1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10 // stores that can be put together into vector-stores. Next, it attempts to
11 // construct vectorizable tree using the use-def chains. If a profitable tree
12 // was found, the SLP vectorizer performs vectorization on the tree.
13 //
14 // The pass is inspired by the work described in the paper:
15 //  "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/DenseSet.h"
23 #include "llvm/ADT/MapVector.h"
24 #include "llvm/ADT/None.h"
25 #include "llvm/ADT/Optional.h"
26 #include "llvm/ADT/PostOrderIterator.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/ADT/SetVector.h"
29 #include "llvm/ADT/SmallBitVector.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/ADT/iterator.h"
35 #include "llvm/ADT/iterator_range.h"
36 #include "llvm/Analysis/AliasAnalysis.h"
37 #include "llvm/Analysis/CodeMetrics.h"
38 #include "llvm/Analysis/DemandedBits.h"
39 #include "llvm/Analysis/GlobalsModRef.h"
40 #include "llvm/Analysis/LoopAccessAnalysis.h"
41 #include "llvm/Analysis/LoopInfo.h"
42 #include "llvm/Analysis/MemoryLocation.h"
43 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
44 #include "llvm/Analysis/ScalarEvolution.h"
45 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
46 #include "llvm/Analysis/TargetLibraryInfo.h"
47 #include "llvm/Analysis/TargetTransformInfo.h"
48 #include "llvm/Analysis/ValueTracking.h"
49 #include "llvm/Analysis/VectorUtils.h"
50 #include "llvm/IR/Attributes.h"
51 #include "llvm/IR/BasicBlock.h"
52 #include "llvm/IR/Constant.h"
53 #include "llvm/IR/Constants.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/DebugLoc.h"
56 #include "llvm/IR/DerivedTypes.h"
57 #include "llvm/IR/Dominators.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/IRBuilder.h"
60 #include "llvm/IR/InstrTypes.h"
61 #include "llvm/IR/Instruction.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/IR/IntrinsicInst.h"
64 #include "llvm/IR/Intrinsics.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/NoFolder.h"
67 #include "llvm/IR/Operator.h"
68 #include "llvm/IR/PassManager.h"
69 #include "llvm/IR/PatternMatch.h"
70 #include "llvm/IR/Type.h"
71 #include "llvm/IR/Use.h"
72 #include "llvm/IR/User.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/IR/ValueHandle.h"
75 #include "llvm/IR/Verifier.h"
76 #include "llvm/InitializePasses.h"
77 #include "llvm/Pass.h"
78 #include "llvm/Support/Casting.h"
79 #include "llvm/Support/CommandLine.h"
80 #include "llvm/Support/Compiler.h"
81 #include "llvm/Support/DOTGraphTraits.h"
82 #include "llvm/Support/Debug.h"
83 #include "llvm/Support/ErrorHandling.h"
84 #include "llvm/Support/GraphWriter.h"
85 #include "llvm/Support/KnownBits.h"
86 #include "llvm/Support/MathExtras.h"
87 #include "llvm/Support/raw_ostream.h"
88 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
89 #include "llvm/Transforms/Utils/LoopUtils.h"
90 #include "llvm/Transforms/Vectorize.h"
91 #include <algorithm>
92 #include <cassert>
93 #include <cstdint>
94 #include <iterator>
95 #include <memory>
96 #include <set>
97 #include <string>
98 #include <tuple>
99 #include <utility>
100 #include <vector>
101 
102 using namespace llvm;
103 using namespace llvm::PatternMatch;
104 using namespace slpvectorizer;
105 
106 #define SV_NAME "slp-vectorizer"
107 #define DEBUG_TYPE "SLP"
108 
109 STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
110 
111 cl::opt<bool>
112     llvm::RunSLPVectorization("vectorize-slp", cl::init(false), cl::Hidden,
113                               cl::desc("Run the SLP vectorization passes"));
114 
115 static cl::opt<int>
116     SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
117                      cl::desc("Only vectorize if you gain more than this "
118                               "number "));
119 
120 static cl::opt<bool>
121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
122                    cl::desc("Attempt to vectorize horizontal reductions"));
123 
124 static cl::opt<bool> ShouldStartVectorizeHorAtStore(
125     "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
126     cl::desc(
127         "Attempt to vectorize horizontal reductions feeding into a store"));
128 
129 static cl::opt<int>
130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
131     cl::desc("Attempt to vectorize for this register size in bits"));
132 
133 static cl::opt<int>
134 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden,
135     cl::desc("Maximum depth of the lookup for consecutive stores."));
136 
137 /// Limits the size of scheduling regions in a block.
138 /// It avoid long compile times for _very_ large blocks where vector
139 /// instructions are spread over a wide range.
140 /// This limit is way higher than needed by real-world functions.
141 static cl::opt<int>
142 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
143     cl::desc("Limit the size of the SLP scheduling region per block"));
144 
145 static cl::opt<int> MinVectorRegSizeOption(
146     "slp-min-reg-size", cl::init(128), cl::Hidden,
147     cl::desc("Attempt to vectorize for this register size in bits"));
148 
149 static cl::opt<unsigned> RecursionMaxDepth(
150     "slp-recursion-max-depth", cl::init(12), cl::Hidden,
151     cl::desc("Limit the recursion depth when building a vectorizable tree"));
152 
153 static cl::opt<unsigned> MinTreeSize(
154     "slp-min-tree-size", cl::init(3), cl::Hidden,
155     cl::desc("Only vectorize small trees if they are fully vectorizable"));
156 
157 // The maximum depth that the look-ahead score heuristic will explore.
158 // The higher this value, the higher the compilation time overhead.
159 static cl::opt<int> LookAheadMaxDepth(
160     "slp-max-look-ahead-depth", cl::init(2), cl::Hidden,
161     cl::desc("The maximum look-ahead depth for operand reordering scores"));
162 
163 // The Look-ahead heuristic goes through the users of the bundle to calculate
164 // the users cost in getExternalUsesCost(). To avoid compilation time increase
165 // we limit the number of users visited to this value.
166 static cl::opt<unsigned> LookAheadUsersBudget(
167     "slp-look-ahead-users-budget", cl::init(2), cl::Hidden,
168     cl::desc("The maximum number of users to visit while visiting the "
169              "predecessors. This prevents compilation time increase."));
170 
171 static cl::opt<bool>
172     ViewSLPTree("view-slp-tree", cl::Hidden,
173                 cl::desc("Display the SLP trees with Graphviz"));
174 
175 // Limit the number of alias checks. The limit is chosen so that
176 // it has no negative effect on the llvm benchmarks.
177 static const unsigned AliasedCheckLimit = 10;
178 
179 // Another limit for the alias checks: The maximum distance between load/store
180 // instructions where alias checks are done.
181 // This limit is useful for very large basic blocks.
182 static const unsigned MaxMemDepDistance = 160;
183 
184 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
185 /// regions to be handled.
186 static const int MinScheduleRegionSize = 16;
187 
188 /// Predicate for the element types that the SLP vectorizer supports.
189 ///
190 /// The most important thing to filter here are types which are invalid in LLVM
191 /// vectors. We also filter target specific types which have absolutely no
192 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
193 /// avoids spending time checking the cost model and realizing that they will
194 /// be inevitably scalarized.
195 static bool isValidElementType(Type *Ty) {
196   return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
197          !Ty->isPPC_FP128Ty();
198 }
199 
200 /// \returns true if all of the instructions in \p VL are in the same block or
201 /// false otherwise.
202 static bool allSameBlock(ArrayRef<Value *> VL) {
203   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
204   if (!I0)
205     return false;
206   BasicBlock *BB = I0->getParent();
207   for (int i = 1, e = VL.size(); i < e; i++) {
208     Instruction *I = dyn_cast<Instruction>(VL[i]);
209     if (!I)
210       return false;
211 
212     if (BB != I->getParent())
213       return false;
214   }
215   return true;
216 }
217 
218 /// \returns True if all of the values in \p VL are constants (but not
219 /// globals/constant expressions).
220 static bool allConstant(ArrayRef<Value *> VL) {
221   // Constant expressions and globals can't be vectorized like normal integer/FP
222   // constants.
223   for (Value *i : VL)
224     if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i))
225       return false;
226   return true;
227 }
228 
229 /// \returns True if all of the values in \p VL are identical.
230 static bool isSplat(ArrayRef<Value *> VL) {
231   for (unsigned i = 1, e = VL.size(); i < e; ++i)
232     if (VL[i] != VL[0])
233       return false;
234   return true;
235 }
236 
237 /// \returns True if \p I is commutative, handles CmpInst as well as Instruction.
238 static bool isCommutative(Instruction *I) {
239   if (auto *IC = dyn_cast<CmpInst>(I))
240     return IC->isCommutative();
241   return I->isCommutative();
242 }
243 
244 /// Checks if the vector of instructions can be represented as a shuffle, like:
245 /// %x0 = extractelement <4 x i8> %x, i32 0
246 /// %x3 = extractelement <4 x i8> %x, i32 3
247 /// %y1 = extractelement <4 x i8> %y, i32 1
248 /// %y2 = extractelement <4 x i8> %y, i32 2
249 /// %x0x0 = mul i8 %x0, %x0
250 /// %x3x3 = mul i8 %x3, %x3
251 /// %y1y1 = mul i8 %y1, %y1
252 /// %y2y2 = mul i8 %y2, %y2
253 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0
254 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1
255 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2
256 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3
257 /// ret <4 x i8> %ins4
258 /// can be transformed into:
259 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5,
260 ///                                                         i32 6>
261 /// %2 = mul <4 x i8> %1, %1
262 /// ret <4 x i8> %2
263 /// We convert this initially to something like:
264 /// %x0 = extractelement <4 x i8> %x, i32 0
265 /// %x3 = extractelement <4 x i8> %x, i32 3
266 /// %y1 = extractelement <4 x i8> %y, i32 1
267 /// %y2 = extractelement <4 x i8> %y, i32 2
268 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0
269 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1
270 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2
271 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3
272 /// %5 = mul <4 x i8> %4, %4
273 /// %6 = extractelement <4 x i8> %5, i32 0
274 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0
275 /// %7 = extractelement <4 x i8> %5, i32 1
276 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1
277 /// %8 = extractelement <4 x i8> %5, i32 2
278 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2
279 /// %9 = extractelement <4 x i8> %5, i32 3
280 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3
281 /// ret <4 x i8> %ins4
282 /// InstCombiner transforms this into a shuffle and vector mul
283 /// TODO: Can we split off and reuse the shuffle mask detection from
284 /// TargetTransformInfo::getInstructionThroughput?
285 static Optional<TargetTransformInfo::ShuffleKind>
286 isShuffle(ArrayRef<Value *> VL) {
287   auto *EI0 = cast<ExtractElementInst>(VL[0]);
288   unsigned Size = EI0->getVectorOperandType()->getVectorNumElements();
289   Value *Vec1 = nullptr;
290   Value *Vec2 = nullptr;
291   enum ShuffleMode { Unknown, Select, Permute };
292   ShuffleMode CommonShuffleMode = Unknown;
293   for (unsigned I = 0, E = VL.size(); I < E; ++I) {
294     auto *EI = cast<ExtractElementInst>(VL[I]);
295     auto *Vec = EI->getVectorOperand();
296     // All vector operands must have the same number of vector elements.
297     if (Vec->getType()->getVectorNumElements() != Size)
298       return None;
299     auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand());
300     if (!Idx)
301       return None;
302     // Undefined behavior if Idx is negative or >= Size.
303     if (Idx->getValue().uge(Size))
304       continue;
305     unsigned IntIdx = Idx->getValue().getZExtValue();
306     // We can extractelement from undef vector.
307     if (isa<UndefValue>(Vec))
308       continue;
309     // For correct shuffling we have to have at most 2 different vector operands
310     // in all extractelement instructions.
311     if (!Vec1 || Vec1 == Vec)
312       Vec1 = Vec;
313     else if (!Vec2 || Vec2 == Vec)
314       Vec2 = Vec;
315     else
316       return None;
317     if (CommonShuffleMode == Permute)
318       continue;
319     // If the extract index is not the same as the operation number, it is a
320     // permutation.
321     if (IntIdx != I) {
322       CommonShuffleMode = Permute;
323       continue;
324     }
325     CommonShuffleMode = Select;
326   }
327   // If we're not crossing lanes in different vectors, consider it as blending.
328   if (CommonShuffleMode == Select && Vec2)
329     return TargetTransformInfo::SK_Select;
330   // If Vec2 was never used, we have a permutation of a single vector, otherwise
331   // we have permutation of 2 vectors.
332   return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc
333               : TargetTransformInfo::SK_PermuteSingleSrc;
334 }
335 
336 namespace {
337 
338 /// Main data required for vectorization of instructions.
339 struct InstructionsState {
340   /// The very first instruction in the list with the main opcode.
341   Value *OpValue = nullptr;
342 
343   /// The main/alternate instruction.
344   Instruction *MainOp = nullptr;
345   Instruction *AltOp = nullptr;
346 
347   /// The main/alternate opcodes for the list of instructions.
348   unsigned getOpcode() const {
349     return MainOp ? MainOp->getOpcode() : 0;
350   }
351 
352   unsigned getAltOpcode() const {
353     return AltOp ? AltOp->getOpcode() : 0;
354   }
355 
356   /// Some of the instructions in the list have alternate opcodes.
357   bool isAltShuffle() const { return getOpcode() != getAltOpcode(); }
358 
359   bool isOpcodeOrAlt(Instruction *I) const {
360     unsigned CheckedOpcode = I->getOpcode();
361     return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode;
362   }
363 
364   InstructionsState() = delete;
365   InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp)
366       : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {}
367 };
368 
369 } // end anonymous namespace
370 
371 /// Chooses the correct key for scheduling data. If \p Op has the same (or
372 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p
373 /// OpValue.
374 static Value *isOneOf(const InstructionsState &S, Value *Op) {
375   auto *I = dyn_cast<Instruction>(Op);
376   if (I && S.isOpcodeOrAlt(I))
377     return Op;
378   return S.OpValue;
379 }
380 
381 /// \returns true if \p Opcode is allowed as part of of the main/alternate
382 /// instruction for SLP vectorization.
383 ///
384 /// Example of unsupported opcode is SDIV that can potentially cause UB if the
385 /// "shuffled out" lane would result in division by zero.
386 static bool isValidForAlternation(unsigned Opcode) {
387   if (Instruction::isIntDivRem(Opcode))
388     return false;
389 
390   return true;
391 }
392 
393 /// \returns analysis of the Instructions in \p VL described in
394 /// InstructionsState, the Opcode that we suppose the whole list
395 /// could be vectorized even if its structure is diverse.
396 static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
397                                        unsigned BaseIndex = 0) {
398   // Make sure these are all Instructions.
399   if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); }))
400     return InstructionsState(VL[BaseIndex], nullptr, nullptr);
401 
402   bool IsCastOp = isa<CastInst>(VL[BaseIndex]);
403   bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]);
404   unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode();
405   unsigned AltOpcode = Opcode;
406   unsigned AltIndex = BaseIndex;
407 
408   // Check for one alternate opcode from another BinaryOperator.
409   // TODO - generalize to support all operators (types, calls etc.).
410   for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) {
411     unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode();
412     if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) {
413       if (InstOpcode == Opcode || InstOpcode == AltOpcode)
414         continue;
415       if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) &&
416           isValidForAlternation(Opcode)) {
417         AltOpcode = InstOpcode;
418         AltIndex = Cnt;
419         continue;
420       }
421     } else if (IsCastOp && isa<CastInst>(VL[Cnt])) {
422       Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType();
423       Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType();
424       if (Ty0 == Ty1) {
425         if (InstOpcode == Opcode || InstOpcode == AltOpcode)
426           continue;
427         if (Opcode == AltOpcode) {
428           assert(isValidForAlternation(Opcode) &&
429                  isValidForAlternation(InstOpcode) &&
430                  "Cast isn't safe for alternation, logic needs to be updated!");
431           AltOpcode = InstOpcode;
432           AltIndex = Cnt;
433           continue;
434         }
435       }
436     } else if (InstOpcode == Opcode || InstOpcode == AltOpcode)
437       continue;
438     return InstructionsState(VL[BaseIndex], nullptr, nullptr);
439   }
440 
441   return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]),
442                            cast<Instruction>(VL[AltIndex]));
443 }
444 
445 /// \returns true if all of the values in \p VL have the same type or false
446 /// otherwise.
447 static bool allSameType(ArrayRef<Value *> VL) {
448   Type *Ty = VL[0]->getType();
449   for (int i = 1, e = VL.size(); i < e; i++)
450     if (VL[i]->getType() != Ty)
451       return false;
452 
453   return true;
454 }
455 
456 /// \returns True if Extract{Value,Element} instruction extracts element Idx.
457 static Optional<unsigned> getExtractIndex(Instruction *E) {
458   unsigned Opcode = E->getOpcode();
459   assert((Opcode == Instruction::ExtractElement ||
460           Opcode == Instruction::ExtractValue) &&
461          "Expected extractelement or extractvalue instruction.");
462   if (Opcode == Instruction::ExtractElement) {
463     auto *CI = dyn_cast<ConstantInt>(E->getOperand(1));
464     if (!CI)
465       return None;
466     return CI->getZExtValue();
467   }
468   ExtractValueInst *EI = cast<ExtractValueInst>(E);
469   if (EI->getNumIndices() != 1)
470     return None;
471   return *EI->idx_begin();
472 }
473 
474 /// \returns True if in-tree use also needs extract. This refers to
475 /// possible scalar operand in vectorized instruction.
476 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
477                                     TargetLibraryInfo *TLI) {
478   unsigned Opcode = UserInst->getOpcode();
479   switch (Opcode) {
480   case Instruction::Load: {
481     LoadInst *LI = cast<LoadInst>(UserInst);
482     return (LI->getPointerOperand() == Scalar);
483   }
484   case Instruction::Store: {
485     StoreInst *SI = cast<StoreInst>(UserInst);
486     return (SI->getPointerOperand() == Scalar);
487   }
488   case Instruction::Call: {
489     CallInst *CI = cast<CallInst>(UserInst);
490     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
491     for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
492       if (hasVectorInstrinsicScalarOpd(ID, i))
493         return (CI->getArgOperand(i) == Scalar);
494     }
495     LLVM_FALLTHROUGH;
496   }
497   default:
498     return false;
499   }
500 }
501 
502 /// \returns the AA location that is being access by the instruction.
503 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) {
504   if (StoreInst *SI = dyn_cast<StoreInst>(I))
505     return MemoryLocation::get(SI);
506   if (LoadInst *LI = dyn_cast<LoadInst>(I))
507     return MemoryLocation::get(LI);
508   return MemoryLocation();
509 }
510 
511 /// \returns True if the instruction is not a volatile or atomic load/store.
512 static bool isSimple(Instruction *I) {
513   if (LoadInst *LI = dyn_cast<LoadInst>(I))
514     return LI->isSimple();
515   if (StoreInst *SI = dyn_cast<StoreInst>(I))
516     return SI->isSimple();
517   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
518     return !MI->isVolatile();
519   return true;
520 }
521 
522 namespace llvm {
523 
524 namespace slpvectorizer {
525 
526 /// Bottom Up SLP Vectorizer.
527 class BoUpSLP {
528   struct TreeEntry;
529   struct ScheduleData;
530 
531 public:
532   using ValueList = SmallVector<Value *, 8>;
533   using InstrList = SmallVector<Instruction *, 16>;
534   using ValueSet = SmallPtrSet<Value *, 16>;
535   using StoreList = SmallVector<StoreInst *, 8>;
536   using ExtraValueToDebugLocsMap =
537       MapVector<Value *, SmallVector<Instruction *, 2>>;
538 
539   BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
540           TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li,
541           DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
542           const DataLayout *DL, OptimizationRemarkEmitter *ORE)
543       : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC),
544         DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) {
545     CodeMetrics::collectEphemeralValues(F, AC, EphValues);
546     // Use the vector register size specified by the target unless overridden
547     // by a command-line option.
548     // TODO: It would be better to limit the vectorization factor based on
549     //       data type rather than just register size. For example, x86 AVX has
550     //       256-bit registers, but it does not support integer operations
551     //       at that width (that requires AVX2).
552     if (MaxVectorRegSizeOption.getNumOccurrences())
553       MaxVecRegSize = MaxVectorRegSizeOption;
554     else
555       MaxVecRegSize = TTI->getRegisterBitWidth(true);
556 
557     if (MinVectorRegSizeOption.getNumOccurrences())
558       MinVecRegSize = MinVectorRegSizeOption;
559     else
560       MinVecRegSize = TTI->getMinVectorRegisterBitWidth();
561   }
562 
563   /// Vectorize the tree that starts with the elements in \p VL.
564   /// Returns the vectorized root.
565   Value *vectorizeTree();
566 
567   /// Vectorize the tree but with the list of externally used values \p
568   /// ExternallyUsedValues. Values in this MapVector can be replaced but the
569   /// generated extractvalue instructions.
570   Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues);
571 
572   /// \returns the cost incurred by unwanted spills and fills, caused by
573   /// holding live values over call sites.
574   int getSpillCost() const;
575 
576   /// \returns the vectorization cost of the subtree that starts at \p VL.
577   /// A negative number means that this is profitable.
578   int getTreeCost();
579 
580   /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
581   /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
582   void buildTree(ArrayRef<Value *> Roots,
583                  ArrayRef<Value *> UserIgnoreLst = None);
584 
585   /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
586   /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking
587   /// into account (and updating it, if required) list of externally used
588   /// values stored in \p ExternallyUsedValues.
589   void buildTree(ArrayRef<Value *> Roots,
590                  ExtraValueToDebugLocsMap &ExternallyUsedValues,
591                  ArrayRef<Value *> UserIgnoreLst = None);
592 
593   /// Clear the internal data structures that are created by 'buildTree'.
594   void deleteTree() {
595     VectorizableTree.clear();
596     ScalarToTreeEntry.clear();
597     MustGather.clear();
598     ExternalUses.clear();
599     NumOpsWantToKeepOrder.clear();
600     NumOpsWantToKeepOriginalOrder = 0;
601     for (auto &Iter : BlocksSchedules) {
602       BlockScheduling *BS = Iter.second.get();
603       BS->clear();
604     }
605     MinBWs.clear();
606   }
607 
608   unsigned getTreeSize() const { return VectorizableTree.size(); }
609 
610   /// Perform LICM and CSE on the newly generated gather sequences.
611   void optimizeGatherSequence();
612 
613   /// \returns The best order of instructions for vectorization.
614   Optional<ArrayRef<unsigned>> bestOrder() const {
615     auto I = std::max_element(
616         NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(),
617         [](const decltype(NumOpsWantToKeepOrder)::value_type &D1,
618            const decltype(NumOpsWantToKeepOrder)::value_type &D2) {
619           return D1.second < D2.second;
620         });
621     if (I == NumOpsWantToKeepOrder.end() ||
622         I->getSecond() <= NumOpsWantToKeepOriginalOrder)
623       return None;
624 
625     return makeArrayRef(I->getFirst());
626   }
627 
628   /// \return The vector element size in bits to use when vectorizing the
629   /// expression tree ending at \p V. If V is a store, the size is the width of
630   /// the stored value. Otherwise, the size is the width of the largest loaded
631   /// value reaching V. This method is used by the vectorizer to calculate
632   /// vectorization factors.
633   unsigned getVectorElementSize(Value *V) const;
634 
635   /// Compute the minimum type sizes required to represent the entries in a
636   /// vectorizable tree.
637   void computeMinimumValueSizes();
638 
639   // \returns maximum vector register size as set by TTI or overridden by cl::opt.
640   unsigned getMaxVecRegSize() const {
641     return MaxVecRegSize;
642   }
643 
644   // \returns minimum vector register size as set by cl::opt.
645   unsigned getMinVecRegSize() const {
646     return MinVecRegSize;
647   }
648 
649   /// Check if homogeneous aggregate is isomorphic to some VectorType.
650   /// Accepts homogeneous multidimensional aggregate of scalars/vectors like
651   /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> },
652   /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on.
653   ///
654   /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
655   unsigned canMapToVector(Type *T, const DataLayout &DL) const;
656 
657   /// \returns True if the VectorizableTree is both tiny and not fully
658   /// vectorizable. We do not vectorize such trees.
659   bool isTreeTinyAndNotFullyVectorizable() const;
660 
661   /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values
662   /// can be load combined in the backend. Load combining may not be allowed in
663   /// the IR optimizer, so we do not want to alter the pattern. For example,
664   /// partially transforming a scalar bswap() pattern into vector code is
665   /// effectively impossible for the backend to undo.
666   /// TODO: If load combining is allowed in the IR optimizer, this analysis
667   ///       may not be necessary.
668   bool isLoadCombineReductionCandidate(unsigned ReductionOpcode) const;
669 
670   OptimizationRemarkEmitter *getORE() { return ORE; }
671 
672   /// This structure holds any data we need about the edges being traversed
673   /// during buildTree_rec(). We keep track of:
674   /// (i) the user TreeEntry index, and
675   /// (ii) the index of the edge.
676   struct EdgeInfo {
677     EdgeInfo() = default;
678     EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx)
679         : UserTE(UserTE), EdgeIdx(EdgeIdx) {}
680     /// The user TreeEntry.
681     TreeEntry *UserTE = nullptr;
682     /// The operand index of the use.
683     unsigned EdgeIdx = UINT_MAX;
684 #ifndef NDEBUG
685     friend inline raw_ostream &operator<<(raw_ostream &OS,
686                                           const BoUpSLP::EdgeInfo &EI) {
687       EI.dump(OS);
688       return OS;
689     }
690     /// Debug print.
691     void dump(raw_ostream &OS) const {
692       OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null")
693          << " EdgeIdx:" << EdgeIdx << "}";
694     }
695     LLVM_DUMP_METHOD void dump() const { dump(dbgs()); }
696 #endif
697   };
698 
699   /// A helper data structure to hold the operands of a vector of instructions.
700   /// This supports a fixed vector length for all operand vectors.
701   class VLOperands {
702     /// For each operand we need (i) the value, and (ii) the opcode that it
703     /// would be attached to if the expression was in a left-linearized form.
704     /// This is required to avoid illegal operand reordering.
705     /// For example:
706     /// \verbatim
707     ///                         0 Op1
708     ///                         |/
709     /// Op1 Op2   Linearized    + Op2
710     ///   \ /     ---------->   |/
711     ///    -                    -
712     ///
713     /// Op1 - Op2            (0 + Op1) - Op2
714     /// \endverbatim
715     ///
716     /// Value Op1 is attached to a '+' operation, and Op2 to a '-'.
717     ///
718     /// Another way to think of this is to track all the operations across the
719     /// path from the operand all the way to the root of the tree and to
720     /// calculate the operation that corresponds to this path. For example, the
721     /// path from Op2 to the root crosses the RHS of the '-', therefore the
722     /// corresponding operation is a '-' (which matches the one in the
723     /// linearized tree, as shown above).
724     ///
725     /// For lack of a better term, we refer to this operation as Accumulated
726     /// Path Operation (APO).
727     struct OperandData {
728       OperandData() = default;
729       OperandData(Value *V, bool APO, bool IsUsed)
730           : V(V), APO(APO), IsUsed(IsUsed) {}
731       /// The operand value.
732       Value *V = nullptr;
733       /// TreeEntries only allow a single opcode, or an alternate sequence of
734       /// them (e.g, +, -). Therefore, we can safely use a boolean value for the
735       /// APO. It is set to 'true' if 'V' is attached to an inverse operation
736       /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise
737       /// (e.g., Add/Mul)
738       bool APO = false;
739       /// Helper data for the reordering function.
740       bool IsUsed = false;
741     };
742 
743     /// During operand reordering, we are trying to select the operand at lane
744     /// that matches best with the operand at the neighboring lane. Our
745     /// selection is based on the type of value we are looking for. For example,
746     /// if the neighboring lane has a load, we need to look for a load that is
747     /// accessing a consecutive address. These strategies are summarized in the
748     /// 'ReorderingMode' enumerator.
749     enum class ReorderingMode {
750       Load,     ///< Matching loads to consecutive memory addresses
751       Opcode,   ///< Matching instructions based on opcode (same or alternate)
752       Constant, ///< Matching constants
753       Splat,    ///< Matching the same instruction multiple times (broadcast)
754       Failed,   ///< We failed to create a vectorizable group
755     };
756 
757     using OperandDataVec = SmallVector<OperandData, 2>;
758 
759     /// A vector of operand vectors.
760     SmallVector<OperandDataVec, 4> OpsVec;
761 
762     const DataLayout &DL;
763     ScalarEvolution &SE;
764     const BoUpSLP &R;
765 
766     /// \returns the operand data at \p OpIdx and \p Lane.
767     OperandData &getData(unsigned OpIdx, unsigned Lane) {
768       return OpsVec[OpIdx][Lane];
769     }
770 
771     /// \returns the operand data at \p OpIdx and \p Lane. Const version.
772     const OperandData &getData(unsigned OpIdx, unsigned Lane) const {
773       return OpsVec[OpIdx][Lane];
774     }
775 
776     /// Clears the used flag for all entries.
777     void clearUsed() {
778       for (unsigned OpIdx = 0, NumOperands = getNumOperands();
779            OpIdx != NumOperands; ++OpIdx)
780         for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
781              ++Lane)
782           OpsVec[OpIdx][Lane].IsUsed = false;
783     }
784 
785     /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2.
786     void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) {
787       std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]);
788     }
789 
790     // The hard-coded scores listed here are not very important. When computing
791     // the scores of matching one sub-tree with another, we are basically
792     // counting the number of values that are matching. So even if all scores
793     // are set to 1, we would still get a decent matching result.
794     // However, sometimes we have to break ties. For example we may have to
795     // choose between matching loads vs matching opcodes. This is what these
796     // scores are helping us with: they provide the order of preference.
797 
798     /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]).
799     static const int ScoreConsecutiveLoads = 3;
800     /// ExtractElementInst from same vector and consecutive indexes.
801     static const int ScoreConsecutiveExtracts = 3;
802     /// Constants.
803     static const int ScoreConstants = 2;
804     /// Instructions with the same opcode.
805     static const int ScoreSameOpcode = 2;
806     /// Instructions with alt opcodes (e.g, add + sub).
807     static const int ScoreAltOpcodes = 1;
808     /// Identical instructions (a.k.a. splat or broadcast).
809     static const int ScoreSplat = 1;
810     /// Matching with an undef is preferable to failing.
811     static const int ScoreUndef = 1;
812     /// Score for failing to find a decent match.
813     static const int ScoreFail = 0;
814     /// User exteranl to the vectorized code.
815     static const int ExternalUseCost = 1;
816     /// The user is internal but in a different lane.
817     static const int UserInDiffLaneCost = ExternalUseCost;
818 
819     /// \returns the score of placing \p V1 and \p V2 in consecutive lanes.
820     static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL,
821                                ScalarEvolution &SE) {
822       auto *LI1 = dyn_cast<LoadInst>(V1);
823       auto *LI2 = dyn_cast<LoadInst>(V2);
824       if (LI1 && LI2)
825         return isConsecutiveAccess(LI1, LI2, DL, SE)
826                    ? VLOperands::ScoreConsecutiveLoads
827                    : VLOperands::ScoreFail;
828 
829       auto *C1 = dyn_cast<Constant>(V1);
830       auto *C2 = dyn_cast<Constant>(V2);
831       if (C1 && C2)
832         return VLOperands::ScoreConstants;
833 
834       // Extracts from consecutive indexes of the same vector better score as
835       // the extracts could be optimized away.
836       Value *EV;
837       ConstantInt *Ex1Idx, *Ex2Idx;
838       if (match(V1, m_ExtractElement(m_Value(EV), m_ConstantInt(Ex1Idx))) &&
839           match(V2, m_ExtractElement(m_Deferred(EV), m_ConstantInt(Ex2Idx))) &&
840           Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue())
841         return VLOperands::ScoreConsecutiveExtracts;
842 
843       auto *I1 = dyn_cast<Instruction>(V1);
844       auto *I2 = dyn_cast<Instruction>(V2);
845       if (I1 && I2) {
846         if (I1 == I2)
847           return VLOperands::ScoreSplat;
848         InstructionsState S = getSameOpcode({I1, I2});
849         // Note: Only consider instructions with <= 2 operands to avoid
850         // complexity explosion.
851         if (S.getOpcode() && S.MainOp->getNumOperands() <= 2)
852           return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes
853                                   : VLOperands::ScoreSameOpcode;
854       }
855 
856       if (isa<UndefValue>(V2))
857         return VLOperands::ScoreUndef;
858 
859       return VLOperands::ScoreFail;
860     }
861 
862     /// Holds the values and their lane that are taking part in the look-ahead
863     /// score calculation. This is used in the external uses cost calculation.
864     SmallDenseMap<Value *, int> InLookAheadValues;
865 
866     /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are
867     /// either external to the vectorized code, or require shuffling.
868     int getExternalUsesCost(const std::pair<Value *, int> &LHS,
869                             const std::pair<Value *, int> &RHS) {
870       int Cost = 0;
871       std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}};
872       for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) {
873         Value *V = Values[Idx].first;
874         // Calculate the absolute lane, using the minimum relative lane of LHS
875         // and RHS as base and Idx as the offset.
876         int Ln = std::min(LHS.second, RHS.second) + Idx;
877         assert(Ln >= 0 && "Bad lane calculation");
878         unsigned UsersBudget = LookAheadUsersBudget;
879         for (User *U : V->users()) {
880           if (const TreeEntry *UserTE = R.getTreeEntry(U)) {
881             // The user is in the VectorizableTree. Check if we need to insert.
882             auto It = llvm::find(UserTE->Scalars, U);
883             assert(It != UserTE->Scalars.end() && "U is in UserTE");
884             int UserLn = std::distance(UserTE->Scalars.begin(), It);
885             assert(UserLn >= 0 && "Bad lane");
886             if (UserLn != Ln)
887               Cost += UserInDiffLaneCost;
888           } else {
889             // Check if the user is in the look-ahead code.
890             auto It2 = InLookAheadValues.find(U);
891             if (It2 != InLookAheadValues.end()) {
892               // The user is in the look-ahead code. Check the lane.
893               if (It2->second != Ln)
894                 Cost += UserInDiffLaneCost;
895             } else {
896               // The user is neither in SLP tree nor in the look-ahead code.
897               Cost += ExternalUseCost;
898             }
899           }
900           // Limit the number of visited uses to cap compilation time.
901           if (--UsersBudget == 0)
902             break;
903         }
904       }
905       return Cost;
906     }
907 
908     /// Go through the operands of \p LHS and \p RHS recursively until \p
909     /// MaxLevel, and return the cummulative score. For example:
910     /// \verbatim
911     ///  A[0]  B[0]  A[1]  B[1]  C[0] D[0]  B[1] A[1]
912     ///     \ /         \ /         \ /        \ /
913     ///      +           +           +          +
914     ///     G1          G2          G3         G4
915     /// \endverbatim
916     /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at
917     /// each level recursively, accumulating the score. It starts from matching
918     /// the additions at level 0, then moves on to the loads (level 1). The
919     /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and
920     /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while
921     /// {A[0],C[0]} has a score of VLOperands::ScoreFail.
922     /// Please note that the order of the operands does not matter, as we
923     /// evaluate the score of all profitable combinations of operands. In
924     /// other words the score of G1 and G4 is the same as G1 and G2. This
925     /// heuristic is based on ideas described in:
926     ///   Look-ahead SLP: Auto-vectorization in the presence of commutative
927     ///   operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha,
928     ///   Luís F. W. Góes
929     int getScoreAtLevelRec(const std::pair<Value *, int> &LHS,
930                            const std::pair<Value *, int> &RHS, int CurrLevel,
931                            int MaxLevel) {
932 
933       Value *V1 = LHS.first;
934       Value *V2 = RHS.first;
935       // Get the shallow score of V1 and V2.
936       int ShallowScoreAtThisLevel =
937           std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) -
938                                        getExternalUsesCost(LHS, RHS));
939       int Lane1 = LHS.second;
940       int Lane2 = RHS.second;
941 
942       // If reached MaxLevel,
943       //  or if V1 and V2 are not instructions,
944       //  or if they are SPLAT,
945       //  or if they are not consecutive, early return the current cost.
946       auto *I1 = dyn_cast<Instruction>(V1);
947       auto *I2 = dyn_cast<Instruction>(V2);
948       if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 ||
949           ShallowScoreAtThisLevel == VLOperands::ScoreFail ||
950           (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel))
951         return ShallowScoreAtThisLevel;
952       assert(I1 && I2 && "Should have early exited.");
953 
954       // Keep track of in-tree values for determining the external-use cost.
955       InLookAheadValues[V1] = Lane1;
956       InLookAheadValues[V2] = Lane2;
957 
958       // Contains the I2 operand indexes that got matched with I1 operands.
959       SmallSet<unsigned, 4> Op2Used;
960 
961       // Recursion towards the operands of I1 and I2. We are trying all possbile
962       // operand pairs, and keeping track of the best score.
963       for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands();
964            OpIdx1 != NumOperands1; ++OpIdx1) {
965         // Try to pair op1I with the best operand of I2.
966         int MaxTmpScore = 0;
967         unsigned MaxOpIdx2 = 0;
968         bool FoundBest = false;
969         // If I2 is commutative try all combinations.
970         unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1;
971         unsigned ToIdx = isCommutative(I2)
972                              ? I2->getNumOperands()
973                              : std::min(I2->getNumOperands(), OpIdx1 + 1);
974         assert(FromIdx <= ToIdx && "Bad index");
975         for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) {
976           // Skip operands already paired with OpIdx1.
977           if (Op2Used.count(OpIdx2))
978             continue;
979           // Recursively calculate the cost at each level
980           int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1},
981                                             {I2->getOperand(OpIdx2), Lane2},
982                                             CurrLevel + 1, MaxLevel);
983           // Look for the best score.
984           if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) {
985             MaxTmpScore = TmpScore;
986             MaxOpIdx2 = OpIdx2;
987             FoundBest = true;
988           }
989         }
990         if (FoundBest) {
991           // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it.
992           Op2Used.insert(MaxOpIdx2);
993           ShallowScoreAtThisLevel += MaxTmpScore;
994         }
995       }
996       return ShallowScoreAtThisLevel;
997     }
998 
999     /// \Returns the look-ahead score, which tells us how much the sub-trees
1000     /// rooted at \p LHS and \p RHS match, the more they match the higher the
1001     /// score. This helps break ties in an informed way when we cannot decide on
1002     /// the order of the operands by just considering the immediate
1003     /// predecessors.
1004     int getLookAheadScore(const std::pair<Value *, int> &LHS,
1005                           const std::pair<Value *, int> &RHS) {
1006       InLookAheadValues.clear();
1007       return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth);
1008     }
1009 
1010     // Search all operands in Ops[*][Lane] for the one that matches best
1011     // Ops[OpIdx][LastLane] and return its opreand index.
1012     // If no good match can be found, return None.
1013     Optional<unsigned>
1014     getBestOperand(unsigned OpIdx, int Lane, int LastLane,
1015                    ArrayRef<ReorderingMode> ReorderingModes) {
1016       unsigned NumOperands = getNumOperands();
1017 
1018       // The operand of the previous lane at OpIdx.
1019       Value *OpLastLane = getData(OpIdx, LastLane).V;
1020 
1021       // Our strategy mode for OpIdx.
1022       ReorderingMode RMode = ReorderingModes[OpIdx];
1023 
1024       // The linearized opcode of the operand at OpIdx, Lane.
1025       bool OpIdxAPO = getData(OpIdx, Lane).APO;
1026 
1027       // The best operand index and its score.
1028       // Sometimes we have more than one option (e.g., Opcode and Undefs), so we
1029       // are using the score to differentiate between the two.
1030       struct BestOpData {
1031         Optional<unsigned> Idx = None;
1032         unsigned Score = 0;
1033       } BestOp;
1034 
1035       // Iterate through all unused operands and look for the best.
1036       for (unsigned Idx = 0; Idx != NumOperands; ++Idx) {
1037         // Get the operand at Idx and Lane.
1038         OperandData &OpData = getData(Idx, Lane);
1039         Value *Op = OpData.V;
1040         bool OpAPO = OpData.APO;
1041 
1042         // Skip already selected operands.
1043         if (OpData.IsUsed)
1044           continue;
1045 
1046         // Skip if we are trying to move the operand to a position with a
1047         // different opcode in the linearized tree form. This would break the
1048         // semantics.
1049         if (OpAPO != OpIdxAPO)
1050           continue;
1051 
1052         // Look for an operand that matches the current mode.
1053         switch (RMode) {
1054         case ReorderingMode::Load:
1055         case ReorderingMode::Constant:
1056         case ReorderingMode::Opcode: {
1057           bool LeftToRight = Lane > LastLane;
1058           Value *OpLeft = (LeftToRight) ? OpLastLane : Op;
1059           Value *OpRight = (LeftToRight) ? Op : OpLastLane;
1060           unsigned Score =
1061               getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane});
1062           if (Score > BestOp.Score) {
1063             BestOp.Idx = Idx;
1064             BestOp.Score = Score;
1065           }
1066           break;
1067         }
1068         case ReorderingMode::Splat:
1069           if (Op == OpLastLane)
1070             BestOp.Idx = Idx;
1071           break;
1072         case ReorderingMode::Failed:
1073           return None;
1074         }
1075       }
1076 
1077       if (BestOp.Idx) {
1078         getData(BestOp.Idx.getValue(), Lane).IsUsed = true;
1079         return BestOp.Idx;
1080       }
1081       // If we could not find a good match return None.
1082       return None;
1083     }
1084 
1085     /// Helper for reorderOperandVecs. \Returns the lane that we should start
1086     /// reordering from. This is the one which has the least number of operands
1087     /// that can freely move about.
1088     unsigned getBestLaneToStartReordering() const {
1089       unsigned BestLane = 0;
1090       unsigned Min = UINT_MAX;
1091       for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
1092            ++Lane) {
1093         unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane);
1094         if (NumFreeOps < Min) {
1095           Min = NumFreeOps;
1096           BestLane = Lane;
1097         }
1098       }
1099       return BestLane;
1100     }
1101 
1102     /// \Returns the maximum number of operands that are allowed to be reordered
1103     /// for \p Lane. This is used as a heuristic for selecting the first lane to
1104     /// start operand reordering.
1105     unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const {
1106       unsigned CntTrue = 0;
1107       unsigned NumOperands = getNumOperands();
1108       // Operands with the same APO can be reordered. We therefore need to count
1109       // how many of them we have for each APO, like this: Cnt[APO] = x.
1110       // Since we only have two APOs, namely true and false, we can avoid using
1111       // a map. Instead we can simply count the number of operands that
1112       // correspond to one of them (in this case the 'true' APO), and calculate
1113       // the other by subtracting it from the total number of operands.
1114       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx)
1115         if (getData(OpIdx, Lane).APO)
1116           ++CntTrue;
1117       unsigned CntFalse = NumOperands - CntTrue;
1118       return std::max(CntTrue, CntFalse);
1119     }
1120 
1121     /// Go through the instructions in VL and append their operands.
1122     void appendOperandsOfVL(ArrayRef<Value *> VL) {
1123       assert(!VL.empty() && "Bad VL");
1124       assert((empty() || VL.size() == getNumLanes()) &&
1125              "Expected same number of lanes");
1126       assert(isa<Instruction>(VL[0]) && "Expected instruction");
1127       unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands();
1128       OpsVec.resize(NumOperands);
1129       unsigned NumLanes = VL.size();
1130       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1131         OpsVec[OpIdx].resize(NumLanes);
1132         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1133           assert(isa<Instruction>(VL[Lane]) && "Expected instruction");
1134           // Our tree has just 3 nodes: the root and two operands.
1135           // It is therefore trivial to get the APO. We only need to check the
1136           // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or
1137           // RHS operand. The LHS operand of both add and sub is never attached
1138           // to an inversese operation in the linearized form, therefore its APO
1139           // is false. The RHS is true only if VL[Lane] is an inverse operation.
1140 
1141           // Since operand reordering is performed on groups of commutative
1142           // operations or alternating sequences (e.g., +, -), we can safely
1143           // tell the inverse operations by checking commutativity.
1144           bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane]));
1145           bool APO = (OpIdx == 0) ? false : IsInverseOperation;
1146           OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx),
1147                                  APO, false};
1148         }
1149       }
1150     }
1151 
1152     /// \returns the number of operands.
1153     unsigned getNumOperands() const { return OpsVec.size(); }
1154 
1155     /// \returns the number of lanes.
1156     unsigned getNumLanes() const { return OpsVec[0].size(); }
1157 
1158     /// \returns the operand value at \p OpIdx and \p Lane.
1159     Value *getValue(unsigned OpIdx, unsigned Lane) const {
1160       return getData(OpIdx, Lane).V;
1161     }
1162 
1163     /// \returns true if the data structure is empty.
1164     bool empty() const { return OpsVec.empty(); }
1165 
1166     /// Clears the data.
1167     void clear() { OpsVec.clear(); }
1168 
1169     /// \Returns true if there are enough operands identical to \p Op to fill
1170     /// the whole vector.
1171     /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow.
1172     bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) {
1173       bool OpAPO = getData(OpIdx, Lane).APO;
1174       for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) {
1175         if (Ln == Lane)
1176           continue;
1177         // This is set to true if we found a candidate for broadcast at Lane.
1178         bool FoundCandidate = false;
1179         for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) {
1180           OperandData &Data = getData(OpI, Ln);
1181           if (Data.APO != OpAPO || Data.IsUsed)
1182             continue;
1183           if (Data.V == Op) {
1184             FoundCandidate = true;
1185             Data.IsUsed = true;
1186             break;
1187           }
1188         }
1189         if (!FoundCandidate)
1190           return false;
1191       }
1192       return true;
1193     }
1194 
1195   public:
1196     /// Initialize with all the operands of the instruction vector \p RootVL.
1197     VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL,
1198                ScalarEvolution &SE, const BoUpSLP &R)
1199         : DL(DL), SE(SE), R(R) {
1200       // Append all the operands of RootVL.
1201       appendOperandsOfVL(RootVL);
1202     }
1203 
1204     /// \Returns a value vector with the operands across all lanes for the
1205     /// opearnd at \p OpIdx.
1206     ValueList getVL(unsigned OpIdx) const {
1207       ValueList OpVL(OpsVec[OpIdx].size());
1208       assert(OpsVec[OpIdx].size() == getNumLanes() &&
1209              "Expected same num of lanes across all operands");
1210       for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane)
1211         OpVL[Lane] = OpsVec[OpIdx][Lane].V;
1212       return OpVL;
1213     }
1214 
1215     // Performs operand reordering for 2 or more operands.
1216     // The original operands are in OrigOps[OpIdx][Lane].
1217     // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'.
1218     void reorder() {
1219       unsigned NumOperands = getNumOperands();
1220       unsigned NumLanes = getNumLanes();
1221       // Each operand has its own mode. We are using this mode to help us select
1222       // the instructions for each lane, so that they match best with the ones
1223       // we have selected so far.
1224       SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands);
1225 
1226       // This is a greedy single-pass algorithm. We are going over each lane
1227       // once and deciding on the best order right away with no back-tracking.
1228       // However, in order to increase its effectiveness, we start with the lane
1229       // that has operands that can move the least. For example, given the
1230       // following lanes:
1231       //  Lane 0 : A[0] = B[0] + C[0]   // Visited 3rd
1232       //  Lane 1 : A[1] = C[1] - B[1]   // Visited 1st
1233       //  Lane 2 : A[2] = B[2] + C[2]   // Visited 2nd
1234       //  Lane 3 : A[3] = C[3] - B[3]   // Visited 4th
1235       // we will start at Lane 1, since the operands of the subtraction cannot
1236       // be reordered. Then we will visit the rest of the lanes in a circular
1237       // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3.
1238 
1239       // Find the first lane that we will start our search from.
1240       unsigned FirstLane = getBestLaneToStartReordering();
1241 
1242       // Initialize the modes.
1243       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1244         Value *OpLane0 = getValue(OpIdx, FirstLane);
1245         // Keep track if we have instructions with all the same opcode on one
1246         // side.
1247         if (isa<LoadInst>(OpLane0))
1248           ReorderingModes[OpIdx] = ReorderingMode::Load;
1249         else if (isa<Instruction>(OpLane0)) {
1250           // Check if OpLane0 should be broadcast.
1251           if (shouldBroadcast(OpLane0, OpIdx, FirstLane))
1252             ReorderingModes[OpIdx] = ReorderingMode::Splat;
1253           else
1254             ReorderingModes[OpIdx] = ReorderingMode::Opcode;
1255         }
1256         else if (isa<Constant>(OpLane0))
1257           ReorderingModes[OpIdx] = ReorderingMode::Constant;
1258         else if (isa<Argument>(OpLane0))
1259           // Our best hope is a Splat. It may save some cost in some cases.
1260           ReorderingModes[OpIdx] = ReorderingMode::Splat;
1261         else
1262           // NOTE: This should be unreachable.
1263           ReorderingModes[OpIdx] = ReorderingMode::Failed;
1264       }
1265 
1266       // If the initial strategy fails for any of the operand indexes, then we
1267       // perform reordering again in a second pass. This helps avoid assigning
1268       // high priority to the failed strategy, and should improve reordering for
1269       // the non-failed operand indexes.
1270       for (int Pass = 0; Pass != 2; ++Pass) {
1271         // Skip the second pass if the first pass did not fail.
1272         bool StrategyFailed = false;
1273         // Mark all operand data as free to use.
1274         clearUsed();
1275         // We keep the original operand order for the FirstLane, so reorder the
1276         // rest of the lanes. We are visiting the nodes in a circular fashion,
1277         // using FirstLane as the center point and increasing the radius
1278         // distance.
1279         for (unsigned Distance = 1; Distance != NumLanes; ++Distance) {
1280           // Visit the lane on the right and then the lane on the left.
1281           for (int Direction : {+1, -1}) {
1282             int Lane = FirstLane + Direction * Distance;
1283             if (Lane < 0 || Lane >= (int)NumLanes)
1284               continue;
1285             int LastLane = Lane - Direction;
1286             assert(LastLane >= 0 && LastLane < (int)NumLanes &&
1287                    "Out of bounds");
1288             // Look for a good match for each operand.
1289             for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1290               // Search for the operand that matches SortedOps[OpIdx][Lane-1].
1291               Optional<unsigned> BestIdx =
1292                   getBestOperand(OpIdx, Lane, LastLane, ReorderingModes);
1293               // By not selecting a value, we allow the operands that follow to
1294               // select a better matching value. We will get a non-null value in
1295               // the next run of getBestOperand().
1296               if (BestIdx) {
1297                 // Swap the current operand with the one returned by
1298                 // getBestOperand().
1299                 swap(OpIdx, BestIdx.getValue(), Lane);
1300               } else {
1301                 // We failed to find a best operand, set mode to 'Failed'.
1302                 ReorderingModes[OpIdx] = ReorderingMode::Failed;
1303                 // Enable the second pass.
1304                 StrategyFailed = true;
1305               }
1306             }
1307           }
1308         }
1309         // Skip second pass if the strategy did not fail.
1310         if (!StrategyFailed)
1311           break;
1312       }
1313     }
1314 
1315 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1316     LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) {
1317       switch (RMode) {
1318       case ReorderingMode::Load:
1319         return "Load";
1320       case ReorderingMode::Opcode:
1321         return "Opcode";
1322       case ReorderingMode::Constant:
1323         return "Constant";
1324       case ReorderingMode::Splat:
1325         return "Splat";
1326       case ReorderingMode::Failed:
1327         return "Failed";
1328       }
1329       llvm_unreachable("Unimplemented Reordering Type");
1330     }
1331 
1332     LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode,
1333                                                    raw_ostream &OS) {
1334       return OS << getModeStr(RMode);
1335     }
1336 
1337     /// Debug print.
1338     LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) {
1339       printMode(RMode, dbgs());
1340     }
1341 
1342     friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) {
1343       return printMode(RMode, OS);
1344     }
1345 
1346     LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const {
1347       const unsigned Indent = 2;
1348       unsigned Cnt = 0;
1349       for (const OperandDataVec &OpDataVec : OpsVec) {
1350         OS << "Operand " << Cnt++ << "\n";
1351         for (const OperandData &OpData : OpDataVec) {
1352           OS.indent(Indent) << "{";
1353           if (Value *V = OpData.V)
1354             OS << *V;
1355           else
1356             OS << "null";
1357           OS << ", APO:" << OpData.APO << "}\n";
1358         }
1359         OS << "\n";
1360       }
1361       return OS;
1362     }
1363 
1364     /// Debug print.
1365     LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
1366 #endif
1367   };
1368 
1369   /// Checks if the instruction is marked for deletion.
1370   bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); }
1371 
1372   /// Marks values operands for later deletion by replacing them with Undefs.
1373   void eraseInstructions(ArrayRef<Value *> AV);
1374 
1375   ~BoUpSLP();
1376 
1377 private:
1378   /// Checks if all users of \p I are the part of the vectorization tree.
1379   bool areAllUsersVectorized(Instruction *I) const;
1380 
1381   /// \returns the cost of the vectorizable entry.
1382   int getEntryCost(TreeEntry *E);
1383 
1384   /// This is the recursive part of buildTree.
1385   void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth,
1386                      const EdgeInfo &EI);
1387 
1388   /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can
1389   /// be vectorized to use the original vector (or aggregate "bitcast" to a
1390   /// vector) and sets \p CurrentOrder to the identity permutation; otherwise
1391   /// returns false, setting \p CurrentOrder to either an empty vector or a
1392   /// non-identity permutation that allows to reuse extract instructions.
1393   bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
1394                        SmallVectorImpl<unsigned> &CurrentOrder) const;
1395 
1396   /// Vectorize a single entry in the tree.
1397   Value *vectorizeTree(TreeEntry *E);
1398 
1399   /// Vectorize a single entry in the tree, starting in \p VL.
1400   Value *vectorizeTree(ArrayRef<Value *> VL);
1401 
1402   /// \returns the scalarization cost for this type. Scalarization in this
1403   /// context means the creation of vectors from a group of scalars.
1404   int getGatherCost(Type *Ty, const DenseSet<unsigned> &ShuffledIndices) const;
1405 
1406   /// \returns the scalarization cost for this list of values. Assuming that
1407   /// this subtree gets vectorized, we may need to extract the values from the
1408   /// roots. This method calculates the cost of extracting the values.
1409   int getGatherCost(ArrayRef<Value *> VL) const;
1410 
1411   /// Set the Builder insert point to one after the last instruction in
1412   /// the bundle
1413   void setInsertPointAfterBundle(TreeEntry *E);
1414 
1415   /// \returns a vector from a collection of scalars in \p VL.
1416   Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
1417 
1418   /// \returns whether the VectorizableTree is fully vectorizable and will
1419   /// be beneficial even the tree height is tiny.
1420   bool isFullyVectorizableTinyTree() const;
1421 
1422   /// Reorder commutative or alt operands to get better probability of
1423   /// generating vectorized code.
1424   static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
1425                                              SmallVectorImpl<Value *> &Left,
1426                                              SmallVectorImpl<Value *> &Right,
1427                                              const DataLayout &DL,
1428                                              ScalarEvolution &SE,
1429                                              const BoUpSLP &R);
1430   struct TreeEntry {
1431     using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>;
1432     TreeEntry(VecTreeTy &Container) : Container(Container) {}
1433 
1434     /// \returns true if the scalars in VL are equal to this entry.
1435     bool isSame(ArrayRef<Value *> VL) const {
1436       if (VL.size() == Scalars.size())
1437         return std::equal(VL.begin(), VL.end(), Scalars.begin());
1438       return VL.size() == ReuseShuffleIndices.size() &&
1439              std::equal(
1440                  VL.begin(), VL.end(), ReuseShuffleIndices.begin(),
1441                  [this](Value *V, unsigned Idx) { return V == Scalars[Idx]; });
1442     }
1443 
1444     /// A vector of scalars.
1445     ValueList Scalars;
1446 
1447     /// The Scalars are vectorized into this value. It is initialized to Null.
1448     Value *VectorizedValue = nullptr;
1449 
1450     /// Do we need to gather this sequence ?
1451     enum EntryState { Vectorize, NeedToGather };
1452     EntryState State;
1453 
1454     /// Does this sequence require some shuffling?
1455     SmallVector<unsigned, 4> ReuseShuffleIndices;
1456 
1457     /// Does this entry require reordering?
1458     ArrayRef<unsigned> ReorderIndices;
1459 
1460     /// Points back to the VectorizableTree.
1461     ///
1462     /// Only used for Graphviz right now.  Unfortunately GraphTrait::NodeRef has
1463     /// to be a pointer and needs to be able to initialize the child iterator.
1464     /// Thus we need a reference back to the container to translate the indices
1465     /// to entries.
1466     VecTreeTy &Container;
1467 
1468     /// The TreeEntry index containing the user of this entry.  We can actually
1469     /// have multiple users so the data structure is not truly a tree.
1470     SmallVector<EdgeInfo, 1> UserTreeIndices;
1471 
1472     /// The index of this treeEntry in VectorizableTree.
1473     int Idx = -1;
1474 
1475   private:
1476     /// The operands of each instruction in each lane Operands[op_index][lane].
1477     /// Note: This helps avoid the replication of the code that performs the
1478     /// reordering of operands during buildTree_rec() and vectorizeTree().
1479     SmallVector<ValueList, 2> Operands;
1480 
1481     /// The main/alternate instruction.
1482     Instruction *MainOp = nullptr;
1483     Instruction *AltOp = nullptr;
1484 
1485   public:
1486     /// Set this bundle's \p OpIdx'th operand to \p OpVL.
1487     void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) {
1488       if (Operands.size() < OpIdx + 1)
1489         Operands.resize(OpIdx + 1);
1490       assert(Operands[OpIdx].size() == 0 && "Already resized?");
1491       Operands[OpIdx].resize(Scalars.size());
1492       for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane)
1493         Operands[OpIdx][Lane] = OpVL[Lane];
1494     }
1495 
1496     /// Set the operands of this bundle in their original order.
1497     void setOperandsInOrder() {
1498       assert(Operands.empty() && "Already initialized?");
1499       auto *I0 = cast<Instruction>(Scalars[0]);
1500       Operands.resize(I0->getNumOperands());
1501       unsigned NumLanes = Scalars.size();
1502       for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands();
1503            OpIdx != NumOperands; ++OpIdx) {
1504         Operands[OpIdx].resize(NumLanes);
1505         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1506           auto *I = cast<Instruction>(Scalars[Lane]);
1507           assert(I->getNumOperands() == NumOperands &&
1508                  "Expected same number of operands");
1509           Operands[OpIdx][Lane] = I->getOperand(OpIdx);
1510         }
1511       }
1512     }
1513 
1514     /// \returns the \p OpIdx operand of this TreeEntry.
1515     ValueList &getOperand(unsigned OpIdx) {
1516       assert(OpIdx < Operands.size() && "Off bounds");
1517       return Operands[OpIdx];
1518     }
1519 
1520     /// \returns the number of operands.
1521     unsigned getNumOperands() const { return Operands.size(); }
1522 
1523     /// \return the single \p OpIdx operand.
1524     Value *getSingleOperand(unsigned OpIdx) const {
1525       assert(OpIdx < Operands.size() && "Off bounds");
1526       assert(!Operands[OpIdx].empty() && "No operand available");
1527       return Operands[OpIdx][0];
1528     }
1529 
1530     /// Some of the instructions in the list have alternate opcodes.
1531     bool isAltShuffle() const {
1532       return getOpcode() != getAltOpcode();
1533     }
1534 
1535     bool isOpcodeOrAlt(Instruction *I) const {
1536       unsigned CheckedOpcode = I->getOpcode();
1537       return (getOpcode() == CheckedOpcode ||
1538               getAltOpcode() == CheckedOpcode);
1539     }
1540 
1541     /// Chooses the correct key for scheduling data. If \p Op has the same (or
1542     /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is
1543     /// \p OpValue.
1544     Value *isOneOf(Value *Op) const {
1545       auto *I = dyn_cast<Instruction>(Op);
1546       if (I && isOpcodeOrAlt(I))
1547         return Op;
1548       return MainOp;
1549     }
1550 
1551     void setOperations(const InstructionsState &S) {
1552       MainOp = S.MainOp;
1553       AltOp = S.AltOp;
1554     }
1555 
1556     Instruction *getMainOp() const {
1557       return MainOp;
1558     }
1559 
1560     Instruction *getAltOp() const {
1561       return AltOp;
1562     }
1563 
1564     /// The main/alternate opcodes for the list of instructions.
1565     unsigned getOpcode() const {
1566       return MainOp ? MainOp->getOpcode() : 0;
1567     }
1568 
1569     unsigned getAltOpcode() const {
1570       return AltOp ? AltOp->getOpcode() : 0;
1571     }
1572 
1573     /// Update operations state of this entry if reorder occurred.
1574     bool updateStateIfReorder() {
1575       if (ReorderIndices.empty())
1576         return false;
1577       InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front());
1578       setOperations(S);
1579       return true;
1580     }
1581 
1582 #ifndef NDEBUG
1583     /// Debug printer.
1584     LLVM_DUMP_METHOD void dump() const {
1585       dbgs() << Idx << ".\n";
1586       for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) {
1587         dbgs() << "Operand " << OpI << ":\n";
1588         for (const Value *V : Operands[OpI])
1589           dbgs().indent(2) << *V << "\n";
1590       }
1591       dbgs() << "Scalars: \n";
1592       for (Value *V : Scalars)
1593         dbgs().indent(2) << *V << "\n";
1594       dbgs() << "State: ";
1595       switch (State) {
1596       case Vectorize:
1597         dbgs() << "Vectorize\n";
1598         break;
1599       case NeedToGather:
1600         dbgs() << "NeedToGather\n";
1601         break;
1602       }
1603       dbgs() << "MainOp: ";
1604       if (MainOp)
1605         dbgs() << *MainOp << "\n";
1606       else
1607         dbgs() << "NULL\n";
1608       dbgs() << "AltOp: ";
1609       if (AltOp)
1610         dbgs() << *AltOp << "\n";
1611       else
1612         dbgs() << "NULL\n";
1613       dbgs() << "VectorizedValue: ";
1614       if (VectorizedValue)
1615         dbgs() << *VectorizedValue << "\n";
1616       else
1617         dbgs() << "NULL\n";
1618       dbgs() << "ReuseShuffleIndices: ";
1619       if (ReuseShuffleIndices.empty())
1620         dbgs() << "Emtpy";
1621       else
1622         for (unsigned ReuseIdx : ReuseShuffleIndices)
1623           dbgs() << ReuseIdx << ", ";
1624       dbgs() << "\n";
1625       dbgs() << "ReorderIndices: ";
1626       for (unsigned ReorderIdx : ReorderIndices)
1627         dbgs() << ReorderIdx << ", ";
1628       dbgs() << "\n";
1629       dbgs() << "UserTreeIndices: ";
1630       for (const auto &EInfo : UserTreeIndices)
1631         dbgs() << EInfo << ", ";
1632       dbgs() << "\n";
1633     }
1634 #endif
1635   };
1636 
1637   /// Create a new VectorizableTree entry.
1638   TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle,
1639                           const InstructionsState &S,
1640                           const EdgeInfo &UserTreeIdx,
1641                           ArrayRef<unsigned> ReuseShuffleIndices = None,
1642                           ArrayRef<unsigned> ReorderIndices = None) {
1643     bool Vectorized = (bool)Bundle;
1644     VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree));
1645     TreeEntry *Last = VectorizableTree.back().get();
1646     Last->Idx = VectorizableTree.size() - 1;
1647     Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
1648     Last->State = Vectorized ? TreeEntry::Vectorize : TreeEntry::NeedToGather;
1649     Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(),
1650                                      ReuseShuffleIndices.end());
1651     Last->ReorderIndices = ReorderIndices;
1652     Last->setOperations(S);
1653     if (Vectorized) {
1654       for (int i = 0, e = VL.size(); i != e; ++i) {
1655         assert(!getTreeEntry(VL[i]) && "Scalar already in tree!");
1656         ScalarToTreeEntry[VL[i]] = Last;
1657       }
1658       // Update the scheduler bundle to point to this TreeEntry.
1659       unsigned Lane = 0;
1660       for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember;
1661            BundleMember = BundleMember->NextInBundle) {
1662         BundleMember->TE = Last;
1663         BundleMember->Lane = Lane;
1664         ++Lane;
1665       }
1666       assert((!Bundle.getValue() || Lane == VL.size()) &&
1667              "Bundle and VL out of sync");
1668     } else {
1669       MustGather.insert(VL.begin(), VL.end());
1670     }
1671 
1672     if (UserTreeIdx.UserTE)
1673       Last->UserTreeIndices.push_back(UserTreeIdx);
1674 
1675     return Last;
1676   }
1677 
1678   /// -- Vectorization State --
1679   /// Holds all of the tree entries.
1680   TreeEntry::VecTreeTy VectorizableTree;
1681 
1682 #ifndef NDEBUG
1683   /// Debug printer.
1684   LLVM_DUMP_METHOD void dumpVectorizableTree() const {
1685     for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) {
1686       VectorizableTree[Id]->dump();
1687       dbgs() << "\n";
1688     }
1689   }
1690 #endif
1691 
1692   TreeEntry *getTreeEntry(Value *V) {
1693     auto I = ScalarToTreeEntry.find(V);
1694     if (I != ScalarToTreeEntry.end())
1695       return I->second;
1696     return nullptr;
1697   }
1698 
1699   const TreeEntry *getTreeEntry(Value *V) const {
1700     auto I = ScalarToTreeEntry.find(V);
1701     if (I != ScalarToTreeEntry.end())
1702       return I->second;
1703     return nullptr;
1704   }
1705 
1706   /// Maps a specific scalar to its tree entry.
1707   SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry;
1708 
1709   /// A list of scalars that we found that we need to keep as scalars.
1710   ValueSet MustGather;
1711 
1712   /// This POD struct describes one external user in the vectorized tree.
1713   struct ExternalUser {
1714     ExternalUser(Value *S, llvm::User *U, int L)
1715         : Scalar(S), User(U), Lane(L) {}
1716 
1717     // Which scalar in our function.
1718     Value *Scalar;
1719 
1720     // Which user that uses the scalar.
1721     llvm::User *User;
1722 
1723     // Which lane does the scalar belong to.
1724     int Lane;
1725   };
1726   using UserList = SmallVector<ExternalUser, 16>;
1727 
1728   /// Checks if two instructions may access the same memory.
1729   ///
1730   /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
1731   /// is invariant in the calling loop.
1732   bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
1733                  Instruction *Inst2) {
1734     // First check if the result is already in the cache.
1735     AliasCacheKey key = std::make_pair(Inst1, Inst2);
1736     Optional<bool> &result = AliasCache[key];
1737     if (result.hasValue()) {
1738       return result.getValue();
1739     }
1740     MemoryLocation Loc2 = getLocation(Inst2, AA);
1741     bool aliased = true;
1742     if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) {
1743       // Do the alias check.
1744       aliased = AA->alias(Loc1, Loc2);
1745     }
1746     // Store the result in the cache.
1747     result = aliased;
1748     return aliased;
1749   }
1750 
1751   using AliasCacheKey = std::pair<Instruction *, Instruction *>;
1752 
1753   /// Cache for alias results.
1754   /// TODO: consider moving this to the AliasAnalysis itself.
1755   DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
1756 
1757   /// Removes an instruction from its block and eventually deletes it.
1758   /// It's like Instruction::eraseFromParent() except that the actual deletion
1759   /// is delayed until BoUpSLP is destructed.
1760   /// This is required to ensure that there are no incorrect collisions in the
1761   /// AliasCache, which can happen if a new instruction is allocated at the
1762   /// same address as a previously deleted instruction.
1763   void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) {
1764     auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first;
1765     It->getSecond() = It->getSecond() && ReplaceOpsWithUndef;
1766   }
1767 
1768   /// Temporary store for deleted instructions. Instructions will be deleted
1769   /// eventually when the BoUpSLP is destructed.
1770   DenseMap<Instruction *, bool> DeletedInstructions;
1771 
1772   /// A list of values that need to extracted out of the tree.
1773   /// This list holds pairs of (Internal Scalar : External User). External User
1774   /// can be nullptr, it means that this Internal Scalar will be used later,
1775   /// after vectorization.
1776   UserList ExternalUses;
1777 
1778   /// Values used only by @llvm.assume calls.
1779   SmallPtrSet<const Value *, 32> EphValues;
1780 
1781   /// Holds all of the instructions that we gathered.
1782   SetVector<Instruction *> GatherSeq;
1783 
1784   /// A list of blocks that we are going to CSE.
1785   SetVector<BasicBlock *> CSEBlocks;
1786 
1787   /// Contains all scheduling relevant data for an instruction.
1788   /// A ScheduleData either represents a single instruction or a member of an
1789   /// instruction bundle (= a group of instructions which is combined into a
1790   /// vector instruction).
1791   struct ScheduleData {
1792     // The initial value for the dependency counters. It means that the
1793     // dependencies are not calculated yet.
1794     enum { InvalidDeps = -1 };
1795 
1796     ScheduleData() = default;
1797 
1798     void init(int BlockSchedulingRegionID, Value *OpVal) {
1799       FirstInBundle = this;
1800       NextInBundle = nullptr;
1801       NextLoadStore = nullptr;
1802       IsScheduled = false;
1803       SchedulingRegionID = BlockSchedulingRegionID;
1804       UnscheduledDepsInBundle = UnscheduledDeps;
1805       clearDependencies();
1806       OpValue = OpVal;
1807       TE = nullptr;
1808       Lane = -1;
1809     }
1810 
1811     /// Returns true if the dependency information has been calculated.
1812     bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
1813 
1814     /// Returns true for single instructions and for bundle representatives
1815     /// (= the head of a bundle).
1816     bool isSchedulingEntity() const { return FirstInBundle == this; }
1817 
1818     /// Returns true if it represents an instruction bundle and not only a
1819     /// single instruction.
1820     bool isPartOfBundle() const {
1821       return NextInBundle != nullptr || FirstInBundle != this;
1822     }
1823 
1824     /// Returns true if it is ready for scheduling, i.e. it has no more
1825     /// unscheduled depending instructions/bundles.
1826     bool isReady() const {
1827       assert(isSchedulingEntity() &&
1828              "can't consider non-scheduling entity for ready list");
1829       return UnscheduledDepsInBundle == 0 && !IsScheduled;
1830     }
1831 
1832     /// Modifies the number of unscheduled dependencies, also updating it for
1833     /// the whole bundle.
1834     int incrementUnscheduledDeps(int Incr) {
1835       UnscheduledDeps += Incr;
1836       return FirstInBundle->UnscheduledDepsInBundle += Incr;
1837     }
1838 
1839     /// Sets the number of unscheduled dependencies to the number of
1840     /// dependencies.
1841     void resetUnscheduledDeps() {
1842       incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
1843     }
1844 
1845     /// Clears all dependency information.
1846     void clearDependencies() {
1847       Dependencies = InvalidDeps;
1848       resetUnscheduledDeps();
1849       MemoryDependencies.clear();
1850     }
1851 
1852     void dump(raw_ostream &os) const {
1853       if (!isSchedulingEntity()) {
1854         os << "/ " << *Inst;
1855       } else if (NextInBundle) {
1856         os << '[' << *Inst;
1857         ScheduleData *SD = NextInBundle;
1858         while (SD) {
1859           os << ';' << *SD->Inst;
1860           SD = SD->NextInBundle;
1861         }
1862         os << ']';
1863       } else {
1864         os << *Inst;
1865       }
1866     }
1867 
1868     Instruction *Inst = nullptr;
1869 
1870     /// Points to the head in an instruction bundle (and always to this for
1871     /// single instructions).
1872     ScheduleData *FirstInBundle = nullptr;
1873 
1874     /// Single linked list of all instructions in a bundle. Null if it is a
1875     /// single instruction.
1876     ScheduleData *NextInBundle = nullptr;
1877 
1878     /// Single linked list of all memory instructions (e.g. load, store, call)
1879     /// in the block - until the end of the scheduling region.
1880     ScheduleData *NextLoadStore = nullptr;
1881 
1882     /// The dependent memory instructions.
1883     /// This list is derived on demand in calculateDependencies().
1884     SmallVector<ScheduleData *, 4> MemoryDependencies;
1885 
1886     /// This ScheduleData is in the current scheduling region if this matches
1887     /// the current SchedulingRegionID of BlockScheduling.
1888     int SchedulingRegionID = 0;
1889 
1890     /// Used for getting a "good" final ordering of instructions.
1891     int SchedulingPriority = 0;
1892 
1893     /// The number of dependencies. Constitutes of the number of users of the
1894     /// instruction plus the number of dependent memory instructions (if any).
1895     /// This value is calculated on demand.
1896     /// If InvalidDeps, the number of dependencies is not calculated yet.
1897     int Dependencies = InvalidDeps;
1898 
1899     /// The number of dependencies minus the number of dependencies of scheduled
1900     /// instructions. As soon as this is zero, the instruction/bundle gets ready
1901     /// for scheduling.
1902     /// Note that this is negative as long as Dependencies is not calculated.
1903     int UnscheduledDeps = InvalidDeps;
1904 
1905     /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
1906     /// single instructions.
1907     int UnscheduledDepsInBundle = InvalidDeps;
1908 
1909     /// True if this instruction is scheduled (or considered as scheduled in the
1910     /// dry-run).
1911     bool IsScheduled = false;
1912 
1913     /// Opcode of the current instruction in the schedule data.
1914     Value *OpValue = nullptr;
1915 
1916     /// The TreeEntry that this instruction corresponds to.
1917     TreeEntry *TE = nullptr;
1918 
1919     /// The lane of this node in the TreeEntry.
1920     int Lane = -1;
1921   };
1922 
1923 #ifndef NDEBUG
1924   friend inline raw_ostream &operator<<(raw_ostream &os,
1925                                         const BoUpSLP::ScheduleData &SD) {
1926     SD.dump(os);
1927     return os;
1928   }
1929 #endif
1930 
1931   friend struct GraphTraits<BoUpSLP *>;
1932   friend struct DOTGraphTraits<BoUpSLP *>;
1933 
1934   /// Contains all scheduling data for a basic block.
1935   struct BlockScheduling {
1936     BlockScheduling(BasicBlock *BB)
1937         : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {}
1938 
1939     void clear() {
1940       ReadyInsts.clear();
1941       ScheduleStart = nullptr;
1942       ScheduleEnd = nullptr;
1943       FirstLoadStoreInRegion = nullptr;
1944       LastLoadStoreInRegion = nullptr;
1945 
1946       // Reduce the maximum schedule region size by the size of the
1947       // previous scheduling run.
1948       ScheduleRegionSizeLimit -= ScheduleRegionSize;
1949       if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
1950         ScheduleRegionSizeLimit = MinScheduleRegionSize;
1951       ScheduleRegionSize = 0;
1952 
1953       // Make a new scheduling region, i.e. all existing ScheduleData is not
1954       // in the new region yet.
1955       ++SchedulingRegionID;
1956     }
1957 
1958     ScheduleData *getScheduleData(Value *V) {
1959       ScheduleData *SD = ScheduleDataMap[V];
1960       if (SD && SD->SchedulingRegionID == SchedulingRegionID)
1961         return SD;
1962       return nullptr;
1963     }
1964 
1965     ScheduleData *getScheduleData(Value *V, Value *Key) {
1966       if (V == Key)
1967         return getScheduleData(V);
1968       auto I = ExtraScheduleDataMap.find(V);
1969       if (I != ExtraScheduleDataMap.end()) {
1970         ScheduleData *SD = I->second[Key];
1971         if (SD && SD->SchedulingRegionID == SchedulingRegionID)
1972           return SD;
1973       }
1974       return nullptr;
1975     }
1976 
1977     bool isInSchedulingRegion(ScheduleData *SD) const {
1978       return SD->SchedulingRegionID == SchedulingRegionID;
1979     }
1980 
1981     /// Marks an instruction as scheduled and puts all dependent ready
1982     /// instructions into the ready-list.
1983     template <typename ReadyListType>
1984     void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
1985       SD->IsScheduled = true;
1986       LLVM_DEBUG(dbgs() << "SLP:   schedule " << *SD << "\n");
1987 
1988       ScheduleData *BundleMember = SD;
1989       while (BundleMember) {
1990         if (BundleMember->Inst != BundleMember->OpValue) {
1991           BundleMember = BundleMember->NextInBundle;
1992           continue;
1993         }
1994         // Handle the def-use chain dependencies.
1995 
1996         // Decrement the unscheduled counter and insert to ready list if ready.
1997         auto &&DecrUnsched = [this, &ReadyList](Instruction *I) {
1998           doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) {
1999             if (OpDef && OpDef->hasValidDependencies() &&
2000                 OpDef->incrementUnscheduledDeps(-1) == 0) {
2001               // There are no more unscheduled dependencies after
2002               // decrementing, so we can put the dependent instruction
2003               // into the ready list.
2004               ScheduleData *DepBundle = OpDef->FirstInBundle;
2005               assert(!DepBundle->IsScheduled &&
2006                      "already scheduled bundle gets ready");
2007               ReadyList.insert(DepBundle);
2008               LLVM_DEBUG(dbgs()
2009                          << "SLP:    gets ready (def): " << *DepBundle << "\n");
2010             }
2011           });
2012         };
2013 
2014         // If BundleMember is a vector bundle, its operands may have been
2015         // reordered duiring buildTree(). We therefore need to get its operands
2016         // through the TreeEntry.
2017         if (TreeEntry *TE = BundleMember->TE) {
2018           int Lane = BundleMember->Lane;
2019           assert(Lane >= 0 && "Lane not set");
2020 
2021           // Since vectorization tree is being built recursively this assertion
2022           // ensures that the tree entry has all operands set before reaching
2023           // this code. Couple of exceptions known at the moment are extracts
2024           // where their second (immediate) operand is not added. Since
2025           // immediates do not affect scheduler behavior this is considered
2026           // okay.
2027           auto *In = TE->getMainOp();
2028           assert(In &&
2029                  (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) ||
2030                   In->getNumOperands() == TE->getNumOperands()) &&
2031                  "Missed TreeEntry operands?");
2032           (void)In; // fake use to avoid build failure when assertions disabled
2033 
2034           for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands();
2035                OpIdx != NumOperands; ++OpIdx)
2036             if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane]))
2037               DecrUnsched(I);
2038         } else {
2039           // If BundleMember is a stand-alone instruction, no operand reordering
2040           // has taken place, so we directly access its operands.
2041           for (Use &U : BundleMember->Inst->operands())
2042             if (auto *I = dyn_cast<Instruction>(U.get()))
2043               DecrUnsched(I);
2044         }
2045         // Handle the memory dependencies.
2046         for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
2047           if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
2048             // There are no more unscheduled dependencies after decrementing,
2049             // so we can put the dependent instruction into the ready list.
2050             ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
2051             assert(!DepBundle->IsScheduled &&
2052                    "already scheduled bundle gets ready");
2053             ReadyList.insert(DepBundle);
2054             LLVM_DEBUG(dbgs()
2055                        << "SLP:    gets ready (mem): " << *DepBundle << "\n");
2056           }
2057         }
2058         BundleMember = BundleMember->NextInBundle;
2059       }
2060     }
2061 
2062     void doForAllOpcodes(Value *V,
2063                          function_ref<void(ScheduleData *SD)> Action) {
2064       if (ScheduleData *SD = getScheduleData(V))
2065         Action(SD);
2066       auto I = ExtraScheduleDataMap.find(V);
2067       if (I != ExtraScheduleDataMap.end())
2068         for (auto &P : I->second)
2069           if (P.second->SchedulingRegionID == SchedulingRegionID)
2070             Action(P.second);
2071     }
2072 
2073     /// Put all instructions into the ReadyList which are ready for scheduling.
2074     template <typename ReadyListType>
2075     void initialFillReadyList(ReadyListType &ReadyList) {
2076       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
2077         doForAllOpcodes(I, [&](ScheduleData *SD) {
2078           if (SD->isSchedulingEntity() && SD->isReady()) {
2079             ReadyList.insert(SD);
2080             LLVM_DEBUG(dbgs()
2081                        << "SLP:    initially in ready list: " << *I << "\n");
2082           }
2083         });
2084       }
2085     }
2086 
2087     /// Checks if a bundle of instructions can be scheduled, i.e. has no
2088     /// cyclic dependencies. This is only a dry-run, no instructions are
2089     /// actually moved at this stage.
2090     /// \returns the scheduling bundle. The returned Optional value is non-None
2091     /// if \p VL is allowed to be scheduled.
2092     Optional<ScheduleData *>
2093     tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
2094                       const InstructionsState &S);
2095 
2096     /// Un-bundles a group of instructions.
2097     void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue);
2098 
2099     /// Allocates schedule data chunk.
2100     ScheduleData *allocateScheduleDataChunks();
2101 
2102     /// Extends the scheduling region so that V is inside the region.
2103     /// \returns true if the region size is within the limit.
2104     bool extendSchedulingRegion(Value *V, const InstructionsState &S);
2105 
2106     /// Initialize the ScheduleData structures for new instructions in the
2107     /// scheduling region.
2108     void initScheduleData(Instruction *FromI, Instruction *ToI,
2109                           ScheduleData *PrevLoadStore,
2110                           ScheduleData *NextLoadStore);
2111 
2112     /// Updates the dependency information of a bundle and of all instructions/
2113     /// bundles which depend on the original bundle.
2114     void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
2115                                BoUpSLP *SLP);
2116 
2117     /// Sets all instruction in the scheduling region to un-scheduled.
2118     void resetSchedule();
2119 
2120     BasicBlock *BB;
2121 
2122     /// Simple memory allocation for ScheduleData.
2123     std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
2124 
2125     /// The size of a ScheduleData array in ScheduleDataChunks.
2126     int ChunkSize;
2127 
2128     /// The allocator position in the current chunk, which is the last entry
2129     /// of ScheduleDataChunks.
2130     int ChunkPos;
2131 
2132     /// Attaches ScheduleData to Instruction.
2133     /// Note that the mapping survives during all vectorization iterations, i.e.
2134     /// ScheduleData structures are recycled.
2135     DenseMap<Value *, ScheduleData *> ScheduleDataMap;
2136 
2137     /// Attaches ScheduleData to Instruction with the leading key.
2138     DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>>
2139         ExtraScheduleDataMap;
2140 
2141     struct ReadyList : SmallVector<ScheduleData *, 8> {
2142       void insert(ScheduleData *SD) { push_back(SD); }
2143     };
2144 
2145     /// The ready-list for scheduling (only used for the dry-run).
2146     ReadyList ReadyInsts;
2147 
2148     /// The first instruction of the scheduling region.
2149     Instruction *ScheduleStart = nullptr;
2150 
2151     /// The first instruction _after_ the scheduling region.
2152     Instruction *ScheduleEnd = nullptr;
2153 
2154     /// The first memory accessing instruction in the scheduling region
2155     /// (can be null).
2156     ScheduleData *FirstLoadStoreInRegion = nullptr;
2157 
2158     /// The last memory accessing instruction in the scheduling region
2159     /// (can be null).
2160     ScheduleData *LastLoadStoreInRegion = nullptr;
2161 
2162     /// The current size of the scheduling region.
2163     int ScheduleRegionSize = 0;
2164 
2165     /// The maximum size allowed for the scheduling region.
2166     int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget;
2167 
2168     /// The ID of the scheduling region. For a new vectorization iteration this
2169     /// is incremented which "removes" all ScheduleData from the region.
2170     // Make sure that the initial SchedulingRegionID is greater than the
2171     // initial SchedulingRegionID in ScheduleData (which is 0).
2172     int SchedulingRegionID = 1;
2173   };
2174 
2175   /// Attaches the BlockScheduling structures to basic blocks.
2176   MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
2177 
2178   /// Performs the "real" scheduling. Done before vectorization is actually
2179   /// performed in a basic block.
2180   void scheduleBlock(BlockScheduling *BS);
2181 
2182   /// List of users to ignore during scheduling and that don't need extracting.
2183   ArrayRef<Value *> UserIgnoreList;
2184 
2185   using OrdersType = SmallVector<unsigned, 4>;
2186   /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of
2187   /// sorted SmallVectors of unsigned.
2188   struct OrdersTypeDenseMapInfo {
2189     static OrdersType getEmptyKey() {
2190       OrdersType V;
2191       V.push_back(~1U);
2192       return V;
2193     }
2194 
2195     static OrdersType getTombstoneKey() {
2196       OrdersType V;
2197       V.push_back(~2U);
2198       return V;
2199     }
2200 
2201     static unsigned getHashValue(const OrdersType &V) {
2202       return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
2203     }
2204 
2205     static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) {
2206       return LHS == RHS;
2207     }
2208   };
2209 
2210   /// Contains orders of operations along with the number of bundles that have
2211   /// operations in this order. It stores only those orders that require
2212   /// reordering, if reordering is not required it is counted using \a
2213   /// NumOpsWantToKeepOriginalOrder.
2214   DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder;
2215   /// Number of bundles that do not require reordering.
2216   unsigned NumOpsWantToKeepOriginalOrder = 0;
2217 
2218   // Analysis and block reference.
2219   Function *F;
2220   ScalarEvolution *SE;
2221   TargetTransformInfo *TTI;
2222   TargetLibraryInfo *TLI;
2223   AliasAnalysis *AA;
2224   LoopInfo *LI;
2225   DominatorTree *DT;
2226   AssumptionCache *AC;
2227   DemandedBits *DB;
2228   const DataLayout *DL;
2229   OptimizationRemarkEmitter *ORE;
2230 
2231   unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
2232   unsigned MinVecRegSize; // Set by cl::opt (default: 128).
2233 
2234   /// Instruction builder to construct the vectorized tree.
2235   IRBuilder<> Builder;
2236 
2237   /// A map of scalar integer values to the smallest bit width with which they
2238   /// can legally be represented. The values map to (width, signed) pairs,
2239   /// where "width" indicates the minimum bit width and "signed" is True if the
2240   /// value must be signed-extended, rather than zero-extended, back to its
2241   /// original width.
2242   MapVector<Value *, std::pair<uint64_t, bool>> MinBWs;
2243 };
2244 
2245 } // end namespace slpvectorizer
2246 
2247 template <> struct GraphTraits<BoUpSLP *> {
2248   using TreeEntry = BoUpSLP::TreeEntry;
2249 
2250   /// NodeRef has to be a pointer per the GraphWriter.
2251   using NodeRef = TreeEntry *;
2252 
2253   using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy;
2254 
2255   /// Add the VectorizableTree to the index iterator to be able to return
2256   /// TreeEntry pointers.
2257   struct ChildIteratorType
2258       : public iterator_adaptor_base<
2259             ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> {
2260     ContainerTy &VectorizableTree;
2261 
2262     ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W,
2263                       ContainerTy &VT)
2264         : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {}
2265 
2266     NodeRef operator*() { return I->UserTE; }
2267   };
2268 
2269   static NodeRef getEntryNode(BoUpSLP &R) {
2270     return R.VectorizableTree[0].get();
2271   }
2272 
2273   static ChildIteratorType child_begin(NodeRef N) {
2274     return {N->UserTreeIndices.begin(), N->Container};
2275   }
2276 
2277   static ChildIteratorType child_end(NodeRef N) {
2278     return {N->UserTreeIndices.end(), N->Container};
2279   }
2280 
2281   /// For the node iterator we just need to turn the TreeEntry iterator into a
2282   /// TreeEntry* iterator so that it dereferences to NodeRef.
2283   class nodes_iterator {
2284     using ItTy = ContainerTy::iterator;
2285     ItTy It;
2286 
2287   public:
2288     nodes_iterator(const ItTy &It2) : It(It2) {}
2289     NodeRef operator*() { return It->get(); }
2290     nodes_iterator operator++() {
2291       ++It;
2292       return *this;
2293     }
2294     bool operator!=(const nodes_iterator &N2) const { return N2.It != It; }
2295   };
2296 
2297   static nodes_iterator nodes_begin(BoUpSLP *R) {
2298     return nodes_iterator(R->VectorizableTree.begin());
2299   }
2300 
2301   static nodes_iterator nodes_end(BoUpSLP *R) {
2302     return nodes_iterator(R->VectorizableTree.end());
2303   }
2304 
2305   static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); }
2306 };
2307 
2308 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits {
2309   using TreeEntry = BoUpSLP::TreeEntry;
2310 
2311   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
2312 
2313   std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) {
2314     std::string Str;
2315     raw_string_ostream OS(Str);
2316     if (isSplat(Entry->Scalars)) {
2317       OS << "<splat> " << *Entry->Scalars[0];
2318       return Str;
2319     }
2320     for (auto V : Entry->Scalars) {
2321       OS << *V;
2322       if (std::any_of(
2323               R->ExternalUses.begin(), R->ExternalUses.end(),
2324               [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; }))
2325         OS << " <extract>";
2326       OS << "\n";
2327     }
2328     return Str;
2329   }
2330 
2331   static std::string getNodeAttributes(const TreeEntry *Entry,
2332                                        const BoUpSLP *) {
2333     if (Entry->State == TreeEntry::NeedToGather)
2334       return "color=red";
2335     return "";
2336   }
2337 };
2338 
2339 } // end namespace llvm
2340 
2341 BoUpSLP::~BoUpSLP() {
2342   for (const auto &Pair : DeletedInstructions) {
2343     // Replace operands of ignored instructions with Undefs in case if they were
2344     // marked for deletion.
2345     if (Pair.getSecond()) {
2346       Value *Undef = UndefValue::get(Pair.getFirst()->getType());
2347       Pair.getFirst()->replaceAllUsesWith(Undef);
2348     }
2349     Pair.getFirst()->dropAllReferences();
2350   }
2351   for (const auto &Pair : DeletedInstructions) {
2352     assert(Pair.getFirst()->use_empty() &&
2353            "trying to erase instruction with users.");
2354     Pair.getFirst()->eraseFromParent();
2355   }
2356 }
2357 
2358 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) {
2359   for (auto *V : AV) {
2360     if (auto *I = dyn_cast<Instruction>(V))
2361       eraseInstruction(I, /*ReplaceWithUndef=*/true);
2362   };
2363 }
2364 
2365 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
2366                         ArrayRef<Value *> UserIgnoreLst) {
2367   ExtraValueToDebugLocsMap ExternallyUsedValues;
2368   buildTree(Roots, ExternallyUsedValues, UserIgnoreLst);
2369 }
2370 
2371 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
2372                         ExtraValueToDebugLocsMap &ExternallyUsedValues,
2373                         ArrayRef<Value *> UserIgnoreLst) {
2374   deleteTree();
2375   UserIgnoreList = UserIgnoreLst;
2376   if (!allSameType(Roots))
2377     return;
2378   buildTree_rec(Roots, 0, EdgeInfo());
2379 
2380   // Collect the values that we need to extract from the tree.
2381   for (auto &TEPtr : VectorizableTree) {
2382     TreeEntry *Entry = TEPtr.get();
2383 
2384     // No need to handle users of gathered values.
2385     if (Entry->State == TreeEntry::NeedToGather)
2386       continue;
2387 
2388     // For each lane:
2389     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
2390       Value *Scalar = Entry->Scalars[Lane];
2391       int FoundLane = Lane;
2392       if (!Entry->ReuseShuffleIndices.empty()) {
2393         FoundLane =
2394             std::distance(Entry->ReuseShuffleIndices.begin(),
2395                           llvm::find(Entry->ReuseShuffleIndices, FoundLane));
2396       }
2397 
2398       // Check if the scalar is externally used as an extra arg.
2399       auto ExtI = ExternallyUsedValues.find(Scalar);
2400       if (ExtI != ExternallyUsedValues.end()) {
2401         LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane "
2402                           << Lane << " from " << *Scalar << ".\n");
2403         ExternalUses.emplace_back(Scalar, nullptr, FoundLane);
2404       }
2405       for (User *U : Scalar->users()) {
2406         LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
2407 
2408         Instruction *UserInst = dyn_cast<Instruction>(U);
2409         if (!UserInst)
2410           continue;
2411 
2412         // Skip in-tree scalars that become vectors
2413         if (TreeEntry *UseEntry = getTreeEntry(U)) {
2414           Value *UseScalar = UseEntry->Scalars[0];
2415           // Some in-tree scalars will remain as scalar in vectorized
2416           // instructions. If that is the case, the one in Lane 0 will
2417           // be used.
2418           if (UseScalar != U ||
2419               !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
2420             LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
2421                               << ".\n");
2422             assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state");
2423             continue;
2424           }
2425         }
2426 
2427         // Ignore users in the user ignore list.
2428         if (is_contained(UserIgnoreList, UserInst))
2429           continue;
2430 
2431         LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane "
2432                           << Lane << " from " << *Scalar << ".\n");
2433         ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane));
2434       }
2435     }
2436   }
2437 }
2438 
2439 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
2440                             const EdgeInfo &UserTreeIdx) {
2441   assert((allConstant(VL) || allSameType(VL)) && "Invalid types!");
2442 
2443   InstructionsState S = getSameOpcode(VL);
2444   if (Depth == RecursionMaxDepth) {
2445     LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
2446     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2447     return;
2448   }
2449 
2450   // Don't handle vectors.
2451   if (S.OpValue->getType()->isVectorTy()) {
2452     LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
2453     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2454     return;
2455   }
2456 
2457   if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
2458     if (SI->getValueOperand()->getType()->isVectorTy()) {
2459       LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
2460       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2461       return;
2462     }
2463 
2464   // If all of the operands are identical or constant we have a simple solution.
2465   if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) {
2466     LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
2467     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2468     return;
2469   }
2470 
2471   // We now know that this is a vector of instructions of the same type from
2472   // the same block.
2473 
2474   // Don't vectorize ephemeral values.
2475   for (Value *V : VL) {
2476     if (EphValues.count(V)) {
2477       LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
2478                         << ") is ephemeral.\n");
2479       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2480       return;
2481     }
2482   }
2483 
2484   // Check if this is a duplicate of another entry.
2485   if (TreeEntry *E = getTreeEntry(S.OpValue)) {
2486     LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n");
2487     if (!E->isSame(VL)) {
2488       LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
2489       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2490       return;
2491     }
2492     // Record the reuse of the tree node.  FIXME, currently this is only used to
2493     // properly draw the graph rather than for the actual vectorization.
2494     E->UserTreeIndices.push_back(UserTreeIdx);
2495     LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue
2496                       << ".\n");
2497     return;
2498   }
2499 
2500   // Check that none of the instructions in the bundle are already in the tree.
2501   for (Value *V : VL) {
2502     auto *I = dyn_cast<Instruction>(V);
2503     if (!I)
2504       continue;
2505     if (getTreeEntry(I)) {
2506       LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
2507                         << ") is already in tree.\n");
2508       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2509       return;
2510     }
2511   }
2512 
2513   // If any of the scalars is marked as a value that needs to stay scalar, then
2514   // we need to gather the scalars.
2515   // The reduction nodes (stored in UserIgnoreList) also should stay scalar.
2516   for (Value *V : VL) {
2517     if (MustGather.count(V) || is_contained(UserIgnoreList, V)) {
2518       LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
2519       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2520       return;
2521     }
2522   }
2523 
2524   // Check that all of the users of the scalars that we want to vectorize are
2525   // schedulable.
2526   auto *VL0 = cast<Instruction>(S.OpValue);
2527   BasicBlock *BB = VL0->getParent();
2528 
2529   if (!DT->isReachableFromEntry(BB)) {
2530     // Don't go into unreachable blocks. They may contain instructions with
2531     // dependency cycles which confuse the final scheduling.
2532     LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
2533     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2534     return;
2535   }
2536 
2537   // Check that every instruction appears once in this bundle.
2538   SmallVector<unsigned, 4> ReuseShuffleIndicies;
2539   SmallVector<Value *, 4> UniqueValues;
2540   DenseMap<Value *, unsigned> UniquePositions;
2541   for (Value *V : VL) {
2542     auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
2543     ReuseShuffleIndicies.emplace_back(Res.first->second);
2544     if (Res.second)
2545       UniqueValues.emplace_back(V);
2546   }
2547   size_t NumUniqueScalarValues = UniqueValues.size();
2548   if (NumUniqueScalarValues == VL.size()) {
2549     ReuseShuffleIndicies.clear();
2550   } else {
2551     LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n");
2552     if (NumUniqueScalarValues <= 1 ||
2553         !llvm::isPowerOf2_32(NumUniqueScalarValues)) {
2554       LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
2555       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2556       return;
2557     }
2558     VL = UniqueValues;
2559   }
2560 
2561   auto &BSRef = BlocksSchedules[BB];
2562   if (!BSRef)
2563     BSRef = std::make_unique<BlockScheduling>(BB);
2564 
2565   BlockScheduling &BS = *BSRef.get();
2566 
2567   Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S);
2568   if (!Bundle) {
2569     LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
2570     assert((!BS.getScheduleData(VL0) ||
2571             !BS.getScheduleData(VL0)->isPartOfBundle()) &&
2572            "tryScheduleBundle should cancelScheduling on failure");
2573     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2574                  ReuseShuffleIndicies);
2575     return;
2576   }
2577   LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
2578 
2579   unsigned ShuffleOrOp = S.isAltShuffle() ?
2580                 (unsigned) Instruction::ShuffleVector : S.getOpcode();
2581   switch (ShuffleOrOp) {
2582     case Instruction::PHI: {
2583       auto *PH = cast<PHINode>(VL0);
2584 
2585       // Check for terminator values (e.g. invoke).
2586       for (unsigned j = 0; j < VL.size(); ++j)
2587         for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
2588           Instruction *Term = dyn_cast<Instruction>(
2589               cast<PHINode>(VL[j])->getIncomingValueForBlock(
2590                   PH->getIncomingBlock(i)));
2591           if (Term && Term->isTerminator()) {
2592             LLVM_DEBUG(dbgs()
2593                        << "SLP: Need to swizzle PHINodes (terminator use).\n");
2594             BS.cancelScheduling(VL, VL0);
2595             newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2596                          ReuseShuffleIndicies);
2597             return;
2598           }
2599         }
2600 
2601       TreeEntry *TE =
2602           newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies);
2603       LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
2604 
2605       // Keeps the reordered operands to avoid code duplication.
2606       SmallVector<ValueList, 2> OperandsVec;
2607       for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
2608         ValueList Operands;
2609         // Prepare the operand vector.
2610         for (Value *j : VL)
2611           Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock(
2612               PH->getIncomingBlock(i)));
2613         TE->setOperand(i, Operands);
2614         OperandsVec.push_back(Operands);
2615       }
2616       for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx)
2617         buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx});
2618       return;
2619     }
2620     case Instruction::ExtractValue:
2621     case Instruction::ExtractElement: {
2622       OrdersType CurrentOrder;
2623       bool Reuse = canReuseExtract(VL, VL0, CurrentOrder);
2624       if (Reuse) {
2625         LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n");
2626         ++NumOpsWantToKeepOriginalOrder;
2627         newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2628                      ReuseShuffleIndicies);
2629         // This is a special case, as it does not gather, but at the same time
2630         // we are not extending buildTree_rec() towards the operands.
2631         ValueList Op0;
2632         Op0.assign(VL.size(), VL0->getOperand(0));
2633         VectorizableTree.back()->setOperand(0, Op0);
2634         return;
2635       }
2636       if (!CurrentOrder.empty()) {
2637         LLVM_DEBUG({
2638           dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
2639                     "with order";
2640           for (unsigned Idx : CurrentOrder)
2641             dbgs() << " " << Idx;
2642           dbgs() << "\n";
2643         });
2644         // Insert new order with initial value 0, if it does not exist,
2645         // otherwise return the iterator to the existing one.
2646         auto StoredCurrentOrderAndNum =
2647             NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first;
2648         ++StoredCurrentOrderAndNum->getSecond();
2649         newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2650                      ReuseShuffleIndicies,
2651                      StoredCurrentOrderAndNum->getFirst());
2652         // This is a special case, as it does not gather, but at the same time
2653         // we are not extending buildTree_rec() towards the operands.
2654         ValueList Op0;
2655         Op0.assign(VL.size(), VL0->getOperand(0));
2656         VectorizableTree.back()->setOperand(0, Op0);
2657         return;
2658       }
2659       LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n");
2660       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2661                    ReuseShuffleIndicies);
2662       BS.cancelScheduling(VL, VL0);
2663       return;
2664     }
2665     case Instruction::Load: {
2666       // Check that a vectorized load would load the same memory as a scalar
2667       // load. For example, we don't want to vectorize loads that are smaller
2668       // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
2669       // treats loading/storing it as an i8 struct. If we vectorize loads/stores
2670       // from such a struct, we read/write packed bits disagreeing with the
2671       // unvectorized version.
2672       Type *ScalarTy = VL0->getType();
2673 
2674       if (DL->getTypeSizeInBits(ScalarTy) !=
2675           DL->getTypeAllocSizeInBits(ScalarTy)) {
2676         BS.cancelScheduling(VL, VL0);
2677         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2678                      ReuseShuffleIndicies);
2679         LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
2680         return;
2681       }
2682 
2683       // Make sure all loads in the bundle are simple - we can't vectorize
2684       // atomic or volatile loads.
2685       SmallVector<Value *, 4> PointerOps(VL.size());
2686       auto POIter = PointerOps.begin();
2687       for (Value *V : VL) {
2688         auto *L = cast<LoadInst>(V);
2689         if (!L->isSimple()) {
2690           BS.cancelScheduling(VL, VL0);
2691           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2692                        ReuseShuffleIndicies);
2693           LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
2694           return;
2695         }
2696         *POIter = L->getPointerOperand();
2697         ++POIter;
2698       }
2699 
2700       OrdersType CurrentOrder;
2701       // Check the order of pointer operands.
2702       if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) {
2703         Value *Ptr0;
2704         Value *PtrN;
2705         if (CurrentOrder.empty()) {
2706           Ptr0 = PointerOps.front();
2707           PtrN = PointerOps.back();
2708         } else {
2709           Ptr0 = PointerOps[CurrentOrder.front()];
2710           PtrN = PointerOps[CurrentOrder.back()];
2711         }
2712         const SCEV *Scev0 = SE->getSCEV(Ptr0);
2713         const SCEV *ScevN = SE->getSCEV(PtrN);
2714         const auto *Diff =
2715             dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0));
2716         uint64_t Size = DL->getTypeAllocSize(ScalarTy);
2717         // Check that the sorted loads are consecutive.
2718         if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) {
2719           if (CurrentOrder.empty()) {
2720             // Original loads are consecutive and does not require reordering.
2721             ++NumOpsWantToKeepOriginalOrder;
2722             TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
2723                                          UserTreeIdx, ReuseShuffleIndicies);
2724             TE->setOperandsInOrder();
2725             LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n");
2726           } else {
2727             // Need to reorder.
2728             auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first;
2729             ++I->getSecond();
2730             TreeEntry *TE =
2731                 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2732                              ReuseShuffleIndicies, I->getFirst());
2733             TE->setOperandsInOrder();
2734             LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n");
2735           }
2736           return;
2737         }
2738       }
2739 
2740       LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
2741       BS.cancelScheduling(VL, VL0);
2742       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2743                    ReuseShuffleIndicies);
2744       return;
2745     }
2746     case Instruction::ZExt:
2747     case Instruction::SExt:
2748     case Instruction::FPToUI:
2749     case Instruction::FPToSI:
2750     case Instruction::FPExt:
2751     case Instruction::PtrToInt:
2752     case Instruction::IntToPtr:
2753     case Instruction::SIToFP:
2754     case Instruction::UIToFP:
2755     case Instruction::Trunc:
2756     case Instruction::FPTrunc:
2757     case Instruction::BitCast: {
2758       Type *SrcTy = VL0->getOperand(0)->getType();
2759       for (Value *V : VL) {
2760         Type *Ty = cast<Instruction>(V)->getOperand(0)->getType();
2761         if (Ty != SrcTy || !isValidElementType(Ty)) {
2762           BS.cancelScheduling(VL, VL0);
2763           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2764                        ReuseShuffleIndicies);
2765           LLVM_DEBUG(dbgs()
2766                      << "SLP: Gathering casts with different src types.\n");
2767           return;
2768         }
2769       }
2770       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2771                                    ReuseShuffleIndicies);
2772       LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n");
2773 
2774       TE->setOperandsInOrder();
2775       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
2776         ValueList Operands;
2777         // Prepare the operand vector.
2778         for (Value *V : VL)
2779           Operands.push_back(cast<Instruction>(V)->getOperand(i));
2780 
2781         buildTree_rec(Operands, Depth + 1, {TE, i});
2782       }
2783       return;
2784     }
2785     case Instruction::ICmp:
2786     case Instruction::FCmp: {
2787       // Check that all of the compares have the same predicate.
2788       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
2789       CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0);
2790       Type *ComparedTy = VL0->getOperand(0)->getType();
2791       for (Value *V : VL) {
2792         CmpInst *Cmp = cast<CmpInst>(V);
2793         if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) ||
2794             Cmp->getOperand(0)->getType() != ComparedTy) {
2795           BS.cancelScheduling(VL, VL0);
2796           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2797                        ReuseShuffleIndicies);
2798           LLVM_DEBUG(dbgs()
2799                      << "SLP: Gathering cmp with different predicate.\n");
2800           return;
2801         }
2802       }
2803 
2804       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2805                                    ReuseShuffleIndicies);
2806       LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n");
2807 
2808       ValueList Left, Right;
2809       if (cast<CmpInst>(VL0)->isCommutative()) {
2810         // Commutative predicate - collect + sort operands of the instructions
2811         // so that each side is more likely to have the same opcode.
2812         assert(P0 == SwapP0 && "Commutative Predicate mismatch");
2813         reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
2814       } else {
2815         // Collect operands - commute if it uses the swapped predicate.
2816         for (Value *V : VL) {
2817           auto *Cmp = cast<CmpInst>(V);
2818           Value *LHS = Cmp->getOperand(0);
2819           Value *RHS = Cmp->getOperand(1);
2820           if (Cmp->getPredicate() != P0)
2821             std::swap(LHS, RHS);
2822           Left.push_back(LHS);
2823           Right.push_back(RHS);
2824         }
2825       }
2826       TE->setOperand(0, Left);
2827       TE->setOperand(1, Right);
2828       buildTree_rec(Left, Depth + 1, {TE, 0});
2829       buildTree_rec(Right, Depth + 1, {TE, 1});
2830       return;
2831     }
2832     case Instruction::Select:
2833     case Instruction::FNeg:
2834     case Instruction::Add:
2835     case Instruction::FAdd:
2836     case Instruction::Sub:
2837     case Instruction::FSub:
2838     case Instruction::Mul:
2839     case Instruction::FMul:
2840     case Instruction::UDiv:
2841     case Instruction::SDiv:
2842     case Instruction::FDiv:
2843     case Instruction::URem:
2844     case Instruction::SRem:
2845     case Instruction::FRem:
2846     case Instruction::Shl:
2847     case Instruction::LShr:
2848     case Instruction::AShr:
2849     case Instruction::And:
2850     case Instruction::Or:
2851     case Instruction::Xor: {
2852       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2853                                    ReuseShuffleIndicies);
2854       LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n");
2855 
2856       // Sort operands of the instructions so that each side is more likely to
2857       // have the same opcode.
2858       if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
2859         ValueList Left, Right;
2860         reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
2861         TE->setOperand(0, Left);
2862         TE->setOperand(1, Right);
2863         buildTree_rec(Left, Depth + 1, {TE, 0});
2864         buildTree_rec(Right, Depth + 1, {TE, 1});
2865         return;
2866       }
2867 
2868       TE->setOperandsInOrder();
2869       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
2870         ValueList Operands;
2871         // Prepare the operand vector.
2872         for (Value *j : VL)
2873           Operands.push_back(cast<Instruction>(j)->getOperand(i));
2874 
2875         buildTree_rec(Operands, Depth + 1, {TE, i});
2876       }
2877       return;
2878     }
2879     case Instruction::GetElementPtr: {
2880       // We don't combine GEPs with complicated (nested) indexing.
2881       for (Value *V : VL) {
2882         if (cast<Instruction>(V)->getNumOperands() != 2) {
2883           LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
2884           BS.cancelScheduling(VL, VL0);
2885           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2886                        ReuseShuffleIndicies);
2887           return;
2888         }
2889       }
2890 
2891       // We can't combine several GEPs into one vector if they operate on
2892       // different types.
2893       Type *Ty0 = VL0->getOperand(0)->getType();
2894       for (Value *V : VL) {
2895         Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType();
2896         if (Ty0 != CurTy) {
2897           LLVM_DEBUG(dbgs()
2898                      << "SLP: not-vectorizable GEP (different types).\n");
2899           BS.cancelScheduling(VL, VL0);
2900           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2901                        ReuseShuffleIndicies);
2902           return;
2903         }
2904       }
2905 
2906       // We don't combine GEPs with non-constant indexes.
2907       Type *Ty1 = VL0->getOperand(1)->getType();
2908       for (Value *V : VL) {
2909         auto Op = cast<Instruction>(V)->getOperand(1);
2910         if (!isa<ConstantInt>(Op) ||
2911             (Op->getType() != Ty1 &&
2912              Op->getType()->getScalarSizeInBits() >
2913                  DL->getIndexSizeInBits(
2914                      V->getType()->getPointerAddressSpace()))) {
2915           LLVM_DEBUG(dbgs()
2916                      << "SLP: not-vectorizable GEP (non-constant indexes).\n");
2917           BS.cancelScheduling(VL, VL0);
2918           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2919                        ReuseShuffleIndicies);
2920           return;
2921         }
2922       }
2923 
2924       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2925                                    ReuseShuffleIndicies);
2926       LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
2927       TE->setOperandsInOrder();
2928       for (unsigned i = 0, e = 2; i < e; ++i) {
2929         ValueList Operands;
2930         // Prepare the operand vector.
2931         for (Value *V : VL)
2932           Operands.push_back(cast<Instruction>(V)->getOperand(i));
2933 
2934         buildTree_rec(Operands, Depth + 1, {TE, i});
2935       }
2936       return;
2937     }
2938     case Instruction::Store: {
2939       // Check if the stores are consecutive or if we need to swizzle them.
2940       llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType();
2941       // Make sure all stores in the bundle are simple - we can't vectorize
2942       // atomic or volatile stores.
2943       SmallVector<Value *, 4> PointerOps(VL.size());
2944       ValueList Operands(VL.size());
2945       auto POIter = PointerOps.begin();
2946       auto OIter = Operands.begin();
2947       for (Value *V : VL) {
2948         auto *SI = cast<StoreInst>(V);
2949         if (!SI->isSimple()) {
2950           BS.cancelScheduling(VL, VL0);
2951           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2952                        ReuseShuffleIndicies);
2953           LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n");
2954           return;
2955         }
2956         *POIter = SI->getPointerOperand();
2957         *OIter = SI->getValueOperand();
2958         ++POIter;
2959         ++OIter;
2960       }
2961 
2962       OrdersType CurrentOrder;
2963       // Check the order of pointer operands.
2964       if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) {
2965         Value *Ptr0;
2966         Value *PtrN;
2967         if (CurrentOrder.empty()) {
2968           Ptr0 = PointerOps.front();
2969           PtrN = PointerOps.back();
2970         } else {
2971           Ptr0 = PointerOps[CurrentOrder.front()];
2972           PtrN = PointerOps[CurrentOrder.back()];
2973         }
2974         const SCEV *Scev0 = SE->getSCEV(Ptr0);
2975         const SCEV *ScevN = SE->getSCEV(PtrN);
2976         const auto *Diff =
2977             dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0));
2978         uint64_t Size = DL->getTypeAllocSize(ScalarTy);
2979         // Check that the sorted pointer operands are consecutive.
2980         if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) {
2981           if (CurrentOrder.empty()) {
2982             // Original stores are consecutive and does not require reordering.
2983             ++NumOpsWantToKeepOriginalOrder;
2984             TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
2985                                          UserTreeIdx, ReuseShuffleIndicies);
2986             TE->setOperandsInOrder();
2987             buildTree_rec(Operands, Depth + 1, {TE, 0});
2988             LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n");
2989           } else {
2990             // Need to reorder.
2991             auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first;
2992             ++(I->getSecond());
2993             TreeEntry *TE =
2994                 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2995                              ReuseShuffleIndicies, I->getFirst());
2996             TE->setOperandsInOrder();
2997             buildTree_rec(Operands, Depth + 1, {TE, 0});
2998             LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n");
2999           }
3000           return;
3001         }
3002       }
3003 
3004       BS.cancelScheduling(VL, VL0);
3005       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3006                    ReuseShuffleIndicies);
3007       LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
3008       return;
3009     }
3010     case Instruction::Call: {
3011       // Check if the calls are all to the same vectorizable intrinsic.
3012       CallInst *CI = cast<CallInst>(VL0);
3013       // Check if this is an Intrinsic call or something that can be
3014       // represented by an intrinsic call
3015       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3016       if (!isTriviallyVectorizable(ID)) {
3017         BS.cancelScheduling(VL, VL0);
3018         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3019                      ReuseShuffleIndicies);
3020         LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
3021         return;
3022       }
3023       Function *Int = CI->getCalledFunction();
3024       unsigned NumArgs = CI->getNumArgOperands();
3025       SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr);
3026       for (unsigned j = 0; j != NumArgs; ++j)
3027         if (hasVectorInstrinsicScalarOpd(ID, j))
3028           ScalarArgs[j] = CI->getArgOperand(j);
3029       for (Value *V : VL) {
3030         CallInst *CI2 = dyn_cast<CallInst>(V);
3031         if (!CI2 || CI2->getCalledFunction() != Int ||
3032             getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
3033             !CI->hasIdenticalOperandBundleSchema(*CI2)) {
3034           BS.cancelScheduling(VL, VL0);
3035           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3036                        ReuseShuffleIndicies);
3037           LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V
3038                             << "\n");
3039           return;
3040         }
3041         // Some intrinsics have scalar arguments and should be same in order for
3042         // them to be vectorized.
3043         for (unsigned j = 0; j != NumArgs; ++j) {
3044           if (hasVectorInstrinsicScalarOpd(ID, j)) {
3045             Value *A1J = CI2->getArgOperand(j);
3046             if (ScalarArgs[j] != A1J) {
3047               BS.cancelScheduling(VL, VL0);
3048               newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3049                            ReuseShuffleIndicies);
3050               LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
3051                                 << " argument " << ScalarArgs[j] << "!=" << A1J
3052                                 << "\n");
3053               return;
3054             }
3055           }
3056         }
3057         // Verify that the bundle operands are identical between the two calls.
3058         if (CI->hasOperandBundles() &&
3059             !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
3060                         CI->op_begin() + CI->getBundleOperandsEndIndex(),
3061                         CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
3062           BS.cancelScheduling(VL, VL0);
3063           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3064                        ReuseShuffleIndicies);
3065           LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:"
3066                             << *CI << "!=" << *V << '\n');
3067           return;
3068         }
3069       }
3070 
3071       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3072                                    ReuseShuffleIndicies);
3073       TE->setOperandsInOrder();
3074       for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
3075         ValueList Operands;
3076         // Prepare the operand vector.
3077         for (Value *V : VL) {
3078           auto *CI2 = cast<CallInst>(V);
3079           Operands.push_back(CI2->getArgOperand(i));
3080         }
3081         buildTree_rec(Operands, Depth + 1, {TE, i});
3082       }
3083       return;
3084     }
3085     case Instruction::ShuffleVector: {
3086       // If this is not an alternate sequence of opcode like add-sub
3087       // then do not vectorize this instruction.
3088       if (!S.isAltShuffle()) {
3089         BS.cancelScheduling(VL, VL0);
3090         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3091                      ReuseShuffleIndicies);
3092         LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
3093         return;
3094       }
3095       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3096                                    ReuseShuffleIndicies);
3097       LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
3098 
3099       // Reorder operands if reordering would enable vectorization.
3100       if (isa<BinaryOperator>(VL0)) {
3101         ValueList Left, Right;
3102         reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
3103         TE->setOperand(0, Left);
3104         TE->setOperand(1, Right);
3105         buildTree_rec(Left, Depth + 1, {TE, 0});
3106         buildTree_rec(Right, Depth + 1, {TE, 1});
3107         return;
3108       }
3109 
3110       TE->setOperandsInOrder();
3111       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
3112         ValueList Operands;
3113         // Prepare the operand vector.
3114         for (Value *V : VL)
3115           Operands.push_back(cast<Instruction>(V)->getOperand(i));
3116 
3117         buildTree_rec(Operands, Depth + 1, {TE, i});
3118       }
3119       return;
3120     }
3121     default:
3122       BS.cancelScheduling(VL, VL0);
3123       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3124                    ReuseShuffleIndicies);
3125       LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
3126       return;
3127   }
3128 }
3129 
3130 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
3131   unsigned N = 1;
3132   Type *EltTy = T;
3133 
3134   while (isa<StructType>(EltTy) || isa<SequentialType>(EltTy)) {
3135     if (auto *ST = dyn_cast<StructType>(EltTy)) {
3136       // Check that struct is homogeneous.
3137       for (const auto *Ty : ST->elements())
3138         if (Ty != *ST->element_begin())
3139           return 0;
3140       N *= ST->getNumElements();
3141       EltTy = *ST->element_begin();
3142     } else {
3143       auto *SeqT = cast<SequentialType>(EltTy);
3144       N *= SeqT->getNumElements();
3145       EltTy = SeqT->getElementType();
3146     }
3147   }
3148 
3149   if (!isValidElementType(EltTy))
3150     return 0;
3151   uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N));
3152   if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
3153     return 0;
3154   return N;
3155 }
3156 
3157 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
3158                               SmallVectorImpl<unsigned> &CurrentOrder) const {
3159   Instruction *E0 = cast<Instruction>(OpValue);
3160   assert(E0->getOpcode() == Instruction::ExtractElement ||
3161          E0->getOpcode() == Instruction::ExtractValue);
3162   assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode");
3163   // Check if all of the extracts come from the same vector and from the
3164   // correct offset.
3165   Value *Vec = E0->getOperand(0);
3166 
3167   CurrentOrder.clear();
3168 
3169   // We have to extract from a vector/aggregate with the same number of elements.
3170   unsigned NElts;
3171   if (E0->getOpcode() == Instruction::ExtractValue) {
3172     const DataLayout &DL = E0->getModule()->getDataLayout();
3173     NElts = canMapToVector(Vec->getType(), DL);
3174     if (!NElts)
3175       return false;
3176     // Check if load can be rewritten as load of vector.
3177     LoadInst *LI = dyn_cast<LoadInst>(Vec);
3178     if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
3179       return false;
3180   } else {
3181     NElts = Vec->getType()->getVectorNumElements();
3182   }
3183 
3184   if (NElts != VL.size())
3185     return false;
3186 
3187   // Check that all of the indices extract from the correct offset.
3188   bool ShouldKeepOrder = true;
3189   unsigned E = VL.size();
3190   // Assign to all items the initial value E + 1 so we can check if the extract
3191   // instruction index was used already.
3192   // Also, later we can check that all the indices are used and we have a
3193   // consecutive access in the extract instructions, by checking that no
3194   // element of CurrentOrder still has value E + 1.
3195   CurrentOrder.assign(E, E + 1);
3196   unsigned I = 0;
3197   for (; I < E; ++I) {
3198     auto *Inst = cast<Instruction>(VL[I]);
3199     if (Inst->getOperand(0) != Vec)
3200       break;
3201     Optional<unsigned> Idx = getExtractIndex(Inst);
3202     if (!Idx)
3203       break;
3204     const unsigned ExtIdx = *Idx;
3205     if (ExtIdx != I) {
3206       if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1)
3207         break;
3208       ShouldKeepOrder = false;
3209       CurrentOrder[ExtIdx] = I;
3210     } else {
3211       if (CurrentOrder[I] != E + 1)
3212         break;
3213       CurrentOrder[I] = I;
3214     }
3215   }
3216   if (I < E) {
3217     CurrentOrder.clear();
3218     return false;
3219   }
3220 
3221   return ShouldKeepOrder;
3222 }
3223 
3224 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const {
3225   return I->hasOneUse() ||
3226          std::all_of(I->user_begin(), I->user_end(), [this](User *U) {
3227            return ScalarToTreeEntry.count(U) > 0;
3228          });
3229 }
3230 
3231 static std::pair<unsigned, unsigned>
3232 getVectorCallCosts(CallInst *CI, VectorType *VecTy, TargetTransformInfo *TTI,
3233                    TargetLibraryInfo *TLI) {
3234   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3235 
3236   // Calculate the cost of the scalar and vector calls.
3237   FastMathFlags FMF;
3238   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3239     FMF = FPMO->getFastMathFlags();
3240 
3241   SmallVector<Value *, 4> Args(CI->arg_operands());
3242   int IntrinsicCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF,
3243                                                  VecTy->getNumElements());
3244 
3245   auto Shape =
3246       VFShape::get(*CI, {static_cast<unsigned>(VecTy->getNumElements()), false},
3247                    false /*HasGlobalPred*/);
3248   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3249   int LibCost = IntrinsicCost;
3250   if (!CI->isNoBuiltin() && VecFunc) {
3251     // Calculate the cost of the vector library call.
3252     SmallVector<Type *, 4> VecTys;
3253     for (Use &Arg : CI->args())
3254       VecTys.push_back(
3255           VectorType::get(Arg->getType(), VecTy->getNumElements()));
3256 
3257     // If the corresponding vector call is cheaper, return its cost.
3258     LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys);
3259   }
3260   return {IntrinsicCost, LibCost};
3261 }
3262 
3263 int BoUpSLP::getEntryCost(TreeEntry *E) {
3264   ArrayRef<Value*> VL = E->Scalars;
3265 
3266   Type *ScalarTy = VL[0]->getType();
3267   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
3268     ScalarTy = SI->getValueOperand()->getType();
3269   else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0]))
3270     ScalarTy = CI->getOperand(0)->getType();
3271   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
3272 
3273   // If we have computed a smaller type for the expression, update VecTy so
3274   // that the costs will be accurate.
3275   if (MinBWs.count(VL[0]))
3276     VecTy = VectorType::get(
3277         IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size());
3278 
3279   unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size();
3280   bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
3281   int ReuseShuffleCost = 0;
3282   if (NeedToShuffleReuses) {
3283     ReuseShuffleCost =
3284         TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
3285   }
3286   if (E->State == TreeEntry::NeedToGather) {
3287     if (allConstant(VL))
3288       return 0;
3289     if (isSplat(VL)) {
3290       return ReuseShuffleCost +
3291              TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
3292     }
3293     if (E->getOpcode() == Instruction::ExtractElement &&
3294         allSameType(VL) && allSameBlock(VL)) {
3295       Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL);
3296       if (ShuffleKind.hasValue()) {
3297         int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy);
3298         for (auto *V : VL) {
3299           // If all users of instruction are going to be vectorized and this
3300           // instruction itself is not going to be vectorized, consider this
3301           // instruction as dead and remove its cost from the final cost of the
3302           // vectorized tree.
3303           if (areAllUsersVectorized(cast<Instruction>(V)) &&
3304               !ScalarToTreeEntry.count(V)) {
3305             auto *IO = cast<ConstantInt>(
3306                 cast<ExtractElementInst>(V)->getIndexOperand());
3307             Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
3308                                             IO->getZExtValue());
3309           }
3310         }
3311         return ReuseShuffleCost + Cost;
3312       }
3313     }
3314     return ReuseShuffleCost + getGatherCost(VL);
3315   }
3316   assert(E->State == TreeEntry::Vectorize && "Unhandled state");
3317   assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL");
3318   Instruction *VL0 = E->getMainOp();
3319   unsigned ShuffleOrOp =
3320       E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
3321   switch (ShuffleOrOp) {
3322     case Instruction::PHI:
3323       return 0;
3324 
3325     case Instruction::ExtractValue:
3326     case Instruction::ExtractElement: {
3327       if (NeedToShuffleReuses) {
3328         unsigned Idx = 0;
3329         for (unsigned I : E->ReuseShuffleIndices) {
3330           if (ShuffleOrOp == Instruction::ExtractElement) {
3331             auto *IO = cast<ConstantInt>(
3332                 cast<ExtractElementInst>(VL[I])->getIndexOperand());
3333             Idx = IO->getZExtValue();
3334             ReuseShuffleCost -= TTI->getVectorInstrCost(
3335                 Instruction::ExtractElement, VecTy, Idx);
3336           } else {
3337             ReuseShuffleCost -= TTI->getVectorInstrCost(
3338                 Instruction::ExtractElement, VecTy, Idx);
3339             ++Idx;
3340           }
3341         }
3342         Idx = ReuseShuffleNumbers;
3343         for (Value *V : VL) {
3344           if (ShuffleOrOp == Instruction::ExtractElement) {
3345             auto *IO = cast<ConstantInt>(
3346                 cast<ExtractElementInst>(V)->getIndexOperand());
3347             Idx = IO->getZExtValue();
3348           } else {
3349             --Idx;
3350           }
3351           ReuseShuffleCost +=
3352               TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx);
3353         }
3354       }
3355       int DeadCost = ReuseShuffleCost;
3356       if (!E->ReorderIndices.empty()) {
3357         // TODO: Merge this shuffle with the ReuseShuffleCost.
3358         DeadCost += TTI->getShuffleCost(
3359             TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
3360       }
3361       for (unsigned i = 0, e = VL.size(); i < e; ++i) {
3362         Instruction *E = cast<Instruction>(VL[i]);
3363         // If all users are going to be vectorized, instruction can be
3364         // considered as dead.
3365         // The same, if have only one user, it will be vectorized for sure.
3366         if (areAllUsersVectorized(E)) {
3367           // Take credit for instruction that will become dead.
3368           if (E->hasOneUse()) {
3369             Instruction *Ext = E->user_back();
3370             if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3371                 all_of(Ext->users(),
3372                        [](User *U) { return isa<GetElementPtrInst>(U); })) {
3373               // Use getExtractWithExtendCost() to calculate the cost of
3374               // extractelement/ext pair.
3375               DeadCost -= TTI->getExtractWithExtendCost(
3376                   Ext->getOpcode(), Ext->getType(), VecTy, i);
3377               // Add back the cost of s|zext which is subtracted separately.
3378               DeadCost += TTI->getCastInstrCost(
3379                   Ext->getOpcode(), Ext->getType(), E->getType(), Ext);
3380               continue;
3381             }
3382           }
3383           DeadCost -=
3384               TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i);
3385         }
3386       }
3387       return DeadCost;
3388     }
3389     case Instruction::ZExt:
3390     case Instruction::SExt:
3391     case Instruction::FPToUI:
3392     case Instruction::FPToSI:
3393     case Instruction::FPExt:
3394     case Instruction::PtrToInt:
3395     case Instruction::IntToPtr:
3396     case Instruction::SIToFP:
3397     case Instruction::UIToFP:
3398     case Instruction::Trunc:
3399     case Instruction::FPTrunc:
3400     case Instruction::BitCast: {
3401       Type *SrcTy = VL0->getOperand(0)->getType();
3402       int ScalarEltCost =
3403           TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, VL0);
3404       if (NeedToShuffleReuses) {
3405         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3406       }
3407 
3408       // Calculate the cost of this instruction.
3409       int ScalarCost = VL.size() * ScalarEltCost;
3410 
3411       VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
3412       int VecCost = 0;
3413       // Check if the values are candidates to demote.
3414       if (!MinBWs.count(VL0) || VecTy != SrcVecTy) {
3415         VecCost = ReuseShuffleCost +
3416                   TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, VL0);
3417       }
3418       return VecCost - ScalarCost;
3419     }
3420     case Instruction::FCmp:
3421     case Instruction::ICmp:
3422     case Instruction::Select: {
3423       // Calculate the cost of this instruction.
3424       int ScalarEltCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy,
3425                                                   Builder.getInt1Ty(), VL0);
3426       if (NeedToShuffleReuses) {
3427         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3428       }
3429       VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
3430       int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
3431       int VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), VecTy, MaskTy, VL0);
3432       return ReuseShuffleCost + VecCost - ScalarCost;
3433     }
3434     case Instruction::FNeg:
3435     case Instruction::Add:
3436     case Instruction::FAdd:
3437     case Instruction::Sub:
3438     case Instruction::FSub:
3439     case Instruction::Mul:
3440     case Instruction::FMul:
3441     case Instruction::UDiv:
3442     case Instruction::SDiv:
3443     case Instruction::FDiv:
3444     case Instruction::URem:
3445     case Instruction::SRem:
3446     case Instruction::FRem:
3447     case Instruction::Shl:
3448     case Instruction::LShr:
3449     case Instruction::AShr:
3450     case Instruction::And:
3451     case Instruction::Or:
3452     case Instruction::Xor: {
3453       // Certain instructions can be cheaper to vectorize if they have a
3454       // constant second vector operand.
3455       TargetTransformInfo::OperandValueKind Op1VK =
3456           TargetTransformInfo::OK_AnyValue;
3457       TargetTransformInfo::OperandValueKind Op2VK =
3458           TargetTransformInfo::OK_UniformConstantValue;
3459       TargetTransformInfo::OperandValueProperties Op1VP =
3460           TargetTransformInfo::OP_None;
3461       TargetTransformInfo::OperandValueProperties Op2VP =
3462           TargetTransformInfo::OP_PowerOf2;
3463 
3464       // If all operands are exactly the same ConstantInt then set the
3465       // operand kind to OK_UniformConstantValue.
3466       // If instead not all operands are constants, then set the operand kind
3467       // to OK_AnyValue. If all operands are constants but not the same,
3468       // then set the operand kind to OK_NonUniformConstantValue.
3469       ConstantInt *CInt0 = nullptr;
3470       for (unsigned i = 0, e = VL.size(); i < e; ++i) {
3471         const Instruction *I = cast<Instruction>(VL[i]);
3472         unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0;
3473         ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx));
3474         if (!CInt) {
3475           Op2VK = TargetTransformInfo::OK_AnyValue;
3476           Op2VP = TargetTransformInfo::OP_None;
3477           break;
3478         }
3479         if (Op2VP == TargetTransformInfo::OP_PowerOf2 &&
3480             !CInt->getValue().isPowerOf2())
3481           Op2VP = TargetTransformInfo::OP_None;
3482         if (i == 0) {
3483           CInt0 = CInt;
3484           continue;
3485         }
3486         if (CInt0 != CInt)
3487           Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
3488       }
3489 
3490       SmallVector<const Value *, 4> Operands(VL0->operand_values());
3491       int ScalarEltCost = TTI->getArithmeticInstrCost(
3492           E->getOpcode(), ScalarTy, Op1VK, Op2VK, Op1VP, Op2VP, Operands, VL0);
3493       if (NeedToShuffleReuses) {
3494         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3495       }
3496       int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
3497       int VecCost = TTI->getArithmeticInstrCost(
3498           E->getOpcode(), VecTy, Op1VK, Op2VK, Op1VP, Op2VP, Operands, VL0);
3499       return ReuseShuffleCost + VecCost - ScalarCost;
3500     }
3501     case Instruction::GetElementPtr: {
3502       TargetTransformInfo::OperandValueKind Op1VK =
3503           TargetTransformInfo::OK_AnyValue;
3504       TargetTransformInfo::OperandValueKind Op2VK =
3505           TargetTransformInfo::OK_UniformConstantValue;
3506 
3507       int ScalarEltCost =
3508           TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK);
3509       if (NeedToShuffleReuses) {
3510         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3511       }
3512       int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
3513       int VecCost =
3514           TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK);
3515       return ReuseShuffleCost + VecCost - ScalarCost;
3516     }
3517     case Instruction::Load: {
3518       // Cost of wide load - cost of scalar loads.
3519       MaybeAlign alignment(cast<LoadInst>(VL0)->getAlignment());
3520       int ScalarEltCost =
3521           TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0);
3522       if (NeedToShuffleReuses) {
3523         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3524       }
3525       int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost;
3526       int VecLdCost =
3527           TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, VL0);
3528       if (!E->ReorderIndices.empty()) {
3529         // TODO: Merge this shuffle with the ReuseShuffleCost.
3530         VecLdCost += TTI->getShuffleCost(
3531             TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
3532       }
3533       return ReuseShuffleCost + VecLdCost - ScalarLdCost;
3534     }
3535     case Instruction::Store: {
3536       // We know that we can merge the stores. Calculate the cost.
3537       bool IsReorder = !E->ReorderIndices.empty();
3538       auto *SI =
3539           cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0);
3540       MaybeAlign Alignment(SI->getAlignment());
3541       int ScalarEltCost =
3542           TTI->getMemoryOpCost(Instruction::Store, ScalarTy, Alignment, 0, VL0);
3543       if (NeedToShuffleReuses)
3544         ReuseShuffleCost = -(ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3545       int ScalarStCost = VecTy->getNumElements() * ScalarEltCost;
3546       int VecStCost = TTI->getMemoryOpCost(Instruction::Store,
3547                                            VecTy, Alignment, 0, VL0);
3548       if (IsReorder) {
3549         // TODO: Merge this shuffle with the ReuseShuffleCost.
3550         VecStCost += TTI->getShuffleCost(
3551             TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
3552       }
3553       return ReuseShuffleCost + VecStCost - ScalarStCost;
3554     }
3555     case Instruction::Call: {
3556       CallInst *CI = cast<CallInst>(VL0);
3557       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3558 
3559       // Calculate the cost of the scalar and vector calls.
3560       SmallVector<Type *, 4> ScalarTys;
3561       for (unsigned op = 0, opc = CI->getNumArgOperands(); op != opc; ++op)
3562         ScalarTys.push_back(CI->getArgOperand(op)->getType());
3563 
3564       FastMathFlags FMF;
3565       if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3566         FMF = FPMO->getFastMathFlags();
3567 
3568       int ScalarEltCost =
3569           TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF);
3570       if (NeedToShuffleReuses) {
3571         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3572       }
3573       int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost;
3574 
3575       auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
3576       int VecCallCost = std::min(VecCallCosts.first, VecCallCosts.second);
3577 
3578       LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost
3579                         << " (" << VecCallCost << "-" << ScalarCallCost << ")"
3580                         << " for " << *CI << "\n");
3581 
3582       return ReuseShuffleCost + VecCallCost - ScalarCallCost;
3583     }
3584     case Instruction::ShuffleVector: {
3585       assert(E->isAltShuffle() &&
3586              ((Instruction::isBinaryOp(E->getOpcode()) &&
3587                Instruction::isBinaryOp(E->getAltOpcode())) ||
3588               (Instruction::isCast(E->getOpcode()) &&
3589                Instruction::isCast(E->getAltOpcode()))) &&
3590              "Invalid Shuffle Vector Operand");
3591       int ScalarCost = 0;
3592       if (NeedToShuffleReuses) {
3593         for (unsigned Idx : E->ReuseShuffleIndices) {
3594           Instruction *I = cast<Instruction>(VL[Idx]);
3595           ReuseShuffleCost -= TTI->getInstructionCost(
3596               I, TargetTransformInfo::TCK_RecipThroughput);
3597         }
3598         for (Value *V : VL) {
3599           Instruction *I = cast<Instruction>(V);
3600           ReuseShuffleCost += TTI->getInstructionCost(
3601               I, TargetTransformInfo::TCK_RecipThroughput);
3602         }
3603       }
3604       for (Value *V : VL) {
3605         Instruction *I = cast<Instruction>(V);
3606         assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
3607         ScalarCost += TTI->getInstructionCost(
3608             I, TargetTransformInfo::TCK_RecipThroughput);
3609       }
3610       // VecCost is equal to sum of the cost of creating 2 vectors
3611       // and the cost of creating shuffle.
3612       int VecCost = 0;
3613       if (Instruction::isBinaryOp(E->getOpcode())) {
3614         VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy);
3615         VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy);
3616       } else {
3617         Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType();
3618         Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType();
3619         VectorType *Src0Ty = VectorType::get(Src0SclTy, VL.size());
3620         VectorType *Src1Ty = VectorType::get(Src1SclTy, VL.size());
3621         VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty);
3622         VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty);
3623       }
3624       VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0);
3625       return ReuseShuffleCost + VecCost - ScalarCost;
3626     }
3627     default:
3628       llvm_unreachable("Unknown instruction");
3629   }
3630 }
3631 
3632 bool BoUpSLP::isFullyVectorizableTinyTree() const {
3633   LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height "
3634                     << VectorizableTree.size() << " is fully vectorizable .\n");
3635 
3636   // We only handle trees of heights 1 and 2.
3637   if (VectorizableTree.size() == 1 &&
3638       VectorizableTree[0]->State == TreeEntry::Vectorize)
3639     return true;
3640 
3641   if (VectorizableTree.size() != 2)
3642     return false;
3643 
3644   // Handle splat and all-constants stores.
3645   if (VectorizableTree[0]->State == TreeEntry::Vectorize &&
3646       (allConstant(VectorizableTree[1]->Scalars) ||
3647        isSplat(VectorizableTree[1]->Scalars)))
3648     return true;
3649 
3650   // Gathering cost would be too much for tiny trees.
3651   if (VectorizableTree[0]->State == TreeEntry::NeedToGather ||
3652       VectorizableTree[1]->State == TreeEntry::NeedToGather)
3653     return false;
3654 
3655   return true;
3656 }
3657 
3658 bool BoUpSLP::isLoadCombineReductionCandidate(unsigned RdxOpcode) const {
3659   if (RdxOpcode != Instruction::Or)
3660     return false;
3661 
3662   unsigned NumElts = VectorizableTree[0]->Scalars.size();
3663   Value *FirstReduced = VectorizableTree[0]->Scalars[0];
3664 
3665   // Look past the reduction to find a source value. Arbitrarily follow the
3666   // path through operand 0 of any 'or'. Also, peek through optional
3667   // shift-left-by-constant.
3668   Value *ZextLoad = FirstReduced;
3669   while (match(ZextLoad, m_Or(m_Value(), m_Value())) ||
3670          match(ZextLoad, m_Shl(m_Value(), m_Constant())))
3671     ZextLoad = cast<BinaryOperator>(ZextLoad)->getOperand(0);
3672 
3673   // Check if the input to the reduction is an extended load.
3674   Value *LoadPtr;
3675   if (!match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr)))))
3676     return false;
3677 
3678   // Require that the total load bit width is a legal integer type.
3679   // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target.
3680   // But <16 x i8> --> i128 is not, so the backend probably can't reduce it.
3681   Type *SrcTy = LoadPtr->getType()->getPointerElementType();
3682   unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts;
3683   LLVMContext &Context = FirstReduced->getContext();
3684   if (!TTI->isTypeLegal(IntegerType::get(Context, LoadBitWidth)))
3685     return false;
3686 
3687   // Everything matched - assume that we can fold the whole sequence using
3688   // load combining.
3689   LLVM_DEBUG(dbgs() << "SLP: Assume load combining for scalar reduction of "
3690              << *(cast<Instruction>(FirstReduced)) << "\n");
3691 
3692   return true;
3693 }
3694 
3695 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const {
3696   // We can vectorize the tree if its size is greater than or equal to the
3697   // minimum size specified by the MinTreeSize command line option.
3698   if (VectorizableTree.size() >= MinTreeSize)
3699     return false;
3700 
3701   // If we have a tiny tree (a tree whose size is less than MinTreeSize), we
3702   // can vectorize it if we can prove it fully vectorizable.
3703   if (isFullyVectorizableTinyTree())
3704     return false;
3705 
3706   assert(VectorizableTree.empty()
3707              ? ExternalUses.empty()
3708              : true && "We shouldn't have any external users");
3709 
3710   // Otherwise, we can't vectorize the tree. It is both tiny and not fully
3711   // vectorizable.
3712   return true;
3713 }
3714 
3715 int BoUpSLP::getSpillCost() const {
3716   // Walk from the bottom of the tree to the top, tracking which values are
3717   // live. When we see a call instruction that is not part of our tree,
3718   // query TTI to see if there is a cost to keeping values live over it
3719   // (for example, if spills and fills are required).
3720   unsigned BundleWidth = VectorizableTree.front()->Scalars.size();
3721   int Cost = 0;
3722 
3723   SmallPtrSet<Instruction*, 4> LiveValues;
3724   Instruction *PrevInst = nullptr;
3725 
3726   for (const auto &TEPtr : VectorizableTree) {
3727     Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]);
3728     if (!Inst)
3729       continue;
3730 
3731     if (!PrevInst) {
3732       PrevInst = Inst;
3733       continue;
3734     }
3735 
3736     // Update LiveValues.
3737     LiveValues.erase(PrevInst);
3738     for (auto &J : PrevInst->operands()) {
3739       if (isa<Instruction>(&*J) && getTreeEntry(&*J))
3740         LiveValues.insert(cast<Instruction>(&*J));
3741     }
3742 
3743     LLVM_DEBUG({
3744       dbgs() << "SLP: #LV: " << LiveValues.size();
3745       for (auto *X : LiveValues)
3746         dbgs() << " " << X->getName();
3747       dbgs() << ", Looking at ";
3748       Inst->dump();
3749     });
3750 
3751     // Now find the sequence of instructions between PrevInst and Inst.
3752     unsigned NumCalls = 0;
3753     BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(),
3754                                  PrevInstIt =
3755                                      PrevInst->getIterator().getReverse();
3756     while (InstIt != PrevInstIt) {
3757       if (PrevInstIt == PrevInst->getParent()->rend()) {
3758         PrevInstIt = Inst->getParent()->rbegin();
3759         continue;
3760       }
3761 
3762       // Debug information does not impact spill cost.
3763       if ((isa<CallInst>(&*PrevInstIt) &&
3764            !isa<DbgInfoIntrinsic>(&*PrevInstIt)) &&
3765           &*PrevInstIt != PrevInst)
3766         NumCalls++;
3767 
3768       ++PrevInstIt;
3769     }
3770 
3771     if (NumCalls) {
3772       SmallVector<Type*, 4> V;
3773       for (auto *II : LiveValues)
3774         V.push_back(VectorType::get(II->getType(), BundleWidth));
3775       Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V);
3776     }
3777 
3778     PrevInst = Inst;
3779   }
3780 
3781   return Cost;
3782 }
3783 
3784 int BoUpSLP::getTreeCost() {
3785   int Cost = 0;
3786   LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size "
3787                     << VectorizableTree.size() << ".\n");
3788 
3789   unsigned BundleWidth = VectorizableTree[0]->Scalars.size();
3790 
3791   for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) {
3792     TreeEntry &TE = *VectorizableTree[I].get();
3793 
3794     // We create duplicate tree entries for gather sequences that have multiple
3795     // uses. However, we should not compute the cost of duplicate sequences.
3796     // For example, if we have a build vector (i.e., insertelement sequence)
3797     // that is used by more than one vector instruction, we only need to
3798     // compute the cost of the insertelement instructions once. The redundant
3799     // instructions will be eliminated by CSE.
3800     //
3801     // We should consider not creating duplicate tree entries for gather
3802     // sequences, and instead add additional edges to the tree representing
3803     // their uses. Since such an approach results in fewer total entries,
3804     // existing heuristics based on tree size may yield different results.
3805     //
3806     if (TE.State == TreeEntry::NeedToGather &&
3807         std::any_of(std::next(VectorizableTree.begin(), I + 1),
3808                     VectorizableTree.end(),
3809                     [TE](const std::unique_ptr<TreeEntry> &EntryPtr) {
3810                       return EntryPtr->State == TreeEntry::NeedToGather &&
3811                              EntryPtr->isSame(TE.Scalars);
3812                     }))
3813       continue;
3814 
3815     int C = getEntryCost(&TE);
3816     LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
3817                       << " for bundle that starts with " << *TE.Scalars[0]
3818                       << ".\n");
3819     Cost += C;
3820   }
3821 
3822   SmallPtrSet<Value *, 16> ExtractCostCalculated;
3823   int ExtractCost = 0;
3824   for (ExternalUser &EU : ExternalUses) {
3825     // We only add extract cost once for the same scalar.
3826     if (!ExtractCostCalculated.insert(EU.Scalar).second)
3827       continue;
3828 
3829     // Uses by ephemeral values are free (because the ephemeral value will be
3830     // removed prior to code generation, and so the extraction will be
3831     // removed as well).
3832     if (EphValues.count(EU.User))
3833       continue;
3834 
3835     // If we plan to rewrite the tree in a smaller type, we will need to sign
3836     // extend the extracted value back to the original type. Here, we account
3837     // for the extract and the added cost of the sign extend if needed.
3838     auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth);
3839     auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
3840     if (MinBWs.count(ScalarRoot)) {
3841       auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
3842       auto Extend =
3843           MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt;
3844       VecTy = VectorType::get(MinTy, BundleWidth);
3845       ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(),
3846                                                    VecTy, EU.Lane);
3847     } else {
3848       ExtractCost +=
3849           TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane);
3850     }
3851   }
3852 
3853   int SpillCost = getSpillCost();
3854   Cost += SpillCost + ExtractCost;
3855 
3856   std::string Str;
3857   {
3858     raw_string_ostream OS(Str);
3859     OS << "SLP: Spill Cost = " << SpillCost << ".\n"
3860        << "SLP: Extract Cost = " << ExtractCost << ".\n"
3861        << "SLP: Total Cost = " << Cost << ".\n";
3862   }
3863   LLVM_DEBUG(dbgs() << Str);
3864 
3865   if (ViewSLPTree)
3866     ViewGraph(this, "SLP" + F->getName(), false, Str);
3867 
3868   return Cost;
3869 }
3870 
3871 int BoUpSLP::getGatherCost(Type *Ty,
3872                            const DenseSet<unsigned> &ShuffledIndices) const {
3873   int Cost = 0;
3874   for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
3875     if (!ShuffledIndices.count(i))
3876       Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
3877   if (!ShuffledIndices.empty())
3878     Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty);
3879   return Cost;
3880 }
3881 
3882 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const {
3883   // Find the type of the operands in VL.
3884   Type *ScalarTy = VL[0]->getType();
3885   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
3886     ScalarTy = SI->getValueOperand()->getType();
3887   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
3888   // Find the cost of inserting/extracting values from the vector.
3889   // Check if the same elements are inserted several times and count them as
3890   // shuffle candidates.
3891   DenseSet<unsigned> ShuffledElements;
3892   DenseSet<Value *> UniqueElements;
3893   // Iterate in reverse order to consider insert elements with the high cost.
3894   for (unsigned I = VL.size(); I > 0; --I) {
3895     unsigned Idx = I - 1;
3896     if (!UniqueElements.insert(VL[Idx]).second)
3897       ShuffledElements.insert(Idx);
3898   }
3899   return getGatherCost(VecTy, ShuffledElements);
3900 }
3901 
3902 // Perform operand reordering on the instructions in VL and return the reordered
3903 // operands in Left and Right.
3904 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
3905                                              SmallVectorImpl<Value *> &Left,
3906                                              SmallVectorImpl<Value *> &Right,
3907                                              const DataLayout &DL,
3908                                              ScalarEvolution &SE,
3909                                              const BoUpSLP &R) {
3910   if (VL.empty())
3911     return;
3912   VLOperands Ops(VL, DL, SE, R);
3913   // Reorder the operands in place.
3914   Ops.reorder();
3915   Left = Ops.getVL(0);
3916   Right = Ops.getVL(1);
3917 }
3918 
3919 void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) {
3920   // Get the basic block this bundle is in. All instructions in the bundle
3921   // should be in this block.
3922   auto *Front = E->getMainOp();
3923   auto *BB = Front->getParent();
3924   assert(llvm::all_of(make_range(E->Scalars.begin(), E->Scalars.end()),
3925                       [=](Value *V) -> bool {
3926                         auto *I = cast<Instruction>(V);
3927                         return !E->isOpcodeOrAlt(I) || I->getParent() == BB;
3928                       }));
3929 
3930   // The last instruction in the bundle in program order.
3931   Instruction *LastInst = nullptr;
3932 
3933   // Find the last instruction. The common case should be that BB has been
3934   // scheduled, and the last instruction is VL.back(). So we start with
3935   // VL.back() and iterate over schedule data until we reach the end of the
3936   // bundle. The end of the bundle is marked by null ScheduleData.
3937   if (BlocksSchedules.count(BB)) {
3938     auto *Bundle =
3939         BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back()));
3940     if (Bundle && Bundle->isPartOfBundle())
3941       for (; Bundle; Bundle = Bundle->NextInBundle)
3942         if (Bundle->OpValue == Bundle->Inst)
3943           LastInst = Bundle->Inst;
3944   }
3945 
3946   // LastInst can still be null at this point if there's either not an entry
3947   // for BB in BlocksSchedules or there's no ScheduleData available for
3948   // VL.back(). This can be the case if buildTree_rec aborts for various
3949   // reasons (e.g., the maximum recursion depth is reached, the maximum region
3950   // size is reached, etc.). ScheduleData is initialized in the scheduling
3951   // "dry-run".
3952   //
3953   // If this happens, we can still find the last instruction by brute force. We
3954   // iterate forwards from Front (inclusive) until we either see all
3955   // instructions in the bundle or reach the end of the block. If Front is the
3956   // last instruction in program order, LastInst will be set to Front, and we
3957   // will visit all the remaining instructions in the block.
3958   //
3959   // One of the reasons we exit early from buildTree_rec is to place an upper
3960   // bound on compile-time. Thus, taking an additional compile-time hit here is
3961   // not ideal. However, this should be exceedingly rare since it requires that
3962   // we both exit early from buildTree_rec and that the bundle be out-of-order
3963   // (causing us to iterate all the way to the end of the block).
3964   if (!LastInst) {
3965     SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end());
3966     for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) {
3967       if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I))
3968         LastInst = &I;
3969       if (Bundle.empty())
3970         break;
3971     }
3972   }
3973   assert(LastInst && "Failed to find last instruction in bundle");
3974 
3975   // Set the insertion point after the last instruction in the bundle. Set the
3976   // debug location to Front.
3977   Builder.SetInsertPoint(BB, ++LastInst->getIterator());
3978   Builder.SetCurrentDebugLocation(Front->getDebugLoc());
3979 }
3980 
3981 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
3982   Value *Vec = UndefValue::get(Ty);
3983   // Generate the 'InsertElement' instruction.
3984   for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
3985     Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
3986     if (auto *Insrt = dyn_cast<InsertElementInst>(Vec)) {
3987       GatherSeq.insert(Insrt);
3988       CSEBlocks.insert(Insrt->getParent());
3989 
3990       // Add to our 'need-to-extract' list.
3991       if (TreeEntry *E = getTreeEntry(VL[i])) {
3992         // Find which lane we need to extract.
3993         int FoundLane = -1;
3994         for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) {
3995           // Is this the lane of the scalar that we are looking for ?
3996           if (E->Scalars[Lane] == VL[i]) {
3997             FoundLane = Lane;
3998             break;
3999           }
4000         }
4001         assert(FoundLane >= 0 && "Could not find the correct lane");
4002         if (!E->ReuseShuffleIndices.empty()) {
4003           FoundLane =
4004               std::distance(E->ReuseShuffleIndices.begin(),
4005                             llvm::find(E->ReuseShuffleIndices, FoundLane));
4006         }
4007         ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane));
4008       }
4009     }
4010   }
4011 
4012   return Vec;
4013 }
4014 
4015 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
4016   InstructionsState S = getSameOpcode(VL);
4017   if (S.getOpcode()) {
4018     if (TreeEntry *E = getTreeEntry(S.OpValue)) {
4019       if (E->isSame(VL)) {
4020         Value *V = vectorizeTree(E);
4021         if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) {
4022           // We need to get the vectorized value but without shuffle.
4023           if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) {
4024             V = SV->getOperand(0);
4025           } else {
4026             // Reshuffle to get only unique values.
4027             SmallVector<unsigned, 4> UniqueIdxs;
4028             SmallSet<unsigned, 4> UsedIdxs;
4029             for(unsigned Idx : E->ReuseShuffleIndices)
4030               if (UsedIdxs.insert(Idx).second)
4031                 UniqueIdxs.emplace_back(Idx);
4032             V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
4033                                             UniqueIdxs);
4034           }
4035         }
4036         return V;
4037       }
4038     }
4039   }
4040 
4041   Type *ScalarTy = S.OpValue->getType();
4042   if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
4043     ScalarTy = SI->getValueOperand()->getType();
4044 
4045   // Check that every instruction appears once in this bundle.
4046   SmallVector<unsigned, 4> ReuseShuffleIndicies;
4047   SmallVector<Value *, 4> UniqueValues;
4048   if (VL.size() > 2) {
4049     DenseMap<Value *, unsigned> UniquePositions;
4050     for (Value *V : VL) {
4051       auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
4052       ReuseShuffleIndicies.emplace_back(Res.first->second);
4053       if (Res.second || isa<Constant>(V))
4054         UniqueValues.emplace_back(V);
4055     }
4056     // Do not shuffle single element or if number of unique values is not power
4057     // of 2.
4058     if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 ||
4059         !llvm::isPowerOf2_32(UniqueValues.size()))
4060       ReuseShuffleIndicies.clear();
4061     else
4062       VL = UniqueValues;
4063   }
4064   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
4065 
4066   Value *V = Gather(VL, VecTy);
4067   if (!ReuseShuffleIndicies.empty()) {
4068     V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4069                                     ReuseShuffleIndicies, "shuffle");
4070     if (auto *I = dyn_cast<Instruction>(V)) {
4071       GatherSeq.insert(I);
4072       CSEBlocks.insert(I->getParent());
4073     }
4074   }
4075   return V;
4076 }
4077 
4078 static void inversePermutation(ArrayRef<unsigned> Indices,
4079                                SmallVectorImpl<unsigned> &Mask) {
4080   Mask.clear();
4081   const unsigned E = Indices.size();
4082   Mask.resize(E);
4083   for (unsigned I = 0; I < E; ++I)
4084     Mask[Indices[I]] = I;
4085 }
4086 
4087 Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
4088   IRBuilder<>::InsertPointGuard Guard(Builder);
4089 
4090   if (E->VectorizedValue) {
4091     LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
4092     return E->VectorizedValue;
4093   }
4094 
4095   Instruction *VL0 = E->getMainOp();
4096   Type *ScalarTy = VL0->getType();
4097   if (StoreInst *SI = dyn_cast<StoreInst>(VL0))
4098     ScalarTy = SI->getValueOperand()->getType();
4099   VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size());
4100 
4101   bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
4102 
4103   if (E->State == TreeEntry::NeedToGather) {
4104     setInsertPointAfterBundle(E);
4105     auto *V = Gather(E->Scalars, VecTy);
4106     if (NeedToShuffleReuses) {
4107       V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4108                                       E->ReuseShuffleIndices, "shuffle");
4109       if (auto *I = dyn_cast<Instruction>(V)) {
4110         GatherSeq.insert(I);
4111         CSEBlocks.insert(I->getParent());
4112       }
4113     }
4114     E->VectorizedValue = V;
4115     return V;
4116   }
4117 
4118   assert(E->State == TreeEntry::Vectorize && "Unhandled state");
4119   unsigned ShuffleOrOp =
4120       E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
4121   switch (ShuffleOrOp) {
4122     case Instruction::PHI: {
4123       auto *PH = cast<PHINode>(VL0);
4124       Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
4125       Builder.SetCurrentDebugLocation(PH->getDebugLoc());
4126       PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
4127       Value *V = NewPhi;
4128       if (NeedToShuffleReuses) {
4129         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4130                                         E->ReuseShuffleIndices, "shuffle");
4131       }
4132       E->VectorizedValue = V;
4133 
4134       // PHINodes may have multiple entries from the same block. We want to
4135       // visit every block once.
4136       SmallPtrSet<BasicBlock*, 4> VisitedBBs;
4137 
4138       for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
4139         ValueList Operands;
4140         BasicBlock *IBB = PH->getIncomingBlock(i);
4141 
4142         if (!VisitedBBs.insert(IBB).second) {
4143           NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
4144           continue;
4145         }
4146 
4147         Builder.SetInsertPoint(IBB->getTerminator());
4148         Builder.SetCurrentDebugLocation(PH->getDebugLoc());
4149         Value *Vec = vectorizeTree(E->getOperand(i));
4150         NewPhi->addIncoming(Vec, IBB);
4151       }
4152 
4153       assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
4154              "Invalid number of incoming values");
4155       return V;
4156     }
4157 
4158     case Instruction::ExtractElement: {
4159       Value *V = E->getSingleOperand(0);
4160       if (!E->ReorderIndices.empty()) {
4161         OrdersType Mask;
4162         inversePermutation(E->ReorderIndices, Mask);
4163         Builder.SetInsertPoint(VL0);
4164         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), Mask,
4165                                         "reorder_shuffle");
4166       }
4167       if (NeedToShuffleReuses) {
4168         // TODO: Merge this shuffle with the ReorderShuffleMask.
4169         if (E->ReorderIndices.empty())
4170           Builder.SetInsertPoint(VL0);
4171         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4172                                         E->ReuseShuffleIndices, "shuffle");
4173       }
4174       E->VectorizedValue = V;
4175       return V;
4176     }
4177     case Instruction::ExtractValue: {
4178       LoadInst *LI = cast<LoadInst>(E->getSingleOperand(0));
4179       Builder.SetInsertPoint(LI);
4180       PointerType *PtrTy =
4181           PointerType::get(VecTy, LI->getPointerAddressSpace());
4182       Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
4183       LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign());
4184       Value *NewV = propagateMetadata(V, E->Scalars);
4185       if (!E->ReorderIndices.empty()) {
4186         OrdersType Mask;
4187         inversePermutation(E->ReorderIndices, Mask);
4188         NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), Mask,
4189                                            "reorder_shuffle");
4190       }
4191       if (NeedToShuffleReuses) {
4192         // TODO: Merge this shuffle with the ReorderShuffleMask.
4193         NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy),
4194                                            E->ReuseShuffleIndices, "shuffle");
4195       }
4196       E->VectorizedValue = NewV;
4197       return NewV;
4198     }
4199     case Instruction::ZExt:
4200     case Instruction::SExt:
4201     case Instruction::FPToUI:
4202     case Instruction::FPToSI:
4203     case Instruction::FPExt:
4204     case Instruction::PtrToInt:
4205     case Instruction::IntToPtr:
4206     case Instruction::SIToFP:
4207     case Instruction::UIToFP:
4208     case Instruction::Trunc:
4209     case Instruction::FPTrunc:
4210     case Instruction::BitCast: {
4211       setInsertPointAfterBundle(E);
4212 
4213       Value *InVec = vectorizeTree(E->getOperand(0));
4214 
4215       if (E->VectorizedValue) {
4216         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
4217         return E->VectorizedValue;
4218       }
4219 
4220       auto *CI = cast<CastInst>(VL0);
4221       Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
4222       if (NeedToShuffleReuses) {
4223         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4224                                         E->ReuseShuffleIndices, "shuffle");
4225       }
4226       E->VectorizedValue = V;
4227       ++NumVectorInstructions;
4228       return V;
4229     }
4230     case Instruction::FCmp:
4231     case Instruction::ICmp: {
4232       setInsertPointAfterBundle(E);
4233 
4234       Value *L = vectorizeTree(E->getOperand(0));
4235       Value *R = vectorizeTree(E->getOperand(1));
4236 
4237       if (E->VectorizedValue) {
4238         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
4239         return E->VectorizedValue;
4240       }
4241 
4242       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
4243       Value *V;
4244       if (E->getOpcode() == Instruction::FCmp)
4245         V = Builder.CreateFCmp(P0, L, R);
4246       else
4247         V = Builder.CreateICmp(P0, L, R);
4248 
4249       propagateIRFlags(V, E->Scalars, VL0);
4250       if (NeedToShuffleReuses) {
4251         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4252                                         E->ReuseShuffleIndices, "shuffle");
4253       }
4254       E->VectorizedValue = V;
4255       ++NumVectorInstructions;
4256       return V;
4257     }
4258     case Instruction::Select: {
4259       setInsertPointAfterBundle(E);
4260 
4261       Value *Cond = vectorizeTree(E->getOperand(0));
4262       Value *True = vectorizeTree(E->getOperand(1));
4263       Value *False = vectorizeTree(E->getOperand(2));
4264 
4265       if (E->VectorizedValue) {
4266         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
4267         return E->VectorizedValue;
4268       }
4269 
4270       Value *V = Builder.CreateSelect(Cond, True, False);
4271       if (NeedToShuffleReuses) {
4272         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4273                                         E->ReuseShuffleIndices, "shuffle");
4274       }
4275       E->VectorizedValue = V;
4276       ++NumVectorInstructions;
4277       return V;
4278     }
4279     case Instruction::FNeg: {
4280       setInsertPointAfterBundle(E);
4281 
4282       Value *Op = vectorizeTree(E->getOperand(0));
4283 
4284       if (E->VectorizedValue) {
4285         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
4286         return E->VectorizedValue;
4287       }
4288 
4289       Value *V = Builder.CreateUnOp(
4290           static_cast<Instruction::UnaryOps>(E->getOpcode()), Op);
4291       propagateIRFlags(V, E->Scalars, VL0);
4292       if (auto *I = dyn_cast<Instruction>(V))
4293         V = propagateMetadata(I, E->Scalars);
4294 
4295       if (NeedToShuffleReuses) {
4296         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4297                                         E->ReuseShuffleIndices, "shuffle");
4298       }
4299       E->VectorizedValue = V;
4300       ++NumVectorInstructions;
4301 
4302       return V;
4303     }
4304     case Instruction::Add:
4305     case Instruction::FAdd:
4306     case Instruction::Sub:
4307     case Instruction::FSub:
4308     case Instruction::Mul:
4309     case Instruction::FMul:
4310     case Instruction::UDiv:
4311     case Instruction::SDiv:
4312     case Instruction::FDiv:
4313     case Instruction::URem:
4314     case Instruction::SRem:
4315     case Instruction::FRem:
4316     case Instruction::Shl:
4317     case Instruction::LShr:
4318     case Instruction::AShr:
4319     case Instruction::And:
4320     case Instruction::Or:
4321     case Instruction::Xor: {
4322       setInsertPointAfterBundle(E);
4323 
4324       Value *LHS = vectorizeTree(E->getOperand(0));
4325       Value *RHS = vectorizeTree(E->getOperand(1));
4326 
4327       if (E->VectorizedValue) {
4328         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
4329         return E->VectorizedValue;
4330       }
4331 
4332       Value *V = Builder.CreateBinOp(
4333           static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS,
4334           RHS);
4335       propagateIRFlags(V, E->Scalars, VL0);
4336       if (auto *I = dyn_cast<Instruction>(V))
4337         V = propagateMetadata(I, E->Scalars);
4338 
4339       if (NeedToShuffleReuses) {
4340         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4341                                         E->ReuseShuffleIndices, "shuffle");
4342       }
4343       E->VectorizedValue = V;
4344       ++NumVectorInstructions;
4345 
4346       return V;
4347     }
4348     case Instruction::Load: {
4349       // Loads are inserted at the head of the tree because we don't want to
4350       // sink them all the way down past store instructions.
4351       bool IsReorder = E->updateStateIfReorder();
4352       if (IsReorder)
4353         VL0 = E->getMainOp();
4354       setInsertPointAfterBundle(E);
4355 
4356       LoadInst *LI = cast<LoadInst>(VL0);
4357       Type *ScalarLoadTy = LI->getType();
4358       unsigned AS = LI->getPointerAddressSpace();
4359 
4360       Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
4361                                             VecTy->getPointerTo(AS));
4362 
4363       // The pointer operand uses an in-tree scalar so we add the new BitCast to
4364       // ExternalUses list to make sure that an extract will be generated in the
4365       // future.
4366       Value *PO = LI->getPointerOperand();
4367       if (getTreeEntry(PO))
4368         ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0));
4369 
4370       MaybeAlign Alignment = MaybeAlign(LI->getAlignment());
4371       LI = Builder.CreateLoad(VecTy, VecPtr);
4372       if (!Alignment)
4373         Alignment = MaybeAlign(DL->getABITypeAlignment(ScalarLoadTy));
4374       LI->setAlignment(Alignment);
4375       Value *V = propagateMetadata(LI, E->Scalars);
4376       if (IsReorder) {
4377         OrdersType Mask;
4378         inversePermutation(E->ReorderIndices, Mask);
4379         V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
4380                                         Mask, "reorder_shuffle");
4381       }
4382       if (NeedToShuffleReuses) {
4383         // TODO: Merge this shuffle with the ReorderShuffleMask.
4384         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4385                                         E->ReuseShuffleIndices, "shuffle");
4386       }
4387       E->VectorizedValue = V;
4388       ++NumVectorInstructions;
4389       return V;
4390     }
4391     case Instruction::Store: {
4392       bool IsReorder = !E->ReorderIndices.empty();
4393       auto *SI = cast<StoreInst>(
4394           IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0);
4395       unsigned Alignment = SI->getAlignment();
4396       unsigned AS = SI->getPointerAddressSpace();
4397 
4398       setInsertPointAfterBundle(E);
4399 
4400       Value *VecValue = vectorizeTree(E->getOperand(0));
4401       if (IsReorder) {
4402         OrdersType Mask;
4403         inversePermutation(E->ReorderIndices, Mask);
4404         VecValue = Builder.CreateShuffleVector(
4405             VecValue, UndefValue::get(VecValue->getType()), E->ReorderIndices,
4406             "reorder_shuffle");
4407       }
4408       Value *ScalarPtr = SI->getPointerOperand();
4409       Value *VecPtr = Builder.CreateBitCast(
4410           ScalarPtr, VecValue->getType()->getPointerTo(AS));
4411       StoreInst *ST = Builder.CreateStore(VecValue, VecPtr);
4412 
4413       // The pointer operand uses an in-tree scalar, so add the new BitCast to
4414       // ExternalUses to make sure that an extract will be generated in the
4415       // future.
4416       if (getTreeEntry(ScalarPtr))
4417         ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0));
4418 
4419       if (!Alignment)
4420         Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType());
4421 
4422       ST->setAlignment(Align(Alignment));
4423       Value *V = propagateMetadata(ST, E->Scalars);
4424       if (NeedToShuffleReuses) {
4425         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4426                                         E->ReuseShuffleIndices, "shuffle");
4427       }
4428       E->VectorizedValue = V;
4429       ++NumVectorInstructions;
4430       return V;
4431     }
4432     case Instruction::GetElementPtr: {
4433       setInsertPointAfterBundle(E);
4434 
4435       Value *Op0 = vectorizeTree(E->getOperand(0));
4436 
4437       std::vector<Value *> OpVecs;
4438       for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
4439            ++j) {
4440         ValueList &VL = E->getOperand(j);
4441         // Need to cast all elements to the same type before vectorization to
4442         // avoid crash.
4443         Type *VL0Ty = VL0->getOperand(j)->getType();
4444         Type *Ty = llvm::all_of(
4445                        VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); })
4446                        ? VL0Ty
4447                        : DL->getIndexType(cast<GetElementPtrInst>(VL0)
4448                                               ->getPointerOperandType()
4449                                               ->getScalarType());
4450         for (Value *&V : VL) {
4451           auto *CI = cast<ConstantInt>(V);
4452           V = ConstantExpr::getIntegerCast(CI, Ty,
4453                                            CI->getValue().isSignBitSet());
4454         }
4455         Value *OpVec = vectorizeTree(VL);
4456         OpVecs.push_back(OpVec);
4457       }
4458 
4459       Value *V = Builder.CreateGEP(
4460           cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs);
4461       if (Instruction *I = dyn_cast<Instruction>(V))
4462         V = propagateMetadata(I, E->Scalars);
4463 
4464       if (NeedToShuffleReuses) {
4465         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4466                                         E->ReuseShuffleIndices, "shuffle");
4467       }
4468       E->VectorizedValue = V;
4469       ++NumVectorInstructions;
4470 
4471       return V;
4472     }
4473     case Instruction::Call: {
4474       CallInst *CI = cast<CallInst>(VL0);
4475       setInsertPointAfterBundle(E);
4476 
4477       Intrinsic::ID IID  = Intrinsic::not_intrinsic;
4478       if (Function *FI = CI->getCalledFunction())
4479         IID = FI->getIntrinsicID();
4480 
4481       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4482 
4483       auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
4484       bool UseIntrinsic = VecCallCosts.first <= VecCallCosts.second;
4485 
4486       Value *ScalarArg = nullptr;
4487       std::vector<Value *> OpVecs;
4488       for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
4489         ValueList OpVL;
4490         // Some intrinsics have scalar arguments. This argument should not be
4491         // vectorized.
4492         if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) {
4493           CallInst *CEI = cast<CallInst>(VL0);
4494           ScalarArg = CEI->getArgOperand(j);
4495           OpVecs.push_back(CEI->getArgOperand(j));
4496           continue;
4497         }
4498 
4499         Value *OpVec = vectorizeTree(E->getOperand(j));
4500         LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
4501         OpVecs.push_back(OpVec);
4502       }
4503 
4504       Module *M = F->getParent();
4505       Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) };
4506       Function *CF = Intrinsic::getDeclaration(M, ID, Tys);
4507 
4508       if (!UseIntrinsic) {
4509         VFShape Shape = VFShape::get(
4510             *CI, {static_cast<unsigned>(VecTy->getNumElements()), false},
4511             false /*HasGlobalPred*/);
4512         CF = VFDatabase(*CI).getVectorizedFunction(Shape);
4513       }
4514 
4515       SmallVector<OperandBundleDef, 1> OpBundles;
4516       CI->getOperandBundlesAsDefs(OpBundles);
4517       Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
4518 
4519       // The scalar argument uses an in-tree scalar so we add the new vectorized
4520       // call to ExternalUses list to make sure that an extract will be
4521       // generated in the future.
4522       if (ScalarArg && getTreeEntry(ScalarArg))
4523         ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0));
4524 
4525       propagateIRFlags(V, E->Scalars, VL0);
4526       if (NeedToShuffleReuses) {
4527         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4528                                         E->ReuseShuffleIndices, "shuffle");
4529       }
4530       E->VectorizedValue = V;
4531       ++NumVectorInstructions;
4532       return V;
4533     }
4534     case Instruction::ShuffleVector: {
4535       assert(E->isAltShuffle() &&
4536              ((Instruction::isBinaryOp(E->getOpcode()) &&
4537                Instruction::isBinaryOp(E->getAltOpcode())) ||
4538               (Instruction::isCast(E->getOpcode()) &&
4539                Instruction::isCast(E->getAltOpcode()))) &&
4540              "Invalid Shuffle Vector Operand");
4541 
4542       Value *LHS = nullptr, *RHS = nullptr;
4543       if (Instruction::isBinaryOp(E->getOpcode())) {
4544         setInsertPointAfterBundle(E);
4545         LHS = vectorizeTree(E->getOperand(0));
4546         RHS = vectorizeTree(E->getOperand(1));
4547       } else {
4548         setInsertPointAfterBundle(E);
4549         LHS = vectorizeTree(E->getOperand(0));
4550       }
4551 
4552       if (E->VectorizedValue) {
4553         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
4554         return E->VectorizedValue;
4555       }
4556 
4557       Value *V0, *V1;
4558       if (Instruction::isBinaryOp(E->getOpcode())) {
4559         V0 = Builder.CreateBinOp(
4560             static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS);
4561         V1 = Builder.CreateBinOp(
4562             static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS);
4563       } else {
4564         V0 = Builder.CreateCast(
4565             static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy);
4566         V1 = Builder.CreateCast(
4567             static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy);
4568       }
4569 
4570       // Create shuffle to take alternate operations from the vector.
4571       // Also, gather up main and alt scalar ops to propagate IR flags to
4572       // each vector operation.
4573       ValueList OpScalars, AltScalars;
4574       unsigned e = E->Scalars.size();
4575       SmallVector<Constant *, 8> Mask(e);
4576       for (unsigned i = 0; i < e; ++i) {
4577         auto *OpInst = cast<Instruction>(E->Scalars[i]);
4578         assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode");
4579         if (OpInst->getOpcode() == E->getAltOpcode()) {
4580           Mask[i] = Builder.getInt32(e + i);
4581           AltScalars.push_back(E->Scalars[i]);
4582         } else {
4583           Mask[i] = Builder.getInt32(i);
4584           OpScalars.push_back(E->Scalars[i]);
4585         }
4586       }
4587 
4588       Value *ShuffleMask = ConstantVector::get(Mask);
4589       propagateIRFlags(V0, OpScalars);
4590       propagateIRFlags(V1, AltScalars);
4591 
4592       Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask);
4593       if (Instruction *I = dyn_cast<Instruction>(V))
4594         V = propagateMetadata(I, E->Scalars);
4595       if (NeedToShuffleReuses) {
4596         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4597                                         E->ReuseShuffleIndices, "shuffle");
4598       }
4599       E->VectorizedValue = V;
4600       ++NumVectorInstructions;
4601 
4602       return V;
4603     }
4604     default:
4605     llvm_unreachable("unknown inst");
4606   }
4607   return nullptr;
4608 }
4609 
4610 Value *BoUpSLP::vectorizeTree() {
4611   ExtraValueToDebugLocsMap ExternallyUsedValues;
4612   return vectorizeTree(ExternallyUsedValues);
4613 }
4614 
4615 Value *
4616 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) {
4617   // All blocks must be scheduled before any instructions are inserted.
4618   for (auto &BSIter : BlocksSchedules) {
4619     scheduleBlock(BSIter.second.get());
4620   }
4621 
4622   Builder.SetInsertPoint(&F->getEntryBlock().front());
4623   auto *VectorRoot = vectorizeTree(VectorizableTree[0].get());
4624 
4625   // If the vectorized tree can be rewritten in a smaller type, we truncate the
4626   // vectorized root. InstCombine will then rewrite the entire expression. We
4627   // sign extend the extracted values below.
4628   auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
4629   if (MinBWs.count(ScalarRoot)) {
4630     if (auto *I = dyn_cast<Instruction>(VectorRoot))
4631       Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
4632     auto BundleWidth = VectorizableTree[0]->Scalars.size();
4633     auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
4634     auto *VecTy = VectorType::get(MinTy, BundleWidth);
4635     auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
4636     VectorizableTree[0]->VectorizedValue = Trunc;
4637   }
4638 
4639   LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size()
4640                     << " values .\n");
4641 
4642   // If necessary, sign-extend or zero-extend ScalarRoot to the larger type
4643   // specified by ScalarType.
4644   auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) {
4645     if (!MinBWs.count(ScalarRoot))
4646       return Ex;
4647     if (MinBWs[ScalarRoot].second)
4648       return Builder.CreateSExt(Ex, ScalarType);
4649     return Builder.CreateZExt(Ex, ScalarType);
4650   };
4651 
4652   // Extract all of the elements with the external uses.
4653   for (const auto &ExternalUse : ExternalUses) {
4654     Value *Scalar = ExternalUse.Scalar;
4655     llvm::User *User = ExternalUse.User;
4656 
4657     // Skip users that we already RAUW. This happens when one instruction
4658     // has multiple uses of the same value.
4659     if (User && !is_contained(Scalar->users(), User))
4660       continue;
4661     TreeEntry *E = getTreeEntry(Scalar);
4662     assert(E && "Invalid scalar");
4663     assert(E->State == TreeEntry::Vectorize && "Extracting from a gather list");
4664 
4665     Value *Vec = E->VectorizedValue;
4666     assert(Vec && "Can't find vectorizable value");
4667 
4668     Value *Lane = Builder.getInt32(ExternalUse.Lane);
4669     // If User == nullptr, the Scalar is used as extra arg. Generate
4670     // ExtractElement instruction and update the record for this scalar in
4671     // ExternallyUsedValues.
4672     if (!User) {
4673       assert(ExternallyUsedValues.count(Scalar) &&
4674              "Scalar with nullptr as an external user must be registered in "
4675              "ExternallyUsedValues map");
4676       if (auto *VecI = dyn_cast<Instruction>(Vec)) {
4677         Builder.SetInsertPoint(VecI->getParent(),
4678                                std::next(VecI->getIterator()));
4679       } else {
4680         Builder.SetInsertPoint(&F->getEntryBlock().front());
4681       }
4682       Value *Ex = Builder.CreateExtractElement(Vec, Lane);
4683       Ex = extend(ScalarRoot, Ex, Scalar->getType());
4684       CSEBlocks.insert(cast<Instruction>(Scalar)->getParent());
4685       auto &Locs = ExternallyUsedValues[Scalar];
4686       ExternallyUsedValues.insert({Ex, Locs});
4687       ExternallyUsedValues.erase(Scalar);
4688       // Required to update internally referenced instructions.
4689       Scalar->replaceAllUsesWith(Ex);
4690       continue;
4691     }
4692 
4693     // Generate extracts for out-of-tree users.
4694     // Find the insertion point for the extractelement lane.
4695     if (auto *VecI = dyn_cast<Instruction>(Vec)) {
4696       if (PHINode *PH = dyn_cast<PHINode>(User)) {
4697         for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
4698           if (PH->getIncomingValue(i) == Scalar) {
4699             Instruction *IncomingTerminator =
4700                 PH->getIncomingBlock(i)->getTerminator();
4701             if (isa<CatchSwitchInst>(IncomingTerminator)) {
4702               Builder.SetInsertPoint(VecI->getParent(),
4703                                      std::next(VecI->getIterator()));
4704             } else {
4705               Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
4706             }
4707             Value *Ex = Builder.CreateExtractElement(Vec, Lane);
4708             Ex = extend(ScalarRoot, Ex, Scalar->getType());
4709             CSEBlocks.insert(PH->getIncomingBlock(i));
4710             PH->setOperand(i, Ex);
4711           }
4712         }
4713       } else {
4714         Builder.SetInsertPoint(cast<Instruction>(User));
4715         Value *Ex = Builder.CreateExtractElement(Vec, Lane);
4716         Ex = extend(ScalarRoot, Ex, Scalar->getType());
4717         CSEBlocks.insert(cast<Instruction>(User)->getParent());
4718         User->replaceUsesOfWith(Scalar, Ex);
4719       }
4720     } else {
4721       Builder.SetInsertPoint(&F->getEntryBlock().front());
4722       Value *Ex = Builder.CreateExtractElement(Vec, Lane);
4723       Ex = extend(ScalarRoot, Ex, Scalar->getType());
4724       CSEBlocks.insert(&F->getEntryBlock());
4725       User->replaceUsesOfWith(Scalar, Ex);
4726     }
4727 
4728     LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
4729   }
4730 
4731   // For each vectorized value:
4732   for (auto &TEPtr : VectorizableTree) {
4733     TreeEntry *Entry = TEPtr.get();
4734 
4735     // No need to handle users of gathered values.
4736     if (Entry->State == TreeEntry::NeedToGather)
4737       continue;
4738 
4739     assert(Entry->VectorizedValue && "Can't find vectorizable value");
4740 
4741     // For each lane:
4742     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
4743       Value *Scalar = Entry->Scalars[Lane];
4744 
4745 #ifndef NDEBUG
4746       Type *Ty = Scalar->getType();
4747       if (!Ty->isVoidTy()) {
4748         for (User *U : Scalar->users()) {
4749           LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
4750 
4751           // It is legal to delete users in the ignorelist.
4752           assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) &&
4753                  "Deleting out-of-tree value");
4754         }
4755       }
4756 #endif
4757       LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
4758       eraseInstruction(cast<Instruction>(Scalar));
4759     }
4760   }
4761 
4762   Builder.ClearInsertionPoint();
4763 
4764   return VectorizableTree[0]->VectorizedValue;
4765 }
4766 
4767 void BoUpSLP::optimizeGatherSequence() {
4768   LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
4769                     << " gather sequences instructions.\n");
4770   // LICM InsertElementInst sequences.
4771   for (Instruction *I : GatherSeq) {
4772     if (isDeleted(I))
4773       continue;
4774 
4775     // Check if this block is inside a loop.
4776     Loop *L = LI->getLoopFor(I->getParent());
4777     if (!L)
4778       continue;
4779 
4780     // Check if it has a preheader.
4781     BasicBlock *PreHeader = L->getLoopPreheader();
4782     if (!PreHeader)
4783       continue;
4784 
4785     // If the vector or the element that we insert into it are
4786     // instructions that are defined in this basic block then we can't
4787     // hoist this instruction.
4788     auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
4789     auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
4790     if (Op0 && L->contains(Op0))
4791       continue;
4792     if (Op1 && L->contains(Op1))
4793       continue;
4794 
4795     // We can hoist this instruction. Move it to the pre-header.
4796     I->moveBefore(PreHeader->getTerminator());
4797   }
4798 
4799   // Make a list of all reachable blocks in our CSE queue.
4800   SmallVector<const DomTreeNode *, 8> CSEWorkList;
4801   CSEWorkList.reserve(CSEBlocks.size());
4802   for (BasicBlock *BB : CSEBlocks)
4803     if (DomTreeNode *N = DT->getNode(BB)) {
4804       assert(DT->isReachableFromEntry(N));
4805       CSEWorkList.push_back(N);
4806     }
4807 
4808   // Sort blocks by domination. This ensures we visit a block after all blocks
4809   // dominating it are visited.
4810   llvm::stable_sort(CSEWorkList,
4811                     [this](const DomTreeNode *A, const DomTreeNode *B) {
4812                       return DT->properlyDominates(A, B);
4813                     });
4814 
4815   // Perform O(N^2) search over the gather sequences and merge identical
4816   // instructions. TODO: We can further optimize this scan if we split the
4817   // instructions into different buckets based on the insert lane.
4818   SmallVector<Instruction *, 16> Visited;
4819   for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
4820     assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
4821            "Worklist not sorted properly!");
4822     BasicBlock *BB = (*I)->getBlock();
4823     // For all instructions in blocks containing gather sequences:
4824     for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
4825       Instruction *In = &*it++;
4826       if (isDeleted(In))
4827         continue;
4828       if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
4829         continue;
4830 
4831       // Check if we can replace this instruction with any of the
4832       // visited instructions.
4833       for (Instruction *v : Visited) {
4834         if (In->isIdenticalTo(v) &&
4835             DT->dominates(v->getParent(), In->getParent())) {
4836           In->replaceAllUsesWith(v);
4837           eraseInstruction(In);
4838           In = nullptr;
4839           break;
4840         }
4841       }
4842       if (In) {
4843         assert(!is_contained(Visited, In));
4844         Visited.push_back(In);
4845       }
4846     }
4847   }
4848   CSEBlocks.clear();
4849   GatherSeq.clear();
4850 }
4851 
4852 // Groups the instructions to a bundle (which is then a single scheduling entity)
4853 // and schedules instructions until the bundle gets ready.
4854 Optional<BoUpSLP::ScheduleData *>
4855 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
4856                                             const InstructionsState &S) {
4857   if (isa<PHINode>(S.OpValue))
4858     return nullptr;
4859 
4860   // Initialize the instruction bundle.
4861   Instruction *OldScheduleEnd = ScheduleEnd;
4862   ScheduleData *PrevInBundle = nullptr;
4863   ScheduleData *Bundle = nullptr;
4864   bool ReSchedule = false;
4865   LLVM_DEBUG(dbgs() << "SLP:  bundle: " << *S.OpValue << "\n");
4866 
4867   // Make sure that the scheduling region contains all
4868   // instructions of the bundle.
4869   for (Value *V : VL) {
4870     if (!extendSchedulingRegion(V, S))
4871       return None;
4872   }
4873 
4874   for (Value *V : VL) {
4875     ScheduleData *BundleMember = getScheduleData(V);
4876     assert(BundleMember &&
4877            "no ScheduleData for bundle member (maybe not in same basic block)");
4878     if (BundleMember->IsScheduled) {
4879       // A bundle member was scheduled as single instruction before and now
4880       // needs to be scheduled as part of the bundle. We just get rid of the
4881       // existing schedule.
4882       LLVM_DEBUG(dbgs() << "SLP:  reset schedule because " << *BundleMember
4883                         << " was already scheduled\n");
4884       ReSchedule = true;
4885     }
4886     assert(BundleMember->isSchedulingEntity() &&
4887            "bundle member already part of other bundle");
4888     if (PrevInBundle) {
4889       PrevInBundle->NextInBundle = BundleMember;
4890     } else {
4891       Bundle = BundleMember;
4892     }
4893     BundleMember->UnscheduledDepsInBundle = 0;
4894     Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;
4895 
4896     // Group the instructions to a bundle.
4897     BundleMember->FirstInBundle = Bundle;
4898     PrevInBundle = BundleMember;
4899   }
4900   if (ScheduleEnd != OldScheduleEnd) {
4901     // The scheduling region got new instructions at the lower end (or it is a
4902     // new region for the first bundle). This makes it necessary to
4903     // recalculate all dependencies.
4904     // It is seldom that this needs to be done a second time after adding the
4905     // initial bundle to the region.
4906     for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
4907       doForAllOpcodes(I, [](ScheduleData *SD) {
4908         SD->clearDependencies();
4909       });
4910     }
4911     ReSchedule = true;
4912   }
4913   if (ReSchedule) {
4914     resetSchedule();
4915     initialFillReadyList(ReadyInsts);
4916   }
4917   assert(Bundle && "Failed to find schedule bundle");
4918 
4919   LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block "
4920                     << BB->getName() << "\n");
4921 
4922   calculateDependencies(Bundle, true, SLP);
4923 
4924   // Now try to schedule the new bundle. As soon as the bundle is "ready" it
4925   // means that there are no cyclic dependencies and we can schedule it.
4926   // Note that's important that we don't "schedule" the bundle yet (see
4927   // cancelScheduling).
4928   while (!Bundle->isReady() && !ReadyInsts.empty()) {
4929 
4930     ScheduleData *pickedSD = ReadyInsts.back();
4931     ReadyInsts.pop_back();
4932 
4933     if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) {
4934       schedule(pickedSD, ReadyInsts);
4935     }
4936   }
4937   if (!Bundle->isReady()) {
4938     cancelScheduling(VL, S.OpValue);
4939     return None;
4940   }
4941   return Bundle;
4942 }
4943 
4944 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL,
4945                                                 Value *OpValue) {
4946   if (isa<PHINode>(OpValue))
4947     return;
4948 
4949   ScheduleData *Bundle = getScheduleData(OpValue);
4950   LLVM_DEBUG(dbgs() << "SLP:  cancel scheduling of " << *Bundle << "\n");
4951   assert(!Bundle->IsScheduled &&
4952          "Can't cancel bundle which is already scheduled");
4953   assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&
4954          "tried to unbundle something which is not a bundle");
4955 
4956   // Un-bundle: make single instructions out of the bundle.
4957   ScheduleData *BundleMember = Bundle;
4958   while (BundleMember) {
4959     assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
4960     BundleMember->FirstInBundle = BundleMember;
4961     ScheduleData *Next = BundleMember->NextInBundle;
4962     BundleMember->NextInBundle = nullptr;
4963     BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
4964     if (BundleMember->UnscheduledDepsInBundle == 0) {
4965       ReadyInsts.insert(BundleMember);
4966     }
4967     BundleMember = Next;
4968   }
4969 }
4970 
4971 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() {
4972   // Allocate a new ScheduleData for the instruction.
4973   if (ChunkPos >= ChunkSize) {
4974     ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize));
4975     ChunkPos = 0;
4976   }
4977   return &(ScheduleDataChunks.back()[ChunkPos++]);
4978 }
4979 
4980 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V,
4981                                                       const InstructionsState &S) {
4982   if (getScheduleData(V, isOneOf(S, V)))
4983     return true;
4984   Instruction *I = dyn_cast<Instruction>(V);
4985   assert(I && "bundle member must be an instruction");
4986   assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled");
4987   auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool {
4988     ScheduleData *ISD = getScheduleData(I);
4989     if (!ISD)
4990       return false;
4991     assert(isInSchedulingRegion(ISD) &&
4992            "ScheduleData not in scheduling region");
4993     ScheduleData *SD = allocateScheduleDataChunks();
4994     SD->Inst = I;
4995     SD->init(SchedulingRegionID, S.OpValue);
4996     ExtraScheduleDataMap[I][S.OpValue] = SD;
4997     return true;
4998   };
4999   if (CheckSheduleForI(I))
5000     return true;
5001   if (!ScheduleStart) {
5002     // It's the first instruction in the new region.
5003     initScheduleData(I, I->getNextNode(), nullptr, nullptr);
5004     ScheduleStart = I;
5005     ScheduleEnd = I->getNextNode();
5006     if (isOneOf(S, I) != I)
5007       CheckSheduleForI(I);
5008     assert(ScheduleEnd && "tried to vectorize a terminator?");
5009     LLVM_DEBUG(dbgs() << "SLP:  initialize schedule region to " << *I << "\n");
5010     return true;
5011   }
5012   // Search up and down at the same time, because we don't know if the new
5013   // instruction is above or below the existing scheduling region.
5014   BasicBlock::reverse_iterator UpIter =
5015       ++ScheduleStart->getIterator().getReverse();
5016   BasicBlock::reverse_iterator UpperEnd = BB->rend();
5017   BasicBlock::iterator DownIter = ScheduleEnd->getIterator();
5018   BasicBlock::iterator LowerEnd = BB->end();
5019   while (true) {
5020     if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
5021       LLVM_DEBUG(dbgs() << "SLP:  exceeded schedule region size limit\n");
5022       return false;
5023     }
5024 
5025     if (UpIter != UpperEnd) {
5026       if (&*UpIter == I) {
5027         initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
5028         ScheduleStart = I;
5029         if (isOneOf(S, I) != I)
5030           CheckSheduleForI(I);
5031         LLVM_DEBUG(dbgs() << "SLP:  extend schedule region start to " << *I
5032                           << "\n");
5033         return true;
5034       }
5035       ++UpIter;
5036     }
5037     if (DownIter != LowerEnd) {
5038       if (&*DownIter == I) {
5039         initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
5040                          nullptr);
5041         ScheduleEnd = I->getNextNode();
5042         if (isOneOf(S, I) != I)
5043           CheckSheduleForI(I);
5044         assert(ScheduleEnd && "tried to vectorize a terminator?");
5045         LLVM_DEBUG(dbgs() << "SLP:  extend schedule region end to " << *I
5046                           << "\n");
5047         return true;
5048       }
5049       ++DownIter;
5050     }
5051     assert((UpIter != UpperEnd || DownIter != LowerEnd) &&
5052            "instruction not found in block");
5053   }
5054   return true;
5055 }
5056 
5057 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
5058                                                 Instruction *ToI,
5059                                                 ScheduleData *PrevLoadStore,
5060                                                 ScheduleData *NextLoadStore) {
5061   ScheduleData *CurrentLoadStore = PrevLoadStore;
5062   for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
5063     ScheduleData *SD = ScheduleDataMap[I];
5064     if (!SD) {
5065       SD = allocateScheduleDataChunks();
5066       ScheduleDataMap[I] = SD;
5067       SD->Inst = I;
5068     }
5069     assert(!isInSchedulingRegion(SD) &&
5070            "new ScheduleData already in scheduling region");
5071     SD->init(SchedulingRegionID, I);
5072 
5073     if (I->mayReadOrWriteMemory() &&
5074         (!isa<IntrinsicInst>(I) ||
5075          cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) {
5076       // Update the linked list of memory accessing instructions.
5077       if (CurrentLoadStore) {
5078         CurrentLoadStore->NextLoadStore = SD;
5079       } else {
5080         FirstLoadStoreInRegion = SD;
5081       }
5082       CurrentLoadStore = SD;
5083     }
5084   }
5085   if (NextLoadStore) {
5086     if (CurrentLoadStore)
5087       CurrentLoadStore->NextLoadStore = NextLoadStore;
5088   } else {
5089     LastLoadStoreInRegion = CurrentLoadStore;
5090   }
5091 }
5092 
5093 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
5094                                                      bool InsertInReadyList,
5095                                                      BoUpSLP *SLP) {
5096   assert(SD->isSchedulingEntity());
5097 
5098   SmallVector<ScheduleData *, 10> WorkList;
5099   WorkList.push_back(SD);
5100 
5101   while (!WorkList.empty()) {
5102     ScheduleData *SD = WorkList.back();
5103     WorkList.pop_back();
5104 
5105     ScheduleData *BundleMember = SD;
5106     while (BundleMember) {
5107       assert(isInSchedulingRegion(BundleMember));
5108       if (!BundleMember->hasValidDependencies()) {
5109 
5110         LLVM_DEBUG(dbgs() << "SLP:       update deps of " << *BundleMember
5111                           << "\n");
5112         BundleMember->Dependencies = 0;
5113         BundleMember->resetUnscheduledDeps();
5114 
5115         // Handle def-use chain dependencies.
5116         if (BundleMember->OpValue != BundleMember->Inst) {
5117           ScheduleData *UseSD = getScheduleData(BundleMember->Inst);
5118           if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
5119             BundleMember->Dependencies++;
5120             ScheduleData *DestBundle = UseSD->FirstInBundle;
5121             if (!DestBundle->IsScheduled)
5122               BundleMember->incrementUnscheduledDeps(1);
5123             if (!DestBundle->hasValidDependencies())
5124               WorkList.push_back(DestBundle);
5125           }
5126         } else {
5127           for (User *U : BundleMember->Inst->users()) {
5128             if (isa<Instruction>(U)) {
5129               ScheduleData *UseSD = getScheduleData(U);
5130               if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
5131                 BundleMember->Dependencies++;
5132                 ScheduleData *DestBundle = UseSD->FirstInBundle;
5133                 if (!DestBundle->IsScheduled)
5134                   BundleMember->incrementUnscheduledDeps(1);
5135                 if (!DestBundle->hasValidDependencies())
5136                   WorkList.push_back(DestBundle);
5137               }
5138             } else {
5139               // I'm not sure if this can ever happen. But we need to be safe.
5140               // This lets the instruction/bundle never be scheduled and
5141               // eventually disable vectorization.
5142               BundleMember->Dependencies++;
5143               BundleMember->incrementUnscheduledDeps(1);
5144             }
5145           }
5146         }
5147 
5148         // Handle the memory dependencies.
5149         ScheduleData *DepDest = BundleMember->NextLoadStore;
5150         if (DepDest) {
5151           Instruction *SrcInst = BundleMember->Inst;
5152           MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA);
5153           bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
5154           unsigned numAliased = 0;
5155           unsigned DistToSrc = 1;
5156 
5157           while (DepDest) {
5158             assert(isInSchedulingRegion(DepDest));
5159 
5160             // We have two limits to reduce the complexity:
5161             // 1) AliasedCheckLimit: It's a small limit to reduce calls to
5162             //    SLP->isAliased (which is the expensive part in this loop).
5163             // 2) MaxMemDepDistance: It's for very large blocks and it aborts
5164             //    the whole loop (even if the loop is fast, it's quadratic).
5165             //    It's important for the loop break condition (see below) to
5166             //    check this limit even between two read-only instructions.
5167             if (DistToSrc >= MaxMemDepDistance ||
5168                     ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
5169                      (numAliased >= AliasedCheckLimit ||
5170                       SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
5171 
5172               // We increment the counter only if the locations are aliased
5173               // (instead of counting all alias checks). This gives a better
5174               // balance between reduced runtime and accurate dependencies.
5175               numAliased++;
5176 
5177               DepDest->MemoryDependencies.push_back(BundleMember);
5178               BundleMember->Dependencies++;
5179               ScheduleData *DestBundle = DepDest->FirstInBundle;
5180               if (!DestBundle->IsScheduled) {
5181                 BundleMember->incrementUnscheduledDeps(1);
5182               }
5183               if (!DestBundle->hasValidDependencies()) {
5184                 WorkList.push_back(DestBundle);
5185               }
5186             }
5187             DepDest = DepDest->NextLoadStore;
5188 
5189             // Example, explaining the loop break condition: Let's assume our
5190             // starting instruction is i0 and MaxMemDepDistance = 3.
5191             //
5192             //                      +--------v--v--v
5193             //             i0,i1,i2,i3,i4,i5,i6,i7,i8
5194             //             +--------^--^--^
5195             //
5196             // MaxMemDepDistance let us stop alias-checking at i3 and we add
5197             // dependencies from i0 to i3,i4,.. (even if they are not aliased).
5198             // Previously we already added dependencies from i3 to i6,i7,i8
5199             // (because of MaxMemDepDistance). As we added a dependency from
5200             // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
5201             // and we can abort this loop at i6.
5202             if (DistToSrc >= 2 * MaxMemDepDistance)
5203               break;
5204             DistToSrc++;
5205           }
5206         }
5207       }
5208       BundleMember = BundleMember->NextInBundle;
5209     }
5210     if (InsertInReadyList && SD->isReady()) {
5211       ReadyInsts.push_back(SD);
5212       LLVM_DEBUG(dbgs() << "SLP:     gets ready on update: " << *SD->Inst
5213                         << "\n");
5214     }
5215   }
5216 }
5217 
5218 void BoUpSLP::BlockScheduling::resetSchedule() {
5219   assert(ScheduleStart &&
5220          "tried to reset schedule on block which has not been scheduled");
5221   for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
5222     doForAllOpcodes(I, [&](ScheduleData *SD) {
5223       assert(isInSchedulingRegion(SD) &&
5224              "ScheduleData not in scheduling region");
5225       SD->IsScheduled = false;
5226       SD->resetUnscheduledDeps();
5227     });
5228   }
5229   ReadyInsts.clear();
5230 }
5231 
5232 void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
5233   if (!BS->ScheduleStart)
5234     return;
5235 
5236   LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
5237 
5238   BS->resetSchedule();
5239 
5240   // For the real scheduling we use a more sophisticated ready-list: it is
5241   // sorted by the original instruction location. This lets the final schedule
5242   // be as  close as possible to the original instruction order.
5243   struct ScheduleDataCompare {
5244     bool operator()(ScheduleData *SD1, ScheduleData *SD2) const {
5245       return SD2->SchedulingPriority < SD1->SchedulingPriority;
5246     }
5247   };
5248   std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
5249 
5250   // Ensure that all dependency data is updated and fill the ready-list with
5251   // initial instructions.
5252   int Idx = 0;
5253   int NumToSchedule = 0;
5254   for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
5255        I = I->getNextNode()) {
5256     BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) {
5257       assert(SD->isPartOfBundle() ==
5258                  (getTreeEntry(SD->Inst) != nullptr) &&
5259              "scheduler and vectorizer bundle mismatch");
5260       SD->FirstInBundle->SchedulingPriority = Idx++;
5261       if (SD->isSchedulingEntity()) {
5262         BS->calculateDependencies(SD, false, this);
5263         NumToSchedule++;
5264       }
5265     });
5266   }
5267   BS->initialFillReadyList(ReadyInsts);
5268 
5269   Instruction *LastScheduledInst = BS->ScheduleEnd;
5270 
5271   // Do the "real" scheduling.
5272   while (!ReadyInsts.empty()) {
5273     ScheduleData *picked = *ReadyInsts.begin();
5274     ReadyInsts.erase(ReadyInsts.begin());
5275 
5276     // Move the scheduled instruction(s) to their dedicated places, if not
5277     // there yet.
5278     ScheduleData *BundleMember = picked;
5279     while (BundleMember) {
5280       Instruction *pickedInst = BundleMember->Inst;
5281       if (LastScheduledInst->getNextNode() != pickedInst) {
5282         BS->BB->getInstList().remove(pickedInst);
5283         BS->BB->getInstList().insert(LastScheduledInst->getIterator(),
5284                                      pickedInst);
5285       }
5286       LastScheduledInst = pickedInst;
5287       BundleMember = BundleMember->NextInBundle;
5288     }
5289 
5290     BS->schedule(picked, ReadyInsts);
5291     NumToSchedule--;
5292   }
5293   assert(NumToSchedule == 0 && "could not schedule all instructions");
5294 
5295   // Avoid duplicate scheduling of the block.
5296   BS->ScheduleStart = nullptr;
5297 }
5298 
5299 unsigned BoUpSLP::getVectorElementSize(Value *V) const {
5300   // If V is a store, just return the width of the stored value without
5301   // traversing the expression tree. This is the common case.
5302   if (auto *Store = dyn_cast<StoreInst>(V))
5303     return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
5304 
5305   // If V is not a store, we can traverse the expression tree to find loads
5306   // that feed it. The type of the loaded value may indicate a more suitable
5307   // width than V's type. We want to base the vector element size on the width
5308   // of memory operations where possible.
5309   SmallVector<Instruction *, 16> Worklist;
5310   SmallPtrSet<Instruction *, 16> Visited;
5311   if (auto *I = dyn_cast<Instruction>(V)) {
5312     Worklist.push_back(I);
5313     Visited.insert(I);
5314   }
5315 
5316   // Traverse the expression tree in bottom-up order looking for loads. If we
5317   // encounter an instruction we don't yet handle, we give up.
5318   auto MaxWidth = 0u;
5319   auto FoundUnknownInst = false;
5320   while (!Worklist.empty() && !FoundUnknownInst) {
5321     auto *I = Worklist.pop_back_val();
5322 
5323     // We should only be looking at scalar instructions here. If the current
5324     // instruction has a vector type, give up.
5325     auto *Ty = I->getType();
5326     if (isa<VectorType>(Ty))
5327       FoundUnknownInst = true;
5328 
5329     // If the current instruction is a load, update MaxWidth to reflect the
5330     // width of the loaded value.
5331     else if (isa<LoadInst>(I))
5332       MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty));
5333 
5334     // Otherwise, we need to visit the operands of the instruction. We only
5335     // handle the interesting cases from buildTree here. If an operand is an
5336     // instruction we haven't yet visited, we add it to the worklist.
5337     else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
5338              isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) {
5339       for (Use &U : I->operands())
5340         if (auto *J = dyn_cast<Instruction>(U.get()))
5341           if (Visited.insert(J).second)
5342             Worklist.push_back(J);
5343     }
5344 
5345     // If we don't yet handle the instruction, give up.
5346     else
5347       FoundUnknownInst = true;
5348   }
5349 
5350   // If we didn't encounter a memory access in the expression tree, or if we
5351   // gave up for some reason, just return the width of V.
5352   if (!MaxWidth || FoundUnknownInst)
5353     return DL->getTypeSizeInBits(V->getType());
5354 
5355   // Otherwise, return the maximum width we found.
5356   return MaxWidth;
5357 }
5358 
5359 // Determine if a value V in a vectorizable expression Expr can be demoted to a
5360 // smaller type with a truncation. We collect the values that will be demoted
5361 // in ToDemote and additional roots that require investigating in Roots.
5362 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
5363                                   SmallVectorImpl<Value *> &ToDemote,
5364                                   SmallVectorImpl<Value *> &Roots) {
5365   // We can always demote constants.
5366   if (isa<Constant>(V)) {
5367     ToDemote.push_back(V);
5368     return true;
5369   }
5370 
5371   // If the value is not an instruction in the expression with only one use, it
5372   // cannot be demoted.
5373   auto *I = dyn_cast<Instruction>(V);
5374   if (!I || !I->hasOneUse() || !Expr.count(I))
5375     return false;
5376 
5377   switch (I->getOpcode()) {
5378 
5379   // We can always demote truncations and extensions. Since truncations can
5380   // seed additional demotion, we save the truncated value.
5381   case Instruction::Trunc:
5382     Roots.push_back(I->getOperand(0));
5383     break;
5384   case Instruction::ZExt:
5385   case Instruction::SExt:
5386     break;
5387 
5388   // We can demote certain binary operations if we can demote both of their
5389   // operands.
5390   case Instruction::Add:
5391   case Instruction::Sub:
5392   case Instruction::Mul:
5393   case Instruction::And:
5394   case Instruction::Or:
5395   case Instruction::Xor:
5396     if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
5397         !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
5398       return false;
5399     break;
5400 
5401   // We can demote selects if we can demote their true and false values.
5402   case Instruction::Select: {
5403     SelectInst *SI = cast<SelectInst>(I);
5404     if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
5405         !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
5406       return false;
5407     break;
5408   }
5409 
5410   // We can demote phis if we can demote all their incoming operands. Note that
5411   // we don't need to worry about cycles since we ensure single use above.
5412   case Instruction::PHI: {
5413     PHINode *PN = cast<PHINode>(I);
5414     for (Value *IncValue : PN->incoming_values())
5415       if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
5416         return false;
5417     break;
5418   }
5419 
5420   // Otherwise, conservatively give up.
5421   default:
5422     return false;
5423   }
5424 
5425   // Record the value that we can demote.
5426   ToDemote.push_back(V);
5427   return true;
5428 }
5429 
5430 void BoUpSLP::computeMinimumValueSizes() {
5431   // If there are no external uses, the expression tree must be rooted by a
5432   // store. We can't demote in-memory values, so there is nothing to do here.
5433   if (ExternalUses.empty())
5434     return;
5435 
5436   // We only attempt to truncate integer expressions.
5437   auto &TreeRoot = VectorizableTree[0]->Scalars;
5438   auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
5439   if (!TreeRootIT)
5440     return;
5441 
5442   // If the expression is not rooted by a store, these roots should have
5443   // external uses. We will rely on InstCombine to rewrite the expression in
5444   // the narrower type. However, InstCombine only rewrites single-use values.
5445   // This means that if a tree entry other than a root is used externally, it
5446   // must have multiple uses and InstCombine will not rewrite it. The code
5447   // below ensures that only the roots are used externally.
5448   SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
5449   for (auto &EU : ExternalUses)
5450     if (!Expr.erase(EU.Scalar))
5451       return;
5452   if (!Expr.empty())
5453     return;
5454 
5455   // Collect the scalar values of the vectorizable expression. We will use this
5456   // context to determine which values can be demoted. If we see a truncation,
5457   // we mark it as seeding another demotion.
5458   for (auto &EntryPtr : VectorizableTree)
5459     Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end());
5460 
5461   // Ensure the roots of the vectorizable tree don't form a cycle. They must
5462   // have a single external user that is not in the vectorizable tree.
5463   for (auto *Root : TreeRoot)
5464     if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
5465       return;
5466 
5467   // Conservatively determine if we can actually truncate the roots of the
5468   // expression. Collect the values that can be demoted in ToDemote and
5469   // additional roots that require investigating in Roots.
5470   SmallVector<Value *, 32> ToDemote;
5471   SmallVector<Value *, 4> Roots;
5472   for (auto *Root : TreeRoot)
5473     if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
5474       return;
5475 
5476   // The maximum bit width required to represent all the values that can be
5477   // demoted without loss of precision. It would be safe to truncate the roots
5478   // of the expression to this width.
5479   auto MaxBitWidth = 8u;
5480 
5481   // We first check if all the bits of the roots are demanded. If they're not,
5482   // we can truncate the roots to this narrower type.
5483   for (auto *Root : TreeRoot) {
5484     auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
5485     MaxBitWidth = std::max<unsigned>(
5486         Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
5487   }
5488 
5489   // True if the roots can be zero-extended back to their original type, rather
5490   // than sign-extended. We know that if the leading bits are not demanded, we
5491   // can safely zero-extend. So we initialize IsKnownPositive to True.
5492   bool IsKnownPositive = true;
5493 
5494   // If all the bits of the roots are demanded, we can try a little harder to
5495   // compute a narrower type. This can happen, for example, if the roots are
5496   // getelementptr indices. InstCombine promotes these indices to the pointer
5497   // width. Thus, all their bits are technically demanded even though the
5498   // address computation might be vectorized in a smaller type.
5499   //
5500   // We start by looking at each entry that can be demoted. We compute the
5501   // maximum bit width required to store the scalar by using ValueTracking to
5502   // compute the number of high-order bits we can truncate.
5503   if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) &&
5504       llvm::all_of(TreeRoot, [](Value *R) {
5505         assert(R->hasOneUse() && "Root should have only one use!");
5506         return isa<GetElementPtrInst>(R->user_back());
5507       })) {
5508     MaxBitWidth = 8u;
5509 
5510     // Determine if the sign bit of all the roots is known to be zero. If not,
5511     // IsKnownPositive is set to False.
5512     IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) {
5513       KnownBits Known = computeKnownBits(R, *DL);
5514       return Known.isNonNegative();
5515     });
5516 
5517     // Determine the maximum number of bits required to store the scalar
5518     // values.
5519     for (auto *Scalar : ToDemote) {
5520       auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT);
5521       auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
5522       MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
5523     }
5524 
5525     // If we can't prove that the sign bit is zero, we must add one to the
5526     // maximum bit width to account for the unknown sign bit. This preserves
5527     // the existing sign bit so we can safely sign-extend the root back to the
5528     // original type. Otherwise, if we know the sign bit is zero, we will
5529     // zero-extend the root instead.
5530     //
5531     // FIXME: This is somewhat suboptimal, as there will be cases where adding
5532     //        one to the maximum bit width will yield a larger-than-necessary
5533     //        type. In general, we need to add an extra bit only if we can't
5534     //        prove that the upper bit of the original type is equal to the
5535     //        upper bit of the proposed smaller type. If these two bits are the
5536     //        same (either zero or one) we know that sign-extending from the
5537     //        smaller type will result in the same value. Here, since we can't
5538     //        yet prove this, we are just making the proposed smaller type
5539     //        larger to ensure correctness.
5540     if (!IsKnownPositive)
5541       ++MaxBitWidth;
5542   }
5543 
5544   // Round MaxBitWidth up to the next power-of-two.
5545   if (!isPowerOf2_64(MaxBitWidth))
5546     MaxBitWidth = NextPowerOf2(MaxBitWidth);
5547 
5548   // If the maximum bit width we compute is less than the with of the roots'
5549   // type, we can proceed with the narrowing. Otherwise, do nothing.
5550   if (MaxBitWidth >= TreeRootIT->getBitWidth())
5551     return;
5552 
5553   // If we can truncate the root, we must collect additional values that might
5554   // be demoted as a result. That is, those seeded by truncations we will
5555   // modify.
5556   while (!Roots.empty())
5557     collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);
5558 
5559   // Finally, map the values we can demote to the maximum bit with we computed.
5560   for (auto *Scalar : ToDemote)
5561     MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive);
5562 }
5563 
5564 namespace {
5565 
5566 /// The SLPVectorizer Pass.
5567 struct SLPVectorizer : public FunctionPass {
5568   SLPVectorizerPass Impl;
5569 
5570   /// Pass identification, replacement for typeid
5571   static char ID;
5572 
5573   explicit SLPVectorizer() : FunctionPass(ID) {
5574     initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
5575   }
5576 
5577   bool doInitialization(Module &M) override {
5578     return false;
5579   }
5580 
5581   bool runOnFunction(Function &F) override {
5582     if (skipFunction(F))
5583       return false;
5584 
5585     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
5586     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
5587     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
5588     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
5589     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
5590     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
5591     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5592     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
5593     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
5594     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
5595 
5596     return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
5597   }
5598 
5599   void getAnalysisUsage(AnalysisUsage &AU) const override {
5600     FunctionPass::getAnalysisUsage(AU);
5601     AU.addRequired<AssumptionCacheTracker>();
5602     AU.addRequired<ScalarEvolutionWrapperPass>();
5603     AU.addRequired<AAResultsWrapperPass>();
5604     AU.addRequired<TargetTransformInfoWrapperPass>();
5605     AU.addRequired<LoopInfoWrapperPass>();
5606     AU.addRequired<DominatorTreeWrapperPass>();
5607     AU.addRequired<DemandedBitsWrapperPass>();
5608     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
5609     AU.addRequired<InjectTLIMappingsLegacy>();
5610     AU.addPreserved<LoopInfoWrapperPass>();
5611     AU.addPreserved<DominatorTreeWrapperPass>();
5612     AU.addPreserved<AAResultsWrapperPass>();
5613     AU.addPreserved<GlobalsAAWrapperPass>();
5614     AU.setPreservesCFG();
5615   }
5616 };
5617 
5618 } // end anonymous namespace
5619 
5620 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
5621   auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
5622   auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
5623   auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
5624   auto *AA = &AM.getResult<AAManager>(F);
5625   auto *LI = &AM.getResult<LoopAnalysis>(F);
5626   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
5627   auto *AC = &AM.getResult<AssumptionAnalysis>(F);
5628   auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
5629   auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
5630 
5631   bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
5632   if (!Changed)
5633     return PreservedAnalyses::all();
5634 
5635   PreservedAnalyses PA;
5636   PA.preserveSet<CFGAnalyses>();
5637   PA.preserve<AAManager>();
5638   PA.preserve<GlobalsAA>();
5639   return PA;
5640 }
5641 
5642 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
5643                                 TargetTransformInfo *TTI_,
5644                                 TargetLibraryInfo *TLI_, AliasAnalysis *AA_,
5645                                 LoopInfo *LI_, DominatorTree *DT_,
5646                                 AssumptionCache *AC_, DemandedBits *DB_,
5647                                 OptimizationRemarkEmitter *ORE_) {
5648   SE = SE_;
5649   TTI = TTI_;
5650   TLI = TLI_;
5651   AA = AA_;
5652   LI = LI_;
5653   DT = DT_;
5654   AC = AC_;
5655   DB = DB_;
5656   DL = &F.getParent()->getDataLayout();
5657 
5658   Stores.clear();
5659   GEPs.clear();
5660   bool Changed = false;
5661 
5662   // If the target claims to have no vector registers don't attempt
5663   // vectorization.
5664   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)))
5665     return false;
5666 
5667   // Don't vectorize when the attribute NoImplicitFloat is used.
5668   if (F.hasFnAttribute(Attribute::NoImplicitFloat))
5669     return false;
5670 
5671   LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
5672 
5673   // Use the bottom up slp vectorizer to construct chains that start with
5674   // store instructions.
5675   BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_);
5676 
5677   // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
5678   // delete instructions.
5679 
5680   // Scan the blocks in the function in post order.
5681   for (auto BB : post_order(&F.getEntryBlock())) {
5682     collectSeedInstructions(BB);
5683 
5684     // Vectorize trees that end at stores.
5685     if (!Stores.empty()) {
5686       LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()
5687                         << " underlying objects.\n");
5688       Changed |= vectorizeStoreChains(R);
5689     }
5690 
5691     // Vectorize trees that end at reductions.
5692     Changed |= vectorizeChainsInBlock(BB, R);
5693 
5694     // Vectorize the index computations of getelementptr instructions. This
5695     // is primarily intended to catch gather-like idioms ending at
5696     // non-consecutive loads.
5697     if (!GEPs.empty()) {
5698       LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()
5699                         << " underlying objects.\n");
5700       Changed |= vectorizeGEPIndices(BB, R);
5701     }
5702   }
5703 
5704   if (Changed) {
5705     R.optimizeGatherSequence();
5706     LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
5707     LLVM_DEBUG(verifyFunction(F));
5708   }
5709   return Changed;
5710 }
5711 
5712 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R,
5713                                             unsigned Idx) {
5714   LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size()
5715                     << "\n");
5716   const unsigned Sz = R.getVectorElementSize(Chain[0]);
5717   const unsigned MinVF = R.getMinVecRegSize() / Sz;
5718   unsigned VF = Chain.size();
5719 
5720   if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF)
5721     return false;
5722 
5723   LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx
5724                     << "\n");
5725 
5726   R.buildTree(Chain);
5727   Optional<ArrayRef<unsigned>> Order = R.bestOrder();
5728   // TODO: Handle orders of size less than number of elements in the vector.
5729   if (Order && Order->size() == Chain.size()) {
5730     // TODO: reorder tree nodes without tree rebuilding.
5731     SmallVector<Value *, 4> ReorderedOps(Chain.rbegin(), Chain.rend());
5732     llvm::transform(*Order, ReorderedOps.begin(),
5733                     [Chain](const unsigned Idx) { return Chain[Idx]; });
5734     R.buildTree(ReorderedOps);
5735   }
5736   if (R.isTreeTinyAndNotFullyVectorizable())
5737     return false;
5738 
5739   R.computeMinimumValueSizes();
5740 
5741   int Cost = R.getTreeCost();
5742 
5743   LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n");
5744   if (Cost < -SLPCostThreshold) {
5745     LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
5746 
5747     using namespace ore;
5748 
5749     R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized",
5750                                         cast<StoreInst>(Chain[0]))
5751                      << "Stores SLP vectorized with cost " << NV("Cost", Cost)
5752                      << " and with tree size "
5753                      << NV("TreeSize", R.getTreeSize()));
5754 
5755     R.vectorizeTree();
5756     return true;
5757   }
5758 
5759   return false;
5760 }
5761 
5762 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
5763                                         BoUpSLP &R) {
5764   // We may run into multiple chains that merge into a single chain. We mark the
5765   // stores that we vectorized so that we don't visit the same store twice.
5766   BoUpSLP::ValueSet VectorizedStores;
5767   bool Changed = false;
5768 
5769   int E = Stores.size();
5770   SmallBitVector Tails(E, false);
5771   SmallVector<int, 16> ConsecutiveChain(E, E + 1);
5772   int MaxIter = MaxStoreLookup.getValue();
5773   int IterCnt;
5774   auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter,
5775                                   &ConsecutiveChain](int K, int Idx) {
5776     if (IterCnt >= MaxIter)
5777       return true;
5778     ++IterCnt;
5779     if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE))
5780       return false;
5781 
5782     Tails.set(Idx);
5783     ConsecutiveChain[K] = Idx;
5784     return true;
5785   };
5786   // Do a quadratic search on all of the given stores in reverse order and find
5787   // all of the pairs of stores that follow each other.
5788   for (int Idx = E - 1; Idx >= 0; --Idx) {
5789     // If a store has multiple consecutive store candidates, search according
5790     // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ...
5791     // This is because usually pairing with immediate succeeding or preceding
5792     // candidate create the best chance to find slp vectorization opportunity.
5793     const int MaxLookDepth = std::max(E - Idx, Idx + 1);
5794     IterCnt = 0;
5795     for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset)
5796       if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) ||
5797           (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx)))
5798         break;
5799   }
5800 
5801   // For stores that start but don't end a link in the chain:
5802   for (int Cnt = E; Cnt > 0; --Cnt) {
5803     int I = Cnt - 1;
5804     if (ConsecutiveChain[I] == E + 1 || Tails.test(I))
5805       continue;
5806     // We found a store instr that starts a chain. Now follow the chain and try
5807     // to vectorize it.
5808     BoUpSLP::ValueList Operands;
5809     // Collect the chain into a list.
5810     while (I != E + 1 && !VectorizedStores.count(Stores[I])) {
5811       Operands.push_back(Stores[I]);
5812       // Move to the next value in the chain.
5813       I = ConsecutiveChain[I];
5814     }
5815 
5816     // If a vector register can't hold 1 element, we are done.
5817     unsigned MaxVecRegSize = R.getMaxVecRegSize();
5818     unsigned EltSize = R.getVectorElementSize(Stores[0]);
5819     if (MaxVecRegSize % EltSize != 0)
5820       continue;
5821 
5822     unsigned MaxElts = MaxVecRegSize / EltSize;
5823     // FIXME: Is division-by-2 the correct step? Should we assert that the
5824     // register size is a power-of-2?
5825     unsigned StartIdx = 0;
5826     for (unsigned Size = llvm::PowerOf2Ceil(MaxElts); Size >= 2; Size /= 2) {
5827       for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) {
5828         ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size);
5829         if (!VectorizedStores.count(Slice.front()) &&
5830             !VectorizedStores.count(Slice.back()) &&
5831             vectorizeStoreChain(Slice, R, Cnt)) {
5832           // Mark the vectorized stores so that we don't vectorize them again.
5833           VectorizedStores.insert(Slice.begin(), Slice.end());
5834           Changed = true;
5835           // If we vectorized initial block, no need to try to vectorize it
5836           // again.
5837           if (Cnt == StartIdx)
5838             StartIdx += Size;
5839           Cnt += Size;
5840           continue;
5841         }
5842         ++Cnt;
5843       }
5844       // Check if the whole array was vectorized already - exit.
5845       if (StartIdx >= Operands.size())
5846         break;
5847     }
5848   }
5849 
5850   return Changed;
5851 }
5852 
5853 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
5854   // Initialize the collections. We will make a single pass over the block.
5855   Stores.clear();
5856   GEPs.clear();
5857 
5858   // Visit the store and getelementptr instructions in BB and organize them in
5859   // Stores and GEPs according to the underlying objects of their pointer
5860   // operands.
5861   for (Instruction &I : *BB) {
5862     // Ignore store instructions that are volatile or have a pointer operand
5863     // that doesn't point to a scalar type.
5864     if (auto *SI = dyn_cast<StoreInst>(&I)) {
5865       if (!SI->isSimple())
5866         continue;
5867       if (!isValidElementType(SI->getValueOperand()->getType()))
5868         continue;
5869       Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI);
5870     }
5871 
5872     // Ignore getelementptr instructions that have more than one index, a
5873     // constant index, or a pointer operand that doesn't point to a scalar
5874     // type.
5875     else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
5876       auto Idx = GEP->idx_begin()->get();
5877       if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
5878         continue;
5879       if (!isValidElementType(Idx->getType()))
5880         continue;
5881       if (GEP->getType()->isVectorTy())
5882         continue;
5883       GEPs[GEP->getPointerOperand()].push_back(GEP);
5884     }
5885   }
5886 }
5887 
5888 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
5889   if (!A || !B)
5890     return false;
5891   Value *VL[] = { A, B };
5892   return tryToVectorizeList(VL, R, /*UserCost=*/0, true);
5893 }
5894 
5895 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
5896                                            int UserCost, bool AllowReorder) {
5897   if (VL.size() < 2)
5898     return false;
5899 
5900   LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = "
5901                     << VL.size() << ".\n");
5902 
5903   // Check that all of the parts are instructions of the same type,
5904   // we permit an alternate opcode via InstructionsState.
5905   InstructionsState S = getSameOpcode(VL);
5906   if (!S.getOpcode())
5907     return false;
5908 
5909   Instruction *I0 = cast<Instruction>(S.OpValue);
5910   // Make sure invalid types (including vector type) are rejected before
5911   // determining vectorization factor for scalar instructions.
5912   for (Value *V : VL) {
5913     Type *Ty = V->getType();
5914     if (!isValidElementType(Ty)) {
5915       // NOTE: the following will give user internal llvm type name, which may
5916       // not be useful.
5917       R.getORE()->emit([&]() {
5918         std::string type_str;
5919         llvm::raw_string_ostream rso(type_str);
5920         Ty->print(rso);
5921         return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0)
5922                << "Cannot SLP vectorize list: type "
5923                << rso.str() + " is unsupported by vectorizer";
5924       });
5925       return false;
5926     }
5927   }
5928 
5929   unsigned Sz = R.getVectorElementSize(I0);
5930   unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz);
5931   unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF);
5932   if (MaxVF < 2) {
5933     R.getORE()->emit([&]() {
5934       return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0)
5935              << "Cannot SLP vectorize list: vectorization factor "
5936              << "less than 2 is not supported";
5937     });
5938     return false;
5939   }
5940 
5941   bool Changed = false;
5942   bool CandidateFound = false;
5943   int MinCost = SLPCostThreshold;
5944 
5945   unsigned NextInst = 0, MaxInst = VL.size();
5946   for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) {
5947     // No actual vectorization should happen, if number of parts is the same as
5948     // provided vectorization factor (i.e. the scalar type is used for vector
5949     // code during codegen).
5950     auto *VecTy = VectorType::get(VL[0]->getType(), VF);
5951     if (TTI->getNumberOfParts(VecTy) == VF)
5952       continue;
5953     for (unsigned I = NextInst; I < MaxInst; ++I) {
5954       unsigned OpsWidth = 0;
5955 
5956       if (I + VF > MaxInst)
5957         OpsWidth = MaxInst - I;
5958       else
5959         OpsWidth = VF;
5960 
5961       if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
5962         break;
5963 
5964       ArrayRef<Value *> Ops = VL.slice(I, OpsWidth);
5965       // Check that a previous iteration of this loop did not delete the Value.
5966       if (llvm::any_of(Ops, [&R](Value *V) {
5967             auto *I = dyn_cast<Instruction>(V);
5968             return I && R.isDeleted(I);
5969           }))
5970         continue;
5971 
5972       LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
5973                         << "\n");
5974 
5975       R.buildTree(Ops);
5976       Optional<ArrayRef<unsigned>> Order = R.bestOrder();
5977       // TODO: check if we can allow reordering for more cases.
5978       if (AllowReorder && Order) {
5979         // TODO: reorder tree nodes without tree rebuilding.
5980         // Conceptually, there is nothing actually preventing us from trying to
5981         // reorder a larger list. In fact, we do exactly this when vectorizing
5982         // reductions. However, at this point, we only expect to get here when
5983         // there are exactly two operations.
5984         assert(Ops.size() == 2);
5985         Value *ReorderedOps[] = {Ops[1], Ops[0]};
5986         R.buildTree(ReorderedOps, None);
5987       }
5988       if (R.isTreeTinyAndNotFullyVectorizable())
5989         continue;
5990 
5991       R.computeMinimumValueSizes();
5992       int Cost = R.getTreeCost() - UserCost;
5993       CandidateFound = true;
5994       MinCost = std::min(MinCost, Cost);
5995 
5996       if (Cost < -SLPCostThreshold) {
5997         LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
5998         R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList",
5999                                                     cast<Instruction>(Ops[0]))
6000                                  << "SLP vectorized with cost " << ore::NV("Cost", Cost)
6001                                  << " and with tree size "
6002                                  << ore::NV("TreeSize", R.getTreeSize()));
6003 
6004         R.vectorizeTree();
6005         // Move to the next bundle.
6006         I += VF - 1;
6007         NextInst = I + 1;
6008         Changed = true;
6009       }
6010     }
6011   }
6012 
6013   if (!Changed && CandidateFound) {
6014     R.getORE()->emit([&]() {
6015       return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0)
6016              << "List vectorization was possible but not beneficial with cost "
6017              << ore::NV("Cost", MinCost) << " >= "
6018              << ore::NV("Treshold", -SLPCostThreshold);
6019     });
6020   } else if (!Changed) {
6021     R.getORE()->emit([&]() {
6022       return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0)
6023              << "Cannot SLP vectorize list: vectorization was impossible"
6024              << " with available vectorization factors";
6025     });
6026   }
6027   return Changed;
6028 }
6029 
6030 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) {
6031   if (!I)
6032     return false;
6033 
6034   if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I))
6035     return false;
6036 
6037   Value *P = I->getParent();
6038 
6039   // Vectorize in current basic block only.
6040   auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
6041   auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
6042   if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P)
6043     return false;
6044 
6045   // Try to vectorize V.
6046   if (tryToVectorizePair(Op0, Op1, R))
6047     return true;
6048 
6049   auto *A = dyn_cast<BinaryOperator>(Op0);
6050   auto *B = dyn_cast<BinaryOperator>(Op1);
6051   // Try to skip B.
6052   if (B && B->hasOneUse()) {
6053     auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
6054     auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
6055     if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R))
6056       return true;
6057     if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R))
6058       return true;
6059   }
6060 
6061   // Try to skip A.
6062   if (A && A->hasOneUse()) {
6063     auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
6064     auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
6065     if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R))
6066       return true;
6067     if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R))
6068       return true;
6069   }
6070   return false;
6071 }
6072 
6073 /// Generate a shuffle mask to be used in a reduction tree.
6074 ///
6075 /// \param VecLen The length of the vector to be reduced.
6076 /// \param NumEltsToRdx The number of elements that should be reduced in the
6077 ///        vector.
6078 /// \param IsPairwise Whether the reduction is a pairwise or splitting
6079 ///        reduction. A pairwise reduction will generate a mask of
6080 ///        <0,2,...> or <1,3,..> while a splitting reduction will generate
6081 ///        <2,3, undef,undef> for a vector of 4 and NumElts = 2.
6082 /// \param IsLeft True will generate a mask of even elements, odd otherwise.
6083 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx,
6084                                    bool IsPairwise, bool IsLeft,
6085                                    IRBuilder<> &Builder) {
6086   assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask");
6087 
6088   SmallVector<Constant *, 32> ShuffleMask(
6089       VecLen, UndefValue::get(Builder.getInt32Ty()));
6090 
6091   if (IsPairwise)
6092     // Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
6093     for (unsigned i = 0; i != NumEltsToRdx; ++i)
6094       ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft);
6095   else
6096     // Move the upper half of the vector to the lower half.
6097     for (unsigned i = 0; i != NumEltsToRdx; ++i)
6098       ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i);
6099 
6100   return ConstantVector::get(ShuffleMask);
6101 }
6102 
6103 namespace {
6104 
6105 /// Model horizontal reductions.
6106 ///
6107 /// A horizontal reduction is a tree of reduction operations (currently add and
6108 /// fadd) that has operations that can be put into a vector as its leaf.
6109 /// For example, this tree:
6110 ///
6111 /// mul mul mul mul
6112 ///  \  /    \  /
6113 ///   +       +
6114 ///    \     /
6115 ///       +
6116 /// This tree has "mul" as its reduced values and "+" as its reduction
6117 /// operations. A reduction might be feeding into a store or a binary operation
6118 /// feeding a phi.
6119 ///    ...
6120 ///    \  /
6121 ///     +
6122 ///     |
6123 ///  phi +=
6124 ///
6125 ///  Or:
6126 ///    ...
6127 ///    \  /
6128 ///     +
6129 ///     |
6130 ///   *p =
6131 ///
6132 class HorizontalReduction {
6133   using ReductionOpsType = SmallVector<Value *, 16>;
6134   using ReductionOpsListType = SmallVector<ReductionOpsType, 2>;
6135   ReductionOpsListType  ReductionOps;
6136   SmallVector<Value *, 32> ReducedVals;
6137   // Use map vector to make stable output.
6138   MapVector<Instruction *, Value *> ExtraArgs;
6139 
6140   /// Kind of the reduction data.
6141   enum ReductionKind {
6142     RK_None,       /// Not a reduction.
6143     RK_Arithmetic, /// Binary reduction data.
6144     RK_Min,        /// Minimum reduction data.
6145     RK_UMin,       /// Unsigned minimum reduction data.
6146     RK_Max,        /// Maximum reduction data.
6147     RK_UMax,       /// Unsigned maximum reduction data.
6148   };
6149 
6150   /// Contains info about operation, like its opcode, left and right operands.
6151   class OperationData {
6152     /// Opcode of the instruction.
6153     unsigned Opcode = 0;
6154 
6155     /// Left operand of the reduction operation.
6156     Value *LHS = nullptr;
6157 
6158     /// Right operand of the reduction operation.
6159     Value *RHS = nullptr;
6160 
6161     /// Kind of the reduction operation.
6162     ReductionKind Kind = RK_None;
6163 
6164     /// True if float point min/max reduction has no NaNs.
6165     bool NoNaN = false;
6166 
6167     /// Checks if the reduction operation can be vectorized.
6168     bool isVectorizable() const {
6169       return LHS && RHS &&
6170              // We currently only support add/mul/logical && min/max reductions.
6171              ((Kind == RK_Arithmetic &&
6172                (Opcode == Instruction::Add || Opcode == Instruction::FAdd ||
6173                 Opcode == Instruction::Mul || Opcode == Instruction::FMul ||
6174                 Opcode == Instruction::And || Opcode == Instruction::Or ||
6175                 Opcode == Instruction::Xor)) ||
6176               ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
6177                (Kind == RK_Min || Kind == RK_Max)) ||
6178               (Opcode == Instruction::ICmp &&
6179                (Kind == RK_UMin || Kind == RK_UMax)));
6180     }
6181 
6182     /// Creates reduction operation with the current opcode.
6183     Value *createOp(IRBuilder<> &Builder, const Twine &Name) const {
6184       assert(isVectorizable() &&
6185              "Expected add|fadd or min/max reduction operation.");
6186       Value *Cmp = nullptr;
6187       switch (Kind) {
6188       case RK_Arithmetic:
6189         return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS,
6190                                    Name);
6191       case RK_Min:
6192         Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS)
6193                                           : Builder.CreateFCmpOLT(LHS, RHS);
6194         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
6195       case RK_Max:
6196         Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS)
6197                                           : Builder.CreateFCmpOGT(LHS, RHS);
6198         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
6199       case RK_UMin:
6200         assert(Opcode == Instruction::ICmp && "Expected integer types.");
6201         Cmp = Builder.CreateICmpULT(LHS, RHS);
6202         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
6203       case RK_UMax:
6204         assert(Opcode == Instruction::ICmp && "Expected integer types.");
6205         Cmp = Builder.CreateICmpUGT(LHS, RHS);
6206         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
6207       case RK_None:
6208         break;
6209       }
6210       llvm_unreachable("Unknown reduction operation.");
6211     }
6212 
6213   public:
6214     explicit OperationData() = default;
6215 
6216     /// Construction for reduced values. They are identified by opcode only and
6217     /// don't have associated LHS/RHS values.
6218     explicit OperationData(Value *V) {
6219       if (auto *I = dyn_cast<Instruction>(V))
6220         Opcode = I->getOpcode();
6221     }
6222 
6223     /// Constructor for reduction operations with opcode and its left and
6224     /// right operands.
6225     OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind,
6226                   bool NoNaN = false)
6227         : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) {
6228       assert(Kind != RK_None && "One of the reduction operations is expected.");
6229     }
6230 
6231     explicit operator bool() const { return Opcode; }
6232 
6233     /// Return true if this operation is any kind of minimum or maximum.
6234     bool isMinMax() const {
6235       switch (Kind) {
6236       case RK_Arithmetic:
6237         return false;
6238       case RK_Min:
6239       case RK_Max:
6240       case RK_UMin:
6241       case RK_UMax:
6242         return true;
6243       case RK_None:
6244         break;
6245       }
6246       llvm_unreachable("Reduction kind is not set");
6247     }
6248 
6249     /// Get the index of the first operand.
6250     unsigned getFirstOperandIndex() const {
6251       assert(!!*this && "The opcode is not set.");
6252       // We allow calling this before 'Kind' is set, so handle that specially.
6253       if (Kind == RK_None)
6254         return 0;
6255       return isMinMax() ? 1 : 0;
6256     }
6257 
6258     /// Total number of operands in the reduction operation.
6259     unsigned getNumberOfOperands() const {
6260       assert(Kind != RK_None && !!*this && LHS && RHS &&
6261              "Expected reduction operation.");
6262       return isMinMax() ? 3 : 2;
6263     }
6264 
6265     /// Checks if the operation has the same parent as \p P.
6266     bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const {
6267       assert(Kind != RK_None && !!*this && LHS && RHS &&
6268              "Expected reduction operation.");
6269       if (!IsRedOp)
6270         return I->getParent() == P;
6271       if (isMinMax()) {
6272         // SelectInst must be used twice while the condition op must have single
6273         // use only.
6274         auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition());
6275         return I->getParent() == P && Cmp && Cmp->getParent() == P;
6276       }
6277       // Arithmetic reduction operation must be used once only.
6278       return I->getParent() == P;
6279     }
6280 
6281     /// Expected number of uses for reduction operations/reduced values.
6282     bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const {
6283       assert(Kind != RK_None && !!*this && LHS && RHS &&
6284              "Expected reduction operation.");
6285       if (isMinMax())
6286         return I->hasNUses(2) &&
6287                (!IsReductionOp ||
6288                 cast<SelectInst>(I)->getCondition()->hasOneUse());
6289       return I->hasOneUse();
6290     }
6291 
6292     /// Initializes the list of reduction operations.
6293     void initReductionOps(ReductionOpsListType &ReductionOps) {
6294       assert(Kind != RK_None && !!*this && LHS && RHS &&
6295              "Expected reduction operation.");
6296       if (isMinMax())
6297         ReductionOps.assign(2, ReductionOpsType());
6298       else
6299         ReductionOps.assign(1, ReductionOpsType());
6300     }
6301 
6302     /// Add all reduction operations for the reduction instruction \p I.
6303     void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) {
6304       assert(Kind != RK_None && !!*this && LHS && RHS &&
6305              "Expected reduction operation.");
6306       if (isMinMax()) {
6307         ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition());
6308         ReductionOps[1].emplace_back(I);
6309       } else {
6310         ReductionOps[0].emplace_back(I);
6311       }
6312     }
6313 
6314     /// Checks if instruction is associative and can be vectorized.
6315     bool isAssociative(Instruction *I) const {
6316       assert(Kind != RK_None && *this && LHS && RHS &&
6317              "Expected reduction operation.");
6318       switch (Kind) {
6319       case RK_Arithmetic:
6320         return I->isAssociative();
6321       case RK_Min:
6322       case RK_Max:
6323         return Opcode == Instruction::ICmp ||
6324                cast<Instruction>(I->getOperand(0))->isFast();
6325       case RK_UMin:
6326       case RK_UMax:
6327         assert(Opcode == Instruction::ICmp &&
6328                "Only integer compare operation is expected.");
6329         return true;
6330       case RK_None:
6331         break;
6332       }
6333       llvm_unreachable("Reduction kind is not set");
6334     }
6335 
6336     /// Checks if the reduction operation can be vectorized.
6337     bool isVectorizable(Instruction *I) const {
6338       return isVectorizable() && isAssociative(I);
6339     }
6340 
6341     /// Checks if two operation data are both a reduction op or both a reduced
6342     /// value.
6343     bool operator==(const OperationData &OD) const {
6344       assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) &&
6345              "One of the comparing operations is incorrect.");
6346       return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode);
6347     }
6348     bool operator!=(const OperationData &OD) const { return !(*this == OD); }
6349     void clear() {
6350       Opcode = 0;
6351       LHS = nullptr;
6352       RHS = nullptr;
6353       Kind = RK_None;
6354       NoNaN = false;
6355     }
6356 
6357     /// Get the opcode of the reduction operation.
6358     unsigned getOpcode() const {
6359       assert(isVectorizable() && "Expected vectorizable operation.");
6360       return Opcode;
6361     }
6362 
6363     /// Get kind of reduction data.
6364     ReductionKind getKind() const { return Kind; }
6365     Value *getLHS() const { return LHS; }
6366     Value *getRHS() const { return RHS; }
6367     Type *getConditionType() const {
6368       return isMinMax() ? CmpInst::makeCmpResultType(LHS->getType()) : nullptr;
6369     }
6370 
6371     /// Creates reduction operation with the current opcode with the IR flags
6372     /// from \p ReductionOps.
6373     Value *createOp(IRBuilder<> &Builder, const Twine &Name,
6374                     const ReductionOpsListType &ReductionOps) const {
6375       assert(isVectorizable() &&
6376              "Expected add|fadd or min/max reduction operation.");
6377       auto *Op = createOp(Builder, Name);
6378       switch (Kind) {
6379       case RK_Arithmetic:
6380         propagateIRFlags(Op, ReductionOps[0]);
6381         return Op;
6382       case RK_Min:
6383       case RK_Max:
6384       case RK_UMin:
6385       case RK_UMax:
6386         if (auto *SI = dyn_cast<SelectInst>(Op))
6387           propagateIRFlags(SI->getCondition(), ReductionOps[0]);
6388         propagateIRFlags(Op, ReductionOps[1]);
6389         return Op;
6390       case RK_None:
6391         break;
6392       }
6393       llvm_unreachable("Unknown reduction operation.");
6394     }
6395     /// Creates reduction operation with the current opcode with the IR flags
6396     /// from \p I.
6397     Value *createOp(IRBuilder<> &Builder, const Twine &Name,
6398                     Instruction *I) const {
6399       assert(isVectorizable() &&
6400              "Expected add|fadd or min/max reduction operation.");
6401       auto *Op = createOp(Builder, Name);
6402       switch (Kind) {
6403       case RK_Arithmetic:
6404         propagateIRFlags(Op, I);
6405         return Op;
6406       case RK_Min:
6407       case RK_Max:
6408       case RK_UMin:
6409       case RK_UMax:
6410         if (auto *SI = dyn_cast<SelectInst>(Op)) {
6411           propagateIRFlags(SI->getCondition(),
6412                            cast<SelectInst>(I)->getCondition());
6413         }
6414         propagateIRFlags(Op, I);
6415         return Op;
6416       case RK_None:
6417         break;
6418       }
6419       llvm_unreachable("Unknown reduction operation.");
6420     }
6421 
6422     TargetTransformInfo::ReductionFlags getFlags() const {
6423       TargetTransformInfo::ReductionFlags Flags;
6424       Flags.NoNaN = NoNaN;
6425       switch (Kind) {
6426       case RK_Arithmetic:
6427         break;
6428       case RK_Min:
6429         Flags.IsSigned = Opcode == Instruction::ICmp;
6430         Flags.IsMaxOp = false;
6431         break;
6432       case RK_Max:
6433         Flags.IsSigned = Opcode == Instruction::ICmp;
6434         Flags.IsMaxOp = true;
6435         break;
6436       case RK_UMin:
6437         Flags.IsSigned = false;
6438         Flags.IsMaxOp = false;
6439         break;
6440       case RK_UMax:
6441         Flags.IsSigned = false;
6442         Flags.IsMaxOp = true;
6443         break;
6444       case RK_None:
6445         llvm_unreachable("Reduction kind is not set");
6446       }
6447       return Flags;
6448     }
6449   };
6450 
6451   WeakTrackingVH ReductionRoot;
6452 
6453   /// The operation data of the reduction operation.
6454   OperationData ReductionData;
6455 
6456   /// The operation data of the values we perform a reduction on.
6457   OperationData ReducedValueData;
6458 
6459   /// Should we model this reduction as a pairwise reduction tree or a tree that
6460   /// splits the vector in halves and adds those halves.
6461   bool IsPairwiseReduction = false;
6462 
6463   /// Checks if the ParentStackElem.first should be marked as a reduction
6464   /// operation with an extra argument or as extra argument itself.
6465   void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem,
6466                     Value *ExtraArg) {
6467     if (ExtraArgs.count(ParentStackElem.first)) {
6468       ExtraArgs[ParentStackElem.first] = nullptr;
6469       // We ran into something like:
6470       // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg.
6471       // The whole ParentStackElem.first should be considered as an extra value
6472       // in this case.
6473       // Do not perform analysis of remaining operands of ParentStackElem.first
6474       // instruction, this whole instruction is an extra argument.
6475       ParentStackElem.second = ParentStackElem.first->getNumOperands();
6476     } else {
6477       // We ran into something like:
6478       // ParentStackElem.first += ... + ExtraArg + ...
6479       ExtraArgs[ParentStackElem.first] = ExtraArg;
6480     }
6481   }
6482 
6483   static OperationData getOperationData(Value *V) {
6484     if (!V)
6485       return OperationData();
6486 
6487     Value *LHS;
6488     Value *RHS;
6489     if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) {
6490       return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS,
6491                            RK_Arithmetic);
6492     }
6493     if (auto *Select = dyn_cast<SelectInst>(V)) {
6494       // Look for a min/max pattern.
6495       if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
6496         return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin);
6497       } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
6498         return OperationData(Instruction::ICmp, LHS, RHS, RK_Min);
6499       } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) ||
6500                  m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
6501         return OperationData(
6502             Instruction::FCmp, LHS, RHS, RK_Min,
6503             cast<Instruction>(Select->getCondition())->hasNoNaNs());
6504       } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
6505         return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax);
6506       } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
6507         return OperationData(Instruction::ICmp, LHS, RHS, RK_Max);
6508       } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) ||
6509                  m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
6510         return OperationData(
6511             Instruction::FCmp, LHS, RHS, RK_Max,
6512             cast<Instruction>(Select->getCondition())->hasNoNaNs());
6513       } else {
6514         // Try harder: look for min/max pattern based on instructions producing
6515         // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2).
6516         // During the intermediate stages of SLP, it's very common to have
6517         // pattern like this (since optimizeGatherSequence is run only once
6518         // at the end):
6519         // %1 = extractelement <2 x i32> %a, i32 0
6520         // %2 = extractelement <2 x i32> %a, i32 1
6521         // %cond = icmp sgt i32 %1, %2
6522         // %3 = extractelement <2 x i32> %a, i32 0
6523         // %4 = extractelement <2 x i32> %a, i32 1
6524         // %select = select i1 %cond, i32 %3, i32 %4
6525         CmpInst::Predicate Pred;
6526         Instruction *L1;
6527         Instruction *L2;
6528 
6529         LHS = Select->getTrueValue();
6530         RHS = Select->getFalseValue();
6531         Value *Cond = Select->getCondition();
6532 
6533         // TODO: Support inverse predicates.
6534         if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) {
6535           if (!isa<ExtractElementInst>(RHS) ||
6536               !L2->isIdenticalTo(cast<Instruction>(RHS)))
6537             return OperationData(V);
6538         } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) {
6539           if (!isa<ExtractElementInst>(LHS) ||
6540               !L1->isIdenticalTo(cast<Instruction>(LHS)))
6541             return OperationData(V);
6542         } else {
6543           if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS))
6544             return OperationData(V);
6545           if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) ||
6546               !L1->isIdenticalTo(cast<Instruction>(LHS)) ||
6547               !L2->isIdenticalTo(cast<Instruction>(RHS)))
6548             return OperationData(V);
6549         }
6550         switch (Pred) {
6551         default:
6552           return OperationData(V);
6553 
6554         case CmpInst::ICMP_ULT:
6555         case CmpInst::ICMP_ULE:
6556           return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin);
6557 
6558         case CmpInst::ICMP_SLT:
6559         case CmpInst::ICMP_SLE:
6560           return OperationData(Instruction::ICmp, LHS, RHS, RK_Min);
6561 
6562         case CmpInst::FCMP_OLT:
6563         case CmpInst::FCMP_OLE:
6564         case CmpInst::FCMP_ULT:
6565         case CmpInst::FCMP_ULE:
6566           return OperationData(Instruction::FCmp, LHS, RHS, RK_Min,
6567                                cast<Instruction>(Cond)->hasNoNaNs());
6568 
6569         case CmpInst::ICMP_UGT:
6570         case CmpInst::ICMP_UGE:
6571           return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax);
6572 
6573         case CmpInst::ICMP_SGT:
6574         case CmpInst::ICMP_SGE:
6575           return OperationData(Instruction::ICmp, LHS, RHS, RK_Max);
6576 
6577         case CmpInst::FCMP_OGT:
6578         case CmpInst::FCMP_OGE:
6579         case CmpInst::FCMP_UGT:
6580         case CmpInst::FCMP_UGE:
6581           return OperationData(Instruction::FCmp, LHS, RHS, RK_Max,
6582                                cast<Instruction>(Cond)->hasNoNaNs());
6583         }
6584       }
6585     }
6586     return OperationData(V);
6587   }
6588 
6589 public:
6590   HorizontalReduction() = default;
6591 
6592   /// Try to find a reduction tree.
6593   bool matchAssociativeReduction(PHINode *Phi, Instruction *B) {
6594     assert((!Phi || is_contained(Phi->operands(), B)) &&
6595            "Thi phi needs to use the binary operator");
6596 
6597     ReductionData = getOperationData(B);
6598 
6599     // We could have a initial reductions that is not an add.
6600     //  r *= v1 + v2 + v3 + v4
6601     // In such a case start looking for a tree rooted in the first '+'.
6602     if (Phi) {
6603       if (ReductionData.getLHS() == Phi) {
6604         Phi = nullptr;
6605         B = dyn_cast<Instruction>(ReductionData.getRHS());
6606         ReductionData = getOperationData(B);
6607       } else if (ReductionData.getRHS() == Phi) {
6608         Phi = nullptr;
6609         B = dyn_cast<Instruction>(ReductionData.getLHS());
6610         ReductionData = getOperationData(B);
6611       }
6612     }
6613 
6614     if (!ReductionData.isVectorizable(B))
6615       return false;
6616 
6617     Type *Ty = B->getType();
6618     if (!isValidElementType(Ty))
6619       return false;
6620     if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy())
6621       return false;
6622 
6623     ReducedValueData.clear();
6624     ReductionRoot = B;
6625 
6626     // Post order traverse the reduction tree starting at B. We only handle true
6627     // trees containing only binary operators.
6628     SmallVector<std::pair<Instruction *, unsigned>, 32> Stack;
6629     Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex()));
6630     ReductionData.initReductionOps(ReductionOps);
6631     while (!Stack.empty()) {
6632       Instruction *TreeN = Stack.back().first;
6633       unsigned EdgeToVist = Stack.back().second++;
6634       OperationData OpData = getOperationData(TreeN);
6635       bool IsReducedValue = OpData != ReductionData;
6636 
6637       // Postorder vist.
6638       if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) {
6639         if (IsReducedValue)
6640           ReducedVals.push_back(TreeN);
6641         else {
6642           auto I = ExtraArgs.find(TreeN);
6643           if (I != ExtraArgs.end() && !I->second) {
6644             // Check if TreeN is an extra argument of its parent operation.
6645             if (Stack.size() <= 1) {
6646               // TreeN can't be an extra argument as it is a root reduction
6647               // operation.
6648               return false;
6649             }
6650             // Yes, TreeN is an extra argument, do not add it to a list of
6651             // reduction operations.
6652             // Stack[Stack.size() - 2] always points to the parent operation.
6653             markExtraArg(Stack[Stack.size() - 2], TreeN);
6654             ExtraArgs.erase(TreeN);
6655           } else
6656             ReductionData.addReductionOps(TreeN, ReductionOps);
6657         }
6658         // Retract.
6659         Stack.pop_back();
6660         continue;
6661       }
6662 
6663       // Visit left or right.
6664       Value *NextV = TreeN->getOperand(EdgeToVist);
6665       if (NextV != Phi) {
6666         auto *I = dyn_cast<Instruction>(NextV);
6667         OpData = getOperationData(I);
6668         // Continue analysis if the next operand is a reduction operation or
6669         // (possibly) a reduced value. If the reduced value opcode is not set,
6670         // the first met operation != reduction operation is considered as the
6671         // reduced value class.
6672         if (I && (!ReducedValueData || OpData == ReducedValueData ||
6673                   OpData == ReductionData)) {
6674           const bool IsReductionOperation = OpData == ReductionData;
6675           // Only handle trees in the current basic block.
6676           if (!ReductionData.hasSameParent(I, B->getParent(),
6677                                            IsReductionOperation)) {
6678             // I is an extra argument for TreeN (its parent operation).
6679             markExtraArg(Stack.back(), I);
6680             continue;
6681           }
6682 
6683           // Each tree node needs to have minimal number of users except for the
6684           // ultimate reduction.
6685           if (!ReductionData.hasRequiredNumberOfUses(I,
6686                                                      OpData == ReductionData) &&
6687               I != B) {
6688             // I is an extra argument for TreeN (its parent operation).
6689             markExtraArg(Stack.back(), I);
6690             continue;
6691           }
6692 
6693           if (IsReductionOperation) {
6694             // We need to be able to reassociate the reduction operations.
6695             if (!OpData.isAssociative(I)) {
6696               // I is an extra argument for TreeN (its parent operation).
6697               markExtraArg(Stack.back(), I);
6698               continue;
6699             }
6700           } else if (ReducedValueData &&
6701                      ReducedValueData != OpData) {
6702             // Make sure that the opcodes of the operations that we are going to
6703             // reduce match.
6704             // I is an extra argument for TreeN (its parent operation).
6705             markExtraArg(Stack.back(), I);
6706             continue;
6707           } else if (!ReducedValueData)
6708             ReducedValueData = OpData;
6709 
6710           Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex()));
6711           continue;
6712         }
6713       }
6714       // NextV is an extra argument for TreeN (its parent operation).
6715       markExtraArg(Stack.back(), NextV);
6716     }
6717     return true;
6718   }
6719 
6720   /// Attempt to vectorize the tree found by
6721   /// matchAssociativeReduction.
6722   bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
6723     if (ReducedVals.empty())
6724       return false;
6725 
6726     // If there is a sufficient number of reduction values, reduce
6727     // to a nearby power-of-2. Can safely generate oversized
6728     // vectors and rely on the backend to split them to legal sizes.
6729     unsigned NumReducedVals = ReducedVals.size();
6730     if (NumReducedVals < 4)
6731       return false;
6732 
6733     unsigned ReduxWidth = PowerOf2Floor(NumReducedVals);
6734 
6735     Value *VectorizedTree = nullptr;
6736 
6737     // FIXME: Fast-math-flags should be set based on the instructions in the
6738     //        reduction (not all of 'fast' are required).
6739     IRBuilder<> Builder(cast<Instruction>(ReductionRoot));
6740     FastMathFlags Unsafe;
6741     Unsafe.setFast();
6742     Builder.setFastMathFlags(Unsafe);
6743     unsigned i = 0;
6744 
6745     BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues;
6746     // The same extra argument may be used several time, so log each attempt
6747     // to use it.
6748     for (auto &Pair : ExtraArgs) {
6749       assert(Pair.first && "DebugLoc must be set.");
6750       ExternallyUsedValues[Pair.second].push_back(Pair.first);
6751     }
6752 
6753     // The compare instruction of a min/max is the insertion point for new
6754     // instructions and may be replaced with a new compare instruction.
6755     auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) {
6756       assert(isa<SelectInst>(RdxRootInst) &&
6757              "Expected min/max reduction to have select root instruction");
6758       Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition();
6759       assert(isa<Instruction>(ScalarCond) &&
6760              "Expected min/max reduction to have compare condition");
6761       return cast<Instruction>(ScalarCond);
6762     };
6763 
6764     // The reduction root is used as the insertion point for new instructions,
6765     // so set it as externally used to prevent it from being deleted.
6766     ExternallyUsedValues[ReductionRoot];
6767     SmallVector<Value *, 16> IgnoreList;
6768     for (auto &V : ReductionOps)
6769       IgnoreList.append(V.begin(), V.end());
6770     while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) {
6771       auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth);
6772       V.buildTree(VL, ExternallyUsedValues, IgnoreList);
6773       Optional<ArrayRef<unsigned>> Order = V.bestOrder();
6774       // TODO: Handle orders of size less than number of elements in the vector.
6775       if (Order && Order->size() == VL.size()) {
6776         // TODO: reorder tree nodes without tree rebuilding.
6777         SmallVector<Value *, 4> ReorderedOps(VL.size());
6778         llvm::transform(*Order, ReorderedOps.begin(),
6779                         [VL](const unsigned Idx) { return VL[Idx]; });
6780         V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList);
6781       }
6782       if (V.isTreeTinyAndNotFullyVectorizable())
6783         break;
6784       if (V.isLoadCombineReductionCandidate(ReductionData.getOpcode()))
6785         break;
6786 
6787       V.computeMinimumValueSizes();
6788 
6789       // Estimate cost.
6790       int TreeCost = V.getTreeCost();
6791       int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth);
6792       int Cost = TreeCost + ReductionCost;
6793       if (Cost >= -SLPCostThreshold) {
6794           V.getORE()->emit([&]() {
6795               return OptimizationRemarkMissed(
6796                          SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0]))
6797                      << "Vectorizing horizontal reduction is possible"
6798                      << "but not beneficial with cost "
6799                      << ore::NV("Cost", Cost) << " and threshold "
6800                      << ore::NV("Threshold", -SLPCostThreshold);
6801           });
6802           break;
6803       }
6804 
6805       LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
6806                         << Cost << ". (HorRdx)\n");
6807       V.getORE()->emit([&]() {
6808           return OptimizationRemark(
6809                      SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0]))
6810           << "Vectorized horizontal reduction with cost "
6811           << ore::NV("Cost", Cost) << " and with tree size "
6812           << ore::NV("TreeSize", V.getTreeSize());
6813       });
6814 
6815       // Vectorize a tree.
6816       DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
6817       Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues);
6818 
6819       // Emit a reduction. For min/max, the root is a select, but the insertion
6820       // point is the compare condition of that select.
6821       Instruction *RdxRootInst = cast<Instruction>(ReductionRoot);
6822       if (ReductionData.isMinMax())
6823         Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst));
6824       else
6825         Builder.SetInsertPoint(RdxRootInst);
6826 
6827       Value *ReducedSubTree =
6828           emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI);
6829       if (VectorizedTree) {
6830         Builder.SetCurrentDebugLocation(Loc);
6831         OperationData VectReductionData(ReductionData.getOpcode(),
6832                                         VectorizedTree, ReducedSubTree,
6833                                         ReductionData.getKind());
6834         VectorizedTree =
6835             VectReductionData.createOp(Builder, "op.rdx", ReductionOps);
6836       } else
6837         VectorizedTree = ReducedSubTree;
6838       i += ReduxWidth;
6839       ReduxWidth = PowerOf2Floor(NumReducedVals - i);
6840     }
6841 
6842     if (VectorizedTree) {
6843       // Finish the reduction.
6844       for (; i < NumReducedVals; ++i) {
6845         auto *I = cast<Instruction>(ReducedVals[i]);
6846         Builder.SetCurrentDebugLocation(I->getDebugLoc());
6847         OperationData VectReductionData(ReductionData.getOpcode(),
6848                                         VectorizedTree, I,
6849                                         ReductionData.getKind());
6850         VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps);
6851       }
6852       for (auto &Pair : ExternallyUsedValues) {
6853         // Add each externally used value to the final reduction.
6854         for (auto *I : Pair.second) {
6855           Builder.SetCurrentDebugLocation(I->getDebugLoc());
6856           OperationData VectReductionData(ReductionData.getOpcode(),
6857                                           VectorizedTree, Pair.first,
6858                                           ReductionData.getKind());
6859           VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I);
6860         }
6861       }
6862 
6863       // Update users. For a min/max reduction that ends with a compare and
6864       // select, we also have to RAUW for the compare instruction feeding the
6865       // reduction root. That's because the original compare may have extra uses
6866       // besides the final select of the reduction.
6867       if (ReductionData.isMinMax()) {
6868         if (auto *VecSelect = dyn_cast<SelectInst>(VectorizedTree)) {
6869           Instruction *ScalarCmp =
6870               getCmpForMinMaxReduction(cast<Instruction>(ReductionRoot));
6871           ScalarCmp->replaceAllUsesWith(VecSelect->getCondition());
6872         }
6873       }
6874       ReductionRoot->replaceAllUsesWith(VectorizedTree);
6875 
6876       // Mark all scalar reduction ops for deletion, they are replaced by the
6877       // vector reductions.
6878       V.eraseInstructions(IgnoreList);
6879     }
6880     return VectorizedTree != nullptr;
6881   }
6882 
6883   unsigned numReductionValues() const {
6884     return ReducedVals.size();
6885   }
6886 
6887 private:
6888   /// Calculate the cost of a reduction.
6889   int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal,
6890                        unsigned ReduxWidth) {
6891     Type *ScalarTy = FirstReducedVal->getType();
6892     Type *VecTy = VectorType::get(ScalarTy, ReduxWidth);
6893 
6894     int PairwiseRdxCost;
6895     int SplittingRdxCost;
6896     switch (ReductionData.getKind()) {
6897     case RK_Arithmetic:
6898       PairwiseRdxCost =
6899           TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy,
6900                                           /*IsPairwiseForm=*/true);
6901       SplittingRdxCost =
6902           TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy,
6903                                           /*IsPairwiseForm=*/false);
6904       break;
6905     case RK_Min:
6906     case RK_Max:
6907     case RK_UMin:
6908     case RK_UMax: {
6909       Type *VecCondTy = CmpInst::makeCmpResultType(VecTy);
6910       bool IsUnsigned = ReductionData.getKind() == RK_UMin ||
6911                         ReductionData.getKind() == RK_UMax;
6912       PairwiseRdxCost =
6913           TTI->getMinMaxReductionCost(VecTy, VecCondTy,
6914                                       /*IsPairwiseForm=*/true, IsUnsigned);
6915       SplittingRdxCost =
6916           TTI->getMinMaxReductionCost(VecTy, VecCondTy,
6917                                       /*IsPairwiseForm=*/false, IsUnsigned);
6918       break;
6919     }
6920     case RK_None:
6921       llvm_unreachable("Expected arithmetic or min/max reduction operation");
6922     }
6923 
6924     IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
6925     int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
6926 
6927     int ScalarReduxCost = 0;
6928     switch (ReductionData.getKind()) {
6929     case RK_Arithmetic:
6930       ScalarReduxCost =
6931           TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy);
6932       break;
6933     case RK_Min:
6934     case RK_Max:
6935     case RK_UMin:
6936     case RK_UMax:
6937       ScalarReduxCost =
6938           TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) +
6939           TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
6940                                   CmpInst::makeCmpResultType(ScalarTy));
6941       break;
6942     case RK_None:
6943       llvm_unreachable("Expected arithmetic or min/max reduction operation");
6944     }
6945     ScalarReduxCost *= (ReduxWidth - 1);
6946 
6947     LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost
6948                       << " for reduction that starts with " << *FirstReducedVal
6949                       << " (It is a "
6950                       << (IsPairwiseReduction ? "pairwise" : "splitting")
6951                       << " reduction)\n");
6952 
6953     return VecReduxCost - ScalarReduxCost;
6954   }
6955 
6956   /// Emit a horizontal reduction of the vectorized value.
6957   Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder,
6958                        unsigned ReduxWidth, const TargetTransformInfo *TTI) {
6959     assert(VectorizedValue && "Need to have a vectorized tree node");
6960     assert(isPowerOf2_32(ReduxWidth) &&
6961            "We only handle power-of-two reductions for now");
6962 
6963     if (!IsPairwiseReduction) {
6964       // FIXME: The builder should use an FMF guard. It should not be hard-coded
6965       //        to 'fast'.
6966       assert(Builder.getFastMathFlags().isFast() && "Expected 'fast' FMF");
6967       return createSimpleTargetReduction(
6968           Builder, TTI, ReductionData.getOpcode(), VectorizedValue,
6969           ReductionData.getFlags(), ReductionOps.back());
6970     }
6971 
6972     Value *TmpVec = VectorizedValue;
6973     for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
6974       Value *LeftMask =
6975           createRdxShuffleMask(ReduxWidth, i, true, true, Builder);
6976       Value *RightMask =
6977           createRdxShuffleMask(ReduxWidth, i, true, false, Builder);
6978 
6979       Value *LeftShuf = Builder.CreateShuffleVector(
6980           TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l");
6981       Value *RightShuf = Builder.CreateShuffleVector(
6982           TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
6983           "rdx.shuf.r");
6984       OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf,
6985                                       RightShuf, ReductionData.getKind());
6986       TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps);
6987     }
6988 
6989     // The result is in the first element of the vector.
6990     return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
6991   }
6992 };
6993 
6994 } // end anonymous namespace
6995 
6996 /// Recognize construction of vectors like
6997 ///  %ra = insertelement <4 x float> undef, float %s0, i32 0
6998 ///  %rb = insertelement <4 x float> %ra, float %s1, i32 1
6999 ///  %rc = insertelement <4 x float> %rb, float %s2, i32 2
7000 ///  %rd = insertelement <4 x float> %rc, float %s3, i32 3
7001 ///  starting from the last insertelement or insertvalue instruction.
7002 ///
7003 /// Also recognize aggregates like {<2 x float>, <2 x float>},
7004 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on.
7005 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples.
7006 ///
7007 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type.
7008 ///
7009 /// \return true if it matches.
7010 static bool findBuildAggregate(Value *LastInsertInst, TargetTransformInfo *TTI,
7011                                SmallVectorImpl<Value *> &BuildVectorOpds,
7012                                int &UserCost) {
7013   assert((isa<InsertElementInst>(LastInsertInst) ||
7014           isa<InsertValueInst>(LastInsertInst)) &&
7015          "Expected insertelement or insertvalue instruction!");
7016   UserCost = 0;
7017   do {
7018     Value *InsertedOperand;
7019     if (auto *IE = dyn_cast<InsertElementInst>(LastInsertInst)) {
7020       InsertedOperand = IE->getOperand(1);
7021       LastInsertInst = IE->getOperand(0);
7022       if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) {
7023         UserCost += TTI->getVectorInstrCost(Instruction::InsertElement,
7024                                             IE->getType(), CI->getZExtValue());
7025       }
7026     } else {
7027       auto *IV = cast<InsertValueInst>(LastInsertInst);
7028       InsertedOperand = IV->getInsertedValueOperand();
7029       LastInsertInst = IV->getAggregateOperand();
7030     }
7031     if (isa<InsertElementInst>(InsertedOperand) ||
7032         isa<InsertValueInst>(InsertedOperand)) {
7033       int TmpUserCost;
7034       SmallVector<Value *, 8> TmpBuildVectorOpds;
7035       if (!findBuildAggregate(InsertedOperand, TTI, TmpBuildVectorOpds,
7036                               TmpUserCost))
7037         return false;
7038       BuildVectorOpds.append(TmpBuildVectorOpds.rbegin(),
7039                              TmpBuildVectorOpds.rend());
7040       UserCost += TmpUserCost;
7041     } else {
7042       BuildVectorOpds.push_back(InsertedOperand);
7043     }
7044     if (isa<UndefValue>(LastInsertInst))
7045       break;
7046     if ((!isa<InsertValueInst>(LastInsertInst) &&
7047          !isa<InsertElementInst>(LastInsertInst)) ||
7048         !LastInsertInst->hasOneUse())
7049       return false;
7050   } while (true);
7051   std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end());
7052   return true;
7053 }
7054 
7055 static bool PhiTypeSorterFunc(Value *V, Value *V2) {
7056   return V->getType() < V2->getType();
7057 }
7058 
7059 /// Try and get a reduction value from a phi node.
7060 ///
7061 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions
7062 /// if they come from either \p ParentBB or a containing loop latch.
7063 ///
7064 /// \returns A candidate reduction value if possible, or \code nullptr \endcode
7065 /// if not possible.
7066 static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
7067                                 BasicBlock *ParentBB, LoopInfo *LI) {
7068   // There are situations where the reduction value is not dominated by the
7069   // reduction phi. Vectorizing such cases has been reported to cause
7070   // miscompiles. See PR25787.
7071   auto DominatedReduxValue = [&](Value *R) {
7072     return isa<Instruction>(R) &&
7073            DT->dominates(P->getParent(), cast<Instruction>(R)->getParent());
7074   };
7075 
7076   Value *Rdx = nullptr;
7077 
7078   // Return the incoming value if it comes from the same BB as the phi node.
7079   if (P->getIncomingBlock(0) == ParentBB) {
7080     Rdx = P->getIncomingValue(0);
7081   } else if (P->getIncomingBlock(1) == ParentBB) {
7082     Rdx = P->getIncomingValue(1);
7083   }
7084 
7085   if (Rdx && DominatedReduxValue(Rdx))
7086     return Rdx;
7087 
7088   // Otherwise, check whether we have a loop latch to look at.
7089   Loop *BBL = LI->getLoopFor(ParentBB);
7090   if (!BBL)
7091     return nullptr;
7092   BasicBlock *BBLatch = BBL->getLoopLatch();
7093   if (!BBLatch)
7094     return nullptr;
7095 
7096   // There is a loop latch, return the incoming value if it comes from
7097   // that. This reduction pattern occasionally turns up.
7098   if (P->getIncomingBlock(0) == BBLatch) {
7099     Rdx = P->getIncomingValue(0);
7100   } else if (P->getIncomingBlock(1) == BBLatch) {
7101     Rdx = P->getIncomingValue(1);
7102   }
7103 
7104   if (Rdx && DominatedReduxValue(Rdx))
7105     return Rdx;
7106 
7107   return nullptr;
7108 }
7109 
7110 /// Attempt to reduce a horizontal reduction.
7111 /// If it is legal to match a horizontal reduction feeding the phi node \a P
7112 /// with reduction operators \a Root (or one of its operands) in a basic block
7113 /// \a BB, then check if it can be done. If horizontal reduction is not found
7114 /// and root instruction is a binary operation, vectorization of the operands is
7115 /// attempted.
7116 /// \returns true if a horizontal reduction was matched and reduced or operands
7117 /// of one of the binary instruction were vectorized.
7118 /// \returns false if a horizontal reduction was not matched (or not possible)
7119 /// or no vectorization of any binary operation feeding \a Root instruction was
7120 /// performed.
7121 static bool tryToVectorizeHorReductionOrInstOperands(
7122     PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R,
7123     TargetTransformInfo *TTI,
7124     const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) {
7125   if (!ShouldVectorizeHor)
7126     return false;
7127 
7128   if (!Root)
7129     return false;
7130 
7131   if (Root->getParent() != BB || isa<PHINode>(Root))
7132     return false;
7133   // Start analysis starting from Root instruction. If horizontal reduction is
7134   // found, try to vectorize it. If it is not a horizontal reduction or
7135   // vectorization is not possible or not effective, and currently analyzed
7136   // instruction is a binary operation, try to vectorize the operands, using
7137   // pre-order DFS traversal order. If the operands were not vectorized, repeat
7138   // the same procedure considering each operand as a possible root of the
7139   // horizontal reduction.
7140   // Interrupt the process if the Root instruction itself was vectorized or all
7141   // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
7142   SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0});
7143   SmallPtrSet<Value *, 8> VisitedInstrs;
7144   bool Res = false;
7145   while (!Stack.empty()) {
7146     Instruction *Inst;
7147     unsigned Level;
7148     std::tie(Inst, Level) = Stack.pop_back_val();
7149     auto *BI = dyn_cast<BinaryOperator>(Inst);
7150     auto *SI = dyn_cast<SelectInst>(Inst);
7151     if (BI || SI) {
7152       HorizontalReduction HorRdx;
7153       if (HorRdx.matchAssociativeReduction(P, Inst)) {
7154         if (HorRdx.tryToReduce(R, TTI)) {
7155           Res = true;
7156           // Set P to nullptr to avoid re-analysis of phi node in
7157           // matchAssociativeReduction function unless this is the root node.
7158           P = nullptr;
7159           continue;
7160         }
7161       }
7162       if (P && BI) {
7163         Inst = dyn_cast<Instruction>(BI->getOperand(0));
7164         if (Inst == P)
7165           Inst = dyn_cast<Instruction>(BI->getOperand(1));
7166         if (!Inst) {
7167           // Set P to nullptr to avoid re-analysis of phi node in
7168           // matchAssociativeReduction function unless this is the root node.
7169           P = nullptr;
7170           continue;
7171         }
7172       }
7173     }
7174     // Set P to nullptr to avoid re-analysis of phi node in
7175     // matchAssociativeReduction function unless this is the root node.
7176     P = nullptr;
7177     if (Vectorize(Inst, R)) {
7178       Res = true;
7179       continue;
7180     }
7181 
7182     // Try to vectorize operands.
7183     // Continue analysis for the instruction from the same basic block only to
7184     // save compile time.
7185     if (++Level < RecursionMaxDepth)
7186       for (auto *Op : Inst->operand_values())
7187         if (VisitedInstrs.insert(Op).second)
7188           if (auto *I = dyn_cast<Instruction>(Op))
7189             if (!isa<PHINode>(I) && !R.isDeleted(I) && I->getParent() == BB)
7190               Stack.emplace_back(I, Level);
7191   }
7192   return Res;
7193 }
7194 
7195 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V,
7196                                                  BasicBlock *BB, BoUpSLP &R,
7197                                                  TargetTransformInfo *TTI) {
7198   if (!V)
7199     return false;
7200   auto *I = dyn_cast<Instruction>(V);
7201   if (!I)
7202     return false;
7203 
7204   if (!isa<BinaryOperator>(I))
7205     P = nullptr;
7206   // Try to match and vectorize a horizontal reduction.
7207   auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool {
7208     return tryToVectorize(I, R);
7209   };
7210   return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI,
7211                                                   ExtraVectorization);
7212 }
7213 
7214 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI,
7215                                                  BasicBlock *BB, BoUpSLP &R) {
7216   int UserCost = 0;
7217   const DataLayout &DL = BB->getModule()->getDataLayout();
7218   if (!R.canMapToVector(IVI->getType(), DL))
7219     return false;
7220 
7221   SmallVector<Value *, 16> BuildVectorOpds;
7222   if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, UserCost))
7223     return false;
7224 
7225   LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n");
7226   // Aggregate value is unlikely to be processed in vector register, we need to
7227   // extract scalars into scalar registers, so NeedExtraction is set true.
7228   return tryToVectorizeList(BuildVectorOpds, R, UserCost);
7229 }
7230 
7231 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI,
7232                                                    BasicBlock *BB, BoUpSLP &R) {
7233   int UserCost;
7234   SmallVector<Value *, 16> BuildVectorOpds;
7235   if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, UserCost) ||
7236       (llvm::all_of(BuildVectorOpds,
7237                     [](Value *V) { return isa<ExtractElementInst>(V); }) &&
7238        isShuffle(BuildVectorOpds)))
7239     return false;
7240 
7241   // Vectorize starting with the build vector operands ignoring the BuildVector
7242   // instructions for the purpose of scheduling and user extraction.
7243   return tryToVectorizeList(BuildVectorOpds, R, UserCost);
7244 }
7245 
7246 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB,
7247                                          BoUpSLP &R) {
7248   if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R))
7249     return true;
7250 
7251   bool OpsChanged = false;
7252   for (int Idx = 0; Idx < 2; ++Idx) {
7253     OpsChanged |=
7254         vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI);
7255   }
7256   return OpsChanged;
7257 }
7258 
7259 bool SLPVectorizerPass::vectorizeSimpleInstructions(
7260     SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R) {
7261   bool OpsChanged = false;
7262   for (auto *I : reverse(Instructions)) {
7263     if (R.isDeleted(I))
7264       continue;
7265     if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I))
7266       OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R);
7267     else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I))
7268       OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R);
7269     else if (auto *CI = dyn_cast<CmpInst>(I))
7270       OpsChanged |= vectorizeCmpInst(CI, BB, R);
7271   }
7272   Instructions.clear();
7273   return OpsChanged;
7274 }
7275 
7276 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
7277   bool Changed = false;
7278   SmallVector<Value *, 4> Incoming;
7279   SmallPtrSet<Value *, 16> VisitedInstrs;
7280 
7281   bool HaveVectorizedPhiNodes = true;
7282   while (HaveVectorizedPhiNodes) {
7283     HaveVectorizedPhiNodes = false;
7284 
7285     // Collect the incoming values from the PHIs.
7286     Incoming.clear();
7287     for (Instruction &I : *BB) {
7288       PHINode *P = dyn_cast<PHINode>(&I);
7289       if (!P)
7290         break;
7291 
7292       if (!VisitedInstrs.count(P) && !R.isDeleted(P))
7293         Incoming.push_back(P);
7294     }
7295 
7296     // Sort by type.
7297     llvm::stable_sort(Incoming, PhiTypeSorterFunc);
7298 
7299     // Try to vectorize elements base on their type.
7300     for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
7301                                            E = Incoming.end();
7302          IncIt != E;) {
7303 
7304       // Look for the next elements with the same type.
7305       SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
7306       while (SameTypeIt != E &&
7307              (*SameTypeIt)->getType() == (*IncIt)->getType()) {
7308         VisitedInstrs.insert(*SameTypeIt);
7309         ++SameTypeIt;
7310       }
7311 
7312       // Try to vectorize them.
7313       unsigned NumElts = (SameTypeIt - IncIt);
7314       LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs ("
7315                         << NumElts << ")\n");
7316       // The order in which the phi nodes appear in the program does not matter.
7317       // So allow tryToVectorizeList to reorder them if it is beneficial. This
7318       // is done when there are exactly two elements since tryToVectorizeList
7319       // asserts that there are only two values when AllowReorder is true.
7320       bool AllowReorder = NumElts == 2;
7321       if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R,
7322                                             /*UserCost=*/0, AllowReorder)) {
7323         // Success start over because instructions might have been changed.
7324         HaveVectorizedPhiNodes = true;
7325         Changed = true;
7326         break;
7327       }
7328 
7329       // Start over at the next instruction of a different type (or the end).
7330       IncIt = SameTypeIt;
7331     }
7332   }
7333 
7334   VisitedInstrs.clear();
7335 
7336   SmallVector<Instruction *, 8> PostProcessInstructions;
7337   SmallDenseSet<Instruction *, 4> KeyNodes;
7338   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
7339     // Skip instructions marked for the deletion.
7340     if (R.isDeleted(&*it))
7341       continue;
7342     // We may go through BB multiple times so skip the one we have checked.
7343     if (!VisitedInstrs.insert(&*it).second) {
7344       if (it->use_empty() && KeyNodes.count(&*it) > 0 &&
7345           vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) {
7346         // We would like to start over since some instructions are deleted
7347         // and the iterator may become invalid value.
7348         Changed = true;
7349         it = BB->begin();
7350         e = BB->end();
7351       }
7352       continue;
7353     }
7354 
7355     if (isa<DbgInfoIntrinsic>(it))
7356       continue;
7357 
7358     // Try to vectorize reductions that use PHINodes.
7359     if (PHINode *P = dyn_cast<PHINode>(it)) {
7360       // Check that the PHI is a reduction PHI.
7361       if (P->getNumIncomingValues() != 2)
7362         return Changed;
7363 
7364       // Try to match and vectorize a horizontal reduction.
7365       if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R,
7366                                    TTI)) {
7367         Changed = true;
7368         it = BB->begin();
7369         e = BB->end();
7370         continue;
7371       }
7372       continue;
7373     }
7374 
7375     // Ran into an instruction without users, like terminator, or function call
7376     // with ignored return value, store. Ignore unused instructions (basing on
7377     // instruction type, except for CallInst and InvokeInst).
7378     if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) ||
7379                             isa<InvokeInst>(it))) {
7380       KeyNodes.insert(&*it);
7381       bool OpsChanged = false;
7382       if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) {
7383         for (auto *V : it->operand_values()) {
7384           // Try to match and vectorize a horizontal reduction.
7385           OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI);
7386         }
7387       }
7388       // Start vectorization of post-process list of instructions from the
7389       // top-tree instructions to try to vectorize as many instructions as
7390       // possible.
7391       OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R);
7392       if (OpsChanged) {
7393         // We would like to start over since some instructions are deleted
7394         // and the iterator may become invalid value.
7395         Changed = true;
7396         it = BB->begin();
7397         e = BB->end();
7398         continue;
7399       }
7400     }
7401 
7402     if (isa<InsertElementInst>(it) || isa<CmpInst>(it) ||
7403         isa<InsertValueInst>(it))
7404       PostProcessInstructions.push_back(&*it);
7405   }
7406 
7407   return Changed;
7408 }
7409 
7410 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
7411   auto Changed = false;
7412   for (auto &Entry : GEPs) {
7413     // If the getelementptr list has fewer than two elements, there's nothing
7414     // to do.
7415     if (Entry.second.size() < 2)
7416       continue;
7417 
7418     LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "
7419                       << Entry.second.size() << ".\n");
7420 
7421     // Process the GEP list in chunks suitable for the target's supported
7422     // vector size. If a vector register can't hold 1 element, we are done.
7423     unsigned MaxVecRegSize = R.getMaxVecRegSize();
7424     unsigned EltSize = R.getVectorElementSize(Entry.second[0]);
7425     if (MaxVecRegSize < EltSize)
7426       continue;
7427 
7428     unsigned MaxElts = MaxVecRegSize / EltSize;
7429     for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) {
7430       auto Len = std::min<unsigned>(BE - BI, MaxElts);
7431       auto GEPList = makeArrayRef(&Entry.second[BI], Len);
7432 
7433       // Initialize a set a candidate getelementptrs. Note that we use a
7434       // SetVector here to preserve program order. If the index computations
7435       // are vectorizable and begin with loads, we want to minimize the chance
7436       // of having to reorder them later.
7437       SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
7438 
7439       // Some of the candidates may have already been vectorized after we
7440       // initially collected them. If so, they are marked as deleted, so remove
7441       // them from the set of candidates.
7442       Candidates.remove_if(
7443           [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); });
7444 
7445       // Remove from the set of candidates all pairs of getelementptrs with
7446       // constant differences. Such getelementptrs are likely not good
7447       // candidates for vectorization in a bottom-up phase since one can be
7448       // computed from the other. We also ensure all candidate getelementptr
7449       // indices are unique.
7450       for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
7451         auto *GEPI = GEPList[I];
7452         if (!Candidates.count(GEPI))
7453           continue;
7454         auto *SCEVI = SE->getSCEV(GEPList[I]);
7455         for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
7456           auto *GEPJ = GEPList[J];
7457           auto *SCEVJ = SE->getSCEV(GEPList[J]);
7458           if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
7459             Candidates.remove(GEPI);
7460             Candidates.remove(GEPJ);
7461           } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
7462             Candidates.remove(GEPJ);
7463           }
7464         }
7465       }
7466 
7467       // We break out of the above computation as soon as we know there are
7468       // fewer than two candidates remaining.
7469       if (Candidates.size() < 2)
7470         continue;
7471 
7472       // Add the single, non-constant index of each candidate to the bundle. We
7473       // ensured the indices met these constraints when we originally collected
7474       // the getelementptrs.
7475       SmallVector<Value *, 16> Bundle(Candidates.size());
7476       auto BundleIndex = 0u;
7477       for (auto *V : Candidates) {
7478         auto *GEP = cast<GetElementPtrInst>(V);
7479         auto *GEPIdx = GEP->idx_begin()->get();
7480         assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx));
7481         Bundle[BundleIndex++] = GEPIdx;
7482       }
7483 
7484       // Try and vectorize the indices. We are currently only interested in
7485       // gather-like cases of the form:
7486       //
7487       // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
7488       //
7489       // where the loads of "a", the loads of "b", and the subtractions can be
7490       // performed in parallel. It's likely that detecting this pattern in a
7491       // bottom-up phase will be simpler and less costly than building a
7492       // full-blown top-down phase beginning at the consecutive loads.
7493       Changed |= tryToVectorizeList(Bundle, R);
7494     }
7495   }
7496   return Changed;
7497 }
7498 
7499 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
7500   bool Changed = false;
7501   // Attempt to sort and vectorize each of the store-groups.
7502   for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e;
7503        ++it) {
7504     if (it->second.size() < 2)
7505       continue;
7506 
7507     LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
7508                       << it->second.size() << ".\n");
7509 
7510     Changed |= vectorizeStores(it->second, R);
7511   }
7512   return Changed;
7513 }
7514 
7515 char SLPVectorizer::ID = 0;
7516 
7517 static const char lv_name[] = "SLP Vectorizer";
7518 
7519 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
7520 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7521 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7522 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7523 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7524 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
7525 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7526 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7527 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7528 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
7529 
7530 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); }
7531