1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DebugLoc.h" 57 #include "llvm/IR/DerivedTypes.h" 58 #include "llvm/IR/Dominators.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/IRBuilder.h" 61 #include "llvm/IR/InstrTypes.h" 62 #include "llvm/IR/Instruction.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/Intrinsics.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/NoFolder.h" 68 #include "llvm/IR/Operator.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/Verifier.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/DOTGraphTraits.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/GraphWriter.h" 85 #include "llvm/Support/InstructionCost.h" 86 #include "llvm/Support/KnownBits.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 static cl::opt<bool> 168 ViewSLPTree("view-slp-tree", cl::Hidden, 169 cl::desc("Display the SLP trees with Graphviz")); 170 171 // Limit the number of alias checks. The limit is chosen so that 172 // it has no negative effect on the llvm benchmarks. 173 static const unsigned AliasedCheckLimit = 10; 174 175 // Another limit for the alias checks: The maximum distance between load/store 176 // instructions where alias checks are done. 177 // This limit is useful for very large basic blocks. 178 static const unsigned MaxMemDepDistance = 160; 179 180 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 181 /// regions to be handled. 182 static const int MinScheduleRegionSize = 16; 183 184 /// Predicate for the element types that the SLP vectorizer supports. 185 /// 186 /// The most important thing to filter here are types which are invalid in LLVM 187 /// vectors. We also filter target specific types which have absolutely no 188 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 189 /// avoids spending time checking the cost model and realizing that they will 190 /// be inevitably scalarized. 191 static bool isValidElementType(Type *Ty) { 192 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 193 !Ty->isPPC_FP128Ty(); 194 } 195 196 /// \returns True if the value is a constant (but not globals/constant 197 /// expressions). 198 static bool isConstant(Value *V) { 199 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 200 } 201 202 /// Checks if \p V is one of vector-like instructions, i.e. undef, 203 /// insertelement/extractelement with constant indices for fixed vector type or 204 /// extractvalue instruction. 205 static bool isVectorLikeInstWithConstOps(Value *V) { 206 if (!isa<InsertElementInst, ExtractElementInst>(V) && 207 !isa<ExtractValueInst, UndefValue>(V)) 208 return false; 209 auto *I = dyn_cast<Instruction>(V); 210 if (!I || isa<ExtractValueInst>(I)) 211 return true; 212 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 213 return false; 214 if (isa<ExtractElementInst>(I)) 215 return isConstant(I->getOperand(1)); 216 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 217 return isConstant(I->getOperand(2)); 218 } 219 220 /// \returns true if all of the instructions in \p VL are in the same block or 221 /// false otherwise. 222 static bool allSameBlock(ArrayRef<Value *> VL) { 223 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 224 if (!I0) 225 return false; 226 if (all_of(VL, isVectorLikeInstWithConstOps)) 227 return true; 228 229 BasicBlock *BB = I0->getParent(); 230 for (int I = 1, E = VL.size(); I < E; I++) { 231 auto *II = dyn_cast<Instruction>(VL[I]); 232 if (!II) 233 return false; 234 235 if (BB != II->getParent()) 236 return false; 237 } 238 return true; 239 } 240 241 /// \returns True if all of the values in \p VL are constants (but not 242 /// globals/constant expressions). 243 static bool allConstant(ArrayRef<Value *> VL) { 244 // Constant expressions and globals can't be vectorized like normal integer/FP 245 // constants. 246 return all_of(VL, isConstant); 247 } 248 249 /// \returns True if all of the values in \p VL are identical or some of them 250 /// are UndefValue. 251 static bool isSplat(ArrayRef<Value *> VL) { 252 Value *FirstNonUndef = nullptr; 253 for (Value *V : VL) { 254 if (isa<UndefValue>(V)) 255 continue; 256 if (!FirstNonUndef) { 257 FirstNonUndef = V; 258 continue; 259 } 260 if (V != FirstNonUndef) 261 return false; 262 } 263 return FirstNonUndef != nullptr; 264 } 265 266 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 267 static bool isCommutative(Instruction *I) { 268 if (auto *Cmp = dyn_cast<CmpInst>(I)) 269 return Cmp->isCommutative(); 270 if (auto *BO = dyn_cast<BinaryOperator>(I)) 271 return BO->isCommutative(); 272 // TODO: This should check for generic Instruction::isCommutative(), but 273 // we need to confirm that the caller code correctly handles Intrinsics 274 // for example (does not have 2 operands). 275 return false; 276 } 277 278 /// Checks if the given value is actually an undefined constant vector. 279 static bool isUndefVector(const Value *V) { 280 if (isa<UndefValue>(V)) 281 return true; 282 auto *C = dyn_cast<Constant>(V); 283 if (!C) 284 return false; 285 if (!C->containsUndefOrPoisonElement()) 286 return false; 287 auto *VecTy = dyn_cast<FixedVectorType>(C->getType()); 288 if (!VecTy) 289 return false; 290 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 291 if (Constant *Elem = C->getAggregateElement(I)) 292 if (!isa<UndefValue>(Elem)) 293 return false; 294 } 295 return true; 296 } 297 298 /// Checks if the vector of instructions can be represented as a shuffle, like: 299 /// %x0 = extractelement <4 x i8> %x, i32 0 300 /// %x3 = extractelement <4 x i8> %x, i32 3 301 /// %y1 = extractelement <4 x i8> %y, i32 1 302 /// %y2 = extractelement <4 x i8> %y, i32 2 303 /// %x0x0 = mul i8 %x0, %x0 304 /// %x3x3 = mul i8 %x3, %x3 305 /// %y1y1 = mul i8 %y1, %y1 306 /// %y2y2 = mul i8 %y2, %y2 307 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 308 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 309 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 310 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 311 /// ret <4 x i8> %ins4 312 /// can be transformed into: 313 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 314 /// i32 6> 315 /// %2 = mul <4 x i8> %1, %1 316 /// ret <4 x i8> %2 317 /// We convert this initially to something like: 318 /// %x0 = extractelement <4 x i8> %x, i32 0 319 /// %x3 = extractelement <4 x i8> %x, i32 3 320 /// %y1 = extractelement <4 x i8> %y, i32 1 321 /// %y2 = extractelement <4 x i8> %y, i32 2 322 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 323 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 324 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 325 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 326 /// %5 = mul <4 x i8> %4, %4 327 /// %6 = extractelement <4 x i8> %5, i32 0 328 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 329 /// %7 = extractelement <4 x i8> %5, i32 1 330 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 331 /// %8 = extractelement <4 x i8> %5, i32 2 332 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 333 /// %9 = extractelement <4 x i8> %5, i32 3 334 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 335 /// ret <4 x i8> %ins4 336 /// InstCombiner transforms this into a shuffle and vector mul 337 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 338 /// TODO: Can we split off and reuse the shuffle mask detection from 339 /// TargetTransformInfo::getInstructionThroughput? 340 static Optional<TargetTransformInfo::ShuffleKind> 341 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 342 const auto *It = 343 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); 344 if (It == VL.end()) 345 return None; 346 auto *EI0 = cast<ExtractElementInst>(*It); 347 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 348 return None; 349 unsigned Size = 350 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 351 Value *Vec1 = nullptr; 352 Value *Vec2 = nullptr; 353 enum ShuffleMode { Unknown, Select, Permute }; 354 ShuffleMode CommonShuffleMode = Unknown; 355 Mask.assign(VL.size(), UndefMaskElem); 356 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 357 // Undef can be represented as an undef element in a vector. 358 if (isa<UndefValue>(VL[I])) 359 continue; 360 auto *EI = cast<ExtractElementInst>(VL[I]); 361 if (isa<ScalableVectorType>(EI->getVectorOperandType())) 362 return None; 363 auto *Vec = EI->getVectorOperand(); 364 // We can extractelement from undef or poison vector. 365 if (isUndefVector(Vec)) 366 continue; 367 // All vector operands must have the same number of vector elements. 368 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 369 return None; 370 if (isa<UndefValue>(EI->getIndexOperand())) 371 continue; 372 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 373 if (!Idx) 374 return None; 375 // Undefined behavior if Idx is negative or >= Size. 376 if (Idx->getValue().uge(Size)) 377 continue; 378 unsigned IntIdx = Idx->getValue().getZExtValue(); 379 Mask[I] = IntIdx; 380 // For correct shuffling we have to have at most 2 different vector operands 381 // in all extractelement instructions. 382 if (!Vec1 || Vec1 == Vec) { 383 Vec1 = Vec; 384 } else if (!Vec2 || Vec2 == Vec) { 385 Vec2 = Vec; 386 Mask[I] += Size; 387 } else { 388 return None; 389 } 390 if (CommonShuffleMode == Permute) 391 continue; 392 // If the extract index is not the same as the operation number, it is a 393 // permutation. 394 if (IntIdx != I) { 395 CommonShuffleMode = Permute; 396 continue; 397 } 398 CommonShuffleMode = Select; 399 } 400 // If we're not crossing lanes in different vectors, consider it as blending. 401 if (CommonShuffleMode == Select && Vec2) 402 return TargetTransformInfo::SK_Select; 403 // If Vec2 was never used, we have a permutation of a single vector, otherwise 404 // we have permutation of 2 vectors. 405 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 406 : TargetTransformInfo::SK_PermuteSingleSrc; 407 } 408 409 namespace { 410 411 /// Main data required for vectorization of instructions. 412 struct InstructionsState { 413 /// The very first instruction in the list with the main opcode. 414 Value *OpValue = nullptr; 415 416 /// The main/alternate instruction. 417 Instruction *MainOp = nullptr; 418 Instruction *AltOp = nullptr; 419 420 /// The main/alternate opcodes for the list of instructions. 421 unsigned getOpcode() const { 422 return MainOp ? MainOp->getOpcode() : 0; 423 } 424 425 unsigned getAltOpcode() const { 426 return AltOp ? AltOp->getOpcode() : 0; 427 } 428 429 /// Some of the instructions in the list have alternate opcodes. 430 bool isAltShuffle() const { return AltOp != MainOp; } 431 432 bool isOpcodeOrAlt(Instruction *I) const { 433 unsigned CheckedOpcode = I->getOpcode(); 434 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 435 } 436 437 InstructionsState() = delete; 438 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 439 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 440 }; 441 442 } // end anonymous namespace 443 444 /// Chooses the correct key for scheduling data. If \p Op has the same (or 445 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 446 /// OpValue. 447 static Value *isOneOf(const InstructionsState &S, Value *Op) { 448 auto *I = dyn_cast<Instruction>(Op); 449 if (I && S.isOpcodeOrAlt(I)) 450 return Op; 451 return S.OpValue; 452 } 453 454 /// \returns true if \p Opcode is allowed as part of of the main/alternate 455 /// instruction for SLP vectorization. 456 /// 457 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 458 /// "shuffled out" lane would result in division by zero. 459 static bool isValidForAlternation(unsigned Opcode) { 460 if (Instruction::isIntDivRem(Opcode)) 461 return false; 462 463 return true; 464 } 465 466 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 467 unsigned BaseIndex = 0); 468 469 /// Checks if the provided operands of 2 cmp instructions are compatible, i.e. 470 /// compatible instructions or constants, or just some other regular values. 471 static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0, 472 Value *Op1) { 473 return (isConstant(BaseOp0) && isConstant(Op0)) || 474 (isConstant(BaseOp1) && isConstant(Op1)) || 475 (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) && 476 !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) || 477 getSameOpcode({BaseOp0, Op0}).getOpcode() || 478 getSameOpcode({BaseOp1, Op1}).getOpcode(); 479 } 480 481 /// \returns analysis of the Instructions in \p VL described in 482 /// InstructionsState, the Opcode that we suppose the whole list 483 /// could be vectorized even if its structure is diverse. 484 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 485 unsigned BaseIndex) { 486 // Make sure these are all Instructions. 487 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 488 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 489 490 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 491 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 492 bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]); 493 CmpInst::Predicate BasePred = 494 IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate() 495 : CmpInst::BAD_ICMP_PREDICATE; 496 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 497 unsigned AltOpcode = Opcode; 498 unsigned AltIndex = BaseIndex; 499 500 // Check for one alternate opcode from another BinaryOperator. 501 // TODO - generalize to support all operators (types, calls etc.). 502 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 503 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 504 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 505 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 506 continue; 507 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 508 isValidForAlternation(Opcode)) { 509 AltOpcode = InstOpcode; 510 AltIndex = Cnt; 511 continue; 512 } 513 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 514 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 515 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 516 if (Ty0 == Ty1) { 517 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 518 continue; 519 if (Opcode == AltOpcode) { 520 assert(isValidForAlternation(Opcode) && 521 isValidForAlternation(InstOpcode) && 522 "Cast isn't safe for alternation, logic needs to be updated!"); 523 AltOpcode = InstOpcode; 524 AltIndex = Cnt; 525 continue; 526 } 527 } 528 } else if (IsCmpOp && isa<CmpInst>(VL[Cnt])) { 529 auto *BaseInst = cast<Instruction>(VL[BaseIndex]); 530 auto *Inst = cast<Instruction>(VL[Cnt]); 531 Type *Ty0 = BaseInst->getOperand(0)->getType(); 532 Type *Ty1 = Inst->getOperand(0)->getType(); 533 if (Ty0 == Ty1) { 534 Value *BaseOp0 = BaseInst->getOperand(0); 535 Value *BaseOp1 = BaseInst->getOperand(1); 536 Value *Op0 = Inst->getOperand(0); 537 Value *Op1 = Inst->getOperand(1); 538 CmpInst::Predicate CurrentPred = 539 cast<CmpInst>(VL[Cnt])->getPredicate(); 540 CmpInst::Predicate SwappedCurrentPred = 541 CmpInst::getSwappedPredicate(CurrentPred); 542 // Check for compatible operands. If the corresponding operands are not 543 // compatible - need to perform alternate vectorization. 544 if (InstOpcode == Opcode) { 545 if (BasePred == CurrentPred && 546 areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1)) 547 continue; 548 if (BasePred == SwappedCurrentPred && 549 areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0)) 550 continue; 551 if (E == 2 && 552 (BasePred == CurrentPred || BasePred == SwappedCurrentPred)) 553 continue; 554 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 555 CmpInst::Predicate AltPred = AltInst->getPredicate(); 556 Value *AltOp0 = AltInst->getOperand(0); 557 Value *AltOp1 = AltInst->getOperand(1); 558 // Check if operands are compatible with alternate operands. 559 if (AltPred == CurrentPred && 560 areCompatibleCmpOps(AltOp0, AltOp1, Op0, Op1)) 561 continue; 562 if (AltPred == SwappedCurrentPred && 563 areCompatibleCmpOps(AltOp0, AltOp1, Op1, Op0)) 564 continue; 565 } 566 if (BaseIndex == AltIndex && BasePred != CurrentPred) { 567 assert(isValidForAlternation(Opcode) && 568 isValidForAlternation(InstOpcode) && 569 "Cast isn't safe for alternation, logic needs to be updated!"); 570 AltIndex = Cnt; 571 continue; 572 } 573 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 574 CmpInst::Predicate AltPred = AltInst->getPredicate(); 575 if (BasePred == CurrentPred || BasePred == SwappedCurrentPred || 576 AltPred == CurrentPred || AltPred == SwappedCurrentPred) 577 continue; 578 } 579 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 580 continue; 581 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 582 } 583 584 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 585 cast<Instruction>(VL[AltIndex])); 586 } 587 588 /// \returns true if all of the values in \p VL have the same type or false 589 /// otherwise. 590 static bool allSameType(ArrayRef<Value *> VL) { 591 Type *Ty = VL[0]->getType(); 592 for (int i = 1, e = VL.size(); i < e; i++) 593 if (VL[i]->getType() != Ty) 594 return false; 595 596 return true; 597 } 598 599 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 600 static Optional<unsigned> getExtractIndex(Instruction *E) { 601 unsigned Opcode = E->getOpcode(); 602 assert((Opcode == Instruction::ExtractElement || 603 Opcode == Instruction::ExtractValue) && 604 "Expected extractelement or extractvalue instruction."); 605 if (Opcode == Instruction::ExtractElement) { 606 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 607 if (!CI) 608 return None; 609 return CI->getZExtValue(); 610 } 611 ExtractValueInst *EI = cast<ExtractValueInst>(E); 612 if (EI->getNumIndices() != 1) 613 return None; 614 return *EI->idx_begin(); 615 } 616 617 /// \returns True if in-tree use also needs extract. This refers to 618 /// possible scalar operand in vectorized instruction. 619 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 620 TargetLibraryInfo *TLI) { 621 unsigned Opcode = UserInst->getOpcode(); 622 switch (Opcode) { 623 case Instruction::Load: { 624 LoadInst *LI = cast<LoadInst>(UserInst); 625 return (LI->getPointerOperand() == Scalar); 626 } 627 case Instruction::Store: { 628 StoreInst *SI = cast<StoreInst>(UserInst); 629 return (SI->getPointerOperand() == Scalar); 630 } 631 case Instruction::Call: { 632 CallInst *CI = cast<CallInst>(UserInst); 633 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 634 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 635 if (hasVectorInstrinsicScalarOpd(ID, i)) 636 return (CI->getArgOperand(i) == Scalar); 637 } 638 LLVM_FALLTHROUGH; 639 } 640 default: 641 return false; 642 } 643 } 644 645 /// \returns the AA location that is being access by the instruction. 646 static MemoryLocation getLocation(Instruction *I) { 647 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 648 return MemoryLocation::get(SI); 649 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 650 return MemoryLocation::get(LI); 651 return MemoryLocation(); 652 } 653 654 /// \returns True if the instruction is not a volatile or atomic load/store. 655 static bool isSimple(Instruction *I) { 656 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 657 return LI->isSimple(); 658 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 659 return SI->isSimple(); 660 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 661 return !MI->isVolatile(); 662 return true; 663 } 664 665 /// Shuffles \p Mask in accordance with the given \p SubMask. 666 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 667 if (SubMask.empty()) 668 return; 669 if (Mask.empty()) { 670 Mask.append(SubMask.begin(), SubMask.end()); 671 return; 672 } 673 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 674 int TermValue = std::min(Mask.size(), SubMask.size()); 675 for (int I = 0, E = SubMask.size(); I < E; ++I) { 676 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 677 Mask[SubMask[I]] >= TermValue) 678 continue; 679 NewMask[I] = Mask[SubMask[I]]; 680 } 681 Mask.swap(NewMask); 682 } 683 684 /// Order may have elements assigned special value (size) which is out of 685 /// bounds. Such indices only appear on places which correspond to undef values 686 /// (see canReuseExtract for details) and used in order to avoid undef values 687 /// have effect on operands ordering. 688 /// The first loop below simply finds all unused indices and then the next loop 689 /// nest assigns these indices for undef values positions. 690 /// As an example below Order has two undef positions and they have assigned 691 /// values 3 and 7 respectively: 692 /// before: 6 9 5 4 9 2 1 0 693 /// after: 6 3 5 4 7 2 1 0 694 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 695 const unsigned Sz = Order.size(); 696 SmallBitVector UnusedIndices(Sz, /*t=*/true); 697 SmallBitVector MaskedIndices(Sz); 698 for (unsigned I = 0; I < Sz; ++I) { 699 if (Order[I] < Sz) 700 UnusedIndices.reset(Order[I]); 701 else 702 MaskedIndices.set(I); 703 } 704 if (MaskedIndices.none()) 705 return; 706 assert(UnusedIndices.count() == MaskedIndices.count() && 707 "Non-synced masked/available indices."); 708 int Idx = UnusedIndices.find_first(); 709 int MIdx = MaskedIndices.find_first(); 710 while (MIdx >= 0) { 711 assert(Idx >= 0 && "Indices must be synced."); 712 Order[MIdx] = Idx; 713 Idx = UnusedIndices.find_next(Idx); 714 MIdx = MaskedIndices.find_next(MIdx); 715 } 716 } 717 718 namespace llvm { 719 720 static void inversePermutation(ArrayRef<unsigned> Indices, 721 SmallVectorImpl<int> &Mask) { 722 Mask.clear(); 723 const unsigned E = Indices.size(); 724 Mask.resize(E, UndefMaskElem); 725 for (unsigned I = 0; I < E; ++I) 726 Mask[Indices[I]] = I; 727 } 728 729 /// \returns inserting index of InsertElement or InsertValue instruction, 730 /// using Offset as base offset for index. 731 static Optional<int> getInsertIndex(Value *InsertInst, unsigned Offset) { 732 int Index = Offset; 733 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 734 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 735 auto *VT = cast<FixedVectorType>(IE->getType()); 736 if (CI->getValue().uge(VT->getNumElements())) 737 return UndefMaskElem; 738 Index *= VT->getNumElements(); 739 Index += CI->getZExtValue(); 740 return Index; 741 } 742 if (isa<UndefValue>(IE->getOperand(2))) 743 return UndefMaskElem; 744 return None; 745 } 746 747 auto *IV = cast<InsertValueInst>(InsertInst); 748 Type *CurrentType = IV->getType(); 749 for (unsigned I : IV->indices()) { 750 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 751 Index *= ST->getNumElements(); 752 CurrentType = ST->getElementType(I); 753 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 754 Index *= AT->getNumElements(); 755 CurrentType = AT->getElementType(); 756 } else { 757 return None; 758 } 759 Index += I; 760 } 761 return Index; 762 } 763 764 /// Reorders the list of scalars in accordance with the given \p Mask. 765 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 766 ArrayRef<int> Mask) { 767 assert(!Mask.empty() && "Expected non-empty mask."); 768 SmallVector<Value *> Prev(Scalars.size(), 769 UndefValue::get(Scalars.front()->getType())); 770 Prev.swap(Scalars); 771 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 772 if (Mask[I] != UndefMaskElem) 773 Scalars[Mask[I]] = Prev[I]; 774 } 775 776 namespace slpvectorizer { 777 778 /// Bottom Up SLP Vectorizer. 779 class BoUpSLP { 780 struct TreeEntry; 781 struct ScheduleData; 782 783 public: 784 using ValueList = SmallVector<Value *, 8>; 785 using InstrList = SmallVector<Instruction *, 16>; 786 using ValueSet = SmallPtrSet<Value *, 16>; 787 using StoreList = SmallVector<StoreInst *, 8>; 788 using ExtraValueToDebugLocsMap = 789 MapVector<Value *, SmallVector<Instruction *, 2>>; 790 using OrdersType = SmallVector<unsigned, 4>; 791 792 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 793 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 794 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 795 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 796 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 797 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 798 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 799 // Use the vector register size specified by the target unless overridden 800 // by a command-line option. 801 // TODO: It would be better to limit the vectorization factor based on 802 // data type rather than just register size. For example, x86 AVX has 803 // 256-bit registers, but it does not support integer operations 804 // at that width (that requires AVX2). 805 if (MaxVectorRegSizeOption.getNumOccurrences()) 806 MaxVecRegSize = MaxVectorRegSizeOption; 807 else 808 MaxVecRegSize = 809 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 810 .getFixedSize(); 811 812 if (MinVectorRegSizeOption.getNumOccurrences()) 813 MinVecRegSize = MinVectorRegSizeOption; 814 else 815 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 816 } 817 818 /// Vectorize the tree that starts with the elements in \p VL. 819 /// Returns the vectorized root. 820 Value *vectorizeTree(); 821 822 /// Vectorize the tree but with the list of externally used values \p 823 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 824 /// generated extractvalue instructions. 825 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 826 827 /// \returns the cost incurred by unwanted spills and fills, caused by 828 /// holding live values over call sites. 829 InstructionCost getSpillCost() const; 830 831 /// \returns the vectorization cost of the subtree that starts at \p VL. 832 /// A negative number means that this is profitable. 833 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 834 835 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 836 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 837 void buildTree(ArrayRef<Value *> Roots, 838 ArrayRef<Value *> UserIgnoreLst = None); 839 840 /// Builds external uses of the vectorized scalars, i.e. the list of 841 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 842 /// ExternallyUsedValues contains additional list of external uses to handle 843 /// vectorization of reductions. 844 void 845 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 846 847 /// Clear the internal data structures that are created by 'buildTree'. 848 void deleteTree() { 849 VectorizableTree.clear(); 850 ScalarToTreeEntry.clear(); 851 MustGather.clear(); 852 ExternalUses.clear(); 853 for (auto &Iter : BlocksSchedules) { 854 BlockScheduling *BS = Iter.second.get(); 855 BS->clear(); 856 } 857 MinBWs.clear(); 858 InstrElementSize.clear(); 859 } 860 861 unsigned getTreeSize() const { return VectorizableTree.size(); } 862 863 /// Perform LICM and CSE on the newly generated gather sequences. 864 void optimizeGatherSequence(); 865 866 /// Checks if the specified gather tree entry \p TE can be represented as a 867 /// shuffled vector entry + (possibly) permutation with other gathers. It 868 /// implements the checks only for possibly ordered scalars (Loads, 869 /// ExtractElement, ExtractValue), which can be part of the graph. 870 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 871 872 /// Gets reordering data for the given tree entry. If the entry is vectorized 873 /// - just return ReorderIndices, otherwise check if the scalars can be 874 /// reordered and return the most optimal order. 875 /// \param TopToBottom If true, include the order of vectorized stores and 876 /// insertelement nodes, otherwise skip them. 877 Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom); 878 879 /// Reorders the current graph to the most profitable order starting from the 880 /// root node to the leaf nodes. The best order is chosen only from the nodes 881 /// of the same size (vectorization factor). Smaller nodes are considered 882 /// parts of subgraph with smaller VF and they are reordered independently. We 883 /// can make it because we still need to extend smaller nodes to the wider VF 884 /// and we can merge reordering shuffles with the widening shuffles. 885 void reorderTopToBottom(); 886 887 /// Reorders the current graph to the most profitable order starting from 888 /// leaves to the root. It allows to rotate small subgraphs and reduce the 889 /// number of reshuffles if the leaf nodes use the same order. In this case we 890 /// can merge the orders and just shuffle user node instead of shuffling its 891 /// operands. Plus, even the leaf nodes have different orders, it allows to 892 /// sink reordering in the graph closer to the root node and merge it later 893 /// during analysis. 894 void reorderBottomToTop(bool IgnoreReorder = false); 895 896 /// \return The vector element size in bits to use when vectorizing the 897 /// expression tree ending at \p V. If V is a store, the size is the width of 898 /// the stored value. Otherwise, the size is the width of the largest loaded 899 /// value reaching V. This method is used by the vectorizer to calculate 900 /// vectorization factors. 901 unsigned getVectorElementSize(Value *V); 902 903 /// Compute the minimum type sizes required to represent the entries in a 904 /// vectorizable tree. 905 void computeMinimumValueSizes(); 906 907 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 908 unsigned getMaxVecRegSize() const { 909 return MaxVecRegSize; 910 } 911 912 // \returns minimum vector register size as set by cl::opt. 913 unsigned getMinVecRegSize() const { 914 return MinVecRegSize; 915 } 916 917 unsigned getMinVF(unsigned Sz) const { 918 return std::max(2U, getMinVecRegSize() / Sz); 919 } 920 921 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 922 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 923 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 924 return MaxVF ? MaxVF : UINT_MAX; 925 } 926 927 /// Check if homogeneous aggregate is isomorphic to some VectorType. 928 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 929 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 930 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 931 /// 932 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 933 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 934 935 /// \returns True if the VectorizableTree is both tiny and not fully 936 /// vectorizable. We do not vectorize such trees. 937 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 938 939 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 940 /// can be load combined in the backend. Load combining may not be allowed in 941 /// the IR optimizer, so we do not want to alter the pattern. For example, 942 /// partially transforming a scalar bswap() pattern into vector code is 943 /// effectively impossible for the backend to undo. 944 /// TODO: If load combining is allowed in the IR optimizer, this analysis 945 /// may not be necessary. 946 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 947 948 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 949 /// can be load combined in the backend. Load combining may not be allowed in 950 /// the IR optimizer, so we do not want to alter the pattern. For example, 951 /// partially transforming a scalar bswap() pattern into vector code is 952 /// effectively impossible for the backend to undo. 953 /// TODO: If load combining is allowed in the IR optimizer, this analysis 954 /// may not be necessary. 955 bool isLoadCombineCandidate() const; 956 957 OptimizationRemarkEmitter *getORE() { return ORE; } 958 959 /// This structure holds any data we need about the edges being traversed 960 /// during buildTree_rec(). We keep track of: 961 /// (i) the user TreeEntry index, and 962 /// (ii) the index of the edge. 963 struct EdgeInfo { 964 EdgeInfo() = default; 965 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 966 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 967 /// The user TreeEntry. 968 TreeEntry *UserTE = nullptr; 969 /// The operand index of the use. 970 unsigned EdgeIdx = UINT_MAX; 971 #ifndef NDEBUG 972 friend inline raw_ostream &operator<<(raw_ostream &OS, 973 const BoUpSLP::EdgeInfo &EI) { 974 EI.dump(OS); 975 return OS; 976 } 977 /// Debug print. 978 void dump(raw_ostream &OS) const { 979 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 980 << " EdgeIdx:" << EdgeIdx << "}"; 981 } 982 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 983 #endif 984 }; 985 986 /// A helper data structure to hold the operands of a vector of instructions. 987 /// This supports a fixed vector length for all operand vectors. 988 class VLOperands { 989 /// For each operand we need (i) the value, and (ii) the opcode that it 990 /// would be attached to if the expression was in a left-linearized form. 991 /// This is required to avoid illegal operand reordering. 992 /// For example: 993 /// \verbatim 994 /// 0 Op1 995 /// |/ 996 /// Op1 Op2 Linearized + Op2 997 /// \ / ----------> |/ 998 /// - - 999 /// 1000 /// Op1 - Op2 (0 + Op1) - Op2 1001 /// \endverbatim 1002 /// 1003 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 1004 /// 1005 /// Another way to think of this is to track all the operations across the 1006 /// path from the operand all the way to the root of the tree and to 1007 /// calculate the operation that corresponds to this path. For example, the 1008 /// path from Op2 to the root crosses the RHS of the '-', therefore the 1009 /// corresponding operation is a '-' (which matches the one in the 1010 /// linearized tree, as shown above). 1011 /// 1012 /// For lack of a better term, we refer to this operation as Accumulated 1013 /// Path Operation (APO). 1014 struct OperandData { 1015 OperandData() = default; 1016 OperandData(Value *V, bool APO, bool IsUsed) 1017 : V(V), APO(APO), IsUsed(IsUsed) {} 1018 /// The operand value. 1019 Value *V = nullptr; 1020 /// TreeEntries only allow a single opcode, or an alternate sequence of 1021 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 1022 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 1023 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 1024 /// (e.g., Add/Mul) 1025 bool APO = false; 1026 /// Helper data for the reordering function. 1027 bool IsUsed = false; 1028 }; 1029 1030 /// During operand reordering, we are trying to select the operand at lane 1031 /// that matches best with the operand at the neighboring lane. Our 1032 /// selection is based on the type of value we are looking for. For example, 1033 /// if the neighboring lane has a load, we need to look for a load that is 1034 /// accessing a consecutive address. These strategies are summarized in the 1035 /// 'ReorderingMode' enumerator. 1036 enum class ReorderingMode { 1037 Load, ///< Matching loads to consecutive memory addresses 1038 Opcode, ///< Matching instructions based on opcode (same or alternate) 1039 Constant, ///< Matching constants 1040 Splat, ///< Matching the same instruction multiple times (broadcast) 1041 Failed, ///< We failed to create a vectorizable group 1042 }; 1043 1044 using OperandDataVec = SmallVector<OperandData, 2>; 1045 1046 /// A vector of operand vectors. 1047 SmallVector<OperandDataVec, 4> OpsVec; 1048 1049 const DataLayout &DL; 1050 ScalarEvolution &SE; 1051 const BoUpSLP &R; 1052 1053 /// \returns the operand data at \p OpIdx and \p Lane. 1054 OperandData &getData(unsigned OpIdx, unsigned Lane) { 1055 return OpsVec[OpIdx][Lane]; 1056 } 1057 1058 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 1059 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 1060 return OpsVec[OpIdx][Lane]; 1061 } 1062 1063 /// Clears the used flag for all entries. 1064 void clearUsed() { 1065 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 1066 OpIdx != NumOperands; ++OpIdx) 1067 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1068 ++Lane) 1069 OpsVec[OpIdx][Lane].IsUsed = false; 1070 } 1071 1072 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 1073 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 1074 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 1075 } 1076 1077 // The hard-coded scores listed here are not very important, though it shall 1078 // be higher for better matches to improve the resulting cost. When 1079 // computing the scores of matching one sub-tree with another, we are 1080 // basically counting the number of values that are matching. So even if all 1081 // scores are set to 1, we would still get a decent matching result. 1082 // However, sometimes we have to break ties. For example we may have to 1083 // choose between matching loads vs matching opcodes. This is what these 1084 // scores are helping us with: they provide the order of preference. Also, 1085 // this is important if the scalar is externally used or used in another 1086 // tree entry node in the different lane. 1087 1088 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 1089 static const int ScoreConsecutiveLoads = 4; 1090 /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]). 1091 static const int ScoreReversedLoads = 3; 1092 /// ExtractElementInst from same vector and consecutive indexes. 1093 static const int ScoreConsecutiveExtracts = 4; 1094 /// ExtractElementInst from same vector and reversed indices. 1095 static const int ScoreReversedExtracts = 3; 1096 /// Constants. 1097 static const int ScoreConstants = 2; 1098 /// Instructions with the same opcode. 1099 static const int ScoreSameOpcode = 2; 1100 /// Instructions with alt opcodes (e.g, add + sub). 1101 static const int ScoreAltOpcodes = 1; 1102 /// Identical instructions (a.k.a. splat or broadcast). 1103 static const int ScoreSplat = 1; 1104 /// Matching with an undef is preferable to failing. 1105 static const int ScoreUndef = 1; 1106 /// Score for failing to find a decent match. 1107 static const int ScoreFail = 0; 1108 /// Score if all users are vectorized. 1109 static const int ScoreAllUserVectorized = 1; 1110 1111 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1112 /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p 1113 /// MainAltOps. 1114 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 1115 ScalarEvolution &SE, int NumLanes, 1116 ArrayRef<Value *> MainAltOps) { 1117 if (V1 == V2) 1118 return VLOperands::ScoreSplat; 1119 1120 auto *LI1 = dyn_cast<LoadInst>(V1); 1121 auto *LI2 = dyn_cast<LoadInst>(V2); 1122 if (LI1 && LI2) { 1123 if (LI1->getParent() != LI2->getParent()) 1124 return VLOperands::ScoreFail; 1125 1126 Optional<int> Dist = getPointersDiff( 1127 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1128 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1129 if (!Dist || *Dist == 0) 1130 return VLOperands::ScoreFail; 1131 // The distance is too large - still may be profitable to use masked 1132 // loads/gathers. 1133 if (std::abs(*Dist) > NumLanes / 2) 1134 return VLOperands::ScoreAltOpcodes; 1135 // This still will detect consecutive loads, but we might have "holes" 1136 // in some cases. It is ok for non-power-2 vectorization and may produce 1137 // better results. It should not affect current vectorization. 1138 return (*Dist > 0) ? VLOperands::ScoreConsecutiveLoads 1139 : VLOperands::ScoreReversedLoads; 1140 } 1141 1142 auto *C1 = dyn_cast<Constant>(V1); 1143 auto *C2 = dyn_cast<Constant>(V2); 1144 if (C1 && C2) 1145 return VLOperands::ScoreConstants; 1146 1147 // Extracts from consecutive indexes of the same vector better score as 1148 // the extracts could be optimized away. 1149 Value *EV1; 1150 ConstantInt *Ex1Idx; 1151 if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) { 1152 // Undefs are always profitable for extractelements. 1153 if (isa<UndefValue>(V2)) 1154 return VLOperands::ScoreConsecutiveExtracts; 1155 Value *EV2 = nullptr; 1156 ConstantInt *Ex2Idx = nullptr; 1157 if (match(V2, 1158 m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx), 1159 m_Undef())))) { 1160 // Undefs are always profitable for extractelements. 1161 if (!Ex2Idx) 1162 return VLOperands::ScoreConsecutiveExtracts; 1163 if (isUndefVector(EV2) && EV2->getType() == EV1->getType()) 1164 return VLOperands::ScoreConsecutiveExtracts; 1165 if (EV2 == EV1) { 1166 int Idx1 = Ex1Idx->getZExtValue(); 1167 int Idx2 = Ex2Idx->getZExtValue(); 1168 int Dist = Idx2 - Idx1; 1169 // The distance is too large - still may be profitable to use 1170 // shuffles. 1171 if (std::abs(Dist) == 0) 1172 return VLOperands::ScoreSplat; 1173 if (std::abs(Dist) > NumLanes / 2) 1174 return VLOperands::ScoreSameOpcode; 1175 return (Dist > 0) ? VLOperands::ScoreConsecutiveExtracts 1176 : VLOperands::ScoreReversedExtracts; 1177 } 1178 return VLOperands::ScoreAltOpcodes; 1179 } 1180 return VLOperands::ScoreFail; 1181 } 1182 1183 auto *I1 = dyn_cast<Instruction>(V1); 1184 auto *I2 = dyn_cast<Instruction>(V2); 1185 if (I1 && I2) { 1186 if (I1->getParent() != I2->getParent()) 1187 return VLOperands::ScoreFail; 1188 SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end()); 1189 Ops.push_back(I1); 1190 Ops.push_back(I2); 1191 InstructionsState S = getSameOpcode(Ops); 1192 // Note: Only consider instructions with <= 2 operands to avoid 1193 // complexity explosion. 1194 if (S.getOpcode() && 1195 (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() || 1196 !S.isAltShuffle()) && 1197 all_of(Ops, [&S](Value *V) { 1198 return cast<Instruction>(V)->getNumOperands() == 1199 S.MainOp->getNumOperands(); 1200 })) 1201 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 1202 : VLOperands::ScoreSameOpcode; 1203 } 1204 1205 if (isa<UndefValue>(V2)) 1206 return VLOperands::ScoreUndef; 1207 1208 return VLOperands::ScoreFail; 1209 } 1210 1211 /// \param Lane lane of the operands under analysis. 1212 /// \param OpIdx operand index in \p Lane lane we're looking the best 1213 /// candidate for. 1214 /// \param Idx operand index of the current candidate value. 1215 /// \returns The additional score due to possible broadcasting of the 1216 /// elements in the lane. It is more profitable to have power-of-2 unique 1217 /// elements in the lane, it will be vectorized with higher probability 1218 /// after removing duplicates. Currently the SLP vectorizer supports only 1219 /// vectorization of the power-of-2 number of unique scalars. 1220 int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1221 Value *IdxLaneV = getData(Idx, Lane).V; 1222 if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V) 1223 return 0; 1224 SmallPtrSet<Value *, 4> Uniques; 1225 for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) { 1226 if (Ln == Lane) 1227 continue; 1228 Value *OpIdxLnV = getData(OpIdx, Ln).V; 1229 if (!isa<Instruction>(OpIdxLnV)) 1230 return 0; 1231 Uniques.insert(OpIdxLnV); 1232 } 1233 int UniquesCount = Uniques.size(); 1234 int UniquesCntWithIdxLaneV = 1235 Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1; 1236 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1237 int UniquesCntWithOpIdxLaneV = 1238 Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1; 1239 if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV) 1240 return 0; 1241 return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) - 1242 UniquesCntWithOpIdxLaneV) - 1243 (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV); 1244 } 1245 1246 /// \param Lane lane of the operands under analysis. 1247 /// \param OpIdx operand index in \p Lane lane we're looking the best 1248 /// candidate for. 1249 /// \param Idx operand index of the current candidate value. 1250 /// \returns The additional score for the scalar which users are all 1251 /// vectorized. 1252 int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1253 Value *IdxLaneV = getData(Idx, Lane).V; 1254 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1255 // Do not care about number of uses for vector-like instructions 1256 // (extractelement/extractvalue with constant indices), they are extracts 1257 // themselves and already externally used. Vectorization of such 1258 // instructions does not add extra extractelement instruction, just may 1259 // remove it. 1260 if (isVectorLikeInstWithConstOps(IdxLaneV) && 1261 isVectorLikeInstWithConstOps(OpIdxLaneV)) 1262 return VLOperands::ScoreAllUserVectorized; 1263 auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV); 1264 if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV)) 1265 return 0; 1266 return R.areAllUsersVectorized(IdxLaneI, None) 1267 ? VLOperands::ScoreAllUserVectorized 1268 : 0; 1269 } 1270 1271 /// Go through the operands of \p LHS and \p RHS recursively until \p 1272 /// MaxLevel, and return the cummulative score. For example: 1273 /// \verbatim 1274 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1275 /// \ / \ / \ / \ / 1276 /// + + + + 1277 /// G1 G2 G3 G4 1278 /// \endverbatim 1279 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1280 /// each level recursively, accumulating the score. It starts from matching 1281 /// the additions at level 0, then moves on to the loads (level 1). The 1282 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1283 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1284 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1285 /// Please note that the order of the operands does not matter, as we 1286 /// evaluate the score of all profitable combinations of operands. In 1287 /// other words the score of G1 and G4 is the same as G1 and G2. This 1288 /// heuristic is based on ideas described in: 1289 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1290 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1291 /// Luís F. W. Góes 1292 int getScoreAtLevelRec(Value *LHS, Value *RHS, int CurrLevel, int MaxLevel, 1293 ArrayRef<Value *> MainAltOps) { 1294 1295 // Get the shallow score of V1 and V2. 1296 int ShallowScoreAtThisLevel = 1297 getShallowScore(LHS, RHS, DL, SE, getNumLanes(), MainAltOps); 1298 1299 // If reached MaxLevel, 1300 // or if V1 and V2 are not instructions, 1301 // or if they are SPLAT, 1302 // or if they are not consecutive, 1303 // or if profitable to vectorize loads or extractelements, early return 1304 // the current cost. 1305 auto *I1 = dyn_cast<Instruction>(LHS); 1306 auto *I2 = dyn_cast<Instruction>(RHS); 1307 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1308 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1309 (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) || 1310 (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) || 1311 (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) && 1312 ShallowScoreAtThisLevel)) 1313 return ShallowScoreAtThisLevel; 1314 assert(I1 && I2 && "Should have early exited."); 1315 1316 // Contains the I2 operand indexes that got matched with I1 operands. 1317 SmallSet<unsigned, 4> Op2Used; 1318 1319 // Recursion towards the operands of I1 and I2. We are trying all possible 1320 // operand pairs, and keeping track of the best score. 1321 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1322 OpIdx1 != NumOperands1; ++OpIdx1) { 1323 // Try to pair op1I with the best operand of I2. 1324 int MaxTmpScore = 0; 1325 unsigned MaxOpIdx2 = 0; 1326 bool FoundBest = false; 1327 // If I2 is commutative try all combinations. 1328 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1329 unsigned ToIdx = isCommutative(I2) 1330 ? I2->getNumOperands() 1331 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1332 assert(FromIdx <= ToIdx && "Bad index"); 1333 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1334 // Skip operands already paired with OpIdx1. 1335 if (Op2Used.count(OpIdx2)) 1336 continue; 1337 // Recursively calculate the cost at each level 1338 int TmpScore = 1339 getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2), 1340 CurrLevel + 1, MaxLevel, None); 1341 // Look for the best score. 1342 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1343 MaxTmpScore = TmpScore; 1344 MaxOpIdx2 = OpIdx2; 1345 FoundBest = true; 1346 } 1347 } 1348 if (FoundBest) { 1349 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1350 Op2Used.insert(MaxOpIdx2); 1351 ShallowScoreAtThisLevel += MaxTmpScore; 1352 } 1353 } 1354 return ShallowScoreAtThisLevel; 1355 } 1356 1357 /// Score scaling factor for fully compatible instructions but with 1358 /// different number of external uses. Allows better selection of the 1359 /// instructions with less external uses. 1360 static const int ScoreScaleFactor = 10; 1361 1362 /// \Returns the look-ahead score, which tells us how much the sub-trees 1363 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1364 /// score. This helps break ties in an informed way when we cannot decide on 1365 /// the order of the operands by just considering the immediate 1366 /// predecessors. 1367 int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps, 1368 int Lane, unsigned OpIdx, unsigned Idx, 1369 bool &IsUsed) { 1370 int Score = 1371 getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth, MainAltOps); 1372 if (Score) { 1373 int SplatScore = getSplatScore(Lane, OpIdx, Idx); 1374 if (Score <= -SplatScore) { 1375 // Set the minimum score for splat-like sequence to avoid setting 1376 // failed state. 1377 Score = 1; 1378 } else { 1379 Score += SplatScore; 1380 // Scale score to see the difference between different operands 1381 // and similar operands but all vectorized/not all vectorized 1382 // uses. It does not affect actual selection of the best 1383 // compatible operand in general, just allows to select the 1384 // operand with all vectorized uses. 1385 Score *= ScoreScaleFactor; 1386 Score += getExternalUseScore(Lane, OpIdx, Idx); 1387 IsUsed = true; 1388 } 1389 } 1390 return Score; 1391 } 1392 1393 /// Best defined scores per lanes between the passes. Used to choose the 1394 /// best operand (with the highest score) between the passes. 1395 /// The key - {Operand Index, Lane}. 1396 /// The value - the best score between the passes for the lane and the 1397 /// operand. 1398 SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8> 1399 BestScoresPerLanes; 1400 1401 // Search all operands in Ops[*][Lane] for the one that matches best 1402 // Ops[OpIdx][LastLane] and return its opreand index. 1403 // If no good match can be found, return None. 1404 Optional<unsigned> getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1405 ArrayRef<ReorderingMode> ReorderingModes, 1406 ArrayRef<Value *> MainAltOps) { 1407 unsigned NumOperands = getNumOperands(); 1408 1409 // The operand of the previous lane at OpIdx. 1410 Value *OpLastLane = getData(OpIdx, LastLane).V; 1411 1412 // Our strategy mode for OpIdx. 1413 ReorderingMode RMode = ReorderingModes[OpIdx]; 1414 if (RMode == ReorderingMode::Failed) 1415 return None; 1416 1417 // The linearized opcode of the operand at OpIdx, Lane. 1418 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1419 1420 // The best operand index and its score. 1421 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1422 // are using the score to differentiate between the two. 1423 struct BestOpData { 1424 Optional<unsigned> Idx = None; 1425 unsigned Score = 0; 1426 } BestOp; 1427 BestOp.Score = 1428 BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0) 1429 .first->second; 1430 1431 // Track if the operand must be marked as used. If the operand is set to 1432 // Score 1 explicitly (because of non power-of-2 unique scalars, we may 1433 // want to reestimate the operands again on the following iterations). 1434 bool IsUsed = 1435 RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant; 1436 // Iterate through all unused operands and look for the best. 1437 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1438 // Get the operand at Idx and Lane. 1439 OperandData &OpData = getData(Idx, Lane); 1440 Value *Op = OpData.V; 1441 bool OpAPO = OpData.APO; 1442 1443 // Skip already selected operands. 1444 if (OpData.IsUsed) 1445 continue; 1446 1447 // Skip if we are trying to move the operand to a position with a 1448 // different opcode in the linearized tree form. This would break the 1449 // semantics. 1450 if (OpAPO != OpIdxAPO) 1451 continue; 1452 1453 // Look for an operand that matches the current mode. 1454 switch (RMode) { 1455 case ReorderingMode::Load: 1456 case ReorderingMode::Constant: 1457 case ReorderingMode::Opcode: { 1458 bool LeftToRight = Lane > LastLane; 1459 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1460 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1461 int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane, 1462 OpIdx, Idx, IsUsed); 1463 if (Score > static_cast<int>(BestOp.Score)) { 1464 BestOp.Idx = Idx; 1465 BestOp.Score = Score; 1466 BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score; 1467 } 1468 break; 1469 } 1470 case ReorderingMode::Splat: 1471 if (Op == OpLastLane) 1472 BestOp.Idx = Idx; 1473 break; 1474 case ReorderingMode::Failed: 1475 llvm_unreachable("Not expected Failed reordering mode."); 1476 } 1477 } 1478 1479 if (BestOp.Idx) { 1480 getData(BestOp.Idx.getValue(), Lane).IsUsed = IsUsed; 1481 return BestOp.Idx; 1482 } 1483 // If we could not find a good match return None. 1484 return None; 1485 } 1486 1487 /// Helper for reorderOperandVecs. 1488 /// \returns the lane that we should start reordering from. This is the one 1489 /// which has the least number of operands that can freely move about or 1490 /// less profitable because it already has the most optimal set of operands. 1491 unsigned getBestLaneToStartReordering() const { 1492 unsigned Min = UINT_MAX; 1493 unsigned SameOpNumber = 0; 1494 // std::pair<unsigned, unsigned> is used to implement a simple voting 1495 // algorithm and choose the lane with the least number of operands that 1496 // can freely move about or less profitable because it already has the 1497 // most optimal set of operands. The first unsigned is a counter for 1498 // voting, the second unsigned is the counter of lanes with instructions 1499 // with same/alternate opcodes and same parent basic block. 1500 MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap; 1501 // Try to be closer to the original results, if we have multiple lanes 1502 // with same cost. If 2 lanes have the same cost, use the one with the 1503 // lowest index. 1504 for (int I = getNumLanes(); I > 0; --I) { 1505 unsigned Lane = I - 1; 1506 OperandsOrderData NumFreeOpsHash = 1507 getMaxNumOperandsThatCanBeReordered(Lane); 1508 // Compare the number of operands that can move and choose the one with 1509 // the least number. 1510 if (NumFreeOpsHash.NumOfAPOs < Min) { 1511 Min = NumFreeOpsHash.NumOfAPOs; 1512 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1513 HashMap.clear(); 1514 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1515 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1516 NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) { 1517 // Select the most optimal lane in terms of number of operands that 1518 // should be moved around. 1519 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1520 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1521 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1522 NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) { 1523 auto It = HashMap.find(NumFreeOpsHash.Hash); 1524 if (It == HashMap.end()) 1525 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1526 else 1527 ++It->second.first; 1528 } 1529 } 1530 // Select the lane with the minimum counter. 1531 unsigned BestLane = 0; 1532 unsigned CntMin = UINT_MAX; 1533 for (const auto &Data : reverse(HashMap)) { 1534 if (Data.second.first < CntMin) { 1535 CntMin = Data.second.first; 1536 BestLane = Data.second.second; 1537 } 1538 } 1539 return BestLane; 1540 } 1541 1542 /// Data structure that helps to reorder operands. 1543 struct OperandsOrderData { 1544 /// The best number of operands with the same APOs, which can be 1545 /// reordered. 1546 unsigned NumOfAPOs = UINT_MAX; 1547 /// Number of operands with the same/alternate instruction opcode and 1548 /// parent. 1549 unsigned NumOpsWithSameOpcodeParent = 0; 1550 /// Hash for the actual operands ordering. 1551 /// Used to count operands, actually their position id and opcode 1552 /// value. It is used in the voting mechanism to find the lane with the 1553 /// least number of operands that can freely move about or less profitable 1554 /// because it already has the most optimal set of operands. Can be 1555 /// replaced with SmallVector<unsigned> instead but hash code is faster 1556 /// and requires less memory. 1557 unsigned Hash = 0; 1558 }; 1559 /// \returns the maximum number of operands that are allowed to be reordered 1560 /// for \p Lane and the number of compatible instructions(with the same 1561 /// parent/opcode). This is used as a heuristic for selecting the first lane 1562 /// to start operand reordering. 1563 OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1564 unsigned CntTrue = 0; 1565 unsigned NumOperands = getNumOperands(); 1566 // Operands with the same APO can be reordered. We therefore need to count 1567 // how many of them we have for each APO, like this: Cnt[APO] = x. 1568 // Since we only have two APOs, namely true and false, we can avoid using 1569 // a map. Instead we can simply count the number of operands that 1570 // correspond to one of them (in this case the 'true' APO), and calculate 1571 // the other by subtracting it from the total number of operands. 1572 // Operands with the same instruction opcode and parent are more 1573 // profitable since we don't need to move them in many cases, with a high 1574 // probability such lane already can be vectorized effectively. 1575 bool AllUndefs = true; 1576 unsigned NumOpsWithSameOpcodeParent = 0; 1577 Instruction *OpcodeI = nullptr; 1578 BasicBlock *Parent = nullptr; 1579 unsigned Hash = 0; 1580 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1581 const OperandData &OpData = getData(OpIdx, Lane); 1582 if (OpData.APO) 1583 ++CntTrue; 1584 // Use Boyer-Moore majority voting for finding the majority opcode and 1585 // the number of times it occurs. 1586 if (auto *I = dyn_cast<Instruction>(OpData.V)) { 1587 if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() || 1588 I->getParent() != Parent) { 1589 if (NumOpsWithSameOpcodeParent == 0) { 1590 NumOpsWithSameOpcodeParent = 1; 1591 OpcodeI = I; 1592 Parent = I->getParent(); 1593 } else { 1594 --NumOpsWithSameOpcodeParent; 1595 } 1596 } else { 1597 ++NumOpsWithSameOpcodeParent; 1598 } 1599 } 1600 Hash = hash_combine( 1601 Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1))); 1602 AllUndefs = AllUndefs && isa<UndefValue>(OpData.V); 1603 } 1604 if (AllUndefs) 1605 return {}; 1606 OperandsOrderData Data; 1607 Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue); 1608 Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent; 1609 Data.Hash = Hash; 1610 return Data; 1611 } 1612 1613 /// Go through the instructions in VL and append their operands. 1614 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1615 assert(!VL.empty() && "Bad VL"); 1616 assert((empty() || VL.size() == getNumLanes()) && 1617 "Expected same number of lanes"); 1618 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1619 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1620 OpsVec.resize(NumOperands); 1621 unsigned NumLanes = VL.size(); 1622 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1623 OpsVec[OpIdx].resize(NumLanes); 1624 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1625 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1626 // Our tree has just 3 nodes: the root and two operands. 1627 // It is therefore trivial to get the APO. We only need to check the 1628 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1629 // RHS operand. The LHS operand of both add and sub is never attached 1630 // to an inversese operation in the linearized form, therefore its APO 1631 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1632 1633 // Since operand reordering is performed on groups of commutative 1634 // operations or alternating sequences (e.g., +, -), we can safely 1635 // tell the inverse operations by checking commutativity. 1636 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1637 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1638 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1639 APO, false}; 1640 } 1641 } 1642 } 1643 1644 /// \returns the number of operands. 1645 unsigned getNumOperands() const { return OpsVec.size(); } 1646 1647 /// \returns the number of lanes. 1648 unsigned getNumLanes() const { return OpsVec[0].size(); } 1649 1650 /// \returns the operand value at \p OpIdx and \p Lane. 1651 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1652 return getData(OpIdx, Lane).V; 1653 } 1654 1655 /// \returns true if the data structure is empty. 1656 bool empty() const { return OpsVec.empty(); } 1657 1658 /// Clears the data. 1659 void clear() { OpsVec.clear(); } 1660 1661 /// \Returns true if there are enough operands identical to \p Op to fill 1662 /// the whole vector. 1663 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1664 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1665 bool OpAPO = getData(OpIdx, Lane).APO; 1666 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1667 if (Ln == Lane) 1668 continue; 1669 // This is set to true if we found a candidate for broadcast at Lane. 1670 bool FoundCandidate = false; 1671 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1672 OperandData &Data = getData(OpI, Ln); 1673 if (Data.APO != OpAPO || Data.IsUsed) 1674 continue; 1675 if (Data.V == Op) { 1676 FoundCandidate = true; 1677 Data.IsUsed = true; 1678 break; 1679 } 1680 } 1681 if (!FoundCandidate) 1682 return false; 1683 } 1684 return true; 1685 } 1686 1687 public: 1688 /// Initialize with all the operands of the instruction vector \p RootVL. 1689 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1690 ScalarEvolution &SE, const BoUpSLP &R) 1691 : DL(DL), SE(SE), R(R) { 1692 // Append all the operands of RootVL. 1693 appendOperandsOfVL(RootVL); 1694 } 1695 1696 /// \Returns a value vector with the operands across all lanes for the 1697 /// opearnd at \p OpIdx. 1698 ValueList getVL(unsigned OpIdx) const { 1699 ValueList OpVL(OpsVec[OpIdx].size()); 1700 assert(OpsVec[OpIdx].size() == getNumLanes() && 1701 "Expected same num of lanes across all operands"); 1702 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1703 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1704 return OpVL; 1705 } 1706 1707 // Performs operand reordering for 2 or more operands. 1708 // The original operands are in OrigOps[OpIdx][Lane]. 1709 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1710 void reorder() { 1711 unsigned NumOperands = getNumOperands(); 1712 unsigned NumLanes = getNumLanes(); 1713 // Each operand has its own mode. We are using this mode to help us select 1714 // the instructions for each lane, so that they match best with the ones 1715 // we have selected so far. 1716 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1717 1718 // This is a greedy single-pass algorithm. We are going over each lane 1719 // once and deciding on the best order right away with no back-tracking. 1720 // However, in order to increase its effectiveness, we start with the lane 1721 // that has operands that can move the least. For example, given the 1722 // following lanes: 1723 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1724 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1725 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1726 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1727 // we will start at Lane 1, since the operands of the subtraction cannot 1728 // be reordered. Then we will visit the rest of the lanes in a circular 1729 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1730 1731 // Find the first lane that we will start our search from. 1732 unsigned FirstLane = getBestLaneToStartReordering(); 1733 1734 // Initialize the modes. 1735 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1736 Value *OpLane0 = getValue(OpIdx, FirstLane); 1737 // Keep track if we have instructions with all the same opcode on one 1738 // side. 1739 if (isa<LoadInst>(OpLane0)) 1740 ReorderingModes[OpIdx] = ReorderingMode::Load; 1741 else if (isa<Instruction>(OpLane0)) { 1742 // Check if OpLane0 should be broadcast. 1743 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1744 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1745 else 1746 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1747 } 1748 else if (isa<Constant>(OpLane0)) 1749 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1750 else if (isa<Argument>(OpLane0)) 1751 // Our best hope is a Splat. It may save some cost in some cases. 1752 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1753 else 1754 // NOTE: This should be unreachable. 1755 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1756 } 1757 1758 // Check that we don't have same operands. No need to reorder if operands 1759 // are just perfect diamond or shuffled diamond match. Do not do it only 1760 // for possible broadcasts or non-power of 2 number of scalars (just for 1761 // now). 1762 auto &&SkipReordering = [this]() { 1763 SmallPtrSet<Value *, 4> UniqueValues; 1764 ArrayRef<OperandData> Op0 = OpsVec.front(); 1765 for (const OperandData &Data : Op0) 1766 UniqueValues.insert(Data.V); 1767 for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) { 1768 if (any_of(Op, [&UniqueValues](const OperandData &Data) { 1769 return !UniqueValues.contains(Data.V); 1770 })) 1771 return false; 1772 } 1773 // TODO: Check if we can remove a check for non-power-2 number of 1774 // scalars after full support of non-power-2 vectorization. 1775 return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size()); 1776 }; 1777 1778 // If the initial strategy fails for any of the operand indexes, then we 1779 // perform reordering again in a second pass. This helps avoid assigning 1780 // high priority to the failed strategy, and should improve reordering for 1781 // the non-failed operand indexes. 1782 for (int Pass = 0; Pass != 2; ++Pass) { 1783 // Check if no need to reorder operands since they're are perfect or 1784 // shuffled diamond match. 1785 // Need to to do it to avoid extra external use cost counting for 1786 // shuffled matches, which may cause regressions. 1787 if (SkipReordering()) 1788 break; 1789 // Skip the second pass if the first pass did not fail. 1790 bool StrategyFailed = false; 1791 // Mark all operand data as free to use. 1792 clearUsed(); 1793 // We keep the original operand order for the FirstLane, so reorder the 1794 // rest of the lanes. We are visiting the nodes in a circular fashion, 1795 // using FirstLane as the center point and increasing the radius 1796 // distance. 1797 SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands); 1798 for (unsigned I = 0; I < NumOperands; ++I) 1799 MainAltOps[I].push_back(getData(I, FirstLane).V); 1800 1801 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1802 // Visit the lane on the right and then the lane on the left. 1803 for (int Direction : {+1, -1}) { 1804 int Lane = FirstLane + Direction * Distance; 1805 if (Lane < 0 || Lane >= (int)NumLanes) 1806 continue; 1807 int LastLane = Lane - Direction; 1808 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1809 "Out of bounds"); 1810 // Look for a good match for each operand. 1811 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1812 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1813 Optional<unsigned> BestIdx = getBestOperand( 1814 OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]); 1815 // By not selecting a value, we allow the operands that follow to 1816 // select a better matching value. We will get a non-null value in 1817 // the next run of getBestOperand(). 1818 if (BestIdx) { 1819 // Swap the current operand with the one returned by 1820 // getBestOperand(). 1821 swap(OpIdx, BestIdx.getValue(), Lane); 1822 } else { 1823 // We failed to find a best operand, set mode to 'Failed'. 1824 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1825 // Enable the second pass. 1826 StrategyFailed = true; 1827 } 1828 // Try to get the alternate opcode and follow it during analysis. 1829 if (MainAltOps[OpIdx].size() != 2) { 1830 OperandData &AltOp = getData(OpIdx, Lane); 1831 InstructionsState OpS = 1832 getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V}); 1833 if (OpS.getOpcode() && OpS.isAltShuffle()) 1834 MainAltOps[OpIdx].push_back(AltOp.V); 1835 } 1836 } 1837 } 1838 } 1839 // Skip second pass if the strategy did not fail. 1840 if (!StrategyFailed) 1841 break; 1842 } 1843 } 1844 1845 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1846 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1847 switch (RMode) { 1848 case ReorderingMode::Load: 1849 return "Load"; 1850 case ReorderingMode::Opcode: 1851 return "Opcode"; 1852 case ReorderingMode::Constant: 1853 return "Constant"; 1854 case ReorderingMode::Splat: 1855 return "Splat"; 1856 case ReorderingMode::Failed: 1857 return "Failed"; 1858 } 1859 llvm_unreachable("Unimplemented Reordering Type"); 1860 } 1861 1862 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1863 raw_ostream &OS) { 1864 return OS << getModeStr(RMode); 1865 } 1866 1867 /// Debug print. 1868 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1869 printMode(RMode, dbgs()); 1870 } 1871 1872 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1873 return printMode(RMode, OS); 1874 } 1875 1876 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1877 const unsigned Indent = 2; 1878 unsigned Cnt = 0; 1879 for (const OperandDataVec &OpDataVec : OpsVec) { 1880 OS << "Operand " << Cnt++ << "\n"; 1881 for (const OperandData &OpData : OpDataVec) { 1882 OS.indent(Indent) << "{"; 1883 if (Value *V = OpData.V) 1884 OS << *V; 1885 else 1886 OS << "null"; 1887 OS << ", APO:" << OpData.APO << "}\n"; 1888 } 1889 OS << "\n"; 1890 } 1891 return OS; 1892 } 1893 1894 /// Debug print. 1895 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1896 #endif 1897 }; 1898 1899 /// Checks if the instruction is marked for deletion. 1900 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1901 1902 /// Marks values operands for later deletion by replacing them with Undefs. 1903 void eraseInstructions(ArrayRef<Value *> AV); 1904 1905 ~BoUpSLP(); 1906 1907 private: 1908 /// Checks if all users of \p I are the part of the vectorization tree. 1909 bool areAllUsersVectorized(Instruction *I, 1910 ArrayRef<Value *> VectorizedVals) const; 1911 1912 /// \returns the cost of the vectorizable entry. 1913 InstructionCost getEntryCost(const TreeEntry *E, 1914 ArrayRef<Value *> VectorizedVals); 1915 1916 /// This is the recursive part of buildTree. 1917 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1918 const EdgeInfo &EI); 1919 1920 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1921 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1922 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1923 /// returns false, setting \p CurrentOrder to either an empty vector or a 1924 /// non-identity permutation that allows to reuse extract instructions. 1925 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1926 SmallVectorImpl<unsigned> &CurrentOrder) const; 1927 1928 /// Vectorize a single entry in the tree. 1929 Value *vectorizeTree(TreeEntry *E); 1930 1931 /// Vectorize a single entry in the tree, starting in \p VL. 1932 Value *vectorizeTree(ArrayRef<Value *> VL); 1933 1934 /// \returns the scalarization cost for this type. Scalarization in this 1935 /// context means the creation of vectors from a group of scalars. If \p 1936 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 1937 /// vector elements. 1938 InstructionCost getGatherCost(FixedVectorType *Ty, 1939 const APInt &ShuffledIndices, 1940 bool NeedToShuffle) const; 1941 1942 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 1943 /// tree entries. 1944 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 1945 /// previous tree entries. \p Mask is filled with the shuffle mask. 1946 Optional<TargetTransformInfo::ShuffleKind> 1947 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 1948 SmallVectorImpl<const TreeEntry *> &Entries); 1949 1950 /// \returns the scalarization cost for this list of values. Assuming that 1951 /// this subtree gets vectorized, we may need to extract the values from the 1952 /// roots. This method calculates the cost of extracting the values. 1953 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1954 1955 /// Set the Builder insert point to one after the last instruction in 1956 /// the bundle 1957 void setInsertPointAfterBundle(const TreeEntry *E); 1958 1959 /// \returns a vector from a collection of scalars in \p VL. 1960 Value *gather(ArrayRef<Value *> VL); 1961 1962 /// \returns whether the VectorizableTree is fully vectorizable and will 1963 /// be beneficial even the tree height is tiny. 1964 bool isFullyVectorizableTinyTree(bool ForReduction) const; 1965 1966 /// Reorder commutative or alt operands to get better probability of 1967 /// generating vectorized code. 1968 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1969 SmallVectorImpl<Value *> &Left, 1970 SmallVectorImpl<Value *> &Right, 1971 const DataLayout &DL, 1972 ScalarEvolution &SE, 1973 const BoUpSLP &R); 1974 struct TreeEntry { 1975 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1976 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1977 1978 /// \returns true if the scalars in VL are equal to this entry. 1979 bool isSame(ArrayRef<Value *> VL) const { 1980 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 1981 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 1982 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1983 return VL.size() == Mask.size() && 1984 std::equal(VL.begin(), VL.end(), Mask.begin(), 1985 [Scalars](Value *V, int Idx) { 1986 return (isa<UndefValue>(V) && 1987 Idx == UndefMaskElem) || 1988 (Idx != UndefMaskElem && V == Scalars[Idx]); 1989 }); 1990 }; 1991 if (!ReorderIndices.empty()) { 1992 // TODO: implement matching if the nodes are just reordered, still can 1993 // treat the vector as the same if the list of scalars matches VL 1994 // directly, without reordering. 1995 SmallVector<int> Mask; 1996 inversePermutation(ReorderIndices, Mask); 1997 if (VL.size() == Scalars.size()) 1998 return IsSame(Scalars, Mask); 1999 if (VL.size() == ReuseShuffleIndices.size()) { 2000 ::addMask(Mask, ReuseShuffleIndices); 2001 return IsSame(Scalars, Mask); 2002 } 2003 return false; 2004 } 2005 return IsSame(Scalars, ReuseShuffleIndices); 2006 } 2007 2008 /// \returns true if current entry has same operands as \p TE. 2009 bool hasEqualOperands(const TreeEntry &TE) const { 2010 if (TE.getNumOperands() != getNumOperands()) 2011 return false; 2012 SmallBitVector Used(getNumOperands()); 2013 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 2014 unsigned PrevCount = Used.count(); 2015 for (unsigned K = 0; K < E; ++K) { 2016 if (Used.test(K)) 2017 continue; 2018 if (getOperand(K) == TE.getOperand(I)) { 2019 Used.set(K); 2020 break; 2021 } 2022 } 2023 // Check if we actually found the matching operand. 2024 if (PrevCount == Used.count()) 2025 return false; 2026 } 2027 return true; 2028 } 2029 2030 /// \return Final vectorization factor for the node. Defined by the total 2031 /// number of vectorized scalars, including those, used several times in the 2032 /// entry and counted in the \a ReuseShuffleIndices, if any. 2033 unsigned getVectorFactor() const { 2034 if (!ReuseShuffleIndices.empty()) 2035 return ReuseShuffleIndices.size(); 2036 return Scalars.size(); 2037 }; 2038 2039 /// A vector of scalars. 2040 ValueList Scalars; 2041 2042 /// The Scalars are vectorized into this value. It is initialized to Null. 2043 Value *VectorizedValue = nullptr; 2044 2045 /// Do we need to gather this sequence or vectorize it 2046 /// (either with vector instruction or with scatter/gather 2047 /// intrinsics for store/load)? 2048 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 2049 EntryState State; 2050 2051 /// Does this sequence require some shuffling? 2052 SmallVector<int, 4> ReuseShuffleIndices; 2053 2054 /// Does this entry require reordering? 2055 SmallVector<unsigned, 4> ReorderIndices; 2056 2057 /// Points back to the VectorizableTree. 2058 /// 2059 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 2060 /// to be a pointer and needs to be able to initialize the child iterator. 2061 /// Thus we need a reference back to the container to translate the indices 2062 /// to entries. 2063 VecTreeTy &Container; 2064 2065 /// The TreeEntry index containing the user of this entry. We can actually 2066 /// have multiple users so the data structure is not truly a tree. 2067 SmallVector<EdgeInfo, 1> UserTreeIndices; 2068 2069 /// The index of this treeEntry in VectorizableTree. 2070 int Idx = -1; 2071 2072 private: 2073 /// The operands of each instruction in each lane Operands[op_index][lane]. 2074 /// Note: This helps avoid the replication of the code that performs the 2075 /// reordering of operands during buildTree_rec() and vectorizeTree(). 2076 SmallVector<ValueList, 2> Operands; 2077 2078 /// The main/alternate instruction. 2079 Instruction *MainOp = nullptr; 2080 Instruction *AltOp = nullptr; 2081 2082 public: 2083 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 2084 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 2085 if (Operands.size() < OpIdx + 1) 2086 Operands.resize(OpIdx + 1); 2087 assert(Operands[OpIdx].empty() && "Already resized?"); 2088 assert(OpVL.size() <= Scalars.size() && 2089 "Number of operands is greater than the number of scalars."); 2090 Operands[OpIdx].resize(OpVL.size()); 2091 copy(OpVL, Operands[OpIdx].begin()); 2092 } 2093 2094 /// Set the operands of this bundle in their original order. 2095 void setOperandsInOrder() { 2096 assert(Operands.empty() && "Already initialized?"); 2097 auto *I0 = cast<Instruction>(Scalars[0]); 2098 Operands.resize(I0->getNumOperands()); 2099 unsigned NumLanes = Scalars.size(); 2100 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 2101 OpIdx != NumOperands; ++OpIdx) { 2102 Operands[OpIdx].resize(NumLanes); 2103 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 2104 auto *I = cast<Instruction>(Scalars[Lane]); 2105 assert(I->getNumOperands() == NumOperands && 2106 "Expected same number of operands"); 2107 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 2108 } 2109 } 2110 } 2111 2112 /// Reorders operands of the node to the given mask \p Mask. 2113 void reorderOperands(ArrayRef<int> Mask) { 2114 for (ValueList &Operand : Operands) 2115 reorderScalars(Operand, Mask); 2116 } 2117 2118 /// \returns the \p OpIdx operand of this TreeEntry. 2119 ValueList &getOperand(unsigned OpIdx) { 2120 assert(OpIdx < Operands.size() && "Off bounds"); 2121 return Operands[OpIdx]; 2122 } 2123 2124 /// \returns the \p OpIdx operand of this TreeEntry. 2125 ArrayRef<Value *> getOperand(unsigned OpIdx) const { 2126 assert(OpIdx < Operands.size() && "Off bounds"); 2127 return Operands[OpIdx]; 2128 } 2129 2130 /// \returns the number of operands. 2131 unsigned getNumOperands() const { return Operands.size(); } 2132 2133 /// \return the single \p OpIdx operand. 2134 Value *getSingleOperand(unsigned OpIdx) const { 2135 assert(OpIdx < Operands.size() && "Off bounds"); 2136 assert(!Operands[OpIdx].empty() && "No operand available"); 2137 return Operands[OpIdx][0]; 2138 } 2139 2140 /// Some of the instructions in the list have alternate opcodes. 2141 bool isAltShuffle() const { return MainOp != AltOp; } 2142 2143 bool isOpcodeOrAlt(Instruction *I) const { 2144 unsigned CheckedOpcode = I->getOpcode(); 2145 return (getOpcode() == CheckedOpcode || 2146 getAltOpcode() == CheckedOpcode); 2147 } 2148 2149 /// Chooses the correct key for scheduling data. If \p Op has the same (or 2150 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 2151 /// \p OpValue. 2152 Value *isOneOf(Value *Op) const { 2153 auto *I = dyn_cast<Instruction>(Op); 2154 if (I && isOpcodeOrAlt(I)) 2155 return Op; 2156 return MainOp; 2157 } 2158 2159 void setOperations(const InstructionsState &S) { 2160 MainOp = S.MainOp; 2161 AltOp = S.AltOp; 2162 } 2163 2164 Instruction *getMainOp() const { 2165 return MainOp; 2166 } 2167 2168 Instruction *getAltOp() const { 2169 return AltOp; 2170 } 2171 2172 /// The main/alternate opcodes for the list of instructions. 2173 unsigned getOpcode() const { 2174 return MainOp ? MainOp->getOpcode() : 0; 2175 } 2176 2177 unsigned getAltOpcode() const { 2178 return AltOp ? AltOp->getOpcode() : 0; 2179 } 2180 2181 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 2182 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 2183 int findLaneForValue(Value *V) const { 2184 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2185 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2186 if (!ReorderIndices.empty()) 2187 FoundLane = ReorderIndices[FoundLane]; 2188 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2189 if (!ReuseShuffleIndices.empty()) { 2190 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2191 find(ReuseShuffleIndices, FoundLane)); 2192 } 2193 return FoundLane; 2194 } 2195 2196 #ifndef NDEBUG 2197 /// Debug printer. 2198 LLVM_DUMP_METHOD void dump() const { 2199 dbgs() << Idx << ".\n"; 2200 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 2201 dbgs() << "Operand " << OpI << ":\n"; 2202 for (const Value *V : Operands[OpI]) 2203 dbgs().indent(2) << *V << "\n"; 2204 } 2205 dbgs() << "Scalars: \n"; 2206 for (Value *V : Scalars) 2207 dbgs().indent(2) << *V << "\n"; 2208 dbgs() << "State: "; 2209 switch (State) { 2210 case Vectorize: 2211 dbgs() << "Vectorize\n"; 2212 break; 2213 case ScatterVectorize: 2214 dbgs() << "ScatterVectorize\n"; 2215 break; 2216 case NeedToGather: 2217 dbgs() << "NeedToGather\n"; 2218 break; 2219 } 2220 dbgs() << "MainOp: "; 2221 if (MainOp) 2222 dbgs() << *MainOp << "\n"; 2223 else 2224 dbgs() << "NULL\n"; 2225 dbgs() << "AltOp: "; 2226 if (AltOp) 2227 dbgs() << *AltOp << "\n"; 2228 else 2229 dbgs() << "NULL\n"; 2230 dbgs() << "VectorizedValue: "; 2231 if (VectorizedValue) 2232 dbgs() << *VectorizedValue << "\n"; 2233 else 2234 dbgs() << "NULL\n"; 2235 dbgs() << "ReuseShuffleIndices: "; 2236 if (ReuseShuffleIndices.empty()) 2237 dbgs() << "Empty"; 2238 else 2239 for (int ReuseIdx : ReuseShuffleIndices) 2240 dbgs() << ReuseIdx << ", "; 2241 dbgs() << "\n"; 2242 dbgs() << "ReorderIndices: "; 2243 for (unsigned ReorderIdx : ReorderIndices) 2244 dbgs() << ReorderIdx << ", "; 2245 dbgs() << "\n"; 2246 dbgs() << "UserTreeIndices: "; 2247 for (const auto &EInfo : UserTreeIndices) 2248 dbgs() << EInfo << ", "; 2249 dbgs() << "\n"; 2250 } 2251 #endif 2252 }; 2253 2254 #ifndef NDEBUG 2255 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 2256 InstructionCost VecCost, 2257 InstructionCost ScalarCost) const { 2258 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 2259 dbgs() << "SLP: Costs:\n"; 2260 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 2261 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 2262 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 2263 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 2264 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 2265 } 2266 #endif 2267 2268 /// Create a new VectorizableTree entry. 2269 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 2270 const InstructionsState &S, 2271 const EdgeInfo &UserTreeIdx, 2272 ArrayRef<int> ReuseShuffleIndices = None, 2273 ArrayRef<unsigned> ReorderIndices = None) { 2274 TreeEntry::EntryState EntryState = 2275 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 2276 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 2277 ReuseShuffleIndices, ReorderIndices); 2278 } 2279 2280 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 2281 TreeEntry::EntryState EntryState, 2282 Optional<ScheduleData *> Bundle, 2283 const InstructionsState &S, 2284 const EdgeInfo &UserTreeIdx, 2285 ArrayRef<int> ReuseShuffleIndices = None, 2286 ArrayRef<unsigned> ReorderIndices = None) { 2287 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 2288 (Bundle && EntryState != TreeEntry::NeedToGather)) && 2289 "Need to vectorize gather entry?"); 2290 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 2291 TreeEntry *Last = VectorizableTree.back().get(); 2292 Last->Idx = VectorizableTree.size() - 1; 2293 Last->State = EntryState; 2294 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 2295 ReuseShuffleIndices.end()); 2296 if (ReorderIndices.empty()) { 2297 Last->Scalars.assign(VL.begin(), VL.end()); 2298 Last->setOperations(S); 2299 } else { 2300 // Reorder scalars and build final mask. 2301 Last->Scalars.assign(VL.size(), nullptr); 2302 transform(ReorderIndices, Last->Scalars.begin(), 2303 [VL](unsigned Idx) -> Value * { 2304 if (Idx >= VL.size()) 2305 return UndefValue::get(VL.front()->getType()); 2306 return VL[Idx]; 2307 }); 2308 InstructionsState S = getSameOpcode(Last->Scalars); 2309 Last->setOperations(S); 2310 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 2311 } 2312 if (Last->State != TreeEntry::NeedToGather) { 2313 for (Value *V : VL) { 2314 assert(!getTreeEntry(V) && "Scalar already in tree!"); 2315 ScalarToTreeEntry[V] = Last; 2316 } 2317 // Update the scheduler bundle to point to this TreeEntry. 2318 unsigned Lane = 0; 2319 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 2320 BundleMember = BundleMember->NextInBundle) { 2321 BundleMember->TE = Last; 2322 BundleMember->Lane = Lane; 2323 ++Lane; 2324 } 2325 assert((!Bundle.getValue() || Lane == VL.size()) && 2326 "Bundle and VL out of sync"); 2327 } else { 2328 MustGather.insert(VL.begin(), VL.end()); 2329 } 2330 2331 if (UserTreeIdx.UserTE) 2332 Last->UserTreeIndices.push_back(UserTreeIdx); 2333 2334 return Last; 2335 } 2336 2337 /// -- Vectorization State -- 2338 /// Holds all of the tree entries. 2339 TreeEntry::VecTreeTy VectorizableTree; 2340 2341 #ifndef NDEBUG 2342 /// Debug printer. 2343 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 2344 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 2345 VectorizableTree[Id]->dump(); 2346 dbgs() << "\n"; 2347 } 2348 } 2349 #endif 2350 2351 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2352 2353 const TreeEntry *getTreeEntry(Value *V) const { 2354 return ScalarToTreeEntry.lookup(V); 2355 } 2356 2357 /// Maps a specific scalar to its tree entry. 2358 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2359 2360 /// Maps a value to the proposed vectorizable size. 2361 SmallDenseMap<Value *, unsigned> InstrElementSize; 2362 2363 /// A list of scalars that we found that we need to keep as scalars. 2364 ValueSet MustGather; 2365 2366 /// This POD struct describes one external user in the vectorized tree. 2367 struct ExternalUser { 2368 ExternalUser(Value *S, llvm::User *U, int L) 2369 : Scalar(S), User(U), Lane(L) {} 2370 2371 // Which scalar in our function. 2372 Value *Scalar; 2373 2374 // Which user that uses the scalar. 2375 llvm::User *User; 2376 2377 // Which lane does the scalar belong to. 2378 int Lane; 2379 }; 2380 using UserList = SmallVector<ExternalUser, 16>; 2381 2382 /// Checks if two instructions may access the same memory. 2383 /// 2384 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2385 /// is invariant in the calling loop. 2386 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2387 Instruction *Inst2) { 2388 // First check if the result is already in the cache. 2389 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2390 Optional<bool> &result = AliasCache[key]; 2391 if (result.hasValue()) { 2392 return result.getValue(); 2393 } 2394 bool aliased = true; 2395 if (Loc1.Ptr && isSimple(Inst1)) 2396 aliased = isModOrRefSet(AA->getModRefInfo(Inst2, Loc1)); 2397 // Store the result in the cache. 2398 result = aliased; 2399 return aliased; 2400 } 2401 2402 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2403 2404 /// Cache for alias results. 2405 /// TODO: consider moving this to the AliasAnalysis itself. 2406 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2407 2408 /// Removes an instruction from its block and eventually deletes it. 2409 /// It's like Instruction::eraseFromParent() except that the actual deletion 2410 /// is delayed until BoUpSLP is destructed. 2411 /// This is required to ensure that there are no incorrect collisions in the 2412 /// AliasCache, which can happen if a new instruction is allocated at the 2413 /// same address as a previously deleted instruction. 2414 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 2415 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 2416 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 2417 } 2418 2419 /// Temporary store for deleted instructions. Instructions will be deleted 2420 /// eventually when the BoUpSLP is destructed. 2421 DenseMap<Instruction *, bool> DeletedInstructions; 2422 2423 /// A list of values that need to extracted out of the tree. 2424 /// This list holds pairs of (Internal Scalar : External User). External User 2425 /// can be nullptr, it means that this Internal Scalar will be used later, 2426 /// after vectorization. 2427 UserList ExternalUses; 2428 2429 /// Values used only by @llvm.assume calls. 2430 SmallPtrSet<const Value *, 32> EphValues; 2431 2432 /// Holds all of the instructions that we gathered. 2433 SetVector<Instruction *> GatherShuffleSeq; 2434 2435 /// A list of blocks that we are going to CSE. 2436 SetVector<BasicBlock *> CSEBlocks; 2437 2438 /// Contains all scheduling relevant data for an instruction. 2439 /// A ScheduleData either represents a single instruction or a member of an 2440 /// instruction bundle (= a group of instructions which is combined into a 2441 /// vector instruction). 2442 struct ScheduleData { 2443 // The initial value for the dependency counters. It means that the 2444 // dependencies are not calculated yet. 2445 enum { InvalidDeps = -1 }; 2446 2447 ScheduleData() = default; 2448 2449 void init(int BlockSchedulingRegionID, Value *OpVal) { 2450 FirstInBundle = this; 2451 NextInBundle = nullptr; 2452 NextLoadStore = nullptr; 2453 IsScheduled = false; 2454 SchedulingRegionID = BlockSchedulingRegionID; 2455 clearDependencies(); 2456 OpValue = OpVal; 2457 TE = nullptr; 2458 Lane = -1; 2459 } 2460 2461 /// Verify basic self consistency properties 2462 void verify() { 2463 if (hasValidDependencies()) { 2464 assert(UnscheduledDeps <= Dependencies && "invariant"); 2465 } else { 2466 assert(UnscheduledDeps == Dependencies && "invariant"); 2467 } 2468 2469 if (IsScheduled) { 2470 assert(isSchedulingEntity() && 2471 "unexpected scheduled state"); 2472 for (const ScheduleData *BundleMember = this; BundleMember; 2473 BundleMember = BundleMember->NextInBundle) { 2474 assert(BundleMember->hasValidDependencies() && 2475 BundleMember->UnscheduledDeps == 0 && 2476 "unexpected scheduled state"); 2477 assert((BundleMember == this || !BundleMember->IsScheduled) && 2478 "only bundle is marked scheduled"); 2479 } 2480 } 2481 } 2482 2483 /// Returns true if the dependency information has been calculated. 2484 /// Note that depenendency validity can vary between instructions within 2485 /// a single bundle. 2486 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2487 2488 /// Returns true for single instructions and for bundle representatives 2489 /// (= the head of a bundle). 2490 bool isSchedulingEntity() const { return FirstInBundle == this; } 2491 2492 /// Returns true if it represents an instruction bundle and not only a 2493 /// single instruction. 2494 bool isPartOfBundle() const { 2495 return NextInBundle != nullptr || FirstInBundle != this; 2496 } 2497 2498 /// Returns true if it is ready for scheduling, i.e. it has no more 2499 /// unscheduled depending instructions/bundles. 2500 bool isReady() const { 2501 assert(isSchedulingEntity() && 2502 "can't consider non-scheduling entity for ready list"); 2503 return unscheduledDepsInBundle() == 0 && !IsScheduled; 2504 } 2505 2506 /// Modifies the number of unscheduled dependencies for this instruction, 2507 /// and returns the number of remaining dependencies for the containing 2508 /// bundle. 2509 int incrementUnscheduledDeps(int Incr) { 2510 assert(hasValidDependencies() && 2511 "increment of unscheduled deps would be meaningless"); 2512 UnscheduledDeps += Incr; 2513 return FirstInBundle->unscheduledDepsInBundle(); 2514 } 2515 2516 /// Sets the number of unscheduled dependencies to the number of 2517 /// dependencies. 2518 void resetUnscheduledDeps() { 2519 UnscheduledDeps = Dependencies; 2520 } 2521 2522 /// Clears all dependency information. 2523 void clearDependencies() { 2524 Dependencies = InvalidDeps; 2525 resetUnscheduledDeps(); 2526 MemoryDependencies.clear(); 2527 } 2528 2529 int unscheduledDepsInBundle() const { 2530 assert(isSchedulingEntity() && "only meaningful on the bundle"); 2531 int Sum = 0; 2532 for (const ScheduleData *BundleMember = this; BundleMember; 2533 BundleMember = BundleMember->NextInBundle) { 2534 if (BundleMember->UnscheduledDeps == InvalidDeps) 2535 return InvalidDeps; 2536 Sum += BundleMember->UnscheduledDeps; 2537 } 2538 return Sum; 2539 } 2540 2541 void dump(raw_ostream &os) const { 2542 if (!isSchedulingEntity()) { 2543 os << "/ " << *Inst; 2544 } else if (NextInBundle) { 2545 os << '[' << *Inst; 2546 ScheduleData *SD = NextInBundle; 2547 while (SD) { 2548 os << ';' << *SD->Inst; 2549 SD = SD->NextInBundle; 2550 } 2551 os << ']'; 2552 } else { 2553 os << *Inst; 2554 } 2555 } 2556 2557 Instruction *Inst = nullptr; 2558 2559 /// Points to the head in an instruction bundle (and always to this for 2560 /// single instructions). 2561 ScheduleData *FirstInBundle = nullptr; 2562 2563 /// Single linked list of all instructions in a bundle. Null if it is a 2564 /// single instruction. 2565 ScheduleData *NextInBundle = nullptr; 2566 2567 /// Single linked list of all memory instructions (e.g. load, store, call) 2568 /// in the block - until the end of the scheduling region. 2569 ScheduleData *NextLoadStore = nullptr; 2570 2571 /// The dependent memory instructions. 2572 /// This list is derived on demand in calculateDependencies(). 2573 SmallVector<ScheduleData *, 4> MemoryDependencies; 2574 2575 /// This ScheduleData is in the current scheduling region if this matches 2576 /// the current SchedulingRegionID of BlockScheduling. 2577 int SchedulingRegionID = 0; 2578 2579 /// Used for getting a "good" final ordering of instructions. 2580 int SchedulingPriority = 0; 2581 2582 /// The number of dependencies. Constitutes of the number of users of the 2583 /// instruction plus the number of dependent memory instructions (if any). 2584 /// This value is calculated on demand. 2585 /// If InvalidDeps, the number of dependencies is not calculated yet. 2586 int Dependencies = InvalidDeps; 2587 2588 /// The number of dependencies minus the number of dependencies of scheduled 2589 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2590 /// for scheduling. 2591 /// Note that this is negative as long as Dependencies is not calculated. 2592 int UnscheduledDeps = InvalidDeps; 2593 2594 /// True if this instruction is scheduled (or considered as scheduled in the 2595 /// dry-run). 2596 bool IsScheduled = false; 2597 2598 /// Opcode of the current instruction in the schedule data. 2599 Value *OpValue = nullptr; 2600 2601 /// The TreeEntry that this instruction corresponds to. 2602 TreeEntry *TE = nullptr; 2603 2604 /// The lane of this node in the TreeEntry. 2605 int Lane = -1; 2606 }; 2607 2608 #ifndef NDEBUG 2609 friend inline raw_ostream &operator<<(raw_ostream &os, 2610 const BoUpSLP::ScheduleData &SD) { 2611 SD.dump(os); 2612 return os; 2613 } 2614 #endif 2615 2616 friend struct GraphTraits<BoUpSLP *>; 2617 friend struct DOTGraphTraits<BoUpSLP *>; 2618 2619 /// Contains all scheduling data for a basic block. 2620 struct BlockScheduling { 2621 BlockScheduling(BasicBlock *BB) 2622 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2623 2624 void clear() { 2625 ReadyInsts.clear(); 2626 ScheduleStart = nullptr; 2627 ScheduleEnd = nullptr; 2628 FirstLoadStoreInRegion = nullptr; 2629 LastLoadStoreInRegion = nullptr; 2630 2631 // Reduce the maximum schedule region size by the size of the 2632 // previous scheduling run. 2633 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2634 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2635 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2636 ScheduleRegionSize = 0; 2637 2638 // Make a new scheduling region, i.e. all existing ScheduleData is not 2639 // in the new region yet. 2640 ++SchedulingRegionID; 2641 } 2642 2643 ScheduleData *getScheduleData(Value *V) { 2644 ScheduleData *SD = ScheduleDataMap[V]; 2645 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2646 return SD; 2647 return nullptr; 2648 } 2649 2650 ScheduleData *getScheduleData(Value *V, Value *Key) { 2651 if (V == Key) 2652 return getScheduleData(V); 2653 auto I = ExtraScheduleDataMap.find(V); 2654 if (I != ExtraScheduleDataMap.end()) { 2655 ScheduleData *SD = I->second[Key]; 2656 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2657 return SD; 2658 } 2659 return nullptr; 2660 } 2661 2662 bool isInSchedulingRegion(ScheduleData *SD) const { 2663 return SD->SchedulingRegionID == SchedulingRegionID; 2664 } 2665 2666 /// Marks an instruction as scheduled and puts all dependent ready 2667 /// instructions into the ready-list. 2668 template <typename ReadyListType> 2669 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2670 SD->IsScheduled = true; 2671 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2672 2673 for (ScheduleData *BundleMember = SD; BundleMember; 2674 BundleMember = BundleMember->NextInBundle) { 2675 if (BundleMember->Inst != BundleMember->OpValue) 2676 continue; 2677 2678 // Handle the def-use chain dependencies. 2679 2680 // Decrement the unscheduled counter and insert to ready list if ready. 2681 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2682 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2683 if (OpDef && OpDef->hasValidDependencies() && 2684 OpDef->incrementUnscheduledDeps(-1) == 0) { 2685 // There are no more unscheduled dependencies after 2686 // decrementing, so we can put the dependent instruction 2687 // into the ready list. 2688 ScheduleData *DepBundle = OpDef->FirstInBundle; 2689 assert(!DepBundle->IsScheduled && 2690 "already scheduled bundle gets ready"); 2691 ReadyList.insert(DepBundle); 2692 LLVM_DEBUG(dbgs() 2693 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2694 } 2695 }); 2696 }; 2697 2698 // If BundleMember is a vector bundle, its operands may have been 2699 // reordered during buildTree(). We therefore need to get its operands 2700 // through the TreeEntry. 2701 if (TreeEntry *TE = BundleMember->TE) { 2702 int Lane = BundleMember->Lane; 2703 assert(Lane >= 0 && "Lane not set"); 2704 2705 // Since vectorization tree is being built recursively this assertion 2706 // ensures that the tree entry has all operands set before reaching 2707 // this code. Couple of exceptions known at the moment are extracts 2708 // where their second (immediate) operand is not added. Since 2709 // immediates do not affect scheduler behavior this is considered 2710 // okay. 2711 auto *In = TE->getMainOp(); 2712 assert(In && 2713 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2714 In->getNumOperands() == TE->getNumOperands()) && 2715 "Missed TreeEntry operands?"); 2716 (void)In; // fake use to avoid build failure when assertions disabled 2717 2718 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2719 OpIdx != NumOperands; ++OpIdx) 2720 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2721 DecrUnsched(I); 2722 } else { 2723 // If BundleMember is a stand-alone instruction, no operand reordering 2724 // has taken place, so we directly access its operands. 2725 for (Use &U : BundleMember->Inst->operands()) 2726 if (auto *I = dyn_cast<Instruction>(U.get())) 2727 DecrUnsched(I); 2728 } 2729 // Handle the memory dependencies. 2730 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2731 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2732 // There are no more unscheduled dependencies after decrementing, 2733 // so we can put the dependent instruction into the ready list. 2734 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2735 assert(!DepBundle->IsScheduled && 2736 "already scheduled bundle gets ready"); 2737 ReadyList.insert(DepBundle); 2738 LLVM_DEBUG(dbgs() 2739 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2740 } 2741 } 2742 } 2743 } 2744 2745 /// Verify basic self consistency properties of the data structure. 2746 void verify() { 2747 if (!ScheduleStart) 2748 return; 2749 2750 assert(ScheduleStart->getParent() == ScheduleEnd->getParent() && 2751 ScheduleStart->comesBefore(ScheduleEnd) && 2752 "Not a valid scheduling region?"); 2753 2754 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2755 auto *SD = getScheduleData(I); 2756 assert(SD && "primary scheduledata must exist in window"); 2757 assert(isInSchedulingRegion(SD) && 2758 "primary schedule data not in window?"); 2759 (void)SD; 2760 doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); }); 2761 } 2762 2763 for (auto *SD : ReadyInsts) { 2764 assert(SD->isSchedulingEntity() && SD->isReady() && 2765 "item in ready list not ready?"); 2766 (void)SD; 2767 } 2768 } 2769 2770 void doForAllOpcodes(Value *V, 2771 function_ref<void(ScheduleData *SD)> Action) { 2772 if (ScheduleData *SD = getScheduleData(V)) 2773 Action(SD); 2774 auto I = ExtraScheduleDataMap.find(V); 2775 if (I != ExtraScheduleDataMap.end()) 2776 for (auto &P : I->second) 2777 if (P.second->SchedulingRegionID == SchedulingRegionID) 2778 Action(P.second); 2779 } 2780 2781 /// Put all instructions into the ReadyList which are ready for scheduling. 2782 template <typename ReadyListType> 2783 void initialFillReadyList(ReadyListType &ReadyList) { 2784 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2785 doForAllOpcodes(I, [&](ScheduleData *SD) { 2786 if (SD->isSchedulingEntity() && SD->isReady()) { 2787 ReadyList.insert(SD); 2788 LLVM_DEBUG(dbgs() 2789 << "SLP: initially in ready list: " << *SD << "\n"); 2790 } 2791 }); 2792 } 2793 } 2794 2795 /// Build a bundle from the ScheduleData nodes corresponding to the 2796 /// scalar instruction for each lane. 2797 ScheduleData *buildBundle(ArrayRef<Value *> VL); 2798 2799 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2800 /// cyclic dependencies. This is only a dry-run, no instructions are 2801 /// actually moved at this stage. 2802 /// \returns the scheduling bundle. The returned Optional value is non-None 2803 /// if \p VL is allowed to be scheduled. 2804 Optional<ScheduleData *> 2805 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2806 const InstructionsState &S); 2807 2808 /// Un-bundles a group of instructions. 2809 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2810 2811 /// Allocates schedule data chunk. 2812 ScheduleData *allocateScheduleDataChunks(); 2813 2814 /// Extends the scheduling region so that V is inside the region. 2815 /// \returns true if the region size is within the limit. 2816 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2817 2818 /// Initialize the ScheduleData structures for new instructions in the 2819 /// scheduling region. 2820 void initScheduleData(Instruction *FromI, Instruction *ToI, 2821 ScheduleData *PrevLoadStore, 2822 ScheduleData *NextLoadStore); 2823 2824 /// Updates the dependency information of a bundle and of all instructions/ 2825 /// bundles which depend on the original bundle. 2826 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2827 BoUpSLP *SLP); 2828 2829 /// Sets all instruction in the scheduling region to un-scheduled. 2830 void resetSchedule(); 2831 2832 BasicBlock *BB; 2833 2834 /// Simple memory allocation for ScheduleData. 2835 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2836 2837 /// The size of a ScheduleData array in ScheduleDataChunks. 2838 int ChunkSize; 2839 2840 /// The allocator position in the current chunk, which is the last entry 2841 /// of ScheduleDataChunks. 2842 int ChunkPos; 2843 2844 /// Attaches ScheduleData to Instruction. 2845 /// Note that the mapping survives during all vectorization iterations, i.e. 2846 /// ScheduleData structures are recycled. 2847 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2848 2849 /// Attaches ScheduleData to Instruction with the leading key. 2850 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2851 ExtraScheduleDataMap; 2852 2853 /// The ready-list for scheduling (only used for the dry-run). 2854 SetVector<ScheduleData *> ReadyInsts; 2855 2856 /// The first instruction of the scheduling region. 2857 Instruction *ScheduleStart = nullptr; 2858 2859 /// The first instruction _after_ the scheduling region. 2860 Instruction *ScheduleEnd = nullptr; 2861 2862 /// The first memory accessing instruction in the scheduling region 2863 /// (can be null). 2864 ScheduleData *FirstLoadStoreInRegion = nullptr; 2865 2866 /// The last memory accessing instruction in the scheduling region 2867 /// (can be null). 2868 ScheduleData *LastLoadStoreInRegion = nullptr; 2869 2870 /// The current size of the scheduling region. 2871 int ScheduleRegionSize = 0; 2872 2873 /// The maximum size allowed for the scheduling region. 2874 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2875 2876 /// The ID of the scheduling region. For a new vectorization iteration this 2877 /// is incremented which "removes" all ScheduleData from the region. 2878 // Make sure that the initial SchedulingRegionID is greater than the 2879 // initial SchedulingRegionID in ScheduleData (which is 0). 2880 int SchedulingRegionID = 1; 2881 }; 2882 2883 /// Attaches the BlockScheduling structures to basic blocks. 2884 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2885 2886 /// Performs the "real" scheduling. Done before vectorization is actually 2887 /// performed in a basic block. 2888 void scheduleBlock(BlockScheduling *BS); 2889 2890 /// List of users to ignore during scheduling and that don't need extracting. 2891 ArrayRef<Value *> UserIgnoreList; 2892 2893 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2894 /// sorted SmallVectors of unsigned. 2895 struct OrdersTypeDenseMapInfo { 2896 static OrdersType getEmptyKey() { 2897 OrdersType V; 2898 V.push_back(~1U); 2899 return V; 2900 } 2901 2902 static OrdersType getTombstoneKey() { 2903 OrdersType V; 2904 V.push_back(~2U); 2905 return V; 2906 } 2907 2908 static unsigned getHashValue(const OrdersType &V) { 2909 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2910 } 2911 2912 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2913 return LHS == RHS; 2914 } 2915 }; 2916 2917 // Analysis and block reference. 2918 Function *F; 2919 ScalarEvolution *SE; 2920 TargetTransformInfo *TTI; 2921 TargetLibraryInfo *TLI; 2922 AAResults *AA; 2923 LoopInfo *LI; 2924 DominatorTree *DT; 2925 AssumptionCache *AC; 2926 DemandedBits *DB; 2927 const DataLayout *DL; 2928 OptimizationRemarkEmitter *ORE; 2929 2930 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2931 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2932 2933 /// Instruction builder to construct the vectorized tree. 2934 IRBuilder<> Builder; 2935 2936 /// A map of scalar integer values to the smallest bit width with which they 2937 /// can legally be represented. The values map to (width, signed) pairs, 2938 /// where "width" indicates the minimum bit width and "signed" is True if the 2939 /// value must be signed-extended, rather than zero-extended, back to its 2940 /// original width. 2941 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2942 }; 2943 2944 } // end namespace slpvectorizer 2945 2946 template <> struct GraphTraits<BoUpSLP *> { 2947 using TreeEntry = BoUpSLP::TreeEntry; 2948 2949 /// NodeRef has to be a pointer per the GraphWriter. 2950 using NodeRef = TreeEntry *; 2951 2952 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2953 2954 /// Add the VectorizableTree to the index iterator to be able to return 2955 /// TreeEntry pointers. 2956 struct ChildIteratorType 2957 : public iterator_adaptor_base< 2958 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2959 ContainerTy &VectorizableTree; 2960 2961 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2962 ContainerTy &VT) 2963 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2964 2965 NodeRef operator*() { return I->UserTE; } 2966 }; 2967 2968 static NodeRef getEntryNode(BoUpSLP &R) { 2969 return R.VectorizableTree[0].get(); 2970 } 2971 2972 static ChildIteratorType child_begin(NodeRef N) { 2973 return {N->UserTreeIndices.begin(), N->Container}; 2974 } 2975 2976 static ChildIteratorType child_end(NodeRef N) { 2977 return {N->UserTreeIndices.end(), N->Container}; 2978 } 2979 2980 /// For the node iterator we just need to turn the TreeEntry iterator into a 2981 /// TreeEntry* iterator so that it dereferences to NodeRef. 2982 class nodes_iterator { 2983 using ItTy = ContainerTy::iterator; 2984 ItTy It; 2985 2986 public: 2987 nodes_iterator(const ItTy &It2) : It(It2) {} 2988 NodeRef operator*() { return It->get(); } 2989 nodes_iterator operator++() { 2990 ++It; 2991 return *this; 2992 } 2993 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2994 }; 2995 2996 static nodes_iterator nodes_begin(BoUpSLP *R) { 2997 return nodes_iterator(R->VectorizableTree.begin()); 2998 } 2999 3000 static nodes_iterator nodes_end(BoUpSLP *R) { 3001 return nodes_iterator(R->VectorizableTree.end()); 3002 } 3003 3004 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 3005 }; 3006 3007 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 3008 using TreeEntry = BoUpSLP::TreeEntry; 3009 3010 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3011 3012 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 3013 std::string Str; 3014 raw_string_ostream OS(Str); 3015 if (isSplat(Entry->Scalars)) 3016 OS << "<splat> "; 3017 for (auto V : Entry->Scalars) { 3018 OS << *V; 3019 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 3020 return EU.Scalar == V; 3021 })) 3022 OS << " <extract>"; 3023 OS << "\n"; 3024 } 3025 return Str; 3026 } 3027 3028 static std::string getNodeAttributes(const TreeEntry *Entry, 3029 const BoUpSLP *) { 3030 if (Entry->State == TreeEntry::NeedToGather) 3031 return "color=red"; 3032 return ""; 3033 } 3034 }; 3035 3036 } // end namespace llvm 3037 3038 BoUpSLP::~BoUpSLP() { 3039 for (const auto &Pair : DeletedInstructions) { 3040 // Replace operands of ignored instructions with Undefs in case if they were 3041 // marked for deletion. 3042 if (Pair.getSecond()) { 3043 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 3044 Pair.getFirst()->replaceAllUsesWith(Undef); 3045 } 3046 Pair.getFirst()->dropAllReferences(); 3047 } 3048 for (const auto &Pair : DeletedInstructions) { 3049 assert(Pair.getFirst()->use_empty() && 3050 "trying to erase instruction with users."); 3051 Pair.getFirst()->eraseFromParent(); 3052 } 3053 #ifdef EXPENSIVE_CHECKS 3054 // If we could guarantee that this call is not extremely slow, we could 3055 // remove the ifdef limitation (see PR47712). 3056 assert(!verifyFunction(*F, &dbgs())); 3057 #endif 3058 } 3059 3060 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 3061 for (auto *V : AV) { 3062 if (auto *I = dyn_cast<Instruction>(V)) 3063 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 3064 }; 3065 } 3066 3067 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 3068 /// contains original mask for the scalars reused in the node. Procedure 3069 /// transform this mask in accordance with the given \p Mask. 3070 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 3071 assert(!Mask.empty() && Reuses.size() == Mask.size() && 3072 "Expected non-empty mask."); 3073 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 3074 Prev.swap(Reuses); 3075 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 3076 if (Mask[I] != UndefMaskElem) 3077 Reuses[Mask[I]] = Prev[I]; 3078 } 3079 3080 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 3081 /// the original order of the scalars. Procedure transforms the provided order 3082 /// in accordance with the given \p Mask. If the resulting \p Order is just an 3083 /// identity order, \p Order is cleared. 3084 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 3085 assert(!Mask.empty() && "Expected non-empty mask."); 3086 SmallVector<int> MaskOrder; 3087 if (Order.empty()) { 3088 MaskOrder.resize(Mask.size()); 3089 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 3090 } else { 3091 inversePermutation(Order, MaskOrder); 3092 } 3093 reorderReuses(MaskOrder, Mask); 3094 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 3095 Order.clear(); 3096 return; 3097 } 3098 Order.assign(Mask.size(), Mask.size()); 3099 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 3100 if (MaskOrder[I] != UndefMaskElem) 3101 Order[MaskOrder[I]] = I; 3102 fixupOrderingIndices(Order); 3103 } 3104 3105 Optional<BoUpSLP::OrdersType> 3106 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 3107 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 3108 unsigned NumScalars = TE.Scalars.size(); 3109 OrdersType CurrentOrder(NumScalars, NumScalars); 3110 SmallVector<int> Positions; 3111 SmallBitVector UsedPositions(NumScalars); 3112 const TreeEntry *STE = nullptr; 3113 // Try to find all gathered scalars that are gets vectorized in other 3114 // vectorize node. Here we can have only one single tree vector node to 3115 // correctly identify order of the gathered scalars. 3116 for (unsigned I = 0; I < NumScalars; ++I) { 3117 Value *V = TE.Scalars[I]; 3118 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 3119 continue; 3120 if (const auto *LocalSTE = getTreeEntry(V)) { 3121 if (!STE) 3122 STE = LocalSTE; 3123 else if (STE != LocalSTE) 3124 // Take the order only from the single vector node. 3125 return None; 3126 unsigned Lane = 3127 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 3128 if (Lane >= NumScalars) 3129 return None; 3130 if (CurrentOrder[Lane] != NumScalars) { 3131 if (Lane != I) 3132 continue; 3133 UsedPositions.reset(CurrentOrder[Lane]); 3134 } 3135 // The partial identity (where only some elements of the gather node are 3136 // in the identity order) is good. 3137 CurrentOrder[Lane] = I; 3138 UsedPositions.set(I); 3139 } 3140 } 3141 // Need to keep the order if we have a vector entry and at least 2 scalars or 3142 // the vectorized entry has just 2 scalars. 3143 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 3144 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 3145 for (unsigned I = 0; I < NumScalars; ++I) 3146 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 3147 return false; 3148 return true; 3149 }; 3150 if (IsIdentityOrder(CurrentOrder)) { 3151 CurrentOrder.clear(); 3152 return CurrentOrder; 3153 } 3154 auto *It = CurrentOrder.begin(); 3155 for (unsigned I = 0; I < NumScalars;) { 3156 if (UsedPositions.test(I)) { 3157 ++I; 3158 continue; 3159 } 3160 if (*It == NumScalars) { 3161 *It = I; 3162 ++I; 3163 } 3164 ++It; 3165 } 3166 return CurrentOrder; 3167 } 3168 return None; 3169 } 3170 3171 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE, 3172 bool TopToBottom) { 3173 // No need to reorder if need to shuffle reuses, still need to shuffle the 3174 // node. 3175 if (!TE.ReuseShuffleIndices.empty()) 3176 return None; 3177 if (TE.State == TreeEntry::Vectorize && 3178 (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) || 3179 (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) && 3180 !TE.isAltShuffle()) 3181 return TE.ReorderIndices; 3182 if (TE.State == TreeEntry::NeedToGather) { 3183 // TODO: add analysis of other gather nodes with extractelement 3184 // instructions and other values/instructions, not only undefs. 3185 if (((TE.getOpcode() == Instruction::ExtractElement && 3186 !TE.isAltShuffle()) || 3187 (all_of(TE.Scalars, 3188 [](Value *V) { 3189 return isa<UndefValue, ExtractElementInst>(V); 3190 }) && 3191 any_of(TE.Scalars, 3192 [](Value *V) { return isa<ExtractElementInst>(V); }))) && 3193 all_of(TE.Scalars, 3194 [](Value *V) { 3195 auto *EE = dyn_cast<ExtractElementInst>(V); 3196 return !EE || isa<FixedVectorType>(EE->getVectorOperandType()); 3197 }) && 3198 allSameType(TE.Scalars)) { 3199 // Check that gather of extractelements can be represented as 3200 // just a shuffle of a single vector. 3201 OrdersType CurrentOrder; 3202 bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder); 3203 if (Reuse || !CurrentOrder.empty()) { 3204 if (!CurrentOrder.empty()) 3205 fixupOrderingIndices(CurrentOrder); 3206 return CurrentOrder; 3207 } 3208 } 3209 if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE)) 3210 return CurrentOrder; 3211 } 3212 return None; 3213 } 3214 3215 void BoUpSLP::reorderTopToBottom() { 3216 // Maps VF to the graph nodes. 3217 DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries; 3218 // ExtractElement gather nodes which can be vectorized and need to handle 3219 // their ordering. 3220 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3221 // Find all reorderable nodes with the given VF. 3222 // Currently the are vectorized stores,loads,extracts + some gathering of 3223 // extracts. 3224 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 3225 const std::unique_ptr<TreeEntry> &TE) { 3226 if (Optional<OrdersType> CurrentOrder = 3227 getReorderingData(*TE.get(), /*TopToBottom=*/true)) { 3228 // Do not include ordering for nodes used in the alt opcode vectorization, 3229 // better to reorder them during bottom-to-top stage. If follow the order 3230 // here, it causes reordering of the whole graph though actually it is 3231 // profitable just to reorder the subgraph that starts from the alternate 3232 // opcode vectorization node. Such nodes already end-up with the shuffle 3233 // instruction and it is just enough to change this shuffle rather than 3234 // rotate the scalars for the whole graph. 3235 unsigned Cnt = 0; 3236 const TreeEntry *UserTE = TE.get(); 3237 while (UserTE && Cnt < RecursionMaxDepth) { 3238 if (UserTE->UserTreeIndices.size() != 1) 3239 break; 3240 if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) { 3241 return EI.UserTE->State == TreeEntry::Vectorize && 3242 EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0; 3243 })) 3244 return; 3245 if (UserTE->UserTreeIndices.empty()) 3246 UserTE = nullptr; 3247 else 3248 UserTE = UserTE->UserTreeIndices.back().UserTE; 3249 ++Cnt; 3250 } 3251 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3252 if (TE->State != TreeEntry::Vectorize) 3253 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3254 } 3255 }); 3256 3257 // Reorder the graph nodes according to their vectorization factor. 3258 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 3259 VF /= 2) { 3260 auto It = VFToOrderedEntries.find(VF); 3261 if (It == VFToOrderedEntries.end()) 3262 continue; 3263 // Try to find the most profitable order. We just are looking for the most 3264 // used order and reorder scalar elements in the nodes according to this 3265 // mostly used order. 3266 ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef(); 3267 // All operands are reordered and used only in this node - propagate the 3268 // most used order to the user node. 3269 MapVector<OrdersType, unsigned, 3270 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3271 OrdersUses; 3272 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3273 for (const TreeEntry *OpTE : OrderedEntries) { 3274 // No need to reorder this nodes, still need to extend and to use shuffle, 3275 // just need to merge reordering shuffle and the reuse shuffle. 3276 if (!OpTE->ReuseShuffleIndices.empty()) 3277 continue; 3278 // Count number of orders uses. 3279 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3280 if (OpTE->State == TreeEntry::NeedToGather) 3281 return GathersToOrders.find(OpTE)->second; 3282 return OpTE->ReorderIndices; 3283 }(); 3284 // Stores actually store the mask, not the order, need to invert. 3285 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3286 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3287 SmallVector<int> Mask; 3288 inversePermutation(Order, Mask); 3289 unsigned E = Order.size(); 3290 OrdersType CurrentOrder(E, E); 3291 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3292 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3293 }); 3294 fixupOrderingIndices(CurrentOrder); 3295 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3296 } else { 3297 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3298 } 3299 } 3300 // Set order of the user node. 3301 if (OrdersUses.empty()) 3302 continue; 3303 // Choose the most used order. 3304 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3305 unsigned Cnt = OrdersUses.front().second; 3306 for (const auto &Pair : drop_begin(OrdersUses)) { 3307 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3308 BestOrder = Pair.first; 3309 Cnt = Pair.second; 3310 } 3311 } 3312 // Set order of the user node. 3313 if (BestOrder.empty()) 3314 continue; 3315 SmallVector<int> Mask; 3316 inversePermutation(BestOrder, Mask); 3317 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3318 unsigned E = BestOrder.size(); 3319 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3320 return I < E ? static_cast<int>(I) : UndefMaskElem; 3321 }); 3322 // Do an actual reordering, if profitable. 3323 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 3324 // Just do the reordering for the nodes with the given VF. 3325 if (TE->Scalars.size() != VF) { 3326 if (TE->ReuseShuffleIndices.size() == VF) { 3327 // Need to reorder the reuses masks of the operands with smaller VF to 3328 // be able to find the match between the graph nodes and scalar 3329 // operands of the given node during vectorization/cost estimation. 3330 assert(all_of(TE->UserTreeIndices, 3331 [VF, &TE](const EdgeInfo &EI) { 3332 return EI.UserTE->Scalars.size() == VF || 3333 EI.UserTE->Scalars.size() == 3334 TE->Scalars.size(); 3335 }) && 3336 "All users must be of VF size."); 3337 // Update ordering of the operands with the smaller VF than the given 3338 // one. 3339 reorderReuses(TE->ReuseShuffleIndices, Mask); 3340 } 3341 continue; 3342 } 3343 if (TE->State == TreeEntry::Vectorize && 3344 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 3345 InsertElementInst>(TE->getMainOp()) && 3346 !TE->isAltShuffle()) { 3347 // Build correct orders for extract{element,value}, loads and 3348 // stores. 3349 reorderOrder(TE->ReorderIndices, Mask); 3350 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 3351 TE->reorderOperands(Mask); 3352 } else { 3353 // Reorder the node and its operands. 3354 TE->reorderOperands(Mask); 3355 assert(TE->ReorderIndices.empty() && 3356 "Expected empty reorder sequence."); 3357 reorderScalars(TE->Scalars, Mask); 3358 } 3359 if (!TE->ReuseShuffleIndices.empty()) { 3360 // Apply reversed order to keep the original ordering of the reused 3361 // elements to avoid extra reorder indices shuffling. 3362 OrdersType CurrentOrder; 3363 reorderOrder(CurrentOrder, MaskOrder); 3364 SmallVector<int> NewReuses; 3365 inversePermutation(CurrentOrder, NewReuses); 3366 addMask(NewReuses, TE->ReuseShuffleIndices); 3367 TE->ReuseShuffleIndices.swap(NewReuses); 3368 } 3369 } 3370 } 3371 } 3372 3373 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 3374 SetVector<TreeEntry *> OrderedEntries; 3375 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3376 // Find all reorderable leaf nodes with the given VF. 3377 // Currently the are vectorized loads,extracts without alternate operands + 3378 // some gathering of extracts. 3379 SmallVector<TreeEntry *> NonVectorized; 3380 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 3381 &NonVectorized]( 3382 const std::unique_ptr<TreeEntry> &TE) { 3383 if (TE->State != TreeEntry::Vectorize) 3384 NonVectorized.push_back(TE.get()); 3385 if (Optional<OrdersType> CurrentOrder = 3386 getReorderingData(*TE.get(), /*TopToBottom=*/false)) { 3387 OrderedEntries.insert(TE.get()); 3388 if (TE->State != TreeEntry::Vectorize) 3389 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3390 } 3391 }); 3392 3393 // Checks if the operands of the users are reordarable and have only single 3394 // use. 3395 auto &&CheckOperands = 3396 [this, &NonVectorized](const auto &Data, 3397 SmallVectorImpl<TreeEntry *> &GatherOps) { 3398 for (unsigned I = 0, E = Data.first->getNumOperands(); I < E; ++I) { 3399 if (any_of(Data.second, 3400 [I](const std::pair<unsigned, TreeEntry *> &OpData) { 3401 return OpData.first == I && 3402 OpData.second->State == TreeEntry::Vectorize; 3403 })) 3404 continue; 3405 ArrayRef<Value *> VL = Data.first->getOperand(I); 3406 const TreeEntry *TE = nullptr; 3407 const auto *It = find_if(VL, [this, &TE](Value *V) { 3408 TE = getTreeEntry(V); 3409 return TE; 3410 }); 3411 if (It != VL.end() && TE->isSame(VL)) 3412 return false; 3413 TreeEntry *Gather = nullptr; 3414 if (count_if(NonVectorized, [VL, &Gather](TreeEntry *TE) { 3415 assert(TE->State != TreeEntry::Vectorize && 3416 "Only non-vectorized nodes are expected."); 3417 if (TE->isSame(VL)) { 3418 Gather = TE; 3419 return true; 3420 } 3421 return false; 3422 }) > 1) 3423 return false; 3424 if (Gather) 3425 GatherOps.push_back(Gather); 3426 } 3427 return true; 3428 }; 3429 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3430 // I.e., if the node has operands, that are reordered, try to make at least 3431 // one operand order in the natural order and reorder others + reorder the 3432 // user node itself. 3433 SmallPtrSet<const TreeEntry *, 4> Visited; 3434 while (!OrderedEntries.empty()) { 3435 // 1. Filter out only reordered nodes. 3436 // 2. If the entry has multiple uses - skip it and jump to the next node. 3437 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3438 SmallVector<TreeEntry *> Filtered; 3439 for (TreeEntry *TE : OrderedEntries) { 3440 if (!(TE->State == TreeEntry::Vectorize || 3441 (TE->State == TreeEntry::NeedToGather && 3442 GathersToOrders.count(TE))) || 3443 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3444 !all_of(drop_begin(TE->UserTreeIndices), 3445 [TE](const EdgeInfo &EI) { 3446 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3447 }) || 3448 !Visited.insert(TE).second) { 3449 Filtered.push_back(TE); 3450 continue; 3451 } 3452 // Build a map between user nodes and their operands order to speedup 3453 // search. The graph currently does not provide this dependency directly. 3454 for (EdgeInfo &EI : TE->UserTreeIndices) { 3455 TreeEntry *UserTE = EI.UserTE; 3456 auto It = Users.find(UserTE); 3457 if (It == Users.end()) 3458 It = Users.insert({UserTE, {}}).first; 3459 It->second.emplace_back(EI.EdgeIdx, TE); 3460 } 3461 } 3462 // Erase filtered entries. 3463 for_each(Filtered, 3464 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3465 for (const auto &Data : Users) { 3466 // Check that operands are used only in the User node. 3467 SmallVector<TreeEntry *> GatherOps; 3468 if (!CheckOperands(Data, GatherOps)) { 3469 for_each(Data.second, 3470 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3471 OrderedEntries.remove(Op.second); 3472 }); 3473 continue; 3474 } 3475 // All operands are reordered and used only in this node - propagate the 3476 // most used order to the user node. 3477 MapVector<OrdersType, unsigned, 3478 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3479 OrdersUses; 3480 // Do the analysis for each tree entry only once, otherwise the order of 3481 // the same node my be considered several times, though might be not 3482 // profitable. 3483 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3484 for (const auto &Op : Data.second) { 3485 TreeEntry *OpTE = Op.second; 3486 if (!VisitedOps.insert(OpTE).second) 3487 continue; 3488 if (!OpTE->ReuseShuffleIndices.empty() || 3489 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3490 continue; 3491 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3492 if (OpTE->State == TreeEntry::NeedToGather) 3493 return GathersToOrders.find(OpTE)->second; 3494 return OpTE->ReorderIndices; 3495 }(); 3496 // Stores actually store the mask, not the order, need to invert. 3497 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3498 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3499 SmallVector<int> Mask; 3500 inversePermutation(Order, Mask); 3501 unsigned E = Order.size(); 3502 OrdersType CurrentOrder(E, E); 3503 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3504 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3505 }); 3506 fixupOrderingIndices(CurrentOrder); 3507 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3508 } else { 3509 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3510 } 3511 OrdersUses.insert(std::make_pair(OrdersType(), 0)).first->second += 3512 OpTE->UserTreeIndices.size(); 3513 assert(OrdersUses[{}] > 0 && "Counter cannot be less than 0."); 3514 --OrdersUses[{}]; 3515 } 3516 // If no orders - skip current nodes and jump to the next one, if any. 3517 if (OrdersUses.empty()) { 3518 for_each(Data.second, 3519 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3520 OrderedEntries.remove(Op.second); 3521 }); 3522 continue; 3523 } 3524 // Choose the best order. 3525 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3526 unsigned Cnt = OrdersUses.front().second; 3527 for (const auto &Pair : drop_begin(OrdersUses)) { 3528 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3529 BestOrder = Pair.first; 3530 Cnt = Pair.second; 3531 } 3532 } 3533 // Set order of the user node (reordering of operands and user nodes). 3534 if (BestOrder.empty()) { 3535 for_each(Data.second, 3536 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3537 OrderedEntries.remove(Op.second); 3538 }); 3539 continue; 3540 } 3541 // Erase operands from OrderedEntries list and adjust their orders. 3542 VisitedOps.clear(); 3543 SmallVector<int> Mask; 3544 inversePermutation(BestOrder, Mask); 3545 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3546 unsigned E = BestOrder.size(); 3547 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3548 return I < E ? static_cast<int>(I) : UndefMaskElem; 3549 }); 3550 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 3551 TreeEntry *TE = Op.second; 3552 OrderedEntries.remove(TE); 3553 if (!VisitedOps.insert(TE).second) 3554 continue; 3555 if (!TE->ReuseShuffleIndices.empty() && TE->ReorderIndices.empty()) { 3556 // Just reorder reuses indices. 3557 reorderReuses(TE->ReuseShuffleIndices, Mask); 3558 continue; 3559 } 3560 // Gathers are processed separately. 3561 if (TE->State != TreeEntry::Vectorize) 3562 continue; 3563 assert((BestOrder.size() == TE->ReorderIndices.size() || 3564 TE->ReorderIndices.empty()) && 3565 "Non-matching sizes of user/operand entries."); 3566 reorderOrder(TE->ReorderIndices, Mask); 3567 } 3568 // For gathers just need to reorder its scalars. 3569 for (TreeEntry *Gather : GatherOps) { 3570 assert(Gather->ReorderIndices.empty() && 3571 "Unexpected reordering of gathers."); 3572 if (!Gather->ReuseShuffleIndices.empty()) { 3573 // Just reorder reuses indices. 3574 reorderReuses(Gather->ReuseShuffleIndices, Mask); 3575 continue; 3576 } 3577 reorderScalars(Gather->Scalars, Mask); 3578 OrderedEntries.remove(Gather); 3579 } 3580 // Reorder operands of the user node and set the ordering for the user 3581 // node itself. 3582 if (Data.first->State != TreeEntry::Vectorize || 3583 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 3584 Data.first->getMainOp()) || 3585 Data.first->isAltShuffle()) 3586 Data.first->reorderOperands(Mask); 3587 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 3588 Data.first->isAltShuffle()) { 3589 reorderScalars(Data.first->Scalars, Mask); 3590 reorderOrder(Data.first->ReorderIndices, MaskOrder); 3591 if (Data.first->ReuseShuffleIndices.empty() && 3592 !Data.first->ReorderIndices.empty() && 3593 !Data.first->isAltShuffle()) { 3594 // Insert user node to the list to try to sink reordering deeper in 3595 // the graph. 3596 OrderedEntries.insert(Data.first); 3597 } 3598 } else { 3599 reorderOrder(Data.first->ReorderIndices, Mask); 3600 } 3601 } 3602 } 3603 // If the reordering is unnecessary, just remove the reorder. 3604 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 3605 VectorizableTree.front()->ReuseShuffleIndices.empty()) 3606 VectorizableTree.front()->ReorderIndices.clear(); 3607 } 3608 3609 void BoUpSLP::buildExternalUses( 3610 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3611 // Collect the values that we need to extract from the tree. 3612 for (auto &TEPtr : VectorizableTree) { 3613 TreeEntry *Entry = TEPtr.get(); 3614 3615 // No need to handle users of gathered values. 3616 if (Entry->State == TreeEntry::NeedToGather) 3617 continue; 3618 3619 // For each lane: 3620 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3621 Value *Scalar = Entry->Scalars[Lane]; 3622 int FoundLane = Entry->findLaneForValue(Scalar); 3623 3624 // Check if the scalar is externally used as an extra arg. 3625 auto ExtI = ExternallyUsedValues.find(Scalar); 3626 if (ExtI != ExternallyUsedValues.end()) { 3627 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 3628 << Lane << " from " << *Scalar << ".\n"); 3629 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 3630 } 3631 for (User *U : Scalar->users()) { 3632 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 3633 3634 Instruction *UserInst = dyn_cast<Instruction>(U); 3635 if (!UserInst) 3636 continue; 3637 3638 if (isDeleted(UserInst)) 3639 continue; 3640 3641 // Skip in-tree scalars that become vectors 3642 if (TreeEntry *UseEntry = getTreeEntry(U)) { 3643 Value *UseScalar = UseEntry->Scalars[0]; 3644 // Some in-tree scalars will remain as scalar in vectorized 3645 // instructions. If that is the case, the one in Lane 0 will 3646 // be used. 3647 if (UseScalar != U || 3648 UseEntry->State == TreeEntry::ScatterVectorize || 3649 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 3650 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 3651 << ".\n"); 3652 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 3653 continue; 3654 } 3655 } 3656 3657 // Ignore users in the user ignore list. 3658 if (is_contained(UserIgnoreList, UserInst)) 3659 continue; 3660 3661 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 3662 << Lane << " from " << *Scalar << ".\n"); 3663 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 3664 } 3665 } 3666 } 3667 } 3668 3669 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 3670 ArrayRef<Value *> UserIgnoreLst) { 3671 deleteTree(); 3672 UserIgnoreList = UserIgnoreLst; 3673 if (!allSameType(Roots)) 3674 return; 3675 buildTree_rec(Roots, 0, EdgeInfo()); 3676 } 3677 3678 namespace { 3679 /// Tracks the state we can represent the loads in the given sequence. 3680 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3681 } // anonymous namespace 3682 3683 /// Checks if the given array of loads can be represented as a vectorized, 3684 /// scatter or just simple gather. 3685 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3686 const TargetTransformInfo &TTI, 3687 const DataLayout &DL, ScalarEvolution &SE, 3688 SmallVectorImpl<unsigned> &Order, 3689 SmallVectorImpl<Value *> &PointerOps) { 3690 // Check that a vectorized load would load the same memory as a scalar 3691 // load. For example, we don't want to vectorize loads that are smaller 3692 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3693 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3694 // from such a struct, we read/write packed bits disagreeing with the 3695 // unvectorized version. 3696 Type *ScalarTy = VL0->getType(); 3697 3698 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3699 return LoadsState::Gather; 3700 3701 // Make sure all loads in the bundle are simple - we can't vectorize 3702 // atomic or volatile loads. 3703 PointerOps.clear(); 3704 PointerOps.resize(VL.size()); 3705 auto *POIter = PointerOps.begin(); 3706 for (Value *V : VL) { 3707 auto *L = cast<LoadInst>(V); 3708 if (!L->isSimple()) 3709 return LoadsState::Gather; 3710 *POIter = L->getPointerOperand(); 3711 ++POIter; 3712 } 3713 3714 Order.clear(); 3715 // Check the order of pointer operands. 3716 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 3717 Value *Ptr0; 3718 Value *PtrN; 3719 if (Order.empty()) { 3720 Ptr0 = PointerOps.front(); 3721 PtrN = PointerOps.back(); 3722 } else { 3723 Ptr0 = PointerOps[Order.front()]; 3724 PtrN = PointerOps[Order.back()]; 3725 } 3726 Optional<int> Diff = 3727 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3728 // Check that the sorted loads are consecutive. 3729 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3730 return LoadsState::Vectorize; 3731 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3732 for (Value *V : VL) 3733 CommonAlignment = 3734 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3735 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 3736 CommonAlignment)) 3737 return LoadsState::ScatterVectorize; 3738 } 3739 3740 return LoadsState::Gather; 3741 } 3742 3743 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 3744 const EdgeInfo &UserTreeIdx) { 3745 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 3746 3747 SmallVector<int> ReuseShuffleIndicies; 3748 SmallVector<Value *> UniqueValues; 3749 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 3750 &UserTreeIdx, 3751 this](const InstructionsState &S) { 3752 // Check that every instruction appears once in this bundle. 3753 DenseMap<Value *, unsigned> UniquePositions; 3754 for (Value *V : VL) { 3755 if (isConstant(V)) { 3756 ReuseShuffleIndicies.emplace_back( 3757 isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size()); 3758 UniqueValues.emplace_back(V); 3759 continue; 3760 } 3761 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3762 ReuseShuffleIndicies.emplace_back(Res.first->second); 3763 if (Res.second) 3764 UniqueValues.emplace_back(V); 3765 } 3766 size_t NumUniqueScalarValues = UniqueValues.size(); 3767 if (NumUniqueScalarValues == VL.size()) { 3768 ReuseShuffleIndicies.clear(); 3769 } else { 3770 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 3771 if (NumUniqueScalarValues <= 1 || 3772 (UniquePositions.size() == 1 && all_of(UniqueValues, 3773 [](Value *V) { 3774 return isa<UndefValue>(V) || 3775 !isConstant(V); 3776 })) || 3777 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 3778 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 3779 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3780 return false; 3781 } 3782 VL = UniqueValues; 3783 } 3784 return true; 3785 }; 3786 3787 InstructionsState S = getSameOpcode(VL); 3788 if (Depth == RecursionMaxDepth) { 3789 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 3790 if (TryToFindDuplicates(S)) 3791 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3792 ReuseShuffleIndicies); 3793 return; 3794 } 3795 3796 // Don't handle scalable vectors 3797 if (S.getOpcode() == Instruction::ExtractElement && 3798 isa<ScalableVectorType>( 3799 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 3800 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 3801 if (TryToFindDuplicates(S)) 3802 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3803 ReuseShuffleIndicies); 3804 return; 3805 } 3806 3807 // Don't handle vectors. 3808 if (S.OpValue->getType()->isVectorTy() && 3809 !isa<InsertElementInst>(S.OpValue)) { 3810 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 3811 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3812 return; 3813 } 3814 3815 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3816 if (SI->getValueOperand()->getType()->isVectorTy()) { 3817 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 3818 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3819 return; 3820 } 3821 3822 // If all of the operands are identical or constant we have a simple solution. 3823 // If we deal with insert/extract instructions, they all must have constant 3824 // indices, otherwise we should gather them, not try to vectorize. 3825 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 3826 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 3827 !all_of(VL, isVectorLikeInstWithConstOps))) { 3828 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 3829 if (TryToFindDuplicates(S)) 3830 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3831 ReuseShuffleIndicies); 3832 return; 3833 } 3834 3835 // We now know that this is a vector of instructions of the same type from 3836 // the same block. 3837 3838 // Don't vectorize ephemeral values. 3839 for (Value *V : VL) { 3840 if (EphValues.count(V)) { 3841 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3842 << ") is ephemeral.\n"); 3843 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3844 return; 3845 } 3846 } 3847 3848 // Check if this is a duplicate of another entry. 3849 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3850 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 3851 if (!E->isSame(VL)) { 3852 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 3853 if (TryToFindDuplicates(S)) 3854 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3855 ReuseShuffleIndicies); 3856 return; 3857 } 3858 // Record the reuse of the tree node. FIXME, currently this is only used to 3859 // properly draw the graph rather than for the actual vectorization. 3860 E->UserTreeIndices.push_back(UserTreeIdx); 3861 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 3862 << ".\n"); 3863 return; 3864 } 3865 3866 // Check that none of the instructions in the bundle are already in the tree. 3867 for (Value *V : VL) { 3868 auto *I = dyn_cast<Instruction>(V); 3869 if (!I) 3870 continue; 3871 if (getTreeEntry(I)) { 3872 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3873 << ") is already in tree.\n"); 3874 if (TryToFindDuplicates(S)) 3875 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3876 ReuseShuffleIndicies); 3877 return; 3878 } 3879 } 3880 3881 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 3882 for (Value *V : VL) { 3883 if (is_contained(UserIgnoreList, V)) { 3884 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 3885 if (TryToFindDuplicates(S)) 3886 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3887 ReuseShuffleIndicies); 3888 return; 3889 } 3890 } 3891 3892 // Check that all of the users of the scalars that we want to vectorize are 3893 // schedulable. 3894 auto *VL0 = cast<Instruction>(S.OpValue); 3895 BasicBlock *BB = VL0->getParent(); 3896 3897 if (!DT->isReachableFromEntry(BB)) { 3898 // Don't go into unreachable blocks. They may contain instructions with 3899 // dependency cycles which confuse the final scheduling. 3900 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 3901 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3902 return; 3903 } 3904 3905 // Check that every instruction appears once in this bundle. 3906 if (!TryToFindDuplicates(S)) 3907 return; 3908 3909 auto &BSRef = BlocksSchedules[BB]; 3910 if (!BSRef) 3911 BSRef = std::make_unique<BlockScheduling>(BB); 3912 3913 BlockScheduling &BS = *BSRef.get(); 3914 3915 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 3916 #ifdef EXPENSIVE_CHECKS 3917 // Make sure we didn't break any internal invariants 3918 BS.verify(); 3919 #endif 3920 if (!Bundle) { 3921 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 3922 assert((!BS.getScheduleData(VL0) || 3923 !BS.getScheduleData(VL0)->isPartOfBundle()) && 3924 "tryScheduleBundle should cancelScheduling on failure"); 3925 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3926 ReuseShuffleIndicies); 3927 return; 3928 } 3929 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 3930 3931 unsigned ShuffleOrOp = S.isAltShuffle() ? 3932 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 3933 switch (ShuffleOrOp) { 3934 case Instruction::PHI: { 3935 auto *PH = cast<PHINode>(VL0); 3936 3937 // Check for terminator values (e.g. invoke). 3938 for (Value *V : VL) 3939 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3940 Instruction *Term = dyn_cast<Instruction>( 3941 cast<PHINode>(V)->getIncomingValueForBlock( 3942 PH->getIncomingBlock(I))); 3943 if (Term && Term->isTerminator()) { 3944 LLVM_DEBUG(dbgs() 3945 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 3946 BS.cancelScheduling(VL, VL0); 3947 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3948 ReuseShuffleIndicies); 3949 return; 3950 } 3951 } 3952 3953 TreeEntry *TE = 3954 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 3955 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 3956 3957 // Keeps the reordered operands to avoid code duplication. 3958 SmallVector<ValueList, 2> OperandsVec; 3959 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3960 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 3961 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 3962 TE->setOperand(I, Operands); 3963 OperandsVec.push_back(Operands); 3964 continue; 3965 } 3966 ValueList Operands; 3967 // Prepare the operand vector. 3968 for (Value *V : VL) 3969 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 3970 PH->getIncomingBlock(I))); 3971 TE->setOperand(I, Operands); 3972 OperandsVec.push_back(Operands); 3973 } 3974 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 3975 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 3976 return; 3977 } 3978 case Instruction::ExtractValue: 3979 case Instruction::ExtractElement: { 3980 OrdersType CurrentOrder; 3981 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 3982 if (Reuse) { 3983 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 3984 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3985 ReuseShuffleIndicies); 3986 // This is a special case, as it does not gather, but at the same time 3987 // we are not extending buildTree_rec() towards the operands. 3988 ValueList Op0; 3989 Op0.assign(VL.size(), VL0->getOperand(0)); 3990 VectorizableTree.back()->setOperand(0, Op0); 3991 return; 3992 } 3993 if (!CurrentOrder.empty()) { 3994 LLVM_DEBUG({ 3995 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 3996 "with order"; 3997 for (unsigned Idx : CurrentOrder) 3998 dbgs() << " " << Idx; 3999 dbgs() << "\n"; 4000 }); 4001 fixupOrderingIndices(CurrentOrder); 4002 // Insert new order with initial value 0, if it does not exist, 4003 // otherwise return the iterator to the existing one. 4004 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4005 ReuseShuffleIndicies, CurrentOrder); 4006 // This is a special case, as it does not gather, but at the same time 4007 // we are not extending buildTree_rec() towards the operands. 4008 ValueList Op0; 4009 Op0.assign(VL.size(), VL0->getOperand(0)); 4010 VectorizableTree.back()->setOperand(0, Op0); 4011 return; 4012 } 4013 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 4014 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4015 ReuseShuffleIndicies); 4016 BS.cancelScheduling(VL, VL0); 4017 return; 4018 } 4019 case Instruction::InsertElement: { 4020 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 4021 4022 // Check that we have a buildvector and not a shuffle of 2 or more 4023 // different vectors. 4024 ValueSet SourceVectors; 4025 int MinIdx = std::numeric_limits<int>::max(); 4026 for (Value *V : VL) { 4027 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 4028 Optional<int> Idx = *getInsertIndex(V, 0); 4029 if (!Idx || *Idx == UndefMaskElem) 4030 continue; 4031 MinIdx = std::min(MinIdx, *Idx); 4032 } 4033 4034 if (count_if(VL, [&SourceVectors](Value *V) { 4035 return !SourceVectors.contains(V); 4036 }) >= 2) { 4037 // Found 2nd source vector - cancel. 4038 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 4039 "different source vectors.\n"); 4040 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4041 BS.cancelScheduling(VL, VL0); 4042 return; 4043 } 4044 4045 auto OrdCompare = [](const std::pair<int, int> &P1, 4046 const std::pair<int, int> &P2) { 4047 return P1.first > P2.first; 4048 }; 4049 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 4050 decltype(OrdCompare)> 4051 Indices(OrdCompare); 4052 for (int I = 0, E = VL.size(); I < E; ++I) { 4053 Optional<int> Idx = *getInsertIndex(VL[I], 0); 4054 if (!Idx || *Idx == UndefMaskElem) 4055 continue; 4056 Indices.emplace(*Idx, I); 4057 } 4058 OrdersType CurrentOrder(VL.size(), VL.size()); 4059 bool IsIdentity = true; 4060 for (int I = 0, E = VL.size(); I < E; ++I) { 4061 CurrentOrder[Indices.top().second] = I; 4062 IsIdentity &= Indices.top().second == I; 4063 Indices.pop(); 4064 } 4065 if (IsIdentity) 4066 CurrentOrder.clear(); 4067 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4068 None, CurrentOrder); 4069 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 4070 4071 constexpr int NumOps = 2; 4072 ValueList VectorOperands[NumOps]; 4073 for (int I = 0; I < NumOps; ++I) { 4074 for (Value *V : VL) 4075 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 4076 4077 TE->setOperand(I, VectorOperands[I]); 4078 } 4079 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 4080 return; 4081 } 4082 case Instruction::Load: { 4083 // Check that a vectorized load would load the same memory as a scalar 4084 // load. For example, we don't want to vectorize loads that are smaller 4085 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 4086 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 4087 // from such a struct, we read/write packed bits disagreeing with the 4088 // unvectorized version. 4089 SmallVector<Value *> PointerOps; 4090 OrdersType CurrentOrder; 4091 TreeEntry *TE = nullptr; 4092 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 4093 PointerOps)) { 4094 case LoadsState::Vectorize: 4095 if (CurrentOrder.empty()) { 4096 // Original loads are consecutive and does not require reordering. 4097 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4098 ReuseShuffleIndicies); 4099 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 4100 } else { 4101 fixupOrderingIndices(CurrentOrder); 4102 // Need to reorder. 4103 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4104 ReuseShuffleIndicies, CurrentOrder); 4105 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 4106 } 4107 TE->setOperandsInOrder(); 4108 break; 4109 case LoadsState::ScatterVectorize: 4110 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 4111 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 4112 UserTreeIdx, ReuseShuffleIndicies); 4113 TE->setOperandsInOrder(); 4114 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 4115 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 4116 break; 4117 case LoadsState::Gather: 4118 BS.cancelScheduling(VL, VL0); 4119 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4120 ReuseShuffleIndicies); 4121 #ifndef NDEBUG 4122 Type *ScalarTy = VL0->getType(); 4123 if (DL->getTypeSizeInBits(ScalarTy) != 4124 DL->getTypeAllocSizeInBits(ScalarTy)) 4125 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 4126 else if (any_of(VL, [](Value *V) { 4127 return !cast<LoadInst>(V)->isSimple(); 4128 })) 4129 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 4130 else 4131 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 4132 #endif // NDEBUG 4133 break; 4134 } 4135 return; 4136 } 4137 case Instruction::ZExt: 4138 case Instruction::SExt: 4139 case Instruction::FPToUI: 4140 case Instruction::FPToSI: 4141 case Instruction::FPExt: 4142 case Instruction::PtrToInt: 4143 case Instruction::IntToPtr: 4144 case Instruction::SIToFP: 4145 case Instruction::UIToFP: 4146 case Instruction::Trunc: 4147 case Instruction::FPTrunc: 4148 case Instruction::BitCast: { 4149 Type *SrcTy = VL0->getOperand(0)->getType(); 4150 for (Value *V : VL) { 4151 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 4152 if (Ty != SrcTy || !isValidElementType(Ty)) { 4153 BS.cancelScheduling(VL, VL0); 4154 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4155 ReuseShuffleIndicies); 4156 LLVM_DEBUG(dbgs() 4157 << "SLP: Gathering casts with different src types.\n"); 4158 return; 4159 } 4160 } 4161 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4162 ReuseShuffleIndicies); 4163 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 4164 4165 TE->setOperandsInOrder(); 4166 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4167 ValueList Operands; 4168 // Prepare the operand vector. 4169 for (Value *V : VL) 4170 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4171 4172 buildTree_rec(Operands, Depth + 1, {TE, i}); 4173 } 4174 return; 4175 } 4176 case Instruction::ICmp: 4177 case Instruction::FCmp: { 4178 // Check that all of the compares have the same predicate. 4179 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4180 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 4181 Type *ComparedTy = VL0->getOperand(0)->getType(); 4182 for (Value *V : VL) { 4183 CmpInst *Cmp = cast<CmpInst>(V); 4184 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 4185 Cmp->getOperand(0)->getType() != ComparedTy) { 4186 BS.cancelScheduling(VL, VL0); 4187 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4188 ReuseShuffleIndicies); 4189 LLVM_DEBUG(dbgs() 4190 << "SLP: Gathering cmp with different predicate.\n"); 4191 return; 4192 } 4193 } 4194 4195 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4196 ReuseShuffleIndicies); 4197 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 4198 4199 ValueList Left, Right; 4200 if (cast<CmpInst>(VL0)->isCommutative()) { 4201 // Commutative predicate - collect + sort operands of the instructions 4202 // so that each side is more likely to have the same opcode. 4203 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 4204 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4205 } else { 4206 // Collect operands - commute if it uses the swapped predicate. 4207 for (Value *V : VL) { 4208 auto *Cmp = cast<CmpInst>(V); 4209 Value *LHS = Cmp->getOperand(0); 4210 Value *RHS = Cmp->getOperand(1); 4211 if (Cmp->getPredicate() != P0) 4212 std::swap(LHS, RHS); 4213 Left.push_back(LHS); 4214 Right.push_back(RHS); 4215 } 4216 } 4217 TE->setOperand(0, Left); 4218 TE->setOperand(1, Right); 4219 buildTree_rec(Left, Depth + 1, {TE, 0}); 4220 buildTree_rec(Right, Depth + 1, {TE, 1}); 4221 return; 4222 } 4223 case Instruction::Select: 4224 case Instruction::FNeg: 4225 case Instruction::Add: 4226 case Instruction::FAdd: 4227 case Instruction::Sub: 4228 case Instruction::FSub: 4229 case Instruction::Mul: 4230 case Instruction::FMul: 4231 case Instruction::UDiv: 4232 case Instruction::SDiv: 4233 case Instruction::FDiv: 4234 case Instruction::URem: 4235 case Instruction::SRem: 4236 case Instruction::FRem: 4237 case Instruction::Shl: 4238 case Instruction::LShr: 4239 case Instruction::AShr: 4240 case Instruction::And: 4241 case Instruction::Or: 4242 case Instruction::Xor: { 4243 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4244 ReuseShuffleIndicies); 4245 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 4246 4247 // Sort operands of the instructions so that each side is more likely to 4248 // have the same opcode. 4249 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 4250 ValueList Left, Right; 4251 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4252 TE->setOperand(0, Left); 4253 TE->setOperand(1, Right); 4254 buildTree_rec(Left, Depth + 1, {TE, 0}); 4255 buildTree_rec(Right, Depth + 1, {TE, 1}); 4256 return; 4257 } 4258 4259 TE->setOperandsInOrder(); 4260 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4261 ValueList Operands; 4262 // Prepare the operand vector. 4263 for (Value *V : VL) 4264 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4265 4266 buildTree_rec(Operands, Depth + 1, {TE, i}); 4267 } 4268 return; 4269 } 4270 case Instruction::GetElementPtr: { 4271 // We don't combine GEPs with complicated (nested) indexing. 4272 for (Value *V : VL) { 4273 if (cast<Instruction>(V)->getNumOperands() != 2) { 4274 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 4275 BS.cancelScheduling(VL, VL0); 4276 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4277 ReuseShuffleIndicies); 4278 return; 4279 } 4280 } 4281 4282 // We can't combine several GEPs into one vector if they operate on 4283 // different types. 4284 Type *Ty0 = VL0->getOperand(0)->getType(); 4285 for (Value *V : VL) { 4286 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 4287 if (Ty0 != CurTy) { 4288 LLVM_DEBUG(dbgs() 4289 << "SLP: not-vectorizable GEP (different types).\n"); 4290 BS.cancelScheduling(VL, VL0); 4291 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4292 ReuseShuffleIndicies); 4293 return; 4294 } 4295 } 4296 4297 // We don't combine GEPs with non-constant indexes. 4298 Type *Ty1 = VL0->getOperand(1)->getType(); 4299 for (Value *V : VL) { 4300 auto Op = cast<Instruction>(V)->getOperand(1); 4301 if (!isa<ConstantInt>(Op) || 4302 (Op->getType() != Ty1 && 4303 Op->getType()->getScalarSizeInBits() > 4304 DL->getIndexSizeInBits( 4305 V->getType()->getPointerAddressSpace()))) { 4306 LLVM_DEBUG(dbgs() 4307 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 4308 BS.cancelScheduling(VL, VL0); 4309 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4310 ReuseShuffleIndicies); 4311 return; 4312 } 4313 } 4314 4315 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4316 ReuseShuffleIndicies); 4317 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 4318 SmallVector<ValueList, 2> Operands(2); 4319 // Prepare the operand vector for pointer operands. 4320 for (Value *V : VL) 4321 Operands.front().push_back( 4322 cast<GetElementPtrInst>(V)->getPointerOperand()); 4323 TE->setOperand(0, Operands.front()); 4324 // Need to cast all indices to the same type before vectorization to 4325 // avoid crash. 4326 // Required to be able to find correct matches between different gather 4327 // nodes and reuse the vectorized values rather than trying to gather them 4328 // again. 4329 int IndexIdx = 1; 4330 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 4331 Type *Ty = all_of(VL, 4332 [VL0Ty, IndexIdx](Value *V) { 4333 return VL0Ty == cast<GetElementPtrInst>(V) 4334 ->getOperand(IndexIdx) 4335 ->getType(); 4336 }) 4337 ? VL0Ty 4338 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4339 ->getPointerOperandType() 4340 ->getScalarType()); 4341 // Prepare the operand vector. 4342 for (Value *V : VL) { 4343 auto *Op = cast<Instruction>(V)->getOperand(IndexIdx); 4344 auto *CI = cast<ConstantInt>(Op); 4345 Operands.back().push_back(ConstantExpr::getIntegerCast( 4346 CI, Ty, CI->getValue().isSignBitSet())); 4347 } 4348 TE->setOperand(IndexIdx, Operands.back()); 4349 4350 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 4351 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 4352 return; 4353 } 4354 case Instruction::Store: { 4355 // Check if the stores are consecutive or if we need to swizzle them. 4356 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 4357 // Avoid types that are padded when being allocated as scalars, while 4358 // being packed together in a vector (such as i1). 4359 if (DL->getTypeSizeInBits(ScalarTy) != 4360 DL->getTypeAllocSizeInBits(ScalarTy)) { 4361 BS.cancelScheduling(VL, VL0); 4362 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4363 ReuseShuffleIndicies); 4364 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 4365 return; 4366 } 4367 // Make sure all stores in the bundle are simple - we can't vectorize 4368 // atomic or volatile stores. 4369 SmallVector<Value *, 4> PointerOps(VL.size()); 4370 ValueList Operands(VL.size()); 4371 auto POIter = PointerOps.begin(); 4372 auto OIter = Operands.begin(); 4373 for (Value *V : VL) { 4374 auto *SI = cast<StoreInst>(V); 4375 if (!SI->isSimple()) { 4376 BS.cancelScheduling(VL, VL0); 4377 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4378 ReuseShuffleIndicies); 4379 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 4380 return; 4381 } 4382 *POIter = SI->getPointerOperand(); 4383 *OIter = SI->getValueOperand(); 4384 ++POIter; 4385 ++OIter; 4386 } 4387 4388 OrdersType CurrentOrder; 4389 // Check the order of pointer operands. 4390 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 4391 Value *Ptr0; 4392 Value *PtrN; 4393 if (CurrentOrder.empty()) { 4394 Ptr0 = PointerOps.front(); 4395 PtrN = PointerOps.back(); 4396 } else { 4397 Ptr0 = PointerOps[CurrentOrder.front()]; 4398 PtrN = PointerOps[CurrentOrder.back()]; 4399 } 4400 Optional<int> Dist = 4401 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 4402 // Check that the sorted pointer operands are consecutive. 4403 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 4404 if (CurrentOrder.empty()) { 4405 // Original stores are consecutive and does not require reordering. 4406 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 4407 UserTreeIdx, ReuseShuffleIndicies); 4408 TE->setOperandsInOrder(); 4409 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4410 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 4411 } else { 4412 fixupOrderingIndices(CurrentOrder); 4413 TreeEntry *TE = 4414 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4415 ReuseShuffleIndicies, CurrentOrder); 4416 TE->setOperandsInOrder(); 4417 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4418 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 4419 } 4420 return; 4421 } 4422 } 4423 4424 BS.cancelScheduling(VL, VL0); 4425 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4426 ReuseShuffleIndicies); 4427 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 4428 return; 4429 } 4430 case Instruction::Call: { 4431 // Check if the calls are all to the same vectorizable intrinsic or 4432 // library function. 4433 CallInst *CI = cast<CallInst>(VL0); 4434 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4435 4436 VFShape Shape = VFShape::get( 4437 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 4438 false /*HasGlobalPred*/); 4439 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4440 4441 if (!VecFunc && !isTriviallyVectorizable(ID)) { 4442 BS.cancelScheduling(VL, VL0); 4443 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4444 ReuseShuffleIndicies); 4445 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 4446 return; 4447 } 4448 Function *F = CI->getCalledFunction(); 4449 unsigned NumArgs = CI->arg_size(); 4450 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 4451 for (unsigned j = 0; j != NumArgs; ++j) 4452 if (hasVectorInstrinsicScalarOpd(ID, j)) 4453 ScalarArgs[j] = CI->getArgOperand(j); 4454 for (Value *V : VL) { 4455 CallInst *CI2 = dyn_cast<CallInst>(V); 4456 if (!CI2 || CI2->getCalledFunction() != F || 4457 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 4458 (VecFunc && 4459 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 4460 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 4461 BS.cancelScheduling(VL, VL0); 4462 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4463 ReuseShuffleIndicies); 4464 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 4465 << "\n"); 4466 return; 4467 } 4468 // Some intrinsics have scalar arguments and should be same in order for 4469 // them to be vectorized. 4470 for (unsigned j = 0; j != NumArgs; ++j) { 4471 if (hasVectorInstrinsicScalarOpd(ID, j)) { 4472 Value *A1J = CI2->getArgOperand(j); 4473 if (ScalarArgs[j] != A1J) { 4474 BS.cancelScheduling(VL, VL0); 4475 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4476 ReuseShuffleIndicies); 4477 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 4478 << " argument " << ScalarArgs[j] << "!=" << A1J 4479 << "\n"); 4480 return; 4481 } 4482 } 4483 } 4484 // Verify that the bundle operands are identical between the two calls. 4485 if (CI->hasOperandBundles() && 4486 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 4487 CI->op_begin() + CI->getBundleOperandsEndIndex(), 4488 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 4489 BS.cancelScheduling(VL, VL0); 4490 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4491 ReuseShuffleIndicies); 4492 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 4493 << *CI << "!=" << *V << '\n'); 4494 return; 4495 } 4496 } 4497 4498 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4499 ReuseShuffleIndicies); 4500 TE->setOperandsInOrder(); 4501 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 4502 // For scalar operands no need to to create an entry since no need to 4503 // vectorize it. 4504 if (hasVectorInstrinsicScalarOpd(ID, i)) 4505 continue; 4506 ValueList Operands; 4507 // Prepare the operand vector. 4508 for (Value *V : VL) { 4509 auto *CI2 = cast<CallInst>(V); 4510 Operands.push_back(CI2->getArgOperand(i)); 4511 } 4512 buildTree_rec(Operands, Depth + 1, {TE, i}); 4513 } 4514 return; 4515 } 4516 case Instruction::ShuffleVector: { 4517 // If this is not an alternate sequence of opcode like add-sub 4518 // then do not vectorize this instruction. 4519 if (!S.isAltShuffle()) { 4520 BS.cancelScheduling(VL, VL0); 4521 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4522 ReuseShuffleIndicies); 4523 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 4524 return; 4525 } 4526 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4527 ReuseShuffleIndicies); 4528 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 4529 4530 // Reorder operands if reordering would enable vectorization. 4531 auto *CI = dyn_cast<CmpInst>(VL0); 4532 if (isa<BinaryOperator>(VL0) || CI) { 4533 ValueList Left, Right; 4534 if (!CI || all_of(VL, [](Value *V) { 4535 return cast<CmpInst>(V)->isCommutative(); 4536 })) { 4537 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4538 } else { 4539 CmpInst::Predicate P0 = CI->getPredicate(); 4540 CmpInst::Predicate AltP0 = cast<CmpInst>(S.AltOp)->getPredicate(); 4541 assert(P0 != AltP0 && 4542 "Expected different main/alternate predicates."); 4543 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 4544 Value *BaseOp0 = VL0->getOperand(0); 4545 Value *BaseOp1 = VL0->getOperand(1); 4546 // Collect operands - commute if it uses the swapped predicate or 4547 // alternate operation. 4548 for (Value *V : VL) { 4549 auto *Cmp = cast<CmpInst>(V); 4550 Value *LHS = Cmp->getOperand(0); 4551 Value *RHS = Cmp->getOperand(1); 4552 CmpInst::Predicate CurrentPred = Cmp->getPredicate(); 4553 if (P0 == AltP0Swapped) { 4554 if ((P0 == CurrentPred && 4555 !areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)) || 4556 (AltP0 == CurrentPred && 4557 areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS))) 4558 std::swap(LHS, RHS); 4559 } else if (P0 != CurrentPred && AltP0 != CurrentPred) { 4560 std::swap(LHS, RHS); 4561 } 4562 Left.push_back(LHS); 4563 Right.push_back(RHS); 4564 } 4565 } 4566 TE->setOperand(0, Left); 4567 TE->setOperand(1, Right); 4568 buildTree_rec(Left, Depth + 1, {TE, 0}); 4569 buildTree_rec(Right, Depth + 1, {TE, 1}); 4570 return; 4571 } 4572 4573 TE->setOperandsInOrder(); 4574 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4575 ValueList Operands; 4576 // Prepare the operand vector. 4577 for (Value *V : VL) 4578 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4579 4580 buildTree_rec(Operands, Depth + 1, {TE, i}); 4581 } 4582 return; 4583 } 4584 default: 4585 BS.cancelScheduling(VL, VL0); 4586 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4587 ReuseShuffleIndicies); 4588 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 4589 return; 4590 } 4591 } 4592 4593 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 4594 unsigned N = 1; 4595 Type *EltTy = T; 4596 4597 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 4598 isa<VectorType>(EltTy)) { 4599 if (auto *ST = dyn_cast<StructType>(EltTy)) { 4600 // Check that struct is homogeneous. 4601 for (const auto *Ty : ST->elements()) 4602 if (Ty != *ST->element_begin()) 4603 return 0; 4604 N *= ST->getNumElements(); 4605 EltTy = *ST->element_begin(); 4606 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 4607 N *= AT->getNumElements(); 4608 EltTy = AT->getElementType(); 4609 } else { 4610 auto *VT = cast<FixedVectorType>(EltTy); 4611 N *= VT->getNumElements(); 4612 EltTy = VT->getElementType(); 4613 } 4614 } 4615 4616 if (!isValidElementType(EltTy)) 4617 return 0; 4618 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 4619 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 4620 return 0; 4621 return N; 4622 } 4623 4624 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 4625 SmallVectorImpl<unsigned> &CurrentOrder) const { 4626 const auto *It = find_if(VL, [](Value *V) { 4627 return isa<ExtractElementInst, ExtractValueInst>(V); 4628 }); 4629 assert(It != VL.end() && "Expected at least one extract instruction."); 4630 auto *E0 = cast<Instruction>(*It); 4631 assert(all_of(VL, 4632 [](Value *V) { 4633 return isa<UndefValue, ExtractElementInst, ExtractValueInst>( 4634 V); 4635 }) && 4636 "Invalid opcode"); 4637 // Check if all of the extracts come from the same vector and from the 4638 // correct offset. 4639 Value *Vec = E0->getOperand(0); 4640 4641 CurrentOrder.clear(); 4642 4643 // We have to extract from a vector/aggregate with the same number of elements. 4644 unsigned NElts; 4645 if (E0->getOpcode() == Instruction::ExtractValue) { 4646 const DataLayout &DL = E0->getModule()->getDataLayout(); 4647 NElts = canMapToVector(Vec->getType(), DL); 4648 if (!NElts) 4649 return false; 4650 // Check if load can be rewritten as load of vector. 4651 LoadInst *LI = dyn_cast<LoadInst>(Vec); 4652 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 4653 return false; 4654 } else { 4655 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 4656 } 4657 4658 if (NElts != VL.size()) 4659 return false; 4660 4661 // Check that all of the indices extract from the correct offset. 4662 bool ShouldKeepOrder = true; 4663 unsigned E = VL.size(); 4664 // Assign to all items the initial value E + 1 so we can check if the extract 4665 // instruction index was used already. 4666 // Also, later we can check that all the indices are used and we have a 4667 // consecutive access in the extract instructions, by checking that no 4668 // element of CurrentOrder still has value E + 1. 4669 CurrentOrder.assign(E, E); 4670 unsigned I = 0; 4671 for (; I < E; ++I) { 4672 auto *Inst = dyn_cast<Instruction>(VL[I]); 4673 if (!Inst) 4674 continue; 4675 if (Inst->getOperand(0) != Vec) 4676 break; 4677 if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) 4678 if (isa<UndefValue>(EE->getIndexOperand())) 4679 continue; 4680 Optional<unsigned> Idx = getExtractIndex(Inst); 4681 if (!Idx) 4682 break; 4683 const unsigned ExtIdx = *Idx; 4684 if (ExtIdx != I) { 4685 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E) 4686 break; 4687 ShouldKeepOrder = false; 4688 CurrentOrder[ExtIdx] = I; 4689 } else { 4690 if (CurrentOrder[I] != E) 4691 break; 4692 CurrentOrder[I] = I; 4693 } 4694 } 4695 if (I < E) { 4696 CurrentOrder.clear(); 4697 return false; 4698 } 4699 if (ShouldKeepOrder) 4700 CurrentOrder.clear(); 4701 4702 return ShouldKeepOrder; 4703 } 4704 4705 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 4706 ArrayRef<Value *> VectorizedVals) const { 4707 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 4708 all_of(I->users(), [this](User *U) { 4709 return ScalarToTreeEntry.count(U) > 0 || 4710 isVectorLikeInstWithConstOps(U) || 4711 (isa<ExtractElementInst>(U) && MustGather.contains(U)); 4712 }); 4713 } 4714 4715 static std::pair<InstructionCost, InstructionCost> 4716 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 4717 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 4718 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4719 4720 // Calculate the cost of the scalar and vector calls. 4721 SmallVector<Type *, 4> VecTys; 4722 for (Use &Arg : CI->args()) 4723 VecTys.push_back( 4724 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 4725 FastMathFlags FMF; 4726 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 4727 FMF = FPCI->getFastMathFlags(); 4728 SmallVector<const Value *> Arguments(CI->args()); 4729 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 4730 dyn_cast<IntrinsicInst>(CI)); 4731 auto IntrinsicCost = 4732 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 4733 4734 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4735 VecTy->getNumElements())), 4736 false /*HasGlobalPred*/); 4737 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4738 auto LibCost = IntrinsicCost; 4739 if (!CI->isNoBuiltin() && VecFunc) { 4740 // Calculate the cost of the vector library call. 4741 // If the corresponding vector call is cheaper, return its cost. 4742 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 4743 TTI::TCK_RecipThroughput); 4744 } 4745 return {IntrinsicCost, LibCost}; 4746 } 4747 4748 /// Compute the cost of creating a vector of type \p VecTy containing the 4749 /// extracted values from \p VL. 4750 static InstructionCost 4751 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 4752 TargetTransformInfo::ShuffleKind ShuffleKind, 4753 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 4754 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 4755 4756 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 4757 VecTy->getNumElements() < NumOfParts) 4758 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 4759 4760 bool AllConsecutive = true; 4761 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 4762 unsigned Idx = -1; 4763 InstructionCost Cost = 0; 4764 4765 // Process extracts in blocks of EltsPerVector to check if the source vector 4766 // operand can be re-used directly. If not, add the cost of creating a shuffle 4767 // to extract the values into a vector register. 4768 for (auto *V : VL) { 4769 ++Idx; 4770 4771 // Need to exclude undefs from analysis. 4772 if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem) 4773 continue; 4774 4775 // Reached the start of a new vector registers. 4776 if (Idx % EltsPerVector == 0) { 4777 AllConsecutive = true; 4778 continue; 4779 } 4780 4781 // Check all extracts for a vector register on the target directly 4782 // extract values in order. 4783 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 4784 if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) { 4785 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 4786 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 4787 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 4788 } 4789 4790 if (AllConsecutive) 4791 continue; 4792 4793 // Skip all indices, except for the last index per vector block. 4794 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 4795 continue; 4796 4797 // If we have a series of extracts which are not consecutive and hence 4798 // cannot re-use the source vector register directly, compute the shuffle 4799 // cost to extract the a vector with EltsPerVector elements. 4800 Cost += TTI.getShuffleCost( 4801 TargetTransformInfo::SK_PermuteSingleSrc, 4802 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 4803 } 4804 return Cost; 4805 } 4806 4807 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 4808 /// operations operands. 4809 static void 4810 buildSuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 4811 ArrayRef<int> ReusesIndices, 4812 const function_ref<bool(Instruction *)> IsAltOp, 4813 SmallVectorImpl<int> &Mask, 4814 SmallVectorImpl<Value *> *OpScalars = nullptr, 4815 SmallVectorImpl<Value *> *AltScalars = nullptr) { 4816 unsigned Sz = VL.size(); 4817 Mask.assign(Sz, UndefMaskElem); 4818 SmallVector<int> OrderMask; 4819 if (!ReorderIndices.empty()) 4820 inversePermutation(ReorderIndices, OrderMask); 4821 for (unsigned I = 0; I < Sz; ++I) { 4822 unsigned Idx = I; 4823 if (!ReorderIndices.empty()) 4824 Idx = OrderMask[I]; 4825 auto *OpInst = cast<Instruction>(VL[Idx]); 4826 if (IsAltOp(OpInst)) { 4827 Mask[I] = Sz + Idx; 4828 if (AltScalars) 4829 AltScalars->push_back(OpInst); 4830 } else { 4831 Mask[I] = Idx; 4832 if (OpScalars) 4833 OpScalars->push_back(OpInst); 4834 } 4835 } 4836 if (!ReusesIndices.empty()) { 4837 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 4838 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 4839 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 4840 }); 4841 Mask.swap(NewMask); 4842 } 4843 } 4844 4845 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 4846 ArrayRef<Value *> VectorizedVals) { 4847 ArrayRef<Value*> VL = E->Scalars; 4848 4849 Type *ScalarTy = VL[0]->getType(); 4850 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4851 ScalarTy = SI->getValueOperand()->getType(); 4852 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 4853 ScalarTy = CI->getOperand(0)->getType(); 4854 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 4855 ScalarTy = IE->getOperand(1)->getType(); 4856 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4857 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 4858 4859 // If we have computed a smaller type for the expression, update VecTy so 4860 // that the costs will be accurate. 4861 if (MinBWs.count(VL[0])) 4862 VecTy = FixedVectorType::get( 4863 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 4864 unsigned EntryVF = E->getVectorFactor(); 4865 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 4866 4867 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4868 // FIXME: it tries to fix a problem with MSVC buildbots. 4869 TargetTransformInfo &TTIRef = *TTI; 4870 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 4871 VectorizedVals, E](InstructionCost &Cost) { 4872 DenseMap<Value *, int> ExtractVectorsTys; 4873 SmallPtrSet<Value *, 4> CheckedExtracts; 4874 for (auto *V : VL) { 4875 if (isa<UndefValue>(V)) 4876 continue; 4877 // If all users of instruction are going to be vectorized and this 4878 // instruction itself is not going to be vectorized, consider this 4879 // instruction as dead and remove its cost from the final cost of the 4880 // vectorized tree. 4881 // Also, avoid adjusting the cost for extractelements with multiple uses 4882 // in different graph entries. 4883 const TreeEntry *VE = getTreeEntry(V); 4884 if (!CheckedExtracts.insert(V).second || 4885 !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 4886 (VE && VE != E)) 4887 continue; 4888 auto *EE = cast<ExtractElementInst>(V); 4889 Optional<unsigned> EEIdx = getExtractIndex(EE); 4890 if (!EEIdx) 4891 continue; 4892 unsigned Idx = *EEIdx; 4893 if (TTIRef.getNumberOfParts(VecTy) != 4894 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 4895 auto It = 4896 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 4897 It->getSecond() = std::min<int>(It->second, Idx); 4898 } 4899 // Take credit for instruction that will become dead. 4900 if (EE->hasOneUse()) { 4901 Instruction *Ext = EE->user_back(); 4902 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4903 all_of(Ext->users(), 4904 [](User *U) { return isa<GetElementPtrInst>(U); })) { 4905 // Use getExtractWithExtendCost() to calculate the cost of 4906 // extractelement/ext pair. 4907 Cost -= 4908 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 4909 EE->getVectorOperandType(), Idx); 4910 // Add back the cost of s|zext which is subtracted separately. 4911 Cost += TTIRef.getCastInstrCost( 4912 Ext->getOpcode(), Ext->getType(), EE->getType(), 4913 TTI::getCastContextHint(Ext), CostKind, Ext); 4914 continue; 4915 } 4916 } 4917 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 4918 EE->getVectorOperandType(), Idx); 4919 } 4920 // Add a cost for subvector extracts/inserts if required. 4921 for (const auto &Data : ExtractVectorsTys) { 4922 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 4923 unsigned NumElts = VecTy->getNumElements(); 4924 if (Data.second % NumElts == 0) 4925 continue; 4926 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 4927 unsigned Idx = (Data.second / NumElts) * NumElts; 4928 unsigned EENumElts = EEVTy->getNumElements(); 4929 if (Idx + NumElts <= EENumElts) { 4930 Cost += 4931 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4932 EEVTy, None, Idx, VecTy); 4933 } else { 4934 // Need to round up the subvector type vectorization factor to avoid a 4935 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 4936 // <= EENumElts. 4937 auto *SubVT = 4938 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 4939 Cost += 4940 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4941 EEVTy, None, Idx, SubVT); 4942 } 4943 } else { 4944 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 4945 VecTy, None, 0, EEVTy); 4946 } 4947 } 4948 }; 4949 if (E->State == TreeEntry::NeedToGather) { 4950 if (allConstant(VL)) 4951 return 0; 4952 if (isa<InsertElementInst>(VL[0])) 4953 return InstructionCost::getInvalid(); 4954 SmallVector<int> Mask; 4955 SmallVector<const TreeEntry *> Entries; 4956 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 4957 isGatherShuffledEntry(E, Mask, Entries); 4958 if (Shuffle.hasValue()) { 4959 InstructionCost GatherCost = 0; 4960 if (ShuffleVectorInst::isIdentityMask(Mask)) { 4961 // Perfect match in the graph, will reuse the previously vectorized 4962 // node. Cost is 0. 4963 LLVM_DEBUG( 4964 dbgs() 4965 << "SLP: perfect diamond match for gather bundle that starts with " 4966 << *VL.front() << ".\n"); 4967 if (NeedToShuffleReuses) 4968 GatherCost = 4969 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 4970 FinalVecTy, E->ReuseShuffleIndices); 4971 } else { 4972 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 4973 << " entries for bundle that starts with " 4974 << *VL.front() << ".\n"); 4975 // Detected that instead of gather we can emit a shuffle of single/two 4976 // previously vectorized nodes. Add the cost of the permutation rather 4977 // than gather. 4978 ::addMask(Mask, E->ReuseShuffleIndices); 4979 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 4980 } 4981 return GatherCost; 4982 } 4983 if ((E->getOpcode() == Instruction::ExtractElement || 4984 all_of(E->Scalars, 4985 [](Value *V) { 4986 return isa<ExtractElementInst, UndefValue>(V); 4987 })) && 4988 allSameType(VL)) { 4989 // Check that gather of extractelements can be represented as just a 4990 // shuffle of a single/two vectors the scalars are extracted from. 4991 SmallVector<int> Mask; 4992 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 4993 isFixedVectorShuffle(VL, Mask); 4994 if (ShuffleKind.hasValue()) { 4995 // Found the bunch of extractelement instructions that must be gathered 4996 // into a vector and can be represented as a permutation elements in a 4997 // single input vector or of 2 input vectors. 4998 InstructionCost Cost = 4999 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 5000 AdjustExtractsCost(Cost); 5001 if (NeedToShuffleReuses) 5002 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5003 FinalVecTy, E->ReuseShuffleIndices); 5004 return Cost; 5005 } 5006 } 5007 if (isSplat(VL)) { 5008 // Found the broadcasting of the single scalar, calculate the cost as the 5009 // broadcast. 5010 assert(VecTy == FinalVecTy && 5011 "No reused scalars expected for broadcast."); 5012 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy); 5013 } 5014 InstructionCost ReuseShuffleCost = 0; 5015 if (NeedToShuffleReuses) 5016 ReuseShuffleCost = TTI->getShuffleCost( 5017 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 5018 // Improve gather cost for gather of loads, if we can group some of the 5019 // loads into vector loads. 5020 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 5021 !E->isAltShuffle()) { 5022 BoUpSLP::ValueSet VectorizedLoads; 5023 unsigned StartIdx = 0; 5024 unsigned VF = VL.size() / 2; 5025 unsigned VectorizedCnt = 0; 5026 unsigned ScatterVectorizeCnt = 0; 5027 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 5028 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 5029 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 5030 Cnt += VF) { 5031 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 5032 if (!VectorizedLoads.count(Slice.front()) && 5033 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 5034 SmallVector<Value *> PointerOps; 5035 OrdersType CurrentOrder; 5036 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 5037 *SE, CurrentOrder, PointerOps); 5038 switch (LS) { 5039 case LoadsState::Vectorize: 5040 case LoadsState::ScatterVectorize: 5041 // Mark the vectorized loads so that we don't vectorize them 5042 // again. 5043 if (LS == LoadsState::Vectorize) 5044 ++VectorizedCnt; 5045 else 5046 ++ScatterVectorizeCnt; 5047 VectorizedLoads.insert(Slice.begin(), Slice.end()); 5048 // If we vectorized initial block, no need to try to vectorize it 5049 // again. 5050 if (Cnt == StartIdx) 5051 StartIdx += VF; 5052 break; 5053 case LoadsState::Gather: 5054 break; 5055 } 5056 } 5057 } 5058 // Check if the whole array was vectorized already - exit. 5059 if (StartIdx >= VL.size()) 5060 break; 5061 // Found vectorizable parts - exit. 5062 if (!VectorizedLoads.empty()) 5063 break; 5064 } 5065 if (!VectorizedLoads.empty()) { 5066 InstructionCost GatherCost = 0; 5067 unsigned NumParts = TTI->getNumberOfParts(VecTy); 5068 bool NeedInsertSubvectorAnalysis = 5069 !NumParts || (VL.size() / VF) > NumParts; 5070 // Get the cost for gathered loads. 5071 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 5072 if (VectorizedLoads.contains(VL[I])) 5073 continue; 5074 GatherCost += getGatherCost(VL.slice(I, VF)); 5075 } 5076 // The cost for vectorized loads. 5077 InstructionCost ScalarsCost = 0; 5078 for (Value *V : VectorizedLoads) { 5079 auto *LI = cast<LoadInst>(V); 5080 ScalarsCost += TTI->getMemoryOpCost( 5081 Instruction::Load, LI->getType(), LI->getAlign(), 5082 LI->getPointerAddressSpace(), CostKind, LI); 5083 } 5084 auto *LI = cast<LoadInst>(E->getMainOp()); 5085 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 5086 Align Alignment = LI->getAlign(); 5087 GatherCost += 5088 VectorizedCnt * 5089 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 5090 LI->getPointerAddressSpace(), CostKind, LI); 5091 GatherCost += ScatterVectorizeCnt * 5092 TTI->getGatherScatterOpCost( 5093 Instruction::Load, LoadTy, LI->getPointerOperand(), 5094 /*VariableMask=*/false, Alignment, CostKind, LI); 5095 if (NeedInsertSubvectorAnalysis) { 5096 // Add the cost for the subvectors insert. 5097 for (int I = VF, E = VL.size(); I < E; I += VF) 5098 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 5099 None, I, LoadTy); 5100 } 5101 return ReuseShuffleCost + GatherCost - ScalarsCost; 5102 } 5103 } 5104 return ReuseShuffleCost + getGatherCost(VL); 5105 } 5106 InstructionCost CommonCost = 0; 5107 SmallVector<int> Mask; 5108 if (!E->ReorderIndices.empty()) { 5109 SmallVector<int> NewMask; 5110 if (E->getOpcode() == Instruction::Store) { 5111 // For stores the order is actually a mask. 5112 NewMask.resize(E->ReorderIndices.size()); 5113 copy(E->ReorderIndices, NewMask.begin()); 5114 } else { 5115 inversePermutation(E->ReorderIndices, NewMask); 5116 } 5117 ::addMask(Mask, NewMask); 5118 } 5119 if (NeedToShuffleReuses) 5120 ::addMask(Mask, E->ReuseShuffleIndices); 5121 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 5122 CommonCost = 5123 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 5124 assert((E->State == TreeEntry::Vectorize || 5125 E->State == TreeEntry::ScatterVectorize) && 5126 "Unhandled state"); 5127 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 5128 Instruction *VL0 = E->getMainOp(); 5129 unsigned ShuffleOrOp = 5130 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 5131 switch (ShuffleOrOp) { 5132 case Instruction::PHI: 5133 return 0; 5134 5135 case Instruction::ExtractValue: 5136 case Instruction::ExtractElement: { 5137 // The common cost of removal ExtractElement/ExtractValue instructions + 5138 // the cost of shuffles, if required to resuffle the original vector. 5139 if (NeedToShuffleReuses) { 5140 unsigned Idx = 0; 5141 for (unsigned I : E->ReuseShuffleIndices) { 5142 if (ShuffleOrOp == Instruction::ExtractElement) { 5143 auto *EE = cast<ExtractElementInst>(VL[I]); 5144 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5145 EE->getVectorOperandType(), 5146 *getExtractIndex(EE)); 5147 } else { 5148 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5149 VecTy, Idx); 5150 ++Idx; 5151 } 5152 } 5153 Idx = EntryVF; 5154 for (Value *V : VL) { 5155 if (ShuffleOrOp == Instruction::ExtractElement) { 5156 auto *EE = cast<ExtractElementInst>(V); 5157 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5158 EE->getVectorOperandType(), 5159 *getExtractIndex(EE)); 5160 } else { 5161 --Idx; 5162 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5163 VecTy, Idx); 5164 } 5165 } 5166 } 5167 if (ShuffleOrOp == Instruction::ExtractValue) { 5168 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 5169 auto *EI = cast<Instruction>(VL[I]); 5170 // Take credit for instruction that will become dead. 5171 if (EI->hasOneUse()) { 5172 Instruction *Ext = EI->user_back(); 5173 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5174 all_of(Ext->users(), 5175 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5176 // Use getExtractWithExtendCost() to calculate the cost of 5177 // extractelement/ext pair. 5178 CommonCost -= TTI->getExtractWithExtendCost( 5179 Ext->getOpcode(), Ext->getType(), VecTy, I); 5180 // Add back the cost of s|zext which is subtracted separately. 5181 CommonCost += TTI->getCastInstrCost( 5182 Ext->getOpcode(), Ext->getType(), EI->getType(), 5183 TTI::getCastContextHint(Ext), CostKind, Ext); 5184 continue; 5185 } 5186 } 5187 CommonCost -= 5188 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 5189 } 5190 } else { 5191 AdjustExtractsCost(CommonCost); 5192 } 5193 return CommonCost; 5194 } 5195 case Instruction::InsertElement: { 5196 assert(E->ReuseShuffleIndices.empty() && 5197 "Unique insertelements only are expected."); 5198 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 5199 5200 unsigned const NumElts = SrcVecTy->getNumElements(); 5201 unsigned const NumScalars = VL.size(); 5202 APInt DemandedElts = APInt::getZero(NumElts); 5203 // TODO: Add support for Instruction::InsertValue. 5204 SmallVector<int> Mask; 5205 if (!E->ReorderIndices.empty()) { 5206 inversePermutation(E->ReorderIndices, Mask); 5207 Mask.append(NumElts - NumScalars, UndefMaskElem); 5208 } else { 5209 Mask.assign(NumElts, UndefMaskElem); 5210 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 5211 } 5212 unsigned Offset = *getInsertIndex(VL0, 0); 5213 bool IsIdentity = true; 5214 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 5215 Mask.swap(PrevMask); 5216 for (unsigned I = 0; I < NumScalars; ++I) { 5217 Optional<int> InsertIdx = getInsertIndex(VL[PrevMask[I]], 0); 5218 if (!InsertIdx || *InsertIdx == UndefMaskElem) 5219 continue; 5220 DemandedElts.setBit(*InsertIdx); 5221 IsIdentity &= *InsertIdx - Offset == I; 5222 Mask[*InsertIdx - Offset] = I; 5223 } 5224 assert(Offset < NumElts && "Failed to find vector index offset"); 5225 5226 InstructionCost Cost = 0; 5227 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 5228 /*Insert*/ true, /*Extract*/ false); 5229 5230 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 5231 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 5232 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 5233 Cost += TTI->getShuffleCost( 5234 TargetTransformInfo::SK_PermuteSingleSrc, 5235 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 5236 } else if (!IsIdentity) { 5237 auto *FirstInsert = 5238 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 5239 return !is_contained(E->Scalars, 5240 cast<Instruction>(V)->getOperand(0)); 5241 })); 5242 if (isUndefVector(FirstInsert->getOperand(0))) { 5243 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 5244 } else { 5245 SmallVector<int> InsertMask(NumElts); 5246 std::iota(InsertMask.begin(), InsertMask.end(), 0); 5247 for (unsigned I = 0; I < NumElts; I++) { 5248 if (Mask[I] != UndefMaskElem) 5249 InsertMask[Offset + I] = NumElts + I; 5250 } 5251 Cost += 5252 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 5253 } 5254 } 5255 5256 return Cost; 5257 } 5258 case Instruction::ZExt: 5259 case Instruction::SExt: 5260 case Instruction::FPToUI: 5261 case Instruction::FPToSI: 5262 case Instruction::FPExt: 5263 case Instruction::PtrToInt: 5264 case Instruction::IntToPtr: 5265 case Instruction::SIToFP: 5266 case Instruction::UIToFP: 5267 case Instruction::Trunc: 5268 case Instruction::FPTrunc: 5269 case Instruction::BitCast: { 5270 Type *SrcTy = VL0->getOperand(0)->getType(); 5271 InstructionCost ScalarEltCost = 5272 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 5273 TTI::getCastContextHint(VL0), CostKind, VL0); 5274 if (NeedToShuffleReuses) { 5275 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5276 } 5277 5278 // Calculate the cost of this instruction. 5279 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 5280 5281 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 5282 InstructionCost VecCost = 0; 5283 // Check if the values are candidates to demote. 5284 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 5285 VecCost = CommonCost + TTI->getCastInstrCost( 5286 E->getOpcode(), VecTy, SrcVecTy, 5287 TTI::getCastContextHint(VL0), CostKind, VL0); 5288 } 5289 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5290 return VecCost - ScalarCost; 5291 } 5292 case Instruction::FCmp: 5293 case Instruction::ICmp: 5294 case Instruction::Select: { 5295 // Calculate the cost of this instruction. 5296 InstructionCost ScalarEltCost = 5297 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5298 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 5299 if (NeedToShuffleReuses) { 5300 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5301 } 5302 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 5303 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5304 5305 // Check if all entries in VL are either compares or selects with compares 5306 // as condition that have the same predicates. 5307 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 5308 bool First = true; 5309 for (auto *V : VL) { 5310 CmpInst::Predicate CurrentPred; 5311 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 5312 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 5313 !match(V, MatchCmp)) || 5314 (!First && VecPred != CurrentPred)) { 5315 VecPred = CmpInst::BAD_ICMP_PREDICATE; 5316 break; 5317 } 5318 First = false; 5319 VecPred = CurrentPred; 5320 } 5321 5322 InstructionCost VecCost = TTI->getCmpSelInstrCost( 5323 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 5324 // Check if it is possible and profitable to use min/max for selects in 5325 // VL. 5326 // 5327 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 5328 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 5329 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 5330 {VecTy, VecTy}); 5331 InstructionCost IntrinsicCost = 5332 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5333 // If the selects are the only uses of the compares, they will be dead 5334 // and we can adjust the cost by removing their cost. 5335 if (IntrinsicAndUse.second) 5336 IntrinsicCost -= 5337 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, 5338 CmpInst::BAD_ICMP_PREDICATE, CostKind); 5339 VecCost = std::min(VecCost, IntrinsicCost); 5340 } 5341 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5342 return CommonCost + VecCost - ScalarCost; 5343 } 5344 case Instruction::FNeg: 5345 case Instruction::Add: 5346 case Instruction::FAdd: 5347 case Instruction::Sub: 5348 case Instruction::FSub: 5349 case Instruction::Mul: 5350 case Instruction::FMul: 5351 case Instruction::UDiv: 5352 case Instruction::SDiv: 5353 case Instruction::FDiv: 5354 case Instruction::URem: 5355 case Instruction::SRem: 5356 case Instruction::FRem: 5357 case Instruction::Shl: 5358 case Instruction::LShr: 5359 case Instruction::AShr: 5360 case Instruction::And: 5361 case Instruction::Or: 5362 case Instruction::Xor: { 5363 // Certain instructions can be cheaper to vectorize if they have a 5364 // constant second vector operand. 5365 TargetTransformInfo::OperandValueKind Op1VK = 5366 TargetTransformInfo::OK_AnyValue; 5367 TargetTransformInfo::OperandValueKind Op2VK = 5368 TargetTransformInfo::OK_UniformConstantValue; 5369 TargetTransformInfo::OperandValueProperties Op1VP = 5370 TargetTransformInfo::OP_None; 5371 TargetTransformInfo::OperandValueProperties Op2VP = 5372 TargetTransformInfo::OP_PowerOf2; 5373 5374 // If all operands are exactly the same ConstantInt then set the 5375 // operand kind to OK_UniformConstantValue. 5376 // If instead not all operands are constants, then set the operand kind 5377 // to OK_AnyValue. If all operands are constants but not the same, 5378 // then set the operand kind to OK_NonUniformConstantValue. 5379 ConstantInt *CInt0 = nullptr; 5380 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 5381 const Instruction *I = cast<Instruction>(VL[i]); 5382 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 5383 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 5384 if (!CInt) { 5385 Op2VK = TargetTransformInfo::OK_AnyValue; 5386 Op2VP = TargetTransformInfo::OP_None; 5387 break; 5388 } 5389 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 5390 !CInt->getValue().isPowerOf2()) 5391 Op2VP = TargetTransformInfo::OP_None; 5392 if (i == 0) { 5393 CInt0 = CInt; 5394 continue; 5395 } 5396 if (CInt0 != CInt) 5397 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5398 } 5399 5400 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 5401 InstructionCost ScalarEltCost = 5402 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 5403 Op2VK, Op1VP, Op2VP, Operands, VL0); 5404 if (NeedToShuffleReuses) { 5405 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5406 } 5407 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5408 InstructionCost VecCost = 5409 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 5410 Op2VK, Op1VP, Op2VP, Operands, VL0); 5411 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5412 return CommonCost + VecCost - ScalarCost; 5413 } 5414 case Instruction::GetElementPtr: { 5415 TargetTransformInfo::OperandValueKind Op1VK = 5416 TargetTransformInfo::OK_AnyValue; 5417 TargetTransformInfo::OperandValueKind Op2VK = 5418 TargetTransformInfo::OK_UniformConstantValue; 5419 5420 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 5421 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 5422 if (NeedToShuffleReuses) { 5423 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5424 } 5425 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5426 InstructionCost VecCost = TTI->getArithmeticInstrCost( 5427 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 5428 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5429 return CommonCost + VecCost - ScalarCost; 5430 } 5431 case Instruction::Load: { 5432 // Cost of wide load - cost of scalar loads. 5433 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 5434 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5435 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 5436 if (NeedToShuffleReuses) { 5437 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5438 } 5439 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 5440 InstructionCost VecLdCost; 5441 if (E->State == TreeEntry::Vectorize) { 5442 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 5443 CostKind, VL0); 5444 } else { 5445 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 5446 Align CommonAlignment = Alignment; 5447 for (Value *V : VL) 5448 CommonAlignment = 5449 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 5450 VecLdCost = TTI->getGatherScatterOpCost( 5451 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 5452 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 5453 } 5454 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 5455 return CommonCost + VecLdCost - ScalarLdCost; 5456 } 5457 case Instruction::Store: { 5458 // We know that we can merge the stores. Calculate the cost. 5459 bool IsReorder = !E->ReorderIndices.empty(); 5460 auto *SI = 5461 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 5462 Align Alignment = SI->getAlign(); 5463 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5464 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 5465 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 5466 InstructionCost VecStCost = TTI->getMemoryOpCost( 5467 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 5468 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 5469 return CommonCost + VecStCost - ScalarStCost; 5470 } 5471 case Instruction::Call: { 5472 CallInst *CI = cast<CallInst>(VL0); 5473 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5474 5475 // Calculate the cost of the scalar and vector calls. 5476 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 5477 InstructionCost ScalarEltCost = 5478 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5479 if (NeedToShuffleReuses) { 5480 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5481 } 5482 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 5483 5484 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 5485 InstructionCost VecCallCost = 5486 std::min(VecCallCosts.first, VecCallCosts.second); 5487 5488 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 5489 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 5490 << " for " << *CI << "\n"); 5491 5492 return CommonCost + VecCallCost - ScalarCallCost; 5493 } 5494 case Instruction::ShuffleVector: { 5495 assert(E->isAltShuffle() && 5496 ((Instruction::isBinaryOp(E->getOpcode()) && 5497 Instruction::isBinaryOp(E->getAltOpcode())) || 5498 (Instruction::isCast(E->getOpcode()) && 5499 Instruction::isCast(E->getAltOpcode())) || 5500 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 5501 "Invalid Shuffle Vector Operand"); 5502 InstructionCost ScalarCost = 0; 5503 if (NeedToShuffleReuses) { 5504 for (unsigned Idx : E->ReuseShuffleIndices) { 5505 Instruction *I = cast<Instruction>(VL[Idx]); 5506 CommonCost -= TTI->getInstructionCost(I, CostKind); 5507 } 5508 for (Value *V : VL) { 5509 Instruction *I = cast<Instruction>(V); 5510 CommonCost += TTI->getInstructionCost(I, CostKind); 5511 } 5512 } 5513 for (Value *V : VL) { 5514 Instruction *I = cast<Instruction>(V); 5515 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5516 ScalarCost += TTI->getInstructionCost(I, CostKind); 5517 } 5518 // VecCost is equal to sum of the cost of creating 2 vectors 5519 // and the cost of creating shuffle. 5520 InstructionCost VecCost = 0; 5521 // Try to find the previous shuffle node with the same operands and same 5522 // main/alternate ops. 5523 auto &&TryFindNodeWithEqualOperands = [this, E]() { 5524 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 5525 if (TE.get() == E) 5526 break; 5527 if (TE->isAltShuffle() && 5528 ((TE->getOpcode() == E->getOpcode() && 5529 TE->getAltOpcode() == E->getAltOpcode()) || 5530 (TE->getOpcode() == E->getAltOpcode() && 5531 TE->getAltOpcode() == E->getOpcode())) && 5532 TE->hasEqualOperands(*E)) 5533 return true; 5534 } 5535 return false; 5536 }; 5537 if (TryFindNodeWithEqualOperands()) { 5538 LLVM_DEBUG({ 5539 dbgs() << "SLP: diamond match for alternate node found.\n"; 5540 E->dump(); 5541 }); 5542 // No need to add new vector costs here since we're going to reuse 5543 // same main/alternate vector ops, just do different shuffling. 5544 } else if (Instruction::isBinaryOp(E->getOpcode())) { 5545 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 5546 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 5547 CostKind); 5548 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 5549 VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 5550 Builder.getInt1Ty(), 5551 CI0->getPredicate(), CostKind, VL0); 5552 VecCost += TTI->getCmpSelInstrCost( 5553 E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5554 cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind, 5555 E->getAltOp()); 5556 } else { 5557 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 5558 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 5559 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 5560 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 5561 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 5562 TTI::CastContextHint::None, CostKind); 5563 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 5564 TTI::CastContextHint::None, CostKind); 5565 } 5566 5567 SmallVector<int> Mask; 5568 buildSuffleEntryMask( 5569 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 5570 [E](Instruction *I) { 5571 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5572 if (auto *CI0 = dyn_cast<CmpInst>(E->getMainOp())) { 5573 auto *AltCI0 = cast<CmpInst>(E->getAltOp()); 5574 auto *CI = cast<CmpInst>(I); 5575 CmpInst::Predicate P0 = CI0->getPredicate(); 5576 CmpInst::Predicate AltP0 = AltCI0->getPredicate(); 5577 assert(P0 != AltP0 && 5578 "Expected different main/alternate predicates."); 5579 CmpInst::Predicate AltP0Swapped = 5580 CmpInst::getSwappedPredicate(AltP0); 5581 CmpInst::Predicate CurrentPred = CI->getPredicate(); 5582 if (P0 == AltP0Swapped) 5583 return (P0 == CurrentPred && 5584 !areCompatibleCmpOps( 5585 CI0->getOperand(0), CI0->getOperand(1), 5586 CI->getOperand(0), CI->getOperand(1))) || 5587 (AltP0 == CurrentPred && 5588 !areCompatibleCmpOps( 5589 CI0->getOperand(0), CI0->getOperand(1), 5590 CI->getOperand(1), CI->getOperand(0))); 5591 return AltP0 == CurrentPred || AltP0Swapped == CurrentPred; 5592 } 5593 return I->getOpcode() == E->getAltOpcode(); 5594 }, 5595 Mask); 5596 CommonCost = 5597 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask); 5598 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5599 return CommonCost + VecCost - ScalarCost; 5600 } 5601 default: 5602 llvm_unreachable("Unknown instruction"); 5603 } 5604 } 5605 5606 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 5607 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 5608 << VectorizableTree.size() << " is fully vectorizable .\n"); 5609 5610 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 5611 SmallVector<int> Mask; 5612 return TE->State == TreeEntry::NeedToGather && 5613 !any_of(TE->Scalars, 5614 [this](Value *V) { return EphValues.contains(V); }) && 5615 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 5616 TE->Scalars.size() < Limit || 5617 ((TE->getOpcode() == Instruction::ExtractElement || 5618 all_of(TE->Scalars, 5619 [](Value *V) { 5620 return isa<ExtractElementInst, UndefValue>(V); 5621 })) && 5622 isFixedVectorShuffle(TE->Scalars, Mask)) || 5623 (TE->State == TreeEntry::NeedToGather && 5624 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 5625 }; 5626 5627 // We only handle trees of heights 1 and 2. 5628 if (VectorizableTree.size() == 1 && 5629 (VectorizableTree[0]->State == TreeEntry::Vectorize || 5630 (ForReduction && 5631 AreVectorizableGathers(VectorizableTree[0].get(), 5632 VectorizableTree[0]->Scalars.size()) && 5633 VectorizableTree[0]->getVectorFactor() > 2))) 5634 return true; 5635 5636 if (VectorizableTree.size() != 2) 5637 return false; 5638 5639 // Handle splat and all-constants stores. Also try to vectorize tiny trees 5640 // with the second gather nodes if they have less scalar operands rather than 5641 // the initial tree element (may be profitable to shuffle the second gather) 5642 // or they are extractelements, which form shuffle. 5643 SmallVector<int> Mask; 5644 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 5645 AreVectorizableGathers(VectorizableTree[1].get(), 5646 VectorizableTree[0]->Scalars.size())) 5647 return true; 5648 5649 // Gathering cost would be too much for tiny trees. 5650 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 5651 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 5652 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 5653 return false; 5654 5655 return true; 5656 } 5657 5658 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 5659 TargetTransformInfo *TTI, 5660 bool MustMatchOrInst) { 5661 // Look past the root to find a source value. Arbitrarily follow the 5662 // path through operand 0 of any 'or'. Also, peek through optional 5663 // shift-left-by-multiple-of-8-bits. 5664 Value *ZextLoad = Root; 5665 const APInt *ShAmtC; 5666 bool FoundOr = false; 5667 while (!isa<ConstantExpr>(ZextLoad) && 5668 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 5669 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 5670 ShAmtC->urem(8) == 0))) { 5671 auto *BinOp = cast<BinaryOperator>(ZextLoad); 5672 ZextLoad = BinOp->getOperand(0); 5673 if (BinOp->getOpcode() == Instruction::Or) 5674 FoundOr = true; 5675 } 5676 // Check if the input is an extended load of the required or/shift expression. 5677 Value *Load; 5678 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 5679 !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load)) 5680 return false; 5681 5682 // Require that the total load bit width is a legal integer type. 5683 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 5684 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 5685 Type *SrcTy = Load->getType(); 5686 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 5687 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 5688 return false; 5689 5690 // Everything matched - assume that we can fold the whole sequence using 5691 // load combining. 5692 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 5693 << *(cast<Instruction>(Root)) << "\n"); 5694 5695 return true; 5696 } 5697 5698 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 5699 if (RdxKind != RecurKind::Or) 5700 return false; 5701 5702 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5703 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 5704 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 5705 /* MatchOr */ false); 5706 } 5707 5708 bool BoUpSLP::isLoadCombineCandidate() const { 5709 // Peek through a final sequence of stores and check if all operations are 5710 // likely to be load-combined. 5711 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5712 for (Value *Scalar : VectorizableTree[0]->Scalars) { 5713 Value *X; 5714 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 5715 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 5716 return false; 5717 } 5718 return true; 5719 } 5720 5721 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 5722 // No need to vectorize inserts of gathered values. 5723 if (VectorizableTree.size() == 2 && 5724 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 5725 VectorizableTree[1]->State == TreeEntry::NeedToGather) 5726 return true; 5727 5728 // We can vectorize the tree if its size is greater than or equal to the 5729 // minimum size specified by the MinTreeSize command line option. 5730 if (VectorizableTree.size() >= MinTreeSize) 5731 return false; 5732 5733 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 5734 // can vectorize it if we can prove it fully vectorizable. 5735 if (isFullyVectorizableTinyTree(ForReduction)) 5736 return false; 5737 5738 assert(VectorizableTree.empty() 5739 ? ExternalUses.empty() 5740 : true && "We shouldn't have any external users"); 5741 5742 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 5743 // vectorizable. 5744 return true; 5745 } 5746 5747 InstructionCost BoUpSLP::getSpillCost() const { 5748 // Walk from the bottom of the tree to the top, tracking which values are 5749 // live. When we see a call instruction that is not part of our tree, 5750 // query TTI to see if there is a cost to keeping values live over it 5751 // (for example, if spills and fills are required). 5752 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 5753 InstructionCost Cost = 0; 5754 5755 SmallPtrSet<Instruction*, 4> LiveValues; 5756 Instruction *PrevInst = nullptr; 5757 5758 // The entries in VectorizableTree are not necessarily ordered by their 5759 // position in basic blocks. Collect them and order them by dominance so later 5760 // instructions are guaranteed to be visited first. For instructions in 5761 // different basic blocks, we only scan to the beginning of the block, so 5762 // their order does not matter, as long as all instructions in a basic block 5763 // are grouped together. Using dominance ensures a deterministic order. 5764 SmallVector<Instruction *, 16> OrderedScalars; 5765 for (const auto &TEPtr : VectorizableTree) { 5766 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 5767 if (!Inst) 5768 continue; 5769 OrderedScalars.push_back(Inst); 5770 } 5771 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 5772 auto *NodeA = DT->getNode(A->getParent()); 5773 auto *NodeB = DT->getNode(B->getParent()); 5774 assert(NodeA && "Should only process reachable instructions"); 5775 assert(NodeB && "Should only process reachable instructions"); 5776 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 5777 "Different nodes should have different DFS numbers"); 5778 if (NodeA != NodeB) 5779 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 5780 return B->comesBefore(A); 5781 }); 5782 5783 for (Instruction *Inst : OrderedScalars) { 5784 if (!PrevInst) { 5785 PrevInst = Inst; 5786 continue; 5787 } 5788 5789 // Update LiveValues. 5790 LiveValues.erase(PrevInst); 5791 for (auto &J : PrevInst->operands()) { 5792 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 5793 LiveValues.insert(cast<Instruction>(&*J)); 5794 } 5795 5796 LLVM_DEBUG({ 5797 dbgs() << "SLP: #LV: " << LiveValues.size(); 5798 for (auto *X : LiveValues) 5799 dbgs() << " " << X->getName(); 5800 dbgs() << ", Looking at "; 5801 Inst->dump(); 5802 }); 5803 5804 // Now find the sequence of instructions between PrevInst and Inst. 5805 unsigned NumCalls = 0; 5806 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 5807 PrevInstIt = 5808 PrevInst->getIterator().getReverse(); 5809 while (InstIt != PrevInstIt) { 5810 if (PrevInstIt == PrevInst->getParent()->rend()) { 5811 PrevInstIt = Inst->getParent()->rbegin(); 5812 continue; 5813 } 5814 5815 // Debug information does not impact spill cost. 5816 if ((isa<CallInst>(&*PrevInstIt) && 5817 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 5818 &*PrevInstIt != PrevInst) 5819 NumCalls++; 5820 5821 ++PrevInstIt; 5822 } 5823 5824 if (NumCalls) { 5825 SmallVector<Type*, 4> V; 5826 for (auto *II : LiveValues) { 5827 auto *ScalarTy = II->getType(); 5828 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 5829 ScalarTy = VectorTy->getElementType(); 5830 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 5831 } 5832 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 5833 } 5834 5835 PrevInst = Inst; 5836 } 5837 5838 return Cost; 5839 } 5840 5841 /// Check if two insertelement instructions are from the same buildvector. 5842 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU, 5843 InsertElementInst *V) { 5844 // Instructions must be from the same basic blocks. 5845 if (VU->getParent() != V->getParent()) 5846 return false; 5847 // Checks if 2 insertelements are from the same buildvector. 5848 if (VU->getType() != V->getType()) 5849 return false; 5850 // Multiple used inserts are separate nodes. 5851 if (!VU->hasOneUse() && !V->hasOneUse()) 5852 return false; 5853 auto *IE1 = VU; 5854 auto *IE2 = V; 5855 // Go through the vector operand of insertelement instructions trying to find 5856 // either VU as the original vector for IE2 or V as the original vector for 5857 // IE1. 5858 do { 5859 if (IE2 == VU || IE1 == V) 5860 return true; 5861 if (IE1) { 5862 if (IE1 != VU && !IE1->hasOneUse()) 5863 IE1 = nullptr; 5864 else 5865 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 5866 } 5867 if (IE2) { 5868 if (IE2 != V && !IE2->hasOneUse()) 5869 IE2 = nullptr; 5870 else 5871 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 5872 } 5873 } while (IE1 || IE2); 5874 return false; 5875 } 5876 5877 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 5878 InstructionCost Cost = 0; 5879 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 5880 << VectorizableTree.size() << ".\n"); 5881 5882 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 5883 5884 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 5885 TreeEntry &TE = *VectorizableTree[I].get(); 5886 5887 InstructionCost C = getEntryCost(&TE, VectorizedVals); 5888 Cost += C; 5889 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5890 << " for bundle that starts with " << *TE.Scalars[0] 5891 << ".\n" 5892 << "SLP: Current total cost = " << Cost << "\n"); 5893 } 5894 5895 SmallPtrSet<Value *, 16> ExtractCostCalculated; 5896 InstructionCost ExtractCost = 0; 5897 SmallVector<unsigned> VF; 5898 SmallVector<SmallVector<int>> ShuffleMask; 5899 SmallVector<Value *> FirstUsers; 5900 SmallVector<APInt> DemandedElts; 5901 for (ExternalUser &EU : ExternalUses) { 5902 // We only add extract cost once for the same scalar. 5903 if (!isa_and_nonnull<InsertElementInst>(EU.User) && 5904 !ExtractCostCalculated.insert(EU.Scalar).second) 5905 continue; 5906 5907 // Uses by ephemeral values are free (because the ephemeral value will be 5908 // removed prior to code generation, and so the extraction will be 5909 // removed as well). 5910 if (EphValues.count(EU.User)) 5911 continue; 5912 5913 // No extract cost for vector "scalar" 5914 if (isa<FixedVectorType>(EU.Scalar->getType())) 5915 continue; 5916 5917 // Already counted the cost for external uses when tried to adjust the cost 5918 // for extractelements, no need to add it again. 5919 if (isa<ExtractElementInst>(EU.Scalar)) 5920 continue; 5921 5922 // If found user is an insertelement, do not calculate extract cost but try 5923 // to detect it as a final shuffled/identity match. 5924 if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) { 5925 if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) { 5926 Optional<int> InsertIdx = getInsertIndex(VU, 0); 5927 if (!InsertIdx || *InsertIdx == UndefMaskElem) 5928 continue; 5929 auto *It = find_if(FirstUsers, [VU](Value *V) { 5930 return areTwoInsertFromSameBuildVector(VU, 5931 cast<InsertElementInst>(V)); 5932 }); 5933 int VecId = -1; 5934 if (It == FirstUsers.end()) { 5935 VF.push_back(FTy->getNumElements()); 5936 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 5937 // Find the insertvector, vectorized in tree, if any. 5938 Value *Base = VU; 5939 while (isa<InsertElementInst>(Base)) { 5940 // Build the mask for the vectorized insertelement instructions. 5941 if (const TreeEntry *E = getTreeEntry(Base)) { 5942 VU = cast<InsertElementInst>(Base); 5943 do { 5944 int Idx = E->findLaneForValue(Base); 5945 ShuffleMask.back()[Idx] = Idx; 5946 Base = cast<InsertElementInst>(Base)->getOperand(0); 5947 } while (E == getTreeEntry(Base)); 5948 break; 5949 } 5950 Base = cast<InsertElementInst>(Base)->getOperand(0); 5951 } 5952 FirstUsers.push_back(VU); 5953 DemandedElts.push_back(APInt::getZero(VF.back())); 5954 VecId = FirstUsers.size() - 1; 5955 } else { 5956 VecId = std::distance(FirstUsers.begin(), It); 5957 } 5958 int Idx = *InsertIdx; 5959 ShuffleMask[VecId][Idx] = EU.Lane; 5960 DemandedElts[VecId].setBit(Idx); 5961 continue; 5962 } 5963 } 5964 5965 // If we plan to rewrite the tree in a smaller type, we will need to sign 5966 // extend the extracted value back to the original type. Here, we account 5967 // for the extract and the added cost of the sign extend if needed. 5968 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 5969 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 5970 if (MinBWs.count(ScalarRoot)) { 5971 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 5972 auto Extend = 5973 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 5974 VecTy = FixedVectorType::get(MinTy, BundleWidth); 5975 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 5976 VecTy, EU.Lane); 5977 } else { 5978 ExtractCost += 5979 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 5980 } 5981 } 5982 5983 InstructionCost SpillCost = getSpillCost(); 5984 Cost += SpillCost + ExtractCost; 5985 if (FirstUsers.size() == 1) { 5986 int Limit = ShuffleMask.front().size() * 2; 5987 if (all_of(ShuffleMask.front(), [Limit](int Idx) { return Idx < Limit; }) && 5988 !ShuffleVectorInst::isIdentityMask(ShuffleMask.front())) { 5989 InstructionCost C = TTI->getShuffleCost( 5990 TTI::SK_PermuteSingleSrc, 5991 cast<FixedVectorType>(FirstUsers.front()->getType()), 5992 ShuffleMask.front()); 5993 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5994 << " for final shuffle of insertelement external users " 5995 << *VectorizableTree.front()->Scalars.front() << ".\n" 5996 << "SLP: Current total cost = " << Cost << "\n"); 5997 Cost += C; 5998 } 5999 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6000 cast<FixedVectorType>(FirstUsers.front()->getType()), 6001 DemandedElts.front(), /*Insert*/ true, /*Extract*/ false); 6002 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6003 << " for insertelements gather.\n" 6004 << "SLP: Current total cost = " << Cost << "\n"); 6005 Cost -= InsertCost; 6006 } else if (FirstUsers.size() >= 2) { 6007 unsigned MaxVF = *std::max_element(VF.begin(), VF.end()); 6008 // Combined masks of the first 2 vectors. 6009 SmallVector<int> CombinedMask(MaxVF, UndefMaskElem); 6010 copy(ShuffleMask.front(), CombinedMask.begin()); 6011 APInt CombinedDemandedElts = DemandedElts.front().zextOrSelf(MaxVF); 6012 auto *VecTy = FixedVectorType::get( 6013 cast<VectorType>(FirstUsers.front()->getType())->getElementType(), 6014 MaxVF); 6015 for (int I = 0, E = ShuffleMask[1].size(); I < E; ++I) { 6016 if (ShuffleMask[1][I] != UndefMaskElem) { 6017 CombinedMask[I] = ShuffleMask[1][I] + MaxVF; 6018 CombinedDemandedElts.setBit(I); 6019 } 6020 } 6021 InstructionCost C = 6022 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6023 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6024 << " for final shuffle of vector node and external " 6025 "insertelement users " 6026 << *VectorizableTree.front()->Scalars.front() << ".\n" 6027 << "SLP: Current total cost = " << Cost << "\n"); 6028 Cost += C; 6029 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6030 VecTy, CombinedDemandedElts, /*Insert*/ true, /*Extract*/ false); 6031 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6032 << " for insertelements gather.\n" 6033 << "SLP: Current total cost = " << Cost << "\n"); 6034 Cost -= InsertCost; 6035 for (int I = 2, E = FirstUsers.size(); I < E; ++I) { 6036 // Other elements - permutation of 2 vectors (the initial one and the 6037 // next Ith incoming vector). 6038 unsigned VF = ShuffleMask[I].size(); 6039 for (unsigned Idx = 0; Idx < VF; ++Idx) { 6040 int Mask = ShuffleMask[I][Idx]; 6041 if (Mask != UndefMaskElem) 6042 CombinedMask[Idx] = MaxVF + Mask; 6043 else if (CombinedMask[Idx] != UndefMaskElem) 6044 CombinedMask[Idx] = Idx; 6045 } 6046 for (unsigned Idx = VF; Idx < MaxVF; ++Idx) 6047 if (CombinedMask[Idx] != UndefMaskElem) 6048 CombinedMask[Idx] = Idx; 6049 InstructionCost C = 6050 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6051 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6052 << " for final shuffle of vector node and external " 6053 "insertelement users " 6054 << *VectorizableTree.front()->Scalars.front() << ".\n" 6055 << "SLP: Current total cost = " << Cost << "\n"); 6056 Cost += C; 6057 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6058 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 6059 /*Insert*/ true, /*Extract*/ false); 6060 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6061 << " for insertelements gather.\n" 6062 << "SLP: Current total cost = " << Cost << "\n"); 6063 Cost -= InsertCost; 6064 } 6065 } 6066 6067 #ifndef NDEBUG 6068 SmallString<256> Str; 6069 { 6070 raw_svector_ostream OS(Str); 6071 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 6072 << "SLP: Extract Cost = " << ExtractCost << ".\n" 6073 << "SLP: Total Cost = " << Cost << ".\n"; 6074 } 6075 LLVM_DEBUG(dbgs() << Str); 6076 if (ViewSLPTree) 6077 ViewGraph(this, "SLP" + F->getName(), false, Str); 6078 #endif 6079 6080 return Cost; 6081 } 6082 6083 Optional<TargetTransformInfo::ShuffleKind> 6084 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 6085 SmallVectorImpl<const TreeEntry *> &Entries) { 6086 // TODO: currently checking only for Scalars in the tree entry, need to count 6087 // reused elements too for better cost estimation. 6088 Mask.assign(TE->Scalars.size(), UndefMaskElem); 6089 Entries.clear(); 6090 // Build a lists of values to tree entries. 6091 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 6092 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 6093 if (EntryPtr.get() == TE) 6094 break; 6095 if (EntryPtr->State != TreeEntry::NeedToGather) 6096 continue; 6097 for (Value *V : EntryPtr->Scalars) 6098 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 6099 } 6100 // Find all tree entries used by the gathered values. If no common entries 6101 // found - not a shuffle. 6102 // Here we build a set of tree nodes for each gathered value and trying to 6103 // find the intersection between these sets. If we have at least one common 6104 // tree node for each gathered value - we have just a permutation of the 6105 // single vector. If we have 2 different sets, we're in situation where we 6106 // have a permutation of 2 input vectors. 6107 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 6108 DenseMap<Value *, int> UsedValuesEntry; 6109 for (Value *V : TE->Scalars) { 6110 if (isa<UndefValue>(V)) 6111 continue; 6112 // Build a list of tree entries where V is used. 6113 SmallPtrSet<const TreeEntry *, 4> VToTEs; 6114 auto It = ValueToTEs.find(V); 6115 if (It != ValueToTEs.end()) 6116 VToTEs = It->second; 6117 if (const TreeEntry *VTE = getTreeEntry(V)) 6118 VToTEs.insert(VTE); 6119 if (VToTEs.empty()) 6120 return None; 6121 if (UsedTEs.empty()) { 6122 // The first iteration, just insert the list of nodes to vector. 6123 UsedTEs.push_back(VToTEs); 6124 } else { 6125 // Need to check if there are any previously used tree nodes which use V. 6126 // If there are no such nodes, consider that we have another one input 6127 // vector. 6128 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 6129 unsigned Idx = 0; 6130 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 6131 // Do we have a non-empty intersection of previously listed tree entries 6132 // and tree entries using current V? 6133 set_intersect(VToTEs, Set); 6134 if (!VToTEs.empty()) { 6135 // Yes, write the new subset and continue analysis for the next 6136 // scalar. 6137 Set.swap(VToTEs); 6138 break; 6139 } 6140 VToTEs = SavedVToTEs; 6141 ++Idx; 6142 } 6143 // No non-empty intersection found - need to add a second set of possible 6144 // source vectors. 6145 if (Idx == UsedTEs.size()) { 6146 // If the number of input vectors is greater than 2 - not a permutation, 6147 // fallback to the regular gather. 6148 if (UsedTEs.size() == 2) 6149 return None; 6150 UsedTEs.push_back(SavedVToTEs); 6151 Idx = UsedTEs.size() - 1; 6152 } 6153 UsedValuesEntry.try_emplace(V, Idx); 6154 } 6155 } 6156 6157 unsigned VF = 0; 6158 if (UsedTEs.size() == 1) { 6159 // Try to find the perfect match in another gather node at first. 6160 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 6161 return EntryPtr->isSame(TE->Scalars); 6162 }); 6163 if (It != UsedTEs.front().end()) { 6164 Entries.push_back(*It); 6165 std::iota(Mask.begin(), Mask.end(), 0); 6166 return TargetTransformInfo::SK_PermuteSingleSrc; 6167 } 6168 // No perfect match, just shuffle, so choose the first tree node. 6169 Entries.push_back(*UsedTEs.front().begin()); 6170 } else { 6171 // Try to find nodes with the same vector factor. 6172 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 6173 DenseMap<int, const TreeEntry *> VFToTE; 6174 for (const TreeEntry *TE : UsedTEs.front()) 6175 VFToTE.try_emplace(TE->getVectorFactor(), TE); 6176 for (const TreeEntry *TE : UsedTEs.back()) { 6177 auto It = VFToTE.find(TE->getVectorFactor()); 6178 if (It != VFToTE.end()) { 6179 VF = It->first; 6180 Entries.push_back(It->second); 6181 Entries.push_back(TE); 6182 break; 6183 } 6184 } 6185 // No 2 source vectors with the same vector factor - give up and do regular 6186 // gather. 6187 if (Entries.empty()) 6188 return None; 6189 } 6190 6191 // Build a shuffle mask for better cost estimation and vector emission. 6192 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 6193 Value *V = TE->Scalars[I]; 6194 if (isa<UndefValue>(V)) 6195 continue; 6196 unsigned Idx = UsedValuesEntry.lookup(V); 6197 const TreeEntry *VTE = Entries[Idx]; 6198 int FoundLane = VTE->findLaneForValue(V); 6199 Mask[I] = Idx * VF + FoundLane; 6200 // Extra check required by isSingleSourceMaskImpl function (called by 6201 // ShuffleVectorInst::isSingleSourceMask). 6202 if (Mask[I] >= 2 * E) 6203 return None; 6204 } 6205 switch (Entries.size()) { 6206 case 1: 6207 return TargetTransformInfo::SK_PermuteSingleSrc; 6208 case 2: 6209 return TargetTransformInfo::SK_PermuteTwoSrc; 6210 default: 6211 break; 6212 } 6213 return None; 6214 } 6215 6216 InstructionCost BoUpSLP::getGatherCost(FixedVectorType *Ty, 6217 const APInt &ShuffledIndices, 6218 bool NeedToShuffle) const { 6219 InstructionCost Cost = 6220 TTI->getScalarizationOverhead(Ty, ~ShuffledIndices, /*Insert*/ true, 6221 /*Extract*/ false); 6222 if (NeedToShuffle) 6223 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 6224 return Cost; 6225 } 6226 6227 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 6228 // Find the type of the operands in VL. 6229 Type *ScalarTy = VL[0]->getType(); 6230 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 6231 ScalarTy = SI->getValueOperand()->getType(); 6232 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 6233 bool DuplicateNonConst = false; 6234 // Find the cost of inserting/extracting values from the vector. 6235 // Check if the same elements are inserted several times and count them as 6236 // shuffle candidates. 6237 APInt ShuffledElements = APInt::getZero(VL.size()); 6238 DenseSet<Value *> UniqueElements; 6239 // Iterate in reverse order to consider insert elements with the high cost. 6240 for (unsigned I = VL.size(); I > 0; --I) { 6241 unsigned Idx = I - 1; 6242 // No need to shuffle duplicates for constants. 6243 if (isConstant(VL[Idx])) { 6244 ShuffledElements.setBit(Idx); 6245 continue; 6246 } 6247 if (!UniqueElements.insert(VL[Idx]).second) { 6248 DuplicateNonConst = true; 6249 ShuffledElements.setBit(Idx); 6250 } 6251 } 6252 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 6253 } 6254 6255 // Perform operand reordering on the instructions in VL and return the reordered 6256 // operands in Left and Right. 6257 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 6258 SmallVectorImpl<Value *> &Left, 6259 SmallVectorImpl<Value *> &Right, 6260 const DataLayout &DL, 6261 ScalarEvolution &SE, 6262 const BoUpSLP &R) { 6263 if (VL.empty()) 6264 return; 6265 VLOperands Ops(VL, DL, SE, R); 6266 // Reorder the operands in place. 6267 Ops.reorder(); 6268 Left = Ops.getVL(0); 6269 Right = Ops.getVL(1); 6270 } 6271 6272 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 6273 // Get the basic block this bundle is in. All instructions in the bundle 6274 // should be in this block. 6275 auto *Front = E->getMainOp(); 6276 auto *BB = Front->getParent(); 6277 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 6278 auto *I = cast<Instruction>(V); 6279 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 6280 })); 6281 6282 // The last instruction in the bundle in program order. 6283 Instruction *LastInst = nullptr; 6284 6285 // Find the last instruction. The common case should be that BB has been 6286 // scheduled, and the last instruction is VL.back(). So we start with 6287 // VL.back() and iterate over schedule data until we reach the end of the 6288 // bundle. The end of the bundle is marked by null ScheduleData. 6289 if (BlocksSchedules.count(BB)) { 6290 auto *Bundle = 6291 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 6292 if (Bundle && Bundle->isPartOfBundle()) 6293 for (; Bundle; Bundle = Bundle->NextInBundle) 6294 if (Bundle->OpValue == Bundle->Inst) 6295 LastInst = Bundle->Inst; 6296 } 6297 6298 // LastInst can still be null at this point if there's either not an entry 6299 // for BB in BlocksSchedules or there's no ScheduleData available for 6300 // VL.back(). This can be the case if buildTree_rec aborts for various 6301 // reasons (e.g., the maximum recursion depth is reached, the maximum region 6302 // size is reached, etc.). ScheduleData is initialized in the scheduling 6303 // "dry-run". 6304 // 6305 // If this happens, we can still find the last instruction by brute force. We 6306 // iterate forwards from Front (inclusive) until we either see all 6307 // instructions in the bundle or reach the end of the block. If Front is the 6308 // last instruction in program order, LastInst will be set to Front, and we 6309 // will visit all the remaining instructions in the block. 6310 // 6311 // One of the reasons we exit early from buildTree_rec is to place an upper 6312 // bound on compile-time. Thus, taking an additional compile-time hit here is 6313 // not ideal. However, this should be exceedingly rare since it requires that 6314 // we both exit early from buildTree_rec and that the bundle be out-of-order 6315 // (causing us to iterate all the way to the end of the block). 6316 if (!LastInst) { 6317 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 6318 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 6319 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 6320 LastInst = &I; 6321 if (Bundle.empty()) 6322 break; 6323 } 6324 } 6325 assert(LastInst && "Failed to find last instruction in bundle"); 6326 6327 // Set the insertion point after the last instruction in the bundle. Set the 6328 // debug location to Front. 6329 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 6330 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6331 } 6332 6333 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 6334 // List of instructions/lanes from current block and/or the blocks which are 6335 // part of the current loop. These instructions will be inserted at the end to 6336 // make it possible to optimize loops and hoist invariant instructions out of 6337 // the loops body with better chances for success. 6338 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 6339 SmallSet<int, 4> PostponedIndices; 6340 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 6341 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 6342 SmallPtrSet<BasicBlock *, 4> Visited; 6343 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 6344 InsertBB = InsertBB->getSinglePredecessor(); 6345 return InsertBB && InsertBB == InstBB; 6346 }; 6347 for (int I = 0, E = VL.size(); I < E; ++I) { 6348 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 6349 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 6350 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 6351 PostponedIndices.insert(I).second) 6352 PostponedInsts.emplace_back(Inst, I); 6353 } 6354 6355 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 6356 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 6357 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 6358 if (!InsElt) 6359 return Vec; 6360 GatherShuffleSeq.insert(InsElt); 6361 CSEBlocks.insert(InsElt->getParent()); 6362 // Add to our 'need-to-extract' list. 6363 if (TreeEntry *Entry = getTreeEntry(V)) { 6364 // Find which lane we need to extract. 6365 unsigned FoundLane = Entry->findLaneForValue(V); 6366 ExternalUses.emplace_back(V, InsElt, FoundLane); 6367 } 6368 return Vec; 6369 }; 6370 Value *Val0 = 6371 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 6372 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 6373 Value *Vec = PoisonValue::get(VecTy); 6374 SmallVector<int> NonConsts; 6375 // Insert constant values at first. 6376 for (int I = 0, E = VL.size(); I < E; ++I) { 6377 if (PostponedIndices.contains(I)) 6378 continue; 6379 if (!isConstant(VL[I])) { 6380 NonConsts.push_back(I); 6381 continue; 6382 } 6383 Vec = CreateInsertElement(Vec, VL[I], I); 6384 } 6385 // Insert non-constant values. 6386 for (int I : NonConsts) 6387 Vec = CreateInsertElement(Vec, VL[I], I); 6388 // Append instructions, which are/may be part of the loop, in the end to make 6389 // it possible to hoist non-loop-based instructions. 6390 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 6391 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 6392 6393 return Vec; 6394 } 6395 6396 namespace { 6397 /// Merges shuffle masks and emits final shuffle instruction, if required. 6398 class ShuffleInstructionBuilder { 6399 IRBuilderBase &Builder; 6400 const unsigned VF = 0; 6401 bool IsFinalized = false; 6402 SmallVector<int, 4> Mask; 6403 /// Holds all of the instructions that we gathered. 6404 SetVector<Instruction *> &GatherShuffleSeq; 6405 /// A list of blocks that we are going to CSE. 6406 SetVector<BasicBlock *> &CSEBlocks; 6407 6408 public: 6409 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF, 6410 SetVector<Instruction *> &GatherShuffleSeq, 6411 SetVector<BasicBlock *> &CSEBlocks) 6412 : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq), 6413 CSEBlocks(CSEBlocks) {} 6414 6415 /// Adds a mask, inverting it before applying. 6416 void addInversedMask(ArrayRef<unsigned> SubMask) { 6417 if (SubMask.empty()) 6418 return; 6419 SmallVector<int, 4> NewMask; 6420 inversePermutation(SubMask, NewMask); 6421 addMask(NewMask); 6422 } 6423 6424 /// Functions adds masks, merging them into single one. 6425 void addMask(ArrayRef<unsigned> SubMask) { 6426 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 6427 addMask(NewMask); 6428 } 6429 6430 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 6431 6432 Value *finalize(Value *V) { 6433 IsFinalized = true; 6434 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 6435 if (VF == ValueVF && Mask.empty()) 6436 return V; 6437 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 6438 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 6439 addMask(NormalizedMask); 6440 6441 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 6442 return V; 6443 Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle"); 6444 if (auto *I = dyn_cast<Instruction>(Vec)) { 6445 GatherShuffleSeq.insert(I); 6446 CSEBlocks.insert(I->getParent()); 6447 } 6448 return Vec; 6449 } 6450 6451 ~ShuffleInstructionBuilder() { 6452 assert((IsFinalized || Mask.empty()) && 6453 "Shuffle construction must be finalized."); 6454 } 6455 }; 6456 } // namespace 6457 6458 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 6459 unsigned VF = VL.size(); 6460 InstructionsState S = getSameOpcode(VL); 6461 if (S.getOpcode()) { 6462 if (TreeEntry *E = getTreeEntry(S.OpValue)) 6463 if (E->isSame(VL)) { 6464 Value *V = vectorizeTree(E); 6465 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 6466 if (!E->ReuseShuffleIndices.empty()) { 6467 // Reshuffle to get only unique values. 6468 // If some of the scalars are duplicated in the vectorization tree 6469 // entry, we do not vectorize them but instead generate a mask for 6470 // the reuses. But if there are several users of the same entry, 6471 // they may have different vectorization factors. This is especially 6472 // important for PHI nodes. In this case, we need to adapt the 6473 // resulting instruction for the user vectorization factor and have 6474 // to reshuffle it again to take only unique elements of the vector. 6475 // Without this code the function incorrectly returns reduced vector 6476 // instruction with the same elements, not with the unique ones. 6477 6478 // block: 6479 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 6480 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 6481 // ... (use %2) 6482 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 6483 // br %block 6484 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 6485 SmallSet<int, 4> UsedIdxs; 6486 int Pos = 0; 6487 int Sz = VL.size(); 6488 for (int Idx : E->ReuseShuffleIndices) { 6489 if (Idx != Sz && Idx != UndefMaskElem && 6490 UsedIdxs.insert(Idx).second) 6491 UniqueIdxs[Idx] = Pos; 6492 ++Pos; 6493 } 6494 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 6495 "less than original vector size."); 6496 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 6497 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 6498 } else { 6499 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 6500 "Expected vectorization factor less " 6501 "than original vector size."); 6502 SmallVector<int> UniformMask(VF, 0); 6503 std::iota(UniformMask.begin(), UniformMask.end(), 0); 6504 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 6505 } 6506 if (auto *I = dyn_cast<Instruction>(V)) { 6507 GatherShuffleSeq.insert(I); 6508 CSEBlocks.insert(I->getParent()); 6509 } 6510 } 6511 return V; 6512 } 6513 } 6514 6515 // Check that every instruction appears once in this bundle. 6516 SmallVector<int> ReuseShuffleIndicies; 6517 SmallVector<Value *> UniqueValues; 6518 if (VL.size() > 2) { 6519 DenseMap<Value *, unsigned> UniquePositions; 6520 unsigned NumValues = 6521 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 6522 return !isa<UndefValue>(V); 6523 }).base()); 6524 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 6525 int UniqueVals = 0; 6526 for (Value *V : VL.drop_back(VL.size() - VF)) { 6527 if (isa<UndefValue>(V)) { 6528 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 6529 continue; 6530 } 6531 if (isConstant(V)) { 6532 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 6533 UniqueValues.emplace_back(V); 6534 continue; 6535 } 6536 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 6537 ReuseShuffleIndicies.emplace_back(Res.first->second); 6538 if (Res.second) { 6539 UniqueValues.emplace_back(V); 6540 ++UniqueVals; 6541 } 6542 } 6543 if (UniqueVals == 1 && UniqueValues.size() == 1) { 6544 // Emit pure splat vector. 6545 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 6546 UndefMaskElem); 6547 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 6548 ReuseShuffleIndicies.clear(); 6549 UniqueValues.clear(); 6550 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 6551 } 6552 UniqueValues.append(VF - UniqueValues.size(), 6553 PoisonValue::get(VL[0]->getType())); 6554 VL = UniqueValues; 6555 } 6556 6557 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6558 CSEBlocks); 6559 Value *Vec = gather(VL); 6560 if (!ReuseShuffleIndicies.empty()) { 6561 ShuffleBuilder.addMask(ReuseShuffleIndicies); 6562 Vec = ShuffleBuilder.finalize(Vec); 6563 } 6564 return Vec; 6565 } 6566 6567 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 6568 IRBuilder<>::InsertPointGuard Guard(Builder); 6569 6570 if (E->VectorizedValue) { 6571 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 6572 return E->VectorizedValue; 6573 } 6574 6575 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 6576 unsigned VF = E->getVectorFactor(); 6577 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6578 CSEBlocks); 6579 if (E->State == TreeEntry::NeedToGather) { 6580 if (E->getMainOp()) 6581 setInsertPointAfterBundle(E); 6582 Value *Vec; 6583 SmallVector<int> Mask; 6584 SmallVector<const TreeEntry *> Entries; 6585 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 6586 isGatherShuffledEntry(E, Mask, Entries); 6587 if (Shuffle.hasValue()) { 6588 assert((Entries.size() == 1 || Entries.size() == 2) && 6589 "Expected shuffle of 1 or 2 entries."); 6590 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 6591 Entries.back()->VectorizedValue, Mask); 6592 if (auto *I = dyn_cast<Instruction>(Vec)) { 6593 GatherShuffleSeq.insert(I); 6594 CSEBlocks.insert(I->getParent()); 6595 } 6596 } else { 6597 Vec = gather(E->Scalars); 6598 } 6599 if (NeedToShuffleReuses) { 6600 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6601 Vec = ShuffleBuilder.finalize(Vec); 6602 } 6603 E->VectorizedValue = Vec; 6604 return Vec; 6605 } 6606 6607 assert((E->State == TreeEntry::Vectorize || 6608 E->State == TreeEntry::ScatterVectorize) && 6609 "Unhandled state"); 6610 unsigned ShuffleOrOp = 6611 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 6612 Instruction *VL0 = E->getMainOp(); 6613 Type *ScalarTy = VL0->getType(); 6614 if (auto *Store = dyn_cast<StoreInst>(VL0)) 6615 ScalarTy = Store->getValueOperand()->getType(); 6616 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 6617 ScalarTy = IE->getOperand(1)->getType(); 6618 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 6619 switch (ShuffleOrOp) { 6620 case Instruction::PHI: { 6621 assert( 6622 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 6623 "PHI reordering is free."); 6624 auto *PH = cast<PHINode>(VL0); 6625 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 6626 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6627 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 6628 Value *V = NewPhi; 6629 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6630 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6631 V = ShuffleBuilder.finalize(V); 6632 6633 E->VectorizedValue = V; 6634 6635 // PHINodes may have multiple entries from the same block. We want to 6636 // visit every block once. 6637 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 6638 6639 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 6640 ValueList Operands; 6641 BasicBlock *IBB = PH->getIncomingBlock(i); 6642 6643 if (!VisitedBBs.insert(IBB).second) { 6644 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 6645 continue; 6646 } 6647 6648 Builder.SetInsertPoint(IBB->getTerminator()); 6649 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6650 Value *Vec = vectorizeTree(E->getOperand(i)); 6651 NewPhi->addIncoming(Vec, IBB); 6652 } 6653 6654 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 6655 "Invalid number of incoming values"); 6656 return V; 6657 } 6658 6659 case Instruction::ExtractElement: { 6660 Value *V = E->getSingleOperand(0); 6661 Builder.SetInsertPoint(VL0); 6662 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6663 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6664 V = ShuffleBuilder.finalize(V); 6665 E->VectorizedValue = V; 6666 return V; 6667 } 6668 case Instruction::ExtractValue: { 6669 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 6670 Builder.SetInsertPoint(LI); 6671 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 6672 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 6673 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 6674 Value *NewV = propagateMetadata(V, E->Scalars); 6675 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6676 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6677 NewV = ShuffleBuilder.finalize(NewV); 6678 E->VectorizedValue = NewV; 6679 return NewV; 6680 } 6681 case Instruction::InsertElement: { 6682 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 6683 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 6684 Value *V = vectorizeTree(E->getOperand(1)); 6685 6686 // Create InsertVector shuffle if necessary 6687 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 6688 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 6689 })); 6690 const unsigned NumElts = 6691 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 6692 const unsigned NumScalars = E->Scalars.size(); 6693 6694 unsigned Offset = *getInsertIndex(VL0, 0); 6695 assert(Offset < NumElts && "Failed to find vector index offset"); 6696 6697 // Create shuffle to resize vector 6698 SmallVector<int> Mask; 6699 if (!E->ReorderIndices.empty()) { 6700 inversePermutation(E->ReorderIndices, Mask); 6701 Mask.append(NumElts - NumScalars, UndefMaskElem); 6702 } else { 6703 Mask.assign(NumElts, UndefMaskElem); 6704 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 6705 } 6706 // Create InsertVector shuffle if necessary 6707 bool IsIdentity = true; 6708 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 6709 Mask.swap(PrevMask); 6710 for (unsigned I = 0; I < NumScalars; ++I) { 6711 Value *Scalar = E->Scalars[PrevMask[I]]; 6712 Optional<int> InsertIdx = getInsertIndex(Scalar, 0); 6713 if (!InsertIdx || *InsertIdx == UndefMaskElem) 6714 continue; 6715 IsIdentity &= *InsertIdx - Offset == I; 6716 Mask[*InsertIdx - Offset] = I; 6717 } 6718 if (!IsIdentity || NumElts != NumScalars) { 6719 V = Builder.CreateShuffleVector(V, Mask); 6720 if (auto *I = dyn_cast<Instruction>(V)) { 6721 GatherShuffleSeq.insert(I); 6722 CSEBlocks.insert(I->getParent()); 6723 } 6724 } 6725 6726 if ((!IsIdentity || Offset != 0 || 6727 !isUndefVector(FirstInsert->getOperand(0))) && 6728 NumElts != NumScalars) { 6729 SmallVector<int> InsertMask(NumElts); 6730 std::iota(InsertMask.begin(), InsertMask.end(), 0); 6731 for (unsigned I = 0; I < NumElts; I++) { 6732 if (Mask[I] != UndefMaskElem) 6733 InsertMask[Offset + I] = NumElts + I; 6734 } 6735 6736 V = Builder.CreateShuffleVector( 6737 FirstInsert->getOperand(0), V, InsertMask, 6738 cast<Instruction>(E->Scalars.back())->getName()); 6739 if (auto *I = dyn_cast<Instruction>(V)) { 6740 GatherShuffleSeq.insert(I); 6741 CSEBlocks.insert(I->getParent()); 6742 } 6743 } 6744 6745 ++NumVectorInstructions; 6746 E->VectorizedValue = V; 6747 return V; 6748 } 6749 case Instruction::ZExt: 6750 case Instruction::SExt: 6751 case Instruction::FPToUI: 6752 case Instruction::FPToSI: 6753 case Instruction::FPExt: 6754 case Instruction::PtrToInt: 6755 case Instruction::IntToPtr: 6756 case Instruction::SIToFP: 6757 case Instruction::UIToFP: 6758 case Instruction::Trunc: 6759 case Instruction::FPTrunc: 6760 case Instruction::BitCast: { 6761 setInsertPointAfterBundle(E); 6762 6763 Value *InVec = vectorizeTree(E->getOperand(0)); 6764 6765 if (E->VectorizedValue) { 6766 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6767 return E->VectorizedValue; 6768 } 6769 6770 auto *CI = cast<CastInst>(VL0); 6771 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 6772 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6773 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6774 V = ShuffleBuilder.finalize(V); 6775 6776 E->VectorizedValue = V; 6777 ++NumVectorInstructions; 6778 return V; 6779 } 6780 case Instruction::FCmp: 6781 case Instruction::ICmp: { 6782 setInsertPointAfterBundle(E); 6783 6784 Value *L = vectorizeTree(E->getOperand(0)); 6785 Value *R = vectorizeTree(E->getOperand(1)); 6786 6787 if (E->VectorizedValue) { 6788 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6789 return E->VectorizedValue; 6790 } 6791 6792 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 6793 Value *V = Builder.CreateCmp(P0, L, R); 6794 propagateIRFlags(V, E->Scalars, VL0); 6795 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6796 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6797 V = ShuffleBuilder.finalize(V); 6798 6799 E->VectorizedValue = V; 6800 ++NumVectorInstructions; 6801 return V; 6802 } 6803 case Instruction::Select: { 6804 setInsertPointAfterBundle(E); 6805 6806 Value *Cond = vectorizeTree(E->getOperand(0)); 6807 Value *True = vectorizeTree(E->getOperand(1)); 6808 Value *False = vectorizeTree(E->getOperand(2)); 6809 6810 if (E->VectorizedValue) { 6811 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6812 return E->VectorizedValue; 6813 } 6814 6815 Value *V = Builder.CreateSelect(Cond, True, False); 6816 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6817 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6818 V = ShuffleBuilder.finalize(V); 6819 6820 E->VectorizedValue = V; 6821 ++NumVectorInstructions; 6822 return V; 6823 } 6824 case Instruction::FNeg: { 6825 setInsertPointAfterBundle(E); 6826 6827 Value *Op = vectorizeTree(E->getOperand(0)); 6828 6829 if (E->VectorizedValue) { 6830 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6831 return E->VectorizedValue; 6832 } 6833 6834 Value *V = Builder.CreateUnOp( 6835 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 6836 propagateIRFlags(V, E->Scalars, VL0); 6837 if (auto *I = dyn_cast<Instruction>(V)) 6838 V = propagateMetadata(I, E->Scalars); 6839 6840 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6841 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6842 V = ShuffleBuilder.finalize(V); 6843 6844 E->VectorizedValue = V; 6845 ++NumVectorInstructions; 6846 6847 return V; 6848 } 6849 case Instruction::Add: 6850 case Instruction::FAdd: 6851 case Instruction::Sub: 6852 case Instruction::FSub: 6853 case Instruction::Mul: 6854 case Instruction::FMul: 6855 case Instruction::UDiv: 6856 case Instruction::SDiv: 6857 case Instruction::FDiv: 6858 case Instruction::URem: 6859 case Instruction::SRem: 6860 case Instruction::FRem: 6861 case Instruction::Shl: 6862 case Instruction::LShr: 6863 case Instruction::AShr: 6864 case Instruction::And: 6865 case Instruction::Or: 6866 case Instruction::Xor: { 6867 setInsertPointAfterBundle(E); 6868 6869 Value *LHS = vectorizeTree(E->getOperand(0)); 6870 Value *RHS = vectorizeTree(E->getOperand(1)); 6871 6872 if (E->VectorizedValue) { 6873 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6874 return E->VectorizedValue; 6875 } 6876 6877 Value *V = Builder.CreateBinOp( 6878 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 6879 RHS); 6880 propagateIRFlags(V, E->Scalars, VL0); 6881 if (auto *I = dyn_cast<Instruction>(V)) 6882 V = propagateMetadata(I, E->Scalars); 6883 6884 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6885 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6886 V = ShuffleBuilder.finalize(V); 6887 6888 E->VectorizedValue = V; 6889 ++NumVectorInstructions; 6890 6891 return V; 6892 } 6893 case Instruction::Load: { 6894 // Loads are inserted at the head of the tree because we don't want to 6895 // sink them all the way down past store instructions. 6896 setInsertPointAfterBundle(E); 6897 6898 LoadInst *LI = cast<LoadInst>(VL0); 6899 Instruction *NewLI; 6900 unsigned AS = LI->getPointerAddressSpace(); 6901 Value *PO = LI->getPointerOperand(); 6902 if (E->State == TreeEntry::Vectorize) { 6903 6904 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 6905 6906 // The pointer operand uses an in-tree scalar so we add the new BitCast 6907 // to ExternalUses list to make sure that an extract will be generated 6908 // in the future. 6909 if (TreeEntry *Entry = getTreeEntry(PO)) { 6910 // Find which lane we need to extract. 6911 unsigned FoundLane = Entry->findLaneForValue(PO); 6912 ExternalUses.emplace_back(PO, cast<User>(VecPtr), FoundLane); 6913 } 6914 6915 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 6916 } else { 6917 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 6918 Value *VecPtr = vectorizeTree(E->getOperand(0)); 6919 // Use the minimum alignment of the gathered loads. 6920 Align CommonAlignment = LI->getAlign(); 6921 for (Value *V : E->Scalars) 6922 CommonAlignment = 6923 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 6924 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 6925 } 6926 Value *V = propagateMetadata(NewLI, E->Scalars); 6927 6928 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6929 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6930 V = ShuffleBuilder.finalize(V); 6931 E->VectorizedValue = V; 6932 ++NumVectorInstructions; 6933 return V; 6934 } 6935 case Instruction::Store: { 6936 auto *SI = cast<StoreInst>(VL0); 6937 unsigned AS = SI->getPointerAddressSpace(); 6938 6939 setInsertPointAfterBundle(E); 6940 6941 Value *VecValue = vectorizeTree(E->getOperand(0)); 6942 ShuffleBuilder.addMask(E->ReorderIndices); 6943 VecValue = ShuffleBuilder.finalize(VecValue); 6944 6945 Value *ScalarPtr = SI->getPointerOperand(); 6946 Value *VecPtr = Builder.CreateBitCast( 6947 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 6948 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 6949 SI->getAlign()); 6950 6951 // The pointer operand uses an in-tree scalar, so add the new BitCast to 6952 // ExternalUses to make sure that an extract will be generated in the 6953 // future. 6954 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 6955 // Find which lane we need to extract. 6956 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 6957 ExternalUses.push_back( 6958 ExternalUser(ScalarPtr, cast<User>(VecPtr), FoundLane)); 6959 } 6960 6961 Value *V = propagateMetadata(ST, E->Scalars); 6962 6963 E->VectorizedValue = V; 6964 ++NumVectorInstructions; 6965 return V; 6966 } 6967 case Instruction::GetElementPtr: { 6968 auto *GEP0 = cast<GetElementPtrInst>(VL0); 6969 setInsertPointAfterBundle(E); 6970 6971 Value *Op0 = vectorizeTree(E->getOperand(0)); 6972 6973 SmallVector<Value *> OpVecs; 6974 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 6975 Value *OpVec = vectorizeTree(E->getOperand(J)); 6976 OpVecs.push_back(OpVec); 6977 } 6978 6979 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 6980 if (Instruction *I = dyn_cast<Instruction>(V)) 6981 V = propagateMetadata(I, E->Scalars); 6982 6983 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6984 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6985 V = ShuffleBuilder.finalize(V); 6986 6987 E->VectorizedValue = V; 6988 ++NumVectorInstructions; 6989 6990 return V; 6991 } 6992 case Instruction::Call: { 6993 CallInst *CI = cast<CallInst>(VL0); 6994 setInsertPointAfterBundle(E); 6995 6996 Intrinsic::ID IID = Intrinsic::not_intrinsic; 6997 if (Function *FI = CI->getCalledFunction()) 6998 IID = FI->getIntrinsicID(); 6999 7000 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7001 7002 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 7003 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 7004 VecCallCosts.first <= VecCallCosts.second; 7005 7006 Value *ScalarArg = nullptr; 7007 std::vector<Value *> OpVecs; 7008 SmallVector<Type *, 2> TysForDecl = 7009 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 7010 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 7011 ValueList OpVL; 7012 // Some intrinsics have scalar arguments. This argument should not be 7013 // vectorized. 7014 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 7015 CallInst *CEI = cast<CallInst>(VL0); 7016 ScalarArg = CEI->getArgOperand(j); 7017 OpVecs.push_back(CEI->getArgOperand(j)); 7018 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j)) 7019 TysForDecl.push_back(ScalarArg->getType()); 7020 continue; 7021 } 7022 7023 Value *OpVec = vectorizeTree(E->getOperand(j)); 7024 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 7025 OpVecs.push_back(OpVec); 7026 } 7027 7028 Function *CF; 7029 if (!UseIntrinsic) { 7030 VFShape Shape = 7031 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 7032 VecTy->getNumElements())), 7033 false /*HasGlobalPred*/); 7034 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 7035 } else { 7036 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 7037 } 7038 7039 SmallVector<OperandBundleDef, 1> OpBundles; 7040 CI->getOperandBundlesAsDefs(OpBundles); 7041 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 7042 7043 // The scalar argument uses an in-tree scalar so we add the new vectorized 7044 // call to ExternalUses list to make sure that an extract will be 7045 // generated in the future. 7046 if (ScalarArg) { 7047 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 7048 // Find which lane we need to extract. 7049 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 7050 ExternalUses.push_back( 7051 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 7052 } 7053 } 7054 7055 propagateIRFlags(V, E->Scalars, VL0); 7056 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7057 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7058 V = ShuffleBuilder.finalize(V); 7059 7060 E->VectorizedValue = V; 7061 ++NumVectorInstructions; 7062 return V; 7063 } 7064 case Instruction::ShuffleVector: { 7065 assert(E->isAltShuffle() && 7066 ((Instruction::isBinaryOp(E->getOpcode()) && 7067 Instruction::isBinaryOp(E->getAltOpcode())) || 7068 (Instruction::isCast(E->getOpcode()) && 7069 Instruction::isCast(E->getAltOpcode())) || 7070 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 7071 "Invalid Shuffle Vector Operand"); 7072 7073 Value *LHS = nullptr, *RHS = nullptr; 7074 if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) { 7075 setInsertPointAfterBundle(E); 7076 LHS = vectorizeTree(E->getOperand(0)); 7077 RHS = vectorizeTree(E->getOperand(1)); 7078 } else { 7079 setInsertPointAfterBundle(E); 7080 LHS = vectorizeTree(E->getOperand(0)); 7081 } 7082 7083 if (E->VectorizedValue) { 7084 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7085 return E->VectorizedValue; 7086 } 7087 7088 Value *V0, *V1; 7089 if (Instruction::isBinaryOp(E->getOpcode())) { 7090 V0 = Builder.CreateBinOp( 7091 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 7092 V1 = Builder.CreateBinOp( 7093 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 7094 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 7095 V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS); 7096 auto *AltCI = cast<CmpInst>(E->getAltOp()); 7097 CmpInst::Predicate AltPred = AltCI->getPredicate(); 7098 unsigned AltIdx = 7099 std::distance(E->Scalars.begin(), find(E->Scalars, AltCI)); 7100 if (AltCI->getOperand(0) != E->getOperand(0)[AltIdx]) 7101 AltPred = CmpInst::getSwappedPredicate(AltPred); 7102 V1 = Builder.CreateCmp(AltPred, LHS, RHS); 7103 } else { 7104 V0 = Builder.CreateCast( 7105 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 7106 V1 = Builder.CreateCast( 7107 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 7108 } 7109 // Add V0 and V1 to later analysis to try to find and remove matching 7110 // instruction, if any. 7111 for (Value *V : {V0, V1}) { 7112 if (auto *I = dyn_cast<Instruction>(V)) { 7113 GatherShuffleSeq.insert(I); 7114 CSEBlocks.insert(I->getParent()); 7115 } 7116 } 7117 7118 // Create shuffle to take alternate operations from the vector. 7119 // Also, gather up main and alt scalar ops to propagate IR flags to 7120 // each vector operation. 7121 ValueList OpScalars, AltScalars; 7122 SmallVector<int> Mask; 7123 buildSuffleEntryMask( 7124 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 7125 [E](Instruction *I) { 7126 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 7127 if (auto *CI0 = dyn_cast<CmpInst>(E->getMainOp())) { 7128 auto *AltCI0 = cast<CmpInst>(E->getAltOp()); 7129 auto *CI = cast<CmpInst>(I); 7130 CmpInst::Predicate P0 = CI0->getPredicate(); 7131 CmpInst::Predicate AltP0 = AltCI0->getPredicate(); 7132 assert(P0 != AltP0 && 7133 "Expected different main/alternate predicates."); 7134 CmpInst::Predicate AltP0Swapped = 7135 CmpInst::getSwappedPredicate(AltP0); 7136 CmpInst::Predicate CurrentPred = CI->getPredicate(); 7137 if (P0 == AltP0Swapped) 7138 return (P0 == CurrentPred && 7139 !areCompatibleCmpOps( 7140 CI0->getOperand(0), CI0->getOperand(1), 7141 CI->getOperand(0), CI->getOperand(1))) || 7142 (AltP0 == CurrentPred && 7143 !areCompatibleCmpOps( 7144 CI0->getOperand(0), CI0->getOperand(1), 7145 CI->getOperand(1), CI->getOperand(0))); 7146 return AltP0 == CurrentPred || AltP0Swapped == CurrentPred; 7147 } 7148 return I->getOpcode() == E->getAltOpcode(); 7149 }, 7150 Mask, &OpScalars, &AltScalars); 7151 7152 propagateIRFlags(V0, OpScalars); 7153 propagateIRFlags(V1, AltScalars); 7154 7155 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 7156 if (auto *I = dyn_cast<Instruction>(V)) { 7157 V = propagateMetadata(I, E->Scalars); 7158 GatherShuffleSeq.insert(I); 7159 CSEBlocks.insert(I->getParent()); 7160 } 7161 V = ShuffleBuilder.finalize(V); 7162 7163 E->VectorizedValue = V; 7164 ++NumVectorInstructions; 7165 7166 return V; 7167 } 7168 default: 7169 llvm_unreachable("unknown inst"); 7170 } 7171 return nullptr; 7172 } 7173 7174 Value *BoUpSLP::vectorizeTree() { 7175 ExtraValueToDebugLocsMap ExternallyUsedValues; 7176 return vectorizeTree(ExternallyUsedValues); 7177 } 7178 7179 Value * 7180 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 7181 // All blocks must be scheduled before any instructions are inserted. 7182 for (auto &BSIter : BlocksSchedules) { 7183 scheduleBlock(BSIter.second.get()); 7184 } 7185 7186 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7187 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 7188 7189 // If the vectorized tree can be rewritten in a smaller type, we truncate the 7190 // vectorized root. InstCombine will then rewrite the entire expression. We 7191 // sign extend the extracted values below. 7192 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 7193 if (MinBWs.count(ScalarRoot)) { 7194 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 7195 // If current instr is a phi and not the last phi, insert it after the 7196 // last phi node. 7197 if (isa<PHINode>(I)) 7198 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 7199 else 7200 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 7201 } 7202 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 7203 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 7204 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 7205 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 7206 VectorizableTree[0]->VectorizedValue = Trunc; 7207 } 7208 7209 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 7210 << " values .\n"); 7211 7212 // Extract all of the elements with the external uses. 7213 for (const auto &ExternalUse : ExternalUses) { 7214 Value *Scalar = ExternalUse.Scalar; 7215 llvm::User *User = ExternalUse.User; 7216 7217 // Skip users that we already RAUW. This happens when one instruction 7218 // has multiple uses of the same value. 7219 if (User && !is_contained(Scalar->users(), User)) 7220 continue; 7221 TreeEntry *E = getTreeEntry(Scalar); 7222 assert(E && "Invalid scalar"); 7223 assert(E->State != TreeEntry::NeedToGather && 7224 "Extracting from a gather list"); 7225 7226 Value *Vec = E->VectorizedValue; 7227 assert(Vec && "Can't find vectorizable value"); 7228 7229 Value *Lane = Builder.getInt32(ExternalUse.Lane); 7230 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 7231 if (Scalar->getType() != Vec->getType()) { 7232 Value *Ex; 7233 // "Reuse" the existing extract to improve final codegen. 7234 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 7235 Ex = Builder.CreateExtractElement(ES->getOperand(0), 7236 ES->getOperand(1)); 7237 } else { 7238 Ex = Builder.CreateExtractElement(Vec, Lane); 7239 } 7240 // If necessary, sign-extend or zero-extend ScalarRoot 7241 // to the larger type. 7242 if (!MinBWs.count(ScalarRoot)) 7243 return Ex; 7244 if (MinBWs[ScalarRoot].second) 7245 return Builder.CreateSExt(Ex, Scalar->getType()); 7246 return Builder.CreateZExt(Ex, Scalar->getType()); 7247 } 7248 assert(isa<FixedVectorType>(Scalar->getType()) && 7249 isa<InsertElementInst>(Scalar) && 7250 "In-tree scalar of vector type is not insertelement?"); 7251 return Vec; 7252 }; 7253 // If User == nullptr, the Scalar is used as extra arg. Generate 7254 // ExtractElement instruction and update the record for this scalar in 7255 // ExternallyUsedValues. 7256 if (!User) { 7257 assert(ExternallyUsedValues.count(Scalar) && 7258 "Scalar with nullptr as an external user must be registered in " 7259 "ExternallyUsedValues map"); 7260 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7261 Builder.SetInsertPoint(VecI->getParent(), 7262 std::next(VecI->getIterator())); 7263 } else { 7264 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7265 } 7266 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7267 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 7268 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 7269 auto It = ExternallyUsedValues.find(Scalar); 7270 assert(It != ExternallyUsedValues.end() && 7271 "Externally used scalar is not found in ExternallyUsedValues"); 7272 NewInstLocs.append(It->second); 7273 ExternallyUsedValues.erase(Scalar); 7274 // Required to update internally referenced instructions. 7275 Scalar->replaceAllUsesWith(NewInst); 7276 continue; 7277 } 7278 7279 // Generate extracts for out-of-tree users. 7280 // Find the insertion point for the extractelement lane. 7281 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7282 if (PHINode *PH = dyn_cast<PHINode>(User)) { 7283 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 7284 if (PH->getIncomingValue(i) == Scalar) { 7285 Instruction *IncomingTerminator = 7286 PH->getIncomingBlock(i)->getTerminator(); 7287 if (isa<CatchSwitchInst>(IncomingTerminator)) { 7288 Builder.SetInsertPoint(VecI->getParent(), 7289 std::next(VecI->getIterator())); 7290 } else { 7291 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 7292 } 7293 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7294 CSEBlocks.insert(PH->getIncomingBlock(i)); 7295 PH->setOperand(i, NewInst); 7296 } 7297 } 7298 } else { 7299 Builder.SetInsertPoint(cast<Instruction>(User)); 7300 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7301 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 7302 User->replaceUsesOfWith(Scalar, NewInst); 7303 } 7304 } else { 7305 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7306 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7307 CSEBlocks.insert(&F->getEntryBlock()); 7308 User->replaceUsesOfWith(Scalar, NewInst); 7309 } 7310 7311 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 7312 } 7313 7314 // For each vectorized value: 7315 for (auto &TEPtr : VectorizableTree) { 7316 TreeEntry *Entry = TEPtr.get(); 7317 7318 // No need to handle users of gathered values. 7319 if (Entry->State == TreeEntry::NeedToGather) 7320 continue; 7321 7322 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 7323 7324 // For each lane: 7325 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 7326 Value *Scalar = Entry->Scalars[Lane]; 7327 7328 #ifndef NDEBUG 7329 Type *Ty = Scalar->getType(); 7330 if (!Ty->isVoidTy()) { 7331 for (User *U : Scalar->users()) { 7332 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 7333 7334 // It is legal to delete users in the ignorelist. 7335 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 7336 (isa_and_nonnull<Instruction>(U) && 7337 isDeleted(cast<Instruction>(U)))) && 7338 "Deleting out-of-tree value"); 7339 } 7340 } 7341 #endif 7342 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 7343 eraseInstruction(cast<Instruction>(Scalar)); 7344 } 7345 } 7346 7347 Builder.ClearInsertionPoint(); 7348 InstrElementSize.clear(); 7349 7350 return VectorizableTree[0]->VectorizedValue; 7351 } 7352 7353 void BoUpSLP::optimizeGatherSequence() { 7354 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size() 7355 << " gather sequences instructions.\n"); 7356 // LICM InsertElementInst sequences. 7357 for (Instruction *I : GatherShuffleSeq) { 7358 if (isDeleted(I)) 7359 continue; 7360 7361 // Check if this block is inside a loop. 7362 Loop *L = LI->getLoopFor(I->getParent()); 7363 if (!L) 7364 continue; 7365 7366 // Check if it has a preheader. 7367 BasicBlock *PreHeader = L->getLoopPreheader(); 7368 if (!PreHeader) 7369 continue; 7370 7371 // If the vector or the element that we insert into it are 7372 // instructions that are defined in this basic block then we can't 7373 // hoist this instruction. 7374 if (any_of(I->operands(), [L](Value *V) { 7375 auto *OpI = dyn_cast<Instruction>(V); 7376 return OpI && L->contains(OpI); 7377 })) 7378 continue; 7379 7380 // We can hoist this instruction. Move it to the pre-header. 7381 I->moveBefore(PreHeader->getTerminator()); 7382 } 7383 7384 // Make a list of all reachable blocks in our CSE queue. 7385 SmallVector<const DomTreeNode *, 8> CSEWorkList; 7386 CSEWorkList.reserve(CSEBlocks.size()); 7387 for (BasicBlock *BB : CSEBlocks) 7388 if (DomTreeNode *N = DT->getNode(BB)) { 7389 assert(DT->isReachableFromEntry(N)); 7390 CSEWorkList.push_back(N); 7391 } 7392 7393 // Sort blocks by domination. This ensures we visit a block after all blocks 7394 // dominating it are visited. 7395 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 7396 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 7397 "Different nodes should have different DFS numbers"); 7398 return A->getDFSNumIn() < B->getDFSNumIn(); 7399 }); 7400 7401 // Less defined shuffles can be replaced by the more defined copies. 7402 // Between two shuffles one is less defined if it has the same vector operands 7403 // and its mask indeces are the same as in the first one or undefs. E.g. 7404 // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0, 7405 // poison, <0, 0, 0, 0>. 7406 auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2, 7407 SmallVectorImpl<int> &NewMask) { 7408 if (I1->getType() != I2->getType()) 7409 return false; 7410 auto *SI1 = dyn_cast<ShuffleVectorInst>(I1); 7411 auto *SI2 = dyn_cast<ShuffleVectorInst>(I2); 7412 if (!SI1 || !SI2) 7413 return I1->isIdenticalTo(I2); 7414 if (SI1->isIdenticalTo(SI2)) 7415 return true; 7416 for (int I = 0, E = SI1->getNumOperands(); I < E; ++I) 7417 if (SI1->getOperand(I) != SI2->getOperand(I)) 7418 return false; 7419 // Check if the second instruction is more defined than the first one. 7420 NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end()); 7421 ArrayRef<int> SM1 = SI1->getShuffleMask(); 7422 // Count trailing undefs in the mask to check the final number of used 7423 // registers. 7424 unsigned LastUndefsCnt = 0; 7425 for (int I = 0, E = NewMask.size(); I < E; ++I) { 7426 if (SM1[I] == UndefMaskElem) 7427 ++LastUndefsCnt; 7428 else 7429 LastUndefsCnt = 0; 7430 if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem && 7431 NewMask[I] != SM1[I]) 7432 return false; 7433 if (NewMask[I] == UndefMaskElem) 7434 NewMask[I] = SM1[I]; 7435 } 7436 // Check if the last undefs actually change the final number of used vector 7437 // registers. 7438 return SM1.size() - LastUndefsCnt > 1 && 7439 TTI->getNumberOfParts(SI1->getType()) == 7440 TTI->getNumberOfParts( 7441 FixedVectorType::get(SI1->getType()->getElementType(), 7442 SM1.size() - LastUndefsCnt)); 7443 }; 7444 // Perform O(N^2) search over the gather/shuffle sequences and merge identical 7445 // instructions. TODO: We can further optimize this scan if we split the 7446 // instructions into different buckets based on the insert lane. 7447 SmallVector<Instruction *, 16> Visited; 7448 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 7449 assert(*I && 7450 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 7451 "Worklist not sorted properly!"); 7452 BasicBlock *BB = (*I)->getBlock(); 7453 // For all instructions in blocks containing gather sequences: 7454 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 7455 if (isDeleted(&In)) 7456 continue; 7457 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 7458 !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In)) 7459 continue; 7460 7461 // Check if we can replace this instruction with any of the 7462 // visited instructions. 7463 bool Replaced = false; 7464 for (Instruction *&V : Visited) { 7465 SmallVector<int> NewMask; 7466 if (IsIdenticalOrLessDefined(&In, V, NewMask) && 7467 DT->dominates(V->getParent(), In.getParent())) { 7468 In.replaceAllUsesWith(V); 7469 eraseInstruction(&In); 7470 if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) 7471 if (!NewMask.empty()) 7472 SI->setShuffleMask(NewMask); 7473 Replaced = true; 7474 break; 7475 } 7476 if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) && 7477 GatherShuffleSeq.contains(V) && 7478 IsIdenticalOrLessDefined(V, &In, NewMask) && 7479 DT->dominates(In.getParent(), V->getParent())) { 7480 In.moveAfter(V); 7481 V->replaceAllUsesWith(&In); 7482 eraseInstruction(V); 7483 if (auto *SI = dyn_cast<ShuffleVectorInst>(&In)) 7484 if (!NewMask.empty()) 7485 SI->setShuffleMask(NewMask); 7486 V = &In; 7487 Replaced = true; 7488 break; 7489 } 7490 } 7491 if (!Replaced) { 7492 assert(!is_contained(Visited, &In)); 7493 Visited.push_back(&In); 7494 } 7495 } 7496 } 7497 CSEBlocks.clear(); 7498 GatherShuffleSeq.clear(); 7499 } 7500 7501 BoUpSLP::ScheduleData * 7502 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) { 7503 ScheduleData *Bundle = nullptr; 7504 ScheduleData *PrevInBundle = nullptr; 7505 for (Value *V : VL) { 7506 ScheduleData *BundleMember = getScheduleData(V); 7507 assert(BundleMember && 7508 "no ScheduleData for bundle member " 7509 "(maybe not in same basic block)"); 7510 assert(BundleMember->isSchedulingEntity() && 7511 "bundle member already part of other bundle"); 7512 if (PrevInBundle) { 7513 PrevInBundle->NextInBundle = BundleMember; 7514 } else { 7515 Bundle = BundleMember; 7516 } 7517 7518 // Group the instructions to a bundle. 7519 BundleMember->FirstInBundle = Bundle; 7520 PrevInBundle = BundleMember; 7521 } 7522 assert(Bundle && "Failed to find schedule bundle"); 7523 return Bundle; 7524 } 7525 7526 // Groups the instructions to a bundle (which is then a single scheduling entity) 7527 // and schedules instructions until the bundle gets ready. 7528 Optional<BoUpSLP::ScheduleData *> 7529 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 7530 const InstructionsState &S) { 7531 // No need to schedule PHIs, insertelement, extractelement and extractvalue 7532 // instructions. 7533 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue)) 7534 return nullptr; 7535 7536 // Initialize the instruction bundle. 7537 Instruction *OldScheduleEnd = ScheduleEnd; 7538 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 7539 7540 auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule, 7541 ScheduleData *Bundle) { 7542 // The scheduling region got new instructions at the lower end (or it is a 7543 // new region for the first bundle). This makes it necessary to 7544 // recalculate all dependencies. 7545 // It is seldom that this needs to be done a second time after adding the 7546 // initial bundle to the region. 7547 if (ScheduleEnd != OldScheduleEnd) { 7548 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 7549 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 7550 ReSchedule = true; 7551 } 7552 if (Bundle) { 7553 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 7554 << " in block " << BB->getName() << "\n"); 7555 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 7556 } 7557 7558 if (ReSchedule) { 7559 resetSchedule(); 7560 initialFillReadyList(ReadyInsts); 7561 } 7562 7563 // Now try to schedule the new bundle or (if no bundle) just calculate 7564 // dependencies. As soon as the bundle is "ready" it means that there are no 7565 // cyclic dependencies and we can schedule it. Note that's important that we 7566 // don't "schedule" the bundle yet (see cancelScheduling). 7567 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 7568 !ReadyInsts.empty()) { 7569 ScheduleData *Picked = ReadyInsts.pop_back_val(); 7570 assert(Picked->isSchedulingEntity() && Picked->isReady() && 7571 "must be ready to schedule"); 7572 schedule(Picked, ReadyInsts); 7573 } 7574 }; 7575 7576 // Make sure that the scheduling region contains all 7577 // instructions of the bundle. 7578 for (Value *V : VL) { 7579 if (!extendSchedulingRegion(V, S)) { 7580 // If the scheduling region got new instructions at the lower end (or it 7581 // is a new region for the first bundle). This makes it necessary to 7582 // recalculate all dependencies. 7583 // Otherwise the compiler may crash trying to incorrectly calculate 7584 // dependencies and emit instruction in the wrong order at the actual 7585 // scheduling. 7586 TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr); 7587 return None; 7588 } 7589 } 7590 7591 bool ReSchedule = false; 7592 for (Value *V : VL) { 7593 ScheduleData *BundleMember = getScheduleData(V); 7594 assert(BundleMember && 7595 "no ScheduleData for bundle member (maybe not in same basic block)"); 7596 7597 // Make sure we don't leave the pieces of the bundle in the ready list when 7598 // whole bundle might not be ready. 7599 ReadyInsts.remove(BundleMember); 7600 7601 if (!BundleMember->IsScheduled) 7602 continue; 7603 // A bundle member was scheduled as single instruction before and now 7604 // needs to be scheduled as part of the bundle. We just get rid of the 7605 // existing schedule. 7606 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 7607 << " was already scheduled\n"); 7608 ReSchedule = true; 7609 } 7610 7611 auto *Bundle = buildBundle(VL); 7612 TryScheduleBundleImpl(ReSchedule, Bundle); 7613 if (!Bundle->isReady()) { 7614 cancelScheduling(VL, S.OpValue); 7615 return None; 7616 } 7617 return Bundle; 7618 } 7619 7620 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 7621 Value *OpValue) { 7622 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue)) 7623 return; 7624 7625 ScheduleData *Bundle = getScheduleData(OpValue); 7626 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 7627 assert(!Bundle->IsScheduled && 7628 "Can't cancel bundle which is already scheduled"); 7629 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 7630 "tried to unbundle something which is not a bundle"); 7631 7632 // Remove the bundle from the ready list. 7633 if (Bundle->isReady()) 7634 ReadyInsts.remove(Bundle); 7635 7636 // Un-bundle: make single instructions out of the bundle. 7637 ScheduleData *BundleMember = Bundle; 7638 while (BundleMember) { 7639 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 7640 BundleMember->FirstInBundle = BundleMember; 7641 ScheduleData *Next = BundleMember->NextInBundle; 7642 BundleMember->NextInBundle = nullptr; 7643 if (BundleMember->unscheduledDepsInBundle() == 0) { 7644 ReadyInsts.insert(BundleMember); 7645 } 7646 BundleMember = Next; 7647 } 7648 } 7649 7650 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 7651 // Allocate a new ScheduleData for the instruction. 7652 if (ChunkPos >= ChunkSize) { 7653 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 7654 ChunkPos = 0; 7655 } 7656 return &(ScheduleDataChunks.back()[ChunkPos++]); 7657 } 7658 7659 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 7660 const InstructionsState &S) { 7661 if (getScheduleData(V, isOneOf(S, V))) 7662 return true; 7663 Instruction *I = dyn_cast<Instruction>(V); 7664 assert(I && "bundle member must be an instruction"); 7665 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 7666 "phi nodes/insertelements/extractelements/extractvalues don't need to " 7667 "be scheduled"); 7668 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 7669 ScheduleData *ISD = getScheduleData(I); 7670 if (!ISD) 7671 return false; 7672 assert(isInSchedulingRegion(ISD) && 7673 "ScheduleData not in scheduling region"); 7674 ScheduleData *SD = allocateScheduleDataChunks(); 7675 SD->Inst = I; 7676 SD->init(SchedulingRegionID, S.OpValue); 7677 ExtraScheduleDataMap[I][S.OpValue] = SD; 7678 return true; 7679 }; 7680 if (CheckSheduleForI(I)) 7681 return true; 7682 if (!ScheduleStart) { 7683 // It's the first instruction in the new region. 7684 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 7685 ScheduleStart = I; 7686 ScheduleEnd = I->getNextNode(); 7687 if (isOneOf(S, I) != I) 7688 CheckSheduleForI(I); 7689 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7690 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 7691 return true; 7692 } 7693 // Search up and down at the same time, because we don't know if the new 7694 // instruction is above or below the existing scheduling region. 7695 BasicBlock::reverse_iterator UpIter = 7696 ++ScheduleStart->getIterator().getReverse(); 7697 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 7698 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 7699 BasicBlock::iterator LowerEnd = BB->end(); 7700 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 7701 &*DownIter != I) { 7702 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 7703 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 7704 return false; 7705 } 7706 7707 ++UpIter; 7708 ++DownIter; 7709 } 7710 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 7711 assert(I->getParent() == ScheduleStart->getParent() && 7712 "Instruction is in wrong basic block."); 7713 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 7714 ScheduleStart = I; 7715 if (isOneOf(S, I) != I) 7716 CheckSheduleForI(I); 7717 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 7718 << "\n"); 7719 return true; 7720 } 7721 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 7722 "Expected to reach top of the basic block or instruction down the " 7723 "lower end."); 7724 assert(I->getParent() == ScheduleEnd->getParent() && 7725 "Instruction is in wrong basic block."); 7726 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 7727 nullptr); 7728 ScheduleEnd = I->getNextNode(); 7729 if (isOneOf(S, I) != I) 7730 CheckSheduleForI(I); 7731 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7732 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 7733 return true; 7734 } 7735 7736 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 7737 Instruction *ToI, 7738 ScheduleData *PrevLoadStore, 7739 ScheduleData *NextLoadStore) { 7740 ScheduleData *CurrentLoadStore = PrevLoadStore; 7741 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 7742 ScheduleData *SD = ScheduleDataMap[I]; 7743 if (!SD) { 7744 SD = allocateScheduleDataChunks(); 7745 ScheduleDataMap[I] = SD; 7746 SD->Inst = I; 7747 } 7748 assert(!isInSchedulingRegion(SD) && 7749 "new ScheduleData already in scheduling region"); 7750 SD->init(SchedulingRegionID, I); 7751 7752 if (I->mayReadOrWriteMemory() && 7753 (!isa<IntrinsicInst>(I) || 7754 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 7755 cast<IntrinsicInst>(I)->getIntrinsicID() != 7756 Intrinsic::pseudoprobe))) { 7757 // Update the linked list of memory accessing instructions. 7758 if (CurrentLoadStore) { 7759 CurrentLoadStore->NextLoadStore = SD; 7760 } else { 7761 FirstLoadStoreInRegion = SD; 7762 } 7763 CurrentLoadStore = SD; 7764 } 7765 } 7766 if (NextLoadStore) { 7767 if (CurrentLoadStore) 7768 CurrentLoadStore->NextLoadStore = NextLoadStore; 7769 } else { 7770 LastLoadStoreInRegion = CurrentLoadStore; 7771 } 7772 } 7773 7774 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 7775 bool InsertInReadyList, 7776 BoUpSLP *SLP) { 7777 assert(SD->isSchedulingEntity()); 7778 7779 SmallVector<ScheduleData *, 10> WorkList; 7780 WorkList.push_back(SD); 7781 7782 while (!WorkList.empty()) { 7783 ScheduleData *SD = WorkList.pop_back_val(); 7784 for (ScheduleData *BundleMember = SD; BundleMember; 7785 BundleMember = BundleMember->NextInBundle) { 7786 assert(isInSchedulingRegion(BundleMember)); 7787 if (BundleMember->hasValidDependencies()) 7788 continue; 7789 7790 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 7791 << "\n"); 7792 BundleMember->Dependencies = 0; 7793 BundleMember->resetUnscheduledDeps(); 7794 7795 // Handle def-use chain dependencies. 7796 if (BundleMember->OpValue != BundleMember->Inst) { 7797 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 7798 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 7799 BundleMember->Dependencies++; 7800 ScheduleData *DestBundle = UseSD->FirstInBundle; 7801 if (!DestBundle->IsScheduled) 7802 BundleMember->incrementUnscheduledDeps(1); 7803 if (!DestBundle->hasValidDependencies()) 7804 WorkList.push_back(DestBundle); 7805 } 7806 } else { 7807 for (User *U : BundleMember->Inst->users()) { 7808 assert(isa<Instruction>(U) && 7809 "user of instruction must be instruction"); 7810 ScheduleData *UseSD = getScheduleData(U); 7811 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 7812 BundleMember->Dependencies++; 7813 ScheduleData *DestBundle = UseSD->FirstInBundle; 7814 if (!DestBundle->IsScheduled) 7815 BundleMember->incrementUnscheduledDeps(1); 7816 if (!DestBundle->hasValidDependencies()) 7817 WorkList.push_back(DestBundle); 7818 } 7819 } 7820 } 7821 7822 // Handle the memory dependencies (if any). 7823 ScheduleData *DepDest = BundleMember->NextLoadStore; 7824 if (!DepDest) 7825 continue; 7826 Instruction *SrcInst = BundleMember->Inst; 7827 assert(SrcInst->mayReadOrWriteMemory() && 7828 "NextLoadStore list for non memory effecting bundle?"); 7829 MemoryLocation SrcLoc = getLocation(SrcInst); 7830 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 7831 unsigned numAliased = 0; 7832 unsigned DistToSrc = 1; 7833 7834 for ( ; DepDest; DepDest = DepDest->NextLoadStore) { 7835 assert(isInSchedulingRegion(DepDest)); 7836 7837 // We have two limits to reduce the complexity: 7838 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 7839 // SLP->isAliased (which is the expensive part in this loop). 7840 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 7841 // the whole loop (even if the loop is fast, it's quadratic). 7842 // It's important for the loop break condition (see below) to 7843 // check this limit even between two read-only instructions. 7844 if (DistToSrc >= MaxMemDepDistance || 7845 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 7846 (numAliased >= AliasedCheckLimit || 7847 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 7848 7849 // We increment the counter only if the locations are aliased 7850 // (instead of counting all alias checks). This gives a better 7851 // balance between reduced runtime and accurate dependencies. 7852 numAliased++; 7853 7854 DepDest->MemoryDependencies.push_back(BundleMember); 7855 BundleMember->Dependencies++; 7856 ScheduleData *DestBundle = DepDest->FirstInBundle; 7857 if (!DestBundle->IsScheduled) { 7858 BundleMember->incrementUnscheduledDeps(1); 7859 } 7860 if (!DestBundle->hasValidDependencies()) { 7861 WorkList.push_back(DestBundle); 7862 } 7863 } 7864 7865 // Example, explaining the loop break condition: Let's assume our 7866 // starting instruction is i0 and MaxMemDepDistance = 3. 7867 // 7868 // +--------v--v--v 7869 // i0,i1,i2,i3,i4,i5,i6,i7,i8 7870 // +--------^--^--^ 7871 // 7872 // MaxMemDepDistance let us stop alias-checking at i3 and we add 7873 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 7874 // Previously we already added dependencies from i3 to i6,i7,i8 7875 // (because of MaxMemDepDistance). As we added a dependency from 7876 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 7877 // and we can abort this loop at i6. 7878 if (DistToSrc >= 2 * MaxMemDepDistance) 7879 break; 7880 DistToSrc++; 7881 } 7882 } 7883 if (InsertInReadyList && SD->isReady()) { 7884 ReadyInsts.insert(SD); 7885 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 7886 << "\n"); 7887 } 7888 } 7889 } 7890 7891 void BoUpSLP::BlockScheduling::resetSchedule() { 7892 assert(ScheduleStart && 7893 "tried to reset schedule on block which has not been scheduled"); 7894 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 7895 doForAllOpcodes(I, [&](ScheduleData *SD) { 7896 assert(isInSchedulingRegion(SD) && 7897 "ScheduleData not in scheduling region"); 7898 SD->IsScheduled = false; 7899 SD->resetUnscheduledDeps(); 7900 }); 7901 } 7902 ReadyInsts.clear(); 7903 } 7904 7905 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 7906 if (!BS->ScheduleStart) 7907 return; 7908 7909 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 7910 7911 BS->resetSchedule(); 7912 7913 // For the real scheduling we use a more sophisticated ready-list: it is 7914 // sorted by the original instruction location. This lets the final schedule 7915 // be as close as possible to the original instruction order. 7916 struct ScheduleDataCompare { 7917 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 7918 return SD2->SchedulingPriority < SD1->SchedulingPriority; 7919 } 7920 }; 7921 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 7922 7923 // Ensure that all dependency data is updated and fill the ready-list with 7924 // initial instructions. 7925 int Idx = 0; 7926 int NumToSchedule = 0; 7927 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 7928 I = I->getNextNode()) { 7929 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 7930 assert((isVectorLikeInstWithConstOps(SD->Inst) || 7931 SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr)) && 7932 "scheduler and vectorizer bundle mismatch"); 7933 SD->FirstInBundle->SchedulingPriority = Idx++; 7934 if (SD->isSchedulingEntity()) { 7935 BS->calculateDependencies(SD, false, this); 7936 NumToSchedule++; 7937 } 7938 }); 7939 } 7940 BS->initialFillReadyList(ReadyInsts); 7941 7942 Instruction *LastScheduledInst = BS->ScheduleEnd; 7943 7944 // Do the "real" scheduling. 7945 while (!ReadyInsts.empty()) { 7946 ScheduleData *picked = *ReadyInsts.begin(); 7947 ReadyInsts.erase(ReadyInsts.begin()); 7948 7949 // Move the scheduled instruction(s) to their dedicated places, if not 7950 // there yet. 7951 for (ScheduleData *BundleMember = picked; BundleMember; 7952 BundleMember = BundleMember->NextInBundle) { 7953 Instruction *pickedInst = BundleMember->Inst; 7954 if (pickedInst->getNextNode() != LastScheduledInst) 7955 pickedInst->moveBefore(LastScheduledInst); 7956 LastScheduledInst = pickedInst; 7957 } 7958 7959 BS->schedule(picked, ReadyInsts); 7960 NumToSchedule--; 7961 } 7962 assert(NumToSchedule == 0 && "could not schedule all instructions"); 7963 7964 // Check that we didn't break any of our invariants. 7965 #ifdef EXPENSIVE_CHECKS 7966 BS->verify(); 7967 #endif 7968 7969 // Avoid duplicate scheduling of the block. 7970 BS->ScheduleStart = nullptr; 7971 } 7972 7973 unsigned BoUpSLP::getVectorElementSize(Value *V) { 7974 // If V is a store, just return the width of the stored value (or value 7975 // truncated just before storing) without traversing the expression tree. 7976 // This is the common case. 7977 if (auto *Store = dyn_cast<StoreInst>(V)) { 7978 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 7979 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 7980 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 7981 } 7982 7983 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 7984 return getVectorElementSize(IEI->getOperand(1)); 7985 7986 auto E = InstrElementSize.find(V); 7987 if (E != InstrElementSize.end()) 7988 return E->second; 7989 7990 // If V is not a store, we can traverse the expression tree to find loads 7991 // that feed it. The type of the loaded value may indicate a more suitable 7992 // width than V's type. We want to base the vector element size on the width 7993 // of memory operations where possible. 7994 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 7995 SmallPtrSet<Instruction *, 16> Visited; 7996 if (auto *I = dyn_cast<Instruction>(V)) { 7997 Worklist.emplace_back(I, I->getParent()); 7998 Visited.insert(I); 7999 } 8000 8001 // Traverse the expression tree in bottom-up order looking for loads. If we 8002 // encounter an instruction we don't yet handle, we give up. 8003 auto Width = 0u; 8004 while (!Worklist.empty()) { 8005 Instruction *I; 8006 BasicBlock *Parent; 8007 std::tie(I, Parent) = Worklist.pop_back_val(); 8008 8009 // We should only be looking at scalar instructions here. If the current 8010 // instruction has a vector type, skip. 8011 auto *Ty = I->getType(); 8012 if (isa<VectorType>(Ty)) 8013 continue; 8014 8015 // If the current instruction is a load, update MaxWidth to reflect the 8016 // width of the loaded value. 8017 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 8018 isa<ExtractValueInst>(I)) 8019 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 8020 8021 // Otherwise, we need to visit the operands of the instruction. We only 8022 // handle the interesting cases from buildTree here. If an operand is an 8023 // instruction we haven't yet visited and from the same basic block as the 8024 // user or the use is a PHI node, we add it to the worklist. 8025 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8026 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 8027 isa<UnaryOperator>(I)) { 8028 for (Use &U : I->operands()) 8029 if (auto *J = dyn_cast<Instruction>(U.get())) 8030 if (Visited.insert(J).second && 8031 (isa<PHINode>(I) || J->getParent() == Parent)) 8032 Worklist.emplace_back(J, J->getParent()); 8033 } else { 8034 break; 8035 } 8036 } 8037 8038 // If we didn't encounter a memory access in the expression tree, or if we 8039 // gave up for some reason, just return the width of V. Otherwise, return the 8040 // maximum width we found. 8041 if (!Width) { 8042 if (auto *CI = dyn_cast<CmpInst>(V)) 8043 V = CI->getOperand(0); 8044 Width = DL->getTypeSizeInBits(V->getType()); 8045 } 8046 8047 for (Instruction *I : Visited) 8048 InstrElementSize[I] = Width; 8049 8050 return Width; 8051 } 8052 8053 // Determine if a value V in a vectorizable expression Expr can be demoted to a 8054 // smaller type with a truncation. We collect the values that will be demoted 8055 // in ToDemote and additional roots that require investigating in Roots. 8056 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 8057 SmallVectorImpl<Value *> &ToDemote, 8058 SmallVectorImpl<Value *> &Roots) { 8059 // We can always demote constants. 8060 if (isa<Constant>(V)) { 8061 ToDemote.push_back(V); 8062 return true; 8063 } 8064 8065 // If the value is not an instruction in the expression with only one use, it 8066 // cannot be demoted. 8067 auto *I = dyn_cast<Instruction>(V); 8068 if (!I || !I->hasOneUse() || !Expr.count(I)) 8069 return false; 8070 8071 switch (I->getOpcode()) { 8072 8073 // We can always demote truncations and extensions. Since truncations can 8074 // seed additional demotion, we save the truncated value. 8075 case Instruction::Trunc: 8076 Roots.push_back(I->getOperand(0)); 8077 break; 8078 case Instruction::ZExt: 8079 case Instruction::SExt: 8080 if (isa<ExtractElementInst>(I->getOperand(0)) || 8081 isa<InsertElementInst>(I->getOperand(0))) 8082 return false; 8083 break; 8084 8085 // We can demote certain binary operations if we can demote both of their 8086 // operands. 8087 case Instruction::Add: 8088 case Instruction::Sub: 8089 case Instruction::Mul: 8090 case Instruction::And: 8091 case Instruction::Or: 8092 case Instruction::Xor: 8093 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 8094 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 8095 return false; 8096 break; 8097 8098 // We can demote selects if we can demote their true and false values. 8099 case Instruction::Select: { 8100 SelectInst *SI = cast<SelectInst>(I); 8101 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 8102 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 8103 return false; 8104 break; 8105 } 8106 8107 // We can demote phis if we can demote all their incoming operands. Note that 8108 // we don't need to worry about cycles since we ensure single use above. 8109 case Instruction::PHI: { 8110 PHINode *PN = cast<PHINode>(I); 8111 for (Value *IncValue : PN->incoming_values()) 8112 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 8113 return false; 8114 break; 8115 } 8116 8117 // Otherwise, conservatively give up. 8118 default: 8119 return false; 8120 } 8121 8122 // Record the value that we can demote. 8123 ToDemote.push_back(V); 8124 return true; 8125 } 8126 8127 void BoUpSLP::computeMinimumValueSizes() { 8128 // If there are no external uses, the expression tree must be rooted by a 8129 // store. We can't demote in-memory values, so there is nothing to do here. 8130 if (ExternalUses.empty()) 8131 return; 8132 8133 // We only attempt to truncate integer expressions. 8134 auto &TreeRoot = VectorizableTree[0]->Scalars; 8135 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 8136 if (!TreeRootIT) 8137 return; 8138 8139 // If the expression is not rooted by a store, these roots should have 8140 // external uses. We will rely on InstCombine to rewrite the expression in 8141 // the narrower type. However, InstCombine only rewrites single-use values. 8142 // This means that if a tree entry other than a root is used externally, it 8143 // must have multiple uses and InstCombine will not rewrite it. The code 8144 // below ensures that only the roots are used externally. 8145 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 8146 for (auto &EU : ExternalUses) 8147 if (!Expr.erase(EU.Scalar)) 8148 return; 8149 if (!Expr.empty()) 8150 return; 8151 8152 // Collect the scalar values of the vectorizable expression. We will use this 8153 // context to determine which values can be demoted. If we see a truncation, 8154 // we mark it as seeding another demotion. 8155 for (auto &EntryPtr : VectorizableTree) 8156 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 8157 8158 // Ensure the roots of the vectorizable tree don't form a cycle. They must 8159 // have a single external user that is not in the vectorizable tree. 8160 for (auto *Root : TreeRoot) 8161 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 8162 return; 8163 8164 // Conservatively determine if we can actually truncate the roots of the 8165 // expression. Collect the values that can be demoted in ToDemote and 8166 // additional roots that require investigating in Roots. 8167 SmallVector<Value *, 32> ToDemote; 8168 SmallVector<Value *, 4> Roots; 8169 for (auto *Root : TreeRoot) 8170 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 8171 return; 8172 8173 // The maximum bit width required to represent all the values that can be 8174 // demoted without loss of precision. It would be safe to truncate the roots 8175 // of the expression to this width. 8176 auto MaxBitWidth = 8u; 8177 8178 // We first check if all the bits of the roots are demanded. If they're not, 8179 // we can truncate the roots to this narrower type. 8180 for (auto *Root : TreeRoot) { 8181 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 8182 MaxBitWidth = std::max<unsigned>( 8183 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 8184 } 8185 8186 // True if the roots can be zero-extended back to their original type, rather 8187 // than sign-extended. We know that if the leading bits are not demanded, we 8188 // can safely zero-extend. So we initialize IsKnownPositive to True. 8189 bool IsKnownPositive = true; 8190 8191 // If all the bits of the roots are demanded, we can try a little harder to 8192 // compute a narrower type. This can happen, for example, if the roots are 8193 // getelementptr indices. InstCombine promotes these indices to the pointer 8194 // width. Thus, all their bits are technically demanded even though the 8195 // address computation might be vectorized in a smaller type. 8196 // 8197 // We start by looking at each entry that can be demoted. We compute the 8198 // maximum bit width required to store the scalar by using ValueTracking to 8199 // compute the number of high-order bits we can truncate. 8200 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 8201 llvm::all_of(TreeRoot, [](Value *R) { 8202 assert(R->hasOneUse() && "Root should have only one use!"); 8203 return isa<GetElementPtrInst>(R->user_back()); 8204 })) { 8205 MaxBitWidth = 8u; 8206 8207 // Determine if the sign bit of all the roots is known to be zero. If not, 8208 // IsKnownPositive is set to False. 8209 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 8210 KnownBits Known = computeKnownBits(R, *DL); 8211 return Known.isNonNegative(); 8212 }); 8213 8214 // Determine the maximum number of bits required to store the scalar 8215 // values. 8216 for (auto *Scalar : ToDemote) { 8217 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 8218 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 8219 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 8220 } 8221 8222 // If we can't prove that the sign bit is zero, we must add one to the 8223 // maximum bit width to account for the unknown sign bit. This preserves 8224 // the existing sign bit so we can safely sign-extend the root back to the 8225 // original type. Otherwise, if we know the sign bit is zero, we will 8226 // zero-extend the root instead. 8227 // 8228 // FIXME: This is somewhat suboptimal, as there will be cases where adding 8229 // one to the maximum bit width will yield a larger-than-necessary 8230 // type. In general, we need to add an extra bit only if we can't 8231 // prove that the upper bit of the original type is equal to the 8232 // upper bit of the proposed smaller type. If these two bits are the 8233 // same (either zero or one) we know that sign-extending from the 8234 // smaller type will result in the same value. Here, since we can't 8235 // yet prove this, we are just making the proposed smaller type 8236 // larger to ensure correctness. 8237 if (!IsKnownPositive) 8238 ++MaxBitWidth; 8239 } 8240 8241 // Round MaxBitWidth up to the next power-of-two. 8242 if (!isPowerOf2_64(MaxBitWidth)) 8243 MaxBitWidth = NextPowerOf2(MaxBitWidth); 8244 8245 // If the maximum bit width we compute is less than the with of the roots' 8246 // type, we can proceed with the narrowing. Otherwise, do nothing. 8247 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 8248 return; 8249 8250 // If we can truncate the root, we must collect additional values that might 8251 // be demoted as a result. That is, those seeded by truncations we will 8252 // modify. 8253 while (!Roots.empty()) 8254 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 8255 8256 // Finally, map the values we can demote to the maximum bit with we computed. 8257 for (auto *Scalar : ToDemote) 8258 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 8259 } 8260 8261 namespace { 8262 8263 /// The SLPVectorizer Pass. 8264 struct SLPVectorizer : public FunctionPass { 8265 SLPVectorizerPass Impl; 8266 8267 /// Pass identification, replacement for typeid 8268 static char ID; 8269 8270 explicit SLPVectorizer() : FunctionPass(ID) { 8271 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 8272 } 8273 8274 bool doInitialization(Module &M) override { return false; } 8275 8276 bool runOnFunction(Function &F) override { 8277 if (skipFunction(F)) 8278 return false; 8279 8280 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 8281 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 8282 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 8283 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 8284 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 8285 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 8286 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 8287 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 8288 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 8289 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 8290 8291 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8292 } 8293 8294 void getAnalysisUsage(AnalysisUsage &AU) const override { 8295 FunctionPass::getAnalysisUsage(AU); 8296 AU.addRequired<AssumptionCacheTracker>(); 8297 AU.addRequired<ScalarEvolutionWrapperPass>(); 8298 AU.addRequired<AAResultsWrapperPass>(); 8299 AU.addRequired<TargetTransformInfoWrapperPass>(); 8300 AU.addRequired<LoopInfoWrapperPass>(); 8301 AU.addRequired<DominatorTreeWrapperPass>(); 8302 AU.addRequired<DemandedBitsWrapperPass>(); 8303 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 8304 AU.addRequired<InjectTLIMappingsLegacy>(); 8305 AU.addPreserved<LoopInfoWrapperPass>(); 8306 AU.addPreserved<DominatorTreeWrapperPass>(); 8307 AU.addPreserved<AAResultsWrapperPass>(); 8308 AU.addPreserved<GlobalsAAWrapperPass>(); 8309 AU.setPreservesCFG(); 8310 } 8311 }; 8312 8313 } // end anonymous namespace 8314 8315 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 8316 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 8317 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 8318 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 8319 auto *AA = &AM.getResult<AAManager>(F); 8320 auto *LI = &AM.getResult<LoopAnalysis>(F); 8321 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 8322 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 8323 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 8324 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8325 8326 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8327 if (!Changed) 8328 return PreservedAnalyses::all(); 8329 8330 PreservedAnalyses PA; 8331 PA.preserveSet<CFGAnalyses>(); 8332 return PA; 8333 } 8334 8335 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 8336 TargetTransformInfo *TTI_, 8337 TargetLibraryInfo *TLI_, AAResults *AA_, 8338 LoopInfo *LI_, DominatorTree *DT_, 8339 AssumptionCache *AC_, DemandedBits *DB_, 8340 OptimizationRemarkEmitter *ORE_) { 8341 if (!RunSLPVectorization) 8342 return false; 8343 SE = SE_; 8344 TTI = TTI_; 8345 TLI = TLI_; 8346 AA = AA_; 8347 LI = LI_; 8348 DT = DT_; 8349 AC = AC_; 8350 DB = DB_; 8351 DL = &F.getParent()->getDataLayout(); 8352 8353 Stores.clear(); 8354 GEPs.clear(); 8355 bool Changed = false; 8356 8357 // If the target claims to have no vector registers don't attempt 8358 // vectorization. 8359 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) { 8360 LLVM_DEBUG( 8361 dbgs() << "SLP: Didn't find any vector registers for target, abort.\n"); 8362 return false; 8363 } 8364 8365 // Don't vectorize when the attribute NoImplicitFloat is used. 8366 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 8367 return false; 8368 8369 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 8370 8371 // Use the bottom up slp vectorizer to construct chains that start with 8372 // store instructions. 8373 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 8374 8375 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 8376 // delete instructions. 8377 8378 // Update DFS numbers now so that we can use them for ordering. 8379 DT->updateDFSNumbers(); 8380 8381 // Scan the blocks in the function in post order. 8382 for (auto BB : post_order(&F.getEntryBlock())) { 8383 collectSeedInstructions(BB); 8384 8385 // Vectorize trees that end at stores. 8386 if (!Stores.empty()) { 8387 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 8388 << " underlying objects.\n"); 8389 Changed |= vectorizeStoreChains(R); 8390 } 8391 8392 // Vectorize trees that end at reductions. 8393 Changed |= vectorizeChainsInBlock(BB, R); 8394 8395 // Vectorize the index computations of getelementptr instructions. This 8396 // is primarily intended to catch gather-like idioms ending at 8397 // non-consecutive loads. 8398 if (!GEPs.empty()) { 8399 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 8400 << " underlying objects.\n"); 8401 Changed |= vectorizeGEPIndices(BB, R); 8402 } 8403 } 8404 8405 if (Changed) { 8406 R.optimizeGatherSequence(); 8407 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 8408 } 8409 return Changed; 8410 } 8411 8412 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 8413 unsigned Idx) { 8414 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 8415 << "\n"); 8416 const unsigned Sz = R.getVectorElementSize(Chain[0]); 8417 const unsigned MinVF = R.getMinVecRegSize() / Sz; 8418 unsigned VF = Chain.size(); 8419 8420 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 8421 return false; 8422 8423 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 8424 << "\n"); 8425 8426 R.buildTree(Chain); 8427 if (R.isTreeTinyAndNotFullyVectorizable()) 8428 return false; 8429 if (R.isLoadCombineCandidate()) 8430 return false; 8431 R.reorderTopToBottom(); 8432 R.reorderBottomToTop(); 8433 R.buildExternalUses(); 8434 8435 R.computeMinimumValueSizes(); 8436 8437 InstructionCost Cost = R.getTreeCost(); 8438 8439 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 8440 if (Cost < -SLPCostThreshold) { 8441 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 8442 8443 using namespace ore; 8444 8445 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 8446 cast<StoreInst>(Chain[0])) 8447 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 8448 << " and with tree size " 8449 << NV("TreeSize", R.getTreeSize())); 8450 8451 R.vectorizeTree(); 8452 return true; 8453 } 8454 8455 return false; 8456 } 8457 8458 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 8459 BoUpSLP &R) { 8460 // We may run into multiple chains that merge into a single chain. We mark the 8461 // stores that we vectorized so that we don't visit the same store twice. 8462 BoUpSLP::ValueSet VectorizedStores; 8463 bool Changed = false; 8464 8465 int E = Stores.size(); 8466 SmallBitVector Tails(E, false); 8467 int MaxIter = MaxStoreLookup.getValue(); 8468 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 8469 E, std::make_pair(E, INT_MAX)); 8470 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 8471 int IterCnt; 8472 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 8473 &CheckedPairs, 8474 &ConsecutiveChain](int K, int Idx) { 8475 if (IterCnt >= MaxIter) 8476 return true; 8477 if (CheckedPairs[Idx].test(K)) 8478 return ConsecutiveChain[K].second == 1 && 8479 ConsecutiveChain[K].first == Idx; 8480 ++IterCnt; 8481 CheckedPairs[Idx].set(K); 8482 CheckedPairs[K].set(Idx); 8483 Optional<int> Diff = getPointersDiff( 8484 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 8485 Stores[Idx]->getValueOperand()->getType(), 8486 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 8487 if (!Diff || *Diff == 0) 8488 return false; 8489 int Val = *Diff; 8490 if (Val < 0) { 8491 if (ConsecutiveChain[Idx].second > -Val) { 8492 Tails.set(K); 8493 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 8494 } 8495 return false; 8496 } 8497 if (ConsecutiveChain[K].second <= Val) 8498 return false; 8499 8500 Tails.set(Idx); 8501 ConsecutiveChain[K] = std::make_pair(Idx, Val); 8502 return Val == 1; 8503 }; 8504 // Do a quadratic search on all of the given stores in reverse order and find 8505 // all of the pairs of stores that follow each other. 8506 for (int Idx = E - 1; Idx >= 0; --Idx) { 8507 // If a store has multiple consecutive store candidates, search according 8508 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 8509 // This is because usually pairing with immediate succeeding or preceding 8510 // candidate create the best chance to find slp vectorization opportunity. 8511 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 8512 IterCnt = 0; 8513 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 8514 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 8515 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 8516 break; 8517 } 8518 8519 // Tracks if we tried to vectorize stores starting from the given tail 8520 // already. 8521 SmallBitVector TriedTails(E, false); 8522 // For stores that start but don't end a link in the chain: 8523 for (int Cnt = E; Cnt > 0; --Cnt) { 8524 int I = Cnt - 1; 8525 if (ConsecutiveChain[I].first == E || Tails.test(I)) 8526 continue; 8527 // We found a store instr that starts a chain. Now follow the chain and try 8528 // to vectorize it. 8529 BoUpSLP::ValueList Operands; 8530 // Collect the chain into a list. 8531 while (I != E && !VectorizedStores.count(Stores[I])) { 8532 Operands.push_back(Stores[I]); 8533 Tails.set(I); 8534 if (ConsecutiveChain[I].second != 1) { 8535 // Mark the new end in the chain and go back, if required. It might be 8536 // required if the original stores come in reversed order, for example. 8537 if (ConsecutiveChain[I].first != E && 8538 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 8539 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 8540 TriedTails.set(I); 8541 Tails.reset(ConsecutiveChain[I].first); 8542 if (Cnt < ConsecutiveChain[I].first + 2) 8543 Cnt = ConsecutiveChain[I].first + 2; 8544 } 8545 break; 8546 } 8547 // Move to the next value in the chain. 8548 I = ConsecutiveChain[I].first; 8549 } 8550 assert(!Operands.empty() && "Expected non-empty list of stores."); 8551 8552 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 8553 unsigned EltSize = R.getVectorElementSize(Operands[0]); 8554 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 8555 8556 unsigned MinVF = R.getMinVF(EltSize); 8557 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 8558 MaxElts); 8559 8560 // FIXME: Is division-by-2 the correct step? Should we assert that the 8561 // register size is a power-of-2? 8562 unsigned StartIdx = 0; 8563 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 8564 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 8565 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 8566 if (!VectorizedStores.count(Slice.front()) && 8567 !VectorizedStores.count(Slice.back()) && 8568 vectorizeStoreChain(Slice, R, Cnt)) { 8569 // Mark the vectorized stores so that we don't vectorize them again. 8570 VectorizedStores.insert(Slice.begin(), Slice.end()); 8571 Changed = true; 8572 // If we vectorized initial block, no need to try to vectorize it 8573 // again. 8574 if (Cnt == StartIdx) 8575 StartIdx += Size; 8576 Cnt += Size; 8577 continue; 8578 } 8579 ++Cnt; 8580 } 8581 // Check if the whole array was vectorized already - exit. 8582 if (StartIdx >= Operands.size()) 8583 break; 8584 } 8585 } 8586 8587 return Changed; 8588 } 8589 8590 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 8591 // Initialize the collections. We will make a single pass over the block. 8592 Stores.clear(); 8593 GEPs.clear(); 8594 8595 // Visit the store and getelementptr instructions in BB and organize them in 8596 // Stores and GEPs according to the underlying objects of their pointer 8597 // operands. 8598 for (Instruction &I : *BB) { 8599 // Ignore store instructions that are volatile or have a pointer operand 8600 // that doesn't point to a scalar type. 8601 if (auto *SI = dyn_cast<StoreInst>(&I)) { 8602 if (!SI->isSimple()) 8603 continue; 8604 if (!isValidElementType(SI->getValueOperand()->getType())) 8605 continue; 8606 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 8607 } 8608 8609 // Ignore getelementptr instructions that have more than one index, a 8610 // constant index, or a pointer operand that doesn't point to a scalar 8611 // type. 8612 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 8613 auto Idx = GEP->idx_begin()->get(); 8614 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 8615 continue; 8616 if (!isValidElementType(Idx->getType())) 8617 continue; 8618 if (GEP->getType()->isVectorTy()) 8619 continue; 8620 GEPs[GEP->getPointerOperand()].push_back(GEP); 8621 } 8622 } 8623 } 8624 8625 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 8626 if (!A || !B) 8627 return false; 8628 Value *VL[] = {A, B}; 8629 return tryToVectorizeList(VL, R); 8630 } 8631 8632 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 8633 bool LimitForRegisterSize) { 8634 if (VL.size() < 2) 8635 return false; 8636 8637 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 8638 << VL.size() << ".\n"); 8639 8640 // Check that all of the parts are instructions of the same type, 8641 // we permit an alternate opcode via InstructionsState. 8642 InstructionsState S = getSameOpcode(VL); 8643 if (!S.getOpcode()) 8644 return false; 8645 8646 Instruction *I0 = cast<Instruction>(S.OpValue); 8647 // Make sure invalid types (including vector type) are rejected before 8648 // determining vectorization factor for scalar instructions. 8649 for (Value *V : VL) { 8650 Type *Ty = V->getType(); 8651 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 8652 // NOTE: the following will give user internal llvm type name, which may 8653 // not be useful. 8654 R.getORE()->emit([&]() { 8655 std::string type_str; 8656 llvm::raw_string_ostream rso(type_str); 8657 Ty->print(rso); 8658 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 8659 << "Cannot SLP vectorize list: type " 8660 << rso.str() + " is unsupported by vectorizer"; 8661 }); 8662 return false; 8663 } 8664 } 8665 8666 unsigned Sz = R.getVectorElementSize(I0); 8667 unsigned MinVF = R.getMinVF(Sz); 8668 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 8669 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 8670 if (MaxVF < 2) { 8671 R.getORE()->emit([&]() { 8672 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 8673 << "Cannot SLP vectorize list: vectorization factor " 8674 << "less than 2 is not supported"; 8675 }); 8676 return false; 8677 } 8678 8679 bool Changed = false; 8680 bool CandidateFound = false; 8681 InstructionCost MinCost = SLPCostThreshold.getValue(); 8682 Type *ScalarTy = VL[0]->getType(); 8683 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 8684 ScalarTy = IE->getOperand(1)->getType(); 8685 8686 unsigned NextInst = 0, MaxInst = VL.size(); 8687 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 8688 // No actual vectorization should happen, if number of parts is the same as 8689 // provided vectorization factor (i.e. the scalar type is used for vector 8690 // code during codegen). 8691 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 8692 if (TTI->getNumberOfParts(VecTy) == VF) 8693 continue; 8694 for (unsigned I = NextInst; I < MaxInst; ++I) { 8695 unsigned OpsWidth = 0; 8696 8697 if (I + VF > MaxInst) 8698 OpsWidth = MaxInst - I; 8699 else 8700 OpsWidth = VF; 8701 8702 if (!isPowerOf2_32(OpsWidth)) 8703 continue; 8704 8705 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 8706 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 8707 break; 8708 8709 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 8710 // Check that a previous iteration of this loop did not delete the Value. 8711 if (llvm::any_of(Ops, [&R](Value *V) { 8712 auto *I = dyn_cast<Instruction>(V); 8713 return I && R.isDeleted(I); 8714 })) 8715 continue; 8716 8717 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 8718 << "\n"); 8719 8720 R.buildTree(Ops); 8721 if (R.isTreeTinyAndNotFullyVectorizable()) 8722 continue; 8723 R.reorderTopToBottom(); 8724 R.reorderBottomToTop(!isa<InsertElementInst>(Ops.front())); 8725 R.buildExternalUses(); 8726 8727 R.computeMinimumValueSizes(); 8728 InstructionCost Cost = R.getTreeCost(); 8729 CandidateFound = true; 8730 MinCost = std::min(MinCost, Cost); 8731 8732 if (Cost < -SLPCostThreshold) { 8733 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 8734 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 8735 cast<Instruction>(Ops[0])) 8736 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 8737 << " and with tree size " 8738 << ore::NV("TreeSize", R.getTreeSize())); 8739 8740 R.vectorizeTree(); 8741 // Move to the next bundle. 8742 I += VF - 1; 8743 NextInst = I + 1; 8744 Changed = true; 8745 } 8746 } 8747 } 8748 8749 if (!Changed && CandidateFound) { 8750 R.getORE()->emit([&]() { 8751 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 8752 << "List vectorization was possible but not beneficial with cost " 8753 << ore::NV("Cost", MinCost) << " >= " 8754 << ore::NV("Treshold", -SLPCostThreshold); 8755 }); 8756 } else if (!Changed) { 8757 R.getORE()->emit([&]() { 8758 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 8759 << "Cannot SLP vectorize list: vectorization was impossible" 8760 << " with available vectorization factors"; 8761 }); 8762 } 8763 return Changed; 8764 } 8765 8766 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 8767 if (!I) 8768 return false; 8769 8770 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 8771 return false; 8772 8773 Value *P = I->getParent(); 8774 8775 // Vectorize in current basic block only. 8776 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 8777 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 8778 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 8779 return false; 8780 8781 // Try to vectorize V. 8782 if (tryToVectorizePair(Op0, Op1, R)) 8783 return true; 8784 8785 auto *A = dyn_cast<BinaryOperator>(Op0); 8786 auto *B = dyn_cast<BinaryOperator>(Op1); 8787 // Try to skip B. 8788 if (B && B->hasOneUse()) { 8789 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 8790 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 8791 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 8792 return true; 8793 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 8794 return true; 8795 } 8796 8797 // Try to skip A. 8798 if (A && A->hasOneUse()) { 8799 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 8800 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 8801 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 8802 return true; 8803 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 8804 return true; 8805 } 8806 return false; 8807 } 8808 8809 namespace { 8810 8811 /// Model horizontal reductions. 8812 /// 8813 /// A horizontal reduction is a tree of reduction instructions that has values 8814 /// that can be put into a vector as its leaves. For example: 8815 /// 8816 /// mul mul mul mul 8817 /// \ / \ / 8818 /// + + 8819 /// \ / 8820 /// + 8821 /// This tree has "mul" as its leaf values and "+" as its reduction 8822 /// instructions. A reduction can feed into a store or a binary operation 8823 /// feeding a phi. 8824 /// ... 8825 /// \ / 8826 /// + 8827 /// | 8828 /// phi += 8829 /// 8830 /// Or: 8831 /// ... 8832 /// \ / 8833 /// + 8834 /// | 8835 /// *p = 8836 /// 8837 class HorizontalReduction { 8838 using ReductionOpsType = SmallVector<Value *, 16>; 8839 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 8840 ReductionOpsListType ReductionOps; 8841 SmallVector<Value *, 32> ReducedVals; 8842 // Use map vector to make stable output. 8843 MapVector<Instruction *, Value *> ExtraArgs; 8844 WeakTrackingVH ReductionRoot; 8845 /// The type of reduction operation. 8846 RecurKind RdxKind; 8847 8848 const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max(); 8849 8850 static bool isCmpSelMinMax(Instruction *I) { 8851 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 8852 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 8853 } 8854 8855 // And/or are potentially poison-safe logical patterns like: 8856 // select x, y, false 8857 // select x, true, y 8858 static bool isBoolLogicOp(Instruction *I) { 8859 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 8860 match(I, m_LogicalOr(m_Value(), m_Value())); 8861 } 8862 8863 /// Checks if instruction is associative and can be vectorized. 8864 static bool isVectorizable(RecurKind Kind, Instruction *I) { 8865 if (Kind == RecurKind::None) 8866 return false; 8867 8868 // Integer ops that map to select instructions or intrinsics are fine. 8869 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 8870 isBoolLogicOp(I)) 8871 return true; 8872 8873 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 8874 // FP min/max are associative except for NaN and -0.0. We do not 8875 // have to rule out -0.0 here because the intrinsic semantics do not 8876 // specify a fixed result for it. 8877 return I->getFastMathFlags().noNaNs(); 8878 } 8879 8880 return I->isAssociative(); 8881 } 8882 8883 static Value *getRdxOperand(Instruction *I, unsigned Index) { 8884 // Poison-safe 'or' takes the form: select X, true, Y 8885 // To make that work with the normal operand processing, we skip the 8886 // true value operand. 8887 // TODO: Change the code and data structures to handle this without a hack. 8888 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 8889 return I->getOperand(2); 8890 return I->getOperand(Index); 8891 } 8892 8893 /// Checks if the ParentStackElem.first should be marked as a reduction 8894 /// operation with an extra argument or as extra argument itself. 8895 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 8896 Value *ExtraArg) { 8897 if (ExtraArgs.count(ParentStackElem.first)) { 8898 ExtraArgs[ParentStackElem.first] = nullptr; 8899 // We ran into something like: 8900 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 8901 // The whole ParentStackElem.first should be considered as an extra value 8902 // in this case. 8903 // Do not perform analysis of remaining operands of ParentStackElem.first 8904 // instruction, this whole instruction is an extra argument. 8905 ParentStackElem.second = INVALID_OPERAND_INDEX; 8906 } else { 8907 // We ran into something like: 8908 // ParentStackElem.first += ... + ExtraArg + ... 8909 ExtraArgs[ParentStackElem.first] = ExtraArg; 8910 } 8911 } 8912 8913 /// Creates reduction operation with the current opcode. 8914 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 8915 Value *RHS, const Twine &Name, bool UseSelect) { 8916 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 8917 switch (Kind) { 8918 case RecurKind::Or: 8919 if (UseSelect && 8920 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 8921 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 8922 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8923 Name); 8924 case RecurKind::And: 8925 if (UseSelect && 8926 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 8927 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 8928 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8929 Name); 8930 case RecurKind::Add: 8931 case RecurKind::Mul: 8932 case RecurKind::Xor: 8933 case RecurKind::FAdd: 8934 case RecurKind::FMul: 8935 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8936 Name); 8937 case RecurKind::FMax: 8938 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 8939 case RecurKind::FMin: 8940 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 8941 case RecurKind::SMax: 8942 if (UseSelect) { 8943 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 8944 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8945 } 8946 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 8947 case RecurKind::SMin: 8948 if (UseSelect) { 8949 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 8950 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8951 } 8952 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 8953 case RecurKind::UMax: 8954 if (UseSelect) { 8955 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 8956 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8957 } 8958 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 8959 case RecurKind::UMin: 8960 if (UseSelect) { 8961 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 8962 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8963 } 8964 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 8965 default: 8966 llvm_unreachable("Unknown reduction operation."); 8967 } 8968 } 8969 8970 /// Creates reduction operation with the current opcode with the IR flags 8971 /// from \p ReductionOps. 8972 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 8973 Value *RHS, const Twine &Name, 8974 const ReductionOpsListType &ReductionOps) { 8975 bool UseSelect = ReductionOps.size() == 2 || 8976 // Logical or/and. 8977 (ReductionOps.size() == 1 && 8978 isa<SelectInst>(ReductionOps.front().front())); 8979 assert((!UseSelect || ReductionOps.size() != 2 || 8980 isa<SelectInst>(ReductionOps[1][0])) && 8981 "Expected cmp + select pairs for reduction"); 8982 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 8983 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 8984 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 8985 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 8986 propagateIRFlags(Op, ReductionOps[1]); 8987 return Op; 8988 } 8989 } 8990 propagateIRFlags(Op, ReductionOps[0]); 8991 return Op; 8992 } 8993 8994 /// Creates reduction operation with the current opcode with the IR flags 8995 /// from \p I. 8996 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 8997 Value *RHS, const Twine &Name, Instruction *I) { 8998 auto *SelI = dyn_cast<SelectInst>(I); 8999 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 9000 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9001 if (auto *Sel = dyn_cast<SelectInst>(Op)) 9002 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 9003 } 9004 propagateIRFlags(Op, I); 9005 return Op; 9006 } 9007 9008 static RecurKind getRdxKind(Instruction *I) { 9009 assert(I && "Expected instruction for reduction matching"); 9010 if (match(I, m_Add(m_Value(), m_Value()))) 9011 return RecurKind::Add; 9012 if (match(I, m_Mul(m_Value(), m_Value()))) 9013 return RecurKind::Mul; 9014 if (match(I, m_And(m_Value(), m_Value())) || 9015 match(I, m_LogicalAnd(m_Value(), m_Value()))) 9016 return RecurKind::And; 9017 if (match(I, m_Or(m_Value(), m_Value())) || 9018 match(I, m_LogicalOr(m_Value(), m_Value()))) 9019 return RecurKind::Or; 9020 if (match(I, m_Xor(m_Value(), m_Value()))) 9021 return RecurKind::Xor; 9022 if (match(I, m_FAdd(m_Value(), m_Value()))) 9023 return RecurKind::FAdd; 9024 if (match(I, m_FMul(m_Value(), m_Value()))) 9025 return RecurKind::FMul; 9026 9027 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 9028 return RecurKind::FMax; 9029 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 9030 return RecurKind::FMin; 9031 9032 // This matches either cmp+select or intrinsics. SLP is expected to handle 9033 // either form. 9034 // TODO: If we are canonicalizing to intrinsics, we can remove several 9035 // special-case paths that deal with selects. 9036 if (match(I, m_SMax(m_Value(), m_Value()))) 9037 return RecurKind::SMax; 9038 if (match(I, m_SMin(m_Value(), m_Value()))) 9039 return RecurKind::SMin; 9040 if (match(I, m_UMax(m_Value(), m_Value()))) 9041 return RecurKind::UMax; 9042 if (match(I, m_UMin(m_Value(), m_Value()))) 9043 return RecurKind::UMin; 9044 9045 if (auto *Select = dyn_cast<SelectInst>(I)) { 9046 // Try harder: look for min/max pattern based on instructions producing 9047 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 9048 // During the intermediate stages of SLP, it's very common to have 9049 // pattern like this (since optimizeGatherSequence is run only once 9050 // at the end): 9051 // %1 = extractelement <2 x i32> %a, i32 0 9052 // %2 = extractelement <2 x i32> %a, i32 1 9053 // %cond = icmp sgt i32 %1, %2 9054 // %3 = extractelement <2 x i32> %a, i32 0 9055 // %4 = extractelement <2 x i32> %a, i32 1 9056 // %select = select i1 %cond, i32 %3, i32 %4 9057 CmpInst::Predicate Pred; 9058 Instruction *L1; 9059 Instruction *L2; 9060 9061 Value *LHS = Select->getTrueValue(); 9062 Value *RHS = Select->getFalseValue(); 9063 Value *Cond = Select->getCondition(); 9064 9065 // TODO: Support inverse predicates. 9066 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 9067 if (!isa<ExtractElementInst>(RHS) || 9068 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9069 return RecurKind::None; 9070 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 9071 if (!isa<ExtractElementInst>(LHS) || 9072 !L1->isIdenticalTo(cast<Instruction>(LHS))) 9073 return RecurKind::None; 9074 } else { 9075 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 9076 return RecurKind::None; 9077 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 9078 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 9079 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9080 return RecurKind::None; 9081 } 9082 9083 switch (Pred) { 9084 default: 9085 return RecurKind::None; 9086 case CmpInst::ICMP_SGT: 9087 case CmpInst::ICMP_SGE: 9088 return RecurKind::SMax; 9089 case CmpInst::ICMP_SLT: 9090 case CmpInst::ICMP_SLE: 9091 return RecurKind::SMin; 9092 case CmpInst::ICMP_UGT: 9093 case CmpInst::ICMP_UGE: 9094 return RecurKind::UMax; 9095 case CmpInst::ICMP_ULT: 9096 case CmpInst::ICMP_ULE: 9097 return RecurKind::UMin; 9098 } 9099 } 9100 return RecurKind::None; 9101 } 9102 9103 /// Get the index of the first operand. 9104 static unsigned getFirstOperandIndex(Instruction *I) { 9105 return isCmpSelMinMax(I) ? 1 : 0; 9106 } 9107 9108 /// Total number of operands in the reduction operation. 9109 static unsigned getNumberOfOperands(Instruction *I) { 9110 return isCmpSelMinMax(I) ? 3 : 2; 9111 } 9112 9113 /// Checks if the instruction is in basic block \p BB. 9114 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 9115 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 9116 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 9117 auto *Sel = cast<SelectInst>(I); 9118 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 9119 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 9120 } 9121 return I->getParent() == BB; 9122 } 9123 9124 /// Expected number of uses for reduction operations/reduced values. 9125 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 9126 if (IsCmpSelMinMax) { 9127 // SelectInst must be used twice while the condition op must have single 9128 // use only. 9129 if (auto *Sel = dyn_cast<SelectInst>(I)) 9130 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 9131 return I->hasNUses(2); 9132 } 9133 9134 // Arithmetic reduction operation must be used once only. 9135 return I->hasOneUse(); 9136 } 9137 9138 /// Initializes the list of reduction operations. 9139 void initReductionOps(Instruction *I) { 9140 if (isCmpSelMinMax(I)) 9141 ReductionOps.assign(2, ReductionOpsType()); 9142 else 9143 ReductionOps.assign(1, ReductionOpsType()); 9144 } 9145 9146 /// Add all reduction operations for the reduction instruction \p I. 9147 void addReductionOps(Instruction *I) { 9148 if (isCmpSelMinMax(I)) { 9149 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 9150 ReductionOps[1].emplace_back(I); 9151 } else { 9152 ReductionOps[0].emplace_back(I); 9153 } 9154 } 9155 9156 static Value *getLHS(RecurKind Kind, Instruction *I) { 9157 if (Kind == RecurKind::None) 9158 return nullptr; 9159 return I->getOperand(getFirstOperandIndex(I)); 9160 } 9161 static Value *getRHS(RecurKind Kind, Instruction *I) { 9162 if (Kind == RecurKind::None) 9163 return nullptr; 9164 return I->getOperand(getFirstOperandIndex(I) + 1); 9165 } 9166 9167 public: 9168 HorizontalReduction() = default; 9169 9170 /// Try to find a reduction tree. 9171 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) { 9172 assert((!Phi || is_contained(Phi->operands(), Inst)) && 9173 "Phi needs to use the binary operator"); 9174 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 9175 isa<IntrinsicInst>(Inst)) && 9176 "Expected binop, select, or intrinsic for reduction matching"); 9177 RdxKind = getRdxKind(Inst); 9178 9179 // We could have a initial reductions that is not an add. 9180 // r *= v1 + v2 + v3 + v4 9181 // In such a case start looking for a tree rooted in the first '+'. 9182 if (Phi) { 9183 if (getLHS(RdxKind, Inst) == Phi) { 9184 Phi = nullptr; 9185 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 9186 if (!Inst) 9187 return false; 9188 RdxKind = getRdxKind(Inst); 9189 } else if (getRHS(RdxKind, Inst) == Phi) { 9190 Phi = nullptr; 9191 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 9192 if (!Inst) 9193 return false; 9194 RdxKind = getRdxKind(Inst); 9195 } 9196 } 9197 9198 if (!isVectorizable(RdxKind, Inst)) 9199 return false; 9200 9201 // Analyze "regular" integer/FP types for reductions - no target-specific 9202 // types or pointers. 9203 Type *Ty = Inst->getType(); 9204 if (!isValidElementType(Ty) || Ty->isPointerTy()) 9205 return false; 9206 9207 // Though the ultimate reduction may have multiple uses, its condition must 9208 // have only single use. 9209 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 9210 if (!Sel->getCondition()->hasOneUse()) 9211 return false; 9212 9213 ReductionRoot = Inst; 9214 9215 // The opcode for leaf values that we perform a reduction on. 9216 // For example: load(x) + load(y) + load(z) + fptoui(w) 9217 // The leaf opcode for 'w' does not match, so we don't include it as a 9218 // potential candidate for the reduction. 9219 unsigned LeafOpcode = 0; 9220 9221 // Post-order traverse the reduction tree starting at Inst. We only handle 9222 // true trees containing binary operators or selects. 9223 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 9224 Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst))); 9225 initReductionOps(Inst); 9226 while (!Stack.empty()) { 9227 Instruction *TreeN = Stack.back().first; 9228 unsigned EdgeToVisit = Stack.back().second++; 9229 const RecurKind TreeRdxKind = getRdxKind(TreeN); 9230 bool IsReducedValue = TreeRdxKind != RdxKind; 9231 9232 // Postorder visit. 9233 if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) { 9234 if (IsReducedValue) 9235 ReducedVals.push_back(TreeN); 9236 else { 9237 auto ExtraArgsIter = ExtraArgs.find(TreeN); 9238 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 9239 // Check if TreeN is an extra argument of its parent operation. 9240 if (Stack.size() <= 1) { 9241 // TreeN can't be an extra argument as it is a root reduction 9242 // operation. 9243 return false; 9244 } 9245 // Yes, TreeN is an extra argument, do not add it to a list of 9246 // reduction operations. 9247 // Stack[Stack.size() - 2] always points to the parent operation. 9248 markExtraArg(Stack[Stack.size() - 2], TreeN); 9249 ExtraArgs.erase(TreeN); 9250 } else 9251 addReductionOps(TreeN); 9252 } 9253 // Retract. 9254 Stack.pop_back(); 9255 continue; 9256 } 9257 9258 // Visit operands. 9259 Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit); 9260 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 9261 if (!EdgeInst) { 9262 // Edge value is not a reduction instruction or a leaf instruction. 9263 // (It may be a constant, function argument, or something else.) 9264 markExtraArg(Stack.back(), EdgeVal); 9265 continue; 9266 } 9267 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 9268 // Continue analysis if the next operand is a reduction operation or 9269 // (possibly) a leaf value. If the leaf value opcode is not set, 9270 // the first met operation != reduction operation is considered as the 9271 // leaf opcode. 9272 // Only handle trees in the current basic block. 9273 // Each tree node needs to have minimal number of users except for the 9274 // ultimate reduction. 9275 const bool IsRdxInst = EdgeRdxKind == RdxKind; 9276 if (EdgeInst != Phi && EdgeInst != Inst && 9277 hasSameParent(EdgeInst, Inst->getParent()) && 9278 hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) && 9279 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 9280 if (IsRdxInst) { 9281 // We need to be able to reassociate the reduction operations. 9282 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 9283 // I is an extra argument for TreeN (its parent operation). 9284 markExtraArg(Stack.back(), EdgeInst); 9285 continue; 9286 } 9287 } else if (!LeafOpcode) { 9288 LeafOpcode = EdgeInst->getOpcode(); 9289 } 9290 Stack.push_back( 9291 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 9292 continue; 9293 } 9294 // I is an extra argument for TreeN (its parent operation). 9295 markExtraArg(Stack.back(), EdgeInst); 9296 } 9297 return true; 9298 } 9299 9300 /// Attempt to vectorize the tree found by matchAssociativeReduction. 9301 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 9302 // If there are a sufficient number of reduction values, reduce 9303 // to a nearby power-of-2. We can safely generate oversized 9304 // vectors and rely on the backend to split them to legal sizes. 9305 unsigned NumReducedVals = ReducedVals.size(); 9306 if (NumReducedVals < 4) 9307 return nullptr; 9308 9309 // Intersect the fast-math-flags from all reduction operations. 9310 FastMathFlags RdxFMF; 9311 RdxFMF.set(); 9312 for (ReductionOpsType &RdxOp : ReductionOps) { 9313 for (Value *RdxVal : RdxOp) { 9314 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 9315 RdxFMF &= FPMO->getFastMathFlags(); 9316 } 9317 } 9318 9319 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 9320 Builder.setFastMathFlags(RdxFMF); 9321 9322 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 9323 // The same extra argument may be used several times, so log each attempt 9324 // to use it. 9325 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 9326 assert(Pair.first && "DebugLoc must be set."); 9327 ExternallyUsedValues[Pair.second].push_back(Pair.first); 9328 } 9329 9330 // The compare instruction of a min/max is the insertion point for new 9331 // instructions and may be replaced with a new compare instruction. 9332 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 9333 assert(isa<SelectInst>(RdxRootInst) && 9334 "Expected min/max reduction to have select root instruction"); 9335 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 9336 assert(isa<Instruction>(ScalarCond) && 9337 "Expected min/max reduction to have compare condition"); 9338 return cast<Instruction>(ScalarCond); 9339 }; 9340 9341 // The reduction root is used as the insertion point for new instructions, 9342 // so set it as externally used to prevent it from being deleted. 9343 ExternallyUsedValues[ReductionRoot]; 9344 SmallVector<Value *, 16> IgnoreList; 9345 for (ReductionOpsType &RdxOp : ReductionOps) 9346 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 9347 9348 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 9349 if (NumReducedVals > ReduxWidth) { 9350 // In the loop below, we are building a tree based on a window of 9351 // 'ReduxWidth' values. 9352 // If the operands of those values have common traits (compare predicate, 9353 // constant operand, etc), then we want to group those together to 9354 // minimize the cost of the reduction. 9355 9356 // TODO: This should be extended to count common operands for 9357 // compares and binops. 9358 9359 // Step 1: Count the number of times each compare predicate occurs. 9360 SmallDenseMap<unsigned, unsigned> PredCountMap; 9361 for (Value *RdxVal : ReducedVals) { 9362 CmpInst::Predicate Pred; 9363 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 9364 ++PredCountMap[Pred]; 9365 } 9366 // Step 2: Sort the values so the most common predicates come first. 9367 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 9368 CmpInst::Predicate PredA, PredB; 9369 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 9370 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 9371 return PredCountMap[PredA] > PredCountMap[PredB]; 9372 } 9373 return false; 9374 }); 9375 } 9376 9377 Value *VectorizedTree = nullptr; 9378 unsigned i = 0; 9379 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 9380 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 9381 V.buildTree(VL, IgnoreList); 9382 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) 9383 break; 9384 if (V.isLoadCombineReductionCandidate(RdxKind)) 9385 break; 9386 V.reorderTopToBottom(); 9387 V.reorderBottomToTop(/*IgnoreReorder=*/true); 9388 V.buildExternalUses(ExternallyUsedValues); 9389 9390 // For a poison-safe boolean logic reduction, do not replace select 9391 // instructions with logic ops. All reduced values will be frozen (see 9392 // below) to prevent leaking poison. 9393 if (isa<SelectInst>(ReductionRoot) && 9394 isBoolLogicOp(cast<Instruction>(ReductionRoot)) && 9395 NumReducedVals != ReduxWidth) 9396 break; 9397 9398 V.computeMinimumValueSizes(); 9399 9400 // Estimate cost. 9401 InstructionCost TreeCost = 9402 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth)); 9403 InstructionCost ReductionCost = 9404 getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF); 9405 InstructionCost Cost = TreeCost + ReductionCost; 9406 if (!Cost.isValid()) { 9407 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 9408 return nullptr; 9409 } 9410 if (Cost >= -SLPCostThreshold) { 9411 V.getORE()->emit([&]() { 9412 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 9413 cast<Instruction>(VL[0])) 9414 << "Vectorizing horizontal reduction is possible" 9415 << "but not beneficial with cost " << ore::NV("Cost", Cost) 9416 << " and threshold " 9417 << ore::NV("Threshold", -SLPCostThreshold); 9418 }); 9419 break; 9420 } 9421 9422 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 9423 << Cost << ". (HorRdx)\n"); 9424 V.getORE()->emit([&]() { 9425 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 9426 cast<Instruction>(VL[0])) 9427 << "Vectorized horizontal reduction with cost " 9428 << ore::NV("Cost", Cost) << " and with tree size " 9429 << ore::NV("TreeSize", V.getTreeSize()); 9430 }); 9431 9432 // Vectorize a tree. 9433 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 9434 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 9435 9436 // Emit a reduction. If the root is a select (min/max idiom), the insert 9437 // point is the compare condition of that select. 9438 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 9439 if (isCmpSelMinMax(RdxRootInst)) 9440 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 9441 else 9442 Builder.SetInsertPoint(RdxRootInst); 9443 9444 // To prevent poison from leaking across what used to be sequential, safe, 9445 // scalar boolean logic operations, the reduction operand must be frozen. 9446 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 9447 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 9448 9449 Value *ReducedSubTree = 9450 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 9451 9452 if (!VectorizedTree) { 9453 // Initialize the final value in the reduction. 9454 VectorizedTree = ReducedSubTree; 9455 } else { 9456 // Update the final value in the reduction. 9457 Builder.SetCurrentDebugLocation(Loc); 9458 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9459 ReducedSubTree, "op.rdx", ReductionOps); 9460 } 9461 i += ReduxWidth; 9462 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 9463 } 9464 9465 if (VectorizedTree) { 9466 // Finish the reduction. 9467 for (; i < NumReducedVals; ++i) { 9468 auto *I = cast<Instruction>(ReducedVals[i]); 9469 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9470 VectorizedTree = 9471 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 9472 } 9473 for (auto &Pair : ExternallyUsedValues) { 9474 // Add each externally used value to the final reduction. 9475 for (auto *I : Pair.second) { 9476 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9477 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9478 Pair.first, "op.extra", I); 9479 } 9480 } 9481 9482 ReductionRoot->replaceAllUsesWith(VectorizedTree); 9483 9484 // Mark all scalar reduction ops for deletion, they are replaced by the 9485 // vector reductions. 9486 V.eraseInstructions(IgnoreList); 9487 } 9488 return VectorizedTree; 9489 } 9490 9491 unsigned numReductionValues() const { return ReducedVals.size(); } 9492 9493 private: 9494 /// Calculate the cost of a reduction. 9495 InstructionCost getReductionCost(TargetTransformInfo *TTI, 9496 Value *FirstReducedVal, unsigned ReduxWidth, 9497 FastMathFlags FMF) { 9498 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 9499 Type *ScalarTy = FirstReducedVal->getType(); 9500 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 9501 InstructionCost VectorCost, ScalarCost; 9502 switch (RdxKind) { 9503 case RecurKind::Add: 9504 case RecurKind::Mul: 9505 case RecurKind::Or: 9506 case RecurKind::And: 9507 case RecurKind::Xor: 9508 case RecurKind::FAdd: 9509 case RecurKind::FMul: { 9510 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 9511 VectorCost = 9512 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 9513 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 9514 break; 9515 } 9516 case RecurKind::FMax: 9517 case RecurKind::FMin: { 9518 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9519 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9520 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 9521 /*IsUnsigned=*/false, CostKind); 9522 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9523 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 9524 SclCondTy, RdxPred, CostKind) + 9525 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9526 SclCondTy, RdxPred, CostKind); 9527 break; 9528 } 9529 case RecurKind::SMax: 9530 case RecurKind::SMin: 9531 case RecurKind::UMax: 9532 case RecurKind::UMin: { 9533 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9534 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9535 bool IsUnsigned = 9536 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 9537 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned, 9538 CostKind); 9539 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9540 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 9541 SclCondTy, RdxPred, CostKind) + 9542 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9543 SclCondTy, RdxPred, CostKind); 9544 break; 9545 } 9546 default: 9547 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 9548 } 9549 9550 // Scalar cost is repeated for N-1 elements. 9551 ScalarCost *= (ReduxWidth - 1); 9552 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 9553 << " for reduction that starts with " << *FirstReducedVal 9554 << " (It is a splitting reduction)\n"); 9555 return VectorCost - ScalarCost; 9556 } 9557 9558 /// Emit a horizontal reduction of the vectorized value. 9559 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 9560 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 9561 assert(VectorizedValue && "Need to have a vectorized tree node"); 9562 assert(isPowerOf2_32(ReduxWidth) && 9563 "We only handle power-of-two reductions for now"); 9564 assert(RdxKind != RecurKind::FMulAdd && 9565 "A call to the llvm.fmuladd intrinsic is not handled yet"); 9566 9567 ++NumVectorInstructions; 9568 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind); 9569 } 9570 }; 9571 9572 } // end anonymous namespace 9573 9574 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 9575 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 9576 return cast<FixedVectorType>(IE->getType())->getNumElements(); 9577 9578 unsigned AggregateSize = 1; 9579 auto *IV = cast<InsertValueInst>(InsertInst); 9580 Type *CurrentType = IV->getType(); 9581 do { 9582 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 9583 for (auto *Elt : ST->elements()) 9584 if (Elt != ST->getElementType(0)) // check homogeneity 9585 return None; 9586 AggregateSize *= ST->getNumElements(); 9587 CurrentType = ST->getElementType(0); 9588 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 9589 AggregateSize *= AT->getNumElements(); 9590 CurrentType = AT->getElementType(); 9591 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 9592 AggregateSize *= VT->getNumElements(); 9593 return AggregateSize; 9594 } else if (CurrentType->isSingleValueType()) { 9595 return AggregateSize; 9596 } else { 9597 return None; 9598 } 9599 } while (true); 9600 } 9601 9602 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 9603 TargetTransformInfo *TTI, 9604 SmallVectorImpl<Value *> &BuildVectorOpds, 9605 SmallVectorImpl<Value *> &InsertElts, 9606 unsigned OperandOffset) { 9607 do { 9608 Value *InsertedOperand = LastInsertInst->getOperand(1); 9609 Optional<int> OperandIndex = getInsertIndex(LastInsertInst, OperandOffset); 9610 if (!OperandIndex) 9611 return false; 9612 if (isa<InsertElementInst>(InsertedOperand) || 9613 isa<InsertValueInst>(InsertedOperand)) { 9614 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 9615 BuildVectorOpds, InsertElts, *OperandIndex)) 9616 return false; 9617 } else { 9618 BuildVectorOpds[*OperandIndex] = InsertedOperand; 9619 InsertElts[*OperandIndex] = LastInsertInst; 9620 } 9621 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 9622 } while (LastInsertInst != nullptr && 9623 (isa<InsertValueInst>(LastInsertInst) || 9624 isa<InsertElementInst>(LastInsertInst)) && 9625 LastInsertInst->hasOneUse()); 9626 return true; 9627 } 9628 9629 /// Recognize construction of vectors like 9630 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 9631 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 9632 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 9633 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 9634 /// starting from the last insertelement or insertvalue instruction. 9635 /// 9636 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 9637 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 9638 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 9639 /// 9640 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 9641 /// 9642 /// \return true if it matches. 9643 static bool findBuildAggregate(Instruction *LastInsertInst, 9644 TargetTransformInfo *TTI, 9645 SmallVectorImpl<Value *> &BuildVectorOpds, 9646 SmallVectorImpl<Value *> &InsertElts) { 9647 9648 assert((isa<InsertElementInst>(LastInsertInst) || 9649 isa<InsertValueInst>(LastInsertInst)) && 9650 "Expected insertelement or insertvalue instruction!"); 9651 9652 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 9653 "Expected empty result vectors!"); 9654 9655 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 9656 if (!AggregateSize) 9657 return false; 9658 BuildVectorOpds.resize(*AggregateSize); 9659 InsertElts.resize(*AggregateSize); 9660 9661 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 9662 0)) { 9663 llvm::erase_value(BuildVectorOpds, nullptr); 9664 llvm::erase_value(InsertElts, nullptr); 9665 if (BuildVectorOpds.size() >= 2) 9666 return true; 9667 } 9668 9669 return false; 9670 } 9671 9672 /// Try and get a reduction value from a phi node. 9673 /// 9674 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 9675 /// if they come from either \p ParentBB or a containing loop latch. 9676 /// 9677 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 9678 /// if not possible. 9679 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 9680 BasicBlock *ParentBB, LoopInfo *LI) { 9681 // There are situations where the reduction value is not dominated by the 9682 // reduction phi. Vectorizing such cases has been reported to cause 9683 // miscompiles. See PR25787. 9684 auto DominatedReduxValue = [&](Value *R) { 9685 return isa<Instruction>(R) && 9686 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 9687 }; 9688 9689 Value *Rdx = nullptr; 9690 9691 // Return the incoming value if it comes from the same BB as the phi node. 9692 if (P->getIncomingBlock(0) == ParentBB) { 9693 Rdx = P->getIncomingValue(0); 9694 } else if (P->getIncomingBlock(1) == ParentBB) { 9695 Rdx = P->getIncomingValue(1); 9696 } 9697 9698 if (Rdx && DominatedReduxValue(Rdx)) 9699 return Rdx; 9700 9701 // Otherwise, check whether we have a loop latch to look at. 9702 Loop *BBL = LI->getLoopFor(ParentBB); 9703 if (!BBL) 9704 return nullptr; 9705 BasicBlock *BBLatch = BBL->getLoopLatch(); 9706 if (!BBLatch) 9707 return nullptr; 9708 9709 // There is a loop latch, return the incoming value if it comes from 9710 // that. This reduction pattern occasionally turns up. 9711 if (P->getIncomingBlock(0) == BBLatch) { 9712 Rdx = P->getIncomingValue(0); 9713 } else if (P->getIncomingBlock(1) == BBLatch) { 9714 Rdx = P->getIncomingValue(1); 9715 } 9716 9717 if (Rdx && DominatedReduxValue(Rdx)) 9718 return Rdx; 9719 9720 return nullptr; 9721 } 9722 9723 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 9724 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 9725 return true; 9726 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 9727 return true; 9728 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 9729 return true; 9730 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 9731 return true; 9732 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 9733 return true; 9734 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 9735 return true; 9736 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 9737 return true; 9738 return false; 9739 } 9740 9741 /// Attempt to reduce a horizontal reduction. 9742 /// If it is legal to match a horizontal reduction feeding the phi node \a P 9743 /// with reduction operators \a Root (or one of its operands) in a basic block 9744 /// \a BB, then check if it can be done. If horizontal reduction is not found 9745 /// and root instruction is a binary operation, vectorization of the operands is 9746 /// attempted. 9747 /// \returns true if a horizontal reduction was matched and reduced or operands 9748 /// of one of the binary instruction were vectorized. 9749 /// \returns false if a horizontal reduction was not matched (or not possible) 9750 /// or no vectorization of any binary operation feeding \a Root instruction was 9751 /// performed. 9752 static bool tryToVectorizeHorReductionOrInstOperands( 9753 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 9754 TargetTransformInfo *TTI, 9755 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 9756 if (!ShouldVectorizeHor) 9757 return false; 9758 9759 if (!Root) 9760 return false; 9761 9762 if (Root->getParent() != BB || isa<PHINode>(Root)) 9763 return false; 9764 // Start analysis starting from Root instruction. If horizontal reduction is 9765 // found, try to vectorize it. If it is not a horizontal reduction or 9766 // vectorization is not possible or not effective, and currently analyzed 9767 // instruction is a binary operation, try to vectorize the operands, using 9768 // pre-order DFS traversal order. If the operands were not vectorized, repeat 9769 // the same procedure considering each operand as a possible root of the 9770 // horizontal reduction. 9771 // Interrupt the process if the Root instruction itself was vectorized or all 9772 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 9773 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 9774 // CmpInsts so we can skip extra attempts in 9775 // tryToVectorizeHorReductionOrInstOperands and save compile time. 9776 std::queue<std::pair<Instruction *, unsigned>> Stack; 9777 Stack.emplace(Root, 0); 9778 SmallPtrSet<Value *, 8> VisitedInstrs; 9779 SmallVector<WeakTrackingVH> PostponedInsts; 9780 bool Res = false; 9781 auto &&TryToReduce = [TTI, &P, &R](Instruction *Inst, Value *&B0, 9782 Value *&B1) -> Value * { 9783 bool IsBinop = matchRdxBop(Inst, B0, B1); 9784 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 9785 if (IsBinop || IsSelect) { 9786 HorizontalReduction HorRdx; 9787 if (HorRdx.matchAssociativeReduction(P, Inst)) 9788 return HorRdx.tryToReduce(R, TTI); 9789 } 9790 return nullptr; 9791 }; 9792 while (!Stack.empty()) { 9793 Instruction *Inst; 9794 unsigned Level; 9795 std::tie(Inst, Level) = Stack.front(); 9796 Stack.pop(); 9797 // Do not try to analyze instruction that has already been vectorized. 9798 // This may happen when we vectorize instruction operands on a previous 9799 // iteration while stack was populated before that happened. 9800 if (R.isDeleted(Inst)) 9801 continue; 9802 Value *B0 = nullptr, *B1 = nullptr; 9803 if (Value *V = TryToReduce(Inst, B0, B1)) { 9804 Res = true; 9805 // Set P to nullptr to avoid re-analysis of phi node in 9806 // matchAssociativeReduction function unless this is the root node. 9807 P = nullptr; 9808 if (auto *I = dyn_cast<Instruction>(V)) { 9809 // Try to find another reduction. 9810 Stack.emplace(I, Level); 9811 continue; 9812 } 9813 } else { 9814 bool IsBinop = B0 && B1; 9815 if (P && IsBinop) { 9816 Inst = dyn_cast<Instruction>(B0); 9817 if (Inst == P) 9818 Inst = dyn_cast<Instruction>(B1); 9819 if (!Inst) { 9820 // Set P to nullptr to avoid re-analysis of phi node in 9821 // matchAssociativeReduction function unless this is the root node. 9822 P = nullptr; 9823 continue; 9824 } 9825 } 9826 // Set P to nullptr to avoid re-analysis of phi node in 9827 // matchAssociativeReduction function unless this is the root node. 9828 P = nullptr; 9829 // Do not try to vectorize CmpInst operands, this is done separately. 9830 // Final attempt for binop args vectorization should happen after the loop 9831 // to try to find reductions. 9832 if (!isa<CmpInst>(Inst)) 9833 PostponedInsts.push_back(Inst); 9834 } 9835 9836 // Try to vectorize operands. 9837 // Continue analysis for the instruction from the same basic block only to 9838 // save compile time. 9839 if (++Level < RecursionMaxDepth) 9840 for (auto *Op : Inst->operand_values()) 9841 if (VisitedInstrs.insert(Op).second) 9842 if (auto *I = dyn_cast<Instruction>(Op)) 9843 // Do not try to vectorize CmpInst operands, this is done 9844 // separately. 9845 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 9846 I->getParent() == BB) 9847 Stack.emplace(I, Level); 9848 } 9849 // Try to vectorized binops where reductions were not found. 9850 for (Value *V : PostponedInsts) 9851 if (auto *Inst = dyn_cast<Instruction>(V)) 9852 if (!R.isDeleted(Inst)) 9853 Res |= Vectorize(Inst, R); 9854 return Res; 9855 } 9856 9857 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 9858 BasicBlock *BB, BoUpSLP &R, 9859 TargetTransformInfo *TTI) { 9860 auto *I = dyn_cast_or_null<Instruction>(V); 9861 if (!I) 9862 return false; 9863 9864 if (!isa<BinaryOperator>(I)) 9865 P = nullptr; 9866 // Try to match and vectorize a horizontal reduction. 9867 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 9868 return tryToVectorize(I, R); 9869 }; 9870 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 9871 ExtraVectorization); 9872 } 9873 9874 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 9875 BasicBlock *BB, BoUpSLP &R) { 9876 const DataLayout &DL = BB->getModule()->getDataLayout(); 9877 if (!R.canMapToVector(IVI->getType(), DL)) 9878 return false; 9879 9880 SmallVector<Value *, 16> BuildVectorOpds; 9881 SmallVector<Value *, 16> BuildVectorInsts; 9882 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 9883 return false; 9884 9885 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 9886 // Aggregate value is unlikely to be processed in vector register. 9887 return tryToVectorizeList(BuildVectorOpds, R); 9888 } 9889 9890 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 9891 BasicBlock *BB, BoUpSLP &R) { 9892 SmallVector<Value *, 16> BuildVectorInsts; 9893 SmallVector<Value *, 16> BuildVectorOpds; 9894 SmallVector<int> Mask; 9895 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 9896 (llvm::all_of( 9897 BuildVectorOpds, 9898 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) && 9899 isFixedVectorShuffle(BuildVectorOpds, Mask))) 9900 return false; 9901 9902 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 9903 return tryToVectorizeList(BuildVectorInsts, R); 9904 } 9905 9906 template <typename T> 9907 static bool 9908 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 9909 function_ref<unsigned(T *)> Limit, 9910 function_ref<bool(T *, T *)> Comparator, 9911 function_ref<bool(T *, T *)> AreCompatible, 9912 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper, 9913 bool LimitForRegisterSize) { 9914 bool Changed = false; 9915 // Sort by type, parent, operands. 9916 stable_sort(Incoming, Comparator); 9917 9918 // Try to vectorize elements base on their type. 9919 SmallVector<T *> Candidates; 9920 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 9921 // Look for the next elements with the same type, parent and operand 9922 // kinds. 9923 auto *SameTypeIt = IncIt; 9924 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 9925 ++SameTypeIt; 9926 9927 // Try to vectorize them. 9928 unsigned NumElts = (SameTypeIt - IncIt); 9929 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 9930 << NumElts << ")\n"); 9931 // The vectorization is a 3-state attempt: 9932 // 1. Try to vectorize instructions with the same/alternate opcodes with the 9933 // size of maximal register at first. 9934 // 2. Try to vectorize remaining instructions with the same type, if 9935 // possible. This may result in the better vectorization results rather than 9936 // if we try just to vectorize instructions with the same/alternate opcodes. 9937 // 3. Final attempt to try to vectorize all instructions with the 9938 // same/alternate ops only, this may result in some extra final 9939 // vectorization. 9940 if (NumElts > 1 && 9941 TryToVectorizeHelper(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 9942 // Success start over because instructions might have been changed. 9943 Changed = true; 9944 } else if (NumElts < Limit(*IncIt) && 9945 (Candidates.empty() || 9946 Candidates.front()->getType() == (*IncIt)->getType())) { 9947 Candidates.append(IncIt, std::next(IncIt, NumElts)); 9948 } 9949 // Final attempt to vectorize instructions with the same types. 9950 if (Candidates.size() > 1 && 9951 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 9952 if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) { 9953 // Success start over because instructions might have been changed. 9954 Changed = true; 9955 } else if (LimitForRegisterSize) { 9956 // Try to vectorize using small vectors. 9957 for (auto *It = Candidates.begin(), *End = Candidates.end(); 9958 It != End;) { 9959 auto *SameTypeIt = It; 9960 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 9961 ++SameTypeIt; 9962 unsigned NumElts = (SameTypeIt - It); 9963 if (NumElts > 1 && TryToVectorizeHelper(makeArrayRef(It, NumElts), 9964 /*LimitForRegisterSize=*/false)) 9965 Changed = true; 9966 It = SameTypeIt; 9967 } 9968 } 9969 Candidates.clear(); 9970 } 9971 9972 // Start over at the next instruction of a different type (or the end). 9973 IncIt = SameTypeIt; 9974 } 9975 return Changed; 9976 } 9977 9978 /// Compare two cmp instructions. If IsCompatibility is true, function returns 9979 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding 9980 /// operands. If IsCompatibility is false, function implements strict weak 9981 /// ordering relation between two cmp instructions, returning true if the first 9982 /// instruction is "less" than the second, i.e. its predicate is less than the 9983 /// predicate of the second or the operands IDs are less than the operands IDs 9984 /// of the second cmp instruction. 9985 template <bool IsCompatibility> 9986 static bool compareCmp(Value *V, Value *V2, 9987 function_ref<bool(Instruction *)> IsDeleted) { 9988 auto *CI1 = cast<CmpInst>(V); 9989 auto *CI2 = cast<CmpInst>(V2); 9990 if (IsDeleted(CI2) || !isValidElementType(CI2->getType())) 9991 return false; 9992 if (CI1->getOperand(0)->getType()->getTypeID() < 9993 CI2->getOperand(0)->getType()->getTypeID()) 9994 return !IsCompatibility; 9995 if (CI1->getOperand(0)->getType()->getTypeID() > 9996 CI2->getOperand(0)->getType()->getTypeID()) 9997 return false; 9998 CmpInst::Predicate Pred1 = CI1->getPredicate(); 9999 CmpInst::Predicate Pred2 = CI2->getPredicate(); 10000 CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1); 10001 CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2); 10002 CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1); 10003 CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2); 10004 if (BasePred1 < BasePred2) 10005 return !IsCompatibility; 10006 if (BasePred1 > BasePred2) 10007 return false; 10008 // Compare operands. 10009 bool LEPreds = Pred1 <= Pred2; 10010 bool GEPreds = Pred1 >= Pred2; 10011 for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) { 10012 auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1); 10013 auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1); 10014 if (Op1->getValueID() < Op2->getValueID()) 10015 return !IsCompatibility; 10016 if (Op1->getValueID() > Op2->getValueID()) 10017 return false; 10018 if (auto *I1 = dyn_cast<Instruction>(Op1)) 10019 if (auto *I2 = dyn_cast<Instruction>(Op2)) { 10020 if (I1->getParent() != I2->getParent()) 10021 return false; 10022 InstructionsState S = getSameOpcode({I1, I2}); 10023 if (S.getOpcode()) 10024 continue; 10025 return false; 10026 } 10027 } 10028 return IsCompatibility; 10029 } 10030 10031 bool SLPVectorizerPass::vectorizeSimpleInstructions( 10032 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 10033 bool AtTerminator) { 10034 bool OpsChanged = false; 10035 SmallVector<Instruction *, 4> PostponedCmps; 10036 for (auto *I : reverse(Instructions)) { 10037 if (R.isDeleted(I)) 10038 continue; 10039 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 10040 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 10041 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 10042 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 10043 else if (isa<CmpInst>(I)) 10044 PostponedCmps.push_back(I); 10045 } 10046 if (AtTerminator) { 10047 // Try to find reductions first. 10048 for (Instruction *I : PostponedCmps) { 10049 if (R.isDeleted(I)) 10050 continue; 10051 for (Value *Op : I->operands()) 10052 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 10053 } 10054 // Try to vectorize operands as vector bundles. 10055 for (Instruction *I : PostponedCmps) { 10056 if (R.isDeleted(I)) 10057 continue; 10058 OpsChanged |= tryToVectorize(I, R); 10059 } 10060 // Try to vectorize list of compares. 10061 // Sort by type, compare predicate, etc. 10062 auto &&CompareSorter = [&R](Value *V, Value *V2) { 10063 return compareCmp<false>(V, V2, 10064 [&R](Instruction *I) { return R.isDeleted(I); }); 10065 }; 10066 10067 auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) { 10068 if (V1 == V2) 10069 return true; 10070 return compareCmp<true>(V1, V2, 10071 [&R](Instruction *I) { return R.isDeleted(I); }); 10072 }; 10073 auto Limit = [&R](Value *V) { 10074 unsigned EltSize = R.getVectorElementSize(V); 10075 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10076 }; 10077 10078 SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end()); 10079 OpsChanged |= tryToVectorizeSequence<Value>( 10080 Vals, Limit, CompareSorter, AreCompatibleCompares, 10081 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10082 // Exclude possible reductions from other blocks. 10083 bool ArePossiblyReducedInOtherBlock = 10084 any_of(Candidates, [](Value *V) { 10085 return any_of(V->users(), [V](User *U) { 10086 return isa<SelectInst>(U) && 10087 cast<SelectInst>(U)->getParent() != 10088 cast<Instruction>(V)->getParent(); 10089 }); 10090 }); 10091 if (ArePossiblyReducedInOtherBlock) 10092 return false; 10093 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10094 }, 10095 /*LimitForRegisterSize=*/true); 10096 Instructions.clear(); 10097 } else { 10098 // Insert in reverse order since the PostponedCmps vector was filled in 10099 // reverse order. 10100 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 10101 } 10102 return OpsChanged; 10103 } 10104 10105 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 10106 bool Changed = false; 10107 SmallVector<Value *, 4> Incoming; 10108 SmallPtrSet<Value *, 16> VisitedInstrs; 10109 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 10110 // node. Allows better to identify the chains that can be vectorized in the 10111 // better way. 10112 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 10113 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 10114 assert(isValidElementType(V1->getType()) && 10115 isValidElementType(V2->getType()) && 10116 "Expected vectorizable types only."); 10117 // It is fine to compare type IDs here, since we expect only vectorizable 10118 // types, like ints, floats and pointers, we don't care about other type. 10119 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 10120 return true; 10121 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 10122 return false; 10123 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10124 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10125 if (Opcodes1.size() < Opcodes2.size()) 10126 return true; 10127 if (Opcodes1.size() > Opcodes2.size()) 10128 return false; 10129 Optional<bool> ConstOrder; 10130 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10131 // Undefs are compatible with any other value. 10132 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) { 10133 if (!ConstOrder) 10134 ConstOrder = 10135 !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]); 10136 continue; 10137 } 10138 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10139 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10140 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 10141 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 10142 if (!NodeI1) 10143 return NodeI2 != nullptr; 10144 if (!NodeI2) 10145 return false; 10146 assert((NodeI1 == NodeI2) == 10147 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10148 "Different nodes should have different DFS numbers"); 10149 if (NodeI1 != NodeI2) 10150 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10151 InstructionsState S = getSameOpcode({I1, I2}); 10152 if (S.getOpcode()) 10153 continue; 10154 return I1->getOpcode() < I2->getOpcode(); 10155 } 10156 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) { 10157 if (!ConstOrder) 10158 ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID(); 10159 continue; 10160 } 10161 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 10162 return true; 10163 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 10164 return false; 10165 } 10166 return ConstOrder && *ConstOrder; 10167 }; 10168 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 10169 if (V1 == V2) 10170 return true; 10171 if (V1->getType() != V2->getType()) 10172 return false; 10173 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10174 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10175 if (Opcodes1.size() != Opcodes2.size()) 10176 return false; 10177 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10178 // Undefs are compatible with any other value. 10179 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 10180 continue; 10181 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10182 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10183 if (I1->getParent() != I2->getParent()) 10184 return false; 10185 InstructionsState S = getSameOpcode({I1, I2}); 10186 if (S.getOpcode()) 10187 continue; 10188 return false; 10189 } 10190 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 10191 continue; 10192 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 10193 return false; 10194 } 10195 return true; 10196 }; 10197 auto Limit = [&R](Value *V) { 10198 unsigned EltSize = R.getVectorElementSize(V); 10199 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10200 }; 10201 10202 bool HaveVectorizedPhiNodes = false; 10203 do { 10204 // Collect the incoming values from the PHIs. 10205 Incoming.clear(); 10206 for (Instruction &I : *BB) { 10207 PHINode *P = dyn_cast<PHINode>(&I); 10208 if (!P) 10209 break; 10210 10211 // No need to analyze deleted, vectorized and non-vectorizable 10212 // instructions. 10213 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 10214 isValidElementType(P->getType())) 10215 Incoming.push_back(P); 10216 } 10217 10218 // Find the corresponding non-phi nodes for better matching when trying to 10219 // build the tree. 10220 for (Value *V : Incoming) { 10221 SmallVectorImpl<Value *> &Opcodes = 10222 PHIToOpcodes.try_emplace(V).first->getSecond(); 10223 if (!Opcodes.empty()) 10224 continue; 10225 SmallVector<Value *, 4> Nodes(1, V); 10226 SmallPtrSet<Value *, 4> Visited; 10227 while (!Nodes.empty()) { 10228 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 10229 if (!Visited.insert(PHI).second) 10230 continue; 10231 for (Value *V : PHI->incoming_values()) { 10232 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 10233 Nodes.push_back(PHI1); 10234 continue; 10235 } 10236 Opcodes.emplace_back(V); 10237 } 10238 } 10239 } 10240 10241 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 10242 Incoming, Limit, PHICompare, AreCompatiblePHIs, 10243 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10244 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10245 }, 10246 /*LimitForRegisterSize=*/true); 10247 Changed |= HaveVectorizedPhiNodes; 10248 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 10249 } while (HaveVectorizedPhiNodes); 10250 10251 VisitedInstrs.clear(); 10252 10253 SmallVector<Instruction *, 8> PostProcessInstructions; 10254 SmallDenseSet<Instruction *, 4> KeyNodes; 10255 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 10256 // Skip instructions with scalable type. The num of elements is unknown at 10257 // compile-time for scalable type. 10258 if (isa<ScalableVectorType>(it->getType())) 10259 continue; 10260 10261 // Skip instructions marked for the deletion. 10262 if (R.isDeleted(&*it)) 10263 continue; 10264 // We may go through BB multiple times so skip the one we have checked. 10265 if (!VisitedInstrs.insert(&*it).second) { 10266 if (it->use_empty() && KeyNodes.contains(&*it) && 10267 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10268 it->isTerminator())) { 10269 // We would like to start over since some instructions are deleted 10270 // and the iterator may become invalid value. 10271 Changed = true; 10272 it = BB->begin(); 10273 e = BB->end(); 10274 } 10275 continue; 10276 } 10277 10278 if (isa<DbgInfoIntrinsic>(it)) 10279 continue; 10280 10281 // Try to vectorize reductions that use PHINodes. 10282 if (PHINode *P = dyn_cast<PHINode>(it)) { 10283 // Check that the PHI is a reduction PHI. 10284 if (P->getNumIncomingValues() == 2) { 10285 // Try to match and vectorize a horizontal reduction. 10286 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 10287 TTI)) { 10288 Changed = true; 10289 it = BB->begin(); 10290 e = BB->end(); 10291 continue; 10292 } 10293 } 10294 // Try to vectorize the incoming values of the PHI, to catch reductions 10295 // that feed into PHIs. 10296 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 10297 // Skip if the incoming block is the current BB for now. Also, bypass 10298 // unreachable IR for efficiency and to avoid crashing. 10299 // TODO: Collect the skipped incoming values and try to vectorize them 10300 // after processing BB. 10301 if (BB == P->getIncomingBlock(I) || 10302 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 10303 continue; 10304 10305 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 10306 P->getIncomingBlock(I), R, TTI); 10307 } 10308 continue; 10309 } 10310 10311 // Ran into an instruction without users, like terminator, or function call 10312 // with ignored return value, store. Ignore unused instructions (basing on 10313 // instruction type, except for CallInst and InvokeInst). 10314 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 10315 isa<InvokeInst>(it))) { 10316 KeyNodes.insert(&*it); 10317 bool OpsChanged = false; 10318 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 10319 for (auto *V : it->operand_values()) { 10320 // Try to match and vectorize a horizontal reduction. 10321 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 10322 } 10323 } 10324 // Start vectorization of post-process list of instructions from the 10325 // top-tree instructions to try to vectorize as many instructions as 10326 // possible. 10327 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10328 it->isTerminator()); 10329 if (OpsChanged) { 10330 // We would like to start over since some instructions are deleted 10331 // and the iterator may become invalid value. 10332 Changed = true; 10333 it = BB->begin(); 10334 e = BB->end(); 10335 continue; 10336 } 10337 } 10338 10339 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 10340 isa<InsertValueInst>(it)) 10341 PostProcessInstructions.push_back(&*it); 10342 } 10343 10344 return Changed; 10345 } 10346 10347 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 10348 auto Changed = false; 10349 for (auto &Entry : GEPs) { 10350 // If the getelementptr list has fewer than two elements, there's nothing 10351 // to do. 10352 if (Entry.second.size() < 2) 10353 continue; 10354 10355 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 10356 << Entry.second.size() << ".\n"); 10357 10358 // Process the GEP list in chunks suitable for the target's supported 10359 // vector size. If a vector register can't hold 1 element, we are done. We 10360 // are trying to vectorize the index computations, so the maximum number of 10361 // elements is based on the size of the index expression, rather than the 10362 // size of the GEP itself (the target's pointer size). 10363 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 10364 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 10365 if (MaxVecRegSize < EltSize) 10366 continue; 10367 10368 unsigned MaxElts = MaxVecRegSize / EltSize; 10369 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 10370 auto Len = std::min<unsigned>(BE - BI, MaxElts); 10371 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 10372 10373 // Initialize a set a candidate getelementptrs. Note that we use a 10374 // SetVector here to preserve program order. If the index computations 10375 // are vectorizable and begin with loads, we want to minimize the chance 10376 // of having to reorder them later. 10377 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 10378 10379 // Some of the candidates may have already been vectorized after we 10380 // initially collected them. If so, they are marked as deleted, so remove 10381 // them from the set of candidates. 10382 Candidates.remove_if( 10383 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 10384 10385 // Remove from the set of candidates all pairs of getelementptrs with 10386 // constant differences. Such getelementptrs are likely not good 10387 // candidates for vectorization in a bottom-up phase since one can be 10388 // computed from the other. We also ensure all candidate getelementptr 10389 // indices are unique. 10390 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 10391 auto *GEPI = GEPList[I]; 10392 if (!Candidates.count(GEPI)) 10393 continue; 10394 auto *SCEVI = SE->getSCEV(GEPList[I]); 10395 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 10396 auto *GEPJ = GEPList[J]; 10397 auto *SCEVJ = SE->getSCEV(GEPList[J]); 10398 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 10399 Candidates.remove(GEPI); 10400 Candidates.remove(GEPJ); 10401 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 10402 Candidates.remove(GEPJ); 10403 } 10404 } 10405 } 10406 10407 // We break out of the above computation as soon as we know there are 10408 // fewer than two candidates remaining. 10409 if (Candidates.size() < 2) 10410 continue; 10411 10412 // Add the single, non-constant index of each candidate to the bundle. We 10413 // ensured the indices met these constraints when we originally collected 10414 // the getelementptrs. 10415 SmallVector<Value *, 16> Bundle(Candidates.size()); 10416 auto BundleIndex = 0u; 10417 for (auto *V : Candidates) { 10418 auto *GEP = cast<GetElementPtrInst>(V); 10419 auto *GEPIdx = GEP->idx_begin()->get(); 10420 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 10421 Bundle[BundleIndex++] = GEPIdx; 10422 } 10423 10424 // Try and vectorize the indices. We are currently only interested in 10425 // gather-like cases of the form: 10426 // 10427 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 10428 // 10429 // where the loads of "a", the loads of "b", and the subtractions can be 10430 // performed in parallel. It's likely that detecting this pattern in a 10431 // bottom-up phase will be simpler and less costly than building a 10432 // full-blown top-down phase beginning at the consecutive loads. 10433 Changed |= tryToVectorizeList(Bundle, R); 10434 } 10435 } 10436 return Changed; 10437 } 10438 10439 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 10440 bool Changed = false; 10441 // Sort by type, base pointers and values operand. Value operands must be 10442 // compatible (have the same opcode, same parent), otherwise it is 10443 // definitely not profitable to try to vectorize them. 10444 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 10445 if (V->getPointerOperandType()->getTypeID() < 10446 V2->getPointerOperandType()->getTypeID()) 10447 return true; 10448 if (V->getPointerOperandType()->getTypeID() > 10449 V2->getPointerOperandType()->getTypeID()) 10450 return false; 10451 // UndefValues are compatible with all other values. 10452 if (isa<UndefValue>(V->getValueOperand()) || 10453 isa<UndefValue>(V2->getValueOperand())) 10454 return false; 10455 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 10456 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10457 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 10458 DT->getNode(I1->getParent()); 10459 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 10460 DT->getNode(I2->getParent()); 10461 assert(NodeI1 && "Should only process reachable instructions"); 10462 assert(NodeI1 && "Should only process reachable instructions"); 10463 assert((NodeI1 == NodeI2) == 10464 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10465 "Different nodes should have different DFS numbers"); 10466 if (NodeI1 != NodeI2) 10467 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10468 InstructionsState S = getSameOpcode({I1, I2}); 10469 if (S.getOpcode()) 10470 return false; 10471 return I1->getOpcode() < I2->getOpcode(); 10472 } 10473 if (isa<Constant>(V->getValueOperand()) && 10474 isa<Constant>(V2->getValueOperand())) 10475 return false; 10476 return V->getValueOperand()->getValueID() < 10477 V2->getValueOperand()->getValueID(); 10478 }; 10479 10480 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 10481 if (V1 == V2) 10482 return true; 10483 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 10484 return false; 10485 // Undefs are compatible with any other value. 10486 if (isa<UndefValue>(V1->getValueOperand()) || 10487 isa<UndefValue>(V2->getValueOperand())) 10488 return true; 10489 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 10490 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10491 if (I1->getParent() != I2->getParent()) 10492 return false; 10493 InstructionsState S = getSameOpcode({I1, I2}); 10494 return S.getOpcode() > 0; 10495 } 10496 if (isa<Constant>(V1->getValueOperand()) && 10497 isa<Constant>(V2->getValueOperand())) 10498 return true; 10499 return V1->getValueOperand()->getValueID() == 10500 V2->getValueOperand()->getValueID(); 10501 }; 10502 auto Limit = [&R, this](StoreInst *SI) { 10503 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 10504 return R.getMinVF(EltSize); 10505 }; 10506 10507 // Attempt to sort and vectorize each of the store-groups. 10508 for (auto &Pair : Stores) { 10509 if (Pair.second.size() < 2) 10510 continue; 10511 10512 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 10513 << Pair.second.size() << ".\n"); 10514 10515 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 10516 continue; 10517 10518 Changed |= tryToVectorizeSequence<StoreInst>( 10519 Pair.second, Limit, StoreSorter, AreCompatibleStores, 10520 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 10521 return vectorizeStores(Candidates, R); 10522 }, 10523 /*LimitForRegisterSize=*/false); 10524 } 10525 return Changed; 10526 } 10527 10528 char SLPVectorizer::ID = 0; 10529 10530 static const char lv_name[] = "SLP Vectorizer"; 10531 10532 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 10533 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 10534 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 10535 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 10536 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 10537 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 10538 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 10539 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 10540 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 10541 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 10542 10543 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 10544