1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10 // stores that can be put together into vector-stores. Next, it attempts to
11 // construct vectorizable tree using the use-def chains. If a profitable tree
12 // was found, the SLP vectorizer performs vectorization on the tree.
13 //
14 // The pass is inspired by the work described in the paper:
15 //  "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/DenseSet.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/PostOrderIterator.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/ADT/SmallBitVector.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/SmallString.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/ADT/iterator.h"
32 #include "llvm/ADT/iterator_range.h"
33 #include "llvm/Analysis/AliasAnalysis.h"
34 #include "llvm/Analysis/AssumptionCache.h"
35 #include "llvm/Analysis/CodeMetrics.h"
36 #include "llvm/Analysis/DemandedBits.h"
37 #include "llvm/Analysis/GlobalsModRef.h"
38 #include "llvm/Analysis/IVDescriptors.h"
39 #include "llvm/Analysis/LoopAccessAnalysis.h"
40 #include "llvm/Analysis/LoopInfo.h"
41 #include "llvm/Analysis/MemoryLocation.h"
42 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
43 #include "llvm/Analysis/ScalarEvolution.h"
44 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
45 #include "llvm/Analysis/TargetLibraryInfo.h"
46 #include "llvm/Analysis/TargetTransformInfo.h"
47 #include "llvm/Analysis/ValueTracking.h"
48 #include "llvm/Analysis/VectorUtils.h"
49 #include "llvm/IR/Attributes.h"
50 #include "llvm/IR/BasicBlock.h"
51 #include "llvm/IR/Constant.h"
52 #include "llvm/IR/Constants.h"
53 #include "llvm/IR/DataLayout.h"
54 #include "llvm/IR/DebugLoc.h"
55 #include "llvm/IR/DerivedTypes.h"
56 #include "llvm/IR/Dominators.h"
57 #include "llvm/IR/Function.h"
58 #include "llvm/IR/IRBuilder.h"
59 #include "llvm/IR/InstrTypes.h"
60 #include "llvm/IR/Instruction.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/IR/IntrinsicInst.h"
63 #include "llvm/IR/Intrinsics.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/IR/NoFolder.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Use.h"
70 #include "llvm/IR/User.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/IR/ValueHandle.h"
73 #include "llvm/IR/Verifier.h"
74 #include "llvm/InitializePasses.h"
75 #include "llvm/Pass.h"
76 #include "llvm/Support/Casting.h"
77 #include "llvm/Support/CommandLine.h"
78 #include "llvm/Support/Compiler.h"
79 #include "llvm/Support/DOTGraphTraits.h"
80 #include "llvm/Support/Debug.h"
81 #include "llvm/Support/ErrorHandling.h"
82 #include "llvm/Support/GraphWriter.h"
83 #include "llvm/Support/InstructionCost.h"
84 #include "llvm/Support/KnownBits.h"
85 #include "llvm/Support/MathExtras.h"
86 #include "llvm/Support/raw_ostream.h"
87 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
88 #include "llvm/Transforms/Utils/LoopUtils.h"
89 #include "llvm/Transforms/Vectorize.h"
90 #include <algorithm>
91 #include <cassert>
92 #include <cstdint>
93 #include <iterator>
94 #include <memory>
95 #include <set>
96 #include <string>
97 #include <tuple>
98 #include <utility>
99 #include <vector>
100 
101 using namespace llvm;
102 using namespace llvm::PatternMatch;
103 using namespace slpvectorizer;
104 
105 #define SV_NAME "slp-vectorizer"
106 #define DEBUG_TYPE "SLP"
107 
108 STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
109 
110 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden,
111                                   cl::desc("Run the SLP vectorization passes"));
112 
113 static cl::opt<int>
114     SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
115                      cl::desc("Only vectorize if you gain more than this "
116                               "number "));
117 
118 static cl::opt<bool>
119 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
120                    cl::desc("Attempt to vectorize horizontal reductions"));
121 
122 static cl::opt<bool> ShouldStartVectorizeHorAtStore(
123     "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
124     cl::desc(
125         "Attempt to vectorize horizontal reductions feeding into a store"));
126 
127 static cl::opt<int>
128 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
129     cl::desc("Attempt to vectorize for this register size in bits"));
130 
131 static cl::opt<unsigned>
132 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden,
133     cl::desc("Maximum SLP vectorization factor (0=unlimited)"));
134 
135 static cl::opt<int>
136 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden,
137     cl::desc("Maximum depth of the lookup for consecutive stores."));
138 
139 /// Limits the size of scheduling regions in a block.
140 /// It avoid long compile times for _very_ large blocks where vector
141 /// instructions are spread over a wide range.
142 /// This limit is way higher than needed by real-world functions.
143 static cl::opt<int>
144 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
145     cl::desc("Limit the size of the SLP scheduling region per block"));
146 
147 static cl::opt<int> MinVectorRegSizeOption(
148     "slp-min-reg-size", cl::init(128), cl::Hidden,
149     cl::desc("Attempt to vectorize for this register size in bits"));
150 
151 static cl::opt<unsigned> RecursionMaxDepth(
152     "slp-recursion-max-depth", cl::init(12), cl::Hidden,
153     cl::desc("Limit the recursion depth when building a vectorizable tree"));
154 
155 static cl::opt<unsigned> MinTreeSize(
156     "slp-min-tree-size", cl::init(3), cl::Hidden,
157     cl::desc("Only vectorize small trees if they are fully vectorizable"));
158 
159 // The maximum depth that the look-ahead score heuristic will explore.
160 // The higher this value, the higher the compilation time overhead.
161 static cl::opt<int> LookAheadMaxDepth(
162     "slp-max-look-ahead-depth", cl::init(2), cl::Hidden,
163     cl::desc("The maximum look-ahead depth for operand reordering scores"));
164 
165 // The Look-ahead heuristic goes through the users of the bundle to calculate
166 // the users cost in getExternalUsesCost(). To avoid compilation time increase
167 // we limit the number of users visited to this value.
168 static cl::opt<unsigned> LookAheadUsersBudget(
169     "slp-look-ahead-users-budget", cl::init(2), cl::Hidden,
170     cl::desc("The maximum number of users to visit while visiting the "
171              "predecessors. This prevents compilation time increase."));
172 
173 static cl::opt<bool>
174     ViewSLPTree("view-slp-tree", cl::Hidden,
175                 cl::desc("Display the SLP trees with Graphviz"));
176 
177 // Limit the number of alias checks. The limit is chosen so that
178 // it has no negative effect on the llvm benchmarks.
179 static const unsigned AliasedCheckLimit = 10;
180 
181 // Another limit for the alias checks: The maximum distance between load/store
182 // instructions where alias checks are done.
183 // This limit is useful for very large basic blocks.
184 static const unsigned MaxMemDepDistance = 160;
185 
186 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
187 /// regions to be handled.
188 static const int MinScheduleRegionSize = 16;
189 
190 /// Predicate for the element types that the SLP vectorizer supports.
191 ///
192 /// The most important thing to filter here are types which are invalid in LLVM
193 /// vectors. We also filter target specific types which have absolutely no
194 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
195 /// avoids spending time checking the cost model and realizing that they will
196 /// be inevitably scalarized.
197 static bool isValidElementType(Type *Ty) {
198   return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
199          !Ty->isPPC_FP128Ty();
200 }
201 
202 /// \returns true if all of the instructions in \p VL are in the same block or
203 /// false otherwise.
204 static bool allSameBlock(ArrayRef<Value *> VL) {
205   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
206   if (!I0)
207     return false;
208   BasicBlock *BB = I0->getParent();
209   for (int I = 1, E = VL.size(); I < E; I++) {
210     auto *II = dyn_cast<Instruction>(VL[I]);
211     if (!II)
212       return false;
213 
214     if (BB != II->getParent())
215       return false;
216   }
217   return true;
218 }
219 
220 /// \returns True if all of the values in \p VL are constants (but not
221 /// globals/constant expressions).
222 static bool allConstant(ArrayRef<Value *> VL) {
223   // Constant expressions and globals can't be vectorized like normal integer/FP
224   // constants.
225   for (Value *i : VL)
226     if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i))
227       return false;
228   return true;
229 }
230 
231 /// \returns True if all of the values in \p VL are identical.
232 static bool isSplat(ArrayRef<Value *> VL) {
233   for (unsigned i = 1, e = VL.size(); i < e; ++i)
234     if (VL[i] != VL[0])
235       return false;
236   return true;
237 }
238 
239 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator.
240 static bool isCommutative(Instruction *I) {
241   if (auto *Cmp = dyn_cast<CmpInst>(I))
242     return Cmp->isCommutative();
243   if (auto *BO = dyn_cast<BinaryOperator>(I))
244     return BO->isCommutative();
245   // TODO: This should check for generic Instruction::isCommutative(), but
246   //       we need to confirm that the caller code correctly handles Intrinsics
247   //       for example (does not have 2 operands).
248   return false;
249 }
250 
251 /// Checks if the vector of instructions can be represented as a shuffle, like:
252 /// %x0 = extractelement <4 x i8> %x, i32 0
253 /// %x3 = extractelement <4 x i8> %x, i32 3
254 /// %y1 = extractelement <4 x i8> %y, i32 1
255 /// %y2 = extractelement <4 x i8> %y, i32 2
256 /// %x0x0 = mul i8 %x0, %x0
257 /// %x3x3 = mul i8 %x3, %x3
258 /// %y1y1 = mul i8 %y1, %y1
259 /// %y2y2 = mul i8 %y2, %y2
260 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0
261 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1
262 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2
263 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3
264 /// ret <4 x i8> %ins4
265 /// can be transformed into:
266 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5,
267 ///                                                         i32 6>
268 /// %2 = mul <4 x i8> %1, %1
269 /// ret <4 x i8> %2
270 /// We convert this initially to something like:
271 /// %x0 = extractelement <4 x i8> %x, i32 0
272 /// %x3 = extractelement <4 x i8> %x, i32 3
273 /// %y1 = extractelement <4 x i8> %y, i32 1
274 /// %y2 = extractelement <4 x i8> %y, i32 2
275 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0
276 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1
277 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2
278 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3
279 /// %5 = mul <4 x i8> %4, %4
280 /// %6 = extractelement <4 x i8> %5, i32 0
281 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0
282 /// %7 = extractelement <4 x i8> %5, i32 1
283 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1
284 /// %8 = extractelement <4 x i8> %5, i32 2
285 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2
286 /// %9 = extractelement <4 x i8> %5, i32 3
287 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3
288 /// ret <4 x i8> %ins4
289 /// InstCombiner transforms this into a shuffle and vector mul
290 /// Mask will return the Shuffle Mask equivalent to the extracted elements.
291 /// TODO: Can we split off and reuse the shuffle mask detection from
292 /// TargetTransformInfo::getInstructionThroughput?
293 static Optional<TargetTransformInfo::ShuffleKind>
294 isShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) {
295   auto *EI0 = cast<ExtractElementInst>(VL[0]);
296   unsigned Size =
297       cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements();
298   Value *Vec1 = nullptr;
299   Value *Vec2 = nullptr;
300   enum ShuffleMode { Unknown, Select, Permute };
301   ShuffleMode CommonShuffleMode = Unknown;
302   for (unsigned I = 0, E = VL.size(); I < E; ++I) {
303     auto *EI = cast<ExtractElementInst>(VL[I]);
304     auto *Vec = EI->getVectorOperand();
305     // All vector operands must have the same number of vector elements.
306     if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size)
307       return None;
308     auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand());
309     if (!Idx)
310       return None;
311     // Undefined behavior if Idx is negative or >= Size.
312     if (Idx->getValue().uge(Size)) {
313       Mask.push_back(UndefMaskElem);
314       continue;
315     }
316     unsigned IntIdx = Idx->getValue().getZExtValue();
317     Mask.push_back(IntIdx);
318     // We can extractelement from undef or poison vector.
319     if (isa<UndefValue>(Vec))
320       continue;
321     // For correct shuffling we have to have at most 2 different vector operands
322     // in all extractelement instructions.
323     if (!Vec1 || Vec1 == Vec)
324       Vec1 = Vec;
325     else if (!Vec2 || Vec2 == Vec)
326       Vec2 = Vec;
327     else
328       return None;
329     if (CommonShuffleMode == Permute)
330       continue;
331     // If the extract index is not the same as the operation number, it is a
332     // permutation.
333     if (IntIdx != I) {
334       CommonShuffleMode = Permute;
335       continue;
336     }
337     CommonShuffleMode = Select;
338   }
339   // If we're not crossing lanes in different vectors, consider it as blending.
340   if (CommonShuffleMode == Select && Vec2)
341     return TargetTransformInfo::SK_Select;
342   // If Vec2 was never used, we have a permutation of a single vector, otherwise
343   // we have permutation of 2 vectors.
344   return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc
345               : TargetTransformInfo::SK_PermuteSingleSrc;
346 }
347 
348 namespace {
349 
350 /// Main data required for vectorization of instructions.
351 struct InstructionsState {
352   /// The very first instruction in the list with the main opcode.
353   Value *OpValue = nullptr;
354 
355   /// The main/alternate instruction.
356   Instruction *MainOp = nullptr;
357   Instruction *AltOp = nullptr;
358 
359   /// The main/alternate opcodes for the list of instructions.
360   unsigned getOpcode() const {
361     return MainOp ? MainOp->getOpcode() : 0;
362   }
363 
364   unsigned getAltOpcode() const {
365     return AltOp ? AltOp->getOpcode() : 0;
366   }
367 
368   /// Some of the instructions in the list have alternate opcodes.
369   bool isAltShuffle() const { return getOpcode() != getAltOpcode(); }
370 
371   bool isOpcodeOrAlt(Instruction *I) const {
372     unsigned CheckedOpcode = I->getOpcode();
373     return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode;
374   }
375 
376   InstructionsState() = delete;
377   InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp)
378       : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {}
379 };
380 
381 } // end anonymous namespace
382 
383 /// Chooses the correct key for scheduling data. If \p Op has the same (or
384 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p
385 /// OpValue.
386 static Value *isOneOf(const InstructionsState &S, Value *Op) {
387   auto *I = dyn_cast<Instruction>(Op);
388   if (I && S.isOpcodeOrAlt(I))
389     return Op;
390   return S.OpValue;
391 }
392 
393 /// \returns true if \p Opcode is allowed as part of of the main/alternate
394 /// instruction for SLP vectorization.
395 ///
396 /// Example of unsupported opcode is SDIV that can potentially cause UB if the
397 /// "shuffled out" lane would result in division by zero.
398 static bool isValidForAlternation(unsigned Opcode) {
399   if (Instruction::isIntDivRem(Opcode))
400     return false;
401 
402   return true;
403 }
404 
405 /// \returns analysis of the Instructions in \p VL described in
406 /// InstructionsState, the Opcode that we suppose the whole list
407 /// could be vectorized even if its structure is diverse.
408 static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
409                                        unsigned BaseIndex = 0) {
410   // Make sure these are all Instructions.
411   if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); }))
412     return InstructionsState(VL[BaseIndex], nullptr, nullptr);
413 
414   bool IsCastOp = isa<CastInst>(VL[BaseIndex]);
415   bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]);
416   unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode();
417   unsigned AltOpcode = Opcode;
418   unsigned AltIndex = BaseIndex;
419 
420   // Check for one alternate opcode from another BinaryOperator.
421   // TODO - generalize to support all operators (types, calls etc.).
422   for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) {
423     unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode();
424     if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) {
425       if (InstOpcode == Opcode || InstOpcode == AltOpcode)
426         continue;
427       if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) &&
428           isValidForAlternation(Opcode)) {
429         AltOpcode = InstOpcode;
430         AltIndex = Cnt;
431         continue;
432       }
433     } else if (IsCastOp && isa<CastInst>(VL[Cnt])) {
434       Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType();
435       Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType();
436       if (Ty0 == Ty1) {
437         if (InstOpcode == Opcode || InstOpcode == AltOpcode)
438           continue;
439         if (Opcode == AltOpcode) {
440           assert(isValidForAlternation(Opcode) &&
441                  isValidForAlternation(InstOpcode) &&
442                  "Cast isn't safe for alternation, logic needs to be updated!");
443           AltOpcode = InstOpcode;
444           AltIndex = Cnt;
445           continue;
446         }
447       }
448     } else if (InstOpcode == Opcode || InstOpcode == AltOpcode)
449       continue;
450     return InstructionsState(VL[BaseIndex], nullptr, nullptr);
451   }
452 
453   return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]),
454                            cast<Instruction>(VL[AltIndex]));
455 }
456 
457 /// \returns true if all of the values in \p VL have the same type or false
458 /// otherwise.
459 static bool allSameType(ArrayRef<Value *> VL) {
460   Type *Ty = VL[0]->getType();
461   for (int i = 1, e = VL.size(); i < e; i++)
462     if (VL[i]->getType() != Ty)
463       return false;
464 
465   return true;
466 }
467 
468 /// \returns True if Extract{Value,Element} instruction extracts element Idx.
469 static Optional<unsigned> getExtractIndex(Instruction *E) {
470   unsigned Opcode = E->getOpcode();
471   assert((Opcode == Instruction::ExtractElement ||
472           Opcode == Instruction::ExtractValue) &&
473          "Expected extractelement or extractvalue instruction.");
474   if (Opcode == Instruction::ExtractElement) {
475     auto *CI = dyn_cast<ConstantInt>(E->getOperand(1));
476     if (!CI)
477       return None;
478     return CI->getZExtValue();
479   }
480   ExtractValueInst *EI = cast<ExtractValueInst>(E);
481   if (EI->getNumIndices() != 1)
482     return None;
483   return *EI->idx_begin();
484 }
485 
486 /// \returns True if in-tree use also needs extract. This refers to
487 /// possible scalar operand in vectorized instruction.
488 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
489                                     TargetLibraryInfo *TLI) {
490   unsigned Opcode = UserInst->getOpcode();
491   switch (Opcode) {
492   case Instruction::Load: {
493     LoadInst *LI = cast<LoadInst>(UserInst);
494     return (LI->getPointerOperand() == Scalar);
495   }
496   case Instruction::Store: {
497     StoreInst *SI = cast<StoreInst>(UserInst);
498     return (SI->getPointerOperand() == Scalar);
499   }
500   case Instruction::Call: {
501     CallInst *CI = cast<CallInst>(UserInst);
502     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
503     for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
504       if (hasVectorInstrinsicScalarOpd(ID, i))
505         return (CI->getArgOperand(i) == Scalar);
506     }
507     LLVM_FALLTHROUGH;
508   }
509   default:
510     return false;
511   }
512 }
513 
514 /// \returns the AA location that is being access by the instruction.
515 static MemoryLocation getLocation(Instruction *I, AAResults *AA) {
516   if (StoreInst *SI = dyn_cast<StoreInst>(I))
517     return MemoryLocation::get(SI);
518   if (LoadInst *LI = dyn_cast<LoadInst>(I))
519     return MemoryLocation::get(LI);
520   return MemoryLocation();
521 }
522 
523 /// \returns True if the instruction is not a volatile or atomic load/store.
524 static bool isSimple(Instruction *I) {
525   if (LoadInst *LI = dyn_cast<LoadInst>(I))
526     return LI->isSimple();
527   if (StoreInst *SI = dyn_cast<StoreInst>(I))
528     return SI->isSimple();
529   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
530     return !MI->isVolatile();
531   return true;
532 }
533 
534 namespace llvm {
535 
536 static void inversePermutation(ArrayRef<unsigned> Indices,
537                                SmallVectorImpl<int> &Mask) {
538   Mask.clear();
539   const unsigned E = Indices.size();
540   Mask.resize(E, E + 1);
541   for (unsigned I = 0; I < E; ++I)
542     Mask[Indices[I]] = I;
543 }
544 
545 namespace slpvectorizer {
546 
547 /// Bottom Up SLP Vectorizer.
548 class BoUpSLP {
549   struct TreeEntry;
550   struct ScheduleData;
551 
552 public:
553   using ValueList = SmallVector<Value *, 8>;
554   using InstrList = SmallVector<Instruction *, 16>;
555   using ValueSet = SmallPtrSet<Value *, 16>;
556   using StoreList = SmallVector<StoreInst *, 8>;
557   using ExtraValueToDebugLocsMap =
558       MapVector<Value *, SmallVector<Instruction *, 2>>;
559   using OrdersType = SmallVector<unsigned, 4>;
560 
561   BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
562           TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li,
563           DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
564           const DataLayout *DL, OptimizationRemarkEmitter *ORE)
565       : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC),
566         DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) {
567     CodeMetrics::collectEphemeralValues(F, AC, EphValues);
568     // Use the vector register size specified by the target unless overridden
569     // by a command-line option.
570     // TODO: It would be better to limit the vectorization factor based on
571     //       data type rather than just register size. For example, x86 AVX has
572     //       256-bit registers, but it does not support integer operations
573     //       at that width (that requires AVX2).
574     if (MaxVectorRegSizeOption.getNumOccurrences())
575       MaxVecRegSize = MaxVectorRegSizeOption;
576     else
577       MaxVecRegSize =
578           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
579               .getFixedSize();
580 
581     if (MinVectorRegSizeOption.getNumOccurrences())
582       MinVecRegSize = MinVectorRegSizeOption;
583     else
584       MinVecRegSize = TTI->getMinVectorRegisterBitWidth();
585   }
586 
587   /// Vectorize the tree that starts with the elements in \p VL.
588   /// Returns the vectorized root.
589   Value *vectorizeTree();
590 
591   /// Vectorize the tree but with the list of externally used values \p
592   /// ExternallyUsedValues. Values in this MapVector can be replaced but the
593   /// generated extractvalue instructions.
594   Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues);
595 
596   /// \returns the cost incurred by unwanted spills and fills, caused by
597   /// holding live values over call sites.
598   InstructionCost getSpillCost() const;
599 
600   /// \returns the vectorization cost of the subtree that starts at \p VL.
601   /// A negative number means that this is profitable.
602   InstructionCost getTreeCost();
603 
604   /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
605   /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
606   void buildTree(ArrayRef<Value *> Roots,
607                  ArrayRef<Value *> UserIgnoreLst = None);
608 
609   /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
610   /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking
611   /// into account (and updating it, if required) list of externally used
612   /// values stored in \p ExternallyUsedValues.
613   void buildTree(ArrayRef<Value *> Roots,
614                  ExtraValueToDebugLocsMap &ExternallyUsedValues,
615                  ArrayRef<Value *> UserIgnoreLst = None);
616 
617   /// Clear the internal data structures that are created by 'buildTree'.
618   void deleteTree() {
619     VectorizableTree.clear();
620     ScalarToTreeEntry.clear();
621     MustGather.clear();
622     ExternalUses.clear();
623     NumOpsWantToKeepOrder.clear();
624     NumOpsWantToKeepOriginalOrder = 0;
625     for (auto &Iter : BlocksSchedules) {
626       BlockScheduling *BS = Iter.second.get();
627       BS->clear();
628     }
629     MinBWs.clear();
630     InstrElementSize.clear();
631   }
632 
633   unsigned getTreeSize() const { return VectorizableTree.size(); }
634 
635   /// Perform LICM and CSE on the newly generated gather sequences.
636   void optimizeGatherSequence();
637 
638   /// \returns The best order of instructions for vectorization.
639   Optional<ArrayRef<unsigned>> bestOrder() const {
640     assert(llvm::all_of(
641                NumOpsWantToKeepOrder,
642                [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) {
643                  return D.getFirst().size() ==
644                         VectorizableTree[0]->Scalars.size();
645                }) &&
646            "All orders must have the same size as number of instructions in "
647            "tree node.");
648     auto I = std::max_element(
649         NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(),
650         [](const decltype(NumOpsWantToKeepOrder)::value_type &D1,
651            const decltype(NumOpsWantToKeepOrder)::value_type &D2) {
652           return D1.second < D2.second;
653         });
654     if (I == NumOpsWantToKeepOrder.end() ||
655         I->getSecond() <= NumOpsWantToKeepOriginalOrder)
656       return None;
657 
658     return makeArrayRef(I->getFirst());
659   }
660 
661   /// Builds the correct order for root instructions.
662   /// If some leaves have the same instructions to be vectorized, we may
663   /// incorrectly evaluate the best order for the root node (it is built for the
664   /// vector of instructions without repeated instructions and, thus, has less
665   /// elements than the root node). This function builds the correct order for
666   /// the root node.
667   /// For example, if the root node is \<a+b, a+c, a+d, f+e\>, then the leaves
668   /// are \<a, a, a, f\> and \<b, c, d, e\>. When we try to vectorize the first
669   /// leaf, it will be shrink to \<a, b\>. If instructions in this leaf should
670   /// be reordered, the best order will be \<1, 0\>. We need to extend this
671   /// order for the root node. For the root node this order should look like
672   /// \<3, 0, 1, 2\>. This function extends the order for the reused
673   /// instructions.
674   void findRootOrder(OrdersType &Order) {
675     // If the leaf has the same number of instructions to vectorize as the root
676     // - order must be set already.
677     unsigned RootSize = VectorizableTree[0]->Scalars.size();
678     if (Order.size() == RootSize)
679       return;
680     SmallVector<unsigned, 4> RealOrder(Order.size());
681     std::swap(Order, RealOrder);
682     SmallVector<int, 4> Mask;
683     inversePermutation(RealOrder, Mask);
684     Order.assign(Mask.begin(), Mask.end());
685     // The leaf has less number of instructions - need to find the true order of
686     // the root.
687     // Scan the nodes starting from the leaf back to the root.
688     const TreeEntry *PNode = VectorizableTree.back().get();
689     SmallVector<const TreeEntry *, 4> Nodes(1, PNode);
690     SmallPtrSet<const TreeEntry *, 4> Visited;
691     while (!Nodes.empty() && Order.size() != RootSize) {
692       const TreeEntry *PNode = Nodes.pop_back_val();
693       if (!Visited.insert(PNode).second)
694         continue;
695       const TreeEntry &Node = *PNode;
696       for (const EdgeInfo &EI : Node.UserTreeIndices)
697         if (EI.UserTE)
698           Nodes.push_back(EI.UserTE);
699       if (Node.ReuseShuffleIndices.empty())
700         continue;
701       // Build the order for the parent node.
702       OrdersType NewOrder(Node.ReuseShuffleIndices.size(), RootSize);
703       SmallVector<unsigned, 4> OrderCounter(Order.size(), 0);
704       // The algorithm of the order extension is:
705       // 1. Calculate the number of the same instructions for the order.
706       // 2. Calculate the index of the new order: total number of instructions
707       // with order less than the order of the current instruction + reuse
708       // number of the current instruction.
709       // 3. The new order is just the index of the instruction in the original
710       // vector of the instructions.
711       for (unsigned I : Node.ReuseShuffleIndices)
712         ++OrderCounter[Order[I]];
713       SmallVector<unsigned, 4> CurrentCounter(Order.size(), 0);
714       for (unsigned I = 0, E = Node.ReuseShuffleIndices.size(); I < E; ++I) {
715         unsigned ReusedIdx = Node.ReuseShuffleIndices[I];
716         unsigned OrderIdx = Order[ReusedIdx];
717         unsigned NewIdx = 0;
718         for (unsigned J = 0; J < OrderIdx; ++J)
719           NewIdx += OrderCounter[J];
720         NewIdx += CurrentCounter[OrderIdx];
721         ++CurrentCounter[OrderIdx];
722         assert(NewOrder[NewIdx] == RootSize &&
723                "The order index should not be written already.");
724         NewOrder[NewIdx] = I;
725       }
726       std::swap(Order, NewOrder);
727     }
728     assert(Order.size() == RootSize &&
729            "Root node is expected or the size of the order must be the same as "
730            "the number of elements in the root node.");
731     assert(llvm::all_of(Order,
732                         [RootSize](unsigned Val) { return Val != RootSize; }) &&
733            "All indices must be initialized");
734   }
735 
736   /// \return The vector element size in bits to use when vectorizing the
737   /// expression tree ending at \p V. If V is a store, the size is the width of
738   /// the stored value. Otherwise, the size is the width of the largest loaded
739   /// value reaching V. This method is used by the vectorizer to calculate
740   /// vectorization factors.
741   unsigned getVectorElementSize(Value *V);
742 
743   /// Compute the minimum type sizes required to represent the entries in a
744   /// vectorizable tree.
745   void computeMinimumValueSizes();
746 
747   // \returns maximum vector register size as set by TTI or overridden by cl::opt.
748   unsigned getMaxVecRegSize() const {
749     return MaxVecRegSize;
750   }
751 
752   // \returns minimum vector register size as set by cl::opt.
753   unsigned getMinVecRegSize() const {
754     return MinVecRegSize;
755   }
756 
757   unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const {
758     unsigned MaxVF = MaxVFOption.getNumOccurrences() ?
759       MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode);
760     return MaxVF ? MaxVF : UINT_MAX;
761   }
762 
763   /// Check if homogeneous aggregate is isomorphic to some VectorType.
764   /// Accepts homogeneous multidimensional aggregate of scalars/vectors like
765   /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> },
766   /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on.
767   ///
768   /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
769   unsigned canMapToVector(Type *T, const DataLayout &DL) const;
770 
771   /// \returns True if the VectorizableTree is both tiny and not fully
772   /// vectorizable. We do not vectorize such trees.
773   bool isTreeTinyAndNotFullyVectorizable() const;
774 
775   /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values
776   /// can be load combined in the backend. Load combining may not be allowed in
777   /// the IR optimizer, so we do not want to alter the pattern. For example,
778   /// partially transforming a scalar bswap() pattern into vector code is
779   /// effectively impossible for the backend to undo.
780   /// TODO: If load combining is allowed in the IR optimizer, this analysis
781   ///       may not be necessary.
782   bool isLoadCombineReductionCandidate(RecurKind RdxKind) const;
783 
784   /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values
785   /// can be load combined in the backend. Load combining may not be allowed in
786   /// the IR optimizer, so we do not want to alter the pattern. For example,
787   /// partially transforming a scalar bswap() pattern into vector code is
788   /// effectively impossible for the backend to undo.
789   /// TODO: If load combining is allowed in the IR optimizer, this analysis
790   ///       may not be necessary.
791   bool isLoadCombineCandidate() const;
792 
793   OptimizationRemarkEmitter *getORE() { return ORE; }
794 
795   /// This structure holds any data we need about the edges being traversed
796   /// during buildTree_rec(). We keep track of:
797   /// (i) the user TreeEntry index, and
798   /// (ii) the index of the edge.
799   struct EdgeInfo {
800     EdgeInfo() = default;
801     EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx)
802         : UserTE(UserTE), EdgeIdx(EdgeIdx) {}
803     /// The user TreeEntry.
804     TreeEntry *UserTE = nullptr;
805     /// The operand index of the use.
806     unsigned EdgeIdx = UINT_MAX;
807 #ifndef NDEBUG
808     friend inline raw_ostream &operator<<(raw_ostream &OS,
809                                           const BoUpSLP::EdgeInfo &EI) {
810       EI.dump(OS);
811       return OS;
812     }
813     /// Debug print.
814     void dump(raw_ostream &OS) const {
815       OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null")
816          << " EdgeIdx:" << EdgeIdx << "}";
817     }
818     LLVM_DUMP_METHOD void dump() const { dump(dbgs()); }
819 #endif
820   };
821 
822   /// A helper data structure to hold the operands of a vector of instructions.
823   /// This supports a fixed vector length for all operand vectors.
824   class VLOperands {
825     /// For each operand we need (i) the value, and (ii) the opcode that it
826     /// would be attached to if the expression was in a left-linearized form.
827     /// This is required to avoid illegal operand reordering.
828     /// For example:
829     /// \verbatim
830     ///                         0 Op1
831     ///                         |/
832     /// Op1 Op2   Linearized    + Op2
833     ///   \ /     ---------->   |/
834     ///    -                    -
835     ///
836     /// Op1 - Op2            (0 + Op1) - Op2
837     /// \endverbatim
838     ///
839     /// Value Op1 is attached to a '+' operation, and Op2 to a '-'.
840     ///
841     /// Another way to think of this is to track all the operations across the
842     /// path from the operand all the way to the root of the tree and to
843     /// calculate the operation that corresponds to this path. For example, the
844     /// path from Op2 to the root crosses the RHS of the '-', therefore the
845     /// corresponding operation is a '-' (which matches the one in the
846     /// linearized tree, as shown above).
847     ///
848     /// For lack of a better term, we refer to this operation as Accumulated
849     /// Path Operation (APO).
850     struct OperandData {
851       OperandData() = default;
852       OperandData(Value *V, bool APO, bool IsUsed)
853           : V(V), APO(APO), IsUsed(IsUsed) {}
854       /// The operand value.
855       Value *V = nullptr;
856       /// TreeEntries only allow a single opcode, or an alternate sequence of
857       /// them (e.g, +, -). Therefore, we can safely use a boolean value for the
858       /// APO. It is set to 'true' if 'V' is attached to an inverse operation
859       /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise
860       /// (e.g., Add/Mul)
861       bool APO = false;
862       /// Helper data for the reordering function.
863       bool IsUsed = false;
864     };
865 
866     /// During operand reordering, we are trying to select the operand at lane
867     /// that matches best with the operand at the neighboring lane. Our
868     /// selection is based on the type of value we are looking for. For example,
869     /// if the neighboring lane has a load, we need to look for a load that is
870     /// accessing a consecutive address. These strategies are summarized in the
871     /// 'ReorderingMode' enumerator.
872     enum class ReorderingMode {
873       Load,     ///< Matching loads to consecutive memory addresses
874       Opcode,   ///< Matching instructions based on opcode (same or alternate)
875       Constant, ///< Matching constants
876       Splat,    ///< Matching the same instruction multiple times (broadcast)
877       Failed,   ///< We failed to create a vectorizable group
878     };
879 
880     using OperandDataVec = SmallVector<OperandData, 2>;
881 
882     /// A vector of operand vectors.
883     SmallVector<OperandDataVec, 4> OpsVec;
884 
885     const DataLayout &DL;
886     ScalarEvolution &SE;
887     const BoUpSLP &R;
888 
889     /// \returns the operand data at \p OpIdx and \p Lane.
890     OperandData &getData(unsigned OpIdx, unsigned Lane) {
891       return OpsVec[OpIdx][Lane];
892     }
893 
894     /// \returns the operand data at \p OpIdx and \p Lane. Const version.
895     const OperandData &getData(unsigned OpIdx, unsigned Lane) const {
896       return OpsVec[OpIdx][Lane];
897     }
898 
899     /// Clears the used flag for all entries.
900     void clearUsed() {
901       for (unsigned OpIdx = 0, NumOperands = getNumOperands();
902            OpIdx != NumOperands; ++OpIdx)
903         for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
904              ++Lane)
905           OpsVec[OpIdx][Lane].IsUsed = false;
906     }
907 
908     /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2.
909     void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) {
910       std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]);
911     }
912 
913     // The hard-coded scores listed here are not very important. When computing
914     // the scores of matching one sub-tree with another, we are basically
915     // counting the number of values that are matching. So even if all scores
916     // are set to 1, we would still get a decent matching result.
917     // However, sometimes we have to break ties. For example we may have to
918     // choose between matching loads vs matching opcodes. This is what these
919     // scores are helping us with: they provide the order of preference.
920 
921     /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]).
922     static const int ScoreConsecutiveLoads = 3;
923     /// ExtractElementInst from same vector and consecutive indexes.
924     static const int ScoreConsecutiveExtracts = 3;
925     /// Constants.
926     static const int ScoreConstants = 2;
927     /// Instructions with the same opcode.
928     static const int ScoreSameOpcode = 2;
929     /// Instructions with alt opcodes (e.g, add + sub).
930     static const int ScoreAltOpcodes = 1;
931     /// Identical instructions (a.k.a. splat or broadcast).
932     static const int ScoreSplat = 1;
933     /// Matching with an undef is preferable to failing.
934     static const int ScoreUndef = 1;
935     /// Score for failing to find a decent match.
936     static const int ScoreFail = 0;
937     /// User exteranl to the vectorized code.
938     static const int ExternalUseCost = 1;
939     /// The user is internal but in a different lane.
940     static const int UserInDiffLaneCost = ExternalUseCost;
941 
942     /// \returns the score of placing \p V1 and \p V2 in consecutive lanes.
943     static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL,
944                                ScalarEvolution &SE) {
945       auto *LI1 = dyn_cast<LoadInst>(V1);
946       auto *LI2 = dyn_cast<LoadInst>(V2);
947       if (LI1 && LI2) {
948         if (LI1->getParent() != LI2->getParent())
949           return VLOperands::ScoreFail;
950 
951         Optional<int> Dist =
952             getPointersDiff(LI1->getPointerOperand(), LI2->getPointerOperand(),
953                             DL, SE, /*StrictCheck=*/true);
954         return (Dist && *Dist == 1) ? VLOperands::ScoreConsecutiveLoads
955                                     : VLOperands::ScoreFail;
956       }
957 
958       auto *C1 = dyn_cast<Constant>(V1);
959       auto *C2 = dyn_cast<Constant>(V2);
960       if (C1 && C2)
961         return VLOperands::ScoreConstants;
962 
963       // Extracts from consecutive indexes of the same vector better score as
964       // the extracts could be optimized away.
965       Value *EV;
966       ConstantInt *Ex1Idx, *Ex2Idx;
967       if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) &&
968           match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) &&
969           Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue())
970         return VLOperands::ScoreConsecutiveExtracts;
971 
972       auto *I1 = dyn_cast<Instruction>(V1);
973       auto *I2 = dyn_cast<Instruction>(V2);
974       if (I1 && I2) {
975         if (I1 == I2)
976           return VLOperands::ScoreSplat;
977         InstructionsState S = getSameOpcode({I1, I2});
978         // Note: Only consider instructions with <= 2 operands to avoid
979         // complexity explosion.
980         if (S.getOpcode() && S.MainOp->getNumOperands() <= 2)
981           return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes
982                                   : VLOperands::ScoreSameOpcode;
983       }
984 
985       if (isa<UndefValue>(V2))
986         return VLOperands::ScoreUndef;
987 
988       return VLOperands::ScoreFail;
989     }
990 
991     /// Holds the values and their lane that are taking part in the look-ahead
992     /// score calculation. This is used in the external uses cost calculation.
993     SmallDenseMap<Value *, int> InLookAheadValues;
994 
995     /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are
996     /// either external to the vectorized code, or require shuffling.
997     int getExternalUsesCost(const std::pair<Value *, int> &LHS,
998                             const std::pair<Value *, int> &RHS) {
999       int Cost = 0;
1000       std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}};
1001       for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) {
1002         Value *V = Values[Idx].first;
1003         if (isa<Constant>(V)) {
1004           // Since this is a function pass, it doesn't make semantic sense to
1005           // walk the users of a subclass of Constant. The users could be in
1006           // another function, or even another module that happens to be in
1007           // the same LLVMContext.
1008           continue;
1009         }
1010 
1011         // Calculate the absolute lane, using the minimum relative lane of LHS
1012         // and RHS as base and Idx as the offset.
1013         int Ln = std::min(LHS.second, RHS.second) + Idx;
1014         assert(Ln >= 0 && "Bad lane calculation");
1015         unsigned UsersBudget = LookAheadUsersBudget;
1016         for (User *U : V->users()) {
1017           if (const TreeEntry *UserTE = R.getTreeEntry(U)) {
1018             // The user is in the VectorizableTree. Check if we need to insert.
1019             auto It = llvm::find(UserTE->Scalars, U);
1020             assert(It != UserTE->Scalars.end() && "U is in UserTE");
1021             int UserLn = std::distance(UserTE->Scalars.begin(), It);
1022             assert(UserLn >= 0 && "Bad lane");
1023             if (UserLn != Ln)
1024               Cost += UserInDiffLaneCost;
1025           } else {
1026             // Check if the user is in the look-ahead code.
1027             auto It2 = InLookAheadValues.find(U);
1028             if (It2 != InLookAheadValues.end()) {
1029               // The user is in the look-ahead code. Check the lane.
1030               if (It2->second != Ln)
1031                 Cost += UserInDiffLaneCost;
1032             } else {
1033               // The user is neither in SLP tree nor in the look-ahead code.
1034               Cost += ExternalUseCost;
1035             }
1036           }
1037           // Limit the number of visited uses to cap compilation time.
1038           if (--UsersBudget == 0)
1039             break;
1040         }
1041       }
1042       return Cost;
1043     }
1044 
1045     /// Go through the operands of \p LHS and \p RHS recursively until \p
1046     /// MaxLevel, and return the cummulative score. For example:
1047     /// \verbatim
1048     ///  A[0]  B[0]  A[1]  B[1]  C[0] D[0]  B[1] A[1]
1049     ///     \ /         \ /         \ /        \ /
1050     ///      +           +           +          +
1051     ///     G1          G2          G3         G4
1052     /// \endverbatim
1053     /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at
1054     /// each level recursively, accumulating the score. It starts from matching
1055     /// the additions at level 0, then moves on to the loads (level 1). The
1056     /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and
1057     /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while
1058     /// {A[0],C[0]} has a score of VLOperands::ScoreFail.
1059     /// Please note that the order of the operands does not matter, as we
1060     /// evaluate the score of all profitable combinations of operands. In
1061     /// other words the score of G1 and G4 is the same as G1 and G2. This
1062     /// heuristic is based on ideas described in:
1063     ///   Look-ahead SLP: Auto-vectorization in the presence of commutative
1064     ///   operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha,
1065     ///   Luís F. W. Góes
1066     int getScoreAtLevelRec(const std::pair<Value *, int> &LHS,
1067                            const std::pair<Value *, int> &RHS, int CurrLevel,
1068                            int MaxLevel) {
1069 
1070       Value *V1 = LHS.first;
1071       Value *V2 = RHS.first;
1072       // Get the shallow score of V1 and V2.
1073       int ShallowScoreAtThisLevel =
1074           std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) -
1075                                        getExternalUsesCost(LHS, RHS));
1076       int Lane1 = LHS.second;
1077       int Lane2 = RHS.second;
1078 
1079       // If reached MaxLevel,
1080       //  or if V1 and V2 are not instructions,
1081       //  or if they are SPLAT,
1082       //  or if they are not consecutive, early return the current cost.
1083       auto *I1 = dyn_cast<Instruction>(V1);
1084       auto *I2 = dyn_cast<Instruction>(V2);
1085       if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 ||
1086           ShallowScoreAtThisLevel == VLOperands::ScoreFail ||
1087           (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel))
1088         return ShallowScoreAtThisLevel;
1089       assert(I1 && I2 && "Should have early exited.");
1090 
1091       // Keep track of in-tree values for determining the external-use cost.
1092       InLookAheadValues[V1] = Lane1;
1093       InLookAheadValues[V2] = Lane2;
1094 
1095       // Contains the I2 operand indexes that got matched with I1 operands.
1096       SmallSet<unsigned, 4> Op2Used;
1097 
1098       // Recursion towards the operands of I1 and I2. We are trying all possbile
1099       // operand pairs, and keeping track of the best score.
1100       for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands();
1101            OpIdx1 != NumOperands1; ++OpIdx1) {
1102         // Try to pair op1I with the best operand of I2.
1103         int MaxTmpScore = 0;
1104         unsigned MaxOpIdx2 = 0;
1105         bool FoundBest = false;
1106         // If I2 is commutative try all combinations.
1107         unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1;
1108         unsigned ToIdx = isCommutative(I2)
1109                              ? I2->getNumOperands()
1110                              : std::min(I2->getNumOperands(), OpIdx1 + 1);
1111         assert(FromIdx <= ToIdx && "Bad index");
1112         for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) {
1113           // Skip operands already paired with OpIdx1.
1114           if (Op2Used.count(OpIdx2))
1115             continue;
1116           // Recursively calculate the cost at each level
1117           int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1},
1118                                             {I2->getOperand(OpIdx2), Lane2},
1119                                             CurrLevel + 1, MaxLevel);
1120           // Look for the best score.
1121           if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) {
1122             MaxTmpScore = TmpScore;
1123             MaxOpIdx2 = OpIdx2;
1124             FoundBest = true;
1125           }
1126         }
1127         if (FoundBest) {
1128           // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it.
1129           Op2Used.insert(MaxOpIdx2);
1130           ShallowScoreAtThisLevel += MaxTmpScore;
1131         }
1132       }
1133       return ShallowScoreAtThisLevel;
1134     }
1135 
1136     /// \Returns the look-ahead score, which tells us how much the sub-trees
1137     /// rooted at \p LHS and \p RHS match, the more they match the higher the
1138     /// score. This helps break ties in an informed way when we cannot decide on
1139     /// the order of the operands by just considering the immediate
1140     /// predecessors.
1141     int getLookAheadScore(const std::pair<Value *, int> &LHS,
1142                           const std::pair<Value *, int> &RHS) {
1143       InLookAheadValues.clear();
1144       return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth);
1145     }
1146 
1147     // Search all operands in Ops[*][Lane] for the one that matches best
1148     // Ops[OpIdx][LastLane] and return its opreand index.
1149     // If no good match can be found, return None.
1150     Optional<unsigned>
1151     getBestOperand(unsigned OpIdx, int Lane, int LastLane,
1152                    ArrayRef<ReorderingMode> ReorderingModes) {
1153       unsigned NumOperands = getNumOperands();
1154 
1155       // The operand of the previous lane at OpIdx.
1156       Value *OpLastLane = getData(OpIdx, LastLane).V;
1157 
1158       // Our strategy mode for OpIdx.
1159       ReorderingMode RMode = ReorderingModes[OpIdx];
1160 
1161       // The linearized opcode of the operand at OpIdx, Lane.
1162       bool OpIdxAPO = getData(OpIdx, Lane).APO;
1163 
1164       // The best operand index and its score.
1165       // Sometimes we have more than one option (e.g., Opcode and Undefs), so we
1166       // are using the score to differentiate between the two.
1167       struct BestOpData {
1168         Optional<unsigned> Idx = None;
1169         unsigned Score = 0;
1170       } BestOp;
1171 
1172       // Iterate through all unused operands and look for the best.
1173       for (unsigned Idx = 0; Idx != NumOperands; ++Idx) {
1174         // Get the operand at Idx and Lane.
1175         OperandData &OpData = getData(Idx, Lane);
1176         Value *Op = OpData.V;
1177         bool OpAPO = OpData.APO;
1178 
1179         // Skip already selected operands.
1180         if (OpData.IsUsed)
1181           continue;
1182 
1183         // Skip if we are trying to move the operand to a position with a
1184         // different opcode in the linearized tree form. This would break the
1185         // semantics.
1186         if (OpAPO != OpIdxAPO)
1187           continue;
1188 
1189         // Look for an operand that matches the current mode.
1190         switch (RMode) {
1191         case ReorderingMode::Load:
1192         case ReorderingMode::Constant:
1193         case ReorderingMode::Opcode: {
1194           bool LeftToRight = Lane > LastLane;
1195           Value *OpLeft = (LeftToRight) ? OpLastLane : Op;
1196           Value *OpRight = (LeftToRight) ? Op : OpLastLane;
1197           unsigned Score =
1198               getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane});
1199           if (Score > BestOp.Score) {
1200             BestOp.Idx = Idx;
1201             BestOp.Score = Score;
1202           }
1203           break;
1204         }
1205         case ReorderingMode::Splat:
1206           if (Op == OpLastLane)
1207             BestOp.Idx = Idx;
1208           break;
1209         case ReorderingMode::Failed:
1210           return None;
1211         }
1212       }
1213 
1214       if (BestOp.Idx) {
1215         getData(BestOp.Idx.getValue(), Lane).IsUsed = true;
1216         return BestOp.Idx;
1217       }
1218       // If we could not find a good match return None.
1219       return None;
1220     }
1221 
1222     /// Helper for reorderOperandVecs. \Returns the lane that we should start
1223     /// reordering from. This is the one which has the least number of operands
1224     /// that can freely move about.
1225     unsigned getBestLaneToStartReordering() const {
1226       unsigned BestLane = 0;
1227       unsigned Min = UINT_MAX;
1228       for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
1229            ++Lane) {
1230         unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane);
1231         if (NumFreeOps < Min) {
1232           Min = NumFreeOps;
1233           BestLane = Lane;
1234         }
1235       }
1236       return BestLane;
1237     }
1238 
1239     /// \Returns the maximum number of operands that are allowed to be reordered
1240     /// for \p Lane. This is used as a heuristic for selecting the first lane to
1241     /// start operand reordering.
1242     unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const {
1243       unsigned CntTrue = 0;
1244       unsigned NumOperands = getNumOperands();
1245       // Operands with the same APO can be reordered. We therefore need to count
1246       // how many of them we have for each APO, like this: Cnt[APO] = x.
1247       // Since we only have two APOs, namely true and false, we can avoid using
1248       // a map. Instead we can simply count the number of operands that
1249       // correspond to one of them (in this case the 'true' APO), and calculate
1250       // the other by subtracting it from the total number of operands.
1251       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx)
1252         if (getData(OpIdx, Lane).APO)
1253           ++CntTrue;
1254       unsigned CntFalse = NumOperands - CntTrue;
1255       return std::max(CntTrue, CntFalse);
1256     }
1257 
1258     /// Go through the instructions in VL and append their operands.
1259     void appendOperandsOfVL(ArrayRef<Value *> VL) {
1260       assert(!VL.empty() && "Bad VL");
1261       assert((empty() || VL.size() == getNumLanes()) &&
1262              "Expected same number of lanes");
1263       assert(isa<Instruction>(VL[0]) && "Expected instruction");
1264       unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands();
1265       OpsVec.resize(NumOperands);
1266       unsigned NumLanes = VL.size();
1267       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1268         OpsVec[OpIdx].resize(NumLanes);
1269         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1270           assert(isa<Instruction>(VL[Lane]) && "Expected instruction");
1271           // Our tree has just 3 nodes: the root and two operands.
1272           // It is therefore trivial to get the APO. We only need to check the
1273           // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or
1274           // RHS operand. The LHS operand of both add and sub is never attached
1275           // to an inversese operation in the linearized form, therefore its APO
1276           // is false. The RHS is true only if VL[Lane] is an inverse operation.
1277 
1278           // Since operand reordering is performed on groups of commutative
1279           // operations or alternating sequences (e.g., +, -), we can safely
1280           // tell the inverse operations by checking commutativity.
1281           bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane]));
1282           bool APO = (OpIdx == 0) ? false : IsInverseOperation;
1283           OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx),
1284                                  APO, false};
1285         }
1286       }
1287     }
1288 
1289     /// \returns the number of operands.
1290     unsigned getNumOperands() const { return OpsVec.size(); }
1291 
1292     /// \returns the number of lanes.
1293     unsigned getNumLanes() const { return OpsVec[0].size(); }
1294 
1295     /// \returns the operand value at \p OpIdx and \p Lane.
1296     Value *getValue(unsigned OpIdx, unsigned Lane) const {
1297       return getData(OpIdx, Lane).V;
1298     }
1299 
1300     /// \returns true if the data structure is empty.
1301     bool empty() const { return OpsVec.empty(); }
1302 
1303     /// Clears the data.
1304     void clear() { OpsVec.clear(); }
1305 
1306     /// \Returns true if there are enough operands identical to \p Op to fill
1307     /// the whole vector.
1308     /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow.
1309     bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) {
1310       bool OpAPO = getData(OpIdx, Lane).APO;
1311       for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) {
1312         if (Ln == Lane)
1313           continue;
1314         // This is set to true if we found a candidate for broadcast at Lane.
1315         bool FoundCandidate = false;
1316         for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) {
1317           OperandData &Data = getData(OpI, Ln);
1318           if (Data.APO != OpAPO || Data.IsUsed)
1319             continue;
1320           if (Data.V == Op) {
1321             FoundCandidate = true;
1322             Data.IsUsed = true;
1323             break;
1324           }
1325         }
1326         if (!FoundCandidate)
1327           return false;
1328       }
1329       return true;
1330     }
1331 
1332   public:
1333     /// Initialize with all the operands of the instruction vector \p RootVL.
1334     VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL,
1335                ScalarEvolution &SE, const BoUpSLP &R)
1336         : DL(DL), SE(SE), R(R) {
1337       // Append all the operands of RootVL.
1338       appendOperandsOfVL(RootVL);
1339     }
1340 
1341     /// \Returns a value vector with the operands across all lanes for the
1342     /// opearnd at \p OpIdx.
1343     ValueList getVL(unsigned OpIdx) const {
1344       ValueList OpVL(OpsVec[OpIdx].size());
1345       assert(OpsVec[OpIdx].size() == getNumLanes() &&
1346              "Expected same num of lanes across all operands");
1347       for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane)
1348         OpVL[Lane] = OpsVec[OpIdx][Lane].V;
1349       return OpVL;
1350     }
1351 
1352     // Performs operand reordering for 2 or more operands.
1353     // The original operands are in OrigOps[OpIdx][Lane].
1354     // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'.
1355     void reorder() {
1356       unsigned NumOperands = getNumOperands();
1357       unsigned NumLanes = getNumLanes();
1358       // Each operand has its own mode. We are using this mode to help us select
1359       // the instructions for each lane, so that they match best with the ones
1360       // we have selected so far.
1361       SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands);
1362 
1363       // This is a greedy single-pass algorithm. We are going over each lane
1364       // once and deciding on the best order right away with no back-tracking.
1365       // However, in order to increase its effectiveness, we start with the lane
1366       // that has operands that can move the least. For example, given the
1367       // following lanes:
1368       //  Lane 0 : A[0] = B[0] + C[0]   // Visited 3rd
1369       //  Lane 1 : A[1] = C[1] - B[1]   // Visited 1st
1370       //  Lane 2 : A[2] = B[2] + C[2]   // Visited 2nd
1371       //  Lane 3 : A[3] = C[3] - B[3]   // Visited 4th
1372       // we will start at Lane 1, since the operands of the subtraction cannot
1373       // be reordered. Then we will visit the rest of the lanes in a circular
1374       // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3.
1375 
1376       // Find the first lane that we will start our search from.
1377       unsigned FirstLane = getBestLaneToStartReordering();
1378 
1379       // Initialize the modes.
1380       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1381         Value *OpLane0 = getValue(OpIdx, FirstLane);
1382         // Keep track if we have instructions with all the same opcode on one
1383         // side.
1384         if (isa<LoadInst>(OpLane0))
1385           ReorderingModes[OpIdx] = ReorderingMode::Load;
1386         else if (isa<Instruction>(OpLane0)) {
1387           // Check if OpLane0 should be broadcast.
1388           if (shouldBroadcast(OpLane0, OpIdx, FirstLane))
1389             ReorderingModes[OpIdx] = ReorderingMode::Splat;
1390           else
1391             ReorderingModes[OpIdx] = ReorderingMode::Opcode;
1392         }
1393         else if (isa<Constant>(OpLane0))
1394           ReorderingModes[OpIdx] = ReorderingMode::Constant;
1395         else if (isa<Argument>(OpLane0))
1396           // Our best hope is a Splat. It may save some cost in some cases.
1397           ReorderingModes[OpIdx] = ReorderingMode::Splat;
1398         else
1399           // NOTE: This should be unreachable.
1400           ReorderingModes[OpIdx] = ReorderingMode::Failed;
1401       }
1402 
1403       // If the initial strategy fails for any of the operand indexes, then we
1404       // perform reordering again in a second pass. This helps avoid assigning
1405       // high priority to the failed strategy, and should improve reordering for
1406       // the non-failed operand indexes.
1407       for (int Pass = 0; Pass != 2; ++Pass) {
1408         // Skip the second pass if the first pass did not fail.
1409         bool StrategyFailed = false;
1410         // Mark all operand data as free to use.
1411         clearUsed();
1412         // We keep the original operand order for the FirstLane, so reorder the
1413         // rest of the lanes. We are visiting the nodes in a circular fashion,
1414         // using FirstLane as the center point and increasing the radius
1415         // distance.
1416         for (unsigned Distance = 1; Distance != NumLanes; ++Distance) {
1417           // Visit the lane on the right and then the lane on the left.
1418           for (int Direction : {+1, -1}) {
1419             int Lane = FirstLane + Direction * Distance;
1420             if (Lane < 0 || Lane >= (int)NumLanes)
1421               continue;
1422             int LastLane = Lane - Direction;
1423             assert(LastLane >= 0 && LastLane < (int)NumLanes &&
1424                    "Out of bounds");
1425             // Look for a good match for each operand.
1426             for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1427               // Search for the operand that matches SortedOps[OpIdx][Lane-1].
1428               Optional<unsigned> BestIdx =
1429                   getBestOperand(OpIdx, Lane, LastLane, ReorderingModes);
1430               // By not selecting a value, we allow the operands that follow to
1431               // select a better matching value. We will get a non-null value in
1432               // the next run of getBestOperand().
1433               if (BestIdx) {
1434                 // Swap the current operand with the one returned by
1435                 // getBestOperand().
1436                 swap(OpIdx, BestIdx.getValue(), Lane);
1437               } else {
1438                 // We failed to find a best operand, set mode to 'Failed'.
1439                 ReorderingModes[OpIdx] = ReorderingMode::Failed;
1440                 // Enable the second pass.
1441                 StrategyFailed = true;
1442               }
1443             }
1444           }
1445         }
1446         // Skip second pass if the strategy did not fail.
1447         if (!StrategyFailed)
1448           break;
1449       }
1450     }
1451 
1452 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1453     LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) {
1454       switch (RMode) {
1455       case ReorderingMode::Load:
1456         return "Load";
1457       case ReorderingMode::Opcode:
1458         return "Opcode";
1459       case ReorderingMode::Constant:
1460         return "Constant";
1461       case ReorderingMode::Splat:
1462         return "Splat";
1463       case ReorderingMode::Failed:
1464         return "Failed";
1465       }
1466       llvm_unreachable("Unimplemented Reordering Type");
1467     }
1468 
1469     LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode,
1470                                                    raw_ostream &OS) {
1471       return OS << getModeStr(RMode);
1472     }
1473 
1474     /// Debug print.
1475     LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) {
1476       printMode(RMode, dbgs());
1477     }
1478 
1479     friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) {
1480       return printMode(RMode, OS);
1481     }
1482 
1483     LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const {
1484       const unsigned Indent = 2;
1485       unsigned Cnt = 0;
1486       for (const OperandDataVec &OpDataVec : OpsVec) {
1487         OS << "Operand " << Cnt++ << "\n";
1488         for (const OperandData &OpData : OpDataVec) {
1489           OS.indent(Indent) << "{";
1490           if (Value *V = OpData.V)
1491             OS << *V;
1492           else
1493             OS << "null";
1494           OS << ", APO:" << OpData.APO << "}\n";
1495         }
1496         OS << "\n";
1497       }
1498       return OS;
1499     }
1500 
1501     /// Debug print.
1502     LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
1503 #endif
1504   };
1505 
1506   /// Checks if the instruction is marked for deletion.
1507   bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); }
1508 
1509   /// Marks values operands for later deletion by replacing them with Undefs.
1510   void eraseInstructions(ArrayRef<Value *> AV);
1511 
1512   ~BoUpSLP();
1513 
1514 private:
1515   /// Checks if all users of \p I are the part of the vectorization tree.
1516   bool areAllUsersVectorized(Instruction *I) const;
1517 
1518   /// \returns the cost of the vectorizable entry.
1519   InstructionCost getEntryCost(TreeEntry *E);
1520 
1521   /// This is the recursive part of buildTree.
1522   void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth,
1523                      const EdgeInfo &EI);
1524 
1525   /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can
1526   /// be vectorized to use the original vector (or aggregate "bitcast" to a
1527   /// vector) and sets \p CurrentOrder to the identity permutation; otherwise
1528   /// returns false, setting \p CurrentOrder to either an empty vector or a
1529   /// non-identity permutation that allows to reuse extract instructions.
1530   bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
1531                        SmallVectorImpl<unsigned> &CurrentOrder) const;
1532 
1533   /// Vectorize a single entry in the tree.
1534   Value *vectorizeTree(TreeEntry *E);
1535 
1536   /// Vectorize a single entry in the tree, starting in \p VL.
1537   Value *vectorizeTree(ArrayRef<Value *> VL);
1538 
1539   /// \returns the scalarization cost for this type. Scalarization in this
1540   /// context means the creation of vectors from a group of scalars.
1541   InstructionCost
1542   getGatherCost(FixedVectorType *Ty,
1543                 const DenseSet<unsigned> &ShuffledIndices) const;
1544 
1545   /// \returns the scalarization cost for this list of values. Assuming that
1546   /// this subtree gets vectorized, we may need to extract the values from the
1547   /// roots. This method calculates the cost of extracting the values.
1548   InstructionCost getGatherCost(ArrayRef<Value *> VL) const;
1549 
1550   /// Set the Builder insert point to one after the last instruction in
1551   /// the bundle
1552   void setInsertPointAfterBundle(TreeEntry *E);
1553 
1554   /// \returns a vector from a collection of scalars in \p VL.
1555   Value *gather(ArrayRef<Value *> VL);
1556 
1557   /// \returns whether the VectorizableTree is fully vectorizable and will
1558   /// be beneficial even the tree height is tiny.
1559   bool isFullyVectorizableTinyTree() const;
1560 
1561   /// Reorder commutative or alt operands to get better probability of
1562   /// generating vectorized code.
1563   static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
1564                                              SmallVectorImpl<Value *> &Left,
1565                                              SmallVectorImpl<Value *> &Right,
1566                                              const DataLayout &DL,
1567                                              ScalarEvolution &SE,
1568                                              const BoUpSLP &R);
1569   struct TreeEntry {
1570     using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>;
1571     TreeEntry(VecTreeTy &Container) : Container(Container) {}
1572 
1573     /// \returns true if the scalars in VL are equal to this entry.
1574     bool isSame(ArrayRef<Value *> VL) const {
1575       if (VL.size() == Scalars.size())
1576         return std::equal(VL.begin(), VL.end(), Scalars.begin());
1577       return VL.size() == ReuseShuffleIndices.size() &&
1578              std::equal(
1579                  VL.begin(), VL.end(), ReuseShuffleIndices.begin(),
1580                  [this](Value *V, int Idx) { return V == Scalars[Idx]; });
1581     }
1582 
1583     /// A vector of scalars.
1584     ValueList Scalars;
1585 
1586     /// The Scalars are vectorized into this value. It is initialized to Null.
1587     Value *VectorizedValue = nullptr;
1588 
1589     /// Do we need to gather this sequence or vectorize it
1590     /// (either with vector instruction or with scatter/gather
1591     /// intrinsics for store/load)?
1592     enum EntryState { Vectorize, ScatterVectorize, NeedToGather };
1593     EntryState State;
1594 
1595     /// Does this sequence require some shuffling?
1596     SmallVector<int, 4> ReuseShuffleIndices;
1597 
1598     /// Does this entry require reordering?
1599     SmallVector<unsigned, 4> ReorderIndices;
1600 
1601     /// Points back to the VectorizableTree.
1602     ///
1603     /// Only used for Graphviz right now.  Unfortunately GraphTrait::NodeRef has
1604     /// to be a pointer and needs to be able to initialize the child iterator.
1605     /// Thus we need a reference back to the container to translate the indices
1606     /// to entries.
1607     VecTreeTy &Container;
1608 
1609     /// The TreeEntry index containing the user of this entry.  We can actually
1610     /// have multiple users so the data structure is not truly a tree.
1611     SmallVector<EdgeInfo, 1> UserTreeIndices;
1612 
1613     /// The index of this treeEntry in VectorizableTree.
1614     int Idx = -1;
1615 
1616   private:
1617     /// The operands of each instruction in each lane Operands[op_index][lane].
1618     /// Note: This helps avoid the replication of the code that performs the
1619     /// reordering of operands during buildTree_rec() and vectorizeTree().
1620     SmallVector<ValueList, 2> Operands;
1621 
1622     /// The main/alternate instruction.
1623     Instruction *MainOp = nullptr;
1624     Instruction *AltOp = nullptr;
1625 
1626   public:
1627     /// Set this bundle's \p OpIdx'th operand to \p OpVL.
1628     void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) {
1629       if (Operands.size() < OpIdx + 1)
1630         Operands.resize(OpIdx + 1);
1631       assert(Operands[OpIdx].size() == 0 && "Already resized?");
1632       Operands[OpIdx].resize(Scalars.size());
1633       for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane)
1634         Operands[OpIdx][Lane] = OpVL[Lane];
1635     }
1636 
1637     /// Set the operands of this bundle in their original order.
1638     void setOperandsInOrder() {
1639       assert(Operands.empty() && "Already initialized?");
1640       auto *I0 = cast<Instruction>(Scalars[0]);
1641       Operands.resize(I0->getNumOperands());
1642       unsigned NumLanes = Scalars.size();
1643       for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands();
1644            OpIdx != NumOperands; ++OpIdx) {
1645         Operands[OpIdx].resize(NumLanes);
1646         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1647           auto *I = cast<Instruction>(Scalars[Lane]);
1648           assert(I->getNumOperands() == NumOperands &&
1649                  "Expected same number of operands");
1650           Operands[OpIdx][Lane] = I->getOperand(OpIdx);
1651         }
1652       }
1653     }
1654 
1655     /// \returns the \p OpIdx operand of this TreeEntry.
1656     ValueList &getOperand(unsigned OpIdx) {
1657       assert(OpIdx < Operands.size() && "Off bounds");
1658       return Operands[OpIdx];
1659     }
1660 
1661     /// \returns the number of operands.
1662     unsigned getNumOperands() const { return Operands.size(); }
1663 
1664     /// \return the single \p OpIdx operand.
1665     Value *getSingleOperand(unsigned OpIdx) const {
1666       assert(OpIdx < Operands.size() && "Off bounds");
1667       assert(!Operands[OpIdx].empty() && "No operand available");
1668       return Operands[OpIdx][0];
1669     }
1670 
1671     /// Some of the instructions in the list have alternate opcodes.
1672     bool isAltShuffle() const {
1673       return getOpcode() != getAltOpcode();
1674     }
1675 
1676     bool isOpcodeOrAlt(Instruction *I) const {
1677       unsigned CheckedOpcode = I->getOpcode();
1678       return (getOpcode() == CheckedOpcode ||
1679               getAltOpcode() == CheckedOpcode);
1680     }
1681 
1682     /// Chooses the correct key for scheduling data. If \p Op has the same (or
1683     /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is
1684     /// \p OpValue.
1685     Value *isOneOf(Value *Op) const {
1686       auto *I = dyn_cast<Instruction>(Op);
1687       if (I && isOpcodeOrAlt(I))
1688         return Op;
1689       return MainOp;
1690     }
1691 
1692     void setOperations(const InstructionsState &S) {
1693       MainOp = S.MainOp;
1694       AltOp = S.AltOp;
1695     }
1696 
1697     Instruction *getMainOp() const {
1698       return MainOp;
1699     }
1700 
1701     Instruction *getAltOp() const {
1702       return AltOp;
1703     }
1704 
1705     /// The main/alternate opcodes for the list of instructions.
1706     unsigned getOpcode() const {
1707       return MainOp ? MainOp->getOpcode() : 0;
1708     }
1709 
1710     unsigned getAltOpcode() const {
1711       return AltOp ? AltOp->getOpcode() : 0;
1712     }
1713 
1714     /// Update operations state of this entry if reorder occurred.
1715     bool updateStateIfReorder() {
1716       if (ReorderIndices.empty())
1717         return false;
1718       InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front());
1719       setOperations(S);
1720       return true;
1721     }
1722 
1723 #ifndef NDEBUG
1724     /// Debug printer.
1725     LLVM_DUMP_METHOD void dump() const {
1726       dbgs() << Idx << ".\n";
1727       for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) {
1728         dbgs() << "Operand " << OpI << ":\n";
1729         for (const Value *V : Operands[OpI])
1730           dbgs().indent(2) << *V << "\n";
1731       }
1732       dbgs() << "Scalars: \n";
1733       for (Value *V : Scalars)
1734         dbgs().indent(2) << *V << "\n";
1735       dbgs() << "State: ";
1736       switch (State) {
1737       case Vectorize:
1738         dbgs() << "Vectorize\n";
1739         break;
1740       case ScatterVectorize:
1741         dbgs() << "ScatterVectorize\n";
1742         break;
1743       case NeedToGather:
1744         dbgs() << "NeedToGather\n";
1745         break;
1746       }
1747       dbgs() << "MainOp: ";
1748       if (MainOp)
1749         dbgs() << *MainOp << "\n";
1750       else
1751         dbgs() << "NULL\n";
1752       dbgs() << "AltOp: ";
1753       if (AltOp)
1754         dbgs() << *AltOp << "\n";
1755       else
1756         dbgs() << "NULL\n";
1757       dbgs() << "VectorizedValue: ";
1758       if (VectorizedValue)
1759         dbgs() << *VectorizedValue << "\n";
1760       else
1761         dbgs() << "NULL\n";
1762       dbgs() << "ReuseShuffleIndices: ";
1763       if (ReuseShuffleIndices.empty())
1764         dbgs() << "Empty";
1765       else
1766         for (unsigned ReuseIdx : ReuseShuffleIndices)
1767           dbgs() << ReuseIdx << ", ";
1768       dbgs() << "\n";
1769       dbgs() << "ReorderIndices: ";
1770       for (unsigned ReorderIdx : ReorderIndices)
1771         dbgs() << ReorderIdx << ", ";
1772       dbgs() << "\n";
1773       dbgs() << "UserTreeIndices: ";
1774       for (const auto &EInfo : UserTreeIndices)
1775         dbgs() << EInfo << ", ";
1776       dbgs() << "\n";
1777     }
1778 #endif
1779   };
1780 
1781 #ifndef NDEBUG
1782   void dumpTreeCosts(TreeEntry *E, InstructionCost ReuseShuffleCost,
1783                      InstructionCost VecCost,
1784                      InstructionCost ScalarCost) const {
1785     dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump();
1786     dbgs() << "SLP: Costs:\n";
1787     dbgs() << "SLP:     ReuseShuffleCost = " << ReuseShuffleCost << "\n";
1788     dbgs() << "SLP:     VectorCost = " << VecCost << "\n";
1789     dbgs() << "SLP:     ScalarCost = " << ScalarCost << "\n";
1790     dbgs() << "SLP:     ReuseShuffleCost + VecCost - ScalarCost = " <<
1791                ReuseShuffleCost + VecCost - ScalarCost << "\n";
1792   }
1793 #endif
1794 
1795   /// Create a new VectorizableTree entry.
1796   TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle,
1797                           const InstructionsState &S,
1798                           const EdgeInfo &UserTreeIdx,
1799                           ArrayRef<unsigned> ReuseShuffleIndices = None,
1800                           ArrayRef<unsigned> ReorderIndices = None) {
1801     TreeEntry::EntryState EntryState =
1802         Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather;
1803     return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx,
1804                         ReuseShuffleIndices, ReorderIndices);
1805   }
1806 
1807   TreeEntry *newTreeEntry(ArrayRef<Value *> VL,
1808                           TreeEntry::EntryState EntryState,
1809                           Optional<ScheduleData *> Bundle,
1810                           const InstructionsState &S,
1811                           const EdgeInfo &UserTreeIdx,
1812                           ArrayRef<unsigned> ReuseShuffleIndices = None,
1813                           ArrayRef<unsigned> ReorderIndices = None) {
1814     assert(((!Bundle && EntryState == TreeEntry::NeedToGather) ||
1815             (Bundle && EntryState != TreeEntry::NeedToGather)) &&
1816            "Need to vectorize gather entry?");
1817     VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree));
1818     TreeEntry *Last = VectorizableTree.back().get();
1819     Last->Idx = VectorizableTree.size() - 1;
1820     Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
1821     Last->State = EntryState;
1822     Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(),
1823                                      ReuseShuffleIndices.end());
1824     Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end());
1825     Last->setOperations(S);
1826     if (Last->State != TreeEntry::NeedToGather) {
1827       for (Value *V : VL) {
1828         assert(!getTreeEntry(V) && "Scalar already in tree!");
1829         ScalarToTreeEntry[V] = Last;
1830       }
1831       // Update the scheduler bundle to point to this TreeEntry.
1832       unsigned Lane = 0;
1833       for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember;
1834            BundleMember = BundleMember->NextInBundle) {
1835         BundleMember->TE = Last;
1836         BundleMember->Lane = Lane;
1837         ++Lane;
1838       }
1839       assert((!Bundle.getValue() || Lane == VL.size()) &&
1840              "Bundle and VL out of sync");
1841     } else {
1842       MustGather.insert(VL.begin(), VL.end());
1843     }
1844 
1845     if (UserTreeIdx.UserTE)
1846       Last->UserTreeIndices.push_back(UserTreeIdx);
1847 
1848     return Last;
1849   }
1850 
1851   /// -- Vectorization State --
1852   /// Holds all of the tree entries.
1853   TreeEntry::VecTreeTy VectorizableTree;
1854 
1855 #ifndef NDEBUG
1856   /// Debug printer.
1857   LLVM_DUMP_METHOD void dumpVectorizableTree() const {
1858     for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) {
1859       VectorizableTree[Id]->dump();
1860       dbgs() << "\n";
1861     }
1862   }
1863 #endif
1864 
1865   TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); }
1866 
1867   const TreeEntry *getTreeEntry(Value *V) const {
1868     return ScalarToTreeEntry.lookup(V);
1869   }
1870 
1871   /// Maps a specific scalar to its tree entry.
1872   SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry;
1873 
1874   /// Maps a value to the proposed vectorizable size.
1875   SmallDenseMap<Value *, unsigned> InstrElementSize;
1876 
1877   /// A list of scalars that we found that we need to keep as scalars.
1878   ValueSet MustGather;
1879 
1880   /// This POD struct describes one external user in the vectorized tree.
1881   struct ExternalUser {
1882     ExternalUser(Value *S, llvm::User *U, int L)
1883         : Scalar(S), User(U), Lane(L) {}
1884 
1885     // Which scalar in our function.
1886     Value *Scalar;
1887 
1888     // Which user that uses the scalar.
1889     llvm::User *User;
1890 
1891     // Which lane does the scalar belong to.
1892     int Lane;
1893   };
1894   using UserList = SmallVector<ExternalUser, 16>;
1895 
1896   /// Checks if two instructions may access the same memory.
1897   ///
1898   /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
1899   /// is invariant in the calling loop.
1900   bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
1901                  Instruction *Inst2) {
1902     // First check if the result is already in the cache.
1903     AliasCacheKey key = std::make_pair(Inst1, Inst2);
1904     Optional<bool> &result = AliasCache[key];
1905     if (result.hasValue()) {
1906       return result.getValue();
1907     }
1908     MemoryLocation Loc2 = getLocation(Inst2, AA);
1909     bool aliased = true;
1910     if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) {
1911       // Do the alias check.
1912       aliased = AA->alias(Loc1, Loc2);
1913     }
1914     // Store the result in the cache.
1915     result = aliased;
1916     return aliased;
1917   }
1918 
1919   using AliasCacheKey = std::pair<Instruction *, Instruction *>;
1920 
1921   /// Cache for alias results.
1922   /// TODO: consider moving this to the AliasAnalysis itself.
1923   DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
1924 
1925   /// Removes an instruction from its block and eventually deletes it.
1926   /// It's like Instruction::eraseFromParent() except that the actual deletion
1927   /// is delayed until BoUpSLP is destructed.
1928   /// This is required to ensure that there are no incorrect collisions in the
1929   /// AliasCache, which can happen if a new instruction is allocated at the
1930   /// same address as a previously deleted instruction.
1931   void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) {
1932     auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first;
1933     It->getSecond() = It->getSecond() && ReplaceOpsWithUndef;
1934   }
1935 
1936   /// Temporary store for deleted instructions. Instructions will be deleted
1937   /// eventually when the BoUpSLP is destructed.
1938   DenseMap<Instruction *, bool> DeletedInstructions;
1939 
1940   /// A list of values that need to extracted out of the tree.
1941   /// This list holds pairs of (Internal Scalar : External User). External User
1942   /// can be nullptr, it means that this Internal Scalar will be used later,
1943   /// after vectorization.
1944   UserList ExternalUses;
1945 
1946   /// Values used only by @llvm.assume calls.
1947   SmallPtrSet<const Value *, 32> EphValues;
1948 
1949   /// Holds all of the instructions that we gathered.
1950   SetVector<Instruction *> GatherSeq;
1951 
1952   /// A list of blocks that we are going to CSE.
1953   SetVector<BasicBlock *> CSEBlocks;
1954 
1955   /// Contains all scheduling relevant data for an instruction.
1956   /// A ScheduleData either represents a single instruction or a member of an
1957   /// instruction bundle (= a group of instructions which is combined into a
1958   /// vector instruction).
1959   struct ScheduleData {
1960     // The initial value for the dependency counters. It means that the
1961     // dependencies are not calculated yet.
1962     enum { InvalidDeps = -1 };
1963 
1964     ScheduleData() = default;
1965 
1966     void init(int BlockSchedulingRegionID, Value *OpVal) {
1967       FirstInBundle = this;
1968       NextInBundle = nullptr;
1969       NextLoadStore = nullptr;
1970       IsScheduled = false;
1971       SchedulingRegionID = BlockSchedulingRegionID;
1972       UnscheduledDepsInBundle = UnscheduledDeps;
1973       clearDependencies();
1974       OpValue = OpVal;
1975       TE = nullptr;
1976       Lane = -1;
1977     }
1978 
1979     /// Returns true if the dependency information has been calculated.
1980     bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
1981 
1982     /// Returns true for single instructions and for bundle representatives
1983     /// (= the head of a bundle).
1984     bool isSchedulingEntity() const { return FirstInBundle == this; }
1985 
1986     /// Returns true if it represents an instruction bundle and not only a
1987     /// single instruction.
1988     bool isPartOfBundle() const {
1989       return NextInBundle != nullptr || FirstInBundle != this;
1990     }
1991 
1992     /// Returns true if it is ready for scheduling, i.e. it has no more
1993     /// unscheduled depending instructions/bundles.
1994     bool isReady() const {
1995       assert(isSchedulingEntity() &&
1996              "can't consider non-scheduling entity for ready list");
1997       return UnscheduledDepsInBundle == 0 && !IsScheduled;
1998     }
1999 
2000     /// Modifies the number of unscheduled dependencies, also updating it for
2001     /// the whole bundle.
2002     int incrementUnscheduledDeps(int Incr) {
2003       UnscheduledDeps += Incr;
2004       return FirstInBundle->UnscheduledDepsInBundle += Incr;
2005     }
2006 
2007     /// Sets the number of unscheduled dependencies to the number of
2008     /// dependencies.
2009     void resetUnscheduledDeps() {
2010       incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
2011     }
2012 
2013     /// Clears all dependency information.
2014     void clearDependencies() {
2015       Dependencies = InvalidDeps;
2016       resetUnscheduledDeps();
2017       MemoryDependencies.clear();
2018     }
2019 
2020     void dump(raw_ostream &os) const {
2021       if (!isSchedulingEntity()) {
2022         os << "/ " << *Inst;
2023       } else if (NextInBundle) {
2024         os << '[' << *Inst;
2025         ScheduleData *SD = NextInBundle;
2026         while (SD) {
2027           os << ';' << *SD->Inst;
2028           SD = SD->NextInBundle;
2029         }
2030         os << ']';
2031       } else {
2032         os << *Inst;
2033       }
2034     }
2035 
2036     Instruction *Inst = nullptr;
2037 
2038     /// Points to the head in an instruction bundle (and always to this for
2039     /// single instructions).
2040     ScheduleData *FirstInBundle = nullptr;
2041 
2042     /// Single linked list of all instructions in a bundle. Null if it is a
2043     /// single instruction.
2044     ScheduleData *NextInBundle = nullptr;
2045 
2046     /// Single linked list of all memory instructions (e.g. load, store, call)
2047     /// in the block - until the end of the scheduling region.
2048     ScheduleData *NextLoadStore = nullptr;
2049 
2050     /// The dependent memory instructions.
2051     /// This list is derived on demand in calculateDependencies().
2052     SmallVector<ScheduleData *, 4> MemoryDependencies;
2053 
2054     /// This ScheduleData is in the current scheduling region if this matches
2055     /// the current SchedulingRegionID of BlockScheduling.
2056     int SchedulingRegionID = 0;
2057 
2058     /// Used for getting a "good" final ordering of instructions.
2059     int SchedulingPriority = 0;
2060 
2061     /// The number of dependencies. Constitutes of the number of users of the
2062     /// instruction plus the number of dependent memory instructions (if any).
2063     /// This value is calculated on demand.
2064     /// If InvalidDeps, the number of dependencies is not calculated yet.
2065     int Dependencies = InvalidDeps;
2066 
2067     /// The number of dependencies minus the number of dependencies of scheduled
2068     /// instructions. As soon as this is zero, the instruction/bundle gets ready
2069     /// for scheduling.
2070     /// Note that this is negative as long as Dependencies is not calculated.
2071     int UnscheduledDeps = InvalidDeps;
2072 
2073     /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
2074     /// single instructions.
2075     int UnscheduledDepsInBundle = InvalidDeps;
2076 
2077     /// True if this instruction is scheduled (or considered as scheduled in the
2078     /// dry-run).
2079     bool IsScheduled = false;
2080 
2081     /// Opcode of the current instruction in the schedule data.
2082     Value *OpValue = nullptr;
2083 
2084     /// The TreeEntry that this instruction corresponds to.
2085     TreeEntry *TE = nullptr;
2086 
2087     /// The lane of this node in the TreeEntry.
2088     int Lane = -1;
2089   };
2090 
2091 #ifndef NDEBUG
2092   friend inline raw_ostream &operator<<(raw_ostream &os,
2093                                         const BoUpSLP::ScheduleData &SD) {
2094     SD.dump(os);
2095     return os;
2096   }
2097 #endif
2098 
2099   friend struct GraphTraits<BoUpSLP *>;
2100   friend struct DOTGraphTraits<BoUpSLP *>;
2101 
2102   /// Contains all scheduling data for a basic block.
2103   struct BlockScheduling {
2104     BlockScheduling(BasicBlock *BB)
2105         : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {}
2106 
2107     void clear() {
2108       ReadyInsts.clear();
2109       ScheduleStart = nullptr;
2110       ScheduleEnd = nullptr;
2111       FirstLoadStoreInRegion = nullptr;
2112       LastLoadStoreInRegion = nullptr;
2113 
2114       // Reduce the maximum schedule region size by the size of the
2115       // previous scheduling run.
2116       ScheduleRegionSizeLimit -= ScheduleRegionSize;
2117       if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
2118         ScheduleRegionSizeLimit = MinScheduleRegionSize;
2119       ScheduleRegionSize = 0;
2120 
2121       // Make a new scheduling region, i.e. all existing ScheduleData is not
2122       // in the new region yet.
2123       ++SchedulingRegionID;
2124     }
2125 
2126     ScheduleData *getScheduleData(Value *V) {
2127       ScheduleData *SD = ScheduleDataMap[V];
2128       if (SD && SD->SchedulingRegionID == SchedulingRegionID)
2129         return SD;
2130       return nullptr;
2131     }
2132 
2133     ScheduleData *getScheduleData(Value *V, Value *Key) {
2134       if (V == Key)
2135         return getScheduleData(V);
2136       auto I = ExtraScheduleDataMap.find(V);
2137       if (I != ExtraScheduleDataMap.end()) {
2138         ScheduleData *SD = I->second[Key];
2139         if (SD && SD->SchedulingRegionID == SchedulingRegionID)
2140           return SD;
2141       }
2142       return nullptr;
2143     }
2144 
2145     bool isInSchedulingRegion(ScheduleData *SD) const {
2146       return SD->SchedulingRegionID == SchedulingRegionID;
2147     }
2148 
2149     /// Marks an instruction as scheduled and puts all dependent ready
2150     /// instructions into the ready-list.
2151     template <typename ReadyListType>
2152     void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
2153       SD->IsScheduled = true;
2154       LLVM_DEBUG(dbgs() << "SLP:   schedule " << *SD << "\n");
2155 
2156       ScheduleData *BundleMember = SD;
2157       while (BundleMember) {
2158         if (BundleMember->Inst != BundleMember->OpValue) {
2159           BundleMember = BundleMember->NextInBundle;
2160           continue;
2161         }
2162         // Handle the def-use chain dependencies.
2163 
2164         // Decrement the unscheduled counter and insert to ready list if ready.
2165         auto &&DecrUnsched = [this, &ReadyList](Instruction *I) {
2166           doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) {
2167             if (OpDef && OpDef->hasValidDependencies() &&
2168                 OpDef->incrementUnscheduledDeps(-1) == 0) {
2169               // There are no more unscheduled dependencies after
2170               // decrementing, so we can put the dependent instruction
2171               // into the ready list.
2172               ScheduleData *DepBundle = OpDef->FirstInBundle;
2173               assert(!DepBundle->IsScheduled &&
2174                      "already scheduled bundle gets ready");
2175               ReadyList.insert(DepBundle);
2176               LLVM_DEBUG(dbgs()
2177                          << "SLP:    gets ready (def): " << *DepBundle << "\n");
2178             }
2179           });
2180         };
2181 
2182         // If BundleMember is a vector bundle, its operands may have been
2183         // reordered duiring buildTree(). We therefore need to get its operands
2184         // through the TreeEntry.
2185         if (TreeEntry *TE = BundleMember->TE) {
2186           int Lane = BundleMember->Lane;
2187           assert(Lane >= 0 && "Lane not set");
2188 
2189           // Since vectorization tree is being built recursively this assertion
2190           // ensures that the tree entry has all operands set before reaching
2191           // this code. Couple of exceptions known at the moment are extracts
2192           // where their second (immediate) operand is not added. Since
2193           // immediates do not affect scheduler behavior this is considered
2194           // okay.
2195           auto *In = TE->getMainOp();
2196           assert(In &&
2197                  (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) ||
2198                   In->getNumOperands() == TE->getNumOperands()) &&
2199                  "Missed TreeEntry operands?");
2200           (void)In; // fake use to avoid build failure when assertions disabled
2201 
2202           for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands();
2203                OpIdx != NumOperands; ++OpIdx)
2204             if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane]))
2205               DecrUnsched(I);
2206         } else {
2207           // If BundleMember is a stand-alone instruction, no operand reordering
2208           // has taken place, so we directly access its operands.
2209           for (Use &U : BundleMember->Inst->operands())
2210             if (auto *I = dyn_cast<Instruction>(U.get()))
2211               DecrUnsched(I);
2212         }
2213         // Handle the memory dependencies.
2214         for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
2215           if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
2216             // There are no more unscheduled dependencies after decrementing,
2217             // so we can put the dependent instruction into the ready list.
2218             ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
2219             assert(!DepBundle->IsScheduled &&
2220                    "already scheduled bundle gets ready");
2221             ReadyList.insert(DepBundle);
2222             LLVM_DEBUG(dbgs()
2223                        << "SLP:    gets ready (mem): " << *DepBundle << "\n");
2224           }
2225         }
2226         BundleMember = BundleMember->NextInBundle;
2227       }
2228     }
2229 
2230     void doForAllOpcodes(Value *V,
2231                          function_ref<void(ScheduleData *SD)> Action) {
2232       if (ScheduleData *SD = getScheduleData(V))
2233         Action(SD);
2234       auto I = ExtraScheduleDataMap.find(V);
2235       if (I != ExtraScheduleDataMap.end())
2236         for (auto &P : I->second)
2237           if (P.second->SchedulingRegionID == SchedulingRegionID)
2238             Action(P.second);
2239     }
2240 
2241     /// Put all instructions into the ReadyList which are ready for scheduling.
2242     template <typename ReadyListType>
2243     void initialFillReadyList(ReadyListType &ReadyList) {
2244       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
2245         doForAllOpcodes(I, [&](ScheduleData *SD) {
2246           if (SD->isSchedulingEntity() && SD->isReady()) {
2247             ReadyList.insert(SD);
2248             LLVM_DEBUG(dbgs()
2249                        << "SLP:    initially in ready list: " << *I << "\n");
2250           }
2251         });
2252       }
2253     }
2254 
2255     /// Checks if a bundle of instructions can be scheduled, i.e. has no
2256     /// cyclic dependencies. This is only a dry-run, no instructions are
2257     /// actually moved at this stage.
2258     /// \returns the scheduling bundle. The returned Optional value is non-None
2259     /// if \p VL is allowed to be scheduled.
2260     Optional<ScheduleData *>
2261     tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
2262                       const InstructionsState &S);
2263 
2264     /// Un-bundles a group of instructions.
2265     void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue);
2266 
2267     /// Allocates schedule data chunk.
2268     ScheduleData *allocateScheduleDataChunks();
2269 
2270     /// Extends the scheduling region so that V is inside the region.
2271     /// \returns true if the region size is within the limit.
2272     bool extendSchedulingRegion(Value *V, const InstructionsState &S);
2273 
2274     /// Initialize the ScheduleData structures for new instructions in the
2275     /// scheduling region.
2276     void initScheduleData(Instruction *FromI, Instruction *ToI,
2277                           ScheduleData *PrevLoadStore,
2278                           ScheduleData *NextLoadStore);
2279 
2280     /// Updates the dependency information of a bundle and of all instructions/
2281     /// bundles which depend on the original bundle.
2282     void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
2283                                BoUpSLP *SLP);
2284 
2285     /// Sets all instruction in the scheduling region to un-scheduled.
2286     void resetSchedule();
2287 
2288     BasicBlock *BB;
2289 
2290     /// Simple memory allocation for ScheduleData.
2291     std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
2292 
2293     /// The size of a ScheduleData array in ScheduleDataChunks.
2294     int ChunkSize;
2295 
2296     /// The allocator position in the current chunk, which is the last entry
2297     /// of ScheduleDataChunks.
2298     int ChunkPos;
2299 
2300     /// Attaches ScheduleData to Instruction.
2301     /// Note that the mapping survives during all vectorization iterations, i.e.
2302     /// ScheduleData structures are recycled.
2303     DenseMap<Value *, ScheduleData *> ScheduleDataMap;
2304 
2305     /// Attaches ScheduleData to Instruction with the leading key.
2306     DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>>
2307         ExtraScheduleDataMap;
2308 
2309     struct ReadyList : SmallVector<ScheduleData *, 8> {
2310       void insert(ScheduleData *SD) { push_back(SD); }
2311     };
2312 
2313     /// The ready-list for scheduling (only used for the dry-run).
2314     ReadyList ReadyInsts;
2315 
2316     /// The first instruction of the scheduling region.
2317     Instruction *ScheduleStart = nullptr;
2318 
2319     /// The first instruction _after_ the scheduling region.
2320     Instruction *ScheduleEnd = nullptr;
2321 
2322     /// The first memory accessing instruction in the scheduling region
2323     /// (can be null).
2324     ScheduleData *FirstLoadStoreInRegion = nullptr;
2325 
2326     /// The last memory accessing instruction in the scheduling region
2327     /// (can be null).
2328     ScheduleData *LastLoadStoreInRegion = nullptr;
2329 
2330     /// The current size of the scheduling region.
2331     int ScheduleRegionSize = 0;
2332 
2333     /// The maximum size allowed for the scheduling region.
2334     int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget;
2335 
2336     /// The ID of the scheduling region. For a new vectorization iteration this
2337     /// is incremented which "removes" all ScheduleData from the region.
2338     // Make sure that the initial SchedulingRegionID is greater than the
2339     // initial SchedulingRegionID in ScheduleData (which is 0).
2340     int SchedulingRegionID = 1;
2341   };
2342 
2343   /// Attaches the BlockScheduling structures to basic blocks.
2344   MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
2345 
2346   /// Performs the "real" scheduling. Done before vectorization is actually
2347   /// performed in a basic block.
2348   void scheduleBlock(BlockScheduling *BS);
2349 
2350   /// List of users to ignore during scheduling and that don't need extracting.
2351   ArrayRef<Value *> UserIgnoreList;
2352 
2353   /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of
2354   /// sorted SmallVectors of unsigned.
2355   struct OrdersTypeDenseMapInfo {
2356     static OrdersType getEmptyKey() {
2357       OrdersType V;
2358       V.push_back(~1U);
2359       return V;
2360     }
2361 
2362     static OrdersType getTombstoneKey() {
2363       OrdersType V;
2364       V.push_back(~2U);
2365       return V;
2366     }
2367 
2368     static unsigned getHashValue(const OrdersType &V) {
2369       return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
2370     }
2371 
2372     static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) {
2373       return LHS == RHS;
2374     }
2375   };
2376 
2377   /// Contains orders of operations along with the number of bundles that have
2378   /// operations in this order. It stores only those orders that require
2379   /// reordering, if reordering is not required it is counted using \a
2380   /// NumOpsWantToKeepOriginalOrder.
2381   DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder;
2382   /// Number of bundles that do not require reordering.
2383   unsigned NumOpsWantToKeepOriginalOrder = 0;
2384 
2385   // Analysis and block reference.
2386   Function *F;
2387   ScalarEvolution *SE;
2388   TargetTransformInfo *TTI;
2389   TargetLibraryInfo *TLI;
2390   AAResults *AA;
2391   LoopInfo *LI;
2392   DominatorTree *DT;
2393   AssumptionCache *AC;
2394   DemandedBits *DB;
2395   const DataLayout *DL;
2396   OptimizationRemarkEmitter *ORE;
2397 
2398   unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
2399   unsigned MinVecRegSize; // Set by cl::opt (default: 128).
2400 
2401   /// Instruction builder to construct the vectorized tree.
2402   IRBuilder<> Builder;
2403 
2404   /// A map of scalar integer values to the smallest bit width with which they
2405   /// can legally be represented. The values map to (width, signed) pairs,
2406   /// where "width" indicates the minimum bit width and "signed" is True if the
2407   /// value must be signed-extended, rather than zero-extended, back to its
2408   /// original width.
2409   MapVector<Value *, std::pair<uint64_t, bool>> MinBWs;
2410 };
2411 
2412 } // end namespace slpvectorizer
2413 
2414 template <> struct GraphTraits<BoUpSLP *> {
2415   using TreeEntry = BoUpSLP::TreeEntry;
2416 
2417   /// NodeRef has to be a pointer per the GraphWriter.
2418   using NodeRef = TreeEntry *;
2419 
2420   using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy;
2421 
2422   /// Add the VectorizableTree to the index iterator to be able to return
2423   /// TreeEntry pointers.
2424   struct ChildIteratorType
2425       : public iterator_adaptor_base<
2426             ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> {
2427     ContainerTy &VectorizableTree;
2428 
2429     ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W,
2430                       ContainerTy &VT)
2431         : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {}
2432 
2433     NodeRef operator*() { return I->UserTE; }
2434   };
2435 
2436   static NodeRef getEntryNode(BoUpSLP &R) {
2437     return R.VectorizableTree[0].get();
2438   }
2439 
2440   static ChildIteratorType child_begin(NodeRef N) {
2441     return {N->UserTreeIndices.begin(), N->Container};
2442   }
2443 
2444   static ChildIteratorType child_end(NodeRef N) {
2445     return {N->UserTreeIndices.end(), N->Container};
2446   }
2447 
2448   /// For the node iterator we just need to turn the TreeEntry iterator into a
2449   /// TreeEntry* iterator so that it dereferences to NodeRef.
2450   class nodes_iterator {
2451     using ItTy = ContainerTy::iterator;
2452     ItTy It;
2453 
2454   public:
2455     nodes_iterator(const ItTy &It2) : It(It2) {}
2456     NodeRef operator*() { return It->get(); }
2457     nodes_iterator operator++() {
2458       ++It;
2459       return *this;
2460     }
2461     bool operator!=(const nodes_iterator &N2) const { return N2.It != It; }
2462   };
2463 
2464   static nodes_iterator nodes_begin(BoUpSLP *R) {
2465     return nodes_iterator(R->VectorizableTree.begin());
2466   }
2467 
2468   static nodes_iterator nodes_end(BoUpSLP *R) {
2469     return nodes_iterator(R->VectorizableTree.end());
2470   }
2471 
2472   static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); }
2473 };
2474 
2475 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits {
2476   using TreeEntry = BoUpSLP::TreeEntry;
2477 
2478   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
2479 
2480   std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) {
2481     std::string Str;
2482     raw_string_ostream OS(Str);
2483     if (isSplat(Entry->Scalars)) {
2484       OS << "<splat> " << *Entry->Scalars[0];
2485       return Str;
2486     }
2487     for (auto V : Entry->Scalars) {
2488       OS << *V;
2489       if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) {
2490             return EU.Scalar == V;
2491           }))
2492         OS << " <extract>";
2493       OS << "\n";
2494     }
2495     return Str;
2496   }
2497 
2498   static std::string getNodeAttributes(const TreeEntry *Entry,
2499                                        const BoUpSLP *) {
2500     if (Entry->State == TreeEntry::NeedToGather)
2501       return "color=red";
2502     return "";
2503   }
2504 };
2505 
2506 } // end namespace llvm
2507 
2508 BoUpSLP::~BoUpSLP() {
2509   for (const auto &Pair : DeletedInstructions) {
2510     // Replace operands of ignored instructions with Undefs in case if they were
2511     // marked for deletion.
2512     if (Pair.getSecond()) {
2513       Value *Undef = UndefValue::get(Pair.getFirst()->getType());
2514       Pair.getFirst()->replaceAllUsesWith(Undef);
2515     }
2516     Pair.getFirst()->dropAllReferences();
2517   }
2518   for (const auto &Pair : DeletedInstructions) {
2519     assert(Pair.getFirst()->use_empty() &&
2520            "trying to erase instruction with users.");
2521     Pair.getFirst()->eraseFromParent();
2522   }
2523 #ifdef EXPENSIVE_CHECKS
2524   // If we could guarantee that this call is not extremely slow, we could
2525   // remove the ifdef limitation (see PR47712).
2526   assert(!verifyFunction(*F, &dbgs()));
2527 #endif
2528 }
2529 
2530 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) {
2531   for (auto *V : AV) {
2532     if (auto *I = dyn_cast<Instruction>(V))
2533       eraseInstruction(I, /*ReplaceOpsWithUndef=*/true);
2534   };
2535 }
2536 
2537 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
2538                         ArrayRef<Value *> UserIgnoreLst) {
2539   ExtraValueToDebugLocsMap ExternallyUsedValues;
2540   buildTree(Roots, ExternallyUsedValues, UserIgnoreLst);
2541 }
2542 
2543 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
2544                         ExtraValueToDebugLocsMap &ExternallyUsedValues,
2545                         ArrayRef<Value *> UserIgnoreLst) {
2546   deleteTree();
2547   UserIgnoreList = UserIgnoreLst;
2548   if (!allSameType(Roots))
2549     return;
2550   buildTree_rec(Roots, 0, EdgeInfo());
2551 
2552   // Collect the values that we need to extract from the tree.
2553   for (auto &TEPtr : VectorizableTree) {
2554     TreeEntry *Entry = TEPtr.get();
2555 
2556     // No need to handle users of gathered values.
2557     if (Entry->State == TreeEntry::NeedToGather)
2558       continue;
2559 
2560     // For each lane:
2561     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
2562       Value *Scalar = Entry->Scalars[Lane];
2563       int FoundLane = Lane;
2564       if (!Entry->ReuseShuffleIndices.empty()) {
2565         FoundLane =
2566             std::distance(Entry->ReuseShuffleIndices.begin(),
2567                           llvm::find(Entry->ReuseShuffleIndices, FoundLane));
2568       }
2569 
2570       // Check if the scalar is externally used as an extra arg.
2571       auto ExtI = ExternallyUsedValues.find(Scalar);
2572       if (ExtI != ExternallyUsedValues.end()) {
2573         LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane "
2574                           << Lane << " from " << *Scalar << ".\n");
2575         ExternalUses.emplace_back(Scalar, nullptr, FoundLane);
2576       }
2577       for (User *U : Scalar->users()) {
2578         LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
2579 
2580         Instruction *UserInst = dyn_cast<Instruction>(U);
2581         if (!UserInst)
2582           continue;
2583 
2584         // Skip in-tree scalars that become vectors
2585         if (TreeEntry *UseEntry = getTreeEntry(U)) {
2586           Value *UseScalar = UseEntry->Scalars[0];
2587           // Some in-tree scalars will remain as scalar in vectorized
2588           // instructions. If that is the case, the one in Lane 0 will
2589           // be used.
2590           if (UseScalar != U ||
2591               UseEntry->State == TreeEntry::ScatterVectorize ||
2592               !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
2593             LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
2594                               << ".\n");
2595             assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state");
2596             continue;
2597           }
2598         }
2599 
2600         // Ignore users in the user ignore list.
2601         if (is_contained(UserIgnoreList, UserInst))
2602           continue;
2603 
2604         LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane "
2605                           << Lane << " from " << *Scalar << ".\n");
2606         ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane));
2607       }
2608     }
2609   }
2610 }
2611 
2612 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
2613                             const EdgeInfo &UserTreeIdx) {
2614   assert((allConstant(VL) || allSameType(VL)) && "Invalid types!");
2615 
2616   InstructionsState S = getSameOpcode(VL);
2617   if (Depth == RecursionMaxDepth) {
2618     LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
2619     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2620     return;
2621   }
2622 
2623   // Don't handle vectors.
2624   if (S.OpValue->getType()->isVectorTy()) {
2625     LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
2626     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2627     return;
2628   }
2629 
2630   if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
2631     if (SI->getValueOperand()->getType()->isVectorTy()) {
2632       LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
2633       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2634       return;
2635     }
2636 
2637   // If all of the operands are identical or constant we have a simple solution.
2638   if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) {
2639     LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
2640     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2641     return;
2642   }
2643 
2644   // We now know that this is a vector of instructions of the same type from
2645   // the same block.
2646 
2647   // Don't vectorize ephemeral values.
2648   for (Value *V : VL) {
2649     if (EphValues.count(V)) {
2650       LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
2651                         << ") is ephemeral.\n");
2652       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2653       return;
2654     }
2655   }
2656 
2657   // Check if this is a duplicate of another entry.
2658   if (TreeEntry *E = getTreeEntry(S.OpValue)) {
2659     LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n");
2660     if (!E->isSame(VL)) {
2661       LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
2662       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2663       return;
2664     }
2665     // Record the reuse of the tree node.  FIXME, currently this is only used to
2666     // properly draw the graph rather than for the actual vectorization.
2667     E->UserTreeIndices.push_back(UserTreeIdx);
2668     LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue
2669                       << ".\n");
2670     return;
2671   }
2672 
2673   // Check that none of the instructions in the bundle are already in the tree.
2674   for (Value *V : VL) {
2675     auto *I = dyn_cast<Instruction>(V);
2676     if (!I)
2677       continue;
2678     if (getTreeEntry(I)) {
2679       LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
2680                         << ") is already in tree.\n");
2681       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2682       return;
2683     }
2684   }
2685 
2686   // If any of the scalars is marked as a value that needs to stay scalar, then
2687   // we need to gather the scalars.
2688   // The reduction nodes (stored in UserIgnoreList) also should stay scalar.
2689   for (Value *V : VL) {
2690     if (MustGather.count(V) || is_contained(UserIgnoreList, V)) {
2691       LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
2692       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2693       return;
2694     }
2695   }
2696 
2697   // Check that all of the users of the scalars that we want to vectorize are
2698   // schedulable.
2699   auto *VL0 = cast<Instruction>(S.OpValue);
2700   BasicBlock *BB = VL0->getParent();
2701 
2702   if (!DT->isReachableFromEntry(BB)) {
2703     // Don't go into unreachable blocks. They may contain instructions with
2704     // dependency cycles which confuse the final scheduling.
2705     LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
2706     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2707     return;
2708   }
2709 
2710   // Check that every instruction appears once in this bundle.
2711   SmallVector<unsigned, 4> ReuseShuffleIndicies;
2712   SmallVector<Value *, 4> UniqueValues;
2713   DenseMap<Value *, unsigned> UniquePositions;
2714   for (Value *V : VL) {
2715     auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
2716     ReuseShuffleIndicies.emplace_back(Res.first->second);
2717     if (Res.second)
2718       UniqueValues.emplace_back(V);
2719   }
2720   size_t NumUniqueScalarValues = UniqueValues.size();
2721   if (NumUniqueScalarValues == VL.size()) {
2722     ReuseShuffleIndicies.clear();
2723   } else {
2724     LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n");
2725     if (NumUniqueScalarValues <= 1 ||
2726         !llvm::isPowerOf2_32(NumUniqueScalarValues)) {
2727       LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
2728       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2729       return;
2730     }
2731     VL = UniqueValues;
2732   }
2733 
2734   auto &BSRef = BlocksSchedules[BB];
2735   if (!BSRef)
2736     BSRef = std::make_unique<BlockScheduling>(BB);
2737 
2738   BlockScheduling &BS = *BSRef.get();
2739 
2740   Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S);
2741   if (!Bundle) {
2742     LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
2743     assert((!BS.getScheduleData(VL0) ||
2744             !BS.getScheduleData(VL0)->isPartOfBundle()) &&
2745            "tryScheduleBundle should cancelScheduling on failure");
2746     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2747                  ReuseShuffleIndicies);
2748     return;
2749   }
2750   LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
2751 
2752   unsigned ShuffleOrOp = S.isAltShuffle() ?
2753                 (unsigned) Instruction::ShuffleVector : S.getOpcode();
2754   switch (ShuffleOrOp) {
2755     case Instruction::PHI: {
2756       auto *PH = cast<PHINode>(VL0);
2757 
2758       // Check for terminator values (e.g. invoke).
2759       for (Value *V : VL)
2760         for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) {
2761           Instruction *Term = dyn_cast<Instruction>(
2762               cast<PHINode>(V)->getIncomingValueForBlock(
2763                   PH->getIncomingBlock(I)));
2764           if (Term && Term->isTerminator()) {
2765             LLVM_DEBUG(dbgs()
2766                        << "SLP: Need to swizzle PHINodes (terminator use).\n");
2767             BS.cancelScheduling(VL, VL0);
2768             newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2769                          ReuseShuffleIndicies);
2770             return;
2771           }
2772         }
2773 
2774       TreeEntry *TE =
2775           newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies);
2776       LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
2777 
2778       // Keeps the reordered operands to avoid code duplication.
2779       SmallVector<ValueList, 2> OperandsVec;
2780       for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) {
2781         ValueList Operands;
2782         // Prepare the operand vector.
2783         for (Value *V : VL)
2784           Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(
2785               PH->getIncomingBlock(I)));
2786         TE->setOperand(I, Operands);
2787         OperandsVec.push_back(Operands);
2788       }
2789       for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx)
2790         buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx});
2791       return;
2792     }
2793     case Instruction::ExtractValue:
2794     case Instruction::ExtractElement: {
2795       OrdersType CurrentOrder;
2796       bool Reuse = canReuseExtract(VL, VL0, CurrentOrder);
2797       if (Reuse) {
2798         LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n");
2799         ++NumOpsWantToKeepOriginalOrder;
2800         newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2801                      ReuseShuffleIndicies);
2802         // This is a special case, as it does not gather, but at the same time
2803         // we are not extending buildTree_rec() towards the operands.
2804         ValueList Op0;
2805         Op0.assign(VL.size(), VL0->getOperand(0));
2806         VectorizableTree.back()->setOperand(0, Op0);
2807         return;
2808       }
2809       if (!CurrentOrder.empty()) {
2810         LLVM_DEBUG({
2811           dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
2812                     "with order";
2813           for (unsigned Idx : CurrentOrder)
2814             dbgs() << " " << Idx;
2815           dbgs() << "\n";
2816         });
2817         // Insert new order with initial value 0, if it does not exist,
2818         // otherwise return the iterator to the existing one.
2819         newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2820                      ReuseShuffleIndicies, CurrentOrder);
2821         findRootOrder(CurrentOrder);
2822         ++NumOpsWantToKeepOrder[CurrentOrder];
2823         // This is a special case, as it does not gather, but at the same time
2824         // we are not extending buildTree_rec() towards the operands.
2825         ValueList Op0;
2826         Op0.assign(VL.size(), VL0->getOperand(0));
2827         VectorizableTree.back()->setOperand(0, Op0);
2828         return;
2829       }
2830       LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n");
2831       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2832                    ReuseShuffleIndicies);
2833       BS.cancelScheduling(VL, VL0);
2834       return;
2835     }
2836     case Instruction::Load: {
2837       // Check that a vectorized load would load the same memory as a scalar
2838       // load. For example, we don't want to vectorize loads that are smaller
2839       // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
2840       // treats loading/storing it as an i8 struct. If we vectorize loads/stores
2841       // from such a struct, we read/write packed bits disagreeing with the
2842       // unvectorized version.
2843       Type *ScalarTy = VL0->getType();
2844 
2845       if (DL->getTypeSizeInBits(ScalarTy) !=
2846           DL->getTypeAllocSizeInBits(ScalarTy)) {
2847         BS.cancelScheduling(VL, VL0);
2848         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2849                      ReuseShuffleIndicies);
2850         LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
2851         return;
2852       }
2853 
2854       // Make sure all loads in the bundle are simple - we can't vectorize
2855       // atomic or volatile loads.
2856       SmallVector<Value *, 4> PointerOps(VL.size());
2857       auto POIter = PointerOps.begin();
2858       for (Value *V : VL) {
2859         auto *L = cast<LoadInst>(V);
2860         if (!L->isSimple()) {
2861           BS.cancelScheduling(VL, VL0);
2862           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2863                        ReuseShuffleIndicies);
2864           LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
2865           return;
2866         }
2867         *POIter = L->getPointerOperand();
2868         ++POIter;
2869       }
2870 
2871       OrdersType CurrentOrder;
2872       // Check the order of pointer operands.
2873       if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) {
2874         Value *Ptr0;
2875         Value *PtrN;
2876         if (CurrentOrder.empty()) {
2877           Ptr0 = PointerOps.front();
2878           PtrN = PointerOps.back();
2879         } else {
2880           Ptr0 = PointerOps[CurrentOrder.front()];
2881           PtrN = PointerOps[CurrentOrder.back()];
2882         }
2883         Optional<int> Diff = getPointersDiff(Ptr0, PtrN, *DL, *SE);
2884         // Check that the sorted loads are consecutive.
2885         if (static_cast<unsigned>(*Diff) == VL.size() - 1) {
2886           if (CurrentOrder.empty()) {
2887             // Original loads are consecutive and does not require reordering.
2888             ++NumOpsWantToKeepOriginalOrder;
2889             TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
2890                                          UserTreeIdx, ReuseShuffleIndicies);
2891             TE->setOperandsInOrder();
2892             LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n");
2893           } else {
2894             // Need to reorder.
2895             TreeEntry *TE =
2896                 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2897                              ReuseShuffleIndicies, CurrentOrder);
2898             TE->setOperandsInOrder();
2899             LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n");
2900             findRootOrder(CurrentOrder);
2901             ++NumOpsWantToKeepOrder[CurrentOrder];
2902           }
2903           return;
2904         }
2905         // Vectorizing non-consecutive loads with `llvm.masked.gather`.
2906         TreeEntry *TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S,
2907                                      UserTreeIdx, ReuseShuffleIndicies);
2908         TE->setOperandsInOrder();
2909         buildTree_rec(PointerOps, Depth + 1, {TE, 0});
2910         LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n");
2911         return;
2912       }
2913 
2914       LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
2915       BS.cancelScheduling(VL, VL0);
2916       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2917                    ReuseShuffleIndicies);
2918       return;
2919     }
2920     case Instruction::ZExt:
2921     case Instruction::SExt:
2922     case Instruction::FPToUI:
2923     case Instruction::FPToSI:
2924     case Instruction::FPExt:
2925     case Instruction::PtrToInt:
2926     case Instruction::IntToPtr:
2927     case Instruction::SIToFP:
2928     case Instruction::UIToFP:
2929     case Instruction::Trunc:
2930     case Instruction::FPTrunc:
2931     case Instruction::BitCast: {
2932       Type *SrcTy = VL0->getOperand(0)->getType();
2933       for (Value *V : VL) {
2934         Type *Ty = cast<Instruction>(V)->getOperand(0)->getType();
2935         if (Ty != SrcTy || !isValidElementType(Ty)) {
2936           BS.cancelScheduling(VL, VL0);
2937           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2938                        ReuseShuffleIndicies);
2939           LLVM_DEBUG(dbgs()
2940                      << "SLP: Gathering casts with different src types.\n");
2941           return;
2942         }
2943       }
2944       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2945                                    ReuseShuffleIndicies);
2946       LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n");
2947 
2948       TE->setOperandsInOrder();
2949       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
2950         ValueList Operands;
2951         // Prepare the operand vector.
2952         for (Value *V : VL)
2953           Operands.push_back(cast<Instruction>(V)->getOperand(i));
2954 
2955         buildTree_rec(Operands, Depth + 1, {TE, i});
2956       }
2957       return;
2958     }
2959     case Instruction::ICmp:
2960     case Instruction::FCmp: {
2961       // Check that all of the compares have the same predicate.
2962       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
2963       CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0);
2964       Type *ComparedTy = VL0->getOperand(0)->getType();
2965       for (Value *V : VL) {
2966         CmpInst *Cmp = cast<CmpInst>(V);
2967         if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) ||
2968             Cmp->getOperand(0)->getType() != ComparedTy) {
2969           BS.cancelScheduling(VL, VL0);
2970           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2971                        ReuseShuffleIndicies);
2972           LLVM_DEBUG(dbgs()
2973                      << "SLP: Gathering cmp with different predicate.\n");
2974           return;
2975         }
2976       }
2977 
2978       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2979                                    ReuseShuffleIndicies);
2980       LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n");
2981 
2982       ValueList Left, Right;
2983       if (cast<CmpInst>(VL0)->isCommutative()) {
2984         // Commutative predicate - collect + sort operands of the instructions
2985         // so that each side is more likely to have the same opcode.
2986         assert(P0 == SwapP0 && "Commutative Predicate mismatch");
2987         reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
2988       } else {
2989         // Collect operands - commute if it uses the swapped predicate.
2990         for (Value *V : VL) {
2991           auto *Cmp = cast<CmpInst>(V);
2992           Value *LHS = Cmp->getOperand(0);
2993           Value *RHS = Cmp->getOperand(1);
2994           if (Cmp->getPredicate() != P0)
2995             std::swap(LHS, RHS);
2996           Left.push_back(LHS);
2997           Right.push_back(RHS);
2998         }
2999       }
3000       TE->setOperand(0, Left);
3001       TE->setOperand(1, Right);
3002       buildTree_rec(Left, Depth + 1, {TE, 0});
3003       buildTree_rec(Right, Depth + 1, {TE, 1});
3004       return;
3005     }
3006     case Instruction::Select:
3007     case Instruction::FNeg:
3008     case Instruction::Add:
3009     case Instruction::FAdd:
3010     case Instruction::Sub:
3011     case Instruction::FSub:
3012     case Instruction::Mul:
3013     case Instruction::FMul:
3014     case Instruction::UDiv:
3015     case Instruction::SDiv:
3016     case Instruction::FDiv:
3017     case Instruction::URem:
3018     case Instruction::SRem:
3019     case Instruction::FRem:
3020     case Instruction::Shl:
3021     case Instruction::LShr:
3022     case Instruction::AShr:
3023     case Instruction::And:
3024     case Instruction::Or:
3025     case Instruction::Xor: {
3026       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3027                                    ReuseShuffleIndicies);
3028       LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n");
3029 
3030       // Sort operands of the instructions so that each side is more likely to
3031       // have the same opcode.
3032       if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
3033         ValueList Left, Right;
3034         reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
3035         TE->setOperand(0, Left);
3036         TE->setOperand(1, Right);
3037         buildTree_rec(Left, Depth + 1, {TE, 0});
3038         buildTree_rec(Right, Depth + 1, {TE, 1});
3039         return;
3040       }
3041 
3042       TE->setOperandsInOrder();
3043       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
3044         ValueList Operands;
3045         // Prepare the operand vector.
3046         for (Value *V : VL)
3047           Operands.push_back(cast<Instruction>(V)->getOperand(i));
3048 
3049         buildTree_rec(Operands, Depth + 1, {TE, i});
3050       }
3051       return;
3052     }
3053     case Instruction::GetElementPtr: {
3054       // We don't combine GEPs with complicated (nested) indexing.
3055       for (Value *V : VL) {
3056         if (cast<Instruction>(V)->getNumOperands() != 2) {
3057           LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
3058           BS.cancelScheduling(VL, VL0);
3059           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3060                        ReuseShuffleIndicies);
3061           return;
3062         }
3063       }
3064 
3065       // We can't combine several GEPs into one vector if they operate on
3066       // different types.
3067       Type *Ty0 = VL0->getOperand(0)->getType();
3068       for (Value *V : VL) {
3069         Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType();
3070         if (Ty0 != CurTy) {
3071           LLVM_DEBUG(dbgs()
3072                      << "SLP: not-vectorizable GEP (different types).\n");
3073           BS.cancelScheduling(VL, VL0);
3074           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3075                        ReuseShuffleIndicies);
3076           return;
3077         }
3078       }
3079 
3080       // We don't combine GEPs with non-constant indexes.
3081       Type *Ty1 = VL0->getOperand(1)->getType();
3082       for (Value *V : VL) {
3083         auto Op = cast<Instruction>(V)->getOperand(1);
3084         if (!isa<ConstantInt>(Op) ||
3085             (Op->getType() != Ty1 &&
3086              Op->getType()->getScalarSizeInBits() >
3087                  DL->getIndexSizeInBits(
3088                      V->getType()->getPointerAddressSpace()))) {
3089           LLVM_DEBUG(dbgs()
3090                      << "SLP: not-vectorizable GEP (non-constant indexes).\n");
3091           BS.cancelScheduling(VL, VL0);
3092           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3093                        ReuseShuffleIndicies);
3094           return;
3095         }
3096       }
3097 
3098       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3099                                    ReuseShuffleIndicies);
3100       LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
3101       TE->setOperandsInOrder();
3102       for (unsigned i = 0, e = 2; i < e; ++i) {
3103         ValueList Operands;
3104         // Prepare the operand vector.
3105         for (Value *V : VL)
3106           Operands.push_back(cast<Instruction>(V)->getOperand(i));
3107 
3108         buildTree_rec(Operands, Depth + 1, {TE, i});
3109       }
3110       return;
3111     }
3112     case Instruction::Store: {
3113       // Check if the stores are consecutive or if we need to swizzle them.
3114       llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType();
3115       // Avoid types that are padded when being allocated as scalars, while
3116       // being packed together in a vector (such as i1).
3117       if (DL->getTypeSizeInBits(ScalarTy) !=
3118           DL->getTypeAllocSizeInBits(ScalarTy)) {
3119         BS.cancelScheduling(VL, VL0);
3120         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3121                      ReuseShuffleIndicies);
3122         LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n");
3123         return;
3124       }
3125       // Make sure all stores in the bundle are simple - we can't vectorize
3126       // atomic or volatile stores.
3127       SmallVector<Value *, 4> PointerOps(VL.size());
3128       ValueList Operands(VL.size());
3129       auto POIter = PointerOps.begin();
3130       auto OIter = Operands.begin();
3131       for (Value *V : VL) {
3132         auto *SI = cast<StoreInst>(V);
3133         if (!SI->isSimple()) {
3134           BS.cancelScheduling(VL, VL0);
3135           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3136                        ReuseShuffleIndicies);
3137           LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n");
3138           return;
3139         }
3140         *POIter = SI->getPointerOperand();
3141         *OIter = SI->getValueOperand();
3142         ++POIter;
3143         ++OIter;
3144       }
3145 
3146       OrdersType CurrentOrder;
3147       // Check the order of pointer operands.
3148       if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) {
3149         Value *Ptr0;
3150         Value *PtrN;
3151         if (CurrentOrder.empty()) {
3152           Ptr0 = PointerOps.front();
3153           PtrN = PointerOps.back();
3154         } else {
3155           Ptr0 = PointerOps[CurrentOrder.front()];
3156           PtrN = PointerOps[CurrentOrder.back()];
3157         }
3158         Optional<int> Dist = getPointersDiff(Ptr0, PtrN, *DL, *SE);
3159         // Check that the sorted pointer operands are consecutive.
3160         if (static_cast<unsigned>(*Dist) == VL.size() - 1) {
3161           if (CurrentOrder.empty()) {
3162             // Original stores are consecutive and does not require reordering.
3163             ++NumOpsWantToKeepOriginalOrder;
3164             TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
3165                                          UserTreeIdx, ReuseShuffleIndicies);
3166             TE->setOperandsInOrder();
3167             buildTree_rec(Operands, Depth + 1, {TE, 0});
3168             LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n");
3169           } else {
3170             TreeEntry *TE =
3171                 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3172                              ReuseShuffleIndicies, CurrentOrder);
3173             TE->setOperandsInOrder();
3174             buildTree_rec(Operands, Depth + 1, {TE, 0});
3175             LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n");
3176             findRootOrder(CurrentOrder);
3177             ++NumOpsWantToKeepOrder[CurrentOrder];
3178           }
3179           return;
3180         }
3181       }
3182 
3183       BS.cancelScheduling(VL, VL0);
3184       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3185                    ReuseShuffleIndicies);
3186       LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
3187       return;
3188     }
3189     case Instruction::Call: {
3190       // Check if the calls are all to the same vectorizable intrinsic or
3191       // library function.
3192       CallInst *CI = cast<CallInst>(VL0);
3193       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3194 
3195       VFShape Shape = VFShape::get(
3196           *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())),
3197           false /*HasGlobalPred*/);
3198       Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3199 
3200       if (!VecFunc && !isTriviallyVectorizable(ID)) {
3201         BS.cancelScheduling(VL, VL0);
3202         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3203                      ReuseShuffleIndicies);
3204         LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
3205         return;
3206       }
3207       Function *F = CI->getCalledFunction();
3208       unsigned NumArgs = CI->getNumArgOperands();
3209       SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr);
3210       for (unsigned j = 0; j != NumArgs; ++j)
3211         if (hasVectorInstrinsicScalarOpd(ID, j))
3212           ScalarArgs[j] = CI->getArgOperand(j);
3213       for (Value *V : VL) {
3214         CallInst *CI2 = dyn_cast<CallInst>(V);
3215         if (!CI2 || CI2->getCalledFunction() != F ||
3216             getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
3217             (VecFunc &&
3218              VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) ||
3219             !CI->hasIdenticalOperandBundleSchema(*CI2)) {
3220           BS.cancelScheduling(VL, VL0);
3221           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3222                        ReuseShuffleIndicies);
3223           LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V
3224                             << "\n");
3225           return;
3226         }
3227         // Some intrinsics have scalar arguments and should be same in order for
3228         // them to be vectorized.
3229         for (unsigned j = 0; j != NumArgs; ++j) {
3230           if (hasVectorInstrinsicScalarOpd(ID, j)) {
3231             Value *A1J = CI2->getArgOperand(j);
3232             if (ScalarArgs[j] != A1J) {
3233               BS.cancelScheduling(VL, VL0);
3234               newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3235                            ReuseShuffleIndicies);
3236               LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
3237                                 << " argument " << ScalarArgs[j] << "!=" << A1J
3238                                 << "\n");
3239               return;
3240             }
3241           }
3242         }
3243         // Verify that the bundle operands are identical between the two calls.
3244         if (CI->hasOperandBundles() &&
3245             !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
3246                         CI->op_begin() + CI->getBundleOperandsEndIndex(),
3247                         CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
3248           BS.cancelScheduling(VL, VL0);
3249           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3250                        ReuseShuffleIndicies);
3251           LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:"
3252                             << *CI << "!=" << *V << '\n');
3253           return;
3254         }
3255       }
3256 
3257       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3258                                    ReuseShuffleIndicies);
3259       TE->setOperandsInOrder();
3260       for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
3261         ValueList Operands;
3262         // Prepare the operand vector.
3263         for (Value *V : VL) {
3264           auto *CI2 = cast<CallInst>(V);
3265           Operands.push_back(CI2->getArgOperand(i));
3266         }
3267         buildTree_rec(Operands, Depth + 1, {TE, i});
3268       }
3269       return;
3270     }
3271     case Instruction::ShuffleVector: {
3272       // If this is not an alternate sequence of opcode like add-sub
3273       // then do not vectorize this instruction.
3274       if (!S.isAltShuffle()) {
3275         BS.cancelScheduling(VL, VL0);
3276         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3277                      ReuseShuffleIndicies);
3278         LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
3279         return;
3280       }
3281       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3282                                    ReuseShuffleIndicies);
3283       LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
3284 
3285       // Reorder operands if reordering would enable vectorization.
3286       if (isa<BinaryOperator>(VL0)) {
3287         ValueList Left, Right;
3288         reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
3289         TE->setOperand(0, Left);
3290         TE->setOperand(1, Right);
3291         buildTree_rec(Left, Depth + 1, {TE, 0});
3292         buildTree_rec(Right, Depth + 1, {TE, 1});
3293         return;
3294       }
3295 
3296       TE->setOperandsInOrder();
3297       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
3298         ValueList Operands;
3299         // Prepare the operand vector.
3300         for (Value *V : VL)
3301           Operands.push_back(cast<Instruction>(V)->getOperand(i));
3302 
3303         buildTree_rec(Operands, Depth + 1, {TE, i});
3304       }
3305       return;
3306     }
3307     default:
3308       BS.cancelScheduling(VL, VL0);
3309       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3310                    ReuseShuffleIndicies);
3311       LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
3312       return;
3313   }
3314 }
3315 
3316 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
3317   unsigned N = 1;
3318   Type *EltTy = T;
3319 
3320   while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) ||
3321          isa<VectorType>(EltTy)) {
3322     if (auto *ST = dyn_cast<StructType>(EltTy)) {
3323       // Check that struct is homogeneous.
3324       for (const auto *Ty : ST->elements())
3325         if (Ty != *ST->element_begin())
3326           return 0;
3327       N *= ST->getNumElements();
3328       EltTy = *ST->element_begin();
3329     } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) {
3330       N *= AT->getNumElements();
3331       EltTy = AT->getElementType();
3332     } else {
3333       auto *VT = cast<FixedVectorType>(EltTy);
3334       N *= VT->getNumElements();
3335       EltTy = VT->getElementType();
3336     }
3337   }
3338 
3339   if (!isValidElementType(EltTy))
3340     return 0;
3341   uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N));
3342   if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
3343     return 0;
3344   return N;
3345 }
3346 
3347 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
3348                               SmallVectorImpl<unsigned> &CurrentOrder) const {
3349   Instruction *E0 = cast<Instruction>(OpValue);
3350   assert(E0->getOpcode() == Instruction::ExtractElement ||
3351          E0->getOpcode() == Instruction::ExtractValue);
3352   assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode");
3353   // Check if all of the extracts come from the same vector and from the
3354   // correct offset.
3355   Value *Vec = E0->getOperand(0);
3356 
3357   CurrentOrder.clear();
3358 
3359   // We have to extract from a vector/aggregate with the same number of elements.
3360   unsigned NElts;
3361   if (E0->getOpcode() == Instruction::ExtractValue) {
3362     const DataLayout &DL = E0->getModule()->getDataLayout();
3363     NElts = canMapToVector(Vec->getType(), DL);
3364     if (!NElts)
3365       return false;
3366     // Check if load can be rewritten as load of vector.
3367     LoadInst *LI = dyn_cast<LoadInst>(Vec);
3368     if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
3369       return false;
3370   } else {
3371     NElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
3372   }
3373 
3374   if (NElts != VL.size())
3375     return false;
3376 
3377   // Check that all of the indices extract from the correct offset.
3378   bool ShouldKeepOrder = true;
3379   unsigned E = VL.size();
3380   // Assign to all items the initial value E + 1 so we can check if the extract
3381   // instruction index was used already.
3382   // Also, later we can check that all the indices are used and we have a
3383   // consecutive access in the extract instructions, by checking that no
3384   // element of CurrentOrder still has value E + 1.
3385   CurrentOrder.assign(E, E + 1);
3386   unsigned I = 0;
3387   for (; I < E; ++I) {
3388     auto *Inst = cast<Instruction>(VL[I]);
3389     if (Inst->getOperand(0) != Vec)
3390       break;
3391     Optional<unsigned> Idx = getExtractIndex(Inst);
3392     if (!Idx)
3393       break;
3394     const unsigned ExtIdx = *Idx;
3395     if (ExtIdx != I) {
3396       if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1)
3397         break;
3398       ShouldKeepOrder = false;
3399       CurrentOrder[ExtIdx] = I;
3400     } else {
3401       if (CurrentOrder[I] != E + 1)
3402         break;
3403       CurrentOrder[I] = I;
3404     }
3405   }
3406   if (I < E) {
3407     CurrentOrder.clear();
3408     return false;
3409   }
3410 
3411   return ShouldKeepOrder;
3412 }
3413 
3414 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const {
3415   return I->hasOneUse() || llvm::all_of(I->users(), [this](User *U) {
3416            return ScalarToTreeEntry.count(U) > 0;
3417          });
3418 }
3419 
3420 static std::pair<InstructionCost, InstructionCost>
3421 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy,
3422                    TargetTransformInfo *TTI, TargetLibraryInfo *TLI) {
3423   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3424 
3425   // Calculate the cost of the scalar and vector calls.
3426   SmallVector<Type *, 4> VecTys;
3427   for (Use &Arg : CI->args())
3428     VecTys.push_back(
3429         FixedVectorType::get(Arg->getType(), VecTy->getNumElements()));
3430   FastMathFlags FMF;
3431   if (auto *FPCI = dyn_cast<FPMathOperator>(CI))
3432     FMF = FPCI->getFastMathFlags();
3433   SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end());
3434   IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF,
3435                                     dyn_cast<IntrinsicInst>(CI));
3436   auto IntrinsicCost =
3437     TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput);
3438 
3439   auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
3440                                      VecTy->getNumElements())),
3441                             false /*HasGlobalPred*/);
3442   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3443   auto LibCost = IntrinsicCost;
3444   if (!CI->isNoBuiltin() && VecFunc) {
3445     // Calculate the cost of the vector library call.
3446     // If the corresponding vector call is cheaper, return its cost.
3447     LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys,
3448                                     TTI::TCK_RecipThroughput);
3449   }
3450   return {IntrinsicCost, LibCost};
3451 }
3452 
3453 /// Compute the cost of creating a vector of type \p VecTy containing the
3454 /// extracted values from \p VL.
3455 static InstructionCost
3456 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy,
3457                    TargetTransformInfo::ShuffleKind ShuffleKind,
3458                    ArrayRef<int> Mask, TargetTransformInfo &TTI) {
3459   unsigned NumOfParts = TTI.getNumberOfParts(VecTy);
3460 
3461   if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts ||
3462       VecTy->getNumElements() < NumOfParts)
3463     return TTI.getShuffleCost(ShuffleKind, VecTy, Mask);
3464 
3465   bool AllConsecutive = true;
3466   unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts;
3467   unsigned Idx = -1;
3468   InstructionCost Cost = 0;
3469 
3470   // Process extracts in blocks of EltsPerVector to check if the source vector
3471   // operand can be re-used directly. If not, add the cost of creating a shuffle
3472   // to extract the values into a vector register.
3473   for (auto *V : VL) {
3474     ++Idx;
3475 
3476     // Reached the start of a new vector registers.
3477     if (Idx % EltsPerVector == 0) {
3478       AllConsecutive = true;
3479       continue;
3480     }
3481 
3482     // Check all extracts for a vector register on the target directly
3483     // extract values in order.
3484     unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V));
3485     unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1]));
3486     AllConsecutive &= PrevIdx + 1 == CurrentIdx &&
3487                       CurrentIdx % EltsPerVector == Idx % EltsPerVector;
3488 
3489     if (AllConsecutive)
3490       continue;
3491 
3492     // Skip all indices, except for the last index per vector block.
3493     if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size())
3494       continue;
3495 
3496     // If we have a series of extracts which are not consecutive and hence
3497     // cannot re-use the source vector register directly, compute the shuffle
3498     // cost to extract the a vector with EltsPerVector elements.
3499     Cost += TTI.getShuffleCost(
3500         TargetTransformInfo::SK_PermuteSingleSrc,
3501         FixedVectorType::get(VecTy->getElementType(), EltsPerVector));
3502   }
3503   return Cost;
3504 }
3505 
3506 InstructionCost BoUpSLP::getEntryCost(TreeEntry *E) {
3507   ArrayRef<Value*> VL = E->Scalars;
3508 
3509   Type *ScalarTy = VL[0]->getType();
3510   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
3511     ScalarTy = SI->getValueOperand()->getType();
3512   else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0]))
3513     ScalarTy = CI->getOperand(0)->getType();
3514   auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
3515   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
3516 
3517   // If we have computed a smaller type for the expression, update VecTy so
3518   // that the costs will be accurate.
3519   if (MinBWs.count(VL[0]))
3520     VecTy = FixedVectorType::get(
3521         IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size());
3522 
3523   unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size();
3524   bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
3525   InstructionCost ReuseShuffleCost = 0;
3526   if (NeedToShuffleReuses) {
3527     ReuseShuffleCost =
3528         TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy,
3529                             E->ReuseShuffleIndices);
3530   }
3531   if (E->State == TreeEntry::NeedToGather) {
3532     if (allConstant(VL))
3533       return 0;
3534     if (isSplat(VL)) {
3535       return ReuseShuffleCost +
3536              TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, None,
3537                                  0);
3538     }
3539     if (E->getOpcode() == Instruction::ExtractElement &&
3540         allSameType(VL) && allSameBlock(VL)) {
3541       SmallVector<int> Mask;
3542       Optional<TargetTransformInfo::ShuffleKind> ShuffleKind =
3543           isShuffle(VL, Mask);
3544       if (ShuffleKind.hasValue()) {
3545         InstructionCost Cost =
3546             computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI);
3547         for (auto *V : VL) {
3548           // If all users of instruction are going to be vectorized and this
3549           // instruction itself is not going to be vectorized, consider this
3550           // instruction as dead and remove its cost from the final cost of the
3551           // vectorized tree.
3552           if (areAllUsersVectorized(cast<Instruction>(V)) &&
3553               !ScalarToTreeEntry.count(V)) {
3554             auto *IO = cast<ConstantInt>(
3555                 cast<ExtractElementInst>(V)->getIndexOperand());
3556             Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
3557                                             IO->getZExtValue());
3558           }
3559         }
3560         return ReuseShuffleCost + Cost;
3561       }
3562     }
3563     return ReuseShuffleCost + getGatherCost(VL);
3564   }
3565   assert((E->State == TreeEntry::Vectorize ||
3566           E->State == TreeEntry::ScatterVectorize) &&
3567          "Unhandled state");
3568   assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL");
3569   Instruction *VL0 = E->getMainOp();
3570   unsigned ShuffleOrOp =
3571       E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
3572   switch (ShuffleOrOp) {
3573     case Instruction::PHI:
3574       return 0;
3575 
3576     case Instruction::ExtractValue:
3577     case Instruction::ExtractElement: {
3578       // The common cost of removal ExtractElement/ExtractValue instructions +
3579       // the cost of shuffles, if required to resuffle the original vector.
3580       InstructionCost CommonCost = 0;
3581       if (NeedToShuffleReuses) {
3582         unsigned Idx = 0;
3583         for (unsigned I : E->ReuseShuffleIndices) {
3584           if (ShuffleOrOp == Instruction::ExtractElement) {
3585             auto *IO = cast<ConstantInt>(
3586                 cast<ExtractElementInst>(VL[I])->getIndexOperand());
3587             Idx = IO->getZExtValue();
3588             ReuseShuffleCost -= TTI->getVectorInstrCost(
3589                 Instruction::ExtractElement, VecTy, Idx);
3590           } else {
3591             ReuseShuffleCost -= TTI->getVectorInstrCost(
3592                 Instruction::ExtractElement, VecTy, Idx);
3593             ++Idx;
3594           }
3595         }
3596         Idx = ReuseShuffleNumbers;
3597         for (Value *V : VL) {
3598           if (ShuffleOrOp == Instruction::ExtractElement) {
3599             auto *IO = cast<ConstantInt>(
3600                 cast<ExtractElementInst>(V)->getIndexOperand());
3601             Idx = IO->getZExtValue();
3602           } else {
3603             --Idx;
3604           }
3605           ReuseShuffleCost +=
3606               TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx);
3607         }
3608         CommonCost = ReuseShuffleCost;
3609       } else if (!E->ReorderIndices.empty()) {
3610         SmallVector<int> NewMask;
3611         inversePermutation(E->ReorderIndices, NewMask);
3612         CommonCost = TTI->getShuffleCost(
3613             TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask);
3614       }
3615       for (unsigned I = 0, E = VL.size(); I < E; ++I) {
3616         Instruction *EI = cast<Instruction>(VL[I]);
3617         // If all users are going to be vectorized, instruction can be
3618         // considered as dead.
3619         // The same, if have only one user, it will be vectorized for sure.
3620         if (areAllUsersVectorized(EI)) {
3621           // Take credit for instruction that will become dead.
3622           if (EI->hasOneUse()) {
3623             Instruction *Ext = EI->user_back();
3624             if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3625                 all_of(Ext->users(),
3626                        [](User *U) { return isa<GetElementPtrInst>(U); })) {
3627               // Use getExtractWithExtendCost() to calculate the cost of
3628               // extractelement/ext pair.
3629               CommonCost -= TTI->getExtractWithExtendCost(
3630                   Ext->getOpcode(), Ext->getType(), VecTy, I);
3631               // Add back the cost of s|zext which is subtracted separately.
3632               CommonCost += TTI->getCastInstrCost(
3633                   Ext->getOpcode(), Ext->getType(), EI->getType(),
3634                   TTI::getCastContextHint(Ext), CostKind, Ext);
3635               continue;
3636             }
3637           }
3638           CommonCost -=
3639               TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I);
3640         }
3641       }
3642       return CommonCost;
3643     }
3644     case Instruction::ZExt:
3645     case Instruction::SExt:
3646     case Instruction::FPToUI:
3647     case Instruction::FPToSI:
3648     case Instruction::FPExt:
3649     case Instruction::PtrToInt:
3650     case Instruction::IntToPtr:
3651     case Instruction::SIToFP:
3652     case Instruction::UIToFP:
3653     case Instruction::Trunc:
3654     case Instruction::FPTrunc:
3655     case Instruction::BitCast: {
3656       Type *SrcTy = VL0->getOperand(0)->getType();
3657       InstructionCost ScalarEltCost =
3658           TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy,
3659                                 TTI::getCastContextHint(VL0), CostKind, VL0);
3660       if (NeedToShuffleReuses) {
3661         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3662       }
3663 
3664       // Calculate the cost of this instruction.
3665       InstructionCost ScalarCost = VL.size() * ScalarEltCost;
3666 
3667       auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size());
3668       InstructionCost VecCost = 0;
3669       // Check if the values are candidates to demote.
3670       if (!MinBWs.count(VL0) || VecTy != SrcVecTy) {
3671         VecCost =
3672             ReuseShuffleCost +
3673             TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy,
3674                                   TTI::getCastContextHint(VL0), CostKind, VL0);
3675       }
3676       LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost));
3677       return VecCost - ScalarCost;
3678     }
3679     case Instruction::FCmp:
3680     case Instruction::ICmp:
3681     case Instruction::Select: {
3682       // Calculate the cost of this instruction.
3683       InstructionCost ScalarEltCost =
3684           TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(),
3685                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0);
3686       if (NeedToShuffleReuses) {
3687         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3688       }
3689       auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size());
3690       InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
3691 
3692       // Check if all entries in VL are either compares or selects with compares
3693       // as condition that have the same predicates.
3694       CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE;
3695       bool First = true;
3696       for (auto *V : VL) {
3697         CmpInst::Predicate CurrentPred;
3698         auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value());
3699         if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) &&
3700              !match(V, MatchCmp)) ||
3701             (!First && VecPred != CurrentPred)) {
3702           VecPred = CmpInst::BAD_ICMP_PREDICATE;
3703           break;
3704         }
3705         First = false;
3706         VecPred = CurrentPred;
3707       }
3708 
3709       InstructionCost VecCost = TTI->getCmpSelInstrCost(
3710           E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0);
3711       // Check if it is possible and profitable to use min/max for selects in
3712       // VL.
3713       //
3714       auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL);
3715       if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) {
3716         IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy,
3717                                           {VecTy, VecTy});
3718         InstructionCost IntrinsicCost =
3719             TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
3720         // If the selects are the only uses of the compares, they will be dead
3721         // and we can adjust the cost by removing their cost.
3722         if (IntrinsicAndUse.second)
3723           IntrinsicCost -=
3724               TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy,
3725                                       CmpInst::BAD_ICMP_PREDICATE, CostKind);
3726         VecCost = std::min(VecCost, IntrinsicCost);
3727       }
3728       LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost));
3729       return ReuseShuffleCost + VecCost - ScalarCost;
3730     }
3731     case Instruction::FNeg:
3732     case Instruction::Add:
3733     case Instruction::FAdd:
3734     case Instruction::Sub:
3735     case Instruction::FSub:
3736     case Instruction::Mul:
3737     case Instruction::FMul:
3738     case Instruction::UDiv:
3739     case Instruction::SDiv:
3740     case Instruction::FDiv:
3741     case Instruction::URem:
3742     case Instruction::SRem:
3743     case Instruction::FRem:
3744     case Instruction::Shl:
3745     case Instruction::LShr:
3746     case Instruction::AShr:
3747     case Instruction::And:
3748     case Instruction::Or:
3749     case Instruction::Xor: {
3750       // Certain instructions can be cheaper to vectorize if they have a
3751       // constant second vector operand.
3752       TargetTransformInfo::OperandValueKind Op1VK =
3753           TargetTransformInfo::OK_AnyValue;
3754       TargetTransformInfo::OperandValueKind Op2VK =
3755           TargetTransformInfo::OK_UniformConstantValue;
3756       TargetTransformInfo::OperandValueProperties Op1VP =
3757           TargetTransformInfo::OP_None;
3758       TargetTransformInfo::OperandValueProperties Op2VP =
3759           TargetTransformInfo::OP_PowerOf2;
3760 
3761       // If all operands are exactly the same ConstantInt then set the
3762       // operand kind to OK_UniformConstantValue.
3763       // If instead not all operands are constants, then set the operand kind
3764       // to OK_AnyValue. If all operands are constants but not the same,
3765       // then set the operand kind to OK_NonUniformConstantValue.
3766       ConstantInt *CInt0 = nullptr;
3767       for (unsigned i = 0, e = VL.size(); i < e; ++i) {
3768         const Instruction *I = cast<Instruction>(VL[i]);
3769         unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0;
3770         ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx));
3771         if (!CInt) {
3772           Op2VK = TargetTransformInfo::OK_AnyValue;
3773           Op2VP = TargetTransformInfo::OP_None;
3774           break;
3775         }
3776         if (Op2VP == TargetTransformInfo::OP_PowerOf2 &&
3777             !CInt->getValue().isPowerOf2())
3778           Op2VP = TargetTransformInfo::OP_None;
3779         if (i == 0) {
3780           CInt0 = CInt;
3781           continue;
3782         }
3783         if (CInt0 != CInt)
3784           Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
3785       }
3786 
3787       SmallVector<const Value *, 4> Operands(VL0->operand_values());
3788       InstructionCost ScalarEltCost =
3789           TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK,
3790                                       Op2VK, Op1VP, Op2VP, Operands, VL0);
3791       if (NeedToShuffleReuses) {
3792         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3793       }
3794       InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
3795       InstructionCost VecCost =
3796           TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK,
3797                                       Op2VK, Op1VP, Op2VP, Operands, VL0);
3798       LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost));
3799       return ReuseShuffleCost + VecCost - ScalarCost;
3800     }
3801     case Instruction::GetElementPtr: {
3802       TargetTransformInfo::OperandValueKind Op1VK =
3803           TargetTransformInfo::OK_AnyValue;
3804       TargetTransformInfo::OperandValueKind Op2VK =
3805           TargetTransformInfo::OK_UniformConstantValue;
3806 
3807       InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost(
3808           Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK);
3809       if (NeedToShuffleReuses) {
3810         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3811       }
3812       InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
3813       InstructionCost VecCost = TTI->getArithmeticInstrCost(
3814           Instruction::Add, VecTy, CostKind, Op1VK, Op2VK);
3815       LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost));
3816       return ReuseShuffleCost + VecCost - ScalarCost;
3817     }
3818     case Instruction::Load: {
3819       // Cost of wide load - cost of scalar loads.
3820       Align alignment = cast<LoadInst>(VL0)->getAlign();
3821       InstructionCost ScalarEltCost = TTI->getMemoryOpCost(
3822           Instruction::Load, ScalarTy, alignment, 0, CostKind, VL0);
3823       if (NeedToShuffleReuses) {
3824         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3825       }
3826       InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost;
3827       InstructionCost VecLdCost;
3828       if (E->State == TreeEntry::Vectorize) {
3829         VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0,
3830                                          CostKind, VL0);
3831       } else {
3832         assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState");
3833         VecLdCost = TTI->getGatherScatterOpCost(
3834             Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(),
3835             /*VariableMask=*/false, alignment, CostKind, VL0);
3836       }
3837       if (!NeedToShuffleReuses && !E->ReorderIndices.empty()) {
3838         SmallVector<int> NewMask;
3839         inversePermutation(E->ReorderIndices, NewMask);
3840         VecLdCost += TTI->getShuffleCost(
3841             TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask);
3842       }
3843       LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecLdCost, ScalarLdCost));
3844       return ReuseShuffleCost + VecLdCost - ScalarLdCost;
3845     }
3846     case Instruction::Store: {
3847       // We know that we can merge the stores. Calculate the cost.
3848       bool IsReorder = !E->ReorderIndices.empty();
3849       auto *SI =
3850           cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0);
3851       Align Alignment = SI->getAlign();
3852       InstructionCost ScalarEltCost = TTI->getMemoryOpCost(
3853           Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0);
3854       InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost;
3855       InstructionCost VecStCost = TTI->getMemoryOpCost(
3856           Instruction::Store, VecTy, Alignment, 0, CostKind, VL0);
3857       if (IsReorder) {
3858         SmallVector<int> NewMask;
3859         inversePermutation(E->ReorderIndices, NewMask);
3860         VecStCost += TTI->getShuffleCost(
3861             TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask);
3862       }
3863       LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecStCost, ScalarStCost));
3864       return VecStCost - ScalarStCost;
3865     }
3866     case Instruction::Call: {
3867       CallInst *CI = cast<CallInst>(VL0);
3868       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3869 
3870       // Calculate the cost of the scalar and vector calls.
3871       IntrinsicCostAttributes CostAttrs(ID, *CI, 1);
3872       InstructionCost ScalarEltCost =
3873           TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
3874       if (NeedToShuffleReuses) {
3875         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3876       }
3877       InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost;
3878 
3879       auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
3880       InstructionCost VecCallCost =
3881           std::min(VecCallCosts.first, VecCallCosts.second);
3882 
3883       LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost
3884                         << " (" << VecCallCost << "-" << ScalarCallCost << ")"
3885                         << " for " << *CI << "\n");
3886 
3887       return ReuseShuffleCost + VecCallCost - ScalarCallCost;
3888     }
3889     case Instruction::ShuffleVector: {
3890       assert(E->isAltShuffle() &&
3891              ((Instruction::isBinaryOp(E->getOpcode()) &&
3892                Instruction::isBinaryOp(E->getAltOpcode())) ||
3893               (Instruction::isCast(E->getOpcode()) &&
3894                Instruction::isCast(E->getAltOpcode()))) &&
3895              "Invalid Shuffle Vector Operand");
3896       InstructionCost ScalarCost = 0;
3897       if (NeedToShuffleReuses) {
3898         for (unsigned Idx : E->ReuseShuffleIndices) {
3899           Instruction *I = cast<Instruction>(VL[Idx]);
3900           ReuseShuffleCost -= TTI->getInstructionCost(I, CostKind);
3901         }
3902         for (Value *V : VL) {
3903           Instruction *I = cast<Instruction>(V);
3904           ReuseShuffleCost += TTI->getInstructionCost(I, CostKind);
3905         }
3906       }
3907       for (Value *V : VL) {
3908         Instruction *I = cast<Instruction>(V);
3909         assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
3910         ScalarCost += TTI->getInstructionCost(I, CostKind);
3911       }
3912       // VecCost is equal to sum of the cost of creating 2 vectors
3913       // and the cost of creating shuffle.
3914       InstructionCost VecCost = 0;
3915       if (Instruction::isBinaryOp(E->getOpcode())) {
3916         VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind);
3917         VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy,
3918                                                CostKind);
3919       } else {
3920         Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType();
3921         Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType();
3922         auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size());
3923         auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size());
3924         VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty,
3925                                         TTI::CastContextHint::None, CostKind);
3926         VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty,
3927                                          TTI::CastContextHint::None, CostKind);
3928       }
3929 
3930       SmallVector<int> Mask(E->Scalars.size());
3931       for (unsigned I = 0, End = E->Scalars.size(); I < End; ++I) {
3932         auto *OpInst = cast<Instruction>(E->Scalars[I]);
3933         assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode");
3934         Mask[I] = I + (OpInst->getOpcode() == E->getAltOpcode() ? End : 0);
3935       }
3936       VecCost +=
3937           TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, Mask, 0);
3938       LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost));
3939       return ReuseShuffleCost + VecCost - ScalarCost;
3940     }
3941     default:
3942       llvm_unreachable("Unknown instruction");
3943   }
3944 }
3945 
3946 bool BoUpSLP::isFullyVectorizableTinyTree() const {
3947   LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height "
3948                     << VectorizableTree.size() << " is fully vectorizable .\n");
3949 
3950   // We only handle trees of heights 1 and 2.
3951   if (VectorizableTree.size() == 1 &&
3952       VectorizableTree[0]->State == TreeEntry::Vectorize)
3953     return true;
3954 
3955   if (VectorizableTree.size() != 2)
3956     return false;
3957 
3958   // Handle splat and all-constants stores.
3959   if (VectorizableTree[0]->State == TreeEntry::Vectorize &&
3960       (allConstant(VectorizableTree[1]->Scalars) ||
3961        isSplat(VectorizableTree[1]->Scalars)))
3962     return true;
3963 
3964   // Gathering cost would be too much for tiny trees.
3965   if (VectorizableTree[0]->State == TreeEntry::NeedToGather ||
3966       VectorizableTree[1]->State == TreeEntry::NeedToGather)
3967     return false;
3968 
3969   return true;
3970 }
3971 
3972 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts,
3973                                        TargetTransformInfo *TTI) {
3974   // Look past the root to find a source value. Arbitrarily follow the
3975   // path through operand 0 of any 'or'. Also, peek through optional
3976   // shift-left-by-multiple-of-8-bits.
3977   Value *ZextLoad = Root;
3978   const APInt *ShAmtC;
3979   while (!isa<ConstantExpr>(ZextLoad) &&
3980          (match(ZextLoad, m_Or(m_Value(), m_Value())) ||
3981           (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) &&
3982            ShAmtC->urem(8) == 0)))
3983     ZextLoad = cast<BinaryOperator>(ZextLoad)->getOperand(0);
3984 
3985   // Check if the input is an extended load of the required or/shift expression.
3986   Value *LoadPtr;
3987   if (ZextLoad == Root || !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr)))))
3988     return false;
3989 
3990   // Require that the total load bit width is a legal integer type.
3991   // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target.
3992   // But <16 x i8> --> i128 is not, so the backend probably can't reduce it.
3993   Type *SrcTy = LoadPtr->getType()->getPointerElementType();
3994   unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts;
3995   if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth)))
3996     return false;
3997 
3998   // Everything matched - assume that we can fold the whole sequence using
3999   // load combining.
4000   LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at "
4001              << *(cast<Instruction>(Root)) << "\n");
4002 
4003   return true;
4004 }
4005 
4006 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const {
4007   if (RdxKind != RecurKind::Or)
4008     return false;
4009 
4010   unsigned NumElts = VectorizableTree[0]->Scalars.size();
4011   Value *FirstReduced = VectorizableTree[0]->Scalars[0];
4012   return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI);
4013 }
4014 
4015 bool BoUpSLP::isLoadCombineCandidate() const {
4016   // Peek through a final sequence of stores and check if all operations are
4017   // likely to be load-combined.
4018   unsigned NumElts = VectorizableTree[0]->Scalars.size();
4019   for (Value *Scalar : VectorizableTree[0]->Scalars) {
4020     Value *X;
4021     if (!match(Scalar, m_Store(m_Value(X), m_Value())) ||
4022         !isLoadCombineCandidateImpl(X, NumElts, TTI))
4023       return false;
4024   }
4025   return true;
4026 }
4027 
4028 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const {
4029   // We can vectorize the tree if its size is greater than or equal to the
4030   // minimum size specified by the MinTreeSize command line option.
4031   if (VectorizableTree.size() >= MinTreeSize)
4032     return false;
4033 
4034   // If we have a tiny tree (a tree whose size is less than MinTreeSize), we
4035   // can vectorize it if we can prove it fully vectorizable.
4036   if (isFullyVectorizableTinyTree())
4037     return false;
4038 
4039   assert(VectorizableTree.empty()
4040              ? ExternalUses.empty()
4041              : true && "We shouldn't have any external users");
4042 
4043   // Otherwise, we can't vectorize the tree. It is both tiny and not fully
4044   // vectorizable.
4045   return true;
4046 }
4047 
4048 InstructionCost BoUpSLP::getSpillCost() const {
4049   // Walk from the bottom of the tree to the top, tracking which values are
4050   // live. When we see a call instruction that is not part of our tree,
4051   // query TTI to see if there is a cost to keeping values live over it
4052   // (for example, if spills and fills are required).
4053   unsigned BundleWidth = VectorizableTree.front()->Scalars.size();
4054   InstructionCost Cost = 0;
4055 
4056   SmallPtrSet<Instruction*, 4> LiveValues;
4057   Instruction *PrevInst = nullptr;
4058 
4059   // The entries in VectorizableTree are not necessarily ordered by their
4060   // position in basic blocks. Collect them and order them by dominance so later
4061   // instructions are guaranteed to be visited first. For instructions in
4062   // different basic blocks, we only scan to the beginning of the block, so
4063   // their order does not matter, as long as all instructions in a basic block
4064   // are grouped together. Using dominance ensures a deterministic order.
4065   SmallVector<Instruction *, 16> OrderedScalars;
4066   for (const auto &TEPtr : VectorizableTree) {
4067     Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]);
4068     if (!Inst)
4069       continue;
4070     OrderedScalars.push_back(Inst);
4071   }
4072   llvm::stable_sort(OrderedScalars, [this](Instruction *A, Instruction *B) {
4073     return DT->dominates(B, A);
4074   });
4075 
4076   for (Instruction *Inst : OrderedScalars) {
4077     if (!PrevInst) {
4078       PrevInst = Inst;
4079       continue;
4080     }
4081 
4082     // Update LiveValues.
4083     LiveValues.erase(PrevInst);
4084     for (auto &J : PrevInst->operands()) {
4085       if (isa<Instruction>(&*J) && getTreeEntry(&*J))
4086         LiveValues.insert(cast<Instruction>(&*J));
4087     }
4088 
4089     LLVM_DEBUG({
4090       dbgs() << "SLP: #LV: " << LiveValues.size();
4091       for (auto *X : LiveValues)
4092         dbgs() << " " << X->getName();
4093       dbgs() << ", Looking at ";
4094       Inst->dump();
4095     });
4096 
4097     // Now find the sequence of instructions between PrevInst and Inst.
4098     unsigned NumCalls = 0;
4099     BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(),
4100                                  PrevInstIt =
4101                                      PrevInst->getIterator().getReverse();
4102     while (InstIt != PrevInstIt) {
4103       if (PrevInstIt == PrevInst->getParent()->rend()) {
4104         PrevInstIt = Inst->getParent()->rbegin();
4105         continue;
4106       }
4107 
4108       // Debug information does not impact spill cost.
4109       if ((isa<CallInst>(&*PrevInstIt) &&
4110            !isa<DbgInfoIntrinsic>(&*PrevInstIt)) &&
4111           &*PrevInstIt != PrevInst)
4112         NumCalls++;
4113 
4114       ++PrevInstIt;
4115     }
4116 
4117     if (NumCalls) {
4118       SmallVector<Type*, 4> V;
4119       for (auto *II : LiveValues)
4120         V.push_back(FixedVectorType::get(II->getType(), BundleWidth));
4121       Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V);
4122     }
4123 
4124     PrevInst = Inst;
4125   }
4126 
4127   return Cost;
4128 }
4129 
4130 InstructionCost BoUpSLP::getTreeCost() {
4131   InstructionCost Cost = 0;
4132   LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size "
4133                     << VectorizableTree.size() << ".\n");
4134 
4135   unsigned BundleWidth = VectorizableTree[0]->Scalars.size();
4136 
4137   for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) {
4138     TreeEntry &TE = *VectorizableTree[I].get();
4139 
4140     // We create duplicate tree entries for gather sequences that have multiple
4141     // uses. However, we should not compute the cost of duplicate sequences.
4142     // For example, if we have a build vector (i.e., insertelement sequence)
4143     // that is used by more than one vector instruction, we only need to
4144     // compute the cost of the insertelement instructions once. The redundant
4145     // instructions will be eliminated by CSE.
4146     //
4147     // We should consider not creating duplicate tree entries for gather
4148     // sequences, and instead add additional edges to the tree representing
4149     // their uses. Since such an approach results in fewer total entries,
4150     // existing heuristics based on tree size may yield different results.
4151     //
4152     if (TE.State == TreeEntry::NeedToGather &&
4153         std::any_of(std::next(VectorizableTree.begin(), I + 1),
4154                     VectorizableTree.end(),
4155                     [TE](const std::unique_ptr<TreeEntry> &EntryPtr) {
4156                       return EntryPtr->State == TreeEntry::NeedToGather &&
4157                              EntryPtr->isSame(TE.Scalars);
4158                     }))
4159       continue;
4160 
4161     InstructionCost C = getEntryCost(&TE);
4162     Cost += C;
4163     LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
4164                       << " for bundle that starts with " << *TE.Scalars[0]
4165                       << ".\n"
4166                       << "SLP: Current total cost = " << Cost << "\n");
4167   }
4168 
4169   SmallPtrSet<Value *, 16> ExtractCostCalculated;
4170   InstructionCost ExtractCost = 0;
4171   for (ExternalUser &EU : ExternalUses) {
4172     // We only add extract cost once for the same scalar.
4173     if (!ExtractCostCalculated.insert(EU.Scalar).second)
4174       continue;
4175 
4176     // Uses by ephemeral values are free (because the ephemeral value will be
4177     // removed prior to code generation, and so the extraction will be
4178     // removed as well).
4179     if (EphValues.count(EU.User))
4180       continue;
4181 
4182     // If we plan to rewrite the tree in a smaller type, we will need to sign
4183     // extend the extracted value back to the original type. Here, we account
4184     // for the extract and the added cost of the sign extend if needed.
4185     auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth);
4186     auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
4187     if (MinBWs.count(ScalarRoot)) {
4188       auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
4189       auto Extend =
4190           MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt;
4191       VecTy = FixedVectorType::get(MinTy, BundleWidth);
4192       ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(),
4193                                                    VecTy, EU.Lane);
4194     } else {
4195       ExtractCost +=
4196           TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane);
4197     }
4198   }
4199 
4200   InstructionCost SpillCost = getSpillCost();
4201   Cost += SpillCost + ExtractCost;
4202 
4203 #ifndef NDEBUG
4204   SmallString<256> Str;
4205   {
4206     raw_svector_ostream OS(Str);
4207     OS << "SLP: Spill Cost = " << SpillCost << ".\n"
4208        << "SLP: Extract Cost = " << ExtractCost << ".\n"
4209        << "SLP: Total Cost = " << Cost << ".\n";
4210   }
4211   LLVM_DEBUG(dbgs() << Str);
4212   if (ViewSLPTree)
4213     ViewGraph(this, "SLP" + F->getName(), false, Str);
4214 #endif
4215 
4216   return Cost;
4217 }
4218 
4219 InstructionCost
4220 BoUpSLP::getGatherCost(FixedVectorType *Ty,
4221                        const DenseSet<unsigned> &ShuffledIndices) const {
4222   unsigned NumElts = Ty->getNumElements();
4223   APInt DemandedElts = APInt::getNullValue(NumElts);
4224   for (unsigned I = 0; I < NumElts; ++I)
4225     if (!ShuffledIndices.count(I))
4226       DemandedElts.setBit(I);
4227   InstructionCost Cost =
4228       TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true,
4229                                     /*Extract*/ false);
4230   if (!ShuffledIndices.empty())
4231     Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty);
4232   return Cost;
4233 }
4234 
4235 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const {
4236   // Find the type of the operands in VL.
4237   Type *ScalarTy = VL[0]->getType();
4238   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
4239     ScalarTy = SI->getValueOperand()->getType();
4240   auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
4241   // Find the cost of inserting/extracting values from the vector.
4242   // Check if the same elements are inserted several times and count them as
4243   // shuffle candidates.
4244   DenseSet<unsigned> ShuffledElements;
4245   DenseSet<Value *> UniqueElements;
4246   // Iterate in reverse order to consider insert elements with the high cost.
4247   for (unsigned I = VL.size(); I > 0; --I) {
4248     unsigned Idx = I - 1;
4249     if (!UniqueElements.insert(VL[Idx]).second)
4250       ShuffledElements.insert(Idx);
4251   }
4252   return getGatherCost(VecTy, ShuffledElements);
4253 }
4254 
4255 // Perform operand reordering on the instructions in VL and return the reordered
4256 // operands in Left and Right.
4257 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
4258                                              SmallVectorImpl<Value *> &Left,
4259                                              SmallVectorImpl<Value *> &Right,
4260                                              const DataLayout &DL,
4261                                              ScalarEvolution &SE,
4262                                              const BoUpSLP &R) {
4263   if (VL.empty())
4264     return;
4265   VLOperands Ops(VL, DL, SE, R);
4266   // Reorder the operands in place.
4267   Ops.reorder();
4268   Left = Ops.getVL(0);
4269   Right = Ops.getVL(1);
4270 }
4271 
4272 void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) {
4273   // Get the basic block this bundle is in. All instructions in the bundle
4274   // should be in this block.
4275   auto *Front = E->getMainOp();
4276   auto *BB = Front->getParent();
4277   assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool {
4278     auto *I = cast<Instruction>(V);
4279     return !E->isOpcodeOrAlt(I) || I->getParent() == BB;
4280   }));
4281 
4282   // The last instruction in the bundle in program order.
4283   Instruction *LastInst = nullptr;
4284 
4285   // Find the last instruction. The common case should be that BB has been
4286   // scheduled, and the last instruction is VL.back(). So we start with
4287   // VL.back() and iterate over schedule data until we reach the end of the
4288   // bundle. The end of the bundle is marked by null ScheduleData.
4289   if (BlocksSchedules.count(BB)) {
4290     auto *Bundle =
4291         BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back()));
4292     if (Bundle && Bundle->isPartOfBundle())
4293       for (; Bundle; Bundle = Bundle->NextInBundle)
4294         if (Bundle->OpValue == Bundle->Inst)
4295           LastInst = Bundle->Inst;
4296   }
4297 
4298   // LastInst can still be null at this point if there's either not an entry
4299   // for BB in BlocksSchedules or there's no ScheduleData available for
4300   // VL.back(). This can be the case if buildTree_rec aborts for various
4301   // reasons (e.g., the maximum recursion depth is reached, the maximum region
4302   // size is reached, etc.). ScheduleData is initialized in the scheduling
4303   // "dry-run".
4304   //
4305   // If this happens, we can still find the last instruction by brute force. We
4306   // iterate forwards from Front (inclusive) until we either see all
4307   // instructions in the bundle or reach the end of the block. If Front is the
4308   // last instruction in program order, LastInst will be set to Front, and we
4309   // will visit all the remaining instructions in the block.
4310   //
4311   // One of the reasons we exit early from buildTree_rec is to place an upper
4312   // bound on compile-time. Thus, taking an additional compile-time hit here is
4313   // not ideal. However, this should be exceedingly rare since it requires that
4314   // we both exit early from buildTree_rec and that the bundle be out-of-order
4315   // (causing us to iterate all the way to the end of the block).
4316   if (!LastInst) {
4317     SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end());
4318     for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) {
4319       if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I))
4320         LastInst = &I;
4321       if (Bundle.empty())
4322         break;
4323     }
4324   }
4325   assert(LastInst && "Failed to find last instruction in bundle");
4326 
4327   // Set the insertion point after the last instruction in the bundle. Set the
4328   // debug location to Front.
4329   Builder.SetInsertPoint(BB, ++LastInst->getIterator());
4330   Builder.SetCurrentDebugLocation(Front->getDebugLoc());
4331 }
4332 
4333 Value *BoUpSLP::gather(ArrayRef<Value *> VL) {
4334   Value *Val0 =
4335       isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0];
4336   FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size());
4337   Value *Vec = PoisonValue::get(VecTy);
4338   unsigned InsIndex = 0;
4339   for (Value *Val : VL) {
4340     Vec = Builder.CreateInsertElement(Vec, Val, Builder.getInt32(InsIndex++));
4341     auto *InsElt = dyn_cast<InsertElementInst>(Vec);
4342     if (!InsElt)
4343       continue;
4344     GatherSeq.insert(InsElt);
4345     CSEBlocks.insert(InsElt->getParent());
4346     // Add to our 'need-to-extract' list.
4347     if (TreeEntry *Entry = getTreeEntry(Val)) {
4348       // Find which lane we need to extract.
4349       unsigned FoundLane = std::distance(Entry->Scalars.begin(),
4350                                          find(Entry->Scalars, Val));
4351       assert(FoundLane < Entry->Scalars.size() && "Couldn't find extract lane");
4352       if (!Entry->ReuseShuffleIndices.empty()) {
4353         FoundLane = std::distance(Entry->ReuseShuffleIndices.begin(),
4354                                   find(Entry->ReuseShuffleIndices, FoundLane));
4355       }
4356       ExternalUses.push_back(ExternalUser(Val, InsElt, FoundLane));
4357     }
4358   }
4359 
4360   return Vec;
4361 }
4362 
4363 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
4364   InstructionsState S = getSameOpcode(VL);
4365   if (S.getOpcode()) {
4366     if (TreeEntry *E = getTreeEntry(S.OpValue)) {
4367       if (E->isSame(VL)) {
4368         Value *V = vectorizeTree(E);
4369         if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) {
4370           // Reshuffle to get only unique values.
4371           // If some of the scalars are duplicated in the vectorization tree
4372           // entry, we do not vectorize them but instead generate a mask for the
4373           // reuses. But if there are several users of the same entry, they may
4374           // have different vectorization factors. This is especially important
4375           // for PHI nodes. In this case, we need to adapt the resulting
4376           // instruction for the user vectorization factor and have to reshuffle
4377           // it again to take only unique elements of the vector. Without this
4378           // code the function incorrectly returns reduced vector instruction
4379           // with the same elements, not with the unique ones.
4380           // block:
4381           // %phi = phi <2 x > { .., %entry} {%shuffle, %block}
4382           // %2 = shuffle <2 x > %phi, %poison, <4 x > <0, 0, 1, 1>
4383           // ... (use %2)
4384           // %shuffle = shuffle <2 x> %2, poison, <2 x> {0, 2}
4385           // br %block
4386           SmallVector<int, 4> UniqueIdxs;
4387           SmallSet<int, 4> UsedIdxs;
4388           int Pos = 0;
4389           for (int Idx : E->ReuseShuffleIndices) {
4390             if (UsedIdxs.insert(Idx).second)
4391               UniqueIdxs.emplace_back(Pos);
4392             ++Pos;
4393           }
4394           V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle");
4395         }
4396         return V;
4397       }
4398     }
4399   }
4400 
4401   // Check that every instruction appears once in this bundle.
4402   SmallVector<int, 4> ReuseShuffleIndicies;
4403   SmallVector<Value *, 4> UniqueValues;
4404   if (VL.size() > 2) {
4405     DenseMap<Value *, unsigned> UniquePositions;
4406     for (Value *V : VL) {
4407       auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
4408       ReuseShuffleIndicies.emplace_back(Res.first->second);
4409       if (Res.second || isa<Constant>(V))
4410         UniqueValues.emplace_back(V);
4411     }
4412     // Do not shuffle single element or if number of unique values is not power
4413     // of 2.
4414     if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 ||
4415         !llvm::isPowerOf2_32(UniqueValues.size()))
4416       ReuseShuffleIndicies.clear();
4417     else
4418       VL = UniqueValues;
4419   }
4420 
4421   Value *Vec = gather(VL);
4422   if (!ReuseShuffleIndicies.empty()) {
4423     Vec = Builder.CreateShuffleVector(Vec, ReuseShuffleIndicies, "shuffle");
4424     if (auto *I = dyn_cast<Instruction>(Vec)) {
4425       GatherSeq.insert(I);
4426       CSEBlocks.insert(I->getParent());
4427     }
4428   }
4429   return Vec;
4430 }
4431 
4432 namespace {
4433 /// Merges shuffle masks and emits final shuffle instruction, if required.
4434 class ShuffleInstructionBuilder {
4435   IRBuilderBase &Builder;
4436   bool IsFinalized = false;
4437   SmallVector<int, 4> Mask;
4438 
4439 public:
4440   ShuffleInstructionBuilder(IRBuilderBase &Builder) : Builder(Builder) {}
4441 
4442   /// Adds a mask, inverting it before applying.
4443   void addInversedMask(ArrayRef<unsigned> SubMask) {
4444     if (SubMask.empty())
4445       return;
4446     SmallVector<int, 4> NewMask;
4447     inversePermutation(SubMask, NewMask);
4448     addMask(NewMask);
4449   }
4450 
4451   /// Functions adds masks, merging them into  single one.
4452   void addMask(ArrayRef<unsigned> SubMask) {
4453     SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end());
4454     addMask(NewMask);
4455   }
4456 
4457   void addMask(ArrayRef<int> SubMask) {
4458     if (SubMask.empty())
4459       return;
4460     if (Mask.empty()) {
4461       Mask.append(SubMask.begin(), SubMask.end());
4462       return;
4463     }
4464     SmallVector<int, 4> NewMask(SubMask.size(), SubMask.size());
4465     int TermValue = std::min(Mask.size(), SubMask.size());
4466     for (int I = 0, E = SubMask.size(); I < E; ++I) {
4467       if (SubMask[I] >= TermValue || Mask[SubMask[I]] >= TermValue) {
4468         NewMask[I] = E;
4469         continue;
4470       }
4471       NewMask[I] = Mask[SubMask[I]];
4472     }
4473     Mask.swap(NewMask);
4474   }
4475 
4476   Value *finalize(Value *V) {
4477     IsFinalized = true;
4478     if (Mask.empty())
4479       return V;
4480     return Builder.CreateShuffleVector(V, Mask, "shuffle");
4481   }
4482 
4483   ~ShuffleInstructionBuilder() {
4484     assert((IsFinalized || Mask.empty()) &&
4485            "Shuffle construction must be finalized.");
4486   }
4487 };
4488 } // namespace
4489 
4490 Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
4491   IRBuilder<>::InsertPointGuard Guard(Builder);
4492 
4493   if (E->VectorizedValue) {
4494     LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
4495     return E->VectorizedValue;
4496   }
4497 
4498   ShuffleInstructionBuilder ShuffleBuilder(Builder);
4499   bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
4500   if (E->State == TreeEntry::NeedToGather) {
4501     setInsertPointAfterBundle(E);
4502     Value *Vec = gather(E->Scalars);
4503     if (NeedToShuffleReuses) {
4504       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4505       Vec = ShuffleBuilder.finalize(Vec);
4506       if (auto *I = dyn_cast<Instruction>(Vec)) {
4507         GatherSeq.insert(I);
4508         CSEBlocks.insert(I->getParent());
4509       }
4510     }
4511     E->VectorizedValue = Vec;
4512     return Vec;
4513   }
4514 
4515   assert((E->State == TreeEntry::Vectorize ||
4516           E->State == TreeEntry::ScatterVectorize) &&
4517          "Unhandled state");
4518   unsigned ShuffleOrOp =
4519       E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
4520   Instruction *VL0 = E->getMainOp();
4521   Type *ScalarTy = VL0->getType();
4522   if (auto *Store = dyn_cast<StoreInst>(VL0))
4523     ScalarTy = Store->getValueOperand()->getType();
4524   auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size());
4525   switch (ShuffleOrOp) {
4526     case Instruction::PHI: {
4527       auto *PH = cast<PHINode>(VL0);
4528       Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
4529       Builder.SetCurrentDebugLocation(PH->getDebugLoc());
4530       PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
4531       Value *V = NewPhi;
4532       if (NeedToShuffleReuses)
4533         V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle");
4534 
4535       E->VectorizedValue = V;
4536 
4537       // PHINodes may have multiple entries from the same block. We want to
4538       // visit every block once.
4539       SmallPtrSet<BasicBlock*, 4> VisitedBBs;
4540 
4541       for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
4542         ValueList Operands;
4543         BasicBlock *IBB = PH->getIncomingBlock(i);
4544 
4545         if (!VisitedBBs.insert(IBB).second) {
4546           NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
4547           continue;
4548         }
4549 
4550         Builder.SetInsertPoint(IBB->getTerminator());
4551         Builder.SetCurrentDebugLocation(PH->getDebugLoc());
4552         Value *Vec = vectorizeTree(E->getOperand(i));
4553         NewPhi->addIncoming(Vec, IBB);
4554       }
4555 
4556       assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
4557              "Invalid number of incoming values");
4558       return V;
4559     }
4560 
4561     case Instruction::ExtractElement: {
4562       Value *V = E->getSingleOperand(0);
4563       Builder.SetInsertPoint(VL0);
4564       ShuffleBuilder.addInversedMask(E->ReorderIndices);
4565       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4566       V = ShuffleBuilder.finalize(V);
4567       E->VectorizedValue = V;
4568       return V;
4569     }
4570     case Instruction::ExtractValue: {
4571       auto *LI = cast<LoadInst>(E->getSingleOperand(0));
4572       Builder.SetInsertPoint(LI);
4573       auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace());
4574       Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
4575       LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign());
4576       Value *NewV = propagateMetadata(V, E->Scalars);
4577       ShuffleBuilder.addInversedMask(E->ReorderIndices);
4578       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4579       NewV = ShuffleBuilder.finalize(NewV);
4580       E->VectorizedValue = NewV;
4581       return NewV;
4582     }
4583     case Instruction::ZExt:
4584     case Instruction::SExt:
4585     case Instruction::FPToUI:
4586     case Instruction::FPToSI:
4587     case Instruction::FPExt:
4588     case Instruction::PtrToInt:
4589     case Instruction::IntToPtr:
4590     case Instruction::SIToFP:
4591     case Instruction::UIToFP:
4592     case Instruction::Trunc:
4593     case Instruction::FPTrunc:
4594     case Instruction::BitCast: {
4595       setInsertPointAfterBundle(E);
4596 
4597       Value *InVec = vectorizeTree(E->getOperand(0));
4598 
4599       if (E->VectorizedValue) {
4600         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
4601         return E->VectorizedValue;
4602       }
4603 
4604       auto *CI = cast<CastInst>(VL0);
4605       Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
4606       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4607       V = ShuffleBuilder.finalize(V);
4608 
4609       E->VectorizedValue = V;
4610       ++NumVectorInstructions;
4611       return V;
4612     }
4613     case Instruction::FCmp:
4614     case Instruction::ICmp: {
4615       setInsertPointAfterBundle(E);
4616 
4617       Value *L = vectorizeTree(E->getOperand(0));
4618       Value *R = vectorizeTree(E->getOperand(1));
4619 
4620       if (E->VectorizedValue) {
4621         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
4622         return E->VectorizedValue;
4623       }
4624 
4625       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
4626       Value *V = Builder.CreateCmp(P0, L, R);
4627       propagateIRFlags(V, E->Scalars, VL0);
4628       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4629       V = ShuffleBuilder.finalize(V);
4630 
4631       E->VectorizedValue = V;
4632       ++NumVectorInstructions;
4633       return V;
4634     }
4635     case Instruction::Select: {
4636       setInsertPointAfterBundle(E);
4637 
4638       Value *Cond = vectorizeTree(E->getOperand(0));
4639       Value *True = vectorizeTree(E->getOperand(1));
4640       Value *False = vectorizeTree(E->getOperand(2));
4641 
4642       if (E->VectorizedValue) {
4643         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
4644         return E->VectorizedValue;
4645       }
4646 
4647       Value *V = Builder.CreateSelect(Cond, True, False);
4648       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4649       V = ShuffleBuilder.finalize(V);
4650 
4651       E->VectorizedValue = V;
4652       ++NumVectorInstructions;
4653       return V;
4654     }
4655     case Instruction::FNeg: {
4656       setInsertPointAfterBundle(E);
4657 
4658       Value *Op = vectorizeTree(E->getOperand(0));
4659 
4660       if (E->VectorizedValue) {
4661         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
4662         return E->VectorizedValue;
4663       }
4664 
4665       Value *V = Builder.CreateUnOp(
4666           static_cast<Instruction::UnaryOps>(E->getOpcode()), Op);
4667       propagateIRFlags(V, E->Scalars, VL0);
4668       if (auto *I = dyn_cast<Instruction>(V))
4669         V = propagateMetadata(I, E->Scalars);
4670 
4671       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4672       V = ShuffleBuilder.finalize(V);
4673 
4674       E->VectorizedValue = V;
4675       ++NumVectorInstructions;
4676 
4677       return V;
4678     }
4679     case Instruction::Add:
4680     case Instruction::FAdd:
4681     case Instruction::Sub:
4682     case Instruction::FSub:
4683     case Instruction::Mul:
4684     case Instruction::FMul:
4685     case Instruction::UDiv:
4686     case Instruction::SDiv:
4687     case Instruction::FDiv:
4688     case Instruction::URem:
4689     case Instruction::SRem:
4690     case Instruction::FRem:
4691     case Instruction::Shl:
4692     case Instruction::LShr:
4693     case Instruction::AShr:
4694     case Instruction::And:
4695     case Instruction::Or:
4696     case Instruction::Xor: {
4697       setInsertPointAfterBundle(E);
4698 
4699       Value *LHS = vectorizeTree(E->getOperand(0));
4700       Value *RHS = vectorizeTree(E->getOperand(1));
4701 
4702       if (E->VectorizedValue) {
4703         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
4704         return E->VectorizedValue;
4705       }
4706 
4707       Value *V = Builder.CreateBinOp(
4708           static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS,
4709           RHS);
4710       propagateIRFlags(V, E->Scalars, VL0);
4711       if (auto *I = dyn_cast<Instruction>(V))
4712         V = propagateMetadata(I, E->Scalars);
4713 
4714       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4715       V = ShuffleBuilder.finalize(V);
4716 
4717       E->VectorizedValue = V;
4718       ++NumVectorInstructions;
4719 
4720       return V;
4721     }
4722     case Instruction::Load: {
4723       // Loads are inserted at the head of the tree because we don't want to
4724       // sink them all the way down past store instructions.
4725       bool IsReorder = E->updateStateIfReorder();
4726       if (IsReorder)
4727         VL0 = E->getMainOp();
4728       setInsertPointAfterBundle(E);
4729 
4730       LoadInst *LI = cast<LoadInst>(VL0);
4731       Instruction *NewLI;
4732       unsigned AS = LI->getPointerAddressSpace();
4733       Value *PO = LI->getPointerOperand();
4734       if (E->State == TreeEntry::Vectorize) {
4735 
4736         Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS));
4737 
4738         // The pointer operand uses an in-tree scalar so we add the new BitCast
4739         // to ExternalUses list to make sure that an extract will be generated
4740         // in the future.
4741         if (getTreeEntry(PO))
4742           ExternalUses.emplace_back(PO, cast<User>(VecPtr), 0);
4743 
4744         NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign());
4745       } else {
4746         assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state");
4747         Value *VecPtr = vectorizeTree(E->getOperand(0));
4748         // Use the minimum alignment of the gathered loads.
4749         Align CommonAlignment = LI->getAlign();
4750         for (Value *V : E->Scalars)
4751           CommonAlignment =
4752               commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign());
4753         NewLI = Builder.CreateMaskedGather(VecPtr, CommonAlignment);
4754       }
4755       Value *V = propagateMetadata(NewLI, E->Scalars);
4756 
4757       ShuffleBuilder.addInversedMask(E->ReorderIndices);
4758       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4759       V = ShuffleBuilder.finalize(V);
4760       E->VectorizedValue = V;
4761       ++NumVectorInstructions;
4762       return V;
4763     }
4764     case Instruction::Store: {
4765       bool IsReorder = !E->ReorderIndices.empty();
4766       auto *SI = cast<StoreInst>(
4767           IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0);
4768       unsigned AS = SI->getPointerAddressSpace();
4769 
4770       setInsertPointAfterBundle(E);
4771 
4772       Value *VecValue = vectorizeTree(E->getOperand(0));
4773       ShuffleBuilder.addMask(E->ReorderIndices);
4774       VecValue = ShuffleBuilder.finalize(VecValue);
4775 
4776       Value *ScalarPtr = SI->getPointerOperand();
4777       Value *VecPtr = Builder.CreateBitCast(
4778           ScalarPtr, VecValue->getType()->getPointerTo(AS));
4779       StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr,
4780                                                  SI->getAlign());
4781 
4782       // The pointer operand uses an in-tree scalar, so add the new BitCast to
4783       // ExternalUses to make sure that an extract will be generated in the
4784       // future.
4785       if (getTreeEntry(ScalarPtr))
4786         ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0));
4787 
4788       Value *V = propagateMetadata(ST, E->Scalars);
4789 
4790       E->VectorizedValue = V;
4791       ++NumVectorInstructions;
4792       return V;
4793     }
4794     case Instruction::GetElementPtr: {
4795       setInsertPointAfterBundle(E);
4796 
4797       Value *Op0 = vectorizeTree(E->getOperand(0));
4798 
4799       std::vector<Value *> OpVecs;
4800       for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
4801            ++j) {
4802         ValueList &VL = E->getOperand(j);
4803         // Need to cast all elements to the same type before vectorization to
4804         // avoid crash.
4805         Type *VL0Ty = VL0->getOperand(j)->getType();
4806         Type *Ty = llvm::all_of(
4807                        VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); })
4808                        ? VL0Ty
4809                        : DL->getIndexType(cast<GetElementPtrInst>(VL0)
4810                                               ->getPointerOperandType()
4811                                               ->getScalarType());
4812         for (Value *&V : VL) {
4813           auto *CI = cast<ConstantInt>(V);
4814           V = ConstantExpr::getIntegerCast(CI, Ty,
4815                                            CI->getValue().isSignBitSet());
4816         }
4817         Value *OpVec = vectorizeTree(VL);
4818         OpVecs.push_back(OpVec);
4819       }
4820 
4821       Value *V = Builder.CreateGEP(
4822           cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs);
4823       if (Instruction *I = dyn_cast<Instruction>(V))
4824         V = propagateMetadata(I, E->Scalars);
4825 
4826       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4827       V = ShuffleBuilder.finalize(V);
4828 
4829       E->VectorizedValue = V;
4830       ++NumVectorInstructions;
4831 
4832       return V;
4833     }
4834     case Instruction::Call: {
4835       CallInst *CI = cast<CallInst>(VL0);
4836       setInsertPointAfterBundle(E);
4837 
4838       Intrinsic::ID IID  = Intrinsic::not_intrinsic;
4839       if (Function *FI = CI->getCalledFunction())
4840         IID = FI->getIntrinsicID();
4841 
4842       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4843 
4844       auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
4845       bool UseIntrinsic = ID != Intrinsic::not_intrinsic &&
4846                           VecCallCosts.first <= VecCallCosts.second;
4847 
4848       Value *ScalarArg = nullptr;
4849       std::vector<Value *> OpVecs;
4850       for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
4851         ValueList OpVL;
4852         // Some intrinsics have scalar arguments. This argument should not be
4853         // vectorized.
4854         if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) {
4855           CallInst *CEI = cast<CallInst>(VL0);
4856           ScalarArg = CEI->getArgOperand(j);
4857           OpVecs.push_back(CEI->getArgOperand(j));
4858           continue;
4859         }
4860 
4861         Value *OpVec = vectorizeTree(E->getOperand(j));
4862         LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
4863         OpVecs.push_back(OpVec);
4864       }
4865 
4866       Function *CF;
4867       if (!UseIntrinsic) {
4868         VFShape Shape =
4869             VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
4870                                   VecTy->getNumElements())),
4871                          false /*HasGlobalPred*/);
4872         CF = VFDatabase(*CI).getVectorizedFunction(Shape);
4873       } else {
4874         Type *Tys[] = {FixedVectorType::get(CI->getType(), E->Scalars.size())};
4875         CF = Intrinsic::getDeclaration(F->getParent(), ID, Tys);
4876       }
4877 
4878       SmallVector<OperandBundleDef, 1> OpBundles;
4879       CI->getOperandBundlesAsDefs(OpBundles);
4880       Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
4881 
4882       // The scalar argument uses an in-tree scalar so we add the new vectorized
4883       // call to ExternalUses list to make sure that an extract will be
4884       // generated in the future.
4885       if (ScalarArg && getTreeEntry(ScalarArg))
4886         ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0));
4887 
4888       propagateIRFlags(V, E->Scalars, VL0);
4889       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4890       V = ShuffleBuilder.finalize(V);
4891 
4892       E->VectorizedValue = V;
4893       ++NumVectorInstructions;
4894       return V;
4895     }
4896     case Instruction::ShuffleVector: {
4897       assert(E->isAltShuffle() &&
4898              ((Instruction::isBinaryOp(E->getOpcode()) &&
4899                Instruction::isBinaryOp(E->getAltOpcode())) ||
4900               (Instruction::isCast(E->getOpcode()) &&
4901                Instruction::isCast(E->getAltOpcode()))) &&
4902              "Invalid Shuffle Vector Operand");
4903 
4904       Value *LHS = nullptr, *RHS = nullptr;
4905       if (Instruction::isBinaryOp(E->getOpcode())) {
4906         setInsertPointAfterBundle(E);
4907         LHS = vectorizeTree(E->getOperand(0));
4908         RHS = vectorizeTree(E->getOperand(1));
4909       } else {
4910         setInsertPointAfterBundle(E);
4911         LHS = vectorizeTree(E->getOperand(0));
4912       }
4913 
4914       if (E->VectorizedValue) {
4915         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
4916         return E->VectorizedValue;
4917       }
4918 
4919       Value *V0, *V1;
4920       if (Instruction::isBinaryOp(E->getOpcode())) {
4921         V0 = Builder.CreateBinOp(
4922             static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS);
4923         V1 = Builder.CreateBinOp(
4924             static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS);
4925       } else {
4926         V0 = Builder.CreateCast(
4927             static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy);
4928         V1 = Builder.CreateCast(
4929             static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy);
4930       }
4931 
4932       // Create shuffle to take alternate operations from the vector.
4933       // Also, gather up main and alt scalar ops to propagate IR flags to
4934       // each vector operation.
4935       ValueList OpScalars, AltScalars;
4936       unsigned e = E->Scalars.size();
4937       SmallVector<int, 8> Mask(e);
4938       for (unsigned i = 0; i < e; ++i) {
4939         auto *OpInst = cast<Instruction>(E->Scalars[i]);
4940         assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode");
4941         if (OpInst->getOpcode() == E->getAltOpcode()) {
4942           Mask[i] = e + i;
4943           AltScalars.push_back(E->Scalars[i]);
4944         } else {
4945           Mask[i] = i;
4946           OpScalars.push_back(E->Scalars[i]);
4947         }
4948       }
4949 
4950       propagateIRFlags(V0, OpScalars);
4951       propagateIRFlags(V1, AltScalars);
4952 
4953       Value *V = Builder.CreateShuffleVector(V0, V1, Mask);
4954       if (Instruction *I = dyn_cast<Instruction>(V))
4955         V = propagateMetadata(I, E->Scalars);
4956       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4957       V = ShuffleBuilder.finalize(V);
4958 
4959       E->VectorizedValue = V;
4960       ++NumVectorInstructions;
4961 
4962       return V;
4963     }
4964     default:
4965     llvm_unreachable("unknown inst");
4966   }
4967   return nullptr;
4968 }
4969 
4970 Value *BoUpSLP::vectorizeTree() {
4971   ExtraValueToDebugLocsMap ExternallyUsedValues;
4972   return vectorizeTree(ExternallyUsedValues);
4973 }
4974 
4975 Value *
4976 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) {
4977   // All blocks must be scheduled before any instructions are inserted.
4978   for (auto &BSIter : BlocksSchedules) {
4979     scheduleBlock(BSIter.second.get());
4980   }
4981 
4982   Builder.SetInsertPoint(&F->getEntryBlock().front());
4983   auto *VectorRoot = vectorizeTree(VectorizableTree[0].get());
4984 
4985   // If the vectorized tree can be rewritten in a smaller type, we truncate the
4986   // vectorized root. InstCombine will then rewrite the entire expression. We
4987   // sign extend the extracted values below.
4988   auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
4989   if (MinBWs.count(ScalarRoot)) {
4990     if (auto *I = dyn_cast<Instruction>(VectorRoot)) {
4991       // If current instr is a phi and not the last phi, insert it after the
4992       // last phi node.
4993       if (isa<PHINode>(I))
4994         Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt());
4995       else
4996         Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
4997     }
4998     auto BundleWidth = VectorizableTree[0]->Scalars.size();
4999     auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
5000     auto *VecTy = FixedVectorType::get(MinTy, BundleWidth);
5001     auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
5002     VectorizableTree[0]->VectorizedValue = Trunc;
5003   }
5004 
5005   LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size()
5006                     << " values .\n");
5007 
5008   // If necessary, sign-extend or zero-extend ScalarRoot to the larger type
5009   // specified by ScalarType.
5010   auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) {
5011     if (!MinBWs.count(ScalarRoot))
5012       return Ex;
5013     if (MinBWs[ScalarRoot].second)
5014       return Builder.CreateSExt(Ex, ScalarType);
5015     return Builder.CreateZExt(Ex, ScalarType);
5016   };
5017 
5018   // Extract all of the elements with the external uses.
5019   for (const auto &ExternalUse : ExternalUses) {
5020     Value *Scalar = ExternalUse.Scalar;
5021     llvm::User *User = ExternalUse.User;
5022 
5023     // Skip users that we already RAUW. This happens when one instruction
5024     // has multiple uses of the same value.
5025     if (User && !is_contained(Scalar->users(), User))
5026       continue;
5027     TreeEntry *E = getTreeEntry(Scalar);
5028     assert(E && "Invalid scalar");
5029     assert(E->State != TreeEntry::NeedToGather &&
5030            "Extracting from a gather list");
5031 
5032     Value *Vec = E->VectorizedValue;
5033     assert(Vec && "Can't find vectorizable value");
5034 
5035     Value *Lane = Builder.getInt32(ExternalUse.Lane);
5036     // If User == nullptr, the Scalar is used as extra arg. Generate
5037     // ExtractElement instruction and update the record for this scalar in
5038     // ExternallyUsedValues.
5039     if (!User) {
5040       assert(ExternallyUsedValues.count(Scalar) &&
5041              "Scalar with nullptr as an external user must be registered in "
5042              "ExternallyUsedValues map");
5043       if (auto *VecI = dyn_cast<Instruction>(Vec)) {
5044         Builder.SetInsertPoint(VecI->getParent(),
5045                                std::next(VecI->getIterator()));
5046       } else {
5047         Builder.SetInsertPoint(&F->getEntryBlock().front());
5048       }
5049       Value *Ex = Builder.CreateExtractElement(Vec, Lane);
5050       Ex = extend(ScalarRoot, Ex, Scalar->getType());
5051       CSEBlocks.insert(cast<Instruction>(Scalar)->getParent());
5052       auto &Locs = ExternallyUsedValues[Scalar];
5053       ExternallyUsedValues.insert({Ex, Locs});
5054       ExternallyUsedValues.erase(Scalar);
5055       // Required to update internally referenced instructions.
5056       Scalar->replaceAllUsesWith(Ex);
5057       continue;
5058     }
5059 
5060     // Generate extracts for out-of-tree users.
5061     // Find the insertion point for the extractelement lane.
5062     if (auto *VecI = dyn_cast<Instruction>(Vec)) {
5063       if (PHINode *PH = dyn_cast<PHINode>(User)) {
5064         for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
5065           if (PH->getIncomingValue(i) == Scalar) {
5066             Instruction *IncomingTerminator =
5067                 PH->getIncomingBlock(i)->getTerminator();
5068             if (isa<CatchSwitchInst>(IncomingTerminator)) {
5069               Builder.SetInsertPoint(VecI->getParent(),
5070                                      std::next(VecI->getIterator()));
5071             } else {
5072               Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
5073             }
5074             Value *Ex = Builder.CreateExtractElement(Vec, Lane);
5075             Ex = extend(ScalarRoot, Ex, Scalar->getType());
5076             CSEBlocks.insert(PH->getIncomingBlock(i));
5077             PH->setOperand(i, Ex);
5078           }
5079         }
5080       } else {
5081         Builder.SetInsertPoint(cast<Instruction>(User));
5082         Value *Ex = Builder.CreateExtractElement(Vec, Lane);
5083         Ex = extend(ScalarRoot, Ex, Scalar->getType());
5084         CSEBlocks.insert(cast<Instruction>(User)->getParent());
5085         User->replaceUsesOfWith(Scalar, Ex);
5086       }
5087     } else {
5088       Builder.SetInsertPoint(&F->getEntryBlock().front());
5089       Value *Ex = Builder.CreateExtractElement(Vec, Lane);
5090       Ex = extend(ScalarRoot, Ex, Scalar->getType());
5091       CSEBlocks.insert(&F->getEntryBlock());
5092       User->replaceUsesOfWith(Scalar, Ex);
5093     }
5094 
5095     LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
5096   }
5097 
5098   // For each vectorized value:
5099   for (auto &TEPtr : VectorizableTree) {
5100     TreeEntry *Entry = TEPtr.get();
5101 
5102     // No need to handle users of gathered values.
5103     if (Entry->State == TreeEntry::NeedToGather)
5104       continue;
5105 
5106     assert(Entry->VectorizedValue && "Can't find vectorizable value");
5107 
5108     // For each lane:
5109     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
5110       Value *Scalar = Entry->Scalars[Lane];
5111 
5112 #ifndef NDEBUG
5113       Type *Ty = Scalar->getType();
5114       if (!Ty->isVoidTy()) {
5115         for (User *U : Scalar->users()) {
5116           LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
5117 
5118           // It is legal to delete users in the ignorelist.
5119           assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) &&
5120                  "Deleting out-of-tree value");
5121         }
5122       }
5123 #endif
5124       LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
5125       eraseInstruction(cast<Instruction>(Scalar));
5126     }
5127   }
5128 
5129   Builder.ClearInsertionPoint();
5130   InstrElementSize.clear();
5131 
5132   return VectorizableTree[0]->VectorizedValue;
5133 }
5134 
5135 void BoUpSLP::optimizeGatherSequence() {
5136   LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
5137                     << " gather sequences instructions.\n");
5138   // LICM InsertElementInst sequences.
5139   for (Instruction *I : GatherSeq) {
5140     if (isDeleted(I))
5141       continue;
5142 
5143     // Check if this block is inside a loop.
5144     Loop *L = LI->getLoopFor(I->getParent());
5145     if (!L)
5146       continue;
5147 
5148     // Check if it has a preheader.
5149     BasicBlock *PreHeader = L->getLoopPreheader();
5150     if (!PreHeader)
5151       continue;
5152 
5153     // If the vector or the element that we insert into it are
5154     // instructions that are defined in this basic block then we can't
5155     // hoist this instruction.
5156     auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
5157     auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
5158     if (Op0 && L->contains(Op0))
5159       continue;
5160     if (Op1 && L->contains(Op1))
5161       continue;
5162 
5163     // We can hoist this instruction. Move it to the pre-header.
5164     I->moveBefore(PreHeader->getTerminator());
5165   }
5166 
5167   // Make a list of all reachable blocks in our CSE queue.
5168   SmallVector<const DomTreeNode *, 8> CSEWorkList;
5169   CSEWorkList.reserve(CSEBlocks.size());
5170   for (BasicBlock *BB : CSEBlocks)
5171     if (DomTreeNode *N = DT->getNode(BB)) {
5172       assert(DT->isReachableFromEntry(N));
5173       CSEWorkList.push_back(N);
5174     }
5175 
5176   // Sort blocks by domination. This ensures we visit a block after all blocks
5177   // dominating it are visited.
5178   llvm::stable_sort(CSEWorkList,
5179                     [this](const DomTreeNode *A, const DomTreeNode *B) {
5180                       return DT->properlyDominates(A, B);
5181                     });
5182 
5183   // Perform O(N^2) search over the gather sequences and merge identical
5184   // instructions. TODO: We can further optimize this scan if we split the
5185   // instructions into different buckets based on the insert lane.
5186   SmallVector<Instruction *, 16> Visited;
5187   for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
5188     assert(*I &&
5189            (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
5190            "Worklist not sorted properly!");
5191     BasicBlock *BB = (*I)->getBlock();
5192     // For all instructions in blocks containing gather sequences:
5193     for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
5194       Instruction *In = &*it++;
5195       if (isDeleted(In))
5196         continue;
5197       if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
5198         continue;
5199 
5200       // Check if we can replace this instruction with any of the
5201       // visited instructions.
5202       for (Instruction *v : Visited) {
5203         if (In->isIdenticalTo(v) &&
5204             DT->dominates(v->getParent(), In->getParent())) {
5205           In->replaceAllUsesWith(v);
5206           eraseInstruction(In);
5207           In = nullptr;
5208           break;
5209         }
5210       }
5211       if (In) {
5212         assert(!is_contained(Visited, In));
5213         Visited.push_back(In);
5214       }
5215     }
5216   }
5217   CSEBlocks.clear();
5218   GatherSeq.clear();
5219 }
5220 
5221 // Groups the instructions to a bundle (which is then a single scheduling entity)
5222 // and schedules instructions until the bundle gets ready.
5223 Optional<BoUpSLP::ScheduleData *>
5224 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
5225                                             const InstructionsState &S) {
5226   if (isa<PHINode>(S.OpValue))
5227     return nullptr;
5228 
5229   // Initialize the instruction bundle.
5230   Instruction *OldScheduleEnd = ScheduleEnd;
5231   ScheduleData *PrevInBundle = nullptr;
5232   ScheduleData *Bundle = nullptr;
5233   bool ReSchedule = false;
5234   LLVM_DEBUG(dbgs() << "SLP:  bundle: " << *S.OpValue << "\n");
5235 
5236   auto &&TryScheduleBundle = [this, OldScheduleEnd, SLP](bool ReSchedule,
5237                                                          ScheduleData *Bundle) {
5238     // The scheduling region got new instructions at the lower end (or it is a
5239     // new region for the first bundle). This makes it necessary to
5240     // recalculate all dependencies.
5241     // It is seldom that this needs to be done a second time after adding the
5242     // initial bundle to the region.
5243     if (ScheduleEnd != OldScheduleEnd) {
5244       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode())
5245         doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); });
5246       ReSchedule = true;
5247     }
5248     if (ReSchedule) {
5249       resetSchedule();
5250       initialFillReadyList(ReadyInsts);
5251     }
5252     if (Bundle) {
5253       LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle
5254                         << " in block " << BB->getName() << "\n");
5255       calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP);
5256     }
5257 
5258     // Now try to schedule the new bundle or (if no bundle) just calculate
5259     // dependencies. As soon as the bundle is "ready" it means that there are no
5260     // cyclic dependencies and we can schedule it. Note that's important that we
5261     // don't "schedule" the bundle yet (see cancelScheduling).
5262     while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) &&
5263            !ReadyInsts.empty()) {
5264       ScheduleData *Picked = ReadyInsts.pop_back_val();
5265       if (Picked->isSchedulingEntity() && Picked->isReady())
5266         schedule(Picked, ReadyInsts);
5267     }
5268   };
5269 
5270   // Make sure that the scheduling region contains all
5271   // instructions of the bundle.
5272   for (Value *V : VL) {
5273     if (!extendSchedulingRegion(V, S)) {
5274       // If the scheduling region got new instructions at the lower end (or it
5275       // is a new region for the first bundle). This makes it necessary to
5276       // recalculate all dependencies.
5277       // Otherwise the compiler may crash trying to incorrectly calculate
5278       // dependencies and emit instruction in the wrong order at the actual
5279       // scheduling.
5280       TryScheduleBundle(/*ReSchedule=*/false, nullptr);
5281       return None;
5282     }
5283   }
5284 
5285   for (Value *V : VL) {
5286     ScheduleData *BundleMember = getScheduleData(V);
5287     assert(BundleMember &&
5288            "no ScheduleData for bundle member (maybe not in same basic block)");
5289     if (BundleMember->IsScheduled) {
5290       // A bundle member was scheduled as single instruction before and now
5291       // needs to be scheduled as part of the bundle. We just get rid of the
5292       // existing schedule.
5293       LLVM_DEBUG(dbgs() << "SLP:  reset schedule because " << *BundleMember
5294                         << " was already scheduled\n");
5295       ReSchedule = true;
5296     }
5297     assert(BundleMember->isSchedulingEntity() &&
5298            "bundle member already part of other bundle");
5299     if (PrevInBundle) {
5300       PrevInBundle->NextInBundle = BundleMember;
5301     } else {
5302       Bundle = BundleMember;
5303     }
5304     BundleMember->UnscheduledDepsInBundle = 0;
5305     Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;
5306 
5307     // Group the instructions to a bundle.
5308     BundleMember->FirstInBundle = Bundle;
5309     PrevInBundle = BundleMember;
5310   }
5311   assert(Bundle && "Failed to find schedule bundle");
5312   TryScheduleBundle(ReSchedule, Bundle);
5313   if (!Bundle->isReady()) {
5314     cancelScheduling(VL, S.OpValue);
5315     return None;
5316   }
5317   return Bundle;
5318 }
5319 
5320 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL,
5321                                                 Value *OpValue) {
5322   if (isa<PHINode>(OpValue))
5323     return;
5324 
5325   ScheduleData *Bundle = getScheduleData(OpValue);
5326   LLVM_DEBUG(dbgs() << "SLP:  cancel scheduling of " << *Bundle << "\n");
5327   assert(!Bundle->IsScheduled &&
5328          "Can't cancel bundle which is already scheduled");
5329   assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&
5330          "tried to unbundle something which is not a bundle");
5331 
5332   // Un-bundle: make single instructions out of the bundle.
5333   ScheduleData *BundleMember = Bundle;
5334   while (BundleMember) {
5335     assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
5336     BundleMember->FirstInBundle = BundleMember;
5337     ScheduleData *Next = BundleMember->NextInBundle;
5338     BundleMember->NextInBundle = nullptr;
5339     BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
5340     if (BundleMember->UnscheduledDepsInBundle == 0) {
5341       ReadyInsts.insert(BundleMember);
5342     }
5343     BundleMember = Next;
5344   }
5345 }
5346 
5347 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() {
5348   // Allocate a new ScheduleData for the instruction.
5349   if (ChunkPos >= ChunkSize) {
5350     ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize));
5351     ChunkPos = 0;
5352   }
5353   return &(ScheduleDataChunks.back()[ChunkPos++]);
5354 }
5355 
5356 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V,
5357                                                       const InstructionsState &S) {
5358   if (getScheduleData(V, isOneOf(S, V)))
5359     return true;
5360   Instruction *I = dyn_cast<Instruction>(V);
5361   assert(I && "bundle member must be an instruction");
5362   assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled");
5363   auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool {
5364     ScheduleData *ISD = getScheduleData(I);
5365     if (!ISD)
5366       return false;
5367     assert(isInSchedulingRegion(ISD) &&
5368            "ScheduleData not in scheduling region");
5369     ScheduleData *SD = allocateScheduleDataChunks();
5370     SD->Inst = I;
5371     SD->init(SchedulingRegionID, S.OpValue);
5372     ExtraScheduleDataMap[I][S.OpValue] = SD;
5373     return true;
5374   };
5375   if (CheckSheduleForI(I))
5376     return true;
5377   if (!ScheduleStart) {
5378     // It's the first instruction in the new region.
5379     initScheduleData(I, I->getNextNode(), nullptr, nullptr);
5380     ScheduleStart = I;
5381     ScheduleEnd = I->getNextNode();
5382     if (isOneOf(S, I) != I)
5383       CheckSheduleForI(I);
5384     assert(ScheduleEnd && "tried to vectorize a terminator?");
5385     LLVM_DEBUG(dbgs() << "SLP:  initialize schedule region to " << *I << "\n");
5386     return true;
5387   }
5388   // Search up and down at the same time, because we don't know if the new
5389   // instruction is above or below the existing scheduling region.
5390   BasicBlock::reverse_iterator UpIter =
5391       ++ScheduleStart->getIterator().getReverse();
5392   BasicBlock::reverse_iterator UpperEnd = BB->rend();
5393   BasicBlock::iterator DownIter = ScheduleEnd->getIterator();
5394   BasicBlock::iterator LowerEnd = BB->end();
5395   while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I &&
5396          &*DownIter != I) {
5397     if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
5398       LLVM_DEBUG(dbgs() << "SLP:  exceeded schedule region size limit\n");
5399       return false;
5400     }
5401 
5402     ++UpIter;
5403     ++DownIter;
5404   }
5405   if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) {
5406     assert(I->getParent() == ScheduleStart->getParent() &&
5407            "Instruction is in wrong basic block.");
5408     initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
5409     ScheduleStart = I;
5410     if (isOneOf(S, I) != I)
5411       CheckSheduleForI(I);
5412     LLVM_DEBUG(dbgs() << "SLP:  extend schedule region start to " << *I
5413                       << "\n");
5414     return true;
5415   }
5416   assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) &&
5417          "Expected to reach top of the basic block or instruction down the "
5418          "lower end.");
5419   assert(I->getParent() == ScheduleEnd->getParent() &&
5420          "Instruction is in wrong basic block.");
5421   initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
5422                    nullptr);
5423   ScheduleEnd = I->getNextNode();
5424   if (isOneOf(S, I) != I)
5425     CheckSheduleForI(I);
5426   assert(ScheduleEnd && "tried to vectorize a terminator?");
5427   LLVM_DEBUG(dbgs() << "SLP:  extend schedule region end to " << *I << "\n");
5428   return true;
5429 }
5430 
5431 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
5432                                                 Instruction *ToI,
5433                                                 ScheduleData *PrevLoadStore,
5434                                                 ScheduleData *NextLoadStore) {
5435   ScheduleData *CurrentLoadStore = PrevLoadStore;
5436   for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
5437     ScheduleData *SD = ScheduleDataMap[I];
5438     if (!SD) {
5439       SD = allocateScheduleDataChunks();
5440       ScheduleDataMap[I] = SD;
5441       SD->Inst = I;
5442     }
5443     assert(!isInSchedulingRegion(SD) &&
5444            "new ScheduleData already in scheduling region");
5445     SD->init(SchedulingRegionID, I);
5446 
5447     if (I->mayReadOrWriteMemory() &&
5448         (!isa<IntrinsicInst>(I) ||
5449          (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect &&
5450           cast<IntrinsicInst>(I)->getIntrinsicID() !=
5451               Intrinsic::pseudoprobe))) {
5452       // Update the linked list of memory accessing instructions.
5453       if (CurrentLoadStore) {
5454         CurrentLoadStore->NextLoadStore = SD;
5455       } else {
5456         FirstLoadStoreInRegion = SD;
5457       }
5458       CurrentLoadStore = SD;
5459     }
5460   }
5461   if (NextLoadStore) {
5462     if (CurrentLoadStore)
5463       CurrentLoadStore->NextLoadStore = NextLoadStore;
5464   } else {
5465     LastLoadStoreInRegion = CurrentLoadStore;
5466   }
5467 }
5468 
5469 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
5470                                                      bool InsertInReadyList,
5471                                                      BoUpSLP *SLP) {
5472   assert(SD->isSchedulingEntity());
5473 
5474   SmallVector<ScheduleData *, 10> WorkList;
5475   WorkList.push_back(SD);
5476 
5477   while (!WorkList.empty()) {
5478     ScheduleData *SD = WorkList.pop_back_val();
5479 
5480     ScheduleData *BundleMember = SD;
5481     while (BundleMember) {
5482       assert(isInSchedulingRegion(BundleMember));
5483       if (!BundleMember->hasValidDependencies()) {
5484 
5485         LLVM_DEBUG(dbgs() << "SLP:       update deps of " << *BundleMember
5486                           << "\n");
5487         BundleMember->Dependencies = 0;
5488         BundleMember->resetUnscheduledDeps();
5489 
5490         // Handle def-use chain dependencies.
5491         if (BundleMember->OpValue != BundleMember->Inst) {
5492           ScheduleData *UseSD = getScheduleData(BundleMember->Inst);
5493           if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
5494             BundleMember->Dependencies++;
5495             ScheduleData *DestBundle = UseSD->FirstInBundle;
5496             if (!DestBundle->IsScheduled)
5497               BundleMember->incrementUnscheduledDeps(1);
5498             if (!DestBundle->hasValidDependencies())
5499               WorkList.push_back(DestBundle);
5500           }
5501         } else {
5502           for (User *U : BundleMember->Inst->users()) {
5503             if (isa<Instruction>(U)) {
5504               ScheduleData *UseSD = getScheduleData(U);
5505               if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
5506                 BundleMember->Dependencies++;
5507                 ScheduleData *DestBundle = UseSD->FirstInBundle;
5508                 if (!DestBundle->IsScheduled)
5509                   BundleMember->incrementUnscheduledDeps(1);
5510                 if (!DestBundle->hasValidDependencies())
5511                   WorkList.push_back(DestBundle);
5512               }
5513             } else {
5514               // I'm not sure if this can ever happen. But we need to be safe.
5515               // This lets the instruction/bundle never be scheduled and
5516               // eventually disable vectorization.
5517               BundleMember->Dependencies++;
5518               BundleMember->incrementUnscheduledDeps(1);
5519             }
5520           }
5521         }
5522 
5523         // Handle the memory dependencies.
5524         ScheduleData *DepDest = BundleMember->NextLoadStore;
5525         if (DepDest) {
5526           Instruction *SrcInst = BundleMember->Inst;
5527           MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA);
5528           bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
5529           unsigned numAliased = 0;
5530           unsigned DistToSrc = 1;
5531 
5532           while (DepDest) {
5533             assert(isInSchedulingRegion(DepDest));
5534 
5535             // We have two limits to reduce the complexity:
5536             // 1) AliasedCheckLimit: It's a small limit to reduce calls to
5537             //    SLP->isAliased (which is the expensive part in this loop).
5538             // 2) MaxMemDepDistance: It's for very large blocks and it aborts
5539             //    the whole loop (even if the loop is fast, it's quadratic).
5540             //    It's important for the loop break condition (see below) to
5541             //    check this limit even between two read-only instructions.
5542             if (DistToSrc >= MaxMemDepDistance ||
5543                     ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
5544                      (numAliased >= AliasedCheckLimit ||
5545                       SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
5546 
5547               // We increment the counter only if the locations are aliased
5548               // (instead of counting all alias checks). This gives a better
5549               // balance between reduced runtime and accurate dependencies.
5550               numAliased++;
5551 
5552               DepDest->MemoryDependencies.push_back(BundleMember);
5553               BundleMember->Dependencies++;
5554               ScheduleData *DestBundle = DepDest->FirstInBundle;
5555               if (!DestBundle->IsScheduled) {
5556                 BundleMember->incrementUnscheduledDeps(1);
5557               }
5558               if (!DestBundle->hasValidDependencies()) {
5559                 WorkList.push_back(DestBundle);
5560               }
5561             }
5562             DepDest = DepDest->NextLoadStore;
5563 
5564             // Example, explaining the loop break condition: Let's assume our
5565             // starting instruction is i0 and MaxMemDepDistance = 3.
5566             //
5567             //                      +--------v--v--v
5568             //             i0,i1,i2,i3,i4,i5,i6,i7,i8
5569             //             +--------^--^--^
5570             //
5571             // MaxMemDepDistance let us stop alias-checking at i3 and we add
5572             // dependencies from i0 to i3,i4,.. (even if they are not aliased).
5573             // Previously we already added dependencies from i3 to i6,i7,i8
5574             // (because of MaxMemDepDistance). As we added a dependency from
5575             // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
5576             // and we can abort this loop at i6.
5577             if (DistToSrc >= 2 * MaxMemDepDistance)
5578               break;
5579             DistToSrc++;
5580           }
5581         }
5582       }
5583       BundleMember = BundleMember->NextInBundle;
5584     }
5585     if (InsertInReadyList && SD->isReady()) {
5586       ReadyInsts.push_back(SD);
5587       LLVM_DEBUG(dbgs() << "SLP:     gets ready on update: " << *SD->Inst
5588                         << "\n");
5589     }
5590   }
5591 }
5592 
5593 void BoUpSLP::BlockScheduling::resetSchedule() {
5594   assert(ScheduleStart &&
5595          "tried to reset schedule on block which has not been scheduled");
5596   for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
5597     doForAllOpcodes(I, [&](ScheduleData *SD) {
5598       assert(isInSchedulingRegion(SD) &&
5599              "ScheduleData not in scheduling region");
5600       SD->IsScheduled = false;
5601       SD->resetUnscheduledDeps();
5602     });
5603   }
5604   ReadyInsts.clear();
5605 }
5606 
5607 void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
5608   if (!BS->ScheduleStart)
5609     return;
5610 
5611   LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
5612 
5613   BS->resetSchedule();
5614 
5615   // For the real scheduling we use a more sophisticated ready-list: it is
5616   // sorted by the original instruction location. This lets the final schedule
5617   // be as  close as possible to the original instruction order.
5618   struct ScheduleDataCompare {
5619     bool operator()(ScheduleData *SD1, ScheduleData *SD2) const {
5620       return SD2->SchedulingPriority < SD1->SchedulingPriority;
5621     }
5622   };
5623   std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
5624 
5625   // Ensure that all dependency data is updated and fill the ready-list with
5626   // initial instructions.
5627   int Idx = 0;
5628   int NumToSchedule = 0;
5629   for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
5630        I = I->getNextNode()) {
5631     BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) {
5632       assert(SD->isPartOfBundle() ==
5633                  (getTreeEntry(SD->Inst) != nullptr) &&
5634              "scheduler and vectorizer bundle mismatch");
5635       SD->FirstInBundle->SchedulingPriority = Idx++;
5636       if (SD->isSchedulingEntity()) {
5637         BS->calculateDependencies(SD, false, this);
5638         NumToSchedule++;
5639       }
5640     });
5641   }
5642   BS->initialFillReadyList(ReadyInsts);
5643 
5644   Instruction *LastScheduledInst = BS->ScheduleEnd;
5645 
5646   // Do the "real" scheduling.
5647   while (!ReadyInsts.empty()) {
5648     ScheduleData *picked = *ReadyInsts.begin();
5649     ReadyInsts.erase(ReadyInsts.begin());
5650 
5651     // Move the scheduled instruction(s) to their dedicated places, if not
5652     // there yet.
5653     ScheduleData *BundleMember = picked;
5654     while (BundleMember) {
5655       Instruction *pickedInst = BundleMember->Inst;
5656       if (LastScheduledInst->getNextNode() != pickedInst) {
5657         BS->BB->getInstList().remove(pickedInst);
5658         BS->BB->getInstList().insert(LastScheduledInst->getIterator(),
5659                                      pickedInst);
5660       }
5661       LastScheduledInst = pickedInst;
5662       BundleMember = BundleMember->NextInBundle;
5663     }
5664 
5665     BS->schedule(picked, ReadyInsts);
5666     NumToSchedule--;
5667   }
5668   assert(NumToSchedule == 0 && "could not schedule all instructions");
5669 
5670   // Avoid duplicate scheduling of the block.
5671   BS->ScheduleStart = nullptr;
5672 }
5673 
5674 unsigned BoUpSLP::getVectorElementSize(Value *V) {
5675   // If V is a store, just return the width of the stored value (or value
5676   // truncated just before storing) without traversing the expression tree.
5677   // This is the common case.
5678   if (auto *Store = dyn_cast<StoreInst>(V)) {
5679     if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand()))
5680       return DL->getTypeSizeInBits(Trunc->getSrcTy());
5681     return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
5682   }
5683 
5684   auto E = InstrElementSize.find(V);
5685   if (E != InstrElementSize.end())
5686     return E->second;
5687 
5688   // If V is not a store, we can traverse the expression tree to find loads
5689   // that feed it. The type of the loaded value may indicate a more suitable
5690   // width than V's type. We want to base the vector element size on the width
5691   // of memory operations where possible.
5692   SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist;
5693   SmallPtrSet<Instruction *, 16> Visited;
5694   if (auto *I = dyn_cast<Instruction>(V)) {
5695     Worklist.emplace_back(I, I->getParent());
5696     Visited.insert(I);
5697   }
5698 
5699   // Traverse the expression tree in bottom-up order looking for loads. If we
5700   // encounter an instruction we don't yet handle, we give up.
5701   auto Width = 0u;
5702   while (!Worklist.empty()) {
5703     Instruction *I;
5704     BasicBlock *Parent;
5705     std::tie(I, Parent) = Worklist.pop_back_val();
5706 
5707     // We should only be looking at scalar instructions here. If the current
5708     // instruction has a vector type, skip.
5709     auto *Ty = I->getType();
5710     if (isa<VectorType>(Ty))
5711       continue;
5712 
5713     // If the current instruction is a load, update MaxWidth to reflect the
5714     // width of the loaded value.
5715     if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) ||
5716         isa<ExtractValueInst>(I))
5717       Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty));
5718 
5719     // Otherwise, we need to visit the operands of the instruction. We only
5720     // handle the interesting cases from buildTree here. If an operand is an
5721     // instruction we haven't yet visited and from the same basic block as the
5722     // user or the use is a PHI node, we add it to the worklist.
5723     else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
5724              isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) ||
5725              isa<UnaryOperator>(I)) {
5726       for (Use &U : I->operands())
5727         if (auto *J = dyn_cast<Instruction>(U.get()))
5728           if (Visited.insert(J).second &&
5729               (isa<PHINode>(I) || J->getParent() == Parent))
5730             Worklist.emplace_back(J, J->getParent());
5731     } else {
5732       break;
5733     }
5734   }
5735 
5736   // If we didn't encounter a memory access in the expression tree, or if we
5737   // gave up for some reason, just return the width of V. Otherwise, return the
5738   // maximum width we found.
5739   if (!Width) {
5740     if (auto *CI = dyn_cast<CmpInst>(V))
5741       V = CI->getOperand(0);
5742     Width = DL->getTypeSizeInBits(V->getType());
5743   }
5744 
5745   for (Instruction *I : Visited)
5746     InstrElementSize[I] = Width;
5747 
5748   return Width;
5749 }
5750 
5751 // Determine if a value V in a vectorizable expression Expr can be demoted to a
5752 // smaller type with a truncation. We collect the values that will be demoted
5753 // in ToDemote and additional roots that require investigating in Roots.
5754 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
5755                                   SmallVectorImpl<Value *> &ToDemote,
5756                                   SmallVectorImpl<Value *> &Roots) {
5757   // We can always demote constants.
5758   if (isa<Constant>(V)) {
5759     ToDemote.push_back(V);
5760     return true;
5761   }
5762 
5763   // If the value is not an instruction in the expression with only one use, it
5764   // cannot be demoted.
5765   auto *I = dyn_cast<Instruction>(V);
5766   if (!I || !I->hasOneUse() || !Expr.count(I))
5767     return false;
5768 
5769   switch (I->getOpcode()) {
5770 
5771   // We can always demote truncations and extensions. Since truncations can
5772   // seed additional demotion, we save the truncated value.
5773   case Instruction::Trunc:
5774     Roots.push_back(I->getOperand(0));
5775     break;
5776   case Instruction::ZExt:
5777   case Instruction::SExt:
5778     break;
5779 
5780   // We can demote certain binary operations if we can demote both of their
5781   // operands.
5782   case Instruction::Add:
5783   case Instruction::Sub:
5784   case Instruction::Mul:
5785   case Instruction::And:
5786   case Instruction::Or:
5787   case Instruction::Xor:
5788     if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
5789         !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
5790       return false;
5791     break;
5792 
5793   // We can demote selects if we can demote their true and false values.
5794   case Instruction::Select: {
5795     SelectInst *SI = cast<SelectInst>(I);
5796     if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
5797         !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
5798       return false;
5799     break;
5800   }
5801 
5802   // We can demote phis if we can demote all their incoming operands. Note that
5803   // we don't need to worry about cycles since we ensure single use above.
5804   case Instruction::PHI: {
5805     PHINode *PN = cast<PHINode>(I);
5806     for (Value *IncValue : PN->incoming_values())
5807       if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
5808         return false;
5809     break;
5810   }
5811 
5812   // Otherwise, conservatively give up.
5813   default:
5814     return false;
5815   }
5816 
5817   // Record the value that we can demote.
5818   ToDemote.push_back(V);
5819   return true;
5820 }
5821 
5822 void BoUpSLP::computeMinimumValueSizes() {
5823   // If there are no external uses, the expression tree must be rooted by a
5824   // store. We can't demote in-memory values, so there is nothing to do here.
5825   if (ExternalUses.empty())
5826     return;
5827 
5828   // We only attempt to truncate integer expressions.
5829   auto &TreeRoot = VectorizableTree[0]->Scalars;
5830   auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
5831   if (!TreeRootIT)
5832     return;
5833 
5834   // If the expression is not rooted by a store, these roots should have
5835   // external uses. We will rely on InstCombine to rewrite the expression in
5836   // the narrower type. However, InstCombine only rewrites single-use values.
5837   // This means that if a tree entry other than a root is used externally, it
5838   // must have multiple uses and InstCombine will not rewrite it. The code
5839   // below ensures that only the roots are used externally.
5840   SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
5841   for (auto &EU : ExternalUses)
5842     if (!Expr.erase(EU.Scalar))
5843       return;
5844   if (!Expr.empty())
5845     return;
5846 
5847   // Collect the scalar values of the vectorizable expression. We will use this
5848   // context to determine which values can be demoted. If we see a truncation,
5849   // we mark it as seeding another demotion.
5850   for (auto &EntryPtr : VectorizableTree)
5851     Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end());
5852 
5853   // Ensure the roots of the vectorizable tree don't form a cycle. They must
5854   // have a single external user that is not in the vectorizable tree.
5855   for (auto *Root : TreeRoot)
5856     if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
5857       return;
5858 
5859   // Conservatively determine if we can actually truncate the roots of the
5860   // expression. Collect the values that can be demoted in ToDemote and
5861   // additional roots that require investigating in Roots.
5862   SmallVector<Value *, 32> ToDemote;
5863   SmallVector<Value *, 4> Roots;
5864   for (auto *Root : TreeRoot)
5865     if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
5866       return;
5867 
5868   // The maximum bit width required to represent all the values that can be
5869   // demoted without loss of precision. It would be safe to truncate the roots
5870   // of the expression to this width.
5871   auto MaxBitWidth = 8u;
5872 
5873   // We first check if all the bits of the roots are demanded. If they're not,
5874   // we can truncate the roots to this narrower type.
5875   for (auto *Root : TreeRoot) {
5876     auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
5877     MaxBitWidth = std::max<unsigned>(
5878         Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
5879   }
5880 
5881   // True if the roots can be zero-extended back to their original type, rather
5882   // than sign-extended. We know that if the leading bits are not demanded, we
5883   // can safely zero-extend. So we initialize IsKnownPositive to True.
5884   bool IsKnownPositive = true;
5885 
5886   // If all the bits of the roots are demanded, we can try a little harder to
5887   // compute a narrower type. This can happen, for example, if the roots are
5888   // getelementptr indices. InstCombine promotes these indices to the pointer
5889   // width. Thus, all their bits are technically demanded even though the
5890   // address computation might be vectorized in a smaller type.
5891   //
5892   // We start by looking at each entry that can be demoted. We compute the
5893   // maximum bit width required to store the scalar by using ValueTracking to
5894   // compute the number of high-order bits we can truncate.
5895   if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) &&
5896       llvm::all_of(TreeRoot, [](Value *R) {
5897         assert(R->hasOneUse() && "Root should have only one use!");
5898         return isa<GetElementPtrInst>(R->user_back());
5899       })) {
5900     MaxBitWidth = 8u;
5901 
5902     // Determine if the sign bit of all the roots is known to be zero. If not,
5903     // IsKnownPositive is set to False.
5904     IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) {
5905       KnownBits Known = computeKnownBits(R, *DL);
5906       return Known.isNonNegative();
5907     });
5908 
5909     // Determine the maximum number of bits required to store the scalar
5910     // values.
5911     for (auto *Scalar : ToDemote) {
5912       auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT);
5913       auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
5914       MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
5915     }
5916 
5917     // If we can't prove that the sign bit is zero, we must add one to the
5918     // maximum bit width to account for the unknown sign bit. This preserves
5919     // the existing sign bit so we can safely sign-extend the root back to the
5920     // original type. Otherwise, if we know the sign bit is zero, we will
5921     // zero-extend the root instead.
5922     //
5923     // FIXME: This is somewhat suboptimal, as there will be cases where adding
5924     //        one to the maximum bit width will yield a larger-than-necessary
5925     //        type. In general, we need to add an extra bit only if we can't
5926     //        prove that the upper bit of the original type is equal to the
5927     //        upper bit of the proposed smaller type. If these two bits are the
5928     //        same (either zero or one) we know that sign-extending from the
5929     //        smaller type will result in the same value. Here, since we can't
5930     //        yet prove this, we are just making the proposed smaller type
5931     //        larger to ensure correctness.
5932     if (!IsKnownPositive)
5933       ++MaxBitWidth;
5934   }
5935 
5936   // Round MaxBitWidth up to the next power-of-two.
5937   if (!isPowerOf2_64(MaxBitWidth))
5938     MaxBitWidth = NextPowerOf2(MaxBitWidth);
5939 
5940   // If the maximum bit width we compute is less than the with of the roots'
5941   // type, we can proceed with the narrowing. Otherwise, do nothing.
5942   if (MaxBitWidth >= TreeRootIT->getBitWidth())
5943     return;
5944 
5945   // If we can truncate the root, we must collect additional values that might
5946   // be demoted as a result. That is, those seeded by truncations we will
5947   // modify.
5948   while (!Roots.empty())
5949     collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);
5950 
5951   // Finally, map the values we can demote to the maximum bit with we computed.
5952   for (auto *Scalar : ToDemote)
5953     MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive);
5954 }
5955 
5956 namespace {
5957 
5958 /// The SLPVectorizer Pass.
5959 struct SLPVectorizer : public FunctionPass {
5960   SLPVectorizerPass Impl;
5961 
5962   /// Pass identification, replacement for typeid
5963   static char ID;
5964 
5965   explicit SLPVectorizer() : FunctionPass(ID) {
5966     initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
5967   }
5968 
5969   bool doInitialization(Module &M) override {
5970     return false;
5971   }
5972 
5973   bool runOnFunction(Function &F) override {
5974     if (skipFunction(F))
5975       return false;
5976 
5977     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
5978     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
5979     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
5980     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
5981     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
5982     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
5983     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5984     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
5985     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
5986     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
5987 
5988     return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
5989   }
5990 
5991   void getAnalysisUsage(AnalysisUsage &AU) const override {
5992     FunctionPass::getAnalysisUsage(AU);
5993     AU.addRequired<AssumptionCacheTracker>();
5994     AU.addRequired<ScalarEvolutionWrapperPass>();
5995     AU.addRequired<AAResultsWrapperPass>();
5996     AU.addRequired<TargetTransformInfoWrapperPass>();
5997     AU.addRequired<LoopInfoWrapperPass>();
5998     AU.addRequired<DominatorTreeWrapperPass>();
5999     AU.addRequired<DemandedBitsWrapperPass>();
6000     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
6001     AU.addRequired<InjectTLIMappingsLegacy>();
6002     AU.addPreserved<LoopInfoWrapperPass>();
6003     AU.addPreserved<DominatorTreeWrapperPass>();
6004     AU.addPreserved<AAResultsWrapperPass>();
6005     AU.addPreserved<GlobalsAAWrapperPass>();
6006     AU.setPreservesCFG();
6007   }
6008 };
6009 
6010 } // end anonymous namespace
6011 
6012 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
6013   auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
6014   auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
6015   auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
6016   auto *AA = &AM.getResult<AAManager>(F);
6017   auto *LI = &AM.getResult<LoopAnalysis>(F);
6018   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
6019   auto *AC = &AM.getResult<AssumptionAnalysis>(F);
6020   auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
6021   auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
6022 
6023   bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
6024   if (!Changed)
6025     return PreservedAnalyses::all();
6026 
6027   PreservedAnalyses PA;
6028   PA.preserveSet<CFGAnalyses>();
6029   PA.preserve<AAManager>();
6030   PA.preserve<GlobalsAA>();
6031   return PA;
6032 }
6033 
6034 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
6035                                 TargetTransformInfo *TTI_,
6036                                 TargetLibraryInfo *TLI_, AAResults *AA_,
6037                                 LoopInfo *LI_, DominatorTree *DT_,
6038                                 AssumptionCache *AC_, DemandedBits *DB_,
6039                                 OptimizationRemarkEmitter *ORE_) {
6040   if (!RunSLPVectorization)
6041     return false;
6042   SE = SE_;
6043   TTI = TTI_;
6044   TLI = TLI_;
6045   AA = AA_;
6046   LI = LI_;
6047   DT = DT_;
6048   AC = AC_;
6049   DB = DB_;
6050   DL = &F.getParent()->getDataLayout();
6051 
6052   Stores.clear();
6053   GEPs.clear();
6054   bool Changed = false;
6055 
6056   // If the target claims to have no vector registers don't attempt
6057   // vectorization.
6058   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)))
6059     return false;
6060 
6061   // Don't vectorize when the attribute NoImplicitFloat is used.
6062   if (F.hasFnAttribute(Attribute::NoImplicitFloat))
6063     return false;
6064 
6065   LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
6066 
6067   // Use the bottom up slp vectorizer to construct chains that start with
6068   // store instructions.
6069   BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_);
6070 
6071   // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
6072   // delete instructions.
6073 
6074   // Scan the blocks in the function in post order.
6075   for (auto BB : post_order(&F.getEntryBlock())) {
6076     collectSeedInstructions(BB);
6077 
6078     // Vectorize trees that end at stores.
6079     if (!Stores.empty()) {
6080       LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()
6081                         << " underlying objects.\n");
6082       Changed |= vectorizeStoreChains(R);
6083     }
6084 
6085     // Vectorize trees that end at reductions.
6086     Changed |= vectorizeChainsInBlock(BB, R);
6087 
6088     // Vectorize the index computations of getelementptr instructions. This
6089     // is primarily intended to catch gather-like idioms ending at
6090     // non-consecutive loads.
6091     if (!GEPs.empty()) {
6092       LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()
6093                         << " underlying objects.\n");
6094       Changed |= vectorizeGEPIndices(BB, R);
6095     }
6096   }
6097 
6098   if (Changed) {
6099     R.optimizeGatherSequence();
6100     LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
6101   }
6102   return Changed;
6103 }
6104 
6105 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R,
6106                                             unsigned Idx) {
6107   LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size()
6108                     << "\n");
6109   const unsigned Sz = R.getVectorElementSize(Chain[0]);
6110   const unsigned MinVF = R.getMinVecRegSize() / Sz;
6111   unsigned VF = Chain.size();
6112 
6113   if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF)
6114     return false;
6115 
6116   LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx
6117                     << "\n");
6118 
6119   R.buildTree(Chain);
6120   Optional<ArrayRef<unsigned>> Order = R.bestOrder();
6121   // TODO: Handle orders of size less than number of elements in the vector.
6122   if (Order && Order->size() == Chain.size()) {
6123     // TODO: reorder tree nodes without tree rebuilding.
6124     SmallVector<Value *, 4> ReorderedOps(Chain.rbegin(), Chain.rend());
6125     llvm::transform(*Order, ReorderedOps.begin(),
6126                     [Chain](const unsigned Idx) { return Chain[Idx]; });
6127     R.buildTree(ReorderedOps);
6128   }
6129   if (R.isTreeTinyAndNotFullyVectorizable())
6130     return false;
6131   if (R.isLoadCombineCandidate())
6132     return false;
6133 
6134   R.computeMinimumValueSizes();
6135 
6136   InstructionCost Cost = R.getTreeCost();
6137 
6138   LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n");
6139   if (Cost < -SLPCostThreshold) {
6140     LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n");
6141 
6142     using namespace ore;
6143 
6144     R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized",
6145                                         cast<StoreInst>(Chain[0]))
6146                      << "Stores SLP vectorized with cost " << NV("Cost", Cost)
6147                      << " and with tree size "
6148                      << NV("TreeSize", R.getTreeSize()));
6149 
6150     R.vectorizeTree();
6151     return true;
6152   }
6153 
6154   return false;
6155 }
6156 
6157 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
6158                                         BoUpSLP &R) {
6159   // We may run into multiple chains that merge into a single chain. We mark the
6160   // stores that we vectorized so that we don't visit the same store twice.
6161   BoUpSLP::ValueSet VectorizedStores;
6162   bool Changed = false;
6163 
6164   int E = Stores.size();
6165   SmallBitVector Tails(E, false);
6166   int MaxIter = MaxStoreLookup.getValue();
6167   SmallVector<std::pair<int, int>, 16> ConsecutiveChain(
6168       E, std::make_pair(E, INT_MAX));
6169   SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false));
6170   int IterCnt;
6171   auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter,
6172                                   &CheckedPairs,
6173                                   &ConsecutiveChain](int K, int Idx) {
6174     if (IterCnt >= MaxIter)
6175       return true;
6176     if (CheckedPairs[Idx].test(K))
6177       return ConsecutiveChain[K].second == 1 &&
6178              ConsecutiveChain[K].first == Idx;
6179     ++IterCnt;
6180     CheckedPairs[Idx].set(K);
6181     CheckedPairs[K].set(Idx);
6182     Optional<int> Diff = getPointersDiff(Stores[K]->getPointerOperand(),
6183                                          Stores[Idx]->getPointerOperand(), *DL,
6184                                          *SE, /*StrictCheck=*/true);
6185     if (!Diff || *Diff == 0)
6186       return false;
6187     int Val = *Diff;
6188     if (Val < 0) {
6189       if (ConsecutiveChain[Idx].second > -Val) {
6190         Tails.set(K);
6191         ConsecutiveChain[Idx] = std::make_pair(K, -Val);
6192       }
6193       return false;
6194     }
6195     if (ConsecutiveChain[K].second <= Val)
6196       return false;
6197 
6198     Tails.set(Idx);
6199     ConsecutiveChain[K] = std::make_pair(Idx, Val);
6200     return Val == 1;
6201   };
6202   // Do a quadratic search on all of the given stores in reverse order and find
6203   // all of the pairs of stores that follow each other.
6204   for (int Idx = E - 1; Idx >= 0; --Idx) {
6205     // If a store has multiple consecutive store candidates, search according
6206     // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ...
6207     // This is because usually pairing with immediate succeeding or preceding
6208     // candidate create the best chance to find slp vectorization opportunity.
6209     const int MaxLookDepth = std::max(E - Idx, Idx + 1);
6210     IterCnt = 0;
6211     for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset)
6212       if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) ||
6213           (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx)))
6214         break;
6215   }
6216 
6217   // For stores that start but don't end a link in the chain:
6218   for (int Cnt = E; Cnt > 0; --Cnt) {
6219     int I = Cnt - 1;
6220     if (ConsecutiveChain[I].first == E || Tails.test(I))
6221       continue;
6222     // We found a store instr that starts a chain. Now follow the chain and try
6223     // to vectorize it.
6224     BoUpSLP::ValueList Operands;
6225     // Collect the chain into a list.
6226     while (I != E && !VectorizedStores.count(Stores[I])) {
6227       Operands.push_back(Stores[I]);
6228       Tails.set(I);
6229       if (ConsecutiveChain[I].second != 1) {
6230         // Mark the new end in the chain and go back, if required. It might be
6231         // required if the original stores come in reversed order, for example.
6232         if (ConsecutiveChain[I].first != E &&
6233             Tails.test(ConsecutiveChain[I].first) &&
6234             !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) {
6235           Tails.reset(ConsecutiveChain[I].first);
6236           if (Cnt < ConsecutiveChain[I].first + 2)
6237             Cnt = ConsecutiveChain[I].first + 2;
6238         }
6239         break;
6240       }
6241       // Move to the next value in the chain.
6242       I = ConsecutiveChain[I].first;
6243     }
6244     assert(!Operands.empty() && "Expected non-empty list of stores.");
6245 
6246     unsigned MaxVecRegSize = R.getMaxVecRegSize();
6247     unsigned EltSize = R.getVectorElementSize(Operands[0]);
6248     unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize);
6249 
6250     unsigned MinVF = std::max(2U, R.getMinVecRegSize() / EltSize);
6251     unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store),
6252                               MaxElts);
6253 
6254     // FIXME: Is division-by-2 the correct step? Should we assert that the
6255     // register size is a power-of-2?
6256     unsigned StartIdx = 0;
6257     for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) {
6258       for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) {
6259         ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size);
6260         if (!VectorizedStores.count(Slice.front()) &&
6261             !VectorizedStores.count(Slice.back()) &&
6262             vectorizeStoreChain(Slice, R, Cnt)) {
6263           // Mark the vectorized stores so that we don't vectorize them again.
6264           VectorizedStores.insert(Slice.begin(), Slice.end());
6265           Changed = true;
6266           // If we vectorized initial block, no need to try to vectorize it
6267           // again.
6268           if (Cnt == StartIdx)
6269             StartIdx += Size;
6270           Cnt += Size;
6271           continue;
6272         }
6273         ++Cnt;
6274       }
6275       // Check if the whole array was vectorized already - exit.
6276       if (StartIdx >= Operands.size())
6277         break;
6278     }
6279   }
6280 
6281   return Changed;
6282 }
6283 
6284 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
6285   // Initialize the collections. We will make a single pass over the block.
6286   Stores.clear();
6287   GEPs.clear();
6288 
6289   // Visit the store and getelementptr instructions in BB and organize them in
6290   // Stores and GEPs according to the underlying objects of their pointer
6291   // operands.
6292   for (Instruction &I : *BB) {
6293     // Ignore store instructions that are volatile or have a pointer operand
6294     // that doesn't point to a scalar type.
6295     if (auto *SI = dyn_cast<StoreInst>(&I)) {
6296       if (!SI->isSimple())
6297         continue;
6298       if (!isValidElementType(SI->getValueOperand()->getType()))
6299         continue;
6300       Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI);
6301     }
6302 
6303     // Ignore getelementptr instructions that have more than one index, a
6304     // constant index, or a pointer operand that doesn't point to a scalar
6305     // type.
6306     else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
6307       auto Idx = GEP->idx_begin()->get();
6308       if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
6309         continue;
6310       if (!isValidElementType(Idx->getType()))
6311         continue;
6312       if (GEP->getType()->isVectorTy())
6313         continue;
6314       GEPs[GEP->getPointerOperand()].push_back(GEP);
6315     }
6316   }
6317 }
6318 
6319 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
6320   if (!A || !B)
6321     return false;
6322   Value *VL[] = {A, B};
6323   return tryToVectorizeList(VL, R, /*AllowReorder=*/true);
6324 }
6325 
6326 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
6327                                            bool AllowReorder,
6328                                            ArrayRef<Value *> InsertUses) {
6329   if (VL.size() < 2)
6330     return false;
6331 
6332   LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = "
6333                     << VL.size() << ".\n");
6334 
6335   // Check that all of the parts are instructions of the same type,
6336   // we permit an alternate opcode via InstructionsState.
6337   InstructionsState S = getSameOpcode(VL);
6338   if (!S.getOpcode())
6339     return false;
6340 
6341   Instruction *I0 = cast<Instruction>(S.OpValue);
6342   // Make sure invalid types (including vector type) are rejected before
6343   // determining vectorization factor for scalar instructions.
6344   for (Value *V : VL) {
6345     Type *Ty = V->getType();
6346     if (!isValidElementType(Ty)) {
6347       // NOTE: the following will give user internal llvm type name, which may
6348       // not be useful.
6349       R.getORE()->emit([&]() {
6350         std::string type_str;
6351         llvm::raw_string_ostream rso(type_str);
6352         Ty->print(rso);
6353         return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0)
6354                << "Cannot SLP vectorize list: type "
6355                << rso.str() + " is unsupported by vectorizer";
6356       });
6357       return false;
6358     }
6359   }
6360 
6361   unsigned Sz = R.getVectorElementSize(I0);
6362   unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz);
6363   unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF);
6364   MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF);
6365   if (MaxVF < 2) {
6366     R.getORE()->emit([&]() {
6367       return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0)
6368              << "Cannot SLP vectorize list: vectorization factor "
6369              << "less than 2 is not supported";
6370     });
6371     return false;
6372   }
6373 
6374   bool Changed = false;
6375   bool CandidateFound = false;
6376   InstructionCost MinCost = SLPCostThreshold.getValue();
6377 
6378   bool CompensateUseCost =
6379       !InsertUses.empty() && llvm::all_of(InsertUses, [](const Value *V) {
6380         return V && isa<InsertElementInst>(V);
6381       });
6382   assert((!CompensateUseCost || InsertUses.size() == VL.size()) &&
6383          "Each scalar expected to have an associated InsertElement user.");
6384 
6385   unsigned NextInst = 0, MaxInst = VL.size();
6386   for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) {
6387     // No actual vectorization should happen, if number of parts is the same as
6388     // provided vectorization factor (i.e. the scalar type is used for vector
6389     // code during codegen).
6390     auto *VecTy = FixedVectorType::get(VL[0]->getType(), VF);
6391     if (TTI->getNumberOfParts(VecTy) == VF)
6392       continue;
6393     for (unsigned I = NextInst; I < MaxInst; ++I) {
6394       unsigned OpsWidth = 0;
6395 
6396       if (I + VF > MaxInst)
6397         OpsWidth = MaxInst - I;
6398       else
6399         OpsWidth = VF;
6400 
6401       if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
6402         break;
6403 
6404       ArrayRef<Value *> Ops = VL.slice(I, OpsWidth);
6405       // Check that a previous iteration of this loop did not delete the Value.
6406       if (llvm::any_of(Ops, [&R](Value *V) {
6407             auto *I = dyn_cast<Instruction>(V);
6408             return I && R.isDeleted(I);
6409           }))
6410         continue;
6411 
6412       LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
6413                         << "\n");
6414 
6415       R.buildTree(Ops);
6416       Optional<ArrayRef<unsigned>> Order = R.bestOrder();
6417       // TODO: check if we can allow reordering for more cases.
6418       if (AllowReorder && Order) {
6419         // TODO: reorder tree nodes without tree rebuilding.
6420         // Conceptually, there is nothing actually preventing us from trying to
6421         // reorder a larger list. In fact, we do exactly this when vectorizing
6422         // reductions. However, at this point, we only expect to get here when
6423         // there are exactly two operations.
6424         assert(Ops.size() == 2);
6425         Value *ReorderedOps[] = {Ops[1], Ops[0]};
6426         R.buildTree(ReorderedOps, None);
6427       }
6428       if (R.isTreeTinyAndNotFullyVectorizable())
6429         continue;
6430 
6431       R.computeMinimumValueSizes();
6432       InstructionCost Cost = R.getTreeCost();
6433       CandidateFound = true;
6434       if (CompensateUseCost) {
6435         // TODO: Use TTI's getScalarizationOverhead for sequence of inserts
6436         // rather than sum of single inserts as the latter may overestimate
6437         // cost. This work should imply improving cost estimation for extracts
6438         // that added in for external (for vectorization tree) users,i.e. that
6439         // part should also switch to same interface.
6440         // For example, the following case is projected code after SLP:
6441         //  %4 = extractelement <4 x i64> %3, i32 0
6442         //  %v0 = insertelement <4 x i64> poison, i64 %4, i32 0
6443         //  %5 = extractelement <4 x i64> %3, i32 1
6444         //  %v1 = insertelement <4 x i64> %v0, i64 %5, i32 1
6445         //  %6 = extractelement <4 x i64> %3, i32 2
6446         //  %v2 = insertelement <4 x i64> %v1, i64 %6, i32 2
6447         //  %7 = extractelement <4 x i64> %3, i32 3
6448         //  %v3 = insertelement <4 x i64> %v2, i64 %7, i32 3
6449         //
6450         // Extracts here added by SLP in order to feed users (the inserts) of
6451         // original scalars and contribute to "ExtractCost" at cost evaluation.
6452         // The inserts in turn form sequence to build an aggregate that
6453         // detected by findBuildAggregate routine.
6454         // SLP makes an assumption that such sequence will be optimized away
6455         // later (instcombine) so it tries to compensate ExctractCost with
6456         // cost of insert sequence.
6457         // Current per element cost calculation approach is not quite accurate
6458         // and tends to create bias toward favoring vectorization.
6459         // Switching to the TTI interface might help a bit.
6460         // Alternative solution could be pattern-match to detect a no-op or
6461         // shuffle.
6462         InstructionCost UserCost = 0;
6463         for (unsigned Lane = 0; Lane < OpsWidth; Lane++) {
6464           auto *IE = cast<InsertElementInst>(InsertUses[I + Lane]);
6465           if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2)))
6466             UserCost += TTI->getVectorInstrCost(
6467                 Instruction::InsertElement, IE->getType(), CI->getZExtValue());
6468         }
6469         LLVM_DEBUG(dbgs() << "SLP: Compensate cost of users by: " << UserCost
6470                           << ".\n");
6471         Cost -= UserCost;
6472       }
6473 
6474       MinCost = std::min(MinCost, Cost);
6475 
6476       if (Cost < -SLPCostThreshold) {
6477         LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
6478         R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList",
6479                                                     cast<Instruction>(Ops[0]))
6480                                  << "SLP vectorized with cost " << ore::NV("Cost", Cost)
6481                                  << " and with tree size "
6482                                  << ore::NV("TreeSize", R.getTreeSize()));
6483 
6484         R.vectorizeTree();
6485         // Move to the next bundle.
6486         I += VF - 1;
6487         NextInst = I + 1;
6488         Changed = true;
6489       }
6490     }
6491   }
6492 
6493   if (!Changed && CandidateFound) {
6494     R.getORE()->emit([&]() {
6495       return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0)
6496              << "List vectorization was possible but not beneficial with cost "
6497              << ore::NV("Cost", MinCost) << " >= "
6498              << ore::NV("Treshold", -SLPCostThreshold);
6499     });
6500   } else if (!Changed) {
6501     R.getORE()->emit([&]() {
6502       return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0)
6503              << "Cannot SLP vectorize list: vectorization was impossible"
6504              << " with available vectorization factors";
6505     });
6506   }
6507   return Changed;
6508 }
6509 
6510 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) {
6511   if (!I)
6512     return false;
6513 
6514   if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I))
6515     return false;
6516 
6517   Value *P = I->getParent();
6518 
6519   // Vectorize in current basic block only.
6520   auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
6521   auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
6522   if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P)
6523     return false;
6524 
6525   // Try to vectorize V.
6526   if (tryToVectorizePair(Op0, Op1, R))
6527     return true;
6528 
6529   auto *A = dyn_cast<BinaryOperator>(Op0);
6530   auto *B = dyn_cast<BinaryOperator>(Op1);
6531   // Try to skip B.
6532   if (B && B->hasOneUse()) {
6533     auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
6534     auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
6535     if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R))
6536       return true;
6537     if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R))
6538       return true;
6539   }
6540 
6541   // Try to skip A.
6542   if (A && A->hasOneUse()) {
6543     auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
6544     auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
6545     if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R))
6546       return true;
6547     if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R))
6548       return true;
6549   }
6550   return false;
6551 }
6552 
6553 namespace {
6554 
6555 /// Model horizontal reductions.
6556 ///
6557 /// A horizontal reduction is a tree of reduction instructions that has values
6558 /// that can be put into a vector as its leaves. For example:
6559 ///
6560 /// mul mul mul mul
6561 ///  \  /    \  /
6562 ///   +       +
6563 ///    \     /
6564 ///       +
6565 /// This tree has "mul" as its leaf values and "+" as its reduction
6566 /// instructions. A reduction can feed into a store or a binary operation
6567 /// feeding a phi.
6568 ///    ...
6569 ///    \  /
6570 ///     +
6571 ///     |
6572 ///  phi +=
6573 ///
6574 ///  Or:
6575 ///    ...
6576 ///    \  /
6577 ///     +
6578 ///     |
6579 ///   *p =
6580 ///
6581 class HorizontalReduction {
6582   using ReductionOpsType = SmallVector<Value *, 16>;
6583   using ReductionOpsListType = SmallVector<ReductionOpsType, 2>;
6584   ReductionOpsListType ReductionOps;
6585   SmallVector<Value *, 32> ReducedVals;
6586   // Use map vector to make stable output.
6587   MapVector<Instruction *, Value *> ExtraArgs;
6588   WeakTrackingVH ReductionRoot;
6589   /// The type of reduction operation.
6590   RecurKind RdxKind;
6591 
6592   /// Checks if instruction is associative and can be vectorized.
6593   static bool isVectorizable(RecurKind Kind, Instruction *I) {
6594     if (Kind == RecurKind::None)
6595       return false;
6596     if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind))
6597       return true;
6598 
6599     if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) {
6600       // FP min/max are associative except for NaN and -0.0. We do not
6601       // have to rule out -0.0 here because the intrinsic semantics do not
6602       // specify a fixed result for it.
6603       return I->getFastMathFlags().noNaNs();
6604     }
6605 
6606     return I->isAssociative();
6607   }
6608 
6609   /// Checks if the ParentStackElem.first should be marked as a reduction
6610   /// operation with an extra argument or as extra argument itself.
6611   void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem,
6612                     Value *ExtraArg) {
6613     if (ExtraArgs.count(ParentStackElem.first)) {
6614       ExtraArgs[ParentStackElem.first] = nullptr;
6615       // We ran into something like:
6616       // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg.
6617       // The whole ParentStackElem.first should be considered as an extra value
6618       // in this case.
6619       // Do not perform analysis of remaining operands of ParentStackElem.first
6620       // instruction, this whole instruction is an extra argument.
6621       ParentStackElem.second = getNumberOfOperands(ParentStackElem.first);
6622     } else {
6623       // We ran into something like:
6624       // ParentStackElem.first += ... + ExtraArg + ...
6625       ExtraArgs[ParentStackElem.first] = ExtraArg;
6626     }
6627   }
6628 
6629   /// Creates reduction operation with the current opcode.
6630   static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS,
6631                          Value *RHS, const Twine &Name, bool UseSelect) {
6632     unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind);
6633     switch (Kind) {
6634     case RecurKind::Add:
6635     case RecurKind::Mul:
6636     case RecurKind::Or:
6637     case RecurKind::And:
6638     case RecurKind::Xor:
6639     case RecurKind::FAdd:
6640     case RecurKind::FMul:
6641       return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS,
6642                                  Name);
6643     case RecurKind::FMax:
6644       return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS);
6645     case RecurKind::FMin:
6646       return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS);
6647     case RecurKind::SMax:
6648       if (UseSelect) {
6649         Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name);
6650         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
6651       }
6652       return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS);
6653     case RecurKind::SMin:
6654       if (UseSelect) {
6655         Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name);
6656         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
6657       }
6658       return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS);
6659     case RecurKind::UMax:
6660       if (UseSelect) {
6661         Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name);
6662         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
6663       }
6664       return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS);
6665     case RecurKind::UMin:
6666       if (UseSelect) {
6667         Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name);
6668         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
6669       }
6670       return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS);
6671     default:
6672       llvm_unreachable("Unknown reduction operation.");
6673     }
6674   }
6675 
6676   /// Creates reduction operation with the current opcode with the IR flags
6677   /// from \p ReductionOps.
6678   static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS,
6679                          Value *RHS, const Twine &Name,
6680                          const ReductionOpsListType &ReductionOps) {
6681     bool UseSelect = ReductionOps.size() == 2;
6682     assert((!UseSelect || isa<SelectInst>(ReductionOps[1][0])) &&
6683            "Expected cmp + select pairs for reduction");
6684     Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect);
6685     if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) {
6686       if (auto *Sel = dyn_cast<SelectInst>(Op)) {
6687         propagateIRFlags(Sel->getCondition(), ReductionOps[0]);
6688         propagateIRFlags(Op, ReductionOps[1]);
6689         return Op;
6690       }
6691     }
6692     propagateIRFlags(Op, ReductionOps[0]);
6693     return Op;
6694   }
6695   /// Creates reduction operation with the current opcode with the IR flags
6696   /// from \p I.
6697   static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS,
6698                          Value *RHS, const Twine &Name, Instruction *I) {
6699     auto *SelI = dyn_cast<SelectInst>(I);
6700     Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr);
6701     if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) {
6702       if (auto *Sel = dyn_cast<SelectInst>(Op))
6703           propagateIRFlags(Sel->getCondition(), SelI->getCondition());
6704     }
6705     propagateIRFlags(Op, I);
6706     return Op;
6707   }
6708 
6709   static RecurKind getRdxKind(Instruction *I) {
6710     assert(I && "Expected instruction for reduction matching");
6711     TargetTransformInfo::ReductionFlags RdxFlags;
6712     if (match(I, m_Add(m_Value(), m_Value())))
6713       return RecurKind::Add;
6714     if (match(I, m_Mul(m_Value(), m_Value())))
6715       return RecurKind::Mul;
6716     if (match(I, m_And(m_Value(), m_Value())))
6717       return RecurKind::And;
6718     if (match(I, m_Or(m_Value(), m_Value())))
6719       return RecurKind::Or;
6720     if (match(I, m_Xor(m_Value(), m_Value())))
6721       return RecurKind::Xor;
6722     if (match(I, m_FAdd(m_Value(), m_Value())))
6723       return RecurKind::FAdd;
6724     if (match(I, m_FMul(m_Value(), m_Value())))
6725       return RecurKind::FMul;
6726 
6727     if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value())))
6728       return RecurKind::FMax;
6729     if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value())))
6730       return RecurKind::FMin;
6731 
6732     // This matches either cmp+select or intrinsics. SLP is expected to handle
6733     // either form.
6734     // TODO: If we are canonicalizing to intrinsics, we can remove several
6735     //       special-case paths that deal with selects.
6736     if (match(I, m_SMax(m_Value(), m_Value())))
6737       return RecurKind::SMax;
6738     if (match(I, m_SMin(m_Value(), m_Value())))
6739       return RecurKind::SMin;
6740     if (match(I, m_UMax(m_Value(), m_Value())))
6741       return RecurKind::UMax;
6742     if (match(I, m_UMin(m_Value(), m_Value())))
6743       return RecurKind::UMin;
6744 
6745     if (auto *Select = dyn_cast<SelectInst>(I)) {
6746       // Try harder: look for min/max pattern based on instructions producing
6747       // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2).
6748       // During the intermediate stages of SLP, it's very common to have
6749       // pattern like this (since optimizeGatherSequence is run only once
6750       // at the end):
6751       // %1 = extractelement <2 x i32> %a, i32 0
6752       // %2 = extractelement <2 x i32> %a, i32 1
6753       // %cond = icmp sgt i32 %1, %2
6754       // %3 = extractelement <2 x i32> %a, i32 0
6755       // %4 = extractelement <2 x i32> %a, i32 1
6756       // %select = select i1 %cond, i32 %3, i32 %4
6757       CmpInst::Predicate Pred;
6758       Instruction *L1;
6759       Instruction *L2;
6760 
6761       Value *LHS = Select->getTrueValue();
6762       Value *RHS = Select->getFalseValue();
6763       Value *Cond = Select->getCondition();
6764 
6765       // TODO: Support inverse predicates.
6766       if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) {
6767         if (!isa<ExtractElementInst>(RHS) ||
6768             !L2->isIdenticalTo(cast<Instruction>(RHS)))
6769           return RecurKind::None;
6770       } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) {
6771         if (!isa<ExtractElementInst>(LHS) ||
6772             !L1->isIdenticalTo(cast<Instruction>(LHS)))
6773           return RecurKind::None;
6774       } else {
6775         if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS))
6776           return RecurKind::None;
6777         if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) ||
6778             !L1->isIdenticalTo(cast<Instruction>(LHS)) ||
6779             !L2->isIdenticalTo(cast<Instruction>(RHS)))
6780           return RecurKind::None;
6781       }
6782 
6783       TargetTransformInfo::ReductionFlags RdxFlags;
6784       switch (Pred) {
6785       default:
6786         return RecurKind::None;
6787       case CmpInst::ICMP_SGT:
6788       case CmpInst::ICMP_SGE:
6789         return RecurKind::SMax;
6790       case CmpInst::ICMP_SLT:
6791       case CmpInst::ICMP_SLE:
6792         return RecurKind::SMin;
6793       case CmpInst::ICMP_UGT:
6794       case CmpInst::ICMP_UGE:
6795         return RecurKind::UMax;
6796       case CmpInst::ICMP_ULT:
6797       case CmpInst::ICMP_ULE:
6798         return RecurKind::UMin;
6799       }
6800     }
6801     return RecurKind::None;
6802   }
6803 
6804   /// Get the index of the first operand.
6805   static unsigned getFirstOperandIndex(Instruction *I) {
6806     return isa<SelectInst>(I) ? 1 : 0;
6807   }
6808 
6809   /// Total number of operands in the reduction operation.
6810   static unsigned getNumberOfOperands(Instruction *I) {
6811     return isa<SelectInst>(I) ? 3 : 2;
6812   }
6813 
6814   /// Checks if the instruction is in basic block \p BB.
6815   /// For a min/max reduction check that both compare and select are in \p BB.
6816   static bool hasSameParent(Instruction *I, BasicBlock *BB, bool IsRedOp) {
6817     auto *Sel = dyn_cast<SelectInst>(I);
6818     if (IsRedOp && Sel) {
6819       auto *Cmp = cast<Instruction>(Sel->getCondition());
6820       return Sel->getParent() == BB && Cmp->getParent() == BB;
6821     }
6822     return I->getParent() == BB;
6823   }
6824 
6825   /// Expected number of uses for reduction operations/reduced values.
6826   static bool hasRequiredNumberOfUses(bool MatchCmpSel, Instruction *I) {
6827     // SelectInst must be used twice while the condition op must have single
6828     // use only.
6829     if (MatchCmpSel) {
6830       if (auto *Sel = dyn_cast<SelectInst>(I))
6831         return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse();
6832       return I->hasNUses(2);
6833     }
6834 
6835     // Arithmetic reduction operation must be used once only.
6836     return I->hasOneUse();
6837   }
6838 
6839   /// Initializes the list of reduction operations.
6840   void initReductionOps(Instruction *I) {
6841     if (isa<SelectInst>(I))
6842       ReductionOps.assign(2, ReductionOpsType());
6843     else
6844       ReductionOps.assign(1, ReductionOpsType());
6845   }
6846 
6847   /// Add all reduction operations for the reduction instruction \p I.
6848   void addReductionOps(Instruction *I) {
6849     if (auto *Sel = dyn_cast<SelectInst>(I)) {
6850       ReductionOps[0].emplace_back(Sel->getCondition());
6851       ReductionOps[1].emplace_back(Sel);
6852     } else {
6853       ReductionOps[0].emplace_back(I);
6854     }
6855   }
6856 
6857   static Value *getLHS(RecurKind Kind, Instruction *I) {
6858     if (Kind == RecurKind::None)
6859       return nullptr;
6860     return I->getOperand(getFirstOperandIndex(I));
6861   }
6862   static Value *getRHS(RecurKind Kind, Instruction *I) {
6863     if (Kind == RecurKind::None)
6864       return nullptr;
6865     return I->getOperand(getFirstOperandIndex(I) + 1);
6866   }
6867 
6868 public:
6869   HorizontalReduction() = default;
6870 
6871   /// Try to find a reduction tree.
6872   bool matchAssociativeReduction(PHINode *Phi, Instruction *B) {
6873     assert((!Phi || is_contained(Phi->operands(), B)) &&
6874            "Phi needs to use the binary operator");
6875 
6876     RdxKind = getRdxKind(B);
6877 
6878     // We could have a initial reductions that is not an add.
6879     //  r *= v1 + v2 + v3 + v4
6880     // In such a case start looking for a tree rooted in the first '+'.
6881     if (Phi) {
6882       if (getLHS(RdxKind, B) == Phi) {
6883         Phi = nullptr;
6884         B = dyn_cast<Instruction>(getRHS(RdxKind, B));
6885         if (!B)
6886           return false;
6887         RdxKind = getRdxKind(B);
6888       } else if (getRHS(RdxKind, B) == Phi) {
6889         Phi = nullptr;
6890         B = dyn_cast<Instruction>(getLHS(RdxKind, B));
6891         if (!B)
6892           return false;
6893         RdxKind = getRdxKind(B);
6894       }
6895     }
6896 
6897     if (!isVectorizable(RdxKind, B))
6898       return false;
6899 
6900     // Analyze "regular" integer/FP types for reductions - no target-specific
6901     // types or pointers.
6902     Type *Ty = B->getType();
6903     if (!isValidElementType(Ty) || Ty->isPointerTy())
6904       return false;
6905 
6906     // Though the ultimate reduction may have multiple uses, its condition must
6907     // have only single use.
6908     if (auto *SI = dyn_cast<SelectInst>(B))
6909       if (!SI->getCondition()->hasOneUse())
6910         return false;
6911 
6912     ReductionRoot = B;
6913 
6914     // The opcode for leaf values that we perform a reduction on.
6915     // For example: load(x) + load(y) + load(z) + fptoui(w)
6916     // The leaf opcode for 'w' does not match, so we don't include it as a
6917     // potential candidate for the reduction.
6918     unsigned LeafOpcode = 0;
6919 
6920     // Post order traverse the reduction tree starting at B. We only handle true
6921     // trees containing only binary operators.
6922     SmallVector<std::pair<Instruction *, unsigned>, 32> Stack;
6923     Stack.push_back(std::make_pair(B, getFirstOperandIndex(B)));
6924     initReductionOps(B);
6925     while (!Stack.empty()) {
6926       Instruction *TreeN = Stack.back().first;
6927       unsigned EdgeToVisit = Stack.back().second++;
6928       const RecurKind TreeRdxKind = getRdxKind(TreeN);
6929       bool IsReducedValue = TreeRdxKind != RdxKind;
6930 
6931       // Postorder visit.
6932       if (IsReducedValue || EdgeToVisit == getNumberOfOperands(TreeN)) {
6933         if (IsReducedValue)
6934           ReducedVals.push_back(TreeN);
6935         else {
6936           auto ExtraArgsIter = ExtraArgs.find(TreeN);
6937           if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) {
6938             // Check if TreeN is an extra argument of its parent operation.
6939             if (Stack.size() <= 1) {
6940               // TreeN can't be an extra argument as it is a root reduction
6941               // operation.
6942               return false;
6943             }
6944             // Yes, TreeN is an extra argument, do not add it to a list of
6945             // reduction operations.
6946             // Stack[Stack.size() - 2] always points to the parent operation.
6947             markExtraArg(Stack[Stack.size() - 2], TreeN);
6948             ExtraArgs.erase(TreeN);
6949           } else
6950             addReductionOps(TreeN);
6951         }
6952         // Retract.
6953         Stack.pop_back();
6954         continue;
6955       }
6956 
6957       // Visit left or right.
6958       Value *EdgeVal = TreeN->getOperand(EdgeToVisit);
6959       auto *EdgeInst = dyn_cast<Instruction>(EdgeVal);
6960       if (!EdgeInst) {
6961         // Edge value is not a reduction instruction or a leaf instruction.
6962         // (It may be a constant, function argument, or something else.)
6963         markExtraArg(Stack.back(), EdgeVal);
6964         continue;
6965       }
6966       RecurKind EdgeRdxKind = getRdxKind(EdgeInst);
6967       // Continue analysis if the next operand is a reduction operation or
6968       // (possibly) a leaf value. If the leaf value opcode is not set,
6969       // the first met operation != reduction operation is considered as the
6970       // leaf opcode.
6971       // Only handle trees in the current basic block.
6972       // Each tree node needs to have minimal number of users except for the
6973       // ultimate reduction.
6974       const bool IsRdxInst = EdgeRdxKind == RdxKind;
6975       if (EdgeInst != Phi && EdgeInst != B &&
6976           hasSameParent(EdgeInst, B->getParent(), IsRdxInst) &&
6977           hasRequiredNumberOfUses(isa<SelectInst>(B), EdgeInst) &&
6978           (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) {
6979         if (IsRdxInst) {
6980           // We need to be able to reassociate the reduction operations.
6981           if (!isVectorizable(EdgeRdxKind, EdgeInst)) {
6982             // I is an extra argument for TreeN (its parent operation).
6983             markExtraArg(Stack.back(), EdgeInst);
6984             continue;
6985           }
6986         } else if (!LeafOpcode) {
6987           LeafOpcode = EdgeInst->getOpcode();
6988         }
6989         Stack.push_back(
6990             std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst)));
6991         continue;
6992       }
6993       // I is an extra argument for TreeN (its parent operation).
6994       markExtraArg(Stack.back(), EdgeInst);
6995     }
6996     return true;
6997   }
6998 
6999   /// Attempt to vectorize the tree found by matchAssociativeReduction.
7000   bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
7001     // If there are a sufficient number of reduction values, reduce
7002     // to a nearby power-of-2. We can safely generate oversized
7003     // vectors and rely on the backend to split them to legal sizes.
7004     unsigned NumReducedVals = ReducedVals.size();
7005     if (NumReducedVals < 4)
7006       return false;
7007 
7008     // Intersect the fast-math-flags from all reduction operations.
7009     FastMathFlags RdxFMF;
7010     RdxFMF.set();
7011     for (ReductionOpsType &RdxOp : ReductionOps) {
7012       for (Value *RdxVal : RdxOp) {
7013         if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal))
7014           RdxFMF &= FPMO->getFastMathFlags();
7015       }
7016     }
7017 
7018     IRBuilder<> Builder(cast<Instruction>(ReductionRoot));
7019     Builder.setFastMathFlags(RdxFMF);
7020 
7021     BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues;
7022     // The same extra argument may be used several times, so log each attempt
7023     // to use it.
7024     for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) {
7025       assert(Pair.first && "DebugLoc must be set.");
7026       ExternallyUsedValues[Pair.second].push_back(Pair.first);
7027     }
7028 
7029     // The compare instruction of a min/max is the insertion point for new
7030     // instructions and may be replaced with a new compare instruction.
7031     auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) {
7032       assert(isa<SelectInst>(RdxRootInst) &&
7033              "Expected min/max reduction to have select root instruction");
7034       Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition();
7035       assert(isa<Instruction>(ScalarCond) &&
7036              "Expected min/max reduction to have compare condition");
7037       return cast<Instruction>(ScalarCond);
7038     };
7039 
7040     // The reduction root is used as the insertion point for new instructions,
7041     // so set it as externally used to prevent it from being deleted.
7042     ExternallyUsedValues[ReductionRoot];
7043     SmallVector<Value *, 16> IgnoreList;
7044     for (ReductionOpsType &RdxOp : ReductionOps)
7045       IgnoreList.append(RdxOp.begin(), RdxOp.end());
7046 
7047     unsigned ReduxWidth = PowerOf2Floor(NumReducedVals);
7048     if (NumReducedVals > ReduxWidth) {
7049       // In the loop below, we are building a tree based on a window of
7050       // 'ReduxWidth' values.
7051       // If the operands of those values have common traits (compare predicate,
7052       // constant operand, etc), then we want to group those together to
7053       // minimize the cost of the reduction.
7054 
7055       // TODO: This should be extended to count common operands for
7056       //       compares and binops.
7057 
7058       // Step 1: Count the number of times each compare predicate occurs.
7059       SmallDenseMap<unsigned, unsigned> PredCountMap;
7060       for (Value *RdxVal : ReducedVals) {
7061         CmpInst::Predicate Pred;
7062         if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value())))
7063           ++PredCountMap[Pred];
7064       }
7065       // Step 2: Sort the values so the most common predicates come first.
7066       stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) {
7067         CmpInst::Predicate PredA, PredB;
7068         if (match(A, m_Cmp(PredA, m_Value(), m_Value())) &&
7069             match(B, m_Cmp(PredB, m_Value(), m_Value()))) {
7070           return PredCountMap[PredA] > PredCountMap[PredB];
7071         }
7072         return false;
7073       });
7074     }
7075 
7076     Value *VectorizedTree = nullptr;
7077     unsigned i = 0;
7078     while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) {
7079       ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth);
7080       V.buildTree(VL, ExternallyUsedValues, IgnoreList);
7081       Optional<ArrayRef<unsigned>> Order = V.bestOrder();
7082       if (Order) {
7083         assert(Order->size() == VL.size() &&
7084                "Order size must be the same as number of vectorized "
7085                "instructions.");
7086         // TODO: reorder tree nodes without tree rebuilding.
7087         SmallVector<Value *, 4> ReorderedOps(VL.size());
7088         llvm::transform(*Order, ReorderedOps.begin(),
7089                         [VL](const unsigned Idx) { return VL[Idx]; });
7090         V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList);
7091       }
7092       if (V.isTreeTinyAndNotFullyVectorizable())
7093         break;
7094       if (V.isLoadCombineReductionCandidate(RdxKind))
7095         break;
7096 
7097       V.computeMinimumValueSizes();
7098 
7099       // Estimate cost.
7100       InstructionCost TreeCost = V.getTreeCost();
7101       InstructionCost ReductionCost =
7102           getReductionCost(TTI, ReducedVals[i], ReduxWidth);
7103       InstructionCost Cost = TreeCost + ReductionCost;
7104       if (!Cost.isValid()) {
7105         LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n");
7106         return false;
7107       }
7108       if (Cost >= -SLPCostThreshold) {
7109         V.getORE()->emit([&]() {
7110           return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial",
7111                                           cast<Instruction>(VL[0]))
7112                  << "Vectorizing horizontal reduction is possible"
7113                  << "but not beneficial with cost " << ore::NV("Cost", Cost)
7114                  << " and threshold "
7115                  << ore::NV("Threshold", -SLPCostThreshold);
7116         });
7117         break;
7118       }
7119 
7120       LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
7121                         << Cost << ". (HorRdx)\n");
7122       V.getORE()->emit([&]() {
7123         return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction",
7124                                   cast<Instruction>(VL[0]))
7125                << "Vectorized horizontal reduction with cost "
7126                << ore::NV("Cost", Cost) << " and with tree size "
7127                << ore::NV("TreeSize", V.getTreeSize());
7128       });
7129 
7130       // Vectorize a tree.
7131       DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
7132       Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues);
7133 
7134       // Emit a reduction. If the root is a select (min/max idiom), the insert
7135       // point is the compare condition of that select.
7136       Instruction *RdxRootInst = cast<Instruction>(ReductionRoot);
7137       if (isa<SelectInst>(RdxRootInst))
7138         Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst));
7139       else
7140         Builder.SetInsertPoint(RdxRootInst);
7141 
7142       Value *ReducedSubTree =
7143           emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI);
7144 
7145       if (!VectorizedTree) {
7146         // Initialize the final value in the reduction.
7147         VectorizedTree = ReducedSubTree;
7148       } else {
7149         // Update the final value in the reduction.
7150         Builder.SetCurrentDebugLocation(Loc);
7151         VectorizedTree = createOp(Builder, RdxKind, VectorizedTree,
7152                                   ReducedSubTree, "op.rdx", ReductionOps);
7153       }
7154       i += ReduxWidth;
7155       ReduxWidth = PowerOf2Floor(NumReducedVals - i);
7156     }
7157 
7158     if (VectorizedTree) {
7159       // Finish the reduction.
7160       for (; i < NumReducedVals; ++i) {
7161         auto *I = cast<Instruction>(ReducedVals[i]);
7162         Builder.SetCurrentDebugLocation(I->getDebugLoc());
7163         VectorizedTree =
7164             createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps);
7165       }
7166       for (auto &Pair : ExternallyUsedValues) {
7167         // Add each externally used value to the final reduction.
7168         for (auto *I : Pair.second) {
7169           Builder.SetCurrentDebugLocation(I->getDebugLoc());
7170           VectorizedTree = createOp(Builder, RdxKind, VectorizedTree,
7171                                     Pair.first, "op.extra", I);
7172         }
7173       }
7174 
7175       ReductionRoot->replaceAllUsesWith(VectorizedTree);
7176 
7177       // Mark all scalar reduction ops for deletion, they are replaced by the
7178       // vector reductions.
7179       V.eraseInstructions(IgnoreList);
7180     }
7181     return VectorizedTree != nullptr;
7182   }
7183 
7184   unsigned numReductionValues() const { return ReducedVals.size(); }
7185 
7186 private:
7187   /// Calculate the cost of a reduction.
7188   InstructionCost getReductionCost(TargetTransformInfo *TTI,
7189                                    Value *FirstReducedVal,
7190                                    unsigned ReduxWidth) {
7191     Type *ScalarTy = FirstReducedVal->getType();
7192     FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth);
7193     InstructionCost VectorCost, ScalarCost;
7194     switch (RdxKind) {
7195     case RecurKind::Add:
7196     case RecurKind::Mul:
7197     case RecurKind::Or:
7198     case RecurKind::And:
7199     case RecurKind::Xor:
7200     case RecurKind::FAdd:
7201     case RecurKind::FMul: {
7202       unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind);
7203       VectorCost = TTI->getArithmeticReductionCost(RdxOpcode, VectorTy,
7204                                                    /*IsPairwiseForm=*/false);
7205       ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy);
7206       break;
7207     }
7208     case RecurKind::FMax:
7209     case RecurKind::FMin: {
7210       auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy));
7211       VectorCost =
7212           TTI->getMinMaxReductionCost(VectorTy, VecCondTy,
7213                                       /*pairwise=*/false, /*unsigned=*/false);
7214       ScalarCost =
7215           TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy) +
7216           TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
7217                                   CmpInst::makeCmpResultType(ScalarTy));
7218       break;
7219     }
7220     case RecurKind::SMax:
7221     case RecurKind::SMin:
7222     case RecurKind::UMax:
7223     case RecurKind::UMin: {
7224       auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy));
7225       bool IsUnsigned =
7226           RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin;
7227       VectorCost =
7228           TTI->getMinMaxReductionCost(VectorTy, VecCondTy,
7229                                       /*IsPairwiseForm=*/false, IsUnsigned);
7230       ScalarCost =
7231           TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy) +
7232           TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
7233                                   CmpInst::makeCmpResultType(ScalarTy));
7234       break;
7235     }
7236     default:
7237       llvm_unreachable("Expected arithmetic or min/max reduction operation");
7238     }
7239 
7240     // Scalar cost is repeated for N-1 elements.
7241     ScalarCost *= (ReduxWidth - 1);
7242     LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost
7243                       << " for reduction that starts with " << *FirstReducedVal
7244                       << " (It is a splitting reduction)\n");
7245     return VectorCost - ScalarCost;
7246   }
7247 
7248   /// Emit a horizontal reduction of the vectorized value.
7249   Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder,
7250                        unsigned ReduxWidth, const TargetTransformInfo *TTI) {
7251     assert(VectorizedValue && "Need to have a vectorized tree node");
7252     assert(isPowerOf2_32(ReduxWidth) &&
7253            "We only handle power-of-two reductions for now");
7254 
7255     return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind,
7256                                        ReductionOps.back());
7257   }
7258 };
7259 
7260 } // end anonymous namespace
7261 
7262 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) {
7263   if (auto *IE = dyn_cast<InsertElementInst>(InsertInst))
7264     return cast<FixedVectorType>(IE->getType())->getNumElements();
7265 
7266   unsigned AggregateSize = 1;
7267   auto *IV = cast<InsertValueInst>(InsertInst);
7268   Type *CurrentType = IV->getType();
7269   do {
7270     if (auto *ST = dyn_cast<StructType>(CurrentType)) {
7271       for (auto *Elt : ST->elements())
7272         if (Elt != ST->getElementType(0)) // check homogeneity
7273           return None;
7274       AggregateSize *= ST->getNumElements();
7275       CurrentType = ST->getElementType(0);
7276     } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) {
7277       AggregateSize *= AT->getNumElements();
7278       CurrentType = AT->getElementType();
7279     } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) {
7280       AggregateSize *= VT->getNumElements();
7281       return AggregateSize;
7282     } else if (CurrentType->isSingleValueType()) {
7283       return AggregateSize;
7284     } else {
7285       return None;
7286     }
7287   } while (true);
7288 }
7289 
7290 static Optional<unsigned> getOperandIndex(Instruction *InsertInst,
7291                                           unsigned OperandOffset) {
7292   unsigned OperandIndex = OperandOffset;
7293   if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) {
7294     if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) {
7295       auto *VT = cast<FixedVectorType>(IE->getType());
7296       OperandIndex *= VT->getNumElements();
7297       OperandIndex += CI->getZExtValue();
7298       return OperandIndex;
7299     }
7300     return None;
7301   }
7302 
7303   auto *IV = cast<InsertValueInst>(InsertInst);
7304   Type *CurrentType = IV->getType();
7305   for (unsigned int Index : IV->indices()) {
7306     if (auto *ST = dyn_cast<StructType>(CurrentType)) {
7307       OperandIndex *= ST->getNumElements();
7308       CurrentType = ST->getElementType(Index);
7309     } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) {
7310       OperandIndex *= AT->getNumElements();
7311       CurrentType = AT->getElementType();
7312     } else {
7313       return None;
7314     }
7315     OperandIndex += Index;
7316   }
7317   return OperandIndex;
7318 }
7319 
7320 static bool findBuildAggregate_rec(Instruction *LastInsertInst,
7321                                    TargetTransformInfo *TTI,
7322                                    SmallVectorImpl<Value *> &BuildVectorOpds,
7323                                    SmallVectorImpl<Value *> &InsertElts,
7324                                    unsigned OperandOffset) {
7325   do {
7326     Value *InsertedOperand = LastInsertInst->getOperand(1);
7327     Optional<unsigned> OperandIndex =
7328         getOperandIndex(LastInsertInst, OperandOffset);
7329     if (!OperandIndex)
7330       return false;
7331     if (isa<InsertElementInst>(InsertedOperand) ||
7332         isa<InsertValueInst>(InsertedOperand)) {
7333       if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI,
7334                                   BuildVectorOpds, InsertElts, *OperandIndex))
7335         return false;
7336     } else {
7337       BuildVectorOpds[*OperandIndex] = InsertedOperand;
7338       InsertElts[*OperandIndex] = LastInsertInst;
7339     }
7340     if (isa<UndefValue>(LastInsertInst->getOperand(0)))
7341       return true;
7342     LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0));
7343   } while (LastInsertInst != nullptr &&
7344            (isa<InsertValueInst>(LastInsertInst) ||
7345             isa<InsertElementInst>(LastInsertInst)) &&
7346            LastInsertInst->hasOneUse());
7347   return false;
7348 }
7349 
7350 /// Recognize construction of vectors like
7351 ///  %ra = insertelement <4 x float> poison, float %s0, i32 0
7352 ///  %rb = insertelement <4 x float> %ra, float %s1, i32 1
7353 ///  %rc = insertelement <4 x float> %rb, float %s2, i32 2
7354 ///  %rd = insertelement <4 x float> %rc, float %s3, i32 3
7355 ///  starting from the last insertelement or insertvalue instruction.
7356 ///
7357 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>},
7358 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on.
7359 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples.
7360 ///
7361 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type.
7362 ///
7363 /// \return true if it matches.
7364 static bool findBuildAggregate(Instruction *LastInsertInst,
7365                                TargetTransformInfo *TTI,
7366                                SmallVectorImpl<Value *> &BuildVectorOpds,
7367                                SmallVectorImpl<Value *> &InsertElts) {
7368 
7369   assert((isa<InsertElementInst>(LastInsertInst) ||
7370           isa<InsertValueInst>(LastInsertInst)) &&
7371          "Expected insertelement or insertvalue instruction!");
7372 
7373   assert((BuildVectorOpds.empty() && InsertElts.empty()) &&
7374          "Expected empty result vectors!");
7375 
7376   Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst);
7377   if (!AggregateSize)
7378     return false;
7379   BuildVectorOpds.resize(*AggregateSize);
7380   InsertElts.resize(*AggregateSize);
7381 
7382   if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts,
7383                              0)) {
7384     llvm::erase_value(BuildVectorOpds, nullptr);
7385     llvm::erase_value(InsertElts, nullptr);
7386     if (BuildVectorOpds.size() >= 2)
7387       return true;
7388   }
7389 
7390   return false;
7391 }
7392 
7393 static bool PhiTypeSorterFunc(Value *V, Value *V2) {
7394   return V->getType() < V2->getType();
7395 }
7396 
7397 /// Try and get a reduction value from a phi node.
7398 ///
7399 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions
7400 /// if they come from either \p ParentBB or a containing loop latch.
7401 ///
7402 /// \returns A candidate reduction value if possible, or \code nullptr \endcode
7403 /// if not possible.
7404 static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
7405                                 BasicBlock *ParentBB, LoopInfo *LI) {
7406   // There are situations where the reduction value is not dominated by the
7407   // reduction phi. Vectorizing such cases has been reported to cause
7408   // miscompiles. See PR25787.
7409   auto DominatedReduxValue = [&](Value *R) {
7410     return isa<Instruction>(R) &&
7411            DT->dominates(P->getParent(), cast<Instruction>(R)->getParent());
7412   };
7413 
7414   Value *Rdx = nullptr;
7415 
7416   // Return the incoming value if it comes from the same BB as the phi node.
7417   if (P->getIncomingBlock(0) == ParentBB) {
7418     Rdx = P->getIncomingValue(0);
7419   } else if (P->getIncomingBlock(1) == ParentBB) {
7420     Rdx = P->getIncomingValue(1);
7421   }
7422 
7423   if (Rdx && DominatedReduxValue(Rdx))
7424     return Rdx;
7425 
7426   // Otherwise, check whether we have a loop latch to look at.
7427   Loop *BBL = LI->getLoopFor(ParentBB);
7428   if (!BBL)
7429     return nullptr;
7430   BasicBlock *BBLatch = BBL->getLoopLatch();
7431   if (!BBLatch)
7432     return nullptr;
7433 
7434   // There is a loop latch, return the incoming value if it comes from
7435   // that. This reduction pattern occasionally turns up.
7436   if (P->getIncomingBlock(0) == BBLatch) {
7437     Rdx = P->getIncomingValue(0);
7438   } else if (P->getIncomingBlock(1) == BBLatch) {
7439     Rdx = P->getIncomingValue(1);
7440   }
7441 
7442   if (Rdx && DominatedReduxValue(Rdx))
7443     return Rdx;
7444 
7445   return nullptr;
7446 }
7447 
7448 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) {
7449   if (match(I, m_BinOp(m_Value(V0), m_Value(V1))))
7450     return true;
7451   if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1))))
7452     return true;
7453   if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1))))
7454     return true;
7455   if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1))))
7456     return true;
7457   if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1))))
7458     return true;
7459   if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1))))
7460     return true;
7461   if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1))))
7462     return true;
7463   return false;
7464 }
7465 
7466 /// Attempt to reduce a horizontal reduction.
7467 /// If it is legal to match a horizontal reduction feeding the phi node \a P
7468 /// with reduction operators \a Root (or one of its operands) in a basic block
7469 /// \a BB, then check if it can be done. If horizontal reduction is not found
7470 /// and root instruction is a binary operation, vectorization of the operands is
7471 /// attempted.
7472 /// \returns true if a horizontal reduction was matched and reduced or operands
7473 /// of one of the binary instruction were vectorized.
7474 /// \returns false if a horizontal reduction was not matched (or not possible)
7475 /// or no vectorization of any binary operation feeding \a Root instruction was
7476 /// performed.
7477 static bool tryToVectorizeHorReductionOrInstOperands(
7478     PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R,
7479     TargetTransformInfo *TTI,
7480     const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) {
7481   if (!ShouldVectorizeHor)
7482     return false;
7483 
7484   if (!Root)
7485     return false;
7486 
7487   if (Root->getParent() != BB || isa<PHINode>(Root))
7488     return false;
7489   // Start analysis starting from Root instruction. If horizontal reduction is
7490   // found, try to vectorize it. If it is not a horizontal reduction or
7491   // vectorization is not possible or not effective, and currently analyzed
7492   // instruction is a binary operation, try to vectorize the operands, using
7493   // pre-order DFS traversal order. If the operands were not vectorized, repeat
7494   // the same procedure considering each operand as a possible root of the
7495   // horizontal reduction.
7496   // Interrupt the process if the Root instruction itself was vectorized or all
7497   // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
7498   // Skip the analysis of CmpInsts.Compiler implements postanalysis of the
7499   // CmpInsts so we can skip extra attempts in
7500   // tryToVectorizeHorReductionOrInstOperands and save compile time.
7501   SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0});
7502   SmallPtrSet<Value *, 8> VisitedInstrs;
7503   bool Res = false;
7504   while (!Stack.empty()) {
7505     Instruction *Inst;
7506     unsigned Level;
7507     std::tie(Inst, Level) = Stack.pop_back_val();
7508     Value *B0, *B1;
7509     bool IsBinop = matchRdxBop(Inst, B0, B1);
7510     bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value()));
7511     if (IsBinop || IsSelect) {
7512       HorizontalReduction HorRdx;
7513       if (HorRdx.matchAssociativeReduction(P, Inst)) {
7514         if (HorRdx.tryToReduce(R, TTI)) {
7515           Res = true;
7516           // Set P to nullptr to avoid re-analysis of phi node in
7517           // matchAssociativeReduction function unless this is the root node.
7518           P = nullptr;
7519           continue;
7520         }
7521       }
7522       if (P && IsBinop) {
7523         Inst = dyn_cast<Instruction>(B0);
7524         if (Inst == P)
7525           Inst = dyn_cast<Instruction>(B1);
7526         if (!Inst) {
7527           // Set P to nullptr to avoid re-analysis of phi node in
7528           // matchAssociativeReduction function unless this is the root node.
7529           P = nullptr;
7530           continue;
7531         }
7532       }
7533     }
7534     // Set P to nullptr to avoid re-analysis of phi node in
7535     // matchAssociativeReduction function unless this is the root node.
7536     P = nullptr;
7537     // Do not try to vectorize CmpInst operands, this is done separately.
7538     if (!isa<CmpInst>(Inst) && Vectorize(Inst, R)) {
7539       Res = true;
7540       continue;
7541     }
7542 
7543     // Try to vectorize operands.
7544     // Continue analysis for the instruction from the same basic block only to
7545     // save compile time.
7546     if (++Level < RecursionMaxDepth)
7547       for (auto *Op : Inst->operand_values())
7548         if (VisitedInstrs.insert(Op).second)
7549           if (auto *I = dyn_cast<Instruction>(Op))
7550             // Do not try to vectorize CmpInst operands,  this is done
7551             // separately.
7552             if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) &&
7553                 I->getParent() == BB)
7554               Stack.emplace_back(I, Level);
7555   }
7556   return Res;
7557 }
7558 
7559 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V,
7560                                                  BasicBlock *BB, BoUpSLP &R,
7561                                                  TargetTransformInfo *TTI) {
7562   auto *I = dyn_cast_or_null<Instruction>(V);
7563   if (!I)
7564     return false;
7565 
7566   if (!isa<BinaryOperator>(I))
7567     P = nullptr;
7568   // Try to match and vectorize a horizontal reduction.
7569   auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool {
7570     return tryToVectorize(I, R);
7571   };
7572   return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI,
7573                                                   ExtraVectorization);
7574 }
7575 
7576 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI,
7577                                                  BasicBlock *BB, BoUpSLP &R) {
7578   const DataLayout &DL = BB->getModule()->getDataLayout();
7579   if (!R.canMapToVector(IVI->getType(), DL))
7580     return false;
7581 
7582   SmallVector<Value *, 16> BuildVectorOpds;
7583   SmallVector<Value *, 16> BuildVectorInsts;
7584   if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts))
7585     return false;
7586 
7587   LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n");
7588   // Aggregate value is unlikely to be processed in vector register, we need to
7589   // extract scalars into scalar registers, so NeedExtraction is set true.
7590   return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false,
7591                             BuildVectorInsts);
7592 }
7593 
7594 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI,
7595                                                    BasicBlock *BB, BoUpSLP &R) {
7596   SmallVector<Value *, 16> BuildVectorInsts;
7597   SmallVector<Value *, 16> BuildVectorOpds;
7598   SmallVector<int> Mask;
7599   if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) ||
7600       (llvm::all_of(BuildVectorOpds,
7601                     [](Value *V) { return isa<ExtractElementInst>(V); }) &&
7602        isShuffle(BuildVectorOpds, Mask)))
7603     return false;
7604 
7605   // Vectorize starting with the build vector operands ignoring the BuildVector
7606   // instructions for the purpose of scheduling and user extraction.
7607   return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false,
7608                             BuildVectorInsts);
7609 }
7610 
7611 bool SLPVectorizerPass::vectorizeSimpleInstructions(
7612     SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R,
7613     bool AtTerminator) {
7614   bool OpsChanged = false;
7615   SmallVector<Instruction *, 4> PostponedCmps;
7616   for (auto *I : reverse(Instructions)) {
7617     if (R.isDeleted(I))
7618       continue;
7619     if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I))
7620       OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R);
7621     else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I))
7622       OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R);
7623     else if (isa<CmpInst>(I))
7624       PostponedCmps.push_back(I);
7625   }
7626   if (AtTerminator) {
7627     // Try to find reductions first.
7628     for (Instruction *I : PostponedCmps) {
7629       if (R.isDeleted(I))
7630         continue;
7631       for (Value *Op : I->operands())
7632         OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI);
7633     }
7634     // Try to vectorize operands as vector bundles.
7635     for (Instruction *I : PostponedCmps) {
7636       if (R.isDeleted(I))
7637         continue;
7638       OpsChanged |= tryToVectorize(I, R);
7639     }
7640     Instructions.clear();
7641   } else {
7642     // Insert in reverse order since the PostponedCmps vector was filled in
7643     // reverse order.
7644     Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend());
7645   }
7646   return OpsChanged;
7647 }
7648 
7649 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
7650   bool Changed = false;
7651   SmallVector<Value *, 4> Incoming;
7652   SmallPtrSet<Value *, 16> VisitedInstrs;
7653 
7654   bool HaveVectorizedPhiNodes = true;
7655   while (HaveVectorizedPhiNodes) {
7656     HaveVectorizedPhiNodes = false;
7657 
7658     // Collect the incoming values from the PHIs.
7659     Incoming.clear();
7660     for (Instruction &I : *BB) {
7661       PHINode *P = dyn_cast<PHINode>(&I);
7662       if (!P)
7663         break;
7664 
7665       if (!VisitedInstrs.count(P) && !R.isDeleted(P))
7666         Incoming.push_back(P);
7667     }
7668 
7669     // Sort by type.
7670     llvm::stable_sort(Incoming, PhiTypeSorterFunc);
7671 
7672     // Try to vectorize elements base on their type.
7673     for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
7674                                            E = Incoming.end();
7675          IncIt != E;) {
7676 
7677       // Look for the next elements with the same type.
7678       SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
7679       while (SameTypeIt != E &&
7680              (*SameTypeIt)->getType() == (*IncIt)->getType()) {
7681         VisitedInstrs.insert(*SameTypeIt);
7682         ++SameTypeIt;
7683       }
7684 
7685       // Try to vectorize them.
7686       unsigned NumElts = (SameTypeIt - IncIt);
7687       LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs ("
7688                         << NumElts << ")\n");
7689       // The order in which the phi nodes appear in the program does not matter.
7690       // So allow tryToVectorizeList to reorder them if it is beneficial. This
7691       // is done when there are exactly two elements since tryToVectorizeList
7692       // asserts that there are only two values when AllowReorder is true.
7693       bool AllowReorder = NumElts == 2;
7694       if (NumElts > 1 &&
7695           tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, AllowReorder)) {
7696         // Success start over because instructions might have been changed.
7697         HaveVectorizedPhiNodes = true;
7698         Changed = true;
7699         break;
7700       }
7701 
7702       // Start over at the next instruction of a different type (or the end).
7703       IncIt = SameTypeIt;
7704     }
7705   }
7706 
7707   VisitedInstrs.clear();
7708 
7709   SmallVector<Instruction *, 8> PostProcessInstructions;
7710   SmallDenseSet<Instruction *, 4> KeyNodes;
7711   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
7712     // Skip instructions with scalable type. The num of elements is unknown at
7713     // compile-time for scalable type.
7714     if (isa<ScalableVectorType>(it->getType()))
7715       continue;
7716 
7717     // Skip instructions marked for the deletion.
7718     if (R.isDeleted(&*it))
7719       continue;
7720     // We may go through BB multiple times so skip the one we have checked.
7721     if (!VisitedInstrs.insert(&*it).second) {
7722       if (it->use_empty() && KeyNodes.contains(&*it) &&
7723           vectorizeSimpleInstructions(PostProcessInstructions, BB, R,
7724                                       it->isTerminator())) {
7725         // We would like to start over since some instructions are deleted
7726         // and the iterator may become invalid value.
7727         Changed = true;
7728         it = BB->begin();
7729         e = BB->end();
7730       }
7731       continue;
7732     }
7733 
7734     if (isa<DbgInfoIntrinsic>(it))
7735       continue;
7736 
7737     // Try to vectorize reductions that use PHINodes.
7738     if (PHINode *P = dyn_cast<PHINode>(it)) {
7739       // Check that the PHI is a reduction PHI.
7740       if (P->getNumIncomingValues() == 2) {
7741         // Try to match and vectorize a horizontal reduction.
7742         if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R,
7743                                      TTI)) {
7744           Changed = true;
7745           it = BB->begin();
7746           e = BB->end();
7747           continue;
7748         }
7749       }
7750       // Try to vectorize the incoming values of the PHI, to catch reductions
7751       // that feed into PHIs.
7752       for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) {
7753         // Skip if the incoming block is the current BB for now. Also, bypass
7754         // unreachable IR for efficiency and to avoid crashing.
7755         // TODO: Collect the skipped incoming values and try to vectorize them
7756         // after processing BB.
7757         if (BB == P->getIncomingBlock(I) ||
7758             !DT->isReachableFromEntry(P->getIncomingBlock(I)))
7759           continue;
7760 
7761         Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I),
7762                                             P->getIncomingBlock(I), R, TTI);
7763       }
7764       continue;
7765     }
7766 
7767     // Ran into an instruction without users, like terminator, or function call
7768     // with ignored return value, store. Ignore unused instructions (basing on
7769     // instruction type, except for CallInst and InvokeInst).
7770     if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) ||
7771                             isa<InvokeInst>(it))) {
7772       KeyNodes.insert(&*it);
7773       bool OpsChanged = false;
7774       if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) {
7775         for (auto *V : it->operand_values()) {
7776           // Try to match and vectorize a horizontal reduction.
7777           OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI);
7778         }
7779       }
7780       // Start vectorization of post-process list of instructions from the
7781       // top-tree instructions to try to vectorize as many instructions as
7782       // possible.
7783       OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R,
7784                                                 it->isTerminator());
7785       if (OpsChanged) {
7786         // We would like to start over since some instructions are deleted
7787         // and the iterator may become invalid value.
7788         Changed = true;
7789         it = BB->begin();
7790         e = BB->end();
7791         continue;
7792       }
7793     }
7794 
7795     if (isa<InsertElementInst>(it) || isa<CmpInst>(it) ||
7796         isa<InsertValueInst>(it))
7797       PostProcessInstructions.push_back(&*it);
7798   }
7799 
7800   return Changed;
7801 }
7802 
7803 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
7804   auto Changed = false;
7805   for (auto &Entry : GEPs) {
7806     // If the getelementptr list has fewer than two elements, there's nothing
7807     // to do.
7808     if (Entry.second.size() < 2)
7809       continue;
7810 
7811     LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "
7812                       << Entry.second.size() << ".\n");
7813 
7814     // Process the GEP list in chunks suitable for the target's supported
7815     // vector size. If a vector register can't hold 1 element, we are done. We
7816     // are trying to vectorize the index computations, so the maximum number of
7817     // elements is based on the size of the index expression, rather than the
7818     // size of the GEP itself (the target's pointer size).
7819     unsigned MaxVecRegSize = R.getMaxVecRegSize();
7820     unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin());
7821     if (MaxVecRegSize < EltSize)
7822       continue;
7823 
7824     unsigned MaxElts = MaxVecRegSize / EltSize;
7825     for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) {
7826       auto Len = std::min<unsigned>(BE - BI, MaxElts);
7827       ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len);
7828 
7829       // Initialize a set a candidate getelementptrs. Note that we use a
7830       // SetVector here to preserve program order. If the index computations
7831       // are vectorizable and begin with loads, we want to minimize the chance
7832       // of having to reorder them later.
7833       SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
7834 
7835       // Some of the candidates may have already been vectorized after we
7836       // initially collected them. If so, they are marked as deleted, so remove
7837       // them from the set of candidates.
7838       Candidates.remove_if(
7839           [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); });
7840 
7841       // Remove from the set of candidates all pairs of getelementptrs with
7842       // constant differences. Such getelementptrs are likely not good
7843       // candidates for vectorization in a bottom-up phase since one can be
7844       // computed from the other. We also ensure all candidate getelementptr
7845       // indices are unique.
7846       for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
7847         auto *GEPI = GEPList[I];
7848         if (!Candidates.count(GEPI))
7849           continue;
7850         auto *SCEVI = SE->getSCEV(GEPList[I]);
7851         for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
7852           auto *GEPJ = GEPList[J];
7853           auto *SCEVJ = SE->getSCEV(GEPList[J]);
7854           if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
7855             Candidates.remove(GEPI);
7856             Candidates.remove(GEPJ);
7857           } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
7858             Candidates.remove(GEPJ);
7859           }
7860         }
7861       }
7862 
7863       // We break out of the above computation as soon as we know there are
7864       // fewer than two candidates remaining.
7865       if (Candidates.size() < 2)
7866         continue;
7867 
7868       // Add the single, non-constant index of each candidate to the bundle. We
7869       // ensured the indices met these constraints when we originally collected
7870       // the getelementptrs.
7871       SmallVector<Value *, 16> Bundle(Candidates.size());
7872       auto BundleIndex = 0u;
7873       for (auto *V : Candidates) {
7874         auto *GEP = cast<GetElementPtrInst>(V);
7875         auto *GEPIdx = GEP->idx_begin()->get();
7876         assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx));
7877         Bundle[BundleIndex++] = GEPIdx;
7878       }
7879 
7880       // Try and vectorize the indices. We are currently only interested in
7881       // gather-like cases of the form:
7882       //
7883       // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
7884       //
7885       // where the loads of "a", the loads of "b", and the subtractions can be
7886       // performed in parallel. It's likely that detecting this pattern in a
7887       // bottom-up phase will be simpler and less costly than building a
7888       // full-blown top-down phase beginning at the consecutive loads.
7889       Changed |= tryToVectorizeList(Bundle, R);
7890     }
7891   }
7892   return Changed;
7893 }
7894 
7895 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
7896   bool Changed = false;
7897   // Attempt to sort and vectorize each of the store-groups.
7898   for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e;
7899        ++it) {
7900     if (it->second.size() < 2)
7901       continue;
7902 
7903     LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
7904                       << it->second.size() << ".\n");
7905 
7906     Changed |= vectorizeStores(it->second, R);
7907   }
7908   return Changed;
7909 }
7910 
7911 char SLPVectorizer::ID = 0;
7912 
7913 static const char lv_name[] = "SLP Vectorizer";
7914 
7915 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
7916 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7917 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7918 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7919 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7920 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
7921 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7922 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7923 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7924 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
7925 
7926 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); }
7927