIRFlags(Op, I); 9963 return Op; 9964 } 9965 9966 static RecurKind getRdxKind(Value *V) { 9967 auto *I = dyn_cast<Instruction>(V); 9968 if (!I) 9969 return RecurKind::None; 9970 if (match(I, m_Add(m_Value(), m_Value()))) 9971 return RecurKind::Add; 9972 if (match(I, m_Mul(m_Value(), m_Value()))) 9973 return RecurKind::Mul; 9974 if (match(I, m_And(m_Value(), m_Value())) || 9975 match(I, m_LogicalAnd(m_Value(), m_Value()))) 9976 return RecurKind::And; 9977 if (match(I, m_Or(m_Value(), m_Value())) || 9978 match(I, m_LogicalOr(m_Value(), m_Value()))) 9979 return RecurKind::Or; 9980 if (match(I, m_Xor(m_Value(), m_Value()))) 9981 return RecurKind::Xor; 9982 if (match(I, m_FAdd(m_Value(), m_Value()))) 9983 return RecurKind::FAdd; 9984 if (match(I, m_FMul(m_Value(), m_Value()))) 9985 return RecurKind::FMul; 9986 9987 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 9988 return RecurKind::FMax; 9989 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 9990 return RecurKind::FMin; 9991 9992 // This matches either cmp+select or intrinsics. SLP is expected to handle 9993 // either form. 9994 // TODO: If we are canonicalizing to intrinsics, we can remove several 9995 // special-case paths that deal with selects. 9996 if (match(I, m_SMax(m_Value(), m_Value()))) 9997 return RecurKind::SMax; 9998 if (match(I, m_SMin(m_Value(), m_Value()))) 9999 return RecurKind::SMin; 10000 if (match(I, m_UMax(m_Value(), m_Value()))) 10001 return RecurKind::UMax; 10002 if (match(I, m_UMin(m_Value(), m_Value()))) 10003 return RecurKind::UMin; 10004 10005 if (auto *Select = dyn_cast<SelectInst>(I)) { 10006 // Try harder: look for min/max pattern based on instructions producing 10007 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 10008 // During the intermediate stages of SLP, it's very common to have 10009 // pattern like this (since optimizeGatherSequence is run only once 10010 // at the end): 10011 // %1 = extractelement <2 x i32> %a, i32 0 10012 // %2 = extractelement <2 x i32> %a, i32 1 10013 // %cond = icmp sgt i32 %1, %2 10014 // %3 = extractelement <2 x i32> %a, i32 0 10015 // %4 = extractelement <2 x i32> %a, i32 1 10016 // %select = select i1 %cond, i32 %3, i32 %4 10017 CmpInst::Predicate Pred; 10018 Instruction *L1; 10019 Instruction *L2; 10020 10021 Value *LHS = Select->getTrueValue(); 10022 Value *RHS = Select->getFalseValue(); 10023 Value *Cond = Select->getCondition(); 10024 10025 // TODO: Support inverse predicates. 10026 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 10027 if (!isa<ExtractElementInst>(RHS) || 10028 !L2->isIdenticalTo(cast<Instruction>(RHS))) 10029 return RecurKind::None; 10030 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 10031 if (!isa<ExtractElementInst>(LHS) || 10032 !L1->isIdenticalTo(cast<Instruction>(LHS))) 10033 return RecurKind::None; 10034 } else { 10035 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 10036 return RecurKind::None; 10037 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 10038 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 10039 !L2->isIdenticalTo(cast<Instruction>(RHS))) 10040 return RecurKind::None; 10041 } 10042 10043 switch (Pred) { 10044 default: 10045 return RecurKind::None; 10046 case CmpInst::ICMP_SGT: 10047 case CmpInst::ICMP_SGE: 10048 return RecurKind::SMax; 10049 case CmpInst::ICMP_SLT: 10050 case CmpInst::ICMP_SLE: 10051 return RecurKind::SMin; 10052 case CmpInst::ICMP_UGT: 10053 case CmpInst::ICMP_UGE: 10054 return RecurKind::UMax; 10055 case CmpInst::ICMP_ULT: 10056 case CmpInst::ICMP_ULE: 10057 return RecurKind::UMin; 10058 } 10059 } 10060 return RecurKind::None; 10061 } 10062 10063 /// Get the index of the first operand. 10064 static unsigned getFirstOperandIndex(Instruction *I) { 10065 return isCmpSelMinMax(I) ? 1 : 0; 10066 } 10067 10068 /// Total number of operands in the reduction operation. 10069 static unsigned getNumberOfOperands(Instruction *I) { 10070 return isCmpSelMinMax(I) ? 3 : 2; 10071 } 10072 10073 /// Checks if the instruction is in basic block \p BB. 10074 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 10075 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 10076 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 10077 auto *Sel = cast<SelectInst>(I); 10078 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 10079 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 10080 } 10081 return I->getParent() == BB; 10082 } 10083 10084 /// Expected number of uses for reduction operations/reduced values. 10085 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 10086 if (IsCmpSelMinMax) { 10087 // SelectInst must be used twice while the condition op must have single 10088 // use only. 10089 if (auto *Sel = dyn_cast<SelectInst>(I)) 10090 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 10091 return I->hasNUses(2); 10092 } 10093 10094 // Arithmetic reduction operation must be used once only. 10095 return I->hasOneUse(); 10096 } 10097 10098 /// Initializes the list of reduction operations. 10099 void initReductionOps(Instruction *I) { 10100 if (isCmpSelMinMax(I)) 10101 ReductionOps.assign(2, ReductionOpsType()); 10102 else 10103 ReductionOps.assign(1, ReductionOpsType()); 10104 } 10105 10106 /// Add all reduction operations for the reduction instruction \p I. 10107 void addReductionOps(Instruction *I) { 10108 if (isCmpSelMinMax(I)) { 10109 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 10110 ReductionOps[1].emplace_back(I); 10111 } else { 10112 ReductionOps[0].emplace_back(I); 10113 } 10114 } 10115 10116 static Value *getLHS(RecurKind Kind, Instruction *I) { 10117 if (Kind == RecurKind::None) 10118 return nullptr; 10119 return I->getOperand(getFirstOperandIndex(I)); 10120 } 10121 static Value *getRHS(RecurKind Kind, Instruction *I) { 10122 if (Kind == RecurKind::None) 10123 return nullptr; 10124 return I->getOperand(getFirstOperandIndex(I) + 1); 10125 } 10126 10127 public: 10128 HorizontalReduction() = default; 10129 10130 /// Try to find a reduction tree. 10131 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst, 10132 ScalarEvolution &SE, const DataLayout &DL, 10133 const TargetLibraryInfo &TLI) { 10134 assert((!Phi || is_contained(Phi->operands(), Inst)) && 10135 "Phi needs to use the binary operator"); 10136 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 10137 isa<IntrinsicInst>(Inst)) && 10138 "Expected binop, select, or intrinsic for reduction matching"); 10139 RdxKind = getRdxKind(Inst); 10140 10141 // We could have a initial reductions that is not an add. 10142 // r *= v1 + v2 + v3 + v4 10143 // In such a case start looking for a tree rooted in the first '+'. 10144 if (Phi) { 10145 if (getLHS(RdxKind, Inst) == Phi) { 10146 Phi = nullptr; 10147 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 10148 if (!Inst) 10149 return false; 10150 RdxKind = getRdxKind(Inst); 10151 } else if (getRHS(RdxKind, Inst) == Phi) { 10152 Phi = nullptr; 10153 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 10154 if (!Inst) 10155 return false; 10156 RdxKind = getRdxKind(Inst); 10157 } 10158 } 10159 10160 if (!isVectorizable(RdxKind, Inst)) 10161 return false; 10162 10163 // Analyze "regular" integer/FP types for reductions - no target-specific 10164 // types or pointers. 10165 Type *Ty = Inst->getType(); 10166 if (!isValidElementType(Ty) || Ty->isPointerTy()) 10167 return false; 10168 10169 // Though the ultimate reduction may have multiple uses, its condition must 10170 // have only single use. 10171 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 10172 if (!Sel->getCondition()->hasOneUse()) 10173 return false; 10174 10175 ReductionRoot = Inst; 10176 10177 // Iterate through all the operands of the possible reduction tree and 10178 // gather all the reduced values, sorting them by their value id. 10179 BasicBlock *BB = Inst->getParent(); 10180 bool IsCmpSelMinMax = isCmpSelMinMax(Inst); 10181 SmallVector<Instruction *> Worklist(1, Inst); 10182 // Checks if the operands of the \p TreeN instruction are also reduction 10183 // operations or should be treated as reduced values or an extra argument, 10184 // which is not part of the reduction. 10185 auto &&CheckOperands = [this, IsCmpSelMinMax, 10186 BB](Instruction *TreeN, 10187 SmallVectorImpl<Value *> &ExtraArgs, 10188 SmallVectorImpl<Value *> &PossibleReducedVals, 10189 SmallVectorImpl<Instruction *> &ReductionOps) { 10190 for (int I = getFirstOperandIndex(TreeN), 10191 End = getNumberOfOperands(TreeN); 10192 I < End; ++I) { 10193 Value *EdgeVal = getRdxOperand(TreeN, I); 10194 ReducedValsToOps[EdgeVal].push_back(TreeN); 10195 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 10196 // Edge has wrong parent - mark as an extra argument. 10197 if (EdgeInst && !isVectorLikeInstWithConstOps(EdgeInst) && 10198 !hasSameParent(EdgeInst, BB)) { 10199 ExtraArgs.push_back(EdgeVal); 10200 continue; 10201 } 10202 // If the edge is not an instruction, or it is different from the main 10203 // reduction opcode or has too many uses - possible reduced value. 10204 if (!EdgeInst || getRdxKind(EdgeInst) != RdxKind || 10205 !hasRequiredNumberOfUses(IsCmpSelMinMax, EdgeInst) || 10206 !isVectorizable(getRdxKind(EdgeInst), EdgeInst)) { 10207 PossibleReducedVals.push_back(EdgeVal); 10208 continue; 10209 } 10210 ReductionOps.push_back(EdgeInst); 10211 } 10212 }; 10213 // Try to regroup reduced values so that it gets more profitable to try to 10214 // reduce them. Values are grouped by their value ids, instructions - by 10215 // instruction op id and/or alternate op id, plus do extra analysis for 10216 // loads (grouping them by the distabce between pointers) and cmp 10217 // instructions (grouping them by the predicate). 10218 MapVector<size_t, MapVector<size_t, MapVector<Value *, unsigned>>> 10219 PossibleReducedVals; 10220 initReductionOps(Inst); 10221 while (!Worklist.empty()) { 10222 Instruction *TreeN = Worklist.pop_back_val(); 10223 SmallVector<Value *> Args; 10224 SmallVector<Value *> PossibleRedVals; 10225 SmallVector<Instruction *> PossibleReductionOps; 10226 CheckOperands(TreeN, Args, PossibleRedVals, PossibleReductionOps); 10227 // If too many extra args - mark the instruction itself as a reduction 10228 // value, not a reduction operation. 10229 if (Args.size() < 2) { 10230 addReductionOps(TreeN); 10231 // Add extra args. 10232 if (!Args.empty()) { 10233 assert(Args.size() == 1 && "Expected only single argument."); 10234 ExtraArgs[TreeN] = Args.front(); 10235 } 10236 // Add reduction values. The values are sorted for better vectorization 10237 // results. 10238 for (Value *V : PossibleRedVals) { 10239 size_t Key, Idx; 10240 std::tie(Key, Idx) = generateKeySubkey( 10241 V, &TLI, 10242 [&PossibleReducedVals, &DL, &SE](size_t Key, LoadInst *LI) { 10243 for (const auto &LoadData : PossibleReducedVals[Key]) { 10244 auto *RLI = cast<LoadInst>(LoadData.second.front().first); 10245 if (getPointersDiff(RLI->getType(), RLI->getPointerOperand(), 10246 LI->getType(), LI->getPointerOperand(), 10247 DL, SE, /*StrictCheck=*/true)) 10248 return hash_value(RLI->getPointerOperand()); 10249 } 10250 return hash_value(LI->getPointerOperand()); 10251 }, 10252 /*AllowAlternate=*/false); 10253 ++PossibleReducedVals[Key][Idx] 10254 .insert(std::make_pair(V, 0)) 10255 .first->second; 10256 } 10257 Worklist.append(PossibleReductionOps.rbegin(), 10258 PossibleReductionOps.rend()); 10259 } else { 10260 size_t Key, Idx; 10261 std::tie(Key, Idx) = generateKeySubkey( 10262 TreeN, &TLI, 10263 [&PossibleReducedVals, &DL, &SE](size_t Key, LoadInst *LI) { 10264 for (const auto &LoadData : PossibleReducedVals[Key]) { 10265 auto *RLI = cast<LoadInst>(LoadData.second.front().first); 10266 if (getPointersDiff(RLI->getType(), RLI->getPointerOperand(), 10267 LI->getType(), LI->getPointerOperand(), DL, 10268 SE, /*StrictCheck=*/true)) 10269 return hash_value(RLI->getPointerOperand()); 10270 } 10271 return hash_value(LI->getPointerOperand()); 10272 }, 10273 /*AllowAlternate=*/false); 10274 ++PossibleReducedVals[Key][Idx] 10275 .insert(std::make_pair(TreeN, 0)) 10276 .first->second; 10277 } 10278 } 10279 auto PossibleReducedValsVect = PossibleReducedVals.takeVector(); 10280 // Sort values by the total number of values kinds to start the reduction 10281 // from the longest possible reduced values sequences. 10282 for (auto &PossibleReducedVals : PossibleReducedValsVect) { 10283 auto PossibleRedVals = PossibleReducedVals.second.takeVector(); 10284 SmallVector<SmallVector<Value *>> PossibleRedValsVect; 10285 for (auto It = PossibleRedVals.begin(), E = PossibleRedVals.end(); 10286 It != E; ++It) { 10287 PossibleRedValsVect.emplace_back(); 10288 auto RedValsVect = It->second.takeVector(); 10289 stable_sort(RedValsVect, [](const auto &P1, const auto &P2) { 10290 return P1.second < P2.second; 10291 }); 10292 for (const std::pair<Value *, unsigned> &Data : RedValsVect) 10293 PossibleRedValsVect.back().append(Data.second, Data.first); 10294 } 10295 stable_sort(PossibleRedValsVect, [](const auto &P1, const auto &P2) { 10296 return P1.size() > P2.size(); 10297 }); 10298 ReducedVals.emplace_back(); 10299 for (ArrayRef<Value *> Data : PossibleRedValsVect) 10300 ReducedVals.back().append(Data.rbegin(), Data.rend()); 10301 } 10302 // Sort the reduced values by number of same/alternate opcode and/or pointer 10303 // operand. 10304 stable_sort(ReducedVals, [](ArrayRef<Value *> P1, ArrayRef<Value *> P2) { 10305 return P1.size() > P2.size(); 10306 }); 10307 return true; 10308 } 10309 10310 /// Attempt to vectorize the tree found by matchAssociativeReduction. 10311 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 10312 constexpr int ReductionLimit = 4; 10313 // If there are a sufficient number of reduction values, reduce 10314 // to a nearby power-of-2. We can safely generate oversized 10315 // vectors and rely on the backend to split them to legal sizes. 10316 unsigned NumReducedVals = std::accumulate( 10317 ReducedVals.begin(), ReducedVals.end(), 0, 10318 [](int Num, ArrayRef<Value *> Vals) { return Num + Vals.size(); }); 10319 if (NumReducedVals < ReductionLimit) 10320 return nullptr; 10321 10322 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 10323 10324 // Track the reduced values in case if they are replaced by extractelement 10325 // because of the vectorization. 10326 DenseMap<Value *, WeakTrackingVH> TrackedVals; 10327 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 10328 // The same extra argument may be used several times, so log each attempt 10329 // to use it. 10330 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 10331 assert(Pair.first && "DebugLoc must be set."); 10332 ExternallyUsedValues[Pair.second].push_back(Pair.first); 10333 TrackedVals.try_emplace(Pair.second, Pair.second); 10334 } 10335 10336 // The compare instruction of a min/max is the insertion point for new 10337 // instructions and may be replaced with a new compare instruction. 10338 auto &&GetCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 10339 assert(isa<SelectInst>(RdxRootInst) && 10340 "Expected min/max reduction to have select root instruction"); 10341 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 10342 assert(isa<Instruction>(ScalarCond) && 10343 "Expected min/max reduction to have compare condition"); 10344 return cast<Instruction>(ScalarCond); 10345 }; 10346 10347 // The reduction root is used as the insertion point for new instructions, 10348 // so set it as externally used to prevent it from being deleted. 10349 ExternallyUsedValues[ReductionRoot]; 10350 SmallVector<Value *> IgnoreList; 10351 for (ReductionOpsType &RdxOps : ReductionOps) 10352 for (Value *RdxOp : RdxOps) { 10353 if (!RdxOp) 10354 continue; 10355 IgnoreList.push_back(RdxOp); 10356 } 10357 bool IsCmpSelMinMax = isCmpSelMinMax(cast<Instruction>(ReductionRoot)); 10358 10359 // Need to track reduced vals, they may be changed during vectorization of 10360 // subvectors. 10361 for (ArrayRef<Value *> Candidates : ReducedVals) 10362 for (Value *V : Candidates) 10363 TrackedVals.try_emplace(V, V); 10364 10365 DenseMap<Value *, unsigned> VectorizedVals; 10366 Value *VectorizedTree = nullptr; 10367 bool CheckForReusedReductionOps = false; 10368 // Try to vectorize elements based on their type. 10369 for (unsigned I = 0, E = ReducedVals.size(); I < E; ++I) { 10370 ArrayRef<Value *> OrigReducedVals = ReducedVals[I]; 10371 InstructionsState S = getSameOpcode(OrigReducedVals); 10372 SmallVector<Value *> Candidates; 10373 DenseMap<Value *, Value *> TrackedToOrig; 10374 for (unsigned Cnt = 0, Sz = OrigReducedVals.size(); Cnt < Sz; ++Cnt) { 10375 Value *RdxVal = TrackedVals.find(OrigReducedVals[Cnt])->second; 10376 // Check if the reduction value was not overriden by the extractelement 10377 // instruction because of the vectorization and exclude it, if it is not 10378 // compatible with other values. 10379 if (auto *Inst = dyn_cast<Instruction>(RdxVal)) 10380 if (isVectorLikeInstWithConstOps(Inst) && 10381 (!S.getOpcode() || !S.isOpcodeOrAlt(Inst))) 10382 continue; 10383 Candidates.push_back(RdxVal); 10384 TrackedToOrig.try_emplace(RdxVal, OrigReducedVals[Cnt]); 10385 } 10386 bool ShuffledExtracts = false; 10387 // Try to handle shuffled extractelements. 10388 if (S.getOpcode() == Instruction::ExtractElement && !S.isAltShuffle() && 10389 I + 1 < E) { 10390 InstructionsState NextS = getSameOpcode(ReducedVals[I + 1]); 10391 if (NextS.getOpcode() == Instruction::ExtractElement && 10392 !NextS.isAltShuffle()) { 10393 SmallVector<Value *> CommonCandidates(Candidates); 10394 for (Value *RV : ReducedVals[I + 1]) { 10395 Value *RdxVal = TrackedVals.find(RV)->second; 10396 // Check if the reduction value was not overriden by the 10397 // extractelement instruction because of the vectorization and 10398 // exclude it, if it is not compatible with other values. 10399 if (auto *Inst = dyn_cast<Instruction>(RdxVal)) 10400 if (!NextS.getOpcode() || !NextS.isOpcodeOrAlt(Inst)) 10401 continue; 10402 CommonCandidates.push_back(RdxVal); 10403 TrackedToOrig.try_emplace(RdxVal, RV); 10404 } 10405 SmallVector<int> Mask; 10406 if (isFixedVectorShuffle(CommonCandidates, Mask)) { 10407 ++I; 10408 Candidates.swap(CommonCandidates); 10409 ShuffledExtracts = true; 10410 } 10411 } 10412 } 10413 unsigned NumReducedVals = Candidates.size(); 10414 if (NumReducedVals < ReductionLimit) 10415 continue; 10416 10417 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 10418 unsigned Start = 0; 10419 unsigned Pos = Start; 10420 // Restarts vectorization attempt with lower vector factor. 10421 unsigned PrevReduxWidth = ReduxWidth; 10422 bool CheckForReusedReductionOpsLocal = false; 10423 auto &&AdjustReducedVals = [&Pos, &Start, &ReduxWidth, NumReducedVals, 10424 &CheckForReusedReductionOpsLocal, 10425 &PrevReduxWidth, &V, 10426 &IgnoreList](bool IgnoreVL = false) { 10427 bool IsAnyRedOpGathered = 10428 !IgnoreVL && any_of(IgnoreList, [&V](Value *RedOp) { 10429 return V.isGathered(RedOp); 10430 }); 10431 if (!CheckForReusedReductionOpsLocal && PrevReduxWidth == ReduxWidth) { 10432 // Check if any of the reduction ops are gathered. If so, worth 10433 // trying again with less number of reduction ops. 10434 CheckForReusedReductionOpsLocal |= IsAnyRedOpGathered; 10435 } 10436 ++Pos; 10437 if (Pos < NumReducedVals - ReduxWidth + 1) 10438 return IsAnyRedOpGathered; 10439 Pos = Start; 10440 ReduxWidth /= 2; 10441 return IsAnyRedOpGathered; 10442 }; 10443 while (Pos < NumReducedVals - ReduxWidth + 1 && 10444 ReduxWidth >= ReductionLimit) { 10445 // Dependency in tree of the reduction ops - drop this attempt, try 10446 // later. 10447 if (CheckForReusedReductionOpsLocal && PrevReduxWidth != ReduxWidth && 10448 Start == 0) { 10449 CheckForReusedReductionOps = true; 10450 break; 10451 } 10452 PrevReduxWidth = ReduxWidth; 10453 ArrayRef<Value *> VL(std::next(Candidates.begin(), Pos), ReduxWidth); 10454 // Beeing analyzed already - skip. 10455 if (V.areAnalyzedReductionVals(VL)) { 10456 (void)AdjustReducedVals(/*IgnoreVL=*/true); 10457 continue; 10458 } 10459 // Early exit if any of the reduction values were deleted during 10460 // previous vectorization attempts. 10461 if (any_of(VL, [&V](Value *RedVal) { 10462 auto *RedValI = dyn_cast<Instruction>(RedVal); 10463 if (!RedValI) 10464 return false; 10465 return V.isDeleted(RedValI); 10466 })) 10467 break; 10468 V.buildTree(VL, IgnoreList); 10469 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) { 10470 if (!AdjustReducedVals()) 10471 V.analyzedReductionVals(VL); 10472 continue; 10473 } 10474 if (V.isLoadCombineReductionCandidate(RdxKind)) { 10475 if (!AdjustReducedVals()) 10476 V.analyzedReductionVals(VL); 10477 continue; 10478 } 10479 V.reorderTopToBottom(); 10480 // No need to reorder the root node at all. 10481 V.reorderBottomToTop(/*IgnoreReorder=*/true); 10482 // Keep extracted other reduction values, if they are used in the 10483 // vectorization trees. 10484 BoUpSLP::ExtraValueToDebugLocsMap LocalExternallyUsedValues( 10485 ExternallyUsedValues); 10486 for (unsigned Cnt = 0, Sz = ReducedVals.size(); Cnt < Sz; ++Cnt) { 10487 if (Cnt == I || (ShuffledExtracts && Cnt == I - 1)) 10488 continue; 10489 for_each(ReducedVals[Cnt], 10490 [&LocalExternallyUsedValues, &TrackedVals](Value *V) { 10491 if (isa<Instruction>(V)) 10492 LocalExternallyUsedValues[TrackedVals[V]]; 10493 }); 10494 } 10495 for (unsigned Cnt = 0; Cnt < NumReducedVals; ++Cnt) { 10496 if (Cnt >= Pos && Cnt < Pos + ReduxWidth) 10497 continue; 10498 unsigned NumOps = VectorizedVals.lookup(Candidates[Cnt]) + 10499 std::count(VL.begin(), VL.end(), Candidates[Cnt]); 10500 if (NumOps != ReducedValsToOps.find(Candidates[Cnt])->second.size()) 10501 LocalExternallyUsedValues[Candidates[Cnt]]; 10502 } 10503 V.buildExternalUses(LocalExternallyUsedValues); 10504 10505 V.computeMinimumValueSizes(); 10506 10507 // Intersect the fast-math-flags from all reduction operations. 10508 FastMathFlags RdxFMF; 10509 RdxFMF.set(); 10510 for (Value *U : IgnoreList) 10511 if (auto *FPMO = dyn_cast<FPMathOperator>(U)) 10512 RdxFMF &= FPMO->getFastMathFlags(); 10513 // Estimate cost. 10514 InstructionCost TreeCost = V.getTreeCost(VL); 10515 InstructionCost ReductionCost = 10516 getReductionCost(TTI, VL[0], ReduxWidth, RdxFMF); 10517 InstructionCost Cost = TreeCost + ReductionCost; 10518 if (!Cost.isValid()) { 10519 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 10520 return nullptr; 10521 } 10522 if (Cost >= -SLPCostThreshold) { 10523 V.getORE()->emit([&]() { 10524 return OptimizationRemarkMissed( 10525 SV_NAME, "HorSLPNotBeneficial", 10526 ReducedValsToOps.find(VL[0])->second.front()) 10527 << "Vectorizing horizontal reduction is possible" 10528 << "but not beneficial with cost " << ore::NV("Cost", Cost) 10529 << " and threshold " 10530 << ore::NV("Threshold", -SLPCostThreshold); 10531 }); 10532 if (!AdjustReducedVals()) 10533 V.analyzedReductionVals(VL); 10534 continue; 10535 } 10536 10537 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 10538 << Cost << ". (HorRdx)\n"); 10539 V.getORE()->emit([&]() { 10540 return OptimizationRemark( 10541 SV_NAME, "VectorizedHorizontalReduction", 10542 ReducedValsToOps.find(VL[0])->second.front()) 10543 << "Vectorized horizontal reduction with cost " 10544 << ore::NV("Cost", Cost) << " and with tree size " 10545 << ore::NV("TreeSize", V.getTreeSize()); 10546 }); 10547 10548 Builder.setFastMathFlags(RdxFMF); 10549 10550 // Vectorize a tree. 10551 Value *VectorizedRoot = V.vectorizeTree(LocalExternallyUsedValues); 10552 10553 // Emit a reduction. If the root is a select (min/max idiom), the insert 10554 // point is the compare condition of that select. 10555 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 10556 if (IsCmpSelMinMax) 10557 Builder.SetInsertPoint(GetCmpForMinMaxReduction(RdxRootInst)); 10558 else 10559 Builder.SetInsertPoint(RdxRootInst); 10560 10561 // To prevent poison from leaking across what used to be sequential, 10562 // safe, scalar boolean logic operations, the reduction operand must be 10563 // frozen. 10564 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 10565 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 10566 10567 Value *ReducedSubTree = 10568 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 10569 10570 if (!VectorizedTree) { 10571 // Initialize the final value in the reduction. 10572 VectorizedTree = ReducedSubTree; 10573 } else { 10574 // Update the final value in the reduction. 10575 Builder.SetCurrentDebugLocation( 10576 cast<Instruction>(ReductionOps.front().front())->getDebugLoc()); 10577 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 10578 ReducedSubTree, "op.rdx", ReductionOps); 10579 } 10580 // Count vectorized reduced values to exclude them from final reduction. 10581 for (Value *V : VL) 10582 ++VectorizedVals.try_emplace(TrackedToOrig.find(V)->second, 0) 10583 .first->getSecond(); 10584 Pos += ReduxWidth; 10585 Start = Pos; 10586 ReduxWidth = PowerOf2Floor(NumReducedVals - Pos); 10587 } 10588 } 10589 if (VectorizedTree) { 10590 // Finish the reduction. 10591 // Need to add extra arguments and not vectorized possible reduction 10592 // values. 10593 SmallPtrSet<Value *, 8> Visited; 10594 for (unsigned I = 0, E = ReducedVals.size(); I < E; ++I) { 10595 ArrayRef<Value *> Candidates = ReducedVals[I]; 10596 for (Value *RdxVal : Candidates) { 10597 if (!Visited.insert(RdxVal).second) 10598 continue; 10599 Value *StableRdxVal = RdxVal; 10600 auto TVIt = TrackedVals.find(RdxVal); 10601 if (TVIt != TrackedVals.end()) 10602 StableRdxVal = TVIt->second; 10603 unsigned NumOps = VectorizedVals.lookup(RdxVal); 10604 for (Instruction *RedOp : 10605 makeArrayRef(ReducedValsToOps.find(RdxVal)->second) 10606 .drop_back(NumOps)) { 10607 Builder.SetCurrentDebugLocation(RedOp->getDebugLoc()); 10608 ReductionOpsListType Ops; 10609 if (auto *Sel = dyn_cast<SelectInst>(RedOp)) 10610 Ops.emplace_back().push_back(Sel->getCondition()); 10611 Ops.emplace_back().push_back(RedOp); 10612 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 10613 StableRdxVal, "op.rdx", Ops); 10614 } 10615 } 10616 } 10617 for (auto &Pair : ExternallyUsedValues) { 10618 // Add each externally used value to the final reduction. 10619 for (auto *I : Pair.second) { 10620 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 10621 ReductionOpsListType Ops; 10622 if (auto *Sel = dyn_cast<SelectInst>(I)) 10623 Ops.emplace_back().push_back(Sel->getCondition()); 10624 Ops.emplace_back().push_back(I); 10625 Value *StableRdxVal = Pair.first; 10626 auto TVIt = TrackedVals.find(Pair.first); 10627 if (TVIt != TrackedVals.end()) 10628 StableRdxVal = TVIt->second; 10629 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 10630 StableRdxVal, "op.rdx", Ops); 10631 } 10632 } 10633 10634 ReductionRoot->replaceAllUsesWith(VectorizedTree); 10635 10636 // The original scalar reduction is expected to have no remaining 10637 // uses outside the reduction tree itself. Assert that we got this 10638 // correct, replace internal uses with undef, and mark for eventual 10639 // deletion. 10640 #ifndef NDEBUG 10641 SmallSet<Value *, 4> IgnoreSet; 10642 for (ArrayRef<Value *> RdxOps : ReductionOps) 10643 IgnoreSet.insert(RdxOps.begin(), RdxOps.end()); 10644 #endif 10645 for (ArrayRef<Value *> RdxOps : ReductionOps) { 10646 for (Value *Ignore : RdxOps) { 10647 if (!Ignore) 10648 continue; 10649 #ifndef NDEBUG 10650 for (auto *U : Ignore->users()) { 10651 assert(IgnoreSet.count(U) && 10652 "All users must be either in the reduction ops list."); 10653 } 10654 #endif 10655 if (!Ignore->use_empty()) { 10656 Value *Undef = UndefValue::get(Ignore->getType()); 10657 Ignore->replaceAllUsesWith(Undef); 10658 } 10659 V.eraseInstruction(cast<Instruction>(Ignore)); 10660 } 10661 } 10662 } else if (!CheckForReusedReductionOps) { 10663 for (ReductionOpsType &RdxOps : ReductionOps) 10664 for (Value *RdxOp : RdxOps) 10665 V.analyzedReductionRoot(cast<Instruction>(RdxOp)); 10666 } 10667 return VectorizedTree; 10668 } 10669 10670 private: 10671 /// Calculate the cost of a reduction. 10672 InstructionCost getReductionCost(TargetTransformInfo *TTI, 10673 Value *FirstReducedVal, unsigned ReduxWidth, 10674 FastMathFlags FMF) { 10675 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 10676 Type *ScalarTy = FirstReducedVal->getType(); 10677 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 10678 InstructionCost VectorCost, ScalarCost; 10679 switch (RdxKind) { 10680 case RecurKind::Add: 10681 case RecurKind::Mul: 10682 case RecurKind::Or: 10683 case RecurKind::And: 10684 case RecurKind::Xor: 10685 case RecurKind::FAdd: 10686 case RecurKind::FMul: { 10687 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 10688 VectorCost = 10689 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 10690 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 10691 break; 10692 } 10693 case RecurKind::FMax: 10694 case RecurKind::FMin: { 10695 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 10696 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 10697 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 10698 /*IsUnsigned=*/false, CostKind); 10699 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 10700 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 10701 SclCondTy, RdxPred, CostKind) + 10702 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 10703 SclCondTy, RdxPred, CostKind); 10704 break; 10705 } 10706 case RecurKind::SMax: 10707 case RecurKind::SMin: 10708 case RecurKind::UMax: 10709 case RecurKind::UMin: { 10710 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 10711 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 10712 bool IsUnsigned = 10713 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 10714 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned, 10715 CostKind); 10716 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 10717 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 10718 SclCondTy, RdxPred, CostKind) + 10719 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 10720 SclCondTy, RdxPred, CostKind); 10721 break; 10722 } 10723 default: 10724 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 10725 } 10726 10727 // Scalar cost is repeated for N-1 elements. 10728 ScalarCost *= (ReduxWidth - 1); 10729 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 10730 << " for reduction that starts with " << *FirstReducedVal 10731 << " (It is a splitting reduction)\n"); 10732 return VectorCost - ScalarCost; 10733 } 10734 10735 /// Emit a horizontal reduction of the vectorized value. 10736 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 10737 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 10738 assert(VectorizedValue && "Need to have a vectorized tree node"); 10739 assert(isPowerOf2_32(ReduxWidth) && 10740 "We only handle power-of-two reductions for now"); 10741 assert(RdxKind != RecurKind::FMulAdd && 10742 "A call to the llvm.fmuladd intrinsic is not handled yet"); 10743 10744 ++NumVectorInstructions; 10745 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind); 10746 } 10747 }; 10748 10749 } // end anonymous namespace 10750 10751 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 10752 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 10753 return cast<FixedVectorType>(IE->getType())->getNumElements(); 10754 10755 unsigned AggregateSize = 1; 10756 auto *IV = cast<InsertValueInst>(InsertInst); 10757 Type *CurrentType = IV->getType(); 10758 do { 10759 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 10760 for (auto *Elt : ST->elements()) 10761 if (Elt != ST->getElementType(0)) // check homogeneity 10762 return None; 10763 AggregateSize *= ST->getNumElements(); 10764 CurrentType = ST->getElementType(0); 10765 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 10766 AggregateSize *= AT->getNumElements(); 10767 CurrentType = AT->getElementType(); 10768 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 10769 AggregateSize *= VT->getNumElements(); 10770 return AggregateSize; 10771 } else if (CurrentType->isSingleValueType()) { 10772 return AggregateSize; 10773 } else { 10774 return None; 10775 } 10776 } while (true); 10777 } 10778 10779 static void findBuildAggregate_rec(Instruction *LastInsertInst, 10780 TargetTransformInfo *TTI, 10781 SmallVectorImpl<Value *> &BuildVectorOpds, 10782 SmallVectorImpl<Value *> &InsertElts, 10783 unsigned OperandOffset) { 10784 do { 10785 Value *InsertedOperand = LastInsertInst->getOperand(1); 10786 Optional<unsigned> OperandIndex = 10787 getInsertIndex(LastInsertInst, OperandOffset); 10788 if (!OperandIndex) 10789 return; 10790 if (isa<InsertElementInst>(InsertedOperand) || 10791 isa<InsertValueInst>(InsertedOperand)) { 10792 findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 10793 BuildVectorOpds, InsertElts, *OperandIndex); 10794 10795 } else { 10796 BuildVectorOpds[*OperandIndex] = InsertedOperand; 10797 InsertElts[*OperandIndex] = LastInsertInst; 10798 } 10799 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 10800 } while (LastInsertInst != nullptr && 10801 (isa<InsertValueInst>(LastInsertInst) || 10802 isa<InsertElementInst>(LastInsertInst)) && 10803 LastInsertInst->hasOneUse()); 10804 } 10805 10806 /// Recognize construction of vectors like 10807 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 10808 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 10809 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 10810 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 10811 /// starting from the last insertelement or insertvalue instruction. 10812 /// 10813 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 10814 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 10815 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 10816 /// 10817 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 10818 /// 10819 /// \return true if it matches. 10820 static bool findBuildAggregate(Instruction *LastInsertInst, 10821 TargetTransformInfo *TTI, 10822 SmallVectorImpl<Value *> &BuildVectorOpds, 10823 SmallVectorImpl<Value *> &InsertElts) { 10824 10825 assert((isa<InsertElementInst>(LastInsertInst) || 10826 isa<InsertValueInst>(LastInsertInst)) && 10827 "Expected insertelement or insertvalue instruction!"); 10828 10829 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 10830 "Expected empty result vectors!"); 10831 10832 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 10833 if (!AggregateSize) 10834 return false; 10835 BuildVectorOpds.resize(*AggregateSize); 10836 InsertElts.resize(*AggregateSize); 10837 10838 findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 0); 10839 llvm::erase_value(BuildVectorOpds, nullptr); 10840 llvm::erase_value(InsertElts, nullptr); 10841 if (BuildVectorOpds.size() >= 2) 10842 return true; 10843 10844 return false; 10845 } 10846 10847 /// Try and get a reduction value from a phi node. 10848 /// 10849 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 10850 /// if they come from either \p ParentBB or a containing loop latch. 10851 /// 10852 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 10853 /// if not possible. 10854 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 10855 BasicBlock *ParentBB, LoopInfo *LI) { 10856 // There are situations where the reduction value is not dominated by the 10857 // reduction phi. Vectorizing such cases has been reported to cause 10858 // miscompiles. See PR25787. 10859 auto DominatedReduxValue = [&](Value *R) { 10860 return isa<Instruction>(R) && 10861 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 10862 }; 10863 10864 Value *Rdx = nullptr; 10865 10866 // Return the incoming value if it comes from the same BB as the phi node. 10867 if (P->getIncomingBlock(0) == ParentBB) { 10868 Rdx = P->getIncomingValue(0); 10869 } else if (P->getIncomingBlock(1) == ParentBB) { 10870 Rdx = P->getIncomingValue(1); 10871 } 10872 10873 if (Rdx && DominatedReduxValue(Rdx)) 10874 return Rdx; 10875 10876 // Otherwise, check whether we have a loop latch to look at. 10877 Loop *BBL = LI->getLoopFor(ParentBB); 10878 if (!BBL) 10879 return nullptr; 10880 BasicBlock *BBLatch = BBL->getLoopLatch(); 10881 if (!BBLatch) 10882 return nullptr; 10883 10884 // There is a loop latch, return the incoming value if it comes from 10885 // that. This reduction pattern occasionally turns up. 10886 if (P->getIncomingBlock(0) == BBLatch) { 10887 Rdx = P->getIncomingValue(0); 10888 } else if (P->getIncomingBlock(1) == BBLatch) { 10889 Rdx = P->getIncomingValue(1); 10890 } 10891 10892 if (Rdx && DominatedReduxValue(Rdx)) 10893 return Rdx; 10894 10895 return nullptr; 10896 } 10897 10898 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 10899 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 10900 return true; 10901 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 10902 return true; 10903 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 10904 return true; 10905 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 10906 return true; 10907 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 10908 return true; 10909 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 10910 return true; 10911 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 10912 return true; 10913 return false; 10914 } 10915 10916 /// Attempt to reduce a horizontal reduction. 10917 /// If it is legal to match a horizontal reduction feeding the phi node \a P 10918 /// with reduction operators \a Root (or one of its operands) in a basic block 10919 /// \a BB, then check if it can be done. If horizontal reduction is not found 10920 /// and root instruction is a binary operation, vectorization of the operands is 10921 /// attempted. 10922 /// \returns true if a horizontal reduction was matched and reduced or operands 10923 /// of one of the binary instruction were vectorized. 10924 /// \returns false if a horizontal reduction was not matched (or not possible) 10925 /// or no vectorization of any binary operation feeding \a Root instruction was 10926 /// performed. 10927 static bool tryToVectorizeHorReductionOrInstOperands( 10928 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 10929 TargetTransformInfo *TTI, ScalarEvolution &SE, const DataLayout &DL, 10930 const TargetLibraryInfo &TLI, 10931 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 10932 if (!ShouldVectorizeHor) 10933 return false; 10934 10935 if (!Root) 10936 return false; 10937 10938 if (Root->getParent() != BB || isa<PHINode>(Root)) 10939 return false; 10940 // Start analysis starting from Root instruction. If horizontal reduction is 10941 // found, try to vectorize it. If it is not a horizontal reduction or 10942 // vectorization is not possible or not effective, and currently analyzed 10943 // instruction is a binary operation, try to vectorize the operands, using 10944 // pre-order DFS traversal order. If the operands were not vectorized, repeat 10945 // the same procedure considering each operand as a possible root of the 10946 // horizontal reduction. 10947 // Interrupt the process if the Root instruction itself was vectorized or all 10948 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 10949 // Skip the analysis of CmpInsts. Compiler implements postanalysis of the 10950 // CmpInsts so we can skip extra attempts in 10951 // tryToVectorizeHorReductionOrInstOperands and save compile time. 10952 std::queue<std::pair<Instruction *, unsigned>> Stack; 10953 Stack.emplace(Root, 0); 10954 SmallPtrSet<Value *, 8> VisitedInstrs; 10955 SmallVector<WeakTrackingVH> PostponedInsts; 10956 bool Res = false; 10957 auto &&TryToReduce = [TTI, &SE, &DL, &P, &R, &TLI](Instruction *Inst, 10958 Value *&B0, 10959 Value *&B1) -> Value * { 10960 if (R.isAnalizedReductionRoot(Inst)) 10961 return nullptr; 10962 bool IsBinop = matchRdxBop(Inst, B0, B1); 10963 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 10964 if (IsBinop || IsSelect) { 10965 HorizontalReduction HorRdx; 10966 if (HorRdx.matchAssociativeReduction(P, Inst, SE, DL, TLI)) 10967 return HorRdx.tryToReduce(R, TTI); 10968 } 10969 return nullptr; 10970 }; 10971 while (!Stack.empty()) { 10972 Instruction *Inst; 10973 unsigned Level; 10974 std::tie(Inst, Level) = Stack.front(); 10975 Stack.pop(); 10976 // Do not try to analyze instruction that has already been vectorized. 10977 // This may happen when we vectorize instruction operands on a previous 10978 // iteration while stack was populated before that happened. 10979 if (R.isDeleted(Inst)) 10980 continue; 10981 Value *B0 = nullptr, *B1 = nullptr; 10982 if (Value *V = TryToReduce(Inst, B0, B1)) { 10983 Res = true; 10984 // Set P to nullptr to avoid re-analysis of phi node in 10985 // matchAssociativeReduction function unless this is the root node. 10986 P = nullptr; 10987 if (auto *I = dyn_cast<Instruction>(V)) { 10988 // Try to find another reduction. 10989 Stack.emplace(I, Level); 10990 continue; 10991 } 10992 } else { 10993 bool IsBinop = B0 && B1; 10994 if (P && IsBinop) { 10995 Inst = dyn_cast<Instruction>(B0); 10996 if (Inst == P) 10997 Inst = dyn_cast<Instruction>(B1); 10998 if (!Inst) { 10999 // Set P to nullptr to avoid re-analysis of phi node in 11000 // matchAssociativeReduction function unless this is the root node. 11001 P = nullptr; 11002 continue; 11003 } 11004 } 11005 // Set P to nullptr to avoid re-analysis of phi node in 11006 // matchAssociativeReduction function unless this is the root node. 11007 P = nullptr; 11008 // Do not try to vectorize CmpInst operands, this is done separately. 11009 // Final attempt for binop args vectorization should happen after the loop 11010 // to try to find reductions. 11011 if (!isa<CmpInst, InsertElementInst, InsertValueInst>(Inst)) 11012 PostponedInsts.push_back(Inst); 11013 } 11014 11015 // Try to vectorize operands. 11016 // Continue analysis for the instruction from the same basic block only to 11017 // save compile time. 11018 if (++Level < RecursionMaxDepth) 11019 for (auto *Op : Inst->operand_values()) 11020 if (VisitedInstrs.insert(Op).second) 11021 if (auto *I = dyn_cast<Instruction>(Op)) 11022 // Do not try to vectorize CmpInst operands, this is done 11023 // separately. 11024 if (!isa<PHINode, CmpInst, InsertElementInst, InsertValueInst>(I) && 11025 !R.isDeleted(I) && I->getParent() == BB) 11026 Stack.emplace(I, Level); 11027 } 11028 // Try to vectorized binops where reductions were not found. 11029 for (Value *V : PostponedInsts) 11030 if (auto *Inst = dyn_cast<Instruction>(V)) 11031 if (!R.isDeleted(Inst)) 11032 Res |= Vectorize(Inst, R); 11033 return Res; 11034 } 11035 11036 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 11037 BasicBlock *BB, BoUpSLP &R, 11038 TargetTransformInfo *TTI) { 11039 auto *I = dyn_cast_or_null<Instruction>(V); 11040 if (!I) 11041 return false; 11042 11043 if (!isa<BinaryOperator>(I)) 11044 P = nullptr; 11045 // Try to match and vectorize a horizontal reduction. 11046 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 11047 return tryToVectorize(I, R); 11048 }; 11049 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, *SE, *DL, 11050 *TLI, ExtraVectorization); 11051 } 11052 11053 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 11054 BasicBlock *BB, BoUpSLP &R) { 11055 const DataLayout &DL = BB->getModule()->getDataLayout(); 11056 if (!R.canMapToVector(IVI->getType(), DL)) 11057 return false; 11058 11059 SmallVector<Value *, 16> BuildVectorOpds; 11060 SmallVector<Value *, 16> BuildVectorInsts; 11061 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 11062 return false; 11063 11064 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 11065 // Aggregate value is unlikely to be processed in vector register. 11066 return tryToVectorizeList(BuildVectorOpds, R); 11067 } 11068 11069 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 11070 BasicBlock *BB, BoUpSLP &R) { 11071 SmallVector<Value *, 16> BuildVectorInsts; 11072 SmallVector<Value *, 16> BuildVectorOpds; 11073 SmallVector<int> Mask; 11074 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 11075 (llvm::all_of( 11076 BuildVectorOpds, 11077 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) && 11078 isFixedVectorShuffle(BuildVectorOpds, Mask))) 11079 return false; 11080 11081 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 11082 return tryToVectorizeList(BuildVectorInsts, R); 11083 } 11084 11085 template <typename T> 11086 static bool 11087 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 11088 function_ref<unsigned(T *)> Limit, 11089 function_ref<bool(T *, T *)> Comparator, 11090 function_ref<bool(T *, T *)> AreCompatible, 11091 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper, 11092 bool LimitForRegisterSize) { 11093 bool Changed = false; 11094 // Sort by type, parent, operands. 11095 stable_sort(Incoming, Comparator); 11096 11097 // Try to vectorize elements base on their type. 11098 SmallVector<T *> Candidates; 11099 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 11100 // Look for the next elements with the same type, parent and operand 11101 // kinds. 11102 auto *SameTypeIt = IncIt; 11103 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 11104 ++SameTypeIt; 11105 11106 // Try to vectorize them. 11107 unsigned NumElts = (SameTypeIt - IncIt); 11108 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 11109 << NumElts << ")\n"); 11110 // The vectorization is a 3-state attempt: 11111 // 1. Try to vectorize instructions with the same/alternate opcodes with the 11112 // size of maximal register at first. 11113 // 2. Try to vectorize remaining instructions with the same type, if 11114 // possible. This may result in the better vectorization results rather than 11115 // if we try just to vectorize instructions with the same/alternate opcodes. 11116 // 3. Final attempt to try to vectorize all instructions with the 11117 // same/alternate ops only, this may result in some extra final 11118 // vectorization. 11119 if (NumElts > 1 && 11120 TryToVectorizeHelper(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 11121 // Success start over because instructions might have been changed. 11122 Changed = true; 11123 } else if (NumElts < Limit(*IncIt) && 11124 (Candidates.empty() || 11125 Candidates.front()->getType() == (*IncIt)->getType())) { 11126 Candidates.append(IncIt, std::next(IncIt, NumElts)); 11127 } 11128 // Final attempt to vectorize instructions with the same types. 11129 if (Candidates.size() > 1 && 11130 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 11131 if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) { 11132 // Success start over because instructions might have been changed. 11133 Changed = true; 11134 } else if (LimitForRegisterSize) { 11135 // Try to vectorize using small vectors. 11136 for (auto *It = Candidates.begin(), *End = Candidates.end(); 11137 It != End;) { 11138 auto *SameTypeIt = It; 11139 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 11140 ++SameTypeIt; 11141 unsigned NumElts = (SameTypeIt - It); 11142 if (NumElts > 1 && TryToVectorizeHelper(makeArrayRef(It, NumElts), 11143 /*LimitForRegisterSize=*/false)) 11144 Changed = true; 11145 It = SameTypeIt; 11146 } 11147 } 11148 Candidates.clear(); 11149 } 11150 11151 // Start over at the next instruction of a different type (or the end). 11152 IncIt = SameTypeIt; 11153 } 11154 return Changed; 11155 } 11156 11157 /// Compare two cmp instructions. If IsCompatibility is true, function returns 11158 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding 11159 /// operands. If IsCompatibility is false, function implements strict weak 11160 /// ordering relation between two cmp instructions, returning true if the first 11161 /// instruction is "less" than the second, i.e. its predicate is less than the 11162 /// predicate of the second or the operands IDs are less than the operands IDs 11163 /// of the second cmp instruction. 11164 template <bool IsCompatibility> 11165 static bool compareCmp(Value *V, Value *V2, 11166 function_ref<bool(Instruction *)> IsDeleted) { 11167 auto *CI1 = cast<CmpInst>(V); 11168 auto *CI2 = cast<CmpInst>(V2); 11169 if (IsDeleted(CI2) || !isValidElementType(CI2->getType())) 11170 return false; 11171 if (CI1->getOperand(0)->getType()->getTypeID() < 11172 CI2->getOperand(0)->getType()->getTypeID()) 11173 return !IsCompatibility; 11174 if (CI1->getOperand(0)->getType()->getTypeID() > 11175 CI2->getOperand(0)->getType()->getTypeID()) 11176 return false; 11177 CmpInst::Predicate Pred1 = CI1->getPredicate(); 11178 CmpInst::Predicate Pred2 = CI2->getPredicate(); 11179 CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1); 11180 CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2); 11181 CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1); 11182 CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2); 11183 if (BasePred1 < BasePred2) 11184 return !IsCompatibility; 11185 if (BasePred1 > BasePred2) 11186 return false; 11187 // Compare operands. 11188 bool LEPreds = Pred1 <= Pred2; 11189 bool GEPreds = Pred1 >= Pred2; 11190 for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) { 11191 auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1); 11192 auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1); 11193 if (Op1->getValueID() < Op2->getValueID()) 11194 return !IsCompatibility; 11195 if (Op1->getValueID() > Op2->getValueID()) 11196 return false; 11197 if (auto *I1 = dyn_cast<Instruction>(Op1)) 11198 if (auto *I2 = dyn_cast<Instruction>(Op2)) { 11199 if (I1->getParent() != I2->getParent()) 11200 return false; 11201 InstructionsState S = getSameOpcode({I1, I2}); 11202 if (S.getOpcode()) 11203 continue; 11204 return false; 11205 } 11206 } 11207 return IsCompatibility; 11208 } 11209 11210 bool SLPVectorizerPass::vectorizeSimpleInstructions( 11211 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 11212 bool AtTerminator) { 11213 bool OpsChanged = false; 11214 SmallVector<Instruction *, 4> PostponedCmps; 11215 for (auto *I : reverse(Instructions)) { 11216 if (R.isDeleted(I)) 11217 continue; 11218 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) { 11219 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 11220 } else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) { 11221 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 11222 } else if (isa<CmpInst>(I)) { 11223 PostponedCmps.push_back(I); 11224 continue; 11225 } 11226 // Try to find reductions in buildvector sequnces. 11227 OpsChanged |= vectorizeRootInstruction(nullptr, I, BB, R, TTI); 11228 } 11229 if (AtTerminator) { 11230 // Try to find reductions first. 11231 for (Instruction *I : PostponedCmps) { 11232 if (R.isDeleted(I)) 11233 continue; 11234 for (Value *Op : I->operands()) 11235 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 11236 } 11237 // Try to vectorize operands as vector bundles. 11238 for (Instruction *I : PostponedCmps) { 11239 if (R.isDeleted(I)) 11240 continue; 11241 OpsChanged |= tryToVectorize(I, R); 11242 } 11243 // Try to vectorize list of compares. 11244 // Sort by type, compare predicate, etc. 11245 auto &&CompareSorter = [&R](Value *V, Value *V2) { 11246 return compareCmp<false>(V, V2, 11247 [&R](Instruction *I) { return R.isDeleted(I); }); 11248 }; 11249 11250 auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) { 11251 if (V1 == V2) 11252 return true; 11253 return compareCmp<true>(V1, V2, 11254 [&R](Instruction *I) { return R.isDeleted(I); }); 11255 }; 11256 auto Limit = [&R](Value *V) { 11257 unsigned EltSize = R.getVectorElementSize(V); 11258 return std::max(2U, R.getMaxVecRegSize() / EltSize); 11259 }; 11260 11261 SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end()); 11262 OpsChanged |= tryToVectorizeSequence<Value>( 11263 Vals, Limit, CompareSorter, AreCompatibleCompares, 11264 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 11265 // Exclude possible reductions from other blocks. 11266 bool ArePossiblyReducedInOtherBlock = 11267 any_of(Candidates, [](Value *V) { 11268 return any_of(V->users(), [V](User *U) { 11269 return isa<SelectInst>(U) && 11270 cast<SelectInst>(U)->getParent() != 11271 cast<Instruction>(V)->getParent(); 11272 }); 11273 }); 11274 if (ArePossiblyReducedInOtherBlock) 11275 return false; 11276 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 11277 }, 11278 /*LimitForRegisterSize=*/true); 11279 Instructions.clear(); 11280 } else { 11281 // Insert in reverse order since the PostponedCmps vector was filled in 11282 // reverse order. 11283 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 11284 } 11285 return OpsChanged; 11286 } 11287 11288 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 11289 bool Changed = false; 11290 SmallVector<Value *, 4> Incoming; 11291 SmallPtrSet<Value *, 16> VisitedInstrs; 11292 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 11293 // node. Allows better to identify the chains that can be vectorized in the 11294 // better way. 11295 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 11296 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 11297 assert(isValidElementType(V1->getType()) && 11298 isValidElementType(V2->getType()) && 11299 "Expected vectorizable types only."); 11300 // It is fine to compare type IDs here, since we expect only vectorizable 11301 // types, like ints, floats and pointers, we don't care about other type. 11302 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 11303 return true; 11304 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 11305 return false; 11306 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 11307 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 11308 if (Opcodes1.size() < Opcodes2.size()) 11309 return true; 11310 if (Opcodes1.size() > Opcodes2.size()) 11311 return false; 11312 Optional<bool> ConstOrder; 11313 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 11314 // Undefs are compatible with any other value. 11315 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) { 11316 if (!ConstOrder) 11317 ConstOrder = 11318 !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]); 11319 continue; 11320 } 11321 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 11322 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 11323 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 11324 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 11325 if (!NodeI1) 11326 return NodeI2 != nullptr; 11327 if (!NodeI2) 11328 return false; 11329 assert((NodeI1 == NodeI2) == 11330 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 11331 "Different nodes should have different DFS numbers"); 11332 if (NodeI1 != NodeI2) 11333 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 11334 InstructionsState S = getSameOpcode({I1, I2}); 11335 if (S.getOpcode()) 11336 continue; 11337 return I1->getOpcode() < I2->getOpcode(); 11338 } 11339 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) { 11340 if (!ConstOrder) 11341 ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID(); 11342 continue; 11343 } 11344 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 11345 return true; 11346 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 11347 return false; 11348 } 11349 return ConstOrder && *ConstOrder; 11350 }; 11351 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 11352 if (V1 == V2) 11353 return true; 11354 if (V1->getType() != V2->getType()) 11355 return false; 11356 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 11357 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 11358 if (Opcodes1.size() != Opcodes2.size()) 11359 return false; 11360 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 11361 // Undefs are compatible with any other value. 11362 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 11363 continue; 11364 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 11365 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 11366 if (I1->getParent() != I2->getParent()) 11367 return false; 11368 InstructionsState S = getSameOpcode({I1, I2}); 11369 if (S.getOpcode()) 11370 continue; 11371 return false; 11372 } 11373 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 11374 continue; 11375 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 11376 return false; 11377 } 11378 return true; 11379 }; 11380 auto Limit = [&R](Value *V) { 11381 unsigned EltSize = R.getVectorElementSize(V); 11382 return std::max(2U, R.getMaxVecRegSize() / EltSize); 11383 }; 11384 11385 bool HaveVectorizedPhiNodes = false; 11386 do { 11387 // Collect the incoming values from the PHIs. 11388 Incoming.clear(); 11389 for (Instruction &I : *BB) { 11390 PHINode *P = dyn_cast<PHINode>(&I); 11391 if (!P) 11392 break; 11393 11394 // No need to analyze deleted, vectorized and non-vectorizable 11395 // instructions. 11396 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 11397 isValidElementType(P->getType())) 11398 Incoming.push_back(P); 11399 } 11400 11401 // Find the corresponding non-phi nodes for better matching when trying to 11402 // build the tree. 11403 for (Value *V : Incoming) { 11404 SmallVectorImpl<Value *> &Opcodes = 11405 PHIToOpcodes.try_emplace(V).first->getSecond(); 11406 if (!Opcodes.empty()) 11407 continue; 11408 SmallVector<Value *, 4> Nodes(1, V); 11409 SmallPtrSet<Value *, 4> Visited; 11410 while (!Nodes.empty()) { 11411 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 11412 if (!Visited.insert(PHI).second) 11413 continue; 11414 for (Value *V : PHI->incoming_values()) { 11415 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 11416 Nodes.push_back(PHI1); 11417 continue; 11418 } 11419 Opcodes.emplace_back(V); 11420 } 11421 } 11422 } 11423 11424 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 11425 Incoming, Limit, PHICompare, AreCompatiblePHIs, 11426 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 11427 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 11428 }, 11429 /*LimitForRegisterSize=*/true); 11430 Changed |= HaveVectorizedPhiNodes; 11431 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 11432 } while (HaveVectorizedPhiNodes); 11433 11434 VisitedInstrs.clear(); 11435 11436 SmallVector<Instruction *, 8> PostProcessInstructions; 11437 SmallDenseSet<Instruction *, 4> KeyNodes; 11438 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 11439 // Skip instructions with scalable type. The num of elements is unknown at 11440 // compile-time for scalable type. 11441 if (isa<ScalableVectorType>(it->getType())) 11442 continue; 11443 11444 // Skip instructions marked for the deletion. 11445 if (R.isDeleted(&*it)) 11446 continue; 11447 // We may go through BB multiple times so skip the one we have checked. 11448 if (!VisitedInstrs.insert(&*it).second) { 11449 if (it->use_empty() && KeyNodes.contains(&*it) && 11450 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 11451 it->isTerminator())) { 11452 // We would like to start over since some instructions are deleted 11453 // and the iterator may become invalid value. 11454 Changed = true; 11455 it = BB->begin(); 11456 e = BB->end(); 11457 } 11458 continue; 11459 } 11460 11461 if (isa<DbgInfoIntrinsic>(it)) 11462 continue; 11463 11464 // Try to vectorize reductions that use PHINodes. 11465 if (PHINode *P = dyn_cast<PHINode>(it)) { 11466 // Check that the PHI is a reduction PHI. 11467 if (P->getNumIncomingValues() == 2) { 11468 // Try to match and vectorize a horizontal reduction. 11469 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 11470 TTI)) { 11471 Changed = true; 11472 it = BB->begin(); 11473 e = BB->end(); 11474 continue; 11475 } 11476 } 11477 // Try to vectorize the incoming values of the PHI, to catch reductions 11478 // that feed into PHIs. 11479 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 11480 // Skip if the incoming block is the current BB for now. Also, bypass 11481 // unreachable IR for efficiency and to avoid crashing. 11482 // TODO: Collect the skipped incoming values and try to vectorize them 11483 // after processing BB. 11484 if (BB == P->getIncomingBlock(I) || 11485 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 11486 continue; 11487 11488 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 11489 P->getIncomingBlock(I), R, TTI); 11490 } 11491 continue; 11492 } 11493 11494 // Ran into an instruction without users, like terminator, or function call 11495 // with ignored return value, store. Ignore unused instructions (basing on 11496 // instruction type, except for CallInst and InvokeInst). 11497 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 11498 isa<InvokeInst>(it))) { 11499 KeyNodes.insert(&*it); 11500 bool OpsChanged = false; 11501 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 11502 for (auto *V : it->operand_values()) { 11503 // Try to match and vectorize a horizontal reduction. 11504 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 11505 } 11506 } 11507 // Start vectorization of post-process list of instructions from the 11508 // top-tree instructions to try to vectorize as many instructions as 11509 // possible. 11510 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 11511 it->isTerminator()); 11512 if (OpsChanged) { 11513 // We would like to start over since some instructions are deleted 11514 // and the iterator may become invalid value. 11515 Changed = true; 11516 it = BB->begin(); 11517 e = BB->end(); 11518 continue; 11519 } 11520 } 11521 11522 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 11523 isa<InsertValueInst>(it)) 11524 PostProcessInstructions.push_back(&*it); 11525 } 11526 11527 return Changed; 11528 } 11529 11530 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 11531 auto Changed = false; 11532 for (auto &Entry : GEPs) { 11533 // If the getelementptr list has fewer than two elements, there's nothing 11534 // to do. 11535 if (Entry.second.size() < 2) 11536 continue; 11537 11538 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 11539 << Entry.second.size() << ".\n"); 11540 11541 // Process the GEP list in chunks suitable for the target's supported 11542 // vector size. If a vector register can't hold 1 element, we are done. We 11543 // are trying to vectorize the index computations, so the maximum number of 11544 // elements is based on the size of the index expression, rather than the 11545 // size of the GEP itself (the target's pointer size). 11546 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 11547 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 11548 if (MaxVecRegSize < EltSize) 11549 continue; 11550 11551 unsigned MaxElts = MaxVecRegSize / EltSize; 11552 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 11553 auto Len = std::min<unsigned>(BE - BI, MaxElts); 11554 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 11555 11556 // Initialize a set a candidate getelementptrs. Note that we use a 11557 // SetVector here to preserve program order. If the index computations 11558 // are vectorizable and begin with loads, we want to minimize the chance 11559 // of having to reorder them later. 11560 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 11561 11562 // Some of the candidates may have already been vectorized after we 11563 // initially collected them. If so, they are marked as deleted, so remove 11564 // them from the set of candidates. 11565 Candidates.remove_if( 11566 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 11567 11568 // Remove from the set of candidates all pairs of getelementptrs with 11569 // constant differences. Such getelementptrs are likely not good 11570 // candidates for vectorization in a bottom-up phase since one can be 11571 // computed from the other. We also ensure all candidate getelementptr 11572 // indices are unique. 11573 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 11574 auto *GEPI = GEPList[I]; 11575 if (!Candidates.count(GEPI)) 11576 continue; 11577 auto *SCEVI = SE->getSCEV(GEPList[I]); 11578 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 11579 auto *GEPJ = GEPList[J]; 11580 auto *SCEVJ = SE->getSCEV(GEPList[J]); 11581 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 11582 Candidates.remove(GEPI); 11583 Candidates.remove(GEPJ); 11584 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 11585 Candidates.remove(GEPJ); 11586 } 11587 } 11588 } 11589 11590 // We break out of the above computation as soon as we know there are 11591 // fewer than two candidates remaining. 11592 if (Candidates.size() < 2) 11593 continue; 11594 11595 // Add the single, non-constant index of each candidate to the bundle. We 11596 // ensured the indices met these constraints when we originally collected 11597 // the getelementptrs. 11598 SmallVector<Value *, 16> Bundle(Candidates.size()); 11599 auto BundleIndex = 0u; 11600 for (auto *V : Candidates) { 11601 auto *GEP = cast<GetElementPtrInst>(V); 11602 auto *GEPIdx = GEP->idx_begin()->get(); 11603 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 11604 Bundle[BundleIndex++] = GEPIdx; 11605 } 11606 11607 // Try and vectorize the indices. We are currently only interested in 11608 // gather-like cases of the form: 11609 // 11610 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 11611 // 11612 // where the loads of "a", the loads of "b", and the subtractions can be 11613 // performed in parallel. It's likely that detecting this pattern in a 11614 // bottom-up phase will be simpler and less costly than building a 11615 // full-blown top-down phase beginning at the consecutive loads. 11616 Changed |= tryToVectorizeList(Bundle, R); 11617 } 11618 } 11619 return Changed; 11620 } 11621 11622 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 11623 bool Changed = false; 11624 // Sort by type, base pointers and values operand. Value operands must be 11625 // compatible (have the same opcode, same parent), otherwise it is 11626 // definitely not profitable to try to vectorize them. 11627 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 11628 if (V->getPointerOperandType()->getTypeID() < 11629 V2->getPointerOperandType()->getTypeID()) 11630 return true; 11631 if (V->getPointerOperandType()->getTypeID() > 11632 V2->getPointerOperandType()->getTypeID()) 11633 return false; 11634 // UndefValues are compatible with all other values. 11635 if (isa<UndefValue>(V->getValueOperand()) || 11636 isa<UndefValue>(V2->getValueOperand())) 11637 return false; 11638 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 11639 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 11640 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 11641 DT->getNode(I1->getParent()); 11642 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 11643 DT->getNode(I2->getParent()); 11644 assert(NodeI1 && "Should only process reachable instructions"); 11645 assert(NodeI2 && "Should only process reachable instructions"); 11646 assert((NodeI1 == NodeI2) == 11647 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 11648 "Different nodes should have different DFS numbers"); 11649 if (NodeI1 != NodeI2) 11650 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 11651 InstructionsState S = getSameOpcode({I1, I2}); 11652 if (S.getOpcode()) 11653 return false; 11654 return I1->getOpcode() < I2->getOpcode(); 11655 } 11656 if (isa<Constant>(V->getValueOperand()) && 11657 isa<Constant>(V2->getValueOperand())) 11658 return false; 11659 return V->getValueOperand()->getValueID() < 11660 V2->getValueOperand()->getValueID(); 11661 }; 11662 11663 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 11664 if (V1 == V2) 11665 return true; 11666 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 11667 return false; 11668 // Undefs are compatible with any other value. 11669 if (isa<UndefValue>(V1->getValueOperand()) || 11670 isa<UndefValue>(V2->getValueOperand())) 11671 return true; 11672 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 11673 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 11674 if (I1->getParent() != I2->getParent()) 11675 return false; 11676 InstructionsState S = getSameOpcode({I1, I2}); 11677 return S.getOpcode() > 0; 11678 } 11679 if (isa<Constant>(V1->getValueOperand()) && 11680 isa<Constant>(V2->getValueOperand())) 11681 return true; 11682 return V1->getValueOperand()->getValueID() == 11683 V2->getValueOperand()->getValueID(); 11684 }; 11685 auto Limit = [&R, this](StoreInst *SI) { 11686 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 11687 return R.getMinVF(EltSize); 11688 }; 11689 11690 // Attempt to sort and vectorize each of the store-groups. 11691 for (auto &Pair : Stores) { 11692 if (Pair.second.size() < 2) 11693 continue; 11694 11695 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 11696 << Pair.second.size() << ".\n"); 11697 11698 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 11699 continue; 11700 11701 Changed |= tryToVectorizeSequence<StoreInst>( 11702 Pair.second, Limit, StoreSorter, AreCompatibleStores, 11703 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 11704 return vectorizeStores(Candidates, R); 11705 }, 11706 /*LimitForRegisterSize=*/false); 11707 } 11708 return Changed; 11709 } 11710 11711 char SLPVectorizer::ID = 0; 11712 11713 static const char lv_name[] = "SLP Vectorizer"; 11714 11715 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 11716 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 11717 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 11718 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 11719 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 11720 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 11721 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 11722 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 11723 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 11724 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 11725 11726 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 11727